Packet Analysis
with Wireshark

Leverage the power of Wireshark to troubleshoot your networking
Issues by using effective packet analysis technigues and
performing an improved protocol analysis

PACKT

Packet Analysis with Wireshark

Table of Contents

Packet Analysis with Wireshark

Credits
About the Author

About the Reviewers

www.PacktPub.com

Support files, eBooks, discount offers, and more
Why subscribe?

Free access for Packt account holders

Preface

What this book covers

What vou need for this book
Who this book is for

Conventions

Reader feedback

Customer support
Downloading the example code
Errata
Piracy
Questions
1. Packet Analyzers

Uses for packet analyzers

Introducing Wireshark

Wireshark features

Wireshark’s dumpcap and tshark

The Wireshark packet capture process

Other packet analyzer tools

Mobile packet capture

Summary
2. Capturing Packets

Guide to capturing packets
Capturing packets with Interface Lists
Common interface names
Capturing packets with Start options
Capturing packets with Capture Options
The capture filter options
Auto-capturing a file periodically
Troubleshooting

Wireshark user interface

The Filter toolbar

Filtering techniques
Filter examples
The Packet List pane
The Packet Details pane
The Packet Bytes pane

Wireshark features

Decode-As

Protocol [QI‘EfEI‘EDCES

The 10 graph
Following the TCP stream

Exporting the displayed packet

Generating the firewall ACL rules

Tcpdump and snoop
References

Summary
3. Analyzing the TCP Network

Recapping TCP
TCP header fields

TCP states

TCP connection establishment and clearing

TCP three-way handshake

Handshake message — first step [SYN]
Handshake message — second step [SYN, ACK]

Handshake message — third step [ACK]

TCP data communication

TCP close sequence

Lab exercise

TCP troubleshooting

TCP reset sequence
RST after SYN-ACK

RST after SYN

Lab exercise

TCP CLOSE_WAIT

Lab exercise
How to resolve TCP CLOSE_STATE
TCP TIME_WAIT

TCP latency issues
Cause of latency
Identifying latency

Server latency example

Wire latency

Wireshark TCP sequence analysis

TCP retransmission
Lab exercise

TCP ZeroWindow

TCP Window Update

TCP Dup-ACK

References
Summary
4. Analyzing SSL/TLS
An introduction to SSL/TLS
SSL/TLS versions

The SSL/TLS component
The SSL/TLS handshake

Types of handshake message
Client Hello

Server Hello

Server certificate

Server Key Exchange

Client certificate request
Server Hello Done

Client certificate

Client Key Exchange
Client Certificate Verify
Change Cipher Spec

Finished

Application Data
Alert Protocol
Key exchange
The Diffie-Hellman key exchange
Elliptic curve Diffie-Hellman key exchange
RSA
Decrypting SSL/TLS
Decrypting RSA traffic
Decrypting DHE/ECHDE traffic

Forward secrecy

Debugging issues
Summary
5. Analyzing Application Layer Protocols
DHCPv6
DHCPv6 Wireshark filter

Multicast addresses

The UDP port information

DHCPv6 message types
Message exchanges
The four-message exchange
The two-message exchange

DHCPVv6 traffic capture
BOOTP/DHCP

BOOTP/DHCP Wireshark filter

Address assignment

Capture DHCPv4 traffic
DNS

DNS Wireshark filter
Port

Resource records
DNS traffic
HTTP
HTTP Wireshark filter
HTTP use cases

Finding the top HTTP response time
Finding packets based on HTTP methods

Finding sensitive information in a form post

Using HTTP status code

References

Summary
6. WLAN Capturing

WLAN capture setup

The monitor mode

Analyzing the Wi-Fi networks

Frames

Management frames

Data frames

Control frames

802.11 auth process
802.1X EAPOL
The 802.11 protocol stack

Wi-Fi sniffing products
Summary

7. Security Analysis

Heartbleed bug
The Heartbleed Wireshark filter

Heartbleed Wireshark analysis
The Heartbleed test

Heartbleed recommendations

The DOS attack

SYN flood

SYN flood mitigation
ICMP flood

ICMP flood mitigation
SSL flood

Scanning

Vulnerability scanning
SSL scans

ARP duplicate IP detection
DrDoS
BitTorrent

Wireshark protocol hierarchy

Summary

Index

Packet Analysis with Wireshark

Packet Analysis with Wireshark

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2015
Production reference: 1261115
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78588-781-9

www.packtpub.com

http://www.packtpub.com

Credits

Author

Anish Nath
Reviewers

Michael Downey
Robert Juric

Mikael Kanstrup
Acquisition Editor
Indrajit Das

Content Development Editor
Rohit Singh
Technical Editor
Mrunmayee Patil
Copy Editor

Stephen Copestake
Project Coordinator
Mary Alex
Proofreader

Safis Editing

Indexer

Monica Ajmera Mehta
Production Coordinator
Nilesh Mohite

Cover Work

Nilesh Mohite

About the Author

Anish Nath is a software engineer who has more than 10 years of experience. He works at
CISCO, and at CISCO, he started using Wireshark for the first time. He is thankful to
CISCO. He doesn’t speak much, but likes to explore new things that he has not tried or not
thought of. He also tries his best to be successful at this. Though he fails a lot of time, this
gives him more experience, and when success comes, he thanks all of his efforts that had
failed him initially.

You can reach him at https://in.linkedin.com/in/anishnath, and his Twitter handle is
@anish2good.

I would like to thank my friends, Arnab Biswas, Arun John, Ganesh Choudhari, Mayank
Johari, Pradeep Sivakumar, Prakash John, Deepak Kukrety, and Veeksha Vasant for
supporting me in this venture. I’ve definitely learned a lot from their experience.

I would also like to thank, Alice Chen, Tin Nguyen, Sunil Menon, Saad Abderrazzaq, Ori
Lior, Mahin Khani, Donn Coe, Rob Andrews, and Lon Barrett, for their support and belief
in me all this time and also for providing me assistance when I needed it.

Special thanks to the Wireshark community and its developers for writing an awesome
tool like this.

Thanks to all my reviewers who made an effort so that this book took the correct shape.
My apologies if I’ve missed anyone.

Thanks to Packt Publishing and the entire team, especially Indrajit Das and Rohit Singh
for making this happen.

https://in.linkedin.com/in/anishnath

About the Reviewers

Michael Downey is a security analyst with a passion for *nix operating systems and
network security monitoring. He is also the cofounder of the Evansville Linux User Group
in Indiana, and a contributing member of OpenNSM (http://www.open-nsm.net/). In his
free time, he enjoys security research and an occasional game of disc golf.

Robert Juric, while working as a network engineer, has supported government agencies,
large corporations, and service providers. From his experience, he learned the value of
packet analysis and has come to enjoy the details that it provides.

When not at work, Robert enjoys spending time outdoors with his wife and young son. He
occasionally writes articles for his website, robertjuric.com, or can be found on Twitter at
@robertji180.

Mikael Kanstrup is a software engineer with a passion for adventure and thrills in life. In
his spare time, he spends his time kitesurfing, riding motocross, or just going outdoors
with his family and two kids. Mikael has a BSc degree in computer science and years of
experience in embedded software development and computer networking. For the past
decade, he has been working as a professional software developer in the mobile phone
industry.

http://www.open-nsm.net/
http://robertjuric.com

www.PacktPub.com

Support files, eBooks, discount offers, and
more

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as
a print book customer, you are entitled to a discount on the eBook copy. Get in touch with
us at <service@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

IE\ PACKT!L E°

https://www?2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital
book library. Here, you can search, access, and read Packt’s entire library of books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
e On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

I would like to dedicate this book to my 5-year old son, Arjun Nath; grandfather, Sri
Rajeshwar Prasad; wife, Manisha Prasad; mother, Indu Sinha; and all my family
members (my father, Anil Kumar Sinha; chote papa, Sunil Kumar Sinha; choti
mummy, Poonam Sinha; and friends). Without them, this would not have been
possible.

http://www.PacktPub.com

Preface

The purpose of this book is to identify, learn about, and solve issues related to protocol,
network, and security, and see how Wireshark helps to analyze these patterns by allowing
its features to troubleshoot effectively. This book has lab exercises and contains packet
capture files for offline viewing and analyses. Most of the examples contain production-
like scenarios and their solutions and steps to reproduce these solutions.

This book also contains effective capturing methods that can be used directly in
production without installing Wireshark.

Wireshark is an awesome tool for troubleshooting and learning, and within the scope of
this book, we have taken the best use cases for different types of audiences, such as
network administrators, security auditors, protocol learners, and troubleshooters.

What this book covers

Chapter 1, Packet Analyzers, covers the definition of packet analyzers and their use cases,
network interfaces naming conventions, pcap/pcanpng file extensions, and types of
network analyzer tools.

Chapter 2, Capturing Packets, covers how to capture packets using Wireshark, tcpdump,
and snoop; how to use Wireshark display filters; and how to use Wireshark’s cool features
such as Decode-As and protocol preferences. Also, we will cover the TCP stream,
exporting images, generating a firewall ACL rule, autocapture setup, and the name
resolution feature.

Chapter 3, Analyzing the TCP Network, covers the TCP state machine, TCP connection
establishment and closing sequence, practical troubleshooting labs such as
(CLOSE_WAIT, TIME_WAIT), how to identify and fix latency issues, and Wireshark
TCP sequence analysis flag (zero window, dup-ok, TCP retransmission, and window
update) features.

Chapter 4, Analyzing SSL/TLS, covers the TLS/SSL two-way mutual authentication
process with Wireshark, SSL/TLS decryption with Wireshark, and the identification of
handshake failure with Wireshark.

Chapter 5, Analyzing Application Layer Protocols, covers how to analyze a protocol using
the Wireshark display filter, how these protocols work, how to simulate these packets,
capture, and display them using tcpdump/Wireshark.

Chapter 6, WLAN Capturing, covers WLAN capture setup and monitor mode, capturing
with tcpdump, 802.11 display filters, Layer-2 datagram frames types, Wireshark display
filters, and other Wi-Fi Sniffing products available.

Chapter 7, Security Analysis, covers the security aspect with Wireshark and discusses uses
cases such as the Heartbleed bug, SYN flood/mitigation, ICMP flood/mitigation, MITM,
BitTorrent, and host scanning.

What you need for this book

The topics covered in this book require a basic understanding of TCP/IP. The examples
used in this book are independent of an operating system. All the examples are executed in
a MAC and Linux OS. Windows users can install Cygwin to use a Linux command-line
utility. The following executables are used in this book:

Wireshark
tcpdump
snoop

dig
nslookup
java

wget
dhclient
nmap

Who this book is for

This book provides background information to help readers understand the topics that are
discussed. The intended audience for this book includes the following:

Network/system administrators
Security consultants and IT officers
Architects/protocol developers
White Hat hackers

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their
meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: “Start
Wireshark by clicking on the Wireshark icon or type Wireshark in the command line.”

Any command-line input or output is written as follows:

[bash ~]# cat /proc/sys/net/ipv4/tcp_fin_timeout 60

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: “Click on Interface
List; Wireshark will show a list of available network interfaces in the system.”

Note

Warnings or important notes appear in a box like this.
Tip

Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the
book’s title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-
mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted and
the errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

mailto:copyright@packtpub.com

Questions

If you have a problem with any aspect of this book, you can contact us at
<guestions@packtpub.com>, and we will do our best to address the problem.

mailto:questions@packtpub.com

Chapter 1. Packet Analyzers

A packet analyzer is also known as a packet sniffer or a network protocol analyzer. Packet
analyzer has the ability to grab the raw packet from the wire, wireless, Bluetooth, VLAN,
PPP, and other network types, without getting processed by the application. By doing so it
brings the whole science and innovation to this field. In this chapter we will see a few use
cases of the packet analyzer by covering the following topics:

Uses for packet analyzers
Introducing Wireshark
Other packet analyzer tools
Mobile packet capturing

Uses for packet analyzers

More practically, packet analyzers are employed in network security and to analyze raw
traffic so as to detect scans and attacks, and for sniffing, network troubleshooting, and
many more uses, as shown in the following image:

Inspect & log

(packet analyzers ﬂ traffic that pass

over digital
network

Show network Fa - '
Statistics Debug protocol | Monitor Live data |
p——— o show network
Network | e g statistics

Problem J' e T . st

debug _ Help in 1D5
network 1
prablems

Detact WAN bandwidth | - Edit/Replay
Network utilization Reverse Engineering packet
Misuses .

uses of packet analyzers

Packet analyzers can be used as follows:

Network administrators can diagnose problems on a network

Security architects can perform a security audit on a packet

Protocol developers can diagnose/learn protocol-related issues

White-hat hackers can find vulnerabilities in the application and fix them before
black-hat hacker find them

The use is not limited to these bullet point, there are lots of new tools and innovations
happening in this area. Find a use case and build your own packet analyzer; the best
example is Wireshark.

Introducing Wireshark

Wireshark is perhaps one of the best open source packet analyzers available today.
Wireshark is a powerful packet analyzer tool, with an easy-to-use, rich GUI and a
command-line utility with very active community support: http://ask.wireshark.org.

Wireshark uses pcap (1ibpcap) to capture packets, which means it can capture packets in
offline mode—to view the captured packets—and online mode (live traffic) to capture and
display the traffic in the Wireshark GUI. Once open, the Wireshark GUI looks like this:

y -l e a8 % Thio Winsshark Nobwork Analyzor [Wiroshark 1,126 (1 1‘2ﬁ {-goat toed rom master-1 '.:"'-al
File Edit Veew Go Capture Analyre Statistics Telephony Tools [nternals Help
O 4ame X 2 ' =l | a6 B gV E 3

L 4 E B
Filter = | Expression.

‘EI lﬂi The World's Most Popular Network Protocol Analyzer
WIRESHARK Version 1.12.6 (v1.12.6-0-geelfced from master-1.12)

Interface List Open -, Website
Open Recent v U 's Guid
4 Start - serslme
Cleouse s s inter s b i o, Ot Thart @ Sample Captures
 Wi-Fi: en0 Arich saporipment af ensemple capiu fles oo the wi @ Security
=1 aved Winel wath Wreahark aa secunely a posilk

! Thunderbolt 1 enl

! Thunderbolt Bridge: bridge]
& Thunderbolt 2 en? i
&l p2pC

@ Capture Options

wADH e Taled GEmIAL

g How to Capture

e &

Network Media

Etheonet W AN

http://ask.wireshark.org

Wireshark features

We will see some of the important features that are available in Wireshark in the following
figure:

& Wireshark Feature

Create
€ different GNU Open
statistics source Software

&

Capture& Displays Plugin feature to write.'.
Live Packets . CUSTOM protocols

@) (Wreshark Foature). (ST,

Large E(Avaibale in GUI & CLI antD

Protocol in UNIX & Windows
Support

Coloring rules based
on diffrent criteria

Wireshark has the following cool built-in features, few of them are listed as follows:

Available in both UNIX and Windows

Ability to capture live packets from various types of interface
Filters packets with many criteria

Ability to decode larger sets of protocols

Can save and merge captured packets

Can create various statistics

User-friendly GUI and command-line interface

Active community support (http://ask.wireshark.org)

http://ask.wireshark.org

Wireshark’s dumpcap and tshark

The Wireshark installation provides some command-line tools such as dumpcap and
tshark. Wireshark and tshark rely on dumpcap to capture traffic; more advanced
functionality is performed by tshark. Also note that dumpcap can be run as its own
standalone utility. tshark is a command-line version of Wireshark and can be used in the
remote terminal.

The Wireshark packet capture process

The user must be aware of where Wireshark is installed and it should be obliged with your
organization policy before start capturing on the TAP (Test Access Point) or Switch Port
Analyzer (SPAN) port.

Usually developers install Wireshark on their personal laptop/desktop and capture packets,
which goes in-out from the box.

Certain guidelines should be followed to perform this:

1.

Make sure you’re allowed to do what you’re going to do; check your corporate
policies before capturing a packet.
The operating system must support packet capturing;:

o Linux packet socket support is enabled in the kernel by default
o Windows requires WinPCap to be installed

Choose the interface and enable the promiscuous mode on it. Promiscuous mode
accepts all packets whether they are addressed to the interface or not.

If using a Wi-Fi interface, enable the monitor mode for WLAN capturing.

Start capturing and use Wireshark’s different features like (filters/statistics/IO/save)
for further analysis

SEA Wireshark Packet Capture Setup Process

install Wireshark Open Wireshark
and packet GUI as Choose the live i
Do you allowed capture Non-root User, or interface and put s Wi-FI - Selthe interface
to captured packet .| Suppori on the —hiser should have —— theinterfacein —»<{ o v |in Monitor Mode
2 i 0s sufficient Promiscuous
e.g On Windows priviledge to run mode
install WinPcap this software *:l
N
¥ Use Wireshark Click on start
features Option to stan

(fiters/statistics/save) capturing the 4——
STOP for further analysis poaket

Other packet analyzer tools

Wireshark is a packet analysis tool to use features such as packet editing/replaying,
performing MITM, ARPspoof, IDS, and HTTP proxy, and there are other packet analyzer
tools available and can be used as well.

The following is a list (not limited) of notable packet analyzer tools on the market; many
others are commercially available. The table lists tools and their features:

Tools Pa.cl.(et Packet ARPspoof MITM Pa.ss.word Intrusolon HTTP
editing replay sniffing detection ||debugger

WireEdit (https:/wireedit.com/) ||Y ||N ||N ||N ||N ||N
Scapy (http://www.secdev.org/) ||Y ||Y ||Y ||Y ||N ||Y
Ettercap

(https://ettercap.github.io/ettercap/) M N M M N N
Tcpreplay

(http://tcpreplay.synfin.net/) N M N N N N
Bit-Twist

(http://bittwist.sourceforge.net/) “Y N N N N N
Cain (http://www.oxid.it/cain.html)||N ||N ||Y ||Y ||N ||N
Snort (https:/www.snort.org/) ||N ||N ||N ||N ||Y ||N

https://wireedit.com/
http://www.secdev.org/
https://ettercap.github.io/ettercap/
http://tcpreplay.synfin.net/
http://bittwist.sourceforge.net/
http://www.oxid.it/cain.html
https://www.snort.org/

Mobile packet capture

Wireshark is not available on mobile platforms such as Android, iOS, or Windows. In
order to capture mobile traffic the following tools are suggested based on the platform:

Platform||Packet capture tool used ||URL |
'Windows|[Microsoft Network Analyzers httD://www.microsoft.c0m/en—in/download/detaﬂs.asDX?id=19484|
i0S Paros ||http://sourceforge.net/projects/paros/

Shark for Root http://www.appbrain.com/app/shark-for-root/lv.n30.shark |
Android

Kismet Android PCAP

http://www.kismetwireless.net/android-pcap/ |

Various other techniques are used to capture mobile traffic using Wireshark. One such
technique is creating a Wi-Fi hotspot on the laptop, allowing the mobile phone to use this
Wi-Fi, and sniffing traffic on your Wi-Fi interface using Wireshark.

http://www.microsoft.com/en-in/download/details.aspx?id=19484
http://sourceforge.net/projects/paros/
http://www.appbrain.com/app/shark-for-root/lv.n3o.shark
http://www.kismetwireless.net/android-pcap/

Summary

In this chapter we learned what packet analyzers are and what their use cases are. After a
quick introduction to Wireshark, we covered what goes on behind-the-scenes when
Wireshark captures packets; Wireshark benefits and important features; the necessary
prerequisites before capturing packets; and other packet analyzer tools for packet
editing/sniffing/replaying and so on. We also provided a brief overview of mobile packet
capturing.

The next chapter will be more specific to Wireshark and its tips and tricks. After that we
will explore TCP troubleshooting, then plunge into SSL, and other application protocols
such as DHCPv6, DHCP, DNS, and HTTP. We will also analyze Wi-Fi capturing and
carry out some security analyses with the help of Wireshark and tcpdump.

Chapter 2. Capturing Packets

In the previous chapter, we learned what packet analyzers are used for. In this chapter we
will learn more about the Wireshark GUI features, and see how it helps in capturing and
analyzing packets effectively, by covering the following topics:

Capturing packets with Wireshark interface lists
Capturing packets with Wireshark start options
Capture options

Wireshark filter examples

Wireshark Packet List pane

Wireshark Packet Details pane

Wireshark features

The tcpdump and snoop examples

Guide to capturing packets

Start Wireshark by clicking on the Wireshark icon or type Wireshark in the command
line. When Wireshark starts it launches the following screen and provides the following

ways to capture packets:

e dNldad E R B8 &%
Filter ["-_ - -

N
WIRESHARK

Wersion 1

Interface List .I

ve kst of the capiure inberfaces
COUNIS FCOHMING Dacket)

File Edit View Co Capture Apalyze Statistics Telephopy Tools [nternals Help

»Fi[EE ccam@EEss O

| Ex pression -

The World's Most Popular Network Protocol Analyzer
12.4 iv1.12.4-0-gb486 1da from master-1.12)

Open

Open a previously capbured e 4

| P Start

Choose ang or mere mierfaces to capore fram, thes Stary

¢ Thunderbaolt Bridge: bridged

. Open Recant

]

Msers/Shared /bmp.peap (5523 bytes)
fUsers /Shared/iseries.cap (282 ki)

« I Users/Sharedfeapol-mka peap (11 kB)
JUsers/Shared /pana.cap (3480 bytes)

Start & capture with detaled cotions

= awdil i"
Thunderbolt 1- enl -"iln'|s.-"ihdu'li.‘r.::n_rt_'lhll:\t cap (100 bytes)
& Thunderbolt 2: en2 ;zwrh::‘”t:ﬂ::iuﬂ:\Sp:;rIm -
sers/Shared/ Jprap (2
A p2po 0 MUsers/Sharedfarp-storm_pcap (47 kB)
i Loopback: la0 i
i/ Loopoack; 1o 2 fUsers /Shared ftelnet-raw. pcap (24 kB)
e ——————— L £ PRI BEET
® CHPIUFE Optluns 3 MUsers/Shared/mysql complete.pcap (8567 bytes)

@ Sample Captures

How to Capture

Step by step 1o & successful capiure sebp

Network Media

Sopecifc information for capiwing on

A ricth assormment of example capiere fkes on the wil

Capture Help

Online

o Website

Winil the projed (s welisioe

[User's Guide

The User's Cude (onkne verwaan)

@ Security

Work weth 'Wireshark as securely as possile

Etharnat, WLAN,

The following table explains the various options that we have on the Start screen:

Sr. Wireshark capture
no. options

'What is this?

Interface List

Opens up a live list of capture interfaces, and counts the incoming/outgoing

1 packets

2 Start 'You can choose an interface from the list and start capturing packets
3 Capture Options Provides various options for capturing and displaying packets

4 Open Recent Wireshark displays recently used packets

We will cover each capturing option in detail one by one.

Capturing packets with Interface Lists

Click on Interface List; Wireshark will show a list of available network interfaces in the
system and which one is active, by showing packets going in and out of the Interface, as
shown in the following screenshot:

Filter [v | Expression... Clea

/1 The World's Most Popular Network Protocol Analyzer

W|RESHARK version 1.12.6 (v1.12.6-0-geelfced from master-1.12)

Capture Files Online
Interface List , Open », Website
@ i b5t of the ¢ 1. Click on . s
capture interfaces Open a previoesly capiuned file Visit the project’s website
{counts mcoming packets) Interface List
3 OpenRecesl ++ User's Guide
‘ tart e The User's Cusde (onlne wersion)
Choose one or more mterfaces to capture from, then Start @ Sample capllll‘es
A rich assormment of examole capture files on the wiki o Securiw
3 a0 e e %, Wireshark: Captife interfaces Work with Wireshark as securely as passible
g Thunderbolt Bridge; bridged Device Description IP Packets Packets/s
& Thunderbolt 1 enl (2 = end fe80::2acfedff:fele:dfad 77911 3 3. Select the ACTIVE interfaces
Thunderbalt 2: en2 O i awdlo fe80: cdee off feel cocd
@ p2p0 O ¢ bridge0 .
i O plenl
@ Capture Opllons O plen2
SArT & capiure with detased opHons 0O gl p2p0 4. Click on Start”"
&= gl lol o |

2. Capture Interfaces Dialog Will

ST ccico | [s] W | @opuom] oo | = ppear

%) How to Capture

Choose the right (live) interfaces and click on the Start button to start capturing packets.
If you want to capture packets on loopback (127.0.0.1), select the interface 100.

Common interface names

The interface name tells you the network type; by looking at the name of the interface the
user should understand what network the capture setup is associated with—for example,
etho stands for Ethernet. A few of them are shown in the following diagram:

common interface names

"wlan0", "wlan1®
Wireless LAN

Linux

"lo": virtual

Clnterfacas Namas)
loopback
interface

(LTRTRETT

any” . virtual interface

“, [UNIXILinux | & ™
-

"etho", "eth1™
Ethernet interfaces

lof:
Glrh.ul loopback interface

SETTTITTELE

k|
g

"lo0": : %,
loopback interface LY
- 1" :'-_
PPP interfaces H

“an0™, “en1®,
ar AirPort

-
e

interfaces

Capturing packets with Start options

In Start options, users can multiselect or select the interface displayed in the list and then
click on Start. This doesn’t give you the flexibility to see on which interface the packets
are active. Users can configure the capture options by double clicking on the interface or
by clicking on Capture Options:

—

___/1___ The World's Most Popular Network Protocol Analyzer
WIRESHARK Y 12.4-0-gb4861da from master-1.12)
Capture Files {___Online |
Interface List Open o Website
Lrve list af the caplure mterTaces T Open aprevously captured file Wil the project’s webute
[coumts incoming packes)
ODER REcERL: - User's Guide
A Start ‘F— 2. Cllck Start fUsers/Shared /tcp/slow_network/slow_client_syn.pcap (1093 bytes) - The User's Guide (online wersion)
Chacse one af mofe interfaces to caphure from, them Start JUsers/Shared /ipv6.pcapng (3860 bytes) i
& Wi-Fi- en0 1. SEIECt Interfz ce,usersfsharedjlraff1(—:o—PH.p{ap 41 kB) ﬁ Sef.l-lrltv
& Thunderbalt Bridge: bridged fUsers/Shared/slow_comprehensive_scal.pcapng (1739 kB) Work with Wireshark as securely as o
& awdlo ;Escrs;::arcj,mlsl pcap (961 kE{-;“ i
= JUsers/Shared /telnet-raw.pcap
& Thunderbolt 1. enl
'_: Thu:de:hzll 2 e:2 JUsers/Shared [SIMULCRYPT .pcap (10 kB)
- by JUsers/Shared/pingscan.pcapng (417 kB)
&l p2p0 X ,'UsersI}hnred,.'BI'I"TURREN'I'_pup 43 kB)

® Captu re Opliﬂns JuseWireshakicum . tep_window_update/tep_window update pcap (696 bytes)

Start a caplure with detailed optien © Sample Caplures

A vich assorument of example capture files on the wiki
Capture Help

How to Capture

Step by step to a succassful captore senp

Network Media

specific Informabion for cagluring on
Ethermet, WLAN, ... =

Capturing packets with Capture Options

Wireshark provides the flexibility to configure packets that need to be captured with
various capture options. To begin, try these basic settings:

1. Choose the live interface, where packets are going in and out.

2. Click on Capture Options, Wireshark will open the Capture Options dialog box.

3. Enable the promiscuous mode, which will allow the network interface to receive all
packets.

4. Check the snaplength size. This option will tell you the size of data for each frame
that should be captured by Wireshark; this is useful when capturing the header frame
or to keep the packet size small.

5. Name Resolution tries to resolve the numerical address (for example, the MAC
address, the IP address, and port) to its corresponding name, under the category
where the following options are defined:

o Resolve MAC addresses: This is used to convert the MAC address to a human-
readable format; for example 28:cf:e9:1e:df:a9 will translate to
192.168.1.101.

o Resolve network-layer names (IP name resolution): This is used to convert the
IP address to its corresponding hostname (for example, 216.58.220. 46 will
translate to google.com).

o Resolve transport-layer name (TCP/UDP port name resolution): This is used
to convert well-known ports to human-readable format (for example, 443 will
translate to https).

6. Use the external network name resolver to perform a reverse DNS lookup for each
unique IP address (for example 216.58.196.14 will translate to ns4.google.com)
also referred to as reverse DNS lookup.

Users can also choose these options by selecting the Wireshark View menu and applying
the following settings:

View | Name Resolution | Use External Network Name Resolver
View | Name Resolution | Enable for MAC Layer

View | Name Resolution | Enable for Transport Layer

View | Name Resolution | Enable for Network Layer

The drawbacks of name resolution are as follows:

e Once you have enabled these name resolution options, Wireshark will generate extra
packets to resolve the name from the name server if the traffic is huge and there are
high numbers of unique IP addresses. With these settings Wireshark will become very
slow.

e Wireshark caches the resolved DNS name, so if the name server information changes,
manual reload is required.

The capture filter options

Wireshark provides a range of capture filter options, use these options to decide which
packets will save to the disk. These options are useful when capturing packets over a
longer period of time. Wireshark uses the Berkeley Packet Filter (BPF) syntax for this
purpose, for example tcp src port 22. This option also saves disk space. For example,
to capture only TCP packets, follow the given steps:

1.
2.
disabled.

and click on OK.

Click on Capture Options. The dialog box will open as shown in the screenshot.
Select the active interface and set the promiscuous mode setting to enabled or

Click on Capture Filter. Once the dialog box appears, choose the TCP only filter

Filter: |

The Wt

WIRESHARK Version

[cCapur
Interface List

Live st of the capiure interfaces
(Counts incomng packets)

P Start

Choose one or more intarfaces to capd
= Wi-Fiiend
Ll awdlO
i Thunderbolt Bridge: bridge0
& Thunderbolt 1. enl
i Thunderbolt 2: en2 1. Click
i p2p0

@ Capture Options

Start a caplare with detailed options

© How to Capture

Step by step 10 a seccessful capture sd

Capturne

Interface
Wi-Fi: en0

TeB0. Tact eSlT fele dfad
192,168 1 101

Capture

=

ader | Prom. Mode | Snaplen [B] | Buffer [MiB]| Mon. Mode

2. Select The ACTIVE interface

Ethernet

enabled 262144 2

disabled

Capture Filter

O Capture on all interfaces

Manage Interfaces
4. Capture -FllteFDiang-Bux"

& Use promiscuous mode on all inte

il Capture Filter:
Capture Files 3. Click
File: ,-—E apture-Filter—]

O Use multiple files

e

Stop Caplure Automatically After...
o | -

(I

a [}

ﬂf.‘eeletel [

Properties

Filter name: [TCP only
Filter stli’nu'|tcp

IiHelp |

%, Wireshark: Capturs Filter - Profila: Dafault
Capture Filter

Ethernet address 00.08 15:00:08:15
Ethernet type Ox0B0G (ARP)

No Broadcast and no Multicast

P— »

No ARP
IP only
5. choose the
IP address 192.168.0.1 Filter
IPX only '
'.';" =] ¥ o

6-Clic

resel\-e netwark-layer names
R

;J Compile selected BPFs

lay Options

Lipdate list of packets in real time
Mutomatically scroll during live capture
Hide capture info dialog

e Resolution

Resolve MAC addresses

esolve transport-layer name

i €xternal network name resolver

7. Click
tart

S

I Help

4. Click on the Start button to start capturing just the TCP packets.

Auto-capturing a file periodically

Users can fine-tune Wireshark to auto-capture files periodically. To do this, click on
Capture Options | Capture Files, as shown in the following screenshot:

0@ 4 W &

Filter: |

| Capture

Capture Int:rfaoe Link-layer header | Prom. Mode | Snaplen [B]

enabled 262144

=kl e aa

The

Vers

392 MR IIH

oo Sk oSk WD

I
WIRESHARK

— = [e

Buffer [MiB]| Mon. Mode
2 disabled

Capture Filter

“ =

O Capture on all interfaces
B Use promiscuous mode on all interfaces

AUTO Capture Setup

Interface List

il Capture Filter: |t-:|: port http

Live st of the capture intesfaces

icounts incoming packe ts)

a Start

Choose ane or more interfaces 18

Capture Files 2. Name of the file

i W}Generale-MuItlpIe-filesi
I B Use multiple files |'

Browse...
4. choose the extensmn“‘"" sl churtag B captie

Display Options

& Update list of packets in real time

oLt

ID Use pcap-ng format

Wi-Fi: en0 de capture info dialog

Thunderbolt Bridge: bridgd] "B NEXE fileeverys=[10071 -] megabyie(s) "_ 5. Generate a new flle when 100 MB Feached
2] awdi0 B Next file every |1 2| minuteqs) ~ |#=—=6. Generate new file every minute/hour/day

e Thunderbolt 1: enl

1 CI:ck-.CapturEantlonsl B Ring buffer with |10001 |:| files

el p2po {

® Capture Option

Start a capture with detailed op

top Capiure Automatically After,.

o [T rew 0 [T mes s

< 7. Save disk space by rotatating:the files ses

O Resolve network-layer names
O Resolve transport-layer name

t—— 8. STOP thelautmcapture-@ptiens- resolver

E—TTTY

Mo | Mclose

Wireshark will generate files such as test_00001_20150623001728.pcap and

test_00002_20150623001818.pcap.

The formats of the multiple generated files are as follows:

test: This is the filename

00001: This is the file number
20150623001728: This is the date/time stamp
pcap: This is the file extension

Troubleshooting

If a packet doesn’t appear in the Wireshark main window, perform the following actions:

e Check the right network interface; make sure there is live traffic
¢ Try turning off/on promiscuous mode

If no interface appears on which captures can be performed, do the following:

e Check if Wireshark has sufficient rights to use a network card to capture data
e Verify capture privileges from

http://wiki.wireshark.org/CaptureSetup/CapturePrivileges
Note

You can also use the Wireshark community at https://ask.wireshark.org/ if queries aren’t
resolved.

http://wiki.wireshark.org/CaptureSetup/CapturePrivileges
https://ask.wireshark.org/

Wireshark user interface

The Wireshark main window appears when Wireshark starts capturing a packet, or when a
.pcap file is open for offline viewing. It looks similar to the following screenshot:

Red Box Shows Wireshark is Running
| X N] % Capturing from Wi-Fi: en0 [Wireshark 1.12.8 [v1.12.5-0-gee1fcat from master-1.12)]
File Edit Viewd Go Capture Analyze Statistics Telephony Tools |nternals Help

codms BEEXe “e»2wF 2 [EFE +«-&"{E WMEMEE B
|F'r|rer:| _IExpressmn lear. Apply *—-1 FIIter TOOlbal'

No. |Time |Source |Dest|nat|on |Promco| ||nfo =
1827 8.508721 192 168.1. 101 74.125,200.94 TP 49246 443 [AMK] Seq=3161453776 Ack=370860229]1 Win=t150 Len=0 TSval=595560656 TSecr=3513932058
1822 9599691 192,168.1. 101 T4.125, 200,94 5vl.2 Application Data
1629 §. 631177 216.58.220.46 192.168.1.101 e 44349251 [MK] Seq=12982T8402 Ack=1710650268 Win=371 Len=0 TSval=174563776 TSecr=495583562
1830 8. 644711 74,.175.200,94 192.168.1.101 P 443 49245 [ACK] Seq=370B602291 Ack=3161453776 Win=547 Len=0 TSval=3513932109 TSecr=59556962%
1831 8. 658656 216.58. 196, 132 192.168.1.181 P #43.40249 [ACK] 5eq=2005517011 Acke=521756204 Win=186 Len=0 Toval=l4 15566817 TSecr=So55E0630
1832 8. 606484 74,175,200, 94 192.168.1,101 P 443 40245 [ACK] Seq=37DB682201 Ack=3161453B45 Win=547 Len=0 TSval=3513932161 Toecr=505589656
1633 8. 637547 216.58.220,46 192, 166, 1. 161 P #43.49251 [ACK] 5eq=1298278402 Ack=1718850277 Win=371 Len=0 Tival=1704563042 Tsecr=595569641
1834 9. B46595 197, 168.1. 101 116.239 98,121 f wia7zy TETH ArK] Seq=1030E02300 Ack=36027T2818 Win=4096 Len=0 TSval=595570899 Tsecr=3051662643]
1835 10. 201531 216,239,985, 121 192.168. 1,101 2. Packet Llst‘-:Paner-am: 2818 Ack=1030882301 Win=173 Len=0 T5val=3031657578 TSecr=505576899
1838 11. 708841 192, 168.1. 161 111.321,29. 129 S50
1837 17, 045607 111,271.29. 129 192,168, 1.101 P S43.65343 [ACK] Seq=41277483 Ack=1149727157 Win=TBT5 Len=D Tsval=z12941084 TSecr=595572845
1638 17, pa58ad 187, 1641, 161 111.221,29.129 551 Continuation Data
1839 12, 125740 111,221.29,129 192.166.1,101 TSvl.? fApplication Data
1840 12, 125803 182, 168.1, 161 111, 221,29, 124 P EE34IA4T [AOK] Seqelld0722228 Ack=4 1277616 Winsdbdl Lens8 TSval=505573171 TSecr=212041180
1841 13933607 192, 168.1, 181 17.253.26.253 NTP MTF Version 4, client {
1842 14, 297892 17, 253.26.253 192, 168, 1. 181 NP NTP Version 4, server [;]
1843 16 342587 feBO: i 1 ffoz: 1 ICMPWE Aouter Advertisement from 94 fh:bZ:b3:df:dB |
[+ Frame 1: 89 bytes on wire (712 bits), BY bytes captured (712 bats)
[+ Ethernet IT, Src: 2Bicf:ed:le:df:ad (28:cf:ef;le:df:a9], Dst: 04:fh:b2:bB:df:dd (04:Th:bh2:ba:df d8)
I Internet Protocol Version 4, Src: 192,168.1. 181 {182 158, 1,181), Dst: 102,168, 1 (e 1681 1)
[User Datagram Pratocol, Src Port: 49546 (49940), Dst Port: 53 (53) PECket Deta”s Pane
[+ Dosain Rame System (query)

0000 94 fb b2 B8 A d3 28 cf 0 le df a9 08 OO 45 800.E.

6010 00 4b db e~ PR 99 ff 11 5 fc cDaB 01 65 cD a8 .K...... [....e.

0620 01 0Lch M 0035 06037 M bcO7bfOl O OB OL57 ...

DE38 0D B0 00 80 00 80 07 70 61 67 65 61 64 32 1167, p ageadl.g 4' Packet Byte Pane
op40 Bf 6f 67 62 BS 73 79 B2 B4 69 B3 61 74 89 6f &2 ooglesyn dication

0EsG 03 63 6f 6d 60 ©0 01 60 A1 JCOM. .

The Wireshark UI interface consists of different panes and provides various options to the
user for customizing it. In this chapter, we will cover these panes in detail:

Item 'What is it? |
The red box||This shows that Wireshark is running and capturing a packet |
1 ||This is the Filter toolbar, used for filtering packets based on the applied filter |
2 ||This is the Packet List pane, which displays all captured packets |
3 ||This is the Packet Details pane, which shows the selected packet in a verbose form |
4 ||This is the Packet Byte pane, which shows the selected packet in a hex dump format

First, just observe pane 2 in the screen; the displayed packets appear with different colors.
This is one of Wireshark’s best features; it colors packets according to the set filter and
helps you visualize the packet you are looking for.

To manage (view, edit, or create) a coloring rule, go to View | Coloring Rules. Wireshark
will display the Coloring Rules dialog box, as shown in the screenshot:

1. To Create new rule

Th

m
o]

MName

i |Edit...

anning Tree T
lFll.

ARF
ICMP
¥ Disable

3§ Delete :
SME

HTTP
IPX
DCERPC

Import... ;
imp Routing

EExport...| |UDP

&% Clear

v, Wireshark: Caloring Fules - Prodlie: Detault

List is processed in order until match is found
String

arp

I <5 && 'pim) 1l (ip.dst

smb || nbss || nbns || nbipx || ipxsap || netbios
http Il tcp.port == 80 || http2

ipx || spx

deerpe

hsrp [l eigrp || ospf [l hgp I c_{lu I vrrp Il carp |l gvrp Il igmp || ismp

tep.flags & 0x02 Il tep.
tep
udp

iSHelp

TN

| Apply |

Order

ruUp

Move
selected filter
up or down

¥ Down

xgqnttlu Q"?QI("

Users can create a new rule by clicking on the New button, choosing the filter name and
filter string, and then applying a foreground and background color to it, to customize the

packet with a specific color.

The Filter toolbar

The Wireshark display filter displays packets with its available coloring options.
Wireshark display filters are used to change the view of a capture file by providing the full
dissection of all packets, which helps analyzing a network tracefile efficiently. For
example, if a user is interested in only HTTP packets, the user can set the display filter to
http, as shown in the next screenshot.

The steps to apply display filters are as follows:

1. Open the http_01.pcap file.
2. Type the http protocol in the filter area and click on Apply.

Once the filter is applied, the Packet List pane will display only HTTP protocol-related
packets:

[File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

e® 4 MW & PXceswFrEBEB acaam @By B
%Filrcr: 13 App“&d http_:f_llﬁstcsion... Clear Sy 2. d'Splay Only http
[No. Time | Source |Destinat ion | Protocal or
[13 0.256169 122.167.1682.21 10.6.6.221 HTTP El:rrthQTE'?!
[21 19.118828 10.8.0.221 122.167.102.21 HTTP HTTP/1.8 260 OK
[22 19,118918 10.6.06.221 122.167.102.21 HTTP Continuation (text/html)
[i3 60.708894 122.167.102.21 10.9.0.221 HTTP GET /tlslite-0.4.6.tar.gz HTTP/1.1
35 60.709279 10.9.6.221 122.167.102.21 HTTP HTTP/1.8 260 OK
36 60.709383 10.8.0.221 122.167.102.21 HTTP Continuation [application/octet-stream)
323 61.166691 18.8.0.221 122 .167.102.21 HTTP Continuation
483 61.303416 10.6.0.221 122.167.102.21 HTTP Continuation
[536 70.601530 122.167.182.21 10.0.6,221 HTTP GET /postlist.DB HTTP/1.1
[538 70.601044 10.9.0.221 122.167.102.21 HTTP HTTP/1.0 280 OK
539 70.602036 10.8.0.221 122.167.102.21 HTTP Continuation (applicationfoctet-stream)
[BB6 71.114290 10.8.0.221 122.167.102.21 HTTP Continuation
i 4260 74.807336 10.6.0.221 122.167.102.21 HTTP Continuation
| 4549 75.118226 10.8.0.221 122.167.102.21 HTTP Continuation
7716 T8.533B65 10.8.6.221 122.167.102.21 HTTP Continuation

Wireshark display filter can be applied or prepared from the column displayed in the
Packet List pane by selecting the column, then right-clicking and going to Apply as Filter
| Selected (as shown in the following screenshot) to create the filter from the source IP
address 122.167.102. 21:

FI.It:rl ;]Expressinn.... ar Apply Save
No. |Time | Source Ibestlnatlon | Protacol |infa

476 61.204372 10.0.0.221 122.167.162.71 cp BOGO.52386 [ACK] 5eq=294131151 Ack=2261989519 Win=2893? Len=2856 TSval=329
47761.303386 122.167.102.211. Select the IP Tcp 52386.8000 [ACK] Seq=2261989519 Ack=294061179 Win=131072 Len=0 TSval=40311
478 61.363392 122.167.102.21 TCP BO0O-52386 [ACK]| Seq=204134007 Ack=2261989519 Win=28037 Len=2856 TSval=3129.

479 61.383397 122 Iﬁ? 107 o SRR TCP 523868000 [ACK] Seqe2261989519 Ack=294064035 Win=129632 Len= T5val=48311
480 61. 303399 =tk Packet (toggle) TCP BO0O-52386 [ACK| 5eq=294136863 Ack=2261989519 Win=2B8032 Len=2856 Toval=329.
481 61.303401 12? 1.5? 182 lgnore Packet (toggle) TP 51386 8000 [ACK] Seq=2261989519 Ack=294065463 Win=131072 Len=0 TSval=40311
482 61.303402 122.167.102(© Set Time Reference (toggle) TCP 523868000 [ACK] 5eq=2261989519 Ack=294068319 Win=129632 Len=0 TSval=40311
483 61.303416 16.8.8.221 | ® Time Shift... HTTP Continuation

454 61.312284 122.167.102 it Packet TCP 523868000 [ACK] 5eq=22619689519 Ack=294869747 Win=134208 Len=0 TSval=40311
48561.312289 10.0.0.221 | & parker Comment... TCP BO0D-52386 [ACK] Seq=294142575 Ack=2261989519 Win=28032 Len=2856 TSval=329:
486 61.312294 122.167.102 TCP 513B6-B000 [ACK] 5eq=2261989319 Ack=294872603 Win=132808 Len=0 TSval=40311
487 61.312296 18.8.08.221 Manually Resolve Address TP 800052386 [ACK]| Seq=204145431 Ack=2261089519 Win=28832 Len=2856 TSval=310

488 61.312299 122.167.1682 86 8000 [ACK| Seq=22619689519 Ack=294074031 Win=134208 Len=0 TSval=40311

489 61,312301 10.0.6.221 Apply as Filter ¥ | Selected mibee2.1Choose:ApplyasEilter;> Selected? |en=285 Tsval=210'
490 61.321797 122 . 167.182 Prepare aFilter L3 Mot Selected 800D [ACK] 5eq=2261989519 Ack=294076BB7 Win=132800 Len=0 T5val=40311
491 61.321804 10.0.0.221 | Conversation Filter »| . and Selected 52386 [ACK] 5eq=294151143 Ack=2261989519 Win=28032 Len=2856 TSval=329
-y Colorize Conversation 4 .. or Selected 3 e

Wireshark provides the flexibility to apply filters from the Details pane; the steps remain
the same.

Wireshark also provides the option to clear the filter. To do this click on Clear (available
in the Filter toolbar) to display the entire captured packet.

Filtering techniques

Capturing and displaying packets properly will help you with packet captures. For
example, to track a packet exchanged between two hosts: HOSTA (10.0.0.221) and HOSTB
(122.167.99.148), open the SampleCapture0l.pcap file and apply the filter ip.src ==
10.0.0.221 as shown:

i

AN ERXT AeswFREREQaaF §¥8EL
Filter:§ ip.src == 10,0.0.221 ¢

17Jb¢pres5mn.., Clear Apply Save

A roe Destination Length
1 0. 6paone 1009822, 122 .167.99.148 55H 198 Server: Encrypted packet (len=132)
5 2.848802 18.8.8.221 122 .167.99.148 55H 238 Server: Encrypted packet (len=164}
8 3. 172070 18.8.8.221 122.167.99. 214 Server: Encrypted packet (len=148)

13 721 67.98.148 c 54 8061012 [RST n_r:'r::_q Seqsl Ack=l Win=0 Lens0

.280293 i B . DNS 8 Standard query Ox9a5%f PTR 148.99, 167 122 in-addr.a
281085 8.8 - DNS 109 Standard query @xc?36 A abts-kk-dynamic-148.99. 167
28 8.281594 .6.8. 2 NS 141 Standard query 0xa9f2 A abts-kk-dynamic-148.99. 167
22 B.282084 .8.8. .90, 148 S55H 134 Server: Encrypted packet (lan=G8)
23 8.282118 .8.8. 71.99.148 55H 102 Server: Encrypted packet (len=36)
24 8.282168 .8.8; .90, 148 S5H 134 Server: Encrypted packet (len=68)
25 8.282173 0.8 .99, 148 S5H 102 Server: Encrypted packet (len=36)
26 8.282194 8.8 .99.148 S5H 150 Server: Encrypted packet (len=84)
27 8.282206 0.8 .99.148 S5H 102 Server: Encrypted packet (len=36}
28 8.282228 8.8, 71.99 148 S5H 150 Server: Encrypted packet (len=8d4)
29 8.282232 .0.8. .99, 148 S5H 182 Server: Encrypted packet ([len=36)
30 B.282246 0.8, 7.99. 148 S5H 134 Server: Encrypted packet (lan=68)
282257 g.0.0. .99.148 S5H 162 Server: Encrypted packet (len=36)
2 s an 3 —

Let’s see what the highlighted sections depict:

Item|{Description

||App1y filter ip.src == 10.0.0.221.

The Packet List pane displays the traffic from source to destination. The source shows the constant IP address
10.0.0.221. There is no evidence as to which packet is sent from host 122.167.99.148 to host 16.0.0.221.

Now modify the filter (ip.src == 10.0.0.221) && (ip.dst == 122.167.99.148) to
(ip.src == 10.0.0.221) or (ip.dst == 122.167.99.148). This will give the result
shown in the following screenshot:

COMAMI EEX =T [EEcean EVEL B

Filter = 10.0.0.221) && (ip.dst == 122.167.99.148) |+ | Expression... Clear

Save

([oource | [Destination | | Protocal | Length Eln!'u
1 0.000000 13 0.9.221 122.167.99, 148 SSH 198 Server: Encrypted packet (len=132)

5 2 B4RBOZ 16.0.0. 321 122.1R7 .99 148 S5H 230 Server: Encrypted packet {len=164)
B 3.1720878 19 EI B 221 122 167 . 99 111-3 SSH 214 Server: Encrypted packet {len=143)

912 [RST, ACKI

54 Bf_ Segsl Acksl Win=0 Lens@

21 B, 3B2084 —* IQ.U.I.'!'.!JI bl e IET.EH 1¢E 3 134 Server: Encrypted packet (len=68)
23 8.2B2118 18.0.8.221 122.167.99. 148 SH 182 Server: Encrypted packet (len=36})
24 8,382160 10.8.0.221 122.167.99, 148 S55H 134 Server: Encrypted packet (len=68)
25 8.282173 18.0.8.221 122 .167.99.148 SSH 162 Server: Encrypted packet {len=36)
26 B.282194 18.0.0.221 122.167.99.148 S5H 150 Server: Encrypted packet (lens=84)
27 8.282206 18.8.8.221 122.167.99,148 SSH 102 Server: Encrypted packet (len=36)
2B B.282220 10.8.9.221 122.167.99.148 S55H 150 Server: Encrypted packet (len=B4)
20 8.283232 18.8.8.221 122.167.99, 148 SSH 182 Server: Encrypted packet {len=36)
30 B.2B2246 19.9.8.221 122 .167.99.148 SSH 134 Server: Encrypted packet (len=G8)

.B.8. 102 Server: Encryptm:l pa:het Hen JﬁJ

?EP?E..'

54 25

61816

The highlighted sections in the preceding screenshot are explained as follows:

Item|(Description

1 ||Applied filter (ip.src == 10.0.0.221) && (ip.dst == 122.167.99.148)

2 The source IP address (160.0.0.221) is not changed |

3

The destination IP address (122.167.99.148) is not changed |

Again the Packet List pane is not displaying the conversation between the two hosts.

Now modify the filter ip.addr == 122.167.99.148. The ip.addr field will match the IP
header for both the source and destination address and display the conversation between
the hosts. Remember to choose the destination IP address as shown:

1 Filter Applied ip.addr==10.0.0.221
Flll:l:{ ip.addr==10.0.0.221 u[xpressmn... Clear # Save
No.] Time |5uuu.¢ |L7e:t|r|a.l.uon Protocol |Lengl.h Ill1f1‘.| E
3
2 0.060342 122.167.99.148 10.08.0.221 y 66 5142522 [ACK] Seq=3827852863 Ack=3036088826 Win=4094 Len=0
3 0.060350 2 122.167.99.148 10.0.08.221 66 51425 22 [ACK] Seq=3827852863 Ack=3036088958 Win=4090 Len=0
4 2.848632 122.167.99.148 16.8.8,221 I5SH 118 Client: Encrypted packet (len=52)
5 2.848802 \ 10.0.0.221 122.167.99, 144554 230 Server: Encrypted packet (len=164)
6 2.894329 122.167.99.148 10.0.8.221 [TCP 66 5142622 [ACK] Seg=3654134334 Ack=2053917256 Win=4000 Len=0
7 3. 168602 122.167.99. 148 10.0.8.221 5SH 102 Client: Encrypted packet (len=36)
8 3.172070 10.8.08.221 122.167 .99, 144554 214 Server: Encrypted packet (len=148)
9 3.214334 122.167.99.148 10.8.0.221 [TCP 66 51426.22 [ACK] Seq:355d1343?ﬂ Ack=2053917404 Win=4091 Len=9

78 ﬁlﬂl) .Bﬂ ESYN] Eeq 1!32}.32505'11111 65535 Len 8 M55= 1-'1-10 W5=32

12 8. 2247114 1?2 15? 99,148 - 10.0.0, 221
13 8. 224721 9.0.221 127.167.99
14 8.279838

+ — — —

Let’s see what the highlighted sections depict:

J|Applied filter ip.addr == 122.167.99.148 |
- |
-

The same conversation is captured by choosing the destination MAC address using the
display filter eth.addr == 06:73:7a:4c:2f:85.

Description |

The source IP is not constant; it shows the conversation between the two hosts |

The destination IP is not constant; it shows the conversation between the two hosts

Filter examples

Some common filter examples are as follows:

Filter/capture name Filter value

Packet on a given port tcp.port == 443

Packet on the source port tcp.srcport=2222

SYN packet on port 443 (tcp.port == 443) && (tcp.flags == 0x0010)
The HTTP protocol http

Based on the HTTP get method ||http.request.method == "GET"

Using &&, tcp, and http tcp && http

Checking the tcp window size tcp.window_size <2000

No Arp used for normal traffic tarp

The MAC address filter eth.dst == 06:43:7b:4c:4f:85

Filter out TCP ACK tcp.flags.ack==0

Check only RST and ACK packets]|(tcp.flags.ack == 1) && (tcp.flags.reset == 1)

Filter all SNMP

HTTP or DNS or SSL http || dns | ssl

Snmp |

There is no need to memorize the filter; there is an easy way to apply it. The display filter
Autocomplete feature lists all dissectors after the first period “.” that have been added to
the display filter, as shown in the following screenshot:

Filter: [tep] *— j&prﬂsiun... Clear Apply Save
Mo. [tep.ack : |Destination | rotocal |Length |info :
tcp.ack.nonzero tcp dissectors 122,167.99. 14155H 198 Server: Encrypted packet (len=132) E
tcp.analysis I 10.0.0.221 TCP 66 5142522 [ACK] Seq=3827852863 Ack=3036088826 Win=1094 Len=D T4
tep.analysis.ack_lost_segment 8 10.0.0.221 TCP 66 5142522 [ACK] Seq=3827852863 Ack=3036088956 Win=4090 Len=0 T:
tcp analysis.ack_rtt 8 18.0.0,221 SSH 118 Client: Encrypted packet (len=52)
tcp.analysis.acks_frame 122,167,99. 14(55H 230 Server: Encrypted packet (len=164)
o analya s ntes in fight 8 10,8.0.221 TCP 66 5142622 [ACK] Seq=3654134334 Ack=2053917256 Win=4898 Len=9 T¢
b i mnilia Shdlaplicatat wk 48 10.0.0.221 SSH 102 Client: Encrypted packet (len=36)
= 122,167.99. 141S5H 214 server: Encrypted packet (len=148)
9 3.214334 122,167.99.148 10.0.0.221 TCP 66 5142622 [ACK] Seq=3654134370 Ack=2053917404 Win=40691 Len=0 T¢

=1882132506 W
| 1=1 !
14 0 ATNOID 197 1&T AN 140 1A A A Trn EE £1A1I 4473 TAFK] Con IARARETHON A-L_070373A10 LM 131268 | anf |
Bl ; 3 -

12 8.224714

122,167.99. 10.0.0,221 78 6101280 [SYN] Seq in=65535 Len=0 MS5=1440 W5=32 1

|

Note
It’s worth checking the following links for a complete display filter reference:

e Check out the TCP display filter reference:

https://www.wireshark.org/docs/dfref/t/tcp.html
e Check out this alternative protocol display filter reference:

https://www.wireshark.org/docs/dfref/

https://www.wireshark.org/docs/dfref/t/tcp.html
https://www.wireshark.org/docs/dfref/

The Packet List pane

The Packet List pane displays packets from the .pcap (or accepted Wireshark extensions)
file or from live capture, as shown:

2 ; 4 2 6
- |TII'I"IE |Suur|:e |Des'r|nal:|on |Pn:||:ncu| |Length]Inﬁ:L
~—=g. 2 0.060342 122 .167.99.148 10.8.8.221 TCP 66 51425-22 [ACK] S5eq=1 Ack=1 Win=4094 Len=0 TSval=704438813 TSecr=1742584
=g 3 8.060350 122.167.99.148 10.8.8.221 TCP 66 51425.22 [ACK] Seq=1 Ack=133 Win=4890 Len=0 TSval=704438813 TSecr=1742!
~—ipil 2848632 122 .167.99.148 18.98.8.221 55H 118 Client: Encrypted packet (len=52) |
—-...‘_h 2.848802 18.6.8.221 122 .167 .99, 148 55H 230 Server: Encrypted packet (len=164) |
6 2.894329 122.167.99,148 10.8.8.221 TCP 66 51426-22 [ACK] Seq=53 Ack=165 Win=4090 Len=0 TSval=704441647 TSecr=174]

Let’s discuss the fields shown:

Item What is it?
Shows different packets; each row corresponds to a different packet called a frame
1. No. Number of packets in the current live/offline capture
Shows time-stamped information when the packet was captured
2. Time The Automatic setting for 1ibpcap files is microseconds; all packets will be captured with the time in
microseconds, as shown in the next screenshot
3. Source ||The IP address of the source from where the packet originates
4 .. |IThe IP address of the destination where the packet ends
Destination
5. Protocol [|[Wireshark will display information about the packet protocol based on the standard port
6. Length ||The packet length in bytes
7. Info Shows a high-level summary of the packet and the nature of the packet

To change the time-stamped information of the packet go to View | Time Display Format
to view the available presentation formats, as shown:

ees
File Edit

o @

Filter: ||

< Main Toolbar

< Filter Toolbar
Wireless Toolbar
Status Bar

+ Packet List
< Packet Details
< Packet Bytes

% BO4865_02_SampleCapturedl.pcap [Wireshark 1.12.4 {v1.12.4-0-gb4861 da from master-1.12)]

B E B

;}9 (:':a_pt_u_re A:_na.lll,r_zg ﬁ_t_.?tlu_s.p-_:s_. _Telglphgnl,l Tools [nternals Help

Qe M

T iEE <

prassion... Clear Apply

Destination
122.167.99.148
10.8.8.221

Time Dis 3T it
Name Resolution
+ Colorize Packet List

« Auto Scroll in Live Capture

& Zoom In
&, Zoom Qut
@, Normal Size

1 Resize All Columns
Displayed Columns

1] 16.6.08.221 T 66 5142522 [ACK] Seq=1 Ack=13]
A8 10.6.8.221), f lent: En pted packe
Date and Time of Day. 1970-01-01 01:02:03.123456 Ctri+Alt+1
1] Date (with day of year) and Time of Day: 1970/001 01:02:03.123456
Time of Day: 01:02:03.123456 Ctrlaalts 2
Seconds Since Epoch (1970-01-01): 1234567890,123456 . Ctrl+Alt+3
certe s |+ seconds Since Beginning of Capture: 123.123456 Wiresharke,, ai+4
Ctrl4- Seconds Since Previous Captured Packet: 1.123456 default Ctrl4+Alt+5
ctrl4 Seconds Since Previous Displayed Packet: 1.123456 Ctrl4+Alt+6
UTC Date and Time of Day: 1970-01-01 01:02:03.123456 Ctrl+alt+7
Shift+Ctrl+R UTC Date (with day of year) and Time of Day: 1970/001 01:02:03,123456
Ctrl4Alt+7

14 UTC Time of Day: 01:02:03.123456

66 5142522 [ACK] Seg=1 Ack=1 |

cpand Subtrees St +fihe [T Automatic (File Formal Precision) - default

Collapse Subtrees Shift+Left Seconds: 0

Expand All Ctri-+Right Deciseconds: 0.1
== Collapse all Crri+Left Centiseconds: 0.12 h-_ Available Precesion
» Frame Milliseconds: 0.123
» Ethern Colorize Conversation Microseconds: 0.123456
; ?:;:;; Reset Coloring 1-10 Ctrl4Space Nanoseconds: 0123456789

M Coloring Rules... Z E—— = - ==

b SSH Pri Mz plav Secande with haire and mainiites

The Wireshark Set Time Reference feature gives you the ability to view the time
reference from the selected packet. Open the capture file http.pcap and set the time

reference from packet 38. To do this, select packet 38, right-click, and select Set Time
Reference (toggle), as shown in the following screenshot:

19 0,
packet#38,65 s 120TCP

|t Frame 38: 182
b Ethernet II, %
|t Internet Protg
& Transmission
b 55H Protocel

Coborize Conversation

Follow TCP Stream
Fialdow LICH Arm

Follow S5L Stream
Copy

Pratocol Preferences
% Decode As...
& Print...

| Show Packet in New Windoaw

35 35.762289 10.0.0.221
3635 789708 122.166.8%.120
y71:;Setting time reférence from
38 35.789%
Mark Packe be
. ‘f'?: rk Packet (togghe)
40 3% b | lgnore Packet (toagle)
S © Set Time Reference (toggle)
:i :g ; ;ggt @ Time Shift...
43 35,700 HO Ak
a4 35,8359 £ Packet Comment...
45 35.835] Manually Resolve Address
46 35,8353)
47 35,835 Apply as Fileer
i o= oo Prepare a Filter
- =
Conversation Filter

v w w ww

-

122.166.88. LA TCP

0.221 HTTP 401 GET /favicon.ico HTTR/1.1

122.166. 688 . 120554
2 Rgc)cy 2em
[- FLE:
3. Sel TiffieRefeignce
122.166.88. 14HTTP
122.166.88. 12{MTTP

182 Server: Encrypted packet (len=11G)
182 Server: Encrypted packet (len=3g)
182 Server: Encrypted packet {len=116)
102 Server: Encrypted packet (len=38)
95 HTTP/1.6 484 File not found

381 Continuation {(text/html)

66 BODE-50319 [ACK] 5Seq=3517856169 Ack=837833461 Win=2B032 Len=

66 80BE_50318 [ACK] 5eq=3619056706 Ack=1135908352 Win=28032 Len

.8.8,321

18.8.8.221 TCP 66 5030522 [ACK] Seq=968278143 Ack=654693407 Win=4092 Len=0 TS

10.0.0,221 TCP 66 50305-22 [ACK] 5eq=96B278143 Ack=654699443 Win=4091 Len=0 TS

10.6.0.221 TCP 66 5030522 [ACK] Seq=968278143 Ack=654599559 Win=4092 Len=0 TS
TCcp

66 5030522 [ACK] Seq=968278143 Ack=654699595 Hiﬂ=4§94 Len=@ T5'%

P bytes captured (1456 bif;]'
Pf:39:2e:17), Dst: 86:73:Ta:dc

(22), Dst Port: 583085 (50385)

€0 45 10 .s2l/..< 9....E.

121185 (06:73:7a:4c:27:85)
I (10.8.0.221), Dst: 122.166.88.120 (122,166.88.120)
. Seq: 634699291, Ack: 968278143, Len: 116

Wireshark Time Reference

B | e

e

After *REF* is set, it becomes the starting point for all subsequent packet time
calculations, as shown in the following screenshot:

10.0.0.221 122.166.88. 12(TCP 66 800058319 [ACK] Seq=3517856169 Ack=B37833461 Win=28032 Len=

1. Beforei:’nme"reference 9.0.221 HTTP 4081 GET /favicon.ico HTTR/1.1

— 18 271 122.166.88. 12I TCP 66 8933_59315 [ACK] Seq-BGIQBSEl?Hﬁ Ack=1155908352 Win=28032 Len
< REF: ET’ 22.166. 88 12(5 :

19.&.0.221 122.166.88. 12(55H 1682 Server: Encr)rpted pal:ket (1en—36]

18.0.0.221 122.166.88. 12(55H 182 Server: Encrypted packet (len=116)

18.0.0.221 122.166.88. 12(55H 102 Server: Encrypted packet (len=36)

10 [‘\ft T 122.166.88. 12(HTTP 95 HTTP/1.0 404 File not found

2, After, Time reference s g5 1orre 381 Continuation (text/html)

t__l_meladll!s.t_e.d_ bi!ﬁe_d_ 0.0.0.221 TCP 66 50305.22 [ACK] Seq=068278143 Ack=654699407 Win=4092 Len=0 TS

on<REFB&8.120 10.0.0.221 TCP 66 50305-22 [ACK] Seq=968278143 Ack=654699443 Win=4091 Len=0 TS

122.166.88.120 10.0.0.221 TCP 66 5030522 [ACK] Seq=968278143 Ack=654699559 Win=4092 Len=0 TS

122.166.88.120 10.0.0.221 TCP 66 5030522 [ACK] Seq-9682?8143 Ack-654699595 h'1n—499-1 Len=0 TS

=

The Packet Details pane

The Packet Details pane will show the currently selected packet in a more detailed form.
In the following screenshot, an HTTP packet is selected and its details are shown in the
information labeled with numbers 1 to 5. Let’s see what these are:

Fihﬂ:lhltp*- ;IE:prenlon... Clear Apply Sawe
No. |Tim! !Smm:n !I:hltimt'run [Frmuwllt.cnqth ||HFI
oo B 2 R e T e
27 35.707955 10.6.0.221 122.166.88. 12(HTTP 83HTTP/1.0 200 OK
28 35.708651 10.8.8.221 122.166.88. 12(HTTP 989 Continuation (text/html}
36 35.789708 § B8, 10.0.0,221 HTTP 401 GET /favicon.ico HTTP/1.1
FRAME®G:s *rer+ 10.6.0.221 122.166.88. 12155H 182 Server: Encrypted packet (len=116)
36 42 0.000123 10.6.0.221 122.166.88. 12HTTP 95 HTTP/1.0 404 File not found
A3 A A/ 08 90 A A& 991 99% 1£& 60 TWUTTD 01 Fankimistian (tave ikbsl i .
—f- e = - =

¢+ Ethernet II, Src: 06:73:7a:4¢:21:85 (86:73:7a:4c:27:85), Dst: 86:3c:0f:39:2e: 17 (06:3c:0f:39:2e: f7)
¢ Internet Protocol Version 4, Srci 122,166.88.120 (122.166.88.120), Dst: 10.0.0.221 (10.0.0.221)
i+ Transnuss:on 'Eor:‘trul Protocul Src Port: 50318 {59313} Dst Port: 8080 (BWN Seq: 1155908617, Ack: 3619656706, Len: 335

U LN b

PACKET DETAILS PANE

The frame protocol is only used by Wireshark. All the TCP/IP protocols sits on top of this.
The frame shows at what time the packet was captured, as shown in the following
screenshot:

II=:Itrer:|F|tt|1 ;IExpressjnn... Clear Apply Sawve
Mo. |l'|rnt Source |Destmal'nm'| |Pmln-cn| ILength |Infn-
27 35,787335 18.8.8.221 122.166.88, 12(HTTP B3 HTTR/1.0 200 DK
2B 35,708051 10.0.,0.221 122 . 166,88, 12(HTTP 989 Continuation (text/html)
401 GET /favicon.ico HTTP/1.1
38 *REF* 10.9.9.221 122.166.88. 12(55H 182 Server: Encrypted packet [len=116)
42 B.008123 18.8.8.221 122,166 .88. 12(HTTP 95 HTTP/1.0 404 File mot found
A7 A ARG OE 18 A A 9 199 1E£ 00 1MUTTD 0T Fantinimtian (daud them] §
o= = : =

Encapsulation type: Ethernet (1)

Arrival Time: Jun 21, 2015 15:23:55, 252631000 IST

[Time shift for this packet: @.080000000 seconds]

Epoch Time: 1434880435, 252631000 seconds

[Time delta from previcus captured frame: ©.027419000 seconds]
[Time delta from previous displayed frame: 0 081657080 seconds] Wireshark Frame Protocol used

[Time since reference or first frame: 35,789708008 seconds] +_-bY Wireshark D"'f
Frame Number: 36

Frame Length: 401 bytes (3208 bits)

Capture Length: 481 bytes (3208 bits)

[Frame is marked: False]

[Frame is ignored: False]

[Protocols in frame: eth:ethertype:ip:tcp:http]
[Number of per-protocol-data: 1]

[Hypertext Transfer Protocol, key 8]

[Celaring Rule Mame: HTTP]

i : Y TV L ¥ T . : . 13c:0f:39:2e:17)
b Internet Pmtncnl 1|I'arsmn 4, Src: 132, 165 EB 126 1]22 156 Bﬂ 123} Ds‘t IB 6.6.221 (16.0.06.221)

Ethernet is the link layer protocol in the TCP/IP stack. It sends network packets from the
sending host to one (Unicast) or more (Multicast/Broadcast) receiving hosts, as shown:

.Fll:h:r: http ;]I:J-:prcsslun... Clear Save

No | Time Source | Destination | Protocol | Length |Ir|Fn
27 35.707955 19.0.08.221 127,166, 88. 12IHTTP 83 HTTP/1.0 200 OK
28 35,768851 18.6,0,221 122,166, 88, 12 HTTP 98% Continuation (text/html)
38 *REF* 18.8.08.221 122.166.88.12155H 182 Server: Encrypted packet (len=116)
42 0.000123 10.0.0.221 122.166.88. 12(HTTP 95 HTTP/1,0 404 File not found
AT A ABRAYTDE 18 A A Y 1%% 1£E 88 19 UTTH BV Fantsnuasdton (doud fhemll
[FY ; i] e
[EIﬂ: 36: 401 bytes on wire (3208 bits), 401 bvtes captured (3268 bits)
b= '‘Ethernet IT, Src: B6:73:Ta:dc:2f:B5 (06:73:7a:4c:2f:85), Dst: 06:3c:0f:30:2e;:f7 (06:3c:0f:39:2e:f7)
= Destination: @6:3c:B6f:39:2e:f7 (B6:3c:0f:30:2e:17)<#=—Destination MAC address Ethernet
Address: 06:3c:01:39:2e:17 (B86:3¢:0f:39:2e:7)
eole viey vuve sees weas ® LG bit: Locally administersd address (this is NOT the factory default) e TCPAP
cene o0 oin vive wviw wv.. = I6 bit: Individual address (unicast) Link Layer Protocol
w Source: @6:73:7a:4c:2f:85 (E)E:?'-!-.Ta:dr;?'l:H5b+—_50urce MAC address
Address: B6:73:Ta:dc:2f:85 (06:73:Ta:dc:2f:85)
weee aoly tiey vuiw wesw we.. = LG bit: Locally administered address (this is MOT the factory default)
[:] sian ssas avas = IG Bit: Individual address (unicast)

Type: IP (Ox0800)
TREErNEL Protocol VErsion &, Src. 12Z2.166. - = , DU5T: 0.5, 8.0,
¢ Transmission Control Protocel, Src Port: S6318 (58318), Dst Port: BOGA (BODA), Seq: 1155088017, Ack: 3619856706, Len: 335

I Hypertext Transfer Protocol

Useful filters in Ethernet are:

e eth.dst == 06:3c:0f:39:2e:f7: This shows packets sent to this MAC address only
e eth.dst==ff:ff:ff:ff:ff:ff: This shows broadcast traffic only

The packet structure of Ethernet frames is described in the following table:

Preamble Destination MAC Source MAC Type/length User- Frame check sequence
address address data (FCS)
2
0800 for IPv4
8 6 6 36DD for 46-1500 |[|4
[Pv6
0806 for ARP

The preamble (8 bytes) and FCS (4 bytes) are not part of the frame and Wireshark will not
capture this field.

So the total Ethernet header is 14 bytes—6 bytes for the destination address, 6 bytes for
the source address, and 2 bytes for the EtherType.

The Internet Protocol information relates to how the IP packet is delivered and whether it
has used IPv4 or IPv6 to deliver the datagram packets.

Filter: |h‘np LJE:pres:inn,.. Clear Apply Save

No. ITlrne Source IDutirlalIun |Prntoml]Leng1h |Info =
27 35.707955 16.0.90.221 122,166, 88, 12(HTTP B3I HTTP/1.0 200 0K
28 35.7080851 10.0.0.221 122.166.88. 12(HTTP 989 Continuation (text/html)
36 35.789708 122 .166.88.120 10.0.8.221 401 GET /favicon.ico HTTP/1.1
38 *REF* 10.0.0.221 122.166.88. 12(55H 182 server: Encrypted packet (len=116)
42 0.000123 10.8.8.221 122.166.88. 12(HTTP 95 HTTP/1.0 484 File not found =
= AT D AOGYTOR ;oA o 7" 197 TREA 28 1TWHTTD AT Famts mintdman (rave fheml | = k|

¢ fFrame 36: 4081 bytes on wire (3208 bits), 401 bytes captured (3208 bits)

jEtherne‘t II, Src: 06:73:7a:4c:2f:85 (06:73:7a:4c:2f:85), Dst: 06:3c:0f:39:2e:f7 (06:3c:0f:39:2e:f7)

Internet Protocol Version 4, Src: 122.166.88.120 (122.166.88.120), Dst: 10.0.0.221 (10.8.9.221)

Version: 4
Header Length: 20 bytes

» Differentiated Services Field: 0x00 (DSCP 0x@0: Default; ECN: 0xB8: Not-ECT (Mot ECN-Capable Transport))
Total Length: 387
Identification: Bxd119 (53529)

b Flags: BxB2 (Don't Fragment)

Fragment offset: @
Time to live: 56
Protocol: TCP (6)

r Header checksum: 0x9260 [validation disabled]
Source: 122,166.88.120 (122.166.88,120)
Destination: 10.0.8.221 (10.0.0.221)
[Source GeoIP: Unknown]

[Destination GeoIP: Unknown]
¢ Transmission Control Protocol, Src Port: 50

The IP Protocol

The preceding screenshots show that an IPv4 protocol is used to deliver the datagram
packet. Useful display filters in the IP protocol are:

® ip.src == 122.166.88.120/24 shows traffic from the subnet
® ip.addr==122.166.88.120 shows traffic to or from the given host
e Host 122.166.88.120 captures/filters traffic from the host

The TCP protocol packet contains all TCP-related protocol data. If the communication is
over UDP, the TCP will be replaced by the UDP, as shown in the following screenshot.
The SEQ/ACK analysis will be done by Wireshark based on the sequence number and
expert info will be provided:

Filter: Ihl:l:p __"_‘Exprﬁslun... Clear Apply Sawve
No. |Tim|: l'Suurl:: |Dtslimt1'|:rn |Pm‘[u|:ul |Ll:ng!l| IInI'u
T I TOTEND TEL T TOU O TED TOTOTOTEEY TTTTT WIW OCT T TITIT T ITL
27 35.787955 18.0.9.22]1 122,166,688, 12(HTTP B3 HTTP/1.0 2080 0K
28 35.708851 16.9.8.221 122.166.688. 1I2(HTTP 989 Continuation (text/html)
36 35.789708 122.166. 88,120 10.06.6.221 HTTP 481 GET /favicon.ico HTTP/L.1
38 *REF* 16.0.8.221 122.166.88. 12(55H 182 Server: Encrypted packet (len=116)
42 6.800123 18.8.8.22] 122.166.88. 12(HTTP 95 HTTP/1.0 404 File not found
AT O A% T SR 18 & 0 171 157 TEE 80 1WUTTD FDT Feankd raabd am (s Shbm

™
=
-

ame 36: 401 bytes on wire (32088 bits), 401 bytes captured (3288 bits)
hernet II, Src: B6:73:7a:d4c:21:85 (06:73:7a:4c:21:85), Dst: 06:3c:0f:30:2e:f7 (06:3c:0f:30:2e:f7)
! et Protocol Version 4, arc: 127 1066.82 120 (127 166 88 120), Dst: 18.0.0.221 (10,0.0 221

ransmission Control Protocol, Src Port: 50318 (50318}, Dst Port: 8000 (8000), Seq: 1155908017, Ack: 3619856706, Len: 335
Source Port: 58318 (50318)
Dectination Port: 8000 (B00A)
TSTTEam INdex: o)
[TCP Segment Len: 335]
Sequence number: 11555988817 The TCP Protocol in the Transport Layer
[Next sequence number: 1155908332]
Acknowledgment number: 3619936706
Header Length: 32 bytes
¢ ..,. G000 0DG1 1080 = F'I.ags: Bx@18 (PSH, ACK)

Window size value: 4185

[Calculated window size: 131360]

[Window size scaling factor: 32]
¥ Checksum: 0x21% [validation disabled)

Urgent pointer: @
¥ Options: (12 bytes), Mo.Operation (NOP)}, Mo-Operation (NOP}, Timestamps
[|* ISEasaCk-analysis) «=— Wireshark tcp.analysis

The <<APPLICATION-LAYER>> protocol is shown if the packet contains any application
protocols. As shown in the following screenshot, the selected packet 36 has HTTP
protocol data. Wireshark has the ability to decode the protocol based on the standard port
and present this information in the Packet Details pane in a readable (RFC-defined)
format.

Filter: |iF-STl: == 122.166.88.120/24 LI Expression... Clear Apply Save

No. | Time | source Pratocol | Length
37 35. 762273 T77. 166 B8 P 5

Infa

33 35.762275 132.166.868. 128 16.0.8.221 TP 66 503198000 [ACK] Se

i

o

B3 ACR=0530699791 W 15 q
=A37A33460 Ack=3517856169 Win=130432 Len

38 *REF* 10.0.0,221 122,166 B8, 12155H 182 Server: Encrypted packet (len=116)
440.045313 122.166.88,120 10.0.0.221 TCP B6 500522 [ACK] Seq=068278143 Ack=654599407 Win=4092 Len=d TS -

g i =

» Frame 36: 401 bytes on wire (3208 bits), 401 bytes captured (3208 bits)

»fEthernet II, Src: 06:73:7a:4c:2f:85 (B6:73:7a:4c:2f:85), Dst: @6:3c:0f:39:2e: {7 (06:3c:0f:39:2e:17)

Internet Protocol Version 4, Src: 122.166.88.120 (122.166.88.128), Dst: 18.0.8.221 (16.8.8.221)

Transnission Control Protocol, Src Port: 50318 (50318), Dst Port: BOOO (8000), Seq: 1155908017, Ack: 3619056706, Len: 335

Host: 52.74.246.198:80800%r\n
Connection: keep-alive\r\n
User-Agent: Mozilla/5.0 (Macimtosh; Intel Mac 05 X 10_10_3) AppleWebit/537.36 [KHTML, like Gecko) Chrome/43.0.2357.1p4 Safari/537.36\r\n
Accept: */*\r\n

Referer: http://52.74.246 190:8808/\r\n

Accept-Encoding: gzip, deflate, sdchyryn The Application Layer Protocol
Accept-Language: en-US,en;q=0.8\r\n HTTP protocol Information
srin

u I H
[HTTP request 1/1)
[Response in frame: 42]

In the coming chapters we will discuss the application-related protocol in greater detail.

The Packet Bytes pane

The Packet Bytes pane displays the bytes contained in the frame, with the highlighted area
being set to the node selected in the Packet Details pane.

Wireshark features

Wireshark is loaded with some awesome features. Let’s go through a few, though there are
more.

Decode-As

The Decode-As feature allows Wireshark to decode the packet based on the selected
protocol. Usually Wireshark will automatically identify and decode incoming packets
based on the standard port—for example, port 443 will be decoded as SSL. If the services
are running on the non-standard port, for example SSL standard port is 443 and the service
is running on 4433, in this case the Decode-As feature can be used to decode this
communication using the SSL protocol preference.

Open the sample https.pcap file from. HTTPS traffic is captured when the file is opened
in Wireshark. It doesn’t show SSL-related data; instead it just shows all TCP
communications:

Filter: | J Expression... Y v
No. |T|m¢ | Source |Dcstmatmn |Ptomcol |Inln

3 0.000015 127.98.6.1 127.0.0.1 TCP 47156 4433 [ACK] Seqs393665672 Ack=3495743340 Win=43776 Len=0 TSval=32200642 TSe
4 0.000560 127.8.0.1 127.0.8.1 TCP 471563433 [PSH, ACK] Seq=393665672 Ack=3495743340 Win=43776 Len=105 TSval=32209¢
5 0.000572 127.90.8.1 127.0.6.1 TCP 43347156 [ACK] 5eq=3495743340 Ack=393665977 Win=44800 Len=0 TSval=312200643 T5e
6 ©.000633 127.9.6.1 127.9.8.1 TCP 443347156 [PSH, ACK] 5eq=3485743340 Ack=393663977 Win=44800 Len=854 Toval=3220%
7 ©.000637 127.0.08.1 127.0.0.1 TCP 471564433 [ACK] Seq=393665977 Ack=3495744194 Win=45440 Len=0 TSval=32200643 TSe
B0.001345 127.8.6.1 127.6.0.1 TCP 471564433 [PSH, ACK] Seq=393665977 Ack=3495744194 Win=45440 Len=342 Toval=32209(
9 0.002856 127.0.0.1 127.0.0.1 Tcp 443347156 [PSH, ACK] Seq=3405744194 Ack=303666319 Win=45952 Len=250 TSval=322004

To decode this traffic as SSL, follow these steps:
1. Click on Analyze | Decode As:

E:Ie lé&it .!:Rw Co !iaplwe msﬁt‘ist"ic: lT‘l.'llleDlhow Inlx.lls. lntelnalls ﬁelp
©© £ W 4 | s [®OolFiens.. Haaaln gEls 8

I | Display Filter Macros...
Filter: |

'fqlu. |'I'|me

| Protocol | Length I Infa

i ekl Click Decode Asjtojopen]upiDecoderAs)DialogiBoxi=sias743330 Kek=303865672 iin=43850
3 0.000015 | @ Enabled Protaco shiftsCorl+E | TP 66 471564433 [ACK] S5eq=393665672 Ack=3495743340 Win=43776 Len=d
- Decode As. .. TCP

| 40,000560 371 471564433 [PSH, ACK] Seq=393665672 Ack=3495743340 Win=43776

5 0.000572 |43 User Specified Decodes. . TP 66 4433.47156 [ACK] Seq=3495743340 Ack=393665977 Win=44800 Len=0|
6 0.000633 ey Tcp 920 443347156 [PSH, ACK) Seq=3495743340 Ack=393665977 Win=44808
7 0.000637 W e cp 66 471564433 [ACK] Seq=393665977 Ack=3495744194 Win=45440 Len=p)
8 0.801345 e lsDF Steean TCP 408 471564433 [PSH, ACK] Seq=393665977 Ack=3495744194 Win=45440
9 0.002856 | Foli TP 316 443347156 [PSH, ACK] Seq=3485744194 Ack=393666319 Win=45952
10 0.004080 | = Expert [nfo TCP 135 471564433 [PSH, ACK] Seq=393666319 Ack=3495744444 Win=47232
| Cornversation Filter L4
Wireshark Decode AS feature
1= i |

2. The Decode As popup will appear as shown in the following screenshot. Choose the
protocol (SSL in this example) that is required for decoding the given traffic:

b vanmtiﬂn lear. Annlu Saue
ase % Wireshark: Decode As

® Decode Link|Network Transport 85671 Win=43600 Len=d MS5-65405 SACK
© Do not decode aroT Y

Spice

anoc 1.Select SS

SSH
\chr both (47156--4433) v | portts) .;I__-". (

STANAG 5066 DTS5

965672 Ack=3495743340 Win=43776 Len=0
93665672 Ack=3495743340 Win=43776 |
43340 Ack=393665977 Win=44800 Len=0
495743340 Ack=393665977 Win=44800 |
5977 Ack=3495744194 Win=45440 Len=0

80.001345 127 .8 & Clear STANAG 5066 SIS m 93665977 Ack=3495744194 Win=45440 |
9 0.002856 127§ —M—mM8M8M STUN 3495744194 Ack=393666319 Win=45952 |
10 8.004080 127. Show Current £VAIFLID DA END v 93666319 Ack=3495744444 Win=47232 |

H Help |

Ll s I Clase |

3. The SSL traffic protocol is shown in Wireshark:

Filter | v |Expression... Ciexs SSL Handshake & Application Data shown

No. | Time] Destination
3 0.000015 127.0.0.1 127.0.0.1 TcP 66 471564433 [ACK] Seq=393665672 Ack=3495743348 Win=43776 Len=0
4 0.000560 127.0.0.1 127.9.6.1 TLSv1.2 371 Client Hello
5 0.000572 127.0.8.1 127.0.6.1 e 66 443347156 [ACK] Seq=3495743340 Ack=393665977 Win=44800 Len=0
6 0.000633 127.0.0.1 127.8.6.1 TLSv1.2 920 Server Hello, Certificate, Server Hello Done
7 0.000637 127.0.0.1 127.0.0.1 P 66 471564433 [ACK] Seq=393665977 Ack=3495744194 Win=45440 Len=0
8 0,0801345 127.0.0.1 127.8.8.1 TLSv1.2 408 Client Key Exchange, Change Cipher Spec, Encrypted Handshake N
9 0.002856 127.0.0.1 127.0.6.1 TLSvl1.2 316 New Session Ticket, Change Cipher Spec, Encrypted Handshake Md

160 6.004080 127.0.0.1 127.0.6.1 TLSwl1.2 135 Application Data
Note

SSL decoding doesn’t mean it has decrypted the SSL data.

Protocol preferences

The protocol preference feature provides the flexibility for you to customize how the
Wireshark display is processed, and how packets are analyzed. You can set protocol
preferences by one of the following methods:

¢ Go to Edit | Preferences | Protocols to adjust the settings
e A simple way is to right-click on a protocol in the Packet Details pane and select
Protocol Preferences

Wireshark supports a large set of protocols and it’s preferences, for example HTTP
protocol preferences and their meanings as defined in the following table:

HTTP protocol preferences 'What does this mean?

Reassemble HTTP headers spanning HTTP dissector will reassemble the HTTP header if it has been transmitted
multiple TCP segments over more than one TCP segment

Reassemble HTTP bodies spanning HTTP dissector will reassemble the HTTP body if it has been transmitted
multiple TCP segments over more than one TCP segment

Reassemble all chunks across the segments and add them to the payload

Reassemble chunked transfer-coded
bodies

Decompress entity bodies Used for the visualization of compressed data (.gzip or encoded)

SSL/TLS ports ||Add/remove SSL/TLS ports (default is 443)

Custom HTTP header fields Define new header fields

The following screenshot shows HTTP protocol preferences in Wireshark:

Wiroshark: Prefecences - Peoflec Detauf

HCl_CMD Reassemble HTTP headers spanning multiple TCP segments: =
Hr.l_r o Reassemble HTTP bodies spanning multiple TCP segments. &
::-:_;‘;N Reassemble chunked transfer-coded bodies: =
HDCP2 Uncompress entity bodies: 2
HDFS TCP Ports: [B0,3128,3132,5985,8080,8088,11371,1900,286
HOFSDATA
HisLP SSL/TLS Ports: [443
HNBAP D Custom HTTP headers fields { Edit... |
HP_ERM
HPFEEDS /
TP

HTTP2
12C
ICEP
ICMP
IEEE 802.11
IEEE 802.15.4
IEEE 802.1AH
iFCP
ILF

I3 Help Apply | ¥ cancel | Fox IJ

Tip

Refer to the example of finding the top HTTP response time in Chapter 05, Analyze the
DHCP, DHCPv6, DNS, HTTP Protocols when using protocol preferences.

The 10 graph

Use the IO graph to check client and server interaction data for a meaningful analysis. The
Wireshark 10 graph measures throughput (the rate is packet-per-tick), where each tick is
one second. In this example we will see how to make use of the IO graph. Open the file
http_01.pcap in Wireshark and follow the given steps:

i

© N U

Click on Statistics | IO graph.

The IO graph dialog box will appear.

In the IO graph dialog box try to find the spike and click on it.

When you click on the graph (the high area), Wireshark will automatically show the
corresponding packet in the Packet List pane.

Note

In the given example there are lots of duplicate ACKs.

Go back to the 10 graph dialog box.

Choose Graph?2 and enter tcp.analysis.duplicate_ack.

Click on Graph2 to apply the filter.

The 10 graph dialog will show the throughput of the duplicate ACK.

There are a lot of use cases for IO graphs. Some of them are as follows:

e Use IO graphs to analyze traffic patterns, for example how the traffic is distributed by

plotting graphs on protocols for example tcp, http, udp, ntp, and 1dap.

e]O graphs come in handy when performing security analysis. More examples of 10

graphs are available in Chapter 07, Network Security Analysis.

The following screenshots show the results of the preceding steps:

EE 1 id

Carvrsarcy S mmany

Eriint Lt
oo Servme brspases Tiise
70,8430)
18004 o
1 2578 8030 FAOR] Seacd At

TR0 (K] Seqed Arkad W
GET HETRLL

Frame 13086 84 bylan up wise |
Exheraet T1, Srep DA:T3:Tarde(| i 139 2 17 10613001
Tntarnat Frafacol Usreisn 4, 5| CHEARE Progrer 231, fat: 306,231 (10,88 390) l

Traumissien Cortrol Protocil.| sescume W00, Sequ dY. Acks GPSRGTER. Lewi @
Source Port| 3708 £37088|
Bestination feer

L Mt i
ol Vit

: 01 Generate |0 Graph
Statistics->10 Graph

Sttt 2. X A e
= |Beprmn Ciear appte S

% Wmrvan, € Ganpr: e e
Find The Cacse ol High,
Select the graph

S A b0y [ACK]
52300 8909 |4
STA7. 5008 (K]
s [ACK]
o X i
Fr:' nh L] Calr Seyle Lne [w|< Sments Tick mimrt |
::lr.:- s:nd firaph 7| cai - Ergle Line = |5 Smeark b i Lk L)
e :
» Tntareat @ Granha Sovle Une e | Smeats r"l‘:lwnlmulnln
- Transml bl Graph 4| cates Wraver Sk Line = |51 Smsark
Gruph 3l & 02 iq-leL
ocati
) Bt select the gr_aphu-n..| son

|Pustacal | Langth | Tirms vivce ssasasnt |ints

TR IRTAN fuas B

+ From a6 8 bites o wira (12 b4) uj

& Ethereet T1, Sre; 0617578000 2F 00 166:71.7

o atwreed Pratocsl Weesbios 4, Sre. £13,387. 0 0| High pointing~._ |
Transsdssion Copt ral nnuml drc fort s 1o TCP Dup ACK

i ot packet list pane shows
1120 Segmaent. Loe Al

I5tream Lrdes 3]
Eesiotes ma 4tcp&gut:;gg_c)_mder1@p

Arkrouisdgeers pmber:
Meadker Latatb: &5 B3

R 0 Ic Al 3 e 1 ikl Taee = | .
5 i Fusls pe tick Ve
2 Noew an 1ime o iy

¥ it &

Tk aare

omst | Tirme auvee st |l

HE b M L300 12R

Frame 2686: 3¢ tytes 20
+ Etharmet TH Src: 00730
» Tetmroet Protecal Yersd
- Tramsminsian Costenl
Saurte Furt: 3
Dastiratine C
[Straem indes: 3]
[TCF Segmerd Lea ul

i Smamch Tick vl | s
14 Srsnck {Fisehs pei ek]

W amznh | v tise af day
5

sk

tcp analysis duplicaté”. gglk_,

Following the TCP stream

The TCP stream feature allows users to see the data from a TCP stream. Open the file
http_01.pcap in Wireshark and follow the TCP stream to get the first HTTP OK, as
shown:

In this example we have located the HTTP OK on packet#35 and then right clicked and
selected Follow TCP Stream:

O ® 4 m o .;“xaz---v-a-T_kl—Hl' B a0 n eyl B

F|Ite1| Expression.. o ol - Sav

No. I Time LSoulcl: [Dcallnlt-un ll"wlocul Length Time since fequest]_Inlu 4

e IrIsIe T IEFrTIeTTIuE I P10 P S | 1 IIIOTOUUY [ALK] SEQTIOOUUTLY mrnmnnan
26]?.1??‘9-“ 122.167.102.21 10.8.08.221 TcP L1 52379 80068 [ACK] Seq=3T741621517 Ack=25069077

173010 122.167.102.21 10.0.0,221 TCP 66 52379 BODD [ACK] Seq=3741621517 Ack=250690B7

10.0,0.221 . . BO00 52379 [ACK] Seq=2506008732 Ack=3741621%

~7 TOET oo T 523868000 [ACK] Seqe2261989104 ACk=29357132
ollow the TCP Stra_amifnr the P OK.packet#35 ; GET /1 lsln-le-u.l.uflt':r.qz HTTP/1,]
Mark Packe! (toggle) 800052386 [ACK] Seq=203571324 Ack=22610895]

lgnane Packet (togobe) 000 HTTP/1.0 200 OK
¥ Set Time Reference (togagle) Continuation (applicationfoctet-stream)

122,

1= right cllckn 9 Time Shift BODO..52386 [ACK] Seq=293574197 Ack=226198951
6.0.221 122, 167.] [dn Packen B000 52386 [ACK] Seq=293577053 Ack=226198951
39 60.709411 m 8,0.221 122.167.| @ Packe! Comment. .. 8000 52386 [ACK] Seq=293578481 Ack=226198951 |
40 60. 709416 10.0.0.221 122.167. BO0O.52386 [ACK] Sea=293581337 Ack=226198951 9
- — — == Manually Resolve Address = S

Frame 35: 83 bytes on wire (664 bits), B3 bytes captured (Appl as Fllter !

Ethernet IL, Src: 06:3c:0f:39:2e:f7 (06:3c:0f:39:2e:17), D Pre paie 2 FRtEr p [Bides 2f:85)

Internet Protocol Version 4, Src: 10.0.0.221 (10.0.0.221), e 102.21)

| Transmission Control Protocol, Src Port: BOOO (B00G), Dst digint il tae 1T ?1324 Ack: 2261989519, Len: 17

Follow TCP Stream e

Copy »
pope 06 73 7a 4c 2f B5 06 3¢ Of 39 Ze 17 08 0@ 45 00 .5Z Protocol Preferences N 1
BE10 0O 45 cc 3f 40 0D 40 06 B2 da Ba 80 00 dd 7a a7 .E.| = necode As i
poze 66 15 1f 40 cc a2 11 7f Ba fc B6 d3 38 87 ?SU 18 e &

A0 A6 db sk 6 A6 Ao 08 AT A0 Bs 63 S5 S8 =9 fc i Print...

Once the stream is applied, a TCP stream dialog box will open displaying which request is
sent and what response is received in this HTTP conversation:

File Edit View Go Capture Analyze 518 @ ® [Foliow TGP Stream lop.stream eq 2)
-ﬁi' @. ‘ ! g .,__- 3 x a Strpam Content
e ol HTTP REQUEST A
F“m“tcp,tmm,ﬂz I Host: 52.74.246.190:8000
- < |Connection: keep-alive
No. Time Source Accept: text/html,application/xhtalvxml,application/xml;q=0.9, image/webp, */*;q=0.8

User-Agent: Mozilla/5.0 (Macintesh; Intel Mac 05 X 10_10_3) AppleWebKit/537.36 (KHTHL,
like Gecko) Chrome/43.0.2357.124 Safari/537.36
Accept-Encoding: gzip, deflate, sdch

12 0.945883 122.167.1682.21 Accept -Language: en-US,en;q=0.8
13 8.256169 122.167.182.21 E o .
14 6.256192 108.0.6.221 HTTP/1.9 200 OK

21 19.118828 18.0.6.221 Server: SimpleHTTP/0.6 Python/2.7.6
27 19. 118918 10.0.0.221 Date: Sun, 21 Jun 2815 17:45:36 GHT
26 19, 172944 122.167.1682.21 Content-type: text/html; charset=UTF-B

2710173010 122.167,102.21 | |COontent-Length: 828

<!DOCTYPE html PUBLIC *-//W3C//DTD HTML 3.2 Final//EN“><html=>

29 19.173674 10.0.8.221 wtitle=Directory listing for /</title>

<body>

=h2=Directory listing for /</h2= HTTP RESPONSE
<hr=

<li=.bash history

=li>=a href=".bash_logout”>.bash_logout

«<lizca href=".bashrc”> bashro

. — | .cache/<fa> B
b Frame 21: 83 bytes on wire (654 Dit§ |<li= profile</a=>
b Ethernet II, Src: 06:3c:0f:30:2e:17] | .sshf "

¢ Internet Protocol Version 4, Src: 1
b Transmission Control Protocol, Src @ _ENtire conversation (1340 bytes) - |
" “.find | Esavens | Lprint [0ASCH OEBCDIC O HexDump O CAmays ®Raw |

HHelp | | Filter Out This Stream J H Close |

The stream content is available in six formats as shown; the red content in the screenshot
is the request, the blue content in the screenshot is the response:

ASCII format RAW format

Exporting the displayed packet

The Export Specified Packets feature allows you to export the filtered packet in different
files. For example, open http.pcap in Wireshark and export the HTTP OK packet. The

steps for exporting a specified packet are as follows:

1. Apply the filter http.response.code

200 in the Filter bar:

Filter: lhttp.mpann.cndz == 200| Save

;IExplcssiun... Clear Apph

Destination Protocol |Length
122.166.88. 12(HTTP

Source Time since request |Info

27 35.707955

83 0.000707000
122,166, 88. 1255H 182

38 *REF* 10.0.8.221

Wireshark Export Displayed Packet

HTTP/1.0 2008 OK
Server: Encrypted packet (len=116)

2. Go to File | Export Specified Packets. This opens up the dialog box with the export

options, as shown:

Filter: |ht:p.responu.cnde == 200 j&presslon... Clear Apply

Save
MNo. Time Source | Destination | Protocal | Info
27 35,707955 10.0.0. K % Wireshark: Export Specified Packets .
Hame |]rtsponst_fudc_uk h—‘ 1. Name ﬂ'Ff“E
Save in folder: ml Users lmmd Create Folderl
Places |E Name |S|zt |Mod|f|ed - | 3
&, Search ' arp-storm.peap 47.3kB 06/16/15
@Recently U... 53 1pv6.peap 28.3kB 06/16/15 [D
- | 1dhcp.pcap 1.4 kB 06/16/15 |5
Packet Range Wireshark Export displayed packet
Captured Displayed
® All packets 5 1
O Selected packet only 1 !
aif & Mark: kets only) o
b Frame 27: B3 bytes on wire |l o From first 1o last marke ;3::1'“5“"”'?‘.“““ _..+ , I
Ik Ethernet II, Src: @86:3c:Bf 5 O Specify a packet range: [0
b Internet Protocol Version 4 |
b Transmission Control Protodt |
b Hypertest Transfer Protoeay — - .
Fik type: Wireshark/tcpdump/... - pcap |~ |I|! Compress with gzip 3. Click Save
¥ cancel | ™ save I

Generating the firewall ACL rules

Using Wireshark, network administrators can generate ACL rules for firewall products
such as:

Cisco IOS

IP Filter (ipfilter)

IP Firewall (ipfw)
Netfilters (iptables)
Packet Filter (pf)
Windows Firewall (netsh)

Tip
Rules for MAC addresses and IPv4 addresses are present; the filter supports TCP, UDP
ports, and [Pv4 port combinations.

The steps to generate an ACL rule in Wireshark are as follows:

1. Go to Tool | Firewall ACL Rules:

File Edit View Go Capture Analyze Statistics Telephony I_oc_lls lntenals Help

@AM L EEXS A S 0] o F e EEE B

Filte!:l v | Expression... Clear Apply Save ACL Rule Generator

No. |Time |Source |Destinalion Protocol |1nfo
28 35.708051 10.8.0.221 122.166.88.120 HTTP Continuation (text/html)
29 35.716255 122.166.88.120 10.0.0.221 TCP 503188000 [ACK] 5eq=1155908017 Ack=3619056706 Win=131360 Len=0 TSva
30 35.752633 122.166.88.120 10.8.0.221 TCP 5030522 [ACK] 5eq=968278143 Ack=654699255 Win=4092 Len=0 TSval=3945
3135.762264 122.166.88.120 10.6.0.221 TCP 503198000 [ACK] Seq=837833460 Ack=3517855245 Win=131328 Len=0 TSval
32 35.762273 122.166.88.120 10.9.0.221 TCP 5038522 [ACK] 5eq=968278143 Ack=654699291 Win=4094 Len=0 TSval=3945

2. The Firewall ACL Rules dialog box will appear. Choose Product and Filter, specify

the ACCEPT/DENY criteria, and a rule will be generated by Wireshark in this
dialog box, as shown:

Filter: | see : %] Firawall ACL Rules

Sourg Product Netfilter (iptables) w | Filter 06:3c:0f:39:2e:f7 * | Einbound O Deny
10.6

42 0.000123 IEI.U
| 51 0.045335 10.0§

Metfilter (iptables)
| iptables -A INPUT --mac-source 06:3¢:0f 39:2e:f7 -) ACCEPT

i

| 49 0.045326
| 48 0.645324
|
|

HHelp | LiCopy Firewall ACL Generator XcCancel | [save |POB352 Ack=36190570

ar C TN : lesa b v oAm L A ama b

B57051 Ack=11559083

== Bg352 Ack=36190567 3

Tcpdump and snoop

In production environments, packet-capturing tools such as Wireshark are usually not
installed. In such scenarios, a default-capturing tool can be used such as tcpdump for
(Linux systems) and snoop (the Solaris default); later the captured file can be used in

Wireshark for analysis:

e snoop: This tool captures and inspects network packets and runs on Sun

Microsystems CLI

e tcpdump: This tool dumps traffic on a network and runs on Windows, OS X, and

Linux

For example, the following table shows how to check packets from interfaces:

Description Solaris Linux
How to check packets from all interfaces bash# snoop bash#tcpdump -nS
How to capture with hostname bash# snoop hostname bash# tcpdump host hostname

How to write the captured information to a file

snoop

-o filename

bash# tcpdump -w filename

How to capture packets between host1 and
host2 and save them to a file

snoop

capture_file.pcap host1l

-0

tcpdump -w capture_file.pcap src
hostl and dst host2

host2
tcpdump -i ethe
How to capture traffic with verbose output to [|Snoop -v -d ethe Very Verbose tcpdump options:
screen snoop -d ethO® -v port 80 |ltcpdump -i eth® -v port 80
tcpdump -i eth® -vv port 80
How to set the snaplength snoop -s 500 tcpdump -s 500
How to capture all bytes snoop -s0@ tcpdump -s@
How to capture the IPv6 traffic snoop 1ipé tcpdump ip6
snoop multicast tcpdump -n "broadcast or
snoop broadcast multicast"
snoop bootp tcpdump udp
How to capture protocols snoop dhcp tcpdump tcp
snoop dhcp6 tcpdump port 67
snoop pppoe tcpdump port 546
snoop ldap tcpdump port 389

References

You can also refer to the following links for more information on the topics covered in this
chapter:

e https://www.wireshark.org/docs/wsug_html_chunked/

e https://wiki.wireshark.org/CaptureSetup/Ethernet
e https://goo.gl/vxI2jk

https://www.wireshark.org/docs/wsug_html_chunked/
https://wiki.wireshark.org/CaptureSetup/Ethernet
https://goo.gl/vxI2jk

Summary

In this chapter we have learned how to use the Wireshark GUI. Then we explored what
capture filters and display filters are, how to set up a capture, keeping performance in
mind, and how to make use of other capturing tools such as tcpdump and snoop in
production or in remote capturing. Then we learned about a few Wireshark features such
as ACL rule generation, IO graph, Decode-As, exporting packets, and protocol
preferences.

In the next chapter we will learn the TCP protocol and will discuss its practical use cases
with a lab exercise that will help in troubleshooting common network problems (we will
also provide the solution).

Chapter 3. Analyzing the TCP Network

TCP is intended to be a host-to-host protocol in common use in multiple networks. In this
chapter, we will analyze the TCP protocol in detail with lab exercises and examples.

This chapter covers the following topics:

Recapping TCP

TCP connection establishment and clearing
TCP troubleshooting

TCP latency issues

Wireshark TCP sequence analysis

Recapping TCP

Transmission Control Protocol (TCP) was first defined in RFC 675, and the v4
specification came out in RFC 793. TCP provides:

Connection-oriented setup and tear-down of TCP sessions

The service sends and receives a stream of bytes, not messages, and guarantees that
all bytes received will be identical with bytes sent and in the correct order
Reliable, in-order delivery, uses sequence number to recover from data that is
damaged, lost, duplicated, or delivered out of order by the Internet communication
system

Flow control prevents the receiver’s buffer space from overflowing

Congestion control (as defined in RFC 5681) algorithms are: slow start, congestion
avoidance, fast retransmit, and fast recovery

Multiplexing; every TCP conversation has two logical pipes; an outgoing and
incoming pipe

TCP header fields

Each TCP segment has a 20-byte header with optional data values, as shown in the
following screenshot displaying a TCP frame in the Wireshark Packet Details pane:

| IP Header | TCP Header | DATA

20 bytes 20 Bytes

Lransmission. Conteal Protacol. Scc Poart. 56294 (562941 Dst Part. 9999 (9999
Source Port: 56294 (56294)
Destination Port: 9999 (9999)
[Stream index: 0]
t Len: @
Sequence number: 275472516
;2131384658
Header Length: 32 bytes
b DDBB OBOL1 00OO = Flags: Ox010 (ACK)
Window size value: 41084
[Calculated window size: 131328]
[Window size scaling factor:; 32]
* Checksum: 0x62c4 [validation disabled]
Urgent pointer: @

32 bits

r Options: (12 bytes), No-Operation (NOP), No-Operation (NOP), Timestamps

= [SEQ/ACK analysis]
[This is an ACK to the segment in frame: 5]
[The RTT to ACK the segment was: ©.044804000 seconds]
[iRTT: ©.045830000 seconds]

» Seq: 275472516, Ack: 2

TCP Format

The following table describes the header fields and Wireshark filters along with their

descriptions:
TCP header Wireshark filter Description
name
Source port (16 bits) tcp.srcport Sender port
Destination port (16 bits) |[[tcp.dstport Receiver port
Sequence Number (32 bits) [|tcp.seq Defines the ISN and controls the state of the TCP
ACknOWl(gggiﬁ:?t number tep.ack The ACK contains the next SEQNo that a host wants to receive
| tep.flags Control bits
Reserved tcp.flags.res For future use
Nonce tcp.flags.ns Experimental
|CWR tcp.flags.cwr Congestion window reduced
|ECN tcp.flags.ecn ||ECN-Echo
Flags (9
bits) Urgent tep.flags.urg Urgent pointer field is set
|Acknowledgement tep. flags.ack |Acknowledgement is set

Push tcp.flags.push Push the data
Reset tcp.flags.reset Reset the connection
|SYN tcp.flags.syn Synchronize sequence numbers
|FIN tcp.flags.fin No more data
Window size (16 bits) tcp.window_size Used to advertise the window size in a three-way handshake
Checksum (16 bits) tcp.checksum Error checking
Urgent pointer (16 bits) _||tcp.urgent_pointer Inform the receiver that some data in the segment is urgent

(SEQNo <= urgent message <= SEQNo + urgent pointer)

Options (0-132 bits)
divisible by 32

tep.

Options such as maximum segment size, No-Operation (NOP),

options 5 . .
window scale, timestamps, SACK permitted

TCP states

A connection progresses through a series of states during its lifetime. The states are:

TCP state Description
LISTEN The server is open for incoming connection.
SYN-SENT The client has initiated the connection.
SYN- The server has received the connection request
RECEIVED quest.
ESTABLISHED||The client and server are ready for the data transfer, a connection has been established.
The client or server has closed the socket. In Linux the default is 60 ms:
FIN-WAIT-1 [bash ~]# cat /proc/sys/net/ipva/tcp_fin_timeout
60
The client or server has released the connection. In Linux the default is 60 ms:
FIN-WAIT-2

[bash ~]# cat /proc/sys/net/ipv4/tcp_fin_timeout
60

CLOSE-WAIT ||Either client or server has not closed the socket. The CLOSE_WAIT state will not expire.

LAST-ACK Waiting for pending ACK from the client. It’s the final stage of the TCP conversation with the client.
TIME_WAIT indicates that the local application closed the connection, and the other side acknowledged
and sent a FIN of its own. In Linux the default is 60 ms:

TIME-WAIT
[bash ~]# cat /proc/sys/net/ipv4/tcp_fin_timeout
60

CLOSED Fictional state

Note

This socket command-line utility can be used to monitor network connections and their
states:

[bash ~]ss -nt4 state CLOSE-WAIT
[bash ~]ss -nt4 state ESTABLISHED
[bash ~]netstat -an | grep CLOSE-WAIT
[bash ~]netstat -an | grep ESTABLISHED

TCP connection establishment and
clearing

In this section we will learn how the TCP opens and closes its connections. In order to
establish a connection, the three-way handshake procedure is used as described in the
following section.

TCP three-way handshake

The three-way handshake is a connection establishment procedure from the client socket
to the server socket, as shown in the following image:

TCP Three Way Handshake

TCP STATE TCP STATE
[S 1. LISTEN
PASSIVE_OPEN
2. SYN-SENT [1.SYN(SegNo=X
ACYIVE_OPEN ibeg]'————b
2. SYN-ACK(SeqNo=Y,AckNo=X+1 2. SYN-REGEIVED
< (Seq)
3. ESTABLISHED 3. ACK(SeqNo=X+1,AckNo=Y+1)
3. ESTABLISHED
Client Server

Before the start of the TCP three-way handshake, the client will be in the CLOSED state and
the server will be in the LISTEN state as shown:

TCP-A (122.167.84.137) state |TCP-B (10.0.0.221) state
SN Flow CTL

From To From To |
z"CLOSED || || ||CLOSED ||LISTEN |

The TCP state machine

To examine a three-way handshake in Wireshark, open the normal-connection.pcap file
provided in the book.

Handshake message — first step [SYN]

The first step of the handshake process is that the socket client will construct a SYN
packet and send it to the server. During this process the socket client will perform the
following tasks:

1. tcp.flags.synissetto 1 and its SYN packet is sent by the client.

2. The client generates and sets the tcp.seq=3613047129 the initial sequence number

(ISN). Wireshark shows, by default, relative sequence numbers; a user can change

this setting under: Edit | Preferences | Protocols | TCP | Relative sequence

numbers.

The client sets tcp.ack =0.

4. The tcp.window_size is advertised to the server and its value is in the packet
tcp.window_size value == 65535, which tells it that it can transmit up to 65535
bytes of data depending on MSS. For example if MSS is 1440 bytes, the client can
transmit 45 segments.

5. TCP client includes other tcp.options such as Maximum Segment Size (MSS),

w

No-Operation (NOP), window scale, timestamps, and SACK permitted.

6. The client chooses tcp.options.sack_perm == 1 in the “selective
acknowledgements” processing.

7. TSval/TSecr is the timestamp tcp.options.timestamp.tsval == 123648340.

The following table depicts the state transition of the first handshake message:

|TCP-B (10.0.0.221) state

TCP-A (122.167.84.137) state

Sr. No. Flow CTL
From From
||CLOSED || ||CLOSED LISTEN |
||CLOSED SYN_SENT <SEQ=3613047129><CTL=SYN>||LISTEN |

TCP state machine changes SYN_SENT

Handshake message — second step [SYN, ACK]
In this process the server responds to the client’s SYN:

1. The server sets tcp.flags.syn =1 and tcp.flags.ack=1, confirming that the SYN
has been accepted.

The server generates and sets ISN tcp.seq=2581725269.

The server sets tcp.ack=3613047130 as the client tcp.seq+1.

The server sets tcp.window_size_value == 26847 as the server window size.

The server sets tcp.options and responds to the client.

AR

The following table depicts the state transitions of the second handshake message:

S TCP-A (153;::7'84'137) TCP-B (10.0.0.221) state
r Flow CTL
No.
From To | From To
1 ||CLOSED || || ||CLOSED||LISTEN
2 ||CLOSED ||SYN_SENT <SEQ=3613047129><CTL=SYN> ||LISTEN ||
| <SEQ=2581725269><ACK=3613047130> SYN-
3 SYN_SENT <CTL=SYN,ACK> LISTEN RECEIVED

TCP state machine changes when SYN-RECEIVED is sent by the server

Handshake message — third step [ACK]

After successfully exchanging this message, the TCP connection will be established in this
connection:

1. The client sets tcp.flags.ack == 1 and sends to the server.
2. The client tcp.seq=3613047130 is ISN+1 and tcp.ack=2581725270 iS SYN_ACK(

tcp.seq+l).
3. The client window size is set again and this will be used by the server
tcp.window_size_value == 4105.
Tip

tcp.analysis.flags shows you packets that have some kind of expert message from
Wireshark.

The following table depicts the state transitions of the third handshake message:

TCP-A (122.167.84.137) TCP-B (10.0.0.221) state

Sr. state Flow CTL
No.
From To | From To

1 ||CLOSED || || ||CLOSED ||LISTEN
2 ||CLOSED ||SYN_SENT <SEQ=3613047129><CTL=SYN> ||LISTEN ||

| <SEQ=2581725269><ACK=3613047130> SYN-
3 SYN_SENT <CTL=SYN,ACK> LISTEN RECEIVED

| <SEQ=3613047130>><ACK=2581725270> SYN-
4 SYN_SENT|ESTABLISHED <CTL=ACK> RECEIVED ESTABLISHED

TCP state machine when the client sends ACK

TCP data communication

Once the three-way connection is established, the data is communicated by exchanging the
segments and the PUSH flag is set to indicate that the data flows on a connection as a
stream of octets, as shown in the following figure:

TCP Three Way Handshake/DATA

TCP STATE FLOW
1. CLOSED 1. LISTEN
PASSIVE_OPEN
2. SYN-SENT i
ACYIVE_OPEN 1.8YN(SeqMo=X) —_
2. SYN-ACK(SeqNo=Y,AckNo=X+1) 2. 5YN-RECEIVED
3. ESTABLISHED 3. ACK(SeqNo=X+1 AckNo=Y+1)

3.ESTABLISHED

4. DATA FLows_b —>

; Server
Client [PSH,ACK] [PSH,ACK]

Select packet#4 from the normal-connection.pcap file as shown in the following
screenshot; expand the TCP section in the Packet Details pane:

082 [ACK =

3097 [PSH, ACK] St

|
|
-

+ Jhtariek Priteeel Versian 4. Sre, IR0 AL DL AL, fary 3(9590 %8 B3 7 i 6 3¢ Of 39 2¢ 17 08 00 45 08 .52L/..< .9....E.

2f 85 @
= : = 9016 00 51 Be 72 40 00 40 06 d2 27 @a OO 00 dd Ta a7 .Q.r@.@. .'....2.
~/Transmission Control Protocol, Src Port: 8082 (8082), Dst Port: lo020 54 80 17 92 cf G900 €2 00 56 07 5a bO 53 B0 18 T....i.. M.2.7..
Source Port: BOB2 (BOAZ) 6030 00 d2 da 50 00 00 61 01 08 Ga 60 4a Ge 24 07 Se P 1§~
Destination Port: 53097 (53097) @648 b9 82 o
[Stream index: @] 8058

[TCP Segment Len: 29] Data
Sequence nunber: 2581725270
[Next sequence number: 2581725299]
Acknowledgment number: 3613047138
Header Length: 32 bytes

.. DBOO 0001 1000 = Flags: BxD1B (PSH, A{K:I*PLLS—I-U#CH v
Window size walue: ZI0
[Calculated window size: 26888] 1 Data
[Window size scaling factor: 128]
Checksum: Oxda30 [validation disabled]
Urgent pointer: @

b Options: (12 bytes), Ne-Operation (MOP), Mo-Operation (NOP), T
= [SEQ/ACK analysis]

[LRTT: ©.045726000 seconds]

_ ldytes ip flight: 29]
- Data (29 bytes) #

-

e

As you can see in the preceding screenshot:

1. The server is sending data to the client as shown in the packet.
The server sets tcp.flags.push = 1.

The server sets tcp.flags.ack =1.

The server data is (29 bytes) and the data value is:

N

S.

414€495348204€415448204€41524d414c20434F4e4e4543....

The server sets (tcp.flags.ack == 1) && (tcp.flags.push == 1); that is, the
[PSH, ACK] flag indicates that the host is acknowledging receipt of some previous
data and also transmitting some more data.

The useful Wireshark display filters are:

data: Displays the packet that contains the data information, for all IPs:
o 4 W ¢ I X aevwTFEEF Qaarn gl i B

=~

Filter:||data Expression... Clear Save

il = .
No. [TTmeE i‘:omce |Dest|n<1l|on | Protocol |Length Infe

data && ip.addr==10.0.0.221: Displays a list of packets that have data and are
exchanged with the given IP address

tcp.flags.push == 1: Displays all PUSH packets

tcp.flags.push == 1 && ip.addr==10.0.0.221: Displays PUSH packets between
hosts

tcp.flags == 0x0018: Display all PSH, ACK packets

tcp.flags == 0x0011: Displays all FIN, ACK packets

tcp.flags == 0x0010: Displays all ACK packets

TCP close sequence

TCP normal close appears when the client or server decides that all data has been sent to
the receiver and we can close the connection. There are three ways a TCP connection is
closed:

e The client initiates closing the connection by sending a FIN packet to the server
e The server initiates closing the connection by sending a FIN packet to the client
¢ Both client and server initiate closing the connection

TCP Three Way Handshake/DATA FLOW/CLOSE SEQUENCE

TCP STATE ToP STATE
1= S 1. LISTEN
PASSIVE_OPEN
2. SYN-SENT T 1.SYN(SeqNo=X
ACYIVE_OPEN \Beg]H
2. SYN-ACK(SeqNo=Y,AckNo=X+1) 2. SYN-RECEIVED
3, ESTABLISHED 3. ACK(SeqNo=X+1,AckNo=Y+1)

3. ESTABLISHED

4. DATA FLOWS Server

Client

T [PSHACK] [PSH,ACK] FIN_WAIT-1

CLOSE_WAIT TR S (active close)
(passive close) -— FIN(SeqNo=P)

; T ACKEPAE e ; FIN-WAIT-2

LAST_ACK FIN{SeqNo-Q}___________-__’ ———
CLOSED ACK=Q+1

Open the normal-connection.pcap file and select packet #5 in the Packet List pane. Go
to the Wireshark Packet Details pane, as shown in the screenshot, and examine the TCP
protocol.

In Wireshark add the Sequence number and Acknowledgement number to the column.
To add the sequence number and acknowledgement number, choose the TCP header
packet, right-click on the field (Sequence number / Acknowledgement number) in the
packet details and select Display as Column. Or implement these settings to add a new
column:

e Go to Edit | Preferences | Columns. Then add a new column and select “custom” :
tcp.seq.

e Go to Edit | Preferences | Columns. Then add a new column and select “custom” :
tcp.ack.

The server has initiated the FIN packet. When the data transfer is completed, see packet#5
in the following screenshot:

:.Nu J Time

J_Suull::

|D:st|nntinn

lS:qu:rlL: numbchAcknuwkdgmtnt number I Info

10.806800 122.167.84.137 18.0.8.221 3613047129

20.000825 10.8.8,221 122.167.84.13 2581725269

36.845726 122.167.84.137 1l6.8.8.221 3613047138

4 0.846472 I 16.0.08.221 122.167.84.13 2581725278
||

6 0.100657 122.167.84.137 10.0.98.221 3613047130

7 0.108668 122.167. 34 137 16.8.8.221 351394?13@
| 80.1068675 §4.13 : :

98.100683 10.0.8,221 122.167.84.13 2531?253@@

8 538978882 [SYN] Seq=3613647129 Win=655
3613847136 868253897 [SYN, ACK] Seq=2581725269
2581725276 530978882 [ACK] Seq=3613847138 Ack=25817
3613047130 88B2-53097 [PSH, ACK] Seq=2581725278 Acks

\2581?25299 530978882 [ACK] Seq=3613047130 Flck=253171,

2581725360 53097 8682 [ACK] Seq=3613047138 Ack=25817

2581725306 53097 8682 [[FIN, ACK]]Seq=3613647138 Ackd

3613047131 BeB2 53897 [ACK] Seq=2581725380 Ack=36138

As you can see in the preceding screenshot:

e The server initiates the FIN packet to close the connection in packet#5
1) && (tcp.flags.ack

e The server set [FIN,ACK] (tcp.flags.fin
sends it to the client
e The server sequence number tcp.seq

e The client is initiating FIN to close the connection in packet#8

e The client sets [FIN,ACK] (tcp.flags.fin
sends it to the server
e The client sequence number tcp.seq

1) && (tcp.flags.ack

1) and

2581725299 is acknowledged in packet#7

1) and

3613047130 is acknowledged in packet#9

The TCP state machine when the server and client close the socket connection, server

initiated FIN:

| TCP-A (122.167.84.137) state

TCP-B (10.0.0.221) state

Flow CTL
No.
From To From
||CLOSED || || ||CLOSED ||LISTEN
2 ||CLOSED ||SYN_SENT <SEQ=3613047129><CTL=SYN> ||LISTEN ||
<SEQ=2581725269> SYN-
SYN_SENT “ <ACK=3613047130><CTL=SYN,ACK> LISTEN RECEIVED
SEQ=3613047130>> SYN-
SYN_SENT ESTABLISHED <ACK=2581725270><CTL=ACK> RECEIVED ESTABLISHED

ESTABLISHED|[ESTABLISHED|| > EQ~3613047130>>

<ACK=2581725270><CTL=PSH,ACK>

ESTABLISHED|[ESTABLISHED

ESTABLISHED|[ESTABLISHED|| -5 F ¢ 5613047130>>

<ACK=2581725299><CTL=ACK>

ESTABLISHED|[ESTABLISHED

ESTABLISHED|[ESTABLISHED|| S F & 2281725299>>

<ACK=3613047130><CTL=FIN.ACK>

ESTABLISED ||[FIN_WAIT-1

ESTABLISHED|[CLOSE_WAIT [|“55Q~3613047130>>

FIN_WATT-1

FIN_WATT-2

CLOSE_WAIT [[LasT ack ~ [[PEQ-3613047130>>

<ACK=2581725300><CTL=FIN.ACK>

FIN_WATT-2

TIME_WAIT

<ACK=2581725300><CTL=ACK> “
||

||10 ||LAST_ACK ||CLOSED " ||TIME_WAIT ||CLOSED

Wireshark filters used in this scenario are as follows:

e tcp.analysis:SEQ/ACK: Provides links to the segments of the matching
sequence/ack numbers

e tcp.connection.fin: Provides expert information

e tcp.flags == 0x0011: Displays all the [FIN, ACK] packets

I.ab exercise

The steps to capture the normal TCP connection flow (a sample program is provided as
part of this book) are as follows:

1. Open Wireshark, start capturing the packets, and choose display filter
tcp. port==8082.
2. Compile the Java program TCPServer01.java using the javac command:

bash$ ~ javac TCPServero01.java

3. Run TCPServer01 using the java command:
bash$ ~ java TCPServeroi

4. Verify the server is listening on port 8082:

bash$ ~ netstat -an | grep 8082
tcp4b 0 0 *.8082 *.* LISTEN

5. Compile the client program Client0301.java using the javac command:
bash$ ~ javac Client0301.java

6. Run the client program:
bash$ ~ java Client0301

7. View and analyze the packet in Wireshark.

TCP troubleshooting

In this section we will learn about different network problems that occur and try to analyze
and solve them with lab exercises. Let’s start with the Reset (RST) packet.

TCP reset sequence

The TCP RsT flag resets the connection. It indicates that the receiver should delete the
connection. The receiver deletes the connection based on the sequence number and header
information. If a connection doesn’t exist on the receiver RST is set, and it can come at any
time during the TCP connection lifecycle due to abnormal behavior. Let’s take one
example: a RST packet is sent after receiving SYN/ACK, as shown in the next image.

RST after SYN-ACK

In this example we will see why RST has been set after SYN-ACK instead of ACK:

TCP RESET Sequence

"""'"--..._____'SYN ---""""---’
el .
«—— SYNACK
—_— 1
RST L
l"""----..__)' ? B X y
Client oo ey

Open the RST-01. pcap file in the Wireshark:

- first two handshake happen

|Nao. Tima Source Destination Protocol | Info

30089325 10.6.0.187 10.0.0.221 TCP 1560.9999 [RST] Seq=101 Win=0 Len=d

Connection rested during final handshake process

L e — _ P — —
FLLIEINEL LIl JIL. UULCI S 0UL UL fUU eI S uus LAy waL. UL o0 UL I20 Tl T (uuLaL el LD Ee)

¢t Internet Protocol Version 4, Src: 10.6.6.187 (10.0.0.167), Dst: 10.0.0.221 (16.6.8.221)
= Transmission Control Protocol, Src Port: 15680 (1588), Dst Port: 9999 (9999), Seq: 181, Len: @
Source Port: 1568 (1500)
Destination Port: 9999 (9999)
[Stream index:; @]
[TCP Segment Len: 0]
Sequence number: 101
Acknowledgment number: @
Header Length: 20 bytes
[>.... 000 0000 0100 = Flags: 0x004 [RST) |«=— RST flag Set
Window size value: @
[Calculated window size: 0]
[Window size scaling factor: -2 (no window scaling used)]

As you can see in the preceding figure:

e The TCP RST packet should not be seen normally
e The TCP RST is set after the first two handshakes are complete. A possible
explanation could be one of the following:

o The client connection never existed; a RAW packet was send over the TCP
server

o The client aborted its connection

o The sequence number got changed/forged

RST after SYN

This is the most common use case. Open the RST-02-ServerSocket -CLOSED. pcap file in
Wireshark. In this example the server was not started, the client attempted to make a
connection, and the connection refused an RST packet:

20.0800836 10.0.8.221 122.167.84. TCP 9999_51685 [RST, ACK] Seq=0 Ack=787188612 Win=0 Len=0

RST is set Immediately after SYN recieved

i :

* Frame 1: 78 bytes on wire (624 bits), 78 bytes captured (624 bits)

» Ethernmet II, Src: ©6:73:7a:4c:2f:85 (06:73:7a:4c:27:85), Dst: 86:3c:87:39:2e:T7 (86:3c:0f:30:2e:17)

» Internet Protocol Version 4, Src: 122.167.84.137 (122.167.84.137), Dst: 10.6.0.221 (10.0.6.221)

» Transmission Control Protocol, Src Port: 51685 (51685), Dst Port: 9999 (9999), Seq: 787188611, Len: @

Lab exercise

The steps to generate the RST flag in a generic scenario, when the server is not in the
listening state, are as follows:

1. Open Wireshark, start capturing the packets, and choose display filter
tcp.port==8082.
2. Compile the client program client0301. java:

bash$ ~ javac Client0301.java
3. Run the client program:
bash$ ~ java Client0301

4. View and analyze the RST packet in Wireshark.

TCP CLOSE_WAIT

Often a connection is stuck in the CLOSE_WAIT state. This scenario typically occurs when

the receiver is waiting for a connection termination request from the peer.

TCP STATE

1. CLOSED

TCP Three Way Handshake/DATA FLOW/CLOSE_WAIT

JCP STATE

2. 5YN-SENT
ACYIVE_OPEN

3. ESTABLISHED

__--_-—-—-
2. SYN-ACK(SegNo=Y,AckNo=X+1)

3. ACK(SeqNo=X+1,AckNo=Y+1)

4. DATA FLOWS

1. LISTEN
PASSIVE_OPEN

2. SYN-RECEIVED

3.ESTABLISHED

Client Server
[PSH,ACK] [PSH,ACK] FIN_WAIT-1
(active close)
CLOSE_WAIT — FIN{SegqNo=P)
(passive close) = ACK=P+1 0 FIN-WAIT-2
—>
CLOSE_WAIT Scenario
= TIME_WAIT
1. Server Closes the socket (FIN) sent
2. The client is still running and and hasn't closed the socket
Tip
To find a socket in the CLOSE_WAIT state, use the following commands:
bash:~ $ netstat -an | grep CLOSE_WAIT
tcp4 0 0 122.167.127.21.56294 10.0.0.21.9999 CLOSE_WAIT

To demonstrate the CLOSE_WAIT state, open the close_wait.pcap file in Wireshark:

30.045830
40.846540

122.167.127.21
10.0.8.221

pp— |

Protocol fSequence number |Acknowledgment number |info

Destination

275472516
21313840831

10.8.0.221 TCP
122.167.127 TCP

6 08.891496
76.891503

122.167.127.21
122.167.127.21

275472516
275472516

18.8.0.221 TCP
18.8.8.221 TCP

Interngt ﬁrutqtul Version 4, Sr;:-i@.ﬁ.9122;”{131939.

Destination Port: 56294 (56294)

[p— S o T vt [—

[Stream index: 0]

| [TCP Segment Len: 0]

i Acknowledgment number: 275472516
gth: 32 bytes

Header Le

Hinduw ﬁize uaiue! 213h

ACK received in PacketsT

ek, 2131384057 562949999
"M>2131384058 562949999 [ACK] Seq=2754

2131384031 56294 .9999 [ACK] 5eg=2754
275472516 9999.56.5s

EE"F'EW: “J%'.'.%‘Wle 1

eq=273

221), Dst: 122.167.127.21 (122.167.127.21)

As you can see in the preceding screenshot:

1. The server closed socket packet#5, set tcp.flags.fin == 1, and set tcp.seq ==
2131384057.

2. The client responded with the ACK packet tcp.ack == 2131384058 in packet#7 and
didn’t close its socket, which remains in the CLOSE_WAIT state.

CLOSE_WAIT means there is something wrong with the application code, and in the high-
traffic environment if CLOSE_WAIT keeps increasing, it can make your application process
slow and can crash it.

Lab exercise
The steps to reproduce CLOSE_WAIT are as follows:

1. Open Wireshark, start capturing the packets, and choose display filter
tcp.port==9999.

2. Compile the Java programs Server0302.java and C1ient0302. java using the javac
command:

bash$ ~ javac Server0302.java Client0302.java

3. Run Server0302 using the java command:

bash$ ~ java TCPServeroi

4. Verify the server is listening on port 9999:

bash $ netstat -an | grep 999
tcp46 0 0 *.9999 *.* LISTEN

5. Run the client program:

bash$ ~ java Client0302
6. Check the state of the TCP socket; it will be in the CLOSE_WAIT state:

bash $ netstat -an | grep CLOSE_WAIT
tcp4 0 0 127.0.0.1.56960 127.0.0.1.9999
CLOSE_WAIT

7. Analyze the packet in Wireshark.

How to resolve TCP CLOSE_STATE
The steps are as follows:

1. To remove CLOSE_WAIT, a restart is required for the process.

2. Establishing the FIN packet from both the client and server is required to solve the
CLOSE_WAIT problem. Close the client socket and server socket when done with
processing the record:

socket.close(); a Initiates the FIN flow

3. Open the c1ient0302. java file and close the socket:

Socket socket = new Socket(InetAddress.getByName("localhost"), 9999);
socket.close();

Thread.sleep(Integer.MAX_VALUE);

4. Compile and re-run the Java program. CLOSE_WAIT will not be visible.

TCP TIME_WAIT

The main purpose of the TIME_WAIT state is to close a connection gracefully, when one of
ends sits in LAST_ACK or CLOSING retransmitting FIN and one or more of our ACK are lost.

RFC 1122: “When a connection is closed actively, it MUST linger in TIME-WAIT state for
a time 2xMSL (Maximum Segment Lifetime). However, it MAY accept a new SYN from the
remote TCP to reopen the connection directly from TIME-WAIT state, if...”

We ignore the conditions because we are in the TIME_WAIT state anyway.

TCP latency issues

Until now we have been troubleshooting connection-related issues. In this section, we will
check the latency part. Latency can be on the network, or in application processing on the
part of the client or server.

Cause of latency

Identifying the source of latency also plays an important role in TCP troubleshooting.
Let’s see what the common causes of latency are:

Network slow wire latency can be measured with the ping utility

Too many running processes eat memory. Check the memory management, work
with free, top command to identify CPU and memory use

Application not started with sufficient memory or cannot serve more requests

Bad TCP tuning; verify the /etc/sysctl.cnf file

Network jitter; verify your network and check with the network administrator

Poor coding; benchmark your code by performing a load test over the network
Gateway wrongly set; check the gateway, verify the routing table, and verify the
gateway

Higher hop counts; do a traceroute and check the number of hops (the higher the hop
count, the more latency increases)

Slow NIC interface, the interface goes down; check the NIC card and verify its speed

Identifying latency

Various network utility tools are available to measure the latency between networks—for
example traceroute, tcpping, and ping.

¢ ping: This utility can be used to measure the round trip time (RTT):

bash$ ping -c4 google.com
PING google.com (216.

64 bytes from
64 bytes from
64 bytes from
64 bytes from

216.58.
216.58.
216.58.
216.58.

58.196.110): 56 data bytes

196.110:
196.110:
196.110:
196.110:

icmp_seq=0 ttl=55
icmp_seq=1 ttl=55
icmp_seq=2 ttl=55
icmp_seq=3 ttl=55

--- google.com ping statistics ---
4 packets transmitted, 4 packets received, 0.0% packet loss
= 162.507/204.821/226.034/25.394 ms

round-trip min/avg/max/stddev

time=226.034 ms
time=207.748 ms
time=222.995 ms
time=162.507 ms

e traceroute: This is used to identify the number of HOPS it has taken to reach the
destination—the fewer the hops, the lower the latency

Server latency example

Wireshark can be used effectively to identify whether the network is slow or the
application is slow. Open the slow_download.pcap file in Wireshark, and investigate the
root cause of why the download is slow.

In this example, 5 MB of data is requested from the HTTP server, and it has taken approx.
4.99 minutes to download, as shown:

1. Applied filter
@ 4 m 2 B X /,_ +« FLEE aaan @DME &
LLSE [hip response code—~203 = |[Expression... Clear Save

Source

10.0.8.166

Protocal |Infa

|b Frame 5377: 1118 bytes on wire (8944 bits), 1118 bytes captured (8944 bits)
¢ Ethernet II, Src: 62:el:ed:dc:11:5d (62:el:ed:dc:11:5d), Dst: 02:b4:58:e9:6e:b7 (082:b4:58:29:6e:b7)
v Internet Protocol Version 4, Src: 10.0.9.106 (18.90.90.186), Dst: 122.167.285.152 (122.167.205.152)

b Transmission Contrel Protocol, Src Part: BOG8 (BBGA), Dst Port: 68850 (68858), Seq: 2135925431, Ack: 35380008448, Len:

{ [2584 Reassembled TCP Segments (524369 tes): #19(17), #21(37), #23(37), #25(49), #27(25), #29(46), #31(2), #33(285
= Hypertext Transfer Protocol
= HTTP/1.8 208 OK\r\n

+ [Expert Info (Chat/Sequence): HTTR/1.6 288 OK\r\n] Total 2584 Reassembled segments
Request Version: HTTR/1.8
Status Code: 288
Response Phrase: OK

server: SimpleHTTP/0.6 Python/2.7.6\r\n

Content-type: application/x-ns-proxy-autoconfighrin
= Content-Length: 5242888%r\n

[Content length: 5242888] 2. Getling a 5MB of data has taken approx

Last-Modified: Mon, 13 Jul 26815 16:52:16 GMT\r\n
\r\n / 4.99695 Minutes
[HTTP response 1/11]

I[Time since request: 299.816907668 seconds]
[Request in frame: 17]
b Line-based text data: application/x-ns-proxy-autoconfig

e = = 3

The steps to diagnose this issue are as follows:

1. Go to Edit | Preferences | Protocols | HT'TP and then enable all HTTP reassemble
options.

2. Apply the filter http.response.code==200.

3. Go to HTTP and set the http.time == 299.816907000 to approximately 4.99
minutes.

4. Check the size of the file by navigating to http.content_length_header ==
"5242880"; this is the size of the content.

5. Check how many TCP segments have been sent— tcp.segment.count == 2584—
and ask yourself whether so many are needed and whether the number can be
reduced.

6. Verify window_size for the client and server to check what was advertised by the
client and what got used.

7. Add tcp.window_size_value in the Wireshark column and sort in ascending order.
Note that the entire packet flow from the server (16.0.0.16) to the client
(122.167.205.152) has a window size of 106.

8. Verify the sysctl.conf file in UNIX-flavored systems and check the TCP tuning
parameters such as net.core.rmem_max, net.core.wmem_max, net.ipv4.tcp_rmenm,
and net.ipv4.tcp_wmemnet.ipv4.tcp_mem.

Tip
Make sure tcp.window_size stays large enough to avoid slowing down the sender. The

window size can tell you if a system is too slow when processing incoming data;
tcp_window_size indicates that the system is slow, not the network.

In this scenario, tcp.window_size was reduced in the sysctl.conf file to demonstrate the
slow_download behavior and to give an insight into troubleshooting. After fixing
window_Size, the same download is reduced from 299.816907000 to 2.84 seconds. Open
the fast_download.pcap file as shown in the following screenshot; the download time is
reduced:

JFiter applied

Fil:cr1|h[[p.msponi¢.mde-=2ﬂﬂ I‘I i[:brtstioh.. Clear Save
No. Time Source |D¢stm¢t|an Protocol | Window size value |Info
2625 2 .889869 18.8.8.186 122.167.285. TTP/1.8 280 OK (application/x-ns-proxy-autoconfig
|. [3 : | "

b Frame 2625: 910 bytes on wire (7280 bits), 918 bytes captured (7288 bits)

¢ Ethernet II, Src: 82:el:ed:dc:11:5d (92:el:ed:dc:11:5d), Dst: B2:b4:56:e9:6e:b7 (82:b4:58:e9:6e:b7)
v Internet Protocol Version 4, Src: 16.8.8.186 (18.0.6.186), Dst: 122.167.265.152 [122.167.285.152)
 Transmission Control Protocol, Src Port: 8900 (8800), Dst Port: 61447 (61447), Seq: 1694836807, Ack: 9 , Len: 8
Im.enmed TCP Segments (5243093 bytes): #6(17), #7(2856), #8(2856), #9(1428), #18(2856), #11(2856), #13[2355] |

bmrmmhﬁ ™esser Number of Segments
Server: SimpleHTTP/8.6 Python/2.7 . 6%\r\n
Date: Mon, 13 Jul 2815 17:53:44 GMT\r\n
Content-type: application/x-ns-proxy-autoconfighrin |
}Con‘tent-Length: 3242880\ r\n
Last-Modified: Mon, 13 Jul 2615 16:52:16 GMT\r\n % Getting SME of data has taken approx |
\rin 2.84 Seconds
[HTTP_response 1/11 |
|[Ti.me since request: 2,842783880 seconds) I
[Request in frame: 4]
b Line-based text data: application/x-ns-proxy-autoconfig

Wire latency

In this example, the TCP handshake process will be used to identify wire latency. Open the
slow_client_ack.pcap file as shown in the following screenshot:

ﬂ Time Since reference

Source |be:t|natln|1 IPmtocol [Infn

f!‘{u_ l'l ime

315.798777 [(108.06.8.187 10.8.0.221 594509999 [ACK] Seq=1375387983 Ack=36127784708 Win=27088 Len=8 T
4 15.801537 18.68.8.221 le.8.0.187 TCP 999959459 [PSH, ACK] Seq=36127768478 Ack=1375307983 Win=26888 Le
515.881555 168.8.8.187 16.8.0.221 TCP 59459.9999 [ACK] Seq=13753087983 Ack=3612778507 Win=27888 Len=8 T|

B 27.948963 10.0.8.187

18.8.08.221 594509990 [ACK] Seq=1375387984 Ack=3612778508 Win=27088 Len=8 T|

i“- e — — 3y e
» Frame 1: 74 bytes on wire (592 bits), 74 bytes captured (592 bits)

PEtheme‘t II, Src: 86:29:47:dd:bf:17 (06:e9:47:dd:bT:17), Dst: B6:3c:8T:39:2e;T7 (86:3c:08f:39:2e:T7)

B nternt mtucol Version 4, Src: 16.6.8.187 19.3.3.19?1 Dst: 13.3..22 tla.a.a.zzi

As you can see in the preceding screenshot:

e The first two handshake messages (SYN, SYN-ACK) sent by the client/server over the
wire are exchanged in less time

¢ In the last handshake message, AcK sent by the client has taken
frame.time_relative == 15.798777000 seconds and shows an increase in Time
Since Reference. This is higher than the first two handshake messages, which
confirms a wire latency on this packet

¢ Once the handshake is completed, the operation resumes normally; the Time Since
reference for all packets shows a consistent timing

Wireshark TCP sequence analysis

Wireshark has a built-in filter, tcp.analysys. flags, that will show you packets that have
some kind of expert message from Wireshark; tcp.analysis.flags is shown in the TCP
section of the Packet Details pane. Under that, expand SEQ/ACK analysis then expand
TCP Analysis Flags. This will tell you exactly what triggered tcp.analysis.flags. A
few examples include:

TCP Retransmission
TCP Fast Retransmission
TCP DupACK

TCP ZeroWindow

TCP ZeroWindowProbe

TCP retransmission

TCP makes the transmission of segments reliable via sequence number and
acknowledgement. When TCP transmits a segment containing data, it puts a copy on a
retransmission queue and starts a timer; when the acknowledgment for that data is
received, the segment is deleted from the queue. If the acknowledgment is not received
before the timer runs out, the segment is retransmitted. During TCP retransmission, the
sequence number is not changed until the retransmission timeout happens.

Open the example tcp-retransmission.pcapng in Wireshark and add a Sequence
number column, as shown in the following screenshot:

1. Add Sequence Number to the Column

Filter J Expression..

Time [)u!mahnn Protocol

Se qucncr number In[n

=1 192 'ﬂ'
3 192.168.1.101 128.136.179 ?3'! TCP
| 4182.168.1.101 128.136.179.233 TcP
518.136.170.233 192.168.1.161 TR

6 192,168.1,101
_:zm 1.31

128.136.179.233

T ree wwmw wwmm mwmw v g wmewe a=irer J
h'1|'-d|:|w size valoe: 65535 H H H |
it o SO Wireshark TCP Retransmission

b Checksum: Owf5bd [walidation disabled]

Urgent pointer: @

b (ptions: (24 bytes), Maximun segment size. Wo-Operation (HOP). Mindow scale. Mo-Operation (NOP), Mo-Operation (NOP), Timestamps, SACK permitted, End of Oy

= [SEQ/ACK amalysis]
= [TCP Analysis Flags]

= |Expart Info (Note Sequence): This Trame 15 & (suspected) retransmission] h i i
[This frame is a {suspected) retransmission] 3. \VH‘ESIIIEIFK_ expert-info detected as
[Severity lewel: Mote] retransmission
[Group: Sequence]
[The BTO for this segment was: 2.D07765000 seconds] E

As you can see in the preceding screenshot:

o After sending tcp.seq == 1870089183 a lot of TCP retransmission occurs
¢ A lot of TCP Retransmission can result in operation timeouts

For another example, open the file syn_sent_timeout_SSH.pcapng in Wireshark, and
observe the TCP retransmission flow.

Tip
KeepAlive is not a retransmission.

Lab exercise

The steps to reproduce the TCP retransmission are as follows (this lab is performed in
CentOs6 using the telnet and nc command utilities):

1. Set up two machines: HOST-A (Server) and HOST-B (client).

2. On HOST-A start the server and configure the firewall rule as shown:

[bash ~]# iptables -A OUTPUT -p tcp --dport 8082 -j DROP
[bash ~]# iptables save
[bash ~]# nc -1 8082

3. On the HOST-B machine open Wireshark, start capturing the packets, and choose
display filter tcp.port==8082.

4. On the HOST-B machine run the telnet command; change the IP information to your
actual server location:

[bash ~]telnet 128.136.179.233 8082
5. Verify the TCP state on the HOST-B machine:

bash$ netstat -an | grep 8082
tcp4 0 0 192.168.1.101.64658 128.136.179.233.8082
SYN_SENT

6. In Wireshark, view and analyze the captured packet using the previous step.

In order to solve operation timeouts, verify the ACL configuration; it allows the incoming
packet from the source IP.

TCP ZeroWindow

Open the tcp_zero_window.pcapng file in Wireshark and add tcp.window_size_value to
the column.

The TCP window size represents how much data a device can handle from its peer at one
time before it is passed to the application process.

1. Add Window Size to column

Window size value [Info

Destination | Protocol

30.066791000 192.168.1.101 32230468¢

60.112262000 54.169.134.196 192.168.1.101 108|[TCP Window Update] 8000.5263f

80.167624000 54.169.134.196 152.168.1.181 TCP 100 8000 52638 [ACK].SEq=634335905

= El i
Source Port: 8000 (8000) *

TCP Window Full

Destination Port: 52638 (52638)
[Stream index: @]
[TCP Segment Len: @]
Sequence number: 634335905
Acknowledgment number: 3223846992
Header Length: 32 hytes
- DBPB 0BP1 DOEO = Flags: Ox818 (ACK)
Window size value: © TCP ZeroWindow
[Calculated window size: 8]
[Window size scaling Tactor: 1]
Checksum: Oxc785 [validation disabled]
Urgent pointer: @
Options: (12 bytes), No-Operation (NOP), No-Operation (NOP), Timestamps

B o T —

o

g

As shown in the preceding screenshot:

e Add window_size to the Wireshark column and look for the packet where
tcp.window_size=0.

e TCP headers with a window size of zero indicate that the receiver’s buffers are full.
This condition arrives more rapidly for writes than reads; in this condition
tcp.window_size_value is set to 0 and tcp.window_size ==

e The segment is exactly 1 byte.

Tip

SYN/RST/FIN flags are never set on TCP ZeroWindow.
SYN/RST/FIN flags are never set on TCP Window Full.
Troubleshoot the ZeroWindow condition:

e Check the application has sufficient memory to start with
e Tune the TCP parameters to obtain a larger window size; check the sysctl.conf file

with these parameters:

© net.core.rmem_max

© net.core.wmem_max
© net.ipv4.tcp_rmem
© net.ipv4.tcp_wmem

e Check the receiver is not running too many processes

TCP Window Update

Wireshark marks a packet as Window Update when the window size has changed. A
Window Update is an AcCK packet, and only expands the window; this is normal TCP
behavior.

Open the tcp_window_update.pcap file in Wireshark and observe that a TCP Window
Update event is set, as shown:

i‘ulterl = | Expression... Clear Apply Save

Mo. Time Source Destination Frotocol |Length | Info

30.000106 127.0.0.1 127.6.0.1 CP 56 54106.9999 [ACK] Seq=4271183518 Ack=208317015 Win=di 1=8 Tsval=4717
40,000118 127.0.0.1 127.0.0.1 TCP
60.000584 127.0.0.1 127.0.0.1
9 0.001047 127.8.8.1 127.8.8.1
B UDUKI:I 0001 0000 = :tags: ax010 (AC$) 7
repeyi o s B TCP Window Update Packet

[Window size scaling factor: 32)

¥ Checksum: Oxfe28 [validation disabled]
Urgent pointer: 0

b+ Options: (12 bytes), No.Operation (NOP),

- i

No-Operation (NOP)}, Timestamps

[iRTT: 0.000106000 seconds]

v.lExpe;t'fnfﬁ [Chﬁf?SEquencel: TCP window update]
|TCP window update]
[Severity level: Chat]

lGroup: Sequence]

opee
0a1e
ae20
aa30

Note

A Window Update is a 0-byte segment with the same SEQ/ACK numbers as the previously
seen segment and with a new window value.

TCP Dup-ACK

Duplicate ACKs are sent when there is fast retransmission. In this scenario the same
segment will be seen often. Open duplicate_ack.pcapng and apply the
tcp.analysis.duplicate_ack filter, as shown:

Filter to list all duplicate_ack packet
Filter |t|:p.ana.h-sls.duplll:at!_ad|. dhpmsslnn... Clear Save
i

I Z = 1
Nao. TImE SOUTCE Destination Protocol | Window size walue | Info

Frame# 2404

1 = - | |

[Window size scaling factor: 32]
* Checksum: Oxe72a [validation disabled]
Urgent pointer: @
P O0ptions. (12 bytes) No-Operation (HOP) . Ho-Operatiop (NOP), Timestamps
= [SEQ/ACK analysis]
[This is an ACK to the segment in frame: 2403]
[The RTT to ACK the segment was: 0,000071000 seconds]
[iRTT: 0.066791000 seconds]
= [TCP Analysis Flags]
[This is a TCP duplicate ack]
Duplicate ACK #: 1]
Duplicate to the ACK in frame: 2482] Duplicate Detection Wireshark SEQ/ACK
= [Expert Info (MNote/Sequence): Duplicate ACK (#1)] P_ﬁnahl'ﬁlﬁ
— T TR T T
[Severity level: Note]
[Group: Sequence]

As you can see in the previous screenshot:

e Duplicate ACKs occur when the Window/SEQ/ACK is the same as the previous
segment and if the segment length is 0

e Duplicate ACKs can occur when there is a packet loss, in which case a
retransmission can be seen

References

The following references will be useful while working with TCP/IP not limited:

RFC675 TCP/IP first specification: https://tools.ietf.org/html/RFC675
RFC793 TCP v4: https://tools.ietf.org/html/RFC793

TCP Wiki: https://en.wikipedia.org/wiki/Transmission_Control_Protocol
The TCP/IP guide at: http://www.tcpipguide.com/
Ask Wireshark for all Wireshark-related queries at: https://ask.wireshark.org/

Display filter references for TCP at: https://www.wireshark.org/docs/dfref/t/tcp.html
TCP analyze sequence numbers at:
https://wiki.wireshark.org/TCP_Analyze_Sequence_Numbers

e Helpful clips at: https://goo.gl/VaEc9

https://tools.ietf.org/html/RFC675
https://tools.ietf.org/html/RFC793
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://www.tcpipguide.com/
https://ask.wireshark.org/
https://www.wireshark.org/docs/dfref/t/tcp.html
https://wiki.wireshark.org/TCP_Analyze_Sequence_Numbers
https://goo.gl/lVaEc9

Summary

In this chapter you have learnt how the TCP opens and closes its connection, and how
TCP states are maintained during this period. This chapter also covered error patterns seen
on networks and how to troubleshoot those scenarios.

In the next chapter we will implement deep-packet inspections of the SSL protocol.

Chapter 4. Analyzing SSL/TLS

In this chapter we will learn what SSL/TLS is used for, how the entire handshake process
happens, and about the common areas where the SSL/TLS handshake fails, by covering
the following topics:

An introduction to SSL/TLS

The SSL/TLS Handshake Protocol with Wireshark
SSL/TLS—decrypting communication with Wireshark
SSL/TLS—debugging handshake issues

An introduction to SSL/TLS

Transport Layer Security (TLS) is the new name for Secure Socket Layer (SSL). It
provides a secure transport connection between applications with the following benefits:

e SSL/TLS works on Layer 7 (the Application Layer) on behalf of the higher-level
protocols

e SSL/TLS provides confidentiality and integrity by encrypting communications

e SSL/TLS allows client-side validation (optional) for closed use cases

SSL/TLS versions

Knowing the versions is extremely important while debugging handshake issues, as most
handshake failures happen in this process.

Netscape developed the original SSL versions and other versions; their RFC numbers are
shown in the following table:

Protocol||Year||RFC Deprecated
SSL 1.0 ||N/A [IN/A N/A

SSL 2.0 [|1995||NA 'Y RFC 6176
SSL 3.0 [|1996}|RFC 6101|fY RFC 7568

TLS 1.0 ||1999||RFC 2246||N |

The SSL/TLS component

SSL/TLS is split into four major components, as shown in the following screenshot, and
this chapter will cover all components in detail, one by one:

SSL/TLS Architecture
| Change Cipher i Application
—— Spec protocol ||| HTTPSILDAPS,
i Protocol ! S5L
| S5LMLS] :
! Components | :

S5L Record Layer Protocol

roaleende ey
i

Transmission Control Protocol (TCR)

Internet Protocol (IP)

The SSL/TLS handshake

The TLS Handshake Protocol is responsible for the authentication and key exchange
necessary to establish or resume a secure session. Handshake Protocol manages the
following:

e Client and server will agree on cipher suite negotiation, random value exchange, and
session creation/resumption

¢ Client and server will arrive at the pre-master secret

e Client and server will exchange their certificate to verify themselves with the client
(optional)

¢ Generating the master secret from the pre-master secret and exchanging it

Types of handshake message

There are ten types of message, as shown in the following table, and their corresponding
Wireshark filters. This is a one-byte field in the Handshake Protocol:

|Type Protocol Message |Wireshark content type |Wireshark filter |
M Hello request | ssl.handshake.type == 0
ZI Client Hello | ssl.handshake.type == 1
ZI Server Hello | ssl.handshake.type == 2
ZI Certificate | ssl.handshake.type == 11
zl ServerKeyExchange ssl.handshake.type == 12

Handshake ssl.record.content_type == 22
EI CertificateRequest ssl.handshake.type == 13
EI ServerHelloDone | ssl.handshake.type == 14
EI Certificate Verify | ssl.handshake.type == 15
EI Client Key Exchange ssl.handshake.type == 16
;I Finished | ssl.handshake.type == 20

ChangeCipherSpec ssl.record.content_type == 20

|Application Data ssl.record.content_type == 23

Alert Protocol | ssl.record.content_type == 21

The TLS Handshake Protocol involves the following steps in four phases; the prerequisite
is that a TCP connection should be established:

SSL/TLS Handshake Protocol Sequence

Mandamry_} i
: | I 1 Legend |
Client Server == === enigng|e - -}

TCP Three Way Handshake Procedure is 10 be completed before

€———TCP Handshake Completed™—> starting the SSL Handshake protocol
Client Hello >
PHASE-1 Session ID negotiation,Key Exchange Algorithm, MAC
o——Server Helo——— Algorithm and exchnage of secure Random Number
- Cerificate

« - - = = Server Key Exchange = = = = = PHASE-2 Server Sends its certificate, sends its Server key

% = = = {Client Certificate Request = = = = | BXchange message if required, optionally it will ask client to verify

its Certificate
4 - = = = =Server Hello Dong= = = = = =

e it PHASE-3 Client sends its certificate if requested by the server

= = = = = = Cliant Key Exchange’ = = = = =J» along with KeyExchange and certificate verify message
= = = = = =Cliernt Cerlificate Verify= = = = >

=———Change Cipher Spec_}

Finished - PHASE-4 Change of Cipher Spec Message from client and
< Change Cipher Speo Server and Handshake finished
< Finished

Open the file two-way-handshake.pcap, which is an example demonstrating a SSL mutual
authentication procedure:

4 SSL filter SSL, protocol Version SSL Handshake Message
F|llu“55| d&presslon![kar Sawve /

No. lTrme | Source | Destination Protocol Info
62.139709 10.0.0.1086 10.6.9.31 TLSv1.2 Server Hello, Certificate
72.139721 10.0.0.106 10.0.0.31 TLSw1.2 Server Key Exchange
18 2.142678 18.68.8.31 18.6.0.106 TLSw1.2 Certificate, Client Key Exchange, Certificate Verify, Change Cipher Spec, Encrypted Har
11 2.143987 16.0.0. 166 10.6.8.31 TLSw1.2 Change Cipher Spec, Encrypted Handshake Message
12 2.145766 10.8.0.31 10.0.0.106 TLSvl.2 Application Data :l,. SSL encrypted data
13 2.146385 10.0.0.106 10.0.0.31 TLSv1.2 Application Data
14 2.148431 10.6.0.31 10.6.0.106 TLSv1.2 Encrypted Alert«g=— Alert Protocol
Client 1P 10.0.0.31
Server IP 10.0.0.108 SSL Mutual Authentication Example

Client Hello

The TLS handshake starts with the Client Hello message (ss1.handshake.type == 1), as
shown in the following screenshot:

Fiilﬂ.lss! j&plessinn... Clear ply Save

Time

Destination Protocol

41,136636 1 18.0.0, 186 TLSwl.2 Client Hella
b, Qa9 .0.6. 106 a.68.48, TLSwl. 2 Server Hallo, Certificate
72.139721 10.0.0. 106 18.0.8.31 TLSvl.2 Server Key Exchange
“E
b Frame & 330 bytes on wire (2712 bits), 330 bytes captured (2712 bits) “""'Goo0 B2 el ed dc 11 50 02 fa cd Oc Gc If OB 00 45 OO

Ethernet 11, Src: 82:fa:c8:0c:@c:7f (02:fa:c89:9c:Bc:7f), Dst: H2:el:ed:dc:11:5d G910 ©1 45 03 36 40 00 40 06 21 15 Ga 00 00 1f Oa 00

i = G020 @0 6a ce 38 01 bb 24 44 ed ed aT 7c Ga df BO 18
» Internet Protocol Version 4, Src: 16.0.0.31 (10.0.0.31), Dst: 10.9.0.106 (10.0.
» Transaission Control Protocol, Src Port: 52792 (52702), Dst Port: 443 (443), Se o3y oo 94 -y o020 01 01 08 Da €0 02 fQ e9 13 33

= Secure Sockets Layer BASE
- & B6E0
Content Type: Handshake (22) @a7a
Version: TLS 1.0 (0x@301) G080
Length: 768 g%g

= Handshake Protocol: Client Hello : a0ba

3 nt H <—client hello Message B0cE

Length: 264 Goaa

[Version: TLS 1.2 {0x0303) J*iJse TLS1.2 for SSL communication B0

= Random eofo

GMT Unix Time: Jan 8, 2058 18:25:22.000000000 IST e

Random Bytes: 37342037956a0420951862d59a507 55delal§323b23-:hfﬁﬂ. s :Bll'ﬂ

session ID Length: O *=(indicates no session available a13a

r Suites Length: _ . 014@

b ugher Sultes l:ﬂggsultes:- supports total 53 Cipher Suites 8158

Compression Methods Length: 1
¢ Compression Methods (1 method)

Extensions Length: 105 CI' t H Il M
b Extension: ec_point_formats Ien e 0 essage
b Extension: elliptic_curves .
b Extension: signature algorithms -‘—-— request extended functional from server
b Extension: Heartbeat

Handshake records are identified as hex byte 0x16=22. The structure of the Client Hello
message is as follows:

e Message: The Client Hello message 0x01.
e Version: The hex byte 6x0303 means it’s TLS 1.2; note 6x300 =SSL3.0.
e Random:

o gmt_unix_time: The current time and date in standard UNIX 32-bit format
o Random bytes: 28 bytes generated by the secure random number

e Session ID: The hex byte 0x00 shows the session ID as empty; this means no session
is available and generates new security parameters.

e Cipher suites: The client will provide a list of supported cipher suites to the server;
the first cipher suite in the list is the client-preferred (the strongest) one. The server
will pick the cipher suites based on its preferences, the only condition being that the
server must have client-offered cipher suites otherwise the server will raise an
alert/fatal message and close the connection:

Cipher Suites Length: 118 i i i 4 BOUD ©2 el ed dc 11 5d B2 Ta cY Yc Bc /T OB U8 45 BO
a : & client Support 59 Cipher Suites = ;070 o] %5 63 3¢ 40 00 40 66 21 5 Oa 00 00 1f 0a 00

=

0020 ©D Ga ce 38 01 bb 24 44 ed eB a7 7c 6a df B0 18

[Cipher Suite: TLS ECDHE RSA WITH AES 256 GCM SHA384 (0xc03@) | 3030 66 d3 13 3 80 68 61 61 O & 80 63 6 & 13 33
Cipher Suite: TLS_ECDHE_ECDSA_WITH_AES_256 GCM_SHAIBA (OxcB2c) 0040 58 74
5 Cipher Suite: TLS_ECOHE RSA WITH_AES_256_CBC_SHA384 (0xc028) 050
|Strongesicipher Suite: TLS_ECDHE_ECDSA_WITH_AES_256_CEC_SHA3B4 (Bxc024) 0060
|Cipher Cipher Suite: TLS_ECDHE RSA WITH AES 256 CBC SHA (0xco14) | 0070
|Suite at Cipher Suite: TLS_ECOHE ECDSA WITH AES_256_CEC_SHA (0xcG0a) e
Top Cipher Suite: TLS_DHE_DSS_WITH AES_256_GCM_SHA3I84 (0x00a3) 0620
| Cipher Suite: TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 (0x009f) 00bO
Cipher Suite: TLS_DHE RSA WITH AES 256 CBC_SHA256 (0x006b) 00O

Cipher Suite: TLS DHE DSS WITH AES 256 CBC SHA256 (Gx006a) 00de
Cipher Suite: TLS DHE RSA WITH AES 256 CBC SHA (0x0039) 06ed
Cipher Suite: TLS_DHE_DSS_WITH_AES_256_CBC_SHA (OxB038) .E?ES
Cipher Suite: TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA (Dx0088) Bio110
Cipher Suite: TLS DHE_DSS_WITH CAMELLIA 256 CBC SHA (0x0087) 0120
Cipher Suite: TLS_ECDH RSA WITH_AES_256_GCM_SHA3B4 (OxcB32) 0130
Cipher Suite: TLS_ECDH_ECDSA WITH_AES 256_GCM SHA384 (OxcO2e) 0140
Cipher Suite: TLS ECDH RSA WITH AES 256 CBC SHA384 (Oxc02a) 9150 @90 01 0

e Compression methods: The client will list the compression methods it supports.
o Extensions: The client makes use of the extension to request extended functionality
from the server; in this case the client has requested four extensions, as shown in the

following table:
Value||[Extension name Reference
0 elliptic_curve ||RFC4492 |
T\Iecpointformats ||RFC4492 |
3‘\ signature_algorithms|IRFC 5246|
5 heartbeat ||RFC 6520|
Note

For a complete list of TLS extensions, visit: http://www.iana.org/assignments/tls-
extensiontype-values/tls-extensiontype-values.xhtml.

Server Hello

The server will send the Server Hello message (ss1.handshake.type == 2) in response to
the Client Hello, as shown in the following screenshot. The message structure of the
Client Hello and Server Hello message is the same, with one difference—the server can
select only one cipher suite:

http://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xhtml

Ellter |5sl jExp:essmn... Clear Save
No. | Time Source Destination | Protocol Info
4 2,136636 10.9.8.31 10.0.0.106 TLSvl.2 Hellg Multiple handshake message

TLSvl.2

72.139721 10.0.0.106 10.0.0.31

Yersion: TLS 1.2 {0x08303)

Random Bytes: BhOcd7dBbad463dch]c8992a53a596]1ecclaecal fBB76d4c.
Session ID Length: 32
Session I0: 52392797ed9d80aabc3293TeclOcB40f6d051FO41dEBITI. . .
Cipher Suite: TLS ECDHE _RSA WITH AES 256 GCW 5HA3B4 (0xco3d)
Compression Methed: null (@)
Extensions Length: 18
b Extension: renegotiation info
b Extension: ec_point_formats
i Extension: Heartbeat
b TLSv1.2 Record Layer: Handshake Protocol: Certificate

aeda

Length: 94 :
o : ¢ |
IHandEhakE Type: Server Hello (2} I Server Hello 1 i ! 1 I
Length: 90 EJIIG
Version: TLS 1.2 (Dx0303) @120
= Random 8130
GMT Unix Time: Jan 16, 2049 05:51:24.000000060 15T §g§g :

0160
.,..__:]2 byte Session:id cremed

B]Bﬂ

"‘ CiphenSuites choose by [hE server
01b8 d ! lc 74

01ch
ElldCI

support of Heartbeats is lndlcaied with Hello Extensmns

8200
8218

TLSvl.2 erver key Exchange
a -
b Frame 6: 2062 bytes on wire (23606 bits), 2062 bytes captured (23606 bits) 0640 fO =9
» Ethernet I1, Src: 02:el:ed:dc:11:5d (82:el:ed:dc:11:5d), Dst: 02:fa:c9:9c:Be:7f 0050 |
b Internet Protocol Version 4, Src: 10.0.0.106 (10.0.8.166), Dst: 10.0.0.31 (10.0 ﬂﬂ!;'ﬂ |
» Transmission Control Protocol, Src Port: 443 (443), Dst Port: 52792 (52792), Se oo ,
= Secure Sockets Layer 0e08 |
- 20a0 |
Content Type: Handshake (22) Bebe |
B6ch

Handshake records are identified as hex byte 0x16=22. The structure of the Server Hello
message is:

e Handshake Type: The hex byte 0x02=2 shows the Server Hello message
e Version: The hex byte 0x0303 shows TLS 1.2 has been accepted by the server

Server/client{|SSLv2||SSLv3||SSLv23[|TLSv1{|TLSv1.1 |TLSV1 2
ISSLVZ N ||Y ||N ||N ||N

A (O O
Al (O O O
U (O O O O O
U (O O
G (N O O O O

The following table shows which SSL version of the client can connect to which SSL
version of the server:

e Session ID: A 32-byte session ID is created for reconnection purposes without a
handshake

e Cipher suite: The server has picked Cipher Suite:
TLS_ECDHE_RSA WITH_AES_256_GCM_SHA384 (0xc030), which means use Elliptic
curve Diffie-Hellman (ECDHE) key exchange, RSA for authentication, Block
cipher Galois/Counter Mode (GCM), AES-256 for encryption, and SHA-384 for

digests
o Extensions: A response with extension info is requested in the Client Hello message

Server certificate

After the Server Hello message is sent, the server should send a X.509 server certificate
(ssl.handshake.type == 11). The certificate configured on the server are signed by the
CA or intermediate CA, or can be self-signed based on your deployment:

:Flilfl .|—55I j Expression... Clear I Save |

MNo. |T|me ISDurl:\c |Destinat|un IPmtncuI |Info |
| 4 2. 136636 10.0.8.31 10.6.0,108 TL5w1. 2 Client Hello

10.0.0.106 10.8.0.31 = | Server Hella, Certificate
72,139721 10.0.0.186 10.6.8,31 TLSv1, 2 Server Key Exchangs
18 2.142678 18.8.8.31 10.8.08.166 TLSw1. 2 Certificate, Client Key Exchange, Certificate Verify, Change Cipher Spec, Enl:rynl:e-d|
11 2.143987 18.0.0. 106 10.8.8.31 TLEW1. 2 Change Cipher Spec, Encrypted Handshake Message
17 2.145766 16.68.6.31 16.8.0, 166 TLSvl, 2 Application Data
13 2. 146385 10.0.0.186 10.9.0.31 TLSv1. 2 Application Data
|« -ﬂ
| = TLSv1.2? Record Layer: Handshake Protocol: Certificate - p136 30 21 06 09 2a B6 48 86 f7 0d 01 69 01 16 14 7a o, . % H. . ek |
Content Type: Handshake (22) Bl40 61 72 69 67 61 T4 6Ff Ge 67 40 67 64 61 69 6c 2¢ arigaton gigmail
Version: TLS 1.2 (00383] B150 63 6 60 30 le 17 @4 31 35 30 37 32 38 31 34 34 comd...1 50728144
s BI60 33 34 35 5 17 Od 31 36 30 37 32 37 31 34 34 33 3457.,16 07271443
[vamk:fmmmL T . | BI79 34 35 Sa 30 81 83 31 G5 30 09 06 03 55 04 86 13 4520..1. 0...U..
nezs il Y et i e o o 2 6T AULB.. U;...50
enTeheRe Tyier TerefIate T server certificatelinformations: .. i
Length: 2661 Bla0 ©a DC 18 40 6e 74 65 72 be 65 74 20 57 69 64 67 ...Inter met Widg
S L 01co 03 55 04 03 O 08 60 70 24 3130 24 30 24 30 243p 10°0.6
- c c M....1p -18-8-8-
c*fft‘:““i ‘iﬁﬁat:'_"tﬁ;l 8148 31 30 36 31 24 30 22 66 0D Ja 86 48 B6 7 8d 61 196148°, *H. ..
AL LA e Blefl ©9 01 16 15 7a 61 72 69 67 61 74 6f 6e 67 79 48zari gatongy@
= Certificate (pkcs-9-at-emallAddress=zarigatongyegmail.com, 1d-8l|i(g1fg 67 6d &1 65 6c Je 63 6f 6d 30 62 61 22 30 6d 06 gmail.co nd.."8.
= signedlertif Lcate 0200 ©9 2a 66 4B BG 70401 0101050003 B2 01 0F .*H....
serialNumber: 1 16216 ©0 30 82 01 Oa 62 B2 OL 01 00 df 2a ed 4d 1582 .8...... ... *M..
b signature (shaZ2S6WithASAEncryption) gg;g ;gl ﬁ E: 37" ;1; "; g: :E ‘]?‘g 2[!12 H Eg 3;]g c]]; iq l%.ﬂfﬁgﬂ B 85
5 e e (8] i I] & <9 al 1 m.f.d. 5......
Apwiees i apmnce AR) certficate detailsilll aii0 = da 46 62 o5 ba 31 04 b 34 11 0 a6 08 @2 a3 . .Fe. 1. ALl
b validity : B250 53 OF fe B6 36 B OF Sc SO ea 7O 90 a6 cd BB 74 5., .6..\ P.y....t
b subject: rdnSequence () 0260 d4 B3 B5 ad 22 5c 17 54 Bf 52 ed ae 8e 84 fl el "\.T A.....
& subjectPublicKeyInfo 8278 ©f la df bB 6F &c 17 9f Ob OF 43 58 10 10 aa 25ol.. ..IX...%
= algorithaldentifier [shalSEWithRSAEncryption] 0280 60 Ba T4 d4 32 96 d9 ¢4 Sa 0007 3bB5SBF F2 D3 m.t.2... Z..;...
Algorithm Id: 1.2.840,113540.1.1.11 (sha?S6WithASAEncrypti| (0200 ©0 52 4c dd 72 37 B4 D4 ea 71 55 4b cb cb 05 7c RL.r7.. .qUK...|
Padding: 8 thCS B7a0 65 de 14 50 2c 74 3a 74 6Ha be 5a A6 90 bc &5 58 e..PE:k j.2 P
" B2bf 21 Ba bb aB 2c ea o7 99 ff B1 62 Bb 10 74 5488 '...,... ..b..tT.
r E:‘P’PL‘:" L‘“"t’:“?gl‘; A e ORI) [fe2cs cc 11 S 18 ba TS 1357 BL L AF 7E I TE 306 ..ovoiMiciiiss
ertificate Length: B2d0 35 BF 05 46 631 }d c6 f6 46 6f 2f B5 B4 9b a3 f2 5..Fc-.. Fo/....
= Certificate (pkcs-9-at-emailAddress=zarigatong@gmail.com, id-at ; @2e0 20 67 0B 7 b0 12 a8 2b 3b da Bb 47 el 82 f6 bS Boaevo® 5sikass
[Py = 3 ol B2 ef 6a cB B 6a 67 b6 10 98 20 ca d2 de Sd O ef 5. 4g..].

If a SSL/TLS server is configured with the certificate chain then the entire chain will be
presented to the client along with the server certificate. The client (a browser or any other
SSL/TLS client) can then check the highest certificate in the chain with stored CA
certificates; typically, modern Web browsers have the root CA installed from the trusted
CA provider.

The given certificate is signed with the relevant signature (sha256withRSAEncryption); in
this case, the hash value itself is concatenated into the OID (Algorithm Id:
1.2.840.113549.1.1.11) representing the signing algorithm. The certificate follows the
DER encoding format and when encrypted becomes PKCS#7, the Cryptographic Message
Syntax Standard (refer to RFC 2315).

Server Key Exchange

From RFC #5246, the server sends the Server Key Exchange message
(ssl.handshake.type == 12) only when the Server Certificate message (if sent) does not
contain enough data to allow the client to exchange a premaster secret:

Server Key Exchange ssl.handshake.type == 12

[Filter [ssl = | Expression... Clear 101y saveCertificate Request ssl.handshake.type == 13
ENu |T|m! |Suurce |I:bs't|na:u:|n |Frntnm| |Infu Server Hello Done ssl.handshake type == 14
| 43, 135635 10.6.0.31 14, G 8.106 TLSvl.2 Client HEUD

I Q 0
TSV 2 server m E:unngn

xchange. Certificate Verifv. Chamnge Cioher Spec

E —

|r TTENFRASILVE LUILIVL FIVAULU L, Ik FUlL, 955 [9%3), USL Pl L. JEITE (JErsL); I‘-Gﬂﬁﬂl B7 fa 0 Oc 6c 7f 02 el ed dc 11 5d 68 Bo 45 6B

It [? Reassembled TCP Segments (33B bytes): #6(127), #7(211)] 8010 61 cl1 37 ac 40 G0 40 66 {2 AO Ga OO 08 Ga Ga BB
!7 Ls Laver 6020 00 1f 01 bb ce 38 a7 7c 76 2f 24 44 ee f9 BO 18
= TLSv1.2 Record Layer: Handshake Protocol: Server Key Exchange 0038 00 eb 16 3c 0O 08 01 01 08 8a 13 33 5a Ba B0 62

| Content Type: Handshake (22) " 0E42 TO oD 02 94 1d ba 47 B1 cb 30 30 9b 21 d6 G4 20
Version: TLS 1.2 (Bx@303 0a58 21 1B 3¢ 63 70 67 B] 38 00 ef al 41 cf ed ce df

| L:;:i:': 333 e : DOGE o3 DO 44 cf 48 f5 B3 1c f4 46 fe 9a 79 80 d9 39

0378 fa 34 3 Ga 02 Bc 97 29 e2 43 70 Tc d4 2f B4 d3

= Handshake Protocol: Server Key Exchange 0a88 ef 37 el 98 f2 d1 73 5d a4 Qe fe 5 54 c4 Jd Ta

[Handshake Type: Server Key Exchange (12} @098 f6 67 d6 96 BO 74 1f 79 23 99 46 Ba 42 92 16 fd
Length: 329 -ECDH 0028 a5 5b 36 aB 75 68 39 ¢2 2c bl d7 7d 41 2d 44 eb

| fig- 5 BabE ?BBlﬂﬂbﬁﬂﬂ]d&BS'ﬂ 3d ab 62 db& 20 94 31 4e
BOcE 55 Ic e 30092 S5c 79 9¢ F6 70 bd c2 98 Te

= TLSvl.2 Record Layer: Handshake Pratoml:l Multiple Handshake Messages | Bﬂeg Send M&HE"Ple ha"dShﬂgCg‘TtFESBQE g.';
Content Type: Handshake (1) 0018 ea ia 64 ee 06 4b fa ba 70 86 cb 85 84 be 01 d8

Version: TLS 1.2 (Bx@363) {0108 bf 57 B8 Bd 9d 30 le 70 b7 9e O 33 b2 O 50 90

| Length: 181 1811& f3 a7 47 3b 6d
| | = Handshake Protocol: Certificate Request 0128
Handshake Type: Certificate Request (13) e13e
| EROgEh: 82 Server Requesting client e
||+ cortiticate types (3 typesy LRy 22 £
Signature Hash Algorithms Length: 30 certificate, Mutual AUTH g}sg
| b Signature Hash Algorithms (15 algorithms) |SSl.handshake.type ==13 (|| o190
Distinguished MNames Length: 135 01af
| b Distinguished Names (135 bytes) o
= Handshake Protocol: Server Hello Done
[Handshake Type: Server Hello Done [14:*_ Server Hello Done |

Length: 0O w

As you can see in the preceding screenshot:

e Cipher suites contains key exchange algorithms

e The Server Key Exchange message will be sent for the following key exchange
methods: DHE_DSS, DHE_RSA, DH_anon

¢ In line with RFC#5246, the use of Server Key Exchange is not legal for these key
exchange methods: RSA, DH_DSS, DH_RSA

Client certificate request

The server can optionally ask client to verify its certificate. To support mutual
authentication, the server will send the certificate request message (ssl.handshake. type
== 13) to the client and the client must provide its certificate information to the server. If
the client fails to provide it, an Alert protocol will be generated and the connection will
terminate.

Server Hello Done

The Server Hello Done message means that the server is done sending messages to
support the key exchange, and the client can proceed with its phase of the key exchange:

+- Secure Sockets Layer
- TLSv1l.2 Record Layer: Handshake Protocol: Server Hello Done
Content Type: Handshake (22)
Version: TLS 1.2 (0x0303)
Length: 4
< Handshake Protocol: Server Hello Done
Handshake Type: Server Hello Done (14)
Length: 0

Server Hello Done

Client certificate

The client will send its certificate (ss1.handshake.type == 11) only in a mutual
authentication condition. The server will verify the certificate in its CA chain. If the server
fails to verify client_certificate, the server will raise an alert fatal protocol and
communication will stop:

éFIlltl. [s;l j Expression... Clear Apply Save

|No. | Time | Source | Destination IleucoI Info

| 4 2.136636 10.0.0.31 10.0.0.106 TLSv1.2 Client Hello The Sequence of messages RFC 2246
6 2.1397649 16.6.6.166 16.8.08.31 TLSvl.2 Server Hello, Certificate J
?‘ 2 139?21 10.0.0. 106 10.8. GI 3l TLSvl.2 Server Key E:m:henl:le

g.0.4.
12 2 1-15?5'5 1"&.0.1] 31 16.0.0.1686 TLSV].E' Application Data
13 2.146385 10.0.0.106 10.0.0.31 TLSvl.2 Application Data
| 14 2 148431 10.0.98.31 10.0.0.106 TL5v1.2 Encrypted Alert

Client Certificate/Certificate Verify

:-Q.
a Frame 10: 1327 bytes on wire {10616 bits), 1327 bytes captured (10616 bits) 0390
|b Ethernet II, Src: 02:fa:c9:9c:0c:7f (02:fa:c9:9c:0c:7f), Dst: 82:el:ed:dc:11:5 03a0
|» Internet Protocol Version 4, Src: 10.0.0.31 (10.0.0.31), Dst: 10.0.0.106 (10.0. 03b6

b Transmission Control Protocol, Src Part: 52792 (52792), Dst Port: 443 (443), S g3%0 1. |

k Secure Sockets Layer 03ed
! [E ﬂ E Remm !ﬁxer. Egndshalm Protocol: Cerfificate | B3fe 40 F
P TLSv1.2 Record Layer: Handshake Protocol: Client Key Exchange Q400
& 1 0410 o
b TLSv1.2 Record Layer: Change Cipher Spec Protocol: Change Cipher Spec gigg
| I TLSv1.2 Record Layer: Handshake Protocol: Encrypted Handshake Message 0440
1 _nasn
L3
Client Key Exchange

In the case of the normal handshake process (one way auth), the Client Key Exchange
message is the first message sent by the client after it receives the Server Hello Done
message.

This Client Key Exchange message (ss1.handshake.type == 16) will always be sent by
the client. When this message is seen, pre_master_secret is set, either by transmission of
the RSA-encrypted secret or by the Diffie-Hellman parameters, depending on the key
exchange method chosen. The server uses its private key to decrypt premaster_secret:

Filter: |55l = | Expression... Clear Apply Save

Na , Time | Source Des timat bon |Pmtnr.u| | Info
' 47 136636 16.8.6.31 10.6.0. 106 LT Client Hello

6 7.139788 10.0.8. 186 10.0.8.31 TLS¥1.2 Server Hello, Certificate

73 139721 l 10.0 TLS Seryvar Key Exchange
10 2. 142678 10.06.0.31 10.0.0, 186 TL5%1.2 Certificate, Client Key Exchange, Certificate Werify, Change Cipher Spec, Encrypbed Har
11 &. 143947 10.0.0., 106 00,31 TiSvl. 2 Change Cipher Spec, Encrypted Handshake Message
12 2. 145766 18.0.0.21 10.0.0.106 TLSw1.2 Application Data
13 7. 146385 0.0.0.106 10.0.0.31 TLSwl.2 Application Data
14 7.148411 0.0.0.31 10.0.0. 106 TLSw1.2 Encrypted Alert
e Client.Key-Exchange

* Frame 10: 1327 bytes on wire (10616 bits), 1337 bybtes coptured (10616 bits) 0190
b Etharnet 11, Src: 02:fa:e9:9c:0c:7f (02:fa:c9:9c:0c:71), Dst: D2:el:ed:dc:1l:% E-"ff
» Intarnet Protocol Version 4, Src: 10.0.0.31 (10.06.0,.31), Dst: 160.0.0.106 {10.0 a3b0

¢ Transmission Control Protocol, Src Port: 52792 (52792), Dst Port: 443 (443), S5+ ll..,llr,;.
~+ Secure Sockets Layer oled
® TLSv1.2 Record Layer: Handshake Protocol: Certificate airn
- TL5v1.7 Record Layer: Handshake Protocol: Client Key Exchange 0400
Content Type: Handshake (22} pre-master-secret set bl’f :-3”:‘[!_5
Version: TLS 1.2 (OwE303) SINE
LG:t: s s exchange of ECOH param no
+ Handshake Protocol: Client Key Exchange 450
Handshake Type: Client Key Exchange [16]) 0460
Length: 66 ; 0470 I

= EC Diffie-Hellman Client Params sending public_key to péiverto'armve‘at-pre-master secret!
Pubkey Length: 65 { UEQE
Pubkey: B44564b056417alBelalBd0becE! 7Td8bboba62d 12071 dd4d04] EI;E
» TLSwl.2? Record Layer: Handshake Protocol: Certificate Verify Bach
b TLSvl.? Record Layer: Change Cipher Spec Protocol: Change Cipher Spec 04da
> TLSv1.2 Record Layer: Handshake Protocol: Encrypted Handshake Massage ﬂée_'ﬂ

Client Certificate Verify

The Client Certificate Verify message will be sent after the Client Key Exchange message
(ssl.handshake.type == 16) using master_secret generated by pre_master_secret.

Change Cipher Spec

The Change Cipher Spec record type (ssl.record.content_type == 20) is different
from the handshake record type (ssl.record.content_type == 22)and it’s a part of the
Change Cipher Spec protocol. The Change Cipher Spec message is sent by both the client
and server only when key_exchange is completed and it indicates to the receiving party
that subsequent records will be protected under the newly negotiated Change Cipher Spec
and keys (master_secret):

Filter: | jnplessmn... ear Apply

Time |source | Destination | Pratacol Info
710.0.8.106 16.6.8.31 TLSv1.2 Continuation Data
818.0.8.31 16.6.8.1086 TCP 52792443 [ACK] Seq=6G08407481 Ack=2809956343 Win=29824 Len-ﬂ- T'S\'d'l.lrlg!]'-ﬂ-ﬁ TSe
910.6.6.31 16.0.8.106 TCP !2 ?92 .443 [.M:K] Slq=ﬁﬂ84ﬂ?4ﬂl ACk=2809952188 '1 I'I=33!|3 c 4 TS»M

Exchange, Cert
Enc rypted Handshake Message

11 10.8.0, 106 10.6.0.31 TLSvl.2

12 16.9.8.31 16.0.0.1686 TLSv1.2 Mputﬂmn Dlta

1318.0.6.106 10.6.6.31 TLSv1.2 Application Data

14 10.0.8.31 10.8.0.106 TLSv1.2 Encrypted Alert
- ¥
| Length: &6

| b EC Diffie-Hellman Client Params
| = TLSv1l.2 Record Layer: Handshake Protocol: Certificate Verify
Content Type: Handshake ([22)
Version: TLS 1.2 (0x0383)
Length: 136
= Handshake Protocol: Certificate Verify Change Cipher Speﬂ Phﬂ'tﬂﬂﬂl
Handshake Type: Certificate Verify (15)
Lemgth: 132
b Signature with client's private key
= TLSv¥1l.2 Record Layer: Change Cipher Spec Protocol: Change Cipher Spec
Content Type: Change Cipher Spec [(20)
Version: TLS 1.2 (Bx0303)
Length: 1
Change Cipher Spec Message
~2 RE ETELE (] TEN &0 Ha a
Content Type: Handshake (22)
Version: TLS 1.2 (0xG303)
Length: 40
Handshake Protecol: Encrypted Handshake Hessage

Finished

The Finished (ssl.record.content_type == 22) message is encrypted so it will be an
encrypted handshake message in Wireshark. This message is sent immediately after a
Change Cipher Spec message from both the client and server to verify that the key
exchange and authentication processes were successful. This message contain the MD5
hash +SHA hash. When both the client and server have sent the Finished message, the
TLS handshake is considered to have finished successfully and now sending and receiving
application data over the secure channel can begin:

SEL Filter
Filver-jjssl ji:pmmn... Clear Apply Save
Time Source |Dest:‘munn [Pmtuml |Info
418.8.8.31 16.6.6.186 TLSvl. 2 Client Hello
6 19.0.0.106 18.8.8.31 TLSv1.2 Server Hello, Certificate
7 18.68.0.106 10.6.8.31 TLSwl. 2 Continuation Data
1116.0.0.1066 10.8.8.31 TLSwl.2 Change Cipher Spec, |[Encrypted Handshake Message
12 18.8.0.21 10.0.0.106 TLSv1.2 Application Data
13 18.68.8. 166 16.8.8.31 TLSv1.2 Application Data

14 18.98.8.31 10.8.8, 108 TLSv1. 2 Encrypted Alsrt

- Frame 18: 1327 bytes on wire {1DG61E bits), 1327 bytes captured (LBG61B bits)
b Ethernet I1, Src: 02:fa:c0:9c:0c:71 (B2:fa:c9:9c:0c:71), Dst: B2:el:ed:dc:ll:5d (B2:el:ed:dc:ll:5d)

¥ Internet Protocol Version 4, Src: 10.0.0.31 (19.0.9.31), Dst: 10.0.9.186 (10.0.9.186)

b Transmission Control Protocol, Src Port: 52792 (52792), Dst Port: 443 (443), Seq: 608497481, Ack: 2889952188, Len: 1261
~ Secure Sockets Layer iy i

B TLSv1.2 Record Layer: Handshake Protocol: Certificate FlnlShEd Encrvptﬂd Handshake Me_ssage
& TLSv1l.2? Record Layer: Handshake Frotocol: Client Key Exchange

B TLSv1.2 Recerd Layer: Handshake Protocel: Certificate Verify

B TLSv1l.2 Record Layer: Change Cipher Spec Protocol: Change Cipher Spec
= TL5v1.2 Record Layer: Handshake Protocol: Encrypted Handshake Message

Content Type: Handshake (22} Finished will send after the change Cipher Spec
Version: TLS 1.2 (0x0303) by both Client and Server
Length: 48

Handshake Protocol: Encrypted Handshake Message

Application Data

The Application Data message (ssl.record.content_type
record layer and fragmented, compressed, and encrypted:

== 23) is carried by the

Filter I-SH = | Expression... Clear Apply Save
. |Time | Source Destination |Protocal |Info
4 2.136636 10.0.0.31 10.0.0.106 TLSvl.2 Client Hello

» Frame 12: 169 bytes on wire (1352 bits), 169 bytes captured (1352 bits) 0000 02 el ed

U

5d 02 fa <9 9¢

Oc 7f OB 0O 45 00

6 2. 139709 10.0.0.106 18.6.0.31 TLSv].2 Server Hello, Certificate
72.139721 10.0.0.106 10.0.0.31 TLSv1.2 Server Key Exchange
18 2. 142678 10.0.0.31 10.0.0.106 TLSvl.2 Certificate, Client Key Exchange, Certificate Verify, Change Cipher Spec, Encrypted Hand
11 2.1430987 10.0.0. 106 186.0.0.31 TLSv].?2 Change Ciphar Spec, Encrypted Handshake Message

10.8.0 8.8 2 Application Data
13 2. 146385 0.0.0 106 10.0.6.31 TLSv]. 2 Application Data
14 2. 148431 8.0.8.31 10.0.0.106 TLSvl.2 Encrypted Alert

Record Layer Protocol : Application data
o E

5 Ethernet 11, Src: B2-fa:cO:9¢c:8c:7f (02:fa:c0:0¢:0c:7f), Dst: 02:el:ed:de:11:5¢ ?ﬂig gﬁ 96 03 +-) 00 48 ci it b 3? j“ fﬁ If g? ?g :s 3
» Internet Protocol Version 4, Src: 10.8.0.31 (10.0.0.31), Dst: 10.0.0.106 (10,0, 0920 00 62 ce 38 D1 bb 24 44 13 e6 a7 7c 77 ef BO 1) »
> Transmission Control Protocol, Src Port: 52792 (52792), Dst Port: 443 (443), S ‘,{gig ‘L ;? S8 Fu ECR0 B1 H_E0 O 88 O} 40 Sh 4 0
= Sprure Sockets layer :-'Jt-U
- 960
Content Type: Application Data {23) a70
Version: TLS 1.2 (6x8383) data exchange 980
Length: 98 :;Qg
Encrypted Application Data: aBad5892242852db16a75538645371fbd3Bd3 99896817« -
Record layer processing involves the mentioned step as shown in the following
screenshot:
Record Layer Protocol Prcoessing
Sloper Layee Application Data
sends data to TLS record J.
arbitrary size hunk of records R
\ A 4
1. Fragmented type version length | fragmented type version length | fragmented
The record layer
fragments
information blocks TLSPlainText (24 bytes or less) .
into TLSPlaintext PkTiad {2114 bys or lnve)
2, Compressed
records are compressed using the type version length
compression algorithm defined in
the current session state. TLSCompressed
3. Record Layer
Protection type version length
The encryption and MAC functions TLCCipherText
translate a TLSCompressed reference htip:/iyoutube com/zarigatongy
structure into a TLSCinhertext ¥
Record

4. 8SL Payload Protocol ‘ TLCC'i.TIhe rText‘
Header

Add Record Protocol Header to the

TLSCpherText and become a Payload S5L Payload

Alert Protocol

The Alert Protocol (ssl.record.content_type == 21) describes the severity of the
message and the alert. Alert messages are encrypted and compressed and support two alert
levels: warning and fatal. In the case of fatal alerts, the connection will be terminated.

Alert descriptions are shown in the following table:

Alert name Alert type [|[Description

close_notify(0) Closure alert]|Sender will not send any more messages on this connection
unexpected_message(10) Fatal An inappropriate message was received
bad_record_mac(20) Fatal Incorrect MAC received

decryption failed(21) Fatal TLS Cipher text decrypted in an invalid way
record_overflow(22) Fatal Message size is more than 2/14+2048 bytes
decompression_failure(30) [|Fatal Invalid input received

handshake_failure(40) Fatal Sender unable to finalize the handshake
bad_certificate(42) Fatal Received corrupted certificate; bad ASN sequence

unsupported_certificate(43)[[Fatal Certificate type is not supported

certificate_revoked(44) Warning | Signer has revoked the certificate

certificate_expired(45) Warning The certificate is not valid

certificate_unknown(46) Warning Certificate unknown

illegal_parameter(47) Fatal ||TLV contain invalid parameters

unknown_ca(48) Fatal ||CA chain couldn’t be located

access_denied(49) Fatal Certificate is valid, the server denied the negotiation
decode_error(50) Fatal The TLV received does not have a valid form

decrypt_error(51) Fatal Decryption cipher invalid

export_restriction(60) Fatal A negotiation not in compliance with export restrictions was detected
protocol_version(70) Fatal The selected protocol version is not supported by the server |
insufficient_security(71) |lFatal Strong cipher suite needed |
internal_error(80) Fatal Server-related issue |
user_canceled(90) Fatal | Client cancelled the operation |
no_renegotiation(100) Fatal Server is not able to negotiate the handshake |

As shown in the following screenshot, the Alert Protocol is generated by the server:

Filter: [ul ;JE:preulan.., Clear Apply Save
Time ISourm |D¢stlnarlnn IPmmml |N1Fo
410.8.0.31 10.0.0.186 TLSv1.2 Client Helle
616.8.80.106 10.8.6.31 TLSw1.2 Server Helle, Certificate
718.8.9.106 10.8.8.31 TLSv1.2 Continuation Data
10 18.9.8.31 18.8.0.186 TLSv1.2 Certificate, Client Key Exchange, Certificate Verify, Change Cipher Spec, Encrypted H{
1110.6.8.166 19.6.8.31 TLSv1.2 Change Cipher Spec, Encrypted Handshake Message
12 18.8.8.31 16.8.0.186 TLSv1.2 Application Data
1310.0.9.1066 10.08.08.31 TLSvwl.2 Application Data
B.8.8 .8.0. 2

Encrypted Alert

b Ethernet II, Src: G2:fa:c9:9c:0c:Tf (02 :fa:c9:9¢c:0c;T1), Dst: 02:el:ed:de:11:5d (02:el:ed:dc:11:5d)

b Internet Protocol Version 4, Src: 10.9.8.31 (18.9.0.31), Dst: 10.9.0.106 (18.0.0.106)

P Transmisslon Control Protecel, Src Port: 52792 (52792), Dst Port: 443 (443), Seq: GOB498765, Ack: 2809952614, Len: 31
= Secure Sockets Layer

= TLSv1.2 Record Layer: Encrypted Alert

Content Type: Alert (21) i
P AT) @ Alert Protocol detail Message
Length: 26

Alert Message: Encrypted Alert

Key exchange

In the next section, we will talk about how the SSL/TLS channel can be decrypted; before
that, we need to understand what the different keys exchange methods are and what their
cipher suites look like. These are the following key exchange methods.

The Diffie-Hellman key exchange

This protocol allows two users to exchange a secret key over an insecure medium without
any prior secrets; in this scheme, the example cipher suites will have a naming convention
such as:

e SSL._DH_RSA_WITH_DES_CBC_SHA
e SSL._DH_RSA_WITH_3DES_EDE_CBC_SHA

Cipher suites will have “DH” in their name, not “DHE” or “DH_anon”.
Note

You can learn more about Diffie-Hellman at: https://en.wikipedia.org/wiki/Diffie-
Hellman_key_exchange.

https://en.wikipedia.org/wiki/Diffie-Hellman_key_exchange

Elliptic curve Diffie-Hellman key exchange

Elliptic curve Diffie-Hellman is a modified Diffie-Hellman exchange that uses elliptic
curve cryptography instead of the traditional RSA-style large primes. Elliptic curve
cryptography (ECC) is a public-key cryptosystem just like RSA, Rabin, and El Gamal.
Some important points with this algorithm are:

e Every user has a public and a private key
e The public key is used for encryption/signature verification
e The private key is used for decryption/signature generation

Note
You can learn more about Elliptic Curve Diffie-Hellman at:
https://en.wikipedia.org/wiki/Elliptic_curve_Diffie—Hellman.

Note that the Client Hello message exchange process in the Extension elliptic_curves key
exchange was offered. The example cipher suites will follow a naming convention such
as:

e SSL_DHE_RSA_WITH_DES_CBC_SHA
e SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA

Cipher suites will have “DHE” in their name, not “DH” or “DH_anon”.

https://en.wikipedia.org/wiki/Elliptic_curve_Diffie%E2%80%93Hellman

RSA

The server’s public key is made available to the client during the Server Key Exchange
handshake. The pre_master_secret key is encrypted with the server public RSA key. The
example cipher suites in this case will be:

e SSL._RSA_WITH_RC4_128_SHA
e SSL._RSA_WITH_DES_CBC_SHA
e TLS_RSA_WITH_AES_128_CBC_SHA

Cipher suites will have “RSA” in their name, not “DH” or “DH_anon” or “DHE”.

Decrypting SSL/TLS

So far we have learned how the SSL/TLS protocol encrypts traffic and maintains

confidentiality. In the next section, we will cover how Wireshark helps to decrypt
SSL/TLS traffic.

Decrypting RSA traffic

Decryption of TLS traffic depends upon which cipher suite was chosen by the server in
the Server Hello message. Open the file decrypt-ss1-01.pcap and look for the cipher
selected by the server. In this case the TLS_RSA_WITH_AES_256_CBC_SHA cipher
suite was used; since this is RSA, we can decrypt the packet using our private key.

Now go to Edit | Preferences | Protocol | SSL, add the new RSA key, and configure the
following properties of the RSA key dialog box:

1. The Private key file (here, server.key, which is used by the server).
2. The IP address of the server.

3. The port of the SSL/TLS server (443).

4. The decoding protocol—use http in this case.

W] WWOSFars: Proerences - Profis: Calad

ELLS

:::_: RSA keys list: I | Edit... I

SNA %, B5L Decrypt - Profile: Detaylt = HFOW:

SMNMP —_—

SoulSesk IP address |Port |Protocol [Key File |password |

SoupBinTCP r 10.0.0.106 443 http [Users/Shared/server.key

SPDY 3

e ae SEL Decrypt: Maw 4_

SRVLOC . .

s5COP - IP address: [10.0.0.106 = |
- = Browse|

55H 1 E......_] Port: (443 —

[osse 0 et Protocal: [hiep

STANAG 5066 DTS

STANAG 5066 SIS — Key File: | serverkey [
StarTeam i : Password. li
5TP =
Cancel oK
SUA M o

SYNCHROPHASOR Ll
T.38
TACACS+ E
TAL

5
TCAP
TCP | < Apply I X Cancel | L=l

TrOCARCAD

HHelp f apnlv| xcam-r| &

After applying these settings, the SSL traffic will be decoded into HTTP traffic for that IP,
as shown in the following screenshot:

Filter lisl ;Jllﬂrfssll.}l‘l... Clear Save
No. | Time Souree | pestination | protacol | info
4 0.000482 10.0.0.31 10.0.0. 106 55Lv3 Client Hello
6 0.000757 10.0.0.106 10.0.8.31 S5Lv3 Server Hello, Certificate, Server Hello Done
8 0.003917 10.0.8.31 10.0.0.106 S5Lv3 Client Key Exchange, Change Cipher Spec, Finished
9 0.006560 10.8.0.106 10.0.8.31 55Lv3 Change Cipher Spec, Finished
10.0.0.3

1 18.0.0. 106 HTTR GET / HTTR/1.0

10 0.D08902

Y = &]

v Frame 13: 423 bytes on wire (3384 bits), 423 bytes captured (3384 bits) 0000 B2 fa c9 9c Oc 7f 02 el ed dc 11 54 O8 00 45 00 #
» Ethernet II, Src: 02:el:ed:dc:11:5d (02:el:ed:dc:11:5d), Dst: 02:fe:c9:9c:0c:7f (02:fa:cH:¢ 0010 ©1 99 04 Ja 40 00 40 D6 20 9d Ca OO0 OO Ga 0Oa 0O LA
» Internet Protocol Version 4, Src: 10.8.0.106 (10.0.0.106), Dst: 10.6.0.31 (10.0.0.31) 0o2e @e 1t [1"1 bo R 56 b3 21 19 5a 30 e f-l‘ &0 80 18 v

» Transmission Control Protocol, Src Port: 443 (443), Dst Port: 52822 (52822), Seq: 3039g201; 9930 90 eb 16 14 00 00 01 01 08 0a 16 ae f0 17 03 Ta

» Secure Sockets Layer

0040 86 54 17 03 00 ©1 60 9Ff 7c 02 3 3 55 78 61 Bc T
0050 Oc 97 a2 cc db Bc 18 5e eb Je 4c 60 5c 37 87 3 i .
: 0060 7a 00 28 79 ff 93 92 46 B8 eb 1a 24 94 8d el 49 2.0y
+w Line-based text data: text/himi 0878 79 c? Ga al @f bS ce B3 39 79 db a8 9b 97 lb ch

Hello zarigatongy you are Awesome Visit my channel http://youtube.com/zarigatongy\n 00BO 74 bf Te Ba 06 06 c5 c5 44 37 98 Ja 12 dc fb Ga
j pA9G 91 Se ea 3a 06 7 ca S0 ee 33 05 39 40 60 de Ta

Message shown after the Ssi decryption

Once the packet is decrypted, the SSL session can be exported by clicking on File |
Export SSL Session Keys. A dialog box will open; save this session key in the file

(exported-session-keys). The content of the file looks like this:

RSA Session-

ID:af458c9c61675238h74f40b2a9547a0a2a394ada458a1b648e0495ed279d5e2e Master -
Key:6c970211a77548811267646a759d0d03bbc532d9bh6336f2h656cb0c6bbef8f3a262d845
b9abed87d26583a9c4bb9h230

B edit view Co Capture Analyze Statistics Telephony Tools nternals Help

& Open.. crel+o
Open Recent 3
Merge,

Import from Hex Dump...

| X Close ctrl+w

[Save As... Shift+Ctrl+5

| File Set (2]
Export Specified Packets...

Export Packet Dissections]

Export PDUs to File..
| Export SSL Session Keys...
Export Objects 3

| = Brint... Ctrl+P

;-EQuh crrl+Q

sw T2A[EE aaar @08 %

v.‘j Expression.., Clear Save
bl ||nf-a

Client Hello

Server Hello, Certificate, Server Hello Done

Client Key Exchange, Change Cipher Spec, Finished
Change Cipher Spec, Finished
GET / HTTP/1.0

423 bytes captured (3384 bits)

186 (10.6.6.106), Dst: 10.6.0.31 [(10.0.8.31)

el:ed:dc:11:5d), Dst: 02:fa:cB:9c:0c:7f (02:fa:cB:9c:Bc:7f)

b Transmission Control Protocol, Src Port: 443 (443), Dst Port: 52822 (52822), Seq: 3039828122, Ack: 820804182, Len: 357

b Secure Sockets Layer
* Hypertext Tramsfer Protocol
b Line-based text data: text/html

Once the exported-session-keys file is created, use this file to decrypt the SSL/TLS
traffic. To do so, go to Edit | Preferences | Protocol | SSL and configure the (Pre)-master-
secret log file with the path of the SSL Session Keys. This approach is helpful when the
user wants to share the packet without sharing the private keys and still needs to provide

the decryption step:

LTS

% Wimshark: Preferances - Profile: Default

SMPP

SMTP

SNA

SNMP
SoulSeek
SoupBinTCP
SPDY

SPRT
SRVLOC
SSCOP

55H 1

STANAG 5066 DTS
STANAG 5066 5I5
StarTeam

STP

SUA
SYNCHROPHASOR
T.38

TACACS+

TAL D
TCAP

TCP

TCPENCAP

iiHelp

RSA keys list:

1 Edit... |

SSL debug file: |

Reassemble 550 records spanning multiple TCP segments: &

Reassemble S5L Application Data spanning multiple S5L records: &

Message Authentication Code (MAC), ignore "mac failed™: O

Pre-Shared-Key: [

Browse...

\
2 ({Pre)-Master-Secret log filename

. |/tmp/exported-session-key

Browse..,

3 |
[7 appy | xganﬂ*ll oK |

Decrypting DHE/ECHDE traffic

DHE/ECDHE can’t be decrypted using this approach even if we have private keys as they
are designed to support forward secrecy.

Forward secrecy

Forward secrecy is supported in the Diffie-Hellman (DHE) and Elliptic curve
cryptography Diffie-Hellman (ECDHE) key exchange algorithms. Take the previous
scenario; the SSL/TLS communication can be decrypted by knowing the server’s private
key. If the private key is compromised by poor system hardening or (an internal threat
agent), the SSL/TLS communication can be broken. In forward secrecy, the SSL/TLS
communication is secure even if we have access to the server’s private key.

If the cipher suite’s name contains “ECDHE” or “DHE”, it means it supports forward
secrecy. For example, note this cipher suite name:
TLS_ECDHE_RSA_WITH_RC4_128_SHA.

Note

Some useful references for this are as follows:

e http://security.stackexchange.com/questions/35639/decrypting-tls-in-wireshark-
when-using-dhe-rsa-ciphersuites/42350#42350

https://wiki.wireshark.org/SSL

https://weakdh.org/

https://www.openssl.org/docs/apps/ciphers.html

https://g00.gl/9YUOQHC

http://security.stackexchange.com/questions/35639/decrypting-tls-in-wireshark-when-using-dhe-rsa-ciphersuites/42350#42350
https://wiki.wireshark.org/SSL
https://weakdh.org/
https://www.openssl.org/docs/apps/ciphers.html
https://goo.gl/9YU0HC

Debugging issues
In the section, we will learn how to debug common SSL-related issues:

e Know your SSL/TLS server. It’s very important how the server is configured, which
TLS version is used, and which cipher suites it supports. To do this, use the nmap
utility as shown:

root@bash :/home/ubuntu# nmap --script ssl-cert,ssl-enum-ciphers -p 443
10.0.0.106

Starting Nmap 6.40 (http://nmap.org) at 2015-08-03 16:49 UTC

Nmap scan report for ip-10-0-0-106.ap-southeast-1.compute.internal
(10.0.0.106)

Host is up (0.000067s latency).

PORT STATE SERVICE

443/tcp open https

| ssl-cert: Subject: commonName=ip-10-0-0-106/0organizationName=Internet
wWidgits Pty Ltd/stateOrProvinceName=Some-State/countryName=AU

| Issuer: commonName=ip-10-0-0-106/organizationName=Internet Widgits
Pty Ltd/stateOrProvinceName=Some-State/countryName=AU

| Public Key type: rsa

| Public Key bits: 2048

| Not valid before: 2015-07-28T14:43:45+00:00

| Not valid after: 2016-07-27T14:43:45+00:00

| MD5: 9ba5 0ea9 14b2 0793 7fe6 9329 08ce fab3

| _SHA-1: 1604 27b6 4flc a838 9a9d dh67 3136 88de effb 881
| ssl-enum-ciphers:

| TLSv1.2:

| ciphers:

| TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA - strong

| compressors:

| NULL

|_ least strength: strong

e The nmap output shows the server supports TLSv1.2 and one cipher suite. If the client
connects with other SSL protocols or cipher suites the server doesn’t support, the
server will return with handshake failure. For example, connecting the same server
with TLSv1.1 will return an error:

rootbash # curl -k --tlsvli.1 https://10.0.0.106
curl: (35) Unknown SSL protocol error in connection to 10.0.0.106:443

e Connecting with ciphers the server doesn’t support will return a handshake error as
shown:

root@bash # curl -k --ciphers EXP-RC2-CBC-MD5 https://10.0.0.106
curl: (35) error:14077410:SSL routines:SSL23_GET_SERVER_HELLO:sslv3
alert handshake failure

e Receiving the unknown_ca error check the following find the hash value from the
certificate, private key and CSR file use the following commands:

bash $ openssl x509 -noout -modulus -in server.crt | openssl md5
f637e8d51413ff7fa8d609e21ch27244

bash $ openssl rsa -noout -modulus -in server.key | openssl md5
f637e8d51413ff7fa8d609e21cbh27244

bash $ openssl req -noout -modulus -in server.csr | openssl
f637e8d51413ff7fa8d609e21cbh27244

The md5 hash value of csr, cer, and the private key will be the same, if csr is generated
with the client private key, though the certificate is generated by using the CA
(Intermediate CA) private key.

If the md5 file is the same, then verify that the certificate issued by the CA matches its
path:

bash $ openssl verify -verbose -CAfile cacert.pem server.crt
bash $ openssl verify -verbose -CAfile cacert.pem client.crt

Note

Useful reference for SSL testing:

e https://www.ssllabs.com/ssltest/
e https://github.com/rbsec/sslscan
e https://testssl.sh/openssl-rfc.mappping.html

https://www.ssllabs.com/ssltest/
https://github.com/rbsec/sslscan
https://testssl.sh/openssl-rfc.mappping.html

Summary

In this chapter, we have learned how the SSL/TLS Handshake Protocol works and how to

analyze it using Wireshark. We have examined sample debugging issues related to
handshakes, and learned how to solve them. In the next chapter, we will continue
analyzing other application layer protocols with the help of Wireshark.

Chapter 5. Analyzing Application Layer
Protocols

In the previous chapter, we covered the SSL/TLS application layer protocol in detail. In
this chapter, we will continue with other application layer protocols (their basic flows and
some generic use cases) and learn how to generate these types of traffic:

DHCPv6
DHCv4
DNS
HTTP

DHCPv6

The Dynamic Host Configuration Protocol for IPv6 (DHCPvV6) is an application layer
protocol that provides a DHCPv6 client with IPv6 an address, and other configuration
information, that is carried in the DHCPv6 options.

DHCPV6 is both a Stateful Address Autoconfiguration protocol and a Stateless Address
Configuration protocol.

The client and server exchange DHCPv6 message over UDP; the client uses a link-local
address, DHCPv6 receives message over the link-scoped multicast address. If the
DHCPvV6 server is not attached to the same link, then a DHCPvV6 relay agent on the client’s
link will relay messages between the DHCPv6 client and DHCPv6 server, as shown in the
following screenshot:

DHCPv6 Relay Example DHCPv6 Without Relay Example

—_
DHCPVE Client . ?h,
HeEve O l i DHCPVE Clier t .
S —

—
DHQPvE DHCPvE $erver
SOLICIT = DHCPvE $erver
~RELAY-FORW™—] SOLICIT >
<-RELAY-REPL—
f—ADVERTISE—— <f—ADVERTISE——
~ REQUES
——REQUEST > | _ —>
RELAY-FORW™] —
RELAY-REPL—
f——REPLY < “RECONFIGURE=—
RENEW

DHCPv6 Wireshark filter

Use the dhcpvé display filter to show DHCPV6 traffic. For the capturing filter, use UDP
port 547.

Multicast addresses

Multicast addresses are used by the DHCPv6 client to send datagrams to a group of
DHCPV6 servers:

e For all DHCP relay agents and servers, the address is FFo2: :1:2 (link local)
e For all DHCPV6 servers, the address is FFO5: :1: 3 (site local)

The UDP port information

Servers and relay agents listen for DHCPv6 messages on UDP port 547; clients listen for
DHCPv6 messages on UDP port 546. To find the port information, the netstat command
can be used:

[root@bash ~]# netstat -an | grep 547
udp 0 0 :::547 paa

DHCPv6 message types

DHCPv6 messages are exchanged over UDP port 546 and 547 and the messages are

described in the following table:

DHCPv6 Equivalent
DHCPv6 . : :
message Description 'Wireshark DHCP for
8 filter IPv4 message
. . . dh 6. t
SOLICIT This message is sent by the client to a group of DHCPV6 servers “:CEV msg ype“DHCPDISCOVER
ADVERTISE This message is sent py tbe server, and reveals the server availability dEcva -msgtypello . oorrer
for the DHCPvVG6 service, in response to the SOLICIT message == 2
REQUEST This message will be sent by the client and contains the IPV6 address dhepve . msgtypelly o oeeouesT
or configuration parameter == 3
CONEIRM This me§sage w1ll.be sent'by.the client to confirm whether the IPv6 9Ecpv6 .msgtype DHCPREQUEST
address is still valid for this link or not == 4
RENEW Thls.rness:flge will be sent by the client to update its lifetime or other 9Ecpv6 .msgtypelf CPREQUEST
configuration parameter == 5
This message will be sent by the client if the RENEW message was not dheov6 . msatype
REBIND received, and it will update its IPv6 address and other configuration ||__ 2 -MSGEYPelloHcPREQUEST
parameters
REPLY For every message sent by the client a REPLY message will be received 9Ecpv6 -msgtypell; oack
from the server == 7
RELEASE This rnessz.ige w1.ll be sent by the client to release the IPv6 address and 9Ecpv6 -msgtypell . orel EaSE
other configuration parameters ==
DECLINE This me§sage will be §ent by thg client if it found that the IPv6 ghcpvfs -msgtypell. . ooEcLINE
address is already assigned and in use ==
This message will be sent by the server to indicate that configuration dheov6 . msatype
RECONFIGURE |lparameters are updated or changed; the client will send a RENEW/REPLY ||__ 20 -MSGLYPeIN/A
or INFORMATION-REQUEST/REPLY to get the updated configuration
INFORMATION-||This message will be sent by the client for the configuration request ||dhcpvé.msgtype
) . DHCPINFORM
REQUEST no IPv6 address assignment == 11
This message will be sent by a relay agent to forward a message to a
RELAY - . li lated h dhcpv6.msgtype N/A
FORWARD server. RELAY - FORWARD contains a client message encapsulated as the |__"7,
DHCPv6 RELAY message option
This message will be sent by a server to send a message to a client dheov6 . msatype
RELAY-REPLY [lthrough a relay agent. RELAY-REPLY contains a server message __ 23 -MSGEYPEIIN A
encapsulated as the DHCPv6 RELAY message option

Message exchanges

DHCPv6 message exchanges happen in order to obtain the IPv6 addresses, configuration
(NTP server, DNS server), or RENEW/RELEASE/DECLINE of the IPv6 address, and these
message exchanges are categorized in two parts:

¢ Client-server with a four-message exchange
¢ Client-server with a two-message exchange

The four-message exchange

The acronym for a four-message exchange is SARR, and it is used to request the
assignment of one or more IPv6 addresses. The message flow is as follows:

SOLICIT
ADVERTISE
REQUEST
REPLY

Open the DHCPv6-Flow-SOLICIT.pcap file in Wireshark, and examine the IP assignment
flow as shown:

1. Wireshark filter S soLicrr
. A ADVERTISE
| w2+ Client always Communicate on A BEQUEST |
Filter Idhcp'ulﬁ = |Expression.. Clidulticast Save :
| =l R REPLY
No. |I|mc !Snurce IDns:m.'nmn ﬂr Protocol |Info
3 0. 5820080 feBD:: f8l6: 3eff: feld:eBdd efd: gff:feld:e848 DHCPvG |Advertise|XID: GxlOeafe TAA: 2601:edB8:77b5::b8dl:f1B0

4 1,395232 TeBD: : TBLG: 3aff: feld: ed4l froz::1:2 | DHCPvGE |Request XID: Bx3ecO3e CID: 200100011d57Eadlfal6leldeBdd
5 1.595668 fe80::f8Ll6: 3eff: feld: eB4B el : G:3e feld:e848 DHCPvE |Reply XID| Bx3ecO3e 1AA: 2001:edB8:77h5::b8dl:f188 CID:

[vE ——— '

T T 2 S

P User Datagram Protocel, Src Port: 546 (546), Dst Port: 547 (547)
= DHCPwE
| message type: Solicit (1} |
Transaction ID: Gxlbeafe
o Client Identifier |
= Option Reguest
Length: 4
Value: 80178018
Reguested Option code: DNS recursive name sarver (23)).*- 4, Client Request OPTION, the Advertise will have Name server Information
Reguested Option code: Domain Search List (24)
° Elapsed time
= Identity Association for Mon-temporary Address
Option: Identity Asseciation for Non-temporary Address (3)
Length: 40
Value: 3eldeBd800000e10000015180065001820010ed87 7050000, . |
TAID: 3eldeB4B

3. SOLICIT DHCPv6 Message Type

5. |
The client uses |4 NA options to request the assignment of non- |
temporary addresses and uses |A_TA options to request the

Tl: 3608)
T2: 5488 aﬁﬁlgr:l'l'lF!HT l.'.l'1|.:!I'I’\[J-ﬂ1|=|r'&|I Hd-ﬂﬂ!sﬁ.ﬁﬁ
= IA Address ’f’
Option: 1A Address (5}
Length: 24

Value: 20010edB77p500000000000008d]1T1E000001c2000002a30
IPvG address: 2801:edB8:77b5::bBd1l: f180 (2001:edB:77b5: :b8dL1: f1E0)
Preferred lifetime: 7200

L Valid lifetime; 10800

The preceding screenshot shows a SARR flow packet being captured. IPv6 is assigned to
the DHCPv6 client, and the message exchanges in detail are:

e SOLICIT: The client (fe80::f816:3eff:feld:e848) sends a SOLICIT message to
locate the servers. Note the destination is multicast ff02: :1:2 not the server

(destination) IPv6 address:

o The client includes its client-identifier option dhcpvé.option.type ==

o The client sends it ORO option (dhcpv6.option.type == 6) to the server that is
interested in receiving. In this case, the client has requested the name server
information.

o In this example, the client uses the IA_INA options to request the assignment of
non-temporary addresses (dhcpv6.option.type == 3) and uses IA_TA options
to request the assignment of temporary addresses.

o The client IA address option is used to specify IPv6 addresses associated with
IA_NA or IA_TA. In this example, it’s associated with IA_NA.

e ADVERTISE: The server (fe80::f816:3eff:feld:e848) sends the ADVERTISE
(dhcpv6.msgtype == 2) message to the client (fe80::f816:3eff:feld:e848). There
can be multiple servers that will respond to the client SOLICIT message; the client
will choose the DHCPvV6 server based on its preference:

o The server updates the IA_NA (dhcpv6.option.type == 3) value based on its
preferences.

o The server includes its server identifier (dhcpv6.option.type == 2)
information. The Server Identifier option is used to carry DUID. The DUID is
the DHCP Unique Identifier, the host identifier in IPv6. (In the case of
DHCPv4, the host identifier is the MAC address.)

o The server includes the name server (dhcpvé.option.type == 23) information
as requested in the SOLICIT message.

o The server transaction ID 0x10eafe in this case must match with the client
SOLICIT transaction ID.

e REQUEST: In this message the client chooses one of the servers and sends a REQUEST
message to the server asking for confirmed assignment of addresses and other
configuration information:

o The client (fe80::f816:3eff:feld:e848) constructs the REQUEST packet and
sends it to multicast ffe2::1:2

o The client includes a new transaction ID: 6x3ec03e. (random)

o The client include server identifier information in the REQUEST packet

_hlter.ldhcnvﬁ | j[xb-esmn... Clear A Save

No. |Time | source | Destination |Protocol |info

2 0,581260 feBO::fBLl6:3eff:feld:edds T102::1:2 DHCPYE Solicit XID: Oxl0eafe C1D: BO01000LLld578aBlfalbleldedds

3 &. 582000 feBb:: fE16: Jeff: feld:cB48 fedO:: f816:3eff; feld:eB48 DHCPyE Advertise XID: OxlOeafe IAA: 2001:ed8:77b5::b8dl: 1186 Cl

41.595232 feBO. :f816:3eff:feld e848 E ; | x ¥ E i
. 9obo0 eHY Bib:38TT:Te [2:Et

|+ € »
b Frame 4: 162 bytes on wire {1296 bits), 162 bytes captured (1206 bits)
b Linux cooked capture
i Internet Protocol Version 6, Src: feB@::fBl6:3eff:feld:eB4B8 (feB0::fEl6:3eff:feld:eB4B), Dst: fI02::1:2 (ff@2::1:2)
b User Datagram Protocol, Src Port: 546 (546), Dst Port; 547 (547)
= DHCPvE

Message type: Request (3)

Transaction ID: @x3echle

B Client Jdentifier

-

Option: Server Identifier (2}
Length: 14
Value: D80108611d5789cdfalbleldedds : -
DUID: 0DBlOG01ld5789cdfaltleldeBad *_ Server ldentifier in the REQUEST Message
puID Type: Llink-layer address plus time (1)
Hardware type: Ethernet (1)
DUID Time: Awg 7, 2015 26:52:53.000000000 IST
Link-layer address: fa:16:3e:1ld:e8;48

b Option Request

b Elapsed time
b Tdentity Association for Non-temporary Address

e REPLY: In the case of a valid REQUEST message, the server creates the bindings for that
client according to the server’s policy and configuration information, records the IAs
and other information requested by the client, and sends a REPLY message by setting
dhcpv6.msgtype ==

o The server transaction ID 0x3ec03e will be the same as client DHCv6 REQUEST
message transaction ID

o The server will include the server identifier and the client identifier

o The REPLY message will be part of a two-message exchange and a four-message
exchange

The two-message exchange

The two-message exchange will be performed between client and server when IP address
assignment is not required or when the DHCPvV6 client wants to obtain configuration
information such as a list of available DNS servers or NTP servers—for example
CONFIRM-REPLY and RELEASE-REPLY. Open the sample DHCPv6-Flow-CONFIRM-

RELEASE . pcap file in Wireshark, which shows that a two-message exchange was
performed:

1. DHCPv6 messages CONFIRM-REPLY and RELEASE -REPLY:

1. Wireshark filter Two Message Exchange

| CONFIRM + REPLY

iFiIter”dhcva lexpression,.. Clear ~Apply Save * |

iNo. | Time | Source I Destination Protocol |Info |

| 2 0.360034 fe80::f816:3eff: feld:eB848 Tf02::1:2 DHCPvE Confirm XID: 8:438d82 CID: 00G100011d5|
30.360471 feB80::f816:3eff: feld:e848 fe80::f816:3eff: feld:e848 DHCPwé Reply XID: GxBEﬁIBZ CID: 00Ole8611d578

‘ 8 15.342561 fe80::f816:3eff: feld:e848 f92::1:2 DHCPwé onfirm © Ox360963 CID: 0OOLlEO611d

9 15.342738 fed0::f816:3eff: feld:e848 feB0:: f816:3eff: feld:eB48 DHCPv& Reply XID: 0x360963 CID: 000180011d57

‘ 14 37.858625 feB0:: f8l6:3eff: feld:e848 ffe2::1:2 DHCPvG Release XID: [8xd7972e CID: ElElOlElﬂOlld‘

Two Message Exchange
RELEASE+REPLY

2. DHCPv6 messages INFOMRATION-REQUEST: The client sends the INFORMATION-

REQUEST when the client requests configuration settings (but not addresses)—for
example, DNS, NTP. As shown in the following screenshot, open the DHCPv6 -
Information_request.pcap file in Wireshark:

o Client will set dhcpv6.msgtype == 11:

Information-Aequest is sent by the clieni request configuration settings (bul not addresses). E.g DNS NTP
2. Information-Reques| Message

Filter | jﬁxnresmn. Clear A 1, Multicast Address I
Mo. I Time Source i !Prut:ﬂ:o!

1 0060008 felD:: fBL6:3aff: feld:aB48 DHCPvE Information- request |XID: GxefdBac CID:
1 fefid: : fTALG: 3afr: feld: - ef48 DHCPvB Aeply XID: DxeBd8ac CID: B0DLDOD11d5TSE

4

b Frame 2: 165 bytes on wire (1320 bits), 165 bytes captursd (1370 bits)
I Linux cooked capture
I Internet Protocol Versiom 6, S5rc: feB0::MBL6:3efT:Teld:e848 (Te80::7TBLE6:3eff:Teld:e848), Dst: TeBD::TBLG:3eTT:Teld:eB48 [TeB0::TBLE:3erlf

b User Datagram Protocol, Src Port: 547 (547), Dst Port: 546 (546}
= DHC Pvb

pasishe trve: Rerty ta) *—- 3.Server Reply message to Information-Request

TLIENT [QentITiar
I Server Identifier
= DN5 recursive name server
Dption: DNS recursive name server (23) P 5 —
Length: 16 * . Server Responds wi
vﬂ?.e; 3ffe0SeLffff0100020000FFf fedR3fle DNS
1 DNS server address: 37ffe:58L:17fr:100:200: 77:Telb:373e (3ffe:501: 1F7F:100:280: 7f: TeBO:3M3e)
= Domain Search List
Option: Domain Search List (24}
Length: 37
Value: DT796F75747562650 1636 F6d217a617260676174616e6779, .,
DMNS Domain Search List
Domain Search List FODN: youtube.com/zarigatongy
Domain Search List FODN: Bgwifi.org

The rapid commit option is used to obtain the IPv6 address assignment in the two-
message exchange, as shown in the following screenshot example, DHCPv6-Rapid-
Commit.pcap. Note that rapid commit is not a separate DHCPv6 message and is part
of the SOLICIT option:

. 1. Wireshark filter o 2. SOLICIT and then REPLY in two message

iFlIT:r:“dh:pﬂui ;IExpr\:-ssmn_.. Clear Apply Save exchange ‘

ENu. Time Destination Protocol nlo

F feB0:: Ti16:J0TT: fald: 0848 1102::1:2 DHCPVR Solicit XID: Dxe5t8sc CID: GOOLD0OLLAST
2 0.000286 feBD: : f816:eff: feld: o848 feBl:: FB16:3eff: feld:eBd8 DHCPVE Reply XID: OxeS{Bac IAA: 2001:ed8:77bS5:
& 3.968987 febt: : Talb: Jeff: feld: e5d8 T 12 DHCPYB Release XID: Oxfaslee CID: GUELEO01L457
7 3.060324 feBD: : f816:3eff: feld: e840 feB0::fB16:3eff feld:e848 DHCPvG W Reply XID: Oxfaddee CID: 00BLO0B1LISTdal

e g L.I_E»-'._E._Flslsase.wocaﬂs, Release and then

r— o Reply

b
¥ Linux cooked capture
b Internet Protocol Version 6, Src: feB0::T816:3eff: feld:eB48 H‘BED::fsls:!eff;ieldres-iﬂ.|Dst: ffe2::1:2 (F02::1:2) |
!P User Datagram Protocol, Src Port: 546 (546), Dst Port: S47 (547)
= DHCPvG
| [Message type: Solicit (1) | 4. Multicast address

Transaction ID: @xeSTHac
| & Client Identifier

B Option Request

| b Elspsed time

= Rapid Commit 5. The Rapid Commit option is used to signal the use of the two message exchange lor address
| Option: Rapid Commit (14) = c5ignment
Length: @

| b Identity Association Tor Non-temporary Address

o If a client that supports the rapid commit option intends to use the rapid commit
capability, it includes a rapid commit option in the SOLICIT messages that it
sends.

o If the client receives a REPLY message with a rapid commit option, it should

process the REPLY immediately (without waiting for additional ADVERTISE or
REPLY messages) and use the address and configuration information contained
therein.

o If the server doesn’t support the rapid commit option, then it will follow with a
four-message exchange (SOLICIT, ADVERTISE, REQUEST, and REPLY
known as SARR).

DHCPvV6 traffic capture

Use dhclient to simulate DHCPvV6 traffic over the network. For this, do the following:

1.

Make sure a DHCPV6 server is set up. This example is performed over an ISC
Dynamic Host Configuration Server (dhcpd) server.
Run the tcpdump utility to capture IPv6 traffic:

bash$ tcpdump -i any ip6 -vv -w DHCPv6-FLOW.pcap -s0 &
Make sure the DHCPvV6 server is running in your network.

To capture a DHCPv6 four-message exchange (SARR):

bash$ dhclient -6 etho

To capture the DHCPv6 RELEASE message:

bash$ dhclient -6 -r etho

To capture the DHCPv6 CONFIRM message:

bash$ dhclient -6 etho

To capture the DHCPv6 INFORMATION request:

bash$ dhclient -S -6 etho

BOOTP/DHCP

DHCP is an extension of the BOOTP mechanism. In other words, DHCP uses BOOTP as
its transport protocol. This behavior allows existing BOOTP clients to interoperate with
DHCP servers without requiring any change to the clients’ initialization software; the
following table shows basic comparisons between these two protocols:

BOOTP/DHCP"BOOTP | DHCP (Dynamic Host Configuration Protocol)
. Dynamic Host Configuration Protocol extension of
Meaning Bootstrap Protocol BOOTP
Year ||1985 ||1993
UDP Server “ 67
Port
UDP Client port 68
e [Pv4 address assignment e [P address assignment
e Obtaining IPv4 configuration e [Leases
Services parameter e Support legacy BOOTP functionality
e Limited number of client configuration e DHCP supports a larger and extensible set of
parameters called vendor extensions client configuration parameters called options
RFC ||RFC951 ||RFC 2131
Existence Superseded by the Dynamic Host ACTIVE; RFCs keep coming to add more features
Configuration Protocol (DHCP) and support different technical requirements

BOOTP/DHCP Wireshark filter

Use the bootp filter to display BOOTP/DHCP traffic and use UDP port 67 to capture the
BOOT/DHCEP traffic only.

Address assignment

DISCOVER, OFFER, REQUEST, ACK protocol exchanges happen between clients and servers
during network address assignment, as shown in the following screenshot. As a
mnemonic, refer to this as DORA.

The address assignment can also be done using the Rapid Commit option for DHCPv4.
Modeled on DHCPV6, it uses two-message exchanges to quickly configure the DHCPv4

client.

1
DHCPv4 Server -1

1
1 DHCPDISCOVER

DHCPREQUEST
Commit the bindings

1
|
1
I
I
|
IH’

1 DHCPACK-——-_+
|
|
1
|

//’
‘v. nmﬁuem

Client CH
and comy

Initialization Completed

]
DHGPM.Server-i

DHC PDlscovEHh"

F—DHCPOFFER— 4—DHCPOFFER— |

i
oose the Server

nit Configuration

~DHCPREQUEST
Notify DECLINED S

DHCPv4 Seruer 1

I DHCPDISCOVEH
|WITH RAPID COMMIT

=——DHCPOFFER—>"

e
DHEPU& lllent

1
DHCPMISer\re r-2

== DHCPDISCOVER |
with RAPID COMMITE

To demonstrate four-message exchange open the DHCPv4 . pcap file in the Wireshark, as
shown in the following screenshot:

Wireshark bootp filter D: Discover

O: Offer
Filter:lhnuln I LI Expression... Clear “pply Save R: Request
A:ACK
Mo. | Time | Source | Destination Protocol Info
1l 0.800008 16.0.8.186 18.8,8.1 DHCP DHCP Releas g Transaction ID DxdBfaabla
29.275367 .B.0. 255.255.255.255 DHCP Discover « Transaction ID Oxdciblblb
39.275746 16.9.98.1 16.0,0.106 DHCP DHCP Offer Transaction ID Oxdc7blb3b
49.376074 6.0.06.8 255.255.255.255 DHCP DHCP Request Transaction ID Bxdc7blb3b
59 276297 16.6.6.1 18.0.8.186 DHCP DHCP ACK Transaction ID BxdcTblb3b

ag
B
» Ethernet II, Src: 82:el:ed:dc:11:5d (B2:el:ed:dc:11:5d), Dst: Broadcast (Tf:TT.Tf:ff.TF:TT)
b Internet Protocol Version 4, Src: 8.8.0.0 (0.0.8.8), Dst: 255.255.255.255 (255.255.255.255)
b User Datagram Protocol, |Src Port: 68 (68), Dst Port: 67 (67) |+——-Dcfault server port is 67
- Bootstrap Protocol (Discover)

Message type: Boot Reguest (1)

Hardware type: Ethernet (Bx@l)

Hardware address length: &

Hops: @

Transaction ID: Oxdc7blb3b

Seconds elapsed: @
b Bootp flags: 0x0000 (Unicast DHC PV4

)
Client IP address: 0.8.8.0 (8.0.0.08)
Your (client) IP address: 6.0.0.0 (0.0.0.0)
Next server IP address: EI 8.0.0 (0.0.8.8)
Relay agent IP address: 0.0.0.0 (0.0.0.0)

Client MAC address: 02:el:ed:dc:11:5d (02:el:ed:dc:11:5d)
Client hardware address padding: 00000800080000080000D
Server host name not given

Boot file name not given

Magic cookie: DHCP

| b option: (53) DHCP Message Type (Discover) }*——DISCCI\FEH Message
b Option: (58) Requested IP Address
b Option: (12) Host Name
P Option: (55) Parameter Request List

The preceding figure shows a message exchange happening between the DHCPv4 client
and DHCPv4 server. This is summarized as follows:

® DISCOVER (bootp.option.dhcp == 1):

o Expand Bootstrap protocol to view BOOTP details

o The client broadcasts (255.255.255.255), a DHCPDISCOVER message, on its local
physical subnet and may include the option: (55 that is bootp.option.type)
parameter request list; during this time the “yiaddr” field will be
(bootp.ip.your == 0.0.0.0)

® OFFER (bootp.option.dhcp == 2):

o Expand Bootstrap protocol to view BOOTP details

o The DHCP server may respond with a DHCPOFFER message that includes an
available network address in the “yiaddr” (bootp.ip.your == 10.0.0.106)
field

o The DHCP server will send its option 54: DHCP server identifier and may
include the other configuration parameter as requested in option 55 the DICOVER
phase

® DHCPREQUEST (bootp.option.dhcp == 3):

o Expand Bootstrap protocol to view BOOTP details

o The client broadcasts (255.255.255.255) a DHCPREQUEST message that must
include the option 54 DHCP server identifier to indicate which server it has
selected, and may include other options specifying the desired configuration
values

o The DHCP server selected in the DHCPREQUEST message commits the binding for
the client to the db storage and responds with an ACK

® ACK (bootp.option.dhcp == 5):

o Expand Bootstrap protocol to view BOOTP details

o The server will send the ACK to the client with the configuration parameter;
during this time the IPv4 address will be “yiaddr” (bootp.ip.your ==
10.0.0.106)

o The client will verify the obtained configuration and check the IPv4 address
again using the ARP protocol; if the address is in use by other dhcp clients, the
client will send a DECLINE message to the server and restart the configuration
process

Capture DHCPv4 traffic

The commands to capture DHCPv4 traffic are as follows:
¢ On a Windows machine:

1. Start a Wireshark capture.

Open the Command Prompt.

Type ipconfig /renew and press Enter.
Type ipconfig /release and press Enter.
Stop the Wireshark capture.

SARE IR

e On a Linux machine:

1. Start a Wireshark capture.
2. Open the Command Prompt.
3. Bring down the network interface:

bash# ifdown eth0:0
4. Bring up the network interface:
bash$ ifup etho:0

5. Stop the Wireshark capture.

e Using dhclient:

1. Start a Wireshark capture.
2. Open the Command Prompt.
3. To capture a DORA packet use:

bash$dhclient -4 etho

4. Stop the capture.

DNS

DNS stands for Domain Name System. DNS is used by all machines to translate
hostnames into IP addresses. This mechanism is used to translate names to attributes such
as addresses (IPv4/IPv6) based on the query type.

DNS has three major components:

¢ A name space
e Servers making that name space available
e Resolvers (clients) that query the servers about the name space

This topic will focus on the resolver perspective, where the client sends a query to the
server and the server answers the query. There can be multiple answers to the same query.

DNS Wireshark filter

Wireshark’s dns filter is used to display only DNS traffic, and UDP port 53 is used to
capture DNS traffic.

Port

The default DNS port is 53, and it uses the UDP protocol. Some DNS systems use the TCP
protocol also. TCP is used when the response data size exceeds 512 bytes, or for tasks
such as zone transfers.

Resource records

The following format is used by the DNS system:

Field Description Length ||Wireshark filter

NAME The owner name variable|ldns.gry.name == "google.com"
dns.qry.type == 1 (A Record Type)
dns.qry.type == 255 (ANY Record Type)

TYPE Type of Resource Record (RR) in) dns.qry.type == 2 (NS name server)

numeric form dns.qgry.type == 15(MX mail exchange)

dns.qry.type == 28 (AAAA quad A, Ipvé
record Type)
dns. .cl == 0x0001 (IN tt

CLASS Class code 2 “igiegggt(): ass X (IN set to

TTL ||Tirne to live ||4 ||

RDLENGTH]J|Length in octets of the RDATA field ||2 ||

RDATA ||Additional RRspecific data Variable

DNS traffic

In this chapter, the dig and nslookup network commands are used to query the DNS

server. Open the sample DNS-Packet.pcap file, set the display filter to dns.qry. type==28,

and examine the query.

In this example, client (192.168.1.101) is asking the name server (8.8.4.4) to resolve
ipv6.google.com by setting these parameters in the query section:

The client sets the record type AAAA record

The client sets the hostname (ipv6.google.com)

Client set the class (that is, IN (Internet))

The name server (8.8.4.4) responds to the client with multiple answers
ipv6.google.com is the canonical name that equals ipv6.1.google.com
ipv6.1.google.com has the AAAA address 2404:6800:4007:805: : 200e

Jj 1. Wireshark filter AAAA Record Type

Filter I|dn§.r|r'|l.l\rpr == 28 [- ir_xﬂlll'!}lnn_ Clear S-wré Name Server IPvd address

No. | Time Source J.IZ:l'_'.1.|.|||.l.l.|.|:|.|:|_||-"r |!’rutocn| Info

78 119
9 119.98

E : (53}, UST POrT: SHast (SHase) 7
EDnuln Name System {response) I-‘_-_ 3. DNS Response Packet
T I 28]

[Time: 8.055531068 seconds]
Transaction ID: Ox90dT
® Flags: 0x8180 Standard gquery response, Mo error
Questions: 1
4, DNS server has two answer
Authority RRs: @
Additional RRs: @
= Queries
= ipvh.google. com: type AAARA, class IN
Name: ipvé.google. com *__. 5. DNS Query for AAAA record Type
[Name Length: L13]
[Label Count: 3]
Type: AAAA [IPvE Address) (28}
Class: IN (Bx0081)
7 ANGwWers
= ipvb.google. com: type CMAME, class IN, cname ipvé.l.google.com
Mame: 1pvé.google. com
Type: CMAME (Canonical MAME for am alias) (5)
Class: IN (0x0001)
Time to live: 21599 +_ 6. Answer to the DNS query IPvE address &
Data length: 9 CNAME information
CWAME: ipv6.1l.google.com
- ipve, l.google. com: type AAAA, class IN, addr 2494;6800;4007:885; ;2608
Name: ipvé.l.google.com
Type: AMAA (IPvE Address) (2B}

192.168.1.161 ; yEand, [esponse BxdBd7 C

User can use the popular dig or nslookup network utility commands to query different
DNS record types. Use a network capture in the background and observe the query and
answer section for each command:

e Query a record type used to show the IPv4 address of the given hostname:

bash# nslookup google.com
bash# dig google.com
bash# dig A +noadditional +noquestion +nocomments +nocmd +nostats

google.com. @8.8.4.4

e Query the AXFR record type; AXFR is used to transfer zone files from the master to the
secondary name server:

851435 1972 . 168.1.101 B.8.4.4 DNS Standard query Da90d47 AARA l:hvﬁ.qunglwi

bash# nslookup -type=axfr google.com 8.8.4.4
bash# dig AXFR +noadditional +noquestion +nocomments +nocmd +nostats
+multiline google.com. @8.8.4.4

Query the CNAME record type. CNAME is used to set up the alias:

bash# nslookup -type=cnhame google.com 8.8.4.4
bash# dig CNAME +noadditional +noquestion +nocomments +nocmd +nostats
google.com. @8.8.4.4

Query the MX record type; MX is the mail exchange record:

bash# nslookup -type=mx google.com 8.8.4.4
bash# dig MX +noadditional +noquestion +nocomments +nocmd +nostats
google.com. @8.8.4.4

Query the NS record type; NS is the name server record:

bash# nslookup -type=ns google.com 8.8.4.4
bash# dig NS +noadditional +noquestion +nocomments +nocmd +nostats
google.com. (@8.8.4.4

Query the PTR record type; PTR is the pointer used for reverse DNS lookups:

bash# nslookup -type=ptr google.com 8.8.4.4
bash# dig PTR +noadditional +noquestion +nocomments +nocmd +nostats
google.com. @8.8.4.4

Query the S0A record type. SOA is used to provide authoritative information such as
nameserver and e-mail:

bash# nslookup -type=soa google.com 8.8.4.4
bash# dig SOA +noadditional +noquestion +nocomments +nocmd +nostats
+multiline google.com. ©8.8.4.4

Query the TXT record type; this refers to the text record:

bash# nslookup -type=txt google.com 8.8.4.4
bash# dig TXT +noadditional +noquestion +nocomments +nocmd +nostats
google.com. @8.8.4.4

Query AAAA (also referred to as the quad-A record type); this will display the IPv6
address of the given hostname:

bash# nslookup -type=aaaa google.com 8.8.4.4

bash# nslookup -type=aaaa ipv6.google.com 8.8.4.4

bash# dig AAAA +noadditional +noquestion +nocomments +nocmd +nostats
ipv6.google.com. @8.8.4.4

Query the ANY record type; this returns all record types:

bash# nslookup -type=any google.com 8.8.4.4
bash# dig ANY +noadditional +noquestion +nocomments +nocmd +nostats
google.com. @8.8.4.4

HTTP

HTTP is an application layer protocol used in WWW. HTTP enables communications
between the HTTP client and HTTP server. Example traffic is shown in the following
screenshot. An HTTP GET request is created by the client (browser or cURL), and the
HTTP server has responded with the appropriate content type:

P m——
codud =)o cessT2EE QRN FEHL B

Filt:r:”ll:p.!.tl\em eq 2 'IExpmssiuﬂ... Clear Anply Sawe

Mo. Time Source LA »| Follow TGP Stream {icp.strearn eq 2)

21 19.118828 19.08.0.221 Lontent

22 19.118918 10.6.0.221 ET / HTTP/1.1

J& 10 177044 137 187 1a3 31 pst: 52.74.246.100; 8060

onnection: keep-alive

ccept: text/himl,application/xhiml+xml, application/xml;q=0.9, 1image/
ebp,*/*;q=0.8

sar-Agent: Mozilla/s3.0 [Macintosh; Intel Mac 05 X 18_18_3)
ppleWebKit/537 .36 (KHTML, like Gecko) Chrome/43.8.2357.124
afaris537.36

ccept-Encoding: gzip, deflate, sdch

ccapt-Language: en-US,en;gq=0.8

{text/html)
AFK) Can—3TATRITIRIT Ari-

g
b Frame 21: 83 bytes on wire (664 bit
P Ethernet II, Src: B6:3c:0f:39:2e: 7
Internet Protocol Version 4, Src: 1

P Transmission Control Protacol, Src
B

2. HTTP Request

f, Len: 17

HTTR/L.0 200 OK

Server: 5impleMTTP/8.8 Python/2.7.6
Date: Sun, 21 Jun 2815 17:49:36 GMT
Content-type: text/himl; charset=UTF-B

http_01.pcap Content-Length: 828 *___ 3. HTTP Aesponse

=<!DOCTYPE himl PUBLIC "-//W3C//DTD HTML 3.2 Final//EN"><html>
=titlesDirectory listing for /=/title>
<body> I

Entire conversation (1340 bytes) i |

".Emd| & save As | s Print]D ASCI © EBCDIC © Hex Dump O C Arrays @ Raw

IiHelp [Filter Out This Stream | H Close |

HTTP Wireshark filter

Use http to display HTTP packets only. Use TCP port 80 to filter for HTTP traffic only;
port 80 is the default HTTP port.

HTTP use cases

The following example shows different use cases where Wireshark can help to analyze
HTTP packets.

Finding the top HTTP response time

Open the file http_01.pcap in the Wireshark, and find the top HTTP response time for the
request HTTP get:

1. Click on Edit | Preferences | Protocols | TCP, uncheck Allow subdissector to
reassemble TCP streams. This will help in knowing how many continuation packets
there are to get the actual content and it will help in fine-tuning TCP parameters—for
example, setting up the TCP window size to reduce the continuation packet.

2. In the Filter bar, apply the http filter and add http.time as a column from the
http.response.code == 200 HTTP OK packet.

3. Click on the Time since request column and make it in descending order. Find the
request frame and click on the link.

Fier [http respanse code == 200 | Expression... Clear Save o Max

Time | source [Destimation srotocol | Info [Time sinee mquest L " .
| Time—

53410.0.8.221 122.167.182.21 KTTP HTTP/1.6 208 OK 0. 000414080
B 10.8.8.221 122.187.182.21 KTTP HTTP/1. 6 208 0K LR]

b Frame 21: B3 bytes on wire (664 bits), 83 bytes captured (664 bitsy

® Ethernet II, Src: 86:3c:01:39:20-17 (86:3c:0f:39:2e:17), Dst: 06:73:7a:4c:21:65 (06:73:7a 4c:21:85)

¢ Internet Protocol Version 4, Src: 10.8.8.221 (18.8.8,221), Dst: 122.167.182.21 (122.167,182.21)

b Transmission Control Protacol, Src Port: 8808 (BDGB), Dst Port: 52379 (52379), Seq: 2506997748, Ack; 3741621517, Len: 17

*[oo nits) = Hypertext Transfer Protocal
Dat: 86:73:Taidc:2185 (B6172:78:4c 121105} = HTTR/1.6 260 OKr\n
}. Dstc 122.167.162.21 (K22.167.182.21} = [Expert Info (Chat/Sequence}: MTTP/1.8 208 OK\rin]
L Fort: 533k (52386}, Seq. J93STIAN, Ack: I61389519, L Request Versian

HTTRSL 8

o Control A & ¥
Hypertest Trarstar Pr |’
< HTTF/L.8 206 O0rn |

—
1, Adding Time Since Fequest as Column L .
|[I::Eit":l“ ﬁ‘::‘:?‘ij_w-m‘““w il This Request Has Taken longest time click on this link
|] 1 }Q’ .
L to find the request

o Pl e e e e

Finding packets based on HI'TP methods

Use Wireshark’s http.request.method to display packets for analysis. For example, the
following table describes how to apply this filter:

HTTP method 'Wireshark filter

Meaning |

Get a specified resource example:
GET http.request.method=="GET"

GET http://www.w3.0rg/pub/WwwW/TheProject.html HTTP/1.1

POST Submits data to be processed to a specified resource http.request.method=="POST"
PUT ||Uploads a representation of the specified URI http.request.method=="PUT"
DELETE Deletes the specified resource/entity http.request.method=="DELETE"
OPTIONS Returns the HTTP methods that the server supports http.request.method=="OPTIONS"
CONNECT Converts the request connection to a transparent TCP/IP tunnel [|http.request.method=="CONNECT"

Finding sensitive information in a form post

If the form contains sensitive information such as password, Wireshark can easily reveal it
as HTTP is an unsecure means of transferring data over the network.

Open the HTTP_FORM_POST. pcap file and filter the traffic to display only the request
method POST and locate the password form item, as shown in the following screenshot:

Filler packel display only POST HTTP Method
o 4d W & =B x@l'\ & % 9 F &
rilr:r'ﬂhrrp.requgn,mﬂhud == "PO5STY _FUEwprrsimn... Clear Save
Destination

Mo. Time Souroe

I = -] I

] wire (9336 bits), 1l t (9336 bits) . .

3 Ethernst 11, 5rc App'le le:df:ad (28:cf:e8;:le: df aQ:. Dst Sluanzhan b8;df:dé (94:Tb:b2:bB:df:d8)

P Internet Protocol Version 4, Src: 192.168.1.181 {(192.168.1.181), Dst: 216.288.199.56 (216.200.199.56)

P Transmission Control Protocol, Src Port: 61948 (61948), Dst Port: 80 (BB), Seq: 1673924233, Ack: 1563295573, Len: 1181
* Hypertext Transfer Protocol

= HTML Form URL Encoded: application/x-wes-form-urlencoded

Form item: “EnterServicesFirstTime® = “Yes" |
b Form item: “logim™ = *1* |
b Form item: “bdv_type" = "adwv"

b Form item: "HMember_ID" = "zarigatongy™

b Form item: “Password® = "sadkjgl:lnkogi]:e' h_— PASSWORD information in HTTP packet |
b Form item: “BODV_SECURITY_CODE® = “6406° |
b Form item: “CaptchalD® = "35941183°

b Form item: “lLogin.x" = *35" |
b Form item: “Logimn.y" = "2"

Using HTTP status code

The first line of the HTTP response contains the status code. Use the Wireshark filter
http.response.code, to display packets based on the status code. This will be helpful
when debugging the HTTP client-server interaction:

Type Code

Meaning ||HTTP Wireshark filter |

http.response.code == 100

100 [Continue

Informational — 1xx

101 ||Switching protocol [Jhttp.response.code == 101
Successful — 2xx |200 ||OK http.response.code == 200
From: 200
To: 206 201 lCreated http.response.code == 201
Redirection — 3xx [|300 |[{Multiple choices http.response.code == 300
From: 300
To: 307 301 |IMoved permanently [jhttp.response.code == 301
Client Error — 4xx ||400 [[Bad Request http.response.code == 400
From: 400
To: 417 401 |{Unauthorized http.response.code == 401
Server Error — 5xx [|500 |[{Internal Server Errorfjhttp.response.code == 500

From—500
To— 505 501 lINot implemented http.response.code == 501

References

The HTTP protocol:

o https://en.wikipedia.org/wiki/Hypertext Transfer Protocol
o https://wiki.wireshark.org/Hyper Text_Transfer Protocol

The DNS protocol:

o https://en.wikipedia.org/wiki/Domain_Name_System#Protocol_transport
o https://www.ietf.org/rfc/rfc1035.txt

The DHCP/BOOQOT protocol:

e https://tools.ietf.org/html/rfc2131

e http://linux.die.net/man/8/dhclient

e http://www.iana.org/assignments/bootp-dhcp-parameters/bootp-dhcp-
parameters.xhtml|

e https://goo.gl/snUXkp

The DHCPv6 protocol:
e http://www.iana.org/assignments/dhcpv6-parameters/dhcpv6-parameters.xhtml

e https://tools.ietf.org/html/rfc3315
e https://en.wikipedia.org/wiki/DHCPv6

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://wiki.wireshark.org/Hyper_Text_Transfer_Protocol
https://en.wikipedia.org/wiki/Domain_Name_System#Protocol_transport
https://www.ietf.org/rfc/rfc1035.txt
https://tools.ietf.org/html/rfc2131
http://linux.die.net/man/8/dhclient
http://www.iana.org/assignments/bootp-dhcp-parameters/bootp-dhcp-parameters.xhtml
https://goo.gl/snUXkp
http://www.iana.org/assignments/dhcpv6-parameters/dhcpv6-parameters.xhtml
https://tools.ietf.org/html/rfc3315
https://en.wikipedia.org/wiki/DHCPv6

Summary

In this chapter, we have learned how Wireshark helps us to analyze application layer
protocols such as DHCPv6, DHCP, DNS, and HTTP. We also learned how to simulate

these traffic on the wire.

In the next chapter, we will learn more about wireless sniffing.

Chapter 6. WLAN Capturing

So far, we have seen packets captured on Ethernet. In this chapter we will learn how to
capture WLAN network traffic, and use effective display filters for all the frames, by
covering the following topics:

WLAN (802.11) capture setup and the monitor mode
802.11 capturing with tcpdump

802.11 display filters

Layer-2 datagram frame types and Wireshark display filters
802.11 auth process

802.1X EAPOL

802.11 protocol stack

WLAN capture setup

Wireshark depends on the operating system on which it’s running (and on the drivers for
the wireless adapter) for monitor mode support.

For Linux, the 802.11 wireless toolbar (View | Wireless Toolbar) provides excellent
options to enable the monitor mode and set the channel for cfg80211 devices. This even
supports multiple network interfaces for multi-channel captures; refer to

https://wiki.wireshark.org/CaptureSetup/WLAN for detailed instructions.

The MAC OS has a wireless adapter, and the monitor mode is supported. On Windows,
the monitor mode is not supported; you need a commercial adaptor for this, such as the
AirPcap USB adapter.

The WLAN (IEEE 802.11) capturing process is slightly different from capturing Ethernet
traffic in Wireshark. By default, when we start capturing traffic in a Wi-Fi network, it
captures traffic between two endpoints (HOST-A and HOST-B). To capture the Wi-Fi
traffic, Wireshark has to run in the monitor mode—RFMON (Radio Frequency
Monitor) mode—which allows a computer with a wireless network interface controller
(WNIC) to monitor all traffic received from the AP (Access Point), as shown in the
screenshot:

Packet sniffed between two hosts
€ = = = » » = =x = om owm >
Wireshark Iﬁ ;
Wireshark running without
Monitor Mode capture ethernet HOST_A HOST B
traffic from HOST-A to HOST-B
%
WLAN
. Packet sniffed between wireless
Wireshark (jnetwnrk
wireshark running with Monitor HOST_A HOST_B
Mode capture 802.11 traffic
between HOST-A to WLAN i B
controller il
[-
Monitor mode is RFMON
(Radio Frequency WLAN
MONitor) mode
WLAN Capturing with Wireshark

https://wiki.wireshark.org/CaptureSetup/WLAN

The monitor mode

The monitor mode is supported only on IEEE 802.11 Wi-Fi interfaces, and only on some
operating systems. To enable the monitor mode in a Wi-Fi interface, perform these steps in
Wireshark:

1. Click on Capture | Options.

2. Select the active Wi-Fi adaptor. Double-click on the interface setting; a window will
appear.

3. Enable the Capture packets in Monitor mode option.

Click on OK.

Start the capture.

ok

You should see the following screen:

File Edit Wiew % Wimeshark: Capbare Option
© ® 4 | Copure Wi-Fi Adaptor Selected
Filter Capure | Interface Link-layer header| ' gPLE) | Buffer [MiB]| Mon, Capture Filter
I Wi-Fi: en0
E fenn 2acfeniffeledfan Ethernet 2
192.180.1 101 Len=l MiZ-LidD wi-37
@ % Edit intexfaos Bettings 5968 WLA=13L360 Len~ih
O Capture on a : Interfaces
< ; Caprure | 1430 WA Len-d 7]
F Use promiscy “mt ace. Wi-Fi- en0 *_ Wi-Fi Adaptor aks Pallurel
i Capture Fily 1P address s+ Jected BPFs . L
i Cap FeB0:2acf e fele dfag o | e s
192.168.1.101 . 5975 Wianl3L360 Len=
Capture Files) . i "
e I—. Link-layer header type: 802.11 plus radiotap header = | Buffer ilnij? [5] mebibyteis) i time Thd MLa=)EGED Lenald
ile:
lﬁl_umm_mtﬂumu;mﬁ_m&] Enable Monitor Mode for live capture
0 Use multiphe Bl Capture packets in monitor mode WLAN Capturing
: : O Limit each packet to [20714 |2 bytes
l |
| @l Capture Filter: | j Compile BFF
= rd EHHelp Hcancel| <fox |
St 1 Ca g e AT e e e WP Ta e T AT
O Resobve transport-layer name
N | T . 1 | -
b Frasa L' 78 Byl L l i | 2 L Use gxternal netwark name resolver
b Ethernet II. §i 1 |3 (1] | = I it
[Intermmat Frated
[Tramsaissien of e
i Help A stare | ¥ Close J

When the monitor mode is on, the adapter captures all the packets transmitted on the
channel. These include:

e Unicast packets
¢ Broadcast packets
e Control and management packets

Tip
Disable name resolution in the monitor mode because Wireshark will try resolving the

FQDN, which results in slowness in opening the packet capture file (there is no external
network in the monitor mode).

Once the packet capture starts, Wireshark will start displaying the 802.11 protocol packet

exchange between source and destination, as shown in the following screenshot (or open
the packet capture 802.11.pcap file in Wireshark). Packet capture in the monitor mode
will not be associated with any of the access points and the user can see only 802.11
frames, which include non-data (management and beacon) frames, as shown:

Filter | jhpm“mn" _ 802.11 protocol captured
No, |Tirr1e lSnLirce | Destination Protocol |1nFa J|

6676 91, L1E2a5 ec; 1a:59:04: 5708 OL:00; 5e; T HF fa B2, 11 Data, SW=1598, FN=8, Flags=

BET 91. 130482 e lar59:04:57 88 0100 Se: TH: . fa BO2. 11 Data, SW=159F. Fli=l, Flags=.p....F.C

88T 91. 133317 e 10:99:04:57 ;88 01:00: S T1:11:Ta 802,11 Data, SN=1333, Fi=0, Flags=.p... F.C

BEED 31, 139563 e la: 5905788 01:00: 5e: T ff: fa B02.11 Data, 5W=1594, Fh=B, Flags=.p F.C

DEE2 91. L4B1SS eci1a199:04:57:88 01:00: 5e: 71 FF: Fa 802,11 Data, SNe1%98, Fi=0, Flagss.p....F.C u
BEEY 91. 151680 o a3 0RI5T aE 0100 5e: T 11 fa B02.11 Data, SN=1597, FN=D, Flags=.p F.C J
RFRd A1 155160 o 1A 0540 5T AR 10 e T e RAZ 11 fata_ SW=1%Qk. Fi=R. Flaps=.n F.T '

af :] ®
P Frame 8681 303 bytes on wire (2424 Bits], 300 bytes captured (2424 bits) o |
b Radiotap Header v, Length 25

7 [EEE BO2.11 Beacen frame, Flags:C

Type/Subtype: Beacon frawe (OxOEes)

Frams Cantrol Field: GxRO0O

000 DDOD D000 DDOD = Duration: O sicresacends

Recelver address. TRPF PO RE FEotr Afeffomfoerofeine WLAN C t & M -t M d

Destination address: ffiff:fF FffF:FF (Ff FF:FF TR FFFF) ap ure In Onl Or 0 e

Transaitter address: 04 fb:b3:bA:df dd (54 fb:b3:ha:df dd)

o

Source address: 94:fb:b3:bd:df:idd [94:Fhob3:bE:df:dd]
B55 Id; 92:fb:bdiba:df dd (% Ffbibd:bE: df dd)
Fragment nusber: O
Sequence number: 1155

b frane check sinuen Dueddnfine legrpacrl

- [EEE 802,11 wireless LAN management frame
P Fixed parameters (12 bytes)
~ Tagged parancters (238 bytes)

= Tag: S5I0 parameter set: ANLsh Wi-Fi name
Tag Musber: 5510 parameter set (8) ‘

Tag leagth: 5
SSID: AMish

v ¥ TIBT, 5. 5187, L. Oy 0, : 18, treec]
Tag lumber: Supperted Rates (1) {

Tan lanoth- B

To perform a wireless packet capture using tcpdump, execute the following command. The
tcpdump with -I option will turn the monitor mode on:

bash $ tcpdump -I -P -i en0@ -w 802.11.pcap
The output obtained is as follows:

tcpdump: WARNING: enO: no IPv4 address assigned

tcpdump: listening on enO, link-type IEEE802_11_ RADIO (802.11 plus radiotap
header), capture size 65535 bytes

NC52 packets captured

52 packets received by filter

Analyzing the Wi-Fi networks

When analyzing a Wi-Fi network, it’s important to go through the IEEE standard 802.11
as the source of truth as this is one of the most interesting protocols to gain a expertise on.

Wireless networks are different from a wired LAN: here the addressable unit is a station
(STA), and the STA is the message destination not the fixed location when the packet is
transferred to the STA.

Within the scope of the book, we are dealing with packets captured between the WNIC
controller and the access point. The access point (AP) contains one station (STA) and
provides access to the distribution. In this book, we will see the how Wireshark has
provided display filters for analyzing Wi-Fi frames:

wlan: This displays IEEE 802.11 wireless LAN frame

wlan_ext: This displays IEEE 802.11 wireless LAN extension frame
wlan_mgt: This displays IEEE 802.11 wireless LAN management frame
wlan_aggregate: This displays IEEE 802.11 wireless LAN aggregate frame

Frames

In Layer 2, datagrams are called frames; they show all channel traffic and a count of all
the frames received at the measuring STA. There are four types of frame, which are
defined in the following table:

Frame type [[Value||Wireshark display filter
Management||0x00 [jwlan.fc.type == 0 |
Control 0x01 [wlan.fc.type == 1 |
Data 0x02 [lwlan.fc.type == 2 |
Extension [||0x03 |jwlan.fc.type == 3 |

Let’s take a detailed look at these frames one by one.

Management frames

Wireshark uses the wlan_mgt display filter to show all the management frames. In line
with the IEEE 802.11 standard, the following management frames are defined and their
corresponding values, with appropriate Wireshark display filters, are shown in the
following table:

Name Value||Wireshark display filter |
association request ~ [|0x00 [jwlan.fc.type_subtype == 0x00
association response ||0x01 [jwlan.fc.type_subtype == 0x01
reassociation request [|0x02 |wlan.fc.type_subtype == 0x02

reassociation responsef|0x03 |lwlan.fc.type_subtype == 0x03
probe request 0x04 |wlan.fc.type_subtype == 0x04
probe response 0x05 [wlan.fc.type_subtype == 0x06
measurement pilot 0x06 [wlan.fc.type_subtype == 0x06
beacon frame 0x08 ||wlan.fc.type_subtype == 0x08
atim 0x09 [jwlan.fc.type_subtype == 0x09
disassociation 0x0a |[wlan.fc.type_subtype == 0x0a
authentication 0x0b [|wlan.fc.type_subtype == 0x0b
deauthentication 0x0c [|wlan.fc.type_subtype == 0x0c
action 0x0d [lwlan.fc.type_subtype == 0x0d

0x0e

action no ack wlan.fc.type_subtype == OXOeJ

For example, by setting wlan.fc.type_subtype == 0x08, in the 802.11.pcap file, the
entire beacon frame will be displayed in Wireshark.

A beacon is a small broadcast data packet that shows the characteristics of the wireless
network, and provide information such as data rate (max data rate), capabilities
(encryption on or off), Access Point MAC address, SSID (wireless network name), RSN
information, vendor specific information, Wi-Fi protected setup, and so on, where:

e SSID is the name of the AP, for example: ANish
e BSSID is the MAC address of the AP, for example is 94:FB:B3:B8:DF:DD

Management frame display filter

| i
Fulter1|wlan.fc.t\'pe subtype == Ox08 |J Expression... Clear Save

I
TTam TTOTota! Jlnlo

SRR A AR AR 802,11 Beacon frame, SN=117, FN=8, Flags=,....... C, BI=100, S5ID=ANish m

fFiHf it f fF 8 F: 1F : ; OEE, vk

TRIRTRTRTNT 802,11 Beacon frame, SN=335, FN=8, Flags=........ C, BI=106, S5ID=belkin.3788 |

et ffft 1 11 802,11 Beacon frame, SN=120, FN=8, Flags=........C, BI=1808, SSID=ANish

Troffff ff ff 1 802.11 Beacon frame, SN=536, FN=8, Flags=........C, BI=100, S5ID=belkin.3788 3
|+ E : L

b
¢ Radiotap Header vB, Length 25
- IEEE 862 .11 Beacon frame, Flags:C
Type/Subtype: Beacon frame (Ox8008)
¢ Frame Control Field: ©x8008
008 PODD 0000 BBOD = Duration: © microseconds
Receiver address: Tf:ff:ff:ff:ff . fF (Ff: 07 FF . FF:07.0F)
Destination address: ff:ff:ff:ff:FF:FF (FF:FFF1:FF:FF:) The Beacon Frame
Transmitter address: 94:fb:b3:b8:df:dd (94:fb:b3:b8:df:dd)
Source address: 94:fb:b3:bB8:df:dd (94:fb:b3:b8:df:dd)
BSS Id: 94:fb:b3:b8:df:dd (94:fb:b3:b8:df:dd)
Fragment number: @
Sequence number: 118
¢ Frame check sequence: 8xdbc7BRac [correct] |
~ TEEE 862,11 wireless LAN management frame i
¢ Fixed parameters (12 bytes)

SSID is name of the AP
v Tag: SSID parameter set: ANish

b Tag: Supported Rates 1(B), 2(B), 5.5(B), 11(B}, 6, 9, 12, 18, [Mbit/sec]
b Tag: DS Parameter set: Current Channel: 7

¥ Tag: Traffic Indication Map (TIM): DTIM @ of B bitmap

I Tag: ERP Information |

}

In another example, the wlan_mgt.ssid == "ANish" display filter will display all
management frames whose SSID matches with ANish.

Data frames

Data frames carry the packets that can contain the payload (such as files, screenshots, and
so on). Type values for data frames used in 802.11 and their corresponding Wireshark
display filters are shown in the following table:

Name Valuel|Wireshark display filter |
data 0x20 |lwlan.fc.type_subtype == 0x20
data + cf-ack 0x21 |llwlan.fc.type_subtype == 0x21
data + Cf-poll 0x22 llwlan.fc.type_subtype == 0x22

data + cf-ack + cf-poll wlan.fc.type_subtype == 0x23

null function wlan.fc.type_subtype == 0x24

no data cf-ack wlan.fc.type_subtype == 0x25

no data Cf—poll wlan.fc.type_subtype == 0x26

no data cf-ack + cf-poll wlan.fc.type_subtype == 0x27

gos data wlan.fc.type_subtype == 0x28

wlan.fc.type_subtype == 0x29

qos data + cf-ack

0x2a |lwlan.fc.type_subtype == 0x2a

gos data + cf-poll

0x2b |lwlan.fc.type_subtype == 0x2b

qos data + cf-ack + cf-poll

0x2c |lwlan.fc.type_subtype == 0x2c

gos null

0Ox2e |lwlan.fc.type_subtype == 0x2e

no data qos cf-poll

0x2f [lwlan.fc.type_subtype == ox2f

qos cf-ack + cf-poll

For example, wlan.fc.type_subtype == 0x2A will display all the packets that contain
QoS Data + CF-Poll in the packet capture file 862.11.pcap, as shown in the following
screenshot:

Data Frame filter Subtype 0x2a

Filver i |w|an.rt.!\-pe_sub!\-pe == Ox2A I _I Expression.. Clear Save

Time Source Destination Protocol Infa

3998 6c:48:5¢: fh: 17:43 ab6:cd:a2:36:60:04 802.11 0oS Data + CF-Poll, SN=1208, FN=B, Flags=.p..RMFT.

|p

» Radi gth 25
IEEE B02.11 QoS Data + CF-Poll, Flags: .p..RMFT.
| Type/Subtype: QoS Data + CF-Poll (0xB82a) <— QoS Data + CF-Pall |
¥ T |
|

Duration/ID: 14396 (reserved)
Receiver address: 6f:43:8a3:65:1f:7¢ (6f:43:8a:65:1f:7c)
Transmitter address: 93:7d:43:19:16:21 (93:7d:43:18:16:21) !
Destination address: aG:cd:a2:38:60:04 (a6:cd:a2:38:60:04)
Fragment number: 8 |
Sequence number: 1208
Source address: Gc:48:5c:fb:f7:43 (6c:40:5c:fb: f7:43) !
¢ Frame check sequence: Bxb488955e [incorrect, should be BxdaSabife]
* Oos Control; Bx@50e i |
¢ TKIP/CCMP parameters <= Enoryption Masthed
- Data (1184 bytes) |
Data: 1e84191ccfbed@OeldsfIe878da5ded62b83e6ffbbazocde. .. g QOS data
[Length: 1184] |

Control frames

Control frames exchange data frames between stations. Control frame ranges are 0x160 -

0x16A for control frame extensions where type = 1 and subtype = 6. Values for control
frames and the corresponding Wireshark display filters are shown in the following table:

Name Value

Wireshark display filter |

vht ndp announcement

0x15 ||wlan.fc.type_subtype == 0x15

poll wlan.fc.type_subtype == 0x162

service period request wlan.fc.type_subtype == 0x163

grant wlan.fc.type_subtype == 0x164

dmg clear to send wlan.fc.type_subtype == 0x165

dmg denial to send wlan.fc.type_subtype == 0x166

grant acknowledgment wlan.fc.type_subtype == 0x167

sector sweep wlan.fc.type_subtype == 0x168

sector sweep feedback 0x169|[wlan.fc.type_subtype == 0x169
sector sweep acknowledgment||Ox16a|jwlan.fc.type_subtype == 0x16a
control wrapper 0x17 [wlan.fc.type_subtype == 0x17

block ack request 0x18 |[wlan.fc.type_subtype == 0x18

block ack 0x19 [lwlan.fc.type_subtype == 0x19

power-save poll Oxla [|wlan.fc.type_subtype == 0xla |
request to send 0x1b |[wlan.fc.type_subtype == 0x1b |
clear to send 0Ox1c |wlan.fc.type_subtype == 0xlc |
acknowledgement 0x1d |wlan.fc.type_subtype == 0x1d |
contention-free period end Oxle |wlan.fc.type_subtype == Oxle |
contention-free period end/ackf|Ox1f [jwlan.fc.type_subtype == 0x1f |

802.11 auth process

The AP advertises its capabilities in a Beacon frame; the client (STA) broadcasts itself,
using its own probe request frame, on every channel—typically (channel 11). By doing
this, it determines which access points are within range.

Probe response frames contain capability information, supported data rates and so on, of
the AP after it receives a probe request frame.

The STA sends an authentication frame containing its identity to the AP. With open system
authentication (the default), the access point responds with an authentication frame as a
response, indicating acceptance (or rejection).

Shared key authentication requires WEP (64-bit or 128-bit) keys, and the same WEP keys
on the client and AP should be used. The STA requests a shared key authentication, which
returns unencrypted challenge text (128 bytes of randomly generated text) from the AP.
The STA encrypts the text and returns the data to AP, the AP response indicating
acceptance (or rejection).

The STA sends an association request frame to the AP containing the necessary
information and then that the AP will send an Association response frame that includes
acceptance (or rejection). If this is accepted, the STA can utilize AP to access other
networks:

Client AUTH Process

e
P S N
B
.{_ —
—
{_ —
—_—

802.1X EAPOL

IEEE802.1x is based on Extensible Authentication Protocol (EAP), which is an
extension of PPP (Point-to-Point Protocol), also known as “EAP over LAN” or EAPOL.

The IEEE 802.11 Working Group passed the 802.1x standard in 2001 to improve upon the
security specified in the original 802.11 standard (IEEE, 2001).

Open the 802.11-AUTH-enabled. pcap file in Wireshark and use the display filter eapol to
display all the eapol messages only, as shown in the following screenshot. In the eapol
packets, the session key of the device and the AP are handled.

As shown in the screenshot, all eapol packets are captured as 1 of 4, 2 of 4, 3 of 4, and 4
of 4.

The eapol packets are needed if you are trying to decrypt 802.11 traffic. The Wireshark
wiki link https://wiki.wireshark.org/HowToDecrypt802.11 is an excellent source of
information on how to decrypt traffic with the help of Wireshark.

Wireshark eapol filter

FIH!:[[|ca1:lol I J Expression... Clear Save
Time i Source |Du1lm|rlnl1 |Frntum| |Info

414 98:27:9a:48. 21 :4f eB:de:27:59:72:06 EAPOL Key (Message 2 of 4)

416 e8:de:27:59:72:06 98:e7:92:48:27:4€ EAPOL Key (Message 3 of 4)

424 98:27:9a:48:27;4f eB:de:27:59.:72:06 EAPDL Key (Message 4 aof 4)
pe———————— d :
¢ Frame 412: 137 bytes on wire {1096 bits), 137 bytes captured (1696 bits) =
~ IEEE 862,11 Qo5 Data, Flags:F.

Type/Subtype: QoS Data (Bx@828)

¢ Frame Control Field: 8x8882
.08 9089 1100 1818 = Duration: 282 microseconds
Receiver address: 98:e7:9a:48:2f1:41 (98:e7:9a:48:21:41)
Destination address: 98:e7:9a:48:21:4f (98:e7:9a:48:27:41)
Transmitter address: e8:de;27:59:72:06 (eB:de:27:59:72:06)
BSS Id: eB:de:27:59:72:06 (eB:de:27:59:72:06)
Source address: eB:de:27:59:72:06 (e8:de:27:59:72:06)
Fragment number: @
Sequence number: @ i

® Qos Control: ©xDeoe Link Layer

b Logical-Link Control
= B0z 1X Authentication

Version: 802.1X-2081 (1)
Type: Key (3)
Length: 95
Key Descriptor Type: EAPOL WPA Key (254)

b Key Information: Ox888a
Key Length: 16
Replay Counter: 1

https://wiki.wireshark.org/HowToDecrypt802.11

The 802.11 protocol stack

The 802.11 standard specifies a common medium access control (MAC) layer (the data
link layer) that supports the operation of 802.11-based wireless LANs. The 802.11 MAC
layer uses an 802.11 Physical (PHY) layer, such as 802.11a/b, to perform the tasks of
carrier sensing, transmission, and receiving 802.11 frames.

Open the packet capture file 862.11-AUTH-Disabled.pcap in Wireshark and set the
display filter to wlan.da==e8:de:27:59:72:06 to view how the data is carried using
802.11 as the transport medium.

The 802.11 QoS data frames shows that the LLC header follows IEEE 802.11; this is what
is expected in the monitor mode.

The captured 802.11 looks like an Ethernet packet as the 802.11 adapter will often try to
transform data packets into fake Ethernet packets and then supply them to the host.

Wirezhark Display Filter AP MacAddress

codmd rRixyYa+swTF2EE Qcar @08 B

F|Jurﬂwhn.da--!!:d&:2?'59:?2115 I' |Expre:s|on... Clear Save |

|

Time | Source | Destination | Protocol |info =
981 192.168.1.182 192.168.1.1 TCP 6538688 [ACK] Seq=-2019197508 Ack-404693614 Win=65535 Lan=-0

] B5386.-80 [ACK] Seq=20109107508 Ack-904603892 Win-65535 Lan=0 E

989 192.168.1.182 192.168 1.
1816 192.168.1.182 192 .168.1.

b
-3
=

|

GET /Images/th3.giT HITR/L.1
TCP 6538888 [ACK] Seq=2208777522 Ack=405100118 Win=65535 Len=0

b Frame 986: 133 bytes on wire (1064 bits), 133 bytes captured (1064 bits)
b Radiotap Meader w0, Lenpgth 59
= JEEE 802.11 0o5 Data, Flags:T
Type/Subtype: QoS Data (Ox0D28)
b Frame Control Field: OxB&D1

€00 0OGD 0011 00O = Duration: 48 microseconds TCP Data Carried over the Wifi Network the stack
Receiver address: eB:de:27:59:72:06 (eB:de:27:59:72:06) 2

B55 Id: eB:de:27:59:72:06 (eB:de:27:59:72:06) 1. Rﬂdlﬂtﬂp Header

Transmitter address: 28:cf:.e9:le:df:ad (28:cf:e9:le:df:ad) 2. |EEE 802.11 QoS Data

Source address: 28:cf:e9:le:df:a9 (28:cf.e9:le:df:09) 3. Logicm-Link_ Control

Destination address: e8:de:27:59:72:06 (e8:de:27:59:72:86}
Fragment number: B
Sequence number: 542 5 TCP

|

|

|

|

4. lpvd |

b Qos Control: Gx0008 ‘
|

|

= Llogical-Link Control
b DSAP: SMAP (Bxaa)
P SSAP: SMAP (Bxaa)
b Control field: U, func=UI {(Bx83)
Organization Code: Encapsulated Ethernet (8x000060)
Type: IP {0xB808}

»
b Transmission Control Protocol, Src Port: 65386 (65386), Dst Port: 80 (BO), Seqg: 2019197508, Ack: 494503892, Len: O

Wi-Fi sniffing products

There are other commercial (as well as open source) tools that use a form of Wi-Fi
sniffing depending on the operating system and uses cases (such as WEP decryption,
advance analytics, and geo location). A few of them are listed as follows:

o Kismet (https://www.kismetwireless.net/documentation.shtml): Kismet can sniff
802.11a/b/g/n Wi-Fi traffic.

¢ Riverbed AirPcap (http://riverbed.com): The Riverbed AirPcap adapter is used to
capture and analyze 802.11a/b/g/n Wi-Fi traffic and is fully integrated with
Wireshark.

¢ KisMac (http://kismac.en.softonic.com/mac?ex=SWH-1740.2) for Mac OS X:
KisMac offers many of the same features as Kismet and is considered as NetStumbler
for Mac. Mac users can find utility tools such as airport ID, airport utility, and Wi-Fi
Diagnostics, for sniffing and diagnosing Wi-Fi networks.

e NetStumbler (http://www.netstumbler.com): This is used for Wi-Fi analysis.

Note

For more information, you can visit the following links:

https://wiki.wireshark.org/CaptureSetup/WLAN
https://en.wikipedia.org/wiki/IEEE_802.11
https://wiki.wireshark.org/HowToDecrypt802.11
https://www.wireshark.org/tools/wpa-psk.html

https://www.kismetwireless.net/documentation.shtml
http://riverbed.com
http://kismac.en.softonic.com/mac?ex=SWH-1740.2
http://www.netstumbler.com
https://wiki.wireshark.org/CaptureSetup/WLAN
https://en.wikipedia.org/wiki/IEEE_802.11
https://wiki.wireshark.org/HowToDecrypt802.11
https://www.wireshark.org/tools/wpa-psk.html

Summary

In this chapter, we have covered Wi-Fi capture setup and discussed exactly what the
monitor mode is and its pros and cons. We have also learned how the various display
filters are used on the Layer 2 datagram (frames). In the next chapter, we will explore
network security and its mitigation plans in greater detail.

Chapter 7. Security Analysis

In the previous chapters, we learned more about protocols and their analysis techniques. In
this chapter, we will learn how Wireshark helps us perform a security analysis and try to
cover the security aspects in these area application and network by covering these topics:

The Heartbleed bug

DoS SYN flood/mitigation

DoS ICMP flood/mitigation

Scanning the network

ARP duplicate IP detection (MITM)

DrDoS introduction

BitTorrent source identification

Wireshark endpoints and protocol hierarchy

Heartbleed bug

The Heartbeat protocol (RFC6520) runs on top of the Record layer protocol (the Record
layer protocol is defined in SSL).

The Heartbleed bug (CVE-2014-0160) exists in selected OpenSSL versions (1.0.1 to
1.0.1f) that implement the Heartbeat protocol.

This bug is a serious vulnerability that allows attackers to read larger portions of memory
(including private keys and passwords) during Heartbeat response.

The Heartbleed Wireshark filter

The Heartbeat protocol runs on top of the Record layer identified as record type (24) in
SSL/TLS. In Wireshark, a display filter ss1.record.content_type == 24 can be used to
show the HeartBeat message. Heartbeat messages are Heartbeat Request and HeartBeat
Response.

Heartbleed Wireshark analysis

Open the heartbleed.pcap packet capture file in Wireshark and set the display filter to
ssl.record.content_type == 24.

Wireshark will display only encrypted heartbeat messages. The first one is the Heartbeat
Request message. In this message, the length (ss1.record.length == 112) of the
Heartbeat Request is set to 112 bytes, as shown in the screenshot:

1. Wireshark Heartbeat Protocol Filter

| ') 2. Heartbeat R t
§FitterI|ssi.recmd_mntent_l\rpe mw 24 j_l Expression... Clear Bave SETEESE: TeRues
[No. Time | Source | Destinatior Info
52.1.96.117 10.0.0.3 1] “Tlsvl.2 Encrypted Heartbeat

H_'.I;HSH
16 6,162695 10.8.8.3 32.1.98.117 TLSvl1.2 Encrypted Heartbeat
- - 3. Heartbeat Response .
|4 -
[b Frame 15: 183 bytes on wire (1464 bits), 1B3 bytes captured (1464 hxts:"
ib Ethernet I1, Src: fa:16:3e:23:d3:fl (fa:16:3e:23:d3:fl), Dst: fa:16:3e:ac:bB:fa (fa:l6:3e:ac:b9:fa)
|» Internet Protocol Versien 4, Src: 52.1.90.117 (52.1.96.117), Dst: 10.9.8.3 (10.0.0.3)
|¢ Transmission Control Protocol, Src Port: 49578 (49578), Dst Port: 443 (443), Seq: 1136955684, Ack: 663866918, Len: 117
|= Secure Sockets Layer
| = TL5v1.2 Record Layer: Encrypted Heartbeat
Content Type: Heartbeat (24)
[Yersion: TLS 1.2 (0Gx0303)

Encrypted Heartbeat Message

|[6B68 fa 16 3e ac b9 fa fa 16 3e 23 d3 f1 GB 08 45 00 - =#. .. .E.
0618 0O a% 54 39 40 80 33 06 5a 9d 34 01 5a 75 Oa 40 ..T8@.3, Z.4.2u,

00208 08 03 cl aa 61 bb 43 c4 91 24 27 91 ce 26 80 18 PRSI RIS SO - T
@630 00 e bb aT 90 00 @1 @1 ©3 ©a 01 a5 cb ed 00 15 E e i he i
0040 18 36 ! i 65 a .6

|@e50 25 4 bb a

(@068

a7 } 41 i ebh a

|aoaa 4 ed 4 13 e 13 df |

lpage &3 e | T E G7 AT ° . T .

@0ad

|00be

Whenever a Heartbeat Request message is send to the server, the server answers with a
corresponding Heartbeat Response message.

In the given packet, the Heartbeat Response length (ssl.record.length == 144)is set to
144, which means the server has returned more data (32-bytes more) than expected. This
extra information is known as the heartbleed; this bleed may contain sensitive information
such as passwords and private keys:

Wireshark filter

Filwllssl'.te:ord.cnntent_me == 24 ;I Expression... Clear Apply Save
No. [T:'me ISouru IDestinuHon Protocol Info
15 0.102574 52.1.90.117 10.0.9.3 TLSvl.2 Encrypted Heartbeat
16 B.182695 8.8, 52.1.98.117 TLS¥1.2 Encrypted Heartbeat
Heartbeat Response
< : I

b Frame 16: 215 bytes on wire (1720 bits), 215 bytes captured (1720 bits)
b Ethernet II, Src: fa:16:3e:ac:b9:fa (fa:16:3e:ac:b9:fa), Dst: fa:16:3e:23:d3:fl (fa:16:3e:23:d3:f1)
¢ Internet Protocol Version &, Src: 190.0.0.3 (16.0.8.3), Dst: 52.1.90.117 (52.1.98.117)
P Transmission Control Protocol, Src Port: 443 (443), Dst Port: 49578 (49578), Seq: 663866918, Ack: 1136955801, Len: 149
= Secure Sockets Layer
= TLSv1.2 Record Layer: Encrypted Heartbeat
Content Type: Heartbeat (24)
Version: TLS 1.2 (0x8383)
Heart bleed happen, as more data is returned from the server

Encrypted Heartbeat Message

The Heartbleed test

To test the heartbleed, use the following steps:
1. Install OpenSSL version (1.0.1c) from the openss1 library:

[bash]# openssl version
OpenSSL 1.0.1c 10 May 2012

2. Create a self-signed SSL certificate:

[bash #]openssl req -sha256 -new -newkey rsa:2048 -nodes -keyout
./server.key -out ./server.csr -subj "/C=PU/ST=Anish/L=Test/0=Security
Analysus /0OU=Heartbleed/CN=myhost.com"

[bash #]openssl x509 -req -days 365 -in server.csr -signkey server.key
-out server.pems

3. Start the TLS server using the affected version of OpenSSL.:

[bash]# openssl s_server -www -cipher AES256-SHA -key ./server.key -
cert ./server.pem -accept 443

4. Start the packet capture:

[bash]# tcpdump port 443 -s0 -w heartbleed.pcap &

If the SSL/TLS server is reachable through the public network, online filippo can be used.
Other tools (such as Heartbeat Detector, which is a shell script) can also be used for this
purpose:

e Heartbleed Detector: https://access.redhat.com/labsinfo/heartbleed
e Heartbleed online test: https://filippo.io/Heartbleed/

https://access.redhat.com/labsinfo/heartbleed
https://filippo.io/Heartbleed/

Heartbleed recommendations

The following are Heartbleed recommendations:

e Apply the patches as recommended in the OpenSSL advisory
e Change the passwords if the vulnerability is addressed.

The DOS attack

This technique is used to attack the host in such a way that the host won’t be able to serve
any further requests to the user. Finally, the server crashes, resulting in a server
unavailable condition.

There are various attack techniques used in this topic. We will cover SYN flood and ICMP
flood detection with the help of Wireshark.

SYN flood

We learned about the TCP handshake process in Chapter 3, Analyzing the TCP Network.
In this handshake process, a connection is established with SYN, SYN-ACK, and ACK
between the client and server.

In the SYN flood attack scenario, what is happening is that:

e The client is sending very fast SYN; it has received the SYN-ACK but doesn’t
respond with the final ACK

e Alternatively, the client is sending very fast SYN and blocking the SYN-ACK from
the server, or the client is sending very fast SYN from a spoofed IP address so the
SYN-ACK is sent to an unknown host that virtually doesn’t exist

In all these scenarios, the TCP/IP stack file descriptors are consumed, causing the server to
slow down and finally crash.

Open the SYN_FL0OOD. pcap packet capture file in Wireshark and perform the following
steps:

1. Click on Statistics | IO Graph.
2. The IO Graph dialog box will appear.
3. Generate four graphs for the TCP handshake message SYN, ACK, FIN, and PUSH.

The 10 graph statistics show the following summary:

e The TCP connection never closes as there is no count for tcp.flags.fin

e The TCP connection never exchanges any data as there is no count for
tcp.flags.push

e The count of SYN packets is very high

e The count of ACK is half of that of the SYN packets

In real scenarios, this data will be mixed up with actual packet flows, but the analysis
technique will remain the same. The moment you see an unexpected growth in SYN
packets or a spike in SYN packets, it’s a SYN flood from DoS or from the multiple-source
DDoS.

File Edit View Co Capture Anal

; e 50000
e ® 4 W 2
| SYN Flood Detection
Filter: |
' - 25000
10.000000 10.0.0. 1| .
2 6.000851 10.6.8 i N A
3 0.000072 16.6.0 ,lhﬁ\ﬁ-ifffﬁ- . 0
4 p.000079 10.0.06 Plot the Graph for handshake Os 205
5 B.000682 18.8. 84 «F—————Communication} . 1
6 0.000888 18.0.84 Graphs X Axis
7 b.boge9l 10.8.8
7] : : SyN== =]
8 0.000299 15.9.8 Graph 1 |Color [¥IFjlter: |{tcp.flags.syn==1 |Style: Line Smooth| Tick interval: 1 sec -
9 6.000309 10.0.8!||Graph 2 |Color [Filter: ||tcp.flags.ack==1 |[Style: Line & Smooth | Pixels per tick 5 =
16 8.600326 18.98.8 T - i O View as time of da
r [== = ¥
11 6.000333 10.0.0 Graph 3 [IFilter: || tcp.flags.fin Style: Line E Smooth e
12 0.000336 10.0.8{||Graph 4 |Color |?_Zﬂlter:! tcp.flags.push==1 |Style: Line E Smooth : _
_ Unit Packets/Tick =
L 130000341 18.0.94' . \oh s 1 MFilter: | Style: Line E Smooth
' 1 P - ; Y Scale: Auto -
P Frame 1: 54 bytes on wire (:
Smooth Mo filter -
¢ Ethernet II, Src: fa:16:3ed
¢ Internet Protocol Version 4 .,
| It Hel C Cl s
b Transmission Control ProtoCeaaman Sy ¥ Close | [adsave

SYN flood mitigation

SYN attacks can be mitigated. The following are a few mitigation plans:

e TCP/IP stack hardening: The operating system decides how many times SYN,
SYN-ACK, ACK will be repeated; lowering the SYN,ACK retries will help the
server mitigate SYN flood attacks. A SYN cookie is used to resist SYN flood attacks.

To perform all these on Linux systems, edit the /etc/sysctl.conf file and make

changes to these entries:

#Prevent SYN attack, enable SYNcookies (they will kick-in when the

max_syn_backlog reached)
net.ipv4.tcp_syncookies = 1
net.ipv4.tcp_syn_retries = 2
net.ipv4.tcp_synack_retries = 2
net.ipv4.tcp_max_syn_backlog = 4096

Increase the tcp-time-wait buckets pool size to prevent simple DOS

attacks

net.ipv4.tcp_max_tw_buckets = 1440000

e Restart sycltl to apply the changes:

bash#sysctl -p

o [Ptables firewalls can be set to deny the IPs that are causing the problem. To generate
the firewall rules, use the Wireshark feature generating Firewall rules to drop the

traffic that is causing DoS.
e For example, blocking the traffic causing the DoS:

Netfilter (iptables)

iptables -A INPUT -i eth® -d 10.0.0.3/32 -j DROP
I Cisco IOS (standard)

access-list NUMBER deny host 10.0.0.3

IPFirewall (ipfw)

add deny ip from 10.0.0.3 to any in
Windows Firewall (netsh)
add portopening tcp 443 Wireshark DISABLE 10.0.0.3

Ports opened to the external world should be audited.

Monitoring by creating alerts on the spikes that show unhealthy trends on the
network which can result in the DoS scenario; generate the firewall rule dynamically
and apply it on the targeted VM.

Network ACLs block the traffic at the router level; introduce the IDS/IPS system to
the network.

Use the loadbalancer as the connection off-loader. In this case, if an attack happens, it
will happen on the loadbalancer. The VM will remain protected. Most of the
commercially available loadbalancers have the ability to defend themselves from this
type of attack.

Rate-limiting the SYN per second per IP.

Put DoS/DDoS protection on the data center edge router (L2).

Apply multiple levels of detection and knowing the signatures and attributes of
suspected traffic locations.

Prepare mitigation plans.

ICMP flood

Internet Control Message Protocol (ICMP) flood is also categorized as a Layer 3 DoS
attack or a DDoS attack. It works as follows: an attacker is trying to flood the echo request
(ping) packet with a spoofed IP address or the server is flooded with echo requests (ping
packets) and not able to process the echo response for each ICMP echo request, resulting
in host slowness and denial of service.

Open the 1CMP_Flood_01.pcap packet capture file in Wireshark and perform the following
steps:

1. Click on Statistics | IO Graph.
2. The IO Graph dialog box will appear.
3. Generate graphs for ICMP and ICMPv6.

As shown in the screenshot, ICMP flood has the following characteristics:

e The IO graph shows a large number of ICMP packets: nearly 80K ping requests in a
short period of time
e The packet capture doesn’t have the echo reply message

This is sample data; in real environment it may vary as attackers are also learning and
finding new ways to perform ICMP DoS.

Filter'l j[nplession...
No. Time Source Destination
1 0.000000 10.0.89,! 16.0.0.4 Bque s’
2 8,999972 16.8.8.5 16.8.0.4 request
3 2.000051 10.8.8.5 16.0.0.4 request
4 2,99997a 18-A-8.--& 16804 request
5 3.9999¢ a8 % Wireshark 10 Girapha: ICMP_Flood 01 peag Cenlisat
624, 5031 request
7 245083 request
824, 593? ICMP Flood BOK ICMP request request
9 24,5883 request
16 24, 5'5'5% request
11 24.5883 request
12 24588 request
=T by
13 24,508 0s 208 40s _Echn (ping) request
‘. B ICMP-&ICMP.E: filter > y
b Frame 1: 98
b Ethernet II, Craphs X Axis)
b Internet PrafGraphl Color ¥ Fiiter [[iemp tyle: Line = |E1 Smooth |Tick interval: 1 sec ol
Internet Con Graph 2 Color ¥ Filter: [|icmpv6 E!‘.tyle. Line = |E Smooth | Pixels per tick 5 =
Graph 3[Color (M Filter: Style: Line ~ | @ smooth | View as time of day
A = _—_—— ¥ AX|s
Graph 4 |Color [Filter | Style: Line ~ | Smoath : 2
= — Unit: Packets/Tick
Graph §) File Style: Li BS th |
rap ilter tyle: Line b moo scale: P =
Smooth: No filter -
Hbelp | copy Nclose | Esave |

ICMP flood mitigation
The following are a few mitigation plans for the ICMP flood attack:

¢ OS hardening: On the host machine (production environment) disable the ICMP and
ICMPv6 protocol through the iptables firewall:

bash# iptables
bash# iptables
bash# iptables
j ACCEPT

bash# iptables
0/0 -i etho -j
bash# iptables
etho

-j ACCEPT

-I INPUT -p icmp --icmp-type
-A OUTPUT -p icmp -o etho -j
-A INPUT -p icmp --icmp-type

-A INPUT -p icmp --icmp-type
ACCEPT
-A INPUT -p icmp --icmp-type

8 -j DROP
ACCEPT

echo-reply -s 0/0 -i etho -

destination-unreachable

time-exceeded

bash# iptables -A INPUT -p icmp -i eth® -j DROP
bash# ip6tables -I INPUT -p icmpv6é -icmpv6-type 8 -j DROP
bash# ip6tables -I INPUT -p icmpvé -i ethO -j DROP

-s 0/0

-1

-S

TCP/IP stack hardening: by editing the sysctl.conf file and adding the following

entry in this file:

net.ipv4.icmp_echo_ignore_all = 1

Restart sycl1tl to apply the changes:

bash#sysctl -p

Rate-limiting on the Router level if ICMP/ICMPV6 traffic is allowed

The firewall should block the ICMP/ICPMv6 traffic on the router

SSL flood

This kind of attack happens on Layer 7 and it is difficult to detect in the sense that it
resembles legitimate website traffic. In Analyzing SSL/TLS, we learned about SSL and
the handshake process. The attacker can use the handshake against the system to create a
DoS/DDoS attack. As handshake involves larger exchange of message between client and
the server, for example, in case of one way auth total number of packet exchanges to
established a connection is approximate 12 (that is, 3 packets TCP handshake + 9 packets
SSL handshake = 12 packets exchanged).

The attacker can flood the SSL. connection and make the server busy, to just establish the
connection and try to create the DoS/DDoS scenario.

Wireshark can help in identifying from which IP maximum number of packet has arrived.
This feature is called Wireshark Conversations, and can be used in any kind of flood
scenario (DoS attack).

Open the 1CMP_Flood_01.pcap packet capture file in Wireshark and perform the following
steps:

1. Click on Statistics | Conversations.

2. A conversation dialog box will appear as shown in the screenshot. An unusually
higher volume of traffic is generated from source B (10.0.0.5) to source A
(10.0.0.4), causing the network to slow down:

Fllter.l j Expression...
Mo, | Time |50urce |Deslinalior| lF’rolucoI |Inf0
2 0.999972 16.6.8.5 16.6.0.4 I1CHP Echo (ping} request 1d=0x0362, seq=2/512, ttl=54
o9 ® % Conwersations: ICMP_Fload_01.pcap A
| B4
| Ethernet:1] JFoon va: 1 [ipvefipx fixia INce rsvelscre] ree| Juoe juss wian] B4
| IPv4 Conversations |
| |
| Address A |Atldress B |Pﬂ(kets |B.l,'tes |Packet5 A=R |Bytes A=B |Packets A=—B IB',.I'te-i AR |P.e| Start Duration : |
| _.=
| 1 B4
e J_. B
b Fran Total Number of Packet Sent from I
|k Ethe |
: :"“‘1 10.0.0.5 -> 10.0.0.4 |
Lt | Statistics > Conversation
L ;)
[Mame resolution O Limit to display fFilter
M Help Copy ¥ ciose |

Other categories of Layer 7 attacks are HTTP/HTTPS PosST flood and HTTP/HTTPS GeT
flood.

Scanning

In this section, we will go over the basics of vulnerability scanning and verify what is
happening when the host scan is performed with the help of Wireshark.

Vulnerability scanning

Host discovery, port scanning, and OS detection are part of vulnerability scanning. During
this process, vulnerabilities are identified and addressed with a proper mitigation plan by
the security auditor. For example:

e The security auditor scans hosts to check that only allowed ports are open to the
external world

e The hacker scans the ports to find out which services are up and running, for example
during this host scan process if the DB ports are open to the outside world then the
DB system is compromised for attacks.

Open the host_scan.pcap file in Wireshark; the sample capture shows how the external
client is scanning the ports:

|.-,-|1E,;| Llhpr“:’i“"'“ Clear Apply: Say Scanned Server Ports 22,80,443

No. Destination Protocol

515.688672 122.172.240.212 .8.0. 4387380 [BYN] 5eq=2020596757 Win=1024 Len=0 H55=138ﬂ-
6 17.553811 122.172.248.212 .8.8. 43881 .80 [5YN] Seq=1795948317 Win=1024 Len=0 M55=1388

I Frame 7: 58 bytes on wire (464 bits), 5B bytes captured (464 bits)
b Ethernet II, Src: fa:16:3e:7b:Ba:67 (Ta:16:3e:7b:0a:67), Dst: fa:16:3e:bT7:22:d8 (fa:16:3e:bf:22:d0)
b Inte i Sr 172 2.172 8.6

During this process, a SYN packet is sent to the all the ports for common services on each
host, such as DNS, LDAP, HTTP and many more. If we get the ACK from the host, the host is
considered ACTIVE on that port.

The security auditor or hacker can use network scanner tools to get the port, host, and OS
information. For example, the nmap network utility command can be used to scan the
active/open ports:

1. Scan standard ports in the host:
bash# nmap -T4 -A -v 128.136.179.233
2. Scan all active ports in the host:

bash# nmap -p 1-65535 -T4 -A -v 128.136.179.233

The online nmap tool can be found at https://pentest-tools.com/network-vulnerability-
scanning/tcp-port-scanner-online-nmap.

https://pentest-tools.com/network-vulnerability-scanning/tcp-port-scanner-online-nmap

SSL. scans

SSL scans are done by different users (for example, security auditors and hackers) to
achieve their own objectives:

e The security auditor uses a SSL scanner to find the weakest cipher suites or
vulnerable SSL protocol versions present in the SSL server, to remove them

e The hacker uses a SSL scanner to hack the encrypted SSL communication by finding
weak cipher suites or vulnerable protocol versions in the SSL server

An example using the nmap command to find available ciphers and the supported protocol
version in a given server port 636 LDAP is as shown:

[root@ ~]# nmap --script ssl-cert,ssl-enum-ciphers -p 636 10.10.1.3To find
available ciphers and the supported protocol version in a given server port
443 HTTPS

[root@ ~]# nmap --script ssl-cert,ssl-enum-ciphers -p 443 10.10.1.3

ARP duplicate IP detection

Wireshark detects duplicate IPs in the ARP protocol. Use the arp.duplicate-address-

frame Wireshark filter to display only duplicate IP information frames.

For example, open the ARP_Duplicate_ IP.pcap file and apply the arp.duplicate-

address-frame filter, as shown in the screenshot:

Wireshark filter

1. Note all IP belongs to same MAC address

ARP Protocol
F|Iter'Halp.ﬂpll{:m—addrgss-frnm 4 | Expression... Clear * Save
Mo Time Source Destination | prbrocol Ilnfn

.8.8.8
4 0,018295 fa:16:3e:bf:22.:d0 fa:16:3e:4a;:18:eb ARP 10.8.8.8 13 at
6 0, 820602 fa:l6:3e:bf:22:d0 fa:l6:3e:7h:0a:67 ARP 10.82.8.8 is at
7 B.830883 Ta:16:3e:b7:22:d0 fa:l6:3e:19:5a: cc ARP 10.8.8.8 is at
9 8.841218 fa:l6:3e:bf:22:d8@ fa:l6:3e:19:5a:cc ARP 10.6.6.2 is at
16 6.841246 fa:l6:3a:bf:22:d8 fa:l6:3e:4a:18: a6 ARP 16.6.6.7 is at
11 0.051534 fa:l6:3e:bf:22:d8 fa:l6:3e:19:5a;:cc AR P 16.0.0,1 is at
12 B.851578 fa:16:3e:bf:22:d8 fa:l6:3e:7b:0a:67 ARP 10.8.8.7 is at
13 0. B61BA2 fa:16:3e:bf:22:d8 fa:16:3e:4a;:18: 86 AR P 10.6.8.8 1s at
15 8,872169 fa:l6:3e:bf:22:d0 fa:l6:3e:4a:18:e6 ARP 10.8.8.7 is at
16 8,872213 Ta:16:3e:b7:22:d0 Ta:16:3e:19:5a:cc ARP 16.6.8.2 is at
17 0.982435 fa:l6:3e:bf:22:d8 fa:l6:3e:da;:18:e6 ARP 10.6.68.1 is at
18 6.0882473 fa:l6:3e:bf:22:d8 fa:lb:3e:7b:Ba: 67 ARP 16.6.68.2 is at

(16:3e:bf:22:d0

{duplicate
(duplicate
(duplicate
(duplicate
(duplicate
(duplicate
(duplicate
(duplicate
(duplicate
(duplicate
(duplicate
(duplicate
(duplicate

use of
use of
use of
use of
use of
use of
use of
use af
use of
use of
use of
use of

npoooooDo oo ol
CECoROO00 0o ol

Pl Pl b e B3] e P B

b Frame 2: 42 bytes on wire (338 bits), 42 bytes captured (336 bits)

I Ethernet 11, Sre: fa:l6:3e:bf:22:d0 (fa:16:3e:bf:22:d0), Dst: fa:16:3e:19:5a:cc (fa:l6:

3e:19:5a:¢cc)

= [Frame ghowing earlier use of IP address: 1]

- [Duplicate IP address detected for 10.6.0.8 (fa:l6:3e:bf:22:d0} - also in uwse by fa:lG:

3e:52:0e:55 ([frame

1)1

~ [Expert Info (Warns/5equence): Duplicafe IF address configured [I0.B.6.8)]
[Puplicate IP address configured (19.9.0.8)]
[Severity level: Warn]
[Group: Seguence]

Seconds since earlier frame seen: 0]

= [Frame showing earlier use of IP addrass: 1]

= [Duplicate IP address detected for 18.8.0.7 (fa:16:3e:19:5a:cc)h - also in uwse by fa:l6:

Je-bf:22:d0 { frame

1)1

T [Experl Into [Warn/sequence): Duplicale IF address configured (19.0.0.77]
[Puplicate IP address configured (19.9.0.7)]
[Severity level: Warn]

Wireshark is providing the following information in this case:

e Usually duplicate IP addresses are resolved by the DHCP server. It has to be taken
seriously when it starts showing for every IP address in this case.
e All IPs have the same Sender MAC address: fa:16:3e:bf:22:d0 and shows as a

duplicate of that IP address.

e This could be ARP poisoning—a Man in Middle attack happening in the background.

DrDoS

Distributed Reflection Denial of Service (DrDoS), also known as UDP-based
amplification attacks, uses publically accessible UDP servers and bandwidth amplification
factors to overwhelm a system with UDP traffic.

Open the DrDos. pcap file. In this packet capture, a SYN packet is sent over a server IP
address with the victim’s source IP address; note the destination port is HTTP 80 and the
source port is NTP port 123, UDP. Now the server will respond with an ACK packet to the
source that in this case will be the victim’s IP address. If multiple servers were used, the
server will flood the victim (target) with ACK packets.

There are UDP protocols (DNS, NTP, and BitTorrent) that are infected by UDP-Based
amplification attacks. For more information on this, refer to alert TA14-017A published by
US-CERT: https://www.us-cert.gov/ncas/alerts/TA14-017A.

https://www.us-cert.gov/ncas/alerts/TA14-017A

BitTorrent

Wireshark supports the BitTorrent protocol. BitTorrent uses the Torrent file to download
the content from the P2P network. The content that gets download through these programs
is safe (depending on what kind of content is downloaded). Any download can contain
Trojans or viruses so (this recommendation goes for any protocol used) be careful,
especially when downloading any executable file or from unknown torrent URLs. All
downloaded files are subjected to a scan. Open the bittorrent.pcapng file in Wireshark
and check from that location that the content is getting downloaded.

Wireshark filter Many Destination for the same client

Filter:lbitturrent I w | Expression... Clear Apply 5#
No. |Time | source Destination Protocol

1 0. 000000000 192.168.1.101 85-171-83-282, rev.nunericable. fr BitTorrent

1 0.047445000 192.168.1.101 modescablelf9.28-82-70.nc. videotron. ca BitTorrent

3 0.202278000 152.168.1.181 anancy-653-1-698- 186, w32-138. aho.wanadoo. fr BitTorrent

4 0.557010008 152.158.1.181 128-79-253-112. . hfc.dyn.abo.bbox. fr BitTorrent

5 1.128973000 128-79-253-112 hfc.dyn abo.bbaosx.|192.168.1. 181 BitTorrent

6 1.129122000

8 1.13075%9000 192, 168.1.101 128-79-253-112.hfc.dyn.abo.bbox. fr BitTerrent

10 2. 155060000 192.168.1.101 nda:ableuﬁ.ﬁ-l?&-l.lc .videotron.ca BitTorrent

192.168.1.101 128-79-253-112 . hfc.dyn.abo.bbox. fr BitTorrent

11 2.4415330080 192,.168.1.101 225.223-67-87.ads1-dyn.1s5p.belgacon. be BitTorrent
12 3.079976000 192.168.1.101 modescablel85. 216- 161- 1684 .mc. videotron.ca BitTorrent
13 3.512956000 152.168.1.101 41,2683, 154.51 BitTorrent
14 3.994010808 192.168.1.101 172.16-134-109 . ads1-dyn.isp.belgacom.be BitTorrent
15 4. 170564008 172.16-134-189. ads1-dyn.isp.belg| 192.168. 1. 101 BitTerrent
16 4. 170806000 192.168.1.1081 172.16-134-109. ads1-dyn.isp.belgacom.be BitTorrent
17 4.342741000 172.16-134-109. ads1-dyn.isp.belg| 192.168.1. 181 BitTorrent
18 4.343794000 192.168.1.101 172.16-134- 109 adsl-dyn. isp.belgacom. be BitTorrent
19 4 365451800 152.168.1.181 16,174, 148.77. rev.sfr.net BitTorrent
20 4. 745460000 172.16-134-109. ads1-dyn.isp.belg) 192.168. 1. 101 BitTerrent
21 4, 783116000 192.168.1.101 172.16-134-109. ads1-dyn . isp.belgacom. be BitTorrent
21 5.230684000 192,168.1.101 aorleans-159-1-28-111.wl9-209, abo . wanadoo, fr BitTorrent

=
b Frame 3: 134 bytes on ware (1072 bits), 134 bytes captured (1072 bits] on interface @
I Ethernet II, Src: Apple le:df:a9 (28:cf:e9:le:df:a9), Dst: Shenzhen b8:df:de (94:fb:b2:b8:df:d@)
P Internet Protocol Version 4, Src: 192.168.1.101 (192,168.1.101), Dst: anancy-653-1-698-186.w92-138.abo.wanadoo. fr (92.138.200, 186)
I Transaission Control Protocol, Src Port: 49380 (493808), Dst Port: 37760 (37760), Seq: 964563004, Ack: 1831981839, Len: 68
= BitTorrent

Protocol Mame Length; 15

Protocol Mame: BitTorrent protocol

Reserved Extension Bytes: 00000200801000E5

5HAL Hash of info dictionary: 15b17bSd2abcid2b3176felf6325e9d645 1fdTac

The Wireshark BitTorrent dissector is able to decode the entire download process. To
check what the endpoints are from this source, do the following. Click on Statistics |
Endpoints; an Endpoint Window will appear:

BE AP A =0 M 0 &b XA IEB & 5 @ FEH K R 9
[LI 1. Client hag used 46 pachels ™ onomen.poapng i
I R e -
f ; Ethermet: 2|1 b Chan By [[k frsve [scii | raeaz] v oken kinn Juoe s wian| i
:"D' 1 G-rm: IPv4 Endpoints -
| 180444 Address IPach:ts lﬂms | Tx Packets]Tx Bytes |R|-c Packets |Ihe Bytes |Latitude }Lum;lrude | |
=4 (137 168 1101 3% 16774] 31 4 268 15 6 506 = ko
85-171-83-202 rev.numericable fr —_— T] 134 (] (] 1 134 - -
modemcable]09.20-82-70.me videotron.ca 1 122 [} o 1 122 - |
anancy-653-1-698-186.w92-138.abo wanadoo. fr 1 134 1] o 1 134 - [R
128-79-253-112 hfc.dyn.abo.bbox.fr [170 2 G50 4 520 -
e modemcablel 36 45-178-173.mc wvideotron.ca 1 134 1]] 1 134 -
1 3 uiied 225.223-67-87.ads|-dyn.isp.belgacom.be 1 |134] 0 1 134
13 3amey ModemcablelB5.216-161-184.me.videotron.ca 1 134 1] o 1 134
masies 41.203.154.51 1 134 1] o 1 134
M3 enl 172.16-134-109.adsl-dyn.isp .belgacom.be 2 &04 6 3813 L] a1 = -
54,1758 16.174.148.77.rev.sfr.net 1 134 0 o 1 134 -
68108 anrleans-159-1-28-111.w109-209.abowanadoo.fr 1 134 0 o 1 134 = [
e basl3-montreal02-1279363641.dsl bell.ca 5 fo4l 2 606 3 435 - - | P
w4 semqs 107.7-123-109.adsl-dyn.isp.belgacom.be 1 |134] 0 1 134 2 -
204 4548 50.83-128-100 adsl-dyn isp.belgacom be 2 c"',"l’ nt 1y 134 1] o 1 134 <
sama 28.209.27.109 revsfrnet Coming 7 |ass 3 763 4 625 5 =
| 11 5.25068 45.153.31.109.rev.sfr.net from 5 109 2 G674 3 435 - -
= -
b T D |le Name resohution Il"l Limit to display filter — |
| Ethernet 17, & S— |
b Internet Proted FiHelp | ;ap\rf i@l Map | 3 Close |
b Transmission Cg Ty —
= BatTarrent
Protecol Mame Length. 1§

Protacal Mame: BitTorrest pratocol
Feserved Extension Bytes. OOODGREHO010E0ES |
SHAL Hash of tafe dictismary: 1Sb1TESdZaBcBdib3 175 el fEI2S01dGR51TdTo:

Faar [0 4d3THOA 1A ITAETT 0T pRakERabdasdoiSatTd

As shown in the screenshot, Wireshark has obtained the following information:

1. Filter the protocol, in this case BitTorrent.

Select the Ipv4 TAB.

In this capture, name resolution is enabled.

The client (192.168.1.101) has downloaded 10744 bytes and the content is coming
from different geographical locations. Since the content was downloaded from
various sources, it is always advised to scan it before opening it.

W

Endpoint statistics are a nice Wireshark feature. Endpoints reveal information such as
outgoing connections for a given client. In this example, the client is connected to 16
different endpoint locations spread across different geographical locations. For any
suspicious traffic, use the filter option directly on the Endpoint window.

Note

Note: Wireshark will not notify or scan for a virus; it helps to analyze the virus.

Wireshark protocol hierarchy

This feature is very useful when dealing with what protocols are running on the server. To
find this, click on Summary | Protocol Hierarchy in the Wireshark menu. A protocol
hierarchy of the captured packets will open, as shown in the screenshot:

= i 100.00 %
@ Ethernet R TI T 15540 T 55512346 0.481] 0 0,000
= Internet Protocol Version 4 166243 55493642 0.481] 0 0,000
= User Datagram Protocol | s1.%%3 85607 [34.56 % 19243309 0.167 (1] 0 0,000
w Packet Cable Lawful Intercept - so1o6 [2590 % 14931606 0.129] 0 0.000
= Internet Protocol Version 4 | askiRA sl 59% 14039605 0.122 23359 4343361 0.038
La B 536% 472250 16.82 % 933158676 0.081 47225 4933I5ETE 0.081
ﬁlhrmtd Packet I | 2.80% 4668 064% 355436 0.003 46068 355436 0.003
VS5-Monitoring ethernet trailer 0.05 % 91 0.01% 4732 0.000 91 4732 0.000
= Internet Protocol Version & | 261 % 4351 155 % 862607 0.007 (] o 0.000
Internet Control Message Protocol | 1.76 % 2930 092 % 508974 0.004 2930 508974 0.004
b Internet Group Management Protocol 0.61 % 1016 052 % 286672 0.002 1004 283424 0.002
Malformed Packet 0.24% 403 012 % 66005 0.001 403 66005 0.001
Internet Protocol Version 4 0.00 % 2 0.00% 956 0.000 2 958 0.000
Malformed Packet 0.25 % 414 0.05 % 20394 0.000 414 293949 0.000
Domain Name Service 017 % 283 0.05 % 26178 0.000 283 26178 0,000
Metwork Time Protocal 0.02 % 28 0.00 % 2520 0.000 28 2520 0.000
Hypertext Transfer Protocol 0.01 % 14 0.00 % 2536 0.000 14 25316 0,000
Data 0.02 % 31 0.00 % 2666 0.000 i1 2666 0.000
QUIC (Quick UDP Internet Connections) || .09 % 5141 7.71 % 4277583 0.037 5141 4277583 0.037
MetBIOS Name Service 000 % 2 0.00 % 220 0.000 2 220 0.000
= Transmission Contral Protocol | a8 EE) 80630 36249686 0.314 33665 3799006 0,033
w Secure Sockets Layer B a3 46335 IIEEEE] 5 32190759 0.279 46277 32187569 0279
Unreassembled Fragmented Packet 0.03 % 58 0.01 % 3190 0.000 58 3190 0.000
Data 0.02 % 35 0.01% 7438 0.000 35 7438 0.000
= Hypertext Transfer Protocol 0.12% 194 0.36% 200841 0.002 132 135238 0.001
Line-based text data 0.02 % 32 0.06 % 32207 0.000 32 32207 0.000
Media Type 0.00 % 6 0.02 % 8934 0.000 6 8934 0.000
Compuserve GIF 0.00 % 1 0.00 % 403 0.000 1 403 0.000
JPEG File Interchange Format 0.00 % 1 0.00 % 1494 0.000 1 1494 0,000
—reiaite PP A e ne - e sitmns & non. a2 amam P

From the security point of view, it will give a high-level glance at all protocols that are
happening over the Ethernet system. Network administrators use this information to
harden the system configuration; for example, if the administrator found a DCE protocol
running in the production system, after seeing this protocol hierarchy he can raise an alarm
to stop this service.

Summary

Congratulation on completing this chapter and the book. So far, we have seen how
Wireshark helps to analyze network protocols such as TCP/IP, DHCPv6, DHCP, and
HTTP. We carried out a detailed analysis of the SSL/TLS protocol and WLAN setup
capture; then we explored security-related issues and their mitigation plans. We also tried
to be as practical as we can, and provided some real-time use case scenarios and their
mitigation plans.

In this book, we have also emphasized other effective tools for capturing the packets, such
as tcpdump and snoop. You should now be able to go forward and start analyzing other
protocols not covered in this book by using it as a reference.

Index

A

e 802.11 auth process

e}

about / 802.11 auth process

e alerts

e}

0O 0 0O o 0O O o o o o o o 0o 0O O O 0O 0o o o

e}

close_notify / Alert Protocol
unexpected_message / Alert Protocol
bad_record mac / Alert Protocol
decryption_failed / Alert Protocol
record_overflow / Alert Protocol
decompression_failure / Alert Protocol
handshake_failure / Alert Protocol
bad_certificate / Alert Protocol
unsupported_certificate / Alert Protocol
certificate_revoked / Alert Protocol
certificate_expired / Alert Protocol
certificate_unknown / Alert Protocol
illegal_parameter / Alert Protocol
unknown_ca / Alert Protocol
decode_error / Alert Protocol
decrypt_error / Alert Protocol
export_restriction / Alert Protocol
protocol_version / Alert Protocol
insufficient_security / Alert Protocol
internal_error / Alert Protocol
user_canceled / Alert Protocol
no_renegotiation / Alert Protocol

e ARP duplicate IP detection

e}

about / ARP duplicate IP detection

Berkeley Packet Filter (BPF)
o about / The capture filter options
Bit-Twist
o URL / Other packet analyzer tools
BitTorrent protocol
o about / BitTorrent
BOOTP/DHCP
about / BOOTP/DHCP
Wireshark filter / BOOTP/DHCP Wireshark filter
address assignment / Address assignment
capture DHCPv4 traffic / Capture DHCPv4 traffic

(e]

O O O

e Cain
o URL / Other packet analyzer tools
e (Capture Options
o packets, capturing with / Capturing packets with Capture Options
o Capture Filter options / The capture filter options
e client certificate
o about / Client certificate
e client certificate request
o about / Client certificate request
e (Client Hello message
about / Client Hello
structure / Client Hello
message / Client Hello
version / Client Hello
random / Client Hello
Session ID / Client Hello
cipher suites / Client Hello
compression methods / Client Hello
o extensions / Client Hello
e (Client Key Exchange message

o about / Client Key Exchange
e control frames / Control frames

(e]

O O O O O o o

data frames / Data frames
decode-as feature
o about / Decode-As
DHCP/BOQOT
o URL / References
DHE/ECHDE traffic
o decrypting / Decrypting DHE/ECHDE traffic
o forward secrecy / Forward secrecy
Diffie-Hellman (DHE) key exchange

o about / The Diffie-Hellman key exchange
o naming convention / The Diffie-Hellman key exchange
o URL / The Diffie-Hellman key exchange
displayed packet
o exporting / Exporting the displayed packet
Display filter references
o URL / References
Distributed Reflection Denial of Service (DrDoS) / DrDoS
Domain Name System (DNYS)
about / DNS
Wireshark filter / DNS Wireshark filter
port / Port
resource records / Resource records
traffic / DNS traffic
o URL / References
DOS attack
o about / The DOS attack
o SYN flood / SYN flood
o Internet Control Message Protocol (ICMP) flood / ICMP flood
o SSL flood / SSL flood
Dynamic Host Configuration Protocol for IPv6 (DHCPv6)
about / DHCPv6
Wireshark filter / DHCPv6 Wireshark filter
multicast addresses / Multicast addresses
UDP port information / The UDP port information
message types / DHCPv6 message types
message exchanges / Message exchanges
traffic capture / DHCPv6 traffic capture
URL / References

O O O O O

O O O O O O o o

EAPOL /802.1X EAPOL

EAP over LAN /802.1X EAPOL

Elliptic curve cryptography (ECC) / Elliptic curve Diffie-Hellman key exchange
Elliptic curve Diffie-Hellman cryptography (ECDHE) / Forward secrecy
Elliptic curve Diffie-Hellman key exchange

o about / Elliptic curve Diffie-Hellman key exchange
o URL / Elliptic curve Diffie-Hellman key exchange
Ettercap

o URL / Other packet analyzer tools
Extensible Authentication Protocol (EAP) / 802.1X EAPOL

F

o features, Wireshark
o decode-as / Decode-As
protocol preference / Protocol preferences
IO graph, using / The IO graph
TCP stream, following / Following the TCP stream
displayed packet, exporting / Exporting the displayed packet
o firewall ACL rules, generating / Generating the firewall ACL rules
Filter toolbar
o about / The Filter toolbar
o filtering techniques / Filtering techniques
o filter examples / Filter examples
firewall ACL rules
o generating / Generating the firewall ACL rules
forward secrecy
o about / Forward secrecy
o references / Forward secrecy
frames
about / Frames
management frames / Management frames
data frames / Data frames
control frames / Control frames

O O O o

O O O o

Heartbleed

O O O O O O

e}

bug / Heartbleed bug
Wireshark filter / The Heartbleed Wireshark filter

Wireshark analysis / Heartbleed Wireshark analysis
testing / The Heartbleed test

Detector, URL / The Heartbleed test

online test, URL / The Heartbleed test
recommendations / Heartbleed recommendations

HTTP

e}

e}

e}

e}

about / HTTP
Wireshark filter / HTTP Wireshark filter

use cases / HI'TP use cases
URL / References

HTTP, use cases

e}

e}

e}

top http response time, finding / Finding the top HTTP response time

packets finding, HTTP methods based / Finding packets based on HTTP
methods

sensitive information, finding in form post / Finding sensitive information in a

form post
HTTP status code, using / Using HTTP status code

HTTP protocol preferences

e}

about / Protocol preferences

initial sequence number (ISN) / Handshake message — first step [SYN
Interface Lists
o packets, capturing with / Capturing packets with Interface Lists
o interface names / Common interface names
Internet Control Message Protocol (ICMP) flood, DOS attack
o about / ICMP flood
o mitigation / ICMP flood mitigation
IO graph
o using / The IO graph

key exchange
o about / Key exchange
key exchange, types
o Diffie-Hellman (DHE) key exchange / The Diffie-Hellman key exchange
o Elliptic curve Diffie-Hellman key exchange / Elliptic curve Diffie-Hellman key
exchange
o RSA/RSA
KisMac

o URL / Wi-Fi sniffing products
Kismet

o URL / Wi-Fi sniffing products

management frames / Management frames

Maximum Segment Size (MSS) / Handshake message — first step [SYN]
medium access control (MAC) layer / The 802.11 protocol stack

message exchanges, Dynamic Host Configuration Protocol for IPv6 (DHCPvV6)

o about / Message exchanges
o four-message exchange / The four-message exchange
o two-message exchange / The two-message exchange
message types, Dynamic Host Configuration Protocol for IPv6 (DHCPv6) / DHCPv6

message types

N

e NetStumbler

o URL / Wi-Fi sniffing products
e No-Operation (NOP) / TCP header fields, Handshake message — first step [SYN]

O

¢ online nmap tool
o URL / Vulnerability scanning

802.11 protocol stack / The 802.11 protocol stack
packet analyzer

o tools / Other packet analyzer tools

o mobile packet capture / Mobile packet capture
packet analyzers

o uses / Uses for packet analyzers
Packet Bytes pane

o about / The Packet Bytes pane
packet capture process

o about / The Wireshark packet capture process
Packet Details pane

o about / The Packet Details pane
Packet List pane

o about / The Packet List pane
packets

o capturing / Guide to capturing packets
capturing, with Interface Lists / Capturing packets with Interface Lists
capturing, with Start options / Capturing packets with Start options
capturing, with Capture Options / Capturing packets with Capture Options

file, auto-capturing periodically / Auto-capturing a file periodically
PPP (Point-to-Point Protocol) / 802.1X EAPOL

protocol preference feature
o about / Protocol preferences

O O O o

reset sequence
o about / TCP reset sequence
o RST after SYN-ACK / RST after SYN-ACK
o RST after SYN / RST after SYN
RFC675 TCP/IP
o URL / References
RFC793 TCP v4
o URL / References
RFMON (Radio Frequency Monitor) mode / WLAN capture setup
Riverbed AirPcap adapter
o URL / Wi-Fi sniffing products
RSA/RSA
RSA traffic

o decrypting / Decrypting RSA traffic

e scanning

o about / Scanning
o vulnerability scanning / Vulnerability scanning
o SSL scans / SSL scans

e Scapy

e}

URL / Other packet analyzer tools

e server certificate

e}

about / Server certificate

e Server Hello Done message

e}

about / Server Hello Done

e Server Hello message

e}

O O O O

e}

about / Server Hello
Handshake Type / Server Hello
version / Server Hello

session ID / Server Hello
cipher suite / Server Hello
extensions / Server Hello

e Server Key Exchange message

e}

about / Server Key Exchange

e snoop tool

e}

about / Tcpdump and snoop

e Snort

e}

URL / Other packet analyzer tools

e SSL-related issues

e}

debugging / Debugging issues

e SSL/TLS

O O O O O O o o

about / An introduction to SSI/TLS
benefits / An introduction to SSI/TLS
versions / SSL/TLS versions
components / The SSI./TL.S component
handshake / The SSL/TLS handshake

decrypting / Decrypting SSL/TLS

RSA traffic, decrypting / Decrypting RSA traffic
DHE/ECHDE traffic, decrypting / Decrypting DHE/ECHDE traffic

e SSL/TLS handshake

O O O O O o o

about / The SSL/TLS handshake

types / Types of handshake message

Client Hello message / Client Hello

Server Hello / Server Hello

server certificate / Server certificate

Server Key Exchange message / Server Key Exchange
client certificate request / Client certificate request

Server Hello Done message / Server Hello Done
client certificate / Client certificate
Client Key Exchange message / Client Key Exchange
Client Certificate Verify message / Client Certificate Verify
Change Cipher Spec record type / Change Cipher Spec
Finished message / Finished
Application Data message / Application Data
Alert Protocol / Alert Protocol
SSL flood, DOS attack
o about / SSL flood
SSL testing

o references / Debugging issues
Start options

o packets, capturing with / Capturing packets with Start options
Stumbler

o URL / Wi-Fi sniffing products
Switch Port Analyzer (SPAN) port / The Wireshark packet capture process
SYN flood, DOS attack

o about / SYN flood

o mitigation / SYN flood mitigation

O O O O O O o o

e TAP (Test Access Point) / The Wireshark packet capture process
e TCP analyze sequence numbers
o URL / References
e TCP CLOSE_STATE
o about / How to resolve TCP CLOSE_STATE
e TCP CLOSE_WAIT
o about/ TCP CLOSE_WAIT
e TCP display filter
o reference link / Filter examples
e tcpdump tool
o about / Tcpdump and snoop
e TCP Dup-ACK
o about / TCP Dup-ACK
e Tcpreplay
o URL / Other packet analyzer tools
e TCP stream
o following / Following the TCP stream
e TCP TIME_WAIT
o about / TCP TIME_WAIT
e TCP Window Update
o about / TCP Window Update
¢ three-way handshake, Transmission Control Protocol (TCP)
o about / TCP three-way handshake

o first step [SYN] / Handshake message — first step [SYN]
o second step [SYN, ACK] / Handshake message — second step [SYN, ACK]

o third step [ACK] / Handshake message — third step [ACK]
e TLS extensions
o reference list / Client Hello
e Transmission Control Protocol (TCP)
o about / Recapping TCP
header fields / TCP header fields
states / TCP states
connection establishment / TCP connection establishment and clearing
three-way handshake / TCP three-way handshake
data communication / TCP data communication
close sequence / TCP close sequence
Wiki, URL / References
o TCP/IP guide, URL / References
e Transmission Control Protocol (TCP), latency
o issues / TCP latency issues
o identifying / Identifying latency
o server latency example / Server latency example

O O O O O o o

o wire latency / Wire latency
e Transmission Control Protocol (TCP), latency issues

o causes / Cause of latency
e Transmission Control Protocol (TCP), troubleshooting
about / TCP troubleshooting
o reset sequence / TCP reset sequence
CLOSE_WAIT / TCP CLOSE_WAIT
TIME_WAIT / TCP TIME_WAIT
¢ troubleshooting

o packets, capturing / Troubleshooting

(¢]

(¢]

(¢]

U

e US-CERT
o alert TA14-017A, URL / DrDoS
e user interface, Wireshark
o about / Wireshark user interface
Filter toolbar / The Filter toolbar
Packet List pane / The Packet List pane
Packet Details pane / The Packet Details pane

Packet Bytes pane / The Packet Bytes pane

O O O O

W

e Wi-Fi networks

analyzing / Analyzing the Wi-Fi networks

frames / Frames

802.11 auth process / 802.11 auth process
802.1X EAPOL / 802.1X EAPOL

802.11 protocol stack / The 802.11 protocol stack
e Wi-Fi sniffing products

o about / Wi-Fi sniffing products

Kismet / Wi-Fi sniffing products

Riverbed AirPcap / Wi-Fi sniffing products
KisMac / Wi-Fi sniffing products

Stumbler / Wi-Fi sniffing products
o NetStumbler / Wi-Fi sniffing products

e WireEdit

o URL / Other packet analyzer tools
e Wireshark

o about / Introducing Wireshark
URL / Introducing Wireshark, References
features / Wireshark features, Wireshark features

dumpcap / Wireshark’s dumpcap and tshark
tshark / Wireshark’s dumpcap and tshark

packet capture process / The Wireshark packet capture process
o wiki link / 802.1X EAPOL

e Wireshark community
o URL / Troubleshooting
e Wireshark protocol hierarchy
o about / Wireshark protocol hierarchy
e Wireshark TCP sequence analysis
o about / Wireshark TCP sequence analysis
o retransmission / TCP retransmission
o TCP ZeroWindow / TCP ZeroWindow
e WLAN capture setup
o about / WLAN capture setup
multi-channel captures, URL / WLAN capture setup
wireless network interface controller (WNIC) / WLAN capture setup
AP (Access Point) / WLAN capture setup
monitor mode / The monitor mode

(¢]

(¢]

(¢]

(¢]

(¢]

O O O O

O O O O O

O O O O

X

e 802.1X EAPOL /802.1X EAPOL

	Packet Analysis with Wireshark
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Packet Analyzers
	Uses for packet analyzers
	Introducing Wireshark
	Wireshark features
	Wireshark's dumpcap and tshark
	The Wireshark packet capture process
	Other packet analyzer tools
	Mobile packet capture
	Summary
	2. Capturing Packets
	Guide to capturing packets
	Capturing packets with Interface Lists
	Common interface names
	Capturing packets with Start options
	Capturing packets with Capture Options
	The capture filter options
	Auto-capturing a file periodically
	Troubleshooting
	Wireshark user interface
	The Filter toolbar
	Filtering techniques
	Filter examples
	The Packet List pane
	The Packet Details pane
	The Packet Bytes pane
	Wireshark features
	Decode-As
	Protocol preferences
	The IO graph
	Following the TCP stream
	Exporting the displayed packet
	Generating the firewall ACL rules
	Tcpdump and snoop
	References
	Summary
	3. Analyzing the TCP Network
	Recapping TCP
	TCP header fields
	TCP states
	TCP connection establishment and clearing
	TCP three-way handshake
	Handshake message – first step [SYN]
	Handshake message – second step [SYN, ACK]
	Handshake message – third step [ACK]
	TCP data communication
	TCP close sequence
	Lab exercise
	TCP troubleshooting
	TCP reset sequence
	RST after SYN-ACK
	RST after SYN
	Lab exercise
	TCP CLOSE_WAIT
	Lab exercise
	How to resolve TCP CLOSE_STATE
	TCP TIME_WAIT
	TCP latency issues
	Cause of latency
	Identifying latency
	Server latency example
	Wire latency
	Wireshark TCP sequence analysis
	TCP retransmission
	Lab exercise
	TCP ZeroWindow
	TCP Window Update
	TCP Dup-ACK
	References
	Summary
	4. Analyzing SSL/TLS
	An introduction to SSL/TLS
	SSL/TLS versions
	The SSL/TLS component
	The SSL/TLS handshake
	Types of handshake message
	Client Hello
	Server Hello
	Server certificate
	Server Key Exchange
	Client certificate request
	Server Hello Done
	Client certificate
	Client Key Exchange
	Client Certificate Verify
	Change Cipher Spec
	Finished
	Application Data
	Alert Protocol
	Key exchange
	The Diffie-Hellman key exchange
	Elliptic curve Diffie-Hellman key exchange
	RSA
	Decrypting SSL/TLS
	Decrypting RSA traffic
	Decrypting DHE/ECHDE traffic
	Forward secrecy
	Debugging issues
	Summary
	5. Analyzing Application Layer Protocols
	DHCPv6
	DHCPv6 Wireshark filter
	Multicast addresses
	The UDP port information
	DHCPv6 message types
	Message exchanges
	The four-message exchange
	The two-message exchange
	DHCPv6 traffic capture
	BOOTP/DHCP
	BOOTP/DHCP Wireshark filter
	Address assignment
	Capture DHCPv4 traffic
	DNS
	DNS Wireshark filter
	Port
	Resource records
	DNS traffic
	HTTP
	HTTP Wireshark filter
	HTTP use cases
	Finding the top HTTP response time
	Finding packets based on HTTP methods
	Finding sensitive information in a form post
	Using HTTP status code
	References
	Summary
	6. WLAN Capturing
	WLAN capture setup
	The monitor mode
	Analyzing the Wi-Fi networks
	Frames
	Management frames
	Data frames
	Control frames
	802.11 auth process
	802.1X EAPOL
	The 802.11 protocol stack
	Wi-Fi sniffing products
	Summary
	7. Security Analysis
	Heartbleed bug
	The Heartbleed Wireshark filter
	Heartbleed Wireshark analysis
	The Heartbleed test
	Heartbleed recommendations
	The DOS attack
	SYN flood
	SYN flood mitigation
	ICMP flood
	ICMP flood mitigation
	SSL flood
	Scanning
	Vulnerability scanning
	SSL scans
	ARP duplicate IP detection
	DrDoS
	BitTorrent
	Wireshark protocol hierarchy
	Summary
	Index

