

Packet	Analysis	with	Wireshark

Table	of	Contents

Packet	Analysis	with	Wireshark

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Packet	Analyzers

Uses	for	packet	analyzers

Introducing	Wireshark

Wireshark	features

Wireshark’s	dumpcap	and	tshark

The	Wireshark	packet	capture	process

Other	packet	analyzer	tools

Mobile	packet	capture

Summary

2.	Capturing	Packets

Guide	to	capturing	packets

Capturing	packets	with	Interface	Lists

Common	interface	names

Capturing	packets	with	Start	options

Capturing	packets	with	Capture	Options

The	capture	filter	options

Auto-capturing	a	file	periodically

Troubleshooting

Wireshark	user	interface

The	Filter	toolbar

Filtering	techniques

Filter	examples

The	Packet	List	pane

The	Packet	Details	pane

The	Packet	Bytes	pane

Wireshark	features

Decode-As

Protocol	preferences

The	IO	graph

Following	the	TCP	stream

Exporting	the	displayed	packet

Generating	the	firewall	ACL	rules

Tcpdump	and	snoop

References

Summary

3.	Analyzing	the	TCP	Network

Recapping	TCP

TCP	header	fields

TCP	states

TCP	connection	establishment	and	clearing

TCP	three-way	handshake

Handshake	message	–	first	step	[SYN]

Handshake	message	–	second	step	[SYN,	ACK]

Handshake	message	–	third	step	[ACK]

TCP	data	communication

TCP	close	sequence

Lab	exercise

TCP	troubleshooting

TCP	reset	sequence

RST	after	SYN-ACK

RST	after	SYN

Lab	exercise

TCP	CLOSE_WAIT

Lab	exercise

How	to	resolve	TCP	CLOSE_STATE

TCP	TIME_WAIT

TCP	latency	issues

Cause	of	latency

Identifying	latency

Server	latency	example

Wire	latency

Wireshark	TCP	sequence	analysis

TCP	retransmission

Lab	exercise

TCP	ZeroWindow

TCP	Window	Update

TCP	Dup-ACK

References

Summary

4.	Analyzing	SSL/TLS

An	introduction	to	SSL/TLS

SSL/TLS	versions

The	SSL/TLS	component

The	SSL/TLS	handshake

Types	of	handshake	message

Client	Hello

Server	Hello

Server	certificate

Server	Key	Exchange

Client	certificate	request

Server	Hello	Done

Client	certificate

Client	Key	Exchange

Client	Certificate	Verify

Change	Cipher	Spec

Finished

Application	Data

Alert	Protocol

Key	exchange

The	Diffie-Hellman	key	exchange

Elliptic	curve	Diffie-Hellman	key	exchange

RSA

Decrypting	SSL/TLS

Decrypting	RSA	traffic

Decrypting	DHE/ECHDE	traffic

Forward	secrecy

Debugging	issues

Summary

5.	Analyzing	Application	Layer	Protocols

DHCPv6

DHCPv6	Wireshark	filter

Multicast	addresses

The	UDP	port	information

DHCPv6	message	types

Message	exchanges

The	four-message	exchange

The	two-message	exchange

DHCPv6	traffic	capture

BOOTP/DHCP

BOOTP/DHCP	Wireshark	filter

Address	assignment

Capture	DHCPv4	traffic

DNS

DNS	Wireshark	filter

Port

Resource	records

DNS	traffic

HTTP

HTTP	Wireshark	filter

HTTP	use	cases

Finding	the	top	HTTP	response	time

Finding	packets	based	on	HTTP	methods

Finding	sensitive	information	in	a	form	post

Using	HTTP	status	code

References

Summary

6.	WLAN	Capturing

WLAN	capture	setup

The	monitor	mode

Analyzing	the	Wi-Fi	networks

Frames

Management	frames

Data	frames

Control	frames

802.11	auth	process

802.1X	EAPOL

The	802.11	protocol	stack

Wi-Fi	sniffing	products

Summary

7.	Security	Analysis

Heartbleed	bug

The	Heartbleed	Wireshark	filter

Heartbleed	Wireshark	analysis

The	Heartbleed	test

Heartbleed	recommendations

The	DOS	attack

SYN	flood

SYN	flood	mitigation

ICMP	flood

ICMP	flood	mitigation

SSL	flood

Scanning

Vulnerability	scanning

SSL	scans

ARP	duplicate	IP	detection

DrDoS

BitTorrent

Wireshark	protocol	hierarchy

Summary

Index

Packet	Analysis	with	Wireshark

Packet	Analysis	with	Wireshark
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	November	2015

Production	reference:	1261115

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78588-781-9

www.packtpub.com

http://www.packtpub.com

Credits
Author

Anish	Nath

Reviewers

Michael	Downey

Robert	Juric

Mikael	Kanstrup

Acquisition	Editor

Indrajit	Das

Content	Development	Editor

Rohit	Singh

Technical	Editor

Mrunmayee	Patil

Copy	Editor

Stephen	Copestake

Project	Coordinator

Mary	Alex

Proofreader

Safis	Editing

Indexer

Monica	Ajmera	Mehta

Production	Coordinator

Nilesh	Mohite

Cover	Work

Nilesh	Mohite

About	the	Author
Anish	Nath	is	a	software	engineer	who	has	more	than	10	years	of	experience.	He	works	at
CISCO,	and	at	CISCO,	he	started	using	Wireshark	for	the	first	time.	He	is	thankful	to
CISCO.	He	doesn’t	speak	much,	but	likes	to	explore	new	things	that	he	has	not	tried	or	not
thought	of.	He	also	tries	his	best	to	be	successful	at	this.	Though	he	fails	a	lot	of	time,	this
gives	him	more	experience,	and	when	success	comes,	he	thanks	all	of	his	efforts	that	had
failed	him	initially.

You	can	reach	him	at	https://in.linkedin.com/in/anishnath,	and	his	Twitter	handle	is
@anish2good.

I	would	like	to	thank	my	friends,	Arnab	Biswas,	Arun	John,	Ganesh	Choudhari,	Mayank
Johari,	Pradeep	Sivakumar,	Prakash	John,	Deepak	Kukrety,	and	Veeksha	Vasant	for
supporting	me	in	this	venture.	I’ve	definitely	learned	a	lot	from	their	experience.

I	would	also	like	to	thank,	Alice	Chen,	Tin	Nguyen,	Sunil	Menon,	Saad	Abderrazzaq,	Ori
Lior,	Mahin	Khani,	Donn	Coe,	Rob	Andrews,	and	Lon	Barrett,	for	their	support	and	belief
in	me	all	this	time	and	also	for	providing	me	assistance	when	I	needed	it.

Special	thanks	to	the	Wireshark	community	and	its	developers	for	writing	an	awesome
tool	like	this.

Thanks	to	all	my	reviewers	who	made	an	effort	so	that	this	book	took	the	correct	shape.

My	apologies	if	I’ve	missed	anyone.

Thanks	to	Packt	Publishing	and	the	entire	team,	especially	Indrajit	Das	and	Rohit	Singh
for	making	this	happen.

https://in.linkedin.com/in/anishnath

About	the	Reviewers
Michael	Downey	is	a	security	analyst	with	a	passion	for	*nix	operating	systems	and
network	security	monitoring.	He	is	also	the	cofounder	of	the	Evansville	Linux	User	Group
in	Indiana,	and	a	contributing	member	of	OpenNSM	(http://www.open-nsm.net/).	In	his
free	time,	he	enjoys	security	research	and	an	occasional	game	of	disc	golf.

Robert	Juric,	while	working	as	a	network	engineer,	has	supported	government	agencies,
large	corporations,	and	service	providers.	From	his	experience,	he	learned	the	value	of
packet	analysis	and	has	come	to	enjoy	the	details	that	it	provides.

When	not	at	work,	Robert	enjoys	spending	time	outdoors	with	his	wife	and	young	son.	He
occasionally	writes	articles	for	his	website,	robertjuric.com,	or	can	be	found	on	Twitter	at
@robertj180.

Mikael	Kanstrup	is	a	software	engineer	with	a	passion	for	adventure	and	thrills	in	life.	In
his	spare	time,	he	spends	his	time	kitesurfing,	riding	motocross,	or	just	going	outdoors
with	his	family	and	two	kids.	Mikael	has	a	BSc	degree	in	computer	science	and	years	of
experience	in	embedded	software	development	and	computer	networking.	For	the	past
decade,	he	has	been	working	as	a	professional	software	developer	in	the	mobile	phone
industry.

http://www.open-nsm.net/
http://robertjuric.com

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

I	would	like	to	dedicate	this	book	to	my	5-year	old	son,	Arjun	Nath;	grandfather,	Sri
Rajeshwar	Prasad;	wife,	Manisha	Prasad;	mother,	Indu	Sinha;	and	all	my	family
members	(my	father,	Anil	Kumar	Sinha;	chote	papa,	Sunil	Kumar	Sinha;	choti
mummy,	Poonam	Sinha;	and	friends).	Without	them,	this	would	not	have	been
possible.

http://www.PacktPub.com

Preface
The	purpose	of	this	book	is	to	identify,	learn	about,	and	solve	issues	related	to	protocol,
network,	and	security,	and	see	how	Wireshark	helps	to	analyze	these	patterns	by	allowing
its	features	to	troubleshoot	effectively.	This	book	has	lab	exercises	and	contains	packet
capture	files	for	offline	viewing	and	analyses.	Most	of	the	examples	contain	production-
like	scenarios	and	their	solutions	and	steps	to	reproduce	these	solutions.

This	book	also	contains	effective	capturing	methods	that	can	be	used	directly	in
production	without	installing	Wireshark.

Wireshark	is	an	awesome	tool	for	troubleshooting	and	learning,	and	within	the	scope	of
this	book,	we	have	taken	the	best	use	cases	for	different	types	of	audiences,	such	as
network	administrators,	security	auditors,	protocol	learners,	and	troubleshooters.

What	this	book	covers
Chapter	1,	Packet	Analyzers,	covers	the	definition	of	packet	analyzers	and	their	use	cases,
network	interfaces	naming	conventions,	pcap/pcanpng	file	extensions,	and	types	of
network	analyzer	tools.

Chapter	2,	Capturing	Packets,	covers	how	to	capture	packets	using	Wireshark,	tcpdump,
and	snoop;	how	to	use	Wireshark	display	filters;	and	how	to	use	Wireshark’s	cool	features
such	as	Decode-As	and	protocol	preferences.	Also,	we	will	cover	the	TCP	stream,
exporting	images,	generating	a	firewall	ACL	rule,	autocapture	setup,	and	the	name
resolution	feature.

Chapter	3,	Analyzing	the	TCP	Network,	covers	the	TCP	state	machine,	TCP	connection
establishment	and	closing	sequence,	practical	troubleshooting	labs	such	as
(CLOSE_WAIT,	TIME_WAIT),	how	to	identify	and	fix	latency	issues,	and	Wireshark
TCP	sequence	analysis	flag	(zero	window,	dup-ok,	TCP	retransmission,	and	window
update)	features.

Chapter	4,	Analyzing	SSL/TLS,	covers	the	TLS/SSL	two-way	mutual	authentication
process	with	Wireshark,	SSL/TLS	decryption	with	Wireshark,	and	the	identification	of
handshake	failure	with	Wireshark.

Chapter	5,	Analyzing	Application	Layer	Protocols,	covers	how	to	analyze	a	protocol	using
the	Wireshark	display	filter,	how	these	protocols	work,	how	to	simulate	these	packets,
capture,	and	display	them	using	tcpdump/Wireshark.

Chapter	6,	WLAN	Capturing,	covers	WLAN	capture	setup	and	monitor	mode,	capturing
with	tcpdump,	802.11	display	filters,	Layer-2	datagram	frames	types,	Wireshark	display
filters,	and	other	Wi-Fi	Sniffing	products	available.

Chapter	7,	Security	Analysis,	covers	the	security	aspect	with	Wireshark	and	discusses	uses
cases	such	as	the	Heartbleed	bug,	SYN	flood/mitigation,	ICMP	flood/mitigation,	MITM,
BitTorrent,	and	host	scanning.

What	you	need	for	this	book
The	topics	covered	in	this	book	require	a	basic	understanding	of	TCP/IP.	The	examples
used	in	this	book	are	independent	of	an	operating	system.	All	the	examples	are	executed	in
a	MAC	and	Linux	OS.	Windows	users	can	install	Cygwin	to	use	a	Linux	command-line
utility.	The	following	executables	are	used	in	this	book:

Wireshark
tcpdump
snoop
dig
nslookup
java
wget
dhclient
nmap

Who	this	book	is	for
This	book	provides	background	information	to	help	readers	understand	the	topics	that	are
discussed.	The	intended	audience	for	this	book	includes	the	following:

Network/system	administrators
Security	consultants	and	IT	officers
Architects/protocol	developers
White	Hat	hackers

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“Start
Wireshark	by	clicking	on	the	Wireshark	icon	or	type	Wireshark	in	the	command	line.”

Any	command-line	input	or	output	is	written	as	follows:

[bash	~]#	cat	/proc/sys/net/ipv4/tcp_fin_timeout	60

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Click	on	Interface
List;	Wireshark	will	show	a	list	of	available	network	interfaces	in	the	system.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Packet	Analyzers
A	packet	analyzer	is	also	known	as	a	packet	sniffer	or	a	network	protocol	analyzer.	Packet
analyzer	has	the	ability	to	grab	the	raw	packet	from	the	wire,	wireless,	Bluetooth,	VLAN,
PPP,	and	other	network	types,	without	getting	processed	by	the	application.	By	doing	so	it
brings	the	whole	science	and	innovation	to	this	field.	In	this	chapter	we	will	see	a	few	use
cases	of	the	packet	analyzer	by	covering	the	following	topics:

Uses	for	packet	analyzers
Introducing	Wireshark
Other	packet	analyzer	tools
Mobile	packet	capturing

Uses	for	packet	analyzers
More	practically,	packet	analyzers	are	employed	in	network	security	and	to	analyze	raw
traffic	so	as	to	detect	scans	and	attacks,	and	for	sniffing,	network	troubleshooting,	and
many	more	uses,	as	shown	in	the	following	image:

Packet	analyzers	can	be	used	as	follows:

Network	administrators	can	diagnose	problems	on	a	network
Security	architects	can	perform	a	security	audit	on	a	packet
Protocol	developers	can	diagnose/learn	protocol-related	issues
White-hat	hackers	can	find	vulnerabilities	in	the	application	and	fix	them	before
black-hat	hacker	find	them

The	use	is	not	limited	to	these	bullet	point,	there	are	lots	of	new	tools	and	innovations
happening	in	this	area.	Find	a	use	case	and	build	your	own	packet	analyzer;	the	best
example	is	Wireshark.

Introducing	Wireshark
Wireshark	is	perhaps	one	of	the	best	open	source	packet	analyzers	available	today.
Wireshark	is	a	powerful	packet	analyzer	tool,	with	an	easy-to-use,	rich	GUI	and	a
command-line	utility	with	very	active	community	support:	http://ask.wireshark.org.

Wireshark	uses	pcap	(libpcap)	to	capture	packets,	which	means	it	can	capture	packets	in
offline	mode—to	view	the	captured	packets—and	online	mode	(live	traffic)	to	capture	and
display	the	traffic	in	the	Wireshark	GUI.	Once	open,	the	Wireshark	GUI	looks	like	this:

http://ask.wireshark.org

Wireshark	features
We	will	see	some	of	the	important	features	that	are	available	in	Wireshark	in	the	following
figure:

Wireshark	has	the	following	cool	built-in	features,	few	of	them	are	listed	as	follows:

Available	in	both	UNIX	and	Windows
Ability	to	capture	live	packets	from	various	types	of	interface
Filters	packets	with	many	criteria
Ability	to	decode	larger	sets	of	protocols
Can	save	and	merge	captured	packets
Can	create	various	statistics
User-friendly	GUI	and	command-line	interface
Active	community	support	(http://ask.wireshark.org)

http://ask.wireshark.org

Wireshark’s	dumpcap	and	tshark
The	Wireshark	installation	provides	some	command-line	tools	such	as	dumpcap	and
tshark.	Wireshark	and	tshark	rely	on	dumpcap	to	capture	traffic;	more	advanced
functionality	is	performed	by	tshark.	Also	note	that	dumpcap	can	be	run	as	its	own
standalone	utility.	tshark	is	a	command-line	version	of	Wireshark	and	can	be	used	in	the
remote	terminal.

The	Wireshark	packet	capture	process
The	user	must	be	aware	of	where	Wireshark	is	installed	and	it	should	be	obliged	with	your
organization	policy	before	start	capturing	on	the	TAP	(Test	Access	Point)	or	Switch	Port
Analyzer	(SPAN)	port.

Usually	developers	install	Wireshark	on	their	personal	laptop/desktop	and	capture	packets,
which	goes	in-out	from	the	box.

Certain	guidelines	should	be	followed	to	perform	this:

1.	 Make	sure	you’re	allowed	to	do	what	you’re	going	to	do;	check	your	corporate
policies	before	capturing	a	packet.

2.	 The	operating	system	must	support	packet	capturing:

Linux	packet	socket	support	is	enabled	in	the	kernel	by	default
Windows	requires	WinPCap	to	be	installed

3.	 Choose	the	interface	and	enable	the	promiscuous	mode	on	it.	Promiscuous	mode
accepts	all	packets	whether	they	are	addressed	to	the	interface	or	not.

4.	 If	using	a	Wi-Fi	interface,	enable	the	monitor	mode	for	WLAN	capturing.
5.	 Start	capturing	and	use	Wireshark’s	different	features	like	(filters/statistics/IO/save)

for	further	analysis

Other	packet	analyzer	tools
Wireshark	is	a	packet	analysis	tool	to	use	features	such	as	packet	editing/replaying,
performing	MITM,	ARPspoof,	IDS,	and	HTTP	proxy,	and	there	are	other	packet	analyzer
tools	available	and	can	be	used	as	well.

The	following	is	a	list	(not	limited)	of	notable	packet	analyzer	tools	on	the	market;	many
others	are	commercially	available.	The	table	lists	tools	and	their	features:

Tools Packet
editing

Packet
replay ARPspoof/MITM Password

sniffing
Intrusion
detection

HTTP
debugger

WireEdit	(https://wireedit.com/) Y N N N N N

Scapy	(http://www.secdev.org/) Y Y Y Y N Y

Ettercap
(https://ettercap.github.io/ettercap/) Y N Y Y N N

Tcpreplay
(http://tcpreplay.synfin.net/) N Y N N N N

Bit-Twist
(http://bittwist.sourceforge.net/) Y N N N N N

Cain	(http://www.oxid.it/cain.html) N N Y Y N N

Snort	(https://www.snort.org/) N N N N Y N

https://wireedit.com/
http://www.secdev.org/
https://ettercap.github.io/ettercap/
http://tcpreplay.synfin.net/
http://bittwist.sourceforge.net/
http://www.oxid.it/cain.html
https://www.snort.org/

Mobile	packet	capture
Wireshark	is	not	available	on	mobile	platforms	such	as	Android,	iOS,	or	Windows.	In
order	to	capture	mobile	traffic	the	following	tools	are	suggested	based	on	the	platform:

Platform Packet	capture	tool	used URL

Windows Microsoft	Network	Analyzers http://www.microsoft.com/en-in/download/details.aspx?id=19484

iOS Paros http://sourceforge.net/projects/paros/

Android
Shark	for	Root http://www.appbrain.com/app/shark-for-root/lv.n3o.shark

Kismet	Android	PCAP http://www.kismetwireless.net/android-pcap/

Various	other	techniques	are	used	to	capture	mobile	traffic	using	Wireshark.	One	such
technique	is	creating	a	Wi-Fi	hotspot	on	the	laptop,	allowing	the	mobile	phone	to	use	this
Wi-Fi,	and	sniffing	traffic	on	your	Wi-Fi	interface	using	Wireshark.

http://www.microsoft.com/en-in/download/details.aspx?id=19484
http://sourceforge.net/projects/paros/
http://www.appbrain.com/app/shark-for-root/lv.n3o.shark
http://www.kismetwireless.net/android-pcap/

Summary
In	this	chapter	we	learned	what	packet	analyzers	are	and	what	their	use	cases	are.	After	a
quick	introduction	to	Wireshark,	we	covered	what	goes	on	behind-the-scenes	when
Wireshark	captures	packets;	Wireshark	benefits	and	important	features;	the	necessary
prerequisites	before	capturing	packets;	and	other	packet	analyzer	tools	for	packet
editing/sniffing/replaying	and	so	on.	We	also	provided	a	brief	overview	of	mobile	packet
capturing.

The	next	chapter	will	be	more	specific	to	Wireshark	and	its	tips	and	tricks.	After	that	we
will	explore	TCP	troubleshooting,	then	plunge	into	SSL,	and	other	application	protocols
such	as	DHCPv6,	DHCP,	DNS,	and	HTTP.	We	will	also	analyze	Wi-Fi	capturing	and
carry	out	some	security	analyses	with	the	help	of	Wireshark	and	tcpdump.

Chapter	2.	Capturing	Packets
In	the	previous	chapter,	we	learned	what	packet	analyzers	are	used	for.	In	this	chapter	we
will	learn	more	about	the	Wireshark	GUI	features,	and	see	how	it	helps	in	capturing	and
analyzing	packets	effectively,	by	covering	the	following	topics:

Capturing	packets	with	Wireshark	interface	lists
Capturing	packets	with	Wireshark	start	options
Capture	options
Wireshark	filter	examples
Wireshark	Packet	List	pane
Wireshark	Packet	Details	pane
Wireshark	features
The	tcpdump	and	snoop	examples

Guide	to	capturing	packets
Start	Wireshark	by	clicking	on	the	Wireshark	icon	or	type	Wireshark	in	the	command
line.	When	Wireshark	starts	it	launches	the	following	screen	and	provides	the	following
ways	to	capture	packets:

The	following	table	explains	the	various	options	that	we	have	on	the	Start	screen:

Sr.
no.

Wireshark	capture
options What	is	this?

1 Interface	List Opens	up	a	live	list	of	capture	interfaces,	and	counts	the	incoming/outgoing
packets

2 Start You	can	choose	an	interface	from	the	list	and	start	capturing	packets

3 Capture	Options Provides	various	options	for	capturing	and	displaying	packets

4 Open	Recent Wireshark	displays	recently	used	packets

We	will	cover	each	capturing	option	in	detail	one	by	one.

Capturing	packets	with	Interface	Lists
Click	on	Interface	List;	Wireshark	will	show	a	list	of	available	network	interfaces	in	the
system	and	which	one	is	active,	by	showing	packets	going	in	and	out	of	the	Interface,	as
shown	in	the	following	screenshot:

Choose	the	right	(live)	interfaces	and	click	on	the	Start	button	to	start	capturing	packets.
If	you	want	to	capture	packets	on	loopback	(127.0.0.1),	select	the	interface	lo0.

Common	interface	names
The	interface	name	tells	you	the	network	type;	by	looking	at	the	name	of	the	interface	the
user	should	understand	what	network	the	capture	setup	is	associated	with—for	example,
eth0	stands	for	Ethernet.	A	few	of	them	are	shown	in	the	following	diagram:

Capturing	packets	with	Start	options
In	Start	options,	users	can	multiselect	or	select	the	interface	displayed	in	the	list	and	then
click	on	Start.	This	doesn’t	give	you	the	flexibility	to	see	on	which	interface	the	packets
are	active.	Users	can	configure	the	capture	options	by	double	clicking	on	the	interface	or
by	clicking	on	Capture	Options:

Capturing	packets	with	Capture	Options
Wireshark	provides	the	flexibility	to	configure	packets	that	need	to	be	captured	with
various	capture	options.	To	begin,	try	these	basic	settings:

1.	 Choose	the	live	interface,	where	packets	are	going	in	and	out.
2.	 Click	on	Capture	Options,	Wireshark	will	open	the	Capture	Options	dialog	box.
3.	 Enable	the	promiscuous	mode,	which	will	allow	the	network	interface	to	receive	all

packets.
4.	 Check	the	snaplength	size.	This	option	will	tell	you	the	size	of	data	for	each	frame

that	should	be	captured	by	Wireshark;	this	is	useful	when	capturing	the	header	frame
or	to	keep	the	packet	size	small.

5.	 Name	Resolution	tries	to	resolve	the	numerical	address	(for	example,	the	MAC
address,	the	IP	address,	and	port)	to	its	corresponding	name,	under	the	category
where	the	following	options	are	defined:

Resolve	MAC	addresses:	This	is	used	to	convert	the	MAC	address	to	a	human-
readable	format;	for	example	28:cf:e9:1e:df:a9	will	translate	to
192.168.1.101.
Resolve	network-layer	names	(IP	name	resolution):	This	is	used	to	convert	the
IP	address	to	its	corresponding	hostname	(for	example,	216.58.220.46	will
translate	to	google.com).
Resolve	transport-layer	name	(TCP/UDP	port	name	resolution):	This	is	used
to	convert	well-known	ports	to	human-readable	format	(for	example,	443	will
translate	to	https).

6.	 Use	the	external	network	name	resolver	to	perform	a	reverse	DNS	lookup	for	each
unique	IP	address	(for	example	216.58.196.14	will	translate	to	ns4.google.com)
also	referred	to	as	reverse	DNS	lookup.

Users	can	also	choose	these	options	by	selecting	the	Wireshark	View	menu	and	applying
the	following	settings:

View	|	Name	Resolution	|	Use	External	Network	Name	Resolver
View	|	Name	Resolution	|	Enable	for	MAC	Layer
View	|	Name	Resolution	|	Enable	for	Transport	Layer
View	|	Name	Resolution	|	Enable	for	Network	Layer

The	drawbacks	of	name	resolution	are	as	follows:

Once	you	have	enabled	these	name	resolution	options,	Wireshark	will	generate	extra
packets	to	resolve	the	name	from	the	name	server	if	the	traffic	is	huge	and	there	are
high	numbers	of	unique	IP	addresses.	With	these	settings	Wireshark	will	become	very
slow.
Wireshark	caches	the	resolved	DNS	name,	so	if	the	name	server	information	changes,
manual	reload	is	required.

The	capture	filter	options

Wireshark	provides	a	range	of	capture	filter	options,	use	these	options	to	decide	which
packets	will	save	to	the	disk.	These	options	are	useful	when	capturing	packets	over	a
longer	period	of	time.	Wireshark	uses	the	Berkeley	Packet	Filter	(BPF)	syntax	for	this
purpose,	for	example	tcp	src	port	22.	This	option	also	saves	disk	space.	For	example,
to	capture	only	TCP	packets,	follow	the	given	steps:

1.	 Click	on	Capture	Options.	The	dialog	box	will	open	as	shown	in	the	screenshot.
2.	 Select	the	active	interface	and	set	the	promiscuous	mode	setting	to	enabled	or

disabled.
3.	 Click	on	Capture	Filter.	Once	the	dialog	box	appears,	choose	the	TCP	only	filter

and	click	on	OK.

4.	 Click	on	the	Start	button	to	start	capturing	just	the	TCP	packets.

Auto-capturing	a	file	periodically
Users	can	fine-tune	Wireshark	to	auto-capture	files	periodically.	To	do	this,	click	on
Capture	Options	|	Capture	Files,	as	shown	in	the	following	screenshot:

Wireshark	will	generate	files	such	as	test_00001_20150623001728.pcap	and
test_00002_20150623001818.pcap.

The	formats	of	the	multiple	generated	files	are	as	follows:

test:	This	is	the	filename
00001:	This	is	the	file	number
20150623001728:	This	is	the	date/time	stamp
pcap:	This	is	the	file	extension

Troubleshooting
If	a	packet	doesn’t	appear	in	the	Wireshark	main	window,	perform	the	following	actions:

Check	the	right	network	interface;	make	sure	there	is	live	traffic
Try	turning	off/on	promiscuous	mode

If	no	interface	appears	on	which	captures	can	be	performed,	do	the	following:

Check	if	Wireshark	has	sufficient	rights	to	use	a	network	card	to	capture	data
Verify	capture	privileges	from
http://wiki.wireshark.org/CaptureSetup/CapturePrivileges

Note
You	can	also	use	the	Wireshark	community	at	https://ask.wireshark.org/	if	queries	aren’t
resolved.

http://wiki.wireshark.org/CaptureSetup/CapturePrivileges
https://ask.wireshark.org/

Wireshark	user	interface
The	Wireshark	main	window	appears	when	Wireshark	starts	capturing	a	packet,	or	when	a
.pcap	file	is	open	for	offline	viewing.	It	looks	similar	to	the	following	screenshot:

The	Wireshark	UI	interface	consists	of	different	panes	and	provides	various	options	to	the
user	for	customizing	it.	In	this	chapter,	we	will	cover	these	panes	in	detail:

Item What	is	it?

The	red	box This	shows	that	Wireshark	is	running	and	capturing	a	packet

1 This	is	the	Filter	toolbar,	used	for	filtering	packets	based	on	the	applied	filter

2 This	is	the	Packet	List	pane,	which	displays	all	captured	packets

3 This	is	the	Packet	Details	pane,	which	shows	the	selected	packet	in	a	verbose	form

4 This	is	the	Packet	Byte	pane,	which	shows	the	selected	packet	in	a	hex	dump	format

First,	just	observe	pane	2	in	the	screen;	the	displayed	packets	appear	with	different	colors.
This	is	one	of	Wireshark’s	best	features;	it	colors	packets	according	to	the	set	filter	and
helps	you	visualize	the	packet	you	are	looking	for.

To	manage	(view,	edit,	or	create)	a	coloring	rule,	go	to	View	|	Coloring	Rules.	Wireshark
will	display	the	Coloring	Rules	dialog	box,	as	shown	in	the	screenshot:

Users	can	create	a	new	rule	by	clicking	on	the	New	button,	choosing	the	filter	name	and
filter	string,	and	then	applying	a	foreground	and	background	color	to	it,	to	customize	the
packet	with	a	specific	color.

The	Filter	toolbar
The	Wireshark	display	filter	displays	packets	with	its	available	coloring	options.
Wireshark	display	filters	are	used	to	change	the	view	of	a	capture	file	by	providing	the	full
dissection	of	all	packets,	which	helps	analyzing	a	network	tracefile	efficiently.	For
example,	if	a	user	is	interested	in	only	HTTP	packets,	the	user	can	set	the	display	filter	to
http,	as	shown	in	the	next	screenshot.

The	steps	to	apply	display	filters	are	as	follows:

1.	 Open	the	http_01.pcap	file.
2.	 Type	the	http	protocol	in	the	filter	area	and	click	on	Apply.

Once	the	filter	is	applied,	the	Packet	List	pane	will	display	only	HTTP	protocol-related
packets:

Wireshark	display	filter	can	be	applied	or	prepared	from	the	column	displayed	in	the
Packet	List	pane	by	selecting	the	column,	then	right-clicking	and	going	to	Apply	as	Filter
|	Selected	(as	shown	in	the	following	screenshot)	to	create	the	filter	from	the	source	IP
address	122.167.102.21:

Wireshark	provides	the	flexibility	to	apply	filters	from	the	Details	pane;	the	steps	remain
the	same.

Wireshark	also	provides	the	option	to	clear	the	filter.	To	do	this	click	on	Clear	(available
in	the	Filter	toolbar)	to	display	the	entire	captured	packet.

Filtering	techniques
Capturing	and	displaying	packets	properly	will	help	you	with	packet	captures.	For
example,	to	track	a	packet	exchanged	between	two	hosts:	HOSTA	(10.0.0.221)	and	HOSTB
(122.167.99.148),	open	the	SampleCapture01.pcap	file	and	apply	the	filter	ip.src	==
10.0.0.221	as	shown:

Let’s	see	what	the	highlighted	sections	depict:

Item Description

1 Apply	filter	ip.src	==	10.0.0.221.

2 The	Packet	List	pane	displays	the	traffic	from	source	to	destination.	The	source	shows	the	constant	IP	address
10.0.0.221.	There	is	no	evidence	as	to	which	packet	is	sent	from	host	122.167.99.148	to	host	10.0.0.221.

Now	modify	the	filter	(ip.src	==	10.0.0.221)	&&	(ip.dst	==	122.167.99.148)	to
(ip.src	==	10.0.0.221)	or	(ip.dst	==	122.167.99.148).	This	will	give	the	result
shown	in	the	following	screenshot:

The	highlighted	sections	in	the	preceding	screenshot	are	explained	as	follows:

Item Description

1 Applied	filter	(ip.src	==	10.0.0.221)	&&	(ip.dst	==	122.167.99.148)

2 The	source	IP	address	(10.0.0.221)	is	not	changed

3 The	destination	IP	address	(122.167.99.148)	is	not	changed

Again	the	Packet	List	pane	is	not	displaying	the	conversation	between	the	two	hosts.

Now	modify	the	filter	ip.addr	==	122.167.99.148.	The	ip.addr	field	will	match	the	IP
header	for	both	the	source	and	destination	address	and	display	the	conversation	between
the	hosts.	Remember	to	choose	the	destination	IP	address	as	shown:

Let’s	see	what	the	highlighted	sections	depict:

Item Description

1 Applied	filter	ip.addr	==	122.167.99.148

2 The	source	IP	is	not	constant;	it	shows	the	conversation	between	the	two	hosts

3 The	destination	IP	is	not	constant;	it	shows	the	conversation	between	the	two	hosts

The	same	conversation	is	captured	by	choosing	the	destination	MAC	address	using	the
display	filter	eth.addr	==	06:73:7a:4c:2f:85.

Filter	examples
Some	common	filter	examples	are	as	follows:

Filter/capture	name Filter	value

Packet	on	a	given	port tcp.port	==	443

Packet	on	the	source	port tcp.srcport=2222

SYN	packet	on	port	443 (tcp.port	==	443)	&&	(tcp.flags	==	0x0010)

The	HTTP	protocol http

Based	on	the	HTTP	get	method http.request.method	==	"GET"

Using	&&,	tcp,	and	http tcp	&&	http

Checking	the	tcp	window	size tcp.window_size	<2000

No	Arp	used	for	normal	traffic !arp

The	MAC	address	filter eth.dst	==	06:43:7b:4c:4f:85

Filter	out	TCP	ACK tcp.flags.ack==0

Check	only	RST	and	ACK	packets (tcp.flags.ack	==	1)	&&	(tcp.flags.reset	==	1)

Filter	all	SNMP Snmp

HTTP	or	DNS	or	SSL http	||	dns	|	ssl

There	is	no	need	to	memorize	the	filter;	there	is	an	easy	way	to	apply	it.	The	display	filter
Autocomplete	feature	lists	all	dissectors	after	the	first	period	“.”	that	have	been	added	to
the	display	filter,	as	shown	in	the	following	screenshot:

Note
It’s	worth	checking	the	following	links	for	a	complete	display	filter	reference:

Check	out	the	TCP	display	filter	reference:
https://www.wireshark.org/docs/dfref/t/tcp.html
Check	out	this	alternative	protocol	display	filter	reference:
https://www.wireshark.org/docs/dfref/

https://www.wireshark.org/docs/dfref/t/tcp.html
https://www.wireshark.org/docs/dfref/

The	Packet	List	pane
The	Packet	List	pane	displays	packets	from	the	.pcap	(or	accepted	Wireshark	extensions)
file	or	from	live	capture,	as	shown:

Let’s	discuss	the	fields	shown:

Item What	is	it?

Shows	different	packets;	each	row	corresponds	to	a	different	packet	called	a	frame

1.	No. Number	of	packets	in	the	current	live/offline	capture

2.	Time
Shows	time-stamped	information	when	the	packet	was	captured

The	Automatic	setting	for	libpcap	files	is	microseconds;	all	packets	will	be	captured	with	the	time	in
microseconds,	as	shown	in	the	next	screenshot

3.	Source The	IP	address	of	the	source	from	where	the	packet	originates

4.
Destination The	IP	address	of	the	destination	where	the	packet	ends

5.	Protocol Wireshark	will	display	information	about	the	packet	protocol	based	on	the	standard	port

6.	Length The	packet	length	in	bytes

7.	Info Shows	a	high-level	summary	of	the	packet	and	the	nature	of	the	packet

To	change	the	time-stamped	information	of	the	packet	go	to	View	|	Time	Display	Format
to	view	the	available	presentation	formats,	as	shown:

The	Wireshark	Set	Time	Reference	feature	gives	you	the	ability	to	view	the	time
reference	from	the	selected	packet.	Open	the	capture	file	http.pcap	and	set	the	time
reference	from	packet	38.	To	do	this,	select	packet	38,	right-click,	and	select	Set	Time
Reference	(toggle),	as	shown	in	the	following	screenshot:

After	*REF*	is	set,	it	becomes	the	starting	point	for	all	subsequent	packet	time
calculations,	as	shown	in	the	following	screenshot:

The	Packet	Details	pane
The	Packet	Details	pane	will	show	the	currently	selected	packet	in	a	more	detailed	form.
In	the	following	screenshot,	an	HTTP	packet	is	selected	and	its	details	are	shown	in	the
information	labeled	with	numbers	1	to	5.	Let’s	see	what	these	are:

The	frame	protocol	is	only	used	by	Wireshark.	All	the	TCP/IP	protocols	sits	on	top	of	this.
The	frame	shows	at	what	time	the	packet	was	captured,	as	shown	in	the	following
screenshot:

Ethernet	is	the	link	layer	protocol	in	the	TCP/IP	stack.	It	sends	network	packets	from	the
sending	host	to	one	(Unicast)	or	more	(Multicast/Broadcast)	receiving	hosts,	as	shown:

Useful	filters	in	Ethernet	are:

eth.dst	==	06:3c:0f:39:2e:f7:	This	shows	packets	sent	to	this	MAC	address	only
eth.dst==ff:ff:ff:ff:ff:ff:	This	shows	broadcast	traffic	only

The	packet	structure	of	Ethernet	frames	is	described	in	the	following	table:

Preamble Destination	MAC
address

Source	MAC
address Type/length User-

data
Frame	check	sequence
(FCS)

8 6 6

2

0800	for	IPv4

86DD	for
IPv6

0806	for	ARP

46-1500 4

The	preamble	(8	bytes)	and	FCS	(4	bytes)	are	not	part	of	the	frame	and	Wireshark	will	not
capture	this	field.

So	the	total	Ethernet	header	is	14	bytes—6	bytes	for	the	destination	address,	6	bytes	for
the	source	address,	and	2	bytes	for	the	EtherType.

The	Internet	Protocol	information	relates	to	how	the	IP	packet	is	delivered	and	whether	it
has	used	IPv4	or	IPv6	to	deliver	the	datagram	packets.

The	preceding	screenshots	show	that	an	IPv4	protocol	is	used	to	deliver	the	datagram
packet.	Useful	display	filters	in	the	IP	protocol	are:

ip.src	==	122.166.88.120/24	shows	traffic	from	the	subnet
ip.addr==122.166.88.120	shows	traffic	to	or	from	the	given	host
Host	122.166.88.120	captures/filters	traffic	from	the	host

The	TCP	protocol	packet	contains	all	TCP-related	protocol	data.	If	the	communication	is
over	UDP,	the	TCP	will	be	replaced	by	the	UDP,	as	shown	in	the	following	screenshot.
The	SEQ/ACK	analysis	will	be	done	by	Wireshark	based	on	the	sequence	number	and
expert	info	will	be	provided:

The	<<APPLICATION-LAYER>>	protocol	is	shown	if	the	packet	contains	any	application
protocols.	As	shown	in	the	following	screenshot,	the	selected	packet	36	has	HTTP
protocol	data.	Wireshark	has	the	ability	to	decode	the	protocol	based	on	the	standard	port
and	present	this	information	in	the	Packet	Details	pane	in	a	readable	(RFC-defined)
format.

In	the	coming	chapters	we	will	discuss	the	application-related	protocol	in	greater	detail.

The	Packet	Bytes	pane
The	Packet	Bytes	pane	displays	the	bytes	contained	in	the	frame,	with	the	highlighted	area
being	set	to	the	node	selected	in	the	Packet	Details	pane.

Wireshark	features
Wireshark	is	loaded	with	some	awesome	features.	Let’s	go	through	a	few,	though	there	are
more.

Decode-As
The	Decode-As	feature	allows	Wireshark	to	decode	the	packet	based	on	the	selected
protocol.	Usually	Wireshark	will	automatically	identify	and	decode	incoming	packets
based	on	the	standard	port—for	example,	port	443	will	be	decoded	as	SSL.	If	the	services
are	running	on	the	non-standard	port,	for	example	SSL	standard	port	is	443	and	the	service
is	running	on	4433,	in	this	case	the	Decode-As	feature	can	be	used	to	decode	this
communication	using	the	SSL	protocol	preference.

Open	the	sample	https.pcap	file	from.	HTTPS	traffic	is	captured	when	the	file	is	opened
in	Wireshark.	It	doesn’t	show	SSL-related	data;	instead	it	just	shows	all	TCP
communications:

To	decode	this	traffic	as	SSL,	follow	these	steps:

1.	 Click	on	Analyze	|	Decode	As:

2.	 The	Decode	As	popup	will	appear	as	shown	in	the	following	screenshot.	Choose	the
protocol	(SSL	in	this	example)	that	is	required	for	decoding	the	given	traffic:

3.	 The	SSL	traffic	protocol	is	shown	in	Wireshark:

Note
SSL	decoding	doesn’t	mean	it	has	decrypted	the	SSL	data.

Protocol	preferences
The	protocol	preference	feature	provides	the	flexibility	for	you	to	customize	how	the
Wireshark	display	is	processed,	and	how	packets	are	analyzed.	You	can	set	protocol
preferences	by	one	of	the	following	methods:

Go	to	Edit	|	Preferences	|	Protocols	to	adjust	the	settings
A	simple	way	is	to	right-click	on	a	protocol	in	the	Packet	Details	pane	and	select
Protocol	Preferences

Wireshark	supports	a	large	set	of	protocols	and	it’s	preferences,	for	example	HTTP
protocol	preferences	and	their	meanings	as	defined	in	the	following	table:

HTTP	protocol	preferences What	does	this	mean?

Reassemble	HTTP	headers	spanning
multiple	TCP	segments

HTTP	dissector	will	reassemble	the	HTTP	header	if	it	has	been	transmitted
over	more	than	one	TCP	segment

Reassemble	HTTP	bodies	spanning
multiple	TCP	segments

HTTP	dissector	will	reassemble	the	HTTP	body	if	it	has	been	transmitted
over	more	than	one	TCP	segment

Reassemble	chunked	transfer-coded
bodies Reassemble	all	chunks	across	the	segments	and	add	them	to	the	payload

Decompress	entity	bodies Used	for	the	visualization	of	compressed	data	(.gzip	or	encoded)

SSL/TLS	ports Add/remove	SSL/TLS	ports	(default	is	443)

Custom	HTTP	header	fields Define	new	header	fields

The	following	screenshot	shows	HTTP	protocol	preferences	in	Wireshark:

Tip

Refer	to	the	example	of	finding	the	top	HTTP	response	time	in	Chapter	05,	Analyze	the
DHCP,	DHCPv6,	DNS,	HTTP	Protocols	when	using	protocol	preferences.

The	IO	graph
Use	the	IO	graph	to	check	client	and	server	interaction	data	for	a	meaningful	analysis.	The
Wireshark	IO	graph	measures	throughput	(the	rate	is	packet-per-tick),	where	each	tick	is
one	second.	In	this	example	we	will	see	how	to	make	use	of	the	IO	graph.	Open	the	file
http_01.pcap	in	Wireshark	and	follow	the	given	steps:

1.	 Click	on	Statistics	|	IO	graph.
2.	 The	IO	graph	dialog	box	will	appear.
3.	 In	the	IO	graph	dialog	box	try	to	find	the	spike	and	click	on	it.
4.	 When	you	click	on	the	graph	(the	high	area),	Wireshark	will	automatically	show	the

corresponding	packet	in	the	Packet	List	pane.

Note
In	the	given	example	there	are	lots	of	duplicate	ACKs.

5.	 Go	back	to	the	IO	graph	dialog	box.
6.	 Choose	Graph2	and	enter	tcp.analysis.duplicate_ack.
7.	 Click	on	Graph2	to	apply	the	filter.
8.	 The	IO	graph	dialog	will	show	the	throughput	of	the	duplicate	ACK.

There	are	a	lot	of	use	cases	for	IO	graphs.	Some	of	them	are	as	follows:

Use	IO	graphs	to	analyze	traffic	patterns,	for	example	how	the	traffic	is	distributed	by
plotting	graphs	on	protocols	for	example	tcp,	http,	udp,	ntp,	and	ldap.
IO	graphs	come	in	handy	when	performing	security	analysis.	More	examples	of	IO
graphs	are	available	in	Chapter	07,	Network	Security	Analysis.

The	following	screenshots	show	the	results	of	the	preceding	steps:

Following	the	TCP	stream
The	TCP	stream	feature	allows	users	to	see	the	data	from	a	TCP	stream.	Open	the	file
http_01.pcap	in	Wireshark	and	follow	the	TCP	stream	to	get	the	first	HTTP	OK,	as
shown:

In	this	example	we	have	located	the	HTTP	OK	on	packet#35	and	then	right	clicked	and
selected	Follow	TCP	Stream:

Once	the	stream	is	applied,	a	TCP	stream	dialog	box	will	open	displaying	which	request	is
sent	and	what	response	is	received	in	this	HTTP	conversation:

The	stream	content	is	available	in	six	formats	as	shown;	the	red	content	in	the	screenshot
is	the	request,	the	blue	content	in	the	screenshot	is	the	response:

Exporting	the	displayed	packet
The	Export	Specified	Packets	feature	allows	you	to	export	the	filtered	packet	in	different
files.	For	example,	open	http.pcap	in	Wireshark	and	export	the	HTTP	OK	packet.	The
steps	for	exporting	a	specified	packet	are	as	follows:

1.	 Apply	the	filter	http.response.code	==	200	in	the	Filter	bar:

2.	 Go	to	File	|	Export	Specified	Packets.	This	opens	up	the	dialog	box	with	the	export
options,	as	shown:

Generating	the	firewall	ACL	rules
Using	Wireshark,	network	administrators	can	generate	ACL	rules	for	firewall	products
such	as:

Cisco	IOS
IP	Filter	(ipfilter)
IP	Firewall	(ipfw)
Netfilters	(iptables)
Packet	Filter	(pf)
Windows	Firewall	(netsh)

Tip
Rules	for	MAC	addresses	and	IPv4	addresses	are	present;	the	filter	supports	TCP,	UDP
ports,	and	IPv4	port	combinations.

The	steps	to	generate	an	ACL	rule	in	Wireshark	are	as	follows:

1.	 Go	to	Tool	|	Firewall	ACL	Rules:

2.	 The	Firewall	ACL	Rules	dialog	box	will	appear.	Choose	Product	and	Filter,	specify
the	ACCEPT/DENY	criteria,	and	a	rule	will	be	generated	by	Wireshark	in	this
dialog	box,	as	shown:

Tcpdump	and	snoop
In	production	environments,	packet-capturing	tools	such	as	Wireshark	are	usually	not
installed.	In	such	scenarios,	a	default-capturing	tool	can	be	used	such	as	tcpdump	for
(Linux	systems)	and	snoop	(the	Solaris	default);	later	the	captured	file	can	be	used	in
Wireshark	for	analysis:

snoop:	This	tool	captures	and	inspects	network	packets	and	runs	on	Sun
Microsystems	CLI
tcpdump:	This	tool	dumps	traffic	on	a	network	and	runs	on	Windows,	OS	X,	and
Linux

For	example,	the	following	table	shows	how	to	check	packets	from	interfaces:

Description Solaris Linux

How	to	check	packets	from	all	interfaces bash#	snoop bash#tcpdump	–nS

How	to	capture	with	hostname bash#	snoop	hostname bash#	tcpdump	host	hostname

How	to	write	the	captured	information	to	a	file snoop	-o	filename bash#	tcpdump	-w	filename

How	to	capture	packets	between	host1	and
host2	and	save	them	to	a	file

snoop	-o

capture_file.pcap	host1

host2

tcpdump	-w	capture_file.pcap	src

host1	and	dst	host2

How	to	capture	traffic	with	verbose	output	to
screen

snoop	-v	-d	eth0

snoop	-d	eth0	-v	port	80

tcpdump	-i	eth0

Very	Verbose	tcpdump	options:
tcpdump	-i	eth0	-v	port	80

tcpdump	-i	eth0	-vv	port	80

How	to	set	the	snaplength snoop	-s	500 tcpdump	-s	500

How	to	capture	all	bytes snoop	–s0 tcpdump	–s0

How	to	capture	the	IPv6	traffic snoop	ip6 tcpdump	ip6

How	to	capture	protocols

snoop	multicast

snoop	broadcast

snoop	bootp

snoop	dhcp

snoop	dhcp6

snoop	pppoe

snoop	ldap

tcpdump	-n	"broadcast	or

multicast"

tcpdump	udp

tcpdump	tcp

tcpdump	port	67

tcpdump	port	546

tcpdump	port	389

References
You	can	also	refer	to	the	following	links	for	more	information	on	the	topics	covered	in	this
chapter:

https://www.wireshark.org/docs/wsug_html_chunked/
https://wiki.wireshark.org/CaptureSetup/Ethernet
https://goo.gl/vxI2jk

https://www.wireshark.org/docs/wsug_html_chunked/
https://wiki.wireshark.org/CaptureSetup/Ethernet
https://goo.gl/vxI2jk

Summary
In	this	chapter	we	have	learned	how	to	use	the	Wireshark	GUI.	Then	we	explored	what
capture	filters	and	display	filters	are,	how	to	set	up	a	capture,	keeping	performance	in
mind,	and	how	to	make	use	of	other	capturing	tools	such	as	tcpdump	and	snoop	in
production	or	in	remote	capturing.	Then	we	learned	about	a	few	Wireshark	features	such
as	ACL	rule	generation,	IO	graph,	Decode-As,	exporting	packets,	and	protocol
preferences.

In	the	next	chapter	we	will	learn	the	TCP	protocol	and	will	discuss	its	practical	use	cases
with	a	lab	exercise	that	will	help	in	troubleshooting	common	network	problems	(we	will
also	provide	the	solution).

Chapter	3.	Analyzing	the	TCP	Network
TCP	is	intended	to	be	a	host-to-host	protocol	in	common	use	in	multiple	networks.	In	this
chapter,	we	will	analyze	the	TCP	protocol	in	detail	with	lab	exercises	and	examples.

This	chapter	covers	the	following	topics:

Recapping	TCP
TCP	connection	establishment	and	clearing
TCP	troubleshooting
TCP	latency	issues
Wireshark	TCP	sequence	analysis

Recapping	TCP
Transmission	Control	Protocol	(TCP)	was	first	defined	in	RFC	675,	and	the	v4
specification	came	out	in	RFC	793.	TCP	provides:

Connection-oriented	setup	and	tear-down	of	TCP	sessions
The	service	sends	and	receives	a	stream	of	bytes,	not	messages,	and	guarantees	that
all	bytes	received	will	be	identical	with	bytes	sent	and	in	the	correct	order
Reliable,	in-order	delivery,	uses	sequence	number	to	recover	from	data	that	is
damaged,	lost,	duplicated,	or	delivered	out	of	order	by	the	Internet	communication
system
Flow	control	prevents	the	receiver’s	buffer	space	from	overflowing
Congestion	control	(as	defined	in	RFC	5681)	algorithms	are:	slow	start,	congestion
avoidance,	fast	retransmit,	and	fast	recovery
Multiplexing;	every	TCP	conversation	has	two	logical	pipes;	an	outgoing	and
incoming	pipe

TCP	header	fields
Each	TCP	segment	has	a	20-byte	header	with	optional	data	values,	as	shown	in	the
following	screenshot	displaying	a	TCP	frame	in	the	Wireshark	Packet	Details	pane:

The	following	table	describes	the	header	fields	and	Wireshark	filters	along	with	their
descriptions:

TCP	header Wireshark	filter
name Description

Source	port	(16	bits) tcp.srcport Sender	port

Destination	port	(16	bits) tcp.dstport Receiver	port

Sequence	Number	(32	bits) tcp.seq Defines	the	ISN	and	controls	the	state	of	the	TCP

Acknowledgement	number
(32	bits)

tcp.ack The	ACK	contains	the	next	SEQNo	that	a	host	wants	to	receive

Flags	(9
bits)

	 tcp.flags Control	bits

Reserved tcp.flags.res For	future	use

Nonce tcp.flags.ns Experimental

CWR tcp.flags.cwr Congestion	window	reduced

ECN tcp.flags.ecn ECN-Echo

Urgent tcp.flags.urg Urgent	pointer	field	is	set

Acknowledgement tcp.flags.ack Acknowledgement	is	set

Push tcp.flags.push Push	the	data

Reset tcp.flags.reset Reset	the	connection

SYN tcp.flags.syn Synchronize	sequence	numbers

FIN tcp.flags.fin No	more	data

Window	size	(16	bits) tcp.window_size Used	to	advertise	the	window	size	in	a	three-way	handshake

Checksum	(16	bits) tcp.checksum Error	checking

Urgent	pointer	(16	bits) tcp.urgent_pointer
Inform	the	receiver	that	some	data	in	the	segment	is	urgent
(SEQNo	<=	urgent	message	<=	SEQNo	+	urgent	pointer)

Options	(0-132	bits)
divisible	by	32

tcp.options
Options	such	as	maximum	segment	size,	No-Operation	(NOP),
window	scale,	timestamps,	SACK	permitted

TCP	states
A	connection	progresses	through	a	series	of	states	during	its	lifetime.	The	states	are:

TCP	state Description

LISTEN The	server	is	open	for	incoming	connection.

SYN-SENT The	client	has	initiated	the	connection.

SYN-
RECEIVED The	server	has	received	the	connection	request.

ESTABLISHED The	client	and	server	are	ready	for	the	data	transfer,	a	connection	has	been	established.

FIN-WAIT-1
The	client	or	server	has	closed	the	socket.	In	Linux	the	default	is	60	ms:

[bash	~]#	cat	/proc/sys/net/ipv4/tcp_fin_timeout

60

FIN-WAIT-2
The	client	or	server	has	released	the	connection.	In	Linux	the	default	is	60	ms:

[bash	~]#	cat	/proc/sys/net/ipv4/tcp_fin_timeout

60

CLOSE-WAIT Either	client	or	server	has	not	closed	the	socket.	The	CLOSE_WAIT	state	will	not	expire.

LAST-ACK Waiting	for	pending	ACK	from	the	client.	It’s	the	final	stage	of	the	TCP	conversation	with	the	client.

TIME-WAIT

TIME_WAIT	indicates	that	the	local	application	closed	the	connection,	and	the	other	side	acknowledged
and	sent	a	FIN	of	its	own.	In	Linux	the	default	is	60	ms:

[bash	~]#	cat	/proc/sys/net/ipv4/tcp_fin_timeout

60

CLOSED Fictional	state

Note
This	socket	command-line	utility	can	be	used	to	monitor	network	connections	and	their
states:

[bash	~]ss	-nt4	state	CLOSE-WAIT

[bash	~]ss	-nt4	state	ESTABLISHED

[bash	~]netstat	-an	|	grep	CLOSE-WAIT

[bash	~]netstat	-an	|	grep	ESTABLISHED

TCP	connection	establishment	and
clearing
In	this	section	we	will	learn	how	the	TCP	opens	and	closes	its	connections.	In	order	to
establish	a	connection,	the	three-way	handshake	procedure	is	used	as	described	in	the
following	section.

TCP	three-way	handshake
The	three-way	handshake	is	a	connection	establishment	procedure	from	the	client	socket
to	the	server	socket,	as	shown	in	the	following	image:

Before	the	start	of	the	TCP	three-way	handshake,	the	client	will	be	in	the	CLOSED	state	and
the	server	will	be	in	the	LISTEN	state	as	shown:

SN
TCP-A	(122.167.84.137)	state

Flow	CTL
TCP-B	(10.0.0.221)	state

From To From To

1 CLOSED 	 	 CLOSED LISTEN

The	TCP	state	machine

To	examine	a	three-way	handshake	in	Wireshark,	open	the	normal-connection.pcap	file
provided	in	the	book.

Handshake	message	–	first	step	[SYN]
The	first	step	of	the	handshake	process	is	that	the	socket	client	will	construct	a	SYN
packet	and	send	it	to	the	server.	During	this	process	the	socket	client	will	perform	the
following	tasks:

1.	 tcp.flags.syn	is	set	to	1	and	its	SYN	packet	is	sent	by	the	client.
2.	 The	client	generates	and	sets	the	tcp.seq=3613047129	the	initial	sequence	number

(ISN).	Wireshark	shows,	by	default,	relative	sequence	numbers;	a	user	can	change
this	setting	under:	Edit	|	Preferences	|	Protocols	|	TCP	|	Relative	sequence
numbers.

3.	 The	client	sets	tcp.ack	=0.
4.	 The	tcp.window_size	is	advertised	to	the	server	and	its	value	is	in	the	packet

tcp.window_size_value	==	65535,	which	tells	it	that	it	can	transmit	up	to	65535
bytes	of	data	depending	on	MSS.	For	example	if	MSS	is	1440	bytes,	the	client	can
transmit	45	segments.

5.	 TCP	client	includes	other	tcp.options	such	as	Maximum	Segment	Size	(MSS),

No-Operation	(NOP),	window	scale,	timestamps,	and	SACK	permitted.
6.	 The	client	chooses	tcp.options.sack_perm	==	1	in	the	“selective

acknowledgements”	processing.
7.	 TSval/TSecr	is	the	timestamp	tcp.options.timestamp.tsval	==	123648340.

The	following	table	depicts	the	state	transition	of	the	first	handshake	message:

Sr.	No.
TCP-A	(122.167.84.137)	state

Flow	CTL
TCP-B	(10.0.0.221)	state

From To From To

1 CLOSED 	 	 CLOSED LISTEN

2 CLOSED SYN_SENT <SEQ=3613047129><CTL=SYN> LISTEN 	

TCP	state	machine	changes	SYN_SENT

Handshake	message	–	second	step	[SYN,	ACK]
In	this	process	the	server	responds	to	the	client’s	SYN:

1.	 The	server	sets	tcp.flags.syn	=1	and	tcp.flags.ack=1,	confirming	that	the	SYN
has	been	accepted.

2.	 The	server	generates	and	sets	ISN	tcp.seq=2581725269.
3.	 The	server	sets	tcp.ack=3613047130	as	the	client	tcp.seq+1.
4.	 The	server	sets	tcp.window_size_value	==	26847	as	the	server	window	size.
5.	 The	server	sets	tcp.options	and	responds	to	the	client.

The	following	table	depicts	the	state	transitions	of	the	second	handshake	message:

Sr.
No.

TCP-A	(122.167.84.137)
state

Flow	CTL
TCP-B	(10.0.0.221)	state

From To From To

1 CLOSED 	 	 CLOSED LISTEN

2 CLOSED SYN_SENT <SEQ=3613047129><CTL=SYN> LISTEN 	

3 SYN_SENT 	 <SEQ=2581725269><ACK=3613047130>
<CTL=SYN,ACK> LISTEN SYN-

RECEIVED

TCP	state	machine	changes	when	SYN-RECEIVED	is	sent	by	the	server

Handshake	message	–	third	step	[ACK]
After	successfully	exchanging	this	message,	the	TCP	connection	will	be	established	in	this
connection:

1.	 The	client	sets	tcp.flags.ack	==	1	and	sends	to	the	server.
2.	 The	client	tcp.seq=3613047130	is	ISN+1	and	tcp.ack=2581725270	is	SYN_ACK(

tcp.seq+1).
3.	 The	client	window	size	is	set	again	and	this	will	be	used	by	the	server

tcp.window_size_value	==	4105.

Tip
tcp.analysis.flags	shows	you	packets	that	have	some	kind	of	expert	message	from
Wireshark.

The	following	table	depicts	the	state	transitions	of	the	third	handshake	message:

Sr.
No.

TCP-A	(122.167.84.137)
state

Flow	CTL
TCP-B	(10.0.0.221)	state

From To From To

1 CLOSED 	 	 CLOSED LISTEN

2 CLOSED SYN_SENT <SEQ=3613047129><CTL=SYN> LISTEN 	

3 SYN_SENT 	 <SEQ=2581725269><ACK=3613047130>
<CTL=SYN,ACK> LISTEN SYN-

RECEIVED

4 SYN_SENT ESTABLISHED <SEQ=3613047130>><ACK=2581725270>
<CTL=ACK>

SYN-
RECEIVED ESTABLISHED

TCP	state	machine	when	the	client	sends	ACK

TCP	data	communication
Once	the	three-way	connection	is	established,	the	data	is	communicated	by	exchanging	the
segments	and	the	PUSH	flag	is	set	to	indicate	that	the	data	flows	on	a	connection	as	a
stream	of	octets,	as	shown	in	the	following	figure:

Select	packet#4	from	the	normal-connection.pcap	file	as	shown	in	the	following
screenshot;	expand	the	TCP	section	in	the	Packet	Details	pane:

As	you	can	see	in	the	preceding	screenshot:

1.	 The	server	is	sending	data	to	the	client	as	shown	in	the	packet.
2.	 The	server	sets	tcp.flags.push	=	1.
3.	 The	server	sets	tcp.flags.ack	=1.
4.	 The	server	data	is	(29	bytes)	and	the	data	value	is:

414e495348204e415448204e4f524d414c20434f4e4e4543….
5.	 The	server	sets	(tcp.flags.ack	==	1)	&&	(tcp.flags.push	==	1);	that	is,	the

[PSH,ACK]	flag	indicates	that	the	host	is	acknowledging	receipt	of	some	previous
data	and	also	transmitting	some	more	data.

The	useful	Wireshark	display	filters	are:

data:	Displays	the	packet	that	contains	the	data	information,	for	all	IPs:

data	&&	ip.addr==10.0.0.221:	Displays	a	list	of	packets	that	have	data	and	are
exchanged	with	the	given	IP	address
tcp.flags.push	==	1:	Displays	all	PUSH	packets
tcp.flags.push	==	1	&&	ip.addr==10.0.0.221:	Displays	PUSH	packets	between
hosts
tcp.flags	==	0x0018:	Display	all	PSH,	ACK	packets
tcp.flags	==	0x0011:	Displays	all	FIN,	ACK	packets
tcp.flags	==	0x0010:	Displays	all	ACK	packets

TCP	close	sequence
TCP	normal	close	appears	when	the	client	or	server	decides	that	all	data	has	been	sent	to
the	receiver	and	we	can	close	the	connection.	There	are	three	ways	a	TCP	connection	is
closed:

The	client	initiates	closing	the	connection	by	sending	a	FIN	packet	to	the	server
The	server	initiates	closing	the	connection	by	sending	a	FIN	packet	to	the	client
Both	client	and	server	initiate	closing	the	connection

Open	the	normal-connection.pcap	file	and	select	packet	#5	in	the	Packet	List	pane.	Go
to	the	Wireshark	Packet	Details	pane,	as	shown	in	the	screenshot,	and	examine	the	TCP
protocol.

In	Wireshark	add	the	Sequence	number	and	Acknowledgement	number	to	the	column.
To	add	the	sequence	number	and	acknowledgement	number,	choose	the	TCP	header
packet,	right-click	on	the	field	(Sequence	number	/	Acknowledgement	number)	in	the
packet	details	and	select	Display	as	Column.	Or	implement	these	settings	to	add	a	new
column:

Go	to	Edit	|	Preferences	|	Columns.	Then	add	a	new	column	and	select	“custom”	:
tcp.seq.
Go	to	Edit	|	Preferences	|	Columns.	Then	add	a	new	column	and	select	“custom”	:
tcp.ack.

The	server	has	initiated	the	FIN	packet.	When	the	data	transfer	is	completed,	see	packet#5
in	the	following	screenshot:

As	you	can	see	in	the	preceding	screenshot:

The	server	initiates	the	FIN	packet	to	close	the	connection	in	packet#5
The	server	set	[FIN,ACK]	(tcp.flags.fin	==	1)	&&	(tcp.flags.ack	==	1)	and
sends	it	to	the	client
The	server	sequence	number	tcp.seq	==	2581725299	is	acknowledged	in	packet#7
The	client	is	initiating	FIN	to	close	the	connection	in	packet#8
The	client	sets	[FIN,ACK]	(tcp.flags.fin	==	1)	&&	(tcp.flags.ack	==	1)	and
sends	it	to	the	server
The	client	sequence	number	tcp.seq	==	3613047130	is	acknowledged	in	packet#9

The	TCP	state	machine	when	the	server	and	client	close	the	socket	connection,	server
initiated	FIN:

Sr.
No.

TCP-A	(122.167.84.137)	state
Flow	CTL

TCP-B	(10.0.0.221)	state

From To From To

1 CLOSED 	 	 CLOSED LISTEN

2 CLOSED SYN_SENT <SEQ=3613047129><CTL=SYN> LISTEN 	

3 SYN_SENT 	 <SEQ=2581725269>
<ACK=3613047130><CTL=SYN,ACK> LISTEN SYN-

RECEIVED

4 SYN_SENT ESTABLISHED SEQ=3613047130>>
<ACK=2581725270><CTL=ACK>

SYN-
RECEIVED ESTABLISHED

5 ESTABLISHED ESTABLISHED <SEQ=3613047130>>
<ACK=2581725270><CTL=PSH,ACK> ESTABLISHED ESTABLISHED

6 ESTABLISHED ESTABLISHED <SEQ=3613047130>>
<ACK=2581725299><CTL=ACK> ESTABLISHED ESTABLISHED

7 ESTABLISHED ESTABLISHED <SEQ=2581725299>>
<ACK=3613047130><CTL=FIN.ACK> ESTABLISED FIN_WAIT-1

8 ESTABLISHED CLOSE_WAIT <SEQ=3613047130>>
<ACK=2581725300><CTL=ACK> FIN_WAIT-1 FIN_WAIT-2

9 CLOSE_WAIT LAST_ACK SEQ=3613047130>>
<ACK=2581725300><CTL=FIN.ACK> FIN_WAIT-2 TIME_WAIT

10 LAST_ACK CLOSED 	 TIME_WAIT CLOSED

Wireshark	filters	used	in	this	scenario	are	as	follows:

tcp.analysis:SEQ/ACK:	Provides	links	to	the	segments	of	the	matching
sequence/ack	numbers
tcp.connection.fin:	Provides	expert	information
tcp.flags	==	0x0011:	Displays	all	the	[FIN,ACK]	packets

Lab	exercise
The	steps	to	capture	the	normal	TCP	connection	flow	(a	sample	program	is	provided	as
part	of	this	book)	are	as	follows:

1.	 Open	Wireshark,	start	capturing	the	packets,	and	choose	display	filter
tcp.port==8082.

2.	 Compile	the	Java	program	TCPServer01.java	using	the	javac	command:

bash$	~	javac	TCPServer01.java

3.	 Run	TCPServer01	using	the	java	command:

bash$	~	java	TCPServer01

4.	 Verify	the	server	is	listening	on	port	8082:

bash$	~	netstat	-an	|	grep	8082

tcp46						0						0		*.8082																	*.*	LISTEN					

5.	 Compile	the	client	program	Client0301.java	using	the	javac	command:

bash$	~	javac	Client0301.java	

6.	 Run	the	client	program:

bash$	~	java	Client0301

7.	 View	and	analyze	the	packet	in	Wireshark.

TCP	troubleshooting
In	this	section	we	will	learn	about	different	network	problems	that	occur	and	try	to	analyze
and	solve	them	with	lab	exercises.	Let’s	start	with	the	Reset	(RST)	packet.

TCP	reset	sequence
The	TCP	RST	flag	resets	the	connection.	It	indicates	that	the	receiver	should	delete	the
connection.	The	receiver	deletes	the	connection	based	on	the	sequence	number	and	header
information.	If	a	connection	doesn’t	exist	on	the	receiver	RST	is	set,	and	it	can	come	at	any
time	during	the	TCP	connection	lifecycle	due	to	abnormal	behavior.	Let’s	take	one
example:	a	RST	packet	is	sent	after	receiving	SYN/ACK,	as	shown	in	the	next	image.

RST	after	SYN-ACK
In	this	example	we	will	see	why	RST	has	been	set	after	SYN-ACK	instead	of	ACK:

Open	the	RST-01.pcap	file	in	the	Wireshark:

As	you	can	see	in	the	preceding	figure:

The	TCP	RST	packet	should	not	be	seen	normally
The	TCP	RST	is	set	after	the	first	two	handshakes	are	complete.	A	possible
explanation	could	be	one	of	the	following:

The	client	connection	never	existed;	a	RAW	packet	was	send	over	the	TCP
server
The	client	aborted	its	connection
The	sequence	number	got	changed/forged

RST	after	SYN
This	is	the	most	common	use	case.	Open	the	RST-02-ServerSocket-CLOSED.pcap	file	in
Wireshark.	In	this	example	the	server	was	not	started,	the	client	attempted	to	make	a
connection,	and	the	connection	refused	an	RST	packet:

Lab	exercise
The	steps	to	generate	the	RST	flag	in	a	generic	scenario,	when	the	server	is	not	in	the
listening	state,	are	as	follows:

1.	 Open	Wireshark,	start	capturing	the	packets,	and	choose	display	filter
tcp.port==8082.

2.	 Compile	the	client	program	Client0301.java:

bash$	~	javac	Client0301.java	

3.	 Run	the	client	program:

bash$	~	java	Client0301

4.	 View	and	analyze	the	RST	packet	in	Wireshark.

TCP	CLOSE_WAIT
Often	a	connection	is	stuck	in	the	CLOSE_WAIT	state.	This	scenario	typically	occurs	when
the	receiver	is	waiting	for	a	connection	termination	request	from	the	peer.

Tip
To	find	a	socket	in	the	CLOSE_WAIT	state,	use	the	following	commands:

bash:~	$	netstat	-an	|	grep		CLOSE_WAIT

tcp4							0						0		122.167.127.21.56294				10.0.0.21.9999					CLOSE_WAIT

To	demonstrate	the	CLOSE_WAIT	state,	open	the	close_wait.pcap	file	in	Wireshark:

As	you	can	see	in	the	preceding	screenshot:

1.	 The	server	closed	socket	packet#5,	set	tcp.flags.fin	==	1,	and	set	tcp.seq	==
2131384057.

2.	 The	client	responded	with	the	ACK	packet	tcp.ack	==	2131384058	in	packet#7	and
didn’t	close	its	socket,	which	remains	in	the	CLOSE_WAIT	state.

CLOSE_WAIT	means	there	is	something	wrong	with	the	application	code,	and	in	the	high-
traffic	environment	if	CLOSE_WAIT	keeps	increasing,	it	can	make	your	application	process
slow	and	can	crash	it.

Lab	exercise
The	steps	to	reproduce	CLOSE_WAIT	are	as	follows:

1.	 Open	Wireshark,	start	capturing	the	packets,	and	choose	display	filter
tcp.port==9999.

2.	 Compile	the	Java	programs	Server0302.java	and	Client0302.java	using	the	javac
command:

bash$	~	javac	Server0302.java	Client0302.java	

3.	 Run	Server0302	using	the	java	command:

bash$	~	java	TCPServer01

4.	 Verify	the	server	is	listening	on	port	9999:

bash	$	netstat	-an	|	grep	999

tcp46						0						0		*.9999																	*.*	LISTEN		

5.	 Run	the	client	program:

bash$	~	java	Client0302

6.	 Check	the	state	of	the	TCP	socket;	it	will	be	in	the	CLOSE_WAIT	state:

bash	$	netstat	-an	|	grep	CLOSE_WAIT

tcp4							0						0		127.0.0.1.56960					127.0.0.1.9999									

CLOSE_WAIT

7.	 Analyze	the	packet	in	Wireshark.

How	to	resolve	TCP	CLOSE_STATE

The	steps	are	as	follows:

1.	 To	remove	CLOSE_WAIT,	a	restart	is	required	for	the	process.
2.	 Establishing	the	FIN	packet	from	both	the	client	and	server	is	required	to	solve	the

CLOSE_WAIT	problem.	Close	the	client	socket	and	server	socket	when	done	with
processing	the	record:

socket.close();	à	Initiates	the	FIN	flow

3.	 Open	the	Client0302.java	file	and	close	the	socket:

Socket	socket	=	new	Socket(InetAddress.getByName("localhost"),	9999);

…

socket.close();

…

Thread.sleep(Integer.MAX_VALUE);

4.	 Compile	and	re-run	the	Java	program.	CLOSE_WAIT	will	not	be	visible.

TCP	TIME_WAIT
The	main	purpose	of	the	TIME_WAIT	state	is	to	close	a	connection	gracefully,	when	one	of
ends	sits	in	LAST_ACK	or	CLOSING	retransmitting	FIN	and	one	or	more	of	our	ACK	are	lost.

RFC	1122:	“When	a	connection	is	closed	actively,	it	MUST	linger	in	TIME-WAIT	state	for
a	time	2xMSL	(Maximum	Segment	Lifetime).	However,	it	MAY	accept	a	new	SYN	from	the
remote	TCP	to	reopen	the	connection	directly	from	TIME-WAIT	state,	if…”

We	ignore	the	conditions	because	we	are	in	the	TIME_WAIT	state	anyway.

TCP	latency	issues
Until	now	we	have	been	troubleshooting	connection-related	issues.	In	this	section,	we	will
check	the	latency	part.	Latency	can	be	on	the	network,	or	in	application	processing	on	the
part	of	the	client	or	server.

Cause	of	latency
Identifying	the	source	of	latency	also	plays	an	important	role	in	TCP	troubleshooting.
Let’s	see	what	the	common	causes	of	latency	are:

Network	slow	wire	latency	can	be	measured	with	the	ping	utility
Too	many	running	processes	eat	memory.	Check	the	memory	management,	work
with	free,	top	command	to	identify	CPU	and	memory	use
Application	not	started	with	sufficient	memory	or	cannot	serve	more	requests
Bad	TCP	tuning;	verify	the	/etc/sysctl.cnf	file
Network	jitter;	verify	your	network	and	check	with	the	network	administrator
Poor	coding;	benchmark	your	code	by	performing	a	load	test	over	the	network
Gateway	wrongly	set;	check	the	gateway,	verify	the	routing	table,	and	verify	the
gateway
Higher	hop	counts;	do	a	traceroute	and	check	the	number	of	hops	(the	higher	the	hop
count,	the	more	latency	increases)
Slow	NIC	interface,	the	interface	goes	down;	check	the	NIC	card	and	verify	its	speed

Identifying	latency
Various	network	utility	tools	are	available	to	measure	the	latency	between	networks—for
example	traceroute,	tcpping,	and	ping.

ping:	This	utility	can	be	used	to	measure	the	round	trip	time	(RTT):

bash$	ping	-c4	google.com

PING	google.com	(216.58.196.110):	56	data	bytes

64	bytes	from	216.58.196.110:	icmp_seq=0	ttl=55	time=226.034	ms

64	bytes	from	216.58.196.110:	icmp_seq=1	ttl=55	time=207.748	ms

64	bytes	from	216.58.196.110:	icmp_seq=2	ttl=55	time=222.995	ms

64	bytes	from	216.58.196.110:	icmp_seq=3	ttl=55	time=162.507	ms

---	google.com	ping	statistics	---

4	packets	transmitted,	4	packets	received,	0.0%	packet	loss

round-trip	min/avg/max/stddev	=	162.507/204.821/226.034/25.394	ms

traceroute:	This	is	used	to	identify	the	number	of	HOPS	it	has	taken	to	reach	the
destination—the	fewer	the	hops,	the	lower	the	latency

Server	latency	example
Wireshark	can	be	used	effectively	to	identify	whether	the	network	is	slow	or	the
application	is	slow.	Open	the	slow_download.pcap	file	in	Wireshark,	and	investigate	the
root	cause	of	why	the	download	is	slow.

In	this	example,	5	MB	of	data	is	requested	from	the	HTTP	server,	and	it	has	taken	approx.
4.99	minutes	to	download,	as	shown:

The	steps	to	diagnose	this	issue	are	as	follows:

1.	 Go	to	Edit	|	Preferences	|	Protocols	|	HTTP	and	then	enable	all	HTTP	reassemble
options.

2.	 Apply	the	filter	http.response.code==200.
3.	 Go	to	HTTP	and	set	the	http.time	==	299.816907000	to	approximately	4.99

minutes.
4.	 Check	the	size	of	the	file	by	navigating	to	http.content_length_header	==

"5242880";	this	is	the	size	of	the	content.
5.	 Check	how	many	TCP	segments	have	been	sent—	tcp.segment.count	==	2584—

and	ask	yourself	whether	so	many	are	needed	and	whether	the	number	can	be
reduced.

6.	 Verify	window_size	for	the	client	and	server	to	check	what	was	advertised	by	the
client	and	what	got	used.

7.	 Add	tcp.window_size_value	in	the	Wireshark	column	and	sort	in	ascending	order.
Note	that	the	entire	packet	flow	from	the	server	(10.0.0.16)	to	the	client
(122.167.205.152)	has	a	window	size	of	100.

8.	 Verify	the	sysctl.conf	file	in	UNIX-flavored	systems	and	check	the	TCP	tuning
parameters	such	as	net.core.rmem_max,	net.core.wmem_max,	net.ipv4.tcp_rmem,
and	net.ipv4.tcp_wmemnet.ipv4.tcp_mem.

Tip
Make	sure	tcp.window_size	stays	large	enough	to	avoid	slowing	down	the	sender.	The
window	size	can	tell	you	if	a	system	is	too	slow	when	processing	incoming	data;
tcp_window_size	indicates	that	the	system	is	slow,	not	the	network.

In	this	scenario,	tcp.window_size	was	reduced	in	the	sysctl.conf	file	to	demonstrate	the
slow_download	behavior	and	to	give	an	insight	into	troubleshooting.	After	fixing
Window_Size,	the	same	download	is	reduced	from	299.816907000	to	2.84	seconds.	Open
the	fast_download.pcap	file	as	shown	in	the	following	screenshot;	the	download	time	is
reduced:

Wire	latency
In	this	example,	the	TCP	handshake	process	will	be	used	to	identify	wire	latency.	Open	the
slow_client_ack.pcap	file	as	shown	in	the	following	screenshot:

As	you	can	see	in	the	preceding	screenshot:

The	first	two	handshake	messages	(SYN,	SYN-ACK)	sent	by	the	client/server	over	the
wire	are	exchanged	in	less	time
In	the	last	handshake	message,	ACK	sent	by	the	client	has	taken
frame.time_relative	==	15.798777000	seconds	and	shows	an	increase	in	Time
Since	Reference.	This	is	higher	than	the	first	two	handshake	messages,	which
confirms	a	wire	latency	on	this	packet
Once	the	handshake	is	completed,	the	operation	resumes	normally;	the	Time	Since
reference	for	all	packets	shows	a	consistent	timing

Wireshark	TCP	sequence	analysis
Wireshark	has	a	built-in	filter,	tcp.analysys.flags,	that	will	show	you	packets	that	have
some	kind	of	expert	message	from	Wireshark;	tcp.analysis.flags	is	shown	in	the	TCP
section	of	the	Packet	Details	pane.	Under	that,	expand	SEQ/ACK	analysis	then	expand
TCP	Analysis	Flags.	This	will	tell	you	exactly	what	triggered	tcp.analysis.flags.	A
few	examples	include:

TCP	Retransmission
TCP	Fast	Retransmission
TCP	DupACK
TCP	ZeroWindow
TCP	ZeroWindowProbe

TCP	retransmission
TCP	makes	the	transmission	of	segments	reliable	via	sequence	number	and
acknowledgement.	When	TCP	transmits	a	segment	containing	data,	it	puts	a	copy	on	a
retransmission	queue	and	starts	a	timer;	when	the	acknowledgment	for	that	data	is
received,	the	segment	is	deleted	from	the	queue.	If	the	acknowledgment	is	not	received
before	the	timer	runs	out,	the	segment	is	retransmitted.	During	TCP	retransmission,	the
sequence	number	is	not	changed	until	the	retransmission	timeout	happens.

Open	the	example	tcp-retransmission.pcapng	in	Wireshark	and	add	a	Sequence
number	column,	as	shown	in	the	following	screenshot:

As	you	can	see	in	the	preceding	screenshot:

After	sending	tcp.seq	==	1870089183	a	lot	of	TCP	retransmission	occurs
A	lot	of	TCP	Retransmission	can	result	in	operation	timeouts

For	another	example,	open	the	file	syn_sent_timeout_SSH.pcapng	in	Wireshark,	and
observe	the	TCP	retransmission	flow.

Tip
KeepAlive	is	not	a	retransmission.

Lab	exercise
The	steps	to	reproduce	the	TCP	retransmission	are	as	follows	(this	lab	is	performed	in
CentOs6	using	the	telnet	and	nc	command	utilities):

1.	 Set	up	two	machines:	HOST-A	(Server)	and	HOST-B	(client).

2.	 On	HOST-A	start	the	server	and	configure	the	firewall	rule	as	shown:

[bash	~]#	iptables	-A	OUTPUT	-p	tcp	--dport	8082	-j	DROP

[bash	~]#	iptables	save

[bash	~]#	nc	-l	8082

3.	 On	the	HOST-B	machine	open	Wireshark,	start	capturing	the	packets,	and	choose
display	filter	tcp.port==8082.

4.	 On	the	HOST-B	machine	run	the	telnet	command;	change	the	IP	information	to	your
actual	server	location:

[bash	~]telnet	128.136.179.233	8082

5.	 Verify	the	TCP	state	on	the	HOST-B	machine:

bash$	netstat	-an	|			grep	8082

tcp4							0						0		192.168.1.101.64658				128.136.179.233.8082			

SYN_SENT

6.	 In	Wireshark,	view	and	analyze	the	captured	packet	using	the	previous	step.

In	order	to	solve	operation	timeouts,	verify	the	ACL	configuration;	it	allows	the	incoming
packet	from	the	source	IP.

TCP	ZeroWindow
Open	the	tcp_zero_window.pcapng	file	in	Wireshark	and	add	tcp.window_size_value	to
the	column.

The	TCP	window	size	represents	how	much	data	a	device	can	handle	from	its	peer	at	one
time	before	it	is	passed	to	the	application	process.

As	shown	in	the	preceding	screenshot:

Add	window_size	to	the	Wireshark	column	and	look	for	the	packet	where
tcp.window_size=0.
TCP	headers	with	a	window	size	of	zero	indicate	that	the	receiver’s	buffers	are	full.
This	condition	arrives	more	rapidly	for	writes	than	reads;	in	this	condition
tcp.window_size_value	is	set	to	0	and	tcp.window_size	==	0.
The	segment	is	exactly	1	byte.

Tip
SYN/RST/FIN	flags	are	never	set	on	TCP	ZeroWindow.

SYN/RST/FIN	flags	are	never	set	on	TCP	Window	Full.

Troubleshoot	the	ZeroWindow	condition:

Check	the	application	has	sufficient	memory	to	start	with
Tune	the	TCP	parameters	to	obtain	a	larger	window	size;	check	the	sysctl.conf	file
with	these	parameters:

net.core.rmem_max

net.core.wmem_max

net.ipv4.tcp_rmem

net.ipv4.tcp_wmem

Check	the	receiver	is	not	running	too	many	processes

TCP	Window	Update
Wireshark	marks	a	packet	as	Window	Update	when	the	window	size	has	changed.	A
Window	Update	is	an	ACK	packet,	and	only	expands	the	window;	this	is	normal	TCP
behavior.

Open	the	tcp_window_update.pcap	file	in	Wireshark	and	observe	that	a	TCP	Window
Update	event	is	set,	as	shown:

Note
A	Window	Update	is	a	0-byte	segment	with	the	same	SEQ/ACK	numbers	as	the	previously
seen	segment	and	with	a	new	window	value.

TCP	Dup-ACK
Duplicate	ACKs	are	sent	when	there	is	fast	retransmission.	In	this	scenario	the	same
segment	will	be	seen	often.	Open	duplicate_ack.pcapng	and	apply	the
tcp.analysis.duplicate_ack	filter,	as	shown:

As	you	can	see	in	the	previous	screenshot:

Duplicate	ACKs	occur	when	the	Window/SEQ/ACK	is	the	same	as	the	previous
segment	and	if	the	segment	length	is	0
Duplicate	ACKs	can	occur	when	there	is	a	packet	loss,	in	which	case	a
retransmission	can	be	seen

References
The	following	references	will	be	useful	while	working	with	TCP/IP	not	limited:

RFC675	TCP/IP	first	specification:	https://tools.ietf.org/html/RFC675
RFC793	TCP	v4:	https://tools.ietf.org/html/RFC793
TCP	Wiki:	https://en.wikipedia.org/wiki/Transmission_Control_Protocol
The	TCP/IP	guide	at:	http://www.tcpipguide.com/
Ask	Wireshark	for	all	Wireshark-related	queries	at:	https://ask.wireshark.org/
Display	filter	references	for	TCP	at:	https://www.wireshark.org/docs/dfref/t/tcp.html
TCP	analyze	sequence	numbers	at:
https://wiki.wireshark.org/TCP_Analyze_Sequence_Numbers
Helpful	clips	at:	https://goo.gl/lVaEc9

https://tools.ietf.org/html/RFC675
https://tools.ietf.org/html/RFC793
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://www.tcpipguide.com/
https://ask.wireshark.org/
https://www.wireshark.org/docs/dfref/t/tcp.html
https://wiki.wireshark.org/TCP_Analyze_Sequence_Numbers
https://goo.gl/lVaEc9

Summary
In	this	chapter	you	have	learnt	how	the	TCP	opens	and	closes	its	connection,	and	how
TCP	states	are	maintained	during	this	period.	This	chapter	also	covered	error	patterns	seen
on	networks	and	how	to	troubleshoot	those	scenarios.

In	the	next	chapter	we	will	implement	deep-packet	inspections	of	the	SSL	protocol.

Chapter	4.	Analyzing	SSL/TLS
In	this	chapter	we	will	learn	what	SSL/TLS	is	used	for,	how	the	entire	handshake	process
happens,	and	about	the	common	areas	where	the	SSL/TLS	handshake	fails,	by	covering
the	following	topics:

An	introduction	to	SSL/TLS
The	SSL/TLS	Handshake	Protocol	with	Wireshark
SSL/TLS—decrypting	communication	with	Wireshark
SSL/TLS—debugging	handshake	issues

An	introduction	to	SSL/TLS
Transport	Layer	Security	(TLS)	is	the	new	name	for	Secure	Socket	Layer	(SSL).	It
provides	a	secure	transport	connection	between	applications	with	the	following	benefits:

SSL/TLS	works	on	Layer	7	(the	Application	Layer)	on	behalf	of	the	higher-level
protocols
SSL/TLS	provides	confidentiality	and	integrity	by	encrypting	communications
SSL/TLS	allows	client-side	validation	(optional)	for	closed	use	cases

SSL/TLS	versions
Knowing	the	versions	is	extremely	important	while	debugging	handshake	issues,	as	most
handshake	failures	happen	in	this	process.

Netscape	developed	the	original	SSL	versions	and	other	versions;	their	RFC	numbers	are
shown	in	the	following	table:

Protocol Year RFC Deprecated

SSL	1.0 N/A N/A N/A

SSL	2.0 1995 NA Y	RFC	6176

SSL	3.0 1996 RFC	6101 Y	RFC	7568

TLS	1.0 1999 RFC	2246 N

TLS	1.1 2006 RFC	4346 N

TLS	1.2 2008 RFC	5246 N

TLS	1.3 TBD DRAFT N

The	SSL/TLS	component
SSL/TLS	is	split	into	four	major	components,	as	shown	in	the	following	screenshot,	and
this	chapter	will	cover	all	components	in	detail,	one	by	one:

The	SSL/TLS	handshake
The	TLS	Handshake	Protocol	is	responsible	for	the	authentication	and	key	exchange
necessary	to	establish	or	resume	a	secure	session.	Handshake	Protocol	manages	the
following:

Client	and	server	will	agree	on	cipher	suite	negotiation,	random	value	exchange,	and
session	creation/resumption
Client	and	server	will	arrive	at	the	pre-master	secret
Client	and	server	will	exchange	their	certificate	to	verify	themselves	with	the	client
(optional)
Generating	the	master	secret	from	the	pre-master	secret	and	exchanging	it

Types	of	handshake	message
There	are	ten	types	of	message,	as	shown	in	the	following	table,	and	their	corresponding
Wireshark	filters.	This	is	a	one-byte	field	in	the	Handshake	Protocol:

Type Protocol Message Wireshark	content	type Wireshark	filter

0

Handshake

Hello	request

ssl.record.content_type	==	22

ssl.handshake.type	==	0

1 Client	Hello ssl.handshake.type	==	1

2 Server	Hello ssl.handshake.type	==	2

11 Certificate ssl.handshake.type	==	11

12 ServerKeyExchange ssl.handshake.type	==	12

13 CertificateRequest ssl.handshake.type	==	13

14 ServerHelloDone ssl.handshake.type	==	14

15 Certificate	Verify ssl.handshake.type	==	15

16 Client	Key	Exchange ssl.handshake.type	==	16

20 Finished ssl.handshake.type	==	20

	

ChangeCipherSpec

	

ssl.record.content_type	==	20

	Application	Data ssl.record.content_type	==	23

Alert	Protocol ssl.record.content_type	==	21

The	TLS	Handshake	Protocol	involves	the	following	steps	in	four	phases;	the	prerequisite
is	that	a	TCP	connection	should	be	established:

Open	the	file	two-way-handshake.pcap,	which	is	an	example	demonstrating	a	SSL	mutual
authentication	procedure:

Client	Hello
The	TLS	handshake	starts	with	the	Client	Hello	message	(ssl.handshake.type	==	1),	as
shown	in	the	following	screenshot:

Handshake	records	are	identified	as	hex	byte	0x16=22.	The	structure	of	the	Client	Hello
message	is	as	follows:

Message:	The	Client	Hello	message	0x01.
Version:	The	hex	byte	0x0303	means	it’s	TLS	1.2;	note	0x300	=SSL3.0.
Random:

gmt_unix_time:	The	current	time	and	date	in	standard	UNIX	32-bit	format
Random	bytes:	28	bytes	generated	by	the	secure	random	number

Session	ID:	The	hex	byte	0x00	shows	the	session	ID	as	empty;	this	means	no	session
is	available	and	generates	new	security	parameters.
Cipher	suites:	The	client	will	provide	a	list	of	supported	cipher	suites	to	the	server;
the	first	cipher	suite	in	the	list	is	the	client-preferred	(the	strongest)	one.	The	server
will	pick	the	cipher	suites	based	on	its	preferences,	the	only	condition	being	that	the
server	must	have	client-offered	cipher	suites	otherwise	the	server	will	raise	an
alert/fatal	message	and	close	the	connection:

Compression	methods:	The	client	will	list	the	compression	methods	it	supports.
Extensions:	The	client	makes	use	of	the	extension	to	request	extended	functionality
from	the	server;	in	this	case	the	client	has	requested	four	extensions,	as	shown	in	the
following	table:

Value Extension	name Reference

0 elliptic_curve RFC4492

1 ec_point_formats RFC4492

3 signature_algorithms RFC	5246

5 heartbeat RFC	6520

Note
For	a	complete	list	of	TLS	extensions,	visit:	http://www.iana.org/assignments/tls-
extensiontype-values/tls-extensiontype-values.xhtml.

Server	Hello
The	server	will	send	the	Server	Hello	message	(ssl.handshake.type	==	2)	in	response	to
the	Client	Hello,	as	shown	in	the	following	screenshot.	The	message	structure	of	the
Client	Hello	and	Server	Hello	message	is	the	same,	with	one	difference—the	server	can
select	only	one	cipher	suite:

http://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xhtml

Handshake	records	are	identified	as	hex	byte	0x16=22.	The	structure	of	the	Server	Hello
message	is:

Handshake	Type:	The	hex	byte	0x02=2	shows	the	Server	Hello	message
Version:	The	hex	byte	0x0303	shows	TLS	1.2	has	been	accepted	by	the	server

Server/client SSLv2 SSLv3 SSLv23 TLSv1 TLSv1.1 TLSv1.2

SSLv2 Y N Y N N N

SSLv3 N Y Y N N N

SSLv23 N Y Y Y Y Y

TLSv1 N N Y Y N N

TLSv1.1 N N Y N Y N

TLSv1.2 N N Y N N Y

The	following	table	shows	which	SSL	version	of	the	client	can	connect	to	which	SSL
version	of	the	server:

Session	ID:	A	32-byte	session	ID	is	created	for	reconnection	purposes	without	a
handshake
Cipher	suite:	The	server	has	picked	Cipher	Suite:
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384	(0xc030),	which	means	use	Elliptic
curve	Diffie-Hellman	(ECDHE)	key	exchange,	RSA	for	authentication,	Block
cipher	Galois/Counter	Mode	(GCM),	AES-256	for	encryption,	and	SHA-384	for

digests
Extensions:	A	response	with	extension	info	is	requested	in	the	Client	Hello	message

Server	certificate
After	the	Server	Hello	message	is	sent,	the	server	should	send	a	X.509	server	certificate
(ssl.handshake.type	==	11).	The	certificate	configured	on	the	server	are	signed	by	the
CA	or	intermediate	CA,	or	can	be	self-signed	based	on	your	deployment:

If	a	SSL/TLS	server	is	configured	with	the	certificate	chain	then	the	entire	chain	will	be
presented	to	the	client	along	with	the	server	certificate.	The	client	(a	browser	or	any	other
SSL/TLS	client)	can	then	check	the	highest	certificate	in	the	chain	with	stored	CA
certificates;	typically,	modern	Web	browsers	have	the	root	CA	installed	from	the	trusted
CA	provider.

The	given	certificate	is	signed	with	the	relevant	signature	(sha256WithRSAEncryption);	in
this	case,	the	hash	value	itself	is	concatenated	into	the	OID	(Algorithm	Id:
1.2.840.113549.1.1.11)	representing	the	signing	algorithm.	The	certificate	follows	the
DER	encoding	format	and	when	encrypted	becomes	PKCS#7,	the	Cryptographic	Message
Syntax	Standard	(refer	to	RFC	2315).

Server	Key	Exchange
From	RFC	#5246,	the	server	sends	the	Server	Key	Exchange	message
(ssl.handshake.type	==	12)	only	when	the	Server	Certificate	message	(if	sent)	does	not
contain	enough	data	to	allow	the	client	to	exchange	a	premaster	secret:

As	you	can	see	in	the	preceding	screenshot:

Cipher	suites	contains	key	exchange	algorithms
The	Server	Key	Exchange	message	will	be	sent	for	the	following	key	exchange
methods:	DHE_DSS,	DHE_RSA,DH_anon
In	line	with	RFC#5246,	the	use	of	Server	Key	Exchange	is	not	legal	for	these	key
exchange	methods:	RSA,	DH_DSS,	DH_RSA

Client	certificate	request
The	server	can	optionally	ask	client	to	verify	its	certificate.	To	support	mutual
authentication,	the	server	will	send	the	certificate	request	message	(ssl.handshake.type
==	13)	to	the	client	and	the	client	must	provide	its	certificate	information	to	the	server.	If
the	client	fails	to	provide	it,	an	Alert	protocol	will	be	generated	and	the	connection	will
terminate.

Server	Hello	Done
The	Server	Hello	Done	message	means	that	the	server	is	done	sending	messages	to
support	the	key	exchange,	and	the	client	can	proceed	with	its	phase	of	the	key	exchange:

Client	certificate
The	client	will	send	its	certificate	(ssl.handshake.type	==	11)	only	in	a	mutual
authentication	condition.	The	server	will	verify	the	certificate	in	its	CA	chain.	If	the	server
fails	to	verify	client_certificate,	the	server	will	raise	an	alert	fatal	protocol	and
communication	will	stop:

Client	Key	Exchange
In	the	case	of	the	normal	handshake	process	(one	way	auth),	the	Client	Key	Exchange
message	is	the	first	message	sent	by	the	client	after	it	receives	the	Server	Hello	Done
message.

This	Client	Key	Exchange	message	(ssl.handshake.type	==	16)	will	always	be	sent	by
the	client.	When	this	message	is	seen,	pre_master_secret	is	set,	either	by	transmission	of
the	RSA-encrypted	secret	or	by	the	Diffie-Hellman	parameters,	depending	on	the	key
exchange	method	chosen.	The	server	uses	its	private	key	to	decrypt	premaster_secret:

Client	Certificate	Verify
The	Client	Certificate	Verify	message	will	be	sent	after	the	Client	Key	Exchange	message
(ssl.handshake.type	==	16)	using	master_secret	generated	by	pre_master_secret.

Change	Cipher	Spec
The	Change	Cipher	Spec	record	type	(ssl.record.content_type	==	20)	is	different
from	the	handshake	record	type	(ssl.record.content_type	==	22)	and	it’s	a	part	of	the
Change	Cipher	Spec	protocol.	The	Change	Cipher	Spec	message	is	sent	by	both	the	client
and	server	only	when	key_exchange	is	completed	and	it	indicates	to	the	receiving	party
that	subsequent	records	will	be	protected	under	the	newly	negotiated	Change	Cipher	Spec
and	keys	(master_secret):

Finished
The	Finished	(ssl.record.content_type	==	22)	message	is	encrypted	so	it	will	be	an
encrypted	handshake	message	in	Wireshark.	This	message	is	sent	immediately	after	a
Change	Cipher	Spec	message	from	both	the	client	and	server	to	verify	that	the	key
exchange	and	authentication	processes	were	successful.	This	message	contain	the	MD5
hash	+SHA	hash.	When	both	the	client	and	server	have	sent	the	Finished	message,	the
TLS	handshake	is	considered	to	have	finished	successfully	and	now	sending	and	receiving
application	data	over	the	secure	channel	can	begin:

Application	Data
The	Application	Data	message	(ssl.record.content_type	==	23)	is	carried	by	the
record	layer	and	fragmented,	compressed,	and	encrypted:

Record	layer	processing	involves	the	mentioned	step	as	shown	in	the	following
screenshot:

Alert	Protocol

The	Alert	Protocol	(ssl.record.content_type	==	21)	describes	the	severity	of	the
message	and	the	alert.	Alert	messages	are	encrypted	and	compressed	and	support	two	alert
levels:	warning	and	fatal.	In	the	case	of	fatal	alerts,	the	connection	will	be	terminated.

Alert	descriptions	are	shown	in	the	following	table:

Alert	name Alert	type Description

close_notify(0) Closure	alert Sender	will	not	send	any	more	messages	on	this	connection

unexpected_message(10) Fatal An	inappropriate	message	was	received

bad_record_mac(20) Fatal Incorrect	MAC	received

decryption_failed(21)
Fatal TLS	Cipher	text	decrypted	in	an	invalid	way

record_overflow(22) Fatal Message	size	is	more	than	2^14+2048	bytes

decompression_failure(30) Fatal Invalid	input	received

handshake_failure(40) Fatal Sender	unable	to	finalize	the	handshake

bad_certificate(42) Fatal Received	corrupted	certificate;	bad	ASN	sequence

unsupported_certificate(43) Fatal Certificate	type	is	not	supported

certificate_revoked(44) Warning Signer	has	revoked	the	certificate

certificate_expired(45) Warning The	certificate	is	not	valid

certificate_unknown(46) Warning Certificate	unknown

illegal_parameter(47) Fatal TLV	contain	invalid	parameters

unknown_ca(48) Fatal CA	chain	couldn’t	be	located

access_denied(49) Fatal Certificate	is	valid,	the	server	denied	the	negotiation

decode_error(50) Fatal The	TLV	received	does	not	have	a	valid	form

decrypt_error(51) Fatal Decryption	cipher	invalid

export_restriction(60) Fatal A	negotiation	not	in	compliance	with	export	restrictions	was	detected

protocol_version(70) Fatal The	selected	protocol	version	is	not	supported	by	the	server

insufficient_security(71) Fatal Strong	cipher	suite	needed

internal_error(80) Fatal Server-related	issue

user_canceled(90) Fatal Client	cancelled	the	operation

no_renegotiation(100) Fatal Server	is	not	able	to	negotiate	the	handshake

As	shown	in	the	following	screenshot,	the	Alert	Protocol	is	generated	by	the	server:

Key	exchange
In	the	next	section,	we	will	talk	about	how	the	SSL/TLS	channel	can	be	decrypted;	before
that,	we	need	to	understand	what	the	different	keys	exchange	methods	are	and	what	their
cipher	suites	look	like.	These	are	the	following	key	exchange	methods.

The	Diffie-Hellman	key	exchange
This	protocol	allows	two	users	to	exchange	a	secret	key	over	an	insecure	medium	without
any	prior	secrets;	in	this	scheme,	the	example	cipher	suites	will	have	a	naming	convention
such	as:

SSL_DH_RSA_WITH_DES_CBC_SHA
SSL_DH_RSA_WITH_3DES_EDE_CBC_SHA

Cipher	suites	will	have	“DH”	in	their	name,	not	“DHE”	or	“DH_anon”.

Note
You	can	learn	more	about	Diffie-Hellman	at:	https://en.wikipedia.org/wiki/Diffie-
Hellman_key_exchange.

https://en.wikipedia.org/wiki/Diffie-Hellman_key_exchange

Elliptic	curve	Diffie-Hellman	key	exchange
Elliptic	curve	Diffie-Hellman	is	a	modified	Diffie-Hellman	exchange	that	uses	elliptic
curve	cryptography	instead	of	the	traditional	RSA-style	large	primes.	Elliptic	curve
cryptography	(ECC)	is	a	public-key	cryptosystem	just	like	RSA,	Rabin,	and	El	Gamal.
Some	important	points	with	this	algorithm	are:

Every	user	has	a	public	and	a	private	key
The	public	key	is	used	for	encryption/signature	verification
The	private	key	is	used	for	decryption/signature	generation

Note
You	can	learn	more	about	Elliptic	Curve	Diffie-Hellman	at:
https://en.wikipedia.org/wiki/Elliptic_curve_Diffie–Hellman.

Note	that	the	Client	Hello	message	exchange	process	in	the	Extension	elliptic_curves	key
exchange	was	offered.	The	example	cipher	suites	will	follow	a	naming	convention	such
as:

SSL_DHE_RSA_WITH_DES_CBC_SHA
SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA

Cipher	suites	will	have	“DHE”	in	their	name,	not	“DH”	or	“DH_anon”.

https://en.wikipedia.org/wiki/Elliptic_curve_Diffie%E2%80%93Hellman

RSA
The	server’s	public	key	is	made	available	to	the	client	during	the	Server	Key	Exchange
handshake.	The	pre_master_secret	key	is	encrypted	with	the	server	public	RSA	key.	The
example	cipher	suites	in	this	case	will	be:

SSL_RSA_WITH_RC4_128_SHA
SSL_RSA_WITH_DES_CBC_SHA
TLS_RSA_WITH_AES_128_CBC_SHA

Cipher	suites	will	have	“RSA”	in	their	name,	not	“DH”	or	“DH_anon”	or	“DHE”.

Decrypting	SSL/TLS
So	far	we	have	learned	how	the	SSL/TLS	protocol	encrypts	traffic	and	maintains
confidentiality.	In	the	next	section,	we	will	cover	how	Wireshark	helps	to	decrypt
SSL/TLS	traffic.

Decrypting	RSA	traffic
Decryption	of	TLS	traffic	depends	upon	which	cipher	suite	was	chosen	by	the	server	in
the	Server	Hello	message.	Open	the	file	decrypt-ssl-01.pcap	and	look	for	the	cipher
selected	by	the	server.	In	this	case	the	TLS_RSA_WITH_AES_256_CBC_SHA	cipher
suite	was	used;	since	this	is	RSA,	we	can	decrypt	the	packet	using	our	private	key.

Now	go	to	Edit	|	Preferences	|	Protocol	|	SSL,	add	the	new	RSA	key,	and	configure	the
following	properties	of	the	RSA	key	dialog	box:

1.	 The	Private	key	file	(here,	server.key,	which	is	used	by	the	server).
2.	 The	IP	address	of	the	server.
3.	 The	port	of	the	SSL/TLS	server	(443).
4.	 The	decoding	protocol—use	http	in	this	case.

After	applying	these	settings,	the	SSL	traffic	will	be	decoded	into	HTTP	traffic	for	that	IP,
as	shown	in	the	following	screenshot:

Once	the	packet	is	decrypted,	the	SSL	session	can	be	exported	by	clicking	on	File	|
Export	SSL	Session	Keys.	A	dialog	box	will	open;	save	this	session	key	in	the	file
(exported-session-keys).	The	content	of	the	file	looks	like	this:

RSA	Session-

ID:af458c9c61675238b74f40b2a9547a0a2a394ada458a1b648e0495ed279d5e2e	Master-

Key:6c970211a77548811267646a759d0d03bbc532d9b6336f2b656cb0c6bbef8f3a262d845

b9abed87d26583a9c4bb9b230

Once	the	exported-session-keys	file	is	created,	use	this	file	to	decrypt	the	SSL/TLS
traffic.	To	do	so,	go	to	Edit	|	Preferences	|	Protocol	|	SSL	and	configure	the	(Pre)-master-
secret	log	file	with	the	path	of	the	SSL	Session	Keys.	This	approach	is	helpful	when	the
user	wants	to	share	the	packet	without	sharing	the	private	keys	and	still	needs	to	provide
the	decryption	step:

Decrypting	DHE/ECHDE	traffic
DHE/ECDHE	can’t	be	decrypted	using	this	approach	even	if	we	have	private	keys	as	they
are	designed	to	support	forward	secrecy.

Forward	secrecy
Forward	secrecy	is	supported	in	the	Diffie-Hellman	(DHE)	and	Elliptic	curve
cryptography	Diffie-Hellman	(ECDHE)	key	exchange	algorithms.	Take	the	previous
scenario;	the	SSL/TLS	communication	can	be	decrypted	by	knowing	the	server’s	private
key.	If	the	private	key	is	compromised	by	poor	system	hardening	or	(an	internal	threat
agent),	the	SSL/TLS	communication	can	be	broken.	In	forward	secrecy,	the	SSL/TLS
communication	is	secure	even	if	we	have	access	to	the	server’s	private	key.

If	the	cipher	suite’s	name	contains	“ECDHE”	or	“DHE”,	it	means	it	supports	forward
secrecy.	For	example,	note	this	cipher	suite	name:
TLS_ECDHE_RSA_WITH_RC4_128_SHA.

Note
Some	useful	references	for	this	are	as	follows:

http://security.stackexchange.com/questions/35639/decrypting-tls-in-wireshark-
when-using-dhe-rsa-ciphersuites/42350#42350
https://wiki.wireshark.org/SSL
https://weakdh.org/
https://www.openssl.org/docs/apps/ciphers.html
https://goo.gl/9YU0HC

http://security.stackexchange.com/questions/35639/decrypting-tls-in-wireshark-when-using-dhe-rsa-ciphersuites/42350#42350
https://wiki.wireshark.org/SSL
https://weakdh.org/
https://www.openssl.org/docs/apps/ciphers.html
https://goo.gl/9YU0HC

Debugging	issues
In	the	section,	we	will	learn	how	to	debug	common	SSL-related	issues:

Know	your	SSL/TLS	server.	It’s	very	important	how	the	server	is	configured,	which
TLS	version	is	used,	and	which	cipher	suites	it	supports.	To	do	this,	use	the	nmap
utility	as	shown:

root@bash	:/home/ubuntu#	nmap	--script	ssl-cert,ssl-enum-ciphers	-p	443	

10.0.0.106

Starting	Nmap	6.40	(http://nmap.org)	at	2015-08-03	16:49	UTC

Nmap	scan	report	for	ip-10-0-0-106.ap-southeast-1.compute.internal	

(10.0.0.106)

Host	is	up	(0.000067s	latency).

PORT				STATE	SERVICE

443/tcp	open		https

|	ssl-cert:	Subject:	commonName=ip-10-0-0-106/organizationName=Internet	

Widgits	Pty	Ltd/stateOrProvinceName=Some-State/countryName=AU

|	Issuer:	commonName=ip-10-0-0-106/organizationName=Internet	Widgits	

Pty	Ltd/stateOrProvinceName=Some-State/countryName=AU

|	Public	Key	type:	rsa

|	Public	Key	bits:	2048

|	Not	valid	before:	2015-07-28T14:43:45+00:00

|	Not	valid	after:		2016-07-27T14:43:45+00:00

|	MD5:			9ba5	0ea9	14b2	0793	7fe6	9329	08ce	fab3

|_SHA-1:	1604	27b6	4f1c	a838	9a9d	db67	3136	88de	effb	f881

|	ssl-enum-ciphers:	

|			TLSv1.2:	

|					ciphers:	

|							TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA	-	strong

|					compressors:	

|							NULL

|_		least	strength:	strong

The	nmap	output	shows	the	server	supports	TLSv1.2	and	one	cipher	suite.	If	the	client
connects	with	other	SSL	protocols	or	cipher	suites	the	server	doesn’t	support,	the
server	will	return	with	handshake	failure.	For	example,	connecting	the	same	server
with	TLSv1.1	will	return	an	error:

rootbash	#	curl	-k	--tlsv1.1	https://10.0.0.106

curl:	(35)	Unknown	SSL	protocol	error	in	connection	to	10.0.0.106:443

Connecting	with	ciphers	the	server	doesn’t	support	will	return	a	handshake	error	as
shown:

root@bash	#	curl	-k	--ciphers		EXP-RC2-CBC-MD5		https://10.0.0.106

curl:	(35)	error:14077410:SSL	routines:SSL23_GET_SERVER_HELLO:sslv3	

alert	handshake	failure

Receiving	the	unknown_ca	error	check	the	following	find	the	hash	value	from	the
certificate,	private	key	and	CSR	file	use	the	following	commands:

bash	$	openssl	x509	-noout	-modulus	-in	server.crt		|	openssl	md5

f637e8d51413ff7fa8d609e21cb27244

bash	$	openssl	rsa	-noout	-modulus	-in		server.key	|	openssl	md5

f637e8d51413ff7fa8d609e21cb27244

bash	$	openssl	req	-noout	-modulus	-in		server.csr	|	openssl		

f637e8d51413ff7fa8d609e21cb27244

The	md5	hash	value	of	csr,	cer,	and	the	private	key	will	be	the	same,	if	csr	is	generated
with	the	client	private	key,	though	the	certificate	is	generated	by	using	the	CA
(Intermediate	CA)	private	key.

If	the	md5	file	is	the	same,	then	verify	that	the	certificate	issued	by	the	CA	matches	its
path:

bash	$	openssl	verify	-verbose	-CAfile	cacert.pem		server.crt

bash	$	openssl	verify	-verbose	-CAfile	cacert.pem		client.crt

Note
Useful	reference	for	SSL	testing:

https://www.ssllabs.com/ssltest/
https://github.com/rbsec/sslscan
https://testssl.sh/openssl-rfc.mappping.html

https://www.ssllabs.com/ssltest/
https://github.com/rbsec/sslscan
https://testssl.sh/openssl-rfc.mappping.html

Summary
In	this	chapter,	we	have	learned	how	the	SSL/TLS	Handshake	Protocol	works	and	how	to
analyze	it	using	Wireshark.	We	have	examined	sample	debugging	issues	related	to
handshakes,	and	learned	how	to	solve	them.	In	the	next	chapter,	we	will	continue
analyzing	other	application	layer	protocols	with	the	help	of	Wireshark.

Chapter	5.	Analyzing	Application	Layer
Protocols
In	the	previous	chapter,	we	covered	the	SSL/TLS	application	layer	protocol	in	detail.	In
this	chapter,	we	will	continue	with	other	application	layer	protocols	(their	basic	flows	and
some	generic	use	cases)	and	learn	how	to	generate	these	types	of	traffic:

DHCPv6
DHCv4
DNS
HTTP

DHCPv6
The	Dynamic	Host	Configuration	Protocol	for	IPv6	(DHCPv6)	is	an	application	layer
protocol	that	provides	a	DHCPv6	client	with	IPv6	an	address,	and	other	configuration
information,	that	is	carried	in	the	DHCPv6	options.

DHCPv6	is	both	a	Stateful	Address	Autoconfiguration	protocol	and	a	Stateless	Address
Configuration	protocol.

The	client	and	server	exchange	DHCPv6	message	over	UDP;	the	client	uses	a	link-local
address,	DHCPv6	receives	message	over	the	link-scoped	multicast	address.	If	the
DHCPv6	server	is	not	attached	to	the	same	link,	then	a	DHCPv6	relay	agent	on	the	client’s
link	will	relay	messages	between	the	DHCPv6	client	and	DHCPv6	server,	as	shown	in	the
following	screenshot:

DHCPv6	Wireshark	filter
Use	the	dhcpv6	display	filter	to	show	DHCPv6	traffic.	For	the	capturing	filter,	use	UDP
port	547.

Multicast	addresses
Multicast	addresses	are	used	by	the	DHCPv6	client	to	send	datagrams	to	a	group	of
DHCPv6	servers:

For	all	DHCP	relay	agents	and	servers,	the	address	is	FF02::1:2	(link	local)
For	all	DHCPv6	servers,	the	address	is	FF05::1:3	(site	local)

The	UDP	port	information
Servers	and	relay	agents	listen	for	DHCPv6	messages	on	UDP	port	547;	clients	listen	for
DHCPv6	messages	on	UDP	port	546.	To	find	the	port	information,	the	netstat	command
can	be	used:

[root@bash	~]#	netstat	-an	|	grep	547

udp								0						0	:::547																						:::*				

DHCPv6	message	types
DHCPv6	messages	are	exchanged	over	UDP	port	546	and	547	and	the	messages	are
described	in	the	following	table:

DHCPv6
message Description

DHCPv6
Wireshark
filter

Equivalent
DHCP	for
IPv4	message

SOLICIT This	message	is	sent	by	the	client	to	a	group	of	DHCPv6	servers dhcpv6.msgtype

==	1
DHCPDISCOVER

ADVERTISE
This	message	is	sent	by	the	server,	and	reveals	the	server	availability
for	the	DHCPv6	service,	in	response	to	the	SOLICIT	message

dhcpv6.msgtype

==	2
DHCPOFFER

REQUEST
This	message	will	be	sent	by	the	client	and	contains	the	IPV6	address
or	configuration	parameter

dhcpv6.msgtype

==	3
DHCPREQUEST

CONFIRM
This	message	will	be	sent	by	the	client	to	confirm	whether	the	IPv6
address	is	still	valid	for	this	link	or	not

dhcpv6.msgtype

==	4
DHCPREQUEST

RENEW
This	message	will	be	sent	by	the	client	to	update	its	lifetime	or	other
configuration	parameter

dhcpv6.msgtype

==	5
DHCPREQUEST

REBIND

This	message	will	be	sent	by	the	client	if	the	RENEW	message	was	not
received,	and	it	will	update	its	IPv6	address	and	other	configuration
parameters

dhcpv6.msgtype

==	6
DHCPREQUEST

REPLY
For	every	message	sent	by	the	client	a	REPLY	message	will	be	received
from	the	server

dhcpv6.msgtype

==	7
DHCPACK

RELEASE
This	message	will	be	sent	by	the	client	to	release	the	IPv6	address	and
other	configuration	parameters

dhcpv6.msgtype

==	8
DHCPRELEASE

DECLINE
This	message	will	be	sent	by	the	client	if	it	found	that	the	IPv6
address	is	already	assigned	and	in	use

dhcpv6.msgtype

==	9
DHCPDECLINE

RECONFIGURE

This	message	will	be	sent	by	the	server	to	indicate	that	configuration
parameters	are	updated	or	changed;	the	client	will	send	a	RENEW/REPLY
or	INFORMATION-REQUEST/REPLY	to	get	the	updated	configuration

dhcpv6.msgtype

==	10
N/A

INFORMATION-

REQUEST

This	message	will	be	sent	by	the	client	for	the	configuration	request
no	IPv6	address	assignment

dhcpv6.msgtype

==	11
DHCPINFORM

RELAY-

FORWARD

This	message	will	be	sent	by	a	relay	agent	to	forward	a	message	to	a
server.	RELAY-FORWARD	contains	a	client	message	encapsulated	as	the
DHCPv6	RELAY	message	option

dhcpv6.msgtype

==	12
N/A

RELAY-REPLY

This	message	will	be	sent	by	a	server	to	send	a	message	to	a	client
through	a	relay	agent.	RELAY-REPLY	contains	a	server	message
encapsulated	as	the	DHCPv6	RELAY	message	option

dhcpv6.msgtype

==	13
N/A

Message	exchanges
DHCPv6	message	exchanges	happen	in	order	to	obtain	the	IPv6	addresses,	configuration
(NTP	server,	DNS	server),	or	RENEW/RELEASE/DECLINE	of	the	IPv6	address,	and	these
message	exchanges	are	categorized	in	two	parts:

Client-server	with	a	four-message	exchange
Client-server	with	a	two-message	exchange

The	four-message	exchange
The	acronym	for	a	four-message	exchange	is	SARR,	and	it	is	used	to	request	the
assignment	of	one	or	more	IPv6	addresses.	The	message	flow	is	as	follows:

SOLICIT

ADVERTISE

REQUEST

REPLY

Open	the	DHCPv6-Flow-SOLICIT.pcap	file	in	Wireshark,	and	examine	the	IP	assignment
flow	as	shown:

The	preceding	screenshot	shows	a	SARR	flow	packet	being	captured.	IPv6	is	assigned	to
the	DHCPv6	client,	and	the	message	exchanges	in	detail	are:

SOLICIT:	The	client	(fe80::f816:3eff:fe1d:e848)	sends	a	SOLICIT	message	to
locate	the	servers.	Note	the	destination	is	multicast	ff02::1:2	not	the	server

(destination)	IPv6	address:

The	client	includes	its	client-identifier	option	dhcpv6.option.type	==	1.
The	client	sends	it	ORO	option	(dhcpv6.option.type	==	6)	to	the	server	that	is
interested	in	receiving.	In	this	case,	the	client	has	requested	the	name	server
information.
In	this	example,	the	client	uses	the	IA_NA	options	to	request	the	assignment	of
non-temporary	addresses	(dhcpv6.option.type	==	3)	and	uses	IA_TA	options
to	request	the	assignment	of	temporary	addresses.
The	client	IA	address	option	is	used	to	specify	IPv6	addresses	associated	with
IA_NA	or	IA_TA.	In	this	example,	it’s	associated	with	IA_NA.

ADVERTISE:	The	server	(fe80::f816:3eff:fe1d:e848)	sends	the	ADVERTISE
(dhcpv6.msgtype	==	2)	message	to	the	client	(fe80::f816:3eff:fe1d:e848).	There
can	be	multiple	servers	that	will	respond	to	the	client	SOLICIT	message;	the	client
will	choose	the	DHCPv6	server	based	on	its	preference:

The	server	updates	the	IA_NA	(dhcpv6.option.type	==	3)	value	based	on	its
preferences.
The	server	includes	its	server	identifier	(dhcpv6.option.type	==	2)
information.	The	Server	Identifier	option	is	used	to	carry	DUID.	The	DUID	is
the	DHCP	Unique	Identifier,	the	host	identifier	in	IPv6.	(In	the	case	of
DHCPv4,	the	host	identifier	is	the	MAC	address.)
The	server	includes	the	name	server	(dhcpv6.option.type	==	23)	information
as	requested	in	the	SOLICIT	message.
The	server	transaction	ID	0x10eafe	in	this	case	must	match	with	the	client
SOLICIT	transaction	ID.

REQUEST:	In	this	message	the	client	chooses	one	of	the	servers	and	sends	a	REQUEST
message	to	the	server	asking	for	confirmed	assignment	of	addresses	and	other
configuration	information:

The	client	(fe80::f816:3eff:fe1d:e848)	constructs	the	REQUEST	packet	and
sends	it	to	multicast	ff02::1:2
The	client	includes	a	new	transaction	ID:	0x3ec03e.(random)
The	client	include	server	identifier	information	in	the	REQUEST	packet

REPLY:	In	the	case	of	a	valid	REQUEST	message,	the	server	creates	the	bindings	for	that
client	according	to	the	server’s	policy	and	configuration	information,	records	the	IAs
and	other	information	requested	by	the	client,	and	sends	a	REPLY	message	by	setting
dhcpv6.msgtype	==	7:

The	server	transaction	ID	0x3ec03e	will	be	the	same	as	client	DHCv6	REQUEST
message	transaction	ID
The	server	will	include	the	server	identifier	and	the	client	identifier
The	REPLY	message	will	be	part	of	a	two-message	exchange	and	a	four-message
exchange

The	two-message	exchange
The	two-message	exchange	will	be	performed	between	client	and	server	when	IP	address
assignment	is	not	required	or	when	the	DHCPv6	client	wants	to	obtain	configuration
information	such	as	a	list	of	available	DNS	servers	or	NTP	servers—for	example
CONFIRM-REPLY	and	RELEASE-REPLY.	Open	the	sample	DHCPv6-Flow-CONFIRM-
RELEASE.pcap	file	in	Wireshark,	which	shows	that	a	two-message	exchange	was
performed:

1.	 DHCPv6	messages	CONFIRM-REPLY	and	RELEASE-REPLY:

2.	 DHCPv6	messages	INFOMRATION-REQUEST:	The	client	sends	the	INFORMATION-

REQUEST	when	the	client	requests	configuration	settings	(but	not	addresses)—for
example,	DNS,	NTP.	As	shown	in	the	following	screenshot,	open	the	DHCPv6-
Information_request.pcap	file	in	Wireshark:

Client	will	set	dhcpv6.msgtype	==	11:

3.	 The	rapid	commit	option	is	used	to	obtain	the	IPv6	address	assignment	in	the	two-
message	exchange,	as	shown	in	the	following	screenshot	example,	DHCPv6-Rapid-
Commit.pcap.	Note	that	rapid	commit	is	not	a	separate	DHCPv6	message	and	is	part
of	the	SOLICIT	option:

If	a	client	that	supports	the	rapid	commit	option	intends	to	use	the	rapid	commit
capability,	it	includes	a	rapid	commit	option	in	the	SOLICIT	messages	that	it
sends.
If	the	client	receives	a	REPLY	message	with	a	rapid	commit	option,	it	should

process	the	REPLY	immediately	(without	waiting	for	additional	ADVERTISE	or
REPLY	messages)	and	use	the	address	and	configuration	information	contained
therein.
If	the	server	doesn’t	support	the	rapid	commit	option,	then	it	will	follow	with	a
four-message	exchange	(SOLICIT,	ADVERTISE,	REQUEST,	and	REPLY
known	as	SARR).

DHCPv6	traffic	capture
Use	dhclient	to	simulate	DHCPv6	traffic	over	the	network.	For	this,	do	the	following:

1.	 Make	sure	a	DHCPv6	server	is	set	up.	This	example	is	performed	over	an	ISC
Dynamic	Host	Configuration	Server	(dhcpd)	server.

2.	 Run	the	tcpdump	utility	to	capture	IPv6	traffic:

bash$	tcpdump	-i	any	ip6	-vv	-w	DHCPv6-FLOW.pcap	-s0	&

Make	sure	the	DHCPv6	server	is	running	in	your	network.

3.	 To	capture	a	DHCPv6	four-message	exchange	(SARR):

bash$	dhclient	-6	eth0

4.	 To	capture	the	DHCPv6	RELEASE	message:

bash$	dhclient	-6	-r	eth0

5.	 To	capture	the	DHCPv6	CONFIRM	message:

bash$	dhclient	-6	eth0

6.	 To	capture	the	DHCPv6	INFORMATION	request:

bash$	dhclient	-S	-6	eth0

BOOTP/DHCP
DHCP	is	an	extension	of	the	BOOTP	mechanism.	In	other	words,	DHCP	uses	BOOTP	as
its	transport	protocol.	This	behavior	allows	existing	BOOTP	clients	to	interoperate	with
DHCP	servers	without	requiring	any	change	to	the	clients’	initialization	software;	the
following	table	shows	basic	comparisons	between	these	two	protocols:

BOOTP/DHCP BOOTP DHCP	(Dynamic	Host	Configuration	Protocol)

Meaning Bootstrap	Protocol Dynamic	Host	Configuration	Protocol	extension	of
BOOTP

Year 1985 1993

UDP	Server
Port 67

UDP	Client	port 68

Services

IPv4	address	assignment
Obtaining	IPv4	configuration
parameter
Limited	number	of	client	configuration
parameters	called	vendor	extensions

IP	address	assignment
Leases
Support	legacy	BOOTP	functionality
DHCP	supports	a	larger	and	extensible	set	of
client	configuration	parameters	called	options

RFC RFC951 RFC	2131

Existence Superseded	by	the	Dynamic	Host
Configuration	Protocol	(DHCP)

ACTIVE;	RFCs	keep	coming	to	add	more	features
and	support	different	technical	requirements

BOOTP/DHCP	Wireshark	filter
Use	the	bootp	filter	to	display	BOOTP/DHCP	traffic	and	use	UDP	port	67	to	capture	the
BOOT/DHCP	traffic	only.

Address	assignment
DISCOVER,	OFFER,	REQUEST,	ACK	protocol	exchanges	happen	between	clients	and	servers
during	network	address	assignment,	as	shown	in	the	following	screenshot.	As	a
mnemonic,	refer	to	this	as	DORA.

The	address	assignment	can	also	be	done	using	the	Rapid	Commit	option	for	DHCPv4.
Modeled	on	DHCPv6,	it	uses	two-message	exchanges	to	quickly	configure	the	DHCPv4
client.

To	demonstrate	four-message	exchange	open	the	DHCPv4.pcap	file	in	the	Wireshark,	as
shown	in	the	following	screenshot:

The	preceding	figure	shows	a	message	exchange	happening	between	the	DHCPv4	client
and	DHCPv4	server.	This	is	summarized	as	follows:

DISCOVER	(bootp.option.dhcp	==	1):

Expand	Bootstrap	protocol	to	view	BOOTP	details
The	client	broadcasts	(255.255.255.255),	a	DHCPDISCOVER	message,	on	its	local
physical	subnet	and	may	include	the	option:	(55	that	is	bootp.option.type)
parameter	request	list;	during	this	time	the	“yiaddr”	field	will	be
(bootp.ip.your	==	0.0.0.0)

OFFER	(bootp.option.dhcp	==	2):

Expand	Bootstrap	protocol	to	view	BOOTP	details
The	DHCP	server	may	respond	with	a	DHCPOFFER	message	that	includes	an
available	network	address	in	the	“yiaddr”	(bootp.ip.your	==	10.0.0.106)
field
The	DHCP	server	will	send	its	option	54:	DHCP	server	identifier	and	may
include	the	other	configuration	parameter	as	requested	in	option	55	the	DICOVER
phase

DHCPREQUEST	(bootp.option.dhcp	==	3):

Expand	Bootstrap	protocol	to	view	BOOTP	details

The	client	broadcasts	(255.255.255.255)	a	DHCPREQUEST	message	that	must
include	the	option	54	DHCP	server	identifier	to	indicate	which	server	it	has
selected,	and	may	include	other	options	specifying	the	desired	configuration
values
The	DHCP	server	selected	in	the	DHCPREQUEST	message	commits	the	binding	for
the	client	to	the	db	storage	and	responds	with	an	ACK

ACK	(bootp.option.dhcp	==	5):

Expand	Bootstrap	protocol	to	view	BOOTP	details
The	server	will	send	the	ACK	to	the	client	with	the	configuration	parameter;
during	this	time	the	IPv4	address	will	be	“yiaddr”	(bootp.ip.your	==
10.0.0.106)
The	client	will	verify	the	obtained	configuration	and	check	the	IPv4	address
again	using	the	ARP	protocol;	if	the	address	is	in	use	by	other	dhcp	clients,	the
client	will	send	a	DECLINE	message	to	the	server	and	restart	the	configuration
process

Capture	DHCPv4	traffic
The	commands	to	capture	DHCPv4	traffic	are	as	follows:

On	a	Windows	machine:

1.	 Start	a	Wireshark	capture.
2.	 Open	the	Command	Prompt.
3.	 Type	ipconfig	/renew	and	press	Enter.
4.	 Type	ipconfig	/release	and	press	Enter.
5.	 Stop	the	Wireshark	capture.

On	a	Linux	machine:

1.	 Start	a	Wireshark	capture.
2.	 Open	the	Command	Prompt.
3.	 Bring	down	the	network	interface:

bash#	ifdown	eth0:0

4.	 Bring	up	the	network	interface:

bash$	ifup	eth0:0

5.	 Stop	the	Wireshark	capture.

Using	dhclient:

1.	 Start	a	Wireshark	capture.
2.	 Open	the	Command	Prompt.
3.	 To	capture	a	DORA	packet	use:

bash$dhclient	-4	eth0

4.	 Stop	the	capture.

DNS
DNS	stands	for	Domain	Name	System.	DNS	is	used	by	all	machines	to	translate
hostnames	into	IP	addresses.	This	mechanism	is	used	to	translate	names	to	attributes	such
as	addresses	(IPv4/IPv6)	based	on	the	query	type.

DNS	has	three	major	components:

A	name	space
Servers	making	that	name	space	available
Resolvers	(clients)	that	query	the	servers	about	the	name	space

This	topic	will	focus	on	the	resolver	perspective,	where	the	client	sends	a	query	to	the
server	and	the	server	answers	the	query.	There	can	be	multiple	answers	to	the	same	query.

DNS	Wireshark	filter
Wireshark’s	dns	filter	is	used	to	display	only	DNS	traffic,	and	UDP	port	53	is	used	to
capture	DNS	traffic.

Port
The	default	DNS	port	is	53,	and	it	uses	the	UDP	protocol.	Some	DNS	systems	use	the	TCP
protocol	also.	TCP	is	used	when	the	response	data	size	exceeds	512	bytes,	or	for	tasks
such	as	zone	transfers.

Resource	records
The	following	format	is	used	by	the	DNS	system:

Field Description Length Wireshark	filter

NAME The	owner	name variable dns.qry.name	==	"google.com"

TYPE Type	of	Resource	Record	(RR)	in
numeric	form 2

dns.qry.type	==	1	(A	Record	Type)

dns.qry.type	==	255	(ANY	Record	Type)

dns.qry.type	==	2	(NS	name	server)

dns.qry.type	==	15(MX	mail	exchange)

dns.qry.type	==	28	(AAAA	quad	A,	Ipv6

record	Type)

CLASS Class	code 2 dns.qry.class	==	0x0001	(IN	set	to

internet)

TTL Time	to	live 4 	

RDLENGTH Length	in	octets	of	the	RDATA	field 2 	

RDATA Additional	RRspecific	data Variable 	

DNS	traffic
In	this	chapter,	the	dig	and	nslookup	network	commands	are	used	to	query	the	DNS
server.	Open	the	sample	DNS-Packet.pcap	file,	set	the	display	filter	to	dns.qry.type==28,
and	examine	the	query.

In	this	example,	client	(192.168.1.101)	is	asking	the	name	server	(8.8.4.4)	to	resolve
ipv6.google.com	by	setting	these	parameters	in	the	query	section:

The	client	sets	the	record	type	AAAA	record
The	client	sets	the	hostname	(ipv6.google.com)
Client	set	the	class	(that	is,	IN	(Internet))
The	name	server	(8.8.4.4)	responds	to	the	client	with	multiple	answers
ipv6.google.com	is	the	canonical	name	that	equals	ipv6.l.google.com
ipv6.l.google.com	has	the	AAAA	address	2404:6800:4007:805::200e

User	can	use	the	popular	dig	or	nslookup	network	utility	commands	to	query	different
DNS	record	types.	Use	a	network	capture	in	the	background	and	observe	the	query	and
answer	section	for	each	command:

Query	a	record	type	used	to	show	the	IPv4	address	of	the	given	hostname:

bash#	nslookup	google.com

bash#	dig	google.com

bash#	dig	A	+noadditional	+noquestion	+nocomments	+nocmd	+nostats	

google.com.	@8.8.4.4

Query	the	AXFR	record	type;	AXFR	is	used	to	transfer	zone	files	from	the	master	to	the
secondary	name	server:

bash#	nslookup	-type=axfr	google.com	8.8.4.4

bash#	dig	AXFR	+noadditional	+noquestion	+nocomments	+nocmd	+nostats	

+multiline	google.com.	@8.8.4.4

Query	the	CNAME	record	type.	CNAME	is	used	to	set	up	the	alias:

bash#	nslookup	-type=cname	google.com	8.8.4.4

bash#	dig	CNAME	+noadditional	+noquestion	+nocomments	+nocmd	+nostats	

google.com.	@8.8.4.4

Query	the	MX	record	type;	MX	is	the	mail	exchange	record:

bash#	nslookup	-type=mx	google.com	8.8.4.4

bash#	dig	MX	+noadditional	+noquestion	+nocomments	+nocmd	+nostats	

google.com.	@8.8.4.4

Query	the	NS	record	type;	NS	is	the	name	server	record:

bash#	nslookup	-type=ns	google.com	8.8.4.4

bash#	dig	NS	+noadditional	+noquestion	+nocomments	+nocmd	+nostats	

google.com.	@8.8.4.4

Query	the	PTR	record	type;	PTR	is	the	pointer	used	for	reverse	DNS	lookups:

bash#	nslookup	-type=ptr	google.com	8.8.4.4

bash#	dig	PTR	+noadditional	+noquestion	+nocomments	+nocmd	+nostats	

google.com.	@8.8.4.4

Query	the	SOA	record	type.	SOA	is	used	to	provide	authoritative	information	such	as
nameserver	and	e-mail:

bash#	nslookup	-type=soa	google.com	8.8.4.4

bash#	dig	SOA	+noadditional	+noquestion	+nocomments	+nocmd	+nostats	

+multiline	google.com.	@8.8.4.4

Query	the	TXT	record	type;	this	refers	to	the	text	record:

bash#	nslookup	-type=txt	google.com	8.8.4.4

bash#	dig	TXT	+noadditional	+noquestion	+nocomments	+nocmd	+nostats	

google.com.	@8.8.4.4

Query	AAAA	(also	referred	to	as	the	quad-A	record	type);	this	will	display	the	IPv6
address	of	the	given	hostname:

bash#	nslookup	-type=aaaa	google.com	8.8.4.4

bash#	nslookup	-type=aaaa	ipv6.google.com	8.8.4.4

bash#	dig	AAAA	+noadditional	+noquestion	+nocomments	+nocmd	+nostats	

ipv6.google.com.	@8.8.4.4

Query	the	ANY	record	type;	this	returns	all	record	types:

bash#	nslookup	-type=any	google.com	8.8.4.4

bash#	dig	ANY	+noadditional	+noquestion	+nocomments	+nocmd	+nostats	

google.com.	@8.8.4.4

HTTP
HTTP	is	an	application	layer	protocol	used	in	WWW.	HTTP	enables	communications
between	the	HTTP	client	and	HTTP	server.	Example	traffic	is	shown	in	the	following
screenshot.	An	HTTP	GET	request	is	created	by	the	client	(browser	or	cURL),	and	the
HTTP	server	has	responded	with	the	appropriate	content	type:

HTTP	Wireshark	filter
Use	http	to	display	HTTP	packets	only.	Use	TCP	port	80	to	filter	for	HTTP	traffic	only;
port	80	is	the	default	HTTP	port.

HTTP	use	cases
The	following	example	shows	different	use	cases	where	Wireshark	can	help	to	analyze
HTTP	packets.

Finding	the	top	HTTP	response	time
Open	the	file	http_01.pcap	in	the	Wireshark,	and	find	the	top	HTTP	response	time	for	the
request	HTTP	get:

1.	 Click	on	Edit	|	Preferences	|	Protocols	|	TCP,	uncheck	Allow	subdissector	to
reassemble	TCP	streams.	This	will	help	in	knowing	how	many	continuation	packets
there	are	to	get	the	actual	content	and	it	will	help	in	fine-tuning	TCP	parameters—for
example,	setting	up	the	TCP	window	size	to	reduce	the	continuation	packet.

2.	 In	the	Filter	bar,	apply	the	http	filter	and	add	http.time	as	a	column	from	the
http.response.code	==	200	HTTP	OK	packet.

3.	 Click	on	the	Time	since	request	column	and	make	it	in	descending	order.	Find	the
request	frame	and	click	on	the	link.

Finding	packets	based	on	HTTP	methods
Use	Wireshark’s	http.request.method	to	display	packets	for	analysis.	For	example,	the
following	table	describes	how	to	apply	this	filter:

HTTP	method Meaning Wireshark	filter

GET
Get	a	specified	resource	example:
GET	http://www.w3.org/pub/WWW/TheProject.html	HTTP/1.1

http.request.method=="GET"

POST Submits	data	to	be	processed	to	a	specified	resource http.request.method=="POST"

PUT Uploads	a	representation	of	the	specified	URI http.request.method=="PUT"

DELETE Deletes	the	specified	resource/entity http.request.method=="DELETE"

OPTIONS Returns	the	HTTP	methods	that	the	server	supports http.request.method=="OPTIONS"

CONNECT Converts	the	request	connection	to	a	transparent	TCP/IP	tunnel http.request.method=="CONNECT"

Finding	sensitive	information	in	a	form	post
If	the	form	contains	sensitive	information	such	as	password,	Wireshark	can	easily	reveal	it
as	HTTP	is	an	unsecure	means	of	transferring	data	over	the	network.

Open	the	HTTP_FORM_POST.pcap	file	and	filter	the	traffic	to	display	only	the	request
method	POST	and	locate	the	password	form	item,	as	shown	in	the	following	screenshot:

Using	HTTP	status	code
The	first	line	of	the	HTTP	response	contains	the	status	code.	Use	the	Wireshark	filter
http.response.code,	to	display	packets	based	on	the	status	code.	This	will	be	helpful
when	debugging	the	HTTP	client-server	interaction:

Type Code Meaning HTTP	Wireshark	filter

Informational	–	1xx
100 Continue http.response.code	==	100

101 Switching	protocol http.response.code	==	101

Successful	–	2xx

From:	200

To:	206

200 OK http.response.code	==	200

201 Created http.response.code	==	201

Redirection	–	3xx

From:	300

To:	307

300 Multiple	choices http.response.code	==	300

301 Moved	permanently http.response.code	==	301

Client	Error	–	4xx

From:	400

To:	417

400 Bad	Request http.response.code	==	400

401 Unauthorized http.response.code	==	401

Server	Error	–	5xx 500 Internal	Server	Error http.response.code	==	500

From—500

To—	505 501 Not	implemented http.response.code	==	501

References
The	HTTP	protocol:

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://wiki.wireshark.org/Hyper_Text_Transfer_Protocol

The	DNS	protocol:

https://en.wikipedia.org/wiki/Domain_Name_System#Protocol_transport
https://www.ietf.org/rfc/rfc1035.txt

The	DHCP/BOOT	protocol:

https://tools.ietf.org/html/rfc2131
http://linux.die.net/man/8/dhclient
http://www.iana.org/assignments/bootp-dhcp-parameters/bootp-dhcp-
parameters.xhtml
https://goo.gl/snUXkp

The	DHCPv6	protocol:

http://www.iana.org/assignments/dhcpv6-parameters/dhcpv6-parameters.xhtml
https://tools.ietf.org/html/rfc3315
https://en.wikipedia.org/wiki/DHCPv6

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://wiki.wireshark.org/Hyper_Text_Transfer_Protocol
https://en.wikipedia.org/wiki/Domain_Name_System#Protocol_transport
https://www.ietf.org/rfc/rfc1035.txt
https://tools.ietf.org/html/rfc2131
http://linux.die.net/man/8/dhclient
http://www.iana.org/assignments/bootp-dhcp-parameters/bootp-dhcp-parameters.xhtml
https://goo.gl/snUXkp
http://www.iana.org/assignments/dhcpv6-parameters/dhcpv6-parameters.xhtml
https://tools.ietf.org/html/rfc3315
https://en.wikipedia.org/wiki/DHCPv6

Summary
In	this	chapter,	we	have	learned	how	Wireshark	helps	us	to	analyze	application	layer
protocols	such	as	DHCPv6,	DHCP,	DNS,	and	HTTP.	We	also	learned	how	to	simulate
these	traffic	on	the	wire.

In	the	next	chapter,	we	will	learn	more	about	wireless	sniffing.

Chapter	6.	WLAN	Capturing
So	far,	we	have	seen	packets	captured	on	Ethernet.	In	this	chapter	we	will	learn	how	to
capture	WLAN	network	traffic,	and	use	effective	display	filters	for	all	the	frames,	by
covering	the	following	topics:

WLAN	(802.11)	capture	setup	and	the	monitor	mode
802.11	capturing	with	tcpdump
802.11	display	filters
Layer-2	datagram	frame	types	and	Wireshark	display	filters
802.11	auth	process
802.1X	EAPOL
802.11	protocol	stack

WLAN	capture	setup
Wireshark	depends	on	the	operating	system	on	which	it’s	running	(and	on	the	drivers	for
the	wireless	adapter)	for	monitor	mode	support.

For	Linux,	the	802.11	wireless	toolbar	(View	|	Wireless	Toolbar)	provides	excellent
options	to	enable	the	monitor	mode	and	set	the	channel	for	cfg80211	devices.	This	even
supports	multiple	network	interfaces	for	multi-channel	captures;	refer	to
https://wiki.wireshark.org/CaptureSetup/WLAN	for	detailed	instructions.

The	MAC	OS	has	a	wireless	adapter,	and	the	monitor	mode	is	supported.	On	Windows,
the	monitor	mode	is	not	supported;	you	need	a	commercial	adaptor	for	this,	such	as	the
AirPcap	USB	adapter.

The	WLAN	(IEEE	802.11)	capturing	process	is	slightly	different	from	capturing	Ethernet
traffic	in	Wireshark.	By	default,	when	we	start	capturing	traffic	in	a	Wi-Fi	network,	it
captures	traffic	between	two	endpoints	(HOST-A	and	HOST-B).	To	capture	the	Wi-Fi
traffic,	Wireshark	has	to	run	in	the	monitor	mode—RFMON	(Radio	Frequency
Monitor)	mode—which	allows	a	computer	with	a	wireless	network	interface	controller
(WNIC)	to	monitor	all	traffic	received	from	the	AP	(Access	Point),	as	shown	in	the
screenshot:

https://wiki.wireshark.org/CaptureSetup/WLAN

The	monitor	mode
The	monitor	mode	is	supported	only	on	IEEE	802.11	Wi-Fi	interfaces,	and	only	on	some
operating	systems.	To	enable	the	monitor	mode	in	a	Wi-Fi	interface,	perform	these	steps	in
Wireshark:

1.	 Click	on	Capture	|	Options.
2.	 Select	the	active	Wi-Fi	adaptor.	Double-click	on	the	interface	setting;	a	window	will

appear.
3.	 Enable	the	Capture	packets	in	Monitor	mode	option.
4.	 Click	on	OK.
5.	 Start	the	capture.

You	should	see	the	following	screen:

When	the	monitor	mode	is	on,	the	adapter	captures	all	the	packets	transmitted	on	the
channel.	These	include:

Unicast	packets
Broadcast	packets
Control	and	management	packets

Tip
Disable	name	resolution	in	the	monitor	mode	because	Wireshark	will	try	resolving	the
FQDN,	which	results	in	slowness	in	opening	the	packet	capture	file	(there	is	no	external
network	in	the	monitor	mode).

Once	the	packet	capture	starts,	Wireshark	will	start	displaying	the	802.11	protocol	packet

exchange	between	source	and	destination,	as	shown	in	the	following	screenshot	(or	open
the	packet	capture	802.11.pcap	file	in	Wireshark).	Packet	capture	in	the	monitor	mode
will	not	be	associated	with	any	of	the	access	points	and	the	user	can	see	only	802.11
frames,	which	include	non-data	(management	and	beacon)	frames,	as	shown:

To	perform	a	wireless	packet	capture	using	tcpdump,	execute	the	following	command.	The
tcpdump	with	–I	option	will	turn	the	monitor	mode	on:

bash	$	tcpdump	-I	-P	-i	en0	-w	802.11.pcap

The	output	obtained	is	as	follows:

tcpdump:	WARNING:	en0:	no	IPv4	address	assigned

tcpdump:	listening	on	en0,	link-type	IEEE802_11_RADIO	(802.11	plus	radiotap	

header),	capture	size	65535	bytes

^C52	packets	captured

52	packets	received	by	filter

Analyzing	the	Wi-Fi	networks
When	analyzing	a	Wi-Fi	network,	it’s	important	to	go	through	the	IEEE	standard	802.11
as	the	source	of	truth	as	this	is	one	of	the	most	interesting	protocols	to	gain	a	expertise	on.

Wireless	networks	are	different	from	a	wired	LAN:	here	the	addressable	unit	is	a	station
(STA),	and	the	STA	is	the	message	destination	not	the	fixed	location	when	the	packet	is
transferred	to	the	STA.

Within	the	scope	of	the	book,	we	are	dealing	with	packets	captured	between	the	WNIC
controller	and	the	access	point.	The	access	point	(AP)	contains	one	station	(STA)	and
provides	access	to	the	distribution.	In	this	book,	we	will	see	the	how	Wireshark	has
provided	display	filters	for	analyzing	Wi-Fi	frames:

wlan:	This	displays	IEEE	802.11	wireless	LAN	frame
wlan_ext:	This	displays	IEEE	802.11	wireless	LAN	extension	frame
wlan_mgt:	This	displays	IEEE	802.11	wireless	LAN	management	frame
wlan_aggregate:	This	displays	IEEE	802.11	wireless	LAN	aggregate	frame

Frames
In	Layer	2,	datagrams	are	called	frames;	they	show	all	channel	traffic	and	a	count	of	all
the	frames	received	at	the	measuring	STA.	There	are	four	types	of	frame,	which	are
defined	in	the	following	table:

Frame	type Value Wireshark	display	filter

Management 0x00 wlan.fc.type	==	0

Control 0x01 wlan.fc.type	==	1

Data 0x02 wlan.fc.type	==	2

Extension 0x03 wlan.fc.type	==	3

Let’s	take	a	detailed	look	at	these	frames	one	by	one.

Management	frames
Wireshark	uses	the	wlan_mgt	display	filter	to	show	all	the	management	frames.	In	line
with	the	IEEE	802.11	standard,	the	following	management	frames	are	defined	and	their
corresponding	values,	with	appropriate	Wireshark	display	filters,	are	shown	in	the
following	table:

Name Value Wireshark	display	filter

association	request 0x00 wlan.fc.type_subtype	==	0x00

association	response 0x01 wlan.fc.type_subtype	==	0x01

reassociation	request 0x02 wlan.fc.type_subtype	==	0x02

reassociation	response 0x03 wlan.fc.type_subtype	==	0x03

probe	request 0x04 wlan.fc.type_subtype	==	0x04

probe	response 0x05 wlan.fc.type_subtype	==	0x06

measurement	pilot 0x06 wlan.fc.type_subtype	==	0x06

beacon	frame 0x08 wlan.fc.type_subtype	==	0x08

atim 0x09 wlan.fc.type_subtype	==	0x09

disassociation 0x0a wlan.fc.type_subtype	==	0x0a

authentication 0x0b wlan.fc.type_subtype	==	0x0b

deauthentication 0x0c wlan.fc.type_subtype	==	0x0c

action 0x0d wlan.fc.type_subtype	==	0x0d

action	no	ack 0x0e wlan.fc.type_subtype	==	0x0e

For	example,	by	setting	wlan.fc.type_subtype	==	0x08,	in	the	802.11.pcap	file,	the
entire	beacon	frame	will	be	displayed	in	Wireshark.

A	beacon	is	a	small	broadcast	data	packet	that	shows	the	characteristics	of	the	wireless
network,	and	provide	information	such	as	data	rate	(max	data	rate),	capabilities
(encryption	on	or	off),	Access	Point	MAC	address,	SSID	(wireless	network	name),	RSN
information,	vendor	specific	information,	Wi-Fi	protected	setup,	and	so	on,	where:

SSID	is	the	name	of	the	AP,	for	example:	ANish
BSSID	is	the	MAC	address	of	the	AP,	for	example	is	94:FB:B3:B8:DF:DD

In	another	example,	the	wlan_mgt.ssid	==	"ANish"	display	filter	will	display	all
management	frames	whose	SSID	matches	with	ANish.

Data	frames
Data	frames	carry	the	packets	that	can	contain	the	payload	(such	as	files,	screenshots,	and
so	on).	Type	values	for	data	frames	used	in	802.11	and	their	corresponding	Wireshark
display	filters	are	shown	in	the	following	table:

Name Value Wireshark	display	filter

data 0x20 wlan.fc.type_subtype	==	0x20

data	+	cf-ack 0x21 wlan.fc.type_subtype	==	0x21

data	+	cf-poll 0x22 wlan.fc.type_subtype	==	0x22

data	+	cf-ack	+	cf-poll 0x23 wlan.fc.type_subtype	==	0x23

null	function 0x24 wlan.fc.type_subtype	==	0x24

no	data	cf-ack 0x25 wlan.fc.type_subtype	==	0x25

no	data	cf-poll 0x26 wlan.fc.type_subtype	==	0x26

no	data	cf-ack	+	cf-poll 0x27 wlan.fc.type_subtype	==	0x27

qos	data 0x28 wlan.fc.type_subtype	==	0x28

qos	data	+	cf-ack 0x29 wlan.fc.type_subtype	==	0x29

qos	data	+	cf-poll 0x2a wlan.fc.type_subtype	==	0x2a

qos	data	+	cf-ack	+	cf-poll 0x2b wlan.fc.type_subtype	==	0x2b

qos	null 0x2c wlan.fc.type_subtype	==	0x2c

no	data	qos	cf-poll 0x2e wlan.fc.type_subtype	==	0x2e

qos	cf-ack	+	cf-poll 0x2f wlan.fc.type_subtype	==	0x2f

For	example,	wlan.fc.type_subtype	==	0x2A	will	display	all	the	packets	that	contain
QoS	Data	+	CF-Poll	in	the	packet	capture	file	802.11.pcap,	as	shown	in	the	following
screenshot:

Control	frames
Control	frames	exchange	data	frames	between	stations.	Control	frame	ranges	are	0x160	-

0x16A	for	control	frame	extensions	where	type	=	1	and	subtype	=	6.	Values	for	control
frames	and	the	corresponding	Wireshark	display	filters	are	shown	in	the	following	table:

Name Value Wireshark	display	filter

vht	ndp	announcement 0x15 wlan.fc.type_subtype	==	0x15

poll 0x162 wlan.fc.type_subtype	==	0x162

service	period	request 0x163 wlan.fc.type_subtype	==	0x163

grant 0x164 wlan.fc.type_subtype	==	0x164

dmg	clear	to	send 0x165 wlan.fc.type_subtype	==	0x165

dmg	denial	to	send 0x166 wlan.fc.type_subtype	==	0x166

grant	acknowledgment 0x167 wlan.fc.type_subtype	==	0x167

sector	sweep 0x168 wlan.fc.type_subtype	==	0x168

sector	sweep	feedback 0x169 wlan.fc.type_subtype	==	0x169

sector	sweep	acknowledgment 0x16a wlan.fc.type_subtype	==	0x16a

control	wrapper 0x17 wlan.fc.type_subtype	==	0x17

block	ack	request 0x18 wlan.fc.type_subtype	==	0x18

block	ack 0x19 wlan.fc.type_subtype	==	0x19

power-save	poll 0x1a wlan.fc.type_subtype	==	0x1a

request	to	send 0x1b wlan.fc.type_subtype	==	0x1b

clear	to	send 0x1c wlan.fc.type_subtype	==	0x1c

acknowledgement 0x1d wlan.fc.type_subtype	==	0x1d

contention-free	period	end 0x1e wlan.fc.type_subtype	==	0x1e

contention-free	period	end/ack 0x1f wlan.fc.type_subtype	==	0x1f

802.11	auth	process
The	AP	advertises	its	capabilities	in	a	Beacon	frame;	the	client	(STA)	broadcasts	itself,
using	its	own	probe	request	frame,	on	every	channel—typically	(channel	11).	By	doing
this,	it	determines	which	access	points	are	within	range.

Probe	response	frames	contain	capability	information,	supported	data	rates	and	so	on,	of
the	AP	after	it	receives	a	probe	request	frame.

The	STA	sends	an	authentication	frame	containing	its	identity	to	the	AP.	With	open	system
authentication	(the	default),	the	access	point	responds	with	an	authentication	frame	as	a
response,	indicating	acceptance	(or	rejection).

Shared	key	authentication	requires	WEP	(64-bit	or	128-bit)	keys,	and	the	same	WEP	keys
on	the	client	and	AP	should	be	used.	The	STA	requests	a	shared	key	authentication,	which
returns	unencrypted	challenge	text	(128	bytes	of	randomly	generated	text)	from	the	AP.
The	STA	encrypts	the	text	and	returns	the	data	to	AP,	the	AP	response	indicating
acceptance	(or	rejection).

The	STA	sends	an	association	request	frame	to	the	AP	containing	the	necessary
information	and	then	that	the	AP	will	send	an	Association	response	frame	that	includes
acceptance	(or	rejection).	If	this	is	accepted,	the	STA	can	utilize	AP	to	access	other
networks:

802.1X	EAPOL
IEEE802.1x	is	based	on	Extensible	Authentication	Protocol	(EAP),	which	is	an
extension	of	PPP	(Point-to-Point	Protocol),	also	known	as	“EAP	over	LAN”	or	EAPOL.

The	IEEE	802.11	Working	Group	passed	the	802.1x	standard	in	2001	to	improve	upon	the
security	specified	in	the	original	802.11	standard	(IEEE,	2001).

Open	the	802.11-AUTH-enabled.pcap	file	in	Wireshark	and	use	the	display	filter	eapol	to
display	all	the	eapol	messages	only,	as	shown	in	the	following	screenshot.	In	the	eapol
packets,	the	session	key	of	the	device	and	the	AP	are	handled.

As	shown	in	the	screenshot,	all	eapol	packets	are	captured	as	1	of	4,	2	of	4,	3	of	4,	and	4
of	4.

The	eapol	packets	are	needed	if	you	are	trying	to	decrypt	802.11	traffic.	The	Wireshark
wiki	link	https://wiki.wireshark.org/HowToDecrypt802.11	is	an	excellent	source	of
information	on	how	to	decrypt	traffic	with	the	help	of	Wireshark.

https://wiki.wireshark.org/HowToDecrypt802.11

The	802.11	protocol	stack
The	802.11	standard	specifies	a	common	medium	access	control	(MAC)	layer	(the	data
link	layer)	that	supports	the	operation	of	802.11-based	wireless	LANs.	The	802.11	MAC
layer	uses	an	802.11	Physical	(PHY)	layer,	such	as	802.11a/b,	to	perform	the	tasks	of
carrier	sensing,	transmission,	and	receiving	802.11	frames.

Open	the	packet	capture	file	802.11-AUTH-Disabled.pcap	in	Wireshark	and	set	the
display	filter	to	wlan.da==e8:de:27:59:72:06	to	view	how	the	data	is	carried	using
802.11	as	the	transport	medium.

The	802.11	QoS	data	frames	shows	that	the	LLC	header	follows	IEEE	802.11;	this	is	what
is	expected	in	the	monitor	mode.

The	captured	802.11	looks	like	an	Ethernet	packet	as	the	802.11	adapter	will	often	try	to
transform	data	packets	into	fake	Ethernet	packets	and	then	supply	them	to	the	host.

Wi-Fi	sniffing	products
There	are	other	commercial	(as	well	as	open	source)	tools	that	use	a	form	of	Wi-Fi
sniffing	depending	on	the	operating	system	and	uses	cases	(such	as	WEP	decryption,
advance	analytics,	and	geo	location).	A	few	of	them	are	listed	as	follows:

Kismet	(https://www.kismetwireless.net/documentation.shtml):	Kismet	can	sniff
802.11a/b/g/n	Wi-Fi	traffic.
Riverbed	AirPcap	(http://riverbed.com):	The	Riverbed	AirPcap	adapter	is	used	to
capture	and	analyze	802.11a/b/g/n	Wi-Fi	traffic	and	is	fully	integrated	with
Wireshark.
KisMac	(http://kismac.en.softonic.com/mac?ex=SWH-1740.2)	for	Mac	OS	X:
KisMac	offers	many	of	the	same	features	as	Kismet	and	is	considered	as	NetStumbler
for	Mac.	Mac	users	can	find	utility	tools	such	as	airport	ID,	airport	utility,	and	Wi-Fi
Diagnostics,	for	sniffing	and	diagnosing	Wi-Fi	networks.
NetStumbler	(http://www.netstumbler.com):	This	is	used	for	Wi-Fi	analysis.

Note
For	more	information,	you	can	visit	the	following	links:

https://wiki.wireshark.org/CaptureSetup/WLAN
https://en.wikipedia.org/wiki/IEEE_802.11
https://wiki.wireshark.org/HowToDecrypt802.11
https://www.wireshark.org/tools/wpa-psk.html

https://www.kismetwireless.net/documentation.shtml
http://riverbed.com
http://kismac.en.softonic.com/mac?ex=SWH-1740.2
http://www.netstumbler.com
https://wiki.wireshark.org/CaptureSetup/WLAN
https://en.wikipedia.org/wiki/IEEE_802.11
https://wiki.wireshark.org/HowToDecrypt802.11
https://www.wireshark.org/tools/wpa-psk.html

Summary
In	this	chapter,	we	have	covered	Wi-Fi	capture	setup	and	discussed	exactly	what	the
monitor	mode	is	and	its	pros	and	cons.	We	have	also	learned	how	the	various	display
filters	are	used	on	the	Layer	2	datagram	(frames).	In	the	next	chapter,	we	will	explore
network	security	and	its	mitigation	plans	in	greater	detail.

Chapter	7.	Security	Analysis
In	the	previous	chapters,	we	learned	more	about	protocols	and	their	analysis	techniques.	In
this	chapter,	we	will	learn	how	Wireshark	helps	us	perform	a	security	analysis	and	try	to
cover	the	security	aspects	in	these	area	application	and	network	by	covering	these	topics:

The	Heartbleed	bug
DoS	SYN	flood/mitigation
DoS	ICMP	flood/mitigation
Scanning	the	network
ARP	duplicate	IP	detection	(MITM)
DrDoS	introduction
BitTorrent	source	identification
Wireshark	endpoints	and	protocol	hierarchy

Heartbleed	bug
The	Heartbeat	protocol	(RFC6520)	runs	on	top	of	the	Record	layer	protocol	(the	Record
layer	protocol	is	defined	in	SSL).

The	Heartbleed	bug	(CVE-2014-0160)	exists	in	selected	OpenSSL	versions	(1.0.1	to
1.0.1f)	that	implement	the	Heartbeat	protocol.

This	bug	is	a	serious	vulnerability	that	allows	attackers	to	read	larger	portions	of	memory
(including	private	keys	and	passwords)	during	Heartbeat	response.

The	Heartbleed	Wireshark	filter
The	Heartbeat	protocol	runs	on	top	of	the	Record	layer	identified	as	record	type	(24)	in
SSL/TLS.	In	Wireshark,	a	display	filter	ssl.record.content_type	==	24	can	be	used	to
show	the	HeartBeat	message.	Heartbeat	messages	are	Heartbeat	Request	and	HeartBeat
Response.

Heartbleed	Wireshark	analysis
Open	the	heartbleed.pcap	packet	capture	file	in	Wireshark	and	set	the	display	filter	to
ssl.record.content_type	==	24.

Wireshark	will	display	only	encrypted	heartbeat	messages.	The	first	one	is	the	Heartbeat
Request	message.	In	this	message,	the	length	(ssl.record.length	==	112)	of	the
Heartbeat	Request	is	set	to	112	bytes,	as	shown	in	the	screenshot:

Whenever	a	Heartbeat	Request	message	is	send	to	the	server,	the	server	answers	with	a
corresponding	Heartbeat	Response	message.

In	the	given	packet,	the	Heartbeat	Response	length	(ssl.record.length	==	144)	is	set	to
144,	which	means	the	server	has	returned	more	data	(32-bytes	more)	than	expected.	This
extra	information	is	known	as	the	heartbleed;	this	bleed	may	contain	sensitive	information
such	as	passwords	and	private	keys:

The	Heartbleed	test
To	test	the	heartbleed,	use	the	following	steps:

1.	 Install	OpenSSL	version	(1.0.1c)	from	the	openssl	library:

[bash]#	openssl	version

OpenSSL	1.0.1c	10	May	2012

2.	 Create	a	self-signed	SSL	certificate:

[bash	#]openssl	req	-sha256	-new	-newkey	rsa:2048	-nodes	-keyout	

./server.key	-out	./server.csr	-subj	"/C=PU/ST=Anish/L=Test/O=Security	

Analysus	/OU=Heartbleed/CN=myhost.com"

[bash	#]openssl	x509	-req	-days	365	-in	server.csr	-signkey	server.key	

-out	server.pems

3.	 Start	the	TLS	server	using	the	affected	version	of	OpenSSL:

[bash]#	openssl		s_server	-www	-cipher	AES256-SHA	-key	./server.key	-

cert	./server.pem	-accept	443

4.	 Start	the	packet	capture:

[bash]#	tcpdump	port	443	–s0	–w	heartbleed.pcap	&

If	the	SSL/TLS	server	is	reachable	through	the	public	network,	online	filippo	can	be	used.
Other	tools	(such	as	Heartbeat	Detector,	which	is	a	shell	script)	can	also	be	used	for	this
purpose:

Heartbleed	Detector:	https://access.redhat.com/labsinfo/heartbleed
Heartbleed	online	test:	https://filippo.io/Heartbleed/

https://access.redhat.com/labsinfo/heartbleed
https://filippo.io/Heartbleed/

Heartbleed	recommendations
The	following	are	Heartbleed	recommendations:

Apply	the	patches	as	recommended	in	the	OpenSSL	advisory
Change	the	passwords	if	the	vulnerability	is	addressed.

The	DOS	attack
This	technique	is	used	to	attack	the	host	in	such	a	way	that	the	host	won’t	be	able	to	serve
any	further	requests	to	the	user.	Finally,	the	server	crashes,	resulting	in	a	server
unavailable	condition.

There	are	various	attack	techniques	used	in	this	topic.	We	will	cover	SYN	flood	and	ICMP
flood	detection	with	the	help	of	Wireshark.

SYN	flood
We	learned	about	the	TCP	handshake	process	in	Chapter	3,	Analyzing	the	TCP	Network.
In	this	handshake	process,	a	connection	is	established	with	SYN,	SYN-ACK,	and	ACK
between	the	client	and	server.

In	the	SYN	flood	attack	scenario,	what	is	happening	is	that:

The	client	is	sending	very	fast	SYN;	it	has	received	the	SYN-ACK	but	doesn’t
respond	with	the	final	ACK
Alternatively,	the	client	is	sending	very	fast	SYN	and	blocking	the	SYN-ACK	from
the	server,	or	the	client	is	sending	very	fast	SYN	from	a	spoofed	IP	address	so	the
SYN-ACK	is	sent	to	an	unknown	host	that	virtually	doesn’t	exist

In	all	these	scenarios,	the	TCP/IP	stack	file	descriptors	are	consumed,	causing	the	server	to
slow	down	and	finally	crash.

Open	the	SYN_FLOOD.pcap	packet	capture	file	in	Wireshark	and	perform	the	following
steps:

1.	 Click	on	Statistics	|	IO	Graph.
2.	 The	IO	Graph	dialog	box	will	appear.
3.	 Generate	four	graphs	for	the	TCP	handshake	message	SYN,	ACK,	FIN,	and	PUSH.

The	IO	graph	statistics	show	the	following	summary:

The	TCP	connection	never	closes	as	there	is	no	count	for	tcp.flags.fin
The	TCP	connection	never	exchanges	any	data	as	there	is	no	count	for
tcp.flags.push

The	count	of	SYN	packets	is	very	high
The	count	of	ACK	is	half	of	that	of	the	SYN	packets

In	real	scenarios,	this	data	will	be	mixed	up	with	actual	packet	flows,	but	the	analysis
technique	will	remain	the	same.	The	moment	you	see	an	unexpected	growth	in	SYN
packets	or	a	spike	in	SYN	packets,	it’s	a	SYN	flood	from	DoS	or	from	the	multiple-source
DDoS.

SYN	flood	mitigation
SYN	attacks	can	be	mitigated.	The	following	are	a	few	mitigation	plans:

TCP/IP	stack	hardening:	The	operating	system	decides	how	many	times	SYN,
SYN-ACK,	ACK	will	be	repeated;	lowering	the	SYN,ACK	retries	will	help	the
server	mitigate	SYN	flood	attacks.	A	SYN	cookie	is	used	to	resist	SYN	flood	attacks.
To	perform	all	these	on	Linux	systems,	edit	the	/etc/sysctl.conf	file	and	make
changes	to	these	entries:

#Prevent	SYN	attack,	enable	SYNcookies	(they	will	kick-in	when	the	

max_syn_backlog	reached)

net.ipv4.tcp_syncookies	=	1

net.ipv4.tcp_syn_retries	=	2

net.ipv4.tcp_synack_retries	=	2

net.ipv4.tcp_max_syn_backlog	=	4096

#	Increase	the	tcp-time-wait	buckets	pool	size	to	prevent	simple	DOS	

attacks	

net.ipv4.tcp_max_tw_buckets	=	1440000

Restart	sycltl	to	apply	the	changes:

bash#sysctl	-p

IPtables	firewalls	can	be	set	to	deny	the	IPs	that	are	causing	the	problem.	To	generate
the	firewall	rules,	use	the	Wireshark	feature	generating	Firewall	rules	to	drop	the
traffic	that	is	causing	DoS.
For	example,	blocking	the	traffic	causing	the	DoS:

#	Netfilter	(iptables)

iptables	-A	INPUT	-i	eth0	-d	10.0.0.3/32	-j	DROP

!	Cisco	IOS	(standard)

access-list	NUMBER	deny	host	10.0.0.3

#	IPFirewall	(ipfw)

add	deny	ip	from	10.0.0.3	to	any	in

#	Windows	Firewall	(netsh)

add	portopening	tcp	443	Wireshark	DISABLE	10.0.0.3

Ports	opened	to	the	external	world	should	be	audited.
Monitoring	by	creating	alerts	on	the	spikes	that	show	unhealthy	trends	on	the
network	which	can	result	in	the	DoS	scenario;	generate	the	firewall	rule	dynamically
and	apply	it	on	the	targeted	VM.
Network	ACLs	block	the	traffic	at	the	router	level;	introduce	the	IDS/IPS	system	to
the	network.
Use	the	loadbalancer	as	the	connection	off-loader.	In	this	case,	if	an	attack	happens,	it
will	happen	on	the	loadbalancer.	The	VM	will	remain	protected.	Most	of	the
commercially	available	loadbalancers	have	the	ability	to	defend	themselves	from	this
type	of	attack.
Rate-limiting	the	SYN	per	second	per	IP.
Put	DoS/DDoS	protection	on	the	data	center	edge	router	(L2).
Apply	multiple	levels	of	detection	and	knowing	the	signatures	and	attributes	of
suspected	traffic	locations.
Prepare	mitigation	plans.

ICMP	flood
Internet	Control	Message	Protocol	(ICMP)	flood	is	also	categorized	as	a	Layer	3	DoS
attack	or	a	DDoS	attack.	It	works	as	follows:	an	attacker	is	trying	to	flood	the	echo	request
(ping)	packet	with	a	spoofed	IP	address	or	the	server	is	flooded	with	echo	requests	(ping
packets)	and	not	able	to	process	the	echo	response	for	each	ICMP	echo	request,	resulting
in	host	slowness	and	denial	of	service.

Open	the	ICMP_Flood_01.pcap	packet	capture	file	in	Wireshark	and	perform	the	following
steps:

1.	 Click	on	Statistics	|	IO	Graph.
2.	 The	IO	Graph	dialog	box	will	appear.
3.	 Generate	graphs	for	ICMP	and	ICMPv6.

As	shown	in	the	screenshot,	ICMP	flood	has	the	following	characteristics:

The	IO	graph	shows	a	large	number	of	ICMP	packets:	nearly	80K	ping	requests	in	a
short	period	of	time
The	packet	capture	doesn’t	have	the	echo	reply	message

This	is	sample	data;	in	real	environment	it	may	vary	as	attackers	are	also	learning	and
finding	new	ways	to	perform	ICMP	DoS.

ICMP	flood	mitigation
The	following	are	a	few	mitigation	plans	for	the	ICMP	flood	attack:

OS	hardening:	On	the	host	machine	(production	environment)	disable	the	ICMP	and
ICMPv6	protocol	through	the	iptables	firewall:

bash#	iptables	-I	INPUT	-p	icmp	--icmp-type	8	-j	DROP

bash#	iptables	-A	OUTPUT	-p	icmp	-o	eth0	-j	ACCEPT										

bash#	iptables	-A	INPUT	-p	icmp	--icmp-type	echo-reply	-s	0/0	-i	eth0	-

j	ACCEPT					

bash#	iptables	-A	INPUT	-p	icmp	--icmp-type	destination-unreachable	-s	

0/0	-i	eth0	-j	ACCEPT		

bash#	iptables	-A	INPUT	-p	icmp	--icmp-type	time-exceeded	-s	0/0	-i	

eth0	

-j	ACCEPT							

bash#	iptables	-A	INPUT	-p	icmp	-i	eth0	-j	DROP

bash#	ip6tables	-I	INPUT	-p	icmpv6	–icmpv6-type	8	-j	DROP

bash#	ip6tables	-I	INPUT	-p	icmpv6	-i	eth0	-j	DROP

TCP/IP	stack	hardening:	by	editing	the	sysctl.conf	file	and	adding	the	following
entry	in	this	file:

net.ipv4.icmp_echo_ignore_all	=	1

Restart	sycltl	to	apply	the	changes:

bash#sysctl	-p

Rate-limiting	on	the	Router	level	if	ICMP/ICMPv6	traffic	is	allowed
The	firewall	should	block	the	ICMP/ICPMv6	traffic	on	the	router

SSL	flood
This	kind	of	attack	happens	on	Layer	7	and	it	is	difficult	to	detect	in	the	sense	that	it
resembles	legitimate	website	traffic.	In	Analyzing	SSL/TLS,	we	learned	about	SSL	and
the	handshake	process.	The	attacker	can	use	the	handshake	against	the	system	to	create	a
DoS/DDoS	attack.	As	handshake	involves	larger	exchange	of	message	between	client	and
the	server,	for	example,	in	case	of	one	way	auth	total	number	of	packet	exchanges	to
established	a	connection	is	approximate	12	(that	is,	3	packets	TCP	handshake	+	9	packets
SSL	handshake	=	12	packets	exchanged).

The	attacker	can	flood	the	SSL	connection	and	make	the	server	busy,	to	just	establish	the
connection	and	try	to	create	the	DoS/DDoS	scenario.

Wireshark	can	help	in	identifying	from	which	IP	maximum	number	of	packet	has	arrived.
This	feature	is	called	Wireshark	Conversations,	and	can	be	used	in	any	kind	of	flood
scenario	(DoS	attack).

Open	the	ICMP_Flood_01.pcap	packet	capture	file	in	Wireshark	and	perform	the	following
steps:

1.	 Click	on	Statistics	|	Conversations.
2.	 A	conversation	dialog	box	will	appear	as	shown	in	the	screenshot.	An	unusually

higher	volume	of	traffic	is	generated	from	source	B	(10.0.0.5)	to	source	A
(10.0.0.4),	causing	the	network	to	slow	down:

Other	categories	of	Layer	7	attacks	are	HTTP/HTTPS	POST	flood	and	HTTP/HTTPS	GET
flood.

Scanning
In	this	section,	we	will	go	over	the	basics	of	vulnerability	scanning	and	verify	what	is
happening	when	the	host	scan	is	performed	with	the	help	of	Wireshark.

Vulnerability	scanning
Host	discovery,	port	scanning,	and	OS	detection	are	part	of	vulnerability	scanning.	During
this	process,	vulnerabilities	are	identified	and	addressed	with	a	proper	mitigation	plan	by
the	security	auditor.	For	example:

The	security	auditor	scans	hosts	to	check	that	only	allowed	ports	are	open	to	the
external	world
The	hacker	scans	the	ports	to	find	out	which	services	are	up	and	running,	for	example
during	this	host	scan	process	if	the	DB	ports	are	open	to	the	outside	world	then	the
DB	system	is	compromised	for	attacks.

Open	the	host_scan.pcap	file	in	Wireshark;	the	sample	capture	shows	how	the	external
client	is	scanning	the	ports:

During	this	process,	a	SYN	packet	is	sent	to	the	all	the	ports	for	common	services	on	each
host,	such	as	DNS,	LDAP,	HTTP	and	many	more.	If	we	get	the	ACK	from	the	host,	the	host	is
considered	ACTIVE	on	that	port.

The	security	auditor	or	hacker	can	use	network	scanner	tools	to	get	the	port,	host,	and	OS
information.	For	example,	the	nmap	network	utility	command	can	be	used	to	scan	the
active/open	ports:

1.	 Scan	standard	ports	in	the	host:

bash#	nmap	-T4	-A	-v	128.136.179.233

2.	 Scan	all	active	ports	in	the	host:

bash#	nmap	-p	1-65535	-T4	-A	-v	128.136.179.233

The	online	nmap	tool	can	be	found	at	https://pentest-tools.com/network-vulnerability-
scanning/tcp-port-scanner-online-nmap.

https://pentest-tools.com/network-vulnerability-scanning/tcp-port-scanner-online-nmap

SSL	scans
SSL	scans	are	done	by	different	users	(for	example,	security	auditors	and	hackers)	to
achieve	their	own	objectives:

The	security	auditor	uses	a	SSL	scanner	to	find	the	weakest	cipher	suites	or
vulnerable	SSL	protocol	versions	present	in	the	SSL	server,	to	remove	them
The	hacker	uses	a	SSL	scanner	to	hack	the	encrypted	SSL	communication	by	finding
weak	cipher	suites	or	vulnerable	protocol	versions	in	the	SSL	server

An	example	using	the	nmap	command	to	find	available	ciphers	and	the	supported	protocol
version	in	a	given	server	port	636	LDAP	is	as	shown:

[root@	~]#	nmap	--script	ssl-cert,ssl-enum-ciphers	-p	636	10.10.1.3To	find	

available	ciphers	and	the	supported	protocol	version	in	a	given	server	port	

443	HTTPS

[root@	~]#	nmap	--script	ssl-cert,ssl-enum-ciphers	-p	443	10.10.1.3

ARP	duplicate	IP	detection
Wireshark	detects	duplicate	IPs	in	the	ARP	protocol.	Use	the	arp.duplicate-address-
frame	Wireshark	filter	to	display	only	duplicate	IP	information	frames.

For	example,	open	the	ARP_Duplicate_IP.pcap	file	and	apply	the	arp.duplicate-
address-frame	filter,	as	shown	in	the	screenshot:

Wireshark	is	providing	the	following	information	in	this	case:

Usually	duplicate	IP	addresses	are	resolved	by	the	DHCP	server.	It	has	to	be	taken
seriously	when	it	starts	showing	for	every	IP	address	in	this	case.
All	IPs	have	the	same	Sender	MAC	address:	fa:16:3e:bf:22:d0	and	shows	as	a
duplicate	of	that	IP	address.
This	could	be	ARP	poisoning—a	Man	in	Middle	attack	happening	in	the	background.

DrDoS
Distributed	Reflection	Denial	of	Service	(DrDoS),	also	known	as	UDP-based
amplification	attacks,	uses	publically	accessible	UDP	servers	and	bandwidth	amplification
factors	to	overwhelm	a	system	with	UDP	traffic.

Open	the	DrDoS.pcap	file.	In	this	packet	capture,	a	SYN	packet	is	sent	over	a	server	IP
address	with	the	victim’s	source	IP	address;	note	the	destination	port	is	HTTP	80	and	the
source	port	is	NTP	port	123,	UDP.	Now	the	server	will	respond	with	an	ACK	packet	to	the
source	that	in	this	case	will	be	the	victim’s	IP	address.	If	multiple	servers	were	used,	the
server	will	flood	the	victim	(target)	with	ACK	packets.

There	are	UDP	protocols	(DNS,	NTP,	and	BitTorrent)	that	are	infected	by	UDP-Based
amplification	attacks.	For	more	information	on	this,	refer	to	alert	TA14-017A	published	by
US-CERT:	https://www.us-cert.gov/ncas/alerts/TA14-017A.

https://www.us-cert.gov/ncas/alerts/TA14-017A

BitTorrent
Wireshark	supports	the	BitTorrent	protocol.	BitTorrent	uses	the	Torrent	file	to	download
the	content	from	the	P2P	network.	The	content	that	gets	download	through	these	programs
is	safe	(depending	on	what	kind	of	content	is	downloaded).	Any	download	can	contain
Trojans	or	viruses	so	(this	recommendation	goes	for	any	protocol	used)	be	careful,
especially	when	downloading	any	executable	file	or	from	unknown	torrent	URLs.	All
downloaded	files	are	subjected	to	a	scan.	Open	the	bittorrent.pcapng	file	in	Wireshark
and	check	from	that	location	that	the	content	is	getting	downloaded.

The	Wireshark	BitTorrent	dissector	is	able	to	decode	the	entire	download	process.	To
check	what	the	endpoints	are	from	this	source,	do	the	following.	Click	on	Statistics	|
Endpoints;	an	Endpoint	Window	will	appear:

As	shown	in	the	screenshot,	Wireshark	has	obtained	the	following	information:

1.	 Filter	the	protocol,	in	this	case	BitTorrent.
2.	 Select	the	Ipv4	TAB.
3.	 In	this	capture,	name	resolution	is	enabled.
4.	 The	client	(192.168.1.101)	has	downloaded	10744	bytes	and	the	content	is	coming

from	different	geographical	locations.	Since	the	content	was	downloaded	from
various	sources,	it	is	always	advised	to	scan	it	before	opening	it.

Endpoint	statistics	are	a	nice	Wireshark	feature.	Endpoints	reveal	information	such	as
outgoing	connections	for	a	given	client.	In	this	example,	the	client	is	connected	to	16
different	endpoint	locations	spread	across	different	geographical	locations.	For	any
suspicious	traffic,	use	the	filter	option	directly	on	the	Endpoint	window.

Note
Note:	Wireshark	will	not	notify	or	scan	for	a	virus;	it	helps	to	analyze	the	virus.

Wireshark	protocol	hierarchy
This	feature	is	very	useful	when	dealing	with	what	protocols	are	running	on	the	server.	To
find	this,	click	on	Summary	|	Protocol	Hierarchy	in	the	Wireshark	menu.	A	protocol
hierarchy	of	the	captured	packets	will	open,	as	shown	in	the	screenshot:

From	the	security	point	of	view,	it	will	give	a	high-level	glance	at	all	protocols	that	are
happening	over	the	Ethernet	system.	Network	administrators	use	this	information	to
harden	the	system	configuration;	for	example,	if	the	administrator	found	a	DCE	protocol
running	in	the	production	system,	after	seeing	this	protocol	hierarchy	he	can	raise	an	alarm
to	stop	this	service.

Summary
Congratulation	on	completing	this	chapter	and	the	book.	So	far,	we	have	seen	how
Wireshark	helps	to	analyze	network	protocols	such	as	TCP/IP,	DHCPv6,	DHCP,	and
HTTP.	We	carried	out	a	detailed	analysis	of	the	SSL/TLS	protocol	and	WLAN	setup
capture;	then	we	explored	security-related	issues	and	their	mitigation	plans.	We	also	tried
to	be	as	practical	as	we	can,	and	provided	some	real-time	use	case	scenarios	and	their
mitigation	plans.

In	this	book,	we	have	also	emphasized	other	effective	tools	for	capturing	the	packets,	such
as	tcpdump	and	snoop.	You	should	now	be	able	to	go	forward	and	start	analyzing	other
protocols	not	covered	in	this	book	by	using	it	as	a	reference.

Index
A

802.11	auth	process
about	/	802.11	auth	process

alerts
close_notify	/	Alert	Protocol
unexpected_message	/	Alert	Protocol
bad_record_mac	/	Alert	Protocol
decryption_failed	/	Alert	Protocol
record_overflow	/	Alert	Protocol
decompression_failure	/	Alert	Protocol
handshake_failure	/	Alert	Protocol
bad_certificate	/	Alert	Protocol
unsupported_certificate	/	Alert	Protocol
certificate_revoked	/	Alert	Protocol
certificate_expired	/	Alert	Protocol
certificate_unknown	/	Alert	Protocol
illegal_parameter	/	Alert	Protocol
unknown_ca	/	Alert	Protocol
decode_error	/	Alert	Protocol
decrypt_error	/	Alert	Protocol
export_restriction	/	Alert	Protocol
protocol_version	/	Alert	Protocol
insufficient_security	/	Alert	Protocol
internal_error	/	Alert	Protocol
user_canceled	/	Alert	Protocol
no_renegotiation	/	Alert	Protocol

ARP	duplicate	IP	detection
about	/	ARP	duplicate	IP	detection

B
Berkeley	Packet	Filter	(BPF)

about	/	The	capture	filter	options
Bit-Twist

URL	/	Other	packet	analyzer	tools
BitTorrent	protocol

about	/	BitTorrent
BOOTP/DHCP

about	/	BOOTP/DHCP
Wireshark	filter	/	BOOTP/DHCP	Wireshark	filter
address	assignment	/	Address	assignment
capture	DHCPv4	traffic	/	Capture	DHCPv4	traffic

C
Cain

URL	/	Other	packet	analyzer	tools
Capture	Options

packets,	capturing	with	/	Capturing	packets	with	Capture	Options
Capture	Filter	options	/	The	capture	filter	options

client	certificate
about	/	Client	certificate

client	certificate	request
about	/	Client	certificate	request

Client	Hello	message
about	/	Client	Hello
structure	/	Client	Hello
message	/	Client	Hello
version	/	Client	Hello
random	/	Client	Hello
Session	ID	/	Client	Hello
cipher	suites	/	Client	Hello
compression	methods	/	Client	Hello
extensions	/	Client	Hello

Client	Key	Exchange	message
about	/	Client	Key	Exchange

control	frames	/	Control	frames

D
data	frames	/	Data	frames
decode-as	feature

about	/	Decode-As
DHCP/BOOT

URL	/	References
DHE/ECHDE	traffic

decrypting	/	Decrypting	DHE/ECHDE	traffic
forward	secrecy	/	Forward	secrecy

Diffie-Hellman	(DHE)	key	exchange
about	/	The	Diffie-Hellman	key	exchange
naming	convention	/	The	Diffie-Hellman	key	exchange
URL	/	The	Diffie-Hellman	key	exchange

displayed	packet
exporting	/	Exporting	the	displayed	packet

Display	filter	references
URL	/	References

Distributed	Reflection	Denial	of	Service	(DrDoS)	/	DrDoS
Domain	Name	System	(DNS)

about	/	DNS
Wireshark	filter	/	DNS	Wireshark	filter
port	/	Port
resource	records	/	Resource	records
traffic	/	DNS	traffic
URL	/	References

DOS	attack
about	/	The	DOS	attack
SYN	flood	/	SYN	flood
Internet	Control	Message	Protocol	(ICMP)	flood	/	ICMP	flood
SSL	flood	/	SSL	flood

Dynamic	Host	Configuration	Protocol	for	IPv6	(DHCPv6)
about	/	DHCPv6
Wireshark	filter	/	DHCPv6	Wireshark	filter
multicast	addresses	/	Multicast	addresses
UDP	port	information	/	The	UDP	port	information
message	types	/	DHCPv6	message	types
message	exchanges	/	Message	exchanges
traffic	capture	/	DHCPv6	traffic	capture
URL	/	References

E
EAPOL	/	802.1X	EAPOL
EAP	over	LAN	/	802.1X	EAPOL
Elliptic	curve	cryptography	(ECC)	/	Elliptic	curve	Diffie-Hellman	key	exchange
Elliptic	curve	Diffie-Hellman	cryptography	(ECDHE)	/	Forward	secrecy
Elliptic	curve	Diffie-Hellman	key	exchange

about	/	Elliptic	curve	Diffie-Hellman	key	exchange
URL	/	Elliptic	curve	Diffie-Hellman	key	exchange

Ettercap
URL	/	Other	packet	analyzer	tools

Extensible	Authentication	Protocol	(EAP)	/	802.1X	EAPOL

F
features,	Wireshark

decode-as	/	Decode-As
protocol	preference	/	Protocol	preferences
IO	graph,	using	/	The	IO	graph
TCP	stream,	following	/	Following	the	TCP	stream
displayed	packet,	exporting	/	Exporting	the	displayed	packet
firewall	ACL	rules,	generating	/	Generating	the	firewall	ACL	rules

Filter	toolbar
about	/	The	Filter	toolbar
filtering	techniques	/	Filtering	techniques
filter	examples	/	Filter	examples

firewall	ACL	rules
generating	/	Generating	the	firewall	ACL	rules

forward	secrecy
about	/	Forward	secrecy
references	/	Forward	secrecy

frames
about	/	Frames
management	frames	/	Management	frames
data	frames	/	Data	frames
control	frames	/	Control	frames

H
Heartbleed

bug	/	Heartbleed	bug
Wireshark	filter	/	The	Heartbleed	Wireshark	filter
Wireshark	analysis	/	Heartbleed	Wireshark	analysis
testing	/	The	Heartbleed	test
Detector,	URL	/	The	Heartbleed	test
online	test,	URL	/	The	Heartbleed	test
recommendations	/	Heartbleed	recommendations

HTTP
about	/	HTTP
Wireshark	filter	/	HTTP	Wireshark	filter
use	cases	/	HTTP	use	cases
URL	/	References

HTTP,	use	cases
top	http	response	time,	finding	/	Finding	the	top	HTTP	response	time
packets	finding,	HTTP	methods	based	/	Finding	packets	based	on	HTTP
methods
sensitive	information,	finding	in	form	post	/	Finding	sensitive	information	in	a
form	post
HTTP	status	code,	using	/	Using	HTTP	status	code

HTTP	protocol	preferences
about	/	Protocol	preferences

I
initial	sequence	number	(ISN)	/	Handshake	message	–	first	step	[SYN]
Interface	Lists

packets,	capturing	with	/	Capturing	packets	with	Interface	Lists
interface	names	/	Common	interface	names

Internet	Control	Message	Protocol	(ICMP)	flood,	DOS	attack
about	/	ICMP	flood
mitigation	/	ICMP	flood	mitigation

IO	graph
using	/	The	IO	graph

K
key	exchange

about	/	Key	exchange
key	exchange,	types

Diffie-Hellman	(DHE)	key	exchange	/	The	Diffie-Hellman	key	exchange
Elliptic	curve	Diffie-Hellman	key	exchange	/	Elliptic	curve	Diffie-Hellman	key
exchange
RSA	/	RSA

KisMac
URL	/	Wi-Fi	sniffing	products

Kismet
URL	/	Wi-Fi	sniffing	products

M
management	frames	/	Management	frames
Maximum	Segment	Size	(MSS)	/	Handshake	message	–	first	step	[SYN]
medium	access	control	(MAC)	layer	/	The	802.11	protocol	stack
message	exchanges,	Dynamic	Host	Configuration	Protocol	for	IPv6	(DHCPv6)

about	/	Message	exchanges
four-message	exchange	/	The	four-message	exchange
two-message	exchange	/	The	two-message	exchange

message	types,	Dynamic	Host	Configuration	Protocol	for	IPv6	(DHCPv6)	/	DHCPv6
message	types

N
NetStumbler

URL	/	Wi-Fi	sniffing	products
No-Operation	(NOP)	/	TCP	header	fields,	Handshake	message	–	first	step	[SYN]

O
online	nmap	tool

URL	/	Vulnerability	scanning

P
802.11	protocol	stack	/	The	802.11	protocol	stack
packet	analyzer

tools	/	Other	packet	analyzer	tools
mobile	packet	capture	/	Mobile	packet	capture

packet	analyzers
uses	/	Uses	for	packet	analyzers

Packet	Bytes	pane
about	/	The	Packet	Bytes	pane

packet	capture	process
about	/	The	Wireshark	packet	capture	process

Packet	Details	pane
about	/	The	Packet	Details	pane

Packet	List	pane
about	/	The	Packet	List	pane

packets
capturing	/	Guide	to	capturing	packets
capturing,	with	Interface	Lists	/	Capturing	packets	with	Interface	Lists
capturing,	with	Start	options	/	Capturing	packets	with	Start	options
capturing,	with	Capture	Options	/	Capturing	packets	with	Capture	Options
file,	auto-capturing	periodically	/	Auto-capturing	a	file	periodically

PPP	(Point-to-Point	Protocol)	/	802.1X	EAPOL
protocol	preference	feature

about	/	Protocol	preferences

R
reset	sequence

about	/	TCP	reset	sequence
RST	after	SYN-ACK	/	RST	after	SYN-ACK
RST	after	SYN	/	RST	after	SYN

RFC675	TCP/IP
URL	/	References

RFC793	TCP	v4
URL	/	References

RFMON	(Radio	Frequency	Monitor)	mode	/	WLAN	capture	setup
Riverbed	AirPcap	adapter

URL	/	Wi-Fi	sniffing	products
RSA	/	RSA
RSA	traffic

decrypting	/	Decrypting	RSA	traffic

S
scanning

about	/	Scanning
vulnerability	scanning	/	Vulnerability	scanning
SSL	scans	/	SSL	scans

Scapy
URL	/	Other	packet	analyzer	tools

server	certificate
about	/	Server	certificate

Server	Hello	Done	message
about	/	Server	Hello	Done

Server	Hello	message
about	/	Server	Hello
Handshake	Type	/	Server	Hello
version	/	Server	Hello
session	ID	/	Server	Hello
cipher	suite	/	Server	Hello
extensions	/	Server	Hello

Server	Key	Exchange	message
about	/	Server	Key	Exchange

snoop	tool
about	/	Tcpdump	and	snoop

Snort
URL	/	Other	packet	analyzer	tools

SSL-related	issues
debugging	/	Debugging	issues

SSL/TLS
about	/	An	introduction	to	SSL/TLS
benefits	/	An	introduction	to	SSL/TLS
versions	/	SSL/TLS	versions
components	/	The	SSL/TLS	component
handshake	/	The	SSL/TLS	handshake
decrypting	/	Decrypting	SSL/TLS
RSA	traffic,	decrypting	/	Decrypting	RSA	traffic
DHE/ECHDE	traffic,	decrypting	/	Decrypting	DHE/ECHDE	traffic

SSL/TLS	handshake
about	/	The	SSL/TLS	handshake
types	/	Types	of	handshake	message
Client	Hello	message	/	Client	Hello
Server	Hello	/	Server	Hello
server	certificate	/	Server	certificate
Server	Key	Exchange	message	/	Server	Key	Exchange
client	certificate	request	/	Client	certificate	request

Server	Hello	Done	message	/	Server	Hello	Done
client	certificate	/	Client	certificate
Client	Key	Exchange	message	/	Client	Key	Exchange
Client	Certificate	Verify	message	/	Client	Certificate	Verify
Change	Cipher	Spec	record	type	/	Change	Cipher	Spec
Finished	message	/	Finished
Application	Data	message	/	Application	Data
Alert	Protocol	/	Alert	Protocol

SSL	flood,	DOS	attack
about	/	SSL	flood

SSL	testing
references	/	Debugging	issues

Start	options
packets,	capturing	with	/	Capturing	packets	with	Start	options

Stumbler
URL	/	Wi-Fi	sniffing	products

Switch	Port	Analyzer	(SPAN)	port	/	The	Wireshark	packet	capture	process
SYN	flood,	DOS	attack

about	/	SYN	flood
mitigation	/	SYN	flood	mitigation

T
TAP	(Test	Access	Point)	/	The	Wireshark	packet	capture	process
TCP	analyze	sequence	numbers

URL	/	References
TCP	CLOSE_STATE

about	/	How	to	resolve	TCP	CLOSE_STATE
TCP	CLOSE_WAIT

about	/	TCP	CLOSE_WAIT
TCP	display	filter

reference	link	/	Filter	examples
tcpdump	tool

about	/	Tcpdump	and	snoop
TCP	Dup-ACK

about	/	TCP	Dup-ACK
Tcpreplay

URL	/	Other	packet	analyzer	tools
TCP	stream

following	/	Following	the	TCP	stream
TCP	TIME_WAIT

about	/	TCP	TIME_WAIT
TCP	Window	Update

about	/	TCP	Window	Update
three-way	handshake,	Transmission	Control	Protocol	(TCP)

about	/	TCP	three-way	handshake
first	step	[SYN]	/	Handshake	message	–	first	step	[SYN]
second	step	[SYN,	ACK]	/	Handshake	message	–	second	step	[SYN,	ACK]
third	step	[ACK]	/	Handshake	message	–	third	step	[ACK]

TLS	extensions
reference	list	/	Client	Hello

Transmission	Control	Protocol	(TCP)
about	/	Recapping	TCP
header	fields	/	TCP	header	fields
states	/	TCP	states
connection	establishment	/	TCP	connection	establishment	and	clearing
three-way	handshake	/	TCP	three-way	handshake
data	communication	/	TCP	data	communication
close	sequence	/	TCP	close	sequence
Wiki,	URL	/	References
TCP/IP	guide,	URL	/	References

Transmission	Control	Protocol	(TCP),	latency
issues	/	TCP	latency	issues
identifying	/	Identifying	latency
server	latency	example	/	Server	latency	example

wire	latency	/	Wire	latency
Transmission	Control	Protocol	(TCP),	latency	issues

causes	/	Cause	of	latency
Transmission	Control	Protocol	(TCP),	troubleshooting

about	/	TCP	troubleshooting
reset	sequence	/	TCP	reset	sequence
CLOSE_WAIT	/	TCP	CLOSE_WAIT
TIME_WAIT	/	TCP	TIME_WAIT

troubleshooting
packets,	capturing	/	Troubleshooting

U
US-CERT

alert	TA14-017A,	URL	/	DrDoS
user	interface,	Wireshark

about	/	Wireshark	user	interface
Filter	toolbar	/	The	Filter	toolbar
Packet	List	pane	/	The	Packet	List	pane
Packet	Details	pane	/	The	Packet	Details	pane
Packet	Bytes	pane	/	The	Packet	Bytes	pane

W
Wi-Fi	networks

analyzing	/	Analyzing	the	Wi-Fi	networks
frames	/	Frames
802.11	auth	process	/	802.11	auth	process
802.1X	EAPOL	/	802.1X	EAPOL
802.11	protocol	stack	/	The	802.11	protocol	stack

Wi-Fi	sniffing	products
about	/	Wi-Fi	sniffing	products
Kismet	/	Wi-Fi	sniffing	products
Riverbed	AirPcap	/	Wi-Fi	sniffing	products
KisMac	/	Wi-Fi	sniffing	products
Stumbler	/	Wi-Fi	sniffing	products
NetStumbler	/	Wi-Fi	sniffing	products

WireEdit
URL	/	Other	packet	analyzer	tools

Wireshark
about	/	Introducing	Wireshark
URL	/	Introducing	Wireshark,	References
features	/	Wireshark	features,	Wireshark	features
dumpcap	/	Wireshark’s	dumpcap	and	tshark
tshark	/	Wireshark’s	dumpcap	and	tshark
packet	capture	process	/	The	Wireshark	packet	capture	process
wiki	link	/	802.1X	EAPOL

Wireshark	community
URL	/	Troubleshooting

Wireshark	protocol	hierarchy
about	/	Wireshark	protocol	hierarchy

Wireshark	TCP	sequence	analysis
about	/	Wireshark	TCP	sequence	analysis
retransmission	/	TCP	retransmission
TCP	ZeroWindow	/	TCP	ZeroWindow

WLAN	capture	setup
about	/	WLAN	capture	setup
multi-channel	captures,	URL	/	WLAN	capture	setup
wireless	network	interface	controller	(WNIC)	/	WLAN	capture	setup
AP	(Access	Point)	/	WLAN	capture	setup
monitor	mode	/	The	monitor	mode

X
802.1X	EAPOL	/	802.1X	EAPOL

	Packet Analysis with Wireshark
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Packet Analyzers
	Uses for packet analyzers
	Introducing Wireshark
	Wireshark features
	Wireshark's dumpcap and tshark
	The Wireshark packet capture process
	Other packet analyzer tools
	Mobile packet capture
	Summary
	2. Capturing Packets
	Guide to capturing packets
	Capturing packets with Interface Lists
	Common interface names
	Capturing packets with Start options
	Capturing packets with Capture Options
	The capture filter options
	Auto-capturing a file periodically
	Troubleshooting
	Wireshark user interface
	The Filter toolbar
	Filtering techniques
	Filter examples
	The Packet List pane
	The Packet Details pane
	The Packet Bytes pane
	Wireshark features
	Decode-As
	Protocol preferences
	The IO graph
	Following the TCP stream
	Exporting the displayed packet
	Generating the firewall ACL rules
	Tcpdump and snoop
	References
	Summary
	3. Analyzing the TCP Network
	Recapping TCP
	TCP header fields
	TCP states
	TCP connection establishment and clearing
	TCP three-way handshake
	Handshake message – first step [SYN]
	Handshake message – second step [SYN, ACK]
	Handshake message – third step [ACK]
	TCP data communication
	TCP close sequence
	Lab exercise
	TCP troubleshooting
	TCP reset sequence
	RST after SYN-ACK
	RST after SYN
	Lab exercise
	TCP CLOSE_WAIT
	Lab exercise
	How to resolve TCP CLOSE_STATE
	TCP TIME_WAIT
	TCP latency issues
	Cause of latency
	Identifying latency
	Server latency example
	Wire latency
	Wireshark TCP sequence analysis
	TCP retransmission
	Lab exercise
	TCP ZeroWindow
	TCP Window Update
	TCP Dup-ACK
	References
	Summary
	4. Analyzing SSL/TLS
	An introduction to SSL/TLS
	SSL/TLS versions
	The SSL/TLS component
	The SSL/TLS handshake
	Types of handshake message
	Client Hello
	Server Hello
	Server certificate
	Server Key Exchange
	Client certificate request
	Server Hello Done
	Client certificate
	Client Key Exchange
	Client Certificate Verify
	Change Cipher Spec
	Finished
	Application Data
	Alert Protocol
	Key exchange
	The Diffie-Hellman key exchange
	Elliptic curve Diffie-Hellman key exchange
	RSA
	Decrypting SSL/TLS
	Decrypting RSA traffic
	Decrypting DHE/ECHDE traffic
	Forward secrecy
	Debugging issues
	Summary
	5. Analyzing Application Layer Protocols
	DHCPv6
	DHCPv6 Wireshark filter
	Multicast addresses
	The UDP port information
	DHCPv6 message types
	Message exchanges
	The four-message exchange
	The two-message exchange
	DHCPv6 traffic capture
	BOOTP/DHCP
	BOOTP/DHCP Wireshark filter
	Address assignment
	Capture DHCPv4 traffic
	DNS
	DNS Wireshark filter
	Port
	Resource records
	DNS traffic
	HTTP
	HTTP Wireshark filter
	HTTP use cases
	Finding the top HTTP response time
	Finding packets based on HTTP methods
	Finding sensitive information in a form post
	Using HTTP status code
	References
	Summary
	6. WLAN Capturing
	WLAN capture setup
	The monitor mode
	Analyzing the Wi-Fi networks
	Frames
	Management frames
	Data frames
	Control frames
	802.11 auth process
	802.1X EAPOL
	The 802.11 protocol stack
	Wi-Fi sniffing products
	Summary
	7. Security Analysis
	Heartbleed bug
	The Heartbleed Wireshark filter
	Heartbleed Wireshark analysis
	The Heartbleed test
	Heartbleed recommendations
	The DOS attack
	SYN flood
	SYN flood mitigation
	ICMP flood
	ICMP flood mitigation
	SSL flood
	Scanning
	Vulnerability scanning
	SSL scans
	ARP duplicate IP detection
	DrDoS
	BitTorrent
	Wireshark protocol hierarchy
	Summary
	Index

