
SHELVE IN
:

COM
PUTERS/PROGRAM

M
ING

$39.95 ($41.95 CDN)

W
E

B
B

O
T

S
, S

P
ID

E
R

S
, A

N
D

S
C

R
E

E
N

 S
C

R
A

P
E

R
S

W
E

B
B

O
T

S
, S

P
ID

E
R

S
, A

N
D

S
C

R
E

E
N

 S
C

R
A

P
E

R
S

S
C

H
R

E
N

K
2

N
D

E
D

IT
IO

N AND

W E BBO T S, SPIDE R S,
AND SCR E E N SCR A PE R S

W E BBO T S, SPIDE R S,
SCR E E N SCR A PE R S

A G U I D E T O D E V E L O P I N G I N T E R N E T A G E N T S
W I T H P H P / C U R L

M I C H A E L S C H R E N K

2 N
D

E D
I T I O

N

 “ I L I E F LAT .”

Th is book uses RepKover — a durab le b ind ing that won’t snap shut.

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT ™

There’s a wealth of data online, but sorting and gathering
it by hand can be tedious and time consuming. Rather
than click through page after endless page, why not let
bots do the work for you?

Webbots, Spiders, and Screen Scrapers will show
you how to create simple programs with PHP/CURL to
mine, parse, and archive online data to help you make
informed decisions. Michael Schrenk, a highly regarded

tolerant designs, how best to launch and schedule the
webbot developer, teaches you how to develop fault-

work of your bots, and how to create Internet agents that:

Sample projects for automating tasks like price monitoring
and news aggregation will show you how to put the
concepts you learn into practice.

information quickly
• Send email or SMS notifications to alert you to new

• Search different data sources and combine the results
on one page, making the data easier to interpret and
analyze

activities to save time
• Automate purchases, auction bids, and other online

Valley to Moscow, for clients like the BBC, foreign

A B O U T T H E A U T H O R

Michael Schrenk has developed webbots for over
15 years, working just about everywhere from Silicon

governments, and many Fortune 500 companies. He’s a
frequent Defcon speaker and lives in Las Vegas, Nevada.

S C R A P E ,S C R A P E ,
A U T O M A T E ,A U T O M A T E ,

A N D C O N T R O LA N D C O N T R O L
T H E I N T E R N E TT H E I N T E R N E T

To download the scripts and code

libraries used in the book, visit http://

WebbotsSpidersScreenScrapers.com

webbots that mimic human search behavior, and using

discover the possibilities of web scraping, you’ll see how
webbots can save you precious time and give you much
greater control over the data available on the Web.

This second edition of Webbots, Spiders, and Screen
Scrapers includes tricks for dealing with sites that are
resistant to crawling and scraping, writing stealthy

regular expressions to harvest specific data. As you

T E C H N I C A L R E V I E W B Y D A N I E L S T E N B E R G , C R E A T O R O F C U R L A N D L I B C U R LT E C H N I C A L R E V I E W B Y D A N I E L S T E N B E R G , C R E A T O R O F C U R L A N D L I B C U R L

webbots2e.book Page i Thursday, February 16, 2012 11:59 AM
WEBBOTS, SPIDERS, AND
SCREEN SCRAPERS,

2ND EDITION

webbots2e.book Page ii Thursday, February 16, 2012 11:59 AM

webbots2e.book Page iii Thursday, February 16, 2012 11:59 AM
WEBBOTS,
SPIDERS, AND

SCREEN SCRAPERS
2 N D E D I T I O N

A G u i d e t o
D e v e l o p i n g I n t e r n e t A g e n t s

w i t h P H P / C U R L

by Michael Schrenk

San Francisco

webbots2e.book Page iv Thursday, February 16, 2012 11:59 AM
WEBBOTS, SPIDERS, AND SCREEN SCRAPERS, 2ND EDITION. Copyright © 2012 by Michael Schrenk.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

16 15 14 13 12 1 2 3 4 5 6 7 8 9

ISBN-10: 1-59327-397-5
ISBN-13: 978-1-59327-397-2

Publisher: William Pollock
Production Editor: Serena Yang
Cover and Interior Design: Octopod Studios
Developmental Editor: Tyler Ortman
Technical Reviewer: Daniel Stenberg
Copyeditor: Paula L. Fleming
Compositor: Serena Yang
Proofreader: Alison Law

For information on book distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
38 Ringold Street, San Francisco, CA 94103
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; www.nostarch.com

The Library of Congress has catalogued the first edition as follows:

Schrenk, Michael.
 Webbots, spiders, and screen scrapers : a guide to developing internet agents with PHP/CURL / Michael
Schrenk.
 p. cm.
 Includes index.
 ISBN-13: 978-1-59327-120-6
 ISBN-10: 1-59327-120-4
 1. Web search engines. 2. Internet programming. 3. Internet searching. 4. Intelligent agents
(Computer software) I. Title.
 TK5105.884.S37 2007
 025.04--dc22
 2006026680

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in it.

webbots2e.book Page v Thursday, February 16, 2012 11:59 AM
In loving memory

Charlotte Schrenk
1897–1982

webbots2e.book Page vi Thursday, February 16, 2012 11:59 AM

webbots2e.book Page vii Thursday, February 16, 2012 11:59 AM
 B R I E F C O N T E N T S

About the Author...xxiii

About the Technical Reviewer ...xxiii

Acknowledgments ..xxv

Introduction ..1

PART I: FUNDAMENTAL CONCEPTS AND TECHNIQUES ... 7

Chapter 1: What’s in It for You? ...9

Chapter 2: Ideas for Webbot Projects..15

Chapter 3: Downloading Web Pages..23

Chapter 4: Basic Parsing Techniques ...37

Chapter 5: Advanced Parsing with Regular Expressions...49

Chapter 6: Automating Form Submission..63

Chapter 7: Managing Large Amounts of Data ..77

PART II: PROJECTS ... 91

Chapter 8: Price-Monitoring Webbots..93

Chapter 9: Image-Capturing Webbots ...101

webbots2e.book Page viii Thursday, February 16, 2012 11:59 AM
Chapter 10: Link-Verification Webbots ..109

Chapter 11: Search-Ranking Webbots...117

Chapter 12: Aggregation Webbots...129

Chapter 13: FTP Webbots..139

Chapter 14: Webbots That Read Email..145

Chapter 15: Webbots That Send Email..153

Chapter 16: Converting a Website into a Function..163

PART III: ADVANCED TECHNICAL CONSIDERATIONS .. 171

Chapter 17: Spiders..173

Chapter 18: Procurement Webbots and Snipers ...185

Chapter 19: Webbots and Cryptography ..193

Chapter 20: Authentication ..197

Chapter 21: Advanced Cookie Management ...209

Chapter 22: Scheduling Webbots and Spiders ...215

Chapter 23: Scraping Difficult Websites with Browser Macros..227

Chapter 24: Hacking iMacros ..239

Chapter 25: Deployment and Scaling..249

PART IV: LARGER CONSIDERATIONS.. 263

Chapter 26: Designing Stealthy Webbots and Spiders ..265

Chapter 27: Proxies ..273

Chapter 28: Writing Fault-Tolerant Webbots ..285
viii Br ie f Contents

webbots2e.book Page ix Thursday, February 16, 2012 11:59 AM
Chapter 29: Designing Webbot-Friendly Websites..297

Chapter 30: Killing Spiders ..309

Chapter 31: Keeping Webbots out of Trouble ..317

Appendix A: PHP/CURL Reference..327

Appendix B: Status Codes..337

Appendix C: SMS Gateways..341

Index ...345
Br ie f Contents ix

webbots2e.book Page x Thursday, February 16, 2012 11:59 AM

webbots2e.book Page xi Thursday, February 16, 2012 11:59 AM
C O N T E N T S I N D E T A I L

ABOUT THE AUTHOR xxiii

ABOUT THE TECHNICAL REVIEWER xxiii

ACKNOWLEDGMENTS xxv

INTRODUCTION 1
Old-School Client-Server Technology .. 2
The Problem with Browsers .. 2
What to Expect from This Book .. 2

Learn from My Mistakes ... 3
Master Webbot Techniques .. 3
Leverage Existing Scripts .. 3

About the Website ... 3
About the Code ... 4
Requirements ... 5

Hardware .. 5
Software .. 6
Internet Access .. 6

A Disclaimer (This Is Important) .. 6

PART I: FUNDAMENTAL CONCEPTS
AND TECHNIQUES 7

1
WHAT’S IN IT FOR YOU? 9
Uncovering the Internet’s True Potential ... 9
What’s in It for Developers? .. 10

Webbot Developers Are in Demand .. 10
Webbots Are Fun to Write .. 11
Webbots Facilitate “Constructive Hacking” .. 11

What’s in It for Business Leaders? ... 11
Customize the Internet for Your Business .. 12
Capitalize on the Public’s Inexperience with Webbots 12
Accomplish a Lot with a Small Investment ... 12

Final Thoughts .. 12

webbots2e.book Page xii Thursday, February 16, 2012 11:59 AM
2
IDEAS FOR WEBBOT PROJECTS 15
Inspiration from Browser Limitations .. 15

Webbots That Aggregate and Filter Information for Relevance 16
Webbots That Interpret What They Find Online .. 17
Webbots That Act on Your Behalf ... 17

A Few Crazy Ideas to Get You Started .. 18
Help Out a Busy Executive ... 18
Save Money by Automating Tasks ... 19
Protect Intellectual Property ... 19
Monitor Opportunities .. 20
Verify Access Rights on a Website .. 20
Create an Online Clipping Service .. 20
Plot Unauthorized Wi-Fi Networks .. 21
Track Web Technologies .. 21
Allow Incompatible Systems to Communicate .. 21

Final Thoughts .. 22

3
DOWNLOADING WEB PAGES 23
Think About Files, Not Web Pages .. 24
Downloading Files with PHP’s Built-in Functions ... 25

Downloading Files with fopen() and fgets() ... 25
Downloading Files with file() ... 27

Introducing PHP/CURL .. 28
Multiple Transfer Protocols .. 28
Form Submission ... 28
Basic Authentication .. 28
Cookies ... 29
Redirection ... 29
Agent Name Spoofing ... 29
Referer Management ... 30
Socket Management .. 30

Installing PHP/CURL ... 30
LIB_http ... 30

Familiarizing Yourself with the Default Values ... 31
Using LIB_http ... 31
Learning More About HTTP Headers .. 34
Examining LIB_http’s Source Code ... 35

Final Thoughts .. 35

4
BASIC PARSING TECHNIQUES 37
Content Is Mixed with Markup ... 37
Parsing Poorly Written HTML ... 38
Standard Parse Routines .. 38
Using LIB_parse ... 39

Splitting a String at a Delimiter: split_string() ... 39
Parsing Text Between Delimiters: return_between() ... 40
xii Contents in Detai l

webbots2e.book Page xiii Thursday, February 16, 2012 11:59 AM
Parsing a Data Set into an Array: parse_array() .. 41
Parsing Attribute Values: get_attribute() .. 42
Removing Unwanted Text: remove() ... 43

Useful PHP Functions ... 44
Detecting Whether a String Is Within Another String 44
Replacing a Portion of a String with Another String 45
Parsing Unformatted Text ... 45
Measuring the Similarity of Strings .. 46

Final Thoughts .. 46
Don’t Trust a Poorly Coded Web Page .. 46
Parse in Small Steps .. 46
Don’t Render Parsed Text While Debugging ... 47
Use Regular Expressions Sparingly .. 47

5
ADVANCED PARSING WITH REGULAR EXPRESSIONS 49
Pattern Matching, the Key to Regular Expressions ... 50
PHP Regular Expression Types ... 50

PHP Regular Expressions Functions .. 50
Resemblance to PHP Built-In Functions .. 52

Learning Patterns Through Examples ... 52
Parsing Numbers .. 53
Detecting a Series of Characters ... 53
Matching Alpha Characters .. 53
Matching on Wildcards ... 54
Specifying Alternate Matches ... 54
Regular Expressions Groupings and Ranges ... 55

Regular Expressions of Particular Interest to Webbot Developers 55
Parsing Phone Numbers ... 55
Where to Go from Here ... 59

When Regular Expressions Are (or Aren’t) the Right Parsing Tool 60
Strengths of Regular Expressions ... 60
Disadvantages of Pattern Matching While Parsing Web Pages 60
Which Are Faster: Regular Expressions or PHP’s Built-In Functions? 62

Final Thoughts... 62

6
AUTOMATING FORM SUBMISSION 63
Reverse Engineering Form Interfaces ... 64
Form Handlers, Data Fields, Methods, and Event Triggers ... 65

Form Handlers .. 65
Data Fields ... 66
Methods ... 67
Multipart Encoding .. 69
Event Triggers ... 70

Unpredictable Forms ... 70
JavaScript Can Change a Form Just Before Submission 70
Form HTML Is Often Unreadable by Humans .. 70
Cookies Aren’t Included in the Form, but Can Affect Operation 70

Analyzing a Form .. 71
Contents in Detai l xiii

webbots2e.book Page xiv Thursday, February 16, 2012 11:59 AM
Final Thoughts .. 74
Don’t Blow Your Cover .. 74
Correctly Emulate Browsers .. 75
Avoid Form Errors ... 75

7
MANAGING LARGE AMOUNTS OF DATA 77
Organizing Data .. 77

Naming Conventions ... 78
Storing Data in Structured Files ... 79
Storing Text in a Database ... 80
Storing Images in a Database ... 83
Database or File? .. 85

Making Data Smaller .. 85
Storing References to Image Files .. 85
Compressing Data ... 86
Removing Formatting ... 88

Thumbnailing Images .. 89
Final Thoughts .. 90

PART II: PROJECTS 91

8
PRICE-MONITORING WEBBOTS 93
The Target ... 94
Designing the Parsing Script .. 95
Initialization and Downloading the Target ... 95
Further Exploration ... 100

9
IMAGE-CAPTURING WEBBOTS 101
Example Image-Capturing Webbot .. 102
Creating the Image-Capturing Webbot .. 102

Binary-Safe Download Routine .. 103
Directory Structure ... 104
The Main Script ... 105

Further Exploration ... 108
Final Thoughts .. 108

10
LINK-VERIFICATION WEBBOTS 109
Creating the Link-Verification Webbot ... 109

Initializing the Webbot and Downloading the Target 109
Setting the Page Base .. 110
Parsing the Links .. 111
Running a Verification Loop .. 111
Generating Fully Resolved URLs ... 112
xiv Contents in Detai l

webbots2e.book Page xv Thursday, February 16, 2012 11:59 AM
Downloading the Linked Page ... 113
Displaying the Page Status ... 113

Running the Webbot ... 114
LIB_http_codes .. 114
LIB_resolve_addresses .. 115

Further Exploration ... 115

11
SEARCH-RANKING WEBBOTS 117
Description of a Search Result Page .. 118
What the Search-Ranking Webbot Does ... 120
Running the Search-Ranking Webbot .. 120
How the Search-Ranking Webbot Works .. 120
The Search-Ranking Webbot Script .. 121

Initializing Variables .. 121
Starting the Loop ... 122
Fetching the Search Results ... 123
Parsing the Search Results .. 123

Final Thoughts .. 126
Be Kind to Your Sources ... 126
Search Sites May Treat Webbots Differently Than Browsers 126
Spidering Search Engines Is a Bad Idea ... 126
Familiarize Yourself with the Google API .. 127

Further Exploration ... 127

12
AGGREGATION WEBBOTS 129
Choosing Data Sources for Webbots .. 130
Example Aggregation Webbot .. 131

Familiarizing Yourself with RSS Feeds .. 131
Writing the Aggregation Webbot ... 133

Adding Filtering to Your Aggregation Webbot ... 135
Further Exploration ... 137

13
FTP WEBBOTS 139
Example FTP Webbot ... 140
PHP and FTP .. 142
Further Exploration ... 143

14
WEBBOTS THAT READ EMAIL 145
The POP3 Protocol ... 146

Logging into a POP3 Mail Server .. 146
Reading Mail from a POP3 Mail Server ... 146

Executing POP3 Commands with a Webbot .. 149
Further Exploration ... 151

Email-Controlled Webbots .. 151
Email Interfaces ... 152
Contents in Detai l xv

webbots2e.book Page xvi Thursday, February 16, 2012 11:59 AM
15
WEBBOTS THAT SEND EMAIL 153
Email, Webbots, and Spam ... 153
Sending Mail with SMTP and PHP .. 154

Configuring PHP to Send Mail .. 154
Sending an Email with mail() .. 155

Writing a Webbot That Sends Email Notifications .. 157
Keeping Legitimate Mail out of Spam Filters ... 158
Sending HTML-Formatted Email ... 159

Further Exploration ... 160
Using Returned Emails to Prune Access Lists .. 160
Using Email as Notification That Your Webbot Ran 161
Leveraging Wireless Technologies ... 161
Writing Webbots That Send Text Messages .. 161

16
CONVERTING A WEBSITE INTO A FUNCTION 163
Writing a Function Interface ... 164

Defining the Interface ... 165
Analyzing the Target Web Page ... 165
Using describe_zipcode() ... 167

Final Thoughts .. 169
Distributing Resources .. 169
Using Standard Interfaces .. 170
Designing a Custom Lightweight “Web Service” ... 170

PART III: ADVANCED TECHNICAL
CONSIDERATIONS 171

17
SPIDERS 173
How Spiders Work ... 174
Example Spider ... 175
LIB_simple_spider ... 176

harvest_links() ... 177
archive_links() ... 178
get_domain() .. 178
exclude_link() .. 179

Experimenting with the Spider ... 180
Adding the Payload .. 181
Further Exploration ... 181

Save Links in a Database ... 181
Separate the Harvest and Payload .. 182
Distribute Tasks Across Multiple Computers .. 182
Regulate Page Requests ... 183
xvi Contents in Detai l

webbots2e.book Page xvii Thursday, February 16, 2012 11:59 AM
18
PROCUREMENT WEBBOTS AND SNIPERS 185
Procurement Webbot Theory ... 186

Get Purchase Criteria .. 186
Authenticate Buyer .. 187
Verify Item .. 187
Evaluate Purchase Triggers ... 187
Make Purchase ... 187
Evaluate Results .. 188

Sniper Theory .. 188
Get Purchase Criteria .. 188
Authenticate Buyer .. 189
Verify Item .. 189
Synchronize Clocks ... 189
Time to Bid? ... 191
Submit Bid .. 191
Evaluate Results ... 191

Testing Your Own Webbots and Snipers ... 191
Further Exploration ... 191
Final Thoughts .. 192

19
WEBBOTS AND CRYPTOGRAPHY 193
Designing Webbots That Use Encryption ... 194

SSL and PHP Built-in Functions ... 194
Encryption and PHP/CURL ... 194

A Quick Overview of Web Encryption .. 195
Final Thoughts .. 196

20
AUTHENTICATION 197
What Is Authentication? .. 197

Types of Online Authentication .. 198
Strengthening Authentication by Combining Techniques 198
Authentication and Webbots .. 199

Example Scripts and Practice Pages .. 199
Basic Authentication ... 199
Session Authentication .. 202

Authentication with Cookie Sessions .. 202
Authentication with Query Sessions ... 205

Final Thoughts .. 207

21
ADVANCED COOKIE MANAGEMENT 209
How Cookies Work .. 209
PHP/CURL and Cookies .. 211
Contents in Detai l xvii

webbots2e.book Page xviii Thursday, February 16, 2012 11:59 AM
How Cookies Challenge Webbot Design .. 212
Purging Temporary Cookies .. 212
Managing Multiple Users’ Cookies .. 213

Further Exploration ... 214

22
SCHEDULING WEBBOTS AND SPIDERS 215
Preparing Your Webbots to Run as Scheduled Tasks ... 216
The Windows XP Task Scheduler .. 216

Scheduling a Webbot to Run Daily .. 217
Complex Schedules ... 218

The Windows 7 Task Scheduler ... 220
Non-calendar-based Triggers ... 223
Final Thoughts .. 225

Determine the Webbot’s Best Periodicity .. 225
Avoid Single Points of Failure ... 225
Add Variety to Your Schedule ... 225

23
SCRAPING DIFFICULT WEBSITES WITH
BROWSER MACROS 227
Barriers to Effective Web Scraping ... 229

AJAX ... 229
Bizarre JavaScript and Cookie Behavior .. 229
Flash ... 229

Overcoming Webscraping Barriers with Browser Macros .. 230
What Is a Browser Macro? ... 230
The Ultimate Browser-Like Webbot .. 230
Installing and Using iMacros .. 230
Creating Your First Macro .. 231

Final Thoughts .. 237
Are Macros Really Necessary? ... 237
Other Uses ... 237

24
HACKING IMACROS 239
Hacking iMacros for Added Functionality .. 240

Reasons for Not Using the iMacros Scripting Engine 240
Creating a Dynamic Macro .. 241
Launching iMacros Automatically .. 245

Further Exploration ... 247

25
DEPLOYMENT AND SCALING 249
One-to-Many Environment ... 250
One-to-One Environment ... 251
xviii Contents in Detai l

webbots2e.book Page xix Thursday, February 16, 2012 11:59 AM
Many-to-Many Environment ... 251
Many-to-One Environment ... 252
Scaling and Denial-of-Service Attacks ... 252

Even Simple Webbots Can Generate a Lot of Traffic 252
Inefficiencies at the Target .. 252
The Problems with Scaling Too Well .. 253

Creating Multiple Instances of a Webbot .. 253
Forking Processes .. 253
Leveraging the Operating System .. 254
Distributing the Task over Multiple Computers ... 254

Managing a Botnet .. 255
Botnet Communication Methods .. 255

Further Exploration ... 262

PART IV: LARGER CONSIDERATIONS 263

26
DESIGNING STEALTHY WEBBOTS AND SPIDERS 265
Why Design a Stealthy Webbot? ... 265

Log Files ... 266
Log-Monitoring Software .. 269

Stealth Means Simulating Human Patterns ... 269
Be Kind to Your Resources .. 269
Run Your Webbot During Busy Hours .. 270
Don’t Run Your Webbot at the Same Time Each Day 270
Don’t Run Your Webbot on Holidays and Weekends 270
Use Random, Intra-fetch Delays ... 270

Final Thoughts .. 270

27
PROXIES 273
What Is a Proxy? ... 273
Proxies in the Virtual World ... 274
Why Webbot Developers Use Proxies .. 274

Using Proxies to Become Anonymous ... 274
Using a Proxy to Be Somewhere Else ... 277

Using a Proxy Server .. 277
Using a Proxy in a Browser .. 278
Using a Proxy with PHP/CURL .. 278

Types of Proxy Servers .. 278
Open Proxies .. 279
Tor .. 281
Commercial Proxies ... 282

Final Thoughts .. 283
Anonymity Is a Process, Not a Feature ... 283
Creating Your Own Proxy Service ... 283
Contents in Detai l xix

webbots2e.book Page xx Thursday, February 16, 2012 11:59 AM
28
WRITING FAULT-TOLERANT WEBBOTS 285
Types of Webbot Fault Tolerance ... 286

Adapting to Changes in URLs ... 286
Adapting to Changes in Page Content ... 291
Adapting to Changes in Forms .. 292
Adapting to Changes in Cookie Management .. 294
Adapting to Network Outages and Network Congestion 294

Error Handlers ... 295
Further Exploration ... 296

29
DESIGNING WEBBOT-FRIENDLY WEBSITES 297
Optimizing Web Pages for Search Engine Spiders ... 297

Well-Defined Links ... 298
Google Bombs and Spam Indexing ... 298
Title Tags ... 298
Meta Tags .. 299
Header Tags ... 299
Image alt Attributes ... 300

Web Design Techniques That Hinder Search Engine Spiders 300
JavaScript .. 300
Non-ASCII Content .. 301

Designing Data-Only Interfaces .. 301
XML ... 301
Lightweight Data Exchange .. 302
SOAP .. 305
REST .. 306

Final Thoughts... 307

30
KILLING SPIDERS 309
Asking Nicely .. 310

Create a Terms of Service Agreement .. 310
Use the robots.txt File ... 311
Use the Robots Meta Tag .. 312

Building Speed Bumps .. 312
Selectively Allow Access to Specific Web Agents .. 312
Use Obfuscation ... 313
Use Cookies, Encryption, JavaScript, and Redirection 313
Authenticate Users ... 314
Update Your Site Often .. 314
Embed Text in Other Media .. 314

Setting Traps ... 315
Create a Spider Trap ... 315
Fun Things to Do with Unwanted Spiders ... 316

Final Thoughts .. 316
xx Contents in Detai l

webbots2e.book Page xxi Thursday, February 16, 2012 11:59 AM
31
KEEPING WEBBOTS OUT OF TROUBLE 317
It’s All About Respect .. 318
Copyright .. 319

Do Consult Resources .. 319
Don’t Be an Armchair Lawyer ... 319

Trespass to Chattels .. 322
Internet Law ... 324
Final Thoughts .. 325

A
PHP/CURL REFERENCE 327
Creating a Minimal PHP/CURL Session ... 327
Initiating PHP/CURL Sessions ... 328
Setting PHP/CURL Options .. 328

CURLOPT_URL .. 329
CURLOPT_RETURNTRANSFER ... 329
CURLOPT_REFERER ... 329
CURLOPT_FOLLOWLOCATION and CURLOPT_MAXREDIRS 329
CURLOPT_USERAGENT ... 330
CURLOPT_NOBODY and CURLOPT_HEADER ... 330
CURLOPT_TIMEOUT ... 331
CURLOPT_COOKIEFILE and CURLOPT_COOKIEJAR 331
CURLOPT_HTTPHEADER .. 331
CURLOPT_SSL_VERIFYPEER .. 332
CURLOPT_USERPWD and CURLOPT_UNRESTRICTED_AUTH 332
CURLOPT_POST and CURLOPT_POSTFIELDS .. 332
CURLOPT_VERBOSE .. 333
CURLOPT_PORT .. 333

Executing the PHP/CURL Command ... 333
Retrieving PHP/CURL Session Information .. 334
Viewing PHP/CURL Errors .. 334

Closing PHP/CURL Sessions .. 335

B
STATUS CODES 337
HTTP Codes ... 337
NNTP Codes ... 339

C
SMS GATEWAYS 341
Sending Text Messages ... 342
Reading Text Messages .. 342
A Sampling of Text Message Email Addresses ... 342

INDEX 345
Contents in Detai l xxi

webbots2e.book Page xxii Thursday, February 16, 2012 11:59 AM

A B O U T T H E A U T H O R
Michael Schrenk has developed webbots for
over 15 years, working just about everywhere
from Silicon Valley to Moscow, for clients like
the BBC, foreign governments, and many For-
tune 500 companies. He is a frequent Defcon
speaker and lives in Las Vegas, Nevada.

A B O U T T H E
T E C H N I C A L R E V I E W E R

Daniel Stenberg is the author and maintainer
of cURL and libcurl. He is a computer consult-
ant, an internet protocol geek, and a hacker.
He’s been programming for fun and profit since
1985. Read more about Daniel, his company,
and his open source projects at http://daniel
.haxx.se/.

webbots2e.book Page xxiii Thursday, February 16, 2012 11:59 AM

webbots2e.book Page xxiv Thursday, February 16, 2012 11:59 AM

webbots2e.book Page xxv Thursday, February 16, 2012 11:59 AM
A C K N O W L E D G M E N T S

I want to extend a very special thank you to all the
readers of the first edition of Webbots, Spiders, and
Screen Scrapers. Since the book’s initial publication in
2007, you’ve come to my book signings, attended my
talks at conferences, and sent me a steady stream of
emails. At every venue, you’ve communicated your
excitement about the webbot projects you’re working on, often through
very well-considered questions. In fact, your involvement is the number
one reason for this second edition and its coverage of new topics like:

 Advanced parsing techniques with regular expressions

 Improved webbot stealth through the use of proxies

 Scaling and mass deployment of webbots

 Scraping data from “difficult websites” that make heavy use of JavaScript
and AJAX

webbots2e.book Page xxvi Thursday, February 16, 2012 11:59 AM
I sincerely hope that the tradition of communication with you continues.
Please drop by online and say hello.

Official website http://www.WebbotsSpidersScreenScrapers.com

Facebook http://www.facebook.com/webbots

Twitter http://www.twitter.com/mgschrenk

Additionally, Daniel Stenberg (cURL author and maintainer) was the
technical reviewer of this book and instrumental to the development of the
manuscript.

Finally, a special tip of the hat goes to the great (and by great, I mean
patient) folks at No Starch Press, specifically: Tyler, Serena, Alison, Travis,
and, of course, Bill. You guys never cease to amaze me with your in-depth
knowledge of publishing and your ability to make me readable. I also want to
thank you for expanding my appreciation for bourbon at last year’s Defcon.
xxvi Acknowledgments

webbots2e.book Page 1 Thursday, February 16, 2012 11:59 AM
I N T R O D U C T I O N

My introduction to the World Wide Web
was also the beginning of my relationship

with the browser. The first browser I used was
Mosaic, pioneered by Eric Bina and Marc Andreessen.
Andreessen later co-founded Netscape and Loudcloud.

Shortly after I discovered the World Wide Web in 1995, I began to
associate the wonders of the Internet with the simplicity of the browser.
The browser was more than a software application that facilitated use of the
World Wide Web: it was the World Wide Web. It was the new television! And
just as television tamed distant video signals with simple channel and volume
knobs, browsers demystified the complexities of the Internet with hyperlinks,
bookmarks, and back buttons.

webbots2e.book Page 2 Thursday, February 16, 2012 11:59 AM
Old-School Client-Server Technology

My big moment of discovery came when I learned that I didn’t need a browser
to view web pages. I realized that Telnet, a program used since the early ’80s to
communicate with networked computers, could also download web pages. I
discovered there was no magic behind the web browser. Downloading web
pages was really no different from the existing methods for requesting infor-
mation from networked computers.

Suddenly, the World Wide Web was something I could understand with-
out a browser. It was a familiar client-server architecture where simple clients
worked on files found on remote servers. The difference here was that the cli-
ents were browsers and the servers sent web pages for the browsers to render.

The only revolutionary thing about browsers was that, unlike Telnet,
they were easy for anyone to use. Ease of use and overexpanding content
meant that browsers soon gained mass acceptance. The browser caused the
Internet’s audience to shift from physicists and computer programmers to
the general public, who were unaware of how computer networks worked.
Unfortunately, the average Joe didn’t understand the simplicity of client-
server protocols, so the dependency on browsers spread further. They didn’t
understand that there were other—and potentially more interesting—ways
to use the World Wide Web.

As a programmer, I realized that if I could use Telnet to download web
pages, I could also write programs that did the same. I could write my own brow-
ser if I wanted to! Or, I could write automated agents (webbots, spiders, and
screen scrapers) to solve problems that browsers couldn’t.

The Problem with Browsers

The basic problem with browsers is that they’re manual tools. Your browser
only downloads and renders websites: You still need to decide if the web page
is relevant, if you’ve already seen the information it contains, or if you need
to follow a link to another web page. What’s worse, your browser can’t think
for itself. It can’t notify you when something important happens online, and
it certainly won’t anticipate your actions, automatically complete forms, make
purchases, or download files for you. To do these things, you’ll need the auto-
mation and intelligence only available with a webbot, or a web robot. Once you
start thinking about the inherent limitations of browsers, you start to see the
endless opportunities that wait around the corner for webbot developers.

What to Expect from This Book

This book identifies the limitations of typical web browsers and explores
how you can use webbots to capitalize on these limitations. You’ll learn how
to design and write webbots through sample scripts and example projects.
Moreover, you’ll find answers to larger design questions like these:

 Where do ideas for webbot projects come from?

 How can I have fun with webbots and stay out of trouble?
2 In t roduct ion

webbots2e.book Page 3 Thursday, February 16, 2012 11:59 AM
 Is it possible to write stealthy webbots that run without detection?

 What is the trick to writing robust, fault-tolerant webbots that won’t break
as Internet content changes?

Learn from My Mistakes

I’ve written webbots, spiders, and screen scrapers for over 15 years, and in the
process I’ve made most of the mistakes someone can make. Because webbots
are capable of making unconventional demands on websites, system admin-
istrators can confuse webbots’ requests with attempts to hack into their systems.
Thankfully, none of my mistakes has ever led to a courtroom, but they have
resulted in intimidating phone calls, scary emails, and very awkward moments.
Happily, I can say that I’ve learned from these situations, and it’s been a very
long time since I’ve been across the desk from an angry system administrator.
You can spare yourself a lot of grief by reading my stories and learning from
my mistakes.

Master Webbot Techniques

You will learn about the technology needed to write a wide assortment
of webbots. Some technical skills you’ll master include these:

 Programmatically downloading websites

 Decoding encrypted websites

 Unlocking authenticated web pages

 Managing cookies

 Parsing data

 Writing spiders

 Managing the large amounts of data that webbots generate

Leverage Existing Scripts

This book uses several code libraries that make it easy for you to write webbots,
spiders, and screen scrapers. The functions and declarations in these libraries
provide the basis for most of the example scripts used in this book. You’ll save
time by using these libraries because they do the underlying work, leaving
the upper-level planning and development to you. All of these libraries are
available for download at this book’s website.

About the Website

This book’s website (http://www.WebbotsSpidersScreenScrapers.com) is an addi-
tional resource for you to use. To the extent that it’s possible, all the example
projects in this book use web pages on the companion site as targets, or resources
for your webbots to download and take action on. These targets provided a
consistent (unchanging) environment for you to hone your webbot writing
In t roduct ion 3

webbots2e.book Page 4 Thursday, February 16, 2012 11:59 AM
skills. A controlled learning environment is important because, regardless of
our best efforts, webbots can fail when their target websites change. Knowing
that your targets are unchanging makes the task of debugging a little easier.

The companion website also has links to other sites of interest, white
papers, book updates, and an area where you can communicate with other
webbot developers (see Figure 1). From the website, you will also be able to
access all of the example code libraries used in this book.

Figure 1: The official website of Webbots, Spiders, and Screen Scrapers

About the Code

Most of the scripts in this book are straight PHP. However, sometimes PHP
and HTML are intermixed in the same script—and in many cases, on the same
line. In those situations, a bold typeface differentiates PHP scripts from HTML,
as shown in Listing 1.

You may use any of the scripts in this book for your own personal use, as
long as you agree not to redistribute them. If you use any script in this book, you
also consent to bear full responsibility for its use and execution and agree not to
4 In t roduct ion

webbots2e.book Page 5 Thursday, February 16, 2012 11:59 AM
sell or create derivative products, under any circumstances. However, if you do
improve any of these scripts or develop entirely new (related) scripts, you are
encouraged to share them with the webbot community via the book’s website.

<h1>Coding Conventions for Embedded PHP</h1>
<table border="0" cellpadding="1" cellspacing="0">
<tr>
<th>Name</th>

<th>Address</th>
 </tr>
 <? for ($x=0; $x<sizeof($person_array); $x++)

{ ?>
 <tr>
 <td><? echo person_array[$x]['NAME']?></td>
 <td><? echo person_array[$x]['ADDRESS']?></td>
 </tr>
<? } ?>
</table>

Listing 1: Bold typeface differentiates PHP from HTML script

The other thing you should know about the example scripts is that they
are teaching aids. The scripts may not reflect the most efficient programming
method, because their primary goal is readability.

NOTE The code libraries used by this book are governed by the W3C Software Notice and License
(http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231)
and are available for download from the book’s website. The website is also where the
software is maintained. If you make meaningful contributions to this code, please go to
the website to see how your improvements may be part of the next distribution. The soft-
ware examples depicted in this book are protected by this book’s copyright.

Requirements

Knowing HTML and the basics of how the Internet works will be necessary
for using this book. If you are a beginning programmer with even nominal
computer network experience, you’ll be fine. It is important to recognize,
however, that this book will not teach you how to program or how TCP/IP,
the protocol of the Internet, works.

Hardware
You don’t need elaborate hardware to start writing webbots. If you have a
secondhand computer, you probably have the minimum requirement to play
with all the examples in this book. Any of the following hardware is appro-
priate for using the examples and information in this book:

 A personal computer that uses a Windows XP, Windows Vista, or Win-
dows 7 operating system

 Any reasonably modern Linux-, Unix-, or FreeBSD-based computer

 A Macintosh running OS X (or later)
In t roduct ion 5

webbots2e.book Page 6 Thursday, February 16, 2012 11:59 AM
It will also prove useful to have ample storage. This is particularly true
if your plan is to write spiders, self-directed webbots, which can consume all
available resources (especially hard drives) if they are allowed to download
too many files.

Software

In an effort to be as relevant as possible, the software examples in this book
use PHP,1 cURL,2 and MySQL.3 All of these software technologies are available
as free downloads from their respective websites. In addition to being free,
these software packages are wonderfully portable and function well on a
variety of computers and operating systems.

NOTE If you’re going to follow the script examples in this book, you will need a basic knowledge
of PHP. This book assumes you know how to program.

Internet Access

A connection to the Internet is very handy, but not entirely necessary. If you
lack a network connection, you can create your own local intranet (one or more
webservers on a private network) by loading Apache4 onto your computer,
and if that’s not possible, you can design programs that use local files as
targets. However, neither of these options is as fun as writing webbots that
use a live Internet connection. In addition, if you lack an Internet connection,
you will not have access to the online resources, which add a lot of value to
your learning experience.

A Disclaimer (This Is Important)

As with anything you develop, you must take responsibility for your own actions.
From a technology standpoint, there is little to distinguish a beneficial webbot
from one that does destructive things. The main difference is the intent of
the developer (and how well you debug your scripts). Therefore, it’s up to
you to do constructive things with the information in this book and not
violate copyright law, disrupt networks, or do anything else that would be
troublesome or illegal. And if you do, don’t call me.

Please reference Chapter 31 for insight into how to write webbots ethically.
Chapter 31 will help you do this, but it won’t provide legal advice. If you have
questions, talk to a lawyer before you experiment.

1 See http://www.php.net.
2 See http://curl.haxx.se.
3 See http://www.mysql.com.
4 See http://www.apache.org.
6 In t roduct ion

webbots2e.book Page 7 Thursday, February 16, 2012 11:59 AM
PART I
F U N D A M E N T A L C O N C E P T S

A N D T E C H N I Q U E S

Whereas most web development books explain how
to create websites, this book teaches developers how to
combine, adapt, and automate existing websites to fit
their specific needs.

You may have experience from other areas of computer science that you
can apply to developing webbots, spiders, and screen scrapers. However, if
some of the concepts in this book are already are familiar to you, developing
webbots may force you to view these skills in a different context. Even if you
have prior experience and feel confident with the material, you are strongly
encouraged to read the whole book.

If you don’t already have experience in these areas, the first seven chap-
ters will provide the basics for designing and developing webbots. You’ll use
this groundwork in the other projects and advanced considerations discussed
later.

Part I introduces the concept of web automation and explores elemen-
tary techniques to harness the resources of the Web.

Chapter 1: What’s in It for You?
This chapter explores why it is fun to write webbots and why webbot
development is a rewarding career with expanding possibilities.

webbots2e.book Page 8 Thursday, February 16, 2012 11:59 AM
Chapter 2: Ideas for Webbot Projects
We’ve been led to believe that we have to accept websites as they are. This
is primarily because browsers don’t allow us to do anything else. If, how-
ever, you examine what you want to do, as opposed to what a browser
allows you to do, you’ll look at your favorite web resources in a whole new
way. Here you will learn that web browsers are plagued with limitations
and how those limitations may trigger ideas for your own webbot projects.

Chapter 3: Downloading Web Pages
This chapter introduces PHP/CURL, the free library that makes it easy
to download web pages—even when the targeted web pages use advanced
techniques like forwarding, encryption, authentication, and cookies.

Chapter 4: Parsing Techniques
Downloaded web pages aren’t of any use until your webbot can separate
the data you need from the data you don’t need. This chapter discloses the
basics for scraping web pages.

Chapter 5: Advanced Parsing with Regular Expressions
Once you know the basics of parsing, it’s time to explore the advanced
features available with regular expressions and to know when, or when
not, to use them.

Chapter 6: Automating Form Submission
To truly automate web agents, your application needs the ability to auto-
matically upload data to online forms. This chapter teaches you how to
write webbots that fill out forms.

Chapter 7: Managing Large Amounts of Data
Spiders in particular can generate huge amounts of data. That’s why it’s
important for you to know how to effectively store and reduce the size of
web pages, text files, and images. After reading this chapter, you’ll know
how to compress, thumbnail, store, and retrieve the data you collect.
8 Par t I

webbots2e.book Page 9 Thursday, February 16, 2012 11:59 AM
W H A T ’ S I N I T F O R Y O U ?

Whether you’re a software developer
looking for new skills or a business leader

looking for a competitive advantage, this
chapter is where you will discover how webbots create
opportunities.

Uncovering the Internet’s True Potential

When I first started writing webbots, they presented both a virtually untapped
source of potential projects for software developers and a bountiful resource
for business people. Little has changed in subsequent years. Even years since
the original publication of this book, the public has yet to realize that most
of the Internet’s potential lies outside the capability of the existing browser/
website model that most people use. Even today, people are still satisfied
with simply pointing a browser at a website and using whatever information or
services they happen to find there. With webbots, the focus of the Internet
shifts from what’s available on individual websites to what people actually
want to accomplish.

webbots2e.book Page 10 Thursday, February 16, 2012 11:59 AM
For developers and business people to be successful with webbots, they
need to stop thinking like other Internet users. Particularly, you need to stop
thinking about the Internet in terms of a browser manually viewing one web-
site at a time. This will be difficult, because we’ve all become dependent on
using browsers, and the Internet, in this way. While you can do a wide variety
of things using a browser in the traditional way, you also pay a price for that
versatility. This is because browsers need to be sufficiently generic to be useful
in a wide variety of circumstances. As a result, browsers can do generic things
well, but they lack the ability to do specific things exceptionally well.1 Webbots,
on the other hand, can be programmed to perform specific tasks to perfection.
Additionally, webbots have the ability to automate anything you do online
manually and notify you when something needs your attention.

What’s in It for Developers?

Your ability to write a webbot can distinguish you from the pack of lesser
developers. Web developers—who’ve gone from designing the new economy
of the late 1990s to falling victim to it during the dot-com crash of 2001 and
then to being subjected to the general economic downturn of 2008—know
that today’s job market is very competitive. Even today’s most talented develop-
ers can have trouble finding meaningful work. Knowing how to develop web-
bots expands your ability as a computer programmer and makes you more
valuable at your current job or to potential employers.

A webbot developer differentiates his or her skill set from that of someone
whose knowledge of Internet technology extends only to creating websites.
By designing webbots, you demonstrate that you have a thorough understand-
ing of network technology and a variety of network protocols, as well as the
ability to use existing technology in new and creative ways.

Webbot Developers Are in Demand

There are many growth opportunities for webbot developers. You can
demonstrate this for yourself by looking at your website’s file access logs and
recording all the non-browsers that have visited your website. If you compare
current server logs to those from a year ago, you should notice a healthy
increase in traffic from nontraditional web clients or webbots. Someone has
to write these automated agents, and as the demand for webbots increases, so
does the demand for webbot developers.

Hard statistics on the growth of webbot use are hard to come by, since—
as you’ll learn later—many webbots defy detection and masquerade as tradi-
tional web browsers. In fact, the value that webbots bring to businesses forces
most webbot projects underground. Personally, I can’t talk about most of
the webbots I’ve developed because they create competitive advantages for
clients, and they’d rather keep those techniques secret. Regardless of the

1 For example, web browsers can’t act on your behalf, filter content for relevance, or perform
tasks automatically.
10 Chapter 1

webbots2e.book Page 11 Thursday, February 16, 2012 11:59 AM
actual numbers, however, it’s a fact that webbots and spiders comprise a large
amount of today’s Internet traffic and that many developers are required to
both maintain existing webbots and develop new ones.

Webbots Are Fun to Write

In addition to solving serious business problems, webbots are also fun to
write. This should be welcome news to seasoned developers who no longer
experience the thrill of solving a problem with software or using a technology
for the first time. Without a little fun, it’s easy for developers to get bored
and conclude that software is simply a rote sequence of instructions that do
the same thing every time a program runs. While predictability makes soft-
ware dependable, repetitiveness also makes software tiresome to write. This
is especially true for computer programmers who specialize in a specific indus-
try that lacks a diversity of tasks. At some point in our careers, nearly all of us
become burned-out, in spite of the fact that we still like to write computer
programs or create innovative business models.

Webbots, however, are almost like games, in that they can pleasantly
surprise their developers with their unpredictability. This is because webbots
perform based on their changing environments, and they respond slightly
differently every time they run. As a result, webbots become capricious and
lifelike. Unlike other software, webbots feel organic! Once you write a webbot
that does something wonderfully unexpected, you’ll have a hard time describ-
ing the experience to those writing traditional software applications.

Webbots Facilitate “Constructive Hacking”

By its strict definition, hacking is the process of creatively using technology for
a purpose other than the one originally intended. By using web pages, FTP
servers, email, or other online technology in unintended ways, you join the
ranks of innovators that combine and alter existing technology to create totally
new and useful tools. You’ll also broaden the possibilities for using the Internet.

Unfortunately, hacking also has a dark side, popularized by stories of
people breaking into systems, stealing identities, and rendering online ser-
vices unusable. While some people do write destructive webbots, I don’t
condone that type of behavior here. In fact, Chapter 31 is dedicated to this
very subject.

What’s in It for Business Leaders?

Few businesses gain a competitive advantage simply by using the Internet.
Today, businesses need a unique online strategy to gain a competitive
advantage. Unfortunately, most businesses limit their online strategy to a
website—which, barring some visual design differences, essentially functions
like all the other websites within their industry. Webbots, in contrast, allow
business people to automatically gather and process online information.
What’s in I t for You? 11

webbots2e.book Page 12 Thursday, February 16, 2012 11:59 AM
The first time you use an automated web agent to perform a specific business
task, you will never again be satisfied with an online strategy that consists only
of a traditional website.

Customize the Internet for Your Business

Most of the webbot projects I’ve developed are for business leaders who’ve
become frustrated with the Internet as it is. They want added automation and
decision-making capability on the websites they use. Essentially, they want web-
bots that customize other people’s websites (and the data those sites contain)
for the specific way they do business. Progressive businesses use webbots to
improve their online experience, optimizing how they buy things, how they
conduct corporate intelligence, how they’re notified when things change,
and how to enforce business rules when making online purchases.

Businesses that use webbots aren’t limited to a set of websites that are
accessed by browsers. Instead, they see the Internet as a stockpile of varied
resources that they can customize (using webbots) to serve their specific needs.

Capitalize on the Public’s Inexperience with Webbots

Most people have very little experience using the Internet with anything
other than a browser, and even if people have used other Internet clients
like email or mobile apps, they have never thought about how their online
experience could be improved through automation. For most, it just hasn’t
been an issue.

For businesspeople, blind allegiance to browsers is a double-edged
sword. In one respect, it’s good that people aren’t familiar with the benefits
that webbots provide—this provides opportunities for you to develop webbot
projects that offer competitive advantages. On the other hand, if your super-
visors are used to the Internet as seen through a browser alone, you may have
a hard time selling your innovative webbot projects to management.

Accomplish a Lot with a Small Investment

Webbots can achieve amazing results without elaborate setups. I’ve used obso-
lete computers with slow, dial-up connections to run webbots that create com-
pletely new revenue channels for businesses. Webbots can even be designed to
work with existing office equipment like phones, fax machines, and printers.

Final Thoughts

One of the nice things about webbots is that you can create a large effect
without making something difficult for customers to use. In fact, customers
don’t even need to know that a webbot is involved. For example, your webbots
can deliver services through traditional-looking websites. While you know
that you’re doing something radically innovative, the end users don’t realize
what’s going on behind the scenes—and they don’t really need to know
12 Chapter 1

webbots2e.book Page 13 Thursday, February 16, 2012 11:59 AM
about the hordes of hidden webbots and spiders combing the Internet for
the data and services they need. All they know is that they are getting an
improved Internet experience. And in the end, that’s all that matters.

Another thing to remember is that there is always a lag between when
people figure out how to do something manually and when they figure out
how to automate the process. Just as chainsaws replaced axes and as sewing
machines superseded needles and thimbles, it is only natural to assume that
new (automated) methods for interacting with the Internet will follow the
methods we use today. The innovators that develop these processes will be
the first to enjoy the competitive advantage created by their vision.
What’s in I t for You? 13

webbots2e.book Page 14 Thursday, February 16, 2012 11:59 AM

webbots2e.book Page 15 Thursday, February 16, 2012 11:59 AM
I D E A S F O R W E B B O T P R O J E C T S

It’s often more difficult to find applications
for new technology than it is to learn the

technology itself. Therefore, this chapter
focuses on encouraging you to generate ideas for

things that you can do with webbots. We’ll explore how webbots capitalize on
browser limitations, and we’ll see a few examples of what people are currently
doing with webbots. We’ll wrap up by throwing out some wild ideas that might
help you expand your expectations of what can be done online.

Inspiration from Browser Limitations

A useful method for generating ideas for webbot projects is to study what
cannot be done by simply pointing a browser at a typical website. You know
that browsers, used in traditional ways, cannot automate your Internet
experience. For example, they have these limitations:

 Browsers cannot aggregate and filter information for relevance.

 Browsers cannot interpret what they find online.

 Browsers cannot act on your behalf.

webbots2e.book Page 16 Thursday, February 16, 2012 11:59 AM
However, a browser may leverage the power of a webbot to do many things
that it could not do alone. Let’s look at some real-life examples of how browser
limitations were leveraged into actual webbot projects.

Webbots That Aggregate and Filter Information for Relevance

TrackRates.com (http://www.trackrates.com, shown in Figure 2-1) is a website
that deploys an army of webbots to aggregate and filter hotel room prices
from travel websites. By identifying room prices for specific hotels for specific
dates, it determines the actual market value for rooms up to three months
into the future. This information helps hotel managers intelligently price
rooms by specifically knowing what the competition is charging for similar
rooms. TrackRates.com also reveals market trends by performing statistical
analysis on room prices, and it tries to determine periods of high demand by
indicating dates on which hotels have booked all of their rooms.

Figure 2-1: TrackRates.com

I wrote TrackRates.com to help hotel managers analyze local markets
and provide facts for setting room prices. Without the TrackRates.com webbot,
hotel managers either need to guess what their rooms are worth, rely on less
current information about their local hotel market, or go through the arduous
task of manually collecting this data.
16 Chapter 2

http://trackrates.com

webbots2e.book Page 17 Thursday, February 16, 2012 11:59 AM
Webbots That Interpret What They Find Online

WebSiteOptimization.com (http://www.websiteoptimization.com) uses a webbot
to help web developers create websites that use resources effectively. This
webbot accepts a web page’s URL (as shown in Figure 2-2) and analyzes how
each graphic, CSS, and JavaScript file is used by the web page. In the interest
of full disclosure, I should mention that I wrote the backend for this web
page analyzer.

Figure 2-2: A website-analyzing webbot

The WebSiteOptimization.com webbot analyzes the data it collects and
offers suggestions for optimizing website performance. Without this tool,
developers would have to manually parse through their HTML code to
determine which files are required by web pages, how much bandwidth they
are using, and how the organization of the web page affects its performance.

Webbots That Act on Your Behalf

Pokerbots, webbots that play online poker, are a response to the recent growth
in online gambling sites, particularly gaming sites with live poker rooms.
While the action in these pokers sites is live, not all the players are. Some
online poker players are webbots, like Poker Robot, shown in Figure 2-3.

Webbots designed to play online poker not only know the rules of Texas
hold ’em but use predetermined business rules to expertly read how others
play. They use this information to hold, fold, or bet appropriately. Reportedly,
these automated players can very effectively pick the pockets of new and
inexperienced poker players. Some collusion webbots even allow one virtual
Ideas for Webbot Projec ts 17

webbots2e.book Page 18 Thursday, February 16, 2012 11:59 AM
player to play multiple hands at the same table, while making it look like a sepa-
rate person is playing each hand. Imagine playing against a group of people who
not only know each other’s cards, but hold, fold, and bet against you as a team!

Figure 2-3: An example pokerbot

Obviously, such webbots that play expert poker (and cheat) provide a
tremendous advantage. Nobody knows exactly how prevalent pokerbots
are, but they have created a market for anti-pokerbot software.

A Few Crazy Ideas to Get You Started

One of the goals of this book is to encourage you to write new and experi-
mental webbots of your own design. A way to jumpstart this process is to
brainstorm and generate some ideas for potential projects. I’ve taken this
opportunity to list a few ideas to get you started. These ideas are not here
necessarily because they have commercial value. Instead, they should act as
inspiration for your own webbots and what you want to accomplish online.

When designing a webbot, remember that the more specifically you can
define the task, the more useful your webbot will be. What can you do with a
webbot? Let’s look at a few scenarios.

Help Out a Busy Executive

Suppose you’re a busy executive type and you like to start your day reading
your online industry publication. Time is limited, however, and you only let
yourself read industry news until you’ve finished your first cup of coffee.
Therefore, you don’t want to be bothered with stories that you’ve read before
or that you know are not relevant to your business. You ask your developer
18 Chapter 2

webbots2e.book Page 19 Thursday, February 16, 2012 11:59 AM
to create a specialized webbot that consolidates articles from your favorite
industry news sources and only displays links to stories that it has not shown
you before.

The webbot could ignore articles that contain certain key phrases you
previously entered in an exclusion list 1 and highlight articles that contain
references to you or your competitors. With such an application, you could
quickly scan what’s happening in your industry and only spend time reading
relevant articles. You might even have more time to enjoy your coffee.

Save Money by Automating Tasks

It’s possible to design a webbot that automatically buys inventory for a store,
given a predetermined set of buying criteria. For example, assume you own a
store that sells used travel gear. Some of your sources for inventory are online
auction websites.2 Say you are interested in bidding on under-priced Tumi
suitcases during the closing minute of their auctions. If you don’t use a webbot
of some sort, you will have to use a web browser to check each auction site
periodically.

Without a webbot, it can be expensive to use the Internet in a business
setting, because repetitive tasks (like procuring inventory) are time consum-
ing without automation. Additionally, the more mundane the task, the greater
the opportunity for human error. Checking online auctions for products to
resell could easily consume one or two hours a day—up to 25 percent of a
40-hour work week. At that rate, someone with an annual salary of $80,000
would cost a company $20,000 a year to procure inventory (without a webbot).
That cost does not include the cost of opportunities lost while the employee
manually monitors auction sites. In scenarios like this, it’s easy to see how prod-
uct acquisition with a webbot saves a lot of money—even for a small business
with small requirements. Additionally, a webbot may uncover bargains missed
by someone manually searching the auction site.

Protect Intellectual Property

You can write a webbot to protect your online intellectual property. For
example, suppose you spent many hours writing a JavaScript program. It has
commercial value, and you license the script for others to use for a fee. You’ve
been selling the program for a few months and have learned that some people
are downloading and using your program without paying for it. You write a
webbot to find websites that are using your JavaScript program without your
permission. This webbot searches the Internet and makes a list of URLs that
reference your JavaScript file. In a separate step, the webbot does a whois
lookup on the domain to determine the owner from the domain registrar.3

1 An exclusion list is a list of keywords or phrases that are ignored by a webbot.
2 Some online auctions actually provide to1ols to help you write webbots that manage auctions.
If you’re interested in automating online auctions, check out eBay’s Developers Program
(http://developer.ebay.com).
3 whois is a service that returns information about the owner of a website. You can do the
equivalent of a whois from a shell script or from an online service.
Ideas for Webbot Projec ts 19

webbots2e.book Page 20 Thursday, February 16, 2012 11:59 AM
If the domain is not one of your registered users, the webbot compiles contact
information from the domain registrar so you can contact the parties who
are using unlicensed copies of your code.

Monitor Opportunities
You can also write webbots that alert you when particular opportunities arise.
For example, let’s say that you have an interest in acquiring a Jack Russell
Terrier.4 Instead of devoting part of each day to searching for your new dog,
you decide to write a webbot to search for you and notify you when it finds a
dog meeting your requirements. Your webbot performs a daily search of the
websites of local animal shelters and dog rescue organizations. It parses the
contents of the sites, looking for your dog. When the webbot finds a Jack
Russell Terrier, it sends you an email notification describing the dog and its
location. The webbot also records this specific dog in its database, so it doesn’t
send additional notifications for the same dog in the future. This is a fairly
common webbot task, which could be modified to automatically discover job
listings, sports scores, or any other timely information.

Verify Access Rights on a Website
Webbots may prevent the potentially nightmarish situation that exists for any
web developer who mistakenly gives one user access to another user’s data.
To avoid this situation, you could commission a webbot to verify that all users
receive the correct access to your site. This webbot logs in to the site with
every viable username and password. While acting on each user’s behalf, the
webbot accesses every available page and compares those pages to a list of
appropriate pages for each user. If the webbot finds a user is inadvertently
able to access something he or she shouldn’t, that account is temporarily
suspended until the problem is fixed. Every morning before you arrive at
your office, the webbot emails a report of any irregularities it found the
night before.

Create an Online Clipping Service
Suppose you’re very vain, and you’d like a webbot to send an email to your
mother every time a major news service mentions your name. However, since
you’re not vain enough to check all the main news websites on a regular
basis, you write a webbot that accomplishes the task for you. This webbot
accesses a collection of websites, including CNN, Forbes, and Fortune.
You design your webbot to look only for articles that mention your name, and
you employ an exclusion list to ignore all articles that contain words or phrases
like shakedown, corruption, or money laundering. When the webbot finds an
appropriate article, it automatically sends your mother an email with a link to
the article. Your webbot also blind copies you on all emails it sends so you
know what she’s talking about when she calls.

4 I actually met my dog online.
20 Chapter 2

webbots2e.book Page 21 Thursday, February 16, 2012 11:59 AM
Plot Unauthorized Wi-Fi Networks
You could write a webbot that aids in maintaining network security on a large
corporate campus. For example, suppose that you recently discovered that
you have a problem with employees attaching unauthorized wireless access
points to your network. Since these unauthorized access points occur inside
your firewalls and proxies, you recognize that these unauthorized Wi-Fi net-
works pose a security risk that you need to control. Therefore, in addition to
a new security policy, you decide to create a webbot that automatically finds
and records the location of all wireless networks on your corporate campus.

You notice that your mail room uses a small metal cart to deliver mail.
Because this cart reaches every corner of the corporate campus on a daily
basis, you seek and obtain permission to attach a small laptop computer with
a webbot and Global Positioning System (GPS) card to the cart. As your
webbot hitches a ride through the campus, it looks for open wireless network
connections. When it finds a wireless network, it uses the open network to send
its GPS location to a special website. This website logs the GPS coordinates,
IP address, and date of uplink in a database. If you did your homework
correctly, in a few days your webbot should create a map of all open Wi-Fi
networks, authorized and unauthorized, in your entire corporate campus.

Track Web Technologies

You could write webbots that use web page headers, the information that servers
send to browsers so they may correctly render websites, to maintain a list of
web technologies used by major corporations. Headers typically indicate the
type of webserver (and often the operating system) that websites use, as shown
in Figure 2-4.

C:\>curl --head http://www.chrysler.com

Server: IBM_HTTP_Server/2
Date: Sun, 04 Dec 2011 20:28:47 GMT
Connection: keep-alive

Figure 2-4: A web page header showing server technology

Your webbot starts by accessing the headers of each website from a list
that you keep in a database. It then parses web technology information from
the header. Finally, the webbot stores that information in a database that is
used by a graphing program to plot how server technology choices change
over time.

Allow Incompatible Systems to Communicate

In addition to creating human-readable output, you could design a webbot
that only talks to other computers. For example, let’s say that you want to
synchronize two databases, one on a local private network and one that’s
behind a public website. In this case, synchronization (ensuring that both
Ideas for Webbot Projec ts 21

webbots2e.book Page 22 Thursday, February 16, 2012 11:59 AM
databases contain the same information) is difficult because the systems use
different technologies with incompatible synchronization techniques. Given
the circumstances, you could write a webbot that runs on your private network
and, for example, analyzes the public database through a password-protected
web service every morning. The webbot uses the Internet as a common protocol
between these databases, analyzes data on both systems, and exchanges the
appropriate data to synchronize the two databases.

Final Thoughts

Studying browser limitations is one way to uncover ideas for new webbot
designs. You’ve seen some real-world examples of webbots in use and read
some descriptions of conceptual webbot designs. But, enough with theory—
let’s head to the lab!

The next five chapters describe the basics of webbot development: down-
loading pages, parsing data, emulating form submission, and managing large
amounts of data. Once you master these concepts, you can move on to actual
webbot projects.
22 Chapter 2

webbots2e.book Page 23 Thursday, February 16, 2012 11:59 AM
D O W N L O A D I N G W E B P A G E S

The most important thing a webbot does is
move web pages from the Internet to your

computer. Once the web page is on your com-
puter, your webbot can parse and manipulate it.

This chapter will show you how to write simple PHP scripts that download
web pages. More importantly, you’ll learn PHP’s limitations and how to over-
come them with PHP/CURL, a special binding of the cURL library that
facilitates many advanced network features. cURL is used widely by many
computer languages as a means to access network files with a number of
protocols and options.

NOTE While web pages are the most common targets for webbots and spiders, the Web is not the
only source of information for your webbots. Later chapters will explore methods for extract-
ing data from newsgroups, email, and FTP servers, as well.

Prior to discovering PHP, I wrote webbots in a variety of languages, includ-
ing Visual Basic, Java, and Tcl/Tk. But due to its simple syntax, in-depth string
parsing capabilities, networking functions, and portability, PHP proved ideal
for webbot development. However, PHP is primarily a server language, and
its chief purpose is to help webservers interpret incoming requests and send

webbots2e.book Page 24 Thursday, February 16, 2012 11:59 AM
the appropriate web pages in response. Since webbots don’t serve pages
(they request them), this book supplements PHP built-in functions with
PHP/CURL and a variety of libraries, developed specifically to help you
learn to write webbots and spiders.

Think About Files, Not Web Pages
To most people, the Web appears as a collection of web pages. But in reality,
the Web is collection of files that form those web pages. These files may
exist on servers anywhere in the world, and they only create web pages when
they are viewed together. Because browsers simplify the process of download-
ing and rendering the individual files that make up web pages, you need to
know the nuts and bolts of how web pages are put together before you write
your first webbot.

When your browser requests a file, as shown in Figure 3-1, the webserver
that fields the request sends your browser a default or index file, which maps the
location of all the files that the web page needs and tells how to render the
text and images that comprise that web page.

Figure 3-1: When a browser requests a web page, it first receives an index file.

As a rule, this index file also contains references to the other files required to
render the complete web page,1 as shown in Figure 3-2. These may include
images, JavaScript, style sheets, or complex media files like Flash, QuickTime,
or Windows Media files. The browser downloads each file separately, as it is
referenced by the index file.

Figure 3-2: Downloading files, as they are referenced by the index file

1 Some very simple websites consist of only one file.

WebserverBrowser

Web page requested

Index file returned

Browser

Webserver

Webserver Webserver

Webserver

Webserver

Webserver

Webserver

Webserver
JavaScript file fetchStyle sheet fetches

Image fi
le f

etch
es
24 Chapter 3

webbots2e.book Page 25 Thursday, February 16, 2012 11:59 AM
For example, if you request a web page with references to eight items your
single web page actually executes nine separate file downloads (one for the
web page and one for each file referenced by the web page). Usually, each
file resides on the same server, but they could just as easily exist on separate
domains, as shown in Figure 3-2.

Downloading Files with PHP’s Built-in Functions

Before you can appreciate PHP/CURL, you’ll need to familiarize yourself
with PHP’s built-in functions for downloading files from the Internet.

Downloading Files with fopen() and fgets()

PHP includes two simple built-in functions for downloading files from a
network—fopen() and fgets(). The fopen() function does two things. First, it
creates a network socket, which represents the link between your webbot and
the network resource you want to retrieve. Second, it implements the HTTP
protocol, which defines how data is transferred. With those tasks completed,
fgets() leverages the networking ability of your computer’s operating system
to pull the file from the Internet.

Creating Your First Webbot Script

Let’s use PHP’s built-in functions to create your first webbot, which down-
loads a “Hello, world!” web page from this book’s companion website. The
short script is shown in Listing 3-1.

Define the file you want to download
$target = "http://www.WebbotsSpidersScreenScrapers.com/hello_world.html";
$file_handle = fopen($target, "r");

Fetch the file
while (!feof($file_handle))
 echo fgets($file_handle, 4096);
fclose($file_handle);

Listing 3-1: Downloading a file from the Web with fopen() and fgets()

As shown in Listing 3-1, fopen() establishes a network connection to the
target, or file you want to download. It references this connection with a file
handle, or network link called $file_handle. The script then uses fopen() to
fetch and echo the file in 4,096-byte chunks until it has downloaded and
displayed the entire file. Finally, the script executes an fclose() to tell PHP
that it’s finished with the network handle.

Before we can execute the example in Listing 3-1, we need to examine
the two ways to execute a webbot: You can run a webbot either in a browser
or in a command shell.2

2 See Chapter 22 for more information on executing webbots as scheduled events.
Downloading Web Pages 25

webbots2e.book Page 26 Thursday, February 16, 2012 11:59 AM
Executing Webbots in Command Shells

If you have a choice, it is usually better to execute webbots from a shell or
command line. Webbots generally don’t care about web page formatting,
so they will display exactly what is returned from a webserver. Browsers, in
contrast, will interpret HTML tags as instructions for rendering the web page.
For example, Figure 3-3 shows what Listing 3-1 looks like when executed in
a shell.

C:\>php script_3_1.php
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>
<head>
 <title>Hello, world!</title>
</head>

<body>
Congratulations! If you can read this,

you successfully downloaded this file.
</body>
</html>

Figure 3-3: Running a webbot script in a shell

Executing Webbots in Browsers

To run a webbot script in a browser, simply load the script on a webserver and
execute it by loading its URL into the browser’s location bar as you would
any other web page. Contrast Figure 3-3 with Figure 3-4, where the same
script is run within a browser. The HTML tags are gone, as well as all of the
structure of the returned file; the only things displayed are two lines of text.
Running a webbot in a browser only shows a partial picture and often hides
important information that a webbot needs.

NOTE To display HTML tags within a browser, surround the output with <xmp> and
</xmp> tags.

Figure 3-4: Browser “rendering” the output of a webbot
26 Chapter 3

webbots2e.book Page 27 Thursday, February 16, 2012 11:59 AM
Browser buffering is another complication you might run into if you try to
execute a webbot in a browser. Buffering is useful when you’re viewing web
pages because it allows a browser to wait until it has collected enough of a
web page before it starts rendering or displaying the web page. However,
browser buffering is troublesome for webbots because they frequently run
for extended periods of time—much longer than it would take to download
a typical web page. During prolonged webbot execution, status messages
written by the webbot may not be displayed by the browser while it is buffering
the display.

I have one webbot that runs continuously; in fact, it once ran for seven
months before stopping during a power outage. This webbot could never
run effectively in a browser because browsers are designed to render web
pages with files of finite length. Browsers assume short download periods and
may buffer an entire web page before displaying anything—therefore, never
displaying the output of your webbot.

NOTE Browsers can still be very useful for creating interfaces that set up or control the actions
of a webbot. They can also be useful for displaying the results of a webbot’s work.

Downloading Files with file()

An alternative to fopen() and fgets() is the function file(), which downloads
formatted files and places them into an array. This function differs from
fopen() in two important ways: One way is that, unlike fopen(), it does not
require you to create a file handle, because it creates all the network prep-
arations for you. The other difference is that it returns the downloaded file
as an array, with each line of the downloaded file in a separate array element.
The script in Listing 3-2 downloads the same web page used in Listing 3-1,
but it uses the file() command.

<?
// Download the target file
$target = "http://www.WebbotsSpidersScreenScrapers.com/hello_world.html";
$downloaded_page_array = file($target);

// Echo contents of file
for($xx=0; $xx<count($downloaded_page_array); $xx++)

echo $downloaded_page_array[$xx];
?>

Listing 3-2: Downloading files with file()

The file() function is particularly useful for downloading comma-separated
value (CSV) files, in which each line of text represents a row of data with
columnar formatting (as in an Excel spreadsheet). Loading files line-by-line
into an array, however, is not particularly useful when downloading HTML
files because the data in a web page is not defined by rows or columns; in a
CSV file, however, rows and columns have specific meaning.
Downloading Web Pages 27

webbots2e.book Page 28 Thursday, February 16, 2012 11:59 AM
Introducing PHP/CURL

While PHP is capable when it comes to simple file downloads, most real-life
applications require additional functionality to handle advanced issues such
as form submission, authentication, redirection, and so on. These functions
are difficult to facilitate with PHP’s built-in functions alone. Forunately, every
PHP install should include a library called PHP/CURL, which automatically
takes care of these advanced topics. Most of this book’s examples exploit the
benefit of PHP/CURL’s ability to download files.

The open source cURL project is the product of Swedish developer
Daniel Stenberg and a team of developers. The cURL library is available for
use with nearly any computer language you can think of. When cURL is used
with PHP, it’s known as PHP/CURL.

The name cURL is either a blend of the words client and URL or an
acronym for the words client URL Request Library—you decide. cURL does
everything that PHP’s built-in networking functions do and a lot more.
Appendix A expands on PHP/CURL’s features, but here’s a quick overview
of the things PHP/CURL can do for you, a webbot developer.

Multiple Transfer Protocols
Unlike the built-in PHP network functions, PHP/CURL supports multiple
transfer protocols, including FTP, FTPS, HTTP, HTTPS, Gopher, Telnet, and
LDAP. Of these protocols, the most important is probably HTTPS, which
allows webbots to download from encrypted websites that employ the Secure
Sockets Layer (SSL) protocol.

Form Submission
PHP/CURL provides easy ways for a webbot to emulate browser form sub-
mission to a server. PHP/CURL supports all of the standard methods, or
form submission protocols, as you’ll learn in Chapter 6.

Basic Authentication
PHP/CURL allows webbots to enter password-protected websites that use
basic authentication. You’ve encountered authentication if you’ve seen
this familiar gray box, shown in Figure 3-5, asking for your username and
password. PHP/CURL makes it easy to write webbots that enter and use
password-protected websites.

Figure 3-5: A basic authentication prompt
28 Chapter 3

webbots2e.book Page 29 Thursday, February 16, 2012 11:59 AM
Cookies

Without PHP/CURL, it is difficult for webbots to read and write cookies, those
small bits of data that websites use to create session variables that track your
movement. Websites also use cookies to manage shopping carts and authen-
ticate users. PHP/CURL makes it easy for your webbot to interpret the cookies
that webservers send it; it also simplifies the process of showing webservers
all the cookies your webbot has written. Chapters 20 and 21 have much more
to say on the subject of webbots and cookies.

Redirection

Redirection occurs when a web browser looks for a file in one place, but
the server tells it that the file has moved and that it should download it
from another location. For example, the website www.company.com may use
redirection to force browsers to go to www.company.com/spring_sale when a
seasonal promotion is in place. Browsers handle redirections automatically,
and PHP/CURL allows webbots to have the same functionality.

Agent Name Spoofing

Every time a webserver receives a file request, it stores the requesting agent’s
name in a log file called an access log file. This log file stores the time of access,
the IP address of the requester, and the agent name, which identifies the type of
program that requested the file. Generally, agent names identify the browser
that the web surfer was using to view the website.

Some agent names that a server log file may record are shown in List-
ing 3-3. The first four names are browsers; the last is the Google spider.

Mozilla/5.0 (Windows NT 6.1;) Gecko/20100921 Firefox/4.0b7pre
Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1;)
Mozilla/5.0 (Windows NT 5.1) AppleWebKit/534.25 Chrome/12.0.706.0
Googlebot/2.1 (+http://www.google.com/bot.html)

Listing 3-3: Agent names as seen in a file access log3

A webbot using PHP/CURL can assume any appropriate (or inappro-
priate) agent name. For example, sometimes it is advantageous to identify
your webbots, as Google does. Other times, it is better to make your webbot
look like a browser. If you write webbots that use the LIB_http library (described
later), your webbot’s agent name will be Test Webbot. If you download a file
from a webserver with PHP’s fopen() or file() functions, your agent name will
be the version of PHP installed on your computer.

3 A more complete list of known user agent names is found at http://www.useragentstring.com/
pages/useragentstring.php.
Downloading Web Pages 29

webbots2e.book Page 30 Thursday, February 16, 2012 11:59 AM
Referer Management

PHP/CURL allows webbot developers to change the referer, which is the ref-
erence that servers use to detect which link the web surfer clicked. Some-
times webservers use the referer to verify that file requests are coming from
the correct place. For example, a website might enforce a rule that prevents
downloading of images unless the referring web page is also on the same
webserver. This prohibits people from bandwidth stealing, or writing web pages
using images on someone else’s server. PHP/CURL allows a webbot to set
the referer to an arbitrary value.

Socket Management

PHP/CURL also gives webbots the ability to recognize when a webserver isn’t
going to respond to a file request. This ability is vital because, without it, your
webbot might hang (forever) waiting for a server response that will never
happen. With PHP/CURL, you can specify how long a webbot will wait for
a response from a server before it gives up and moves on.

Installing PHP/CURL

Since PHP/CURL is tightly integrated with PHP, installation should be
unnecessary, or at worst, easy. You probably already have PHP/CURL on
your computer; you just need to enable it in php.ini, the PHP configuration
file. If you’re using Linux, FreeBSD, OS X, or another Unix-based operating
system, you may have to recompile your copy of Apache/PHP to enjoy the
benefits of PHP/CURL. Installing PHP/CURL is similar to installing any
other PHP library. If you need help, you should reference the PHP website
(http://www.php.net) for the instructions for your particular operating
system and PHP version.

LIB_http

Since PHP/CURL is very flexible and has many configurations, it is often
handy to use it within a wrapper function, which simplifies the complexities of
a code library into something easier to understand. For your convenience,
this book uses a library called LIB_http, which provides wrapper functions
to the PHP/CURL features you’ll use most. The remainder of this chapter
describes the basic functions of the LIB_http library.

LIB_http is a collection of PHP/CURL routines that simplify downloading
files. It contains defaults and abstractions that facilitate downloading files,
managing cookies, and completing online forms. The name of the library refers
to the HTTP protocol used by the library. Some of the reasons for using this
library will not be evident until we cover its more advanced features. Even
simple file downloads, however, are made easier and more robust with LIB_http
because of PHP/CURL. The most recent version of LIB_http is available at
this book’s website.
30 Chapter 3

webbots2e.book Page 31 Thursday, February 16, 2012 11:59 AM
Familiarizing Yourself with the Default Values

To simplify its use, LIB_http sets a series of default conditions for you,
as described below:

 Your webbot’s agent name is Test Webbot.

 Your webbot will time out if a file transfer doesn’t complete within
25 seconds.

 Your webbot will store cookies in the file c:\cookie.txt.

 Your webbot will automatically follow a maximum of four redirections,
as directed by servers in HTTP headers.

 Your webbot will, if asked, tell the remote server that you do not have a
local authentication certificate. (This is only important if you access a
website employing SSL encryption, which is used to protect confidential
information on e-commerce websites.)

These defaults are set at the beginning of the file. Feel free to change
any of these settings to meet your specific needs.

Using LIB_http

The LIB_http library provides a set of wrapper functions that simplify compli-
cated PHP/CURL interfaces. Each of these interfaces calls a common routine,
http(), which performs the specified task, using the values passed to it by the
wrapper interfaces. All functions in LIB_http share a similar format: A target
and referring URL are passed, and an array is returned, containing the
contents of the requested file, transfer status, and error conditions.

While LIB_http has many functions, we’ll restrict our discussion to simply
fetching files from the Internet using HTTP. The remaining features are
described as needed throughout the book.

http_get()

The function http_get() downloads files with the GET method; it has many
advantages over PHP’s built-in functions for downloading files from the Inter-
net. Not only is the interface simple, but this function offers all the previously
described advantages of using PHP/CURL. The script in Listing 3-4 shows
how files are downloaded with http_get().

Usage: http_get()
array http_get (string target_url, string referring_url)

Listing 3-4: Using http_get()

These are the inputs for the script in Listing 3-4:

target_url is the fully formed URL of the desired file.

referring_url is the fully formed URL of the referer.
Downloading Web Pages 31

webbots2e.book Page 32 Thursday, February 16, 2012 11:59 AM
These are the outputs for the script in Listing 3-4:

$array['FILE'] contains the contents of the requested file.

$array['STATUS'] contains status information regarding the file transfer.

$array['ERROR'] contains a textual description of any errors.

http_get_withheader()

When a web agent requests a file from the Web, the server returns the file
contents, as discussed in the previous section, along with the HTTP header,
which describes various properties related to a web page. Browsers and
webbots rely on the HTTP header to determine what to do with the contents
of the downloaded file.

The data that is included in the HTTP header varies from application
to application, but it may define cookies, the size of the downloaded file,
redirections, encryption details, or authentication directives. Since the
information in the HTTP header is critical to properly using a network file,
LIB_http configures PHP/CURL to automatically handle the more com-
mon header directives. Listing 3-5 shows how this function is used.

Usage: http_get_withheader()
array http_get_withheader (string target_url, string referring_url)

Listing 3-5: Using http_get()

These are the inputs for the script in Listing 3-5:

target_url is the fully formed URL of the desired file.

referring_url is the fully formed URL of the referer.

These are the outputs for the script in Listing 3-5:

$array['FILE'] contains the contents of the requested file, including the
HTTP header.

$array['STATUS'] contains status information about the file transfer.

$array['ERROR'] contains a textual description of any errors.

The example in Listing 3-6 uses the http_get_withheader() function to
download a file and display the contents of the returned array.

Include http library
include("LIB_http.php");

Define the target and referer web pages
$target = "http://www.schrenk.com/publications.php";
$ref = "http://www.schrenk.com";

Request the header
$return_array = http_get_withheader($target, $ref);

Display the header
echo "FILE CONTENTS \n";
var_dump($return_array['FILE']);
32 Chapter 3

webbots2e.book Page 33 Thursday, February 16, 2012 11:59 AM
echo "ERRORS \n";
var_dump($return_array['ERROR']);

echo "STATUS \n";
var_dump($return_array['STATUS']);

Listing 3-6: Using http_get_withheader()

The script in Listing 3-6 downloads the page and displays the requested
page, any errors, and a variety of status information related to the fetch
and download.

Listing 3-7 shows what is produced when the script in Listing 3-6 is exe-
cuted, with the array that includes the page header, error conditions, and
status. Notice that the contents of the returned file are limited to only the
HTTP header, because we requested only the header and not the entire
page. Also, notice that the first line in a HTTP header is the HTTP code,
which indicates the status of the request. An HTTP code of 200 tells us that
the request was successful. The HTTP code also appears in the status array
element.4

FILE CONTENTS
string(215) "HTTP/1.1 200 OK
Date: Sat, 08 Oct 2011 16:38:51 GMT
Server: Apache/2.0.53 (FreeBSD) mod_ssl/2.0.53 OpenSSL/0.9.7g PHP/5
X-Powered-By: PHP/5
Content-Type: text/html; charset=ISO-8859-1

"
ERRORS
string(0) ""

STATUS
array(20) {
 ["url"]=>
 string(39) "http://www.schrenk.com/publications.php"
 ["content_type"]=>
 string(29) "text/html; charset=ISO-8859-1"
 ["http_code"]=>
 int(200)
 ["header_size"]=>
 int(215)
 ["request_size"]=>
 int(200)
 ["filetime"]=>
 int(-1)
 ["ssl_verify_result"]=>
 int(0)
 ["redirect_count"]=>
 int(0)

4 A complete list of HTTP codes can be found in Appendix B.
Downloading Web Pages 33

webbots2e.book Page 34 Thursday, February 16, 2012 11:59 AM
 ["total_time"]=>
 float(0.683)
 ["namelookup_time"]=>
 float(0.005)
 ["connect_time"]=>
 float(0.101)
 ["pretransfer_time"]=>
 float(0.101)
 ["size_upload"]=>
 float(0)
 ["size_download"]=>
 float(0)
 ["speed_download"]=>
 float(0)
 ["speed_upload"]=>
 float(0)
 ["download_content_length"]=>
 float(0)
 ["upload_content_length"]=>
 float(0)
 ["starttransfer_time"]=>
 float(0.683)
 ["redirect_time"]=>
 float(0)
}

Listing 3-7: File contents, errors, and the download status array returned by LIB_http

The information returned in $array['STATUS'] is extraordinarily useful for
learning how the fetch was conducted. Included in this array are values
for download speed, access times, and file sizes—all valuable when writing
diagnostic webbots that monitor the performance of a website.

Learning More About HTTP Headers
When a Content-Type line appears in an HTTP header, it defines the MIME,
or the media type of file sent from the server. The MIME type tells the web
agent what to do with the file. For example, the Content-Type in the previous
example was text/html, which indicates that the file is a web page. Knowing if
the file they just downloaded was an image or an HTML file helps browsers
know if they should display the file as text or render an image. For example,
the HTTP header information for a JPEG image is shown in Listing 3-8.

HTTP/1.1 200 OK
Date: Wed, 23 Mar 2011 00:06:13 GMT
Server: Apache/1.3.12 (Unix) mod_throttle/3.1.2 tomcat/1.0 PHP/5
Last-Modified: Wed, 23 Jul 2008 18:03:29 GMT
ETag: "74db-9063-3d3eebf1"
Accept-Ranges: bytes
Content-Length: 36963
Content-Type: image/jpeg

Listing 3-8: An HTTP header for an image file request
34 Chapter 3

webbots2e.book Page 35 Thursday, February 16, 2012 11:59 AM
Examining LIB_http’s Source Code

Most webbots in this book will use the library LIB_http to download pages
from the Internet. If you plan to explore any of the webbot examples that
appear later in this book, you should obtain a copy of this library; the latest
version is available for download at this book’s website. We’ll explore some of
the defaults and functions of LIB_http here.

LIB_http Defaults

At the very beginning of the library is a set of defaults, as shown in Listing 3-9.

define("WEBBOT_NAME", "Test Webbot"); # How your webbot will appear in server logs
define("CURL_TIMEOUT", 25); # Time (seconds) to wait for network response
define("COOKIE_FILE", "c:\cookie.txt"); # Location of cookie file

Listing 3-9: LIB_http defaults

LIB_http Functions

The functions shown in Listing 3-10 are available within LIB_http. All of
these functions return the array defined earlier, containing downloaded
files, error messages, and the status of the file transfer.

http_get($target, $ref) # Simple get request (w/o header)
http_get_withheader($target, $ref) # Simple get request (w/ header)
http_get_form($target, $ref, $data_array) # Form (method ="GET", w/o header)
http_get_form_withheader($target, $ref, $data_array) # Form (method ="GET", w/ header)
http_post_form($target, $ref, $data_array) # Form (method ="POST", w/o header)
http_post_withheader($target, $ref, $data_array) # Form (method ="POST", w/ header)
http_header($target, $ref) # Only returns header

Listing 3-10: LIB_http functions

Final Thoughts

Some of these functions use an additional input parameter, $data_array,
when form data is passed from the webbot to the webserver. These functions
are listed below:

 http_get_form()

 http_get_form_withheader()

 http_post_form()

 http_post_form_withheader()

If you don’t understand what all these functions do now, don’t worry.
Their use will become familiar to you as you go through the examples that
appear later in this book. Now might be a good time to thumb through
Appendix A, which details the features of PHP/CURL that webbot devel-
opers are most apt to need.
Downloading Web Pages 35

webbots2e.book Page 36 Thursday, February 16, 2012 11:59 AM

webbots2e.book Page 37 Thursday, February 16, 2012 11:59 AM
B A S I C P A R S I N G T E C H N I Q U E S

Parsing is the process of separating what’s
useful from what is not. For webbot devel-

opers, parsing involves detecting, extracting,
and storing items like images, key words, prices,

and other information of interest from the HTML and
other scripts that make up web pages. For example, if
you are writing a spider that follows links on web pages, you will want to sepa-
rate the links from the rest of the HTML. Similarly, if you write a webbot to
download all the images from a web page, you will have to write parsing rou-
tines that identify the locations of all the references to image files.

Content Is Mixed with Markup

Web pages pose a unique challenge because they mix content with the
HTML tags that format the content. Also, there are a seemingly endless
number of ways to format pages with HTML. Therefore, it is possible to
create web pages that look identical but have entirely different HTML files,

webbots2e.book Page 38 Thursday, February 16, 2012 11:59 AM
and the parsing routine that works for one web page might not work on
another. Issues like this make it difficult to write universal parsing scripts
that work in a wide variety of situations.

Parsing Poorly Written HTML

Another problem you’ll encounter when parsing web pages is poorly written
HTML. A large amount of HTML is machine generated and shows little
regard for human readability. Handwritten HTML is often no better, as it
often violates accepted standards by ignoring closing tags or by misusing
quotes. Browsers may correctly render web pages that have substandard
HTML, but your webbot may have trouble parsing them.

Fortunately, a software library known as HTML Tidy1 will clean up poorly
written web pages. PHP includes HTML Tidy in its standard distributions, so
you should have no problem getting it running on your computer. Installing
HTML Tidy (also known as just Tidy) should be similar to installing PHP/CURL.
Complete installation instructions are available at the PHP website.2

The parse functions (described next) rely on Tidy to put unparsed
source code into a known state, with known delimiters and closing tags of
known case.

NOTE If you do not have HTML Tidy installed on your computer, the parsing described in
this book may not work correctly.

Standard Parse Routines

Parsing is largely a matter of manipulating strings. Since there are so many
string manipulation methods in PHP, it can be daunting for the beginner to
decide which approach to take when developing a parsing strategy for a spe-
cific web page. I will show you how nearly any web page can be parsed with
amazingly few methods—and by limiting yourself to a handful of methods,
the entire parsing-development process goes more smoothly. For this reason,
I simplified parsing by identifying a few useful functions and placing them
into a library called LIB_parse. Primarily, LIB_parse contains wrapper functions
that provide simple interfaces to otherwise complicated routines. These func-
tions (or a combination of them) provide everything needed for 99 percent
of your parsing tasks.

Whether or not you use the functions in LIB_parse, I urge you to stan-
dardize your parsing routines. Standardized parse functions make your scripts
easier to read and faster to write. Perhaps just as importantly, when you limit
your parsing options to a few simple solutions, you’re forced to consider sim-
pler approaches to parsing problems.

To use the examples in this book, download the latest version of LIB_parse
from this book’s website, http://www.WebbotsSpidersScreenScrapers.com.

1 See http://tidy.sourceforge.net.
2 See http://www.php.net.
38 Chapter 4

webbots2e.book Page 39 Thursday, February 16, 2012 11:59 AM
Using LIB_parse

One thing you may notice about LIB_parse is a lack of regular expressions, even
though regular expressions are a mainstay for parsing text. Regular expres-
sions can be difficult to read and understand, especially for beginners. The
built-in PHP string-manipulation functions are easier to understand than regu-
lar expressions. That doesn’t mean we won’t discuss regular expressions. Chap-
ter 5 talks about regular expressions and their utility in webbot development.

What follows is a description of the functions in LIB_parse and the pars-
ing problems they solve. These functions are also described completely
within the comments of LIB_parse.

Splitting a String at a Delimiter: split_string()
The simplest parsing function returns a string that contains everything
before or after a delimiter term. This simple function can also be used to
return the text between two terms. The function provided for that task is
split_string(), shown in Listing 4-1.

/*
string split_string (string unparsed, string delimiter, BEFORE/AFTER, INCL/EXCL)
Where
 unparsed is the string to parse
 delimiter defines boundary between substring you want and substring you don't want
 BEFORE indicates that you want what is before the delimiter
 AFTER indicates that you want what is after the delimiter
 INCL indicates that you want to include the delimiter in the parsed text
 EXCL indicates that you don't want to include the delimiter in the parsed text
*/

Listing 4-1: Using split_string()

Simply pass split_string() the string you want to split, the delimiter where
you want the split to occur, whether you want the portion of the string that is
before or after the delimiter, and whether or not you want the delimiter to be
included in the returned string. Listing 4-2 shows examples of split_string()
in action.

include("LIB_parse.php");
$string = "The quick brown fox";

Parse what's before the delimiter, including the delimiter
$parsed_text = split_string($string, "quick", BEFORE, INCL);
// $parsed_text = "The quick"

Parse what's after the delimiter, but don't include the delimiter
$parsed_text = split_string($string, "quick", AFTER, EXCL);
// $parsed_text = "brown fox"

Listing 4-2: Examples of split_string() usage
Basic Pars ing Techniques 39

webbots2e.book Page 40 Thursday, February 16, 2012 11:59 AM
Parsing Text Between Delimiters: return_between()
Sometimes it is useful to parse text between two delimiters. For example, to
parse a web page’s title, you’d want to parse the text between the <title> and
</title> tags. Your webbots can use the return_between() function in LIB_parse
to do this.

The return_between() function uses a start delimiter and an end delimiter
to define a particular part of a string, as shown in Listing 4-3.

/*
string return_between (string unparsed, string start, string end, INCL/EXCL)
Where
 unparsed is the string to parse
 start identifies the starting delimiter
 end identifies the ending delimiter
 INCL indicates that you want to include the delimiters in the parsed text
 EXCL indicates that you don't want to include delimiters in the parsed
text
*/

Listing 4-3: Using return_between()

The script in Listing 4-4 uses return_between() to parse the HTML title of
a web page.

Include libraries
include("LIB_parse.php");
include("LIB_http.php");

Download a web page
$web_page = http_get($target="http://www.nostarch.com", $referer="");

Parse the title of the web page, inclusive of the title tags
$title_incl = return_between($web_page['FILE'], "<title>", "</title>", INCL);

Parse the title of the web page, exclusive of the title tags
$title_excl = return_between($web_page['FILE'], "<title>", "</title>", EXCL);

Display the parsed text
echo "title_incl = ".$title_incl;
echo "\n";
echo "title_excl = ".$title_excl;

Listing 4-4: Using return_between() to find the title of a web page

When Listing 4-4 is run in a shell, the results should look like Figure 4-1.

title_incl = <title>No Starch Press</title>
title_excl = No Starch Press

Figure 4-1: Examples of using return_between(), with and without returned delimiters
40 Chapter 4

webbots2e.book Page 41 Thursday, February 16, 2012 11:59 AM
Parsing a Data Set into an Array: parse_array()
Sometimes the things your webbot needs to parse, like links, appear more
than once in a web page. In these cases, a single parsed result isn’t as useful
as an array of results. Such a parsed array could contain all the links, meta
tags, or references to images in a web page. The parse_array() function does
essentially the same thing as the return_between() function, but it returns an
array of all items that match the parse description or all occurrences of data
between two delimiting strings. This function makes it extremely easy, for
example, to extract all the links or images from a web page.

The parse_array() function , shown in Listing 4-5, is most useful when
your webbots need to parse the content of reoccurring tags. For example,
returning an array of everything between every occurrence of
returns information about all the images in a web page. Alternately, return-
ing an array of everything between <script and </script> will parse all inline
JavaScript. Notice that in each of these cases, the opening tag is not completely
defined. This is because <img and <script are sufficient to describe the tag
without regard to additional tag attributes (which we don’t need to define in
the parse) that may be present in the downloaded page.

/*
array return_array (string unparsed, string beg, string end)
Where
 unparsed is the string to parse
 beg is a reoccurring beginning delimiter
 end is a reoccurring ending delimiter
 array contains every occurrence of what's found between beginning and end.
*/

Listing 4-5: Using parse_array()

This simple parse is also useful for parsing tables, meta tags, formatted
text, video, or any other parts of web pages defined between reoccurring
HTML tags.

The script in Listing 4-6 uses the parse_array() function to parse and
display all the meta tags on the FBI website. Meta tags are primarily used to
define a web page’s content to a search engine.

This code could be incorporated with the project in Chapter 11 to deter-
mine how adjustments in your meta tags affect your ranking in search engines.
To parse all the meta tags, the function must be told to return all instances
that occur between <meta and >. Again, notice that the script only uses
enough of each delimiter to uniquely identify where a meta tag starts and
ends. Remember that the definitions you apply for start and stop variables
must apply for each data set you want to parse.

include("LIB_parse.php"); # Include parse library
include("LIB_http.php"); # Include PHP/CURL library
Basic Pars ing Techniques 41

webbots2e.book Page 42 Thursday, February 16, 2012 11:59 AM
$web_page = http_get($target="http://www.fbi.gov", $referer="");
$meta_tag_array = parse_array($web_page['FILE'], "<meta", ">");

for($xx=0; $xx<count($meta_tag_array); $xx++)
 echo $meta_tag_array[$xx]."\n";

Listing 4-6: Using parse_array() to parse all the meta tags from http://www.fbi.gov

When the script in Listing 4-6 runs, the result should look like Figure 4-2.

<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<meta name="generator" content="Plone - http://plone.org" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="modificationDate" content="2010/10/07" />
<meta name="creationDate" content="2007/04/02" />
<meta name="publicationDate" content="2010/02/01" />
<meta name="expirationDate" />
<meta name="portalType" content="Document" />
<meta content="" name="location" />
<meta content="text/html" name="contentType" />
<meta property="og:title" content="Homepage" />
<meta property="og:type" content="website" />
<meta property="og:url" content="http://www.fbi.gov/main-page" />
<meta property="og:image" content="http://www.fbi.gov/fbi_seal_mini.png" />
<meta property="og:site_name" content="FBI" />
<meta property="og:description" content="" />
<meta http-equiv="imagetoolbar" content="no" />

Figure 4-2: Using parse_array() to parse the meta tags from the FBI website

Parsing Attribute Values: get_attribute()
Once your webbot has parsed tags from a web page, it is often important to
parse attribute values from those tags. For example, if you’re writing a spider
that harvests links from web pages, you will need to parse all the link tags, but
you will also need to parse the specific href attribute of the link tag. For these
reasons, LIB_parse includes the get_attribute() function.

The get_attribute() function provides an interface that allows webbot
developers to parse specific attribute values from HTML tags. Its usage is
shown in Listing 4-7.

/*
string get_attribute (string tag, string attribute)
Where
 tag is the HTML tag that contains the attribute you want to parse
 attribute is the name of the specific attribute in the HTML tag
*/

Listing 4-7: Using get_attribute()
42 Chapter 4

webbots2e.book Page 43 Thursday, February 16, 2012 11:59 AM
This parse is particularly useful when you need to get a specific attribute
from a previously parsed array of tags. For example, Listing 4-8 shows how to
parse all the images from http://www.schrenk.com, using get_attribute() to get
the src attribute from an array of tags.

include("LIB_parse.php"); # Include parse library
include("LIB_http.php"); # Include PHP/CURL library

// Download the web page
$web_page = http_get($target="http://www.schrenk.com", $referer="");

// Parse the image tags
$meta_tag_array = parse_array($web_page['FILE'], "<img", ">");

// Echo the image source attribute from each image tag
for($xx=0; $xx<count($meta_tag_array); $xx++)
 {
 $name = get_attribute($meta_tag_array[$xx], $attribute="src");
 echo $name ."\n";
 }

Listing 4-8: Parsing the src attributes from image tags

Figure 4-3 shows the output of Listing 4-8.

f_img/spacer.gif
f_img/spacer.gif
f_img/php_arch.jpg
f_img/schrenk_defcon_15.jpg
f_img/italian_bot.gif
f_img/spacer.gif
f_img/webbots_spiders_and_screen_scrapers.jpg
f_img/strat.gif
f_img/webbots.jpg
f_img/contact.jpg
f_img/journalist.jpg
f_img/brx2008.png

Figure 4-3: Results of running Listing 4-8, showing parsed image names

Removing Unwanted Text: remove()
Up to this point, parsing meant extracting desired text from a larger string.
Sometimes, however, parsing means manipulating text. For example, since
webbots usually lack JavaScript interpreters, it’s often best to delete Java-
Script from downloaded files. In other cases, your webbots may need to
remove all images or email addresses from a web page. For these reasons,
LIB_parse includes the remove() function. The remove() function is an easy-to-
use interface for removing unwanted text from a web page. Its usage is shown
in Listing 4-9.
Basic Pars ing Techniques 43

webbots2e.book Page 44 Thursday, February 16, 2012 11:59 AM
/*
string remove (string web page, string open_tag, string close_tag)
Where
 web_page is the contents of the web page you want to affect
 open_tag defines the beginning of the text that you want to remove
 close_tag defines the end of the text you want to remove
*/

Listing 4-9: Using remove()

By adjusting the input parameters, the remove() function can remove a
variety of text from web pages, as shown in Listing 4-10.

$uncommented_page = remove($web_page, "<!--", "-->");
$links_removed = remove($web_page, "<a", "");
$images_removed = remove($web_page, "<img", " >");
$javascript_removed = remove($web_page, "<script", "</script>");

Listing 4-10: Using remove()

Useful PHP Functions

In addition to the parsing functions included in LIB_parse, described earlier,
PHP contains a multitude of built-in parsing functions. The following is a
brief sample of the most valuable built-in PHP parsing functions, along with
examples of how they are used.

Detecting Whether a String Is Within Another String
You can use the stristr() function to tell your webbot whether or not a string
contains another string. The PHP community commonly uses the term hay-
stack to refer to the entire unparsed text and the term needle to refer to the
substring within the larger string. The function stristr() looks for an occur-
rence of needle in haystack. If found, stristr() returns a substring of haystack
from the occurrence of needle to the end of the larger string. In normal use,
you’re not always concerned about the actual returned text. Generally, the
fact that something was returned is used as an indication that you found the
existence of needle in haystack.

The stristr() function is probably most handy if you want to detect
whether a specific word is mentioned in a web page. For example, if you
want to know whether a web page mentions dogs, you can execute the script
shown in Listing 4-11.

if(stristr($web_page, "dogs"))
 echo "This is a web page that mentions dogs.";
else
 echo "This web page does not mention dogs";

Listing 4-11: Using stristr() to see if a string contains another string
44 Chapter 4

webbots2e.book Page 45 Thursday, February 16, 2012 11:59 AM
In Listing 4-11, we’re not interested so much in what the stristr() func-
tion returns but whether it returns anything at all. If something is returned,
we know that the web page contained the word dogs.

The stristr() function is not case sensitive. If you need a case-sensitive
version of stristr(), use strstr().

Replacing a Portion of a String with Another String
The PHP built-in function str_replace() puts a new string in place of all
occurrences of a substring within a string, as shown in Listing 4-12.

$org_string = "I wish I had a Cat.";
$result_string = str_replace("Cat", "Dog", $org_string);
$result_string contains "I wish I had a Dog."

Listing 4-12: Using str_replace() to replace all occurrences of Cat with Dog

The str_repalce() function is also useful when a webbot needs to
remove a character or set of characters from a string. You do this by instruct-
ing str_replace() to replace text with a null string, as shown in Listing 4-13.

$result = str_replace("$","","$100.00"); // Remove the dollar sign
$result contains 100.00

Listing 4-13: Using str_replace() to remove leading dollar signs

Parsing Unformatted Text
The script in Listing 4-14 uses a variety of built-in functions, along with a few
functions from LIB_http and LIB_parse, to create a string that contains unfor-
matted text from a website. The result is the contents of the web page with-
out any HTML formatting.

include("LIB_parse.php"); # Include parse library
include("LIB_http.php"); # Include PHP/CURL library

// Download the page
$web_page = http_get($target="http://www.cnn.com", $referer="");

// Remove all JavaScript
$noformat = remove($web_page['FILE'], "<script", "</script>");

// Strip out all HTML formatting
$unformatted = strip_tags($only_text);

// Remove unwanted white space
$noformat = str_replace("\t", "", $noformat); // Remove tabs
$noformat = str_replace(" ", "", $noformat); // Remove non-breaking spaces
$noformat = str_replace("\n", "", $noformat); // Remove line feeds
echo $noformat;

Listing 4-14: Parsing the content from the HTML used on http://www.cnn.com
Basic Pars ing Techniques 45

webbots2e.book Page 46 Thursday, February 16, 2012 11:59 AM
Measuring the Similarity of Strings
Sometimes it is convenient to calculate the similarity of two strings without
necessarily parsing them. PHP’s similar_text() function returns a value that
represents the percentage of similarity between two strings. Listing 4-15
shows the syntax of similar_text().

$similarity_percentage = similar_text($string1, $string2);

Listing 4-15: Example of using PHP’s similar_text() function

You may use similar_text() to determine if a new version of a web page is
significantly different from a cached version.

Final Thoughts

As demonstrated, a wide variety of parsing tasks can be performed with the
standardized parsing routines in LIB_parse, along with a few of PHP’s built-in
functions. Here are a few more suggestions that may help you in your parsing
projects.

NOTE You’ll get plenty of parsing experience as you explore the projects in this book. The
projects also introduce a few advanced parsing techniques. In Chapter 8, we’ll cover
advanced methods for parsing data in tables. In Chapter 11, you’ll learn about the
insertion parse, which makes it easier to parse and debug difficult-to-parse web pages.

Don’t Trust a Poorly Coded Web Page
While the scripts in LIB_parse attempt to handle most situations, there is no
guarantee that you will be able to parse poorly coded or nonsensical web
pages. Even the use of Tidy will not always provide proper results. For exam-
ple, code like

may drive your parsing routines crazy. If you’re having trouble debugging a
parsing routine, check to see if the page has errors. If you don’t check for
errors, you may waste many hours trying to parse unparseable web pages.

Parse in Small Steps
When you’re writing a script that depends on several levels of parsing, avoid
the temptation to write your parsing script in one pass. Since succeeding sec-
tions of your code will depend on earlier parses, write and debug your scripts
one parse at a time.
46 Chapter 4

webbots2e.book Page 47 Thursday, February 16, 2012 11:59 AM
Don’t Render Parsed Text While Debugging
If you’re viewing the results of your parse in a browser, remember that the
browser will attempt to render your output as a web page. If the results of
your parse contain tags, display your parses within <xmp> and </xmp> tags.
These tags will tell the browser not to render the results of your parse as
HTML. Failure to analyze the unformatted results of your parse may cause
you to miss things that are inside tags.3

Use Regular Expressions Sparingly
Regular expressions are a parsing language, and most modern programming
languages support aspects of regular expressions. In the right hands, regular
expressions are extraordinarily powerful tools for parsing and substituting
text. However, they are also famous for sharp learning curves and cryptic syn-
tax. Additionally, regular expressions are excellent for extracting patterns of
characters but are less effective in providing context for those patterns. For
example, regular expressions are useful for extracting prices from a website,
but regular expressions are typically less capable at associating those prices
with products.

If there is anything controversial in this book, it may be my opinion on
the benefits of regular expressions to webbot developers. While I’d never
suggest that regular expressions don’t have a place, I do feel that for the pur-
poses of webbot development, they should be used sparingly. I avoid regular
expressions whenever possible, limiting their use to instances where there
are few alternatives. In those cases, I use wrapper functions to take advantage
of the functionality of regular expressions while shielding the developer
from their complexities.

My reasons for suggesting a limited use of regular expressions are more
fully explained in the next chapter.

3 Chapter 3 describes additional methods for viewing text downloaded from websites.
Basic Pars ing Techniques 47

webbots2e.book Page 48 Thursday, February 16, 2012 11:59 AM

webbots2e.book Page 49 Thursday, February 16, 2012 11:59 AM
A D V A N C E D P A R S I N G W I T H
R E G U L A R E X P R E S S I O N S

Now that you’ve mastered the parsing tech-
niques of the previous chapter, it’s time to

look at advanced parsing with regular expressions,
also known as regex. Regular expressions are an extra-
ordinarily powerful and flexible tool. At first glance,
they sound like the only tool you’ll ever need to parse web pages. But on
further examination, you’ll discover that regular expressions shine in some
situations—and are either overkill or simply not appropriate in others.

Regular expressions are not the easiest thing to learn, because a fair
amount of parallel information is required to get even the simplest examples
working. You’ll need to first understand the concept and have some idea of
how patterns are used, plus you need to know how your programming lan-
guage implements regular expressions. Because of this, we’re going to start
with a short discussion of how PHP implements regular expressions. Then
we’ll explore the true power of patterns, followed by a practical example of
regular expressions in action. Finally, the chapter concludes with an honest
discussion of the strengths and weaknesses of regular expressions within the
context of webbot development.

webbots2e.book Page 50 Thursday, February 16, 2012 11:59 AM
Pattern Matching, the Key to Regular Expressions

All regular expression functions are based on patterns—or abstractions and
groupings that symbolically define text you want to identify and manipulate
within a larger set of text. These patterns are so key to the process that the
term regular expressions technically referrers only to these patterns—but com-
monly, the term is used to refer to anything dealing with the subject. All of
the functions that operate on regular expressions use the same pattern-
matching rules. So you may use the same patterns to parse, split, or make
string substitutions.

PHP Regular Expression Types

There are two sets of PHP functions that facilitate regular expressions.
The preferred set is the PCRE (Perl-Compatible Regular Expressions) library. You
can identify these functions because, in PHP, they start with the prefix preg.
Examples of PCRE regular expression functions are preg_replace(), preg_split(),
preg_match(), and preg_match_all(). The other regular expression family avail-
able within PHP is POSIX (Extended Regular Expressions). These functions begin
with the prefix ereg and are included in PHP primarily for backward compat-
ibility. The ereg instructions have been deprecated since PHP 5.3.0 and are
mentioned here only because you’ll be exposed to them as you explore PHP
regular expression instructions online. We will describe only the PCRE regu-
lar expressions in this chapter, and for simplicity, we will also limit our dis-
cussion to the most frequently used functions within PHP’s implementation
of PCRE.1

PHP Regular Expressions Functions
The most common uses for regular expressions are these:

 Make string substitutions within a subject string.

 Detect if a substring exists within a larger subject string.

 Capture (parse) all matches of the pattern within the subject.

 Split strings at a given location.

Next we’ll discuss the functions that use the same simple pattern to per-
form all of these tasks.

preg_replace(pattern, replacement, subject)

The function preg_replace()allows you to replace part of a string with another
piece of text where the pattern is found within the original (subject) string.
In Listing 5-1, the replacement text new is substituted for every occurrence of
the pattern /"test"/.

1 The entire PHP PCRE manual is available at http://us.php.net/manual/en/ref.pcre.php.
50 Chapter 5

webbots2e.book Page 51 Thursday, February 16, 2012 11:59 AM
// USAGE: preg_replace(pattern, replacement, subject);
// If the pattern is found, the subject
// "This is the test string"
// becomes
// "This is the new string"
$resulting_string = preg_replace("/test/", "new", "This is the test string");

Listing 5-1: Using simple regular expressions to pattern-match and replace

Note the pattern that abstracts our target string—the pattern /"test"/ is
not a string itself but rather a pattern that represents criteria that match the
word test. If the pattern had occurred more than once, each occurrence of
the pattern string would have been replaced with new.

preg_match(pattern, subject)

You can use the preg_match() function to determine if the defined pattern
string exists in the subject string. For example, Listing 5-2 shows how
preg_match() is used to detect whether the pattern /"test"/ occurs in the
subject string.

// USAGE: preg_match(pattern, subject);
// $result = 1 (true) if pattern found in subject.
// $result = 0 (false) if pattern is not found in subject.
$result = preg_match("/test/", "This is the test string");

Listing 5-2: Using regular expressions to detect the occurrence of one string in another

This functionality is expanded with the preg_match_all() function,
described next.

preg_match_all(pattern, subject, result_array)

The difference between preg_match() and preg_match_all() is that in addition to
returning a true or false if the pattern is found in the subject, preg_match_all()
also returns an array including all the instances within the subject that match
the pattern. So in Listing 5-3, the returned $result_array contains two array
elements, each containing the word test, because that word matched the pat-
tern twice in the subject.

// USAGE: preg_match_all(pattern, subject, result_array);
// $result = 1 (true) if pattern found in subject.
// $result = 0 (false) if pattern is not found in subject.
// $result_array = all instances in subject that match the pattern.
$result = preg_match_all("/test/", "This is a test of the test string",
$result_array);

Listing 5-3: Using regular expressions to return occurrences of one string in another
Advanced Pars ing wi th Regu lar Express ions 51

webbots2e.book Page 52 Thursday, February 16, 2012 11:59 AM
While this isn’t particularly useful, this function becomes more interest-
ing when the pattern matches more than one possible result set. For exam-
ple, if the pattern had described an email address, we could have extracted
all the email addresses from a web page. Or, if you were developing a spider,
the pattern could have described hyperlinks and extracted all the links in a
web page. We’ll cover this in detail as we progress.

preg_split(pattern, subject)

Finally, preg_split() facilitates splitting the subject string at the point of the
pattern string. Listing 5-4 shows how this is implemented.

// USAGE: $result_array = preg_split(pattern, subject);
// If the pattern is found in the subject, the subject is split at the pattern
// $result_array[0] = "This is the "
// $result_array[1] = " string"
$result_array = preg_split("/test/", "This is the test string");

Listing 5-4: Using a simple regular expressions pattern to split a string

Resemblance to PHP Built-In Functions
You may have noticed that these regular expression functions bear a resem-
blance to PHP built-in functions or the parsing functions found in LIB_parse.
For example:

 preg_replace() has similarities to PHP built-in function str_replace().

 preg_split() has similarities to PHP built-in function substr().

 preg_match() has similarities to PHP built-in function strstr().

 preg_match_all() has similarities to parse_array()in LIB_parse.2

As you will continue to discover, there are usually multiple ways to
accomplish a single string manipulation, and many of the solutions can
be performed with, or without, using regular expressions.

The second thing to note is that the power of regular expressions is not
found in the functions that operate on patterns but in the patterns them-
selves. So far, you’ve only seen patterns that match a single condition. But
regular expressions are much more useful when they contain complex pat-
terns that match a variety of situations.

Learning Patterns Through Examples

Really good regular expressions—the type used in a production software
environment—can get very long and complicated. Since you’re learning,
we’ll keep our regular expressions simple for now. As such, this chapter is
not meant to be a compete tutorial on regular expressions, but it should be
sufficient to help you grasp the concept so you can do your own experimen-
tation and then learn on your own. Later, you’ll learn how to use your new
skills to do something more applicable to the real world.

2 In fact, as you read in the previous chapter, parse_array() is merely a wrapper for preg_match_all().
52 Chapter 5

webbots2e.book Page 53 Thursday, February 16, 2012 11:59 AM
Parsing Numbers
To get started, you can use regular expressions to easily parse all the num-
bers from a string, as shown in Listing 5-5.

$subject_string = "There are 129 stories about Tim and Tom";
preg_match_all("/\d/", $subject_string , $matches_array);
RESULT: $matches_array = Array ([0] => 1 [1] => 2 [2] => 9)

Listing 5-5: Parsing numbers with regular expressions

In Listing 5-5, the expression \d represents any occurrence of a solitary
number (or digit). Anytime there is a match, an array element is created,
containing that value, in $matches_array. Also, notice that the pattern is
escaped with the \ character. If this had not been done, the pattern would
match on a lowercase d character.

Detecting a Series of Characters
In Listing 5-5, each character was returned in a separate array element, which
typically isn’t very useful. If, instead, you wanted to return every occurrence
of a three-digit number, you could write a regular expression like the one
shown in Listing 5-6.

$subject_string = "There are 129 stories about Tim and another 3129 about Tom";
preg_match_all("/\d\d\d/", $subject_string , $matches_array);
RESULT: $matches_array = Array ([0] => 129 [1] => 312)

Listing 5-6: Parsing a series of characters

Notice that the regular expression in Listing 5-6 only looks for a series of
three numeric characters. So the second numeric value in the subject string
was returned as 312, not the actual value of 3129. If you want to parse all
numbers, regardless of length, you might consider using a regular expres-
sion like the one in Listing 5-7.

$subject_string = "There are 129 stories about Tim and another 3129 about Tom";
preg_match_all("/\d+/", $subject_string , $matches_array);
RESULT: $matches_array = Array ([0] => 129 [1] => 3129)

Listing 5-7: Parsing complete numbers

Notice that the + character used in Listing 5-7 tells the regular expression
engine to keep gathering characters until a nonnumeric character is found.

Matching Alpha Characters
So far, we’ve looked at regular expressions that capture digits, but you can
do the same for alpha characters by substituting the lowercase d with an
uppercase D, as shown in Listing 5-8.
Advanced Pars ing wi th Regu lar Express ions 53

webbots2e.book Page 54 Thursday, February 16, 2012 11:59 AM
$subject_string = "There are 129 stories about Tim and Tom";
preg_match_all("/\b\D\D\D\b/", $subject_string , $matches_array);
RESULT: $matches_array = Array ([0] => are [1] => Tim [2] => and [3] => Tom)

Listing 5-8: Parsing alpha characters

Just like the script in Listing 5-6, which matched any three-digit number,
the script in Listing 5-8 uses the \D pattern to match all three-letter words.
Notice that the other addition to this regular expression is the word boundary
pattern \b. If this was not added to the pattern, the returned array would have
also included partial words, like The in the first word There. Alternatively, you
can specify the number of matches with a number in square brackets, as
shown in Listing 5-9.

$subject_string = "There are 129 stories about Tim and Tom";
preg_match_all("/\b\D{3}\b/", $subject_string , $matches_array);
RESULT: $matches_array = Array ([0] => are [1] => Tim [2] => and [3] => Tom)

Listing 5-9: Parsing alpha characters

Matching on Wildcards
A wildcard, which matches anything, is expressed with the period (.), com-
monly just called a dot. For example, look at the script in Listing 5-10, which
will match on either Tim or Tom because the wildcard takes the place of any
character between a T and an m.

$subject_string = "There are 129 stories about Tim and Tom";
preg_match_all("/\bT.m\b/", $subject_string , $matches_array);
RESULT: $matches_array = Array ([0] => Tim [1] => Tom)

Listing 5-10: Matching on wildcards

The wildcard matches any single character, with one notable exception.
The dot will not match the character (or characters) that indicate a new line.
For example, in the Unix world, the wildcard will not match \n. And, in Win-
dows environments, the wildcard will not match \r\n.

Specifying Alternate Matches
The downside to the example in Listing 5-10 is that the wildcard will match
any alphanumeric character. So in addition to matching on the words “ Tim ”
and “ Tom ” (notice the whitespace around the words), the pattern will also
match “ T5m ”, “ T m ”, or even “ T?m ”. If you specifically wanted to match on
either of “ Tim ” or “ Tom ” , you should use the OR (or alternate) pattern | used
in Listing 5-11.

$subject_string = "There are 129 stories about Tim and Tom";
preg_match_all((\bTim|Tom\b), $subject_string , $matches_array);
RESULT: $matches_array = Array ([0] => Tim [1] => Tom)

Listing 5-11: Alternate patterns (first example)
54 Chapter 5

webbots2e.book Page 55 Thursday, February 16, 2012 11:59 AM
Since the intent of the previous example is to match on “ Tim ” or
“ Tom ”, the pattern’s extra T and m are redundant. A more direct (and
harder to read) pattern is shown in Listing 5-12.

$subject_string = "There are 129 stories about Tim and Tom";
preg_match_all("/\bT(i|o)m\b/", $subject_string , $matches_array);
RESULT: $matches_array = Array ([0] => Tim [1] => Tom)

Listing 5-12: Alternate patterns (second example)

Regular Expressions Groupings and Ranges
The final example in this set shows how to match grouped patterns. In the
pattern in Listing 5-13, a match will happen when the first character is an
uppercase A or Z or any character in between, followed by any lowercase
vowel and any lowercase alpha character.

$subject_string = "There are 129 stories about Tim and Tom";
preg_match_all("/\b[A-Z][aeiou][a-z]\b/", $subject_string , $matches_array);
RESULT: $matches_array = Array ([0] => Tim [1] => Tom)

Listing 5-13: Using regular expressions to match groupings and ranges

Notice that in this example, the three-letter words Tim and Tom matched,
but the words are and and did not match because those words have a different
pattern of case, consonants, and vowels.

Regular Expressions of Particular Interest to Webbot
Developers

Now that you have a basic concept of how regular expressions are used, let’s
look at how regular expressions can make your job as a webbot developer a
little easier.

Parsing Phone Numbers
Let’s assume that you need to write a parsing program that retrieves all the
phone numbers on a web page. The first step is to think about the formats
that phone numbers may take. This sounds easy, but you might want to con-
sider these questions:

 Do you want to include toll-free phone numbers?

 Are you targeting phone numbers from a particular country?

 What do you do with multiple copies of the same phone number?

 Do you want to include country codes?

 How do you want to deal with alpha characters in phone numbers (e.g.,
1-800-PAY-BILLS)?
Advanced Pars ing wi th Regu lar Express ions 55

webbots2e.book Page 56 Thursday, February 16, 2012 11:59 AM
In our example, we are not concerned about country codes, and we
are only parsing North American phone numbers, which have the following
format:

 Three-digit area code Three-digit prefix Four-digit line number

Those are the technical specifications for a US or Canadian phone num-
ber, but people use various formats to write the numbers. For that reason, it
is important to start exercises like this with listing the ways that people might
format the information you’re trying to parse with regular expressions.

The importance of planning cannot be overemphasized when develop-
ing regular expression-matching patterns. Part of that planning should
include creating a test string that contains examples of the patterns you
want to capture. For example, our regular expression will use the test string
in Listing 15-14.

$test_string = "
 Example #01:100 000 0001 Example #02:200 010-0002
 Example #03:300.010.0003 Example #04:400 000 0004.
 Example #05:<td>500 000-0005</td> Example #06: 600.111.0006
 Example #07:(700) 111 0007 Example #08:(800) 111-0008
 Example #09:(900) 111.0009 Example #10:(111) 222 0010.
 Example #11:(222) 222-0011. Example #12:(333) 222.0012.

Listing 5-14: Ways to write a North American phone number

The string defined in Listing 5-14 depicts North American–formatted
phone numbers with a variety of separators, delimiters, and termination char-
acters. When developing test cases, it’s important to design cases that not only
look like the designed formats but also to reflect how these patterns may exist
in actual HTML. For instance, in Listing 5-14, example phone numbers 5 and
6 depict what the phone numbers may look like if embedded in HTML tags.

Finding the area code, prefix, and line number is simple enough—you
just need to define patterns for series of three or four digits as explained ear-
lier. But the area code, prefix, and line number are separated by delimiters,
and these delimiters will make the regular expression tricky. Figure 5-1 breaks
this down in more detail, based on the formats for North American phone
numbers.

Figure 5-1: North American phone number pattern

While breaking down a pattern like this sounds like a lot of work, the
planning makes complicated regular expressions much easier to write and
debug.3 Table 5-1 shows a regular expression for each column of Figure 5-1.
Ultimately, all those parts will be pieced together to form the regular expres-
sion to match the phone number patterns of interest.

3 For an example of a more complicated regular expression, consider the one to match all
legal URLs.

Three-Digit
Area Code

Delimiter 1
Three-Digit

Prefix
Delimiter 2

Four-Digit Line
Number
56 Chapter 5

webbots2e.book Page 57 Thursday, February 16, 2012 11:59 AM
If we piece the regular expression together, it looks like this:

"/\d{3}(.)\d{3}(.)\d{4}/"

The script in Listing 5-15 tests this pattern.

<?php
// Create a test string
$test_string=
 "
 Example #01:100 000 0001 Example #02:200 010-0002
 Example #03:300.010.0003 Example #04:400 000 0004.
 Example #05:<td>500 000-0005</td> Example #06:<td> 600.111.0006</td>
 Example #07:(700) 111 0007 Example #08:(800) 111-0008
 Example #09:(900) 111.0009 Example #10:(111) 222 0010.
 Example #11:(222) 222-0011. Example #12:(333) 222.0012.
 ";
// Define the pattern
$pattern = "/\d{3}(.)\d{3}(.)\d{4}/";

// Execute the regular expression
preg_match_all($pattern, $test_string, $matches_array);

// Display the matches
var_dump($matches_array[0]);
?>

Listing 5-15: First test of the phone number pattern

The first part of the script in Listing 5-15 defines a string that contains
all the phone number formats that the regular expression pattern should
match. Then the script defines the pattern that was developed though an
examination of the various formats a phone number may have. Finally, the
pattern is applied to the test string, and the results are displayed. The actual
outcome is shown in Figure 5-2.

Table 5-1: Parts of the North American Phone Number Regular Expression

Field Expression Explanation

Area Code \d{3} The area code is always three digits.

Delimiter 1 (\D) Earlier in this chapter, you learned that \d is the pattern for any
single numeric character and that \D is the character for any sin-
gle nonnumeric character. In reality, we don’t care if the delimiter
is a period, a space, a hyphen, a comma, or any other non-
numeric character. So our pattern will be a bit more inclusive
than that in the original explanation.

Prefix \d{3} Like the area code, the prefix is always three digits.

Delimiter 2 (\D) The pattern for the delimiter between the prefix and line number
is identical to the pattern for the delimiter between the area
code and prefix.

Line Number \d{4} The line number is always four digits.
Advanced Pars ing wi th Regu lar Express ions 57

webbots2e.book Page 58 Thursday, February 16, 2012 11:59 AM
array(6) {
 [0]=>
 string(12) "100 000 0001"
 [1]=>
 string(12) "200 010-0002"
 [2]=>
 string(12) "300.010.0003"
 [3]=>
 string(12) "400 000 0004"
 [4]=>
 string(12) "500 000-0005"
 [5]=>
 string(12) "600.111.0006"
 }

Figure 5-2: Output of the phone number extraction script in Listing 5-15

The script executed, but there is one problem. Only the phone numbers
with area codes without parentheses were matched. That’s because our regu-
lar expression doesn’t account for parentheses. To correct this problem, you
can use the modifications to the original code shown in Listing 15-16.

// Define patterns that describe/match phone numbers
$wo_parentheses = "\d{3}(.)\d{3}(.)\d{4}"; // pattern for phone numbers without parentheses
$w_parentheses = "\(\d{3}\)(.)\d{3}(.)\d{4}"; // pattern for phone numbers with parentheses
$pattern = "/(".$w_parentheses."|".$wo_parentheses.")/";// combine patterns with a logic “OR”

// Execute the regular expression
preg_match_all($pattern, $test_string, $matches_array);

// Display the matches
var_dump($matches_array[0]);
?>

Listing 5-16: An improved script for parsing phone numbers

The script modifications shown in Listing 5-16 define two patterns.
One pattern, $wo_parentheses, is the original pattern used in Listing 5-15.
A second pattern, $w_parentheses, simply inserts parentheses characters on
either side of the area code pattern. To make the actual pattern more read-
able, the two patterns are combined with a regular expression OR, so the final,
combined, pattern $pattern matches area codes either with or without paren-
theses. The output of this modified script is shown in Figure 5-3.

array(12) {
 [0]=>
 string(12) "100 000 0001"
 [1]=>
 string(12) "200 010-0002"
 [2]=>
 string(12) "300.010.0003"
58 Chapter 5

webbots2e.book Page 59 Thursday, February 16, 2012 11:59 AM
 [3]=>
 string(12) "400 000 0004"
 [4]=>
 string(12) "500 000-0005"
 [5]=>
 string(12) "600.111.0006"
 [6]=>
 string(14) "(700) 111 0007"
 [7]=>
 string(14) "(800) 111-0008"
 [8]=>
 string(14) "(900) 111.0009"
 [9]=>
 string(14) "(111) 222 0010"
 [10]=>
 string(14) "(222) 222-0011"
 [11]=>
 string(14) "(333) 222.0012"
 }

Figure 5-3: Output from the script modifications in Listing 5-16

While regular expression patterns are not exactly easy to read,4 they do
get the job done. And frankly, it would be extremely difficult to parse raw
phone numbers—or many other items—without regular expressions. Regu-
lar expressions may never be intuitive to any but the few who deal with them
on a daily basis. But if you have a beginner’s understanding of the concepts
and you plan ahead, you can write moderately complicated regular expres-
sions, as seen here.

Where to Go from Here
You now know how to use regular expressions! Granted, you don’t know
everything about the subject, but you know more than enough to understand
and use both the online and print resources for this topic. You also know
enough to learn to use the regular expressions features that were not covered.

You can now write regular expressions that match phone numbers with,
or without, area codes; match phone numbers with country codes; extract
email addresses; harvest URLs; collect credit card numbers; or search for
Social Security numbers.

Any part of speech that follows an alphanumeric pattern can be extracted
with regular expressions.

Many books, websites, and classes are available it you want to learn more.
If you are interested in gaining a much deeper understanding regular expres-
sions, I highly recommend the book Mastering Regular Expressions by Jeffrey
E.F. Friedl.5

4 Not exactly Shakespeare is it?
5 See Jeffrey E.F. Friedl, Mastering Regular Expressions (Sebastopol CA, O’Reilly & Associates, 2006).
Advanced Pars ing wi th Regu lar Express ions 59

webbots2e.book Page 60 Thursday, February 16, 2012 11:59 AM
When Regular Expressions Are (or Aren’t) the Right
Parsing Tool

An old adage says, “When the only tool you have is a hammer, all problems
will look like nails.” This saying definitely applies to regular expressions. While
regular expressions are a very powerful tool, it is important to remember that
they are not the only tool at your disposal. This section explores the most
likely reasons that you may want to use some of the simpler parsing methods
mentioned in Chapter 4.

Strengths of Regular Expressions
If you can abstract the content you want to extract, or parse, with an alpha-
numeric pattern, then you probably should be using regular expressions. Reg-
ular expressions are an extraordinarily powerful tool because much of the
data we want to scrape from web pages (prices, names, street addresses, phone
numbers, URLs, etc.) can be described symbolically through patterns.

Disadvantages of Pattern Matching While Parsing Web Pages
While regular expressions are a powerful tool to have in your webscraping
arsenal, they should never be the primary tool you use to parse and extract
information from downloaded content. I believe that regular expressions
should be used judiciously and not simply because you know how to use them.
I’ve drawn a lot of heat from people for this opinion, and I expect to get more
flames thrown in my direction after people read this and the prior chapter.
Before you send hate my way, please remember that I acknowledge that mine
is the minority opinion, but it’s a belief that I’m quite comfortable with. In
15-plus years of webbot development, I’ve found that it is best to use regular
expressions sparingly, where they are most effective. Here are my reasons why.

Regular Expressions Provide Little (If Any) Context

Regular expressions excel at extracting data like prices, phone numbers, or
other character strings that can be described with patterns. Unfortunately,
without context, the data you extract may not actually mean very much. In
many cases, using regular expressions is like listening to someone speak
but only hearing the nouns—and without verbs, nouns have little meaning.
For example, you can extract a phone number with regular expressions, but
matching a pattern for a phone number will not tell you whose phone num-
ber it is. Alternatively, it is not very useful to extract a price without also
knowing what is sold at that price. When you are aware of the context in
which those prices appear, you can determine which part numbers or item
descriptions are associated with the prices you extracted.

My experience is that context matching is much more valuable to web-
scraping than pattern matching. I want only to extract data, without regard
to the surrounding context, in probably fewer than 5 percent of my projects.
60 Chapter 5

webbots2e.book Page 61 Thursday, February 16, 2012 11:59 AM
For example, parsing tabled data by examining what’s between table tags is
a more realistic example of the types of context-sensitive matching you’ll do
in the real world. In that example, you identify text as a price, not based on its
pattern but rather because of its context within the surrounding page content.

Regular Expressions Provide Too Many Choices

It can be difficult for a beginner to focus on a single parsing solution if
there are too many options. This is one of the reasons I developed LIB_parse
(described in the previous chapter). This library, when combined with a few
built-in PHP functions like stristr(), trim(), and strip_tags(), contains the
handful of techniques required to parse the majority of your webscraping
projects. Even if your parse takes additional steps, you will vastly simplify
parsing tasks if your first approach considers the LIB_parse functions:

 return_between()

 split_string()

 parse_array()

 get_attribute()

 remove()

In contrast, regular expressions and pattern matching provide a nearly
infinite number of ways to solve a parsing problem. Without some constraints,
it can be difficult for a beginner to know where to start. If you limit yourself
to considering only those few parsing techniques that work in nearly every
case, you’ll save a lot of time. While this may sound counterintuitive, remem-
ber again that parsing web pages is fairly task specific and you don’t need
every parsing technique under the sun to complete your task.

Regular Expressions Are Harder to Debug

Regular expressions are extraordinarily powerful, and you can do an amaz-
ing amount of complex parsing with a single line of code. While one-liners
are impressive, however, they also complicate debugging and testing. In con-
trast, it may be advantageous to use a series of functions in LIB_parse to per-
form the same task, so that each parsing step may be commented and tested
separately.

Regular Expressions Complicate Your Code

If you need to use a regular expression function, I advocate creating a wrap-
per function, which repackages difficult-to-read code inside of easier-to-read
routines. A good example of this is the parse_array() function that appears
in the LIB_parse library (described in Chapter 4). For example, you can use
parse_array() to extract all image tags into an array with the line of code
shown in Listing 5-17.

$image_tag_array = parse_array($downloaded_web_page, "<img", ">");

Listing 5-17: Parsing all image tags with the parse_array() function in LIB_parse.php
Advanced Pars ing wi th Regu lar Express ions 61

webbots2e.book Page 62 Thursday, February 16, 2012 11:59 AM
You can accomplish the same thing with preg_match_all(), as in Listing 5-18.
But I argue that the code is not as easy to debug, maintain, or read.

preg_match_all("/<img(.*)>)siU/", $downloaded_web_page , $matching_data);
$image_tag_array = $matching_data[0];

Listing 5-18: Parsing all image tags with the parse_array() function in LIB_parse.php

It does not take a seasoned programmer to recognize that Listing 5-17 is
much easier to read and understand than Listing 5-18. That’s why LIB_parse
uses the function parse_array() as a wrapper around the PHP built-in func-
tion preg_match_all()to make the code more readable. As the complexity of
software increases, so do the odds of errors and the cost of debugging and
validation. Using debugged libraries with simplified interfaces will decrease
development time and make your scripts easier to maintain.

Which Are Faster: Regular Expressions or PHP’s Built-In Functions?
One hot-button topic is whether regular expressions run as quickly in PHP
or if the comparable PHP built-in functions are more efficient. I’ve done
some benchmarking, and while sparing you the details, I’ve found the PHP
built-in functions are only marginally more efficient than their regular
expression counterparts. This was a bigger concern with older versions of
PHP but is no longer a consideration with modern versions of the language.
In reality, this is really a moot point anyway, because if you are really con-
cerned about speed and efficiency, you’d probably be better off developing
in C than in PHP.

Final Thoughts

I’ve attempted to make it known that regular expressions are an important,
but limited, tool for webbot developers. I know, however, many people use
regular expressions on a daily basis and will not agree with my assessment of
their role in this specific environment. My opinion is informed by the types
of data I’ve had to parse in my career as a developer; your experience may
lead to a different opinion. If you’re harvesting data like email addresses,
phone numbers, or credit card numbers without needing to know the spe-
cific context of that data, then regular expressions are an excellent tool. But
if your task is more typical of what I’ve encountered (such as identifying the
price of a specific item, the date of a specific auction, or the name of a direc-
tor at a specific hospital), then unless you are a regular expressions master,
you’re probably better off with a more context-aware parsing technique.
62 Chapter 5

webbots2e.book Page 63 Thursday, February 16, 2012 11:59 AM
A U T O M A T I N G F O R M
S U B M I S S I O N

You learned how to download files from
the Internet in Chapter 3. In this chapter,

you’ll learn how to fill out forms and upload
information to websites. When your webbots have the
ability to exchange information with target websites,
as opposed to just asking for information, they become
capable of acting on your behalf. Tasks that you may
want webbots to do for you may include:

 Transferring funds between your online bank accounts when an
account balance drops below a predetermined limit

 Buying items in online auctions when an item and its price meet preset
criteria

 Autonomously uploading files to a photo sharing website

 Advising a distributor to refill a vending machine when product inven-
tory is low

webbots2e.book Page 64 Thursday, February 16, 2012 11:59 AM
Webbots send data to webservers by mimicking what people do when they
fill out standard HTML forms on websites. This process is called form emulation.
Form emulation is not an easy task, since there are many ways to submit form
information. In addition, it’s important to submit forms exactly as the webserver
expects them to be submitted, or the server may generate errors in its log
files. People using browsers don’t have to worry about the format of the data
they submit in a form. Webbot designers, however, must reverse engineer the
form interface to learn about the data format the server is expecting. When
the form interface is properly debugged, the form data from a webbot
appears exactly as if it were submitted by a person using a browser.

If done poorly, form emulation can get webbot designers into trouble
because poorly designed form emulators may make errors that are impossible
for a person to make using a standard browser. This is especially troublesome
when creating an application that delivers a competitive advantage for a client
and you want to conceal the fact that you are using a webbot. A number of
things could happen if your webbot gets into trouble, ranging from leaking (to
your competitors) that you’re gaining an advantage through the use of a web-
bot to having your website privileges revoked by the owner of the target website.

The first rule of form emulation is staying legal: Represent yourself truth-
fully, and don’t violate a website’s user agreement. The second rule is to send
form data to the server exactly as the server expects to receive it. If your emu-
lated form data deviates from the format that is expected, you may generate
suspicious-looking errors in the server’s log. In either case, the server’s admin-
istrator will easily figure out that you are using a webbot. Even though your
webbot is legitimate, the server log files your webbot creates may not resemble
browser activity. They may indicate to the website’s administrator that you
are a hacker and lead to a blocked IP address or termination of your account.
It is best to be both stealthy and legal. For these reasons, you may want to
read Chapters 26 and 31 before you venture out on your own.

Reverse Engineering Form Interfaces

Webbot developers need to look at online forms differently than people using
the same forms in a browser. Typically, when people use browsers to fill out
online forms, performing some task like paying a bill or checking an account
balance, they see various fields that need to be selected or otherwise completed.
Webbot designers, in contrast, need to view HTML forms as interfaces or
specifications that tell a webbot how a server expects to see form data after it
is submitted. A webbot designer needs to have the same perspective on forms
as the server that receives the form. For example, a person filling out the
form in Figure 6-1 would complete a variety of form elements—text boxes,
text areas, select lists, radio controls, checkboxes, or hidden elements—that
are identified by text labels.
64 Chapter 6

webbots2e.book Page 65 Thursday, February 16, 2012 11:59 AM
Form Handlers, Data Fields, Methods, and Event Triggers

Form Handlers

The action attribute in the <form> tag defines the web page that interprets the
data entered into the form. We’ll refer to this page as the form handler. If there
is no defined action, the form handler is the same as the page that contains
the form, which generally means the form uses an HTTP GET method. The
examples in Table 6-1 compare the location of form handlers in a variety of
conditions.

Servers have no use for the form’s name, which is the variable that
identifies the form. This variable is only used by JavaScript, which associates
the form name with its form elements. Since servers don’t use the form’s
name, webbots (and their designers) have no use for it either.

While a human associates
the text labels shown in Figure 6-1
with the form elements, a webbot
designer knows that the text labels
and types of form elements are
immaterial. All the form needs to
do is send the correct name/data
pairs that represent these data
fields to the correct server page,
with the expected protocol. This
isn’t nearly as complicated as it
sounds, but before we can go
further, it’s important that you
understand the various parts of
HTML forms.

Figure 6-1: A simple form with various form
elements

Web-based forms have four main
parts, as shown in Figure 6-2:

 A form handler

 One or more data fields

 A method

 One or more event triggers

I’ll examine each of these
parts in detail and then show
how a webbot emulates a form.

Figure 6-2: Parts of a form

<form name="frml" action="form_handler" method="get">
 <input type="textbox" name="email">
 <input type="submit">
</form>

Form handler Form method

Event trigger
Data field(s)
Automat ing Form Submiss ion 65

webbots2e.book Page 66 Thursday, February 16, 2012 11:59 AM
Data Fields
Form input tags define data fields and the name, value, and user interface used
to input the value. The user interface (or widget) can be a text box, text area,
select list, radio control, checkbox, or hidden element. Remember that while
there are many types of interfaces, they are completely meaningless to the web-
bot that emulates the form and the server that handles the form. From a webbot’s
perspective, there is no difference between data entered via a text box or a
select list. The input tag’s name and its value are the only things that matter.

Every data field must have a name.1 These names become form data
variables, or containers for their data values. In Listing 6-1, a variable called
session_id is set to 0001, and the value for search is whatever was in the text box
labeled Search when the user clicked the submit button. Again, from a webbot
designer’s perspective, it doesn’t matter what type of data elements define
the data fields (hidden, select, radio, text box, etc.). It is important that the
data has the correct name and that the value is within a range expected by
the form handler.

<form method="GET">
 <input type="hidden" name="session_id" value="0001">
 <input type="text" name="search" value="">
 <input type="submit">
</form>

Listing 6-1: Data fields in a HTML form

Table 6-1: Variations in Form-Handler Descriptions

action Attribute Meaning

<form
name="myForm"
action="search.php"

>

The script called search.php will accept and
interpret the form data. This script shares the
same server and directory as the page that
served the form.

<form
name="myForm"
action="../cgi/search.php"

>

A script called search.php handles this form and
is in the cgi directory, which is parallel to the
current directory.

<form
name="myForm"
action="/search.php"

>

The script called search.php, in the home
directory of the server that served the page,
handles this form.

<form
name="myForm"
action="www.schrenk.com/search.php"

>

The contents of this form are sent to the specified
page at http://www.schrenk.com.

<form name="myForm"> There isn’t an action (or form handler) specified in
the <form> tag. In these cases, the same page that
delivered the form is also the page that interprets
the completed form.

1 The HTML value of any form element is only its stating or default value. The user may change
the final element with JavaScript or by editing the form before it is sent to the form handler.
66 Chapter 6

webbots2e.book Page 67 Thursday, February 16, 2012 11:59 AM
Methods

The form’s method describes the protocol used to send the form data to the
form handler. The most common methods for form data transfers are GET
and POST.

The GET Method

You are already familiar with the GET method, because it is identical to the
protocol you used to request web pages in previous chapters. With the GET
protocol, the URL of a web page is combined with data from form elements.
The address of the page and the data are separated by a ? character, and
individual data variables are separated by & characters, as shown in Listing 6-2.
The portion of the URL that follows the ? character is known as a query string.

URL http://www.schrenk.com/search.php?term=hello&sort=up

Listing 6-2: Data values passed in a URL (GET method)

Since GET form variables may be combined with the URL, the web page
that accepts the form will not be able to tell the difference between the form
submitted in Listing 6-3 and the form emulation techniques shown in List-
ings 6-4 and 6-5. In either case, the variables term and sort will be submitted to
the web page http://www.schrenk.com/search with the GET protocol.2

<form name="frm1" action="http://www.schrenk.com/search.php">
 <input type="text" name="term" value="hello">
 <input type="text" name="sort" value="up">
 <input type="submit">
</form>

Listing 6-3: A GET method performed by a form submission

Alternatively, you could use LIB_http to emulate the form, as in Listing 6-4.

include("LIB_http.php");

$action = "http://www.schrenk.com/search.php"; // Address of form handler
$method="GET"; // GET method
$ref = ""; // Referer variable
$data_array['term'] = "hello"; // Define term
$data_array['sort'] = "up"; // Define sort
$response = http($target=$action, $ref, $method, $data_array, EXCL_HEAD);

Listing 6-4: Using LIB_http to emulate the form in Listing 6-3 with data passed in an array

Conversely, since the GET method places form information in the URL’s
query string, you could also emulate the form with a script like Listing 6-5.

2 In forms where no form method is defined, like the form shown in Listing 6-3, the default form
method is GET.
Automat ing Form Submiss ion 67

webbots2e.book Page 68 Thursday, February 16, 2012 11:59 AM
include("LIB_http.php");

$action = "http://www.schrenk.com/search.php?term=hello&sort=up";
$method=”"GET";
$ref = "" ;
$response = http($target=$action, $ref, $method, $data_array="", EXCL_HEAD);

Listing 6-5: Emulating the form in Listing 6-3 by combining the URL with the form data

The reason we might choose Listing 6-4 over Listing 6-5 is that the code
is cleaner when form data is treated as array elements, especially when
many form values are passed to the form handler. Passing form variables to
the form’s handler with an array is also more symmetrical, meaning that the
procedure is nearly identical to the one required to pass values to a form
handler expecting the POST method.

The POST Method

While the GET method appends form data at the end of the URL, the POST
method sends data in a separate file. The POST method has these advantages
over the GET method:

 POST methods can send more data to servers than GET methods can. The
maximum length of a GET method is typically around 250 characters. POST
methods, in contrast, can easily upload several megabytes of information
during a single form upload.

 Since URL fetch requests are sent in HTTP headers, and since headers
are never encrypted, sensitive data should always be transferred with POST
methods. POST methods don’t transfer form data in headers, and thus,
they may be encrypted. Obviously, this is only important for web pages
using encryption.

 GET method requests are always visible on the location bar of the browser.
POST requests only show the actual URL in the location bar.

Regardless of the advantages of POST over GET, you must match your
method to the method of form you are emulating. Keep in mind that methods
may also be combined in the same form. For example, forms with POST meth-
ods may also use form handlers that contains query strings.

To submit a form using the POST method with LIB_http, simply specify the
POST protocol, as shown in Listing 6-6.

include("LIB_http.php");

$action = "http://www.schrenk.com/search.php"; // Address of form handler
$method="POST "; // POST method
$ref = ""; // Referer variable
$data_array['term'] = "hello"; // Define term
$data_array['sort'] = "up"; // Define sort
$response = http($target=$action, $ref, $method, $data_array, EXCL_HEAD);

Listing 6-6: Using LIB_http to emulate a form with the POST method
68 Chapter 6

webbots2e.book Page 69 Thursday, February 16, 2012 11:59 AM
Regardless of the number of data elements, the process is the same.
Some form handlers, however, access the form elements as an array, so it’s
always a good idea to match the order of the data elements that is defined
in the HTML form.

Multipart Encoding

There is one more type of form method, which is actually an extension of
the POST method. This is a post method with multipart encoding. When used, as
shown below in Listing 6-7, HTML forms are capable of transferring complete
files from a user’s computer to a web server.

<form name="frm1" method="POST" enctype="multipart/form-data" action="http://
www.schrenk.com/search.php">
 <input type="text" name="term" value="hello">
 <input type="text" name="sort" value="up">
 <input type="submit">
</form>

Listing 6-7: A POST method with multipart encoding, used for file transfer

Forms that facilitate file uploads commonly allow people to upload images
to social networking websites or similar. While you can upload any type of file
with a form that allows submitted files, it is important to recognize that, for
security reasons, the form handler may only allow specific types of files that
are appropriate for the situation. Servers also place restrictions on file size.

If you want your webbot to upload a file to a form that accepts file
submissions, you may use a script like the one in Listing 6-8.

$post = array("uploadedfile"=>"@".$full_path_name_of_file);
// reference file to be uploaded in an array

$ch = curl_init(); // initialize PHP/CURL
curl_setopt($ch, CURLOPT_URL, $form_action_URL; // point at the form handler
curl_setopt($ch, CURLOPT_POST, true); // indicate that a POST method is required
curl_setopt($ch, CURLOPT_POSTFIELDS, $post); // add post array to operation
$response = curl_exec($ch);

Listing 6-8: A script that could upload a file to a form like the one in Listing 6-7

Notice that in Listing 6-8 there is no direct reference to the multipart
encoding type in the webbot script. The POST method is always used when
uploading files to servers and the full path name of the file to upload is
inserted into the array of POST variables.

It’s worth repeating that when using PHP/CURL to upload files to form
handlers, the full path name to that file to be uploaded must be stated and
preceded with an @ symbol.
Automat ing Form Submiss ion 69

webbots2e.book Page 70 Thursday, February 16, 2012 11:59 AM
Event Triggers

A submit button typically acts as the event trigger, which causes the form data
to be sent to the form handler using the defined form method. While the
submit button is the most common event trigger, it is not the only way to sub-
mit a form. It is very common for web developers to employ JavaScript to
verify the contents of the form before it is submitted to the server. In fact,
any JavaScript event like onClick or onMouseOut can submit a form, as can any
other type of human-generated JavaScript event. Sometimes, JavaScript may
also change the value of a form variable before the form is submitted. The
use of JavaScript as an event trigger causes many difficulties for webbot
designers, but these issues are remedied by the use of special tools, as
you’ll soon see.

Unpredictable Forms

You may not be able to tell exactly what the form requires by looking at the
source HTML. There are three primary reasons for this: the use of JavaScript,
the readability of machine generated HTML, and the presence of cookies.

JavaScript Can Change a Form Just Before Submission

Forms often use JavaScript to manipulate data before sending it to the form
handler. These manipulations are usually the result of checking the validity
of data entered into the form data field. Since these manipulations happen
dynamically, it is nearly impossible to predict what will happen unless you
actually run the JavaScript and see what it does—or unless you have a
JavaScript parser in your head.

Form HTML Is Often Unreadable by Humans

You cannot expect to look at the source HTML for a web page and deter-
mine, with any precision, what the form does. Regardless of the fact that all
browsers have a View Source option, it is important to remember that HTML is
rendered by machines and does not have to be readable by people—and it
frequently isn’t. It is also important to remember that much of the HTML
served on web pages is dynamically generated by scripts. For these reasons,
you should never expect HTML pages to be easy to read, and you should
never count on being able to accurately analyze a form by looking at a script.

Cookies Aren’t Included in the Form, but Can Affect Operation

While cookies are not evident in a form, they can often play an important
role, since they may contain session variables or other important data that
isn’t readily visible but is required to process a form. You’ll learn more about
webbots that use cookies in Chapters 21 and 22.
70 Chapter 6

webbots2e.book Page 71 Thursday, February 16, 2012 11:59 AM
Analyzing a Form

Since it is hard to accurately analyze an HTML form by hand, and since the
importance of submitting a form correctly is critical, you may prefer to use a
tool to analyze the format of forms. This book’s website has a form handler
that provides this service. The form analyzer works by substituting the form’s
original form handler with the URL of the form analyzer. When the analyzer
receives form data, it creates a web page that describes the method, data
variables, and cookies sent by the form exactly as they are seen by the original
form handler, even if the web page uses JavaScript.

To use the emulator, you must first create a copy of the web page that
contains the form you want to analyze, and place that copy on your hard
drive. Then you must replace the form handler on the web page with a form
handler that will analyze the form structure. For example, if the form you
want to analyze has a <form> tag like the one in Listing 6-9, you must substitute
the original form handler with the address of my form analyzer, as shown in
Listing 6-10.

<form
 method="POST"
 action="https://panel.schrenk.com/keywords/search/"
>

Listing 6-9: Original form handler

<form
 method="POST"
 action="http://www.WebbotsSpidersScreenScrapers.com/form_analyzer.php"
>

Listing 6-10: Substituting the original form handler with a handler that analyzes the form

To analyze the form, save your changes to your hard drive and load the
modified web page into a browser. Once you fill out the form (by hand) and
submit it, the form analyzer will provide an analysis similar to the one in
Figure 6-3.

This simple diagnosis isn’t perfect—use it at your own risk. However,
it does allow a webbot developer to verify the form method, agent name,
and GET and POST variables as they are presented to the actual form handler.
For example, in this particular exercise, it is evident that the form handler
expects a POST method with the variables sessionid, email, message, status,
gender, and vol.

Forms with a session ID point out the importance of downloading and
analyzing the form before emulating it. In this typical case, the session ID is
assigned by the server and cannot be predicted. The webbot can accurately
use session IDs only by first downloading and parsing the web page contain-
ing the form.
Automat ing Form Submiss ion 71

webbots2e.book Page 72 Thursday, February 16, 2012 11:59 AM
Figure 6-3: Using a form analyzer

If you were to write a script that emulates the form submitted and
analyzed in Figure 6-3, it would look something like Listing 6-11.

include("LIB_http.php");

Initiate addresses
$action="http://www.WebbotsSpidersScreenScrapers.com/form_analyzer.php";
$ref = "" ;

Set submission method
$method="POST";

Set form data and values
$data_array['sessionid'] = "sdfg73453845";
$data_array['email'] = "sales@schrenk.com";
$data_array['message'] = "This is a test message";
$data_array['status'] = "in school";
$data_array['gender'] = "M";
$data_array['vol'] = "on";

$response = http($target=$action, $ref, $method, $data_array, EXCL_HEAD);

Listing 6-11: Using LIB_http to emulate the form analysis in Figure 6-3

After you write a form-emulation script, it’s a good idea to use the
analyzer to verify that the form method and variables match the original
form you are attempting to emulate. If you’re feeling ambitious, you could
improve on this simple form analyzer by designing one that accepts both the
submitted and emulated forms and compares them for you.
72 Chapter 6

webbots2e.book Page 73 Thursday, February 16, 2012 11:59 AM
The script in Listing 6-12 is similar to the one running at http://www
.WebbotsSpidersScreenScrapers.com/form_analyzer.php. This script is for reference
only. You can download the latest copy from this book’s website. Note that
the PHP sections of this script appear in bold.

<?
setcookie("SET BY THIS PAGE", "This is a diagnostic cookie.");
?>
<head>
 <title>HTTP Request Diagnostic Page</title>

<style type="text/css">
 p { color: black; font-weight: bold; font-size: 110%; font-family: arial}
 .title { color: black; font-weight: bold; font-size: 110%; font-family: arial}
 .text {font-weight: normal; font-size: 90%;}
 TD { color: black; font-size: 100%; font-family: courier; vertical-align: top;}
 .column_title { color: black; font-size: 100%; background-color: eeeeee;
 font-weight: bold; font-family: arial}

</style>
</head>

<p class="title">Webbot Diagnostic Page</p>
<p class="text">This web page is a tool to diagnose webbot functionality by examining what the
webbot sends to webservers.
<table border="1" cellspacing="0" cellpadding="3" width="800">
 <tr class="column_title">
 <th width="25%">Variable</th>
 <th width="75%">Value sent to server</th>
 </tr>
 <tr>
 <td>HTTP Request Method</td><td><?echo $_SERVER["REQUEST_METHOD"];?></td>
 </tr>
 <tr>
 <td>Your IP Address</td><td><?echo $_SERVER["REMOTE_ADDR"];?></td>
 </tr>
 <tr>
 <td>Server Port</td><td><?echo $_SERVER["SERVER_PORT"];?></td>
 </tr>
 <tr>
 <td>Referer</td>
 <td><?
 if(isset($_SERVER['HTTP_REFERER']))
 echo $_SERVER['HTTP_REFERER'];
 else
 echo "Null
";
 ?>
 </td>
 </tr>
 <tr>
 <td>Agent Name</td>
 <td><?
 if(isset($_SERVER['HTTP_USER_AGENT']))
 echo $_SERVER['HTTP_USER_AGENT'];
 else
 echo "Null
";
 ?>
 </td>
 </tr>
Automat ing Form Submiss ion 73

webbots2e.book Page 74 Thursday, February 16, 2012 11:59 AM
 <tr>
 <td>Get Variables</td>
 <td><?
 if(count($_GET)>0)
 var_dump($_GET);
 else
 echo "Null";
 ?>
 </td>
 </tr>
 <tr>
 <td>Post Variables</td>
 <td><?
 if(count($_POST)>0)
 var_dump($_POST);
 else
 echo "Null";
 ?>
 </td>
 </tr>
 <tr>
 <td>Cookies</td>
 <td><?
 if(count($_COOKIE)>0)
 var_dump($_COOKIE);
 else
 echo "Null";
 ?>
 </td>
 </tr>
</table>
<p class="text">This web page also sets a diagnostic cookie, which should be visible the second
time you access this page.

Listing 6-12: A simple form analyzer

Final Thoughts

Years of experience have taught me a few tricks for emulating forms. While
it’s not hard to write a webbot that submits a form, it is often difficult to do
it right the first time. Moreover, as you read earlier, there are many reasons
to submit a form correctly the first time. I highly suggest reading the later
chapters on stealth, fault tolerance, and potential legal issues (Chapters 26,
28, and 31) before creating webbots that emulate forms. These chapters
provide additional insight into potential problems and perils that you’re
likely to encounter when writing webbots that submit data to webservers.

Don’t Blow Your Cover

If you’re using a webbot to create a competitive advantage for a client, you
don’t want that fact to be widely known—especially to the people that run
the targeted site.
74 Chapter 6

webbots2e.book Page 75 Thursday, February 16, 2012 11:59 AM
There are two ways a webbot can blow its cover while submitting a form:

 It emulates the form but not the browser.

 It generates an error either because it poorly analyzed the form or poorly
executed the emulation. Either error may create a condition that isn’t
possible when the form is submitted by a browser, creating a question-
able entry in a server activity log.

NOTE This topic is covered in more detail in Chapter 26.

Correctly Emulate Browsers
Emulating a browser is easy, but you should verify that you’re doing it
correctly. Your webbot can look like any browser you desire if you properly
declare the name of your web agent. If you’re using the LIB_http library,
the constant WEBBOT_NAME defines how your webbot identifies itself, and further-
more, how servers log your web agent’s name in their log files. In some cases,
webservers verify that you are using a particular web browser (most commonly
Internet Explorer) before allowing you to submit a form.

If you plan to emulate a browser as well as the form, you should verify
that the name of your webbot is set to something that looks like a browser
(as shown in Listing 5-11). Obviously, if you don’t change the default value
for your webbot’s name in the LIB_http library, you’ll tell everyone who looks
at the server logs that you’re using a test webbot.

Define how your webbot will appear in server logs
define("WEBBOT_NAME", "Internet Explorer");

Listing 6-13: Setting the name of your webbot to Internet Explorer in LIB_http

Strange user agent names will often be noticed by webmasters, since they
routinely analyze logs to see which browsers people use to access their sites to
ensure that they don’t run into browser compatibility problems.

Avoid Form Errors

Even more serious than using the wrong agent name is submitting a form
that couldn’t possibly be sent from the form the webserver provides on its
website. These mistakes are logged in the server’s error log and are subject to
careful scrutiny. Situations that could cause server errors include the following:

 Using the wrong form protocol

 Submitting the form to the wrong action (form handler)

 Submitting form variables in the wrong order

 Ignoring an expected variable that the form handler needs

 Adding an extra variable that the form handler doesn’t expect

 Emulating a form that is no longer available on the website
Automat ing Form Submiss ion 75

webbots2e.book Page 76 Thursday, February 16, 2012 11:59 AM
Using the wrong method can have several undesirable outcomes. If your
webbot sends too much data with a GET method when the form specifies a POST
method, you risk the danger of losing some of your data. (Most webservers
restrict the length of a GET method.3) Another danger of using the wrong form
method is that many form handlers expect variables to be members of either
a $_GET or $_POST array, which is a keyed name/value array similar to the
$data_array used in LIB_http. If you’re sending the form a POST variable called
'name', and the server is expecting $_GET['name'], your webbot will generate
an entry in the server’s error log because it didn’t send the variable the server
was looking for.

Also, remember that protocols aren’t limited to the form method. If the
form handler expects an SSL-encrypted https protocol, and you deliver the
emulated form to an unencrypted http address, the form handler won’t under-
stand you because you’ll be sending data to the wrong server port. In addition,
you’re potentially sending sensitive data over an unencrypted connection.

The final thing to verify is that you are sending your emulated form to a
web page that exists on the target server. Sometimes mistakes like this are the
result of sloppy programming, but this can also occur when a webmaster
updates the site (and form handler). For this reason, a proactive webbot
designer verifies that the form handler hasn’t changed since the webbot
was written.

3 Servers routinely restrict the length of a GET request to help protect the server from extremely
long requests, which are commonly used by hackers attempting to compromise servers with
buffer overflow exploits.
76 Chapter 6

webbots2e.book Page 77 Thursday, February 16, 2012 11:59 AM
M A N A G I N G L A R G E
A M O U N T S O F D A T A

You will soon find that your webbots are
capable of collecting massive amounts of

data. The amount of data a simple automated
webbot or spider can collect, even if it runs only

once a day for several months, is colossal. Since none
of us have unlimited storage, managing the quality
and volume of the data our programs collect and store becomes very impor-
tant. In this chapter, I will describe methods to organize the data that your
webbots collect and then investigate ways to reduce the size of what you save.

Organizing Data

Organizing the resources that your webbots download requires planning.
Whether you employ a well-defined file structure or a relational database,
the result should meet the needs of the particular problem your application
attempts to solve. For example, if the data is primarily text, is accessed by
many people, or is in need of sort or search capability, then you may prefer
to store information in a relational database, which addresses these needs.

webbots2e.book Page 78 Thursday, February 16, 2012 11:59 AM
If, on the other hand, you are storing many images, PDFs, or Word documents,
you may favor storing files in a structured filesystem. You may even create a
hybrid system where a database references media files stored in structured
directories.

Naming Conventions

While there is no “correct” way to organize data, there are many bad ways to
store the data webbots generate. Most mistakes arise from assigning non-
descriptive or confusing names to the data your webbots collect. For this
reason, your designs must incorporate naming conventions that uniquely
identify files, directories, and database properties. Define names for things
early, during your planning stages, as opposed to naming things as you go
along. Always name in a way that allows your data structure to grow. For
example, a real estate webbot that refers to properties as houses may be diffi-
cult to maintain if your application later expands to include raw land, offices,
or businesses. Updating names for your data can become tedious, since
your code and documentation will reference those names many times.

Your naming convention can enforce any rules you like, but you should
consider the following guidelines:

 You need to enforce any naming standards with an iron fist, or they will
cease to be standards.

 It’s often better to assign names based on the type of thing an object is,
rather than what is actually is. For example, in the previous real estate
example, it may have been better to name the database table that
describes houses properties, so when the scope of the project expands,1
it can handle a variety of real estate. With this method, if your project
grows, you could add another column to the table to describe the type of
property. It is always easier to expand data tables than to rename columns.

 Consider who (or what) will be using your data organization. For exam-
ple, a directory called Saturday_January_23 might be easy for a person to
read, but a directory called 0123 might be a better choice if a computer
accesses its contents. Sequential numbers are easier for computer pro-
grams to interpret.

 Define the format of your names. People will often use compound words
and separate the word with underscores for readability, as in name_first.
Other times, people separate compound words with case, as in nameFirst;
this is commonly referred to as CamelCase. These format definitions should
include things like case, language, and parts of speech. For example, if
you decide to separate terms with underscores, you shouldn’t use Camel-
Case to name other terms later. It’s very common for developers to use
different standards to help identify differences between functions, data
variables, and objects.

1 Projects always expand in scope.
78 Chapter 7

webbots2e.book Page 79 Thursday, February 16, 2012 11:59 AM
 If you give members of a certain group labels that are all the same part of
speech, don’t occasionally throw in a label with another grammatical form.
For example, if you have a group of directories named with nouns, don’t
name another directory in the same group with a verb—and if you do,
chances are it probably doesn’t belong in that group of things in the first
place.

 If you are naming files in a directory, you may want to give the files
names that will later facilitate easy grouping or sorting. For example, if
you are using a filename that defines a date, filenames with the format
year_month_day will make more sense when sorted than filenames with
the format month_day_year. This is because year, month, and day is a
sequential progression from largest to smallest and will accurately reflect
order when sorted.

Storing Data in Structured Files
To successfully store files in a structured series of directories, you need to
find out what the files have in common. In most cases, the problem you’re
trying to solve and the means for retrieving the data will dictate the common
factors among your files. Figuratively, you need to look for the lowest common
denominator for all your files. Figure 7-1 shows a file structure for storing
data retrieved by a webbot that runs once a day. Its common theme is time.

Figure 7-1: Example of a structured filesystem primarily based on dates
Managing Large Amounts of Data 79

webbots2e.book Page 80 Thursday, February 16, 2012 11:59 AM
With the structure defined in Figure 7-1, you could easily locate thumbnail
images created by the webbot on February 3, 2006 because the folders comply
with the following specification:

drive:\project\year\month\day\category\subcategory\files

Therefore, the path would look like this:

c:\Spider_files\2006\02\03\Graphics\Thumbnails\

People may easily decipher this structure, and so will programs, which
need to determine the correct file path programmatically. Figure 7-2 shows
another file structure, primarily based on geography.

Figure 7-2: A geographically themed example of a structured filesystem

Ensure that all files have a unique path and that either a person or a
computer can easily make sense of these paths.

File structures, like the ones shown in the previous figures, are commonly
created by webbots. You’ll see how to write webbots that create file structures
in Chapter 9.

Storing Text in a Database

While many applications call for file structures similar to the ones shown in
Figures 7-1 or 7-2, the majority of projects you’re likely to encounter will
require that data is stored in a database. A database has many advantages
over a file structure. The primary advantage is the ability to query or make
requests from the database with a query language called Structured Query
Language or SQL (pronounced SEE-quill). SQL allows programs to sort, extract,
update, combine, insert, and manipulate data in nearly any imaginable way.

It is not within the scope of this book to teach SQL, but this book does
include the LIB_mysql library, which simplifies using SQL with the open source
database called MySQL2 (pronounced my-esk-kew-el).

2 More information about MySQL is available at http://www.mysql.com and http://www.php.net.
80 Chapter 7

webbots2e.book Page 81 Thursday, February 16, 2012 11:59 AM
LIB_mysql

LIB_mysql consists of a few server configurations and three functions, which
should handle most of your database needs. These functions act as abstractions
or simplifications of the actual interface to the program. Abstractions are
important because they allow access to a wide variety of database functions
with a common interface and error-reporting method. They also allow you to
use a database other than MySQL by creating a similar library for a new data-
base. For example, if you choose to use another database someday, you could
write abstractions with the same function names used in LIB_mysql. In this way,
you can make the code in this book work with Oracle, SQL Server, or any
other database without modifying any scripts.

The source code for LIB_mysql is available from this book’s website. There
are other fine database abstractions available from projects like PEAR and
PECL; however, the examples in this book use LIB_mysql.

Listing 7-1 shows the configuration area of LIB_mysql. You should configure
this area for your specific MySQL installation before you use it.

MySQL Constants (scope = global)

define("MYSQL_ADDRESS", "localhost"); // Define IP address of your MySQL Server
define("MYSQL_USERNAME", ""); // Define your MySQL username
define("MYSQL_PASSWORD", ""); // Define your MySQL password
define("DATABASE", ""); // Define your default database

Listing 7-1: LIB_mysql server configurations

As shown in Listing 7-1, the configuration section provides an opportunity
to define where your MySQL server resides and the credentials needed to
access it. The configuration section also defines a constant, "DATABASE", which
you may use to define the default database for your project.

There are three functions in LIB_mysql that facilitate the following:

 Inserting data into the database
 Updating data already in the database
 Executing a raw SQL query

Each function uses a similar interface, and each provides error reporting
if you request an erroneous query.

The insert() Function

The insert() function in LIB_mysql simplifies the process of inserting a new
entry into a database by passing the new data in a keyed array. For example,
if you have a table like the one in Figure 7-3, you can insert another row of
data with the script in Listing 7-2, making it look like the table in Figure 7-4.

Figure 7-3: Example table people before the insert()

ID NAME CITY STATE ZIP

Sabrina Duncan

Culver City 90232Kelly Garrett

Anaheim

CA

CA 92812

1

2

Managing Large Amounts of Data 81

webbots2e.book Page 82 Thursday, February 16, 2012 11:59 AM
$data_array['NAME'] = "Jill Monroe";
$data_array['CITY'] = "Irvine";
$data_array['STATE'] = "CA";
$data_array['ZIP'] = "55410";
insert(DATABASE, $table="people", $data_array);

Listing 7-2: Example of using insert()

Figure 7-4: Example table people after executing the
insert() in Listing 7-2

The update() Function

Alternately, you can use update() to update the record you just inserted with
the script in Listing 7-3, which changes the ZIP code for the record.

$data_array['NAME'] = "Jill Monroe";
$data_array['CITY'] = "Irvine";
$data_array['STATE'] = "CA";
$data_array['ZIP'] = "92604";
update(DATABASE, $table="people", $data_array, $key_column="ID", $id="3");

Listing 7-3: Example script for updating data in a table

Running the script in Listing 7-3 changes values in the table, as shown
in Figure 7-5.

Figure 7-5: Example table people after updating ZIP codes
with the script in Listing 7-3

The exe_sql() Function

For database functions other than inserting or updating records, LIB_mysql
provides the exe_sql() function, which executes a SQL query against the
database. This function is particularly useful for extracting data with complex
queries or for deleting records, altering tables, or anything else you can do
with SQL. Table 7-1 shows various uses for this function.

ID NAME CITY STATE ZIP

Sabrina Duncan

Culver City 90232Kelly Garrett

Anaheim

CA

CA 92812

1

2

Jill Monroe Irvine CA 554103

ID NAME CITY STATE ZIP

Sabrina Duncan

Culver City 90232Kelly Garrett

Anaheim

CA

CA 92812

1

2

Jill Monroe Irvine CA 926043
82 Chapter 7

webbots2e.book Page 83 Thursday, February 16, 2012 11:59 AM
Please note that if exe_sql() is fetching data from the database, it will
always return an array of data. If the query returns multiple rows of data,
you’ll get a multidimensional array. Otherwise, a single-dimensional array is
returned.

Storing Images in a Database

It is usually better to store images in a file structure and then refer to the
paths of the images in the database, but occasionally you may find the need
to store images as blobs, or large unstructured pieces of data, directly in a data-
base. These occasions may arise when you don’t have the requisite system
permissions to create a file. For example, many web administrators do not
allow their webservers to create files, as a security measure. To store an image
in a database, set the typecasting or variable type for the image to blob or
large blob and insert the data, as shown in Listing 7-4.

Table 7-1: Example Usage Scenarios for the LIB_mysql_exe_sql() Function

Instruction Result

$array = exe_sql(DATABASE, "select * $array[1]['ID']="1";

from people"); $array[1]['NAME']="Kelly Garrett";

$array[1]['CITY']="Culver City";

$array[1]['STATE']="CA";

$array[1]['ZIP']="90232";

$array[2]['ID']="2";

$array[2]['NAME']="Sabrina Duncan";

$array[2]['CITY']="Anaheim";

$array[2]['STATE']="CA";

$array[2]['ZIP']="92812";

$array[3]['ID']="3";

$array[3]['NAME']="Jill Monroe";

$array[3]['CITY']="Irvine";

$array[3]['STATE']="CA";

$array[3]['ZIP']="92604";

$array = exe_sql(DATABASE, "select *
from people where ID='2'");

$array['ID']="2";

$array['NAME']="Sabrina Duncan";

$array['CITY']="Anaheim";

$array['STATE']="CA";

$array['ZIP']="92604";

List($name)= exe_sql(DATABASE, "select
NAME from people where ID='2'");

$name = "Sabrina Duncan";

exe_sql(DATABASE, "delete from people
where ID='2'");

Deletes row 3 from table
Managing Large Amounts of Data 83

webbots2e.book Page 84 Thursday, February 16, 2012 11:59 AM
$data_array['IMAGE_ID'] = 6;
$data_array['IMAGE'] = base64_encode(file_get_contents($file_path));
insert(DATABASE, $table, $data_array);

Listing 7-4: Storing an image directly in a database record

When you store a binary file, like an image, in a database, you should
base64-encode the data first. Since the database assumes text or numeric
data, this precaution ensures that no bit combinations will cause internal
errors in the database. If you don’t do this, you take the risk that some odd bit
combination in the image will be interpreted as an unintended database
command or special character.

Since images are—or should be—base64 encoded, you need to decode
the images before you can reuse them. The script in Listing 7-5 shows how to
display an image stored in a database record.

<!— Display an image stored in a database where the image ID is 6 -->

Listing 7-5: HTML that displays an image stored in a database

Listing 7-6 shows the code to extract, decode, and present the image.

<?
Get needed database library
include("LIB_mysql.php");

Convert the variable on the URL to a new variable
$image_id=$_GET['img_id'];

Get the base64-encoded image from the database
$sql = "select IMAGE from table where IMAGE_ID='".$image_id."'";
list($img) = exe_sql (DATABASE, $sql);

Decode the image and send it as a file to the requester
header("Content-type: image/jpeg");
echo base64_decode($img);
exit;
?>

Listing 7-6: Script to query, decode, and create an image from an image record in a database

When an image tag is used in this fashion, the image src attribute is
actually a function that pulls the image from the database before is sends it
to the waiting web agent. This function knows which image to send because
it is referenced in the query of the src attribute. In this case, that record is
img_id, which corresponds with the table column IMAGE_ID. The program
show_image.php actually creates a new image file each time it is executed.
84 Chapter 7

webbots2e.book Page 85 Thursday, February 16, 2012 11:59 AM
Database or File?
Your decision to store information in a database or as files in a directory
structure is largely dependent on your application, but because of the
advantages that SQL brings to data storage, I often use databases. The
one common exception to this rule is images files, which (as previously
mentioned) are usually more efficiently stored as files in a directory. Never-
theless, when files are stored in local directories, it is often convenient to
identify the physical address of the file you saved in a database.

Making Data Smaller

Now that you know how to store data, you’ll want to efficiently store the data
in ways that reduce the amount of disk spaced required, while facilitating
easy retrieval and manipulation of that data. The following section explores
methods for reducing the size of the data your webbots collect in these ways:

 Storing references to data

 Compressing data

 Removing unneeded formatting

 Thumbnailing or creating smaller representations of larger graphic files

Storing References to Image Files
Since your webbot and the image files it discovers share the same network,
it is possible to store a network reference to the image instead of making a
physical copy of it. For example, instead of downloading and storing the
image north_beach.jpg from www.schrenk.com, you might store a reference to
its URL, http://www.schrenk.com/north_beach.jpg, in a database. Now, instead of
retrieving the file from your data structure, you could retrieve the actual file
from its original location. While you can apply this technique to images, this
technique is not limited to image files but also applies to HTML, JavaScript,
Style Sheets, or any other networked file.

There are three main advantages to recording references to images
instead of storing copies of the images. The most obvious advantage is that
the reference to an image will usually consume much less space than a copy
of the image file. Another advantage is that if the original image on the
website changes, you will still have access to the most current version of that
image—provided that the network address of the image hasn’t also changed.
A less obvious advantage to storing the network address of an image is that
you may shield yourself from potential copyright issues when you make a
copy of someone else’s intellectual property.

The disadvantage of storing a reference to an image instead of the actual
images is that there is no guarantee that it still references an image that’s
available online. When the remote image changes, your reference will be
obsolete. Given the short-lived nature of online media, images can change
or disappear without warning.
Managing Large Amounts of Data 85

webbots2e.book Page 86 Thursday, February 16, 2012 11:59 AM
Compressing Data

From a webbot’s perspective, compression can happen either when a web-
server delivers pages or when your webbot compresses pages before it stores
them for later use. Compression on inbound files will save bandwidth; the
second method can save space on your hard drives. If you’re ambitious, you
can use both forms of compression.

Compressing Inbound Files

Many webservers automatically compress files before they serve pages to
browsers. Managing your incoming data is just as important as managing the
data on your hard drive.

Servers configured to serve compressed web pages will look for signals
from the web client indicating that it can accept compressed pages. Like
browsers, your webbots can also tell servers that they can accept compressed
data by including the lines shown in Listing 7-7 in your PHP/CURL routines.

$header[] = "Accept-Encoding: compress, gzip";
curl_setopt($curl_session, CURLOPT_HTTPHEADER, $header);

Listing 7-7: Requesting compressed files from a webserver

Servers equipped to send compressed web pages won’t send compressed
files if they decide that the web agent cannot decompress the pages. Servers
default to uncompressed pages if there’s any doubt of the agent’s ability to
decompress compressed files. Over the years, I have found that some servers
look for specific agent names—in addition to header directions—before
deciding to compress outgoing data. For this reason, you won’t always gain
the advantage of inbound compression if your webbot’s agent name is
something nonstandard like Test Webbot. For that reason, when inbound
file compression is important, it’s best if your webbot emulates a common
browser.3

Since the webserver is the final arbiter of an agent’s ability to handle
compressed data—and since it always defaults on the side of safety (no
compressions)—you’re never guaranteed to receive a compressed file, even
if one is requested. If you are requesting compression from a server, it is
incumbent on your webbot to detect whether or not a web page was com-
pressed. To detect compression, look at the returned header to see if the web
page is compressed and, if so, what form of compression was used (as shown
in Listing 7-8).

if (stristr($http_header, "zip")) // Assumes that header is in $http_header
$compressed = TRUE;

Listing 7-8: Analyzing the HTTP header to detect inbound file compression

3 For more information on agent name spoofing, please review Chapter 3.
86 Chapter 7

webbots2e.book Page 87 Thursday, February 16, 2012 11:59 AM
If the data was compressed by the server, you can decompress the files
with the function gzuncompress() in PHP, as shown in Listing 7-9.

$uncompressed_file = gzuncompress($compressed_file);

Listing 7-9: Decompressing a compressed file

Compressing Files on Your Hard Drive

PHP provides a variety of built-in functions for compressing data. Listing 7-10
demonstrates these functions. This script downloads the default HTML file
from http://www.schrenk.com, compresses the file, and shows the difference
between the compressed and uncompressed files. The PHP sections of this
script appear in bold.

Demonstration of PHP file compression

Include cURL library
include("LIB_http.php");

Get web page
$target = "http://www.schrenk.com";
$ref = "";
$method = "GET";
$data_array = "";
$web_page = http_get($target, $ref, $method, $data_array, EXCL_HEAD);

Get sizes of compressed and uncompressed versions of web page
$uncompressed_size = strlen($web_page['FILE']);
$compressed_size = strlen(gzcompress($web_page['FILE'], $compression_value = 9));
$noformat_size = strlen(strip_tags($web_page['FILE']));

Report the sizes of compressed and uncompressed versions of web page
?>
<table border="1">
 <tr>
 <th colspan="3">Compression report for <? echo $target?></th>
 </tr>
 <tr>
 <th>Uncompressed</th>
 <th>Compressed</th>
 </tr>
 <tr>
 <td align="right"><?echo $uncompressed_size?> bytes</td>
 <td align="right"><?echo $compressed_size?> bytes</td>
 </tr>
</table>

Listing 7-10: Compressing a downloaded file
Managing Large Amounts of Data 87

webbots2e.book Page 88 Thursday, February 16, 2012 11:59 AM
While this is impressive, the biggest drawback to compression is that you
can’t do much with a compressed file. You can’t perform searches, sorts, or
comparisons on the contents of a compressed file. Nor can you modify the
contents of a file while it’s compressed. Furthermore, while text files (like
HTML files) compress effectively, many media files like JPG, GIF, WMF, or
MOV are already compressed and will not compress much further. If your
webbot application needs to analyze or manipulate downloaded files, file
compression may not be for you.

Removing Formatting
Removing unneeded HTML formatting instructions is much more useful for
reducing the size of a downloaded file than compressing it, since it still facili-
tates access to the useful information in the file. Formatting instructions like
<div class="font_a"> are of little use to a webbot because they only control
format and not content, and because they can be removed without harming
your data. Removing formatting reduces the size of downloaded HTML files
while still leaving the option of manipulating the data later. Fortunately, PHP
provides strip_tags_(), a built-in function that automatically strips HTML tags
from a document. For example, if I add the lines shown in Listing 7-11 to the
previous script, we can see the affect of stripping the HTML formatting.

$noformat = strip_tags($web_page['FILE']); // Remove HTML tags
$noformat_size = strlen($noformat); // Get size of new string

Listing 7-11: Removing HTML formatting using the strip_tags() function

Running the script from
Listing 7-10 in a browser pro-
vides the results shown in
Figure 7-6.

Before you start compres-
sing everything your webbot
finds, you should be aware of
the disadvantages of file com-
pression. In this example, com-
pression resulted in files roughly
20 percent of the original size.

Figure 7-6: The script from Listing 7-10, showing
the value of compressing files

If you run the program in
Listing 7-10 again and modify
the output to also show the size
of the unformatted file, you will
see that the unformatted web
page is nearly as compact as the
compressed version. The results
are shown in Figure 7-7.

Figure 7-7: Comparison of uncompressed, com-
pressed, and unformatted file sizes
88 Chapter 7

webbots2e.book Page 89 Thursday, February 16, 2012 11:59 AM
Unlike the compressed data, the unformatted data can still be sorted,
modified, and searched. You can make the file even smaller by removing
excessive spaces, line feeds, and other white space with a simple PHP function
called trim(), without reducing your ability to manipulate the data later. As
an added benefit, unformatted pages may be easier to manipulate, since
parsing routines won’t confuse HTML for the content you’re acting on.
Remember that removing the HTML tags removes all links, JavaScript,
image references, and CSS information. If any of that is important, you
should extract it before removing a page’s formatting.

Thumbnailing Images

The most effective method of decreasing the size of an image is to create
smaller versions, or thumbnails, of the original. You may easily create thumb-
nails with the LIB_thumbnail library, which you can download from this book’s
website. To use this library, you will have to verify that your configuration uses
the gd (revision 2.0 or higher) graphics module.4 The script in Listing 7-12
demonstrates how to use LIB_thumbnail to create a miniature version of a
larger image. The PHP sections of this script appear in bold.

Demonstration of LIB_thumbnail.php

Include libraries
include("LIB_http.php");
include("LIB_thumbnail.php");

Get image from the Internet
$target = "http://www.schrenk.com/north_beach.jpg";
$ref = "";
$method = "GET";
$data_array = "";
$image = http_get($target, $ref, $method, $data_array, EXCL_HEAD);

Store captured image file to local hard drive
$handle = fopen("test.jpg", "w");
fputs($handle, $image['FILE']);
fclose($handle);

Create thumbnail image from image that was just stored locally
$org_file = "test.jpg";
$new_file_name = "thumbnail.jpg";

Set the maximum width and height of the thumbnailed image
$max_width = 90;
$max_height= 90;

4 If the gd module is not installed in your configuration, please reference http://www.php.net/
manual/en/ref.image.php for further instructions.
Managing Large Amounts of Data 89

webbots2e.book Page 90 Thursday, February 16, 2012 11:59 AM
Create the thumbnailed image
create_thumbnail($org_file, $new_file_name, $max_width, $max_height);
?>

Full-size image

<p>
Thumbnail image

Listing 7-12: Demonstration of how LIB_thumbnail may create a thumbnailed image

Final Thoughts

When storing information, you need to consider what is being stored and
how that information will be used later. Furthermore, if the data isn’t going
to be used later, you need to ask yourself why you need to save it.

Sometimes it is easier to parse text before the HTML tags are removed.
This is especially true with regard to data in tables, where rows and columns
are parsed.

While unformatted pages are stripped of presentation, colors, and
images, the remaining text is enough to represent the original file. Without
the HTML, it is actually easier to characterize, manipulate, or search for the
presence of keywords.

Before you continue, this is a good time to download LIB_mysql, LIB_http,
and LIB_thumbnail from this book’s website. You will need all of these libraries
to program later examples in this book.

The script in Listing 7-12
fetches an image from the Inter-
net, writes a copy of the original
to a local file, defines the max-
imum dimensions of the thumb-
nail, creates the thumbnail, and
finally displays both the original
image and the thumbnail image.

The product of running the
script in Listing 7-12 is shown in
Figure 7-8.

The thumbnailed image
shown in Figure 7-8 consumes
roughly 30 percent as much
space as the original file. If the
original file was larger or the
specification for the thumb-
nailed image was smaller, the
savings would be even greater.

Figure 7-8: Output of Listing 7-12, making
thumbnails with LIB_thumbnail
90 Chapter 7

webbots2e.book Page 91 Thursday, February 16, 2012 11:59 AM
PART II
P R O J E C T S

This section expands on the concepts you learned
in the previous section with simple yet demonstrative
projects. Any of these projects, with further develop-
ment, could be transformed from a simple webbot
concept into a potentially marketable product.
Chapter 8: Price-Monitoring Webbots

The first project describes webbots that collect and analyze online prices
from a mock store that exists on this book’s website. The prices change
periodically, creating an opportunity for your webbots to analyze and
make purchase decisions based on the price of items.

Since this example store is solely for your experimentation, you’ll gain
confidence in testing your webbot on web pages that serve no commercial
purpose and haven’t changed since this book’s publication. This environ-
ment also gives you the freedom to make mistakes without obsessing over
the crumbs your webbots leave behind in an actual online store’s server
log file.

Chapter 9: Image-Capturing Webbots
The image-capturing webbot leverages your knowledge of downloading
and parsing web pages to create an application that copies all the images
(and their directory structure) to your local hard drive. In addition to cre-
ating a useful tool, you’ll also learn how to convert relative addresses into
fully resolved URLs, a technique that is vital for later spidering projects.

webbots2e.book Page 92 Thursday, February 16, 2012 11:59 AM
Chapter 10: Link-Verification Webbots
Here you will have the opportunity to write a webbot that automatically
verifies that all the links on a web page point to valid web pages. I con-
clude the chapter with ideas for expanding this concept into a variety
of useful tools and products.

Chapter 11: Search-Ranking Webbots
This project describes a simple webbot that determines how highly a
search engine ranks a website, given a set of search criteria. You’ll also
find a host of ideas about how you can modify this concept to provide
a variety of other services.

Chapter 12: Aggregation Webbots
Aggregation is a technique that gathers the contents of multiple web
pages into a single location. This project introduces techniques that
make it easy to exploit the availability of RSS news services.

Chapter 13: FTP Webbots
Webbots that use FTP are able to move the information they collect to an
FTP server for storage or for use by other applications. In this chapter,
we’ll explore methods for navigating on, uploading to, and downloading
from FTP servers.

Chapter 14: Webbots That Read Email
Here you will learn how to write webbots that read and delete messages
from any POP3 mail server. The ability to read email allows a webbot to
interpret instructions sent by email or to apply a variety of email filters.

Chapter 15: Webbots That Send Email
In this chapter, you’ll learn various methods that allow your webbots to
send email messages and notifications. You will also learn how to lever-
age what you learned in the previous chapter to create “smart email
addresses” that can determine how to forward messages based on their
content without modifying anything on the mail server.

Chapter 16: Converting a Website into a Function
This project describes how you can use form emulation and parsing
techniques to transform any pre-existing online application into a
function you can call from any PHP program.
92 Par t I I

webbots2e.book Page 93 Thursday, February 16, 2012 11:59 AM
P R I C E - M O N I T O R I N G W E B B O T S

In this chapter, we’ll look at a strategic
application of webbots—monitoring online

prices. There are many reasons one would do
this. For example, a webbot might monitor prices

for these purposes:

 Notifying someone (via email or text message1) when a price drops
below a preset threshold

 Predicting price trends by performing statistical analysis on price histories

 Establishing your company’s prices by studying what the competition
charges for similar items

Regardless of your reasons to monitor prices, the one thing that all of
these strategies have in common is that they all download web pages contain-
ing prices and then identify and parse the data.

1 Chapter 15 describes how webbots send email. Appendix C describes how to use email to send
text messages.

webbots2e.book Page 94 Thursday, February 16, 2012 11:59 AM
In this chapter, I will describe methods for monitoring online prices
on e-commerce websites. Additionally, I will explain how to parse data from
tables and prepare you for the webbot strategies revealed in Chapter 18.

The Target

The practice store, available at this book’s website,2 will be the target for our
price-monitoring webbot. A screenshot of the store is shown in Figure 8-1.

Figure 8-1: The e-commerce website that is monitored by the price-monitoring
webbot

This practice store provides a controlled environment that is ideal for
this exercise. For example, by targeting the example store you can do the
following:

 Experiment with price-monitoring webbots without the possibility of
interfering with an actual business

 Control the content of this target, so you don’t run the risk of someone
modifying the web page, which could break the example scripts3

The prices change on a daily basis, so you can also use it to practice
writing webbots that track and graph prices over time.

2 The URL for this store is found at http://www.WebbotsSpidersScreenScrapers.com.
3 The example scripts are resistant to most changes in the target store.
94 Chapter 8

webbots2e.book Page 95 Thursday, February 16, 2012 11:59 AM
Designing the Parsing Script

Our webbot’s objective is to download the target web page, parse the price
variables, and place the data into an array for processing. The price-monitoring
webbot is largely an exercise in parsing data that appears in tables, since useful
online data usually appears as such. When tables aren’t used, <div> tags are
generally applied and can be parsed in a similar manner.

While we know that the test target for this example won’t change, we
don’t know that about targets in the wild. Therefore, we don’t want to be too
specific when telling our parsing routines where to look for pricing informa-
tion. In this example, the parsing script won’t look for data in specific loca-
tions; instead, it will look for the desired data relative to easy-to-find text that
tells us where the desired information is located. If the position of the pricing
information on the target web page changes, our parsing script will still find it.

Let’s look at a script that downloads the target web page, parses the
prices, and displays the data it parsed. This script is available in its entirety
from this book’s website. The script is broken into sections here; however,
iterative loops are simplified for clarity.

Initialization and Downloading the Target

The example script initializes by including the LIB_http and LIB_parse
libraries you read about earlier. It also creates an array where the parsed data
is stored, and it sets the product counter to zero, as shown in Listing 8-1.

Initialization
include("LIB_http.php");
include("LIB_parse.php");
$product_array=array();
$product_count=0;

Download the target (practice store) web page
$target = "http://www.WebbotsSpidersScreenScrapers.com/example_store";
$web_page = http_get($target, "");

Listing 8-1: Initializing the price-monitoring webbot

After initialization, the script proceeds to download the target web page
with the get_http() function described in Chapter 3.

After downloading the web page, the script parses all the page’s tables
into an array, as shown in Listing 8-2.

Parse all the tables on the web page into an array
$table_array = parse_array($web_page['FILE'], "<table", "</table>");

Listing 8-2: Parsing the tables into an array
Pr ice -Moni tor ing Webbots 95

webbots2e.book Page 96 Thursday, February 16, 2012 11:59 AM
The script does this because the product pricing data is in a table. Once
we neatly separate all the tables, we can look for the table with the product
data. Notice that the script uses <table, not <table>, as the leading indicator
for a table. It does this because <table will always be appropriate, no matter
how many table formatting attributes are used.

Next, the script looks for the first landmark, or text that identifies the
table where the product data exists. Since the landmark represents text that
identifies the desired data, that text must be exclusive to our task. For example,
by examining the page’s source code we can see that we cannot use the word
origin as a landmark because it appears in both the description of this week’s
auction and the list of products for sale. The example script uses the words
Products for Sale, because that phrase only exists in the heading of the product
table and is not likely to exist elsewhere if the web page is updated. The script
looks at each table until it finds the one that contains the landmark text,
Products for Sale, as shown in Listing 8-3.

Look for the table that contains the product information
for($xx=0; $xx<count($table_array); $xx++)
 {
 $table_landmark = "Products For Sale";
 if(stristr($table_array[$xx], $table_landmark)) // Process this table
 {
 echo "FOUND: Product table\n";

Listing 8-3: Examining each table for the existence of the landmark text

Once the table containing the product pricing data is found, that table is
parsed into an array of table rows, as shown in Listing 8-4.

Parse table into an array of table rows
$product_row_array = parse_array($table_array[$xx], "<tr", "</tr>");

Listing 8-4: Parsing the table into an array of table rows

Then, once an array of table rows from the product data table is available,
the script looks for the product table heading row. The heading row is useful
for two reasons: It tells the webbot where the data begins within the table,
and it provides the column positions for the desired data. This is important
because in the future, the order of the data columns could change (as part of
a web page update, for example). If the webbot uses column names to identify
data, the webbot will still parse data correctly if the order changes, as long as
the column names remain the same.

Here again, the script relies on a landmark to find the table heading row.
This time, the landmark is the word Condition, as shown in Listing 8-5. Once
the landmark identifies the table heading, the positions of the desired table
columns are recorded for later use.
96 Chapter 8

webbots2e.book Page 97 Thursday, February 16, 2012 11:59 AM
for($table_row=0; $table_row<count($product_row_array); $table_row++)
 {
 # Detect the beginning of the desired data (heading row)

$heading_landmark = "Condition";
 if((stristr($product_row_array[$table_row], $heading_landmark)))
 {
 echo "FOUND: Table heading row\n";

 # Get the position of the desired headings
 $table_cell_array = parse_array($product_row_array[$table_row], "<td", "</td>");
 for($heading_cell=0; $heading_cell<count($table_cell_array); $heading_cell++)
 {
 if(stristr(strip_tags(trim($table_cell_array[$heading_cell])), "ID#"))
 $id_column=$heading_cell;
 if(stristr(strip_tags(trim($table_cell_array[$heading_cell])), "Product name"))
 $name_column=$heading_cell;
 if(stristr(strip_tags(trim($table_cell_array[$heading_cell])), "Price"))
 $price_column=$heading_cell;
 }
 echo "FOUND: id_column=$id_column\n";
 echo "FOUND: price_column=$price_column\n";
 echo "FOUND: name_column=$name_column\n";

 # Save the heading row for later use

$heading_row = $table_row;
 }

Listing 8-5: Detecting the table heading and recording the positions of desired columns

As the script loops through the table containing the desired data, it
must also identify where the pricing data ends. A landmark is used again
to identify the end of the desired data. The script looks for the landmark
Calculate, from the form’s submit button, to identify when it has reached the
end of the data. Once found, it breaks the loop, as shown in Listing 8-6.

Detect the end of the desired data table
$ending_landmark = "Calculate";
if((stristr($product_row_array[$table_row], $ending_landmark)))
 {
 echo "PARSING COMPLETE!\n";
 break;
 }

Listing 8-6: Detecting the end of the table

If the script finds the headers but doesn’t find the end of the table,
it assumes that the rest of the table rows contain data. It parses these
table rows, using the column position data gleaned earlier, as shown in
Listing 8-7.
Pr ice -Moni tor ing Webbots 97

webbots2e.book Page 98 Thursday, February 16, 2012 11:59 AM
Parse product and price data
if(isset($heading_row) && $heading_row<$table_row)
 {
 $table_cell_array = parse_array($product_row_array[$table_row], "<td", "</td>");
 $product_array[$product_count]['ID'] =
 strip_tags(trim($table_cell_array[$id_column]));
 $product_array[$product_count]['NAME'] =
 strip_tags(trim($table_cell_array[$name_column]));
 $product_array[$product_count]['PRICE'] =
 strip_tags(trim($table_cell_array[$price_column]));
 $product_count++;
 echo"PROCESSED: Item #$product_count\n";
 }

Listing 8-7: Assigning parsed data to an array

Once the prices are parsed into an array, the webbot script can do anything
it wants with the data. In this case, it simply displays what it collected, as shown
in Listing 8-8.

Display the collected data
for($xx=0; $xx<count($product_array); $xx++)
 {
 echo "$xx. ";
 echo "ID: ".$product_array[$xx]['ID'].", ";
 echo "NAME: ".$product_array[$xx]['NAME'].", ";
 echo "PRICE: ".$product_array[$xx]['PRICE']."\n";
 }

Listing 8-8: Displaying the parsed product pricing data

As shown in Figure 8-2, the webbot indicates when it finds landmarks and
prices. This not only tells the operator how the webbot is running, but also
provides important diagnostic information, making both debugging and
maintenance easier.

Since prices are almost always in HTML tables, you will usually parse
price information in a manner that is similar to that shown here. Occasionally,
pricing information may be contained in other tags, (like <div> tags, for
example), but this is less likely. When you encounter <div> tags, you can
easily parse the data they contain into arrays using similar methods.

FOUND: Product table
FOUND: Table heading row
FOUND: id_column=0
FOUND: price_column=4
FOUND: name_column=1
PROCESSED: Item #1
0. ID: P00100, NAME: Edina, PRICE: $6.00
PROCESSED: Item #2
98 Chapter 8

webbots2e.book Page 99 Thursday, February 16, 2012 11:59 AM
0. ID: P00100, NAME: Edina, PRICE: $6.00
1. ID: P00101, NAME: Richfield, PRICE: $7.00
PROCESSED: Item #3
0. ID: P00100, NAME: Edina, PRICE: $6.00
1. ID: P00101, NAME: Richfield, PRICE: $7.00
2. ID: P00102, NAME: Bloomington, PRICE: $8.00
PROCESSED: Item #4
0. ID: P00100, NAME: Edina, PRICE: $6.00
1. ID: P00101, NAME: Richfield, PRICE: $7.00
2. ID: P00102, NAME: Bloomington, PRICE: $8.00
3. ID: P00103, NAME: Hopkins, PRICE: $8.00
PROCESSED: Item #5
0. ID: P00100, NAME: Edina, PRICE: $6.00
1. ID: P00101, NAME: Richfield, PRICE: $7.00
2. ID: P00102, NAME: Bloomington, PRICE: $8.00
3. ID: P00103, NAME: Hopkins, PRICE: $8.00
4. ID: P00104, NAME: Golden Valley, PRICE: $9.00
PROCESSED: Item #6
0. ID: P00100, NAME: Edina, PRICE: $6.00
1. ID: P00101, NAME: Richfield, PRICE: $7.00
2. ID: P00102, NAME: Bloomington, PRICE: $8.00
3. ID: P00103, NAME: Hopkins, PRICE: $8.00
4. ID: P00104, NAME: Golden Valley, PRICE: $9.00
5. ID: P00105, NAME: Minneapolis, PRICE: $10.00
PROCESSED: Item #7
0. ID: P00100, NAME: Edina, PRICE: $6.00
1. ID: P00101, NAME: Richfield, PRICE: $7.00
2. ID: P00102, NAME: Bloomington, PRICE: $8.00
3. ID: P00103, NAME: Hopkins, PRICE: $8.00
4. ID: P00104, NAME: Golden Valley, PRICE: $9.00
5. ID: P00105, NAME: Minneapolis, PRICE: $10.00
6. ID: P00106, NAME: St.Paul, PRICE: $11.00
PROCESSED: Item #8
0. ID: P00100, NAME: Edina, PRICE: $6.00
1. ID: P00101, NAME: Richfield, PRICE: $7.00
2. ID: P00102, NAME: Bloomington, PRICE: $8.00
3. ID: P00103, NAME: Hopkins, PRICE: $8.00
4. ID: P00104, NAME: Golden Valley, PRICE: $9.00
5. ID: P00105, NAME: Minneapolis, PRICE: $10.00
6. ID: P00106, NAME: St.Paul, PRICE: $11.00
7. ID: P00107, NAME: Canterbury Downs, PRICE: $12.00
PROCESSED: Item #9
0. ID: P00100, NAME: Edina, PRICE: $6.00
1. ID: P00101, NAME: Richfield, PRICE: $7.00
2. ID: P00102, NAME: Bloomington, PRICE: $8.00
3. ID: P00103, NAME: Hopkins, PRICE: $8.00
4. ID: P00104, NAME: Golden Valley, PRICE: $9.00
5. ID: P00105, NAME: Minneapolis, PRICE: $10.00
6. ID: P00106, NAME: St.Paul, PRICE: $11.00

Figure 8-2: The price-monitoring webbot, as run in a shell
Pr ice -Moni tor ing Webbots 99

webbots2e.book Page 100 Thursday, February 16, 2012 11:59 AM
Further Exploration

Now you know how to parse pricing information from a web page—what you
do with this information is up to you. If you are so inclined, you can expand
your experience with some of the following suggestions.

 Since the prices in the example store change on a daily basis, monitor
the daily price changes for a month and save your parsed results in a
database.

 Develop scripts that graph price fluctuations.

 Read about sending email with webbots in Chapter 15, and develop
scripts that notify you when prices hit preset high or low thresholds.

 Build a real procurement system that not only monitors products and
prices but also make purchases.

While this chapter covers monitoring prices online, you can use similar
parsing techniques to monitor and parse other types of data found in HTML
tables. Consider using the techniques you learned here to monitor things
like baseball scores, stock prices, weather forecasts, census data, banner ad
rotation statistics,4 and more.

4 You can use webbots to perform a variety of diagnostic functions. For example, a webbot may
repeatedly download a web page to gather metrics on how banner ads are rotated.
100 Chapter 8

webbots2e.book Page 101 Thursday, February 16, 2012 11:59 AM
I M A G E - C A P T U R I N G W E B B O T S

In this chapter, I’ll describe a webbot that
identifies and downloads all of the images

on a web page. This webbot also stores images
in a directory structure similar to the directory

structure on the target website. This project will show
how a seemingly simple webbot can be made more com-
plex by addressing these common problems:

 Finding the page base, or the address that defines the address from which
all relative addresses are referenced

 Dealing with changes to the page base, caused by page redirection

 Converting relative addresses into fully resolved URLs

 Replicating complex directory structures

 Properly downloading image files with binary formats

In Chapter 17, you’ll expand on these concepts to develop a spider that
downloads images from an entire website, not just one page.

webbots2e.book Page 102 Thursday, February 16, 2012 11:59 AM
Example Image-Capturing Webbot
Our image-capturing webbot downloads a target web page (in this case, the
Viking Mission web page on the NASA website) and parses all references to
images on the page. The webbot downloads each image, echoes the image’s
name and size to the console, and stores the file on the local hard drive.
Figure 9-1 shows what the webbot’s output looks like when executed from
a shell.

target = http://www.nasa.gov/mission_pages/viking/index.html
image: /templateimages/redesign/modules/overlay/site_error.gif size: 181
 image: /images/content/479931main_pia09942-390.jpg size: 16078
 image: /images/content/142889main_Viking_Lander_2.jpg size: 27486
 image: /images/content/152358main_pia01522-64.jpg size: 1309
 image: /images/content/150824main_viking_64.jpg size: 1507
 image: /images/content/143164main_viking_orbiter2.jpg size: 1724
 image: /images/content/142840main_viking1_lander.jpg size: 1909
 image: /images/content/141692main_frontpage_moonshadows.jpg size: 1750
 image: /images/content/152611main_pia00572-th.jpg size: 2108
 image: /images/content/193841main_viking_30_vid_226.jpg size: 14415
 image: /images/content/193840main_trailblazer_226.jpg size: 14429
 image: /images/content/193839main_mars_as_art_226.jpg size: 14613
 image: /images/content/193837main_30_yrs_226.jpg size: 5527
 image: /images/content/193842main_viking_image_archive_226.jpg size: 12164
image: /images/content/104463main_worldbook_mars_100.jpg size: 2068

Figure 9-1: The image-capturing bot, when executed from a shell

On this website, like many others, several unique images share the same
filename but have different file paths. For example, the image /templates/
logo.gif may represent a different graphic than /templates/affiliate/logo.gif. To
solve this problem, the webbot re-creates a local copy of the directory struc-
ture that exists on the target web page. Figure 9-2 shows the directory structure
the webbot created when it saved these images it downloaded from the NASA
example.

Creating the Image-Capturing Webbot
This example webbot relies on a library called LIB_download_images, which
is available from this book’s website. This library contains the following
functions:

 download_binary_file(), which safely downloads image files

 mkpath(), which makes directory structures on your hard drive

 download_images_for_page(), which downloads all the images on a page

For clarity, I will break down this library into highlights and accompa-
nying explanations.
102 Chapter 9

webbots2e.book Page 103 Thursday, February 16, 2012 11:59 AM
Figure 9-2: Re-creating a file structure for stored images

The first script (Listing 9-1) shows the main webbot used in Figures 9-1
and 9-2.

include("LIB_download_images.php");
$target="http://www.nasa.gov/mission_pages/viking/index.html";
download_images_for_page($target);

Listing 9-1: Executing the image-capturing webbot

This short webbot script loads the LIB_download_images library, defines a
target web page, and calls the download_images_for_page() function, which gets
the images and stores them in a complementary directory structure on the
local drive.

NOTE Please be aware that the scripts in this chapter, which are available at http://www
.WebbotsSpidersScreenScrapers.com, are created for demonstration purposes only.
Although they should work in most cases, they aren’t production ready. You may find
long or complicated directory structures, odd filenames, or unusual file formats that
will cause these scripts to crash.

Binary-Safe Download Routine

Our image-grabbing webbot uses the function download_binary_file(), which
is designed to download binary files, like images. Other binary files you may
encounter could include executable files, compressed files, or system files.
Up to this point, the only file downloads discussed have been ASCII (text)
files, like web pages. The distinction between downloading binary and ASCII
files is important because they have different formats and can cause confusion
when downloaded. For example, random byte combinations in binary files
may be misinterpreted as end-of-file markers in ASCII file downloads. If you
download a binary file with a script designed for ASCII files, you stand a
good chance of downloading a partial or corrupt file.
Image-Captur ing Webbots 103

webbots2e.book Page 104 Thursday, February 16, 2012 11:59 AM
Even though PHP has its own, built-in binary-safe download functions, this
webbot uses a custom download script that leverages PHP/CURL functionality
to download images from SSL sites (when the protocol is HTTPS), follow
HTTP file redirections, and send referer information to the server.

Sending proper referer information is crucial because many websites will
stop other websites from “borrowing” images. Borrowing images from other
websites (without hosting the images on your server) is bad etiquette and is
commonly called hijacking. If your webbot doesn’t include a proper referer
value, its activity could be confused with a website that is hijacking images.
Listing 9-2 shows the file download script used by this webbot.

function download_binary_file($file, $referer)
 {
 # Open a PHP/CURL session
 $s = curl_init();

 # Configure the PHP/CURL command
 curl_setopt($s, CURLOPT_URL, $file); // Define target site
 curl_setopt($s, CURLOPT_RETURNTRANSFER, TRUE); // Return file contents in a string
 curl_setopt($s, CURLOPT_BINARYTRANSFER, TRUE); // Indicate binary transfer
 curl_setopt($s, CURLOPT_REFERER, $referer); // Referer value
 curl_setopt($s, CURLOPT_SSL_VERIFYPEER, FALSE); // No certificate
 curl_setopt($s, CURLOPT_FOLLOWLOCATION, TRUE); // Follow redirects
 curl_setopt($s, CURLOPT_MAXREDIRS, 4); // Limit redirections to four

 # Execute the PHP/CURL command (send contents of target web page to string)
 $downloaded_page = curl_exec($s);

 # Close PHP/CURL session and return the file
 curl_close($s);
 return $downloaded_page;
 }

Listing 9-2: A binary-safe file download routine, optimized for webbot use

Directory Structure
The script that creates directories (shown in Figure 9-2) is derived from a
user-contributed routine found on the PHP website (http://www.php.net).
Users commonly submit scripts like this one when they find something they
want to share with the PHP community. In this case, it’s a function that
expands on mkdir() by creating complete directory structures with multiple
directories at once. I modified the function slightly for our purposes. This
function, shown in Listing 9-3, creates any file path that doesn’t already
exist on the hard drive and, if needed, it will create multiple directories for
a single file path. For example, if the image’s file path is images/templates/
November, this function will create all three directories—images, templates,
and November—to satisfy the entire file path.
104 Chapter 9

webbots2e.book Page 105 Thursday, February 16, 2012 11:59 AM
function mkpath($path)
 {
 # Make sure that the slashes are all single and lean the correct way
 $path=preg_replace('/(\/){2,}|(\\\){1,}/','/',$path);

 # Make an array of all the directories in path
 $dirs=explode("/",$path);

 # Verify that each directory in path exists and create if necessary
 $path="";
 foreach ($dirs as $element)
 {
 $path.=$element."/";
 if(!is_dir($path)) // Directory verified here
 mkdir($path); // Created if it doesn't exist
 }
 }

Listing 9-3: Re-creating file paths for downloaded images

This script in Listing 9-3 places all the path directories into an array
and attempts to re-create that array, one directory at a time, on the local
filesystem. Only nonexistent directories are created.

The Main Script

The main function for this webbot, download_images_for_page(), is broken
down into highlights and explained below. As mentioned earlier, this
function—and the entire LIB_download_images library—is available at this
book’s website.

Initialization and Target Validation

Since $target is used later for resolving the web address of the images, the
$target value must be validated after the web page is downloaded. This is
important because the server may redirect the webbot to an updated web
page. That updated URL is the actual URL for the target page and the one
that all relative files are referenced from in the next step. The script in
Listing 9-4 verifies that the $target is the actual URL that was downloaded
and not the product of a redirection.

function download_images_for_page($target)
 {
 echo "target = $target\n";
 # Download the web page
 $web_page = http_get($target, $referer="");
 # Update the target in case there was a redirection
 $target = $web_page['STATUS']['url'];

Listing 9-4: Downloading the target web page and responding to page redirection
Image-Captur ing Webbots 105

webbots2e.book Page 106 Thursday, February 16, 2012 11:59 AM
Defining the Page Base

Much like the <base> HTML tag, the webbot uses $page_base to define
the directory address of the target web page. This address becomes the
reference for all images with relative addresses. For example, if $target is
http://www.schrenk.com/april/index.php, then $page_base becomes http://
www.schrenk.com/april.

This task, which is shown in Listing 9-5, is performed by the function
get_base_page_address() and is actually in LIB_resolve_address and included
by LIB_download_images.

 # Strip filename off target for use as page base
 $page_base=get_base_page_address($target);

Listing 9-5: Creating the page base for the target web page

As an example, if the webbot finds an image with the relative address
14/logo.gif, and the page base is http://www.schrenk.com/april, the webbot will
use the page base to derive the fully resolved address for the image. In this
case, the fully resolved address is http://www.schrenk.com/april/14/logo.gif. In
contrast, if the image’s file path is /march/14/logo.gif, the address will resolve
to http://www.schrenk.com/march/14/logo.gif.

Creating a Root Directory for Imported File Structure

Since this webbot may download images from a number of domains, it creates
a directory structure for each (see Listing 9-6). The root directory of each
imported file structure is based on the page base.

 # Identify the directory where images are to be saved
 $save_image_directory = "saved_images_".str_replace("http://", "", $page_base);

Listing 9-6: Creating a root directory for the imported file structure

Parsing Image Tags from the Downloaded Web Page

The webbot uses techniques described in Chapter 4 to parse the image tags
from the target web page and put them into an array for easy processing.
This is shown in Listing 9-7. The webbot stops if the target web page
contains no images.

 # Parse the image tags
 $img_tag_array = parse_array($web_page['FILE'], "<img", ">");
 if(count($img_tag_array)==0)
 {
 echo "No images found at $target\n";
 exit;
 }

Listing 9-7: Parsing the image tags
106 Chapter 9

webbots2e.book Page 107 Thursday, February 16, 2012 11:59 AM
The Image-Processing Loop

The webbot employs a loop, where each image tag is individually processed.
For each image tag, the webbot parses the image file source and creates a
fully resolved URL (see Listing 9-8). Creating a fully resolved URL is impor-
tant because the webbot cannot download an image without its complete URL:
the HTTP protocol identifier, the domain, the image’s file path, and the
image’s filename.

 $image_path = get_attribute($img_tag_array[$xx], $attribute="src");
 echo " image: ".$image_path;
 $image_url = resolve_address($image_path, $page_base);

Listing 9-8: Parsing the image source and creating a fully resolved URL

Creating the Local Directory Structure

The webbot verifies that the file path exists in the local file structure. If the
directory doesn’t exist, the webbot creates the directory path, as shown in
Listing 9-9.

 if(get_base_domain_address($page_base) == get_base_domain_address($image_url))
 {
 # Make image storage directory for image, if one doesn't exist
 $directory = substr($image_path, 0, strrpos($image_path, "/"));

 clearstatcache(); // Clear cache to get accurate directory status
 if(!is_dir($save_image_directory."/".$directory)) // See if dir exists
 mkpath($save_image_directory."/".$directory); // Create if it doesn't

Listing 9-9: Creating the local directory structure for each image file

Downloading and Saving the File

Once the path is verified or created, the image is downloaded (using its fully
resolved URL) and stored in the local file structure (see Listing 9-10).

Download the image and report image size
$this_image_file = download_binary_file($image_url, $referer=$target);
echo " size: ".strlen($this_image_file);

Save the image
$fp = fopen($save_image_directory."/".$image_path, "w");
fputs($fp, $this_image_file);
fclose($fp);
echo "\n";

Listing 9-10: Downloading and storing images

The webbot repeats this process for each image parsed from the target
web page.
Image-Captur ing Webbots 107

webbots2e.book Page 108 Thursday, February 16, 2012 11:59 AM
Further Exploration

You can point this webbot at any web page, and it will generate a copy of
each image that page uses, arranged in a directory structure that resembles
the original. You can also develop other useful webbots based on this design.
If you want to test your skills, consider the following challenges.

 Write a similar webbot that detects hijacked images.

 Improve the efficiency of the script by reworking it so that it doesn’t
download an image it has downloaded previously.

 Modify this webbot to create local backup copies of web pages.

 Adjust the webbot to cache movies or audio files instead of images.

 Modify the bot to monitor when images change on a web page.

Final Thoughts

If you attempt to run this webbot on a remote server, remember that your
webbot must have write privileges on that server, or it won’t be able to create
file structures or download images.
108 Chapter 9

webbots2e.book Page 109 Thursday, February 16, 2012 11:59 AM
L I N K - V E R I F I C A T I O N W E B B O T S

This webbot project solves a problem shared
by all web developers—detecting broken

links on web pages. Verifying links on a web
page isn’t difficult to do, and the associated script

is short. Figure 10-1 shows the simplicity of this webbot.

Creating the Link-Verification Webbot

For clarity, I’ll break down the creation of the link-verification webbot into
manageable sections, which I’ll explain along the way. The code and libraries
used in this chapter are available for download at this book’s website.

Initializing the Webbot and Downloading the Target
Before validating links on a web page, your webbot needs to load the
required libraries and initialize a few key variables. In addition to LIB_http and
LIB_parse, this webbot introduces two new libraries: LIB_resolve_addresses and
LIB_http_codes. I’ll explain these additions as I use them.

webbots2e.book Page 110 Thursday, February 16, 2012 11:59 AM
Figure 10-1: Link-verification bot flow chart

The webbot downloads the target web page with the http_get() function,
which was described in Chapter 3.

Include libraries
include("LIB_http.php");
include("LIB_parse.php");
include("LIB_resolve_addresses.php");
include("LIB_http_codes.php");

Identify the target web page and the page base
$target = "http://www.WebbotsSpidersScreenScrapers.com/
page_with_broken_links.php";
$page_base = "http://www.WebbotsSpidersScreenScrapers.com/";

Download the web page
$downloaded_page = http_get($target, $ref="");

Listing 10-1: Initializing the bot and downloading the target web page

Setting the Page Base
In addition to defining the $target, which points to a diagnostic page on the
book’s website, Listing 10-1 also defines a variable called $page_base. A page
base defines the domain and server directory of the target page, which tells
the webbot where to find web pages referenced with relative links.

Verification
loop

Yes

No

Initialize webbot and
download target

Parse links

Are all links
verified?

Download
linked page

Create fully
resolved URLs

Display
page results

Finish
110 Chapter 10

webbots2e.book Page 111 Thursday, February 16, 2012 11:59 AM
Relative links are references to other files—relative to where the
reference is made. For example, consider the relative links in Table 10-1.

Your webbot would fail if it tried to download any of these links as is,
since your webbot’s reference point is the computer it runs on, and not the
computer where the links where found. The page base, however, gives your
webbot the same reference as the target page. You might think of it this
way: The page base is to a webbot as the <base> tag is to a browser. The
page base sets the reference for everything referred to on the target
web page.

Parsing the Links

You can easily parse all the links and place them into an array with the script
in Listing 10-2.

Parse the links
$link_array = parse_array($downloaded_page['FILE'], $beg_tag="<a", $close_tag=">");

Listing 10-2: Parsing the links from the downloaded page

The code in Listing 10-2 uses parse_array() to put everything between every
occurrence of <a and > into an array.1 The function parse_array() is not case
sensitive, so it doesn’t matter if the target web page uses <a>, <A> or a combina-
tion of both tags to define links.

Running a Verification Loop

You gain a great deal of convenience when the parsed links are available in
an array. The array allows your script to verify the links iteratively through
one set of verification instructions, as shown in Listing 10-3. The PHP sections
of this script appear in bold.

Listing 10-3 also includes some HTML formatting to create a nice-
looking report, which you’ll see later. Notice that the contents of the
verification loop have been removed for clarity. I’ll explain what happens
in this loop next.

Table 10-1: Examples of Relative Links

Link References a File Located In . . .

 Same directory as web page

 The page’s parent directory (up one level)

 The page’s parent’s parent directory (up 2 levels)

 The server’s root directory

1 Parsing functions are explained in Chapters 4 and 5.
L ink -Ver i f icat ion Webbots 111

webbots2e.book Page 112 Thursday, February 16, 2012 11:59 AM
Status of links on <?echo $target?>

<table border="1" cellpadding="1" cellspacing="0">
 <tr bgcolor="#e0e0e0">
 <th>URL</th>
 <th>HTTP CODE</th>
 <th>MESSAGE</th>
 <th>DOWNLOAD TIME (seconds)</th>
 </tr>
<?
for($xx=0; $xx<count($link_array); $xx++)
 {

// Verification and display go here
 }

Listing 10-3: The verification loop

Generating Fully Resolved URLs
Since the contents of the $link_array elements are actually complete anchor
tags, we need to parse the value of the href attribute out of the tags before we
can download and test the pages they reference.

The value of the href attribute is extracted from the anchor tag with the
function get_attribute(), as shown in Listing 10-4.

// Parse the HTTP attribute from link
$link = get_attribute($tag=$link_array[$xx], $attribute="href");

Listing 10-4: Parsing the referenced address from the anchor tag

Once you have the href address, you need to combine the previously defined
$page_base with the relative address to create a fully resolved URL, which
your webbot can use to download pages. A fully resolved URL is any URL that
describes not only the file to download, but also the server and directory where
that file is located and the protocol required to access it. Table 10-2 shows the
fully resolved addresses for the links in Table 10-1, assuming the links are on a
page in the directory, http://www.WebbotsSpidersScreenScrapers.com.

Table 10-2: Examples of Fully Resolved URLs (for links on http://www.WebbotsSpidersScreen
Scrapers.com)

Link Fully Resolved URL

 http://www.WebbotsSpidersScreenScrapers.com

 http://www.WebbotsSpidersScreenScrapers.com/
linked_page.html

 http://www.WebbotsSpidersScreenScrapers.com/
linked_page.html

 http://www.WebbotsSpidersScreenScrapers.com/
linked_page.html
112 Chapter 10

http://www.schrenk.com/nostarch/webbots

webbots2e.book Page 113 Thursday, February 16, 2012 11:59 AM
Fully resolved URLs are made with the resolve_address() function (see
Listing 10-5), which is in the LIB_resolve_addresses library. This library is a set
of routines that converts all possible methods of referencing web pages in
HTML into fully resolved URLs.

// Create a fully resolved URL
$fully_resolved_link_address = resolve_address($link, $page_base);

Listing 10-5: Creating fully resolved addresses with resolve_address()

Downloading the Linked Page
The webbot verifies the status of each page referenced by the links on the
target page by downloading each page and examining its status. It downloads
the pages with http_get(), just as you downloaded the target web page earlier
(see Listing 10-6).

// Download the page referenced by the link and evaluate
$downloaded_link = http_get($fully_resolved_link_address, $target);

Listing 10-6: Downloading a page referenced by a link

Notice that the second parameter in http_get() is set to the address of the
target web page. This sets the page’s referer variable to the target page. When
executed, the effect is the same as telling the server that someone requested
the page by clicking a link from the target web page.

Displaying the Page Status
Once the linked page is downloaded, the webbot relies on the STATUS ele-
ment of the downloaded array to analyze the HTTP code, which is provided
by PHP/CURL. (For your future projects, keep in mind that PHP/CURL also
provides total download time and other diagnostics that we’re not using in
this project.)

HTTP status codes are standardized, three-digit numbers that indicate the
status of a page fetch.2 This webbot uses these codes to determine if a link is
broken or valid. These codes are divided into ranges that define the type of
errors or status, as shown in Table 10-3.

Table 10-3: HTTP Code Ranges and Related Categories

2 The official reference for HTTP codes is available on the World Wide Web Consortium’s
website (http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html).

HTTP Code Range Category Meaning

100–199 Informational Not generally used

200–299 Successful Your page request was successful

300–399 Redirection The page you’re looking for has moved or has been removed

(continued)
L ink -Ver i f icat ion Webbots 113

webbots2e.book Page 114 Thursday, February 16, 2012 11:59 AM
Table 10-3 (continued)

The $status_code_array was created when the LIB_http_codes library was
imported. When you use the HTTP code as an index into $status_code_array,
it returns a human-readable status message, as shown in Listing 10-7. (PHP
script is in bold.)

<tr>
 <td align="left"><?echo $downloaded_link['STATUS']['url']?></td>
 <td align="right"><?echo $downloaded_link['STATUS']['http_code']?></td>
 <td align="left"><?echo $status_code_array[$downloaded_link['STATUS']['http_code']]?></td>
 <td align="right"><?echo $downloaded_link['STATUS']['total_time']?></td>
</tr>

Listing 10-7: Displaying the status of linked web pages

As an added feature, the webbot displays the amount of time (in seconds)
required to download pages referenced by the links on the target web page.
This period is automatically measured and recorded by PHP/CURL when
the page is downloaded. The period required to download the page is avail-
able in the array element: $downloaded_link['STATUS']['total_time'].

Running the Webbot
Since the output of this webbot contains formatted HTML, it is appropriate
to run this webbot within a browser, as shown in Figure 10-2.

Figure 10-2: Running the link-verification webbot

This webbot counts and identifies all the links on the target website. It
also indicates the HTTP code and diagnostic message describing the status of
the fetch used to download the page and displays the actual amount of time
it took the page to load.

Let’s take this time to look at some of the libraries used by this webbot.

LIB_http_codes
The following script creates an indexed array of HTTP error codes and their
definitions. To use the array, simply include the library, insert your HTTP
code value into the array, and echo as shown in Listing 10-8.

HTTP Code Range Category Meaning

400–499 Client error Your web client made a incorrect or illogical page request

500–599 Server error A server error occurred, generally associated with a bad
form submission
114 Chapter 10

webbots2e.book Page 115 Thursday, February 16, 2012 11:59 AM
include(LIB_http_codes.php);
echo $status_code_array[$YOUR_HTTP_CODE]['MSG']

Listing 10-8: Decoding an HTTP code with LIB_http_codes

LIB_http_codes is essentially a group of array declarations, with the first
element being the HTTP code and the second element, ['MSG'], being the
status message text. Like the others, this library is also available for download
from this book’s website.

LIB_resolve_addresses

The library that creates fully resolved addresses, LIB_resolve_addresses, is also
available for download at the book’s website.

NOTE Before you download and examine this library, be warned that creating fully resolved
URLs is a lot like making sausage—while you might enjoy how sausage tastes, you
probably wouldn’t like watching those lips and ears go into the grinder. Simply put, the
act of converting relative links into fully resolved URLs involves awkward, asymmetrical
code with numerous exceptions to rules and many special cases. This library is extra-
ordinarily useful, but it isn’t made up of pretty code.

If you don’t need to see how this conversion is done, there’s no reason to
look. If, on the other hand, you’re intrigued by this description, feel free to
download the library from the book’s website and see for yourself. More impor-
tantly, if you find a cleaner solution, please upload it to the book’s website to
share it with the community.

Further Exploration

You can expand this basic webbot to do a variety of very useful things. Here is
a short list of ideas to get you started on advanced designs.

 Create a web page with a form that allows people to enter and test the
links of any web page.

 Schedule a link-verification bot to run periodically to ensure that links
on web pages remain current. (For information on scheduling webbots,
read Chapter 22.)

 Modify the webbot to send email notifications when it finds dead links.
(More information on webbots that send email is available in Chapter 15.)

 Encase the webbot in a spider to check the links on an entire website.

 Convert this webbot into a function that is called directly from PHP.
(This idea is explored in Chapter 16.)

 Eventually, you will notice that not everything in an HTML anchor tag is a
link (like JavaScript). What is the best way to respond to these situations?
L ink -Ver i f icat ion Webbots 115

webbots2e.book Page 116 Thursday, February 16, 2012 11:59 AM

webbots2e.book Page 117 Thursday, February 16, 2012 11:59 AM
S E A R C H - R A N K I N G W E B B O T S

Every day, millions of people find what
they need online through search websites.

If you own an online business, your search
ranking may have far-reaching effects on that

business. A higher-ranking search result should yield
higher advertising revenue and more customers. Without knowing your
search rankings, you have no way to measure how easy it is for people to find
your web page, nor will you have a way to gauge the success of your attempts
to optimize your web pages for search engines.

Manually finding your search ranking is not as easy as it sounds, especially
if you are interested in the ranking of many pages with an assortment of search
terms. If your web page appears on the first page of results, it’s easy to find,
but if your page is listed somewhere on the sixth or seventh page, you’ll spend
a lot of time figuring out how your website is ranked. Even searches for relatively
obscure terms can return a large number of pages. (A recent Google search
on the term tapered drills, for example, yielded over 3,940,000 results.) Since
search engine spiders continually update their records, your search ranking

webbots2e.book Page 118 Thursday, February 16, 2012 11:59 AM
may also change on a daily basis. Complicating the matter more, a web page
will have a different search ranking for every search term. Manually checking
web page search rankings with a browser does not make sense—webbots,
however, make this task nearly trivial.

With all the search variations for each of your web pages, there is a need
for an automated service to determine your web page’s search ranking. A
quick Internet search will reveal several such services, like the one shown in
Figure 11-1.

Figure 11-1: A search-ranking service, GoogleRankings.com

This chapter demonstrates how to design a webbot that finds a search
ranking for a domain and a search term. While this project’s target is on the
book’s website, you can modify this webbot to work on a variety of available
search services.1 This example project also shows how to perform an insertion
parse, which injects parsing tags within a downloaded web page to make pars-
ing easier.

Description of a Search Result Page

Most search engines return two sets of results for any given search term, as
shown in Figure 11-2. The most prominent search results are paid placements,
which are purchased advertisements made to look something like search
results. The other set of search results is made up of organic placements (or just
organics), which are non-sponsored search results.

This chapter’s project focuses on organics because they’re the links that
people are most likely to follow. Organics are also the search results whose
visibility is improved through Search Engine Optimization.

1 If you modify this webbot to work on other search services, make sure you are not violating
their respective Terms of Service agreements.
118 Chapter 11

webbots2e.book Page 119 Thursday, February 16, 2012 11:59 AM
Figure 11-2: Parts of a search results page

The other part of the search result page we’ll focus on is the Next link.
This is important because it tells our webbot where to find the next page of
search results.

For our purposes, the search ranking is determined by counting the
number of pages in the search results until the subject web page is first found.
The page number is then combined with the position of the subject web page
within the organic placements on that page. For example, if a web page is the
sixth organic on the first result page, it has a search ranking of 1.6. If a web
page is the third organic on the second page, its search ranking is 2.3.

Search
term

Paid
placement

Paid
placement

Organics Ranking
of 1.6

Next
page
Search -Ranking Webbots 119

webbots2e.book Page 120 Thursday, February 16, 2012 11:59 AM
What the Search-Ranking Webbot Does

This webbot (actually a specialized spider) submits a search term to a search
web page and looks for the subject web page in the search results. If the web-
bot finds the subject web page within the organic search results, it reports the
web page’s ranking. If, however, the webbot doesn’t find the subject in the
organics on that page, it downloads the next page of search results and tries
again. The webbot continues searching deeper into the pages of search
results until it finds a link to the subject web page. If the webbot can’t find
the subject web page within a specified number of pages, it will stop looking
and report that it could not find the web page within the number of result
pages searched.

Running the Search-Ranking Webbot

Figure 11-3 shows the output of our search-ranking webbot. In each case,
there must be both a test web page (the page we’re looking for in the search
results) and a search term. In our test case, the webbot is looking for the
ranking of http://www.loremianam.com, with a search term of webbots.2 Once
the webbot is run, it only takes a few seconds to determine the search
ranking for this combination of web page and search term.

C:\>php script_11_1.php
Searching for "www.loremianam.com" with the search term "webbots"
Searching for ranking on page #1
Searching for ranking on page #2

When performing a search on the term "webbots",
www.loremianam.com is ranked as item 10 on page 2
Its ranking is 2.10.

Figure 11-3: Running the search-ranking webbot

How the Search-Ranking Webbot Works

Our search-ranking webbot uses the process detailed in Figure 11-4 to
determine the ranking of a website using a specific search term. These are
the steps:

1. Initialize variables for use, including the search criteria and the subject
web page.

2. Fetch the subject web page from the search engine using the search term.

3. Parse the organic search results from the advertisement and navigation text.

2 Unlike a real search service, the demonstration search pages on the book’s website return the
same page set regardless of the search term used.
120 Chapter 11

webbots2e.book Page 121 Thursday, February 16, 2012 11:59 AM
4. Determine whether or not the desired website appears in this page’s
search results.

a. If the desired website is not found, keep looking deeper into the
search results until the desired web page is found or the maximum
number of attempts has been used.

b. If the desired website is found, record the ranking.

5. Report the results.

Figure 11-4: Search-ranking webbot at work

The Search-Ranking Webbot Script

The following section describes key aspects of the webbot’s script. The latest
version of this script is available for download at this book’s website.

NOTE If you want to experiment with the code, you should download the webbot’s script. I have
simplified the scripts shown here for demonstration purposes.

Initializing Variables
Initialization consists of including libraries and identifying the subject website
and search criteria, as shown in Listing 11-1.

Initialization

// Include libraries
include("LIB_http.php");
include("LIB_parse.php");

Yes

No

Initialize variables

Fetch subject web page

Parse search results

Get location of the
next search page

Report search ranking

Is the desired
site found within this

search page?
Search -Ranking Webbots 121

webbots2e.book Page 122 Thursday, February 16, 2012 11:59 AM
// Identify the search term and URL combination
$desired_site = "www.loremianam.com";
$search_term = "webbots";
// Initialize other miscellaneous variables
$page_index = 0;
$url_found = false;
$previous_target = "";
// Define the target website and the query string for the search term
$target = "http://www.WebbotsSpidersScreenScrapers.com/search
$target = $target."?q=".urlencode(trim($search_term));
End: Initialization

Listing 11-1: Initializing the search-ranking webbot

The target is the page we’re going to download, which in this case is a
demonstration search page on this book’s website. That URL also includes
the search term in the query string. The webbot URL encodes the search
term to guarantee that none of the characters in the search term conflict
with reserved URL character combinations. For example, the PHP built-in
function urlencode() changes Karen Susan Terri to Karen+Susan+Terri. If the
search term contains characters that are illegal in a URL—for example, the
comma or ampersand in Karen, Susan & Terri—it would be safely encoded to
Karen%2C+Susan+%26+Terri.

Starting the Loop
The webbot loops through the main section of the code, which requests
pages of search results and searches within those pages for the desired site,
as shown in Listing 11-2.

Initialize loop
while($url_found==false)
 {
 $page_index++;
 echo "Searching for ranking on page #$page_index\n";

Listing 11-2: Starting the main loop

Within the loop, the script removes any HTML special characters from the
target to ensure that the values passed to the target web page only include legal
characters, as shown in Listing 11-3. In particular, this step replaces & with
the preferred & character.

 // Verify that there are no illegal characters in the URLs
 $target = html_entity_decode($target);
 $previous_target = html_entity_decode($previous_target);

Listing 11-3: Formatting characters to create properly formatted URLs

This particular step should not be confused with URL encoding, because
while & is a legal character to have in a URL, it will be interpreted as
$_GET['amp'] and return invalid results.
122 Chapter 11

webbots2e.book Page 123 Thursday, February 16, 2012 11:59 AM
Fetching the Search Results

The webbot tries to simulate the action of a person who is manually looking
for a website in a set of search results. The webbot uses two techniques to
accomplish this trick. The first is the use of a random delay of three to six
seconds between fetches, as shown in Listing 11-4.

 sleep(rand(3, 6));

Listing 11-4: Implementing a random delay

Taking this precaution will make it less obvious that a webbot is parsing the
search results. This a good practice for all webbots you design.

The second technique simulates a person manually clicking the Next
button at the bottom of the search result page to see the next page of search
results. Our webbot “clicks” on the link by specifying a referer variable, which
in our case is always the target used in the previous iteration of the loop, as
shown in Listing 11-5. On the initial fetch, this value is an empty string.

 $result = http_get($target, $ref=$previous_target, GET, "", EXCL_HEAD);
 $page = $result['FILE'];

Listing 11-5: Downloading the next page of search results from the target and specifying
a referer variable

The actual contents of the fetch are returned in the FILE element of the
returned $result array.

Parsing the Search Results

This webbot uses a parsing technique referred to as an insertion parse because
it inserts special parsing tags into the fetched web page to facilitate an easy
parse (and easy debug). Consider using the insertion parse technique when
you need to parse multiple blocks of data that share common separators. The
insertion parse is particularly useful when web pages change frequently or
when the information you need is buried deep within a complicated HTML
table structure. The insertion technique also makes your code much easier to
debug, because by viewing where you insert your parsing tags, you can figure
out where your parsing script thinks the desired data is.

Think of the text you want to parse as blocks of text surrounded by
other blocks of text you don’t need. Imagine that the web page you want
to parse looks like Figure 11-5, where the desired text is depicted as the
dark blocks. Find the beginning of the first block you want to parse. Strip
away everything prior to this point and insert a <data> tag at the beginning of
this block (Figure 11-6). Replace the text that separates the blocks of text you
want to parse with </data> and <data> tags. Now every block of text you want to
parse is sandwiched between <data> and </data> tags (see Figure 11-7). This
way, the text can be easily parsed with the parse_array() function. The final
<data> tag is an artifact and is ignored.
Search -Ranking Webbots 123

webbots2e.book Page 124 Thursday, February 16, 2012 11:59 AM
The script that performs the insertion parse is straightforward, but it
depends on accurately identifying the text that surrounds the blocks we want
to parse. The first step is to locate the text that identifies that start of the first
block. The only way to do this is to look at the HTML source code of the search
results. A quick examination reveals that the first organic is immediately
preceded by <!--@gap;-->.3 The next step is to find some common text that
separates each organic search result. In this case, the search terms are also
separated by <!--@gap;-->.

To place the <data> tag at the beginning of the first block, the webbot uses
the strops() function to determine where the first block of text begins. That
position is then used in conjunction with substr() to strip away everything
before the first block. Then a simple string concatenation places a <data> tag
in front of the first block, as shown in Listing 11-6.

 // We need to place the first <data> tag before the first piece
 // of desired data, which we know starts with the first occurrence

// of $separator
 $separator = "<!--@gap;-->";

 // Find first occurrence of $separator
 $beg_position = strpos($page, $separator);

 // Get rid of everything before the first piece of desired data
 // and insert a <data> tag before the data
 $page = substr($page, $beg_position, strlen($page));
 $page = "<data>".$page;

Listing 11-6: Inserting the initial insertion parse tag (as in Figure 11-6)

The insertion parse is completed with the insertion of the </data> and
<data> tags. The webbot does this by simply replacing the block separator that
we identified earlier with our insertion tags, as shown in Listing 11-7.

Figure 11-5: Desired data
depicted in dark gray

Figure 11-6: Initiating an
insertion parse

Figure 11-7: Delimiting desired
text with <data> tags

3 Comments are common parsing landmarks, especially when web pages are created with an
HTML generator like Adobe Dreamweaver.
124 Chapter 11

webbots2e.book Page 125 Thursday, February 16, 2012 11:59 AM
 $page = str_replace($separator, "</data> <data>", $page);

 // Put all the desired content into an array
 $desired_content_array = parse_array($page, "<data>", "</data>", EXCL);

Listing 11-7: Inserting the insertion delimiter tags (as in Figure 11-7)

Once the insertion is complete, each block of text is sandwiched between
tags that allow the webbot to use the parse_array() function to create an array
in which each array element is one of the blocks. Could you perform this parse
without the insertion parse technique? Of course. However, the insertion
parse is more flexible and easier to debug, because you have more control
over where the delimiters are placed, and you can see where the file will be
parsed before the parse occurs.

Once the search results are parsed and placed into an array, it’s a simple
process to compare them with the web page we’re ranking, as in Listing 11-8.

 for($page_rank=0; $page_rank<count($desired_content_array); $page_rank++)
 {
 // Look for the $subject_site to appear in one of the listings
 if(stristr($desired_content_array[$page_rank], $subject_site))
 {
 $url_found_rank_on_page = $page_rank;
 $url_found=true;
 }
 }

Listing 11-8: Determining if an organic matches the subject web page

If the web page we’re looking for is found, the webbot records its ranking
and sets a flag to tell the webbot to stop looking for additional occurrences of
the web page in the search results.

If the webbot doesn’t find the website in this page, it finds the URL for
the next page of search results. This URL is the link that contains the string
Next. The webbot finds this URL by placing all the links into an array, as shown
in Listing 11-9.

 // Create an array of links on this page
 $search_links = parse_array($result['FILE'], "<a", "", EXCL);

Listing 11-9: Parsing the page’s links into an array

The webbot then looks at each link until it finds the hyperlink contain-
ing the word Next. Once found, it sets the referer variable with the current
target and uses the new link as the next target. It also inserts a random three-
to-six second delay to simulate human interaction, as shown in Listing 11-10.
Search -Ranking Webbots 125

webbots2e.book Page 126 Thursday, February 16, 2012 11:59 AM
for($xx=0; $xx<count($search_links); $xx++)
{
if(strstr($search_links[$xx], "Next"))

{
$previous_target = $target;
$target = get_attribute($search_links[$xx], "href");
// Remember that this path is relative to the target page, so add
// protocol and domain
$target = "http://www.schrenk.com/nostarch/webbots/search/".$target;
}

}
}

// Report search ranking (outside of while loop)
echo "When performing a search on the term \"$search_term\", \n";
echo "$subject_site is ranked as item $page_rank on page $page_index\n";
echo "Its ranking is $page_index.$page_rank.";

Listing 11-10: Looking for the URL for the next page of search results

Finally, outside of the while loop, report your findings, as shown at the
end of Listing 11-10.

Final Thoughts

Now that you know how to write a webbot that determines search rankings
and how to perform an insertion parse, here are a few other things to think
about.

Be Kind to Your Sources

Remember that search engines do not make money by displaying search
results. The search-ranking webbot is a concept study and not a suggestion
for a product that you should develop and place in a production environment,
where the public uses it. Also—and this is important—you should not violate
any search website’s Terms of Service agreement when deploying a webbot
like this one.

Search Sites May Treat Webbots Differently Than Browsers

Experience has taught me that some search sites serve pages differently if they
think they’re dealing with an automated web agent. If you leave the default
setting for the agent name (in LIB_http) set to Test Webbot, your programs will
definitely look like webbots instead of browsers.

Spidering Search Engines Is a Bad Idea

It is not a good idea to spider Google or any other search engine. I once heard
(at a hacking conference) that Google limits individual IP addresses to 250
page requests a day, but I have not verified this. Others have told me that if
126 Chapter 11

webbots2e.book Page 127 Thursday, February 16, 2012 11:59 AM
you make the page requests too quickly, Google will stop replying after send-
ing three result pages. Again, this is unverified, but it won’t be an issue if you
obey Google’s Terms of Service agreement.

What I can verify is that I have, in other circumstances, written spiders for
clients where websites did limit the number of daily page fetches from a par-
ticular IP address to 250. After the 251st fetch within a 24-hour period, the
service ignored all subsequent requests coming from that IP address. For one
such project, I put a spider on my laptop and ran it in every Wi-Fi–enabled
coffee house I could find in South Minneapolis. This tactic involved drinking
a lot of coffee, but it also produced a good number of unique IP addresses
for my spider, and I was able to complete the job more quickly than if I had
run the spider (in a limited capacity) over a period of many days in my office.

Despite Google’s best attempts to thwart automated use of its search results,
there are rumors indicating that MSN (Microsoft’s search engine before
Bing) was spidering Google to collect records for its own search engine.4

If you’re interested in these issues, you should read Chapter 31, which
describes how to respectfully treat your target websites.

Familiarize Yourself with the Google API

If you are interested in pursuing projects that use Google’s data, you should
investigate the Google developer API, a service (or Application Program Interface),
which makes it easier for developers to use Google in noncommercial appli-
cations. At the time of this writing, Google provided information about its
developer API at http://code.google.com/more.

Further Exploration

Here are some other ways to leverage the techniques you learned in this
chapter.

 Design another search-ranking webbot to examine the paid advertising
listings instead of the organic listings.

 Write a similar webbot to run daily over a period of many days to measure
how changing a web page’s meta tags or content affects the page’s search
engine ranking.

 Design a webbot that examines web page rankings using a variety of
search terms.

 Use the techniques explained in this chapter to examine how search
rankings differ from search engine to search engine.

4 Jason Dowdell, “Microsoft Crawling Google Results For New Search Engine?” Novem-
ber 11, 2004, WebProNews (http://www.webpronews.com/insiderreports/searchinsider/
wpn-49-20041111MicrosoftCrawlingGoogleResultsForNewSearchEngine.html).
Search -Ranking Webbots 127

webbots2e.book Page 128 Thursday, February 16, 2012 11:59 AM

webbots2e.book Page 129 Thursday, February 16, 2012 11:59 AM
A G G R E G A T I O N W E B B O T S

If you’ve ever researched topics online,
you’ve no doubt found the need to open

multiple web browsers, each loaded with a
different resource. The practice of viewing more

than one web page at once has become so common
that all major browsers now support tabs that allow
surfers to easily view multiple websites at once. Another approach to simul-
taneously viewing more than one website is to consolidate information with
an aggregation webbot.

People are doing some pretty cool things with aggregation scripts these
days. To whet your appetite for what’s possible with an aggregation webbot,
look at the web page found at http://www.housingmaps.com. This bot com-
bines real estate listings from http://www.craigslist.org with Google Maps.
The results are maps that plot the locations and descriptions of homes for
sale, as shown in Figure 12-1.

webbots2e.book Page 130 Thursday, February 16, 2012 11:59 AM
Figure 12-1: craigslist real estate ads aggregated with Google Maps

Choosing Data Sources for Webbots

Aggregation webbots can use data from a variety of places; however, some
data sources are better than others. For example, your webbots can parse
information directly from web pages, as you did in Chapter 8, but this should
never be your first choice. Since web page content is intermixed with page
formatting and web pages are frequently updated, this method is prone to
error. When available, a developer should always use a non-HTML version of
the data, as the creators of HousingMaps did. The data shown in Figure 12-1
came from Google Maps’ Application Program Interface (API)1 and craigs-
list’s Real Simple Syndication (RSS) feed.

Application Program Interfaces provide access to specific applications, like
Google Maps, eBay, or Amazon.com. Since APIs are developed for specific
applications, the features from one API will not work in another. Working
with APIs tends to be complex and often has a steep learning curve. Their
complexity, however, is mitigated by the vast array of services they provide.
The details of using Google’s API (or any other API for that matter) are
outside of the scope of this book.

In contrast to APIs, RSS provides a standardized way to access data from
a variety of sources, like craigslist. RSS feeds are simple to parse and are an
ideal protocol for webbot developers because, unlike unparsed web pages or
site-specific APIs, RSS feeds conform to a consistent protocol. This chapter’s
example project explores RSS in detail.

1 See http://code.google.com/apis/maps/index.html.
130 Chapter 12

webbots2e.book Page 131 Thursday, February 16, 2012 11:59 AM
Example Aggregation Webbot

The webbot described in this chapter combines news from multiple sources.
While the scripts in this chapter only display the data, I’ll conclude with sug-
gestions for extending this project into a webbot that makes decisions and
takes action based on the information it finds.

Familiarizing Yourself with RSS Feeds

While your webbot could aggregate information from any online source, this
example will combine news feeds in the RSS format. RSS is a standard for
making online content available for a variety of uses. Originally developed by
Netscape in 1997, RSS quickly became a popular means to distribute news and
other online content, including blogs. After AOL and Sun Microsystems
divided up Netscape, the RSS Advisory Board took ownership of the RSS
specification.2

Today, nearly every news service provides information in the form of RSS.
RSS feeds are actually web pages that package online content in eXtensible
Markup Language (XML) format. Unlike HTML, XML typically lacks format-
ting information and surrounds data with tags that make parsing very easy.
Generally, RSS feeds provide links to web pages and just enough information
to let you know whether a link is worth clicking, though feeds can also
include complete articles.

The first part of an RSS feed contains a header that describes the RSS
data to follow, as shown in Listing 12-1.

<title>
 RSS feed title
</title>
<link>
 www.Link_to_web_page.com
</link>
<description>
 Description of RSS feed
</description>
<copyright>
 Copyright notice
</copyright>
<lastBuildDate>
 Date of RSS publication
</lastBuildDate>

Listing 12-1: The RSS feed header describes the content to follow

Not all RSS feeds start with the same set of tags, but Listing 12-1 is repre-
sentative of the tags you’re likely to find on most feeds. In addition to the
tags shown, you may also find tags that specify the language used or define
the locations of associated images.

2 See http://www.rssboard.org.
Aggregat ion Webbots 131

webbots2e.book Page 132 Thursday, February 16, 2012 11:59 AM
Following the header is a collection of items that contains the content of
the RSS feed, as shown in Listing 12-2.

<item>
 <title>
 Title of item
 </title>
 <link>
 URL of associated web page for item
 </link>
 <description>
 Description of item
 </description>
 <pubDate>
 Publication date of item
 </pubDate>
</item>
<item>
 Other items may follow, defined as above
</item>

Listing 12-2: Example of RSS item descriptions

Depending on the source, RSS feeds may also use industry-specific XML
tags to describe item contents. The tags shown in Listing 12-2, however, are
representative of what you should find in most RSS data.

Our project webbot takes three RSS feeds and consolidates them on a
single web page, as shown in Figure 12-2.

Figure 12-2: The aggregation webbot
132 Chapter 12

webbots2e.book Page 133 Thursday, February 16, 2012 11:59 AM
The webbot shown in Figure 12-2 summarizes news from three sources.
It always shows current information because the webbot requests the current
news from each source every time the web page is downloaded.

Writing the Aggregation Webbot

This webbot uses two scripts. The main script, shown in Listing 12-3, defines
which RSS feeds to fetch and how to display them. Both scripts are available
at this book’s website. The PHP sections of this script appear in bold.

<?
Include libraries
include("LIB_http.php");
include("LIB_parse.php");
include("LIB_rss.php");
?>
<head>
 <style> BODY {font-family:arial; color: black;} </style>
</head>
<table>
 <tr>
 <td valign="top" width="33%">

<?
 $target = "http://www.ft.com/rss/home/uk";
 $rss_array = download_parse_rss($target);
 display_rss_array($rss_array);
 ?>
 </td>
 <td valign="top" width="33%">
 <?
 $target = "http://www.startribune.com/rss/1557.xml";
 $rss_array = download_parse_rss($target);
 display_rss_array($rss_array);
 ?>
 </td>
 <td valign="top" width="33%">
 <?
 $target = "http://www.lasvegassun.com/feeds/headlines/all";
 $rss_array = download_parse_rss($target);
 display_rss_array($rss_array);
 ?>
 </td>
 </tr>
</table>

Listing 12-3: Main aggregation webbot script, describing RSS sources and display format

As you can tell from the script in Listing 12-3, most of the work is done in
the LIB_rss library, which we will explore next.
Aggregat ion Webbots 133

webbots2e.book Page 134 Thursday, February 16, 2012 11:59 AM
Downloading and Parsing the Target

As the name implies, the function download_parse_rss() downloads the target
RSS feed and parses the results into an array for later processing, as shown in
Listing 12-4.

function download_parse_rss($target)
 {
 # Download the RSS page
 $news = http_get($target, "");

 # Parse title and copyright notice
 $rss_array['TITLE'] = return_between($news['FILE'],
 "<title>", "</title>", EXCL);
 $rss_array['COPYRIGHT'] = return_between($news['FILE'],
 "<copyright>", "</copyright>", EXCL);

 # Parse the items
 $item_array = parse_array($news['FILE'], "<item>", "</item>");
 for($xx=0; $xx<count($item_array); $xx++)
 {
 $rss_array['ITITLE'][$xx] = return_between($item_array[$xx],
 "<title>", "</title>", EXCL);
 $rss_array['ILINK'][$xx] = return_between($item_array[$xx],
 "<link>", "</link>", EXCL);
 $rss_array['IDESCRIPTION'][$xx] = return_between($item_array[$xx],
 "<description>", "</description>", EXCL);
 $rss_array['IPUBDATE'][$xx] = return_between($item_array[$xx],
 "<pubDate>", "</pubDate>", EXCL);
 }

 return $rss_array;
 }

Listing 12-4: Downloading the RSS feed and parsing data into an array

In addition to using the http_get() function in the LIB_http library, this
script also employs the return_between() and parse_array() functions to ease
the task of parsing the RSS data from the XML tags.

After downloading and parsing the RSS feed, the data is formatted and
displayed with the function in Listing 12-5. (PHP script appears in bold.)

function display_rss_array($rss_array)
 {?>
 <table border="0">
 <!-- Display the article title and copyright notice -->
 <tr>
 <td>

 <?echo strip_cdata_tags($rss_array['TITLE'])?>

 </td>
 </tr>
134 Chapter 12

webbots2e.book Page 135 Thursday, February 16, 2012 11:59 AM
 <tr><td><?echo strip_cdata_tags($rss_array['COPYRIGHT'])?></td></tr>

 <!-- Display the article descriptions and links -->
 <?for($xx=0; $xx<count($rss_array['ITITLE']); $xx++)
 {?>
 <tr>
 <td>
 <a href="<?echo strip_cdata_tags($rss_array['ILINK'][$xx])?>">
 <?echo strip_cdata_tags($rss_array['ITITLE'][$xx])?>

 </td>
 </tr>
 <tr>
 <td><?echo strip_cdata_tags($rss_array['IDESCRIPTION'][$xx])?></td>
 </tr>
 <tr>
 <td>

 <?echo strip_cdata_tags($rss_array['IPUBDATE'][$xx])?>

 </td>
 </tr>
 <?}?>
 </table>
 <?}?>

Listing 12-5: Displaying the contents of $rss_array

Dealing with CDATA

It’s worth noting that the function strip_cdata_tags() is used to remove
CDATA tags from the RSS data feed. XML uses CDATA tags to identify text
that may contain characters or combinations of characters that could con-
fuse parsers. CDATA tells parsers that the data encased in CDATA tags should
not be interpreted as XML tags. Listing 12-6 shows the format for using
CDATA.

<![[...text goes here...]]>

Listing 12-6: format

Since parsers ignore all , the script needs to strip off the tags to make the
data displayable in a browser.

Adding Filtering to Your Aggregation Webbot

Your webbots can also modify or filter data received from RSS (or any other
source). In this chapter’s news aggregator, you could filter (i.e., not use) any
stories that don’t contain specific keywords or key phrases. For example, if
you only want news stories that contain the words webbots, web spiders, and
spiders, you could create a filter array like the one shown in Listing 12-7.
Aggregat ion Webbots 135

webbots2e.book Page 136 Thursday, February 16, 2012 11:59 AM
$filter_array[]="webbots";
$filter_array[]="web spiders";
$filter_array[]="spiders";

Listing 12-7: Creating a filter array

We can use $filter_array to select articles for viewing by modifying the
download_parse_rss() function used in Listing 12-4. This modification is shown
in Listing 12-8.

function download_parse_rss($target, $filter_array)
 {
 # Download the RSS page
 $news = http_get($target, "");

 # Parse title and copyright notice
 $rss_array['TITLE'] = return_between($news['FILE'],
 "<title>", "</title>", EXCL);
 $rss_array['COPYRIGHT'] = return_between($news['FILE'],
 "<copyright>", "</copyright>", EXCL);

 # Parse the items
 $item_array = parse_array($news['FILE'], "<item>", "</item>");
 for($xx=0; $xx<count($item_array); $xx++)
 {
 # Filter stories for relevance

for($keyword=0; $keyword<count($filter_array); $keyword ++)
 {

if(stristr($item_array[$xx], $filter_array[$keyword]))
 {
 $rss_array['ITITLE'][$xx] = return_between($item_array[$xx],
 "<title>", "</title>", EXCL);
 $rss_array['ILINK'][$xx] = return_between($item_array[$xx],
 "<link>", "</link>", EXCL);
 $rss_array['IDESCRIPTION'][$xx] = return_between($item_array[$xx],
 "<description>", "</description>", EXCL);
 $rss_array['IPUBDATE'][$xx] = return_between($item_array[$xx],
 "<pubDate>", "</pubDate>", EXCL);
 }
 }
 }
 return $rss_array;
 }

Listing 12-8: Adding filtering to the download_parse_rss() function

Listing 12-8 is identical to Listing 12-4, with the following exceptions:

 The filter array is passed to download_parse_rss()

 Each news story is compared to every keyword

 Only stories that contain a keyword are parsed and placed into $rss_array
136 Chapter 12

webbots2e.book Page 137 Thursday, February 16, 2012 11:59 AM
The end result of the script in Listing 12-8 is an aggregator that only
lists stories that contain material with the keywords in $filter_array. As con-
figured, the comparison of stories and keywords is not case sensitive. If case
sensitivity is required, simply replace stristr() with strstr(). Remember,
however, that the amount of data returned is directly tied to the number
of keywords and the frequency with which they appear in stories.

Further Exploration

The true power of webbots is that they can make decisions and take action
with the information they find online. Here are a few suggestions for extend-
ing what you’ve learned to do with RSS or other data you choose to aggregate
with your webbots.

 Modify the script in Listing 12-8 to accept stories that don’t contain a
keyword.

 Write an aggregation webbot that doesn’t display information unless it
finds it on two or more sources.

 Design a webbot that looks for specific keywords in news stories and
sends an email notification when those keywords appear.

 Search blogs for spelling errors.

 Find an RSS feed that posts scores from your favorite sports team. Parse
and store the scores in a database for later statistical analysis.

 Write a webbot that uses news stories to help you decided whether to
buy or sell commodities futures.

 Devise an online clipping service that archives information about your
company.

 Create an RSS feed for the example store used in Chapter 8.
Aggregat ion Webbots 137

webbots2e.book Page 138 Thursday, February 16, 2012 11:59 AM

webbots2e.book Page 139 Thursday, February 16, 2012 11:59 AM
F T P W E B B O T S

File transfer protocol (FTP) is among the old-
est Internet protocols.1 It dates from the

Internet’s predecessor ARPANET, which was
originally funded by the Eisenhower administra-

tion.2 Research centers started using FTP to exchange
large files in the early 1970s, and FTP became the de
facto transport protocol for email, a status it maintained
until the early 1990s. Today, system administrators commonly use FTP to give
web developers access to files on remote webservers. Though it’s an older
protocol, FTP still allows computers with dissimilar technologies to share
files, independent of file structure and operating system.

1 The original document defining FTP can be viewed at http://www.w3.org/Protocols/rfc959.
2 Katie Hafner and Matthew Lyon, Where Wizards Stay Up Late: The Origins of the Internet (New York:
Simon & Schuster, 1996), 14.

webbots2e.book Page 140 Thursday, February 16, 2012 11:59 AM
Example FTP Webbot

To better understand how an FTP-capable webbot may be useful, consider
this scenario. A national retailer needs to move large sales reports from each
of its stores to a centralized corporate webserver. This particular retail chain
was built through acquisition, so it is built from proprietary computer systems
using multiple protocols. The one thing all of these systems have in common
is access to an FTP server. The goal for this project is to use the commonality
of FTP to span the differences between systems to download store sales
reports and move them to the corporate server.

The script for this example project is available for study at this book’s
website. Just remember that the script satisfies a ficticious scenario and will not
run unless you change the configuration. In this chapter, I have split it up and
annotated the sections for clarity. Listing 13-1 shows the initialization for the
FTP servers.

<?
// Define the source FTP server, file location, and authentication values
define("REMOTE_FTP_SERVER", "remote_FTP_address"); // Domain name or IP address
define("REMOTE_USERNAME", "yourUserName");
define("REMOTE_PASSWORD", "yourPassword");
define("REMOTE_DIRCTORY", "daily_sales");
define("REMOTE_FILE", "sales.txt");

// Define the corporate FTP server, file location, and authentication values
define("CORP_FTP_SERVER", "corp_FTP_address");
define("CORP_USERNAME", "yourUserName");
define("CORP_PASSWORD", "yourPassword");
define("CORP_DIRCTORY", "sales_reports");
define("CORP_FILE", "store_03_".date("Y-M-d"));

Listing 13-1: Initializing the FTP bot

This program also configures a routine to send a short email notification
when commands fail. (Email functions for webbots, and LIB_mail, are described
in Chapters 14 and 15.) Automated email error notification allows the script
to run autonomously without requiring that someone verify the operation
manually.3 Listing 13-2 shows the email configuration script.

include("LIB_MAIL.php");
$mail_addr['to'] = "admin@somedomain.com";
$mail_addr['from'] = "admin@somedomain.com";
function report_error_and_quit($error_message, $server_connection)
 {
 global $mail_addr;

 // Send error message
 echo "$error_message, $server_connection";
 formatted_mail($error_message, $error_message, $mail_addr, "text/plain");

3 See Chapter 22 for information on how to make webbots run periodically.
140 Chapter 13

webbots2e.book Page 141 Thursday, February 16, 2012 11:59 AM

 // Attempt to log off the server gracefully if possible
 ftp_close($server_connection);

 // It is not traditional to end a function this way, but since there is
 // nothing to return or do, it is best to exit
 exit();
 }

Listing 13-2: Email configuration

The next step is to make a connection to the remote FTP server. After
making the connection, the script authenticates itself with a username and
password, as shown in Listing 13-3.

// Negotiate a socket connection to the remote FTP server
$remote_connection_id = ftp_connect(REMOTE_FTP_SERVER);

// Log in (authenticate) the source server
if(!ftp_login($remote_connection_id, REMOTE_USERNAME, REMOTE_PASSWORD))
 report_error_and_quit("Remote ftp_login failed", $remote_connection_id);

Listing 13-3: Connecting and authenticating with the remote server

Once authenticated by the server, the script moves to the target file’s
directory and downloads the file to the local filesystem. After downloading
the file, the script closes the connection to the remote server, as shown in
Listing 13-4.

// Move the directory of the source file
if(!ftp_chdir($remote_connection_id, REMOTE_DIRCTORY))
 report_error_and_quit("Remote ftp_chdir failed", $remote_connection_id);

// Download the file
if(!ftp_get($remote_connection_id, "temp_file", REMOTE_FILE, FTP_ASCII))
 report_error_and_quit("Remote ftp_get failed", $remote_connection_id);

// Close connections to the remote FTP server
ftp_close($remote_connection_id);

Listing 13-4: Downloading the file and closing the connection

The final task, shown in Listing 13-5, uploads the file to the corporate
server using techniques similar to the ones used to download the file.

// Negotiate a socket connection to the corporate FTP server
$corp_connection_id = ftp_connect(CORP_FTP_SERVER);

// Log in to the corporate server
if(!ftp_login($corp_connection_id, CORP_USERNAME, CORP_PASSWORD))
 report_error_and_quit("Corporate ftp_login failed", $corp_connection_id);
FTP Webbots 141

webbots2e.book Page 142 Thursday, February 16, 2012 11:59 AM
// Move the destination directory
if(!ftp_chdir($corp_connection_id, CORP_DIRECTORY))
 report_error_and_quit("Corporate ftp_chdir failed", $corp_connection_id);

// Upload the file
if(!ftp_put($corp_connection_id, CORP_FILE, "temp_file", FTP_ASCII))
 report_error_and_quit("Corporate ftp_put failed", $corp_connection_id);

// Close connections to the corporate FTP server
ftp_close($corp_connection_id);

// Send notification that the webbot ran successfully
formatted_mail("ftpbot ran successfully at ".time("M d,Y h:s"), "",
$mail_addr, $content_type);
?>

Listing 13-5: Logging in and uploading the previously downloaded file to the corporate server

PHP and FTP

PHP provides built-in functions that closely resemble standard FTP commands.
In addition to transferring files, PHP allows your scripts to perform many
administrative functions. Table 13-1 lists the most useful FTP commands
supported by PHP.

As shown in Table 13-1, the PHP FTP commands allow you to write
webbots that create, delete, and rename directories and files. You may also
use PHP/CURL to perform advanced FTP tasks requiring advanced authenti-
cation or encryption. Use of these features is outside the scope of this book,
but they’re available for you to explore on the official PHP website available
at http://www.php.net.

Table 13-1: Common FTP Commands Supported by PHP

FTP Function (Where $ftp Is the FTP File Stream) Usage

ftp_cdup($ftp); Makes the parent directory the current directory

ftp_chdir ($ftp, "directory/path") Changes the current directory

ftp_delete ($ftp, "file_name") Deletes a file

ftp_get ($ftp, "local file", "remote file", MODE) Copies the remote file to the local file where MODE indicates
if the remote file is FTP_ASCII or FTP_BINARY

ftp_mkdir($ftp, "directory name") Creates a new directory

ftp_rename($ftp, "file name") Renames a file or a directory on the FTP server

ftp_put ($ftp, "remote file", "local file", MODE) Copies the local file to the remote file where MODE indicates
if the local file is FTP_ASCII or FTP_BINARY

ftp_rmdir($ftp, "directory/path") Removes a directory

ftp_rawlist($ftp, "directory/path") Returns an array with each array element containing
directory information about a file
142 Chapter 13

webbots2e.book Page 143 Thursday, February 16, 2012 11:59 AM
Further Exploration

Since FTP is often the only application-level protocol that computer sys-
tems share, it is a convenient communication bridge between new and old
computer systems. Moreover, in addition to using FTP as a common path
between disparate—or obsolete—systems, FTP is still the most common
method for uploading files to websites. Even with the increased popularity
of more modern protocols such as WebDAV, FTP still maintains a prominent
role in file transfer. With the information in this chapter, you should be able
to write webbots that update websites with information found at a variety of
sources. Here are some ideas to get you started.

 Write a webbot that updates your corporate server with information
gathered from sales reports.

 Develop a security webbot that uses a webcam to take pictures of your
warehouse or parking lot, timestamps the images, and uploads the
pictures to an archival server.

 Design a webbot that creates archives of your company’s internal forums
on an FTP server.

 Create a webbot that photographically logs the progress of a construc-
tion site and uploads these pictures to an FTP server. Once construction
is complete, compile the individual photos into an animation showing
the construction process.

If you don’t have access to an FTP server on the Internet, you can still
experiment with FTP bots. An FTP server is probably already on your com-
puter if your operating system is Unix, Linux, or Mac OS X. If you have a
Windows computer, you can find free FTP servers on many shareware sites.
Once you locate FTP server software, you can set up your own local server
by following the instructions accompanying your FTP installation.
FTP Webbots 143

webbots2e.book Page 144 Thursday, February 16, 2012 11:59 AM

webbots2e.book Page 145 Thursday, February 16, 2012 11:59 AM
W E B B O T S T H A T R E A D E M A I L

When a webbot can read email, it’s easier
for it to communicate with the outside

world.1 Webbots capable of reading email
can take instruction via email commands, share

data with handheld devices such as iPads and Chrome
Books, and filter messages for content.

For example, if package-tracking information is sent to an email account
that a webbot can access, the webbot can parse incoming email from the
carrier to track delivery status. Such a webbot could also send email warnings
when shipments are late, communicate shipping charges to your corporate
accounting software, or create reports that analyze a company’s use of over-
night shipping.

1 See Chapter 15 to learn how to send email with webbots and spiders.

webbots2e.book Page 146 Thursday, February 16, 2012 11:59 AM
The POP3 Protocol
Of the many protocols for reading email from mail servers, I selected Post
Office Protocol 3 (POP3) for this task because of its simplicity and near-universal
support among mail servers. POP3 instructions are also easy to perform in
any Telnet or standard TCP/IP terminal program.2 The ability to use Telnet
to execute POP3 commands will provide an understanding of POP3 com-
mands, which we will later convert into PHP routines that any webbot may
execute.

Logging into a POP3 Mail Server

Figure 14-1 shows how to connect to a POP3 mail server though a Telnet
client. Simply enter telnet, followed by the mail server name and the port
number (which is always 110 for POP3). The mail server should reply with a
message similar to the one in Figure 14-1.

telnet mail.server.net 110
+OK <9238.1142228@mail2.server.net>

Figure 14-1: Making a Telnet connection to a POP3 mail server

The reply shown in Figure 14-1 says that you’ve made a connection to the
POP3 mail server and that it is waiting for its next command, which should be
your attempt to log in. Figure 14-2 shows the process for logging in to a POP3
mail server.

user me@server.com
+OK
pass xxxxxxxx
+OK

Figure 14-2: Successful authentication to a POP3 mail server

When you try this, be sure to substitute your email account in place of
me@server.com and the password associated with your account for xxxxxxxx.

If authentication fails, the mail server should return an authentication
failure message, as shown in Figure 14-3.

-ERR authorization failed

Figure 14-3: POP3 authentication failure

Reading Mail from a POP3 Mail Server

Before you can download email messages from a POP3 mail server, you’ll
need to execute a LIST command. The mail server will then respond with the
number of messages on the server.

2 Telnet clients are standard on all Windows, Mac OS X, Linux, and Unix distributions.
146 Chapter 14

webbots2e.book Page 147 Thursday, February 16, 2012 11:59 AM
The POP3 LIST Command

The LIST command will also reveal the size of the email messages and, more
importantly, how to reference individual email messages on the server.

The response to the LIST command contains a line for every available
message for the specified account. Each line consists of a sequential mail ID
number, followed by the size of the message in bytes. Figure 14-4 shows the
results of a LIST command on an account with two pieces of email.

LIST
+OK
1 2398
2 2023
.

Figure 14-4: Results of a POP3 LIST command

The server’s reply to the LIST command tells us that there are two messages
on the server for the specified account. We can also tell that message 1 is the
larger message, at 2,398 bytes, and that message 2 is 2,023 bytes in length.
Beyond that, we don’t know anything specific about any of these messages.

The last line in the response is the end of message indicator. Servers
always terminate POP3 responses with a line containing only a period.

The POP3 RETR Command

To read a specific message, enter RETR followed by a space and the mail ID
received from the LIST command. The command in Figure 14-5 requests
message 1.

RETR 1

Figure 14-5: Requesting a message from the server

The mail server should respond to the RETR command with a string of
characters resembling the contents of Figure 14-6.

+OK 2398 octets
Return-Path: <returnpath@server.com>
Delivered-To: me@server.com
Received: (qmail 73301 invoked from network); 19 Feb 2011 20:55:31 -0000
Received: from mail2.server.net
 by mail1.server.net (qmail-ldap-1.03) with compressed QMQP; 19 Feb
2006 20:55:31 -0000
Delivered-To: CLUSTERHOST mail2.server.net me@server.com
Received: (qmail 50923 invoked from network); 19 Feb 2011 20:55:31 -0000
Received: by simscan 1.1.0 ppid: 50907, pid: 50912, t: 2.8647s
 scanners: attach: 1.1.0 clamav: 0.86.1/m:34/d:1107 spam: 3.0.4
Received: from web30515.mail.mud.server.com
 (envelope-sender <sender@server.com>)
 by mail2.server.net (qmail-ldap-1.03) with SMTP
 for <me@server.com>; 19 Feb 2011 20:55:28 -0000
Received: (qmail 7734 invoked by uid 60001); 19 Feb 2011 20:55:26 -0000
Webbots That Read Emai l 147

webbots2e.book Page 148 Thursday, February 16, 2012 11:59 AM
Message-ID: <20060219205526.7732.qmail@web30515.mail.mud.server.com>
Date: Sun, 19 Feb 2011 12:55:26 -0800 (PST)
From: mike schrenk <sender@server.com>
Subject: Hey, Can you read this email?
To: mike schrenk <me@server.com>
MIME-Version: 1.0
Content-Type: multipart/alternative; boundary="0-349883719-1140382526=:7581"
Content-Transfer-Encoding: 8bit
X-Spam-Checker-Version: SpamAssassin 3.0.4 (2005-06-05) on mail2.server.com
X-Spam-Level:
X-Spam-Status: No, score=0.9 required=17.0 tests=HTML_00_10,HTML_MESSAGE,
 HTML_SHORT_LENGTH autolearn=no version=3.0.4

--0-349883719-1140382526=:7581
Content-Type: text/plain; charset=iso-8859-1
Content-Transfer-Encoding: 8bit

This is an email sent from my Yahoo! email account.
--0-349883719-1140382526=:7581
Content-Type: text/html; charset=iso-8859-1
Content-Transfer-Encoding: 8bit

This is an email sent from my Yahoo! email account.

<BR
--0-349883719-1140382526=:7581--
.

Figure 14-6: A raw email message read from the server using the RETR POP3 command

As you can see, even a short email message has a lot of overhead. Most of
the returned information has little to do with the actual text of a message. For
example, the email message retrieved in Figure 14-6 doesn’t appear until
over halfway down the listing. The rest of the text returned by the mail server
consists of headers, which tell the mail client the path the message took, which
services touched it (like SpamAssassin), how to display or handle the message,
to whom to send replies, and so forth.

These headers include some familiar information such as the subject
header, the to and from values, and the MIME version. You can easily parse
this information with the return_between() function found in the LIB_parse
library (see Chapter 4), as shown in Listing 14-1.

$ret_path = return_between($raw_message, "Return-Path: ", "\n", EXCL);
$deliver_to = return_between($raw_message, "Delivered-To: ", "\n", EXCL);
$date = return_between($raw_message, "Date: ", "\n", EXCL);
$from = return_between($raw_message, "From: ", "\n", EXCL);
$subject = return_between($raw_message, "Subject: ", "\n", EXCL);

Listing 14-1: Parsing header values

The header values in Figure 14-6 are separated by their names and a \n
(carriage return) character. Note that the header name must be followed by
a colon (:) and a space, as these words may appear elsewhere in the raw
message returned from the mail server.
148 Chapter 14

webbots2e.book Page 149 Thursday, February 16, 2012 11:59 AM
Parsing the actual message is more involved, as shown in Listing 14-2.

$content_type = return_between($raw_message, "Content-Type: ", "\n", EXCL);
$boundary = get_attribute($content_type, "boundary");
$raw_msg = return_between($message, "--".$boundary, "--".$boundary, EXCL);
$msg_separator = $raw_msg, chr(13).chr(10).chr(13).chr(10);
$clean_msg = return_between($raw_msg, $msg_separator, $msg_separator, EXCL);

Listing 14-2: Parsing the actual message from a raw POP3 response

When parsing the message, you must first identify the Content-Type, which
holds the boundaries describing where the message is found. The Content-Type
is further parsed with the get_attribute() function, to obtain the actual
boundary value.3 Finally, the text defined within the boundaries may contain
additional information that tells the client how to display the content of the
message. This information, if it exists, is removed by parsing only what’s within
the message separator, a combination of carriage returns and line feeds.

Other Useful POP3 Commands

The DELE and QUIT (followed by the mail id) commands mark a message
for deletion. Figure 14-7 shows demonstrations of both the DELE and QUIT
commands.

DELE 8
+OK
QUIT
+OK

Figure 14-7: Using the POP3 DELE and QUIT commands

When you use DELE, the deleted message is only marked for deletion
and not actually deleted. The deletion doesn’t occur until you execute a
QUIT command and your server session ends.

NOTE If you’ve accidentally marked a message with the DELE function and wish to retain it
when you quit, enter RSET followed by the message number. The message will not be marked
for deletion when you issue the QUIT command (retention is the default condition).

Executing POP3 Commands with a Webbot

POP3 commands can be performed with PHP’s opensocket(), fputs(), and
fgets() functions. The LIB_pop3 library is available for you to download from
this book’s website. This library contains functions for connecting to the mail
server, authenticating your account on the server, finding out what mail is
available for the account, requesting messages from the server, and deleting
messages.

3 The actual boundary, which defines the message, is prefixed with -- characters to distinguish
the actual boundary from where it is defined.
Webbots That Read Emai l 149

webbots2e.book Page 150 Thursday, February 16, 2012 11:59 AM
The scripts in Listings 14-3 through 14-6 show how to use the LIB_pop3
library. The larger script is split up and annotated here for clarity, but it is
available in its entirety on this book’s website.

NOTE Before you use the script in Listing 14-3, replace the values for SERVER, USER, and PASS
with your email account information.

include("LIB_pop3.php"); // Include POP3 command library

define("SERVER", "your.mailserver.net"); // Your POP3 mailserver
define("USER", "your@emailsccount.com "); // Your POP3 email address
define("PASS", "your_password"); // Your POP3 password

Listing 14-3: Including the LIB_pop3 library and initializing credentials

In Listing 14-4, the script makes the connection to the server and, after
a successful login attempt, obtains a connection array containing the “handle”
that is required for all subsequent communication with the server.

Connect to POP3 server
$connection_array = POP3_connect(SERVER, USER, PASS);
$POP3_connection = $connection_array['handle'];
if($POP3_connection)
 {
 // Create an array, which is the result of a POP3 LIST command
 $list_array = POP3_list($POP3_connection);

Listing 14-4: Connecting to the server and making an array of available messages

The script in Listing 14-5 uses the $list_array obtained in the previous
step to create requests for each email message. It displays each message
along with its ID and size and then deletes the message, as shown here.

 # Request and display all messages in $list_array
 for($xx=0; $xx<count($list_array); $xx++)
 {
 // Parse the mail ID from the message size
 list($mail_id, $size) = explode(" ", $list_array[$xx]);

 // Request the message for the specific mail ID
 $message = POP3_retr($POP3_connection, $mail_id);

 // Display message and place mail ID, size, and message in an array
 echo "$mail_id, $size\n";
 $mail_array[$xx]['ID'] = $mail_id;
 $mail_array[$xx]['SIZE'] = $size;
 $mail_array[$xx]['MESSAGE'] = $message;

 // Display message in <xmp></xmp> tags to disable HTML
 // (in case script is run in a browser)
 echo "<xmp>$message</xmp>";

150 Chapter 14

webbots2e.book Page 151 Thursday, February 16, 2012 11:59 AM
 // Delete the message from the server
 POP3_delete($POP3_connection, $mail_id);
 }

Listing 14-5: Reading, displaying, and deleting each message found on the server

Finally, after each message is read and deleted from the server, the
session is closed, as shown in Listing 14-6.

 // End the server session
 echo POP3_quit($POP3_connection);
 }
else
 {
 echo "Login error";
 }

Listing 14-6: Closing the connection to the server, or noting the login error if necessary

Subsequently, if the connection wasn’t originally made to the server, the
script returns an error message.

Further Exploration

With a little thought, you can devise many creative uses for webbots that
can access email accounts. There are two general areas that may serve as
inspiration.

 Use email as a means to control webbots. For example, you could use
an email message to tell a spider which domain to use as a target, or you
could send an email to a procurement bot (featured in Chapter 18) to
indicate which items to purchase.

 Use an email-enabled webbot to interface incompatible systems. For
example, you could upload a small file to an FTP sever from a BlackBerry
if the file (the contents of the email) were sent to a special webbot that,
after reading the email, sent the file to the specified server. This could
effectively connect a legacy system to remote users.

Email-Controlled Webbots
Here are a few ideas to get you started with email-controlled webbots.

 Design a webbot that forwards messages from a mailing list to your
personal email address based upon references to a preset list of terms.
(For example, the webbot could forward all messages that reference
the words robot, web crawler, webbot, and spider.)

 Develop a procurement bot that automatically reconfigures your eBay
bidding strategy when it receives an email from eBay indicating that
someone has outbid you.
Webbots That Read Emai l 151

webbots2e.book Page 152 Thursday, February 16, 2012 11:59 AM
 Create a strategy that forwards an email message to a webbot that, in
turn, displays the message on a 48-foot scrolling marquee that is outside
your office building (assuming you have access to such a display!).

Email Interfaces

Here are a few ways you can capitalize on email-enabled webbots to interface
different systems.

 Develop a webbot that automatically updates your financial records
based on email you receive from PayPal.

 Create a webbot that automatically forwards all email with the word support
in the subject line to the person working the help desk at that time.

 Write a webbot that notifies you when one of your mail servers has
reached its email (size) quota.

 Write a service that interfaces shipping notification email messages from
FedEx to your company’s fulfillment system.

 Develop an email-to-fax service that faxes an email message to the phone
number in the email’s subject line. (This isn’t hard to do if you have an
old fax/modem from the last century lying around.)

 Write a webbot that maintains statistics about your email accounts, indi-
cating who is sending the most email, when servers are busiest, the
number of messages that are deleted without being read, when servers
fail, and email addresses that are returned as undeliverable.
152 Chapter 14

webbots2e.book Page 153 Thursday, February 16, 2012 11:59 AM
W E B B O T S T H A T S E N D E M A I L

In Chapter 14 you learned how to create
webbots that read email. In this chapter I’ll

show you how to write webbots that can create
massive amounts of email. On that note, let’s talk

briefly about email ethics.

Email, Webbots, and Spam

Spam has negatively influenced all of our email experiences.1 It was only a
few years ago that every message in my email’s inbox had some value and
deserved to be read. Today, however, my spam filter (a proxy service that
examines email headers and content to determine if the email is legitimate
or a potential scam) rejects over 80 percent of the email I receive, flagging

1 I would like to extend my sincerest apologies to the Hormel Foods Corporation for perpetuating
the use of the word spam to describe unwanted email. I’d rather refer to the phenomenon of junk
email with a clever term like eJunk or NetClutter. But unfortunately, no other synonym has the
worldwide acceptance of spam. Hormel Foods deserves better treatment of its brand—and for this
reason I want to stress the difference between SPAM® and spam.

webbots2e.book Page 154 Thursday, February 16, 2012 11:59 AM
it as unwanted solicitation at best and, at worst, a phishing attack—email that
masquerades itself as legitimate and requests credit card or other personal
information.

Nobody likes unsolicited email, and your webbot’s effectiveness will
be reduced if its messages are interpreted as spam by either the intended
recipients or automated filters. When using your webbots to send volumes
of mail, follow these guidelines:

Allow recipients to unsubscribe. If people can’t remove themselves from
a mailing list, they’re subscribed involuntarily. Email that is part of a peri-
odic mailing should include a link that allows the recipient to opt out of
future mailings.2

Avoid multiple emails. Avoid sending multiple emails with similar content
or intent to the same address.

Use a relevant subject line. Don’t deceive email recipients (or try to fool
a spam filter) with misleading subject lines. If you’re actually selling
“herbal Via8r4,” don’t use a subject line like RE: Thanks!

Identify yourself. Don’t spoof your email headers or the originator’s actual
email address in order to trick spam filters into delivering your email.

Obey the law. Depending where you live, laws may prohibit sending
specific types of email. For example, under the Children’s Online Privacy
Protection Act (COPPA), it is illegal in the United States to solicit personal
information from children. (More information is available at the COPPA
website, http://www.coppa.org.) Laws regarding email ethics change con-
stantly. If you have questions, talk to a lawyer that specializes in online law.

NOTE Do not use any of the following techniques to test the resolve of people’s spam filters.
I recommend reading Chapter 31 and having a personal consultation with an attorney
before doing anything remotely questionable.

Sending Mail with SMTP and PHP

Outgoing email is sent using the Simple Mail Transfer Protocol (SMTP).
Fortunately, PHP’s built-in mail() function handles all SMTP socket-level
protocols and handshaking for you. The mail() function acts as your mail
client, sending email messages just as Outlook or Thunderbird might.

Configuring PHP to Send Mail

Before you can use PHP as a mail client, you must edit PHP’s configuration
file, php.ini, to point PHP to the mail server’s location. For example, the script
in Listing 15-1 shows the section of php.ini that configures PHP to work with
sendmail, the Unix mail server on many networks.

2 Unfortunately, many spammers rely on people opting out of mailing lists to verify that an email
address is actively used. For many, opting out of a mail list ensures they will continue to receive
unsolicited email.
154 Chapter 15

webbots2e.book Page 155 Thursday, February 16, 2012 11:59 AM
[mail function]
; For Win32 only.
SMTP = localhost

; For Win32 only.
;sendmail_from = me@example.com

; For Unix only. You may supply arguments as well (default: "sendmail -t -i").
sendmail_path = /usr/sbin/sendmail -t -i

Listing 15-1: Configuring PHP’s mail() function

NOTE Notice that the configuration differs slightly for Windows and Unix installations. For
example, windows servers use php.ini to describe the network location of the mail server
you want to use. In contrast, Unix installations need the file path to your local mail
server. In either case, you must have access to a mail server (preferably in the same net-
work domain) that allows you to send email.

Years ago, you could send email through almost any mail server on the
Internet using relay host, which enables mail servers to relay messages from
mail clients in one domain to a different domain. When using relay host, one
can send nearly anonymous email, because these mail servers accept commands
from any mail client without needing any form of authentication.

The relay host process has been largely abandoned by system administra-
tors because spammers can use it to send millions of anonymous commercial
emails. Today, almost every mail server will ignore commands that come from
a different domain or from users that are not registered as valid clients.

An “open” mail server—one that allows relaying—is obviously a dangerous
thing. I once worked for a company with two corporate mail servers, one of
which mistakenly allowed mail relaying. Eventually, a spammer discovered it
and commandeered it as a platform for dispatching thousands of anonymous
commercial emails.3 In addition to wasting our bandwidth, our domain was
reported as one that belonged to a spammer and subsequently got placed on
a watch list used by spam-detection companies. Once they identified our
domain as a source of spam, many important corporate emails weren’t received
because spam filters had rejected them. It took quite an effort to get our
domain off of that list. For this reason, you will need a valid email account
to send email from a webbot.

Sending an Email with mail()
PHP provides a built-in function for sending email, as shown in Listing 15-2.

$email_address = "some.account@someserver.com";
$email_subject = "Webbot Notification Email";
$email_message = "Your webbot found something that needs you attention";
mail($email_address, $email_subject, $email_message);

Listing 15-2: Sending an email with PHP’s built-in mail() function

3 Spammers write webbots to discover mail servers that allow mail relaying.
Webbots That Send Emai l 155

webbots2e.book Page 156 Thursday, February 16, 2012 11:59 AM
In the simplest configuration, as shown in Listing 15-2, you only need to
specify the destination email address, the subject, and the message. For the
reasons mentioned in the relay host discussion, however, you will need a valid
account on the same server as the one specified in your php.ini file.

There are, of course, more options than those shown in Listing 15-2. How-
ever, these options usually require that you build email headers, which tell a
mail client how to format the email and how the email should be distributed.
Since the syntax for email headers is very specific, it is easy to implement them
incorrectly. Therefore, I’ve written a small email library called LIB_mail with
a function formatted_mail(), which makes it easy to send emails that are more
complex than what can easily be sent with the mail() function alone. The
script for LIB_mail is shown in Listing 15-3.

function formatted_mail($subject, $message, $address, $content_type)
 {
 # Set defaults
 if(!isset($address['cc'])) $address['cc'] = "";
 if(!isset($address['bcc'])) $address['bcc'] = "";

 # Ensure that there's a Reply-to address
 if(!isset($address['replyto'])) $address['replyto'] = $address['from'];

 # Create mail headers
 $headers = "";
 $headers = $headers . "From: ".$address['from']."\r\n";
 $headers = $headers . "Return-Path: ".$address['from']."\r\n";
 $headers = $headers . "Reply-To: ".$address['replyto']."\r\n";

 # Add Cc to header if needed
 if (strlen($address['cc'])< 1)
 $headers = $headers . "Cc: ".$address['cc']."\r\n";

 # Add Bcc to header if needed
 if (strlen($address['bcc'])< 1)
 $headers = $headers . "Bcc: ".$address['bcc']."\r\n";

 # Add content type
 $headers = $headers . "Content-Type: ".$content_type."\r\n";

 # Send the email
 $result = mail($address['to'], $subject, $message, $headers);

 return $result;
 }

Listing 15-3: Sending formatted email with LIB_mail

The main thing to take away from the script above is that the mail header
is a very syntax-sensitive string that works better if it is a built-in function than if
it is created repeatedly in your scripts. Also, up to six addresses are involved
in sending email, and they are all passed to this routine in an array called
$address. These addresses are defined in Table 15-1.
156 Chapter 15

webbots2e.book Page 157 Thursday, February 16, 2012 11:59 AM
Configuring the Reply-to address is also important because this address
is used as the address where undeliverable email messages are sent. If this is
not defined, undeliverable email messages will bounce back to your system
admin, and you won’t know that an email wasn’t delivered. For this reason,
the function automatically uses the From address if a Return-path address
isn’t specified.

Writing a Webbot That Sends Email Notifications

Here’s a simple webbot that, when run, sends an email notification if a web
page has changed since the last time it was checked.4 Such a webbot could
have many practical uses. For example, it could monitor online auctions or
pages on your fantasy football league’s website. A modified version of this
webbot could even notify you when the balance of your checking account
changes. The webbot simply downloads a web page and stores a page signature,
a number that uniquely describes the content of the page, in a database. This
is also known as a hash, or a series of characters, that represents a test message
or a file. In this case, a small hash is used to create a signature that references
a file without the need to reference the entire contents of the file. If the sig-
nature of the page differs from the one in the database, the webbot saves the
new value and sends you an email indicating that the page has changed.
Listing 15-4 shows the script for this webbot.5

Get libraries
include("LIB_http.php"); # include PHP/CURL library
include("LIB_mysql.php"); # include MySQL library
include("LIB_mail.php"); # include mail library

Define parameters
$webbot_email_address = "webbot@YourDomain.com";
$notification_email_address = "yourEmail@YourDomain.com ";
$target_web_site = "www.trackrates.com";

Table 15-1: Email Addresses Used by LIB_mail

Address Function
Required or
Optional

To: Defines the address of the main recipient of the email Required

Reply-to: Defines the address where replies to the email are sent Optional

Return-path: Indicates where notifications are sent if the email could not be
delivered

Optional

From: Defines the email address of the party sending the email Required

Cc: Refers to an address of another party, who receives a carbon copy
of the email, but is not the primary recipient of the message

Optional

Bcc: Is similar to Cc: and stands for blind carbon copy; this address is
hidden from the other parties receiving the same email

Optional

4 For information on periodic and autonomous launching of webbots, read Chapter 22.
5 This script makes use of LIB_mysql. If you haven’t already done so, make sure you read
Chapter 7 to learn how to use this library.
Webbots That Send Emai l 157

webbots2e.book Page 158 Thursday, February 16, 2012 11:59 AM
Download the website
$download_array = http_get($target_web_site, $ref="");
$web_page = $download_array['FILE'];

Calculate a 40-character sha1 hash for use as a simple signature
$new_signature = sha1($web_page);

Compare this signature to the previously stored value in a database
$sql = "select SIGNATURE from signatures where
WEB_PAGE='".$target_web_site."'";
list($old_signature) = exe_sql(DATABASE, $sql);

If the new signature is different than the old one, update the database and
send an email notifying someone that the web page changed.
if($new_signature != $old_signature)
 {
 // Update database
 if(isset($data_array)) unset($data_array);
 $data_array['SIGNATURE'] = $new_signature;
 update(DATABASE, $table="signatures",
 $data_array, $key_column="WEB_PAGE", $id=$target_web_site);

 // Send email
 $subject = $target_web_site." has changed";
 $message = $subject . "\n";
 $message = $message . "Old signature = ".$old_signature."\n";
 $message = $message . "New signature = ".$new_signature."\n";
 $message = $message . "Webbot ran at: ".date("r")."\n";
 $address['from'] = $webbot_email_address;
 $address['replyto'] = $webbot_email_address;
 $address['to'] = $notification_email_address;
 formatted_mail($subject, $message, $address, $content_type="text/plain");
 }

Listing 15-4: A simple webbot that sends an email when a web page changes

When the webbot finds that the web page’s signature has changed, it
sends an email like the one in Listing 15-5.

www.trackrates.com has changed
Old signature = baf73f476aef13ae48bd7df5122d685b6d2be2dd
New signature = baf73f476aed685b6d2be2ddf13ae48bd7df5124
Webbot ran at: Sun, 20 Mar 2011 17:08:00 -0600

Listing 15-5: Email generated by the webbot in Listing 15-4

Keeping Legitimate Mail out of Spam Filters
Many spam filters automatically reject any email in which the domain of the
sender doesn’t match the domain of the mail server used to send the message.
For this reason, it is wise to verify that the domains for the From and Reply-to
addresses match the outgoing mail server’s domain.
158 Chapter 15

webbots2e.book Page 159 Thursday, February 16, 2012 11:59 AM
The idea here is not to fool spam filters into letting you send unwanted
email, but rather to ensure that legitimate email makes it to the intended
Inbox and not the Junk folder, where no one will read it.

Sending HTML-Formatted Email

It’s easy to send HTML-formatted email with images, hyperlinks, or any
other media found in web pages. To send HTML-formatted emails with the
formatted_mail() function, do the following:

 Set the $content_type variable to text/html. This will tell the routine to use
the proper MIME in the email header.

 Use fully formed URLs to refer to any images or hyperlinks. Relative
address references will resolve to the mail client, not the online media
you want to use.

 Since you never know the capabilities of the client reading the email, use
standard formatting techniques. Tables work well.

 Avoid CSS. Traditional font tags are more predictable in HTML email.

 For debugging purposes, it’s a good idea to build your message in a string,
as shown in Listing 15-6.

Get library
include("LIB_mail.php"); # Include mail library

Define addresses
$address['from'] = "mikeSchrenk@yahoo.com";
$address['replyto'] = $address['from'];
$address['to'] = "mikeSchrenk@yahoo.com";

Define subject line
$subject = "Example of an HTML-formatted email";

Define message
$message = "";
$message = $message . "<table bgcolor='#e0e0e0' border='0' cellpadding='0' cellspacing='0'>";
$message = $message . "<tr>";
$message = $message . "<td><td>";
$message = $message . "</tr>";
$message = $message . "<tr>";
$message = $message . "<td>";
$message = $message . "";
$message = $message . "Here is an example of a clean HTML-formatted email";
$message = $message . "";
$message = $message . "<td>";
$message = $message . "</tr>";
$message = $message . "<tr>";
$message = $message . "<td>";
$message = $message . "";
$message = $message . "with an image and a hyperlink.";
Webbots That Send Emai l 159

webbots2e.book Page 160 Thursday, February 16, 2012 11:59 AM
$message = $message . "";
$message = $message . "<td>";
$message = $message . "</tr>";
$message = $message . "</table>";

echo $message;

// Send email
formatted_mail($subject, $message, $address, $content_type="text/html");
?>

Listing 15-6: Sending HTML-formatted email

The email sent by Listing 15-6 looks like Figure 15-1.

Figure 15-1: HTML-formatted email sent by the script in Listing 15-6

Be aware that not all mail clients can render HTML-formatted email. In
those instances, you should send either text-only emails or a multi-formatted
email that contains both HTML and unformatted messages.

Further Exploration

If you think about all the ways you use email, you’ll probably be able to come
up with some very creative uses for your webbots. The following concepts
should serve as starting points for your own webbot development.

Using Returned Emails to Prune Access Lists

You can design an email-wielding webbot to help you identify illegitimate
members of a members-only website. If someone has access to a business-to-
business website but is no longer employed by a company that uses the site,
that person probably also lost access to his or her corporate email address;
any email sent to that account will be returned as undeliverable. You could
design a webbot that periodically sends some type of report to everyone who
160 Chapter 15

webbots2e.book Page 161 Thursday, February 16, 2012 11:59 AM
has access to the website. Any emails that return as undeliverable will alert
you to a member’s email address that is no longer valid. Your webbot can then
track these undeliverable emails and deactivate former employees from your
list of members.

Using Email as Notification That Your Webbot Ran

It’s handy to have an indication that a webbot has actually run. A simple
email at the end of the webbot’s session can inform you that it ran and what
it did. Often, the actual content of these email notifications is not as signifi-
cant as the emails themselves, which indicate that a webbot ran successfully.
Similarly, you can use email notifications to tell you exactly when and how a
webbot has failed.

Leveraging Wireless Technologies

Since wireless email devices like Androids, iPhones, and BlackBerries allow
people to use email away from their desks, your webbots can effectively
use email in more situations than they could only a few years ago. Think
about applications where webbots can exploit mobile email technology. For
example, you could write a webbot that checks the status of your server and
sends warnings to people when they’re away from the office.

Writing Webbots That Send Text Messages

Many wireless carriers support email interfaces for text messaging, or short
message service (SMS). These messages appear as text on cell phones, and
many people find them to be less intrusive than voice messages. To send a
text message, you simply email the message to one of the email-to-text message
addresses provided by wireless carriers—a task you could easily hand off to
a webbot. Appendix C contains a list of email-to-text message addresses; if you
can’t find your carrier in this list, contact its customer service department to
see if it provides this service.
Webbots That Send Emai l 161

webbots2e.book Page 162 Thursday, February 16, 2012 11:59 AM

webbots2e.book Page 163 Thursday, February 16, 2012 11:59 AM
C O N V E R T I N G A W E B S I T E
I N T O A F U N C T I O N

Webbots are sometimes easier to use when
they’re packaged as functions. These functions

are simply interfaces to webbots that download
and parse information and return the desired data in
a predefined structure. For example, the National Oceanic and Atmospheric
Association (NOAA) provides weather forecasts on its website (http://www
.noaa.gov). You could write a function to execute a webbot that downloads
and parses a forecast. This interface could also return the forecast in an
array, as shown in Listing 16-1.

Get weather forecast
$forcast_array = get_noaa_forecast($zip=89109);

Display forecast
echo $forcast_array['MONDAY']['TEMPERATURE']."
";
echo $forcast_array['MONDAY']['WIND_SPEED']."
";
echo $forcast_array['MONDAY']['WIND_DIRECTION']."
";

Listing 16-1: Simplifying webbot use by creating a function interface

webbots2e.book Page 164 Thursday, February 16, 2012 11:59 AM
While the example in Listing 16-1 is hypothetical, you can see that inter-
facing with a webbot in this manner conceals the dirty details of downloading
or parsing web pages. Yet, the programmer has full ability to access online
information and services that the webbots provide. From a programmer’s
perspective, it isn’t even obvious that webbots are used.

When a programmer accesses a webbot from a function interface, he
or she gains the ability to use the webbot both programmatically and in real
time. This is a departure from the traditional method of launching webbots.1
Customarily, you schedule a webbot to execute periodically, and if the webbot
generates data, that information is stored in a database for later retrieval.
With a function interface to a webbot, you don’t have to wait for a webbot to
run as a scheduled task. Instead, you can directly request the specific contents
of a web page whenever you need them.

Writing a Function Interface

This project uses a web page that decodes ZIP codes and converts that
operation into a function, which is available from a PHP program. This
particular web page finds the city, county, state, and geo coordinates for
the post office located in a specific ZIP code. Theoretically, you could use
this function to validate ZIP codes or use the latitude and longitude information
to plot locations on a map. Figure 16-1 shows the target website for this
project.

Figure 16-1: Target website, which returns information about a ZIP code

The sole purpose of the web page in Figure 16-1 is to be a target for your
webbots. (A link to this page is available at this book’s website.) This target
web page uses a standard form to capture a ZIP code. Once you submit that
form, the web page returns a variety of information about the ZIP code you
entered in a table below the form.

1 Traditional methods for executing webbots are described in Chapter 22.
164 Chapter 16

webbots2e.book Page 165 Thursday, February 16, 2012 11:59 AM
Defining the Interface

This example function uses the interface shown in Listing 16-2, where a func-
tion named decode_zipcode() accepts a five-digit ZIP code as a input parameter
and returns an array, which describes the area serviced by the ZIP code.

array $zipcode_array = decode_zipcode(int $zipcode);

input:
 $zipcode is a five-digit USPS ZIP code
output:
 $zipcode_array['CITY']
 $zipcode_array['COUNTY']
 $zipcode_array['STATE']
 $zipcode_array['LATITUDE']
 $zipcode_array['LONGITUDE']

Listing 16-2: decode_zipcode() interface

Analyzing the Target Web Page

Since this webbot needs to submit a ZIP code to a form, you will need to use
the techniques you learned in Chapter 6 to emulate someone manually sub-
mitting the form. As you learned, you should always pass even simple forms
through a form analyzer (similar to the one used in Chapter 6) to ensure that
you will submit the form in the manner the server expects. This is important
because web pages commonly insert dynamic fields or values into forms that
can be hard to detect by just looking at a page.

To use the form analyzer, simply load the web page into a browser and
view the source code, as shown in Figure 16-2.

Figure 16-2: Displaying the form’s source code
Conver t ing a Websi te in to a Funct ion 165

webbots2e.book Page 166 Thursday, February 16, 2012 11:59 AM
Figure 16-3: Saving the form’s source code

Once you have the target’s source code, save the HTML to your hard
drive, as done in Figure 16-3.

Once the form’s HTML is on your hard drive, you must edit it to make
the form submit its content to the form analyzer instead of the target server.
You do this by changing the form’s action attribute to the location of the
form analyzer, as shown in Figure 16-4.

Figure 16-4: Changing the form’s action attribute to the form analyzer

Now you have a copy of the target form on your hard drive, with the form’s
original action attribute replaced with the web address of the form analyzer.
The final step is to load this local copy of the form into a browser, manually
fill in the form, and submit it to the analyzer. Once submitted, you should
see the analysis performed by the form analyzer, as shown in Figure 16-5.
166 Chapter 16

webbots2e.book Page 167 Thursday, February 16, 2012 11:59 AM
Figure 16-5: Analyzing the target form

The analysis tells us that the method is POST and that there are three
required data fields. In addition to the zipcode field, there is also a hidden
session field (which looks suspiciously like a Unix timestamp) and a Submit
field, which is actually the name of the Submit button. To emulate the form
submission, it is vitally important to correctly use all the field names (with
appropriate values) as well as the same method used by the original form.

Once you write your webbot, it’s a good idea to test it by using the form
analyzer as a target to ensure that the webbot submits the form as the target
webserver expects it to. This is also a good time to verify the agent name your
webbot uses.

Using describe_zipcode()

The script that interfaces the target web page to a PHP function, called
describe_zipcode(), is available in its entirety at this book’s website. It is
broken into smaller pieces and annotated here for clarity.

Getting the Session Value

It is uncommon to find dynamically assigned values, like the session value
employed by this target, in forms. Since the session is assigned dynamically,
the webbot must first make a page request to get the session value before it can
submit form values. This actually mimics normal browser use, as the browser
first must download the form before submitting it. The webbot captures the
session variable with the script described in Listing 16-3.
Conver t ing a Websi te in to a Funct ion 167

webbots2e.book Page 168 Thursday, February 16, 2012 11:59 AM
Start interface describe_zipcode($zipcode)
function describe_zipcode($zipcode)
 {
 # Get required libraries and declare the target
 include ("LIB_http.php");
 include("LIB_parse.php");
 $target = "http://www.WebbotsSpidersScreenScrapers.com/zip_code_form.php";

 # Download the target
$page = http_get($target, $ref="");

Parse the session hidden tag from the downloaded page

 # <input type="hidden" name="session" value="xxxxxxxxxx">
 $session_tag = return_between($string = $page['FILE'] ,
 $start = "<input type=\"hidden\" name=\

"session\"",
 $end = ">",
 $type = EXCL
);
 # Remove the "'s and "value=" text to reveal the session value
 $session_value = str_replace("\"", "", $session_tag);

$session_value = str_replace("value=", "", $session_value);

Listing 16-3: Downloading the target to get the session variable

The script in Listing 16-3 is a classic screen scraper. It downloads the page
and parses the session value from the form <input> tag. The str_replace() func-
tion is later used to remove superfluous quotes and the tag’s value attribute.
Notice that the webbot uses LIB_parse and LIB_http, described in previous
chapters, to download and parse the web page.2

Submitting the Form

Once you know the session value, the script in Listing 16-4 may be used to
submit the form. Notice the use of http_post_form() to emulate the submis-
sion of a form with the POST method. The form fields are conveniently passed
to the target webserver in $data_array[].

$data_array['session'] = $session_value;
$data_array['zipcode'] = $zipcode;
$data_array['Submit'] = "Submit";
$form_result = http_post_form($target, $ref=$target, $data_array);

Listing 16-4: Emulating the form

Parsing and Returning the Result

The remaining step is to parse the desired city, county, state, and geo coordi-
nates from the web page obtained from the form submission in the previous
listing. The script that does this is shown in Listing 16-5.

2 LIB_http and LIB_parse are described in Chapters 3 and 4, respectively.
168 Chapter 16

webbots2e.book Page 169 Thursday, February 16, 2012 11:59 AM
$landmark = "Information about ".$zipcode;
$table_array = parse_array($form_result['FILE'], "<table", "</table>");
for($xx=0; $xx<count($table_array); $xx++)
 {
 # Parse the table containing the parsing landmark

if(stristr($table_array[$xx], $landmark))
{
$ret['CITY'] = return_between($table_array[$xx], "CITY", "</tr>", EXCL);
$ret['CITY'] = strip_tags($ret['CITY']);
$ret['STATE'] = return_between($table_array[$xx], "STATE", "</tr>", EXCL);
$ret['STATE'] = strip_tags($ret['STATE']);
$ret['COUNTY'] = return_between($table_array[$xx], "COUNTY", "</tr>", EXCL);
$ret['COUNTY'] = strip_tags($ret['COUNTY']);
$ret['LATITUDE'] = return_between($table_array[$xx], "LATITUDE", "</tr>", EXCL);
$ret['LATITUDE'] = strip_tags($ret['LATITUDE']);
$ret['LONGITUDE'] = return_between($table_array[$xx], "LONGITUDE", "</tr>", EXCL);
$ret['LONGITUDE'] = strip_tags($ret['LONGITUDE']);
}

}
Return the parsed data
return $ret;
} # End Interface describe_zipcode($zipcode)

Listing 16-5: Parsing and returning the data

This script first uses parse_array() to create an array containing all the
tables in the downloaded web page, which is returned in $form_result['FILE'].
The script then looks for the table that contains the parsing landmark
Information about Once the webbot finds the table that holds the data
we’re looking for, it parses the data using unique strings that identify the
beginning and end of the desired data. The parsed data is then cleaned up
with strip_tags() and returned in the array we described earlier. Once the
data is parsed and placed into an array, that array is returned to the calling
program.

Final Thoughts

Now that you know how to write function interfaces to a web page (or in our
case, a form), you can convert the data and functionality of any web page
into something your programs can use easily in real time. Here are a few
more things for you to consider.

Distributing Resources
A secondary benefit of creating a function interface to a webbot is that when a
webbot uses a web page on another server as a resource, it allocates bandwidth
and computational power across several computers. Since more resources
are deployed, you can get more done in less time. You can use this technique
Conver t ing a Websi te in to a Funct ion 169

webbots2e.book Page 170 Thursday, February 16, 2012 11:59 AM
to spread the burden of running complex webbots to more than one computer
on your local or remote networks. This technique may also be used to make
page requests from multiple IP addresses (for added stealth) or to spread
bandwidth across multiple Internet nodes.

Using Standard Interfaces

The interface described in this example is specific to PHP. Although scripts
for Perl, Java, or C++ environments would be very similar to this one, you
could not use this script directly in an environment other than PHP. You can
solve this problem by returning data in a language-independent format like
XML or SOAP (Simple Object Access Protocol). To learn more about these
protocols, read Chapter 29.

Designing a Custom Lightweight “Web Service”

Our example assumed that the target was not under our control, so we had
to live within the constraints presented by the target website. When you con-
trol the website your interface targets, however, you can design the web page
in such a way that you don’t have to parse the data from HTML. In these
instances, the data is returned as variables that your program can use directly.
These techniques are also described in detail in Chapter 29.

If you’re interested in creating your own ZIP code server (with a lightweight
interface), you’ll need a ZIP code database. You should be able to find one
by performing a Google search for ZIP code database.
170 Chapter 16

webbots2e.book Page 171 Thursday, February 16, 2012 11:59 AM
PART III
A D V A N C E D T E C H N I C A L

C O N S I D E R A T I O N S

The chapters in this section explore the finer technical
aspects of webbot and spider development. In the first
two chapters, I’ll share lessons that I learned (sometimes
the hard way) while writing very specialized webbots
and spiders. I’ll also describe methods for leveraging
PHP/CURL to create webbots that manage authen-
tication, encryption, and cookies.
Chapter 17: Spiders

This discussion of spider design starts with an exploration of simple
spiders that find and follow links on specific web pages. The conversa-
tion later expands to techniques for developing advanced spiders that
autonomously roam the Internet, looking for specific information and
dropping payloads—performing predefined functions as they find
desired information.

Chapter 18: Procurement Webbots and Snipers
In this chapter, we’ll explore the design theory of writing snipers, webbots
that automatically purchase items. Snipers are primarily used on online
auctions sites, “attacking” when a specific list of criteria is met.

webbots2e.book Page 172 Thursday, February 16, 2012 11:59 AM
Chapter 19: Webbots and Cryptography
Encrypted websites are not a problem for webbots using PHP/CURL.
Here we’ll explore how online encryption certificates work and how
PHP/CURL makes encryption easy to handle.

Chapter 20: Authentication
In this chapter on accessing authenticated (i.e., password-protected)
sites, we’ll explore the various methods used to protect a website from
unauthorized users. You’ll also learn how to write webbots that can
automatically log in to these sites.

Chapter 21: Advanced Cookie Management
Advanced cookie management involves managing cookie expiration
dates and multiple sets of cookies for multiple users. We’ll also explore
PHP/CURL’s ability (and inability) to meet these challenges.

Chapter 22: Scheduling Webbots and Spiders
Webbots are most useful when they can be scheduled to run period-
ically and automatically. This chapter explores techniques that allow
your webbots to run unattended while still simulating human activity.

Chapter 23: Scraping Difficult Websites with Browser Macros
Modern web development techniques, such as JavaScript, web sockets,
AJAX, and Flash, complicate data extraction. These issues can nearly
always be overcome with the use of simple iMacros browser macros.

Chapter 24: Hacking iMacros
After you’ve mastered simple browser macro scripts it’s time to learn
a few tricks to make iMacros perform beyond its original scope. Here
you’ll learn how to develop PHP scripts that write dynamic macros and
how to make iMacros parse data or upload files.

Chapter 25: Deployment and Scaling
This section’s final chapter describes various methods for deploying
webbots, spiders, and screen scrapers in production environments, and
how to gain maximum data gathering capacity from your designs.
172 Par t I I I

webbots2e.book Page 173 Thursday, February 16, 2012 11:59 AM
S P I D E R S

Spiders, also known as web spiders, crawlers,
and web walkers, are specialized webbots

that—unlike traditional webbots with well-
defined targets—download multiple web pages

across multiple websites. As spiders make their way across the Internet, it’s diffi-
cult to anticipate where they’ll go or what they’ll find, as they simply follow
links they find on previously downloaded pages. Their unpredictability makes
spiders fun to write because they act as if they almost have minds of their own.

The best known spiders are those used by the major search engine
companies (Google, Yahoo!, and Bing) to identify online content. And while
spiders are synonymous with search engines for many people, the potential
utility of spiders is much greater. You can write a spider that does anything
any other webbot does, with the advantage of targeting the entire Internet.
This creates a niche for developers that design specialized spiders that do
very specific work. Here are some potential ideas for spider projects:

 Discover sales of original copies of 1963 Spider-Man comics. Design your
spider to email you with links to new findings or price reductions.

 Periodically create an archive of your competitors’ websites.

webbots2e.book Page 174 Thursday, February 16, 2012 11:59 AM
 Invite every Facebook member living in Cleveland, Ohio to be your
friend.1

 Send a text message when your spider finds jobs for Miami-based fashion
photographers who speak Portuguese.

 Validate that all the links on your website point to active web pages.

 Perform a statistical analysis of noun usage across the Internet.

 Search the Internet for musicians that recorded new versions of your
favorite songs.

 Purchase collectible Playboy magazines when your spider detects one
priced substantially below the collectible price listed on Amazon.com.

This list could go on, but you get the idea. To a business, a well-purposed
spider is like additional staff, easily justifying the one-time development cost.

How Spiders Work

Spiders begin harvesting links at the seed URL, the address of the initial target
web page. The spider uses these links as references to the next set of pages to
process, and as it downloads each of those web pages, the spider harvests more
links. The first page the spider downloads is known as the first penetration level.
In each successive level of penetration, additional web pages are downloaded
as directed by the links harvested in the previous level. The spider repeats
this process until it reaches the maximum penetration level. Figure 17-1 shows a
typical spider process.

Figure 17-1: A simple spider

1 This is only listed here to show the potential for what spiders can do. Please don’t actually do
this! Automated agents like this violate Facebook’s terms of use. Develop webbots responsibly.

Yes

No

Finish

Download seed URL

Harvest addresses of
web pages referenced
by links in seed URL

Has the spider
reached its maximum

penetration level?

Download and harvest
links from web pages
referenced by links

harvested in previous
penetration level
174 Chapter 17

webbots2e.book Page 175 Thursday, February 16, 2012 11:59 AM
Example Spider

Our example spider will reuse the image harvester (described in Chapter 9)
that downloads images for an entire website. The image harvester is this spider’s
payload—the task that it will perform on every web page it visits. While this
spider performs a useful task, its primary purpose is to demonstrate how spiders
work, so design compromises were made that affect the spider’s scalability for
use on larger tasks. After we explore this example spider, I’ll conclude with
recommendations for making a scalable spider suitable for larger projects.

Listings 17-1 and 17-2 are the main scripts for the example spider.
Initially, the spider is limited to collecting links. Since the payload adds
complexity, we’ll include it after you’ve had an opportunity to understand
how the basic spider works.

Initialization
include("LIB_http.php"); // http library
include("LIB_parse.php"); // parse library
include("LIB_resolve_addresses.php"); // Address resolution library
include("LIB_exclusion_list.php"); // List of excluded keywords
include("LIB_simple_spider.php"); // Spider routines used by this app

set_time_limit(3600); // Don't let PHP time out

$SEED_URL = "http://www.YourSiteHere.com";
$MAX_PENETRATION = 1; // Set spider penetration depth
$FETCH_DELAY = 1; // Wait 1 second between page fetches
$ALLOW_OFFISTE = false; // Don't let spider roam from seed domain
$spider_array = array(); // Initialize the array that holds links

Listing 17-1: Main spider script, initialization

The script in Listing 17-1 loads the required libraries and initializes
settings that tell the spider how to operate. This project introduces two new
libraries: an exclusion list (LIB_exclusion_list.php) and the spider library used
for this exercise (LIB_simple_spider.php). We’ll explain both of these new
libraries as we use them.

In any PHP spider design, the default script time-out of 30 seconds needs
to be set to a period more appropriate for spiders, since script execution may
take minutes or even hours. Since spiders may have notoriously long execution
times, the script in Listing 17-1 sets the PHP script time-out to one hour
(3,600 seconds) with the set_time_limit(3600) command.

The example spider is configured to collect enough information to
demonstrate how spiders work but not so much that the sheer volume of data
distracts from the demonstration. You can set these settings differently once
you understand the effects they have on the operation of your spider. For
now, the maximum penetration level is set to 1. This means that the spider
will harvest links from the seed URL and the pages that the links on the seed
URL reference, but it will not download any pages that are more than one
link away from the seed URL. Even when you tie the spider’s hands—as we’ve
done here—it still collects a ridiculously large amount of data. When limited
to one penetration level, the spider still harvested 583 links when pointed at
Spiders 175

webbots2e.book Page 176 Thursday, February 16, 2012 11:59 AM
http://www.schrenk.com. This number excludes redundant links, which would
otherwise raise the number of harvest links to 1,930. For demonstration
purposes, the spider also rejects links that are not on the parent domain.

The main spider script, shown in Listing 17-2, is quite simple. Much of
this simplicity, however, comes at the cost of storing links in an array, instead
of a more scalable (and more complicated) database. As you can see, the
functions in the libraries make it easy to download web pages, harvest links,
exclude unwanted links, and fully resolve addresses.

Get links from $SEED_URL
echo "Harvesting Seed URL\n";
$temp_link_array = harvest_links($SEED_URL);
$spider_array = archive_links($spider_array, 0, $temp_link_array);

Spider links from remaining penetration levels
for($penetration_level=1; $penetration_level<=$MAX_PENETRATION;
$penetration_level++)
 {
 $previous_level = $penetration_level - 1;
 for($xx=0; $xx<count($spider_array[$previous_level]); $xx++)
 {
 unset($temp_link_array);
 $temp_link_array = harvest_links($spider_array[$previous_level][$xx]);
 echo "Level=$penetration_level, xx=$xx of
 ".count($spider_array[$previous_level])." \n";
 $spider_array = archive_links($spider_array, $penetration_level,
 $temp_link_array);
 }
 }

Listing 17-2: Main spider script, harvesting links

When the spider uses www.schrenk.com as a seed URL, it harvests and
rejects links, as shown in Figure 17-2.

Now that you’ve seen the main spider script, an exploration of the routines
in LIB_simple_spider will provide insight to how it really works.

LIB_simple_spider

Special spider functions are found in the LIB_simple_spider library. This library
provides functions that parse links from a web page when given a URL, archive
harvested links in an array, identify the root domain for a URL, and identify
links that should be excluded from the archive.

This library, as well as the other scripts featured in this chapter, is available
for download at this book’s website.

Harvested: http://video.google.com/videoplay?docid=4221457095668033104&hl=en
Harvested: http://www.apogeonline.com/libri/88-503-2658-0/scheda
Harvested: http://www.schrenk.com/index.php
Harvested: http://www.schrenk.com/strategies.php
Harvested: http://www.schrenk.com/webbots.php
176 Chapter 17

webbots2e.book Page 177 Thursday, February 16, 2012 11:59 AM
Harvested: http://www.schrenk.com/publications.php
Harvested: http://www.schrenk.com/profile.php
Harvested: http://www.schrenk.com/contact.php
Harvested: http://www.schrenk.com/recommended_reading/recommended_reading.php?we
bbots_spiders_and_screen_scrapers
Harvested: http://www.amazon.com/gp/product/1593271204/?tag=schrenkcom-20
Harvested: http://www.schrenk.com/contact.php
Harvested: http://www.schrenk.com/strategies.php
Harvested: http://www.schrenk.com/webbots.php
Harvested: http://www.schrenk.com/contact.php
Level=1, xx=0 of 9
Ignored offsite link: http://www.tcij.org/training/courses/nov-7-and-8
Ignored offsite link: http://www.defcon.org/html/defcon-17/dc-17-speakers.html#S
chrenk
Ignored offsite link: http://www.tcij.org/
Ignored offsite link: http://schrenk.com/nostarch/webbots
Ignored offsite link: http://www.gotop.com.tw/
Ignored offsite link: http://www.vvoj.eu/
Ignored offsite link: http://www.fondspascaldecroos.org/index.php?page=394&detai
l=1810
Ignored offsite link: http://www.defcon.org/
Ignored offsite link: http://extra.volkskrant.nl/verpleeghuizen/
Ignored offsite link: http://schrenk.com/nostarch/webbots
Ignored offsite link: http://www.hotelworldexpo.com/
Ignored offsite link: http://cesweb.org
Ignored offsite link: http://www.phparch.com
Ignored offsite link: http://video.google.com/videoplay?docid=422145709566803310
4&hl=en
Ignored offsite link: http://www.apogeonline.com/libri/88-503-2658-0/scheda
Ignored redundant link: http://www.schrenk.com/strategies.php
Ignored redundant link: http://www.schrenk.com/webbots.php
Ignored redundant link: http://www.schrenk.com/publications.php
Ignored redundant link: http://www.schrenk.com/contact.php

Figure 17-2: Running the simple spider from Listings 17-1 and 17-2

harvest_links()

The harvest_links() function downloads the specified web page and returns
all the links in an array. This function, shown in Listing 17-3, uses the $DELAY
setting to keep the spider from sending too many requests to the server over
too short a period.2

function harvest_links($url)
 {
 # Initialize
 global $DELAY;
 $link_array = array();

 # Get page base for $url (used to create fully resolved URLs for the links)
 $page_base = get_base_page_address($url);

2 A stealthier spider would shuffle the order of web page requests.
Spiders 177

webbots2e.book Page 178 Thursday, February 16, 2012 11:59 AM
 # $DELAY creates a random delay period between 1 second and full delay period
 $random_delay = rand(1, rand(1, $DELAY));
 # Download webpage
 sleep($random_delay);
 $downloaded_page = http_get($url, "");

 # Parse links
 $anchor_tags = parse_array($downloaded_page['FILE'], "<a", "", EXCL);
 # Get http attributes for each tag into an array
 for($xx=0; $xx<count($anchor_tags); $xx++)
 {
 $href = get_attribute($anchor_tags[$xx], "href");
 $resolved_addrses = resolve_address($href, $page_base);
 $link_array[] = $resolved_address;
 echo "Harvested: ".$resolved_addres." \n";
 }
 return $link_array;
 }

Listing 17-3: Harvesting links from a web page with the harvest_links() function

archive_links()

The script in Listing 17-4 uses the link array collected by the previous function
to create an archival array. The first element of the archival array identifies the
penetration level where the link was found, while the second contains the
actual link.

function archive_links($spider_array, $penetration_level, $temp_link_array)
 {
 for($xx=0; $xx<count($temp_link_array); $xx++)
 {
 # Don't add excluded links to $spider_array
 if(!excluded_link($spider_array, $temp_link_array[$xx]))
 {
 $spider_array[$penetration_level][] = $temp_link_array[$xx];
 }
 }
 return $spider_array;
 }

Listing 17-4: Archiving links in $spider_array

get_domain()

The function get_domain() parses the root domain from the target URL.
For example, given a target URL like https://www.schrenk.com/store/
product_list.php, the root domain is schrenk.com.

The function get_domain() compares the root domains of the links to the
root domain of the seed URL to determine if the link is for a URL that is not
in the seed URL’s domain, as shown in Listing 17-5.
178 Chapter 17

webbots2e.book Page 179 Thursday, February 16, 2012 11:59 AM
function get_domain($url)
 {
 // Remove protocol from $url
 $url = str_replace("http://", "", $url);
 $url = str_replace("https://", "", $url);

 // Remove page and directory references
 if(stristr($url, "/"))
 $url = substr($url, 0, strpos($url, "/"));

 return $url;
 }

Listing 17-5: Parsing the root domain from a fully resolved URL

This function is only used when the configuration for $ALLOW_OFFSITE is set
to false.

exclude_link()

This function examines each link and determines if it should be included in
the archive of harvested links. Reasons for excluding a link may include the
following:

 The link is contained within JavaScript.

 The link already appears in the archive.

 The link contains excluded keywords are listed in the exclusion array.

 The link is to a different domain.

function excluded_link($spider_array, $link)
 {
 # Initialization
 global $exclusion_array, $ALLOW_OFFSITE;
 $exclude = false;

 // Exclude links that are JavaScript commands
 if(stristr($link, "javascript"))
 {
 echo "Ignored JavaScript function: $link\n";
 $exclude=true;
 }

 // Exclude redundant links
 for($xx=0; $xx<count($spider_array); $xx++)
 {
 $saved_link="";
 while(isset($saved_link))
 {
 $saved_link=array_pop($spider_array[$xx]);
 if($link == array_pop($spider_array[$xx]))
 {
Spiders 179

webbots2e.book Page 180 Thursday, February 16, 2012 11:59 AM
 echo "Ignored redundant link: $link\n";
 $exclude=true;
 break;
 }
 }
 }

 // Exclude links found in $exclusion_array
 for($xx=0; $xx<count($exclusion_array); $xx++)
 {
 if(stristr($link, $exclusion_array[$xx]))
 {
 echo "Ignored excluded link: $link\n";
 $exclude=true;
 break;
 }
 }

 // Exclude offsite links if requested
 if($ALLOW_OFFSITE==false)
 {
 if(get_domain($link)!=get_domain($SEED_URL))
 {
 echo "Ignored offsite link: $link\n";
 $exclude=true;
 break;
 }
 }
 return $exclude;
 }

Listing 17-6: Excluding unwanted links

There are several reasons to exclude links. For example, it’s best to ignore
any links referenced within JavaScript because—without a proper JavaScript
interpreter—those links may yield unpredictable results. Removing redundant
links makes the spider run faster and reduces the amount of data the spider
needs to manage. The exclusion list allows the spider to ignore undesirable
links to places like Google AdSense, banner ads, or other places you don’t
want the spider to go.

Experimenting with the Spider

Now that you have a general idea how this spider works, go to the book’s
website and download the required scripts. Play with the initialization
settings, use different seed URLs, and see what happens.

Consider these three warnings before you start:

 Use a respectful $FETCH_DELAY of at least a second or two so you don’t create
a denial-of-service (DoS) attack by consuming so much bandwidth that
others cannot use the web pages you target. Better yet, read Chapter 31
before you begin.
180 Chapter 17

webbots2e.book Page 181 Thursday, February 16, 2012 11:59 AM
 Keep the maximum penetration level set to a low value like 1 or 2. This
spider is designed for simplicity, not scalability, and if you penetrate too
deeply into your seed URL, your computer will run out of memory.

 For best results, run spider scripts within a command shell, not through
a browser.

Adding the Payload

The payload used by this spider is an extension of the library used in Chapter 8
to download all the images found on a web page. This time, however, we’ll
download all the images referenced by the entire website. The code that adds
the payload to the spider is shown in Listing 17-7. You can tack this code
directly onto the end of the script for the earlier spider.

Add the payload to the simple spider
// Include download and directory creation lib
include("LIB_download_images.php");

// Download images from pages referenced in $spider_array
for($penetration_level=1; $penetration_level<=$MAX_PENETRATION; $penetration_level++)
 {
 for($xx=0; $xx<count($spider_array[$previous_level]); $xx++)
 {
 download_images_for_page($spider_array[$previous_level][$xx]);
 }
 }

Listing 17-7: Adding a payload to the simple spider

Functionally, the addition of the payload involves the inclusion of the
image download library and a two-part loop that activates the image harvester
for every web page referenced at every penetration level.

Further Exploration

As mentioned earlier, the example spider was optimized for simplicity, not
scalability. Moreover, while it was suitable for learning about spiders, it is not
suitable for use in a production environment where you want to spider many
web pages. There are, however, opportunities for enhancements to improve
performance and scalability.

Save Links in a Database

The single biggest limitation of the example spider is that all the links are
stored in an array. Arrays can only get so big before the computer is forced to
rely on disk swapping, a technique that expands the amount of data space by
moving some of the storage task from RAM to a disk drive. Disk swapping
adversely affects performance and often leads to system crashes. The other
drawback to storing links in an array is that all the work your spider performed
Spiders 181

webbots2e.book Page 182 Thursday, February 16, 2012 11:59 AM
is lost as soon as the program terminates. A much better approach is to store
the information your spiders harvest in a database.

Saving your spider’s data in a database has many advantages. First of all,
you can store more information. Not only does a database increase the
number of links you can store, but it also makes it practical to cache images
of the pages you download for later processing. As we’ll see later, it also
allows more than one spider to work on the same set of links and facilitates
multiple computers to launch payloads on the data collected by the spider(s).

Separate the Harvest and Payload

The example spider performs the payload after harvesting all the links. Often,
however, link harvesting and payload are two distinctly separate pieces of
code, and they are often performed by two separate computers. While one
script harvests links and stores them in a database, another process can query
the same database to determine which web pages have not received the
payload. You could, for example, use the same computer to schedule the
spiders to run in the morning and the payload script to run in the evening.
This assumes, of course, that you save your spidered results in a database,
where the data has persistence and is available over an extended period.

Distribute Tasks Across Multiple Computers

Your spider can do more in less time if it teams with other spiders to download
multiple pages simultaneously. Fortunately, spiders spend most of their time
waiting for webservers to respond to requests for web pages, so there’s a lot of
unused computer power when a single spider process is running on a com-
puter. You can run multiple copies of the same spider script if your spider
software queries a database to identify the oldest unprocessed link. After it
parses links from that web page, it can query the database again to determine
whether links on the next level of penetration already exist in the database—
and if not, it can save them for later processing. Once you’ve written one spider
to operate in this manner, you can run multiple copies of the identical spider
script on the same computer, each accessing the same database to complete
a common task. Similarly, you can also run multiple copies of the payload
script to process all the links harvested by the team of spiders.

If you run out of processing power on a single computer, you can use the
same technique used to run parallel spiders on one machine to run multiple
spiders on multiple computers. You can improve performance further by
hosting the database on its own computer. As long as all the spiders and all
the payload computers have network access to a common database, you should
be able to expand this concept until the database runs out of processing power.
Distributing the database, unfortunately, is more difficult than distributing
spiders and payload tasks. For more information on this topic, please read
Chapter 25, which provides advanced techniques for distributing task loads
over multiple computers.
182 Chapter 17

webbots2e.book Page 183 Thursday, February 16, 2012 11:59 AM
Regulate Page Requests

Spiders (especially the distributed types) increase the potential of over-
whelming target websites with page requests. It doesn’t take much computer
power to completely flood a network. In fact, a vintage 33 MHz Pentium has
ample resources to consume a T1 network connection. Multiple modern
computers, of course, can do much more damage. If you do build a distri-
buted spider, you should consider writing a scheduler, perhaps on the com-
puter that hosts your database, to regulate how often page requests are made
to specific domains or even to specific subnets. The scheduler could also
remove redundant links from the database and perform other routine main-
tenance tasks. Issues of scheduling, scaling, and other ideas for keeping your
webbots out of trouble are discussed in Chapters 22, 25, and 31.
Spiders 183

webbots2e.book Page 184 Thursday, February 16, 2012 11:59 AM

webbots2e.book Page 185 Thursday, February 16, 2012 11:59 AM
P R O C U R E M E N T W E B B O T S
A N D S N I P E R S

A procurement bot is any intelligent web agent
that automatically makes online purchases

on a user’s behalf. These webbots are improve-
ments over manual online procurement because

they not only automate the online purchasing process,
but also autonomously detect events that indicate the
best time to buy. Procurement bots commonly make automated purchases
based on the availability of merchandise or price reductions. For other
webbots, external events like low inventory levels trigger a purchase.

The advantage of using procurement bots in your business is that they
identify opportunities that may only be available for a short period or that may
only be discovered after many hours of browsing. Manually finding online
deals can be tedious, time consuming, and prone to human error. The ability
to shop automatically uncovers bargains that would otherwise go unnoticed.
I’ve written automated procurement bots that—on a monthly basis—purchase
hundreds of thousands of dollars of merchandise that would be unknown to
less vigilant human buyers.

webbots2e.book Page 186 Thursday, February 16, 2012 11:59 AM
Procurement Webbot Theory

Before you begin, consider that procurement bots require both planning and
in-depth investigation of target websites. These programs spend your (or your
clients’) money, and their success is dependent on how well you design, pro-
gram, debug, and implement them. With this in mind, use the techniques
described elsewhere in this book before embarking on your first procurement
bot—in other words, your first webbot shouldn’t be one that spends money.
You can use the online test store (introduced in Chapter 8) as target practice
before writing webbots that make autonomous purchases in the wild.

While procurement bots purchase a wide range of products in various
circumstances, they typically follow the steps shown in Figure 18-1.

Figure 18-1: Structure of a procurement bot

While price and need govern this particular webbot in deciding when to
make a purchase, you can design virtually any type of procurement bot by
substituting different purchase trigger events.

Get Purchase Criteria
A procurement bot first needs to gather the purchase criteria, which is a descrip-
tion of the item or items to purchase. The purchase criteria may range from
simple part numbers to item descriptions combined with complicated calcula-
tions that determine how much you want to pay for an item.

No

Yes

Evaluate results

Get purchase criteria

Authenticate buyer

Verify item

Yes Yes

Price
acceptable?

Needed
inventory?

Other
opportunity?

Purchase

Finish

No No

Evaluate purchase triggers
186 Chapter 18

webbots2e.book Page 187 Thursday, February 16, 2012 11:59 AM
Authenticate Buyer

Once the webbot has identified the purchase criteria, it authenticates the
buyer by automatically logging in to the online store as a registered user. In
almost all cases, this means the webbot must know the username and password
of the person it represents.1 (For more on how webbots handle the authenti-
cation process, see Chapter 20.)

Verify Item

Prior to purchase, procurement bots should verify that requested items are
still available for sale if they were selected in advance of the actual purchase.
For example, if you instruct a procurement bot to buy something in an online
auction, the bot should email you if the auction is canceled and the item is
no longer for sale. (Chapter 15 describes how to send email from a webbot.)
The procurement process should also stop at this point. This sounds obvious,
but unless you program your webbot to stop when items are no longer for
sale, it may attempt to purchase unavailable items.

Evaluate Purchase Triggers

Purchase triggers determine when available merchandise meets predefined
purchase criteria. When those conditions are met, the purchase is made. Bear
in mind that it may take days, weeks, or even months before a buying oppor-
tunity presents itself. But when it does, you’ll be the first in line (unless some-
one who is also running a procurement bot beats you to it).2

Together, the purchase criteria and purchase triggers define what your
procurement bot does. If you want to pick up cheap merchandise or capitalize
on price reductions, you might use price as a trigger. More complicated web-
bots may weigh both price and inventory levels to make purchasing decisions.
Other procurement bots may make purchases based on the scarcity of mer-
chandise. Alternatively, as we’ll explore later, you may write a sniper, which
uses the time an auction ends as a trigger to bidding.

Make Purchase

Purchases are finalized by completing and submitting forms that collect infor-
mation about the purchased product, shipping address, and payment method.
Your webbot should submit these forms in the same manner as described
earlier in this book. (See Chapter 6 for more on writing webbots that submit
forms to websites.)

1 The exceptions to this rule are instances like the eBay API, which allow third parties to act on
someone’s behalf without knowing that individual’s username and password.
2 Occasionally, you may find yourself in direct competition with other webbots. I’ve found that
when this happens, it’s usually best not to get overly competitive and do things like use excessive
bandwidth or server connections that might identify your presence.
Procurement Webbots and Snipers 187

webbots2e.book Page 188 Thursday, February 16, 2012 11:59 AM
Evaluate Results

After making a purchase, the target server will display a web page that confirms
your purchase. Your webbot should parse the page to determine that your
acquisition was successful and then communicate the result of the purchase
to you. Notifications of this type are usually done through email. If the pro-
curement bot buys many items, however, it might be better to report the status
of all purchases on a web page or to send an email with the consolidated
results for the entire day’s activity.

Sniper Theory

Get Purchase Criteria
The purchase criteria for an auction are generally the auction identification
number and the maximum price the user is willing to pay for the item.
Advanced snipers, however, may periodically look for and target any auction
that matches other predefined purchase criteria like the brand or age of
an item.

Of all procurement bots, snipers are the best
known, largely because of their popularity on
eBay. Snipers are procurement bots that use
time as their trigger event. Snipers wait until
the closing seconds of an online auction and
bid just before the auction ends. The intent is
to make the auction’s last bid and avoid price
escalation caused by bidding wars. While mak-
ing the last bid is what characterizes snipers,
a more important feature is that they enable
people to participate in online auctions with-
out having to dedicate their time to monitor-
ing individual items or making bids at the
most opportune moments.

While eBay is the most popular target,
sniping programs can purchase products
from any auction website, including Yahoo!,
Overstock.com, uBid, or even official US
government auction sites.

The sniping process is similar to that of
the procurement bots described earlier. The
main differences are that the clocks on the
auction website and sniper must be synchron-
ized, and the purchase trigger is determined
by the auction’s end time. Figure 18-2 shows
a common sniper construction.

Figure 18-2: Anatomy of a
sniper

Yes

No

Evaluate results

Get purchase criteria

Authenticate bidder

Verify auction item

Synchronize clocks

Time to bid?

Finish

Bid on auction
188 Chapter 18

webbots2e.book Page 189 Thursday, February 16, 2012 11:59 AM
Authenticate Buyer
Authentication of snipers is similar to other authentication practices discussed
earlier. Occasionally, snipers can authenticate users without the need for a
username and password, but these techniques vary depending on the auction
site and the special programming interfaces it provides. The problem of dis-
closing login credentials to third-party sniping services is one of the reasons
people often choose to write their own snipers.

Verify Item
Many auctions end prematurely due to early cancellation by the seller or to
buy-it-now purchases, which allow a bidder to buy an item for a fixed price
before the auction comes to its scheduled end. For both of these reasons,
snipers must periodically verify that the auction it intends to snipe is still
a valid auction. Not doing so may cause a sniper to mistakenly bid on non-
existent auctions. Typically, snipers validate the auction once after collecting
the purchase criteria and again just before bidding.

Synchronize Clocks
Since a sniper uses the closing time of an auction as its event trigger, the sniper
and auction website must synchronize their clocks. Synchronization involves
requesting the timestamp from the online auction’s server and subtracting
that value from the auction’s scheduled end. The result is the starting value
for a countdown clock. When the countdown clock approaches zero, the
sniper places its bid.

A countdown clock is a more accurate method of establishing a bid time
than relying on your computer’s internal clock to make a bid a few seconds
before the scheduled end of an auction. This is particularly true if your sniper
is running on a PC, where internal clocks are notoriously inaccurate.

To guarantee synchronization of the sniper and the online auction’s
clock, the sniper should synchronize periodically and with increased frequency
as the end of the auction nears. Periodic synchronization reduces the sniper’s
reliance on the accuracy of your computer’s clock. Chances are, neither the
clock on the auction site’s server nor the one on your PC is set to the correct
time, but from a sniper’s perspective, the server’s clock is the only one that
matters.

Obtaining a server’s clock value is as easy as making a header request and
parsing the server’s timestamp from the header, as shown in Listing 18-1.

// Include libraries
include("LIB_http.php");
include("LIB_parse.php");

// Identify the server you want to get local time from
$target = "http://www.schrenk.com";

// Request the httpd head
$header_array = http_header($target, $ref="");
Procurement Webbots and Snipers 189

webbots2e.book Page 190 Thursday, February 16, 2012 11:59 AM
// Parse the local server time from the header
$local_server_time = return_between($header_array['FILE'], $start="Date:",

$stop="\n", EXCL);

// Convert the local server time to a timestamp
$local_server_time_ts = strtotime($local_server_time);

// Display results
echo "\nReturned header:\n";
echo $header_array['FILE']."\n";
echo "Parsed server timestamp = ".$local_server_time_ts ."\n";
echo "Formatted server time = ".date("r", $local_server_time_ts)."\n";

Listing 18-1: A script that fetches and parses a server’s time settings

When the script in Listing 18-1 is run, it displays a screen similar to the
one in Figure 18-3. Here you can see that the script requests an HTTP header
from a target server. It then parses the timestamp (which is identified by the
line starting with Date:) from the header.

Returned header:
HTTP/1.1 200 OK
Date: Tue, 06 Dec 2011 00:35:54 GMT
Server: Apache
X-Powered-By: PHP/4.4.4
Vary: Accept-Encoding,User-Agent
Connection: close
Content-Type: text/html; charset=ISO-8859-1

Parsed server timestamp = 1323131754
Formatted server time = Tue, 06 Dec 2011 00:35:54 +0000

Figure 18-3: Result of running the script in Listing18-1

It is fairly safe to assume that the target webserver’s clock is the same
clock that is used to time the auctions. However, as a precaution, it is worth-
while to verify that the timestamp returned from the webserver correlates to
the time displayed on the auction web pages.

Once the sniper parses the server’s formatted timestamp, it converts it
into a Unix timestamp, an integer that represents the number of seconds that
have elapsed since January 1, 1970. The use of the Unix timestamp is important
because in order to perform the countdown, the sniper needs to know how
many seconds separate the current time from the scheduled end of the auc-
tion. If you have Unix timestamps for both events, it’s simply a matter of
subtracting the current server timestamp value from the end of auction time-
stamp. Failure to convert to Unix timestamps results in some difficult calendar
math. For example, without Unix timestamps, you may need to subtract
10:20 PM, September 19 from 8:12 AM, September 20 to obtain the time
remaining in an auction.
190 Chapter 18

webbots2e.book Page 191 Thursday, February 16, 2012 11:59 AM
Time to Bid?
A sniper needs to make one bid, close to the auction’s scheduled end but just
before other bidders have time to respond to it. Therefore, you will want to
make your bid a few seconds before the auction ends, but not so close to the
end that the auction is over before the server has time to process your bid.

Submit Bid
Your sniper will submit bids in a manner similar to the other procurement
bots, but since your bid is time sensitive, your sniper will need to anticipate
how long it will take to complete the forms and get responses from the target
server. You should expect to fine-tune this process on live auctions.

Evaluate Results
Evaluating the results of a sniping attempt is also similar to evaluating the
purchase results of other procurement bots. The only difference is that, unlike
other procurement bots, there is a possibility that you were outbid or that the
sniper bid too late to win the item. For these reasons, you may want to include
additional diagnostic information in the results, including the final price, and
whether you were outbid or the auction ended before your bid was completed.
This way, you can learn what may have gone wrong and correct problems
that may reappear in future sniping attempts.

Testing Your Own Webbots and Snipers
The online store you used in Chapter 8 may also be used to test your trial
procurement bots and snipers. You should feel free to make your mistakes
here before you commit errors with a real procurement bot that discloses a
competitive advantage or causes suspension of your privileges on an actual
target website. Aspects of the test store that you may find particularly useful
for testing your skills include the following:

 The store requires that buyers register and authenticate themselves
before making any purchase or bidding in any auction.

 The prices in the store periodically change. Use this feature to design
procurement bots that capitalize on unannounced price dips.

The address of the online test store is listed on this book’s website, which
is available at http://www.WebbotsSpidersScreenScrapers.com.

Further Exploration

As a developer with the skills to write procurement bots, you should ask
yourself what other types of purchasing agents you can write and what other
parameters you can use to make purchasing decisions. Consider mapping out
your particular ideas in a flowchart as I did in Figures 18-1 and 18-2.
Procurement Webbots and Snipers 191

webbots2e.book Page 192 Thursday, February 16, 2012 11:59 AM
After you’ve honed your skills at the book’s test store, consider the
following ideas as starting points for developing your own procurement bots
and snipers.

 Develop a sniper that makes counterbids as necessary.
 Design a sniper that uses scarcity of an item as criteria for purchase.
 Write a procurement bot that detects price reductions.
 Write a procurement bot that monitors the availability of tickets for

upcoming concerts and sporting events. When it appears that the tickets
for a concert or game will sell out in advance of the event, create a pro-
curement bot that automatically purchases tickets for resale later. (Make
sure not to conflict with local laws, of course.)
Write a procurement bot that monitors weather forecasts and makes

stock or commodity purchases based on industries that are affected by
inclement weather.

Final Thoughts
Purchasing agents are easier to write than to test. This is especially true when
sniping high-value items like cars, jewelry, and industrial equipment, where
mistakes are expensive. Obviously, when you’re writing sniping agents that buy
big-ticket items, you want to get things right the first time, but this is also true
of procurement bots that buy cheaper merchandise. Here is some general
advice for debugging procurement bots and snipers.

 Debug code in stages, only moving to the next step after validating that
the prior stage works correctly.

 Assume that there are limited opportunities to test your ability to make
purchases with actual trigger events. Hours, days, or even weeks may
pass between purchase opportunities. Schedule ample debugging time,
since the speed at which you can validate your code is directly associ-
ated with the availability of specific products to purchase.

 Assume that all transactional websites, sites where money is exchanged, are
closely monitored. Even though your intentions are pure, the system
administrator of your target webserver may confuse your coding and
process errors with hackers exploiting vulnerabilities in the server. The
consequences of such mistakes may lead to loss of privileges.

 Keep a low profile. Test as much as you can before communicating with
the website’s server, and limit the number of times you communicate
with that target server.

 Make sure to read Chapters 28 and 31 before deploying any procure-
ment bot.
192 Chapter 18

webbots2e.book Page 193 Thursday, February 16, 2012 11:59 AM
W E B B O T S A N D C R Y P T O G R A P H Y

Cryptography uses mathematics to secure
data by applying well-known algorithms

(or ciphers) to render the data unreadable
to people who don’t have the key, the string of

bits required to unlock the code. The beauty of crypt-
ography is that it relies on standards to secure data
transmission between web clients and servers. Without these standards, it
would be impossible to have consistent security across the multitude of
websites that require secure data transmission.

Don’t confuse cryptography with obfuscation. Obfuscation attempts to
obscure or hide data without standardized protocols—as a result, it is about
as reliable as hiding your house key under the doormat. And since it doesn’t
rely on standard methods for “un-obfuscation,” it is not suitable for applica-
tions that need to work in a variety of circumstances.

Encryption—the use of cryptography—allowed for commerce on the
Internet, mostly by making it safe to pay for online purchases with credit
cards. The World Wide Web didn’t widely support encryption until 1995,
shortly after the Netscape Navigator browser (paired with its Commerce
Server) began supporting a protocol called Secure Sockets Layer (SSL). SSL is

webbots2e.book Page 194 Thursday, February 16, 2012 11:59 AM
a private way to transmit personal data through an encrypted data transport
layer. While Transport Layer Security (TLS) has superseded SSL, the new
protocol only changes SSL slightly, and SSL is still the popular term used to
describe web encryption. Today, all popular web servers and browsers support
encryption. (You can identify when a website begins to use encryption, because
the protocol changes from http to https.1) If you design webbots that handle
sensitive information, you will also need to know how to download encrypted
websites and make encrypted requests.

In addition to privacy, SSL also ensures the identity of websites by con-
firming that a digital certificate was assigned to the website using SSL. This
means, for example, that when you check your bank balance, you know that
the web page you access is actually coming from your bank’s server. Authen-
tication is enforced by validating the bank’s certificate with the agency that
assigned the certificate to the bank. Another feature of SSL is that you’ll
know for sure that web clients and servers received all the transmitted data,
because the decryption methods won’t work on partial data sets.

Designing Webbots That Use Encryption

As when downloading unencrypted web pages, PHP provides choices to
the webbot developer who needs to access secure servers. The following
sections explore methods for requesting and downloading web pages that
use encryption.

SSL and PHP Built-in Functions
In PHP version 5 or higher, you can use the standard PHP built-in functions
(discussed in Chapter 3) to request and download encrypted files. You can
download web pages from a secure server using PHP built-in functions like
file() or fopen() by simply changing the protocol from http: to https:. How-
ever, I wouldn’t recommend using the built-in functions because they lack
many features that are important to webbot developers, like automatic for-
warding, form submission, and cookie support, just to name a few.

Encryption and PHP/CURL
Listing 19-1 shows how to download an encrypted web page using the LIB_http
library. Just as with the PHP built-in functions, it’s as simple as changing the
protocol to https:.

http_get("https://some.domain.com", $referer);

Listing 19-1: Requesting an encrypted web page

It’s important to note that in some PHP distributions, the protocol may be
case sensitive, and a protocol defined as HTTPS: will not work. Therefore, it’s a
good practice to be consistent and always specify the protocol in lowercase.

1 Additionally, when SSL is used, the network port changes from 80 to 447.
194 Chapter 19

webbots2e.book Page 195 Thursday, February 16, 2012 11:59 AM
A Quick Overview of Web Encryption

The following is a hasty overview of how web encryption works. While incom-
plete, it’s here to provide a greater appreciation for everything PHP/CURL
does and to help you be semi-literate in SSL conversations with peers, vendors,
and clients.

Once a web client recognizes it is talking to a secure server, it initiates
a handshake process, where the web client and server agree on the type of
encryption to use. This is important because web clients and servers are
typically capable of using several ciphers or encryption algorithms. Two
commonly used encryption ciphers include Digital Encryption Standard
(DES) and Message Digest Algorithm (MD5).

The server replies to the web client with a variety of data, including its
encryption certificate, which contains the web server name, the CA (or certificate
authority) that issued the certificate, and a public encryption key. The certi-
ficate authority information is important because the client may—but isn’t
required to—query the CA to authenticate that the server is actually who it
says it is.

If you ever choose to have your webbot simply ignore verification of a
website, you can insert the line of code shown in Listing 19-2.

curl_setopt($ch, CURLOPT_SSL_VERIFYHOST, FALSE);
curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, FALSE);

Listing 19-2: Telling PHP/CURL not to perform server authentication

Whether the web client authenticates the server or not, the web client
is required to send the server a random number that is encrypted with the
public encryption key it just got from the server. The server then uses its
private encryption key that only it knows, to decrypt the random number. This
random number is used to create session certificates that dictate how encryp-
tion is conducted for the rest of the session.

The process of creating an SSL connection for secure data communica-
tion is very complex (more complex than described in my brief explanation).
Fortunately, it should happen transparently and generally shouldn’t be a
concern for developers. In the end—when set up properly—all data flowing
to and from a secure website is encrypted, including all GET and POST requests
and cookies. That’s about all webbot developers need to know about the SSL
encryption process. If, however, you thirst for detailed information, or you
see yourself as a future Hacker Jeopardy contestant,2 you should read the
SSL specification. The full details are available at http://www.mozilla.org/
projects/security/pki/nss/ssl/.

 If you are working in an environment that requires server certificate
verification, you should configure your PHP/CURL session as shown in
Listing 19-3.

2 Hacker Jeopardy is a contest where contestants answer detailed questions about various
Internet protocols. This game is an annual event at the hacker conference Defcon (http://
www.defcon.org).
Webbots and Cryptography 195

webbots2e.book Page 196 Thursday, February 16, 2012 11:59 AM
curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, TRUE);
curl_setopt($ch, CURLOPT_CAINFO, $file_name); // Certificate file

Listing 19-3: Telling PHP/CURL how to use a peer certificate

Final Thoughts

Occasionally, you can force an encrypted website into transferring unen-
crypted data by simply changing the protocol from https to http in the request.
While this may allow you to download the web page, this technique is a bad
idea because, in addition to potentially revealing confidential data, your
webbot’s actions will look unusual in server log files, which will destroy all
attempts at stealth.

Sometimes web developers use the wrong protocol when designing web
forms. It’s important to remember that the default protocol for form submis-
sion is http, and unless specifically defined as https by the form’s action attri-
bute, the form is submitted without encryption, even if the form exists on a
secure web page! Using the wrong network protocol is a common mistake
made by inexperienced web developers. For that reason, when your webbot
submits a form, you need to be sure it uses the same form-submission proto-
col that is defined by the downloaded form. For example, if you download an
encrypted form page and the form’s action attribute isn’t defined, the proto-
col is http, not https! As wrong as it sounds, you need to use the same protocol
defined by the web form, even if it is not the proper protocol to use in that
specific case. If your webbot uses a protocol that is different than the one
browsers use when submitting the form, you may cause the system admin-
istrator to scratch his or her head and investigate why one web client isn’t
using the same protocol everyone else is using.
196 Chapter 19

webbots2e.book Page 197 Thursday, February 16, 2012 11:59 AM
A U T H E N T I C A T I O N

If your webbots are going to access sensitive
information or handle money, they’ll need

to authenticate, or sign in as registered users of
websites. This chapter teaches you how to write

webbots that access password-protected websites. As in
previous chapters, you can practice what you learn with
example scripts and special test pages on the book’s
website.

What Is Authentication?

Authentication is the processes of proving that you are who you say you are.
You authenticate yourself by presenting something that only you can produce.
Table 20-1 describes the three categories of things used to prove a person’s
identity.

webbots2e.book Page 198 Thursday, February 16, 2012 11:59 AM
Types of Online Authentication
Most websites that require authentication ask for usernames and passwords
(something you know). The username and password—also known as login
criteria—are compared to records in a database. The user is allowed access to
the website if the login criteria match the records in the database. Based on the
login criteria, the website may optionally restrict the user to specific parts of
the website or grant specific functionality.

Usernames and passwords are the most convenient way to authenticate
people online because they can be authenticated with a browser and without
the need for additional hardware or software.

Websites also authenticate through the use of digital certificates (some-
thing you have), which must be exchanged between client and server and
validated before access to a website or service is granted. The intricacies of
digital certificates are described in Chapter 19. If you skipped this chapter,
this is a good time to read it. Otherwise, all you need to know is that digital
certificates are files that reside on servers, or less frequently, on the hard drives
of client computers. The contents of these certificate files are automatically
exchanged to authenticate the computer that holds the certificate. You’re
most apt to encounter digital certificates when using the HTTPS protocol
(also know as SSL) to access secure websites. Here, the certificate authenti-
cates the website and facilitates the use of an encrypted data channel. Less
frequently, a certificate is required on the client computer as well, to access
virtual private networks (VPNs), which allow remote users to access private cor-
porate networks. PHP/CURL manages certificates automatically if you specify
the https: protocol in the URL. PHP/CURL also facilitates the use of local
certificates; in the odd circumstance that you require a client-side certificate,
PHP/CURL and client-side certificates are covered in Appendix A.

Biometrics (something you are) are generally not used in online
authentication and are beyond the scope of this chapter. Personally, I have
only seen biometrics used to authenticate users to online services when bio-
metric information is readily available, as in telemedicine.

Strengthening Authentication by Combining Techniques
Your webbots may encounter websites that use multiple forms of authentica-
tion, since authentication is strengthened when two or more techniques are
combined. For example, ATMs require both an ATM card (something you
have) and a personal identification number (PIN) (something you know).

Table 20-1: Things That Prove a Person’s Identity

You Authenticate Yourself With . . . Examples

Something you know Usernames and passwords; Social Security numbers

Something you are (biometrics) DNA samples; thumbprints; retina, voice, and facial scans

Something you have House keys, digital certificates, encoded magnetic cards,
wireless key fobs, implanted canine microchips
198 Chapter 20

webbots2e.book Page 199 Thursday, February 16, 2012 11:59 AM
Similarly, the retailer Target experimented with an ATM-style authentication
scheme when it introduced USB credit card readers that worked in conjunc-
tion with Target.com.

Authentication and Webbots
You may very well encounter certificates—and even biometrics—as a webbot
developer, so the more familiar you are with the various forms of authentica-
tion, the more potential targets your webbots will have. You’ll find, however,
that most webbots authenticate with simple usernames and passwords. The
following sections describe the most common techniques for using usernames
and passwords.

Example Scripts and Practice Pages

We’ll explore three types of online authentication. For each case, you’ll receive
examples of authentication scripts designed specifically to work with password-
protected sections of this book’s website. You can experiment (and make
mistakes) on these practice pages before writing authenticating webbots that
work on real websites. The location of the practice pages is shown in Table 20-2.

For simplicity, all of the authentication examples on the book’s website
use the login criteria shown in Table 20-3.

Basic Authentication

The most common form of online is authentication is basic authentication.
Basic authentication is a dialogue between the webserver and browsing agent
in which the login credentials are requested and processed, as shown in
Figure 20-1.

Table 20-2: Location of Authentication Practice Pages on the Book’s Website

Authentication Method Location of Practice Pages

Basic authentication http://www.WebbotsSpidersScreenScrapers.com/
basic_authentication

Cookies sessions http://www.WebbotsSpidersScreenScrapers.com/
cookie_authentication

Query sessions http://www.WebbotsSpidersScreenScrapers.com/
query_authentication

Table 20-3: Login Criteria Used for All
Authentication Practice Pages

Username Password

webbot sp1der3*

* The password “sp1der3” contains the number “1”
and not a lowercase “i” or “l.”
Authent icat ion 199

webbots2e.book Page 200 Thursday, February 16, 2012 11:59 AM
Web pages subject to basic authen-
tication exist in what’s called a realm.
Generally, realms refer to all web pages
in the current server directory as well
as the web pages in sub-directories.
Fortunately, browsers shield people
from many of the details defined in
Figure 20-1. Once you authenticate
yourself with a browser, it appears
that you don’t re-authenticate your-
self when accessing other pages
within the realm. In reality, the dia-
logue from Figure 20-1 happens for
each page downloaded within the
realm. Your browser automatically
resubmits your authentication cre-
dentials without asking you again for
your username and password. When
accessing a basic authenticated web-
site with a webbot, you will need to
send your login credentials every time
the webbot requests a page within the
authenticated realm, as shown later
in the example script.

Before you write an auto-
authenticating webbot, you should
first visit the target website and manu-
ally authenticate yourself into the site
with a browser. This way you can vali-
date your login credentials and learn
about the target site before you design your webbot. When you request a web
page from the book’s basic authentication test area, your browser will initially
present a login form for entering usernames and passwords, as shown in Fig-
ure 20-2.

Figure 20-2: Basic authentication login form

Browser requests page from server

Server responds with
401 Authentication Required

Browser creates username
and password form

Username and password
are sent to server

Do the username
and password match

records?

Server sends the requested page

No

Yes

Figure 20-1: Basic authentication dialogue
200 Chapter 20

webbots2e.book Page 201 Thursday, February 16, 2012 11:59 AM
After entering your username and password, you will gain access to a sim-
ple set of practice pages (shown in Figure 20-3) for testing auto-authenticating
webbots and basic authentication. You should familiarize yourself with these
simple pages before reading further.

Figure 20-3: Basic authentication test pages

The commands required to download a web page with basic authentication
are very similar to those required to download a page without authentication.
The only change is that you need to configure the CURLOPT_USERPWD option to
pass the login credentials to PHP/CURL. The format for login credentials is
the username and password separated by a colon, as shown in Listing 20-1.

<?
Define target page
$target = "http://www.WebbotsSpidersScreenScrapers.com/basic_authentication/index.php";

Define login credentials for this page
$credentials = "webbot:sp1der3";

Create the PHP/CURL session
$ch = curl_init();
curl_setopt($ch, CURLOPT_URL, $target); // Define target site
curl_setopt($ch, CURLOPT_USERPWD, $credentials); // Send credentials
curl_setopt($ch, CURLOPT_RETURNTRANSFER, TRUE); // Return page in string

Echo page
$page = curl_exec($ch); // Place web page into a string
echo $page; // Echo downloaded page

Close the PHP/CURL session
curl_close($ch);
?>

Listing 20-1: The minimal code required to access the basic authentication test pages

Once the favored form of authentication, basic authentication is losing
out to other techniques because it is weaker. For example, with basic authen-
tication, there is no way to log out without closing your browser. There is also
no way to change the appearance of the authentication form because the
browser creates it. Basic authentication is also not very secure, as the browser
sends the login criteria to the server in cleartext. Digest authentication is an
Authent icat ion 201

webbots2e.book Page 202 Thursday, February 16, 2012 11:59 AM
improvement over basic authentication. Unlike basic authentication, digest
authentication sends the password to the server as an MD5 digest with 128-bit
encryption. Unfortunately, support for digest authentication is spotty, especially
with older browsers.

Session Authentication

Unlike basic authentication, in which login credentials are sent each time a
page is downloaded, session authentication validates users once and creates a
session value that represents that authentication. The session values (instead
of the actual username and password) are passed to each subsequent page
fetch to indicate that the user is authenticated. There are two basic methods
for employing session authentication—with cookies and with query strings.
These methods are nearly identical in execution and work equally well. You’re
apt to encounter both forms of sessions as you gain experience writing webbots.

Authentication with Cookie Sessions
Cookies are small pieces of information that servers store on your hard
drive. Cookies are important because they allow servers to identify unique
users. With cookies, websites can remember preferences and browsing habits
(within the domain), and use sessions to facilitate authentication.

How Cookies Work

Servers send cookies in HTTP headers. It is up to the client software to parse
the cookie from the header and save the cookie values for later use. On sub-
sequent fetches within the same domain, it is the client’s responsibility to
send the cookies back to the server in the HTTP header of the page request.
In our cookie authentication example, the cookie session can be viewed in
the header returned by the server, as shown in Listing 20-2.

HTTP/1.1 302 Found
Date: Fri, 09 Sep 2011 16:09:03 GMT
Server: Apache/2.0.58 (FreeBSD) mod_ssl/2.0.58 OpenSSL/0.9.8a PHP/5
X-Powered-By: PHP/5
Set-Cookie: authenticate=1157818143
Location: index0.php
Content-Length: 1837
Content-Type: text/html; charset=ISO-8859-1

Listing 20-2: Cookies returned from the server in the HTTP header

The line in bold typeface defines the name of the cookie and its value.
In this case there is one cookie named authenticate with the value 1157818143.
202 Chapter 20

webbots2e.book Page 203 Thursday, February 16, 2012 11:59 AM
Sometimes cookies have expiration dates, which is an indication that the
server wants the client to write the cookie to a file on the hard drive. Other
times, as in our example, no expiration date is specified. When no expiration
date is specified, the server requests that the browser save the cookie in RAM
and delete it when the browser closes. For security reasons, authentication
cookies typically have no expiration date and are stored in RAM.

When authentication is done using a cookie, each successive page within
the website examines the session cookie, and, based on internal rules, deter-
mines whether the web agent is authorized to download that web page. The
actual value of the cookie session is of little importance to the webbot, as long
as the value of the cookie session matches the value expected by the target web-
server. In many cases, as in our example, the session also holds a time-out
value that expires after a limited period. Figure 20-4 shows a typical cookie
authentication session.

Figure 20-4: Authentication with cookie sessions

Yes

No

Browser requests
page from server

Is there a valid
session variable in

a cookie?

Server sends
requested page

Server requests login
credentials from user

Do the username
and password match

records?

Server saves session
value in a cookie

Yes

No
Authent icat ion 203

webbots2e.book Page 204 Thursday, February 16, 2012 11:59 AM
Unlike basic authentication, where the login criteria are sent in a generic
(browser-dependent) form, cookie authentication uses custom forms, as shown
in Figure 20-5.

Figure 20-5: The login page for the cookie authentication example

Regardless of the authentication method used by your target web page,
it’s vitally important to explore your target screens with a browser before
writing self-authenticating webbots. This is especially true in this example,
because your webbot must emulate the login form. You should take this time
to explore the cookie authentication pages on this book’s website. View the
source code for each page, and see how the code works. Use your browser to
monitor the values of the cookies the web pages use. Now is also a good time
to preview Chapter 21.

Figure 20-6 shows an example of the screens that lay beyond the login
screen.

Figure 20-6: The example cookie session page from the book’s website

Cookie Session Example

A webbot must do the following to authenticate itself to a website that uses
cookie sessions:

 Download the web page with the login form

 Emulate the form that gathers the login credentials

 Capture the cookie written by the server

 Provide the session cookie to the server on each page request
204 Chapter 20

webbots2e.book Page 205 Thursday, February 16, 2012 11:59 AM
The script in Listing 20-3 first downloads the login page as a normal user
would with a browser. As it emulates the form that sends the login credentials,
it uses the CURLOPT_COOKIEFILE and CURLOPT_COOKIEJAR options to tell PHP/CURL
where the cookies should be written and where to find the cookies that are
read by the server. To most people (myself included), it seems redundant to
have one set of outbound cookies and another set of inbound cookies. In
every case I’ve seen, webbots use the same file to write and read cookies. It’s
important to note that PHP/CURL will always save cookies to a file, even
when the cookie has no expiration date. This presents some interesting
problems, which are explained in Chapter 21.

<?
Define target page
$target = "http://www.WebbotsSpidersScreenScrapers.com/cookie_authentication/index.php";

Define the login form data
$form_data="enter=Enter&username=webbot&password=sp1der3";

Create the PHP/CURL session
$ch = curl_init();
curl_setopt($ch, CURLOPT_URL, $target); // Define target site
curl_setopt($ch, CURLOPT_RETURNTRANSFER, TRUE); // Return page in string
curl_setopt($ch, CURLOPT_COOKIEJAR, "cookies.txt"); // Tell PHP/CURL where to write cookies
curl_setopt($ch, CURLOPT_COOKIEFILE, "cookies.txt"); // Tell PHP/CURL which cookies to send
curl_setopt($ch, CURLOPT_POST, TRUE);
curl_setopt($ch, CURLOPT_POSTFIELDS, $form_data);
curl_setopt($ch, CURLOPT_FOLLOWLOCATION, TRUE); // Follow redirects

Execute the PHP/CURL session and echo the downloaded page
$page = curl_exec($ch);
echo $page;

Close the PHP/CURL session
curl_close($ch);
?>

Listing 20-3: Auto-authentication with cookie sessions

Once the session cookie is written, your webbot should be able to
download any authenticated page, as long as the cookie is presented to the
website by your PHP/CURL session. Just one word of caution: Depending
on your version of PHP/CURL, you may need to use a complete path when
defining your cookie file.

Authentication with Query Sessions
Query string sessions are nearly identical to cookie sessions, the difference
being that instead of storing the session value in a cookie, the session value
is stored in the query string. Other than this difference, the process is identi-
cal to the protocol describing cookie session authentication (outlined in
Figure 20-4). Query sessions create additional work for website developers,
as the session value must be tacked on to all links and included in all form
Authent icat ion 205

webbots2e.book Page 206 Thursday, February 16, 2012 11:59 AM
submissions. Yet some web developers (myself included) prefer query sessions,
as some browsers and proxies restrict the use of cookies and make cookie
sessions difficult to implement.

This is a good time to manually explore the test pages for query authenti-
cation on the website. Once you enter your username and password, you’ll
notice that the authentication session value is visible in the URL as a GET value,
as shown in Figure 20-7. However, this may not be the case in all situations, as
the session value could also be in a POST value and invisible to the viewer.

Figure 20-7: Session variable visible in the query string (URL)

Like the cookie session example, the query session example first emulates
the login form. Then it parses the session value from the authenticated result
and includes the session value in the query string of each page it requests.
A script capable of downloading pages from the practice pages for query
session authentication is shown in Listing 20-4.

<?
Include libraries
include("LIB_http.php");
include("LIB_parse.php");

Request the login page
$domain = "http://www.WebbotsSpidersScreenScrapers.com/";
$target = $domain."query_authentication";
$page_array = http_get($target, $ref="");

echo $page_array['FILE']; // Display the login page
sleep(2); // Include small delay between page fetches
echo "<hr>";

Send the query authentication form
$login = $domain."query_authentication/index.php";

$data_array['enter'] = "Enter";
$data_array['username'] = "webbot";
$data_array['password'] = "sp1der3";
$page_array = http_post_form($login, $ref=$target, $data_array);
echo $page_array['FILE']; // Display first page after login page
sleep(2); // Include small delay between page fetches
echo "<hr>";
206 Chapter 20

webbots2e.book Page 207 Thursday, February 16, 2012 11:59 AM
Parse session variable
$session = return_between($page_array['FILE'], "session=", "\"", EXCL);

Request subsequent pages using the session variable
$page2 = $target . "/index2.php?session=".$session;
$page_array = http_get($page2, $ref="");
echo $page_array['FILE']; // Display page two
?>

Listing 20-4: Authenticating a webbot on a page using query sessions

Figure 20-8: Output of Listing 20-4

Final Thoughts

Here are a few additional things to remember when writing webbots that
access password-protected websites.

 For clarity, the examples in this chapter use a minimal amount of code
to perform a task. In actual use, you’ll want to follow the comprehensive
practices mentioned elsewhere in this book for downloading pages,
parsing results, emulating forms, using PHP/CURL, and writing fault-
tolerant webbots.
Authent icat ion 207

webbots2e.book Page 208 Thursday, February 16, 2012 11:59 AM
 It’s important to note that no form of online authentication is effective
unless it is accompanied by encryption. After all, it does little good to
authenticate users if sensitive information is sent across the network in
cleartext, which can be read by anyone with a packet sniffer.1 In most
cases, authentication will be combined with encryption. For more infor-
mation about webbots and encryption, revisit Chapter 19.

 If your webbot communicates with more than one domain, you need to
be careful not to broadcast your login criteria when writing webbots that
use basic authentication. For example, if you hard-code your username
and password into a PHP/CURL routine, make sure that you don’t use
the same function when fetching pages from other domains. This sounds
silly, but I’ve seen it happen, resulting in cleartext login credentials in
server log files.

 Websites may use a combination of two or more authentication types. For
example, an authenticated site might use both query and cookie sessions.
Make sure that you account for all potential authentication schemes
before releasing your webbots.

 The latest versions of all the scripts used in this chapter are available for
download at this book’s website.

1 A packet sniffer is a special type of agent that lets people read raw network traffic.
208 Chapter 20

webbots2e.book Page 209 Thursday, February 16, 2012 11:59 AM
A D V A N C E D C O O K I E
M A N A G E M E N T

In the previous chapter, you learned how
to use cookies to authenticate webbots to

access password-protected websites. This
chapter further explores cookies and the

challenges they present to webbot developers.

How Cookies Work

Cookies are small pieces of ASCII data that websites store on your computer.
Without using cookies, websites cannot distinguish between new visitors and
those that visit on a daily basis. Cookies add persistence, the ability to identify
people who have previously visited the site, to an otherwise stateless environ-
ment. Through the magic of cookies, web designers can write scripts to
recognize people’s preferences, shipping address, login status, and other
personal information.

There are two types of cookies. Temporary cookies are stored in RAM and
expire when the client closes his or her browser; permanent cookies live on the
client’s hard drive and exist until they reach their expiration date (which
may be so far into the future that they’ll outlive the computer they’re on).

webbots2e.book Page 210 Thursday, February 16, 2012 11:59 AM
For example, consider the script in Listing 21-1, which writes one temporary
cookie and one permanent cookie that expires in one hour.

Set cookie that expires when browser closes
setcookie ("TemporaryCookie", "66");

Set cookie that expires in one hour
setcookie ("PermanentCookie", "88", time() + 3600);

Listing 21-1: Setting permanent and temporary cookies with PHP

Listing 21-1 shows the cookies’ names, values, and expiration dates, as
required. Figures 21-1 and 21-2 show how the cookies written by the script
in Listing 21-1 appear in the privacy settings of a browser. Go ahead and load
the URL, http://www.WebbotsSpidersScreenScrapers.com/Listing_21_1.php, and
check the cookie status for yourself.

Figure 21-1: A temporary cookie written from http://
www.WebbotsSpidersScreenScrapers.com/Listing_
21_1.php, with a value of 66

Figure 21-2: A permanent cookie written from http://
www.WebbotsSpidersScreenScrapers.com, with a value
of 88
210 Chapter 21

webbots2e.book Page 211 Thursday, February 16, 2012 11:59 AM
Browsers and webservers exchange cookies in HTTP headers. When
a browser requests a web page from a webserver, it looks to see if it has any
cookies previously stored by that web page’s domain. If it finds any, it will send
those cookies to the webserver in the HTTP header of the fetch request. When
you execute the PHP/CURL command in Figure 21-3, you can see the cookies
as they appear in the returned header.

C:\curl>curl --head http://www.WebbotsSpidersScreenScrapers.com/listing_21_1.php
HTTP/1.1 200 OK
Date: Mon, 19 Dec 2011 18:36:22 GMT
Server: Apache
X-Powered-By: PHP/4.4.4
Set-Cookie: TemporaryCookie=66
Set-Cookie: PermanentCookie=88; expires=Mon, 19 Dec 2011 19:36:22 GMT
Vary: Accept-Encoding,User-Agent
Content-Type: text/html; charset=ISO-8859-1

Figure 21-3: Cookies as they appear in the HTTP header sent by the server

A browser will never modify a cookie unless it expires or unless the user
erases it using the browser’s privacy settings. Servers, however, may write new
information to cookies every time they deliver a web page. These new cookie
values are then passed to the web browser in the HTTP header, along with
the requested web page. According to the specification, a browser will only
expose cookies to the domain that wrote them. Webbots, however, are not
bound by these rules and can manipulate cookies as needed.

PHP/CURL and Cookies

You can write webbots that support cookies without using PHP/CURL, but
doing so adds to the complexity of your designs. Without PHP/CURL, you’ll
have to read each returned HTTP header, parse the cookies, and store them
for later use. You will also have to decide which cookies to send to which
domains, manage expiration dates, and return everything correctly in headers
of page requests. PHP/CURL does all this for you, automatically. Even with
PHP/CURL, however, cookies pose challenges to webbot designers.

Fortunately, PHP/CURL does support cookies, and we can effectively use
it to capture the cookies from the previous example, as shown in Listing 21-2.

include("LIB_http.php");
$target="http://www.WebbotsSpidersScreenScrapers.com/Listing_21_1.php";
http_get($target, "");

Listing 21-2: Reading cookies with PHP/CURL and the LIB_http library

LIB_http defines the file where PHP/CURL stores cookies. This declara-
tion is done near the beginning of the file, as shown in Listing 21-3.
Advanced Cookie Management 211

webbots2e.book Page 212 Thursday, February 16, 2012 11:59 AM
Location of your cookie file (must be a fully resolved address)
define("COOKIE_FILE", "c:\cookie.txt");

Listing 21-3: Cookie file declaration, as made in LIB_http

As noted in Listing 21-3, the address for a cookie file should be fully
resolved and within the local file structure. In my experience, relative cookie
file addresses may work on one PHP/CURL platform but not on others. For
that reason, if you write webbots that need to perform in a mixed environ-
ment (Windows, Linux, etc.), you should always define fully resolved paths
for your cookie files.

If a PHP/CURL script downloads a web page that writes cookies as done
back in Listing 21-1 (the URL for this web page is available at this book’s web-
site), PHP/CURL writes the cookies in Netscape Cookie Format in the file
defined in the LIB_http configuration, as shown in Listing 21-4.

Netscape HTTP Cookie File
http://curl.haxx.se/rfc/cookie_spec.html
This file was generated by libcurl! Edit at your own risk.

www.webbotsspidersscreenscrapers.com FALSE / FALSE 0 TemporaryCookie 66
www.webbotsspidersscreenscrapers.com FALSE / FALSE 1324323775 PermanentCookie 88

Listing 21-4: The cookie file, as written by PHP/CURL

NOTE Each web client maintains its own cookies, and the cookie file written by PHP/CURL is
not the same cookie file created by your browser.

How Cookies Challenge Webbot Design

Webservers will not think anything is wrong if your webbots don’t use cookies,
since many people configure their browsers not to accept cookies for privacy
reasons. However, if your webbot doesn’t support cookies, you will not be able
to access the multitude of websites that demand their use. Moreover, if your
webbot doesn’t support cookies correctly, you will lose your webbot’s stealthy
properties. You also risk revealing sensitive information if your webbot returns
cookies to servers that didn’t write them.

Cookies operate transparently—as such, we may forget that they even
exist. Yet the data passed in cookies is just as important as the data trans-
ferred in GET or POST methods. While PHP/CURL automatically handles
cookies for webbot developers, some instances still cause problems—most
notably when cookies are supposed to expire or when multiple users (with
separate cookies) need to use the same webbot.

Purging Temporary Cookies

One thing to be cautious of is that when PHP/CURL writes cookies to the
cookie file, they all become permanent, just like a cookie written to your hard
drive by a browser. Using the techniques described here, all cookies accepted
212 Chapter 21

webbots2e.book Page 213 Thursday, February 16, 2012 11:59 AM
by PHP/CURL are written to the cookie file, whether or not they are intended
to expire at the end of your session. This in itself is usually not a problem,
unless your webbot accesses a website that manages authentication with tem-
porary (session) cookies, which are normally intended to be erased when the
browser closes. If you fail to purge your webbot’s temporary cookies and it
accesses the same website for a whole year, you essentially tell the website’s
system administrator that you haven’t closed your browser (let alone rebooted
your computer!) for an entire twelve months. Since this is not a likely scenario,
your account may receive unwanted attention or your webbot may eventu-
ally violate the website’s authentication process. If you use PHP/CURL as
described here, you need to manually delete your cookies every so often in
order to avoid these problems.

You can also avoid issues with unpurged cookies by inserting the line
of code in Listing 21-5 as part of your PHP/CURL session configuration, just
after your other cookie declarations.

curl_setopt($s, CURLOPT_COOKIESESSION, TRUE);

Listing 21-5: Configuring session cookies

When this line of code is used, your cookies will still be written to the
cookie file on your hard drive, but session cookies (those that are supposed
to expire) will not be returned on subsequent sessions with the same website.
In other words, these cookies are still written to the cookie file, but they other-
wise exhibit regular browser-like cookie behavior.

There is also a PHP/CURL option that allows you to use cookies without
ever writing them to the cookie file. I caution against using this option, how-
ever, because the ability to look in your cookie file to see how cookies are
read and written makes debugging complex situations easier.

Managing Multiple Users’ Cookies

In some applications, your webbots may need to manage cookies for multiple
users. For example, suppose you write one of the procurement bots or snipers
mentioned in Chapter 18. You may want to integrate the webbot into a website
where several people may log in and specify purchases. If these people each
have private accounts at the e-commerce website that the webbot targets,
each user’s cookies will require separate management.

Webbots can manage multiple users’ cookies by employing a separate
cookie file for each user. LIB_http, however, does not support multiple cookie
files, so you will have to write a scheme that assigns the appropriate cookie file
to each user. Instead of declaring the name of the cookie file once, as is done
in LIB_http, you will need to define the cookie file each time a PHP/CURL
session is used. For simplicity, it makes sense to use the person’s username in
the cookie file, as shown in Listing 21-6.

Open a PHP/CURL session
$s = curl_init();
Advanced Cookie Management 213

webbots2e.book Page 214 Thursday, February 16, 2012 11:59 AM
Select the cookie file (based on username)
$cookie_file = "c:\bots\".$username."cookies.txt";
curl_setopt($s, CURLOPT_COOKIEFILE, $cookie_file); // Read cookie file
curl_setopt($s, CURLOPT_COOKIEJAR, $cookie_file); // Write cookie file

Configure the PHP/CURL command
curl_setopt($s, CURLOPT_URL, $target); // Define target site
curl_setopt($s, CURLOPT_RETURNTRANSFER, TRUE); // Return in string

Indicate that there is no local SSL certificate
curl_setopt($s, CURLOPT_SSL_VERIFYPEER, FALSE); // No certificate

curl_setopt($s, CURLOPT_FOLLOWLOCATION, TRUE); // Follow redirections
curl_setopt($s, CURLOPT_MAXREDIRS, 4); // Limit redirections to four

Execute the PHP/CURL command (Send contents of target web page to string)
$downloaded_page = curl_exec($s);

Close PHP/CURL session
curl_close($s);

Listing 21-6: A PHP/CURL script, capable of managing cookies for multiple users

Further Exploration

While PHP/CURL’s cookie management is extremely useful to webbot
developers, it has a few shortcomings. Here are some ideas for improving
on what PHP/CURL already does.

 Design a script that reads cookies directly from the HTTP header and
programmatically sends the correct cookies back to the server in the HTTP
header of page requests. While you’re at it, improve on PHP/CURL’s
ability to manage cookie expiration dates.

 For security reasons, sometimes administrators do not allow scripts run-
ning on hosted webservers to write local files. When this is the case, PHP/
CURL is not able to maintain cookie files. Resolve this problem by writ-
ing a MySQL-based cookie management system.

 Write a webbot that pools cookies written by two or more webservers.
Find a useful application for this exploit.

 Write a script that, on a daily basis, deletes temporary cookies from
PHP/CURL’s Netscape-formatted cookie file.

 Sometime cookie management becomes too complex to be managed
with scripts. In those cases, you may choose to manage cookies auto-
matically with browser macros. These techniques are described in
Chapters 23 and 24.
214 Chapter 21

webbots2e.book Page 215 Thursday, February 16, 2012 11:59 AM
S C H E D U L I N G W E B B O T S
A N D S P I D E R S

Up to this point, all of the example webbots
have run only when executed directly from

a command line or when loaded in a browser. In
real-world situations, however, you may want to schedule
your webbots and spiders to run automatically and peri-
odically. This chapter describes methods for scheduling
webbots to run unattended in a Windows environment.
Most readers should have access to the scheduling tool
I’ll be using here.

If you are using an operating system other than Windows, don’t despair.
Most operating systems support scheduling software of some type. In Unix,
Linux, and Mac OS X environments, you can always use the cron command, a
text-based scheduling tool. Regardless of the operating system you use, there
should be a graphical user interface (GUI) for a scheduling tool similar to
the one Windows uses.

webbots2e.book Page 216 Thursday, February 16, 2012 11:59 AM
As many of you may still be using Windows XP, I’ll describe how to
schedule webbots using that environment. Then, I’ll show you how to use
a more modern scheduler in Windows 7.

Preparing Your Webbots to Run as Scheduled Tasks

Regardless of the scheduler you use, you should create a batch file that exe-
cutes the webbot. It is easier to schedule a batch file than to specify the PHP
file directly, because the batch file adds flexibility in defining pathnames and
allows multiple webbots, or events, to run from the same scheduled task. List-
ing 22-1 shows the format for executing a PHP webbot from a batch file.

drive:/php_path/php drive:/webbot_path/my_webbot.php

Listing 22-1: Executing a local webbot from a batch file

In the batch file shown in Listing 22-1, the operating system executes
the PHP interpreter, which subsequently executes my_webbot.php.

You can also use a batch file to execute a remote webbot. Listing 22-2
shows how to use PHP/CURL to execute a webbot that is on a remote
webserver.

drive:/curl_path/curl http://www.somedomain.com/remote_webbot.php

Listing 22-2: Executing a remote webbot from a batch file

The Windows XP Task Scheduler

The Windows XP Task Scheduler is an easy-to-use GUI designed for the
somewhat complex duty of scheduling tasks. You can access the Task
Scheduler through the Control Panel or in the Accessories directory
under System Tools.

To see the tasks currently scheduled on your computer, simply click
Scheduled Tasks. In addition to showing the schedule and status of these
tasks, this window is the tool you’ll use to create new scheduled tasks. It will
look like the one in Figure 22-1.

Figure 22-1: The Windows Task Scheduler
216 Chapter 22

webbots2e.book Page 217 Thursday, February 16, 2012 11:59 AM
Scheduling a Webbot to Run Daily

To schedule a daily execution of your batch file, click Add Scheduled Task
in the Task Scheduler window. This initiates a wizard, which walks you through
the process of creating a schedule of execution times for your application.
The first step is to identify the application (webbot) you want to schedule. To
schedule your webbot, click Browse to locate the batch file that executes it, as
shown in Figure 22-2.

Figure 22-2: Selecting an application to schedule

After you select the webbot you want to schedule—in this example,
test_webbot.bat—the wizard asks for the periodicity, or the frequency of execu-
tion. Windows allows you to schedule a task to run daily, weekly, monthly, just
once, when the computer starts, or when you log on, as shown in Figure 22-3.

Figure 22-3: Configuring the periodicity of your webbot

After selecting a period, you will specify the time of day you want your
webbot to execute. You can also specify whether the webbot will run every
day or only on weekdays, as shown in Figure 22-4. You can even schedule a
webbot to skip one day or more.
Schedul ing Webbots and Spiders 217

webbots2e.book Page 218 Thursday, February 16, 2012 11:59 AM
Figure 22-4: Configuring the time and days your webbot
will run

Additionally, you can set the entire schedule to begin sometime in the
future. For example, the configuration shown in Figure 22-4 will cause the web-
bot to run Monday through Friday at 6:20 PM, commencing on August 17, 2012.

The final step of the scheduling wizard is to enter your Windows user-
name and password, as shown in Figure 22-5. This will allow your webbot to
run without Windows prompting you for authentication.

Figure 22-5: Entering a username and password to
authenticate your webbot

On completing the wizard, the scheduler displays your new scheduled
task, as shown previously in Figure 22-1.

Complex Schedules
There are several ways to satisfy the need for a complex schedule. The easiest
solution may be to schedule additional tasks. For example, if you need to run
a webbot once at 6:20 PM and again at 6:45 PM, the simplest solution is to create
another task that runs the same webbot at the later time.
218 Chapter 22

webbots2e.book Page 219 Thursday, February 16, 2012 11:59 AM
The Windows XP Task Scheduler is also capable of managing very
complex schedules. If you right-click your webbot in the Task Scheduler
window, select the Schedule tab, and then click the Advanced button, you
can create the schedule shown in Figure 22-6, which runs the webbot every
10 minutes from 6:20 PM to 7:10 PM, every weekday except Wednesdays,
starting on August 17, 2012.

Figure 22-6: An advanced weekly schedule

If a monthly period is required, you can specify which month and days
you want the webbot to run. The configuration in Figure 22-7 describes a
schedule that launches a webbot on the first Monday of every month.

Figure 22-7: Scheduling webbots to launch monthly
Schedul ing Webbots and Spiders 219

webbots2e.book Page 220 Thursday, February 16, 2012 11:59 AM
The Windows 7 Task Scheduler

The Windows 7 Task Scheduler is capable of all the features of the Windows
XP Task Scheduler, plus a lot more. As a result, it is also more complicated
and less intuitive to set up and use. For that reason, we will only cover those
scheduling features you’re most likely to use in your webbot deployments.

The Windows 7 Task Scheduler is also found in the Control Panel, but
instead of displaying a simple list of available tasks, the Windows 7 Task
Scheduler contains many window panes, as shown in Figure 22-8.

Figure 22-8: The Windows 7 Task Scheduler

New tasks are created by clicking Create Basic Task... in the Actions pane,
which causes a screen like the one in Figure 22-9 to be displayed. Once a
new task is initiated, it is defined with a name and a short description.

Clicking the Next button subsequently causes a screen to be displayed
where you define your task’s trigger, as shown in Figure 22-10. Just like the
Windows XP Task Scheduler, this scheduler allows daily, weekly, and monthly
triggers. It also allows one-time, boot, login, and special trigger events.

Since a daily period was selected in Figure 22-10, the next screen allows
you to define the details of a daily event trigger. As shown in Figure 22-11, you
can define the trigger start date and time, as well as how often your trigger
will reoccur.
220 Chapter 22

webbots2e.book Page 221 Thursday, February 16, 2012 11:59 AM
Figure 22-9: Creating a new task in Windows 7

Figure 22-10: Selecting a Windows 7 Task Trigger
Schedul ing Webbots and Spiders 221

webbots2e.book Page 222 Thursday, February 16, 2012 11:59 AM
Figure 22-11: Defining trigger details

The next step is to define what action happens once the trigger occurs.
For webbot developers, the action will usually be running the batch (or com-
mand) file that executes the webbot. Notice, however, that the options, shown
in Figure 22-12, also allow for sending an email or displaying a message.

Figure 22-12: Defining the triggered action
222 Chapter 22

webbots2e.book Page 223 Thursday, February 16, 2012 11:59 AM
To select the batch file that actually initiates your webbot, simply follow
the dialog as displayed in Figure 22-13.

Figure 22-13: Selecting a program to run as a scheduled task

While the Windows 7 Task Scheduler is similar to the Windows XP Task
Scheduler, it is more complex and has a slightly steeper learning curve. On
the other hand, it has some features that a webbot developer may find useful.
For example, in Windows 7, you can schedule an email to be sent after your
webbot is run. This can be particularly useful if you have many webbots sched-
uled to run in multiple environments. If you configure your webbots to send
simple status emails, you can easily monitor all your webbots’ actions from a
single email account.

Non-calendar-based Triggers

Calendar events, like those examined in this chapter, are not the only events
that may trigger a webbot to run. However, other types of triggers usually
require that a scheduled task run periodically to detect if the non-calendar
event has occurred. In the previous section, we talked about using email as
a means to monitor webbots, but email can also be used to trigger webbots.
For example, the script in the following listings uses techniques discussed in
Chapter 14 to trigger a webbot to run after receiving an email with the words
Run the webbot in the subject line.

First, the webbot initializes itself to read email and establishes the loca-
tion of the webbot it will run when it receives the triggering email message,
as shown in Listing 22-3.
Schedul ing Webbots and Spiders 223

webbots2e.book Page 224 Thursday, February 16, 2012 11:59 AM
// Include the POP3 command library
include("LIB_pop3.php");
define("SERVER", "your.mailserver.net"); // Your POP3 mail server
define("USER", "your@email.com"); // Your POP3 email address
define("PASS", "your_password"); // Your POP3 password

$webbot_path = "c:\\webbots\\view_competitor.bat";

Listing 22-3: Initializing the webbot that is triggered via email

Once the initialization is complete, this webbot attempts to make a
connection to the mail server, as shown in Listing 22-4.

// Connect to POP3 server
$connection_array = POP3_connect(SERVER, USER, PASS);
$POP3_connection = $connection_array['handle'];

Listing 22-4: Making a mail server connection

As shown in Listing 22-5, once a successful connection to the mail server
is made, this webbot looks at each pending message to determine if it contains
the trigger phrase Run the webbot. When this phrase is found, the webbot exe-
cutes in a shell.

if($POP3_connection)
 {
 // Create an array of received messages
 $email_array = POP3_list($POP3_connection);

 // Examine each message in $email_array
 for($xx=0; $xx<count($email_array); $xx++)
 {
 // Get each email message
 list($mail_id, $size) = explode(" ", $email_array[$xx]);
 $message = POP3_retr($POP3_connection, $mail_id);

 // Run the webbot if email subject contains "Run the webbot"
 if(stristr($message, "Subject: Run the webbot"))
 {
 $output = shell_exec($webbot_path);
 echo "<pre>$output </pre>";

 // Delete message, so we don't trigger another event from this email
 POP3_delete($POP3_connection, $mail_id);
 }
 }
 }

Listing 22-5: Reading each message and executing a webbot when a specific email is
received

Once the webbot runs, it deletes the triggering email message so it won’t
mistakenly be executed a second time.
224 Chapter 22

webbots2e.book Page 225 Thursday, February 16, 2012 11:59 AM
Final Thoughts

Now that you know how to automate the task of launching webbots from
both scheduled and nonscheduled events, it’s time for a few words of
caution.

Determine the Webbot’s Best Periodicity

A common question when deploying webbots is how often to schedule a web-
bot to check if data has changed on a target server. The answer depends on
your need for stealth and how often the target data changes. If your webbot
must run without detection, you should limit the number of file accesses you
perform, since every file your webbot downloads leaves a clue in the server’s
log file. Your webbot becomes increasingly obvious as it creates more and
more log entries.

The periodicity of your webbot’s execution may also hinge on how often
your target changes. Additionally, you may require notification as soon as a
particularly important website changes. Timeliness may drive the need to run
the webbot more frequently. In any case, you never want to run a webbot more
often than necessary. You should read Chapter 31 before you deploy a webbot
that runs frequently or consumes excessive bandwidth from a server.

I always contend that you shouldn’t access a target more than necessary
to perform a job. If you’re connecting to a target more than once every hour
or so, you’re probably hitting it too hard. Obviously, the rules change if you
own the target server.

Avoid Single Points of Failure

Remember that hardware and software are both subject to unexpected
crashes. If your webbot performs a mission-critical task, you should ensure
that your scheduler doesn’t create a single point of failure or execute a
process step that may cause an entire webbot to fail if that one step crashes.
Chapter 28 describes methods to ensure that your webbot does not stop
working if a scheduled webbot fails to run.

Add Variety to Your Schedule

The other potential problem with scheduled tasks is that they run precisely
and repeatedly, creating entries in the target’s access log at the same hour,
minute, and second every time. If you schedule your webbot to run once a
month, this may not be a problem, but if a webbot runs daily at exactly the
same time, it will become obvious to any competent system administrator
that a webbot, not a human, is accessing the server. If you want to schedule a
webbot that emulates a human using a browser, you should see Chapter 26
for more information.
Schedul ing Webbots and Spiders 225

webbots2e.book Page 226 Thursday, February 16, 2012 11:59 AM

webbots2e.book Page 227 Thursday, February 16, 2012 11:59 AM
S C R A P I N G D I F F I C U L T
W E B S I T E S W I T H

B R O W S E R M A C R O S

The online experience of the mid-’90s
was very different from what we enjoy today.

Watching web pages slowly render over a 28.8
modem connection defined the Internet experience of
the 20th century. Faster network connections and a
technology called AJAX (Asynchronous JavaScript and
XML) freed web surfers from having to wait for the
next web page. The result is a fast, responsive, and
highly interactive online experience that didn’t exist
15 years ago.

Like many aspects of the Internet, the development of AJAX happened
in starts and fits over many years and with many contributors. AJAX was intro-
duced slowly and only recently has received wide acceptance by developers.
In 1995—even before the term “AJAX” existed—Microsoft created an ActiveX
control that facilitated XMLHTTP in Internet Explorer 5. This control was

webbots2e.book Page 228 Thursday, February 16, 2012 11:59 AM
among the technologies, along with DHTML, that allowed developers to
download and manipulate online content without the need for a page refresh.
This technology later found support by other browsers as the XMLHttpRequest
object. The W3C created the official web standard for AJAX in 2006. Since
that time, AJAX has gained wide acceptance by web developers and has
become a major concern (that is, a headache) for webbot developers.

AJAX makes it possible to create web pages like the one shown in Fig-
ure 23-1. In this example, the search page automatically suggests potential
search terms based on what is typed as it is typed! All of this is done (with AJAX)
without reloading the page. For example, in Figure 23-1, Bing (and other mod-
ern search engines) anticipates what the user wants and suggests the search
phrase how do I find my ip address. This type of interactivity was impossible
when the Web was young.

Figure 23-1: AJAX being used to suggest common search terms

While AJAX and a handful of related technologies have greatly improved
the user experience, these technologies also pose massive obstacles to webbot
developers and render script-based webbots (like the ones we’ve discussed up
until now) nearly useless. This chapter identifies the barriers to easy web scrap-
ing and describes how browser macros can solve these problems. Chapter 24
describes advanced techniques that allow webbot developers to download,
manipulate, and scrape nearly every website on the Internet—regardless of
the technologies or techniques the websites use.
228 Chapter 23

webbots2e.book Page 229 Thursday, February 16, 2012 11:59 AM
Barriers to Effective Web Scraping

There are a few technologies, in addition to AJAX, that make web scraping dif-
ficult. Extremely complex JavaScripts, bizarre cookie behavior, and Flash have
all contributed to the woes of webbot developers. This section describes some of
the things webbot developers are apt to encounter as they pursue their craft.

AJAX

AJAX causes problems for web developers because it allows new content to
be downloaded and presented on a web page without the need for a page
refresh. Suddenly, there is no longer a direct one-to-one relationship between
a URL and content. With AJAX the content is, at least partially, dependent
on what the user does after the web page is loaded. This interferes with tra-
ditional script-based webbots, which generally have no access to data fetches
that occur after web pages are downloaded. For example, it is very hard for a
script-based webbot to emulate any of the following:

 Hovering a mouse over a calendar to select a date

 Scrolling sideways through pictures to select a particular thumbnail
image

 Selecting objects by dragging them

 Slowly entering words into text boxes and waiting for the spell checker to
suggest spellings

Bizarre JavaScript and Cookie Behavior

Some websites do extremely odd things with cookies that are nearly impossible
for traditional webbots to emulate. In some cases, web pages will contain
JavaScript that programmatically creates other JavaScripts, which ultimately
write cookies or control form behaviors. In other cases, web pages will contain
images that also write cookies. Sometimes the content of these cookies is
conditional on their environments, like the sequence in which the images
are loaded or other factors. Why websites exhibit these bizarre character-
istics is hard to imagine, but they often make traditional web scraping
nearly impossible.

Flash

Flash has long been the antagonist of webbot developers because it employs
browser plug-ins with closed protocols that fall outside of the traditional HTML
paradigm. Since the content and controls are embedded in a special player,
they are not accessible by script-based webbots. Even with the techniques
described in this chapter, Flash is a substantial burden for webbot developers.
Using techniques you’ll soon learn, however, you will be able to write webbots
that can at least navigate links that are presented within Flash.
Scraping Di f f icu l t Websi tes wi th Browser Macros 229

webbots2e.book Page 230 Thursday, February 16, 2012 11:59 AM
Overcoming Webscraping Barriers with Browser Macros

The secret to developing webbots that harvest data from difficult websites is
to emulate exactly the functionality and behavior of browsers. And from the
webbot developer’s perspective, the easiest way to emulate a browser is to
control a browser directly through the use of a browser macro.

What Is a Browser Macro?

A browser macro is a program or plug-in that uses a script to control the actions
of a browser. The advantage of using a browser macro is that it can leverage
the browser’s rendering engines for JavaScript and Flash as well as any other
plug-ins or extensions available to the browser. The ability to programmatically
control a browser vastly improves your ability to scrape or automate even the
most difficult websites.

The Ultimate Browser-Like Webbot

No matter how hard one tries, it is very difficult to write a script-based webbot
that looks exactly like someone who is using a browser. The main reason for
this is that script-based webbots tend to load files differently (skipping image,
CSS, and JavaScript files). Additionally, sometimes these files exhibit strange
cookie behaviors that are simply impossible to duplicate outside of a browser.

However, a browser macro of particular interest to webbot developers,
iMacros, runs inside a browser. Therefore, it not only looks like a regular
browser to any of the websites it visits, it is a regular browser. When you
know how to completely control a browser through dynamic macros, it is
impossible to tell it apart from an actual browser user.1

Since iMacros acts like any other browser, you can use it to download
and process even the most difficult websites that make excessive use of
JavaScript (primarily AJAX) for flow content to the browser after the initial
HTTP connection is closed. Since I started using the technique described
in this chapter, I have not encountered any website that I cannot download
and scrape.

Installing and Using iMacros

iMacros is produced by iOpus (http://www.iopus.com) and is available for
Internet Explorer, Firefox, and iOpus’s own custom browser. While it is not
open source, iMacros is available as a free download at the iOpus website and
is installed like any other browser plug-in.

1 This assumes that your macro exhibits human-like behavior. Hitting the same website 24 hours a
day, 7 days a week, does not constitute human-like behavior.
230 Chapter 23

webbots2e.book Page 231 Thursday, February 16, 2012 11:59 AM
While the iMacros plug-in is available for a variety of browsers, this book
focuses on the Firefox version due to its history of stability and its cross-
platform availability. While the Firefox version is my personal preference,
you should feel free to use the version that best meets your needs.

Figure 23-2 shows what the iMacros plug-in looks like when installed in
Firefox. At the top of the interface you’ll find the iMacros control (circled in
Figure 23-2), which enables and disables the iMacros panel, shown at the left
of the pane.

Figure 23-2: The iMacros plug-in installed in Firefox

Creating Your First Macro
Let’s assume that you need to capture the first page of image search results
for specific keywords on Google and Bing. This example task is a good can-
didate for using iMacros because both of these websites make heavy use of
JavaScript and may be poor targets for traditional script-based webbots.

You create iMacros macros by putting the plug-in in record mode.
This records your actions in a script, which is later “played” to control the
browser, as shown in Figure 23-3. To record a macro, open a browser with
the iMacros plug-in installed. Select the Rec tab in the iMacros panel and
click the Record button. Once you start recording, every mouse and key-
board action is recorded in this macro script. The longer you use the
browser in record mode, the longer your macro script becomes.
Scraping Di f f icu l t Websi tes wi th Browser Macros 231

webbots2e.book Page 232 Thursday, February 16, 2012 11:59 AM
Figure 23-3: Recording a macro

The steps to perform our task are shown in Figure 23-4.

1. Type www.google.com into the location bar.
2. Perform one search, in this case on webbots.
3. Select Google’s image search option and save the page.
4. Type www.bing.com into the location bar.
5. Again, perform a search on our search term webbots.
6. Select Bing’s image search option.
7. Save the page.
8. Click Stop in the iMacros pane to end the recording session.

While in record mode, iMacros automatically records every key click,
URL change, form entry, button press, and saved screen. All of these actions
are stored in the macro file called #Current.iim.2 The #Current.iim file for the
macro we just recorded is shown in Listing 23-1.

01. VERSION BUILD=6700624 RECORDER=FX
02. TAB T=1
03. URL GOTO=http://www.yahoo.com/
04. URL GOTO=www.google.com
05. CLICK X=321 Y=222 CONTENT=webbots
06. CLICK X=76 Y=14
07. SAVEAS TYPE=CPL FOLDER=* FILE=*
08. URL GOTO=www.bing.com
09. CLICK X=267 Y=168
10. CLICK X=401 Y=165 CONTENT=webbots
11. CLICK X=609 Y=163
12. CLICK X=75 Y=11
13. SAVEAS TYPE=CPL FOLDER=* FILE=*

Listing 23-1: The macro that was created in Figure 23-4

2 Regardless of the operating system you’re using, all iMacros macro files have an .iim file extension.
232 Chapter 23

webbots2e.book Page 233 Thursday, February 16, 2012 11:59 AM
9.

Figure 23-4: An iMacros recording session

Macro Initialization

The first line of the macro describes the version of iMacros that was used
to record the macro. On the second macro line, iMacros indicates that it is
setting focus to the first browser tab. This is a very important feature because,
as you’ll read in the next chapter, iMacros can perform very advanced features
Scraping Di f f icu l t Websi tes wi th Browser Macros 233

webbots2e.book Page 234 Thursday, February 16, 2012 11:59 AM
by running your custom PHP scripts in alternate browser tabs. The third line
of the macro simply indicates the web page that was in the location bar when
the Record button was pressed.

Recording the Google Session

The first user-entered information is recorded on line 4, where iMacros tells
the browser to go to the Google home page. iMacros then recorded that the
web page was clicked at the coordinates 321, 222 and that our search term
“webbots” was typed at that location on the web page.

It is important to note that iMacros allows two methods for indicating
where you click. In this case, the x-y position was recorded, as shown in
Figure 23-5.

Figure 23-5: Selecting the click mode

The other option would have been to use the HTML tag of the web page
to identify the location of the click. For example, if the “Use complete HTM
tag” option had been selected in the example, line 5 of the macro would
have looked like Listing 23-2.

TAG POS=1 TYPE=INPUT:TEXT FORM=NAME:f ATTR=NAME:q CONTENT=webbots

Listing 23-2: Example of using the complete HTML tag to locate page clicks and form entry

Both click modes are useful at various times. The x-y coordinate method
is most useful when web pages change infrequently; the target web page does
not use well-defined HTML tags to describe form elements; the HTML tags
234 Chapter 23

webbots2e.book Page 235 Thursday, February 16, 2012 11:59 AM
change frequently, as is the case with Craigslist.org; or the web content is in
a non-HTML format like Flash. While either method will work in most cases,
you need to experiment to find the best option for your specific application.

Macro lines 6 and 7 in Listing 23-1 show the commands for clicking
on the Google image option and saving the results of the image search. The
SAVEAS command on line 7 indicates that the complete web page will be saved
(TYPE=CPL3). Using this option not only saves the HTML but also all images that
appeared on the saved web page. Line 7 also indicates the web page will be
saved in the default folder with the default file name. You may edit the macro
if you want to save the file with something other than the default location.

The final six lines of the macro essentially perform the same function
as the earlier commands, except this time the image search is performed
on Bing.

iMacros Commands

You’ll find a wide variety of commands available in iMacros macros. These
commands, however, vary depending on the iMacros version and the browser
plug-in you’re using. A complete set of iMacros commands are available at
the iOpus website.4

While the command set supplied by iMacros is fairly complete, there are
ways to supplement the existing commands with scripts that will do nearly
anything you like. How to expand the functionality of iMacros with your own
PHP scripts is explained in the next chapter.

Instructions You’ll Want in Every Macro

In most cases, there are a few commands you’ll want to include in every macro.
Listing 23-3 lists these commands and explains why you may want to include
them at the start of every macro.

01. '###
02. '# HEADER (defaults, etc.)
03. '###
04. SET !TIMEOUT 240
05. SET !ERRORIGNORE YES
06. SET !EXTRACT_TEST_POPUP NO
07. FILTER TYPE=IMAGES STATUS=ON
08. CLEAR
09. TAB T=1
10. TAB CLOSEALLOTHERS

Listing 23-3: Suggested iMacros macro initialization

Lines 1 through 3 show how to write comments in an iMacros macro.
Any line preceded by a ' character is considered a comment and is not
executed when the macro is played.

3 The other option is HTM, which saves only the web page’s HTML.
4 A current list of iMacros commands is available at http://wiki.imacros.net/Command_Reference.
Scraping Di f f icu l t Websi tes wi th Browser Macros 235

webbots2e.book Page 236 Thursday, February 16, 2012 11:59 AM
Line 4 tells iMacros not to time out unless 240 seconds have passed. In
other words, this command tells iMacros to wait up to four minutes for a web
page to load. While this seems like a long time, sometimes this is required if
you are using a slow proxy5 and are downloading a media-heavy web page.

On line 5, iMacros is instructed to ignore any error. I suggest turning off
error reporting in a production environment. While in development, however,
it is preferable to see the errors and adjust your macro as needed. Turning
off error reporting in production is important because when iMacros discovers
an error or warning, it notifies the user with a pop-up window, which suspends
the macro until the pop-up window is closed. These interruptions in produc-
tion mode are bothersome because, in many cases, the warnings are little
more than nuisances that are not critical to the performance of the macro
and because when the macro runs unattended, these errors cause the macro
to hang while waiting for you to respond to a warning message.

While they are useful during development, iMacros warnings and errors
are better ignored in production environments, as counterintuitive as that
sounds. I have found that the most common cause of an iMacros error in
previously debugged macros is network timeouts. In most cases, these are not
recoverable and may be dealt with using some of the advanced techniques
described in the next chapter. From my experience, it is better to write fault-
tolerant emulations than to have an entire 50,000-line macro hang because
of one fragile network fetch.

Line 6 is important only if your macro is importing data from websites.6
You should include this command even if not importing data because includ-
ing it is a good habit that will save you from other annoying iMacros pop-up
windows if or when you do decide to import data directly with iMacros.

If you’re not concerned with the images on the web pages you download,
it is suggested that you tell the browser not to download them, as shown on
line 7. Ignoring images will make your macro run faster and save bandwidth.
And again—if you’re using a slow proxy, this may make your macro run more
smoothly.

If you want to clear your cookies, you’ll want to use the command on
line 8. Clearing cookies will aid in the stealthiness of your webbot. The only
reason not to clear your cookies is if they contain user login information and
are needed for authenticating into the website you are visiting.

The final two lines of the script (lines 9 and 10) tell the browser that the
macro will run in browser tab 1 and to close all other browser tabs. As you’ll
see in the next chapter, the ability to run scripts in multiple browser tabs is
an extremely powerful technique you can use to great advantage. Closing all
other browser tabs is always a good idea because macros may open new tabs
every time the macro is run. If the macro is run repeatedly, the browser will
eventually crash because it has too many open tabs.

5 Proxies are discussed in Chapter 27.
6 iMacros has the ability to import data from web pages and export that data in a CSV file.
This functionality is not covered here in favor of the more flexible techniques described in
Chapter 24.
236 Chapter 23

webbots2e.book Page 237 Thursday, February 16, 2012 11:59 AM
Running a Macro

To play your macro, simply select the macro
script you want to run, like our newly created
#Current.iim as shown in Figure 23-6, and click
the Play button.

Once you click Play, the selected macro will
run just as you recorded it. If you modify your
macro (according to the iMacros rules), the
browser will execute those commands as well.
You don’t have to provide delays that wait for
web pages to download because iMacros auto-
matically waits for pages to load before proceed-
ing to the next instruction. In Chapter 24, you’ll
learn how to programmatically start macros
within shell and PHP scripts.

Browser macros are extremely easy to create and
are extraordinarily useful. You can think of them
as smart bookmarks, because not only do macros
identify the web page that you need to access
but they also define what needs to be done once you download the page.
The limiting factor is that, so far, the macros cannot make decisions based
on the content they download. You’ll learn how to write smart macros, which
make decisions, in the next chapter.

Are Macros Really Necessary?
In the past, you may have written script-based webbots that have had success
in dealing with AJAX or the other challenges described earlier. You may
have even employed a network packet sniffer to analyze your own web traffic
between your webbot and the target website and developed a webbot to mimic
the traffic patterns of the target website. You are encouraged to try this tech-
nique, but it will probably only make you appreciate the ease with which the
same thing can be done in iMacros. The fact remains, however, that if you
want to mimic exactly what happens in a browser, it is best to focus on writing
macros that control an actual browser.

Other Uses
So far, only simple macros have been described, but how many applications
can you think of for using what you’ve learned up to this point? Can you write
a browser macro to check specific eBay auctions? What can you do with browser
macros and Craigslist.org? Do you have routine, daily online tasks that can be
automated with iMacros? Alternately, what is the disadvantage of using browser
macro to log into your online bank account and check your account balances?

The next chapter explores a series of iMacros hacks that extend the
functionality of iMacros well beyond its intended use.

Figure 23-6: Playing a macro

Final Thoughts
Scraping Di f f icu l t Websi tes wi th Browser Macros 237

webbots2e.book Page 238 Thursday, February 16, 2012 11:59 AM

webbots2e.book Page 239 Thursday, February 16, 2012 11:59 AM
H A C K I N G I M A C R O S

In the previous chapter, you learned that
iMacros is a useful tool for controlling a

browser. However, the previous discussion
was limited to recording browser behavior in a

macro file and replaying that macro later. In this way,
iMacros is more like an extension of a browser book-
mark and bears little resemblance to the dynamic
webbots described in this book.

Fortunately, you’re not limited to the iMacros everyone else uses. Since
iMacros is browser based and relies on web protocols, we can exploit those
protocols—and their capabilities—to do things that the original iMacros
developers didn’t consider. In this chapter, you’ll learn a few tricks that will
enable you to download and scrape nearly any website, including those that
make heavy use of JavaScript, AJAX, or Flash. You will also learn how to
control iMacros with PHP, parse iMacros (with a browser tab hack), and
integrate external data sources into your macros.

webbots2e.book Page 240 Thursday, February 16, 2012 11:59 AM
Hacking iMacros for Added Functionality

Here are a couple of hacks that facilitate better control and parsing capa-
bility with iMacros. The first hack requires that you learn how to write scripts
that create the browser macros dynamically. This allows you to add random
delays (to aid stealthy behavior) and to use data from external sources like
databases and scraped websites.

iMacros can load web pages from any valid URL. The natural conclusion
is that people will use iMacros to access the regular websites that make up the
Internet. What’s less obvious is that iMacros can also load and execute web
pages that are on local web servers. This means that you can program iMacros
to open a secondary browser tab that runs a web page on a local web server.
Since you can program local web pages to access anything on your computer,
this technique opens up enormous potential. This little hack frees your code
from almost any restriction normally involved in using a macro and allows your
macros to interface with other resources and to make programmatic decisions.
Most typically, this technique is used to parse and act on web pages saved by
a macro.

Reasons for Not Using the iMacros Scripting Engine

Before we explore my process for controlling iMacros, it’s important to note
that the commercial version of iMacros (not the free version) has its own
scripting interface. You are certainly encouraged to explore this option—
especially if you have a background using Visual Basic—but that option is
not explored here for the following reasons.

The scripting interface is COM based and will work with any Windows
programming language that supports COM objects. While this is useful, it
does not serve many developers’ needs because many people develop solely
for Linux-based environments or for mixed Windows/Linux production
environments. For this reason, most developers focus on web technologies
and are not adept at using Windows desktop technologies like COM, which
is really not an Internet technology. It is also more efficient to do what needs
to be done directly in a web-programming language like PHP than it is to use
PHP (or another COM-aware language) to interface to iMacros through COM.

Another reason to shy away from the built-in scripting interface is that
the iMacros scripting engine accepts input from local files, it does not interface
well with external data sources like databases or other websites.

The final reason for not using the iMacros scripting interface is that there
is absolutely no reason to do so. As you’ll soon learn, you can get iMacros to
do whatever you want it to do, in your preferred web language, by employing
a few simple tricks. Also, using the built-in iMacros scripting engine would
require that you buy software, which undermines this book’s vision of
employing only free or open source solutions.
240 Chapter 24

webbots2e.book Page 241 Thursday, February 16, 2012 11:59 AM
To do any of the advanced iMacros scripting, you will also need to pur-
chase a scripting edition of iMacros, which may be out of reach for some
developers. I do encourage people, however, to stop using the free version
of iMacros if your project has commercial purposes.

If you are one of the many happy developers successfully using iMacro’s
scripting interface, please don’t take this the wrong way. It is simply not a
path we are going to follow here. If you want to learn more about using the
iMacros scripting language you should visit its website.

Creating a Dynamic Macro

Suppose you have an online store that sells products whose prices fluctuate
wildly with variations in customer demand and supply.1 You need to know
the current market value of all of your products at any given time. If your
competition lowers a price and you don’t, you will lose sales. Furthermore,
if online competitors raise prices on items similar to those you sell for lower
prices, you will also lose out on money you could make. To complicate the
situation, let’s assume that your competitor’s website makes heavy use of
AJAX and effectively renders traditional script-based webbots ineffective. To
solve this dilemma, you decide to write a webbot to track your competitor’s
prices. Furthermore, since you have hundreds of thousands of products to
consider and you don’t want to risk a trespass-to-chattels lawsuit,2 you only
track competing prices for your 100 best sellers on a daily basis. In the end,
you decide to do the following:

 Write a webbot that emulates an actual browser user through the use of
iMacros and a dynamic macro.

 Develop a PHP script that reads your internal database to learn which
items are your 100 best sellers and then writes the appropriate macro
to iteratively read your competitor’s prices.

 Write a PHP script to parse the prices from your competitor’s down-
loaded web pages.

The following section describes pseudo-code that could solve these tasks
as well as be the basis for similar projects you might develop.

Writing a Script That Creates a Dynamic Macro

In addition to giving you the ability to write very specific functionality into
macros, writing macros dynamically allows you to add a degree of standard-
ization and maintainability. For example, in the previous chapter, you learned
that some iMacros commands should be at the beginning of any macro you
write. You can build these commands into a string, which is later written as
the macro file. Listing 24-1 shows how this is done.

1 Examples of products like these may include computer memory, agricultural commodities,
petroleum products, or other consumer goods.
2 See Chapter 31.
Hacking iMacros 241

webbots2e.book Page 242 Thursday, February 16, 2012 11:59 AM
$macro = "";
$macro = $macro . "'###\n";
$macro = $macro . "'# HEADER (defaults, etc.)\n";
$macro = $macro . "'###\n";
$macro = $macro . "SET !TIMEOUT 240\n";
$macro = $macro . "SET !ERRORIGNORE YES\n";
$macro = $macro . "SET !EXTRACT_TEST_POPUP NO\n";
$macro = $macro . "FILTER TYPE=IMAGES STATUS=ON\n";
$macro = $macro . "CLEAR\n";
$macro = $macro . "TAB T=1\n";
$macro = $macro . "TAB CLOSEALLOTHERS\n";
$macro = $macro . "'### \n";

Listing 24-1: Initializing a dynamic macro

Notice that in Listing 24-1, all iMacros comments are prefixed with the
single-quote character. Also, consider that if the lines are not terminated
with the escaped n character, the entire macro will appear as a single line
when written to the macro file. Therefore, you will want to terminate each
line in the macro with an \n.

Integrating External Data into Dynamically Created Macros

You can use any resource as an input to your dynamically generated macro.
But in most cases, the integration of external data sources into your macro
will resemble Figure 24-1.

Figure 24-1: Integrating external data sources into macros

Social media
website

Your calendar Website API

Local or
remote
database

Start

Create macro header.

Get dynamic
information from
outside source.

Write iterative
macro steps based
on information
from previous step.

Save macro in
default directory.
242 Chapter 24

webbots2e.book Page 243 Thursday, February 16, 2012 11:59 AM
Figure 24-1 suggests only a few places for finding external data that may
dynamically affect the actions your macro takes. As you develop projects
of your own, you will no doubt add to this list. In our online store example,
the macro will use a SQL command to query a local database in an effort to
identify the 100 top-selling products. To simplify this example, let’s assume
that each product can be identified by an ASIN, or an Amazon Standard Iden-
tification Number ,3 and that the ASINs for the top 100 products are returned
in an array named $product_array and used as shown in Listing 24-2.

//
// Your database query here, which queries a fictitious product database and
creates an array called
// $product_array, containing ASINs of the 100 best-selling products in your
inventory
//

 // Loop through each of the first 100 products
for ($x=0; $xx<count($product_array); $xx++)
 {

 $macro = $macro . "' Get URL of competitor's product page\n";
 $competing_product_information = // Fully resolved URL to competitor's
product website
 $macro = $macro . "'\n";

 $macro = $macro . "' Add random delay\n";
 $macro = $macro . "WAIT SECONDS=".sleep(rand(5,15))."\n";
 $macro = $macro . "'\n";

 $macro = $macro . "' Capture the competitor's web page with product
information\n";
 $macro = $macro . "GOTO URL=$competitor_product_information \n";
 $macro = $macro . "SAVEAS TYPE=HTM FOLDER=* FILE=search_results \n";
 $macro = $macro . "'\n";

 $macro = $macro . "' Run the parsing software in secondary browser tab\n";
 $macro = $macro . "TAB T=2
 $macro = $macro . "URL GOTO=http://localhost/
parser.php?id=".$product_array[$xx]['ASIN']."\n";
 $macro = $macro . "'\n";

 $macro = $macro . "' Resume in original browser tab\n";
 $macro = $macro . "TAB T=1 \n";
 }

 file_put_contents(“//PATH/MACRO_NAME.iim”, $macro);

Listing 24-2: Dynamically writing the macro to download and parse product information

First, each of the 100 products is accounted for by the macro at . Then,
the URL for the competitor’s production page is found at . The contents
of this URL, of course, vary depending on the demands of the target website.
In most cases, some identifier (like an ASIN) may be used to identify items.
For example, the URL may be a simple web address with a query string that
identifies that desired product. In other cases, it may be the result of an online
search that is conducted from a form. Before the target website is accessed, it
is a good idea to insert a random delay to simulate actual (human-like) web

3 The use of an ASIN in the example is entirely arbitrary. Any unique identifier, such as a
manufacturer product number, could have been used.
Hacking iMacros 243

webbots2e.book Page 244 Thursday, February 16, 2012 11:59 AM
use . In the example, a delay with a random length of 5 to 15 seconds is
inserted. Once the product identifier is combined with the target web page
to find pricing information for the item, that web page is downloaded and
saved in a known file location at .

Now we have a true departure from traditional iMacros scripting. So
far, everything has occurred in the first (and only) browser tab, and every
instruction has been a traditional iMacros instruction. But at , the macro
opens a second browser tab is opened for a PHP file, which runs on a local
web server. This local web page is a parsing script that loads the previously
stored file, parses the pricing information, and stores that price in a local
database; it uses the product’s ASIN to identify this product in your pricing
database. Once the downloaded page is processed, the macro focuses again
on the first browser tab at .

The final part of macro generation is to write the file to a path where
iMacros can find it . This is simply a matter of writing the string where the
macro is developed into a file with an .imm extension in iMacros’s default
macros directory, as shown in Listing 24-3.

file_put_contents($MACROS_PATH, “test.iim”); // where $MACROS_PATH is the default macros path

Listing 24-3: Writing the macro to the file

This trick, opening an alternative browser tab to run arbitrary scripts, gives
you the opportunity to do anything you want with web pages downloaded by
iMacros. A lot of things happen in the pseudo-code shown in Listing 24-2—
and the actual code will vary depending on your specific situation—but the
most important concept to pull out of all this what happens in . This line
reveals the true trick in this hack: This hack allows you to execute arbitrary
code within an otherwise standard iMacros macro. Since iMacros controls
browsers, it is also bound to the limitations that are imposed on browsers.
These limitations are necessary and protect you from rogue websites that
want to harm you or your computer. Unfortunately, many of these controls
that are intended to protect you also prevent your webbots from doing many
of the things you might find useful. However, once you master the ability to
combine a browser macro with any local script, you break out of the browser
sandbox and are no longer restricted to doing what browsers allow. Not only
can you use iMacros to download web pages that cannot be downloaded with
traditional webbots, but you can also write PHP scripts to perform absolutely
any function that you are able to facilitate.

For example, here are some things you can do with local scripts running
in an alternate browser tab:

 Parse previously downloaded web pages and store indexed information
in a local database (as depicted in the example).

 Automatically upload files to remote servers.

 Change system configurations.

 Modify cookies from any domain.

 Execute any script that can run on a local web server.
244 Chapter 24

webbots2e.book Page 245 Thursday, February 16, 2012 11:59 AM
Depending on your application, you can use as many alternative tabs as
needed. You will, however, probably not find reasons to have more than two
browser tabs open at any given time. In addition to running a local web page
in an alternative browser tab, you can also use the techniques shown in the
next section to dynamically choose to load new macros into iMacros. This
can get extremely complex (and extremely powerful) if these new macros
are also written on the fly. Once the parsing is conducted in the second
browser tab, the macro returns focus to the browser tab it was on before it
started executing the local script.

Launching iMacros Automatically

Up to this point, all iMacros sessions have required that you open the browser
with the iMacros plug-in, select a macro from the list of available macros, and
click the Run button to load and execute the macro. To get the most from
iMacros, you’ll want to execute macros automatically, which ultimately means
executing your iMacros sessions from a command line. Once you learn how
to launch iMacros from a command line, you can use the information in
Chapter 22 to make iMacros sessions launch and execute unattended and
whenever you desire.

These instructions may seem odd at first, but
remember that iMacros was never designed to work
like this. This is another hack, and what you’re about
to read was learned through trial and error over a
substantial period of time.

The process for executing iMacros macros directly
from a command line differs slightly depending on
whether you’re using Windows or Linux. In either
case, the basic scenario for launching iMacros macros
to execute automatically looks like that in Figure 24-2.

Most of your iMacros sessions will start with the
creation of the macro, which is specifically tailored
for this particular iMacros session. That macro is
stored in the default macro directory and directly
executed by iMacros with one of the following
techniques.

Launching iMacros from Windows

The script shown in Listing 24-4 may be used to launch an iMacros session in
Microsoft DOS.

::
 :: Run the script that creates the macro (test.iim)

 php create_macro.php
::

 :: Start Firefox
 start /B "C:\Program Files\Mozilla Firefox\firefox.exe" http://127.0.0.1
::

 :: Waste some time

Launch iMacros
and execute
the macro.

Execute script that
creates the macro.

Start

Figure 24-2: The
basic structure for
launching iMacros
automatically
Hacking iMacros 245

webbots2e.book Page 246 Thursday, February 16, 2012 11:59 AM
 ping 127.1.1.1
::

 :: Run the macro
 start /B "C:\Program Files\Mozilla Firefox\firefox.exe"
http://run.imacros.net/?m=test.iim

Listing 24-4: Executing an iMacros macro from a Windows batch file

At , a macro is created and written to the default directory, as described
earlier in this chapter. For demonstration purposes, assume this macro is
named test.iim. Firefox is executed directly from the command line . Even
though the /B flag is used, to start the application without creating a new win-
dow, Firefox is launched in its own window. In this case, Firefox is directed to
load the URL http://127.0.0.1, the local default web page. It is a good habit
to load a local web page when the browser launches instead of immediately
loading your macro, because doing so avoids potential timeouts caused by
public websites and allows time for large macros to load.

Then, Windows is told to ping the local web server to give Firefox extra
time to load the local web page . At , Firefox is executed again, but this time
it is instructed to load the macro file instead of the default local web page.

As you can see, there is no direct way to get Firefox (or Internet Explorer)
to launch and load a macro. The web page that is actually loaded is http://
run.imacros.net, which is on the iMacros website. That web page instructs the
iMacros plug-in to load and execute the macro described on the query string.

Launching iMacros from Linux

My personal experience is that it’s easier to reliably launch and execute an
iMacros macro from Linux than it is from a Windows platform. My experi-
ence is that if the precautions taken in , , and  in Listing 24-4 are not
taken, Firefox may not load correctly. However, in Linux environments, I have
found no need to preload Firefox or to ping the local server to ensure that
the browser has loaded. In fact, you can simply launch Firefox and the macro
at the same time from PHP, as shown by the scriptlett in Listing 24-5.

<?php
//
// Load Firefox and launch macro.
//
system("firefox http://run.imacros.net/?m=test.iim");
?>

Listing 24-5: Launching Firefox and iMacros from Linux

If you’re on a Linux platform, you could run the line of PHP (from
Listing 24-5) within the program that creates the macro without performing
all the steps described previously for doing the same in Windows.
246 Chapter 24

webbots2e.book Page 247 Thursday, February 16, 2012 11:59 AM
Further Exploration

While the techniques described here allow you to extract information from
websites that are otherwise untouchable, these techniques also suffer from a
few disadvantages. Here are a few things I’ve learned that may save you some
time and grief as you develop your own iMacros solutions:

 Designate Firefox, or your browser of choice for the iMacros environ-
ment, as the default browser on your computer and don’t use this browser
for anything else. Doing so ensures that iMacros is launched in the cor-
rect browser and that the browser is not simultaneously used for another
purpose.

 Understand that multiple iMacros scripts cannot execute simultaneously
on the same desktop account. If you schedule multiple iMacros sessions on
a single computer, ensure that they don’t overlap because any new ses-
sion will automatically terminate any session that is already open. If you
need to execute multiple browser simulations at the same time, be sure
that they are running on different user accounts so they don’t interfere
with each other.

 If your macros log into secure websites, your macros may contain user-
names and passwords in clear text. This is a bad practice. Before per-
forming such antics, explore iMacro’s ability to encrypt login credentials.

 Find examples in your own life where you need to integrate data sources
(databases or external web resources) with websites that make extensive
use of Javascript and are not candidates for traditional webbot or screen
scraper scripts.

 When you read the next chapter, on deployment and scaling, think about
how you would scale a webbot or a botnet that is based on browser macros.

 At the time of this book’s publication, iMacros for Internet Explorer
does not support tab functions.
Hacking iMacros 247

webbots2e.book Page 248 Thursday, February 16, 2012 11:59 AM

webbots2e.book Page 249 Thursday, February 16, 2012 11:59 AM
D E P L O Y M E N T A N D S C A L I N G

All of the webbots discussed so far are small
in scale, meaning they can be implemented

with a single agent running on a single com-
puter. However, as the scope of your projects grows,

it is often necessary to develop webbots that scale to the
size of the project. Proper scaling involves adding capa-
city to your webbot while not doing anything that could
compromise your webbot’s ability to achieve its task.

Capacity, in this sense, may refer to either the ability to do more in less
time or the ability to do the same amount of work, replicated many times,
over a long period.

webbots2e.book Page 250 Thursday, February 16, 2012 11:59 AM
The question that quickly arises while scaling webbots is “How do you
add capacity to a webbot without also requiring more capacity from the target
website’s servers?” There is no one single way to approach scaling webbots
because it is highly dependent on the webbot environment. Webbot environ-
ments can be categorized into four distinct scenarios:

 One-to-many

 One-to-one

 Many-to-many

 Many-to-one

Ultimately, the way you scale your webbot project depends on your
environment. After discussing these four common webbot environments,
we’ll discuss other issues related to scaling, including some ways to create
multiple instances of your webbot, and finally some ideas for controlling
your creations.

One-to-Many Environment

The webbot projects that are easiest to scale are those with a one-to-many
environment, as shown in Figure 25-1.

Figure 25-1: One-to-many environment

In these projects, a single webbot gathers information from a variety
of web services. In reality, the webbot may download several files from the
target website, but the general environment is one where a webbot gathers a
limited amount of information from a single website and then moves on to
the next target, where it applies a similar approach. An example of a one-to-
many environment is that used by search engines, where many websites are
targeted.

These applications are the easiest to scale because they simply require
the developer to apply more resources to the webbot, without serious consid-
eration of the amount of resources that any one target website consumes. As
a developer, you apply more resources by optimizing the webbot to run faster
or by applying parallel webbots, as explained in “Many-to-Many Environment”
on page 251 and “Many-to-One Environment” on page 252.

Webbot

Website 1

Website 2 Website n

Website 3
250 Chapter 25

webbots2e.book Page 251 Thursday, February 16, 2012 11:59 AM
One-to-One Environment

From a scaling perspective, a more difficult
webbot architecture is the one-to-one envi-
ronment, shown in Figure 25-2.

In a one-to-one geometry, a webbot
gathers information from a single primary
target and repeats this process many times
over an extended period. An example of
a one-to-one geometry is a webbot that
analyzes the prices of goods at a single website on a daily basis. This is the
most difficult type of project to scale effectively, not because of any technical
hurdles but because you cannot increase the capacity of a one-to-one webbot
project without also demanding more capacity from the target website. And
since you cannot control what happens on the target, a variety of problems
may arise. The biggest challenge in these applications is to prevent your
webbots from looking like an attack on the target website. As you will see,
a well-scaled webbot environment requires considerations beyond merely
adding capacity.

Many-to-Many Environment

The many-to-many environment, as shown in Figure 25-3, is the classic multi-
webbot configuration that all search engines use.

Figure 25-3: A many-to-many geometry

In the many-to-many environment, a team of webbots harvests data from
several target websites. The team is comprised of multiple instances of the
webbot script working in a managed environment to achieve a common goal.
This is essentially how to scale a one-to-many environment. You simply apply
additional webbot resources as the number of targets grows. Since you’re gath-
ering information from multiple targets, issues relating to overusing a single
source don’t apply. Once you understand how to manage multiple instances
of a webbot script, scaling is a simple matter of creating more instances of
that script.

Target
website

Webbot

Figure 25-2: A one-to-one
environment

Website 1

Website nWebsite 2

WebbotWebbotWebbotWebbot

Website 3
Deployment and Scal ing 251

webbots2e.book Page 252 Thursday, February 16, 2012 11:59 AM
Many-to-One Environment

The many-to-one environment, shown in Figure 25-4, is the most difficult con-
figuration to scale.

Figure 25-4: A many-to-one environment

The many-to-one environment is difficult to execute because as you
increase your capacity by enlarging the size of your webbot team, you do
not—and cannot—simultaneously increase the capacity of the target website.
This is where you suffer the possibility of launching an inadvertent denial-of-
service attack on your target website. Furthermore, anytime you significantly
degrade the performance of a target, you lose.

Scaling and Denial-of-Service Attacks

An easy and inadvertent mistake many beginning webbot developers make is
to launch a denial-of-service attack on websites, where the webbot consumes too
much of the target website’s resources and other people are not able to use
the website for its intended purposes.1

Even Simple Webbots Can Generate a Lot of Traffic

Writing webbots that interfere with a target website’s performance can happen
even without an intentional effort to increase the capacity of a webbot. For
example, a single webbot script—without the appropriate delays and other
mechanisms that simulate human behavior—is capable of causing much
more network activity than most imagine. Even old, outdated equipment
can easily consume all the bandwidth on a T1 network connection.

Inefficiencies at the Target

The other thing to consider is that not all websites are well optimized. Poor
optimization is particularly common on data-driven websites that make heavy
use of databases and replicate sockets to the database. When your target
employs a poorly designed data structure, you’re not only at risk of taking
down the target’s web server but also at risk of overloading the database. In
reality, the root cause of a website’s performance degradation isn’t impor-
tant. What is important is that you try to limit your webbot’s effect on the
performance of target websites.

Target
website

Webbot

Webbot

Webbot

Webbot

Webbot

Webbot

Webbot

Webbot

1 A denial-of-service attack is only one such problem to avoid. To see it addressed in detail, read
Chapter 31.
252 Chapter 25

webbots2e.book Page 253 Thursday, February 16, 2012 11:59 AM
The Problems with Scaling Too Well

Even the most selfish webbot developer—one who is not concerned about
how his actions affect others trying to maintain or use the target websites—
should be cautious when repetitively accessing resources from a single website.
Ultimately the web manager, or some automated monitoring software, will
analyze the origin of website traffic. If your webbot is responsible for a sus-
picious amount of traffic, you risk having your IP address blocked from fur-
ther access. In other cases, websites will automatically limit network requests
from single IP addresses. You may also expose yourself, or your company, to
trespass-to-chattels lawsuits, which are explained in Chapter 31.

You may be asking yourself why anyone would use the many-to-one geom-
etry, since it significantly increases the possibility of overloading the target
website. The reason to use this geometry is that it solves the second scaling
condition defined early in this chapter, where you need to harvest data from
a single source over a long period of time without raising unwanted attention
from the website administrator.

The primary advantage of the many-to-one geometry is that it allows your
webbots to have multiple IP addresses, thereby simulating the effect of many
individual users visiting a specific website. These IP addresses may be obtained
by locating your webbots on different networks or through the use of proxies.
If you’re really clever in how you design the architecture of your webbot team,
the many-to-one geometry can be accomplished on a single computer or
from the cloud.

Let’s explore methods for creating multiple instances of a webbot and
conclude this chapter with a lesson on how to make all of these webbot
instances play on the same team.

Creating Multiple Instances of a Webbot

There are three basic ways to create additional instances of a webbot:

 Fork additional harvesting processes from the same process.

 Use the operating system to create multiple instances of the same script.

 Execute the same webbot on multiple pieces of hardware.

Forking Processes

Some webbot developers prefer to create new instances of the same webbot
by forking processes from a single script. Forking is the method of creating
somewhat independent scripts from a parent script. It allows a script to exe-
cute tasks in parallel. In the case of webbot development, forking could allow
a single script to download web pages from multiple target websites at the
same time.

Forking is mentioned only because it is something you should be aware of,
not because it’s something I necessarily recommend. You should, however, feel
free to explore the forking commands in PHP/CURL on your own if they inter-
est you. You will not, however, learn much about forking your webbot scripts
Deployment and Scal ing 253

webbots2e.book Page 254 Thursday, February 16, 2012 11:59 AM
here, because there are easier ways to accomplish the same thing. Forking also
has the disadvantage of not benefiting from access to additional IP address
because your forked instances will probably all run on the same computer.

Leveraging the Operating System

Rather than developing methods to fork webbots, I find it much easier to
run more than one copy of the same webbot at the same time. If your webbot
is written correctly, you can create new instances of your webbot by simply
running them in multiple command shells, as shown in Figure 25-5.

Figure 25-5: Using the operating system to create multiple instances of a webbot

Later in this chapter, you’ll learn techniques for getting multiple instances
of webbots to communicate with each other and work on the same team. Fig-
ure 25-5 shows three instances of the same webbot running at once, but once
these techniques are mastered, you can scale your webbot to the size needed
by simply executing it in as many shells as required.

Distributing the Task over Multiple Computers

The example depicted in Figure 25-5 still has the problem that, unless the
network traffic for each webbot is directed through a different proxy server,
each instance of the webbot will have the same IP address and appear to be
254 Chapter 25

webbots2e.book Page 255 Thursday, February 16, 2012 11:59 AM
running as the same user. The easiest way to solve this problem is to run the
same webbot script from separate computers. Running webbots on multiple
pieces of hardware, however, requires central management. Networks of iden-
tical webbots running on many computers and controlled from a botnet
server are known as botnets.

Managing a Botnet

The key to managing an army of webbots is to do it from a central point or,
in other words, to create what is known as a botnet. You may have heard of the
term botnet in the popular press, and the connotations were probably not
good, as botnets are often used to deliver spyware, spam, viruses, and other
malicious payloads. While bad guys use botnets to do bad things, there is also
much to learn from botnets in terms of managing distributed software. In the
right context, botnets are a convenient way to manage distributed webbots.

The techniques that apply to managing botnets apply whether your
webbots all run on one computer (as shown in Figure 25-5) or on multiple
computers located in your office, in the cloud, or on a series of any com-
puters located anywhere in the world, as depicted in Figure 25-6.

Figure 25-6: A botnet managed from a botnet server

The main component of any botnet is a botnet server that all webbots
in the botnet rely on for getting their assigned task. The individual webbots
within the botnet also use the botnet server as a repository for any infor-
mation they collect.

Botnet Communication Methods
The way communication is managed within a botnet defines how a botnet
works. In a typical botnet, the individual webbots do not talk to each other.
Rather, they communicate to a botnet server, which controls the data flow
within the botnet. With that in mind, let’s look at the communication that
takes place between a typical botnet server and one of the webbots in the bot-
net. While botnets can be configured for many purposes, typically the botnet
server instructs individual webbots as to which target (or URL) is the subject,
which login credentials (usernames and passwords) to use, and when the
task is to be performed.

Webbot

Botnet
serverWebbot

Webbot

Webbot

Webbot

Webbot

Webbot

Webbot

Webbot

Webbot
Deployment and Scal ing 255

webbots2e.book Page 256 Thursday, February 16, 2012 11:59 AM
Controlling webbots from a central botnet server greatly simplifies system
maintenance and data collection when many webbots are working toward a
common goal. But the main reason for building a botnet is to add to scale, or
capacity, to your project. Once a communication protocol like the one dis-
cussed here is established, scaling your project may be as simple as adding
more webbots to the botnet. Additional webbots may be located on any net-
work worldwide, or they can all exist on the same computer. In either case, a
simple communication scheme, like the one shown in Figure 25-7, is an easy
way to add capacity to your data-gathering efforts.

Figure 25-7: Typical botnet communication

The following sections detail what happens in each of the steps.

Polling the Botnet Server

In a botnet, communication between the webbot and the botnet server is
initiated by the webbot (see Figure 25-8). It is done this way because the web-
bot server has no real way to determine where all the webbots are and there
is no practical way to push information to the individual webbots. Since the
webbots communicate over standard HTTP protocols, it also solves any poten-
tial firewall issues; the HTTP port (port 80) is almost always open in firewalls
as this port facilitates standard web browsing.

A typical task request, made by a webbot, may look like Listing 25-1.

<?php
include('LIB_http.php');
// Define the task request
$post_array['STATUS'] "TASK REQUEST";
$post_array['BOT'] "this webbot's name";
$post_array['VERSION'] "script version level";
$botnet_server_address "https//".BOTNET_SERVER_ADDRESS
$reply = http_post_form($botnet_server_address, $post_array);

Listing 25-1: Botnet task request

Webbot Botnet Server

Task request The central server
determines if there
is a task to assign
to the webbot.

If there’s a pending
task, it is “checked
out” and assigned
to the webbot.

Assign task
(if needed).Perform task.

Store harvested
data in a database.

Upload
harvested data.
256 Chapter 25

webbots2e.book Page 257 Thursday, February 16, 2012 11:59 AM
Figure 25-8: Botnet task requests

The communication from the webbot to the botnet server shown in List-
ing 25-1 is typical. The webbot identifies who it is and sends a status indicating
that it needs a task to do. Notice that the communication is https: and not
http:. Assuming that the botnet server has a properly configured SSL certifi-
cate, this communication will be encrypted and out of sight of prying eyes.

Determining If There Is a Task for the Harvester to Perform

The botnet server does a number of things once it receives a task request
from a webbot. Usually the botnet server first decides if the requesting webbot
is an active, or valid, webbot. This is done by comparing the webbot name and
certificate to information in the botnet server’s database. A webbot might not
be valid for a number of reasons, which range from the webbot running obso-
lete software to it being deactivated to it not being part of the botnet (indicat-
ing that someone is trying to hack our botnet).

Another thing that may happen at this point is that the central botnet
server decides that, because of schedule considerations, this is not an
opportune time for the webbot to carry out a task (see Figure 25-9).

Figure 25-9: Determining available tasks

Webbot Botnet Server

Task request The central server
determines if there
is a task to assign
to the webbot.

If there’s a pending
task, it is “checked
out” and assigned
to the webbot.

Assign task
(if needed).Perform task.

Store harvested
data in a database.

Upload
harvested data.

The central server
determines if there
is a task to assign
to the webbot.

If there’s a pending
task, it is “checked
out” and assigned
to the webbot.

Assign task
(if needed).

Store harvested
data in a database.

Perform task.

Upload
harvested data.

Webbot Botnet Server

Task request The central server
determines if there
is a task to assign
to the webbot.

If there’s a pending
task, it is “checked
out” and assigned
to the webbot.

Assign task
(if needed).Perform task.

Store harvested
data in a database.

Upload
harvested data.

If there’s a pending
task, it is “checked
out” and assigned
to the webbot.

Assign task
(if needed).

Store harvested
data in a database.

Perform task.

Upload
harvested data.

Task request
Deployment and Scal ing 257

webbots2e.book Page 258 Thursday, February 16, 2012 11:59 AM
Once the botnet server is satisfied that the webbot is authenticated and
ready for a task, it may look into its database to see if there are any tasks for it
to perform. This entails a checkout process, which is described in the next step.

The Checkout Process

The checkout process satisfies several purposes (see Figure 25-10).

Figure 25-10: Task checkout

If there is a database table containing queue of tasks that need to be
performed, the checkout process removes one of those tasks from the
queue, indicating that it cannot be assigned to another webbot.

In this communication phase, the botnet server also designates that this
task is the responsibility of the webbot making the request. This is important
in later steps when the botnet server associates particular data collections
with specific webbots.

Finally, it’s a good idea for the botnet server to place an expiration time-
stamp on the amount of time that the requesting webbot has to complete the
task. If the task is not completed within this period, the botnet server will assign
the task to another webbot. If this is not done, some tasks will never get com-
pleted due to simple maladies like network timeouts or other (generally)
resolvable issues.

Assigning Tasks

Once a task has been selected, it needs to be communicated back to the same
webbot that made the task request. Conversely, if there is no task for the web-
bot to perform, that must also be communicated (see Figure 25-11). An easy
way to do this is to simply provide the information in XML format, as shown
in Listing 25-2.

<XML>
 <TASK_ID>9999</TASK_ID>
 <TIMESTAMP>1303752734 </TIMESTAMP>
 <TARGET>www.SomeWebSite.com</TARGET>

Webbot Botnet Server

Task request The central server
determines if there
is a task to assign
to the webbot.

If there’s a pending
task, it is “checked
out” and assigned
to the webbot.

Assign task
(if needed).Perform task.

Store harvested
data in a database.

Upload
harvested data.

The central server
determines if there
is a task to assign
to the webbot.

Assign task
(if needed).

Store harvested
data in a database.

Perform task.

Upload
harvested data.

Task request
258 Chapter 25

webbots2e.book Page 259 Thursday, February 16, 2012 11:59 AM
 <USERNAME>username</USERNAME>
 <PASSWORD>password</PASSWORD>
</XML>

Listing 25-2: Typical task assignment

The output in Listing 25-2 shows what you might find in a typical task
assignment. It indicates the target and any other information the webbot
may need, like login credentials. Notice that the task ID, actually the ID of
the task’s queue ID, is also passed. The webbot will need to send this back
to the botnet server to indicate which task it completed.

Figure 25-11: Assigning the task

Any format may be used in transmitting this information. XML is used
here because it is easy for the webbot to parse. For example, the webbot could
use the LIB_parse.php library to parse the botnet server’s response, as shown
in Listing 25-3.

<?php
// Parsing the botnet server's response
$task_id = return_between($reply['PAGE'], "<TASK_ID>", "</TASK_ID>", EXCL);
$target = return_between($reply['PAGE'], "<TARGET>", "</TARGET>", EXCL);
$username = return_between($reply['PAGE'], "<USERNAME>", "</USERNAME>", EXCL);
$password = return_between($reply['PAGE'], "<PASSWORD>", "</PASSWORD>", EXCL);
?>

Listing 25-3: Parsing the botnet server’s response

Regardless of the format you choose, remember that this all happens in
the stateless client/server environment of the Web. In the example, commu-
nication was initiated by the webbot making a POST request to an acceptable
web page on the botnet server, which interprets the request and makes the
appropriate response.

If no task is available for the webbot to perform, the botnet server might
reply with something like the response shown in Listing 25-4.

Webbot Botnet Server

Task request The central server
determines if there
is a task to assign
to the webbot.

If there’s a pending
task, it is “checked
out” and assigned
to the webbot.

Assign task
(if needed).Perform task.

Store harvested
data in a database.

Upload
harvested data.

The central server
determines if there
is a task to assign
to the webbot.

Store harvested
data in a database.

Perform task.

Upload
harvested data.

Task request

If there’s a pending
task, it is “checked
out” and assigned
to the webbot.
Deployment and Scal ing 259

webbots2e.book Page 260 Thursday, February 16, 2012 11:59 AM
<XML>
 <TASK_ID>NO TASK</TASK_ID>
 <TIMESTAMP>1303752734 </TIMESTAMP>
</XML>

Listing 25-4: Typical task assignment

Performing Tasks

Once the webbot has its task, it is free to do whatever the botnet is designed
to do. Any of the previous examples mentioned in this book are candidates
as tasks (see Figure 25-12).

Figure 25-12: Performing the task

The task may be performed with traditional PHP/CURL scripts, or it
could be conducted using the advanced iMacros browser emulation tech-
niques described in Chapter 23.

Uploading Harvested Data

Once the the webbot completes the task, it must upload the data it collected
(see Figure 25-13). If the task doesn’t involve data collection, it should, at
least, indicate that it completed the task.

Like the initial task request, the response may involve a POST request back
to the botnet server, as shown in Listing 25-5.

<?php
include('LIB_http.php');
// Define the task request
$post_array['STATUS'] = "DATA_COLLECTED";
$post_array['BOT'] = "this webbot's name";
$post_array['VERSION'] = "script version level";
$botnet_server_address = "https//".BOTNET_SERVER_ADDRESS
$reply = http_post_form($botnet_server_address, $post_array);

Listing 25-5: The webbot indicates that it completed a task.

Webbot Botnet Server

Task request The central server
determines if there
is a task to assign
to the webbot.

If there’s a pending
task, it is “checked
out” and assigned
to the webbot.

Assign task
(if needed).Perform task.

Store harvested
data in a database.

Upload
harvested data.

The central server
determines if there
is a task to assign
to the webbot.

Store harvested
data in a database.

Assign task
(if needed).

Upload
harvested data.

Task request

If there’s a pending
task, it is “checked
out” and assigned
to the webbot.
260 Chapter 25

webbots2e.book Page 261 Thursday, February 16, 2012 11:59 AM
Figure 25-13: Webbot uploading data

Notice that when the webbot talks to the botnet server, it uses the POST
method and not the GET method. This is because the GET method simply
modifies the URL, while POST values are sent in a transmission separate from
the URL. This is important because GET transmissions are sent in clear text
while POST data is encrypted.

Processing the Harvested Data

Two things happen once the botnet server receives collected data from the
webbot: First, the task is removed from the task queue, and second, the data
collected by the webbot is stored in some data structure, probably a database
(see Figure 25-14).

Figure 25-14: Storing harvested data

In addition, some diagnostic logging may also happen. For example, the
botnet server may record the time it took the webbot to complete the task, the
number of tasks each webbot completes, the average time between checkout
and completion, or (potentially) any error conditions reported by the webbot.

Webbot Botnet Server

Task request The central server
determines if there
is a task to assign
to the webbot.

If there’s a pending
task, it is “checked
out” and assigned
to the webbot.

Assign task
(if needed).Perform task.

Store harvested
data in a database.

Upload
harvested data.

The central server
determines if there
is a task to assign
to the webbot.

Store harvested
data in a database.

Assign task
(if needed).Perform task.

Task request

If there’s a pending
task, it is “checked
out” and assigned
to the webbot.

Webbot Botnet Server

Task request The central server
determines if there
is a task to assign
to the webbot.

If there’s a pending
task, it is “checked
out” and assigned
to the webbot.

Assign task
(if needed).Perform task.

Store harvested
data in a database.

Upload
harvested data.

The central server
determines if there
is a task to assign
to the webbot.

Upload
harvested data.

Assign task
(if needed).Perform task.

Task request

If there’s a pending
task, it is “checked
out” and assigned
to the webbot.
Deployment and Scal ing 261

webbots2e.book Page 262 Thursday, February 16, 2012 11:59 AM
Again, once a system like this is established, it is relatively easy to scale
from 1 webbot to 1,000 with very little modification.

Further Exploration

Botnets are one of the more fascinating aspects of webbot development and
offer many opportunities for you to be as creative (or destructive) as you like.
Here are some additional things for you to consider while deploying your
own designs:

 How does the list of tasks get to the botnet server? Is it based on input
from an API?

 What is your botnet server’s maximum capacity? (That is, at what point
do your webbots inadvertently overwhelm your botnet server?)

 To what degree can you use proxies and other techniques for developing
stealthy webbots within a botnet?

 How could you modify the example to automatically facilitate webbot
software updates, downloaded directly from the botnet server?
262 Chapter 25

webbots2e.book Page 263 Thursday, February 16, 2012 11:59 AM
PART IV
L A R G E R C O N S I D E R A T I O N S

As you develop webbots and spiders, you will soon
learn (or wish you had learned) that there is more to
webbot and spider development than mastering the
underlying technologies. Beyond technology, your
webbots need to coexist with society—and perhaps
more importantly, they need to coexist with the system administrators of
the sites you target. This section attempts to guide you through the larger
considerations of webbot and spider development with the hope of keep-
ing you out of trouble.

Chapter 26: Designing Stealthy Webbots and Spiders
Sometimes it is best if webbots are indistinguishable from normal Inter-
net traffic. In this chapter, I’ll explain when and how stealth is important
to webbots and how to design and deploy webbots that look like normal
browser traffic.

Chapter 27: Proxies
One of the larger considerations you’re apt to encounter is if your designs
should incorporate a proxy server. Proxies provide webbot developers with
the ability to look like they’re located elsewhere or to mask their loca-
tions completely. This chapter explores the ins and outs of proxy use.

webbots2e.book Page 264 Thursday, February 16, 2012 11:59 AM
Chapter 28: Writing Fault-Tolerant Webbots
Since the Internet is constantly changing, it is mandatory to design web-
bots that will be less likely to fail if your target websites change. In this
chapter, we’ll focus on methods to design fault tolerance into your web-
bots and spiders so they will more easily adapt (or at least gracefully fail)
when websites change.

Chapter 29: Designing Webbot-Friendly Websites
Here I’ll explain how and why to write web pages that are easy for web-
bots and spiders to download and analyze, with a special focus on the
needs of search engine spiders. You will also learn how to write special-
ized interfaces, designed specifically to transfer data from websites to
webbots.

Chapter 30: Killing Spiders
In this chapter, you’ll explore techniques for writing web pages that
protect sensitive information from webbots and spiders, while still
accommodating normal browser users.

Chapter 31: Keeping Webbots out of Trouble
Possibly the most important part of this book, this chapter discusses
potential legal issues you may encounter as a webbot developer and
how to avoid them.
264 Par t IV

webbots2e.book Page 265 Thursday, February 16, 2012 11:59 AM
D E S I G N I N G S T E A L T H Y
W E B B O T S A N D S P I D E R S

This chapter explores design and imple-
mentation considerations that make web-

bots hard to detect. However, the inclusion
of a chapter on stealth shouldn’t imply that

there’s a stigma associated with writing webbots; you
shouldn’t feel self-conscious about writing webbots, as
long as your goals are to create legal and novel solutions to tedious tasks.
Most of the reasons for maintaining stealth have more to do with maintaining
competitive advantage than covering the tracks of a malicious web agent.

This chapter describes basic stealth principles. The next chapter
describes how to achieve anonymity through the use of proxies.

Why Design a Stealthy Webbot?
Webbots that create competitive advantages for their owners often lose their
value shortly after they’re discovered by the targeted website’s administrator.
I can tell you from personal experience that once your webbot is detected,
you may be accused of creating an unfair advantage for your client. This type

webbots2e.book Page 266 Thursday, February 16, 2012 11:59 AM
of accusation is common against early adopters of any technology. (It is also
complete bunk.) Webbot technology is available to any business that takes
the time to research and implement it. Once it is discovered, however, the
owner of the target site may limit or block the webbot’s access to the site’s
resources. The other thing that can happen is that the administrator will see
the value that the webbot offers and will create a similar feature on the site
for everyone to use.

Another reason to write stealthy webbots is that system administrators may
misinterpret webbot activity as an attack from a hacker. A poorly designed
webbot may leave strange records in the log files that servers use to track web
traffic and detect hackers. Let’s look at the errors you can make and how these
errors appear in the log files of a system administrator.

Log Files

System administrators can detect webbots by looking for odd activity in their
log files, which record access to servers. There are three types of log files for
this purpose: access logs, error logs, and custom logs (Figure 26-1). Some
servers also deploy special monitoring software to parse and detect anomalies
from normal activity within log files.

Figure 26-1: Windows’ log files recording file access and errors (Apache running on
Windows)

Access Logs

As the name implies, access logs record information related to the access of
files on a webserver. Typical access logs record the IP address of the requestor,
the time the file was accessed, the fetch method (typically GET or POST), the
file requested, the HTTP code, and the size of the file transfer, as shown in
Listing 26-1.
266 Chapter 26

webbots2e.book Page 267 Thursday, February 16, 2012 11:59 AM
221.2.21.16 - - [03/Feb/2011:14:57:45 -0600] "GET / HTTP/1.1" 200 1494
12.192.2.206 - - [03/Feb/2011:14:57:46 -0600] "GET /favicon.ico HTTP/1.1" 404 283
27.116.45.118 - - [03/Feb/2011:14:57:46 -0600] "GET /apache_pb.gif HTTP/1.1" 200 2326
214.241.24.35 - - [03/Feb/2011:14:57:50 -0600] "GET /test.php HTTP/1.1" 200 41

Listing 26-1: Typical access log entries

Access log files have many uses, like metering bandwidth and controlling
access. Know that the webserver records every file download your webbot
requests. If your webbot makes 50 requests a day from a server that gets 200
hits a day, it will become obvious to even a casual system administrator that a
single party is making a disproportionate number of requests, which will raise
questions about your activity.

Also, remember that using a website is a privilege, not a right. Always
assume that your budget of accesses per day is limited, and if you go over that
limit, it is likely that a system administrator will attempt to limit your activity
when he or she realizes a webbot is accessing the website. You should strive to
limit the number of times your webbot accesses any site. There are no definite
rules about how often you can access a website, but remember that if an indi-
vidual system administrator decides your IP is hitting a site too often, his or
her opinion will always trump yours.1 If you ever exceed your bandwidth
budget, you may find yourself blocked from the site.

Error Logs

Like access logs, error logs record access to a website, but unlike access logs,
error logs only record errors that occur. A sampling of an actual error log is
shown in Listing 26-2.

[Tue Mar 08 14:57:12 2011] [warn] module mod_php4.c is already added, skipping
[Tue Mar 08 15:48:10 2011] [error] [client 127.0.0.1] File does not exist:
c:/program files/apache group/apache/htdocs/favicon.ico
[Tue Mar 08 15:48:13 2011] [error] [client 127.0.0.1] File does not exist:
c:/program files/apache group/apache/htdocs/favicon.ico
[Tue Mar 08 15:48:37 2011] [error] [client 127.0.0.1] File does not exist:
c:/program files/apache group/apache/htdocs/t.gif

Listing 26-2: Typical error log entries

The errors your webbot is most likely to make involve requests for unsup-
ported methods (often HEAD requests) or requesting files that aren’t on the
website. If your webbot repeatedly commits either of these errors, a system
administrator will easily determine that a webbot is making the erroneous
page requests, because it is almost impossible to cause these errors when
manually surfing with a browser. Since error logs tend to be smaller than access
logs, entries in error logs are very obvious to system administrators.

1 There may also be legal implications for hitting a website too many times. For more information
on this subject, see Chapter 31.
Designing Steal thy Webbots and Spiders 267

webbots2e.book Page 268 Thursday, February 16, 2012 11:59 AM
However, not all entries in an error log indicate that something unusual
is going on. For example, it’s common for people to use expired bookmarks
or to follow broken links, both of which could generate File not found errors.

At other times, errors are logged in access logs, not error logs. These
errors include using a GET method to send a form instead of a POST (or vice
versa), or emulating a form and sending the data to a page that is not a valid
action address. These are perhaps the worst errors because they are impossible
for someone using a browser to commit—therefore, they will make your
webbot stand out like a sore thumb in the log files.

These are the best ways to avoid strange errors in log files:

 Debug your webbot’s parsing software on web pages that are on your
own server before releasing it into the wilderness.

 Use a form analyzer, as described in Chapter 6, when emulating forms.

 Program your webbot to stop if it is looking for something specific but
cannot find it.

Custom Logs

Many web administrators also keep detailed custom logs, which contain
additional data not found in either error or access logs. Information that
may appear in custom logs includes the following:

 The name of the web agent used to download a file

 A fully resolved domain name that resolves the requesting IP address

 A coherent list of pages a visitor viewed during any one session

 The referer to get to the requested page

The first item on the list is very important and easy to address. If you call
your webbot test webbot, which is the default setting in LIB_http, the web admin-
istrator will finger your webbot as soon as he or she views the log file. Some-
times this is by design; for example, if you want your webbot to be discovered,
you may use an agent name like See www.myWebbot.com for more details. I have
seen many webbots brand themselves similarly.

If the administrator does a reverse DNS lookup to convert IP addresses
to domain names, that makes it very easy to trace the origin of traffic. You
should always assume this is happening and restrict the number of times you
access a target.

Some metrics programs also create reports that show which pages specific
visitors downloaded on sequential visits. If your webbot always downloads the
same pages in the same order, you’re bound to look odd. For this reason, it’s
best to add some variety (or randomness, if applicable) to the sequence and
number of pages your webbots access.
268 Chapter 26

webbots2e.book Page 269 Thursday, February 16, 2012 11:59 AM
Log-Monitoring Software

Many system administrators use monitoring software that automatically detects
strange behavior in log files. Servers using monitoring software may automat-
ically send a notification email, instant message, or even page to the system
administrator upon detection of critical errors. Some systems may even auto-
matically shut down or limit accessibility to the server.

Some monitoring systems can have unanticipated results. I once created
a webbot for a client that made HEAD requests from various web pages. While
the use of the HEAD request is part of the web specification, it is rarely used,
and this particular monitoring software interpreted the use of the HEAD request
as malicious activity. My client got a call from the system administrator, who
demanded that we stop hacking his website. Fortunately, we all discussed what
we were doing and left as friends, but that experience taught me that many
administrators are inexperienced with webbots; if you approach situations like
this with confidence and knowledge, you’ll generally be respected. The other
thing I learned from this experience is that when you want to analyze a header,
you should request the entire page instead of only the header, and then parse
the results on your hard drive.

Stealth Means Simulating Human Patterns

Webbots that don’t draw attention to themselves are ones that behave like
people and leave normal-looking records in log files. For this reason, you want
your webbot to simulate normal human activity. In short, stealthy webbots
don’t act like machines.

Be Kind to Your Resources

Possibly the worst thing your webbot can do is consume too much bandwidth
from an individual website. To limit the amount of bandwidth a webbot
uses, you need to restrict the amount of activity it has at any one website.
Whatever you do, don’t write a webbot that frequently makes requests from
the same source. Since your webbot doesn’t read the downloaded web pages
and click links as a person would, it is capable of downloading pages at a ridic-
ulously fast rate. For this reason, your webbot needs to spend most of its time
waiting instead of downloading pages.

The ease of writing a stealthy webbot is directly correlated with how
often your target data changes. In the early stages of designing your webbot,
you should decide what specific data you need to collect and how often that
data changes. If updates of the target data happen only once a day, it would
be silly to look for it more often than that.

System administrators also use various methods and traps to deter webbots
and spiders. These concepts are discussed in detail in Chapter 30.
Designing Steal thy Webbots and Spiders 269

webbots2e.book Page 270 Thursday, February 16, 2012 11:59 AM
Run Your Webbot During Busy Hours

If you want your webbot to generate log records that look like normal brows-
ing, you should design your webbot so that it makes page requests when
everyone else makes them. If your webbot runs during busy times, your log
records will be intermixed with normal traffic. There will also be more records
separating your webbot’s access records in the log file. This will not reduce
the total percentage of requests coming from your webbot, but it will make
your webbot slightly less noticeable.

Running webbots during high-traffic times is slightly counterintuitive,
since many people believe that the best time to run a webbot is in the early
morning hours—when the system administrator is at home sleeping and you’re
not interfering with normal web traffic. While the early morning may be the
best time to go out in public without alerting the paparazzi, on the Internet,
there is safety in numbers.

Don’t Run Your Webbot at the Same Time Each Day
If you have a webbot that needs to run on a daily basis, it’s best not to run it
at exactly same time every day, because doing so would leave suspicious-looking
records in the server log file. For example, if a system administrator notices
that someone with a certain IP address access the same file at 7:01 AM every
day, he or she will soon assume that the requestor is either a highly compulsive
human or a webbot.

Don’t Run Your Webbot on Holidays and Weekends
Obviously, your webbot shouldn’t access a website over a holiday or weekend
if it would be unusual for a person to do the same. For example, I’ve written
procurement bots (see Chapter 18) that buy things from websites only used
by businesses. It would have been odd if the webbot checked what was available
for purchase at a time when businesses are typically closed. This is, unfortu-
nately, an easy mistake to make, because few task-scheduling programs track
local holidays. You should read Chapter 22 for more information on this issue.

Use Random, Intra-fetch Delays
One sure way to tell a system administrator that you’ve written a webbot is to
request pages faster than humanly possible. This is an easy mistake to make,
since computers can make page requests at lightening speeds. For this reason,
it’s imperative to insert delays between repeated page fetches on the same
domain. Ideally, the delay period should be a random value that mimics
human browsing behavior.

Final Thoughts

A long time ago—before I knew better—I needed to gather some information
for a client from a government website (on a Saturday, no less). I determined
that in order to collect all the data I needed by Monday morning, my spider
270 Chapter 26

webbots2e.book Page 271 Thursday, February 16, 2012 11:59 AM
would have to run at full speed for most of the weekend (another bad idea).
I started on Saturday morning, and everything was going well; the spider
was downloading pages, parsing information, and storing the results in my
database at a blazing rate.

While only casually monitoring the spider, I used my idle time to browse
the website I was spidering. To my horror, I found that the home page explic-
itly stated that the website did not, under any circumstances, allow webbots
to gather information from it. I had been focused on the task and never
bothered to view the website’s home page.

Furthermore, the welcome page stated that any violation of this policy was
considered a felony, and violators would be prosecuted to the full extent of
the law. Since this was a government website, I assumed it had the lawyers to
follow through with a threat like this. In retrospect, the phrase full extent of
the law was probably more of a fear tactic than an indication of eminent legal
action. Since all the data I collected was in the public domain, and the fund-
ing of the site’s servers came from public money (some of it mine), I couldn’t
possibly have done anything wrong, could I?

My fear was that since I was hitting the server very hard, the department
would file a trespass-to-chattels 2 case against me. Regardless, it had my atten-
tion, and I questioned the wisdom of what I was doing. An activity that seemed
so innocent only moments earlier suddenly had the potential of becoming a
criminal offense. I wasn’t sure what the department’s legal rights were, nor
was I sure to what extent a judge would have agreed with its arguments, since
there were no applicable warnings on the pages I was spidering. Nevertheless,
it was obvious that the government would have more lawyers at its disposal
than I would, if it came to that.

Just as I started to contemplate my future in jail, the spider suddenly
stopped working. Fearing the worst, I pointed my browser at the page I had
been spidering and felt the blood drain from my face as I read a web page
similar to the one shown in Figure 26-2.

Figure 26-2: A government warning that my IP address had been blocked

2 See Chapter 31 for more information about trespass to chattels.
Designing Steal thy Webbots and Spiders 271

webbots2e.book Page 272 Thursday, February 16, 2012 11:59 AM
I knew I had no choice but to call the number on the screen. This website
obviously had monitoring software, and it detected that I was operating out-
side of stated policies. Moreover, it had my IP address, so someone could
easily discover who I was by tracing my IP address back to my ISP.3 Once the
department knew who my ISP was, it could subpoena billing and log files
to use as evidence. I was busted—not by some guy with a server, but by the
full force and assets (i.e., lawyers) of the State of Minnesota. My paranoia was
magnified by the fact that it was only late Saturday morning, and I had all
weekend to think about my situation before I could call the number on
Monday morning.

When Monday finally came, I called the number and was very apolo-
getic. Realizing that they already knew what I was doing, I gave them a full
confession. Moreover, I noted that I had read the policy on the main page
after I started spidering the site and that there were no warnings on the
pages I was spidering.

Fortunately, the person who answered the phone was not the department’s
legal counsel (as I feared), but a friendly system administrator who was mostly
concerned about maintaining a busy website on a limited budget. She told
me that she’d unblock my IP address if I promised not to hit the server more
than three times a minute. Problem solved. (Whew!)

The embarrassing part of this story is that I should have known better. It
only takes a small amount of code between page requests to make a webbot’s
actions look more human. For example, the code snippet in Listing 26-3 will
cause a random delay between 20 and 45 seconds.

$minumum_delay_seconds = 20;
$maximum_delay_seconds = 45;
sleep($minumum_delay_seconds, $maximum_delay_seconds);

Listing 26-3: Creating a random delay

You can summarize the complete topic of stealthy webbots with a single
rule: Don’t do anything with a webbot that doesn’t look like something one
person using a browser would do. In that regard, think about how and when
people use browsers, and try to write webbots that mimic that activity.

3 You can find the owner of an IP address at http://www.arin.net.
272 Chapter 26

webbots2e.book Page 273 Thursday, February 16, 2012 11:59 AM
P R O X I E S

Proxy servers often baffle new developers
because the term proxy is a broad label used

to describe many services with distinctly dif-
ferent functions. This chapter cuts through this

confusion by describing what proxies are and why
webbot developers find proxies highly interesting.

What Is a Proxy?

A proxy is something—or someone—that does something on your behalf.
The concept of proxies is much older than the Internet—there are many
examples of proxies in the physical world. You may have already encountered
real-world proxies if you own shares of stock and have been asked to be part of
a proxy vote, in which you allow another party to vote your shares of stock on
your behalf at a board meeting. Or you may have seen the (cult favorite) movie
The Hudsucker Proxy (1994), in which a company’s board of directors appoints
someone it can easily manipulate (a proxy) to stand in for a missing CEO.

webbots2e.book Page 274 Thursday, February 16, 2012 11:59 AM
Proxies in the Virtual World

Just like their counterparts in the real world, virtual proxies act as interme-
diaries to perform network activities. For example, if you print a document
in a busy office environment, you probably use a proxy (in this case a print
server) to simplify the task. A print server is a good example of a proxy because
you simply tell the proxy to print—and while you’re off doing something else,
the proxy selects the printer, queues your document, reports any errors, and
tells you when your document is printed. Another common proxy is an Inter-
net content filter, which parents use to prevent their children from accessing
inappropriate websites. Yet another type of proxy is a firewall, which protects
your computer from unwanted access. Regardless of the proxy’s name or func-
tion, it is important to understand that the proxy intercepts your network
communication and performs a specific task on your behalf.

As you can see, proxies are useful in a variety of environments. Now let’s
look at the specific proxies that webbot developers use.

Why Webbot Developers Use Proxies

Proxies are of special interest to webbot developers because when used
correctly, they allow your webbots not only to access websites anonymously
but also to appear as if they are operating from another location.

This section describes why these functions are important to webbot
developers and how proxies provide this functionality.

Using Proxies to Become Anonymous
As you read in Chapter 26, a developer may have many reasons to cloak the
identity of a webbot. Proxies protect the identity of your webbots by show-
ing a different IP address to the websites you visit and by mixing your web
traffic with that of many other web surfers, making it difficult to distinguish
you from everyone else. For example, on the Internet your IP address iden-
tifies you so your web traffic can be accurately routed to and from your com-
puter. If you connect directly to the Internet, without a proxy,1 you will be
the only person using a specific IP address, and all your communication can
be easily traced directly back to you (see Figure 27-1).

As you access a website, your IP address serves two purposes. Primarily,
your IP address tells the Internet how to route your network traffic. Your IP
address also tells the website a little about you. The website might use your
IP address to figure out where you’re located and customize web content, usu-
ally advertising, depending on the country or region. Additionally, websites
routinely record your IP address, time of access, and the resources down-
loaded in an access log file. If the website is professionally maintained, the
access log file will be examined for irregularities like page not found (404)
errors and timeouts or to analyze where the site’s web traffic originates for
marketing reasons.
1 People generally don’t directly connect to the Internet but instead use a proxy known as a
gateway proxy, which changes your IP address to that of your ISP. It may also provide some
firewall protection and possibly image caching to speed browsing.
274 Chapter 27

webbots2e.book Page 275 Thursday, February 16, 2012 11:59 AM
Figure 27-1: Your IP address is revealed when you connect
directly to the Internet.

For example, let’s say that you are at work and you connect to the Inter-
net through your corporate gateway,2 which has an IP address of 66.102.7.104.
To see how much information can be derived from just an IP address, type
this address into one of the many websites that perform IP address lookups.

As shown in Figure 27-2, our example IP address traces back to Google’s
Silicon Valley campus, where a web surfer’s access to the Internet originated.

Figure 27-2: Finding the origin of an IP address using http://www.WhatIsMyIP.com

2 Remember that a corporate gateway is itself a proxy that provides one unified path to, and
from, the Internet for many employees.

The Internet

Your
computer Website
Proxies 275

webbots2e.book Page 276 Thursday, February 16, 2012 11:59 AM
If this individual was directly connected to the Internet—without going
through a corporate network gateway—that individual (not the corporation)
would be in danger of being identified. Whether the web surfer is an individ-
ual or a corporation, the user’s identity is at least partially disclosed when the
IP address is not protected.

One of the more interesting examples of people losing their online
anonymity was when Virgil Griffith, a CalTech student, became curious
about the identities of people making edits to controversial subjects on
Wikipedia. His research lead to the creation of a webbot called Wikipedia
Scanner,3 which performed reverse IP address lookups on the people and
organizations making Wikipedia edits. Wikipedia Scanner created—and more
importantly published—a database of organizations that had made anonymous
edits to their own Wikipedia pages to remove negative content. Wikipedia
Scanner’s list of organizations included government agencies, corporations,
and religious groups. Some organizations were further embarrassed when
Wikipedia Scanner documented instances in which they attempted to hide
the fact that they were performing a little “gray art” public relations.

Anonymity could have been maintained if, instead of directly accessing
the website, the web surfer (or webbot) had gone through a proxy.

 In the configuration in Figure 27-3, the website is able to identify only
the IP address of the proxy server, not that of your computer. If an IP address
lookup is performed, it will reveal information about the proxy server while
your identity remains protected.

Figure 27-3: Accessing a website through a proxy

Please note that proxies like the one just mentioned provide reasonable
anonymity—but not total anonymity. It is still possible to obtain (subpoena)
access records from your gateway, the proxy server, and targeted website
to piece together a trail of bits that lead back to you. It is also important to
remember that if your data transmissions are not encrypted, a network sniffer
could be used to identify you and your transmissions on the network. You’ll
learn how to deal with these issues later in this chapter.

Adding to your anonymity, however, is that fact that proxy servers are
typically not used by single web surfers but by many people at the same time.
As shown in Figure 27-4, all network traffic accessing a website looks like it
originates from the same place, the proxy server. In such a configuration, it
is difficult to distinguish one person’s activity from that of anyone else. The
more people who use the proxy server, the harder it is to trace activity to its
origin, and the more anonymous the web surfers (or webbots) remain.
3 John Borland, “See Who’s Editing Wikipedia—Diebold, the CIA, a Campaign,” Wired,
August 14, 2007, http://www.wired.com/politics/onlinerights/news/2007/08/wiki_tracker.

The Internet

Your
computer WebsiteProxy

server
276 Chapter 27

webbots2e.book Page 277 Thursday, February 16, 2012 11:59 AM
Figure 27-4: Mixing your traffic with others’ adds to your
anonymity.

Using a Proxy to Be Somewhere Else
The other reason to use a proxy server is to virtually transport yourself to the
same physical location as your proxy. For example, if you are in Denver but
are using a proxy server in Seoul, South Korea, your network traffic will appear
to originate from Asia, not from the United States. Using proxy servers in
other countries is important when a website’s server gives location-dependent
content. For example, as I write this, the video website Hulu.com will not allow
people from outside the United States to access particular content. If, how-
ever, you are using a proxy server that is in the United States, you can view
any of Hulu’s content from anywhere in the world, provided that your proxy
is fast enough to facilitate video streaming.

Other reasons for using proxy servers to relocate you (or your webbot) to
another virtual locale include the following:

 To access websites that are blocked by national governments

 To view local news when its content is censored

 To access the native versions of foreign websites

 To access foreign versions of domestic websites

Using a Proxy Server

At this point, it is important to know how to use a proxy server, because as we
explore the variety of services available, you will no doubt want to try some
for yourself!

To access most proxies, you will need to know the proxy server’s IP address
and port number. The port number is used to identify the network service that
is available from a specific IP address. And since many services (like web servers,
databases, proxies, etc.) may be available from a single IP address, it is impor-
tant to specify the port number of the service you want to use.

The Internet

Your
computer

Website

Other people’s
computers

Proxy
server
Proxies 277

webbots2e.book Page 278 Thursday, February 16, 2012 11:59 AM
Using a Proxy in a Browser

Regardless of which browser you use, there will always be a network
configuration interface similar to the one shown in Figure 27-5.

Figure 27-5: Browser proxy server configuration

This interface is usually in the browser options or advanced network
settings. Once you find it, simply type the IP address and port number of
the proxy server you want to use.

In addition to the proxy’s IP address and port number, you may need
to specify the proxy protocol type. In most cases, this will be either HTTP or
the more secure SOCKS. If the protocol is not mentioned, assume that the
protocol defaults to HTTP. If the protocol is SOCKS, you will have to indicate
this in your browser settings. If you are connecting to the proxy through
PHP/CURL, you will have to add one additional line of configuration, as
shown in the next section.

Using a Proxy with PHP/CURL

If you are accessing a website through PHP/CURL, using a proxy server
is as simple as adding the following option settings to your PHP/CURL
configuration:

curl_setopt($session_id, CURLOPT_PROXY, $proxy_ip.":".$proxy_port);
curl_setopt($session_id, CURLOPT_PROXY_TYPE, CURLPROXY_SOCKS5); // defaults to CURLPROXY_HTTP

Listing 27-1: Configuring PHP/CURL to use a proxy server

When code in Listing 27-1 is added to your PHP/CURL configura-
tion, PHP/CURL automatically routes network traffic through the proxy at
$proxy_ip running at port $proxy_port. In this example, $session_id is the session
handle defined by an earlier $session_id = curl_init() PHP command.

Types of Proxy Servers

As mentioned earlier, the term proxy server can refer to many different things.
And even within the definition of proxies that are of particular interest to web-
bot developers, you’ll find wide diversity. This section describes some of the
proxy servers available to you, as well as their advantages and disadvantages.
278 Chapter 27

webbots2e.book Page 279 Thursday, February 16, 2012 11:59 AM
Open Proxies

For a variety of reasons, which will be described later, thousands of proxy
servers are available on the Internet for you to use freely. These proxies
are known as open proxies. Just as with the proxy servers we discussed earlier,
when you connect your webbot or browser to an open proxy, you assume
that proxy’s IP address—and, by default, its physical location.

To experience an open proxy for yourself, do an Internet search on the
term “open proxy.” Within the search results, you will find links to services
that list hundreds, if not thousands, of open proxies. Figure 27-6 shows a
representative list (from http://www.xroxy.com4).

Figure 27-6: A typical list of open proxies

In addition to the proxy’s IP address and port number, most of these lists
also describe other information about the proxy, such as the proxy type (this
will probably be HTTP, SOCKS, or SOCKS5), the country of origin, whether
the proxy server supports (SSL) encryption, the latency (the amount of time
it takes to get a response from the proxy), and some type of reliability rating.

Types of Open Proxies

In addition to those proxy parameters listed above, other parameters are
sometimes listed. These parameters define how much, or how little, the
proxy discloses about the user of the proxy.

4 The current web page containing this list is found at http://www.xroxy.com/proxylist.htm.
Proxies 279

webbots2e.book Page 280 Thursday, February 16, 2012 11:59 AM
Transparent Proxies
While these proxies function like any other, the originating (your) IP
address is forwarded in the HTTP_X_FORWARDED_FORWARDED variable, which is
exposed to the web server and may be recorded in the website’s access
log file.

Anonymous Proxies
The originating IP address is not passed to the web server, but it may still
be possible to detect that the traffic was directed through a proxy.

Spoofing Proxies
These proxies fool the destination server into believing that the traffic
originated from a totally different location.

The Dark Side of Open Proxies

I prefaced the first paragraph in this section with the words “for a variety of
reasons,” because like many things you’ll find online, not everything is as it
appears to be. Before you use an open proxy, you should ask yourself why
anyone would open up their network and allow strangers to consume his
resources. The truth is that there are very few legitimate reasons for anyone
to do so. So why are these open proxies made available?

Many open proxies are actually misconfigured servers that allow open
relaying connections. This can happen for many reasons, including when a
system administrator installs a mail server and never bothers to change the
default settings.

 It is also strongly suspected that law enforcement agencies, governments,
and cyber voyeurs use proxy servers either to detect or conceal criminal activ-
ity or to uncover covert political movements. And other open proxies are
unknowingly run by regular people who inadvertently installed them when
they downloaded unwanted malware or viruses.

Open proxies are good for learning, but I would not recommend them for
production use. Since you don’t control the open proxy’s environment, and
since the service isn’t guaranteed, there is no way to predict if the proxy’s per-
formance will continue or if the proxy will even be there when you really need
it. The other problem with open proxies is that, as we mentioned earlier, you
don’t know who is operating the service, so never use an open proxy when
you are transmitting confidential information like usernames or passwords.

More About Open Proxy Listing Services

Since open proxies are often available only by accident, the availability of
open proxy servers changes constantly. To solve this problem, a number of
online businesses sell a service that maintains a constantly updated database
of available open proxies and their performances. This information is sold to
developers, who use it to pick the most appropriate proxy for their needs.
Some of these services will even make available their own proxy, with a con-
sistent interface, which automatically picks the best open proxy for your needs.
These services come and go, but a quick online search should disclose a
bunch of them.
280 Chapter 27

webbots2e.book Page 281 Thursday, February 16, 2012 11:59 AM
Tor

Tor is an anonymous proxy service that is based on US naval technology.
While the military is believed to still use this technology, it is a now an open
source project and maintained by the nonprofit Tor Project (http://www
.TorProject.org).

Unlike open proxies, Tor is a voluntary community of proxies that relay
traffic through a varying route of community servers until finally exiting at a
Tor endpoint. This technique makes tracing traffic back to its origin very dif-
ficult. Tor also encrypts all traffic, so there is reduced danger of being iden-
tified by network sniffers. Because of Tor’s availability (it’s free) and success,
it has been embraced by journalists, military personal, law enforcement,
political dissenters, webbot developers, and people like you and me.

A lot could be written about Tor, but you will only find the basics here.
You are strongly encouraged to visit the Tor Project website to learn more
and possibly even contribute to the project.

Using Tor

To use Tor, you need to install Polipo, which is part of the Tor distribution
package. Polipo is a proxy that runs locally on your computer. It communi-
cates with the Tor network, and between Polipo and the Tor network, a path
for your data is selected from the community of Tor relay (proxy) servers
(see Figure 27-7). The websites you access when using Tor only get to see the
IP address of the final Tor endpoint. And as mentioned earlier, all network
traffic within the Tor network is encrypted.

Figure 27-7: Tor routes traffic through a set of community-run relays.

As one continues to use Tor, the path through the Tor relays to the Tor
endpoint continually changes, as depicted in Figure 27-8.

The combination of encryption, constantly changing routing paths, and
mixing of your network activity with that of many other people make Tor a
fairly good anonymous environment.

Website

Polipo

Tor relay Tor relay

Tor relay Tor relay

Tor relayTor relay
Proxies 281

webbots2e.book Page 282 Thursday, February 16, 2012 11:59 AM
Figure 27-8: or continually changes routes during use.

Configuring PHP/CURL to Use Tor

You connect to Tor through Polipo, which runs as a local server at IP address
127.0.0.1 at port number 8118. You should use this IP address and port com-
bination, or the address and port recommended in the documentation, and
configure PHP/CURL or a browser as you would with any other proxy service.

Disadvantages of Tor

As mentioned earlier, Tor creates a “fairly good” anonymous environment,
but it is important to remember that it is not necessarily completely anon-
ymous. It is possible for websites to bypass Tor with Java, Flash, or other
browser plug-ins. More importantly, successful use of Tor requires that you
maintain safe browsing habits. Tor won’t help you if you’re someone who
readily enters personal information into website forms.

The other disadvantage of Tor is that it will be slower than browsing
directly. Sometimes Tor can be annoyingly slow. For that reason, Tor is best
suited for lightweight webbot applications that don’t rely on a lot of media. For
webbot applications that only download HTML web pages without graphics,
I find Tor’s performance completely acceptable. Tor, however, is not suitable
for any file sharing or streamed media applications. You should also be aware
that Tor is maintained and hosted by volunteers and that it would be bad
form to create webbots that selfishly burn Tor’s limited bandwidth or the
CPU cycles donated by the Tor community.

Commercial Proxies

In addition to open proxies and Tor, a variety of commercial proxy products
are available to purchase. The quality, features, and price vary from provider
to provider, but most have the ability to restrict IP addresses to originate
from a specific country.

It is not the intent of this book to endorse any specific proxy service pro-
viders. However, two of the bigger players in this segment are Anonymizer

Website

Polipo

Tor relay Tor relay

Tor relay Tor relay

Tor relayTor relay
282 Chapter 27

webbots2e.book Page 283 Thursday, February 16, 2012 11:59 AM
(http://www.Anonymizer.com) and HideMyIP (http://HideMyIP.com). You can
find a wide selection of similar proxy services by performing an online search
with the term “anonymous browsing.” Available commercial proxy services
range from marginal to downright amazing. Some of the more compelling
proxy services utilize many thousands of IP addresses, have low network
latency, and change IP addresses every few seconds. Less desirable proxy
services are slow, change IP addresses infrequently, and put a small pool of
available addresses at your disposal. Pricing also varies widely. Some proxy
services are available for a few dollars a month, but the more advanced
proxies—which provide the most anonymity—are priced per HTTP GET
and can become quite expensive in commercial webbot environments.

One thing that many commercial, or consumer-oriented, proxy services
have in common is that they deviate from traditional proxies in the way they
are configured. Instead of setting a proxy’s IP address and port in a browser
or PHP/CURL configuration, these programs work with the browser to inter-
cept web traffic and automatically route it through their network. While this
“configure-less” environment makes it easier for consumers to set up and use
the proxy, it is much harder (next to impossible) for a webbot employing
PHP/CURL to make use of such services. While these configure-less proxy
services are difficult for PHP scripts to use, they are ideal for the browser
macro applications discussed in Chapters 23 and 24.

Final Thoughts

Before you move on to the next chapter, here are a few things to think about.

Anonymity Is a Process, Not a Feature

Like most aspects of data security, anonymity is a process and not a product
feature. No anonymity service or proxy will protect you if you are careless
online and routinely offer personal information like email addresses, phone
numbers, or credit card numbers to any website that requests it. Above all else,
anonymity requires that you and your webbots maintain sane online habits.

It is also important to remember that you are never anonymous if a
website requires that you or your webbot authenticate itself with an account
username and password. Once you log into a website, it is easy to reference
your authentication criteria to your user account. In these cases, a proxy will
provide no real anonymity, assuming your user account is legitimate.

Creating Your Own Proxy Service

If you make heavy use of proxies, eventually you will entertain the idea of
developing and deploying your own proxy service. This idea initially makes
sense for the following reasons:

 Various open source proxies are available for this use.

 Hosting is relatively inexpensive.

 It’s possible to place proxies in “the cloud.”
Proxies 283

webbots2e.book Page 284 Thursday, February 16, 2012 11:59 AM
 Management is tired of paying for anonymizing services.

 There are inexpensive resources for offshore development.

All of these points have merit, but there are some serious problems with
this line of thought.

The first problem to solve is finding enough places to secure hosting in
order to provide the quantity of IP addresses you’ll need. Hosting proxies in
many locations is what makes running an anonymizing service expensive.
Even if your private proxies could be hosted at a reasonably low price, you
will quickly find that the commercial services are cheaper and don’t need
to be maintained.

The other problem is that, unless you also intend to allow other people
to use your anonymizing service, it will be relatively easy to trace your traffic
back to you because all traffic emanating from your proxies will be yours and
yours alone. Moreover, without the benefit of mixing your traffic with others,
you are apt to leave traffic patterns in access log files that can identify you.
284 Chapter 27

webbots2e.book Page 285 Thursday, February 16, 2012 11:59 AM
W R I T I N G F A U L T - T O L E R A N T
W E B B O T S

The biggest challenge in developing webbots
is making them run reliably. Your webbots

will suddenly and inexplicably fail if they are
not fault tolerant, or able to adapt to the changing

conditions of your target websites. This chapter is
devoted to helping you write webbots that are tolerant
to unexpected changes in the web pages you target.

Webbots that don’t adapt to their changing environments are worse than
nonfunctional ones because, when presented with the unexpected, they may
perform in odd and unpredictable ways. For example, a non-fault-tolerant web-
bot may not notice that a form has changed and will continue to emulate the
nonexistent form. When a webbot does something that is impossible to do with
a browser (like submit an obsolete form), system administrators become aware
of the webbot. Furthermore, it’s usually easy for system administrators to
identify the owner of a webbot by tracing an IP address or matching a user
to a username and password. Depending on what your webbot does and

webbots2e.book Page 286 Thursday, February 16, 2012 11:59 AM
which website it targets, the identification of a webbot can lead to possible
banishment from the website and the loss of a competitive advantage for
your business. It’s better to avoid these issues by designing fault-tolerant
webbots that anticipate changes in the websites they target.

Fault tolerance does not mean that everything will always work perfectly.
Sometimes changes in a targeted website confuse even the most fault-tolerant
webbot. In these cases, the proper thing for a webbot to do is to abort its task
and report an error to its owner. Essentially, you want your webbot to fail in
the same manner a person using a browser might fail. For example, if a webbot
is buying an airline ticket, it should not proceed with a purchase if a seat is
not available on a desired flight. This action sounds silly, but it is exactly what
a poorly programmed webbot may do if it is expecting an available seat and
has no provision to act otherwise.

Types of Webbot Fault Tolerance

For a webbot, fault tolerance involves adapting to changes to URLs, HTML
content (which affect parsing), forms, cookie use, and network outages and
congestion). We’ll examine each of these aspects of fault tolerance in the
following sections.

Adapting to Changes in URLs

Possibly the most important type of webbot fault tolerance is URL tolerance, or
a webbot’s ability to make valid requests for web pages under changing condi-
tions. URL tolerance ensures that your webbot does the following:

 Downloads pages that are available on the target site

 Follows header redirections to updated pages

 Uses referer values to indicate that you followed a link from a page that is
still on the website

Avoid Making Requests for Pages That Don’t Exist

Before you determine that your webbot downloaded a valid web page, you
should verify that you made a valid request. Your webbot can verify successful
page requests by examining the HTTP code, a status code returned in the
header of every web page. If the request was successful, the resulting HTTP
code will be in the 200 series—meaning that the HTTP code will be a three-
digit number beginning with a two. Any other value for the HTTP code may
indicate an error. The most common HTTP code is 200, which says that the
request was valid and that the requested page was sent to the web agent. The
script in Listing 28-1 shows how to use the LIB_http library’s http_get() func-
tion to validate the returned page by looking at the returned HTTP code.
If the webbot doesn’t detect the expected HTTP code, an error handler is
used to manage the error and the webbot stops.
286 Chapter 28

webbots2e.book Page 287 Thursday, February 16, 2012 11:59 AM
<?
include("LIB_http.php");
Get the web page
$page = http_get($target="www.schrenk.com", $ref="");
Vector to error handler if error code detected
if($page['STATUS']['http_code']!="200")
 error_handler("BAD RESULT", $page['STATUS']['http_code']);
?>

Listing 28-1: Detecting a bad page request

Before using the method described in Listing 28-1, review a list of HTTP
codes and decide which codes apply to your situation.1

If the page no longer exists, the fetch will return a 404 Not Found error.
When this happens, it’s imperative that the webbot stop and not download
any more pages until you find the cause of the error. Not proceeding after
detecting an error is a far better strategy than continuing as if nothing is wrong.

Web developers don’t always remove obsolete web pages from their
websites—sometimes they just link to an updated page without removing the
old one. Therefore, webbots should start at the web page’s home page and
verify the existence of each page between the home page and the actual tar-
geted web page. This process does two things. It helps your webbot maintain
stealth, as it simulates the browsing habits of a person using a browser. More-
over, by validating that there are links to subsequent pages, you verify that
the pages you are targeting are still in use. In contrast, if your webbot targets
a page within a site without verifying that other pages still link to it, you risk
targeting an obsolete web page.

The fact that your webbot made a valid page request does not indicate
that the page you’ve downloaded is the one you intended to download or that
it contains the information you expected to receive. For that reason, it is useful
to find a validation point, or text that serves as an indication that the newly
downloaded web page contains the expected information. Every situation is
different, but there should always be some text on every page that validates
that the page contains the content you’re expecting. For example, suppose
your webbot submits a form to authenticate itself to a website. If the next web
page contains a message that welcomes the member to the website, you may
wish to use the member’s name as a validation point to verify that your web-
bot successfully authenticated, as shown in Listing 28-2.

$username = "GClasemann";
$page = http_get($target, $ref="");
if(!stristr($page['FILE'], "$username")
 {
 echo "authentication error";
 error_handler("BAD AUTHENTICATION for ".$username, $target);
 }

Listing 28-2: Using a username as a validation point to confirm the result of submitting a form

1 A full list of HTTP codes is available in Appendix B.
Writ ing Faul t -Tolerant Webbots 287

webbots2e.book Page 288 Thursday, February 16, 2012 11:59 AM
The script in Listing 28-2 verifies that a validation point, in this case a
username, exists as anticipated on the fetched page. This strategy works
because the only way that the user’s name would appear on the web page
is if he or she had been successfully authenticated by the website. If the web-
bot doesn’t find the validation point, it assumes there is a problem and it
reports the situation with an error handler.

Follow Page Redirections

Page redirections are instructions sent by the server that tell a browser that it
should download a page other than the one originally requested. Web
developers use page redirection techniques to tell browsers that the page
they’re looking for has changed and that they should download another
page in its place. This allows people to access correct pages even when
obsolete addresses are bookmarked by browsers or listed by search engines.
As you’ll discover, there are several methods for redirecting browsers. The
more web redirection techniques your webbots understand, the more fault
tolerant your webbot becomes.

Header redirection is the oldest method of page redirection. It occurs
when the server places a Location: URL line in the HTTP header, where URL
represents the web page the browser should download (in place of the one
requested). When a web agent sees a header redirection, it’s supposed to
download the page defined by the new location. Your webbot could look for
redirections in the headers of downloaded pages, but it’s easier to configure
PHP/CURL to follow header redirections automatically.2 Listing 28-3 shows
the PHP/CURL options you need to make automatic redirection happen.

curl_setopt($curl_session, CURLOPT_FOLLOWLOCATION, TRUE); // Follow redirects
curl_setopt($curl_session, CURLOPT_MAXREDIRS, 4); // Only follow 4 redirects

Listing 28-3: Configuring PHP/CURL to follow up to four header redirections

The first option in Listing 28-3 tells PHP/CURL to follow all page
redirections as they are defined by the target server. The second option
limits the number of redirections your webbot will follow. Limiting the
number of redirections defeats webbot traps where servers redirect agents
to the page they just downloaded, causing an endless number of requests
for the same page and an endless loop.

In addition to header redirections, you should also be prepared to
identify and accommodate page redirections made between the <head>
and </head> tags, as shown in Listing 28-4.

<html>
 <head>
 <meta http-equiv="refresh" content="0; URL=http://www.nostarch.com">
 </head>
</html >

Listing 28-4: Page redirection between the <head> and </head> tags

2 LIB_http does this for you.
288 Chapter 28

webbots2e.book Page 289 Thursday, February 16, 2012 11:59 AM
In Listing 28-4, the web page tells the browser to download http://www
.nostarch.com instead of the intended page. Detecting these kinds of redirec-
tions is accomplished with a script like the one in Listing 28-5. This script
looks for redirections between the <head> and </head> tags in a test page on
the book’s website.

<?
Include http, parse, and address resolution libraries
include("LIB_http.php");
include("LIB_parse.php");
include("LIB_resolve_addresses.php");

Identify the target web page and the page base
$target = "http://www.WebbotsSpidersScreenScrapers.com/head_redirection_test.php";
$page_base = "http://www.WebbotsSpidersScreenScrapers.com";

Download the web page
$page = http_get($target, $ref="");

Parse the <head></head>
$head_section = return_between($string=$page['FILE'], $start="<head>", $end="</head>",

$type=EXCL);

Create an array of all the meta tags
$meta_tag_array = parse_array($head_section, $beg_tag="<meta", $close_tag=">");

Examine each meta tag for a redirection command
for($xx=0; $xx<count($meta_tag_array); $xx++)
 {
 # Look for http-equiv attribute
 $meta_attribute = get_attribute($meta_tag_array[$xx], $attribute="http-equiv");
 if(strtolower($meta_attribute)=="refresh")
 {
 $new_page = return_between($meta_tag_array[$xx], $start="URL", $end=">", $type=EXCL);
 # Clean up URL
 $new_page = trim(str_replace("", "", $new_page));
 $new_page = str_replace("=", "", $new_page);
 $new_page = str_replace("\"", "", $new_page);
 $new_page = str_replace("'", "", $new_page);
 # Create fully resolved URL
 $new_page = resolve_address($new_page, $page_base);
 }
 break;
 }

Echo results of script
echo "HTML Head redirection detected
";
echo "Redirect page = ".$new_page;
?>

Listing 28-5: Detecting redirection between the <head> and </head> tags
Writ ing Faul t -Tolerant Webbots 289

webbots2e.book Page 290 Thursday, February 16, 2012 11:59 AM
Listing 28-5 is also an example of the need for good coding practices as
part of writing fault-tolerant webbots. For instance, in Listing 28-5 notice how
these practices are followed:

 The script looks for the redirection between the <head> and </head> tags,
and not just anywhere on the web page.

 The script looks for the http-equiv attribute only within a meta tag.

 The redirected URL is converted into a fully resolved address.

 Like a browser, the script stops looking for redirections when it finds the
first one.

The last—and most troublesome—type of redirection is that done with
JavaScript. These instances are troublesome because webbots typically lack Java-
Script parsers, making it difficult for them to interpret JavaScript. The simplest
redirection of this type is a single line of JavaScript, as shown in Listing 28-6.

<script>document.location = 'http://www.schrenk.com'; </script>

Listing 28-6: A simple JavaScript page redirection

Detecting JavaScript redirections is also tricky because JavaScript is
a very flexible language, and page redirections can take many forms. For
example, consider what it would take to detect a page redirection like the
one in Listing 28-7.

<html>
 <head>
 <script>
 function goSomeWhereNew(URL)
 {
 location.href = URL;
 }
 </script>
 <body onLoad=" goSomeWhereNew('http://www.schrenk.com')">
 </body>
</html>

Listing 28-7: A complicated JavaScript page redirection

Fortunately, JavaScript page redirection is not a particularly effective way
for a web developer to send a visitor to a new page. Some people turn off
JavaScript in their browser configuration, so it doesn’t work for everyone;
therefore, JavaScript redirection is rarely used. Since it is difficult to write
fault-tolerant routines to handle JavaScript, you may have to tough it out and
rely on the error-detection techniques addressed later in this chapter.

Maintain the Accuracy of Referer Values

The last aspect of verifying that you’re using correct URLs is ensuring that
your referer values correctly simulate followed links. You should set the
referer to the last target page you requested. This is important for several
290 Chapter 28

webbots2e.book Page 291 Thursday, February 16, 2012 11:59 AM
reasons. For example, some image servers use the referer value to verify that
a request for an image is preceded by a request for the entire web page. This
defeats bandwidth hijacking, the practice of sourcing images from other people’s
domains. In addition, websites may defeat deep linking, or linking to a website’s
inner pages, by examining the referer to verify that people followed a
prescribed succession of links to get to a specific point within a website.

Adapting to Changes in Page Content

Parse tolerance is your webbot’s ability to parse web pages when your webbot
downloads the correct page, but its contents have changed. The following
paragraphs describe how to write parsing routines that are tolerant to minor
changes in web pages. This may also be a good time to review Chapter 4,
which covers general parsing techniques.

Avoid Position Parsing

To facilitate fault tolerance when parsing web pages, you should avoid all
attempts at position parsing, or parsing information based on its position
within a web page. For example, it’s a bad idea to assume that the informa-
tion you’re looking for has these characteristics:

 Starts x characters from the beginning of the page and is y characters in
length

 Is in the xth table in a web page

 Is at the very top or bottom of a web page

Any small change in a website can effect position parsing. There are much
better ways of finding the information you need to parse.

Use Relative Parsing

Relative parsing is a technique that involves looking for desired information
relative to other things on a web page. For example, since many web pages
hold information in tables, you can place all the tables into an array, identify-
ing which table contains a landmark term that identifies the correct table. Once
a webbot finds the correct table, the data can be parsed from the correct cell
by finding the cell relative to a specific column name within that table. For
an example of how this works, look at the parsing techniques performed in
Chapter 8 in which a webbot parses prices from an online store.

Table column headings may also be used as landmarks to identify data in
tables. For example, assume you have a table like Table 28-1, which presents
statistics for three baseball players.

Table 28-1: Use Table Headers to Identify Data Within Columns

Player Team Hits Home Runs Average

Zoe Marsupials 78 15 .327

Cullen Wombats 56 16 .331

Kade Wombats 58 17 .324
Writ ing Faul t -Tolerant Webbots 291

webbots2e.book Page 292 Thursday, February 16, 2012 11:59 AM
In this example you could parse all the tables from the web page and
isolate the table containing the landmark Player Statistics. In that table, your
webbot could then use the column names as secondary landmarks to identify
players and their statistics.

Look for Landmarks That Are Least Likely to Change

You achieve additional fault tolerance when you choose landmarks that are
least likely to change. From my experience, the things in web pages that change
with the lowest frequency are those that are related to server applications or
back-end code. In most cases, names of form elements and values for hidden
form fields seldom change. For example, in Listing 28-8 it’s very easy to find
the names and breeds of dogs because the form handler needs to see them in a
well-defined manner. Webbot developers generally don’t look for data values in
forms because they aren’t visible in rendered HTML. However, if you’re lucky
enough to find the data values you’re looking for within a form definition,
that’s where you should get them, even if they appear in other visible places
on the website.

<form method="POST" action="dog_form.php">
 <input type="hidden" name="Jackson" value="Jack Russell Terrier">
 <input type="hidden" name="Xing" value="Shepherd Mix">
 <input type="hidden" name="Buster" value="Maltese">
 <input type="hidden" name="Bare-bear" value="Pomeranian">
</form>

Listing 28-8: Finding data values in form variables

Similarly, you should avoid landmarks that are subject to frequent changes,
like dynamically generated content, HTML comments (which Macromedia
Dreamweaver and other page-generation software programs automatically
insert into HTML pages), and information that is time or calendar derived.

Adapting to Changes in Forms
Form tolerance defines your webbot’s ability to verify that it is sending the correct
form information to the correct form handler. When your webbot detects that
a form has changed, it is usually best to terminate your webbot, rather than
trying to adapt to the changes on the fly. Form emulation is complicated, and
it’s too easy to make embarrassing mistakes—like submitting nonexistent forms.
You should also use the form diagnostic page on the book’s website (described
in Chapter 6) to analyze forms before writing form emulation scripts.

Before emulating a form, a webbot should verify that the form variables
it plans to submit are still in use in the submitted form. This check should
verify the data pair names submitted to the form handler and the form’s
method and action. Listing 28-9 parses this information on a test page on the
book’s website. You can use similar scripts to isolate individual form elements,
which can be compared to the variables in form emulation scripts.
292 Chapter 28

webbots2e.book Page 293 Thursday, February 16, 2012 11:59 AM
<?
Import libraries
include("LIB_http.php");
include("LIB_parse.php");
include("LIB_resolve_addresses.php");

Identify location of form and page base address
$page_base ="http://www.WebbotsSpidersScreenScrapers.com";
$target = "http://www.WebbotsSpidersScreenScrapers.com/easy_form.php";
$web_page = http_get($target, "");

Find the forms in the web page
$form_array = parse_array($web_page['FILE'], $open_tag="<form", $close_tag="</form>");

Parse each form in $form_array
for($xx=0; $xx<count($form_array); $xx++)
 {
 $form_beginning_tag = return_between($form_array[$xx], "<form", ">", INCL);
 $form_action = get_attribute($form_beginning_tag, "action");

 // If no action, use this page as action
 if(strlen(trim($form_action))==0)
 $form_action = $target;
 $fully_resolved_form_action = resolve_address($form_action, $page_base);

 // Default to GET method if no method specified
 if(strtolower(get_attribute($form_beginning_tag, "method")=="post"))
 $form_method="POST
\n";
 else
 $form_method="GET
\n";

 $form_element_array = parse_array($form_array[$xx], "<input", ">");
 echo "Form Method=$form_method
\n";
 echo "Form Action=$fully_resolved_form_action
\n";
 # Parse each element in this form
 for($yy=0; $yy<count($form_element_array); $yy++)
 {
 $element_name = get_attribute($form_element_array[$yy], "name");
 $element_value = get_attribute($form_element_array[$yy], "value");
 echo "Element Name=$element_name, value=$element_value
\n";
 }
 }
?>

Listing 28-9: Parsing form values

Listing 28-9 finds and parses the values of all forms in a web page. When
run, it also finds the form’s method and creates a fully resolved URL for the
form action, as shown in Figure 28-1.
Writ ing Faul t -Tolerant Webbots 293

webbots2e.book Page 294 Thursday, February 16, 2012 11:59 AM
Form Method=GET

Form Action=http://www.WebbotsSpidersScreenScrapers.com/dog_form.php

Element Name=Jackson, value=Jack Russel Terrier

Element Name=Xing, value=Shepard Mix

Element Name=Buster, value=Maltese

Element Name=Bare-bear, value=Pomeranian

Figure 28-1: Results of running the script in Listing 28-9

Adapting to Changes in Cookie Management
Cookie tolerance involves saving the cookies written by websites and making them
available when fetching successive pages from the same website. Cookie
management should happen automatically if you are using the LIB_http
library and have the COOKIE_FILE pointing to a file your webbots can access.

One area of concern is that the LIB_http library (and PHP/CURL, for
that matter) will not delete expired cookies or cookies without an expiration
date, which are supposed to expire when the browser is closed. In these
cases, it’s important to manually delete cookies in order to simulate new
browser sessions. If you don’t delete expired cookies, it will eventually look
like you’re using a browser that has been open continuously for months or
even years, which can look pretty suspicious.

Adapting to Network Outages and Network Congestion
Unless you plan accordingly, your webbots and spiders will hang, or become
nonresponsive, when a targeted website suffers from a network outage or an
unusually high volume of network traffic. Webbots become nonresponsive
when they request and wait for a page that they never receive. While there’s
nothing you can do about getting data from nonresponsive target websites,
there’s also no reason your webbot needs to be hung up when it encounters one.
You can avoid this problem by inserting the command shown in Listing 28-10
when configuring your PHP/CURL sessions.

curl_setopt($curl_session, CURLOPT_TIMEOUT, $timeout_value);

Listing 28-10: Setting time-out values in PHP/CURL

CURLOPT_TIME defines the number of seconds PHP/CURL waits for a targeted
website to respond. This happens automatically if you use the LIB_http library
featured in this book. By default, page requests made by LIB_http wait a maxi-
mum of 25 seconds for any target website to respond. If there’s no response
within the allotted time, the PHP/CURL session returns an empty result.

While on the subject of time-outs, it’s important to recognize that PHP, by
default, will time-out if a script executes longer than 30 seconds. In normal use,
PHP’s time-out ensures that if a script takes too long to execute, the webserver
will return a server error to the browser. The browser, in turn, informs the user
that a process has timed-out. The default time-out works great for serving web
pages, but when you use PHP to build webbot or spider scripts, PHP must
294 Chapter 28

webbots2e.book Page 295 Thursday, February 16, 2012 11:59 AM
facilitate longer execution times. You can extend (or eliminate) the default
PHP script-execution time with the commands shown in Listing 28-11.

You should exercise extreme caution when eliminating PHP’s time-out,
as shown in the second example in Listing 28-11. If you eliminate the time-
out, your script may hang permanently if it encounters a problem.

set_time_limit(60); // Set PHP time-out to 60 seconds
set_time_limit(0); // Completely remove PHP script time-out

Listing 28-11: Adjusting the default PHP script time-out

Always try to avoid time-outs by designing webbots that execute quickly,
even if that means your webbot needs to run more than once to accomplish a
task. For example, if a webbot needs to download and parse 50 web pages, it’s
usually best to write the bot in such a way that it can process pages one at a
time and know where it left off; then you can schedule the webbot to execute
every minute or so for an hour. Webbot scripts that execute quickly are easier
to test, resemble normal network traffic more closely, and use fewer system
resources.

Error Handlers

When a webbot cannot adjust to changes, the only safe thing to do is to stop it.
Not stopping your webbot may otherwise result in odd performance and
suspicious entries in the target server’s access and error log files. It’s a good
idea to write a routine that handles all errors in a prescribed manner. Such
an error handler should send you an email that indicates the following:

 Which webbot failed
 Why it failed
 The date and time it failed

A simple script like the one in Listing 28-12 works well for this purpose.

function webbot_error_handler($failure_mode)
 {
 # Initialization
 $email_address = "your.account@someserver.com";
 $email_subject = "Webbot Failure Notification";

 # Build the failure message
 $email_message = "Webbot T-Rex encountered a fatal error
";
 $email_message = $email_message . $failure_more . "
";
 $email_message = $email_message . "at".date("r") . "
";

 # Send the failure message via email
 mail($email_address, $email_subject, $email_message);
 # Don't return, force the webbot script to stop
 exit;
 }

Listing 28-12: Simple error-reporting script
Writ ing Faul t -Tolerant Webbots 295

webbots2e.book Page 296 Thursday, February 16, 2012 11:59 AM
The trick to effectively using error handlers is to anticipate cases in which
things may go wrong and then test for those conditions. For example, the
script in Listing 28-13 checks the size of a downloaded web page and calls
the function in the previous listing if the web page is smaller than expected.

Download web page
$target = "http://www.somedomain.com/somepage.html";
$downloaded_page = http_get($target, $ref="");
$web_page_size = strlen($downloaded_page['FILE']);
if($web_page_size < 1500)
 webbot_error_handler($target." smaller than expected, actual size=".$web_page_size);

Listing 28-13: Anticipating and reporting errors

In addition to reporting the error, it’s important to turn off the scheduler
when an error is found if the webbot is scheduled to run again in the future.
Otherwise, your webbot will keep bumping up against the same problem, which
may leave odd records in server logs. The easiest way to disable a scheduler is to
write error handlers that record the webbot’s status in a database. Before a
scheduled webbot runs, it can first query the database to determine if an
unaddressed error occurred earlier. If the query reveals that an error has
occurred, the webbot can ignore the requests of the scheduler and simply
terminate its execution until the problem is addressed.

Further Exploration

My experience is that most targeted websites change only occasionally, and
some websites never appear to change. In fact, some of the webbots I’ve devel-
oped have run continuously for years without a single failure due to changes
at the target website. Regardless of how often your targeted websites change,
resist the temptation to get lazy. Always explore methods for making your web-
bots tolerant of changes at the target. Or at the very least, ensure that your
webbot can detect when changes at the target render it nonfunctional.
296 Chapter 28

webbots2e.book Page 297 Thursday, February 16, 2012 11:59 AM
D E S I G N I N G W E B B O T - F R I E N D L Y
W E B S I T E S

I’ll start this chapter with suggestions
that help make web pages accessible to

the most widely used webbots—the spiders
that download, analyze, and rank web pages

for search engines, a process often called search engine
optimization (SEO).

Finally, I’ll conclude the chapter by explaining the occasional importance
of special-purpose web pages, formatted to send data directly to webbots
instead of browsers.

Optimizing Web Pages for Search Engine Spiders

The most important thing to remember when designing a web page for SEO
is that spiders rely on you, the developer, to provide context for the informa-
tion they find. This is important because web pages using HTML mix content
with display format commands. To add complexity to the spider’s task, a spider
has to examine words in the web page’s content to determine how relevant
the words are to the web page’s main topic. You can improve a spider’s ability

webbots2e.book Page 298 Thursday, February 16, 2012 11:59 AM
to index and rank your web pages, as well as improve your search ranking by
predictably using a few standard HTML tags. The topic of SEO is vast and
many books are entirely dedicated to it. This chapter only scratches the
surface, but it should get you on your way.

Well-Defined Links
Search engines generally associate the number of links to a web page with
the web page’s popularity and importance. In fact, getting other websites to
link to your web page is probably the best way to improve your web page’s
search ranking. Regardless of where the links originate, it’s always important
to use descriptive hyper-references when making links. Without descriptive
links, search engine spiders will know the linked URL, but they won’t know
the importance of the link. For example, the first link in Listing 29-1 is much
more useful to search spiders than the second link.

<!— Example of a descriptive link -->
JavaScript Animation Tutorial

<!— Example of a nondescriptive link -->
Click here for a JavaScript tutorial

Listing 29-1: Descriptive and nondescriptive links

Google Bombs and Spam Indexing
Google bombing is an example of how search rankings were affected by the
terms used to describe links. Google bombing (also known as spam indexing) was
a technique where people conspired to create many links, with identical link
descriptions, to a specific web page. As Google (or any other search engine)
indexed these web pages, the link descriptions became associated with the
targeted web page. As a result, when people entered the link descriptions as
search terms, the targeted pages were highly ranked in the results. Google
bombing was occasionally used for political purposes to place a targeted pol-
itician’s website as the highest ranked result for a derogatory search term.
For example, depending on the search engine used, a search for the phrase
miserable failure may have returned the official biography of George W. Bush
as the top result. Similarly, a search for the word waffles may have produced
the official web page of Senator John Kerry. While Google accounts for a few
well-known instances of this gamesmanship, Google bombing is still possible,
and it remains an unresolved challenge for all search engines.

Title Tags
The HTML title tag helps spiders identify the main topic of a web page. Each
web page should have a unique title that describes the general purpose of the
page, as shown in Listing 29-2.

<title>Official Website: Webbots, Spiders, and Screen Scrapers</title>

Listing 29-2: Describing a web page with a title tag
298 Chapter 29

webbots2e.book Page 299 Thursday, February 16, 2012 11:59 AM
Meta Tags

You can think of meta tags as extensions of the title tag. Like title tags, meta
tags explain the main topic of the web page. However, unlike title tags, they
allow for detailed descriptions of the content on the web page and the search
terms people may use to find the page. For example, Listing 29-3 shows meta
tags that may accompany the title tag used in the previous example.

<!- The meta:author defines the author of the web page -->
<meta name="Author" content="Michael Schrenk">

<!— The meta:description is how search engines describe the page in search results-->
<meta name="Description" content="Official Website: Webbots, Spiders, and Screen Scrapers">

<!— The meta:keywords are a list of search terms that may lead people to your web page-->
<meta name="Keywords" content="Webbot, Spider, Webbot Development, Spider Development">

Listing 29-3: Describing a web page in detail with meta tags

There are many misconceptions about meta tags. Many people insist on
using every conceivable keyword that may apply to a web page, using the more,
the better theory. In reality, you should limit your selection of keywords to the
six or eight keywords that best describe the content of your web page. It’s
important to remember that the keywords represent potential search terms
that people may use to find your web page. Moreover, for each additional key-
word you use, your web page becomes less specific in the eyes of search engines.
As you increase the number of keywords, you also increase the competition
for use of those keywords. When this happens, other pages containing the
same keywords dilute your position within search rankings. There are also
rumors that some search engines ignore web pages that have excessive num-
bers of keywords as a measure to avoid keyword spamming, or the overuse of
keywords. Whether these rumors are true or not, it still makes sense to use
fewer, but better quality, keywords. For this reason, there is usually no need
to include regular plurals1 in keywords.

NOTE The more unique your keywords are, the higher your web page will rank in search results
when people use those keywords in web searches. Once thing to watch out for is when your
keyword is part of another, longer word. For example, I once worked for a company
called Entolo. We had difficulty getting decent rankings on search engines because the
word Entolo is a subset of the word Scientology (sciENTOLOgy). Since there were
many more heavily linked web pages dedicated to Scientology, our website seldom registered
highly with any search services.

Header Tags
In addition to making web pages easier to read, header tags help search
engines identify and locate important content on web pages. For example,
consider the example in Listing 29-4.

1 A regular plural is the singular form of a word followed by the letter s.
Designing Webbot -F r iendly Websi tes 299

webbots2e.book Page 300 Thursday, February 16, 2012 11:59 AM
<h1 class="main_header">North American Wire Packaging</h1>
In North America, large amounts of wire are commonly shipped on spools...

Listing 29-4: Using header tags to identify key content on a web page

In the past, web designers strayed from using header tags because they
only offer a small availability of font selections. But now, with the wide
acceptance of style sheets, there is no reason not to use HTML header tags
to describe important sections of your web pages.

Image alt Attributes

Long ago, before everyone had graphical browsers, web designers used the
alt attribute of the HTML tag to describe images to people with text-
based browsers. Today, with the increasing popularity of image search tools,
the alt attribute helps search engines interpret the content of images, as
shown below in Listing 29-5.

Listing 29-5: Using the alt attribute to identify the content of an image

Web Design Techniques That Hinder Search Engine Spiders

There are common web design techniques that inhibit search engine spiders
from properly indexing web pages. You don’t have to avoid using these tech-
niques altogether, but you should avoid using them in situations where they
obscure links and ASCII text from search engine spiders. There is no single
set of standards or specifications for SEO. Search engine companies also
capriciously change their techniques for compiling search results. The
concepts mentioned here, however, are a good set of suggestions for you
to consider as you develop your own best practice policies.

JavaScript

Since most webbots and spiders lack JavaScript interpreters, there is no guaran-
tee that a spider will understand hyper-references made with JavaScript. For
example, the second hyper-reference in Listing 29-6 stands a far better chance
of being indexed by a spider than the first one.

<-- Example of a non-optimized hyper-reference -->
<script>
 function linkToPage(url)
 {
 document.location=url;
 }
</script>
300 Chapter 29

webbots2e.book Page 301 Thursday, February 16, 2012 11:59 AM
<-- Example of an easy-to-index hyper-reference -->
My home page

Listing 29-6: JavaScript links are hard for search spiders to interpret.

Non-ASCII Content
Search engine spiders depend on ASCII characters to identify what’s on a web
page. For that reason, you should avoid presenting text in images or Flash
movies. It is particularly important not to design your website’s navigation
scheme in Flash, because it will not be visible outside of the Flash movie, and
it will be completely hidden from search pages. Not only will your Flash pages
fail to show up in search results, but other pages will also not be able to deep
link directly to the pages within Flash movies. In short, websites done entirely
in Flash kill any and all attempts at SEO and will receive less traffic than
properly formatted HTML websites.

Designing Data-Only Interfaces

Often, the express purpose of a web page is to deliver data to a webbot,
another website, or a stand-alone desktop application. These web pages
aren’t concerned about how people will read them in a browser. Rather,
they are optimized for efficiency and ease of use by other computer programs.
For example, you might need to design a web page that provides real-time
sales information from an e-commerce site.

XML
Today, the eXtensible Markup Language (XML) is considered the de facto
standard for transferring online data. XML describes data by wrapping it
in HTML-like tags. For example, consider the sample sales data from an
e-commerce site, shown in Table 29-1.

When converted to XML, the data in Table 29-1 looks like Listing 29-7.

<ORDER>
 <SHIRT>
 <BRAND>Gordon LLC</BRAND>
 <STYLE>Cotton T</STYLE >
 <COLOR>Red</COLOR>
 <SIZE>XXL</SIZE>
 <PRICE>19.95</PRICE>
 </SHIRT>

Table 29-1: Sample Sales Information

Brand Style Color Size Price

Gordon LLC Cotton T Red XXL 19.95

Ava St Girlie T Blue S 19.95
Designing Webbot -F r iendly Websi tes 301

webbots2e.book Page 302 Thursday, February 16, 2012 11:59 AM
 <SHIRT>
 <BRAND>Ava St</BRAND>
 <STYLE>Girlie T</STYLE >
 <COLOR>Blue</COLOR>
 <SIZE>S</SIZE>
 <PRICE>19.95</PRICE>
 </SHIRT>
</ORDER>

Listing 29-7: An XML version of the data in Table 29-1

XML presents data in a format that is not only easy to parse, but, in some
applications, it may also tell the client computer what to do with the data.
The actual tags used to describe the data are not terribly important, as long
as the XML server and client agree to their meaning. The script in Listing 29-8
downloads and parses the XML represented in the previous listing.

Include libraries
include("LIB_http.php");
include("LIB_parse.php");

Download the order
$url = "http://www.WebbotsSpidersScreenScrapers.com/29_7.php";
$download = http_get($url, "");

Parse the orders
$order_array = return_between($download ['FILE'], "<ORDER>", "</ORDER>", $type=EXCL);

Parse shirts from order array
$shirts = parse_array($order_array, $open_tag="<SHIRT>", $close_tag="</SHIRT>");
for($xx=0; $xx<count($shirts); $xx++)
 {
 $brand[$xx] = return_between($shirts[$xx], "<BRAND>", "</BRAND>", $type=EXCL);
 $color[$xx] = return_between($shirts[$xx], "<COLOR>", "</COLOR>", $type=EXCL);
 $size[$xx] = return_between($shirts[$xx], "<SIZE>", "</SIZE>", $type=EXCL);
 $price[$xx] = return_between($shirts[$xx], "<PRICE>", "</PRICE>", $type=EXCL);
 }

Echo data to validate the download and parse
for($xx=0; $xx<count($color); $xx++)
 echo "BRAND=".$brand[$xx]."

 COLOR=".$color[$xx]."

 SIZE=".$size[$xx]."

 PRICE=".$price[$xx]."<hr>";

Listing 29-8: A script that parses XML data

Lightweight Data Exchange

As useful as XML is, it suffers from overhead because it delivers much more
protocol than data. While this isn’t important with small amounts of XML,
the problem of overhead grows along with the size of the XML file. For exam-
ple, it may take a 30KB XML file to present 10KB of data. Excess overhead
302 Chapter 29

webbots2e.book Page 303 Thursday, February 16, 2012 11:59 AM
needlessly consumes bandwidth and CPU cycles, and it can become expensive
on extremely popular websites. In order to reduce overhead, you may consider
designing lightweight interfaces. Lightweight interfaces deliver data more
efficiently by presenting data in variables or arrays that can be used directly
by the webbot. Granted, this is only possible when you define both the web
page delivering the data and the client interpreting the data.

How Not to Design a Lightweight Interface

Before we explore proper methods for passing data to webbots, let’s explore
what can happen if your design doesn’t take the proper security measures.
For example, consider the order data from Table 29-1, reformatted as variable/
value pairs, as shown in Listing 29-9.

$brand[0]="Gordon LLC";
$style[0]="Cotton T";
$color[0]="red";
$size[0]="XXL";
$price[0]=19.95;
$brand[1]="Ava LLC";
$style[0]="Girlie T";
$color[1]="blue";
$size[1]="S";
$price[1]=19.95;

Listing 29-9: Data sample available at http://www.WebbotsSpidersScreenScrapers.com/
29_9.php

The webbot receiving this data could convert this string directly into
variables with PHP’s eval() function, as shown in Listing 29-10.

Include libraries
include("LIB_http.php");
$url = "http://www.WebbotsSpidersScreenScrapers.com/29_9.php";
$download = http_get($url, "");
Convert string received into variables
eval($download['FILE']);

Show imported variables and values
for($xx=0; $xx<count($color); $xx++)
 echo "BRAND=".$brand[$xx]."

 COLOR=".$color[$xx]."

 SIZE=".$size[$xx]."

 PRICE=".$price[$xx]."<hr>";

Listing 29-10: Incorrectly interpreting variable/value pairs

While this seems very efficient, there is a severe security problem associated
with this technique. The eval() function, which interprets the variable settings
in Listing 29-10, is also capable of interpreting any PHP command. This opens
the door for malicious code that can run directly on your webbot!
Designing Webbot -F r iendly Websi tes 303

webbots2e.book Page 304 Thursday, February 16, 2012 11:59 AM
A Safer Method of Passing Variables to Webbots

An improvement on the previous example would verify that only data variables
are interpreted by the webbot. We can accomplish this by slightly modifying
the variable/value pairs sent to the webbot (shown in Listing 29-11) and adjust-
ing how the webbot processes the data (shown in Listing 29-12). Listing 29-11
shows a new lightweight test interface that will deliver information directly in
variables for use by a webbot.

brand[0]="Gordon LLC";
style[0]="Cotton T";
color[0]="red";
size[0]="XXL";
price[0]=19.95;
brand[1]="Ava LLC";
style[0]="Girlie T";
color[1]="blue";
size[1]="S";
price[1]=19.95;

Listing 29-11: Data sample used by the script in Listing 29-12

The script in Listing 29-12 shows how the lightweight interface in
Listing 29-11 is interpreted.

Get http library
include("LIB_http.php");

Define and download lightweight test interface
$url = "http://www.WebbotsSpidersScreenScrapers.com/29_11.php";
$download = http_get($url, "");

Convert the received lines into array elements
$raw_vars_array = explode(";", $download['FILE']);

Convert each of the array elements into a variable declaration
for($xx=0; $xx<count($raw_vars_array)-1; $xx++)

 {
 list($variable, $value)=explode("=", $raw_vars_array[$xx]);
 $eval_string="$".trim($variable)."="."\"".trim($value)."\"".";";
 eval($eval_string);
 }

Echo imported variables
for($xx=0; $xx<count($color); $xx++)

 {
 echo "BRAND=".$brand[$xx]."

 COLOR=".$color[$xx]."

 SIZE=".$size[$xx]."

 PRICE=".$price[$xx]."<hr>";

 }

Listing 29-12: A safe method for directly transferring values from a website to a webbot
304 Chapter 29

webbots2e.book Page 305 Thursday, February 16, 2012 11:59 AM
The technique shown in Figure 29-12 safely imports the variable/data
pairs from Listing 29-11 because the eval() command is explicitly directed to
only set a variable to a value and not to execute arbitrary code.

This lightweight interface actually has another advantage over XML, in
that the data does not have to appear in any particular order. For example,
if you rearranged the data in Listing 29-11, the webbot would still interpret it
correctly. The same could not be said for the XML data. And while the protocol
is slightly less platform independent than XML, most computer programs are
still capable of interpreting the data, as done in the example PHP script in
Listing 29-12.

SOAP
No discussion of machine-readable interfaces is complete without mention-
ing the Simple Object Access Protocol (SOAP). SOAP is designed to pass
instructions and data between specific types of web pages (known as web
services) and scripts run by webbots, webservers, or desktop applications.
SOAP is the successor of earlier protocols that make remote application calls,
like Remote Procedure Call (RPC), Distributed Component Object Model
(DCOM), and Common Object Request Broker Architecture (CORBA).

SOAP is a web protocol that uses HTTP and XML as the primary proto-
cols for passing data between computers. In addition, SOAP also provides a
layer (or two) of abstraction between the functions that make the request
and receive the data. In contrast to XML, where the client needs to make a
fetch and parse the results, SOAP facilitates functions that (appear to) directly
execute functions on remote services, which return data in easy-to-use variables.
An example of a SOAP call is shown in Listing 29-13.

In typical SOAP calls, the SOAP interface and client are created and the
parameters describing requested web services are passed in an array. With
SOAP, using a web service is much like calling a local function.

If you’d like to experiment with SOAP, consider creating a free account
at Amazon Web Services. Amazon provides SOAP interfaces that allow you to
access large volumes of data at both Amazon and Alexa, a web-monitoring
service (http://www.alexa.com). Along with Amazon Web Services, you should
also review the PHP-specific Amazon SOAP tutorial at Dev Shed, a PHP
developers’ site (http://www.devshed.com).

PHP 5 has built-in support for SOAP. If you’re using PHP 4, however, you
will need to use the appropriate PHP Extension and Application Repository
(PEAR, http://www.pear.php.net) libraries, included in most PHP distributions.
The PHP 5 SOAP client is faster than the PEAR libraries, because SOAP
support in PHP 5 is compiled into the language; otherwise both versions
are identical.

include("inc/PEAR/SOAP"); // Import SOAP client

Define the request
$params = array(
 'manufacturer' => "XYZ CORP",
 'mode' => 'development',
Designing Webbot -F r iendly Websi tes 305

webbots2e.book Page 306 Thursday, February 16, 2012 11:59 AM
 'sort' => '+product',
 'type' => 'heavy',
 'userkey' => $ACCESS_KEY
)

Create the SOAP object
$WSDL = new SOAP_WSDL($ADDRESS_OF_SOAP_INTERFACE);

Instantiate the SOAP client
$client = $WSDL->getProxy();

Make the request
$result_array = $client->SomeGenericSOAPRequest($params);

Listing 29-13: A SOAP call

Advantages of SOAP

SOAP interfaces to web services provide a common protocol for requesting
and receiving data. This means that web services running on one operating
system can communicate with a variety of computers, tablets, or cell phones
using any operating system, as long as they have a SOAP client.

Disadvantages of SOAP

SOAP is a very heavy interface. Unlike the interfaces explored earlier, SOAP
requires many layers of protocols. In traffic-heavy applications, all this overhead
can result in sluggish performance. SOAP applications can also suffer from a
steep learning curve, especially for developers accustomed to lighter data inter-
faces. That being said, SOAP and web services are the standard for exchanging
online data, and SOAP instructions are something all webbot developers
should know how to use. The best way to learn SOAP is to use it. In that
respect, if you’d like to explore SOAP further, you should read the previously
mentioned Dev Shed tutorial on using PHP to access the Amazon SOAP inter-
face. This will provide a gradual introduction that should make complex
interfaces (like eBay’s SOAP API) easier to understand.

REST

An interface that has been gaining popularity lately is Representational State
Transfer (REST). While books (and even doctoral papers) have described the
protocol, REST is essentially just a form submission to the appropriate URI.
Sometimes APIs that use REST are called RESTful.

REST gets its name from the fact that the client—or in our case a webbot—
is at rest for most of the time and requests information from a RESTful server
only on an as-needed basis. This configuration is designed to minimize the
traffic load on the server. In reality, this is how nearly every system works,
whether referred to as RESTful or not.

The format of REST request is dictated by the resource you’re using,
so it’s important to know the format of the REST request before you write a
REST interface. For our example, let’s assume that we have access to an API
306 Chapter 29

webbots2e.book Page 307 Thursday, February 16, 2012 11:59 AM
that returns registration, accident, and other history information about cars,
based on the VIN that is provided. The REST request might look something
like Listing 29-14.

http://www.someurl.com/vin_reports?VIN=JH4KB2F56BC000000&dealerCode=324

Listing 29-14: Sample REST request

As you can see in Listing 29-14, the REST request is basically a GET method
form submission. In most cases, the data is returned as an XML document,
but that’s not always the case. Depending on the need, data could be returned
as images, PDF documents, spreadsheets, or any other MIME type.

There are two downsides to the REST request in Listing 29-14:

 The most obvious problem is that the request is sent in cleartext. If pri-
vacy is a concern, the host server could be configured to require that the
REST request is sent to an SSL-encrypted web page that accepts POST
method requests.

 While not an issue for the REST request in Listing 29-14, GET method
form submissions are limited by the maximum number of characters that
the host server will accept. POST method submission, however, has no
(practical) limit to the number of characters in the request.

Final Thoughts

I predict that as more unconventional devices are integrated with the Inter-
net, it will become increasingly important for websites to be easily accessible to
non-human viewers. Here are a few topics to fire your imagination in this area:

 Can you create a protocol that’s better than XML for transmitting infor-
mation to webbots?

 Is it possible to specify a communication protocol that works in all cases?

 Is it more important for a server to adapt to a web client’s abilities or for
a web client to adapt to the information coming from a server?

 Ideally, how should a webbot interact with a botnet server, as discussed
in Chapter 25?

 What is the role of data security? Is there room for compromise in
this area?
Designing Webbot -F r iendly Websi tes 307

webbots2e.book Page 308 Thursday, February 16, 2012 11:59 AM

webbots2e.book Page 309 Thursday, February 16, 2012 11:59 AM
K I L L I N G S P I D E R S

Thus far, we have talked about how to create
effective, stealthy, and smart webbots. How-

ever, there is also a market for developers who
create countermeasures that defend websites from

webbots and spiders. These opportunities exist because
sometimes website owners want to shield their sites from
webbots and spiders for these purposes:

 Protect intellectual property

 Shield email addresses from spammers

 Regulate how often the website is used

 Prevent the archival of online media

 Create a level playing field for all users

The first four items in this list are fairly obvious, but the fifth is more
complicated. Believe it or not, creating a level playing field is one of the main
reasons web developers cite for attempting to ban webbots from their sites.

webbots2e.book Page 310 Thursday, February 16, 2012 11:59 AM
Online companies often try to be as impartial as possible when wholesaling
items to resellers or awarding contracts to vendors. At other times, websites
deny access to all webbots to create an assumption of fairness or parity, as is
the case with eBay. This is where the conflict exists. Businesses that seek to
use the Internet to gain competitive advantages are not interested in parity.
They want a strategic advantage.

Successfully defending websites from webbots is more complex than
simply blocking all webbot activity. Many webbots, like those used by search
engines, are beneficial, and in most cases they should be able to roam sites at
will. It’s also worth pointing out that, while it’s more expensive, people with
browsers can gather corporate intelligence and make online purchases just
as effectively as webbots can. Rather than barring webbots in general, it’s
usually preferable to just ban certain behavior.

Let’s look at some of the things people do to attempt to block webbots
and spiders. We’ll start with the simplest (and least effective) methods and
graduate to more sophisticated practices.

Asking Nicely

Your first approach to defending a website from webbots is to request nicely
that webbots and spiders do not use your resources. This is your first line
of defense, but if used alone, it is not very effective. This method doesn’t
actually keep webbots from accessing data—it merely states your desire for
such—and it may or may not express the actual rights of the website owner.
Though this strategy is limited in its effectiveness, you should always ask first,
using one of the methods described below.

Create a Terms of Service Agreement

The simplest way to ask webbots to avoid your website is to create a site
policy or Terms of Service agreement, which is a list of limitations on how the
website should be used by all parties. A website’s Terms of Service agreement
typically includes a description of what the website does with data it collects,
a declaration of limits of liability, copyright notifications, and so forth. If you
don’t want webbots and spiders harvesting information or services from your
website, your Terms of Service agreement should prohibit the use of auto-
mated web agents, spiders, crawlers, and screen scapers. It is a good idea to
provide a link to the usage policy on every page of your website. Though
some webbots will honor your request, others surely won’t, so you should
never rely solely on a usage policy to protect a website from automated agents.

Although an official usage policy probably won’t keep webbots and
spiders away, it is your opportunity to state your case. With a site policy that
specifically forbids the use of webbots, it’s easier to make a case if you later
decide to play hardball and file legal action against a webbot or spider owner.

You should also recognize that a written usage policy is for humans to
read, and it will not be understood by automated agents. There are, however,
other methods that convey your desires in ways that are easy for webbots to
detect.
310 Chapter 30

webbots2e.book Page 311 Thursday, February 16, 2012 11:59 AM
Use the robots.txt File
The robots.txt file,1 or robot exclusion file, was developed in 1994 after a group of
webmasters discovered that search engine spiders indexed sensitive parts of
their websites. In response, they developed the robots.txt file, which instructs
web agents to access only certain parts of a site. According to the robots.txt
specification, a webbots should first look for the presence of a file called
robots.txt in the website’s root directory before it downloads anything else
from the website. This file defines how the webbot should access files in
other directories.2

The robots.txt file borrows its Unix-type format from permissions files. A
typical robots.txt file is shown in Figure 30-1.

Figure 30-1: A typical robots.txt file, disallowing all user agents from selected
directories

In addition to what you see in Figure 30-1, a robots.txt file may disallow
different directories for specific web agents. Some robots.txt files even specify
the amount of time that webbots must wait between fetches, though these
parameters are not part of the actual specification. Make sure to read the
pseudo-specification3 before implementing a robots.txt file.

As implied by my “pseudo-specification” remark, there are many prob-
lems with robots.txt. The first problem is that no recognized body, such as
the World Wide Web Consortium (W3C) or even a corporation, governs the
specification. The robots exclusion file is actually the result of a “consensus
of opinion” of members of a now-defunct robots mailing list. The lack of a
recognized organizing body has left the specification woefully out of date.
For example, the specification did not anticipate agent name spoofing, so
unless a robots.txt file disallows all webbots, any webbot can comply with the
imposed restrictions by changing its name. In fact, a robots.txt file may actually
direct a webbot to sensitive areas of a website or otherwise hidden directories.
A much better tactic is to secure your confidential information through
authentication or even obfuscation. Perhaps the most serious problem with
the robots.txt specification is that there is no enforcement mechanism. Com-
pliance is strictly voluntary.

1 The filename robots.txt is case sensitive. It must always be lowercase.
2 Each website should have only one robots.txt file.
3 The robots.txt specification is available at http://www.robotstxt.org.
Ki l l ing Spiders 311

webbots2e.book Page 312 Thursday, February 16, 2012 11:59 AM
However futile the attempt, you should still use the robots.txt file if for no
other reason than to mark your turf. If you are serious about securing your site
from webbots and spiders, however, you should use the the tactics described
later in this chapter.

Use the Robots Meta Tag

Like the robots.txt file, the intent of the robots meta tag4 is to warn spiders to
stay clear of your website. Unfortunately, this tactic suffers from many of the
same limitations as the robots.tx file, because it also lacks an enforcement
mechanism. A typical robots meta tag is shown in Listing 30-1.

<head>
 <meta name="robots" content="noindex, nofollow">
</head>

Listing 30-1: The robots meta tag

There are two main commands for this meta tag: noindex and nofollow. The
first command tells spiders not to index the web page in search results. The
second command tells spiders not to follow links from this web page to
other pages. Conversely, index and follow commands are also available, and
they achieve the opposite effect. These commands may be used together or
independently.

The problem with site usage policies, robots.txt files, and meta tags is that
the webbots visiting your site must voluntarily honor your requests. On a good
day, this might happen. On its own, a Terms of Service policy, a robots.txt file,
or a robots meta tag is something short of a social contract, because a contract
requires at least two willing parties. There is no enforcing agency to contact
when someone doesn’t honor your requests. If you want to deter webbots and
spiders, you should start by asking nicely and then move on to the tougher
approaches described next.

Building Speed Bumps

Better methods of deterring webbots are ones that make it difficult for a webbot
to operate on a website. Just remember, however, that a determined webbot
designer may overcome these obstacles.

Selectively Allow Access to Specific Web Agents

Some developers may be tempted to detect their visitors’ web agent names and
only serve pages to specific browsers like Internet Explorer or Firefox. This is
largely ineffective because a webbot can pose as any web agent it chooses.5

4 The specification for the robots meta tag is available at http://www.robotstxt.org.
5 Read Chapter 3 if you are interested in browser spoofing.
312 Chapter 30

webbots2e.book Page 313 Thursday, February 16, 2012 11:59 AM
However, if you insist on implementing this strategy, make sure you use a
server-side method of detecting the agent, since you can’t trust a webbot to
interpret JavaScript.

Use Obfuscation
As you learned in Chapter 19, obfuscation is the practice of hiding something
through confusion. For example, you could use HTML special characters to
obfuscate an email link, as shown in Listing 30-2.

Please email me at:
<a href="mailto:me@<s></s>addr.com">
 me@addr <u></u>.com

Listing 30-2: Obfuscating the email address me@addr.com with HTML special characters

While the special characters are hard for a person to read, a browser has
no problem rendering them, as you can see in Figure 30-2.

You shouldn’t rely on obfuscation to protect data because once it is
discovered, it is usually easily defeated. For example, in the previous illus-
tration, the PHP function htmlspecialchars() can be used to convert the
codes into characters. There is no effective way to protect HTML through
obfuscation. Obfuscation will slow determined webbot developers, but it
is not apt to stop them, because obfuscation is not the same as encryption.
Sooner or later, a determined webbot designer is bound to decode any
obfuscated text.6

Figure 30-2: A browser rendering of the obfuscated script in Listing 30-2

Use Cookies, Encryption, JavaScript, and Redirection
Lesser webbots and spiders have trouble handling cookies, encryption, and
page redirection, so attempts to deter webbots by employing these methods
may be effective in some cases. While PHP/CURL resolves most of these issues,
webbots still stumble when interpreting cookies and page redirections written
in JavaScript, since most webbots lack JavaScript interpreters. Extensive use
of JavaScript can often effectively deter webbots, especially if JavaScript creates
links to other pages or if it is used to create HTML content. Most of these
issues, however, can be overcome using the browser macro techniques
discussed in Chapters 24 and 25.

6 To learn the difference between obfuscation and encryption, read Chapter 19.
Ki l l ing Spiders 313

webbots2e.book Page 314 Thursday, February 16, 2012 11:59 AM
Authenticate Users
Where possible, place all confidential information in password-protected areas.
This is your best defense against webbots and spiders. However, authentication
only affects people without login credentials; it does not prevent authorized
users from developing webbots and spiders to harvest information and use
services within password-protected areas of a website. You can learn about
writing webbots that access password-protected websites in Chapter 20.

Update Your Site Often
Possibly the single most effective way to confuse a webbot is to change your
site on a regular basis. A website that changes frequently is more difficult for
a webbot to parse than a static site. The challenge is to change the things that
foul up webbot behavior without making your site hard for people to use. For
example, you may choose to randomly take one of the following actions:

 Change the order of form elements.
 Change form methods.
 Rename files in your website.
 Alter text that may serve as convenient parsing reference points,

like form variables.

These techniques may be easy to implement if you’re using a high-
quality content management system (CMS). Without a CMS, though, it will
take a more deliberate effort. Some websites have become very good at this.
Craigslist, for example, constantly changes the names of forms and field ele-
ments. This doesn’t make the website impossible for a webbot to use, but
you will either need to employ smarter scripts that specifically track form
element names or use browser macros.

Embed Text in Other Media
Webbots and spiders rely on text represented by HTML codes, which are
nothing more than numbers capable of being matched, compared, or
manipulated with mathematical precision. However, if you place important
text inside images or other non-textual media like Flash, movies, or Java
applets, that text is hidden from automated agents. This is different from the
obfuscation method discussed earlier, because embedding relies on the
reasoning power of a human to react to his or her environment. For example,
it is now common for authentication forms to display text embedded in an
image and ask a user to type that text into a field before it allows access to a
secure page. While it’s possible for a webbot to process text within an image,
it is quite difficult. This is especially true when the text is varied and on a busy
background, as shown in Figure 30-3. This technique is called a Completely
Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA).7

7 Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA)
is a registered trademark of Carnegie Mellon University.
314 Chapter 30

http://en.wikipedia.org/wiki/Turing_test
http://en.wikipedia.org/wiki/Turing_test
http://en.wikipedia.org/wiki/Carnegie_Mellon_University

webbots2e.book Page 315 Thursday, February 16, 2012 11:59 AM
CAPTCHAs, like many online obstacles, are easily overcome with services like
the CAPTCHA-reading APIs found at http://decaptcher.com. These APIs employ
people who read the CAPTCHA image sent to them through the API.

Before embedding all your website’s text in images, however, you need
to recognize the downside. When you put text in images, beneficial spiders,
like those used by search engines, will not be able to index your web pages.
Placing text within images is also a very inefficient way to render text.

Figure 30-3: Text within an image is harder, but not impossible, for a webbot
to interpret.

Setting Traps

Your strongest defenses against webbots are techniques that detect webbot
behavior. Webbots behave differently because they are machines and don’t
have the reasoning ability of people. Therefore, a webbot will do things that
a person won’t do, and a webbot lacks information that a person either knows
or can figure out by examining his or her environment.

Create a Spider Trap
A spider trap is a technique that capitalizes on the behavior of a spider, forcing
it to identify itself without interfering with normal human use. The spider
trap in the following example exploits the spider behavior of indiscriminately
following every hyperlink on a web page. If some links are either invisible or
unavailable to people using browsers, you’ll know that any agent that follows
the link is a spider. For example, consider the hyperlinks in Listing 30-3.

<a>
<a>

Listing 30-3: Two spider traps

There are many ways to trap a spider. Some other techniques include
image maps with hot spots that don’t exist and hyperlinks located in invisible
frames without width or height attributes.
Ki l l ing Spiders 315

webbots2e.book Page 316 Thursday, February 16, 2012 11:59 AM
Fun Things to Do with Unwanted Spiders
Once unwanted guests are detected, you can treat them to a variety of services.

Identifying a spider is the first step in dealing with it. Moreover, with
browser-spoofing techniques, a spider trap becomes a necessity in determin-
ing which traffic is automated and which is human. What you do once you
detect a spider is up to you, but Table 30-1 should give you some ideas. Just
remember to act within commonsense legal guidelines and your own website
policies.

Final Thoughts

Before website owners decide to expend their resources on deterring webbots,
they should ask themselves a few questions.

 What can a webbot do with your website that a person armed with
a browser cannot do?

 Are your deterrents keeping desirable spiders (like search engines) from
accessing your web pages?

 Does an automated agent (that you want to thwart) pose an actual threat
to your website? Is it possible that it may even provide a benefit, as a pro-
curement bot might?

 If your website contains information that needs to be protected from
webbots, should that information really be online in the first place?

 If you put information in a public place, do you really have the right to
bar certain methods of reading it?

If you still insist on banning webbots from your website, keep in mind
that unless you deliberately develop measures like the ones near the end of
this chapter, you will probably have little luck in defending your site from
rogue webbots.

Table 30-1: Strategies for Responding When You Identify a Spider

Strategy Implementation

Banish Record the IP addresses of spiders that reach the spider trap and configure the
webserver to ignore future requests from these addresses.

Limit
access

Record the IP addresses of the spiders in the spider trap and limit the pages they
can access on their next visit.

Mislead Depending on the situation, you could redirect known (unwanted) spiders with an
alternate set of misleading web pages. As much as I love this tactic, you should
consult with an attorney before implementing this idea.

Analyze Analyze the IP address and find out where the spider comes from, who might own
it, and what it is up to. A good resource for identifying IP addresses registered in
the United States is http://www.arin.net. You could even create a special log that
tracks all activity from known hostile spiders. You can also use this technique to
learn whether or not a spider is part of a distributed attack.

Ignore The default option is to just ignore any automated activity on your website.
316 Chapter 30

webbots2e.book Page 317 Thursday, February 16, 2012 11:59 AM
K E E P I N G W E B B O T S
O U T O F T R O U B L E

By this point, you know how to access,
download, parse, and process nearly any

of the 386 million websites on the Internet.1
Knowing how to do something, however, does

not give you the right to do it. While I have cast warn-
ings throughout the book, I haven’t, until now, focused
on the consequences of designing webbots or spiders that act selfishly and
without regard to the rights of website owners or related infrastructure.2

Since many businesses rely on the performance of their websites to conduct
business, you should consider interfering with a corporate website equivalent
to interfering with a physical store or factory. When deploying a webbot or
spider, remember that someone else is paying for hosting, bandwidth, and
development for the websites you target. Writing webbots and spiders that
consume irresponsible amounts of bandwidth, guess passwords, or capriciously

1 This estimate of the number of websites on the Internet as of June 2011 comes from http://news
.netcraft.com/archives/2011/06/07/june-2011-web-server-survey.html.
2 If you interfere with the operation of one site, you may also affect other, non-targeted websites
if they are hosted on the same (virtual) server.

webbots2e.book Page 318 Thursday, February 16, 2012 11:59 AM
reuse intellectual property may well be a violation of someone’s rights and will
eventually land you in trouble. Back in the day—that is, before the populariza-
tion of the Internet—programmers had to win their stripes before they earned
the confidence of their peers and gained access to networks or sensitive infor-
mation. At that time, people who had access to data networks were less likely
to abuse them because they had an ownership stake in the security of data
and the performance of networks. One of the outcomes of the Internet’s free
access to information, open infrastructure, and apparent anonymous browsing
is that it is now easier than ever to act irresponsibly. A free Wi-Fi connection
to the Internet gives anyone and everyone access to (and the opportunity to
compromise) servers all over the world. With worldwide access to data centers
and the ability to download quick exploits, it’s easy for people without a tech-
nical background (or a vested interest in the integrity of the Internet) to
access confidential information or launch attacks that render services use-
less to others.

The last thing I want to do is pave a route for people to create havoc on
the Internet. The purpose of this book is to help Internet developers think
beyond the limitations of the browser and to develop webbots that do new
and useful things. Even after more than two decades of existence, webbot
development is still virgin territory, and there are still many new and creative
things to do with the skills you’ve learned in this book. You simply lack imagi-
nation if you can’t develop webbots that do interesting things without violating
someone’s rights.

Webbots (and their developers) generally get into trouble when they make
unauthorized use of copyrighted information or use an excessive amount of a
website’s infrastructure (bandwidth, servers, administration, etc.). This chapter
addresses both of these areas. We’ll also explore the requests webmasters
make to limit webbot use on their websites.

NOTE This chapter introduces warnings that all webbot, screen scraper, and spider writers
should understand and consider before embarking on projects. While I’m trying to help
you, please remember that I’m not dispensing legal advice, so don’t even think of blam-
ing me if you misbehave and are sued or find the FBI knocking at your door. This is my
attempt to identify a few (but not all) issues related to developing webbots and spiders.
Perhaps with this information, you will be able to at least ask an attorney intelligent
questions. To reiterate, I am not a lawyer, and this is not legal advice. My responsibility
is to tell you that, if misused, automated web agents can get you into deep trouble. In
turn, you’re obligated to take responsibility for your own actions and to consult an
attorney who is aware of local laws before doing anything that even remotely violates
the rights of someone else. I urge you to think before you act.

It’s All About Respect

Your career as a webbot developer will be short-lived if you don’t respect the
rights of those who own, maintain, and rely upon the web servers your webbots
and spiders target. Remember that websites are designed for people using
318 Chapter 31

http://www.EFF.org

webbots2e.book Page 319 Thursday, February 16, 2012 11:59 AM
browsers and that often a website’s profit model is dependent on those traf-
fic patterns. In a matter of seconds, a single webbot can create as much web
traffic as a thousand web surfers, without the benefit of generating commerce
or ad revenue, or extending a brand. It’s helpful to think of webbots as
“super browsers,” as webbots have increased abilities. But in order to walk
among mere browsers, webbots and spiders need to comply with the norms
and customs of the rest of the web agents on the Internet.

In Chapter 30 you read about website polices, robots.txt files, robots
meta tags, and other tools server administrators use to regulate webbots and
spiders. It’s important to remember, however, that obeying a webmaster’s
webbot restrictions does not absolve webbot developers from responsibility.
For example, even if a webbot doesn’t find any restrictions in the website’s
Terms of Service agreement, robots.txt file, or meta tags, the webbot developer
still doesn’t have permission to violate the website’s intellectual property
rights or use inordinate amounts of the webserver’s bandwidth.

Copyright

One way to keep your webbots out of trouble is to obey copyright, the set of
laws that protect intellectual property owners. Copyright allows people and
organizations to claim the exclusive right to use specific text, images, media,
and control the manner in which they are published. All webbot developers
need an awareness of copyright. Ignoring copyright can result in banish-
ment from websites and even lawsuits.

Do Consult Resources

Before you venture off on your own (or assume that what you’re reading
here applies to your situation), you should check out a few other resources.
For basic copyright information, start with the website of the United States
Copyright Office, http://www.copyright.gov. Another resource, which you
might find more readable, is http://www.bitlaw.com/copyright, maintained by
Daniel A. Tysver of Beck & Tysver, a firm specializing in intellectual property
law. Of course, these websites only apply to US laws. If you’re outside the
United States, you’ll need to consult other resources.

Don’t Be an Armchair Lawyer

Mitigating factors and varying interpretations affect copyright law enforcement.
There seems to be an exception to every rule. If you have specific questions
about copyright law, the smartest thing to do is to consult an attorney. Since
the Internet is relatively new, intellectual property law—as it applies to the
Internet—is somewhat fluid and open to interpretation. Ultimately, courts
interpret the law. While it is not within the scope of this book to cover
copyright in its entirety, the following sections identify common copyright
issues that webbot developers may find interesting.
Keeping Webbots out o f Trouble 319

http://www.bitlaw.com/bnt/index.html
http://www.bitlaw.com/bnt/index.html

webbots2e.book Page 320 Thursday, February 16, 2012 11:59 AM
Copyrights Do Not Have to Be Registered

In the United States, you do not have to officially register a copyright with the
Copyright Office to have the protection of copyright laws. The US Copyright
office states that copyrights are granted automatically, as soon as an original
work is created. As the Copyright Office describes on its website:

Copyright is secured automatically when the work is created, and a
work is “created” when it is fixed in a copy or phonorecord for the
first time. “Copies” are material objects from which a work can be
read or visually perceived either directly or with the aid of a machine
or device, such as books, manuscripts, sheet music, film, videotape, or
microfilm. “Phonorecords” are material objects embodying fixa-
tions of sounds (excluding, by statutory definition, motion picture
soundtracks), such as cassette tapes, CDs, or LPs. Thus, for exam-
ple, a song (the “work”) can be fixed in sheet music (“copies”) or in
phonograph disks (“phonorecords”), or both. If a work is prepared
over a period of time, the part of the work that is fixed on a partic-
ular date constitutes the created work as of that date.3

Notice that online content isn’t specifically mentioned in the above para-
graph, while there are specific references to original works “fixed in copy”
through books, sheet music, videotape, CDs, and LPs. While there is no
specific mention of websites, one may assume that references to works that
may be “perceived either directly or through the aid of a machine or device”
also covers content on webservers. It is interesting to note that the quoted
text has not changed since I originally referenced it in 2007 for the first edi-
tion of this book. There are still no direct references to online content. The
important thing for webbot developers to remember is that it is dangerous to
assume that something is free to use if it is not expressly copyrighted.

If you don’t need to register a copyright, why do people still do it?
People file for specific copyrights to strengthen their ability to defend their
rights in court. If you are interested in registering a copyright for a website,
the US Copyright Office has a special publication for you.4

Assume “All Rights Reserved”

If you hold (or claim to hold) a copyright, you don’t need to explicitly add
the phrase all rights reserved to the copyright notice. For example, if a movie
script does not indicate that all rights are reserved, you are not free to assume
that you can legally produce an online cartoon based on the movie. Similarly,
if a web page doesn’t explicitly state that the site owner reserves all rights,
don’t assume that a webbot can legally use the site’s images in an unrelated
project. The habit of stating all rights reserved in a copyright notice stems from
old intellectual property treaties that required it. If a work is unmarked,
assume that all rights are reserved.

3 US Copyright Office, “Copyright Office Basics (Circular 1),” July 2008 (http://www.copyright
.gov/circs/circ1.pdf).
4 US Copyright Office, “Copyright Registration for Online Works (Circular 66),” July 2009
(http://www.copyright.gov/circs/circ66.pdf).
320 Chapter 31

webbots2e.book Page 321 Thursday, February 16, 2012 11:59 AM
You Cannot Copyright a Fact

The US Copyright Office website explains that copyright protects the way one
expresses oneself and that no one has exclusive rights to facts, as stated below:

Copyright protects the particular way an author has expressed
himself; it does not extend to any ideas, systems, or factual informa-
tion conveyed in the work.5

How would you interpret this? You might conclude that someone cannot
copy the manner or style in which someone else publishes facts, but that the
facts themselves are not copyrightable. What happens if a business announces
on its website that it has 83 employees? Does the head count for that company
become a fact that is not protected by copyright laws? What if the website also
lists prices, phone numbers, addresses, or historic dates?

You might be safe if you write a webbot that only collects pure facts.6
But that doesn’t prevent someone else from having a differing opinion and
challenging you in court.

You Can Copyright a Collection of Facts if Presented Creatively

In the previous excerpt from the US Copyright Office website, we learned
that copyright law protects the “particular way” in which someone expresses
him or herself and that facts themselves are not protected by copyright. One
way to think of this is that while you cannot copyright a fact, you might be able
to copyright a collection of facts—if they are presented creatively. For example,
a phone company cannot copyright a phone number, but it can copyright an
entire phone directory website, if the phone numbers are presented in an
original and creative way.

It appears that courts are serious when they say copyright only applies to
collections of facts when they are presented in new and creative ways. For
example, in one case a phone company republished the names and phone
numbers (subscriber information) from another phone company’s directory.7
A dispute over intellectual property rights erupted between the two companies,
and the case went to court. The fact that the original phone book contained
phone numbers from a selected area and listed them in alphabetical order
was not enough creativity to secure copyright protection. The judge ruled
that the original phone directory lacked originality and was not protected
by copyright law—even though the publication had a registered copyright.
If nothing else, this indicates that intellectual property law is open to
interpretation and that individuals’ interpretations of the law are less
important than court decisions.

5 US Copyright Office, “Fair Use,” July 2006 (http://www.copyright.gov/fls/fl102.html).
6 Consult your attorney for clarification on your legal rights to collect specific information.
7 Feist Publications, Inc. v. Rural Telephone Service Co., 499 U.S. 340, 1991.
Keeping Webbots out o f Trouble 321

webbots2e.book Page 322 Thursday, February 16, 2012 11:59 AM
You Can Use Some Material Under Fair Use Laws

United States copyright law also allows for fair use, a set of exclusions from
copyright for material used within certain limits. The scope of what falls into
the fair use category is largely dependent on the following:

 Nature of the copyrighted material

 Amount of material used

 Purpose for which the material is used

 Market effect of the new work upon the original

Copyrighted material commonly falls under fair use if a limited amount
of the material is used for scholastic or archival purposes. Fair use also protects
the right to use selections of copyrighted material for parody, in short quota-
tions, or in reviews. Generally speaking, you can quote a small amount of
copyrighted material if you include a reference to the original source. However,
you may become a target for a lawsuit if you profit from selling shirts featuring a
catchphrase from a movie, even though you are only quoting a small part of a
larger work, as it will likely interfere with the market for legitimate T-shirts.

The US Copyright Office says the following regarding fair use:

Under the fair use doctrine of the U.S. copyright statute, it is per-
missible to use limited portions of a work including quotes, for
purposes such as commentary, criticism, news reporting, and
scholarly reports. There are no legal rules permitting the use of a
specific number of words, a certain number of musical notes, or
percentage of a work. Whether a particular use qualifies as fair use
depends on all the circumstances.8

As you may guess, fair use exclusions are often abused and frequently liti-
gated. A famous case surrounding fair use was Kelly v. Arriba Soft.9 In this case,
Leslie A. Kelly conducted an online business of licensing copyrighted images.
The Arriba Soft Corporation, in contrast, created an image-management pro-
gram that used webbots and spiders to search the Internet for new images to
add to its library. Arriba Soft failed to identify the sources of the images it found
and gave the general impression that the images it found were available under
fair use statutes. While Kelly eventually won her case against Arriba Soft, it took
five years of charges, countercharges, rulings, and appeals. Much of the con-
fusion in settling the suit was caused by applying pre-Internet laws to determine
what constituted fair use of intellectual property published online.

Trespass to Chattels

In addition to copyright, the other main concept that you should be
aware of is trespass to chattels. Unlike traditional trespass, which refers
to unauthorized use of real property (land or real estate), trespass to chattels

8 US Copyright Office, “Can I Use Someone Else’s Work? Can Someone Else Use Mine? (FAQ),”
October 6, 2009 (http://www.copyright.gov/help/faq/faq-fairuse.html#howmuch).
9 If you Google Kelly v. Arriba, you’ll find a wealth of commentary and court rulings for this saga.
322 Chapter 31

webbots2e.book Page 323 Thursday, February 16, 2012 11:59 AM
prevents or impairs an owner’s use of or access to personal property. The
trespass-to-chattels laws were written before the invention of the Internet,
but in certain instances, they still protect access to personal property. Consider
the following examples of trespass to chattels:

 Blocking access to someone’s boat with a floating swim platform

 Preventing the use of a fax machine by continually spamming it with
nuisance or junk faxes

 Erecting a building that blocks someone’s ocean view

From your perspective as a webbot or spider developer, violation of
trespass to chattels may include:

 Consuming so much bandwidth from a target server that you affect the
website’s performance or other people’s use of the website

 Increasing network traffic on a website to the point that the owner is
forced to add infrastructure to meet traffic needs

 Sending excessive quantities of email as to diminish the utility of email
or email servers

 Creating so many user accounts that popular account names are not
available to regular users

To better understand trespass to chattels, consider the spider developed
by a company called Bidder’s Edge, which cataloged auctions on eBay. This
centralized spider collected information about auctions in an effort to
aggregate the contents of several auction sites, including eBay, into one
convenient website. In order to collect information on all eBay auctions,
it downloaded as many as 100,000 pages a day.

To put the impact of Bidder’s Edge spider into context, assume that a typ-
ical eBay web page is about 250KB in size. If the spider requested 100,000 pages
a day, the spider would consume 25GB of eBay’s bandwidth every day, or
775GB each month. In response to the increased web traffic, eBay was forced
to add servers and upgrade its network.

With this amount of requests coming from Bidder’s Edge spiders, it was
easy for eBay to identify the source of the increased server load. Initially, eBay
claimed that Bidder’s Edge illegally used its copyrighted auctions. When that
argument proved unsuccessful, eBay pursued a trespass-to-chattels case.10 In
this case, eBay successfully argued that the Bidder’s Edge spider increased
the load on its servers to the point that it interfered with the use of the site.
eBay also claimed a loss due to the need to upgrade its servers to facilitate the
increased network traffic caused by the Bidder’s Edge spider. Bidder’s Edge
eventually settled with eBay out of court, but only after it was forced offline
and agreed to change its business plan.

10 You can find more information about this case at http://pub.bna.com/lw/21200.htm. Googling
eBay, Inc. v. Bidder’s Edge will also provide links to comments about the succession of rulings on
this case.
Keeping Webbots out o f Trouble 323

http://pub.bna.com/lw/21200.htm

webbots2e.book Page 324 Thursday, February 16, 2012 11:59 AM
How do you avoid claims of trespass to chattels? You can start by not
placing an undue load on a target server. If the information is available
from a number of sources, you might target multiple servers instead of
relying on a single source. If the information is only available from a single
source, it is best to limit downloads to the absolute minimum number of
pages to do the job. If that doesn’t work, you should evaluate whether the
risk of a lawsuit outweighs the opportunities created by your webbot. You
should also ensure that your webbot or spider does not cause damage to a
business or individual.

Internet Law

While the laws protecting physical property are long established and reinforced
by considerable numbers of court rulings, the laws governing virtual property
and virtual behavior are less mature and constantly evolving. While one
would think the same laws should protect both online and offline property,
the reality is that most laws were written before the Internet and don’t directly
address those things that are unique to it, like email, frames, social media,
hyperlinks, or blogs. Since many existing laws do not specifically address the
Internet, the application of the law (as it applies to the Internet) is open to
much interpretation.

One example of a law to deal specifically with Internet abuse is Virginia’s
so-called Anti-Spam Law.11 This law is a response to the large amount of server
resources consumed by servicing unwanted email. The law attacks spammers
indirectly by declaring it a felony to falsify or forge email addresses in connec-
tion to unsolicited email. It also provides penalties of as much as $10.00 per
unsolicited email or $25,000 per day. Laws like this one are required to address
specific Internet-related concerns. Well-defined rules, like those imposed by
Virginia’s Anti-Spam Law, are frequently difficult to derive from existing
statutes. And while it may be possible to prosecute a spammer with laws drafted
before the popularity of the Internet, less is open to the court’s interpretation
when the law deals specifically with the offense.

When contemplating the laws that apply to you as a webbot developer,
consider the following:

 Webbots and spiders add a wrinkle to the way online information is used, as
most web pages are intended to be used with manually operated browsers.
For example, disputes may arise when webbots ignore paid advertising
and disrupt the intended business model of a website. Webmasters, how-
ever, usually want some webbots (such as search engine crawlers) to visit
their sites.

 The Internet is still relatively young and there are few precedents for
online law. Existing intellectual property law doesn’t always apply well to
the Internet. For example, in the Kelly v. Arriba Soft case, which we dis-
cussed earlier, there was serious contention over whether or not a website

11 “SB 881 Computer Crimes Act; electronic mail,” Virginia Senate, approved March 29, 1999
(http://leg1.state.va.us/cgi-bin/legp504.exe?991+sum+SB881).
324 Chapter 31

webbots2e.book Page 325 Thursday, February 16, 2012 11:59 AM
has the right to link to other web pages. The opportunity to challenge
(and regulate) hyper-references to media belonging to someone else
didn’t exist before the Internet.

 New laws governing online commerce and intellectual property rights
are constantly introduced as the Internet evolves and people conduct
themselves in different ways. For example, blogs have recently created
a number of legal questions. Are bloggers publishers? Are bloggers
responsible for posts made by visitors to their websites? The answer to
both questions is no—at least for now.12

 It is always wise for webbot developers to stay current with online laws,
since old laws are constantly being tested and new laws are being written
to address specific issues.

 The strategies people use to violate as well as protect online intellectual
property are constantly changing. For example, pay per click advertising
has spawned the arrival of so-called clickbots, which simulate people click-
ing ads to generate revenue for the owner of the website carrying the
advertisements. People test the law again by writing webbots that stuff
the ballot boxes of online polls and contests. In response to the threat
mounted by new webbot designs, web developers counter with technol-
ogies like CAPTCHA devices,13 which force people to type text from an
image (or complete some other task that would be similarly difficult for
webbots) before accessing a website. There may be as many prospects
for webbot developers to create methods to block webbots as there are
opportunities to write webbots.

 Laws vary from country to country. And since websites can be hosted
by servers anywhere the world, it can be difficult to identify—let alone
prosecute—the violator of a law when the offender operates from a
country that doesn’t honor other countries’ laws.

Final Thoughts

The knowledge and techniques required to develop a useful webbot are
identical to those required to develop a destructive one. Therefore, it is
imperative to realize when your enthusiasm for what you’re doing obscures
your judgment and causes you to cross a line you didn’t intend to cross.
Be careful. Talk to a qualified attorney before you need one.

If Internet law is appealing to you or if you are interested in protecting
your online rights, you should consider joining the Electronic Frontier
Foundation (EFF). This group of lawyers, coders, and other volunteers is
dedicated to protecting digital rights. You can find more information about
the organization at its website, http://www.eff.org.

12 In 2006 a Pennsylvania court ruled that bloggers are not responsible for comments posted to
the blog by their readers; to read a PDF of the judge’s opinion, visit http://www.paed.uscourts.gov/
documents/opinions/06D0657P.pdf.
13 More information about CAPTCHA devices is available in Chapter 30.
Keeping Webbots out o f Trouble 325

http://www.paed.uscourts.gov/documents/opinions/06D0657P.pdf
http://www.paed.uscourts.gov/documents/opinions/06D0657P.pdf

webbots2e.book Page 326 Thursday, February 16, 2012 11:59 AM

webbots2e.book Page 327 Thursday, February 16, 2012 11:59 AM
P H P / C U R L R E F E R E N C E

PHP/CURL is an extremely powerful
interface with a dizzying array of options.

This appendix highlights only those options
and features of PHP/CURL that are specifically

interesting to webbot developers. The full specification
of PHP/CURL is available at the PHP website.1

Creating a Minimal PHP/CURL Session

In some regards, a PHP/CURL session is similar to a PHP file I/O session.
Both create a session (or file handle) to reference an external file. And in
both cases, when the file transfer is complete, the session is closed. However,
PHP/CURL differs from standard file I/O because it requires a series of
options that define the nature of the file transfer set before the exchange
takes place. These options are set individually, and the sequence in which

1 See http://us2.php.net/manual/en/ref.curl.php.

webbots2e.book Page 328 Thursday, February 16, 2012 11:59 AM
they are defined is of no importance. As a quick example, Listing A-1 shows
the minimal options required to create a PHP/CURL session that will put a
downloaded file into a variable.

<?
Open a PHP/CURL session
$s = curl_init();

Configure the PHP/CURL command
curl_setopt($s, CURLOPT_URL, "http://www.schrenk.com"); // Define target site
curl_setopt($s, CURLOPT_RETURNTRANSFER, TRUE); // Return in string

Execute the PHP/CURL command (send contents of target web page to string)
$downloaded_page = curl_exec($s);

Close PHP/CURL session
curl_close($s);
?>

Listing A-1: A minimal PHP/CURL session

The rest of this section details how to initiate sessions, set options,
execute commands, and close sessions in PHP/CURL. We’ll also look at
how PHP/CURL provides transfer status and error messages.

Initiating PHP/CURL Sessions

Before you use PHP/CURL, you must initiate a session with the curl_init()
function. Initialization creates a session variable, which identifies configura-
tions and data belonging to a specific session. Notice how the session variable
$s, created in Listing A-1, is used to configure, execute, and close the entire
PHP/CURL session. Once you create a session, you may use it as many
times as required.

Setting PHP/CURL Options

The PHP/CURL session is configured with the curl_setopt() function. Each
individual configuration option is set with a separate call to this function.
The script in Listing A-1 is unusual in its brevity. Usually there are many calls
to curl_setopt(). Over 90 separate configuration options are available within
PHP/CURL, making the interface very versatile.2 The average PHP/CURL
user, however, uses only a small subset of the available options. The following
sections describe the PHP/CURL options you are most likely to use. While
these options are listed here in order of relative importance, you may declare
them in any order. If the session is left open, the configuration may be reused
as often as needed within the same session.

2 You can find a complete set of PHP/CURL options at http://www.php.net/manual/en/function
.curl-setopt.php.
328 Appendix A

webbots2e.book Page 329 Thursday, February 16, 2012 11:59 AM
CURLOPT_URL

Use the CURLOPT_URL option to define the target URL for your PHP/CURL
session, as shown in Listing A-2.

curl_setopt($s, CURLOPT_URL, "http://www.schrenk.com/index.php");

Listing A-2: Defining the target URL

You should use a fully formed URL describing the protocol, domain, and
file in every PHP/CURL file request.

CURLOPT_RETURNTRANSFER

The CURLOPT_RETURNTRANSFER option must be set to TRUE, as in Listing A-3, if you
want the result to be returned in a string. If you don’t set this option to TRUE,
PHP/CURL echoes the result to the terminal.

curl_setopt($s, CURLOPT_RETURNTRANSFER, TRUE); // Return in string

Listing A-3: Telling PHP/CURL that you want the result to be returned in a string

CURLOPT_REFERER

The CURLOPT_REFERER option allows your webbot to spoof a hyper-reference
that was clicked to initiate the request for the target file. The example in
Listing A-4 tells the target server that someone clicked a link on http://
www.a_domain.com/index.php to request the target web page.

curl_setopt($s, CURLOPT_REFERER, "http://www.a_domain.com/index.php");

Listing A-4: Spoofing a hyper-reference

CURLOPT_FOLLOWLOCATION and CURLOPT_MAXREDIRS

The CURLOPT_FOLLOWLOCATION option tells PHP/CURL that you want it to follow
every page redirection it finds. It’s important to understand that PHP/CURL
only honors header redirections and not redirections set with a refresh meta
tag or with JavaScript, as shown in Listing A-5.

Example of redirection that PHP/CURL will follow
header("Location: http://www.schrenk.com");
?>

<!-- Examples of redirections that PHP/CURL will not follow-->
<meta http-equiv="Refresh" content="0;url=http://www.schrenk.com">
<script>document.location="http://www.schrenk.com"</script>

Listing A-5: Redirects that PHP/CURL can and cannot follow
PHP/CURL Reference 329

webbots2e.book Page 330 Thursday, February 16, 2012 11:59 AM
Anytime you use CURLOPT_FOLLOWLOCATION, set CURLOPT_MAXREDIRS to the max-
imum number of redirections you care to follow. Limiting the number of
redirections keeps your webbot out of infinite loops, where redirections point
repeatedly to the same URL. My introduction to CURLOPT_MAXREDIRS came while
trying to solve a problem brought to my attention by a network administra-
tor, who initially thought that someone (using a webbot I had written) had
launched a DoS attack on his server. In reality, the server misinterpreted the
webbot’s header request as a hacking exploit and redirected the webbot to
an error page. Then a bug on the error page caused it to repeatedly redirect
the webbot to the error page, causing an infinite loop (and near-infinite
bandwidth usage). The addition of CURLOPT_MAXREDIRS solved the problem,
as demonstrated in Listing A-6.

curl_setopt($s, CURLOPT_FOLLOWLOCATION, TRUE); // Follow header redirections
curl_setopt($s, CURLOPT_MAXREDIRS, 4); // Limit redirections to 4

Listing A-6: Using the CURLOPT_FOLLOWLOCATION and CURLOPT_MAXREDIRS options

CURLOPT_USERAGENT

Use this option to define the name of your user agent, as shown in Listing A-7.
The user agent name is recorded in server access log files and is available to
server-side scripts in the $_SERVER['HTTP_USER_AGENT'] variable.

$agent_name = "test_webbot";
curl_setopt($s, CURLOPT_USERAGENT, $agent_name);

Listing A-7: Setting the user agent name

Many web servers examine the user agent name to determine what con-
tent to send to specific browsers. For example, a single website may serve
different content to standard browsers and mobile devices, depending on
the user agent it sees in this parameter.

The list of applicable user agent names constantly changes. For an
updated list, simply perform an Internet search with search terms like
“user agent names.”

CURLOPT_NOBODY and CURLOPT_HEADER

These options tell PHP/CURL to return either the web page’s header or
body. By default, PHP/CURL will always return the body but not the header.
This explains why setting CURL_NOBODY to TRUE excludes the body and setting
CURL_HEADER to TRUE includes the header, as shown in Listing A-8.

curl_setopt($s, CURLOPT_HEADER, TRUE); // Include the header
curl_setopt($s, CURLOPT_NOBODY, TRUE); // Exclude the body

Listing A-8: Using the CURLOPT_HEADER and CURLOPT_NOBODY options
330 Appendix A

webbots2e.book Page 331 Thursday, February 16, 2012 11:59 AM
CURLOPT_TIMEOUT

If you don’t limit how long PHP/CURL waits for a response from a server, it
may wait forever—especially if the file you’re fetching is on a busy server or if
you’re trying to connect to a nonexistent or inactive IP address. (The latter
happens frequently when a spider follows dead links on a website.) Setting a
time-out value, as shown in Listing A-9, causes PHP/CURL to end the session
if the download takes longer than the time-out value (in seconds).

curl_setopt($s, CURLOPT_TIMEOUT, 30); // Don't wait longer than 30 seconds

Listing A-9: Setting a socket time-out value

CURLOPT_COOKIEFILE and CURLOPT_COOKIEJAR

One of the slickest features of PHP/CURL is the ability to manage cookies sent
to and received from a website. Use the CURLOPT_COOKIEFILE option to define the
file where previously stored cookies exist. At the end of the session, PHP/CURL
writes new cookies to the file indicated by CURLOPT_COOKIEJAR. Listing A-10 is an
example; I have never seen an application where these two options don’t
reference the same file.

curl_setopt($s, CURLOPT_COOKIEFILE, "c:\bots\cookies.txt"); // Read cookie file
curl_setopt($s, CURLOPT_COOKIEJAR, "c:\bots\cookies.txt"); // Write cookie file

Listing A-10: Telling PHP/CURL where to read and write cookies

When specifying the location of a cookie file, always use the complete
location of the file and do not use relative addresses. More information
about managing cookies is available in Chapter 21.

CURLOPT_HTTPHEADER

The CURLOPT_HTTPHEADER configuration allows a PHP/CURL session to send an
outgoing header message to the server. The script in Listing A-11 uses this
option to tell the target server the MIME type it accepts, the content type it
expects, and that the user agent is capable of decompressing compressed
web responses.

Note that CURLOPT_HTTPHEADER expects to receive data in an array.

$header_array[] = "Mime-Version: 1.0";
$header_array[] = "Content-type: text/html; charset=iso-8859-1";
$header_array[] = "Accept-Encoding: compress, gzip";
curl_setopt($curl_session, CURLOPT_HTTPHEADER, $header_array);

Listing A-11: Configuring an outgoing header
PHP/CURL Reference 331

webbots2e.book Page 332 Thursday, February 16, 2012 11:59 AM
CURLOPT_SSL_VERIFYPEER

You need to use this option only if the target website uses SSL encryption and
the protocol in CURLOPT_URL is https:. An example is shown in Listing A-12.

curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, FALSE); // No certificate

Listing A-12: Configuring PHP/CURL not to use a local client certificate

Depending on the version of PHP/CURL you use, this option may be
required; if you don’t use it, the target server will attempt to download a
client certificate, which is unnecessary in all but rare cases.

CURLOPT_USERPWD and CURLOPT_UNRESTRICTED_AUTH

As shown in Listing A-13, you may use the CURLOPT_USERPWD option with a valid
username and password to access websites that use basic authentication. In
contrast to when using a browser, you will have to submit the username and
password to every page accessed within the basic authentication realm.

curl_setopt($s, CURLOPT_USERPWD, "username:password");
curl_setopt($s, CURLOPT_UNRESTICTED_AUTH, TRUE);

Listing A-13: Configuring PHP/CURL for basic authentication schemes

If you use this option in conjunction with CURLOPT_FOLLOWLOCATION, you
should also use the CURLOPT_UNRESTRICTED_AUTH option, which will ensure that
the username and password are sent to all pages you’re redirected to, provided
they are part of the same realm.

Exercise caution with using CURLOPT_USERPWD, as you can inadvertently
send username and password information to the wrong server, where it may
appear in access log files.

CURLOPT_POST and CURLOPT_POSTFIELDS

The CURLOPT_POST and CURLOPT_POSTFIELDS options configure PHP/CURL to
emulate forms with the POST method. Since the default method is GET, you
must first tell PHP/CURL to use the POST method. Then you must specify
the POST data that you want to be sent to the target web server. An example
is shown in Listing A-14.

curl_setopt($s, CURLOPT_POST, TRUE); // Use POST method
$post_data = "var1=1&var2=2&var3=3"; // Define POST data values
curl_setopt($s, CURLOPT_POSTFIELDS, $post_data);

Listing A-14: Configuring POST method transfers

Notice that the POST data looks like a standard query string sent in a GET
method. Incidentally, to send form information with the GET method, simply
attach the query string to the target URL.
332 Appendix A

webbots2e.book Page 333 Thursday, February 16, 2012 11:59 AM
CURLOPT_VERBOSE

The CURLOPT_VERBOSE option controls the quantity of status messages created
during a file transfer. You may find this helpful during debugging, but it is
best to turn off this option during the production phase, because it produces
many entries in your server log file. A typical succession of log messages for a
single file download looks like Listing A-15.

* About to connect() to www.schrenk.com port 80
* Connected to www.schrenk.com (66.179.150.101) port 80
* Connection #0 left intact
* Closing connection #0

Listing A-15: Typical messages from a verbose PHP/CURL session

If you’re in verbose mode on a busy server, you’ll create very large log
files. Listing A-16 shows how to turn off verbose mode.

curl_setopt($s, CURLOPT_VERBOSE, FALSE); // Minimal logs

Listing A-16: Turning off verbose mode reduces the size of server log files.

CURLOPT_PORT

By default, PHP/CURL uses port 80 for all HTTP sessions, unless you are con-
necting to an SSL-encrypted server, in which case port 443 is used.3 These are
the standard port numbers for HTTP and HTTPS protocols, respectively. If
you’re connecting to a custom protocol or wish to connect to a non-web proto-
col, use CURLOPT_PORT to set the desired port number, as shown in Listing A-17.

curl_setopt($s, CURLOPT_PORT, 234); // Use port number 234

Listing A-17: Using nonstandard communication ports

NOTE Configuration settings must be capitalized, as shown in the previous examples, because
the option names are predefined PHP constants. Your code will fail if you specify an
option as curlopt_port instead of CURLOPT_PORT.

Executing the PHP/CURL Command

Executing the PHP/CURL command sets into action all the options defined
with the curl_setopt() function. This command executes the previously con-
figured session (referenced by $s in Listing A-18).

$downloaded_page = curl_exec($s);

Listing A-18: Executing a PHP/CURL command for session $s

3 Well-known and standard port numbers are defined at http://www.iana.org/assignments/
port-numbers.
PHP/CURL Reference 333

webbots2e.book Page 334 Thursday, February 16, 2012 11:59 AM
You can execute the same command multiple times or use curl_setopt()
to change configurations between calls of curl_exec(), as long as the session is
defined and hasn’t been closed. Typically, I create a new PHP/CURL session
for every page I access.

Retrieving PHP/CURL Session Information

Once a curl_exec() command is executed, additional information about the
current PHP/CURL session is available. Listing A-19 shows how to use the
curl_getinfo() command.

$info_array = curl_getinfo($s);

Listing A-19: Getting additional information about the current PHP/CURL session

The curl_getinfo() command returns an array of information, including
connect and transfer times, as shown in Listing A-20.

array(20)
 {
 ["url"]=> string(22) "http://www.schrenk.com"
 ["content_type"]=> string(29) "text/html; charset=ISO-8859-1"
 ["http_code"]=> int(200) ["header_size"]=> int(247)
 ["request_size"]=> int(125)
 ["filetime"]=> int(-1)
 ["ssl_verify_result"]=> int(0)
 ["redirect_count"]=> int(0)
 ["total_time"]=> float(0.884)
 ["namelookup_time"]=> float(0)
 ["connect_time"]=> float(0.079)
 ["pretransfer_time"]=> float(0.079)
 ["size_upload"]=> float(0)
 ["size_download"]=> float(19892)
 ["speed_download"]=> float(22502.2624434)
 ["speed_upload"]=> float(0)
 ["download_content_length"]=> float(0)
 ["upload_content_length"]=> float(0)
 ["starttransfer_time"]=> float(0.608)
 ["redirect_time"]=> float(0)
 }

Listing A-20: Data made available by the curl_getinfo() command

Viewing PHP/CURL Errors

The curl_error() function returns any errors that may have occurred during a
PHP/CURL session. The usage for this function is shown in Listing A-21.

$errors = curl_error($s);

Listing A-21: Accessing PHP/CURL session errors
334 Appendix A

webbots2e.book Page 335 Thursday, February 16, 2012 11:59 AM
Listing A-22 shows a typical error response.

Couldn't resolve host 'www.webbotworld.com'

Listing A-22: Typical PHP/CURL session error

Closing PHP/CURL Sessions

You should close a PHP/CURL session immediately after you are done using
it, as shown in Listing A-23. Closing the PHP/CURL session frees up server
resources, primarily memory.

curl_close($s);

Listing A-23: Closing a PHP/CURL session

In normal use, PHP performs garbage collection, freeing resources like
variables, socket connections, and memory when the script completes. This
works fine for scripts that control web pages and execute quickly. However,
webbots and spiders may require that PHP scripts run for extended periods
without garbage collection. (I’ve written webbot scripts that run for many
months without stopping.) Closing each PHP/CURL session is imperative
if you’re writing webbot and spider scripts that make many PHP/CURL
connections and run for extended periods of time.
PHP/CURL Reference 335

webbots2e.book Page 336 Thursday, February 16, 2012 11:59 AM

webbots2e.book Page 337 Thursday, February 16, 2012 11:59 AM
S T A T U S C O D E S

This appendix contains status codes
returned by web (HTTP) and news (NNTP)

servers. Your webbots and spiders should
use these status codes to determine the success

or failure communicating with servers. When debug-
ging your scripts, status codes also provide hints as to
what’s wrong.

HTTP Codes

The following is a representative sample of HTTP codes. These codes
reflect the status of an HTTP (web page) request. You’ll see these codes
returned in $returned_web_page['STATUS']['http_code'] if you’re using the
LIB_http library.

webbots2e.book Page 338 Thursday, February 16, 2012 11:59 AM
100 Continue
101 Switching Protocols
200 OK
201 Created
202 Accepted
203 Non-Authoritative Information
204 No Content
205 Reset Content
206 Partial Content
300 Multiple Choices
301 Moved Permanently
302 Found
303 See Other
304 Not Modified
305 Use Proxy
306 (Unused)
307 Temporary Redirect
400 Bad Request
401 Unauthorized
402 Payment Required
403 Forbidden
404 Not Found
405 Method Not Allowed
406 Not Acceptable
407 Proxy Authentication Required
408 Request Timeout
409 Conflict
410 Gone
411 Length Required
412 Precondition Failed
413 Request Entity Too Large
414 Request-URI Too Long
415 Unsupported Media Type
416 Requested Range Not Satisfiable
417 Expectation Failed
500 Internal Server Error
501 Not Implemented
502 Bad Gateway
503 Service Unavailable
504 Gateway Timeout
505 HTTP Version Not Supported
338 Appendix B

webbots2e.book Page 339 Thursday, February 16, 2012 11:59 AM
NNTP Codes

Listed below are the NNTP status codes. Your webbots should use these codes
to verify the responses returned from news servers.

100 help text follows
199 debug output
200 server ready - posting allowed
201 server ready - no posting allowed
202 slave status noted
205 closing connection - goodbye!
211 group selected
215 list of newsgroups follows
220 article retrieved - head and body follow
221 article retrieved - head follows
222 article retrieved - body follows
223 article retrieved - request text separately
230 list of new articles by message-id follows
231 list of new newsgroups follows
235 article transferred ok
240 article posted ok
335 send article to be transferred. End with <CR-LF>.<CR-LF>
340 send article to be posted. End with <CR-LF>.<CR-LF>
400 service discontinued
411 no such news group
412 no newsgroup has been selected
420 no current article has been selected
421 no next article in this group
422 no previous article in this group
423 no such article number in this group
430 no such article found
435 article not wanted - do not send it
436 transfer failed - try again later
437 article rejected - do not try again
440 posting not allowed
441 posting failed
500 command not recognized
501 command syntax error
502 access restriction or permission denied
503 program fault - command not performed
Status Codes 339

webbots2e.book Page 340 Thursday, February 16, 2012 11:59 AM

webbots2e.book Page 341 Thursday, February 16, 2012 11:59 AM
S M S G A T E W A Y S

Email is a great way to monitor your
webbots, as you learned in Chapter 15.

An alternative to email messages is Short
Message Service (SMS), or text messages. For a

webbot developer, text messages have three major
advantages over email:

 Text messages are limited to 160 characters and force the sender to be
succinct. Due to their brevity, text messages are more apt to be read than
email messages.

 People typically receive fewer text messages than emails, so text messages
are more likely to stand out as being important.

 Text messages may be read from simple cell phones. In contrast, email
messages require more sophisticated phones, computers, or tablets.

webbots2e.book Page 342 Thursday, February 16, 2012 11:59 AM
Sending Text Messages

Sending text messages from a webbot is not difficult. If your webbot can send
email, as described in Chapter 15, your webbot can probably also send text
messages. The key word here is probably, as many (if not most) mobile service
providers offer SMS email gateway services. With these, you can send a text
message to a cell phone by simply sending an email to the wireless subscriber’s
SMS email gateway server, using the subscriber’s phone number or username
as the addressee.

Reading Text Messages

Not only can webbots send text messages through an email interface, but they
can also receive replies to the text messages they send. When the recipient of
the text message sends an SMS in reply to your webbot’s message, that message
will be delivered to the email account in the Reply_to: parameter of the origi-
nal message. Since you learned to program webbots that read email in Chap-
ter 14, you can use this capability to react to conditions as they happen. For
example, if your webbot detects an error condition, it could send a text mes-
sage to an administrator that describes the situation: “Reply KILL to suspend
webbot.” If the webbot receives this message as a reply email, it can simply
suspend operations until the webbot can be examined closely.

Some mobile gateways also support Multimedia Messaging Service (MMS).
This protocol allows the sender to attach files to a message. There are few
limitations on the types of files that can be attached. Unlike SMS messages,
MMS messages may include videos, images, or text files that exceed the 160-
character limit of SMS. In fact, new ringtones are often delivered to cellphones
via MMS. We’re not, however, going to cover MMS in any detail. MMS gateways
are not universally available, and—more importantly—MMS violates the pri-
mary purpose of these messages. These messages should be a short notifi-
cation of some event. If you need to provide more information than the
160 characters allowed in an SMS message, you should probably send a link
to that information in a regular text message or just send an email.

A Sampling of Text Message Email Addresses

Table C-1 is a small collection of email addresses that are reported to send
text messages. The intent is not to provide a comprehensive list but to publish
a few of the more popular carriers and their formats as of this book’s publi-
cation. If you don’t see the carrier you need listed here, don’t fret; instead
contact the carrier to ask if it supports an SMS email gateway. The carrier’s
customer service department should be able to help if you have questions.

NOTE You’ll want to show restraint when sending SMS messages or clarify what your client
wishes to receive. SMS clients generally send forward all text messages to their intended
recipient. Uninvited or too frequent SMS messages can be beyond annoying to the person
receiving them. In addition, special charges (or international fees) may apply to the use
of these services. Contact the individual service provider for more information regard-
ing charges.
342 Appendix C

webbots2e.book Page 343 Thursday, February 16, 2012 11:59 AM
Table C-1: A Sampling of SMS Email Addresses

Wireless Carrier Text Message Email Address

Alltel 10digitphonenumber@sms.alltelmessage.com

Bell Mobility (Canada) phonenumber@txt.bell.ca

Boost phonenumber@myboostmobile.com

Cingular (Prepaid) 10digitphonenumber@cingular.com
10digitphonenumber@mobile.mycingular.com

Cingular (GoPhone Prepaid) phonenumber@cingulartext.com

Cleartalk Wireless phonenumber@sms.cleartalk.us

Edge Wireless phonenumber@sms.edgewireless.com

Goa Airtel 919890number@airtelmail.com

Goa BPL Mobile 9823number@bplmobile.com

Goa Idea Cellular 9822number@ideacellular.net

Movistar (Argentina) number@sms.movistar.net.ar

Movistar (Colombia) number@movistar.com.co

Movistar (Spain) 0number@movistar.net

Nextel 10digitphonenumber@messaging.nextel.com

Nextel (Mexico) number@msgnextel.com.mx

O2 (Germany) 0number@o2online.de

O2 (UK) 44number@mmail.co.uk

O2 (USA) number@mobile.celloneusa.com

Orange (Netherlands) 0number@sms.orange.nl
Orange (UK) phonenumber@orange.net

Qualcomm name@pager.qualcomm.com

Sprint PCS 10digitphonenumber@messaging.sprintpcs.com

SunCom number@tms.suncom.com

SureWest Communications phonenumber@mobile.surewest.com

T-Mobile (USA) 10digitphonenumber@tmomail.net

T-Mobile (Germany) phonenumber@t-d1-sms.de

T-Mobile (UK) phonenumber@t-mobile.uk.net

Verizon Wireless number@vtext.com

Virgin Mobile (Canada) number@vmobile.ca

Virgin Mobile (USA) phonenumber@vmobl.com

Vodafone (South Africa) number@voda.co.za

Vodafone (Germany) 0number@vodafone-sms.de

Vodafone (Italy) 3**number@sms.vodafone.it

Vodafone (Japan: Chuugoku/Western) number@n.vodafone.ne.jp

Vodafone (Japan: Hokkaido) number@d.vodafone.ne.jp

Vodafone (Japan: Hokuriko/Central North) number@r.vodafone.ne.jp

Vodafone (Japan: Kansai/West, including Osaka) number@k.vodafone.ne.jp

Vodafone (Japan: Kanto/Koushin/East, Tokyo) number@t.vodafone.ne.jp

(continued)
SMS Gateways 343

webbots2e.book Page 344 Thursday, February 16, 2012 11:59 AM
Table C-1 (continued)

Wireless Carrier Text Message Email Address

Vodafone (Japan: Kyuushu/Okinawa) number@q.vodafone.ne.jp

Vodafone (Japan: Skikoku) number@s.vodafone.ne.jp

Vodafone (Japan: Touhoku/Niigata/North) number@h.vodafone.ne.jp

Vodafone (Spain) 0number@vodafone.es
344 Appendix C

webbots2e.book Page 345 Thursday, February 16, 2012 11:59 AM
I N D E X

Symbols & Numbers
& (ampersand), in GET method, 67
$address array, 156–157
$content_type variable, 158
$data_array, 168

for LIB_http library functions, 35
$FETCH_DELAY, 175, 180
$filter_array, 130, 135–136
$_GET array, 76
$link_array elements, 111
$page_base variable, 106
$_POST array, 76
$result array, FILE element, 51–52
$status_code_array, 114–115
. (period), as POP3 end-of-message

indicator, 147
? (question mark), in GET

method, 67
404 Not Found error, 287, 338

A
abstractions, of program

interface, 81
access log file, 29

error logging in, 266
and webbot detection, 266–267

access rights, verifying, 20
action attribute

of form, 65,
for form analyzer, 71

action of person, simulating, 123
$address array, 156–157
agent name

default for, LIB_http, 31
defining for PHP/CURL

session, 330

log record of, 268
spoofing, 29, 280, 311, 316, 329

aggregating information by
relevance, 16

aggregation webbots, 92, 129–137
CDATA, 135
choosing data sources, 130
downloading and parsing

script, 134
and filtering, 135–137
RSS feeds, 131–133
writing, 133–135

Alexa web-monitoring service, 305
“all rights reserved” notice, 320
Amazon Web Services, SOAP

interfaces, 305
ampersand (&), in GET method, 67
anchor tags. See links
Andreessen, Marc, 1
anonymity

as a process, 283
in commercial email, 155

anti-pokerbot software, 18
Anti-Spam Law, Virginia, 324
Apache

cookies, 202
headers, 33, 190
installing PHP on, 30
log files, 266–267
web server, 6

Application Program Interfaces
(APIs)

Amazon, 131
eBay, 131
Google, 127
Google Maps, 131

webbots2e.book Page 346 Thursday, February 16, 2012 11:59 AM
archive_links() function, 178
ARPANET, 139
array

assigning parsed data to, 98
elements, form data as, 68
of tags, src attribute

from, 61
parsing

data set into, 41–42
table into, 96

attributes, parsing values, 42–43
audience, for Internet, 2
authentication, 190–208

basic, 199–202
curl_setopt() function

options for, 332
by PHP/CURL, 28
test pages, 201

of buyer by procurement
webbot, 186–187

default response to request, 28
for deterring webbots, 314
digest, 201–202
and encryption, 202
example scripts and practice

pages, 199
FTP, 140
with query string sessions,

205–207
session, 202–205
of snipers, 189, 213
strengthening by combining

techniques, 198–199
types, 198

automating tasks, 19

B
bandwidth

consumption, 187, 225
hijacking, 104, 291
stealing, 30

base64-encoding, 84
basic authentication, 199–202

curl_setopt() function options
for, 332

by PHP/CURL, 28
test pages, 199

batch file, for webbot, 216
Bcc: address field, 156–157
Beck & Tysver legal website, 319
Bidder’s Edge spiders, 323
bids, timing placement of, 188, 191
Bina, Eric, 1
binary-safe download routine,

103–104
biometrics, 198–199
Bing, spiders used by, 173
blobs, storing images as, 83–84
blogs

aggregation of, 131
laws concerning, 324, 325
searching for spelling errors, 137

botnet management, 255–260
assigning tasks, 258–260
communication methods, 255
determining tasks, 257
performing tasks, 260
polling the botnet server,

256–257
task checkout, 258
uploading botnet data, 260

broken links, webbot detecting,
109–116

browser buffering, 27
browser-like webbots, 230
browser macros, 227–247

adding functionality to, 240–247
browser-like webbots, 230
commands, 235
creating your first, 231–233

initialization, 233
recording, 232

defined, 230
dynamic macros, 241–245

integrating data with,
242–245

scripts that create, 241
hacking, 239–247
installing, 230–231
iMacros Scripting Engine, rea-

sons not to use, 240–241
launching automatically,

245–246
in Linux, 246
in Windows, 245
346 INDEX

webbots2e.book Page 347 Thursday, February 16, 2012 11:59 AM
necessity for, 237
overcoming barriers with, 230
reasons to use, 227–229
running, 237
suggested standard initialization

of, 235–237
browsers, 1–2

emulating, 75. See also browser
macros

executing webbots in, 26–27
inspiration from limitations of,

15–18
problem with, 2
search engine treatment vs.

treatment of webbot, 126
tabbed browsing, 129

business leaders, webbot benefits
for, 11–12

buy-it-now auction purchases, 189

C
CamelCase, 78
CAPTCHA (Completely Automated

Public Turing test to tell
Computers and Humans
Apart), 314–315, 325

Cascading Style Sheets (CSS),
17, 230

impact of removing
HTML tags, 89

case
for naming, 111
sensitivity, stristr() function vs.

strstr() function, 137
Cc: address field, 156–157
CDATA tags, 134–135
certificates, 195
Children’s Online Privacy Protec-

tion Act (COPPA), 154
ciphers, 193, 195
client-server technology, 2
client URL Request Library

(cURL), 6, 21, 23
clipping service, online, 20, 137
clocks, synchronization for

sniper, 189

code
in book, 4–5
libraries available online, 5

collusion webbots, 17
command shell

executing webbots in, 26
leveraging operating

system with, 254
and spider scripts, 181

comma-separated value (CSV) files
file() function for down-

loading, 27
iMacros file format, 236

Common Object Request
Broker Architecture
(CORBA), 305

communication, on incompatible
systems, 21–22

competitive advantage, 9–13, 64, 74,
191, 265, 286, 310

Completely Automated Public
Turing test to tell Com-
puters and Humans
Apart (CAPTCHA),
314–315, 325

compressing data, 86–88
computers. See also server

distributing tasks across
multiple, 254

constructive hacking, 11
Content-Type line

for email message, 148
in HTTP header, 34

$content_type variable, 142
converting website into function,

163–170
COOKIE_FILE, 212–214
cookies

about, 209–211
adapting to management

changes, 294
for authentication, 202–205
defaults for, 31
deleting, 212, 294
for deterring webbots, 313
expiration dates for, 212–213
and forms, 70
INDEX 347

webbots2e.book Page 348 Thursday, February 16, 2012 11:59 AM
cookies, continued
managing multiple users’,

213–214
persistence with, 212
PHP/CURL to read and write, 29
purging temporary, 212–213
restrictions, with proxies, 206
viewing, 210–211
and webbot design, 211

COPPA (Children’s Online Privacy
Protection Act), 154

copyright issues, 85, 319–322
“all rights reserved” notice, 320
and facts, 321
fair use laws, 322
registration, 320

CORBA (Common Object Request
Broker Architecture), 305

crawlers. See spiders
cron command, 215
cryptography, 193
CSS (Cascading Style Sheets),

17, 230
impact of removing

HTML tags, 89
CSV (comma-separated value) files,

file() function for down-
loading, 27

iMacros file format, 236
cURL (client URL Request

Library), 6, 21, 23
curl_error() function, 334–335
curl_exec() function, 334
curl_getInfo() function, 334
curl_init() function, 328
curl_setopt() function, 69, 104,

328–333, 334
case sensitivity, 333
CURLOPT_COOKIEFILE option, 205,

214, 331
CURLOPT_COOKIEJAR option, 205,

214, 331
CURLOPT_FOLLOWLOCATION

option, 329
CURLOPT_HEADER option, 330

CURLOPT_HTTPHEADER option, 331
CURLOPT_MAXREDIRS option, 288, 329
CURLOPT_NOBODY option, 330
CURLOPT_PORT option, 333
CURLOPT_POSTFIELDS option, 332
CURLOPT_POST option, 332
CURLOPT_REFERER option, 329
CURLOPT_RETURNTRANSFER

option, 329
CURLOPT_SSL_VERIFYHOST option, 195
CURLOPT_SSL_VERIFYPEER option,

195, 332
CURLOPT_TIMEOUT option, 294–295
CURLOPT_UNRESTRICTED_AUTH

option, 332
CURLOPT_URL option, 329
CURLOPT_USERAGENT option, 330
CURLOPT_USERPWD option, 332
CURLOPT_VERBOSE option, 333
executing, 333–334

custom logs, and webbot
detection, 268

D
daily scheduling of webbots, 217
data

fields in forms, 65, 66
networks, access and abuse, 323
set, parsing into array, 41
sources, choosing for aggrega-

tion webbot, 130
$data_array, 168

for LIB_http library functions, 35
database

for saving links, 181–182
storing images in, 83–84
storing text in, 80–83

data management, 77–90
organizing data, 77–85

naming conventions, 77–78
storing images in database,

83–84
storing text in database,

80–83
structured files, 79–80
348 INDEX

webbots2e.book Page 349 Thursday, February 16, 2012 11:59 AM
reducing size, 85–90
data compression, 86–88
removing formatting, 88–89
storing references to image

files, 85
thumbnailing images, 89–90

data-only interfaces, 301–307
lightweight data exchange,

302–305
REST (Representational State

Transfer) 306–307
SOAP (Simple Object Access

Protocol), 170, 305–306
XML (eXtensible Markup

Language), 131, 301–302
<data> tags, for insertion parse,

123–124
dates, in filenames, 79–80
DCOM (Distributed Component

Object Model), 305
decode_zipcode() function, 165
deep linking, 291
default file, for web page, 24
delays, inserting between page

fetches, 270
DELE command (POP3), 149
deleting

cookies, 212
HTML formatting, 88–89
unwanted text, 43–44
white space, 89

delimiters
parsing text between, 40
splitting string at, 39

deployment of webbots. See scaling
denial-of-service (DoS) attacks, pre-

venting, 180, 252–253, 330
DES (Digital Encryption

Standard), 195
describe_zipcode() function, 167–169
developers, webbot benefits for,

9–11
difficult websites, scraping, 227–247
digest authentication, 201–202
digital certificate, 194–196

Digital Encryption Standard
(DES), 195

directories, 79
script for creating, 104

disclaimer, 6
disk swapping, 181
Distributed Component Object

Model (DCOM), 305
<div> tags, parsing data into array, 95
DOS (denial-of-service) attacks, pre-

venting, 180, 252–253, 330
download_binary_file() function,

103–104
download_images_for_page()

function, 105
downloading

with FTP, 139–143
with LIB_http, 23–35
with link-verification webbot,

109–110
linked page, 113
with PHP built-in functions,

25–27
with PHP/CURL, 27–35
web pages, 23–35

download_parse_rss() function,
133, 134

E
eBay, 19, 130, 151, 188, 237, 306,

310, 323
snipers and, 187

Electronic Frontier Foundation
(EFF), 325

email
guidelines, 154
headers, 148
keeping legitimate out of spam

filter, 158–159
for notification

of FTP transmission
failure, 140–141

of webbot action, 161
placing account information in

script, 150
INDEX 349

webbots2e.book Page 350 Thursday, February 16, 2012 11:59 AM
email, continued
reading with webbots, 145–152
sending, 153–161

HTML-formatted, 159–160
with mail() function, 154–155
notifications with webbots,

157–158
with PHP, 154–155

undeliverable as alert to invalid
address, 160–161

as webbot trigger, 223
email-controlled webbots, 151–152
encryption, 193–196

authentication and, 208
certificate, 195–196
for deterring webbots, 312
webbots using, 194

end-of-message indicator
(POP3), 147

environments, 250–252
many-to-many, 251
many-to-one, 252
one-to-many, 250
one-to-one, 251

error
handlers, 295–296
information

from http_get() function, 32
from http_get_withheader()

function, 32
logs, and webbot detection,

267–268
eval() function, 303
event triggers, 70
exclude_link() function, 179–180
exclusion list, for spiders, 180
executing webbots

in browsers, 26–27
in command shell, 26

exe_sql() function, 82–83
expiration dates, for cookies, 203,

209–210
eXtensible Markup Language

(XML), 301–302
assigning tasks, 258, 260
overhead, 302
for RSS feeds, 131

F
facts, and copyright, 321
fair use laws, 322
fault-tolerant webbots, 285–296

cookie management
changes, 294

form changes, 292–293
network outages and conges-

tion, 294–295
page content changes, 291–295
URL changes, 286–291

page redirection, 288–290
and referer values accuracy,

290–291
requests for nonexistent

pages, 292
$FETCH_DELAY, 175, 180
fgets() function, 25, 27
file() function, downloading

files with, 27
file handle, 25, 27
filesystem, geographically

structured, 80
File Transfer Protocol (FTP)

server, connecting to, 141
webbots, 139–143

$filter_array, 130, 135–136
filtering

by aggregation webbot, 135–137
information by relevance, 16

Flash
barrier to effective

webscraping, 229
for deterring webbots, 314
for website navigation, prob-

lems caused by, 229
fopen() function, 25
format of names, 78–79
formatted_mail() function, 156
form data variables, 66
forms

adapting to changes in, 292–293
analyzing, 71–74, 165
avoiding errors, 75–76
and cookies, 70
emulation, 64

legal issues and, 64
350 INDEX

webbots2e.book Page 351 Thursday, February 16, 2012 11:59 AM
handlers, 65–66
input tags, 66
interfaces, reverse engineering,

64–65
main parts, 65
source code

displaying, 166
saving, 166

submission, 63–76, 167
data fields in forms, 66
event triggers, 70
form handlers, 65–66
GET method, 67–68
PHP/CURL for, 28
POST method, 68

unpredictability, 70
<form> tag, action attribute, 66
fputs() function, 89, 107, 149
From: address field, 156
FTP (File Transfer Protocol)

server, connecting to, 141
webbots, 139–143

ftp_cdup() function, 142
ftp_chdir() function, 142
ftp_delete() function, 142
ftp_get() function, 142
ftp_mkdir() function, 142
ftp_put() function, 142
ftp_rawlist() function, 142
ftp_rename() function, 142
ftp_rmdir() function, 142
fully resolved URLs, 212
functions. See also individual

function names
converting website into, 163–170

describe_zipcode() function,
167–169

interface definition, 168
submitting form, 168
target page analysis, 165–167

G
garbage collection, by PHP, 335
geographically structured

filesystem, 80
$_GET array, 76
get_attribute() function, 42–43,

61, 107

get_base_page_address() function, 106
get_domain() function, 178–179
get_http() function, 95
GET method, 61

and errors, 267
http_get() function for down-

loading with, 31–32
vs. POST method, 68

Google
bombing, 298
developer API, 127
spiders used by, 173

GoogleRankings.com, 118
graphics. See images

H
hacking

constructive, 11
iMacros, 239–247
webbot activity misinter-

preted as, 266
handle for file, 25
handshake process, 195
hard drives, compressing files on,

87–88
hardware requirements, 5–6
harvest, separating from

payload, 181
harvest_links() function, 177–178
hash, 157–158
haystack, 44
header tags, and search engine

optimization, 299
headers

in email, 147–148
redirection, 113, 288

<head> tag, detecting redirection,
288–290, 312

Hello World! web page, 25
hijacking bandwidth, 104, 291
holidays, scheduling

webbots on, 270
Hormel Foods Corporation, 153n
hotel room prices, aggregating and

filtering data, 16
href attribute

extracting value, 112
of link tag, parsing, 42–43
INDEX 351

webbots2e.book Page 352 Thursday, February 16, 2012 11:59 AM
HTML (Hypertext Markup
Language)

for formatting email, 159–160
parsing

content of reoccurring tags,
41–42

poorly written web pages, 38
text between tags, 40

removing formatting, 88–89
htmlspecialchars() function, 313
HTMLTidy (Tidy), 38, 46
HTTP

header, 31–32
exchanging cookies in, 202
and security, 68

protocol, 25
port for, 256

status codes, 133–134, 337–338
HTTP codes, 337–338

from http_get_withheader() func-
tion, 33

http_get_form() function, 35
http_get_form_withheader()

function, 35
http_get() function, 31–32, 35
http_get_withheader() function,

32–33, 35
http_header() function, 35
http_post_form() function, 35, 168
http_post_withheader() function, 35
http() routine, 31
HTTPS protocol, 194
human patterns, webbot simulation

of, 269–272
Hypertext Markup Language.

See HTML (Hypertext
Markup Language)

I
iMacros. See browser macros
image-capturing webbots, 101–108

binary-safe download routine,
103–104

directory structure, 104–105
execution, 103
main script, 105–107

image-processing loop, 107

images
borrowing from other sites, 104
storing in database, 83–84
thumbnailing, 89–90

 tags
alt attribute, 300
parsing from downloaded web

page, 106–107
src attribute from array,

parsing, 43
incompatible systems, communica-

tion on, 21–22, 151
index file, for web page, 24
indexing web pages, by search

engine spider, 300
infinite loops, preventing, 330
information, aggregating and filter-

ing by relevance, 16
initialization

download_images_for page()
function, 102–103

link-verification webbot,
109–110

search-ranking script, 121–123
input tags in forms, 66
insert() function, 81–82
insertion parse, 123–125
installing

HTMLTidy, 28
iMacros, 230–231
PHP/CURL, 30

intellectual property
law, 318–319
protecting, 19–20

interfaces, data-only, 301–307
Internet

access to, 6
audience for, 2
customizing for business, 12
law, 324–325

Internet Explorer, setting webbot
name to, 75

Internet Protocol (IP) addresses,
275–276

intranet, 6
IP (Internet Protocol) addresses,

275–276
352 INDEX

webbots2e.book Page 353 Thursday, February 16, 2012 11:59 AM
J
Java applets, for deterring

webbots, 314
JavaScript

for data manipulation, 70
deleting, 43–44
for deterring webbots, 313
as event trigger, 70
impact of removing

HTML tags, 89
impact on spider indexing, 180
redirection with, 290

K
Kelly v. Arriba Soft, 322, 324
keywords

in meta tags, 299
spamming, 299

L
landmark, 96

for end of data, 96
to identify table, 241
for table heading row, 96
using least likely to change, 291

legal issues. See also copyright issues
for email, 154
in form emulation, 64
Internet, 324–325
website policies and, 316

legitimate mail, keeping out of
spam filters, 154

LIB_download_images library, 102
LIB_http_codes library, 114, 337–338
LIB_http library

default conditions for, 31
downloading with, 28–35
file for storing cookies, 205
for form analysis emulation,

71–74
for form emulation, 67–69
source code, 34

defaults, 30, 35
functions, 31–34, 35

LIB_mail library, 156–157
LIB_mysql library, 80, 81

exe_sql() function, 81–82
insert() function, 81–82
update() function, 82

LIB_parse library, 37–46
LIB_pop3 library, 149
LIB_resolve_addresses library, 109
LIB_rss library, 133
LIB_simple_spider library, 176–180
LIB_thumbnail library, 89–90
lightweight data exchange, 302–307
$link_array elements, 111
link-verification webbots, 109–115

advanced options, 115
displaying page status, 114
downloading linked page, 113
flowchart, 110
generating fully resolved URLs,

112–113
initialization and downloading

target, 109–110
parsing links, 111
running, 114–115
setting page base, 111–112
verification loop, 111–112

links
broken, using webbot to detect,

109–115
href attribute of tag, parsing,

42–43
impact of removing HTML tags,

88–89
parsing, 111
relative, page base for, 106
saving in database, 181–182
well-defined, and search engine

ranking, 289
Linux, scheduling in, 215
LIST command (POP3), 147
Location: line, in HTTP header, 288
log files

software for monitoring, 268–269
webbot detection with, 266–269

logging in, to POP3 mail server, 146
login criteria, 198
INDEX 353

webbots2e.book Page 354 Thursday, February 16, 2012 11:59 AM
M
Mac OS X, scheduling in, 215
macros, browser. See browser macros
mail() function, 154–155
maximum penetration level for

spider, 174
Message Digest Algorithm (MD5),

195, 202
meta tags, 41–42, 127, 299
MIME type, 34, 148, 159, 307, 331
mkdir() function, 104–105
mkpath() function, 102, 105
monthly scheduling of webbots,

217, 219, 220
Mosaic, 1
MSN, spidering Google, 127
MySQL, 6, 80, 81–84

N
naming

conventions, 78–79
data fields, 66
webbots, 75

National Oceanic and Atmospheric
Association (NOAA), 163

needle, 44
network

socket, 25
adapting to outages and

congestion, 286
Next button, simulating person

clicking, 123
NOAA (National Oceanic and Atmo-

spheric Association), 163
nofollow option, for robots

meta tag, 312
noindex option, for robots

meta tag, 312
non-ASCII content, and search

engine spiders, 301
nonexistent web pages

avoiding requests for, 286–288
containing forms, 292
timeouts to deal with, 331

null string, replacing text with, 45

O
obfuscation, 193, 313
obsolete web pages, risk of

targeting, 287
online

auctions, automating bidding in,
19, 63

clipping service, 20–21
purchases, automating, 185–192

opening tags, for function
parameter, 41

open proxies, 279–280
opensocket() function, 149
optimizing website performance, 17
organic placements in search

results, 118–119
organizing data, 77–85

naming conventions, 77–78
storing images in database,

83–85
storing text in database, 80–83
structured files, 79–80

outgoing header message, from
PHP/CURL session, 331

overhead, in XML file, 302

P
package-tracking information, 145
packet sniffer, 208n, 237
page base

defining, 106
setting, 110–111

$page_base variable, 106
page redirection, 288–290

CURLOPT_FOLLOWLOCATION
option for, 329

for deterring webbots, 313
page signature, 157
paid placements in search results,

118–119
parse_array() function, 41–42, 52,

61–62, 95, 106, 111, 125
parse tolerance, 291
parsing, 37–62

attribute values, 42–43
data set into array, 41–42
354 INDEX

webbots2e.book Page 355 Thursday, February 16, 2012 11:59 AM
image tags from downloaded
web page, 106

with LIB_parse, 39–44
links, 111
poorly written HTML, 46
position vs. relative, 291–292
with regular expressions, 49–62
src attribute, from array of

 tags, 41
standard routines for, 38
text between delimiters, 40
unformatted text, 45

passwords, 198
for deterring webbots, 314

pattern matching, with regular
expressions, 50

alpha, 53
alternate matches, 54
grouping, 55
numbers, 53
character sets, 53
ranges, 55
wildcards, 54

payload for spider, 175, 181
separating from harvest, 182

pay-per-click advertising, 325
PEAR (PHP Extension and Applica-

tion Repository), 305
penetration level for spider, 174
period (.), as POP3 end-of-message

indicator, 147
periodicity of webbots, 217, 225
permanent cookies, 209–210
persistence with cookies, 209
phishing attack, 154
phone numbers, parsing with regu-

lar expressions, 55–59
PHP, 4–5, 6

configuring to send email,
154–155

downloading
with built-in functions, 25–27
with scripts, 23

and FTP, 142
functions, 44–46

for compressing data, 86–87
and SSL, 194

version 5 support for SOAP, 305
website, 6

PHP/CURL, 28
and certificates, 195
and cookies, 202
downloading with, 28–30
encryption and, 194
for following header redirec-

tions, 288, 329
installing, 30
sessions

closing, 335
creating minimal, 327–328
initiating, 328
retrieving information

about, 334
setting options, 328–333
viewing errors, 334–335

PHP Extension and Application
Repository (PEAR), 305

php.ini file, editing to show mail
server location, 154–155

plotting Wi-Fi networks, 21
pokerbots, 17–18
POP3 protocol (Post Office Proto-

col 3), 146–152
authentication failure, 146
executing commands with

webbots, 149–151
port

for HTTP and HTTPS proto-
cols, 194

for POP3 server, 146
position parsing, avoiding, 291
$_POST array, 76
POST method, 68–69

and errors, 267
Post Office Protocol 3 (POP3),

146–152
authentication failure, 146
executing commands with

webbots, 149–151
preg_match_all() function, 51
preg_match() function, 51
preg_replace() function, 50
preg_split() function, 52
INDEX 355

webbots2e.book Page 356 Thursday, February 16, 2012 11:59 AM
price-monitoring webbots, 93–100
parsing script, 96–99
target, 94

procurement bot, 185–192
purchase criteria, 188
purchase triggers, 187
theory, 186–191

project ideas, 15–22
automating tasks, 19
communicating on incompati-

ble systems, 21–22
consolidating industry news

articles, 18–19
intellectual property protection,

19–20
online clipping service, 20
plotting Wi-Fi networks, 21
pokerbots, 17–18
tracking web technologies, 21
verifying access rights, 20
WebSiteOptimization.com, 17

projects
aggregation webbots, 129–137
converting website into func-

tion, 163–170
FTP webbots, 139–143
image-capturing webbots,

101–108
link-verification webbots,

109–115
price-monitoring webbots,

93–100
search-ranking webbots,

117–127
sending email with webbots,

152–161
reading email with webbots,

145–152
proxies, 273–284

commercial, 282
cookie restrictions with, 206
creating a service, 283–284
defined, 273–274
listing services, 280
open, 277–280

anonymous, 280
dark side of, 280

spoofing, 280
transparent, 280

reasons developers use, 274–277
anonymity, 274–276
relocation, 277

Tor, 281–282
configuration for

PHP/CURL, 282
disadvantages of, 282

using, 277
in a browser, 278
with PHP/CURL, 278

public, capitalizing on inexperi-
ence with webbots, 12

purchase
criteria, for procurement

bot, 186
triggers, for procurement

bot, 187

Q
query string sessions, authentica-

tion with, 205–207
question mark (?), in GET

method, 67
QUIT command (POP3), 149

R
random delay, 123
ranking web pages, by search

engine spider, 298
reading mail from POP3 server,

145–152
realm, 200
Real Simple Syndication (RSS)

feed, 130, 131–132
redirection, 288–290

CURLOPT_FOLLOWLOCATION
option for, 329

for deterring webbots, 313
with PHP/CURL, 29

references to image files, storing, 85
referer

management, with
PHP/CURL, 30

variable, 32, 73, 104, 329
356 INDEX

webbots2e.book Page 357 Thursday, February 16, 2012 11:59 AM
regular expressions, 39, 49–62
advanced parsing with, 49–62
avoiding, 39, 47
disadvantages of, 60–61

complicating code, 61
confusing choices, 61
difficulty debugging, 61
lack of context, 60

functions, 50–52
preg_match(), 51
preg_match_all(), 51
preg_replace(), 50
preg_split(), 52
resemblance to PHP

built-in, 52
pattern matching with, 50

alpha, 53
alternate matches, 54
character sets, 53
grouping, 55
numbers, 53
ranges, 55
wildcards, 54

parsing phone numbers with,
55–59

speed of, vs. PHP built-in
functions, 62

types of, 50
PCRE, 50
POSIX, 50

when to use, 60
relational database, 77
relative links, page base for, 106,

110, 111, 115
relay host, 155
relevance, aggregating and filtering

information by, 15
Remote Procedure Call (RPC), 305
remote server, using PHP/CURL to

execute webbot on, 216
remove() function, 43–44
replacing portion of string, 45
Reply-to: address field, 157
Representational State Transfer

(REST), 306–307
resolve_address() function, 113
resources, distributing, 169–170

respect, 318–319
REST (Representational State

Transfer), 306–307
$result array, FILE element, 51–52
RETR command (POP3), 147–148
return_between() function, 40, 61, 134
Return-path: address field, 157
reverse engineering form inter-

faces, 64–65
robot exclusion file, 311
robots meta tag, 312
robots.txt file, 311–312
root

directory, creating for imported
file structure, 106

domain, parsing from target
URL, 178–179

RPC (Remote Procedure Call), 305
RSET command (POP3), 149
RSS (Real Simple Syndication)

feed, 130, 131–132

S
sale item, verifying availability, 187
saving

links in database, 181–182
source code for form, 165

scaling, 249–262. See also botnet
management

causing DoS attacks, 252–253
environments 250–252

many-to-many, 251
many-to-one, 252
one-to-many, 250
one-to-one, 251

multiple instances, creating,
253–254

distributing tasks, 254
forking, 253–254
leveraging the operating

system, 254
scheduling, 215–225

adding variety to, 225
complex, 218–219
disabling, 296
for distributed spider, 183
INDEX 357

webbots2e.book Page 358 Thursday, February 16, 2012 11:59 AM
scheduling, continued
and stealth, 270
webbots to run daily, 217–218
webbots to run monthly, 219
Windows 7 Task Scheduler,

220, 223
Windows XP Task Scheduler,

216–219
scraping, difficult websites, 227–237
scripts, 3, 4–5

writing in small steps, 46
search engine

optimization, 118, 252, 297–300
spiders, 173

design techniques hinder-
ing, 315–316

indexing web pages with, 298
Terms of Service agreement,

126, 310
search-ranking webbots, 117–127

fetching search results, 123
how they work, 120–121
initializing variables, 121–122
parsing search results, 123–126
running, 120
search results page description,

118–119
starting loop, 122
what they do, 120

search results page, parts of, 118–119
search term, in URL, 122
Secure Sockets Layer (SSL),

193–194
CURLOPT_SSL_VERIFYHOST

option for, 195
CURLOPT_SSL_VERIFYPEER

option for, 195
sites, downloading images

from, 103–104
seed URL, 174
sending email, 153–161
server

avoiding undue load on
target, 324

error log, form errors in, 75–76
obtaining clock value, 189–190
remote, using PHP/CURL to

execute webbot on, 216

session
authentication, 202–207
ID, forms with, 66
with proxies, 278
value, dynamically assigned,

167–168
set_time_limit() function, 175, 295
Short Message Service (SMS), 161,

341–344
Simple Object Access Protocol

(SOAP), 170, 305–306
simulating action of person,

269–270
single points of failure,

avoiding, 225
size reduction, 85–90

data compression, 86–88
removing formatting, 88–89
storing references to image

files, 85
SMS (Short Message Service), 161,

341–344
snipers, 185–192

authentication, 189
clock synchronization, 189–190
testing, 191

SOAP (Simple Object Access
Protocol), 170, 305–306

socket management, with
PHP/CURL, 30

software
for monitoring logs, 268–269
requirements for, 6

source code
configuration area of

LIB_mysql, 81
for form

displaying, 165
saving, 166

spam, 153–154, 255, 298
filters, 154
keeping legitimate mail out of,

158–159
keywords, 299
law, 324

spam indexing, 298
special characters, 122, 313
358 INDEX

webbots2e.book Page 359 Thursday, February 16, 2012 11:59 AM
spiders, 173–183
adding payload, 181
distributing tasks across multiple

computers, 182
examples, 175–176
experimenting with, 180–181
how they work, 174
LIB_simple_spider library,

176–180
archive_links() function, 178
exclude_link() function,

179–180
get_domain() function,

178–179
harvest_links() function,

177–178
maximum penetration

level for, 174
options for treating

unwanted, 316
potential ideas for, 173–174
regulating page requests of, 183
saving links in database, 181–182
of search engines, 126–127
setting traps for, 315–316
what to do with unwanted, 316

split_string() function, 39
splitting string, at delimiter, 39
SQL (Structured Query

Language), 80
src attribute, from array of

tags, parsing, 43
SSL (Secure Sockets Layer), 193–194

CURLOPT_SSL_VERIFYHOST
option for, 195

CURLOPT_SSL_VERIFYPEER
option for, 195

sites, downloading images
from, 103–104

$status_code_array, 114–115
status codes, 337–339

HTTP, 337–338
NNTP, 339

status of request, from
http_get_withheader()
function, 32

status messages, quantity created in
file transfer, 333

stealth, 265–272
reasons for, 265–266
and scheduling, 270
simulating human patterns in

order to achieve, 269–270
Stenberg, Daniel, 28
strings

detecting within strings, 44–45
measuring similarity of, 46
replacing portion of, 45
splitting at delimiter, 37

strip_cdata_tags() function, 39
strip_tags() function, 61, 88
stristr() function, 44–45
strops() function, 124
str_replace() function, 45
strstr() function, 45
structured files, 79–80
Structured Query Language

(SQL), 80
submit button, 66
substr() function, 52, 124
synchronization, 21–22,

of clocks for snipers, 189

T
tables

parsing data in, 96
using landmarks to identify,

291–292
tags. See individual tag names
targets, 3–4

validation in
download_images_for_page()
function, 102–103, 105

target URL, defining for
PHP/CURL session, 329

tasks, automating, 19
Task Scheduler (Windows 7),

220–223
Task Scheduler (Windows XP),

216–219
complex scheduling, 218–219
INDEX 359

webbots2e.book Page 360 Thursday, February 16, 2012 11:59 AM
Telnet, 2, 28
for executing POP3 commands,

146–148
temporary cookies, 209–210

purging, 212–213
Terms of Service agreements,

126, 310
for search engines, 118

text
embedding in other media,

314–315
messaging, 161, 341–344
parsing unformatted, 45
removing unwanted, 43–44
storing in database, 80–83

thumbnailing images, 89–90
Tidy (HTMLTidy), 38, 46
time

required for downloading linked
pages, 114

running webbot during busy, 270
timeout

curl_setopt() function for, 294,
331

default for, 31
and spiders, 175

in PHP, changing, 295
for PHP/CURL, 294, 331

timestamp, Unix, 167
<title> tag, and spiders, 298
TLS (Transport Layer Security), 194
Tor, 281–282

configuration for
PHP/CURL, 282

disadvantages of, 282
tracking web technologies, 21–22
TrackRates.com, 16
transactional websites, 192
transfer protocols, PHP/CURL sup-

port for, 28
Transport Layer Security (TLS), 194
trespass-to-chattels law, 241, 253,

271, 322–324
triggers, non-calendar-based,

223–224
trim() function, 61
Tysver, Daniel A., 319

U
undeliverable mail, using to prune

access lists, 152
unformatted text, parsing, 45
unique keywords, 299
Unix

scheduling in, 215
timestamp, 190

unsubscribe options, for email 154
unwanted text, deleting, 43–44
update() function, of LIB_mysql, 82
updating website, frequency for

deterring webbots, 314
uploading files, with FTP, 141
urlencode() function, 112
URLs

adapting to changes, 286–291
page redirection, 288–290
referer values’ accuracy,

290–291
requests for nonexistent

pages, 286–291
defining target for PHP/CURL

session, 329
fully resolved, 112–113

US Copyright Office, 320, 321
usernames, 199

V
validation point, for downloaded

web page, 287–288
variables, passing to webbots,

304–306
verification loop, 110–111
Virginia, Anti-Spam Law, 324
virtual private networks (VPNs), 198
virtual property, laws governing, 324
VPNs (virtual private networks), 198

W
W3C (World Wide Web Consor-

tium), HTTP codes, 113n
weather forecasts, 163
web agents, selectively allowing

access to specific, 311–312
360 INDEX

webbots2e.book Page 361 Thursday, February 16, 2012 11:59 AM
webbot_error_handler() function, 295
WEBBOT_NAME constant, 75
webbots (web robots), 2

benefits of, 9–10
for business leaders, 11–12
for developers, 10–11

cookies and design of, 212–214
countermeasures for, 309–316

with cookies, encryption,
JavaScript, and redirec-
tion, 313

embedding text in other
media, 314–315

obfuscation, 313
reasons for, 309
robots meta tag, 312
robots.txt file, 311–312
allowing selective access to

specific agents, 312–313
Terms of Service agree-

ments, 126, 310
creating first script, 25
daily scheduling of, 217–218
executing

in browsers, 26–27
in command shell, 26

fault-tolerant, 286–296
growth in use, 10
monthly scheduling of, 219
periodicity of, 217, 225
preparing to run as scheduled

tasks, 216
preventing negative conse-

quences of, 317–325. See
also copyright issues

project ideas, 15–22
for reading email, 145–152

and executing POP3 com-
mands, 149–151

and POP3 protocol, 146–149
reasons for stealth, 265–272
script, creating first, 25
for sending email, 153–161
setting traps, 315–316
simulating human patterns,

269–272
spreading burden of running

complex, 169–170

testing, 191
and trespass-to-chattels law, 241,

253, 271, 322–324
weekend scheduling of, 270

web pages
accessibility to webbots, 297–300
adapting to content changes,

291–292
avoiding requests for nonexist-

ent, 286–288
displaying status of, 113–114
notification of change in,

157–160
parsing image tags from down-

loaded, 106
poorly written HTML within, 38
ranking by search engine

spider, 298
status of request for, 337–338
validation point for, 287

web services, 305
designing custom lightweight,

302–305
websites

for book, 4
converting into functions,

163–170
limiting access to, 197–208
optimizing performance of, 17
transactional, 192

web spiders. See spiders
web technologies, tracking, 21
web walkers. See spiders
WebSiteOptimization.com, 17
weekends, scheduling webbots not

to run on, 270
well-defined links, for search engine

optimization, 298
white space, deleting, 45, 89
Wi-Fi networks, plotting, 21
Windows Task Scheduler

Windows 7, 220–223
Windows XP, 216–219

complex scheduling,
218–219

wireless subscriber, mail server, 342
World Wide Web, 1
INDEX 361

webbots2e.book Page 362 Thursday, February 16, 2012 11:59 AM
World Wide Web Consortium
(W3C), HTTP codes, 113n

wrapper function, using
PHP/CURL within, 30

X
XML (eXtensible Markup Lan-

guage), 301–302
assigning tasks, 258, 260
overhead, 302
for RSS feeds, 131

<xmp> and </xmp> tags, 26
displaying parses within, 47

Y
Yahoo!, spiders used by, 173

Z
ZIP codes

database for, 170
web page for decoding, 164–166
362 INDEX

The Electronic Frontier Foundation (EFF) is the leading
organization defending civil liberties in the digital world. We defend
free speech on the Internet, fight illegal surveillance, promote the
rights of innovators to develop new digital technologies, and work to
ensure that the rights and freedoms we enjoy are enhanced —
rather than eroded — as our use of technology grows.

EFF has sued telecom giant AT&T for giving the NSA unfettered access to the
private communications of millions of their customers. eff.org/nsa

EFF’s Coders’ Rights Project is defending the rights of programmers and security
researchers to publish their findings without fear of legal challenges.
eff.org/freespeech

EFF's Patent Busting Project challenges overbroad patents that threaten
technological innovation. eff.org/patent

EFF is fighting prohibitive standards that would take away your right to receive and
use over-the-air television broadcasts any way you choose. eff.org/IP/fairuse

EFF has developed the Switzerland Network Testing Tool to give individuals the tools
to test for covert traffic filtering. eff.org/transparency

EFF is working to ensure that international treaties do not restrict our free speech,
privacy or digital consumer rights. eff.org/global

PRIVACY

FREE SPEECH

INNOVATION

FAIR USE

TRANSPARENCY

INTERNATIONAL

EFF is a member-supported organization. Join Now! www.eff.org/support

NFA_03.book Page 205 Thursday, May 27, 2010 5:35 PMwebbots2e.book Page 363 Thursday, February 16, 2012 11:59 AM

Webbots, Spiders, and Screen Scrapers, 2nd Edition is set in New Baskerville,
TheSansMono Condensed, Futura, and Dogma.

This book was printed and bound at Malloy Incorporated in Ann Arbor,
Michigan. The paper is Glatfelter Spring Forge 60# Smooth, which is certi-
fied by the Sustainable Forestry Initiative (SFI). The book uses a RepKover
binding, which allows it to lie flat when open.

webbots2e.book Page 364 Thursday, February 16, 2012 11:59 AM

webbots2e.book Page 365 Thursday, February 16, 2012 11:59 AM
More no-nonsense books from NO STARCH PRESS

ELOQUENT JAVASCRIPT
A Modern Introduction
to Programming
by MARIJN HAVERBEKE
JANUARY 2011, 224 PP., $29.95
ISBN 978-1-59327-282-1

THE BOOK OF CSS3
A Developer’s Guide to the
Future of Web Design
by PETER GASSTON
MAY 2011, 304 PP., $34.95
ISBN 978-1-59327-286-9

THE LINUX COMMAND LINE
A Complete Introduction
by WILLIAM E. SHOTTS, JR.
JANUARY 2012, 480 PP., $39.95
ISBN 978-1-59327-389-7

THE TANGLED WEB
A Guide to Securing Modern
Web Applications
by MICHAL ZALEWSKI
NOVEMBER 2011, 320 PP., $49.95
ISBN 978-1-59327-388-0

HACKING, 2ND EDITION
The Art of Exploitation
by JON ERICKSON
FEBRUARY 2008, 488 PP. W/CD, $49.95
ISBN 978-1-59327-144-2

A BUG HUNTER’S DIARY
A Guided Tour Through the Wilds
of Software Security
by TOBIAS KLEIN
NOVEMBER 2011, 208 PP., $39.95
ISBN 978-1-59327-385-9

UPDATES
Visit http://nostarch.com/webbots2.htm for updates, errata, and other
information.

PHONE:
800.420.7240 OR

415.863.9900

EMAIL:
SALES@NOSTARCH.COM

WEB:
WWW.NOSTARCH.COM

webbots2e.book Page 366 Thursday, February 16, 2012 11:59 AM

SHELVE IN
:

COM
PUTERS/PROGRAM

M
ING

$39.95 ($41.95 CDN)

W
E

B
B

O
T

S
, S

P
ID

E
R

S
, A

N
D

S
C

R
E

E
N

 S
C

R
A

P
E

R
S

W
E

B
B

O
T

S
, S

P
ID

E
R

S
, A

N
D

S
C

R
E

E
N

 S
C

R
A

P
E

R
S

S
C

H
R

E
N

K
2

N
D

E
D

IT
IO

N AND

W E BBO T S, SPIDE R S,
AND SCR E E N SCR A PE R S

W E BBO T S, SPIDE R S,
SCR E E N SCR A PE R S

A G U I D E T O D E V E L O P I N G I N T E R N E T A G E N T S
W I T H P H P / C U R L

M I C H A E L S C H R E N K

2 N
D

E D
I T I O

N

 “ I L I E F LAT .”

Th is book uses RepKover — a durab le b ind ing that won’t snap shut.

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT ™

There’s a wealth of data online, but sorting and gathering
it by hand can be tedious and time consuming. Rather
than click through page after endless page, why not let
bots do the work for you?

Webbots, Spiders, and Screen Scrapers will show
you how to create simple programs with PHP/CURL to
mine, parse, and archive online data to help you make
informed decisions. Michael Schrenk, a highly regarded

tolerant designs, how best to launch and schedule the
webbot developer, teaches you how to develop fault-

work of your bots, and how to create Internet agents that:

Sample projects for automating tasks like price monitoring
and news aggregation will show you how to put the
concepts you learn into practice.

information quickly
• Send email or SMS notifications to alert you to new

• Search different data sources and combine the results
on one page, making the data easier to interpret and
analyze

activities to save time
• Automate purchases, auction bids, and other online

Valley to Moscow, for clients like the BBC, foreign

A B O U T T H E A U T H O R

Michael Schrenk has developed webbots for over
15 years, working just about everywhere from Silicon

governments, and many Fortune 500 companies. He’s a
frequent Defcon speaker and lives in Las Vegas, Nevada.

S C R A P E ,S C R A P E ,
A U T O M A T E ,A U T O M A T E ,

A N D C O N T R O LA N D C O N T R O L
T H E I N T E R N E TT H E I N T E R N E T

To download the scripts and code

libraries used in the book, visit http://

WebbotsSpidersScreenScrapers.com

webbots that mimic human search behavior, and using

discover the possibilities of web scraping, you’ll see how
webbots can save you precious time and give you much
greater control over the data available on the Web.

This second edition of Webbots, Spiders, and Screen
Scrapers includes tricks for dealing with sites that are
resistant to crawling and scraping, writing stealthy

regular expressions to harvest specific data. As you

T E C H N I C A L R E V I E W B Y D A N I E L S T E N B E R G , C R E A T O R O F C U R L A N D L I B C U R LT E C H N I C A L R E V I E W B Y D A N I E L S T E N B E R G , C R E A T O R O F C U R L A N D L I B C U R L

	Introduction
	Old-School Client-Server Technology
	The Problem with Browsers
	What to Expect from This Book
	Learn from My Mistakes
	Master Webbot Techniques
	Leverage Existing Scripts

	About the Website
	About the Code
	Requirements
	Hardware
	Software
	Internet Access

	A Disclaimer (This Is Important)

	PART I: Fundamental Concepts and Techniques

	1: What’s in It for You?

	Uncovering the Internet’s True Potential
	What’s in It for Developers?
	Webbot Developers Are in Demand
	Webbots Are Fun to Write
	Webbots Facilitate “Constructive Hacking”

	What’s in It for Business Leaders?
	Customize the Internet for Your Business
	Capitalize on the Public’s Inexperience with Webbots
	Accomplish a Lot with a Small Investment

	Final Thoughts

	2: Ideas for Webbot Projects

	Inspiration from Browser Limitations
	Webbots That Aggregate and Filter Information for Relevance
	Webbots That Interpret What They Find Online
	Webbots That Act on Your Behalf
	Figure 2-3: An example pokerbot

	A Few Crazy Ideas to Get You Started
	Help Out a Busy Executive
	Save Money by Automating Tasks
	Protect Intellectual Property
	Monitor Opportunities
	Verify Access Rights on a Website
	Create an Online Clipping Service
	Plot Unauthorized Wi-Fi Networks
	Track Web Technologies
	Allow Incompatible Systems to Communicate

	Final Thoughts

	3: Downloading Web Pages

	Think About Files, Not Web Pages
	Downloading Files with PHP’s Built-in Functions
	Downloading Files with fopen() and fgets()
	Downloading Files with file()

	Introducing PHP/CURL
	Multiple Transfer Protocols
	Form Submission
	Basic Authentication
	Cookies
	Redirection
	Agent Name Spoofing
	Referer Management
	Socket Management

	Installing PHP/CURL
	LIB_http
	Familiarizing Yourself with the Default Values
	Using LIB_http
	Learning More About HTTP Headers
	Examining LIB_http’s Source Code

	Final Thoughts

	4: Basic Parsing Techniques

	Content Is Mixed with Markup
	Parsing Poorly Written HTML
	Standard Parse Routines
	Using LIB_parse
	Splitting a String at a Delimiter: split_string()
	Parsing Text Between Delimiters: return_between()

	Parsing a Data Set into an Array: parse_array()

	Parsing Attribute Values: get_attribute()
	Removing Unwanted Text: remove()

	Useful PHP Functions

	Detecting Whether a String Is Within Another String

	Replacing a Portion of a String with Another String

	Parsing Unformatted Text

	Measuring the Similarity of Strings

	Final Thoughts

	Don't Trust a Poorly Coded Web Page
	Parse in Small Steps

	Don't Render Parsed Te
xt While Debugging
	Use Regular Expressions Sparingly

	5: Advanced Parsing with Regular Expressions

	Pattern Matching, the Key to Regular Expressions

	PHP Regular Expression Types

	PHP Regular Expressions Functions

	Resemblance to PHP Built-In Functions

	Learning Patterns Through Examples

	Parsing Numbers

	Detecting a Series of Characters

	Matching Alpha Characters

	Matching on Wildcards

	Specifying Alternate Matches

	Regular Expressions Groupings and Ranges

	Regular Expressions of Particular Interest to Webbot Developers

	Parsing Phone Numbers

	Where to Go from Here

	When Regular Expressions Are (or Aren’t) the Right Parsing Tool
	Strengths of Regular Expressions
	Disadvantages of Pattern Matching While Parsing Web Pages
	Which Are Faster: Regular Expressions or PHP’s Built-In Functions?

	Final Thoughts

	6: Automating Form Submission

	Reverse Engineering Form Interfaces
	Form Handlers, Data Fields, Methods, and Event Triggers
	Form Handlers
	Data Fields
	Methods
	Multipart Encoding
	Event Triggers

	Unpredictable Forms
	JavaScript Can Change a Form Just Before Submission
	Form HTML Is Often Unreadable by Humans
	Cookies Aren’t Included in the Form, but Can Affect Operation

	Analyzing a Form
	Final Thoughts
	Don’t Blow Your Cover
	Correctly Emulate Browsers
	Avoid Form Errors

	7: Managing Large Amounts of Data

	Organizing Data
	Naming Conventions
	Storing Data in Structured Files
	Storing Text in a Database
	Storing Images in a Database
	Database or File?

	Making Data Smaller
	Storing References to Image Files
	Compressing Data
	Removing Formatting

	Thumbnailing Images
	Final Thoughts

	PART II: Projects

	8: Price-Monitoring Webbots

	The Target
	Designing the Parsing Script
	Initialization and Downloading the Target
	Further Exploration

	9: Image-Capturing Webbots

	Example Image-Capturing Webbot
	Creating the Image-Capturing Webbot
	Binary-Safe Download Routine
	Directory Structure
	The Main Script

	Further Exploration
	Final Thoughts

	10: Link-Verification Webbots

	Creating the Link-Verification Webbot
	Initializing the Webbot and Downloading the Target
	Setting the Page Base
	Parsing the Links
	Running a Verification Loop
	Generating Fully Resolved URLs
	Downloading the Linked Page
	Displaying the Page Status

	Running the Webbot
	LIB_http_codes
	LIB_resolve_addresses

	Further Exploration

	11: Search-Ranking Webbots

	Description of a Search Result Page
	What the Search-Ranking Webbot Does
	Running the Search-Ranking Webbot
	How the Search-Ranking Webbot Works
	The Search-Ranking Webbot Script
	Initializing Variables
	Starting the Loop
	Fetching the Search Results
	Parsing the Search Results

	Final Thoughts
	Be Kind to Your Sources
	Search Sites May Treat Webbots Differently Than Browsers
	Spidering Search Engines Is a Bad Idea
	Familiarize Yourself with the Google API

	Further Exploration

	12: Aggregation Webbots

	Choosing Data Sources for Webbots
	Example Aggregation Webbot
	Familiarizing Yourself with RSS Feeds
	Writing the Aggregation Webbot

	Adding Filtering to Your Aggregation Webbot
	Further Exploration

	13: FTP Webbots

	Example FTP Webbot
	PHP and FTP
	Further Exploration

	14: Webbots That Read Email

	The POP3 Protocol
	Logging into a POP3 Mail Server
	Reading Mail from a POP3 Mail Server

	Executing POP3 Commands with a Webbot
	Further Exploration
	Email-Controlled Webbots
	Email Interfaces

	15: Webbots That Send Email

	Email, Webbots, and Spam
	Sending Mail with SMTP and PHP
	Configuring PHP to Send Mail
	Sending an Email with mail()

	Writing a Webbot That Sends Email Notifications
	Keeping Legitimate Mail out of Spam Filters
	Sending HTML-Formatted Email

	Further Exploration
	Using Returned Emails to Prune Access Lists
	Using Email as Notification That Your Webbot Ran
	Leveraging Wireless Technologies
	Writing Webbots That Send Text Messages

	16: Converting a Website into a Function

	Writing a Function Interface
	Defining the Interface
	Analyzing the Target Web Page
	Using describe_zipcode()

	Final Thoughts
	Distributing Resources
	Using Standard Interfaces
	Designing a Custom Lightweight “Web Service”

	PART III: Advanced Technical Considerations

	17: Spiders

	How Spiders Work
	Example Spider
	LIB_simple_spider
	harvest_links()
	archive_links()
	get_domain()
	exclude_link()

	Experimenting with the Spider
	Adding the Payload
	Further Exploration
	Save Links in a Database
	Separate the Harvest and Payload
	Distribute Tasks Across Multiple Computers
	Regulate Page Requests

	18: Procurement Webbots and Snipers

	Procurement Webbot Theory
	Get Purchase Criteria
	Authenticate Buyer
	Verify Item
	Evaluate Purchase Triggers
	Make Purchase
	Evaluate Results

	Sniper Theory
	Get Purchase Criteria
	Authenticate Buyer
	Verify Item
	Synchronize Clocks
	Time to Bid?
	Submit Bid
	Evaluate Results

	Testing Your Own Webbots and Snipers
	Further Exploration
	Final Thoughts

	19: Webbots and Cryptography

	Designing Webbots That Use Encryption
	SSL and PHP Built-in Functions
	Encryption and PHP/CURL

	A Quick Overview of Web Encryption
	Final Thoughts

	20: Authentication

	What Is Authentication?
	Types of Online Authentication
	Strengthening Authentication by Combining Techniques
	Authentication and Webbots

	Example Scripts and Practice Pages
	Basic Authentication
	Session Authentication
	Authentication with Cookie Sessions
	Authentication with Query Sessions

	Final Thoughts

	21: Advanced Cookie Management

	How Cookies Work
	PHP/CURL and Cookies
	How Cookies Challenge Webbot Design
	Purging Temporary Cookies
	Managing Multiple Users’ Cookies

	Further Exploration

	22: Scheduling Webbots and Spiders

	Preparing Your Webbots to Run as Scheduled Tasks
	The Windows XP Task Scheduler
	Scheduling a Webbot to Run Daily
	Complex Schedules

	The Windows 7 Task Scheduler
	Non-calendar-based Triggers
	Final Thoughts
	Determine the Webbot’s Best Periodicity
	Avoid Single Points of Failure
	Add Variety to Your Schedule

	23: Scraping Difficult Websites with Browser Macros

	Barriers to Effective Web Scraping
	AJAX
	Bizarre JavaScript and Cookie Behavior
	Flash

	Overcoming Webscraping Barriers with Browser Macros
	What Is a Browser Macro?
	The Ultimate Browser-Like Webbot
	Installing and Using iMacros
	Creating Your First Macro

	Final Thoughts
	Are Macros Really Necessary?
	Other Uses

	24: Hacking iMacros

	Hacking iMacros for Added Functionality
	Reasons for Not Using the iMacros Scripting Engine
	Creating a Dynamic Macro
	Launching iMacros Automatically

	Further Exploration

	25: Deployment and Scaling

	One-to-Many Environment
	One-to-One Environment
	Many-to-Many Environment
	Many-to-One Environment
	Scaling and Denial-of-Service Attacks
	Even Simple Webbots Can Generate a Lot of Traffic
	Inefficiencies at the Target
	The Problems with Scaling Too Well

	Creating Multiple Instances of a Webbot
	Forking Processes
	Leveraging the Operating System
	Distributing the Task over Multiple Computers

	Managing a Botnet
	Botnet Communication Methods

	Further Exploration

	PART IV: Larger Considerations

	26: Designing Stealthy Webbots and Spiders

	Why Design a Stealthy Webbot?
	Log Files
	Log-Monitoring Software

	Stealth Means Simulating Human Patterns
	Be Kind to Your Resources
	Run Your Webbot During Busy Hours
	Don’t Run Your Webbot at the Same Time Each Day
	Don’t Run Your Webbot on Holidays and Weekends
	Use Random, Intra-fetch Delays

	Final Thoughts

	27: Proxies

	What Is a Proxy?
	Proxies in the Virtual World
	Why Webbot Developers Use Proxies
	Using Proxies to Become Anonymous
	Using a Proxy to Be Somewhere Else

	Using a Proxy Server
	Using a Proxy in a Browser
	Using a Proxy with PHP/CURL

	Types of Proxy Servers
	Open Proxies
	Tor
	Commercial Proxies

	Final Thoughts
	Anonymity Is a Process, Not a Feature
	Creating Your Own Proxy Service

	28: Writing Fault-Tolerant Webbots

	Types of Webbot Fault Tolerance
	Adapting to Changes in URLs
	Adapting to Changes in Page Content
	Adapting to Changes in Forms
	Adapting to Changes in Cookie Management
	Adapting to Network Outages and Network Congestion

	Error Handlers
	Further Exploration

	29: Designing Webbot-Friendly Websites

	Optimizing Web Pages for Search Engine Spiders
	Well-Defined Links
	Google Bombs and Spam Indexing
	Title Tags
	Meta Tags
	Header Tags
	Image alt Attributes

	Web Design Techniques That Hinder Search Engine Spiders
	JavaScript
	Non-ASCII Content

	Designing Data-Only Interfaces
	XML
	Lightweight Data Exchange
	SOAP
	REST

	Final Thoughts

	30: Killing Spiders

	Asking Nicely
	Create a Terms of Service Agreement
	Use the robots.txt File
	Use the Robots Meta Tag

	Building Speed Bumps
	Selectively Allow Access to Specific Web Agents
	Use Obfuscation
	Use Cookies, Encryption, JavaScript, and Redirection
	Authenticate Users
	Update Your Site Often
	Embed Text in Other Media

	Setting Traps
	Create a Spider Trap
	Fun Things to Do with Unwanted Spiders

	Final Thoughts

	31: Keeping Webbots out of Trouble

	It’s All About Respect
	Copyright
	Do Consult Resources
	Don’t Be an Armchair Lawyer

	Trespass to Chattels
	Internet Law
	Final Thoughts

	A: PHP/CURL Reference

	Creating a Minimal PHP/CURL Session
	Initiating PHP/CURL Sessions
	Setting PHP/CURL Options
	CURLOPT_URL
	CURLOPT_RETURNTRANSFER
	CURLOPT_REFERER
	CURLOPT_FOLLOWLOCATION and CURLOPT_MAXREDIRS
	CURLOPT_USERAGENT
	CURLOPT_NOBODY and CURLOPT_HEADER
	CURLOPT_TIMEOUT
	CURLOPT_COOKIEFILE and CURLOPT_COOKIEJAR
	CURLOPT_HTTPHEADER
	CURLOPT_SSL_VERIFYPEER
	CURLOPT_USERPWD and CURLOPT_UNRESTRICTED_AUTH
	CURLOPT_POST and CURLOPT_POSTFIELDS
	CURLOPT_VERBOSE
	CURLOPT_PORT

	Executing the PHP/CURL Command
	Retrieving PHP/CURL Session Information
	Viewing PHP/CURL Errors

	Closing PHP/CURL Sessions

	B: Status Codes

	HTTP Codes
	NNTP Codes

	C: SMS Gateways

	Sending Text Messages
	Reading Text Messages
	A Sampling of Text Message Email Addresses

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 100
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 100
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[Smallest File Size]'] Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks true
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

