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Preface

The creation of a truly autonomous and intelligent system — one that can sense,
learn from, and interact with its environment, one that can integrate seamlessly
into the day-to-day lives of humans — has ever been the motivating factor
behind the huge body of work on artificial intelligence, control theory and
robotics, autonomous (land, sea, and air) vehicles, and numerous other discip-
lines. The technology involved is highly complex and multidisciplinary, posing
immense challenges for researchers at both the module and system integra-
tion levels. Despite the innumerable hurdles, the research community has, as a
whole, made great progress in recent years. This is evidenced by technological
leaps and innovations in the areas of sensing and sensor fusion, modeling and
control, map building and path planning, artificial intelligence and decision
making, and system architecture design, spurred on by advances in related
areas of communications, machine processing, networking, and information
technology.

Autonomous systems are gradually becoming a part of our way of life,
whether we consciously perceive it or not. The increased use of intelligent
robotic systems in current indoor and outdoor applications bears testimony
to the efforts made by researchers on all fronts. Mobile systems have greater
autonomy than before, and new applications abound — ranging from fact-
ory transport systems, airport transport systems, road/vehicular systems, to
military applications, automated patrol systems, homeland security surveil-
lance, and rescue operations. While most conventional autonomous systems
are self-contained in the sense that all their sensors, actuators, and computers
are on board, it is envisioned that more and more will evolve to become open net-
worked systems with distributed processing power, sensors (e.g., GPS, cameras,
microphones, and landmarks), and actuators.

It is generally agreed that an autonomous system consists primarily of the
following four distinct yet interconnected modules:

(i) Sensors and Sensor Fusion

(ii)) Modeling and Control
(iii)) Map Building and Path Planning
(iv) Decision Making and Autonomy

These modules are integrated and influenced by the system architecture design
for different applications.

vii
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viii Preface

This edited book tries for the first time to provide a comprehensive treatment
of autonomous mobile systems, ranging from related fundamental technical
issues to practical system integration and applications. The chapters are writ-
ten by some of the leading researchers and practitioners working in this field
today. Readers will be presented with a complete picture of autonomous mobile
systems at the systems level, and will also gain a better understanding of the
technological and theoretical aspects involved within each module that com-
poses the overall system. Five distinct parts of the book, each consisting of
several chapters, emphasize the different aspects of autonomous mobile sys-
tems, starting from sensors and control, and gradually moving up the cognitive
ladder to planning and decision making, finally ending with the integration of
the four modules in application case studies of autonomous systems.

The first part of the book is dedicated to sensors and sensor fusion. The four
chapters treat in detail the operation and uses of various sensors that are crucial
for the operation of autonomous systems. Sensors provide robots with the cap-
ability to perceive the world, and effective utilization is of utmost importance.
The chapters also consider various state-of-the art techniques for the fusion
and utilization of various sensing information for feature detection and pos-
ition estimation. Vision sensors, RADAR, GPS and INS, and landmarks are
discussed in detail in Chapters 1 to 4 respectively.

Modeling and control issues concerning nonholonomic systems are dis-
cussed in the second part of the book. Real-world systems seldom present
themselves in the form amenable to analysis as holonomic systems, and the
importance of nonholonomic modeling and control is evident. The four chapters
of this part, Chapters 5 to 8, thus present novel contributions to the control of
these highly complicated systems, focusing on discontinuous control, unified
neural fuzzy control, adaptive control with actuator dynamics, and the control
of car-like vehicles for vehicle tracking maneuvers, respectively.

The third part of the book covers the map building and path planning aspects
of autonomous systems. This builds on technologies in sensing and control to
further improve the intelligence and autonomy of mobile robots. Chapter 9
discusses the specifics of building an accurate map of the environment, using
either single or multiple robots, with which localization and motion planning
can take place. Probabilistic motion planning as a robust and efficient planning
scheme is examined in Chapter 10. Action coordination and formation control
of multiple robots are investigated in Chapter 11.

Decision making and autonomy, the highest levels in the hierarchy of
abstraction, are examined in detail in the fourth part of the book. The three
chapters in this part treat in detail the issues of representing knowledge, high
level planning, and coordination mechanisms that together define the cognitive
capabilities of autonomous systems. These issues are crucial for the devel-
opment of intelligent mobile systems that are able to reason and manipulate
available information. Specifically, Chapters 12 to 14 present topics pertaining
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Preface ix

to knowledge representation and decision making, algorithms for planning
under uncertainties, and the behavior-based coordination of multiple robots.

In the final part of the book, we present a collection of chapters that deal
with the system integration and engineering aspects of large-scale autonom-
ous systems. These are usually considered as necessary steps in making new
technologies operational and are relatively neglected in the academic com-
munity. However, there is no doubt that system integration plays a vital role
in the successful development and deployment of autonomous mobile systems.
Chapters 15 and 16 examine the issues involved in the design of autonomous
commercial robots and automotive systems, respectively. Chapter 17 presents a
hierarchical system architecture that encompasses and links the various (higher
and lower level) components to form an intelligent, complex system.

We sincerely hope that this book will provide the reader with a cohesive
picture of the diverse, yet intimately related, issues involved in bringing about
truly intelligent autonomous robots. Although the treatment of the topics is
by no means exhaustive, we hope to give the readers a broad-enough view of
the various aspects involved in the development of autonomous systems. The
authors have, however, provided a splendid list of references at the end of each
chapter, and interested readers are encouraged to refer to these references for
more information. This book represents the amalgamation of the truly excellent
work and effort of all the contributing authors, and could not have come to
fruition without their contributions. Finally, we are also immensely grateful
to Marsha Pronin, Michael Slaughter, and all others at CRC Press (Taylor &
Francis Group) for their efforts in making this project a success.
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Abstract

As technology advances, it has been envisioned that in the very near future,
robotic systems will become part and parcel of our everyday lives. Even at
the current stage of development, semi-autonomous or fully automated robots
are already indispensable in a staggering number of applications. To bring
forth a generation of truly autonomous and intelligent robotic systems that will
meld effortlessly into the human society involves research and development on
several levels, from robot perception, to control, to abstract reasoning.

This book tries for the first time to provide a comprehensive treatment
of autonomous mobile systems, ranging from fundamental technical issues to
practical system integration and applications. The chapters are written by some
of the leading researchers and practitioners working in this field today. Readers
will be presented with a coherent picture of autonomous mobile systems at the
systems level, and will also gain a better understanding of the technological
and theoretical aspects involved within each module that composes the overall
system. Five distinct parts of the book, each consisting of several chapters,
emphasize the different aspects of autonomous mobile systems, starting from
sensors and control, and gradually moving up the cognitive ladder to planning
and decision making, finally ending with the integration of the four modules in
application case studies of autonomous systems.

This book is primarily intended for researchers, engineers, and graduate
students involved in all aspects of autonomous mobile robot systems design
and development. Undergraduate students may also find the book useful, as a
complementary reading, in providing a general outlook of the various issues
and levels involved in autonomous robotic system design.

xvii
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Sensors and Sensor Fusion

Mobile robots participate in meaningful and intelligent interactions with other
entities — inanimate objects, human users, or other robots — through sensing
and perception. Sensing capabilities are tightly linked to the ability to perceive,
without which sensor data will only be a collection of meaningless figures.
Sensors are crucial to the operation of autonomous mobile robots in unknown
and dynamic environments where it is impossible to have complete a priori
information that can be given to the robots before operation.

In biological systems, visual sensing offers a rich source of information to
individuals, which in turn use such information for navigation, deliberation,
and planning. The same may be said of autonomous mobile robotic systems,
where vision has become a standard sensory tool on robots. This is especially
so with the advancement of image processing techniques, which facilitates the
extraction of even more useful information from images captured from mounted
still or moving cameras. The first chapter of this part therefore, focuses on
the use of visual sensors for guidance and navigation of unmanned vehicles.
This chapter starts with an analysis of the various requirements that the use of
unmanned vehicles poses to the visual guidance equipment. This is followed by
an analysis of the characteristics and limitations of visual perception hardware,
providing readers with an understanding of the physical constraints that must be
considered in the design of guidance systems. Various techniques currently in
use for road and vehicle following, and for obstacle detection are then reviewed.
With the wealth of information afforded by various visual sensors, sensor fusion
techniques play an important role in exploiting the available information to
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2 Autonomous Mobile Robots

further improve the perceptual capabilities of systems. This issue is discussed,
with examples on the fusion of image data with LADAR information. The
chapter concludes with a discussion on the open problems and challenges in
the area of visual perception.

Where visual sensing is insufficient, other sensors serve as additional
sources of information, and are equally important in improving the naviga-
tional and perceptual capabilities of autonomous robots. The use of millimeter
wave RADAR for performing feature detection and navigation is treated in
detail in the second chapter of this part. Millimeter wave RADAR is capable of
providing high-fidelity range information when vision sensors fail under poor
visibility conditions, and is therefore, a useful tool for robots to use in perceiving
their environment. The chapter first deals with the analysis and characterization
of noise affecting the measurements of millimeter wave RADAR. A method is
then proposed for the accurate prediction of range spectra. This is followed by
the description of a robust algorithm, based on target presence probability, to
improve feature detection in highly cluttered environments.

Aside from providing robots with a view of the environment it is immersed
in, certain sensors also give robots the ability to analyze and evaluate its
own state, namely, its position. Augmentation of such information with those
garnered from environmental perception further provides robots with a clearer
picture of the condition of its environment and the robot’s own role within
it. While visual perception may be used for localization, the use of internal
and external sensors, like the Inertial Navigation System (INS) and the Global
Positioning System (GPS), allows refinement of estimated values. The third
chapter of this part treats, in detail, the use of both INS and GPS for position
estimation. This chapter first provides a comprehensive review of the Extended
Kalman Filter (EKF), as well as the basics of GPS and INS. Detailed treat-
ment of the use of the EKF in fusing measurements from GPS and INS is
then provided, followed by a discussion of various approaches that have been
proposed for the fusion of GPS and INS.

In addition to internal and external explicit measurements, landmarks in the
environment may also be utilized by the robots to get a sense of where they
are. This may be done through triangulation techniques, which are described
in the final chapter of this part. Recognition of landmarks may be performed
by the visual sensors, and localization is achieved through the association of
landmarks with those in internal maps, thereby providing position estimates.
The chapter provides descriptions and experimental results of several different
techniques for landmark-based position estimation. Different landmarks are
used, ranging from laser beacons to visually distinct landmarks, to moveable
landmarks mounted on robots for multi-robot localization.

This part of the book aims to provide readers with an understanding of the
theoretical and practical issues involved in the use of sensors, and the important
role sensors play in determining (and limiting) the degree of autonomy mobile
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Sensors and Sensor Fusion 3

robots possess. These sensors allow robots to obtain a basic set of observations
upon which controllers and higher level decision-making mechanisms can act
upon, thus forming an indispensable link in the chain of modules that together
constitutes an intelligent, autonomous robotic system.

© 2006 by Taylor & Francis Group, LLC



’I Visual Guidance for
Autonomous Vehicles:
Capability and
Challenges

Andrew Shacklock, Jian Xu, and Han Wang

CONTENTS
0 S 012 (0T L 7 5 (o) 3 6
| 0 O B 004111 < 6
1.1.2 Classes of UGV ..o 7
1.2 Visual Sensing Technology .........ccooiiiiiiiiiiiiiiiiiiiiiiian, 8
1.2.1 ViSual SENSOIS ... .vveteeiteee et 8
1.2.1.1  Passive imaging .........c.ccoovviiiieeiiininnnen... 9
1.2.1.2 ACHIVE SENSOTS «.''uuttiieeeeiiiieeeeeaniieeeenns 10
1.2.2 Modeling of Image Formation and Calibration.............. 12
1.2.2.1 The ideal pinhole model ........................... 12
1.2.2.2  Calibration ............ccceeeeiiiiiiiieaiiiiiena.n. 13
1.3 Visual Guidance SYStemS .........ovuuriieeeiiiiiiiiiieeiiiiieeeenn. 15
1.3.1 ArChiteCture .........cooviiuiiiiieiiiiiiiii e, 15
1.3.2  World Model Representation ..............coovvvviiiiia..... 15
1.3.3  Physical Limitations ..., 17
1.3.4 Road and Vehicle Following..............c.oocviiiiiininn. 19
1.3.4.1 State-of-the-art ...........cooiiiiiiiiiiiiiiiea., 19
1.3.4.2 Aroad cameramodel ................ooiiiil, 21
1.3.5 Obstacle Detection ...........oeeeiiiiiiiiiiiiiiiiieeannnns 23
1.3.5.1 Obstacle detection using range data ............... 23
1.3.5.2  Stereo VISiOn .....ovvveieiiiiiiei i 24
1.3.5.3 Application examples .............cceeviiunieeen... 26
1.3.6 Sensor Fusion .........c..oooiiiiiiiiiiiiiiiiiiiiiiiii 28
1.4 Challenges and SOIUHONS .. ...ttt 33
1.4.1 Terrain Classification............c.ooviiiiiiiiiiiiiiiiniiena... 33

© 2006 by Taylor & Francis Group, LLC



6 Autonomous Mobile Robots

1.4.2  Localization and 3D Model Building from Vision .......... 34
1.5 CONCIUSION . ..uuittttiet e et 36
Acknowledgments ...........oooiiii e 37
References ... ..ooiiui e 37
BiOgraphies .....coouiniit et 40

1.1 INTRODUCTION

1.1.1 Context

Current efforts in the research and development of visual guidance technology
for autonomous vehicles fit into two major categories: unmanned ground
vehicles (UGVs) and intelligent transport systems (ITSs). UGVs are primarily
concerned with off-road navigation and terrain mapping whereas ITS (or auto-
mated highway systems) research is a much broader area concerned with safer
and more efficient transport in structured or urban settings. The focus of this
chapter is on visual guidance and therefore will not dwell on the definitions of
autonomous vehicles other than to examine how they set the following roles of
vision systems:

Detection and following of a road
Detection of obstacles

Detection and tracking of other vehicles
Detection and identification of landmarks

These four tasks are relevant to both UGV and ITS applications, although
the environments are quite different. Our experience is in the development
and testing of UGVs and so we concentrate on these specific problems in this
chapter. We refer to achievements in structured settings, such as road-following,
as the underlying principles are similar, and also because they are a good starting
point when facing complexity of autonomy in open terrain.

This introductory section continues with an examination of the expectations
of UGVs as laid out by the Committee on Army Unmanned Ground Vehicle
Technology in its 2002 road map [1]. Next, in Section 1.2, we give an overview
of the key technologies for visual guidance: two-dimensional (2D) passive ima-
ging and active scanning. The aim is to highlight the differences between various
options with regard to our task-specific requirements. Section 1.3 constitutes
the main content of this chapter; here we present a visual guidance system (VGS)
and its modules for guidance and obstacle detection. Descriptions concentrate
on pragmatic approaches adopted in light of the highly complex and uncer-
tain tasks which stretch the physical limitations of sensory systems. Examples
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are given from stereo vision and image—ladar integration. The chapter ends
by returning to the road map in Section 1.4 and examining the potential role
of visual sensors in meeting the key challenges for autonomy in unstructured
settings: terrain classification and localization/mapping.

1.1.2 Classes of UGV

The motivation or driving force behind UGV research is for military application.
This fact is made clear by examining the sources of funding behind prominent
research projects. The DARPA Grand Challenge is an immediate example at
hand [2]. An examination of military requirements is a good starting point, in
an attempt to understand what a UGV is and how computer vision can play
a part in it, because the requirements are well defined. Another reason is that
as we shall see the scope and classification of UGVs from the U.S. military
is still quite broad and, therefore, encompasses many of the issues related to
autonomous vehicle technology. A third reason is that the requirements for
survivability in hostile environments are explicit, and therefore developers are
forced to face the toughest problems that will drive and test the efficacy of
visual perception research. These set the much needed benchmarks against
which we can assess performance and identify the most pressing problems.
The definitions of various UGVs and reviews of state-of-the-art are available in
the aforementioned road map [1]. This document is a valuable source for anyone
involved in autonomous vehicle research and development because the future
requirements and capability gaps are clearly set out. The report categorizes four
classes of vehicles with increasing autonomy and perception requirements:

Teleoperated Ground Vehicle (TGV). Sensors enable an operator to visualize
location and movement. No machine cognition is needed, but experience has
shown that remote driving is a difficult task and augmentation of views with
some of the functionality of automatic vision would help the operator. Fong [3] is
a good source for the reader interested in vehicle teleoperation and collaborative
control.

Semi-Autonomous Preceder—Follower (SAP/F). These devices are envis-
aged for logistics and equipment carrying. They require advanced navigation
capability to minimize operator interaction, for example, the ability to select a
traversable path in A-to-B mobility.

Platform-Centric AGV (PC-AGYV). This is a system that has the autonomy
to complete a task. In addition to simple mobility, the system must include extra
terrain reasoning for survivability and self-defense.

Network-Centric AGV (NC-AGYV). This refers to systems that operate as
nodes in tactical warfare. Their perception needs are similar to that of PC-AGVs
but with better cognition so that, for example, potential attackers can be
distinguished.
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TABLE 1.1
Classes of UGV
Class kph Capability gaps Perception tasks TRL 6
Searcher (TGV) All-weather sensors Not applicable 2006
Donkey (SAP/F) 40  Localization and mapping  Detect static obstacles, 2009
algorithms traversable paths
Wingman 100  Long-range sensors and Terrain assessment to detect 2015
(PC-AGV) sensors for classifying potential cover
vegetation
Hunter-killer 120  Multiple sensors and Identification of enemy 2025
(NC-AGV) fusion forces, situation awareness

The road map identifies perception as the priority area for development and
defines increasing levels of “technology readiness.” Some of the require-
ments and capability gaps for the four classes are summarized and presen-
ted in Table 1.1. Technology readiness level 6 (TRL 6) is defined as the
point when a technology component has been demonstrated in a relevant
environment.

These roles range from the rather dumb donkey-type device used to carry
equipment to autonomous lethal systems making tactical decisions in open
country. It must be remembered, as exemplified in the inaugural Grand
Challenge, that the technology readiness levels of most research is a long
way from meeting the most simple of these requirements. The Challenge is
equivalent to a simple A-to-B mobility task for the SAP/F class of UGVs. On
a more positive note, the complexity of the Grand Challenge should not be
understated, and many past research programs, such as Demo III, have demon-
strated impressive capability. Such challenges, with clearly defined objectives,
are essential for making progress as they bring critical problems to the fore and
provide a common benchmark for evaluating technology.

1.2 VISUAL SENSING TECHNOLOGY

1.2.1 Visual Sensors

We first distinguish between passive and active sensor systems: A passive sensor
system relies upon ambient radiation, whereas an active sensor system illumin-
ates the scene with radiation (often laser beams) and determines how this is
reflected by the surroundings. Active sensors offer a clear advantage in outdoor
applications; they are less sensitive to changes in ambient conditions. How-
ever, some applications preclude their use; they can be detected by the enemy
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in military scenarios, or there may be too many conflicting sources in a civilian
setting. At this point we also highlight a distinction between the terms “act-
ive vision” and ‘“‘active sensors.” Active vision refers to techniques in which
(passive) cameras are moved so that they can fixate on particular features [4].
These have applications in robot localization, terrain mapping, and driving in
cluttered environments.

1.2.1.1 Passive imaging

From the application and performance standpoint, our primary concern
is procuring hardware that will acquire good quality data for input to
guidance algorithms; so we now highlight some important considerations when
specifying a camera for passive imaging in outdoor environments.

The image sensor (CCD or CMOS). CMOS technology offers certain
advantages over the more familiar CCDs in that it allows direct access to indi-
vidual blocks of pixels much as would be done in reading computer memory.
This enables instantaneous viewing of regions of interest (ROI) without the
integration time, clocking, and shift registers of standard CCD sensors. A key
advantage of CMOS is that additional circuitry can be built into the silicon
which leads to improved functionality and performance: direct digital out-
put, reduced blooming, increased dynamic range, and so on. Dynamic range
becomes important when viewing outdoor scenes with varying illumination:
for example, mixed scenes of open ground and shadow.

Color or monochrome. Monochrome (B&W) cameras are widely used
in lane-following systems but color systems are often needed in off-road
(or country track) environments where there is poor contrast in detecting travers-
able terrain. Once we have captured a color image there are different methods
of representing the RGB components: for example, the RGB values can be
converted into hue, saturation, and intensity (HSI) [5]. The hue component of
a surface is effectively invariant to illumination levels which can be important
when segmenting images with areas of shadow [6,7].

Infrared (IR). Figure 1.1 shows some views from our semi-urban scene test
circuit captured with an IR camera. The hot road surface is quite distinct as
are metallic features such as manhole covers and lampposts. Trees similarly
contrast well against the sky but in open country after rainfall, different types
of vegetation and ground surfaces exhibit poor contrast. The camera works on
a different transducer principle from the photosensors in CCD or CMOS chips.
Radiation from hot bodies is projected onto elements in an array that heat up,
and this temperature change is converted into an electrical signal. At present,
compared to visible light cameras, the resolution is reduced (e.g., 320 x 240
pixels) and the response is naturally slower. There are other problems to contend
with, such as calibration and drift of the sensor. IR cameras are expensive
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FIGURE 1.1 A selection of images captured with an IR camera. The temperature of sur-
faces gives an alternative and complementary method of scene classification compared
to standard imaging. Note the severe lens distortion.

and there are restrictions on their purchase. However, it is now possible to
install commercial night-vision systems on road vehicles: General Motors offers
a thermal imaging system with head-up display (HUD) as an option on the
Cadillac DeVille. The obvious application for IR cameras is in night driving but
they are useful in daylight too, as they offer an alternative (or complementary)
way of segmenting scenes based on temperature levels.

Catadioptric cameras. In recent years we have witnessed the increasing
use of catadioptric! cameras. These devices, also referred to as omnidirec-
tional, are able to view a complete hemisphere with the use of a parabolic
mirror [8]. Practically, they work well in structured environments due to the
way straight lines project to circles. Bosse [9] uses them indoors and outdoors
and tracks the location of vanishing points in a structure from motion (SFM)
scheme.

1.2.1.2 Active sensors

A brief glimpse through robotics conference proceedings is enough to demon-
strate just how popular and useful laser scanning devices, such as the ubiquitous
SICK, are in mobile robotics. These devices are known as LADAR and are

1 Combining reflection and refraction; that is, a mirror and lens.
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available in 2D and 3D versions but the principles are essentially similar: a
laser beam is scanned within a certain region; if it reflects back to the sensor
off an obstacle, the time-of-flight (TOF) is measured.

2D scanning. The majority of devices used on mobile robots scan (pan)
through 180° in about 13 msec at an angular resolution of 1°. Higher resolution
is obtained by slowing the scan, so at 0.25° resolution, the scan will take about
52 msec. The sensor thus measures both range and bearing {r, 6} of obstacles
in the half plane in front of it. On a moving vehicle the device can be inclined
at an angle to the direction of travel so that the plane sweeps out a volume as
the vehicle moves. It is common to use two devices: one pointing ahead to
detect obstacles at a distance (max. range ~80 m); and one inclined downward
to gather 3D data from the road, kerb, and nearby obstacles. Such devices are
popular because they work in most conditions and the information is easy to
process. The data is relatively sparse over a wide area and so is suitable for
applications such as localization and mapping (Section 1.4.2). A complication,
in off-road applications, is caused by pitching of the vehicle on rough terrain:
this creates spurious data points as the sensor plane intersects the ground plane.
Outdoor feature extraction is still regarded as a very difficult task with 2D ladar
as the scan data does not have sufficient resolution, field-of-view (FOV), and
data rates [10].

3D scanning. To measure 3D data, the beam must be steered though
an additional axis (tilt) to capture spherical coordinates {r, 6, ¢: range, pan,
tilt}. There are many variations on how this can be achieved as an opto-
electromechanical system: rotating prisms, polygonal mirrors, or galvono-
metric scanners are common. Another consideration is the order of scan; one
option is to scan vertically and after each scan to increment the pan angle
to the next vertical column. As commercial 3D systems are very expensive,
many researchers augment commercial 2D devices with an extra axis, either by
deflecting the beam with an external mirror or by rotating the complete sensor
housing [11].

It is clear that whatever be the scanning method, it will take a protracted
length of time to acquire a dense 3D point cloud. High-resolution scans used
in construction and surveying can take between 20 and 90 min to complete a
single frame, compared to the 10 Hz required for a real-time navigation system
[12]. There is an inevitable compromise to be made between resolution and
frame rate with scanning devices. The next generation of ladars will incorporate
flash technology, in which a complete frame is acquired simultaneously on a
focal plane array (FPA). This requires that individual sensing elements on the
array incorporate timing circuitry. The current limitation of FLASH/FPA is the
number of pixels in the array, which means that the FOV is still small, but this
can be improved by panning and tilting of the sensor between subframes, and
then creating a composite image.
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In summary, ladar offers considerable advantages over passive imaging but
there remain many technical difficulties to be overcome before they can meet
the tough requirements for vehicle guidance. The advantages are:

e Unambiguous 3D measurement over wide FOV and distances
e Undiminished night-time performance and tolerance to adverse
weather conditions

The limitations are:

Relatively high cost, bulky, and heavy systems

Limited spatial resolution and low frame rates

Acquisition of phantom points or multiple points at edges or
permeable surfaces

Active systems may be unacceptable in certain applications

The important characteristics to consider, when selecting a ladar for a guid-
ance application, are: angular resolution, range accuracy, frame rate, and cost.
An excellent review of ladar technology and next generation requirements is
provided by Stone at NIST [12].

1.2.2 Modeling of Image Formation and Calibration

1.2.2.1 The ideal pinhole model

It is worthwhile to introduce the concept of projection and geometry and some
notation as this is used extensively in visual sensing techniques such as stereo
and structure from motion. Detail is kept to a minimum and the reader is referred
to standard texts on computer vision for more information [13-15]. The stand-
ard pinhole camera model is adopted, while keeping in mind the underlying
assumptions and that it is an ideal model. A point in 3D space {X € R?} pro-
jects to a point on the 2D image plane {¥ € R?} according to the following
equation:

x = PX: P € R>* (1.1)

This equation is linear because we use homogeneous coordinates by aug-
menting the position vectors with a scalar (X = [)~(T 11T € R*) and likewise
the image point (x = [x y w]T € R3: ¥ = x/w). A powerful and more natural
way of treating image formation is to consider the ray model as an example
of projective space. P is the projection matrix and encodes the position of the
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camera and its intrinsic parameters. We can rewrite (1.1) as:

x=K[R TIX:K eR>3, ReSOQB), TeR? (1.2)

Internal (or intrinsic) parameters. These are contained in the calibration

matrix K, which can be parameterized by: focal length (f), aspect ratio («), skew
(s), and the location of the offset of the principal point in the image {ug, vo}.

fos uo
K=10 aof w (1.3)
0 0 1

External (or extrinsic) parameters. These are the orientation and position
of the camera with respect to the reference system: R and T in Equation 1.2.

1.2.2.2 Calibration

We can satisfy many vision tasks working with image coordinates alone and a
projective representation of the scene. If we want to use our cameras as meas-
urement devices, or if we want to incorporate realistic dynamics in motion
models, or to fuse data in a common coordinate system, we need to upgrade
from a projective to Euclidean space: that is, calibrate and determine the
parameters. Another important reason for calibration is that the wide-angle
lenses, commonly used in vehicle guidance, are subject to marked lens distortion
(see Figure 1.1); without correction, this violates the assumptions of the ideal
pinhole model.

A radial distortion factor is calculated from the coefficients {k;} and the
radial distance (r) of a pixel from the center {x,, y,}.

8(r)=14+kir +kartir = (G —x)> + Ga —yp))" (14
The undistorted coordinates are then
(X =Gg —xp)8 +xp, Yy = Ga — yp)S + yp) (1.5)

Camera calibration is needed in a very diverse range of applications and so
there is wealth of reference material available [16,17]. For our purposes, we
distinguish between two types or stages of calibration: linear and nonlinear.

1. Linear techniques use a least-squares type method (e.g., SVD) to
compute a transformation matrix between 3D points and their 2D pro-
jections. Since the linear techniques do not include any lens distortion
model, they are quick and simple to calculate.

© 2006 by Taylor & Francis Group, LLC



14 Autonomous Mobile Robots

2. Nonlinear optimization techniques account for lens distortion in
the camera model through iterative minimization of a determined
function. The minimizing function is usually the distance between
the image points and modeled projections.

In guidance applications, it is common to adopt a two-step technique: use
a linear optimization to compute some of the parameters and, as a second step,
use nonlinear iteration to refine, and compute the rest. Since the result from the
linear optimization is used for the nonlinear iteration, the iteration number
is reduced and the convergence of the optimization is guaranteed [18-20].
Salvi [17] showed that two-step techniques yield the best result in terms of
calibration accuracy.

Calibration should not be a daunting prospect because many software tools
are freely available [21,22]. Much of the literature originated from photo-
grammetry where the requirements are much higher than those in autonomous
navigation. It must be remembered that the effects of some parameters, such as
image skew or the deviation of the principal point, are insignificant in com-
parison to other uncertainties and image noise in field robotics applications.
Generally speaking, lens distortion modeling using a radial model is sufficient
to guarantee high accuracy, while more complicated models may not offer much
improvement.

A pragmatic approach is to carry out much of the calibration off-line in
a controlled setting and to fix (or constrain) certain parameters. During use,
only a limited set of the camera parameters need be adjusted in a calibration
routine. Caution must be employed when calibrating systems in sifu because
the information from the calibration routine must be sufficient for the degrees of
freedom of the model. If not, some parameters will be confounded or wander in
response to noise and, later, will give unpredictable results. A common problem
encountered in field applications is attempting a complete calibration off essen-
tially planar data without sufficient and general motion of the camera between
images. An in situ calibration adjustment was adopted for the calibration of the
IR camera used to take the images of Figure 1.1. The lens distortion effects were
severe but were suitably approximated and corrected by a two-coefficient radial
distortion model, in which the coefficients (k1, ko) were measured off-line. The
skew was set to zero; the principal point and aspect ratio were fixed in the
calibration matrix. The focal length varied with focus adjustment but a default
value (focused at infinity) was measured. Of the extrinsic parameters, only the
tilt of the camera was an unknown in its application: the other five were set by
the rigid mounting fixtures. Once mounted on the vehicle, the tilt was estimated
from the image of the horizon. This gave an estimate of the camera calibration
which was then improved given extra data. For example, four known points
are sufficient to calculate the homographic mapping from ground plane to the
image. However, a customized calibration routine was used that enforced the
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constraints and the physical degrees of freedom of the camera, yet was stable
enough to work from data on the ground plane alone. As a final note on calib-
ration: any routine should also provide quantified estimates of the uncertainty
of the parameters determined.

1.3 VisuAL GUIDANCE SYSTEMS

1.3.1 Architecture

The modules of a working visual guidance system (VGS) are presented in
Figure 1.2. So far, we have described the key sensors and sensor models. Before
delving into task-specific processes, we need to clarify the role of VGS within
the autonomous vehicle system architecture. Essentially, its role is to capture
raw sensory data and convert it into model representations of the environment
and the vehicle’s state relative to it.

1.3.2 World Model Representation

A world model is a hierarchical representation that combines a variety of sensed
inputs and a priori information [23]. The resolution and scope at each level are
designed to minimize computational resource requirements and to support plan-
ning functions for that level of the control hierarchy. The sensory processing
system that populates the world model fuses inputs from multiple sensors and
extracts feature information, such as terrain elevation, cover, road edges, and
obstacles. Feature information from digital maps, such as road networks, elev-
ation, and hydrology, can also be incorporated into this rich world model. The
various features are maintained in different layers that are registered together to
provide maximum flexibility in generation of vehicle plans depending on mis-
sion requirements. The world model includes occupancy grids and symbolic
object representations at each level of the hierarchy. Information at different
hierarchical levels has different spatial and temporal resolution. The details of
a world model are as follows:

Low resolution obstacle map and elevation map. The obstacle map consists
of a 2D array of cells [24]. Each cell of the map represents one of the follow-
ing situations: traversable, obstacle (positive and negative), undefined (such as
blind spots), potential hazard, and so forth. In addition, high-level terrain classi-
fication results can also be incorporated in the map (long grass or small bushes,
steps, and slopes). The elevation contains averaged terrain heights.

Mid-resolution terrain feature map. The features used are of two types,
smooth regions and sharp discontinuities [25].

A priori information. This includes multiple resolution satellite maps and
other known information about the terrain.

© 2006 by Taylor & Francis Group, LLC



FIGURE 1.2  Architecture of the VGS.
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Model update mechanism. As the vehicle moves, new sensed data inputs can
either replace the historical ones, or a map-updating algorithm can be activated.

We will see real examples of occupancy grids in Section 1.5.3 and
Section 1.3.6 (Figure 1.8 and Figure 1.9).

1.3.3 Physical Limitations

We now examine the performance criteria for visual perception hardware with
regards to the classes of UGVs. Before we even consider algorithms, the phys-
ical realities of the sensing tasks are quite daunting. The implications must
be understood and we will demonstrate with a simple analysis. A wide FOV
is desirable so that there is a view of the road in front of the vehicle at close
range. The combination of lens focal length (f) and image sensor dimensions
(H, V) determine the FOV and resolution. For example, a 1/2" sensor has image
dimensions (H = 6.4 mm, V = 4.8 mm). The angle of view (horizontally) is
approximated by

0 2 arct 1 (1.6)
= 2 arctan — .
H o

and it is easily calculated that a focal length of 5 mm will equate to an angle
of view of approximately 65° with a sensor of this size. It is also useful to
quote a value for the angular resolution; for example, the number of pixels per
degree. With an output of 640 x 480 pixels, the resolution for this example is
approximately 10 pixels per degree (or 1.75 mrad/pixel).

Now consider the scenario of a UGV progressing along a straight flat road
and that it has to avoid obstacles of width 0.5 m or greater. We calculate the
pixel size of the obstacle, at various distances ahead, for a wide FOV and a
narrow FOV, and also calculate the time it will take the vehicle to reach the
obstacle. This is summarized in Table 1.2.

TABLE 1.2
Comparison of Obstacle Image Size for Two Fields-of-
View and Various Distances to the Object

Obstacle size (pixel) Time to cover distance (sec)

Distance, d (m) FOV 60° FOV 10° 120 kph 60 kph 20 kph

8 35 113 0.24 0.48 1.44
20 14 45 0.6 1.2 3.6
50 5.6 18 1.5 3 9
300 0.9 3 9 18 54

© 2006 by Taylor & Francis Group, LLC



18 Autonomous Mobile Robots

d
X
AR
X h
X
N
N
N
~
N
~N
~N
N
~
~
AN

FIGURE 1.3 The ability of a sensor to image a negative obstacle is affected by the
sensor’s height, resolution, and the size of the obstacle. It is very difficult to detect holes
until the vehicle is within 10 m.

It can be observed from Table 1.2 that:

1. The higher the driving speed, the further the camera lookahead dis-
tance should be to give sufficient time for evasive action. For example,
if the system computation time is 0.2 sec and the mechanical latency
is 0.5 sec, a rough guideline is that at least 50 m warning is required
when driving at 60 kph.

2. Atlonger lookahead distances, there are fewer obstacle pixels in the
image — we would like to see at least ten pixels to be confident
of detecting the obstacle. A narrower FOV is required so that the
obstacle can be seen.

A more difficult problem is posed by the concept of a negative obstacle: a
hole, trench, or water hazard. It is clear from simple geometry and Figure 1.3
that detection of trenches from imaging or range sensing is difficult. A trench
is detected as a discontinuity in range data or the disparity map. In effect we
only view the projection of a small section of the rear wall of the trench: that is,
the zone bounded by the rays incident with the forward and rear edges.

We conclude from Table 1.3 that with a typical camera mounting height of
2.5 m, a trench of width 1 m will not be reliably detected at a distance of 15 m,
assuming a minimum of 10 pixels are required for negative obstacle detection.
This distance is barely enough for a vehicle to drive safely at 20 kph. The
situation is improved by raising the camera; at a height of 4 m, the ditch will
be detected at a distance of 15 m. Alternatively, we can select a narrow FOV
lens. For example, a stereo vision system with FOV (15°H x 10°V) is able to
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TABLE 1.3
Influence of Camera Height on Visibility of Negative
Obstacles

Visibility of negative obstacle (pixels)
trench width w=1m

Distance, d (m) Camera height h =2.5m Camera height h =4 m

8 21 (0.31 m) 35(0.5m)
15 6.8 (0.17 m) 11 (0.27 m)
25 2.5 (0.1 m) 4(0.16 m)

cover a width of 13 m at distance 25 m and possibly detect a ditch {w = 1 m,
h = 4 m} by viewing 8 pixels of the ditch.
There are several options for improving the chances of detecting an obstacle:

Raising the camera. This is not always an option for practical and oper-
ational reasons; for example, it makes the vehicle easier to detect by the
enemy.

Increasing focal length. This has a direct effect but is offset by prob-
lems with exaggerated image motion and blurring. This becomes an important
consideration when moving over a rough terrain.

Increased resolution. Higher-resolution sensors are available but they will
not help if a sharp image cannot be formed by the optics, or if there is image blur.

The trade-off between resolution and FOV is avoided (at extra cost and
complexity) by having multiple sensors. Figure 1.4 illustrates the different
fields-of-view and ranges of the sensors on the VGS. Dickmanns [26,27], uses
a mixed focal system comprising two wide-angle cameras with divergent axes,
giving a wide FOV (100°). A high-resolution three-chip color camera with
greater focal length is placed between the other cameras for detecting objects
at distance. The overlapping region of the cameras’ views give a region of
trinocular stereo.

1.3.4 Road and Vehicle Following
1.3.4.1 State-of-the-art

Extensive work has been carried out on road following systems in the late 1980s
and throughout the 1990s; for example, within the PROMETHEUS Programme
which ran from 1987 until 1994. Dickmanns [28] provides a comprehensive
review of the development of machine vision for road vehicles. One of the key
tasks is lane detection, in which road markings are used to monitor the position
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2D ladar|

FIGURE 1.4 Different subsystems of the VGS provide coverage over different field-
of-view and range. There is a compromise between FOV and angular resolution. The
rectangle extending to 20 m is the occupancy grid on which several sensory outputs
are fused.

of the vehicle relative to the road: either for driver assistance/warning or for
autonomous lateral control. Lane detection is therefore a relatively mature tech-
nology; anumber of impressive demonstrations have taken place [29], and some
systems have achieved commercial realization such as Autovue and AssistWare.
There are, therefore, numerous sources of reference where the reader can find
details on image processing algorithms and details of practical implementation.
Good places to start are at the PATH project archives at UCLA, the final report
of Chauffeur II programme [30], or the work of Broggi on the Argo project [29].
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The Chauffeur II demonstration features large trucks driving in convoy
on a highway. The lead vehicle is driven manually and other trucks equipped
with the system can join the convoy and enter an automatic mode. The system
incorporates lane tracking (lateral control) and maintaining a safe distance to the
vehicle in front (longitudinal control). This is known as a “virtual tow-bar” or
“platooning.” The Chauffeur II demonstration is highly structured in the sense
that it was implemented on specific truck models and featured inter-vehicle
communication. Active IR patterns are placed on the rear of the vehicles to aid
detection, and radar is also used. The PATH demonstration (UCLA, USA) used
stereo vision and ladar. The vision system tracks features on a car in front and
estimates the range of an arbitrary car from passive stereo disparity. The ladar
system provides assistance by guiding the search space for the vehicle in front
and increasing overall robustness of the vision system. This is a difficult stereo
problem because the disparity of features on the rear of car is small when viewed
from a safe driving separation. Recently much of the research work in this area
has concentrated on the problems of driving in urban or cluttered environments.
Here, there are the complex problems of dealing with road junctions, traffic
signs, and pedestrians.

1.3.4.2 A road camera model

Road- and lane-following algorithms depend on road models [29]. These mod-
els have to make assumptions such as: the surface is flat; road edges or markings
are parallel; and the like. We will examine the camera road geometry because,
with caution, it can be adapted and applied to less-structured problems. For
simplicity and without loss of generality, we assume that the road lies in the
plane Z = 0. From Equation 1.1, setting all Z coordinates of X to zero is equi-
valent to striking out the third column of the projection matrix P in Equation 1.2.
There is a homographic correspondence between the points of the road plane
and the points of the image plane which can be represented by a 3 x 3 matrix
transformation. This homography is part of the general linear group GL3 and as
such inherits many useful properties of this group. The projection Equation 1.1
becomes

x =HX: H e R>3 (1.7)

As a member of the group, a transformation H must®> have an inverse,
so there will also be one-to-one mapping of image points (lines) to points
(lines) on the road plane. The elements of H are easily determined (calib-
ration) by finding at least four point correspondences in general position on

2 The exception to this is when the road plane passes through the camera center, in which case H
is singular and noninvertible (but in this case the road would project to a single image line and the
viewpoint would not be of much use).
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FIGURE 1.5 The imaging of planar road surface is represented by a one-to-one invert-
ible mapping. A rectangular search region projects to a trapezoidal search region in
the image.

the planes.> The homography can be expressed in any valid representation of
the projective space: that is, we can change the basis to match the camera
coordinate system. This means that the road does not have to be the plane
Z = 0 but can be an arbitrary plane in 3D; the environment can be modeled
as a set of discrete planes IT; each with a homography H; that maps it to the
image plane.

In practice we use the homography to project a search region onto the
image; a rectangular search space on the road model becomes a trapezoid on
the image (Figure 1.5). The image is segmented, within this region, into road
and nonroad areas. The results are then projected onto the occupancy grid for
fusion with other sensors. Care must be taken because 3D obstacles within the
scene may become segmented in the image as driveable surfaces and because
they are “off the plane,” their projections on the occupancy grid will be very
misleading. Figure 1.6 illustrates this and some other important points regarding
this use of vision and projections to and from the road surface. Much information
within the scene is ignored; the occupancy gird will extend to about 20 m
in front of the vehicle but perspective effects such as vanishing points can
tell us a lot about relative direction, or be used to anticipate events ahead.
The figure also illustrates that, due to the strong perspective, the uncertainty
on the occupancy grid will increase rapidly as the distance from the vehicle
increases. (This is shown in the figure as the regular spaced [2 m] lane markings
on the road rapidly converge to a single pixel in the image.) Both of these
considerations suggest that an occupancy grid is convenient for fusing data but

3 Four points give an exact solution; more than four can reduce the effects of noise using least
squares; known parameters of the projection can be incorporated in a nonlinear technique. When
estimating the coefficients of a homography, principles of calibration as discussed in Section 4.2.2.2
apply. Further details and algorithms are available in Reference 13.
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FIGURE 1.6 The image on the left is of a road scene and exhibits strong perspective
which in turn results in large differences in the uncertainty of reprojected measurements.
The figure on the right was created by projecting the lower 300 pixels of the image onto
a model of the ground plane. The small box (20 x 20 m?) represents the extent of a
typical occupancy grid used in sensor fusion.

transformation to a metric framework may not be the best way to represent visual
information.

1.3.5 Obstacle Detection

1.3.5.1 Obstacle detection using range data

The ability to detect and avoid obstacles is a prerequisite for the success of the
UGYV. The purpose of obstacle detection is to extract areas that cannot or should
not be traversed by the UGV. Rocks, fences, trees, and steep upward slopes are
some typical examples. The techniques used in the detection of obstacles may
vary according to the definition of “obstacle.” If “obstacle” means a vehicle or
a human being, then the detection can be based on a search for specific patterns,
possibly supported by feature matching. For unstructured terrain, a more general
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definition of obstacle is any object that can obstruct the vehicle’s driving path
or, in other words, anything rising out significantly from the road surface.

Many approaches for extracting obstacles from range images have been
proposed. Most approaches use either a global or a local reference plane to
detect positive (above the reference plane) or negative (below the reference
plane) obstacles. It is also possible to use salient points detected by an elevation
differential method to identify obstacle regions [31]. The fastest of obstacle
detection algorithms, range differencing, simply subtract the range image of
an actual scene from the expected range image of a horizontal plane (global
reference plane). While rapid, this technique is not very robust, since mild
slopes will result in false indications of obstacles. So far the most frequently
used and most reliable solutions are based on comparison of 3D data with
local reference planes. Thorpe et al. [22] analyzed scanning laser range data
and constructed a surface property map represented in a Cartesian coordinate
system viewed from above, which yielded the surface type of each point and its
geometric parameters for segmentation of the scene map into traversable and
obstacle regions. The procedure includes the following.

Preprocessing. The input from a 2D ladar may contain unreliable range data
resulting from surfaces such as water or glossy pigment, as well as the mixed
points at the edge of an object. Filtering is needed to remove these undesirable
jumps in range. After that, the range data are transformed from angular to
Cartesian (x-y-z) coordinates.

Feature extraction and clustering. Surface normals are calculated from x-y-z
points. Normals are clustered into patches with similar normal orientations.
Region growth is used to expand the patches until the fitting error is larger than
a given threshold. The smoothness of a patch is evaluated by fitting a surface
(plane or quadric).

Defect detection. Flat, traversable surfaces will have vertical surface nor-
mals. Obstacles will have surface patches with normals pointed in other
directions.

Defect analysis. A simple obstacle map is not sufficient for obstacle ana-
lysis. For greater accuracy, a sequence of images corresponding to overlapping
terrain is combined in an extended obstacle map. The analysis software can
also incorporate color or curvature information into the obstacle map.

Extended obstacle map output. The obstacle map with a header (indic-
ating map size, resolution, etc.) and a square, 2D array of cells (indicating
traversability) are generated for the planner.

1.3.5.2 Stereo vision

Humans exploit various physiological and psychological depth cues. Stereo
cameras are built to mimic one of the ways in which the human visual system
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FIGURE 1.7  Epipolar geometry is valid for general positions of two views. The figure
on the left illustrates the epipolar lines for two frames (1 and 2). However, if the optical
axes are parallel and the camera parameters are similar, stereo matching or the search for
corresponding features is much easier. The figure on the right illustrates the horizontal
and collinear epipolar lines in a left-right configuration with fixed baseline B.

(HVS) works to obtain depth information [32]. In a standard configuration,
two cameras are bound together with a certain displacement (Figure 1.7). This
distance between the two camera centers is called the baseline B. In stereo
vision, the disparity measurement is the difference in the positions of two cor-
responding points in the left and right images. In the standard configuration, the
two camera coordinate systems are related simply by the lateral displacement
B (Xg = X1 + B). As the cameras are usually “identical” (f = frp = f) and
aligned such that (Z; = Zr = Z) the epipolar geometry and projection equation
(x = f X/Z) enable depth Z to be related to disparity d:

X, +B
Z

d f Iy (18)

=XgR — XL = — =f= .
R — XL 7 7

where f is the focal length of the cameras. Since B and F are constants, the

depth z can be calculated when d is known from stereo matching (Z = fB/d).

1.3.5.2.1 Rectification

As shown in Figure 1.7, for a pair of images, each point in the “left” image is
restricted to lie on a given line in the “right” image, the epipolar line — and
vice versa. This is called the epipolar constraint. In standard configurations the
epipolar lines are parallel to image scan lines, and this is exploited in many
algorithms for stereo analysis. If valid, it enables the search for corresponding
image features to be confined to one dimension and, hence, simplified. Stereo
rectification is a process that transforms the epipolar lines so that they are
collinear, and both parallel to the scan line. The idea behind rectification [33] is
to define two new perspective matrices which preserve the optical centers but
with image planes parallel to the baseline.
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1.3.5.2.2 Multi-baseline stereo vision

Two main challenges facing a stereo vision system are: mismatch (e.g., points
in the left image match the wrong points in the right image) and disparity
accuracy. To address these issues, multiple (more than two) cameras can be
used. Nakamura et al. [34] used an array of cameras to resolve occlusion by
introducing occlusion masks which represent occlusion patterns in a real scene.
Zitnick and Webb [35] introduced a system of four cameras that are horizontally
displaced and analyze potential 3D surfaces to resolve the feature matching
problem.

When more than two cameras or camera locations are employed, multiple
stereo pairs (e.g., cameras 1 and 2, cameras 1 and 3, cameras 2 and 3, etc.)
result in multiple, usually different baselines. In the parallel configuration,
each camera is a lateral displacement of the other. For a given depth, we then
calculate the respective expected disparities relative to a reference camera (say,
the leftmost camera) as well as the sum of match errors over all the cameras.
The depth associated with a given pixel in the reference camera is taken to be
the one with the lowest error. The multi-baseline approach has two distinctive
advantages over the classical stereo vision [36]:

e It can find a unique match even for a repeated pattern such as the
cosine function.
e It produces a statistically more accurate depth value.

1.3.5.2.3 General multiple views

During the 1990s significant research was carried out on multiple view geo-
metry and demonstrating that 3D reconstruction is possible using uncalibrated
cameras in general positions [14]. In visual guidance, we usually have the
advantage of having calibrated cameras mounted in rigid fixtures so there seems
little justification for not exploiting the simplicity and speed of the algorithms
described earlier. However, the fact that we can still implement 3D vision even
if calibration drifts or fixtures are damaged, adds robustness to the system
concept. Another advantage of more general algorithms is that they facilitate
mixing visual data from quite different camera types or from images taken from
arbitrary sequences in time.

1.3.5.3 Application examples

In this section we present some experimental results of real-time stereo-vision-
based obstacle detection for unstructured terrain. Two multi-baseline stereo
vision systems (Digiclops from Pointgrey Research, 6 mm lens) were mounted
at a height of 2.3 m in front and on top of the vehicle, spaced 20 cm apart.
The two stereo systems were calibrated so that their outputs were referred to
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FIGURE 1.8 (a) Isodisparity profile lines generated from the disparity map using a
LUT method. (b) A single isodisparity line (curved line), its reference line (straight) and
detected obstacle pixels. (c) Detected obstacle points. (d) Obstacle map.

the same vehicle coordinate system. A centralized triggering signal was gener-
ated for the stereo systems and other sensors to synchronize the data capturing.
The stereo systems were able to generate disparity maps at a frequency of
10 frames/sec. To detect obstacles, an isodisparity profile-based obstacle detec-
tion method was introduced [37], which converted the 3D obstacle detection
into 1D isodisparity profile segmentation. The system output was an obstacle
map with 75 x 75 elements, each representing a 0.2 m x 0.2 m area within
15 m x 15 m in front of the vehicle. Seventy-five isodisparity profiles were
generated from the disparity map using a look-up-table method (Figure 1.8a).
The name isodisparity comes from the fact that points in each profile line have
the same disparity value. Regardless of the size of the disparity map (usu-
ally 320 x 240 pixels), the method was able to identify 75 x 75 points from
the disparity image, which exactly matched the elements of the obstacle map.
By processing these 75 x 75 points using reference-line-based histogram clas-
sification, obstacle points were detected with subpixel accuracy. Figure 1.8a
shows the profiles of a typical test terrain with road and bushes. Figure 1.8b
shows the calculated reference lines. It is noteworthy that the reference lines
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form a curved surface instead of a planar surface used by other approaches.
The final obstacle detection result and map are displayed in Figure 1.8c and d,
respectively.

1.3.6 Sensor Fusion

The most important task of a VGS is to provide accurate terrain descriptions
for the path planner. The quality of terrain maps is assessed by miss rate and
false alarm. Here, the miss rate refers to the occurrence frequency of missing
a true obstacle while a false alarm is when the VGS classifies a traversable
region as an obstacle region. Imaging a stereo vision system with a frame rate
of 10 Hz will generate 3000 obstacle maps in 5 min. Even with a successful
classification rate of 99.9%, the system may produce an erroneous obstacle
map three times of which may cause an error in path planning. The objective of
sensor fusion is to combine the results from multiple sensors, either at the raw
data level or at the obstacle map level, to produce a more reliable description
of the environment than any sensor individually. Some examples of sensor
fusion are:

N-modular redundancy fusion: Fusion of three identical radar units can
tolerate the failure of one unit.

Fusion of complementary sensors: Color terrain segmentation results can
be used to verify 3D terrain analysis results.

Fusion of competitive sensors: Although both laser and stereo vision per-
form obstacle detection, their obstacle maps can be fused to reduce false
alarms.

Synchronization of sensors: Different sensors have different resolutions
and frame rates. In addition to calibrating all sensors using the same vehicle
coordinates, sensors need to be synchronized both temporally and spatially
before their results can be merged. Several solutions can be applied for sensor
synchronization.

An external trigger signal based synchronization: For sensors with external
trigger capability such as IR, color, and stereo cameras, their data capturing can
be synchronized by a hardware trigger signal from the control system of the
UGV. For laser or ladar, which do not have such capability, the data captured at
the time nearest to the trigger signal are used as outputs. In this case, no matter
how fast a laser scanner can scan (usually 20 frames/sec), the fusion frame rate
depends on the slowest sensor (usually stereo vision, around 10 frames/sec).

A centralized time stamp for each image from each sensor: In this case
sensors capture data as fast as they can. Since each sensor normally has its
own CPU for data processing, a centralized control system will send out a
standardized time stamp signal to all CPUs regularly (say, every 1 h) to minimize
the time stamp drift.
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When sensor outputs are read asynchronously, certain assumptions such as
being Linear Time Invariant (LTI) [38] can be made to propagate asynchron-
ized data to the upcoming sample time of the control system. Robl [38] showed
examples of using first-order hold and third-order hold methods to predict sensor
values at desired times. When different resolution sensors are to be fused
at the data level (e.g., fusion of range images from ladar and stereo vision),
down-sampling of sensor data with higher spatial resolution by interpolation
is performed. For sensor fusion at the obstacle map level, spatial synchron-
ization is not necessary since a unique map representation is defined for all
Sensors.

Example: Fusion of laser and stereo obstacle maps for false alarm suppression

Theoretically, pixel to pixel direct map fusion is possible if the calibra-
tion and synchronization of the geometrical constraints (e.g., rotation and
translation between laser and stereo system) remain unchanged after calib-
ration. Practically, however, this is not realistic, partially due to the fact that
sensor synchronization is not guaranteed at all times: CPU loading, terrain
differences, and network traffic for the map output all affect the synchroniza-
tion. Feature-based co-registration sensor fusion, alternatively, addresses this
issue by computing the best-fit pose of the obstacle map features relative to
multiple sensors which allows refinement of sensor-to-sensor registration. In
the following, we propose a localized correlation based approach for obstacle-
map-level sensor fusion. Assuming the laser map L;; and stereo map S;; is to be
merged to form F;. A map element takes the value O for a traversable pixel, 1
for an obstacle, and anything between 0 and 1 for the certainty of the pixel to be
classified as an obstacle. We formulate the correlation-based sensor fusion as

L S;j = undefined
Sij L;j = undefined

i =) @1y + a2Siemgen) /(@ +a2) max(Corr(LySismgin) mon € Q
undefined Sij, Lij = undefined

(1.9)

where €2 represents a search area and {a1, a>} are weighting factors. Corr(L, )
is the correlation between L and S elements with window size w:

we/2 we/2

Corr(LigSismjtn) = Y. Y LitpjsqSitmipjintq  (1.10)
pP=—wc/2 g=—wc/2
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The principle behind the localized correlation sensor fusion is: instead of
directly averaging L;; and Sj; to get Fj;, a search is performed to find the best
match within a small neighborhood. The averaging of the center pixel at a
matched point produces the final fusion map.

In case an obstacle map only takes three values: obstacle, traversable, and
undefined; the approach above can be simplified as

L S = undefined
Sij  Ljj = undefined

Fi=31 Lj=1,Cyp>T,D<T, (1.11)
1 8;=1Co>T1,D<T,

0  otherwise

where T and T, are preset thresholds that depend on the size of the search
window. In our experiments a window of size 5 x 5 pixels was found to
work well. The choice of size is a compromise between noise problems with
small windows and excessive boundary points with large windows. Cy, and
Cj, are obstacle pixel counts within the comparison window we, for L;; and S;;,
respectively, D is the minimum distance between L;; and §j; in €2:

we/2 we/2
D=min| > > ISimipjintg — Livpjrgl | (mm) €@ (1.12)
p=—wc/2 gq=—w¢/2
we/2 we/2

Co= Y, D Sitmipjtntq (1.13)

p=—w¢/2 q=—wc/2

The advantage of implementing correlation-based fusion method is two-
fold: it reduces false alarm rates and compensates for the inaccuracy from
laser and stereo calibration/synchronization. The experimental results of using
above mentioned approach for laser and stereo obstacle map fusion are shown
in Figure 1.9.

The geometry of 2D range and image data fusion. Integration of sensory
data offers much more than a projection onto an occupancy grid. There exist
multiple view constraints between image and range data analogous to those
between multiple images. These constraints help to verify and disambiguate
data from either source, so it is useful to examine the coordinate transformations
and the physical parameters that define them. This will also provide a robust
framework for selecting what data should be fused and in which geometric
representation.
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FIGURE 1.9 Sensor fusion of laser and stereo obstacle maps. False alarm in laser
obstacle map (left image, three laser scanning lines at the top of the map), is suppressed
by fusion with the stereo vision obstacle map (middle image), and a more reliable fusion
result is generated (right image).

First, consider the relationship between a data point from the ladar and a
world coordinate system. We can transform {r,0} to a point X in a Cartesian
space. A 3D point X will be detected by an ideal ladar if it lies in the plane
[1z—o expressed in the sensor’s coordinate system. (This is neglecting the range
limits, and the finite size and divergence of the laser beam). If the plane, in the
world coordinate system, is denoted as I, the set of points that can be detected
satisfy

Mx =0 (1.14)

Alternatively we expand the rigid transformation equation and express this as
a constraint (in sensor coordinates)

RY T
xx=G6/x qGV=("1* (1.15)
0 1
Only the third row of G [r3; Tz] plays any part in the planar constraint on the
point {X = [X ¥ Z 1]T}. The roles of the parameters are then explicit:

X +rpY+r3Z+77=0 (1.16)

However, if the vehicle is moving over tough terrain there will be considerable
uncertainty in the instantaneous parameters of R and 7. We therefore look at
a transformation between ladar data and image data without reference to any
world coordinate system. Assuming there are no occlusions, X will be imaged
as x on the image plane I1; of the camera. As X lies in a plane I, there exists
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a homography H (abbreviated from H IL ladar to image) that maps X to x.

x=HX:H e R¥3 (1.17)

This mapping is unambiguous and is parameterized by the geometry
between the two sensors which is less uncertain than the geometry with
reference to a world coordinate system. H can be solved from point
correspondences and if required it can be decomposed into the geometric
parameters relating the two planes.

The reverse mapping is not unambiguous: a point X is the image of the ray
passing through x and the optical center Oc. We can map x (with H~!) to a
single point p {r, 6} in the laser parameter space but there is no guarantee that
the true 3D point that gave rise to X in the image came from this plane. Another
consideration is that image-ladar correspondences are rarely point-to-point but
line-to-point. (ladar data rarely comes from a distinct point in 3D; it is more
likely to have come from a set of points such as a vertical edge or the surface of
a tree.) Consider the image of the pole shown in Figure 1.10; the pre-image of
this is a plane, and so the image line could be formed from an infinite set of lines
(apencil) in this plane. However, knowledge of the laser point p, constrains the
3D space line to the pencil of lines concurrent with X. Furthermore, assuming
that the base of the image line corresponds to the ground plane is sufficient
to define a unique space line. There are various ways to establish mappings
between the two types of sensors without reliance on a priori parameters with
their associated uncertainties.

FIGURE 1.10 There is ambiguity in both ladar and imaging data. There are geometric
constraints between the sets of data that will assist in disambiguation and improving
reliability of both systems.
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One of the key problems in processing ladar data is data association.
For example, consider capturing data from a tree. The points that are detec-
ted depend on the viewpoint: that is, surface features are not pose invariant
[10]. This problem becomes easier with the use of a putative model of the tree
whose 2D position is determined by a centroid, which is invariant. Such a model
is easier to initiate if image data provides the evidence that the data points match
image features with the correct “tree-like” attributes. Once we have a model we
can anticipate where to search for features to match data points and vice-versa.
In this case we want to compare the real data with a model prediction but this
has to be very efficient given the large amount of data and hypotheses that will
occur. A typical problem is to test if a model patch will be detected by a sensor,
and how many data points to expect. Range detection is equivalent to ray inter-
section and is more easily solved after projection into a 2D space: a cylindrical
projection is sufficient and preserves the topology.

To summarize, in isolation there is much ambiguity in either sensor, and
exchanging information using image constraints can reduce this problem. The
difficulty is how to implement this practically as the concept of “being like
a tree” is more abstract than the neat formulation of raw data fusion as seen
in Section 1.3.6. This lack of precise mathematical formulation and reliance
on heuristic rules deters many researchers. However, recent advances and
increased processing speeds have made probabilistic reasoning techniques tract-
able and worthy of consideration in real-time problems such as visual guidance
and terrain assessment.

1.4 CHALLENGES AND SOLUTIONS

The earlier sections have detailed many of the practical difficulties of visually
based guidance and presented pragmatic techniques used during field demon-
strations. To be realistic, autonomous vehicles represent a highly complex set
of problems and current capability is still at the stage of the SAP/F “donkey”
engaged in A-to-B mobility. To extend this capability, researchers need to think
further along the technology road map [1] and tackle perception challenges
such as: terrain mapping, detection of cover, classification of vegetation, and
the like.

1.4.1 Terrain Classification

Obstacle detection based only on distance information is not sufficient. Long
grass or small bushes will also be detected as obstacles because of their height.
However, the vehicle could easily drive through these “soft” obstacles. Altern-
atively, soft vegetation can cover a dangerous slope but appear as a traversable
surface. To reduce unnecessary avoidance driving, detected obstacles need to
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be classified as “dangerous” or “not dangerous.” Color cameras can be used to
perform terrain classification. Color segmentation relies on having a complete
training set. As lighting changes, due to time of day or weather conditions, the
appearance of grass and obstacle change as well. Although color normalization
methods have been successfully applied to the indoor environment, they, to
our knowledge, fail to produce reasonable results in an outdoor environment.
Similarly, color segmentation can classify flat objects, such as fallen leaves, as
obstacles, since their color is different from grass.

If dense range measurements in a scene are available (e.g., using ladar), they
can be used, not only to represent the scene geometry, but also to characterize
surface types. For example, the range measured on bare soil or rocks tends to
lie on a relatively smooth surface; in contrast, in the case of bushes, the range
is spatially scattered. While it is possible — although by no means trivial — to
design algorithms for terrain classification based on the local statistics of range
data [39-41], the confidence level of a reliable classification is low. Table 1.4
lists the most frequently encountered terrain types and possible classification
methods.

1.4.2 Localization and 3D Model Building from Vision

Structure from motion (SFM) is the recovery of camera motion and scene
structures — and in certain cases camera intrinsic parameters — from image

TABLE 1.4
Terrain Types and Methods of Classification
Confidence
Terrain type Sensors Classification methods level
Vegetable IR/Color camera Segmentation Medium
Rocks IR/Color camera Segmentation Medium
‘Walls/fence Camera, stereo, Texture analysis, obstacle High
laser detection
Road (paved, gravel, IR/Color camera Segmentation Medium
dirt)
Slope Stereo, ladar Elevation analysis, surface fit High
Ditch, hole Stereo, ladar Low
Sand, dirt, mud, IR/Color camera Segmentation Medium
gravel
‘Water Polarized camera, Feature detection, sensor fusion ~Medium
laser scanner
Moving target Camera, stereo Optical flow, obstacle High

detection, pattern matching
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sequences. Itis attractive because it avoids the requirement for a priori models of
the environment. The techniques are based on the constraints that exist between
the multiple views of features. This is a mature area of computer vision that
has attracted intensive research activity in the previous decade, prompted by
the breakthroughs in multiple view geometry in the early 1990s. Much of the
original work was motivated by mobile robotics but soon found more general
application such as: the generation of special effects for cinema, scene recovery
for virtual reality, and 3D reconstruction for architecture. Here, the theoretical
drive has been inspired by the recovery of information from recorded sequences
such as camcorders where the motion is general and little can be assumed
regarding the camera parameters. These tasks can be accomplished off-line and
the features and camera parameters from long sequences solved as a large-scale
optimization in batch mode. As such, many would regard this type of SFM as a
solved problem but the conditions in vehicle navigation are specific and require
separate consideration:

e The motion is not “general,” it may be confined to a plane, or
restricted to rotations around axes normal to the plane.

e Navigation isrequired in real-time and parameters require continuous
updating from video streams as opposed to the batch operations of
most SFM algorithms.

e Sensory data, from sources other than the camera(s), are usually
available.

e Many of the camera parameters are known (approximately)
beforehand.

e There are often multiple moving objects in a scene.

Visual guidance demands a real-time recursive SFM algorithm. Chiuso
et al. [42] have impressive demonstrations of a recursive filter SFM system that
works at a video frame rate of 30 Hz. However, once we start using Kalman
filters to update estimates of vehicle (camera) state and feature location, some
would argue that we enter the already very active realm of simultaneous local-
ization and mapping (SLAM). The truth is that there are differences between
SLAM and SFM and both have roles in visual guidance. Davison [43] has
been very successful in using vision in a SLAM framework and Bosse [9] has
published some promising work in indoor and outdoor navigation. The key
to both of these is that they tackle a fundamental problem of using vision in
SLAM: the relatively narrow FOV and recognizing features when revisiting a
location. Davison used active vision in Reference 4 and wide-angle lenses in
Reference 43 to fixate on a sparse set of dominant features whereas Bosse used
a catadioptric camera and exploited vanishing points. SLAM often works well
with 2D ladar by collecting and maintaining estimates of a sparse set of features
with reference to world coordinate system. A problem with SFM occurs when
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features used for reference pass out of the FOV: in recursive mode, there is no
guarantee at initiation that features will persist. Errors (drift) are introduced
when the reference features are changed and the consequence is that a robot
will have difficulty in returning home or knowing that it is revisiting a location.
Chiuso has a scheme to reduce this problem but drift is still inevitable. On the
other hand, SLAM has to rely on sparse data because it needs to maintain a full
covariance matrix which will soon become computationally expensive if the
number of data points is not restricted. It can be difficult to associate outdoor
data when it is sparse.

The two techniques offer different benefits and a possible complementary
role. SLAM is able to maintain a sparse map on a large scale for navigation but
locally does not help much with terrain classification. SFM is useful for building
a dense model of the immediate surroundings, useful for obstacle avoidance,
path planning, and situation awareness. The availability of a 3D model (with
texture and color) created by SFM will be beneficial for validation of the sens-
ory data used in a SLAM framework: for example, associating an object type
with range data; providing color (hue) as an additional state; and so on.

1.5 CONCLUSION

We have presented the essentials of a practical VGS and provided details on
its sensors and capabilities such as road following, obstacle detection, and
sensor fusion. Worldwide, there have been many impressive demonstrations of
visual guidance and certain technologies are so mature that they are available
commercially.

This chapter started with a road map for UGVs and we have shown that the
research community is still struggling to achieve A-to-B mobility in tasks within
large-scale environments. This is because navigating through open terrain is a
highly complex problem with many unknowns. Information from the immediate
surroundings is required to determine traversable surfaces among the many
potential hazards. Vision has a role in the creation of terrain maps but we have
shown that practically this is still difficult due to the physical limitations of
available sensor technology. We anticipate technological advances that will
enable the acquisition of high-resolution 3D data at fast frame rates.

Acquiring large amounts of data is not a complete solution. We argue that
we do not make proper use of the information already available in 2D images,
and that there is potential for exploiting algorithms such as SFM and vision-
based SLAM. Another problem is finding alternative ways of representing the
environment that are more natural for navigation; or how to extract knowledge
from images and use this (state) information within algorithms.

We have made efforts to highlight problems and limitations. The task is
complex and practical understanding is essential. The only way to make real
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progress along the road map is through testing sensors, systems, and algorithms
in the field; and then seeing what can survive the challenges presented.
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2.1 INTRODUCTION

Current research in autonomous robot navigation [1,2] focuses on mining,
planetary-exploration, fire emergencies, battlefield operations, as well as
on agricultural applications. Millimeter wave (MMW) RADAR provides
consistent and accurate range measurements for the environmental ima-
ging required to navigate in dusty, foggy, and poorly illuminated envir-
onments [3]. MMW RADAR signals can provide information of certain
distributed targets that appear in a single line-of-sight observation. This
work is conducted with a 77-GHz frequency modulated continuous wave
(FMCW) RADAR which operates in the MMW region of the electromagnetic
spectrum [4,5].

For localization and map building, it is necessary to predict the target loc-
ations accurately given a prediction of the vehicle/RADAR location [6,7].
Therefore, the first contribution of this chapter offers a method for pre-
dicting the power-range spectra (or range bins) using the RADAR range
equation and knowledge of the noise distributions in the RADAR. The
predicted range bins are to be used ultimately as predicted observations
within a mobile robot RADAR-based navigation formulation. The actual
observations take the form of received power/range readings from the
RADAR.

The second contribution of this chapter is an algorithm which makes optimal
estimates of the range to multiple targets down-range, for each range spectra
based on received signal-to-noise power. We refer to this as feature detec-
tion based on target presence probability. Results are shown which compare
probability-based feature detection with other feature extraction techniques
such as constant threshold [9] on raw data and constant false alarm rate (CFAR)
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techniques [24]. The results show the merit of the proposed algorithm which
can detect features in typically cluttered outdoor environments with a higher
success rate compared to other feature detection techniques. This work is a step
toward robust outdoor robot navigation with MMW-RADAR-based continuous
power spectra.

Millimeter wave RADAR can penetrate certain nonmetallic objects, mean-
ing that multiple line-of-sight objects can sometimes be detected, a property
which can be exploited in mobile robot navigation in outdoor unstructured
environments. This chapter describes a new approach in predicting RADAR
range bins which is essential for simultaneous localization and map building
(SLAM) with MMW RADAR.

The third contribution of this chapter is a SLAM formulation using an
augmented state vector which includes the normalized RADAR cross sections
(RCS) and absorption cross sections of features as well as the usual fea-
ture Cartesian coordinates. The term “normalized” is used as the actual RCS
is incorporated into a reflectivity parameter. Normalization results, as it is
assumed that the sum of this reflectivity parameter and the absorption and
transmittance parameters is unity. This is carried out to provide feature-rich rep-
resentations of the environment to significantly aid the data association process
in SLAM.

The final contribution is a predictive model of the range bins, from differ-
ing vehicle locations, for multiple line-of-sight targets. This forms a predicted
power—range observation, based on estimates of the augmented SLAM state.
The formulation of power returns from multiple objects down-range is derived
and predicted RADAR range spectra are compared with real spectra, recor-
ded outdoors. This prediction of power—range spectra is a step toward a full,
RADAR-based SLAM framework.

Section 2.2 summarizes related work, while Section 2.3 describes FMCW
RADAR operation and the noise affecting the range spectra, in order to under-
stand the noise distributions in both range and power. Section 2.4 describes how
power—range spectra can be predicted (predicted observations). This utilizes the
RADAR range equation and an experimental noise analysis. Section 2.5 ana-
lyzes a feature detector based on the CFAR detection method. The study also
shows ways to compensate for the inaccuracies of the power—range compens-
ating high-pass filter, contained in FMCW RADARs, and thereby improve the
feature detection process. A method for estimating the true range to objects from
power—range spectra is given in Section 2.6 in the form of a new robust feature
detection technique based on target presence probability. Section 2.6.1 shows
the merits of the target presence probability-based algorithm which can detect
ground level features with greater reliability than other feature detection tech-
niques such as constant threshold on raw RADAR data and CFAR techniques.
An augmented state vector is introduced in Section 2.8 where, along with the
vehicle and feature positions, normalized RCS and absorption cross sections of
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features are added together with the RADAR losses. Finally, Section 2.9 shows
full predicted range spectra and the results are compared with the measured
range bins in the initial stages of a simple SLAM formulation.

2.2 ReLATED WORK

In recent years RADAR, for automotive purposes, has attracted a great deal
of interest in shorter range (<200 m) applications. Most of the work in
short-range RADAR has focused on millimeter waves as this allows narrow
beam shaping, which is necessary for higher angular resolution [5]. Some
of the work to date in autonomous navigation using MMW RADAR is
summarized here.

Boehmke et al. [8] succeeded in producing three-dimensional (3D) terrain
maps using a pulsed RADAR with a narrow beam of 1° and high sampling rate.
The 1° RADAR beam width has a large antenna sweep volume and its physical
size is large for robotic applications. The efforts by Boehmke et al. show the
compromise between a narrow beam and antenna size, where a narrow beam
provides better angular resolution.

Steve Clark [9] presented a method for fusing RADAR readings from
different vehicle locations into a two-dimensional (2D) representation. The
method selects one range point per RADAR observation at a particular bearing
angle based on a certain received signal power threshold level. This method
takes only one range reading per bin which is the nearest power return to
exceed that threshold to the RADAR, discarding all others. Clark [10] shows
a MMW-RADAR-based navigation system which utilizes artificial beacons
for localization and an extended Kalman filter for fusing multiple observa-
tions. The fixed threshold can be used when the environment is known with no
clutter.! However, in a realistic environment (containing features having various
RCS) fixed thresholding on raw data will cause an exorbitant number of false
alarms if the threshold is low or missed detections if the threshold is too high.
Manual assistance is required in adjusting the threshold as the returned signal
power depends on various objects’ RCS. This method of feature detection is
environment-dependent.

Foessel [11] shows the usefulness of evidence grids for integrating uncer-
tain and noisy sensor information. Foessel et al. [12] show the development of a
RADAR sensor model for certainty grids and also demonstrate the integration
of RADAR observations for building 3D outdoor maps. Certainty grids divide
the area of interest into cells, where each cell stores a probabilistic estimate
of its state [13,14]. The proposed 3D model by Foessel et al. has shortcom-
ings such as the necessity of rigorous probabilistic formulation and difficulties

I Clutter in this research is assumed to be the backscatter from land and is difficult to model. Land
clutter is dependent on the type of terrain, its roughness, and dielectric properties.
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in representing dependencies due to occlusion. Jose and Adams [15] show a
method of feature detection from MMW RADAR noisy data.

2.3 FMCW RADAR OPERATION AND RANGE NOISE

This section gives a brief introduction to the RADAR sensor used in this work
and the FMCW technique for obtaining target range. This is necessary for
RADAR signal interpretation and for understanding and quantifying the noise
in the range/power estimates. This is ultimately used in predicting range bin
observations given the predicted vehicle state, in a mobile robot navigation
framework — which is one of the goals of this chapter. By analyzing the FMCW
technique it will be shown which noise sources affect both the range and received
power estimates, and how each of these is affected.

The RADAR unit (from Navtech Electronics) is a 77-GHz FMCW system.
The transmitted power is 15 dBm and the swept bandwidth is 600 MHz [16].
The RADAR is shown in Figure 2.1, mounted on a four-wheel steerable vehicle.
Figure 2.2 shows a schematic block diagram of an FMCW RADAR transceiver.
In Figure 2.2, the input voltage to the voltage control oscillator (VCO) is

FIGURE2.1 A 360° scanning MMW RADAR mounted on a vehicle test bed for SLAM
experiments within the NTU campus.
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FIGURE 2.2  Schematic block diagram of a MMW RADAR transceiver.

a ramp signal. The VCO generates a signal of linearly increasing frequency
8f in the frequency sweep period T,. This linearly increasing chirp signal is
transmitted via the antenna. An FMCW RADAR measures the distance to an
object by mixing the received signal with a portion of the transmitted signal [17].
Let the transmitted signal vr(#) as a function of time, ¢, be represented as

t

vr(#) = [A1 + at(t)] cos |:a)ct +Ab/ tdt + ¢(t)i|
0

Ay 5
= [AT + at(t)] cos | w.t + 7t + ¢ (1) 2.1

where At is the amplitude of the carrier signal, Ay is the amplitude of the
modulating signal, w, is the carrier frequency (i.e., 2w x 77 GHz), at(¢) is the
amplitude noise, and ¢ (¢) is the phase noise present in the signal which occurs
inside the transmitting electronic sections.

At any instant of time, the received echo signal, v is shifted in time from
the transmitted signal by a round trip time, t. The received signal is

A
Vr(t — 1) = [AR + agr(t — T)] cos |:a)c(t —-17)+ Tb(t —1)’ 4+ ¢t — r)]
2.2)

where Ay, is the received signal amplitude, ar (# — t) is the amplitude noise, and
¢ (t — 7) is the phase noise. The sources of noise affecting the signal’s amplitude
consist of external interference to the RADAR system (e.g., atmospheric noise,
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man-made interference signals) and internally produced noise at the receiver
antenna and amplifiers in the system.

In the mixer, the received signal is mixed with a portion of the transmitted
signal with an analog multiplier.

vr@®vr(t — 1) = [AT + ar (D] [Ag + ag(t — 1)]
X {cos |:a)ct + %tz + ¢(t)]}
e |
X {cos a)c(t—t)+7(t—r) + ¢t —1) (2.3)

The output of the mixer, voy(¢) is (using the trigonometric identity for the
product of two sine waves cosA cos B = 0.5[cos(A + B) + cos(A — B)])

vout(t — 7) = [AT + ar(1)] [/;R +ar(t — 1] (B, + By 2.4)

where By = cos[(2t — 1) (w, — ApT/2) + Ap? + () + ¢(t —t)] and By =
cos[(wc —Ap(T/2 = D))T + (1) — ¢t — T)].

The second cosine term, B>, is the signal containing the beat frequency. The
output of the low pass filter consists of the beat frequency component, B, and
noise components with similar frequencies to the beat frequency, while other
components are filtered out. The beat frequency, f4, is directly proportional to
the delay time, T which is directly proportional to the round trip time to the
target. The relationship between beat frequency and target distance is

r=D1 25
_TEfb (2.5)

where R is the range of the object, c is the velocity of the electromagnetic wave,
Ty is the frequency sweep period, and f; is the swept frequency bandwidth [18].

2.3.1 Noise in FMCW Receivers and Its Effect on Range
Detection

As described above, the low pass filter output at the RADAR receiver can be
represented by

/

Vbeat (£, T) = %cos {[a)c — Ay (% — t)] T+ Ap(t, r)} (2.6)
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where A’ = [A1 + ar ()] [AR + ar(t — 7)] is the signal amplitude along with
the noise affecting the amplitude. A¢(t,7) = ¢(t) — ¢(t — 7) is called the
differential phase noise which occurs due to the nonlinear frequency chirp from
imperfect VCO operation [19]. This phase noise affects the range accuracy
[20]. The amplitude and phase noise will affect the beat frequency signal in
two ways:

1. The amplitude noise will contain a signal frequency component
which is the same as the beat frequency. This noise component will
affect the amplitude of the beat frequency signal. This noise will
introduce uncertainty into the returned power.

2. The noise components with frequencies lying close to the beat fre-
quency (i.e., phase noise) distort the signal along the frequency axis.
This introduces noise into the beat frequency value and hence into the
range value. This will broaden the receiver power peaks and therefore
introduce noise into the range estimate.

2.4 RADAR RANGE SPECTRA INTERPRETATION

Figure 2.3 shows a real single RADAR range spectra, which is the received
power vs. range at a constant RADAR bearing angle. The RADAR can provide
multiple returns in a single range bin. An entire range spectra at any particular
bearing can be obtained. The range bin, is obtained by keeping the RADAR
pointed toward a RADAR corner reflector of RCS 10 m? kept arbitrarily at
7.8 m and the second dominant reflection occurs from a concrete wall which
is 23.7 m from the RADAR. That is, the RADAR waves are reflected from the
corner reflector as well as from the wall. This is possible due to the RADAR’s
beam width. The corner reflector is of known RCS and can give good reflec-
tions (high signal power) back to the RADAR. The spectrum has two main
features. First the signal return from the targets and second, noise. As shown
in Figure 2.3, for the particular RADAR used here, these signals are riding
over a low frequency signal which increases its amplitude up to a certain range
(~150 m) and decreases toward the maximum range (200 m). This is due to
the effect of the signal conditioning sections (filter roll-off) in the RADAR
receiver. To compensate the reduction in received power as range increases (as
will be shown in Section 2.4.1), a high pass filter” is usually used. The power

2 Assuming the RADAR range equation to be correct, a high pass filter with a gain of 40 dB/decade
should produce a flat power response for particular targets at various ranges. Figure 2.3 shows a
power-range spectrum recorded from the RADAR, which is fitted with a range compensating high
pass filter. It can be seen from Figure 2.3, that the power range response is not flat. For this particular
RADAR it makes sense to either determine the bias in the power—range spectra or model the high
pass filter as having a gain of 60 dB/decade, which would better approximate the power-range
relationship actually produced in Figure 2.3.
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FIGURE 2.3 Range spectrum from a MMW RADAR. The X axis is the range (in meters)
and the Y axis is the returned power (in decibel). The first reflection is from a corner
reflector and the second one is from a concrete wall. Multiple reflections are obtained
due to the beam width of the RADAR. The gain model of the high pass filter is also
shown in the figure.

return of the RADAR spectra decreases near the maximum range (200 m) due
to the low pass filter roll-off, which occurs before the high pass filter stage
(Figure 2.2).

To understand the MMW RADAR range spectrum and to predict it accur-
ately, it is necessary to use the RADAR range equation and knowledge of
the noise distributions in the RADAR spectrum. A method for predicting the
RADAR range spectra is now presented. An introduction is given explaining the
relationship between RADAR signal returned power and range. Then, a method
for establishing the relationship between the RCS and the range of objects in
outdoor environments is shown. A noise analysis during signal absence and
presence is then shown. This is necessary for predicting the range bins accur-
ately during target presence and target absence. RADAR range bins are then
predicted and it will be shown that the results compare reasonably well with
actual (recorded) range bins recorded at various robot poses.
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2.4.1 RADAR Range Equation

According to the simple RADAR equation, the returned power P; is proportional
to the RCS of the object, o and inversely proportional to the fourth power of
range, R [21]. The simple RADAR range equation is formally written as

P.G*)\2o

~ (@4n)3RiL @.7)

r

where Py is the RADAR’s transmitted power, G is the antenna gain, X is the
wavelength (i.e., 3.89 mm in this case), and L the RADAR system losses. A high
pass filter (shown in Figure 2.2) is used to compensate for the R* drop in received
signal power. In an FMCW RADAR, closer objects produce signals with low
beat frequencies and vice-versa (Equation [2.5]). Therefore by attenuating low
frequencies and amplifying high frequencies, it is possible to correct the range-
based signal attenuation [18]. To compensate the returned power loss due to
increased range, the high pass filter is modeled in two ways:

1. The bias in the received power spectra is estimated.

2. By modeling the high pass filter with a gain of 60 dB/decade, instead
of the usual 40 dB/decade, to comply with the characteristics of the
particular RADAR used here.

The aim of this is to give a constant received signal power with range. The
actual compensation which results in our system was shown in Figure 2.2 where
it can be seen that the ideal flat response is not achieved by the internal high
pass filter.

2.4.2 Interpretation of RADAR Noise

This section analyzes the sources of noise in MMW RADARSs and quantifies
the noise power in the received range spectra (seen in Figure 2.3). In most robot
navigation formulations, observations must be predicted, and for the estimation
algorithms to run correctly, the actual observations are assumed to equal the
predictions, except that they are corrupted with Gaussian noise. It is therefore
the aim of this section to determine the type of noise distributions in the actual
received power and range values to determine how the predicted power-range
spectra can be used correctly in a robot navigation formulation.

RADAR noise is the unwanted power that impedes the performance of
the RADAR. For the accurate prediction of range bins, the characterization of
noise is important. The two main components are thermal and phase noise.
Thermal noise affects the power reading while phase noise affects the range
estimate.
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2.4.2.1 Thermal noise

Thermal noise is generated in the RADAR receiver electronics. The noise power
is given by PN (in Watts), where

PN = kToPB 2.8)

where k is the Boltzmann constant, Ty is the temperature, and g is the receiver
bandwidth [22]. As shown in Section 2.3, the power in the beat frequency
signal (found from the FFT of this signal) is affected by the thermal noise power
ag (t—1), which contributes to A’ in Equation (2.6). It can be shown by analyzing
the transition of this thermal (Gaussian) noise through the entire FMCW range
detection process that when a target is present (strong received signal) the noise
in the power—range spectrum follows a Gaussian distribution. When no target
is present (weak or no reflected signal) it will be demonstrated from the results
that the noise power follows a Weibull distribution. Therefore measurements
with target presence/absence were made to verify these distributions and to
quantify the power variance during target absence/presence.

2.4.2.2 Phase noise

Another source of noise which affects the range spectra is the phase noise. The
phase noise is generated by the frequency instability of the oscillator due to
the thermal noise. Ideally for a particular input voltage to the VCO, the output
has a single spectral component. In reality, the VCO generates a spectrum
of frequencies with finite bandwidth which constitutes phase noise. This is
shown in Equation (2.6), where a band of noise frequencies with different phase
components, A¢ (¢, T) affects the desired signal frequency, which corresponds
to range. The phase noise broadens the received power peaks and reduces the
sensitivity of range detection [11] as shown in Figure 2.4.> This introduces
noise into the range estimate itself. Experimental data provides insight into the
phase noise distribution. For predicting the RADAR range spectra, the peaks at
predicted targets are broadened by a small constant amount. This broadening
is based on real measurements, which have shown the peaks4 to have widths
ranging from 2.5 to 3.5 m. This has been observed from targets, of different
RCS, placed at different distances from the RADAR.

Figure 2.5 shows 1000 superimposed range bins obtained for the same
RADAR swash plate bearing angle. Figure 2.5a shows the entire range bins
over the full 200 m range, while Figure 2.5b shows a zoomed view of the
spectra obtained from the feature at 10.25 m. From the figures, it is evident that

3 The peaks and skirts shown in Figure 2.4 occur due to the leakage of signals from the transmitter
into the mixer through the circulator and also due to the antenna impedance mismatch [11].
4 At their intersections with the high pass filter gain curve shown in Figure 2.3.
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FIGURE 2.4 Phase noise in the FMCW transceiver occurs due to the instability of
the VCO.
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FIGURE 2.5 Thousand range bins plotted together for the same azimuth. (a) It shows
the full range bin (200 m). (b) It shows the power returns from the feature at a distance
of 10.25 m. The power noise affecting the returned power peaks is less than that during
target absence within the range bin.
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FIGURE 2.5 Continued.

the power variance of the noise at the peaks is less than that in the rest of the
signal.

2.4.3 Noise Analysis during Target Absence and
Presence

As indicated in Figure 2.5b, the power noise variance is different at the power
peaks (target presence) and nonpeaks (target absence) sections of the power
range spectra. Therefore, the noise statistics at the RADAR receiver outputs
during target absence and presence will now be derived. Knowledge of the
noise distributions is necessary for accurately predicting the RADAR spectra
for prediction of feature location in robot navigation.

2.4.3.1 Power-noise estimation in target absence

The noise in the voltage signal entering the mixer stage is assumed to be
Gaussian distributed with zero mean. A theoretical analysis to determine the
power-noise distribution, after this signal has passed through the low pass and
high pass filter stages, and the FFT process has been given in Reference 15.
However, due to the unknown nature of the exact internal components within
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the RADAR used in this work, an experimental determination of the power
noise distributions is used here.

To determine the power bias and variance of the range bins with no targets
present, range bins were recorded at a fixed RADAR bearing angle, with no tar-
gets present. These were recorded by pointing the RADAR toward the open sky.
The mean power and standard deviation of the noisy power—range spectra across
the complete range of the RADAR is shown in Figure 2.6. The standard devi-
ation of the noise is noticeably less at shorter ranges (<45 m), as the particular
RADAR used can only output a minimum received power value of —15 dB, and
any received power value less than this, will simply be output as —15 dB. The
noise power values significantly increase above the minimum — 15 dB at higher
ranges due to the higher gain of the high pass (range compensation) filter at
higher ranges.

Examination of the power distributions obtained at different ranges during
target absence, suggests that a suitable approximation to the distributions is

Power (dB)
(&)

-10}

-15 ; ; ; ; ; ; ; ; ;
0 20 40 60 80 100 120 140 160 180 200

Range (m)

FIGURE 2.6 Mean and standard deviation of the noise during target absence over the
complete range of the RADAR. The figures are obtained from noise only range bins by
pointing the RADAR toward the sky. (a) Mean power bias as a function of RADAR
range. (b) The standard deviation in power as a function of RADAR range. The standard
deviation is less at shorter distances due to the lower amplification of the high pass filter
at those ranges.
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FIGURE 2.6 Continued.

the Weibull distribution [23]. This can be seen in Figure 2.7, where power
distributions at arbitrary ranges of 10 and 100 m are shown.
The Weibull probability distribution function can be written as

£—1
flx) = % <%) @V vxs0 (2.9)

where x is the random variable, with scale parameter ¢ > 0 and shape parameter
& > 0. The mean of x is u = Y I'(1 + (1/€)) — 15 and variance, o2 =
VI (142/8)— 2T (14+(1/£))]%), where (- - - ) is the Gamma function [23].

For scaling purposes, in this case the random variable x equals the received
power P; + 15 dB, in order to fit Equation (2.9).

For a range of 10 m (Figure 2.7a), suitable parameters for an equival-
ent Weibull distribution, ¥ and & are 0.0662 and 0.4146, respectively.’ At
low ranges, this distribution is approximately equivalent to an exponential
distribution, with mean, ;« = —14.8 dB and variance o> = 0.3501 dB>.

For a range of 100 m (Figure 2.7b), suitable Weibull parameters have
been obtained as ¥ = 26.706 and & = 5.333. The distribution has a mean,

5 These values are obtained using MATLAB to fit Equation (2.9) to the experimentally obtained
distribution of Figure 2.7a.
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FIGURE 2.7 Experimental estimation of power noise distributions with no targets in
the environment. (a) Experimental estimation of the noise distribution obtained from a
10 m distance. The distance has been chosen arbitrarily. (b) Experimental estimation
of the noise distribution obtained from a 100 m distance. The distance has been chosen
arbitrarily.
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@ = 9.612 dB and variance, 02 = 28.239 dB2. These ranges have been selec-
ted arbitrarily to show the noise distributions for shorter (<45 m) and longer
ranges (45 < range < 200).

Therefore, to predict the power noise in the predicted power—range spectra,
for ranges above approximately 45 m, Equation (2.9) can be used with the con-
stant Weibull parameters determined at a range of 100 m. For ranges below this
value, an exponential distribution is assumed, which uses a standard deviation
value which is related to range as in Figure 2.6b.

2.4.3.2 Power-noise estimation in target presence

The receiver noise will also affect the signal when there is a target present.
The resultant distribution is the convolution of both the signal and noise and
is distributed normally [11]. The histogram in Figure 2.8a shows an approx-
imately normal distribution obtained experimentally for 5000 observations of
a RADAR retro-reflector at 10.25 m (the distance and the number of observa-
tions were selected arbitrarily). The experiment has been repeated for obtaining
the distribution from a wall at a distance of 150 m approximately. This is
shown in Figure 2.8b. The two histograms are approximately normally distrib-
uted and have variances of 4.07 and 5.76 dB2, respectively. It is evident from
Figure 2.8a, b and from Figure 2.5a that the noise variances affecting the signal
during target presence are similar.

For an FMCW RADAR, features close to the RADAR give beat frequency
signals with lower frequency and distant features give high frequency signals.
By attenuating lower frequencies and amplifying higher frequencies, it is pos-
sible to achieve a constant returned power for an object with a particular RCS
at all ranges. The graph shown in Figure 2.9 shows the calculated received
power from two objects with RCS values of 1000 and 0.001 m? for all range
values without the high pass filter effect. These have been calculated from the
simple RADAR equation, using the parameters of the particular RADAR used
here. The typical inverse range to the fourth power is still obtained even as
the RCS of the target reduces significantly. Hence in practice, even the small
signal reflections from atmospheric particles combined with the noise generated
inside the RADAR’s internal electronics will produce power—range relations of
this form (such as, e.g., Figure 2.10). Therefore, an ideal high pass filter will
give an approximately constant power noise variance for all ranges, for both
target presence and target absence [11]. From the noise variances under sig-
nal absence and presence conditions shown above, it is evident that the high
pass filter is close to its ideal state. (The power noise variance during target
absence and target presence are similar irrespective of ranges.) The estimation
of the noise statistics is helpful in accurately interpreting the range spectra as
well as predicting the RADAR spectra for feature location prediction in robot
navigation.
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FIGURE 2.8 Experimental power distributions obtained from targets at differing ranges.
(a) Experimental estimation of a noisy signal distribution. The distribution is obtained
from a target (a RADAR corner reflector of RCS 10 mz) at 10.25 m. (b) Experimental
estimation of a noisy signal distribution obtained from a wall at approximately 150 m.
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FIGURE 2.9 Expected curves of return power vs. distance for two objects with RCS
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FIGURE 2.10 Range spectra prediction without range compensation.
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2.4.4 Initial Range Spectra Prediction

The tools are now complete to simulate/predict RADAR spectra. In Figure 2.10,
an object with a known RCS (10 mz) is assumed to be at a distance of 10.25 m.
A Monte Carlo method has been used for simulating the noise in the figure.
A Gaussian noise distribution with a variance of 26.57 dB? is used when there is
signal presence, and during signal absence Weibull distributions with paramet-
ers explained in the previous section have been used. The values are obtained
from the experimental estimation of the noise distributions in target absence and
presence (Figure 2.7 and Figure 2.4.3). The simulated result of applying the
high pass 60 dB/decade filter is shown in Figure 2.11a. Analyzing the predicted
(Figure 2.11a) and actual range bin (Figure 2.11b) shows a slight mismatch in
the noise frequency with respect to range which is evident in the real spectra.
This mismatch is due to the phase noise throughout the entire range bin. The
phase noise, approximately quantified in Section 2.4.2, is taken into account
only during the parts of the range bin which are predicted to have targets, as
explained above. During sections of the range bin with no targets (i.e., beyond
11 min Figure 2.11a) it is not modeled, since this part of the spectra is of little
interest in target estimation.

A predicted and actual RADAR range spectra, obtained from an outdoor
environment, is shown in Figure 2.12. Figure 2.13a and b show the results of a
chi-squared test to determine any bias or inconsistency in the power—range
bin predictions. The difference between the measured and the predicted
range bins is plotted together with 99% confidence interval. The value of
99% bound, = £16.35 dB, has been found experimentally by recording several
noisy power—range bins in target absence (RADAR pointing toward open space)
as explained previously (3 x steady state standard deviation of Figure 2.6b)
[15]. Close analysis of Figure 2.13a shows that the error has a negative bias.
This is due to the approximate assumption of the high pass filter gain. For the
RADAR used here, the gain of the high pass filter used in the predicted power—
range bins was set to 60 dB/decade, as explained earlier. Figure 2.13b shows
a chi-squared test on the difference between a measured bin and its predicted
bin with the mean high pass filter bias of Figure 2.6a subtracted. Although the
error in Figure 2.13b is less biased than Figure 2.13a, a gain of 60 dB/decade
with the small bias (Figure 2.13a) is still acceptable as most of the error values
are well within 99% confidence limit and also taking the high pass filter effect
role into consideration.

A method for predicting the RADAR range spectra has been shown here
which can be used for predicting observations, based on an estimate of a targets
range and RCS value. Clearly a restriction of this method is that as a mobile
robot moves with respect to objects within the environment, range bins can only
be predicted assuming that the RCS does not change as the RADAR to target
angle of incidence changes. In general this is clearly not a valid assumption, but
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FIGURE 2.11 Predicted and actual RADAR spectra. (a) The effect of the range com-
pensation (high pass) filter of 60 dB/decade. (b) Power vs. range of a single range bin
obtained from an actual RADAR scan. A reflection is received from a target of RCS

10 m? at 10.25 m.
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FIGURE 2.12 Predicted and actual range bins for multiple targets down-range. (a) Pre-
dicted power vs. range of a single range bin with two features down-range. (b) Power vs.
range of a single range bin obtained from a RADAR scan with two features down-range.
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FIGURE 2.13 The difference between predicted and measured range bins, using two
different approximations for the power bias. (a) The difference between predicted (using
the 60 dB approximation for the high pass filter) and measured range bins containing
two features down-range. This error is shown with the 3o bounds. (b) The difference
between predicted and measured range bins containing two features down-range. This
error is shown with the 30 bounds. The average error lies close to zero, as the gain of
the high pass filter is obtained from the real measurements.
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becomes acceptable for objects that are small and cylindrical in shape, making
their RCS approximately view-point invariant, such as lamp posts, trees, etc.,
which can be used for outdoor navigation.

2.5 CONSTANT FALSE ALARM RATE PROCESSOR FOR TRUE TARGET
RANGE DETECTION

To extract the true range values, previous methods have used a power threshold
on the range bins (the closest power value to exceed some threshold gives the
closest object) [9] or constant false alarm rate (CFAR) techniques [21,24]. The
problem with thresholding is, it requires manual adjustment of the threshold as
the RCS of objects in an outdoor natural environment will vary. The function
of CFAR processors is to maintain a constant and low rate of false alarms in
detecting true range values [25].

A cell averaging (CA) detector is useful for maintaining a CFAR where the
power noise-plus-clutter observations x = xi,...,Xx,...,x, follow a Weibull
random distribution shown in Equation (2.9). The structure of the applied CA-
CFAR is shown in Figure 2.14. This figure shows M /2 reference cells (where
M = 70) on each side of the cell, ¥, under investigation. Guard cells are present
to account for the broadened target reflection [26]. A moving window of width
M = 70 range points is then used to sum the local noisy power values in the

Reference cells

AN

Input
Xi — M2 M2
GY /G
Guard
z cells z
[ ]
o
z y
z
Threshold —— TxZ Comparator
Output
1or0

FIGURE 2.14 The structure of the applied CA-CFAR detector.

© 2006 by Taylor & Francis Group, LLC



Millimeter Wave RADAR Power-Range Spectra Interpretation 65

range bin as shown in Equation (2.10) [27].
M
Z=) x (2.10)
i=1

This sum is multiplied by a threshold, t (in this case T = 0.033), for
later comparison with a test sample power value. The value for t is chosen
for achieving the desired value of Py, the design false alarm probability, in the
absence of targets [28]. The scalar 7 is a function of the number of reference cells
M (here M = 70) and Py, is (1 x 1079) for the RADAR used here [10]. The test
sample Y is either a noise-plus-clutter observation or a target return. The variable
threshold tZ is compared with Y. A target is declared to be present if

Y>1tZ (2.11)

The range bin in Figure 2.15 was obtained from an environment contain-
ing a concrete wall at approximately 18 m. The detected features are indicated
along with the adaptive threshold. The moving average will set the threshold
above which targets are considered detected. Due to the phase noise, the power
returned from the target is widened along the range axis, resulting in more
feature detections at approximately 18 m. In Figure 2.15a and b, CFAR “picks
out” features which lie at closest range. Features at a longer range, however,
will not be detected as the noise power variance estimate by the CFAR pro-
cessor becomes incorrect due to the range bin distortion caused by the high pass
filter.

2.5.1 The Effect of the High Pass Filter on CFAR

In general, since the gain of the high pass filter is not linear (Figure 2.6a) the sum
of the noisy received power values in Equation (2.10) is inaccurate at higher
ranges, which ultimately results in the missed detection of targets at these range
values. This is evident from Figure 2.15b where CFAR detects a feature (corner
reflector) at 10.25 m while it misses a feature (building) at 138 m. The second
reflection is due to the beam-width of the RADAR, as part of the transmitted
signal passes the corner reflector. It would therefore be useful to reduce the
power—range bias before applying the CFAR method. Therefore, to correctly
implement the CA-CFAR method here, first, the average of two noise only
range bins can be obtained.® the result of which should be subtracted from the
range bin under consideration. This is carried out to obtain a range independent,
high pass filter gain for the resultant bin.

The CFAR method has been applied to the range bin of Figure 2.11b, the
full 200 m bin of which is shown in Figure 2.16a, after subtracting the high

6 The noise only range bins are obtained by pointing the RADAR toward open space.
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FIGURE2.15 CFAR target detection. (a) The detection of a target (concrete wall approx-
imately at 18 m) using a CA-CFAR detector. A series of targets around the 18 m mark
are obtained due to the phase noise in the returned peak. (b) The missed detection of a
feature (a building at 138 m) by a CA-CFAR detector. Due to the gain of the high pass
filter, the noise estimation is inaccurate at higher ranges resulting in missed detection of
features.

pass filter bias of Figure 2.6a. This figure shows the result from an environment,
containing a corner reflector at 10.25 m and a building at approximately 138 m.
By reducing the high pass filter effect (range independent gain for all the ranges),
the CFAR detection technique finds features regardless of range as shown in
Figure 2.16a. It is clearly necessary to compensate for any nonideal high pass
filter characteristics, in the form of power—range bias, before CA-CFAR can be
applied correctly.

Problems still arise however, as CFAR can misclassify targets as noise
(missed-detection) and noise as targets (false-alarm). Both of these are evident
and labeled in the CFAR results of Figure 2.16a.

2.5.1.1 Missed detections with CFAR

In a typical autonomous vehicle environment the clutter level changes. As the
RADAR beam width increases with range, the returned range bin may have
multiple peaks from features.

© 2006 by Taylor & Francis Group, LLC



Millimeter Wave RADAR Power-Range Spectra Interpretation 67

(b) 100 T T T T T T T T T
: : : : : : T RADAR range bin
‘ ‘ . Adaptive threshold Features detected
80 - - BRI BRI R I
60 |- E
o
5 40F o R I o
o
20090\ R I LM -
ot 4
-20 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200

Range (m)

FIGURE 2.15 Continued.

From Figure 2.14, it can be seen that if two or more targets are separated
by less than the window width M, the local power sum in Equation (2.10) will
become large, causing the adaptive threshold to increase, resulting in a missed
detection [29]. This is also shown in Figure 2.16b where a return from an object,
which lies within M range samples of the first feature is completely missed by
the CFAR detector.

2.5.1.2 False alarms with CFAR

Due to the filtering elements within the RADAR, the power noise in the RADAR
range bins is correlated. Therefore, if the window size is too small, all of its
power-range samples will be highly correlated. This means that the sum of
the power values, calculated in Equation (2.10), will misrepresent the true sum
which would be obtained from a set of uncorrelated values. This can ultimately
result in the adaptive threshold being set too low, meaning that even noise
only power values can exceed it. This gives false alarms. This can be overcome
by increasing the window width. However, as explained above, a larger window
width can result in the missed detection of features. The occurrence of false
alarms is shown in Figure 2.16a and b.
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FIGURE 2.16 Target estimation with CFAR. (a) The graph shows target detection using
a CFAR detector. The effect of the high pass filter is removed from the range bin. (b) The
figure shows a missed detection of a feature (at 38 m) by the CA-CFAR processor.
The first feature is at 22 m and the second feature is at 38 m approximately. The effect
of the high pass filter is removed from the range bin.

In general, the CFAR method tends to work well with aircraft in the air
having relatively large RCS, while surrounded by air (with extremely low RCS).
At ground level, however, the RCS of objects is comparatively low and also
there will be clutter (objects which cannot be reliably extracted). Further, as the
CFAR method is a binary detection technique, the output is either a one or a
zero (Equation [2.11]), that is, no probabilistic measures are given for target
presence or absence.

2.6 TARGET PRESENCE PROBABILITY ESTIMATION FOR TRUE
TARGET RANGE DETECTION

For typical outdoor environments, the RCS of objects may be small. The smaller
returned power from these objects can be buried in noise. For reducing the
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FIGURE 2.16 Continued.

noise and extracting smaller signal returns along with the higher power returns,
a method is now introduced which uses the probability of target presence [30]
for feature detection [15]. This method is appealing compared to CFAR and
constant threshold methods at ground level, as a threshold can be applied on
the target presence probability. By setting a threshold value to be dependent on
target presence probability and independent of the returned power in the signal,
a higher probability threshold value is more useful for target detection. The
proposed method does not require manual assistance. The merits of the proposed
algorithm will be demonstrated in the results in Section 2.6.1. The detection
problem described here can be stated formally as a binary hypothesis testing
problem [31]. Feature detection can be achieved by estimating the noise power
contained in the range spectra. The noise is estimated by averaging past spectral
power values and using a smoothing parameter. This smoothing parameter
is adjusted by the target presence probability in the range bins. The target
presence probability is obtained by taking the ratio between the local power of
range spectra containing noise and its minimum value. The noise power thus
estimated is then subtracted from the range bins to give a reduced noise range
spectra.
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Let the power of the noisy range spectra be smoothed by a w-point window
function b(i) whose length is 2w + 1

w

Pk, 1) = Z b()P(k —i,1) (2.12)

i=—w

where P(k, [) is the kth power value of /th range spectra.
Smoothing is then performed by a first order recursive averaging technique:

Pk, l) = a;Pk,l — 1) + (1 — ag)P(k, 1) (2.13)

where o is a weighting parameter (0 < oy < 1). First the minimum and
temporary values of the local power are initialized to Puin (k, 0) = Pimp(k,0) =
P(k,0). Then a range bin-wise comparison is performed with the present bin /
and the previous bin / — 1.

Puin(k, 1) = min{Pmin(k, 1 — 1), P(k, )} (2.14)
Punp(k, 1) = min{Pynp(k, 1 — 1), P(k, 1)} (2.15)

When a predefined number of range bins have been recorded at the same
vehicle location, and the same sensor azimuth, the temporary variable, Py is
reinitialized as

Puin(k, ) = min{Pymp(k, [ — 1), P(k, D)} (2.16)
Punp(k, 1) = P(k, 1) (2.17)

Let the signal-to-noise power (SNP), Psnp (&, [) = 13(k, 1)/ Pmin (k, ) be the
ratio between the local noisy power value and its derived minimum.

In the Neyman—Pearson test [32], the optimal decision (i.e., whether target
is present or absent) is made by minimizing the probability of the type II
error (see Appendix), subject to a maximum probability of type I error as
follows.

The test, based on the likelihood ratio, is

p(Psnp|H1) )

(2.18)
p(Psnp|Hop) 150
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where § is a threshold,” Hy and H; designate hypothetical target absence
and presence respectively. p(Psnp|Ho) and p(Psnp|H1) are the conditional
probability density functions. The decision rule of Equation (2.18) can be
expressed as

H,
Psnp(k, 1) 2 6 (2.19)

Hy

An indicator function, I(k, /) is defined where, I(k, ) = 1 for Psyp > § and
1(k, 1) = 0 otherwise.
The estimate of the conditional target presence probability,® p’(k, ) is

Pk, ) = app'(k,l — 1) 4+ (1 — ap)1(k, 1) (2.20)

This target presence probability can be used as a target likelihood
within mobile robot navigation formulations. ) is a smoothing parameter
(0 < ap < 1). The value of «;, is chosen in such a way that the probability
of target presence in the previous range bin has very small correlation with the
next range bin (in this case o = 0.1).

It is of interest to note that, as a consequence of the above analysis, the
noise power, Aq(k, 1) in kth range bin is given by

halk, 1) = ag(k, Dag(k, 1 — 1) + [(1 — @g(k, )] P(k, 1) (2.21)
where
agk,) =oay+ (1 — ad)p’(k, D (2.22)

and a4 is a smoothing parameter (0 < oy < 1). This can be used to obtain a
noise reduced bin, IA’NR (k, 1) using the method of power spectral subtraction [34].
In the basic spectral subtraction algorithm, the average noise power, Aak, D)
is subtracted from the noisy range bin. To overcome the inaccuracies in the
noise power estimate, and also the occasional occurrence of negative power
estimates, the following method can be used [35]

Pk, ) — ¢ x Aglk, 1) if Pk, 1) > ¢ x hg(k,])

Pyg(k, 1) = .
ek, d x rg(k,D) otherwise

7 This threshold can be chosen based upon the received SNP, at which the signal can be trusted
not to be noise. Note that this does not have to be changed for differing environments, or types of
targets.

8 Conditioned on the indicator function 1(k, 1) [33].
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where c is an over-subtraction factor (¢ > 1) and d is spectral floor parameter
(0 < d < 1). The values of ¢ and d are empirically determined for
obtaining an optimal noise subtraction level at all ranges and set to be 4
and 0.001.

Although areduced noise range bin can be useful in other detection methods,
the target presence probability estimate (Equation [2.20]), will be demon-
strated further in the results. This method shows improved performance over
CFAR methods as the threshold can be applied on the target presence probab-
ility instead of SNP. Setting an arbitrary threshold value on the probability of
target presence (>0.8) is sufficient for target detection. Based on the results,
this is a robust method and requires no adjustments when used in different
environments.

2.6.1 Target Presence Probability Results

The results of the proposed target detection algorithm are shown in Figure 2.17
where a noisy RADAR range bin (Figure 2.17a), the corresponding estimated
target presence probability (Figure 2.17b) from Equation (2.20) and the reduced
noise range spectra (Figure 2.17¢) have been plotted. In Figure 2.17a, the range
bin contains three distinct peaks of differing power values, whereas the target
presence probability plot shows the three peaks with a more uniform range
width and similar probabilistic values. This result shows that although the return
power values varies from different objects, the corresponding target presence
probability values will be similar.

The target presence probability-based feature detector is easier to interpret
as shown in Figure 2.18 and Figure 2.19 where the target presence probability
plot is shown along with the corresponding raw RADAR data. Figure 2.18a and
Figure 2.19a show the raw RADAR data obtained in an indoor sports hall and
outdoor sports field, respectively. The corresponding target presence probab-
ilities are shown in Figure 2.18b and Figure 2.19b, respectively. Figure 2.18b
shows the target presence probability plot of an indoor stadium. The four walls
of the stadium are clearly obtained by the proposed algorithm. The other prob-
ability values at higher ranges arise due to the multipath effects in the RADAR
range spectrum. Figure 2.19b is obtained from an outdoor field. The detec-
ted features are marked in the figure. The clutter shown in Figure 2.19b is
obtained when the RADAR beam hits the ground due the unevenness of the
field surface.

The merit of the proposed algorithm is shown in Figure 2.20 where plots
obtained using different power thresholds applied to raw RADAR range spectra
are shown and compared with the threshold (0.8) applied to the probability plot.
Figure 2.20a shows the comparison of 2D plots obtained by choosing a constant
threshold of 25 dB applied to the raw RADAR data and the target presence prob-
ability plot. Figure 2.20b shows the comparison of plots obtained by constant
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FIGURE 2.17 Received range bin, noise reduced bin, and the probability of target
presence vs. range plot. (a) Received noisy RADAR range bin. (b) Target presence
probability of the corresponding range bin. (c¢) Noise reduced RADAR range bin.
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FIGURE 2.17 Continued.

threshold of 40 dB applied against the raw RADAR data and the target presence
probability. Further results conducted show the target presence probability of
objects will be the same and is found to be more than 0.8. Feature detection using
the target presence probability is then carried out by keeping the threshold at 0.8.
The results shown in Figures 2.18 to 2.20 clearly show that the target presence
probability-based feature detection is easier to interpret and has lower false
alarms compared to constant threshold-based feature detection in the typical
indoor and outdoor environments tested [36].

2.6.2 Merits of the Proposed Algorithm over Other
Feature Extraction Techniques

The constant threshold applied to raw RADAR data requires manual inter-
vention for adjusting the threshold depending on the environment. In CA-CFAR,
the averaging of power values in the cells provides an automatic, local estimate
of the noise level. This locally estimated noise power is used to define
the adaptive threshold (see e.g., Figure 2.16a). The test window compares
the threshold with the power of the signal and classifies the cell content as
signal or noise.
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FIGURE 2.18 Raw RADAR data and corresponding target presence probability plots
obtained from an indoor sports hall. (a) Power vs. range of a 2D RADAR scan from
an indoor environment. (b) Target presence probability vs. range of a 2D RADAR scan
in indoor environment. The probability of the targets detected (i.e., walls) are shown in
the figure.

When the signal and noise distributions are distinctly separated in range,
CFAR works well. But when the signal and noise distributions lie close
together, which is often the case at ground level (as shown in Figure 2.21),
the method misclassifies noise as signal and vice versa. This is the reason
for the poor performance of the CFAR technique with noisy RADAR data.
Figure 2.22 shows features obtained by target presence probability and the
CA-CFAR technique. The dots are the features obtained by target presence
probability while the “+” signs are the features obtained from the CFAR-based
target detector. From the figures it can be seen that the target presence-based
feature detection has a superior performance to CA-CFAR detector in the
environment tested. Figure 2.23 shows the difference between the ground
truth and the range observation obtained from the target presence probabil-
ity. The ground truth has been obtained by manually measuring the distance
of the walls from the RADAR location. The peaks in Figure 2.23 are to some
extent due to inaccurate ground truth estimates, but mainly due to multi-path
reflections.

The proposed algorithm for feature extraction appears to outperform
the CFAR method because the CFAR method finds the noise locally, while
the target presence probability-based feature detection algorithm estimates
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FIGURE 2.18 Continued.

the noise power by considering more than one range bin (Equation [2.16]). The
target presence probability-based feature extraction, unlike the CFAR detector,
is not a binary detection process as is shown in Figure 2.17c. This method
of feature detection is useful in data fusion as the feature representation is
probabilistic.

2.7 MuLTIPLE LINE-OF-SIGHT TARGETS — RADAR PENETRATION

At 77 GHz, millimeter waves can penetrate certain nonmetallic objects, which
sometimes explains the multiple line-of-sight objects within a range bin.® This
limited penetration property can be exploited in mobile robot navigation in
outdoor unstructured environments, and is explored further here.

For validating the target penetration capability of the RADAR, tests were
carried out with two different objects. In the section of the RADAR scan,
shown in Figure 2.24a, a RADAR reflector of RCS 177 m? and a sheet of

9Although it should be noted that these can be the results of specular and multiple path
reflections also.
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(@

FIGURE 2.19 Raw RADAR data and corresponding target presence probability
obtained from an outdoor environment. (a) Power vs. range of a 2D RADAR scan from
an outdoor environment. (b) Target presence probability vs. range of a 2D RADAR scan
in outdoor environment. The probability of the targets detected (i.e., RADAR reflectors,
wall, and tree) are shown in the figure.

wood of thickness 0.8 cm were placed at ranges of 14 and 8.5 m respectively,
to visually occlude the reflector from the RADAR. This ensured that no part
of the RADAR reflector fell directly within the beam width of the RADAR,
so that if it was detected, it must be due to the radio waves penetrating the wood.
Figure 2.24a shows the detection of the two features down-range even though,
visually, one occludes the other. The experiment was also repeated for a perspex
sheet of thickness 0.5 cm (Figure 2.24b). The results of object penetration by
RADAR waves motivates further development of power spectra prediction with
multiple line-of-sight features which is one of the contributions of this chapter.
For feature-based SLAM, it is necessary to predict the target/feature locations
reliably, given a prediction of the vehicle/RADAR location. As RADAR can
penetrate certain nonmetallic objects it can give multiple range information.
A method for predicting the power-range spectra (or range bins) using the
RADAR range equation and knowledge of various noise distributions in the
RADAR has already been explained in this chapter.

For SLAM, the measurements taken from the RADAR used here are the
range, R, bearing, 6, and the received power, Pg, from the target at range R.
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FIGURE 2.19 Continued.

One of the contributions of this chapter is to predict range bins from new robot
positions given an estimate of the vehicle and target states. A new augmented
state vector is introduced here which, along with the usual feature coordinates
x and y, contains that feature’s normalized RCS, Yg, and absorption RCS, Y,
and the RADAR losses, L.

To illustrate this, Figure 2.25 shows a 360° RADAR scan obtained from an
outdoor field. Objects in the environment consist of lamp-posts, trees, fences,
and concrete steps. The RADAR penetrates some of the nonmetallic objects,'”
and can observe multiple targets down line. This is shown in Figure 2.26, which
is the received power vs. range for the particular bearing of 231° marked in
Figure 2.25. Multiple targets down range can occur due to either the beam width
of the transmitted wave intersecting two or more objects at differing ranges or
due to penetration of the waves through certain objects. The RADAR used here

10 At 77 GHz the attenuation through paper, fiberglass, plastic, wood, glass, foliage, etc., are
relatively low while attenuation through brick and concrete is high [37].
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FIGURE 2.20 Target presence probability vs. range spectra and the corresponding
power vs. range taken from a 2D RADAR scan in an indoor environment. The figures
shows a comparison of the proposed feature detection algorithm with the constant
threshold method. (a) A constant power threshold of 25 dB is chosen and compared with
the threshold (0.8) applied on probability-range spectra. (b) A constant power threshold
of 40 dB is chosen and compared with the threshold applied to the probability—range
spectra.

is a pencil beam device, with a beam width of 1.8°. This means that multiple
returns within the range spectra occur mostly due to penetration. Therefore a
model for predicting entire range spectra, based on target penetration is now
given.

2.8 RADAR-BASED AUGMENTED STATE VECTOR

The state vector consists of the normalized RADAR cross section, Yg, absorp-
tion cross section, Y, and the RADAR loss constants, L, along with the vehicle
state and feature locations. The variables, Yg, Y,, and L are assumed unique to
a particular feature/RADAR. Hence, this SLAM formulation makes the (very)
simplified assumption that all features are stationary and that the changes in the
normalized values of RCS and absorption cross sections of features when sensed
from different angles, can be modeled using Gaussian random variables vr;.
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FIGURE 2.20 Continued.

This is a reasonable assumption only for small circular cross sectioned objects
such as trees, lamp posts, and pillars, however, as will be shown the method pro-
duces good results in semi-structured environments even for the targets which
do not conform to these assumptions. The SLAM formulation here can handle
multiple line-of-sight targets.

2.8.1 Process Model

A simple vehicle predictive state model is assumed with stationary features
surrounding it. The vehicle state, x, (k) is given by x,,(k) = [x(k), y(k), Or 1T
where x(k), y(k), and 6 (k) are the local position and orientation of the vehicle
attime k. The vehicle state, x, (k) is propagated to time (k + 1) through a simple
steering process model [38].

The model, with control inputs, u(k) predicts the vehicle state at time (k+1)
together with the uncertainty in vehicle location represented in the covariance
matrix P(k + 1) [39].

xy(k + 1) = f(x, (k), u(k)) + v(k) (2.23)
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FIGURE 2.21 Experimental estimation of signal and noise distributions. In the CFAR
method, the local noise-plus-clutter power (Equation [2.10]) in the window is used to
set the detection threshold. The method compares the signal in the test window and
the detection threshold. The method fails when there are multiple detections within a
range-bin and in cluttered environments.

u(k) = [v(k), x(k)]. v(k) is the velocity of the vehicle at time k and « (k) is the
steering angle. In full, the predicted state at time, (k + 1) becomes

T X4+ 1k) 7 [ Xkl ] [Ax()]
$(k + 11k) y(klk) Ay(k)
br(k + 1]k) Or(kIk) a (k)
Xp, (k + 11k) Xp, (k|k) 0p,
Y (k 4 1]k) Ypu (klk) Op,
Y, (k + 1]k) Y, (k|k) 0p,
Yo, (k+ 1K) | — | Yo kI&) | 4 | Op (2.24)
Xpy (k 4 1]K) Xpy (k|k) Opy
Y (k + 1]k) Ypy (k[K) Opy
gy (k + 11k) Yry (k|k) Opy
Y,k + 11k) Yoy (k|k) Opy
| Lk+1k) | | Lk | [ 0]
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FIGURE 2.22 Comparison of CA-CFAR detector-based feature extraction and feature
detection based on target presence probability.
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FIGURE 2.23 The difference between the ground truth range values and the range
estimates from the target presence probability.
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FIGURE 2.24  Initial test results carried out to show the RADAR wave penetration with
different objects. (a) A scan of a RADAR reflector of RCS 177 m?, 14 m from the
RADAR, and a wooden sheet of thickness 0.8 cm visually occluding the reflector from
the RADAR. The wooden sheet is 8.5 m from the RADAR. (b) A RADAR reflector of
RCS 177 m?, 14 m from the RADAR, and a perspex sheet of thickness 0.5 cm, 8.5 m
from the RADAR. Again, the reflector is visually occluded from the RADAR.
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FIGURE 2.25 A 360° RADAR range spectra obtained from an outdoor field, contain-
ing trees, nonmetallic poles, fences, and concrete walls. The received power value
is represented in color space, as shown by the right hand color bar, with power
units in decibel.

where Ax(k) = v(k) At cos(Or(k|k) + a(k)), Ay(k) = v(k) At sin(fg(k|k) +
a(k)) and At is the sampling time.

The augmented state vector is then x(k) = [x,, {F1, Yr,, Yo, }» - - {Fi, TR,
Tal.},...,{FN,TRN,TaN},L]T where x, is the vehicle’s pose, F; =
[)cpl.,ypi]T is the ith feature’s location, where 1 < i < N. Tg is
the normalized RCS of the ith feature, Y, is its normalized absorp-
tion cross section, L represents the RADAR loss, and v(k) = [v,(k),
Op1s Opys vy s Vs -+ Opis Opis Vs Vs -+ +> Oy Opiys gy s vy » 01T

2.8.2 Observation (Measurement) Model

Another contribution of this chapter is the formulation of the observation model.
The RADAR observation is used to estimate the vehicle’s state once the vehicle’s
pose is predicted. During filter update, the prediction and estimation are fused.
For each of the features in the map, the predicted range, Ritk + 11k), the
RADAR bearing angle, ,3,- (k + 1]k), and the power, ﬁ,- (k + 1]k) are to be

© 2006 by Taylor & Francis Group, LLC



Millimeter Wave RADAR Power-Range Spectra Interpretation 85

50 ! ! ! ! ! ! ' ' !

(A) Nonmetallic pole (C) Lamp post
a0k 7 7 (B) Fence

30+

20

10

Power (dB)

-20 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200

Range (m)

FIGURE 2.26 A single RADAR range bin, recorded at the bearing angle 231° shown
in Figure 2.25, obtained from the outdoor field with multiple features down-range.

predicted from the predicted state in Equation (2.24). The predicted range and
bearing observations are similar to the ordinary SLAM formulation, that is,

E®+HM=J@AH4W—h®+MNLH%@+H@—%@+HMP
(2.25)

Vi (k 4+ 11k) — Jr(k + 1]k)
X, (k + 1|k) — xg(k + 1]k)

Bi(k + 1]k) = 6r(k + 1]k) — tan™" [ ] (2.26)

The predicted power for all targets, such as those in Figure 2.26, is the
fundamental difference offered in this chapter.

2.8.2.1 Predicted power observation formulation

The assumptions made in the predicted power model are as follows:

o The environmental features of interest are assumed to have small
circular cross-sections, so that the estimated normalized RCS
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sections and absorption coefficients are approximately the same in
all directions with respect to that feature.

e The measured returned power should be independent of range (due to
the built-in range compensation filter). This filter must first be
removed or post-filtered to remove its effect, to produce range
dependent power returns from all objects [15].

o The beam-width of the RADAR wave does not increase considerably
with range.

A target is assumed to affect the incident electromagnetic radiation in three
possible ways:

1. A portion of the incident energy Yg, 0 < Tg < 1, is reflected and
scattered

2. A portion of the incident energy Y,, 0 < Y, < 1, is absorbed by the
target

3. A portion of the incident energy 1 — (Y 4+ Y) is further transmitted
through the target

T is thus referred to as the “normalized” RCS section. Figure 2.27 shows
a MMW RADAR in an environment with i-features down-range at a particu-
lar bearing. The following terms are used in formulating the predicted power
observation:

Pinci = Power incident on the ith feature

Prgr; = Power reflected from the ith feature

PtraANi = Power transmitted through the ith feature

Pincit = Power incident on the first feature which is reflected from

the ith feature

o Prgri1 = Power reflected back toward the ith feature from the first
feature. This component will not reach the RADAR receiver directly
and is not considered in this formulation

e PrraNi1 = Power transmitted through the first feature which is the

reflection from the ith feature

The power incident at the first feature is given by

PtGA[
47‘L’R12

Pinct = (2.27)

where P; is the power transmitted by the RADAR, G is the antenna gain, and
Ry is the distance between RADAR and the first feature and A; is the area
of the object illuminated by the RADAR wave. Let Tg, be the normalized
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FIGURE 2.27 Power definitions for reflections, absorptions, and transmissions for i
multiple line-of-sight features.

RCS and Y,, be the normalized absorption cross section of the first feature.
The power received by the RADAR receiver from the first feature is given by
Prgr1 = PreriAe/(4TRY)

P.GTg A

- (2.28)
(47)2R}

D/
Prerp1 =

where A, is the antenna aperture. It is shown in the RADAR literature that
A, = GA? /4m [21]. Substituting for A, in Equation (2.28), the power return
from the first feature is

X P.G?22 TR A
P; = (2.29)
REF1 ()3 R?
The power Ptrani that passes through the first feature is given by
P:GAr(1 — [Yr, + Ta 1)
PTRANI = — ! 4 (2.30)

n2
(4m)R>
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The power reflected from the second feature, PRgp; is given by

P.GA* gy (1 — [Yr, + Yoy 1)
@r 2R R, — Ry)’

PRrem = (2.31)

The power then transmitted back to the first feature from the second feature is
given by

P.GAP YR, (1 — [Yr, + Yoy 1)

Pinc21 = — (2.32)
(47 )R (Ry — Ry)
The power, Pinc21 then passes through feature 1 and is given by
Prranzi = Pincai (1 — [Tr, + Ta, 1) (2.33)
The power returned from the second feature is then IA’/TR AN2] = PTRAN21A/
4rR?)
. P.GAPA TR, (1 — [Tg, + Yo 1)?
P/TRANzl = —= . - (2.34)

(4R} (Ry — Ry)*
In general, the predicted power from the ith feature can be written as

KA/ DYp (k + 1]k)
(4)2

[Ti=oll — (T, (e 1)+ Tk + 11)) 12
X S _
T Ryt (k + 11k) — Ry(k + 11K))*

Plgani (k + 11k) =

35)

where K = P;GA,, A, = GA?>/4m, Yr, = Yuy = Ro = 0 and, for the ith
feature, R; is related to the augmented state by Equation (2.25).

Equation (2.25), Equation (2.26), and Equation (2.35) between them com-
prise the observation. In order to generate realistic predictions of the range bins,
knowledge of the power and range noise distributions is necessary. This has been
studied extensively in previous work, and can be found in Reference 15.

The range and power noise are experimentally obtained [15]. The noise
in range is the phase noise, which is obtained by observing the range bins
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containing reflections from objects with different RCSs at different locations.
The noise statistics in power is obtained during both target presence and
absence.

The angular standard deviation is assumed to be 1° as the RADAR wave is
a pencil beam. The observation model is then given by

zi(k +1) = [Ri(k + 1), Bi(k + 1), Pi(k + DIT + wi(k + 1)
=hxk+1) + wik+1) (2.36)

where z;(k + 1) is the observation, and w;(k + 1) is the additive observation
noise given by

wi(k + 1) = [ve(k + Dvg(k + D,k + D1 (2.37)

and h is the nonlinear observation function defined by Equation (2.25),
Equation (2.26), and Equation (2.35).

2.9 MuLti-TARGET RANGE BIN PREDICTION — RESULTS

To validate the formulation for realistically predicting multiple line-of-site
target range bins, tests using a RADAR unit from Navtech Electronics were
carried out. Initially the vehicle was positioned at pose X, (k) as demonstrated
in Figure 2.28. The full 360° RADAR scan obtained from this vehicle location
is shown in Figure 2.25. Range bins obtained from the initial vehicle location
at two different bearing angles are shown in Figure 2.26 and Figure 2.29a.
Figure 2.26 is obtained at azimuth 231° and is indicated by the black line in
Figure 2.25. Features in the environment are marked in the figures. The next
predicted vehicle location is calculated using the vehicle model and system
inputs (Equation [2.24]). This corresponds to the new predicted vehicle pose
X,(k + 1 | k) in Figure 2.28. The range spectra in all directions are then pre-
dicted from the new predicted vehicle location. For example, in the range bin
predicted at angle /§ (k + 1 | k) in Figure 2.28, the predicted values for the
range, bearing and received power of features A and D are calculated according
to Equation (2.25), Equation (2.26), and Equation (2.35).

A single range prediction obtained from the predicted vehicle location
Xy(k + 1]k) is shown in Figure 2.29b having two features down-range.
Equation (2.35) can be used to predict the received power as long as the power
bias as a function of range incorporated into the RADAR electronics is taken
into account. This simply requires knowledge of the RADAR’s high pass filter
circuitry which in an FMCW RADAR compensates for the fourth power of
range loss, expected according to the simple RADAR Equation [15, 21].
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FIGURE 2.28 Vehicle motion and the features observed/predicted. Features

observed/predicted down-range at different bearings are marked.
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FIGURE 2.29 Observed and one step ahead predicted range spectra. (a) RADAR range
spectra (233° azimuth) obtained at the starting robot location. Two features observed
down-range are marked. (b) Predicted RADAR range spectra (at 234° bearing) obtained
from the predicted vehicle location.
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FIGURE 2.29 Continued.

The actual observation is obtained from the next vehicle location and is
shown in Figure 2.30a which shows power peaks in close proximity to those pre-
dicted in Figure 2.29b. The predicted and actual received powers from the target
at A are in close agreement in both figures whereas, the predicted value for the
received power (30 dB) of the target at 58 m (feature D in Figure 2.29b) is
slightly less than the actual received power (38 dB) in Figure 2.30a. The dis-
crepancy for feature D can be due to violation of some of the assumptions made
in the formulation — in particular that the normalized reflection and absorption
cross-sections remain constant, independent of the RADAR to target angle of
incidence.

Figure 2.30b shows the results of a chi-squared test to determine any bias or
inconsistency in the power—range bin predictions. The difference between the
measured and the predicted range bins is plotted together with 99% confidence
interval. The value of 99% bound, = +£16.35 dB, has been found experiment-
ally by recording several noisy power—range bins in target absence (RADAR
pointing toward open space) [15]. Close analysis of Figure 2.30b shows that
the error has a negative bias. This is due to the approximate assumption of the
high pass filter gain. For the RADAR used here, the gain of the high pass filter
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FIGURE 2.30 An actual range bin and the error between the predicted and observed
spectra. (a) Actual RADAR range spectra (at 234° bearing) obtained at the next robot
location. Features observed down-range are marked. (b) The difference between pre-
dicted and measured range bins containing two features down-range is shown. This error
is compared against 30 noise power bounds.

used in the predicted power—range bins was set to 60 dB/decade.!! The result
shows that this approximation for the high pass filter gain is acceptable, as a
large portion of the error plot lies within the 3o limits.

This formulation and analysis shows the initial stages necessary in imple-
menting an augmented state, feature rich SLAM formulation with MMW
RADAR. Future work will address the ease with which data association can be
carried out using the multidimensional feature state estimates, and a full SLAM
implementation in outdoor environments, will be tested.

11 Assuming the RADAR range equation to be correct, a high pass filter with a gain of 40 dB/decade
should produce a flat power response for particular targets at various ranges. Figure 2.26 shows
a power-range spectrum recorded from the RADAR. It can be seen from Figure 2.26, that the
power range response is not flat. For this particular RADAR it makes sense to either determ-
ine the bias in the power—range spectra or, model the high pass filter as having a gain of
60 dB/decade, which would better approximate the power-range relationship actually produced
in Figure 2.26.
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FIGURE 2.30 Continued.

2.10 CONCLUSIONS

This chapter describes a new approach in predicting RADAR range bins which
is essential for SLAM with MMW RADAR.

A noise analysis during signal absence and presence was carried out. This
is to understand the MMW RADAR range spectrum and to predict it accur-
ately as it is necessary to know the power and range noise distributions in the
RADAR power-range spectra. RADAR range bins are then simulated using
the RADAR range equation and the noise statistics, which are then compared
with real results in controlled environments. In this chapter, it is demonstrated
that it is possible to provide realistic predicted RADAR power/range spectra,
for multiple targets down-range.

Feature detection based on target presence probability was also introduced.
Results are shown which compare probability-based feature detection with other
feature extraction techniques such as constant threshold on raw data and CFAR
techniques. A difficult compromise in the CA-CFAR method is the choice of
the window size which results in a play-off between false alarms and missed
detections. Variants of the CFAR method exist, which can be tuned to overcome
the problem of missed detections, but the problem of false alarms remains
inherent to these methods.

The target presence probability algorithm presented here does not rely on
adaptive threshold techniques, but estimates the probability of target presence
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based on local signal-to-noise power estimates, found from several range
bins. The results show that the algorithm can detect features in the typically
cluttered outdoor environments tested, with a higher success rate compared to
the constant threshold and CFAR feature detection techniques.

A SLAM formulation using an augmented state vector which includes the
normalized RCS and absorption cross-sections of features, as well as the usual
feature Cartesian coordinates, was introduced. This is intended to aid the data
association process, so that features need not just be associated based on their
Cartesian coordinates, but account can be taken of their estimated normalized
reflection and absorption cross-sections also.

The final contribution is a predictive model of the form and magnitudes
of the power-range spectra from differing vehicle locations, for multiple line-
of-sight targets. This forms a predicted power-range observation, based on
estimates of the augmented SLAM state. The formulation of power returns
from multiple objects down-range is explained and predicted RADAR range
spectra are compared with real spectra, recorded outdoors.

This work is a step toward building reliable maps and localizing a vehicle
to be used in mobile robot navigation. Further methods of including the target
presence probability of feature estimates into SLAM are being investigated.

APPENDIX

The binary hypothesis testing problem is a special case of decision problems.
The decision space consists of target presence and target absence represented
by 8o and 81, respectively. There is a hypothesis corresponding to each decision.
Hj is called null hypothesis (hypothesis accepted by choosing decision 8g) and
H, is called the alternative hypothesis. The binary hypothesis problem has four
possible outcomes:

Hj was true, &g is chosen : correct decision.

H| was true, §; is chosen : correct decision.

Hy was true, 81 is chosen : False alarm, also known as a type I error.
H{ was true, &g is chosen : missed detection also known as a type 11
error.
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3.1 INTRODUCTION

Data fusion is the process of combining sensory information from different
sources into one representational data format. The source of information may
come from different sensors that provide information about completely different
aspects of the system and its environment; or that provide information about
the same aspect of the system and its environment, but with different signal
quality or frequency. A group of sensors may provide redundant information,
in this case, the fusion or integration of the data from different sensors enables
the system to reduce sensor noise, to infer information that is observable but
not directly sensed, and to recognize and possibly recover from sensor failure.
If a group of sensors provides complementary information, data fusion makes
it possible for the system to perform functions that none of the sensors could
accomplish independently. In some cases data fusion makes it possible for
the system to use lower cost sensors while still achieving the performance
specification.

Data fusion is a large research area with various applications and methods
[1-3]. In addition to having a thorough understanding of various data fusion
methods, it is useful to understand which methods most appropriately fit the
corresponding aspects of a particular application. In many autonomous vehicle
applications it is useful to dichotomize the overall set of application information
into (internal) vehicle information and (external) environmental information.
One portion of the vehicle information is the vehicle state vector. Accurate
estimation of the vehicle state is a small portion of the data fusion problem
that must be solved onboard an autonomous vehicle to enable complex mis-
sions; however, accurate estimation of the vehicle state is critical to successful
planning, guidance, and control. When it is possible to analytically model the
vehicle state dynamics and the relation between the vehicle state and the sensor
measurements, the Kalman filter (KF) and the extended Kalman filter (EKF)
are often useful tools for accurately fusing the sensor data into an accurate
state estimate. In fact, when certain assumptions are satisfied, the KF is the
optimal state estimation algorithm. The KF and its properties are reviewed in
Section 3.2.

This chapter has two goals. The first is to review the theory and application
of the KF as a method to solve data fusion problems. The second is to discuss
the use of the EKF for fusing information from the global positioning system
(GPS) with inertial measurements to solve navigation problems for autonomous
vehicles. Various fusion paradigms have been suggested in the literature — GPS,
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inertial navigation system (INS) only, INS with GPS resetting, INS with GPS
position aiding (i.e., loose coupling), and INS with GPS range aiding (i.e., tight
coupling). This chapter presents each approach and discusses the issues that
are expected to affect performance. Discussion of latency, asynchronous, and
nonlinear measurements are also included.

3.1.1 Data Fusion — GPS and INS

For planning, guidance, and control applications it is critical that the state of
the vehicle be accurately estimated. For these applications, the state vector of
the vehicle includes the three-dimensional (3D) position, velocity, and attitude.
Often, it is also possible to estimate the acceleration and angular rate. Various
sensor suites and data fusion methods have been considered in the literature
[4-8]. This chapter focuses on one of the most common sensor suites [9-11]
— fusion of data from an inertial measurement unit (IMU) and a GPS receiver.
The chapter considers the positive and negative aspects of various methods that
have been proposed for developing an integrated system.

An IMU provides high sample rate measurements of the vehicle acceler-
ation and angular rate. An INS integrates the IMU measurements to produce
position, velocity, and attitude estimates. INSs are self-contained and are not
sensitive to external signals. Since an INS is an integrative process, meas-
urement errors within the IMU can result in navigation errors that will grow
without bound. The rate of growth of the INS errors can be decreased through
the use of higher fidelity sensors or through sensor calibration. In addition,
the INS errors (and calibrations) can be corrected through the use of external
sensors. With a well-designed data fusion procedure, even an inexpensive INS
can provide high frequency precise navigation information [12]. The rate of
growth of the INS error will depend on the IMU characteristics and data fusion
approach.

A GPS receiver measures information that can be processed to directly
estimate the position and velocity of the receiver antenna. More advanced multi-
antenna GPS approaches can also estimate the vehicle attitude [13—15]. The
accuracy of the vehicle state estimate attained by GPS methods depends on the
receiver technology and the processing method. Civilian nondifferential GPS
users can attain position estimates accurate to tens of meters. Differential
GPS users can attain position estimates accurate to a few meters. Differen-
tial GPS users capable of resolving carrier phase integer ambiguities can attain
position estimates accurate to a few centimeters. The main disadvantage of state
estimates determined using GPS is that the estimates are dependent on reception
of at least four GPS satellite signals by the receiver. Satellite signal reception
requires direct line of sight between the receiver and the satellite. While this
line of sight is obstructed for a sufficiently large number of satellites, the GPS
solution will not be available.
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GPS and INS have complementary properties which have motivated various
researchers to study methods to fuse the data from the two systems. The object-
ive is to attain high performance for a higher percentage of the time than either
approach could attain independently. This chapter uses GPS and INS to illustrate
the use of the KF for data fusion. Section 3.2 reviews the KF, EKF, and various
properties and application issues. Section 3.3 reviews the various issues related
to the GPS system. Of particular interest will be various assumed dynamic
models and issues affecting state estimation accuracy. Section 3.4 provides a
brief review of INS and their error models. The main objective is to present
the model information necessary to analyze alternative methods for combining
GPS and INS information, which is done in Section 3.5.

3.2 KALMAN FILTER

Since R. E. Kalman published his idea in the early 1960s [16,17], the KF
has been the subject of extensive research. It has been applied successfully to
solve many practical problems in different fields, particularly in the area of
autonomous navigation. The KF involves two basic steps: use of the system
dynamic model to predict the evolution of the state between the times of the
measurements and use of the system measurement model and the measurements
to optimally correct the estimated state at the time of the measurements. It is
well known that the KF is recursive, computationally efficient, and optimal in
the sense of the minimum mean of the squared errors [18].

This section contains three subsections. Section 3.2.1 reviews the linear
dynamic system models that are required for the prediction and measurement
update steps of the KF. Section 3.2.2 reviews the KF algorithm, a few of its
properties, and methods to address various implementation issues. Section 3.2.3
reviews the EKF algorithm which is applicable when either the dynamic or
measurement model of the system is not linear. The EKF is needed in GPS-INS
data fusion applications since the INS dynamic model is nonlinear and the GPS
measurement model may be nonlinear.

3.2.1 Stochastic Process Models

Because the state of most physical systems evolve in continuous time,
continuous-time dynamic models are of interest. The dynamic behavior of
a linear continuous-time system driven by a random process w(f) may be
described mathematically by a set of ordinary differential equations:

x(t) = FOx(®) + G (t) 3.1)
y(@®) = H®Ox(@) + v(1) (3.2)
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where x(¢) is the n-element state vector of the system, F(¢) is the system matrix,
G(?) is the input distribution matrix, y(¢) is the measurement vector, H(z) is the
measurement matrix, and v(¢) is the measurement noise vector.

The vectors w(t) and v(¢) are assumed to be white and Gaussian with

Elo] =0, Elo®o’ (+1)]= Q1)) (3.3)
Elv(]1 =0, EN®OV (1 +1)] =R®(7) (3.4)

where Q,, is the power spectral density (PSD) of the white noise w (¢) and R(¢)
is the covariance matrix of the measurement noise process v(z). If either w ()
or v(¢) is not white, then it may be possible to append linear dynamics to the
model of Equation (3.1) and Equation (3.2) to still utilize the model of a linear
system driven by white noise, see Reference 19. For the state estimation design
discussions of this chapter, unless otherwise stated, assume that the system
model has been manipulated into the form of Equation (3.1) and Equation (3.2)
with white process and measurement noise.

In applications, such as those involving GPS, where the measurements
occur at discrete instants of time, it is convenient to utilize a discrete-time
formulation of the KF. If we denote the sequence of measurement times by
Hy.oslks testls - - -, then implementation of the discrete-time KF requires a
model for propagating the state between measurement times and a model for the
relation between the state and the measurement that is valid at the measurement
time. Using linear system theory [20,21], the state transition valid between #;
and Tret1 is

X(te41) = P q1, )X (1) + w(te) (3.5)
where

1
wite) = / (41, )G () d (3.6)
T

and P (fx41,1) is the state transition matrix from ¢ to #;41. The measurement
model valid at #; is

y() = H(t)x (1) + v(te) (3.7
To simplify notation, these equations will be written as

X1 = PpXp + Wi (3.8)
Vi = Hgxy + vy (3.9)
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The process noise wy and measurement noise v are assumed to be zero-mean,
white noise with covariance properties as follows:

Q 9’ k = j
Elwiw!] = {0 ¢ ) #]. (3.10)
, J
Ri, k=j
Ewv}]= g / (3.11)
0, k#j
E[wvj]1=0, forall k and (3.12)

3.2.1.1 Computation of ® and Q,

The covariance matrix associated with w(#y) is:

Tk+

1
Qi = Qtet1, 1) = / (1141, 1)G(T)QGT (1) ®T (141, 7)dr (3.13)

3

For systems where F(¢), G(¢), and Q,,(#) are accurately approximated as con-
stant over the interval of integration, the transition matrix can be calculated by
the inverse Laplace transform

S (tet1, k) = £ HIST = F1 ™ mp -1 (3.14)

Alternative methods to compute ®; and Qy use matrix exponentials [22,23] or
Taylor series expansions. A common method for computing @, is the truncated
power series:

F2A2 F3AP
2! + 3!

(A1) =" =1+ FAr + +--- (3.15)

where At = 41 — t; and the choice of the order of the power series depends
on the system design requirements.

When F is time varying, it is necessary to subdivide At such that F can
be considered as constant on the subintervals At; = 1; — 17,1 where 79 = 1%,
W = tiy1, and ;7 = 1,1 + At fori = 1,...,N. Let At = Zf’zl AT;
then &, ]_[fv:l ®(7;,7i—1). The matrix Q; can be found by approximation
techniques:

Qr = Q(n, T0) (3.16)

© 2006 by Taylor & Francis Group, LLC



Data Fusion via Kalman Filter 105

where by subdividing (3.13) into subintegrals and using ®(tiy1,70) =
®(7i41, 1) P (15, T0) We obtain

Q(tj, 10) = ®(7;, 1i-D[GQ,,GT AT + Q(zi_1,70)1® (ri, 1) (3.17)
fori =1,...,N with Q(tg, 79) = 0.

Example 3.1 Since a common GPS measurement epoch uses #; = k, this
example considers computation of ®; and Qy, over the unitinterval t € [k, k+1)
where k is an integer. First, the unit interval is subdivided into N subintervals
of length dt = 1/N sec. Each subinterval is [1;, Ti+1) where t; = k + idt for
i=0,...,N.Forsmall dr,

@ (tit1, i) = A+ F(r)dr)
and
®(Tit+1, 70) = P(Tit1, 1) ®(7i, T0) (3.18)
therefore,
@ (Tit1, 70) = @ (7, 70) + F(7) @ (i, 70) d7

Similarly, over each 1 sec interval, Q; = Q(7n,70) can be integrated as
follows:

Qi(t1,k) = ®(11,70)GQ,,GT® (71, 70) dt

Qi(12, k) = ®(12, 71)[GQ,,GT d7 + Q (71, k)1 (12, 1) (3.19)

Qi(tv, k) = @ (v, tv_1)[GQ,,GT dt + Qi (ty—1, k) 1®T (v, TN—1)

3.2.2 Basic KF

Since there are numerous books devoted to the derivation of the KF, such as
References 19, 20, and 24, the derivation is not included herein. Instead, the
KF algorithm and its properties are reviewed.

The KF estimates the state of a stochastic system. To determine optimal
gains for the filter at time #, the KF compares the covariance of the state estimate
at 7, with the covariance of the measurement at #;. To enable this comparison,
the KF algorithm will propagate the covariance of the state estimate as well
as the state estimate. Prior to discussing the KF algorithm, it will be useful to
summarize the new notation that will be used. The KF gain valid at time #
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is Ky. The state estimate at time #; using all measurements up to time #; will
be denoted by f(j|,-. Therefore, Xy is the estimate of the state at time # using
all measurements up to and including yj, while X x— is the estimate of the
state at time #; using all measurements up to and including yx_;. Similarly,
Py« denotes the covariance of the state estimation error at time #; after using
all measurements available up to and including yi, and Pyx—; denotes the
covariance of the state estimation error at time #; after using all measurements
available up to and including y;_.

The KF algorithm is a recursive process. As such, it requires initialization
prior to starting the recursion. Assume that the first measurement will occur at
t1 and denote the initialized state estimate and its associated error covariance
matrix as Xojo and Pojo. These initial values should be

Xol0 = E(x0), Pojo = cov(xp) (3.20)

and k = 0. Often, it will be the case that Pg|o is diagonal with each element
being large. The KF is implemented as follows:

1. Predict the state vector and error covariance matrix for the next
measurement time:

Xir 1k = PrXpk (3.21)

Piiije = ®iPi @) + Qx (3.22)

Then, increment k = k + 1.
2. Calculate the KF gain matrix for incorporation of yy:

Ky = Py Hy [H Py HY + Ry ]™! (3.23)
3. Use yx to correct Xgjx—:
Xk = Xgk—1 + Kelyk — HiXgpe—11 (3.24)

4. Compute the error covariance of the state estimate after incorporat-
ing yi:

Prr = 1 — KeH [Prr—1 (3.25)
where I is an n-dimensional identity matrix.
Steps 14 are iterated for each new measurement. This iteration can con-

tinue ad infinitum. A few facts are important to point out. First, the discrete
measurements have not been assumed to be equally spaced in time. The only
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assumption is that we have a model available, of the form of Equation (3.8)
and Equation (3.9), suitable for accurate propagation of the state estimate and
state estimate error covariance matrix between measurement instants. Second,
Step 3 is the only step that requires the measurement; therefore, when the next
measurement time can be accurately predicted, then Steps 1 and 2 are often com-
puted prior to the arrival of the next measurement. The purpose of doing this is
to minimize the computational delay between the arrival of y; and availability
of Xy to the other online processes that need it (e.g., planning, guidance, or
control). Third, the portions of the KF algorithm that require the majority of the
computations are Equation (3.22), Equation (3.23), and Equation (3.25), which
are related to maintaining the error covariance matrix and the Kalman gain.

3.2.2.1 Implementation issues

The performance of the KF depends on the accuracy of the process model
and the measurement model. The implementation approach also affects the
performance and computational load of the KF. This section discusses some of
the important implementation issues related to the KF.

Sequential processing of independent measurements. When the system has
m simultaneous, but independent measurements, the noise covariance matrix is
diagonal:

ry 0 0
0 0 ry

In this case, it is computationally efficient to treat the measurements as sequen-
tial measurements. This replaces an m-dimensional matrix inversion with m
scalar divisions. At time #;, we introduce an auxiliary vector Xg and matrix po
which are initialized as

po=Pir—1 and Xo =X (3.27)
The following recursion is performed for i = 1 to m:

. pi—th]

ri + hipi—1hf

. . (3.28)
Xi =X;—1 + Ki[yi — h;x;_1]

I — Kih;]p;—1

=
I
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where h; is the ith row of the measurement matrix Hy and y; is the ith element of
the vector y. After the mth step of the recursion, the state and error covariance are

Rtk = X (3.29)
Py =pm

Note that the state estimate X x and error covariance Py that result from this
scalar processing will exactly match (within numerical error) the results that
would have been obtained via the vector processing implementation. The gain
matrices K that result from the vector and scalar processing algorithms will be
distinct, due to the different order in which each implementation introduces the
measurements.

Rejection of bad measurements. In engineering applications, data does not
always match theoretical expectations. Therefore, it is also necessary to set up
some criteria to reject some measurements.

For example, if for a scalar measurement y; the absolute value of the meas-
urement residual res; = y; — h;X;_| at time k is sufficiently larger than its

standard deviation ,/ hiPk|k_1th + r, then the measurement could be ignored.

In this case, this kth measurement would be missed. Such situations are
discussed below.

Missed measurements. Sometimes an expected measurement may be miss-
ing. One circumstance under which this could occur was discussed earlier.
When a measurement is missing, the “measurement” contains no information;
therefore, the uncertainty of the measurement is infinite (i.e., R = «I with
o = 00). In this case, by Equation (3.23), K; = 0. Using this fact, in Steps 3
and 4 of the KF, yields

Xk = Xkjk—1 (3.30)

Pii = Prjk—1 (3.31)

The missed measurement has no effect on the estimated state or its state error
covariance matrix.

Divergence of the KF. The KF is the optimal state estimator for the modeled
system. The KF is stable if certain technical assumptions, including observab-
ility and controllability from the process noise vector are met [19-21]. Lack
of observability, absence of controllability from the process noise vector, or
modeling error can cause the KF state estimate to diverge from the true state.
These are issues that must be studied and addressed at the design stage.
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Tuning. Ideally, the KF is applied to a well-modeled dynamic system with
stochastic process noise and measurement noise satisfying the required assump-
tions. In such cases, the Q and R matrices can be computed correctly as a portion
of the stochastic model. In some other applications, examples of which will
occur in Section 3.3.3, the vector w represents unknown factors that may not
be truly random. In such applications, Q and R are often used as performance
tuning parameters. As Q is decreased relative to R, the KF trusts the dynamic
model of the system more than the measurements; therefore, the states of the
system converge more slowly since new information is weighted less. If Q is
increased relative to R, the measurements will be weighted more and the states
will converge faster; however, the measurement noise will have a larger effect
on the accuracy of the filtered solution. Note that in applications where Q and
R are used as performance tuning parameters, all stochastic interpretations of
Py i are lost. Instead, the KF is being used as an algorithm to estimate the state,
but the KF optimality properties are not applicable.

Maintaining symmetry. The equation
Pr = I — K Hg [Prr—1 (3.32)
is a simplified version of
Pi = [ — KeHg Py 1 [T — KeH T + KRy K] (3.33)

Equation (3.32) is valid only when Ky is the optimal Kalman gain matrix.
When K is defined by an equation other than Equation (3.23) and is not the KF
optimal gain matrix, then Equation (3.33) should be used. Since Py is the error
covariance matrix, it should be symmetric and positive semidefinite. Although
Equation (3.33) requires more computational operations than Equation (3.32)
does, Equation (3.33) is a symmetric equation. However, the symmetry of either
result can be guaranteed and the computational requirements are decreased by
only computing the lower diagonal half of Py.

Maintaining definiteness. Neither Equation (3.32) nor Equation (3.33)
guarantees that Py, is symmetric or positive semidefinite in the presence of
numeric errors. One possible solution is to factorize Py (e.g., P = UDUT or
P = QR) and derive algorithms that propagate the factors directly. Such fac-
torized algorithms [20,21] have better numeric stability properties, especially
in applications where computational error is an issue.

3.2.3 Extended KF

The previous sections have discussed only linear systems with zero-mean, white
Gaussian process, and measurement noise. The optimality properties of the KF
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under these assumptions were briefly discussed in the previous sections. In
many applications either the measurement model, the system dynamics, or
both are nonlinear. In these cases the KF may not be the optimal estimator.
Nonlinear estimation is a difficult problem without a general solution. Nonlinear
estimation methods are discussed, for example, in References 25 and 26. For
the navigation systems which are the main focus of this chapter, the EKF has
proved very useful because the linearized dynamic and measurement models are
accurate for the short periods of time between measurements. Due to its utility
in the applications of interest, the EKF is reviewed in this section.

Such navigation systems can be described by the nonlinear stochastic
differential equation

x() =f(x,u, 1) + g(x, )W (f) (3.34)
with a measurement model of the form
y(&) =hx, 1)+ V(@) (3.35)
where f is a known nonlinear function of the state x, the signal u, and time; g is
a known nonlinear function of the state and time; and w’ and v’ are continuous-
time white noise processes.
For its covariance propagation and measurement updates, the EKF will
use a linearization of Equation (3.34) and Equation (3.35). The linearization is
performed relative to a reference trajectory x*(¢) which is a solution of

x*(t) =f(x*,u,1)

between the measurement time instants. The corresponding reference measure-
ment is

y* (1) = h(x*,1)
The error state vector is defined as
8x =x —x*
and the measurement residual vector as
Sy =y —y"@®
The linearized dynamics of the error state vector are

8%(1) = F()8x(1) + GOW (1) + ex(t) (3.36)
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and the linearized (residual) measurement model is
8y(t) = H(1)8x(1) + v/ (1) + ey (1) (3.37)

where

oh
F(r) = - HO) = - . G =gx"1

of
ox x=x*

and ex(?), e,(?) are linearization error terms.
From Equation (3.36) and Equation (3.37), the equivalent model for discrete
measurements is

IXjr1 = PrIXy + Wi

8yx = Hpdxy + vi

where the state transition matrix and process noise covariance matrix can be
calculated by the methods given in Section 3.2.1. The approximation will hold
only for a short period of time and only if the reference trajectory is near
the actual trajectory. For the systems that are the focus of this chapter, the
linearization will occur around the computed navigation state. Time propagation
occurs between GPS measurement epoches, which are typically separated by
only a few seconds. Measurements at a given epoch are assumed to occur
simultaneously. The purpose of the GPS corrections is to keep the navigation
state near the state of the true system.

Implementation of the EKF algorithm is very similar to that of the KF, in fact,
only the state propagation and measurement prediction steps will change. In
addition, the P matrices computed in the algorithm are no longer true covariance
matrices; although, we will still use that name in the following text.

To initialize the EKF algorithm, assume that the first measurement will
occur at #; and denote the initialized state estimate, residual state estimate,
and its associated error covariance matrix as Xojo, §Xo|0, and Pojo, respectively.
These initial values should be

Xoj0 = E(X0), 68Xoj0 =0, Pojo = cov(xg)

Since this is a nonlinear estimation process, it is important that x(0) — Xojo be
small. The equations and procedures for the EKF are summarized as follows:

1. Propagate the state estimate to the next measurement time #;1 by
integrating

X4 (1) = F(x*, u, 1) (3.38)

© 2006 by Taylor & Francis Group, LLC



112

Autonomous Mobile Robots

over the time interval ¢ € [fy, f41] with initial condition x*(#;) =
Xijk- At the completion of the integration, let Xgyix = X* (1)
Along the solution x*(#), compute

F@) = % and G@r) = g(x*,1), fort € [t trr1]

x=x*

Compute the state transition matrix ®; and compute the process
noise covariance matrix Qy. Predict the error state vector and error
covariance matrix:

Sﬁk—&-llk = Qkaﬁk‘k =¢,0=0 (3.39)
Pirije = ®iPi®; + Qx (3.40)

The reason that §Xx is set to 0 in (3.39) is clarified in the discussion
following (3.43).

Increment k = k + 1.

Linearize the measurement matrix at x*(#;) and calculate the EKF
gain matrix:

oh
Hy = H(t) = =
X Ix=fep—1 (3.41)

T T -1
Ky = Prg— 1 Hy [HiPrje— 1 H, + Ry ]
Compute the error states using the residual measurements:

8Xpk = 0Xppk—1 + Ki[8yx — HxdXppe—1]
where 8Xjx—1 is the error state vector estimated prior to the new

measurements, which by Equation (3.39) is zero.
Update the estimated states Xy x:

Xk = Xijk—1 + 6Kk (3.43)

Since the error state has been included in the state estimate, the error
has been corrected; therefore, the new best estimate of the error state
is zero. Therefore, Xk, must be set to zero: §Xxjx = 0.

Update the posterior error covariance matrix:

Py = 1 — KpHg [Prk—1
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The EKF iterates Steps 1 to 7 for the duration of the application. Steps 1 and 2
perform computations related to time propagation of the state and the matrix P.
Steps 4 to 7 perform computations related to the measurement update.

In the EKF algorithm, the computation, use, resetting, and time propagation
of §Xy i often causes confusion. The above algorithm is a fotal state implement-
ation. In an alternative error state implementation of the algorithm, Step 6 could
be removed. Without Step 6, Equation (3.39) of Step 2 would have to be imple-
mented to time propagate the error state and the simplification to Equation (3.42)
of Step 5 would not be possible. In this alternative implementation, it is pos-
sible that, over time, 55(k|k could become large. In this case, x* is not near the
actual state. In this case, the linearized equations may not be accurate. The
EKF algorithm as presented (using Step 6) includes §Xx in x* resulting in
a more accurate linearization. The total and error state implementations are
discussed in greater detail in References 20 and 27.

3.3 GPS NAVIGATION SYSTEM

The purpose of this section is to discuss the advantages and disadvantages
of various EKF approaches to state estimation using GPS measurements.
Section 3.3.1 presents background information about GPS that is necessary for
the subsequent discussions. Section 3.3.2 discusses position estimation based
on GPS measurements. The EKF approaches to solving the GPS equations are
compared in Section 3.3.3.

3.3.1 GPS Measurements

The GPS is designed to provide position, velocity, and time estimates to users
at all times, in all weather conditions, anywhere on the Earth. The existing
GPS signal for each satellite consists of a spectrum spreading code and data
bits modulated onto a carrier signal. By accurately measuring the transit time
of the code signal, the receiver can form a measurement of the pseudorange
between the satellite and the receiver antenna. This measurement is referred
to as a pseudorange as it is also affected by receiver and satellite clock errors.
By processing the data bits to determine the clock error model and ephemeris
data, the receiver can compute the satellite position and clock errors as a func-
tion of time. Tracking the satellite signal requires that the receiver acquire
either frequency or phase lock to the satellite carrier signal. Phase information
from the tracking loop has utility as an additional range measurement and the
change in the phase measurement over a known period of time (referred to
in the GPS literature as a Doppler measurement) can be used to estimate the
receiver velocity. The GPS satellites broadcast signals on two frequencies: L1

© 2006 by Taylor & Francis Group, LLC



114 Autonomous Mobile Robots

and L2. Users with “two frequency” receivers can obtain pseudorange, phase,
and Doppler measurements for each of the two frequencies.

The L1 and L2 code and carrier phase measurements from a given satellite
can be modeled as

ALl =R+bu+CAtsv+j:_2[a+Ecm + MPy + 1y
1

J

p1o = R+ by + cAtyy +f—‘la + Ecm + MP; + 12
2

~ )

¢Ll)\l + NiAq =R+bu + cAtgy _j;]a + Ecm + mp1 +ny
1

~ bil

¢r2A2 + Nody = R+ by, + cAtgy — f—la + Ecm +mpy + 12
2

where R = || Xsv — X,,|| is the geometric distance between the satellite position
X,y and receiver antenna position X, b, is the receiver clock bias, and c Aty is
the satellite clock bias. The satellite clock bias can be partially corrected by eph-
emeris data. E.y, represents common errors other than dispersive effects such as
ionosphere and I, represents ionospheric error. The symbols 1 and n represent
receiver measurement noise. The symbols mp and MP represent errors due to
multipath. Note that the receiver clock bias is identical across satellites for all
simultaneous pseudorange and phase measurements. Since the receiver phase
lock loops can only track changes in the signal phase and the initial number of
carrier wavelengths at the time of signal lock is not known, each phase signal is
biased by an unknown constant integer number of carrier cycles represented by
Nj and N;. Use of the phase measurements as pseudorange signals for position
estimation also requires estimation of these unknown integers [28—32]. Use of
the change in the phase over a known period of time to estimate the receiver
velocity does not require estimation of these integers, since the integers are
canceled in the differencing operation [33,34]. The standard GPS texts [34,35]
include entire sections or chapters devoted to the physical aspects of the various
quantities that have been briefly defined in this section.

Note that only R and b,, contain the position and receiver clock information
that we wish to estimate. The symbols cAtgy, I, Ecm, MP, mp, 1, and n all
represent errors that decrease the accuracy of the estimated quantities. There
are many techniques to reduce these measurement errors prior to the navigation
solution. Dual frequency receivers can take advantage of the code measurements
from L1 and L2 to estimate the ionospheric delay error I, as

fif2

I, = ——
2 2
f2_1

(OL1 — PL2)
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Due to the differencing of measurements, this estimate is noisy; since I, changes
very slowly, it can be low-pass filtered to remove the noise. For measure-
ments from single frequency receivers, it is possible to compensate part of the
ionospheric delay errors by an ionospheric delay model [36]. Alternatively,
differential operation using at least two receivers can effectively remove all
common mode errors (i.e., cAtgy, Iy, Ecm).

The methods discussed in the subsequent sections can be used for the pseu-
dorange or integer-resolved carrier phase measurements. We will not discuss
Doppler measurements. To avoid redundant text for the code and integer-
resolved carrier measurements, we will adopt the following general model for
the range measurement to the ith satellite

Bi= =4 =02+ G =P +bu e (B4

where p could represent the code pseudorange measurements or integer-
resolved carrier phase measurements. The variable b, represents the receiver
clock bias. The symbol ¢ represents the error terms appropriate for the different
measurements. When a GPS receiver has collected range measurements from
four or more satellites, it can calculate a navigation solution.

3.3.2 Single-Point GPS Navigation Solution

This section presents the standard GPS position solution method using nonlinear
least squares. In the process, we will introduce notation needed for the sub-
sequent sections. In this section, the state vector is defined as x = [x, y, z, b,1F
where (x,y,z) is the receiver antenna position in earth centered earth fixed
(ECEF) coordinates and b,, is the receiver clock bias.

Taylor series expansion of Equation (3.44) about the current state estimate

~

X = [%,,2, b,] yields

pi(x) = pi(X) + [h;, 1]6x + h.o.t.s + &

where
SX=X—-X=[x—-X,y—Y, 2—2, lau—l;u]T
FR =X =0+ (V=97 + & -2 +b (349
_ [% dei %]
0x ’ 8)/ ’ Bz ®&3.2
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and
pi —(X; —x)
0x X =02+ (Vi — ) + (Z — 2)°
i —(¥; —)
0y JXi— 02+ T — )+ (Z -2
i ~(Z—2)

7 Kt (i )P + G- 2P

Given m simultaneous range measurements, all the measurements can be put
in the matrix form

Sp =Héx+v (3.46)
by making the definitions
A,Ol hls 1
Ap2 h2’ 1
Sp = . and H= . (3.47)
Apm hn’h 1

where the residual measurement is
Ap; = pi(x) — pi(X)

and v represents the high order terms (h.o.t.s) of the linearization plus the
measurement noise.

To determine the state vector, a minimum of four simultaneous range meas-
urements are required. The weighted least squares solution to Equation (3.46) is

sx = [H'R'H]"'HTR'sp (3.48)

The corrected position estimate is then
T =% +6x (3.49)
To reduce the effects of the linearization error terms, the above process can
be repeated using the same measurement data and the corrected position at
the end of the current iteration as the starting point of the next iteration (i.e.,

X = x). The iteration is stopped when the error state vector §x converges to
a sufficiently small value. Even after the convergence of §x has been achieved,
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there may still be significant error i, = x — X+ between the actual state and the
best estimate after incorporating the measurements. The measurement noise
covariance matrix is

(,12 o --- 0
R, =cov(v) = | : (3.50)
0 0 o2

The value of al.z for the ith satellite could be determined based on time-series
analysis of measurement data, the S/N ratio determined in the tracking loop for
that channel, or computed based on satellite elevation. The covariance of 7y is

Ry = cov(ny) = [H'R™'H]™! (3.51)

It is important to note that this matrix is not diagonal. Therefore, errors in the
GPS position estimates at a given epoch are correlated.

The above solution approach can be repeated (independently) for each epoch
of measurements. This calculation of the position described so far, at each
epoch, results in a series of single-point solutions. At each epoch, at least four
simultaneous measurements are required and the solution is sensitive to the
current measurement noise. There is no information sharing between epochs.
Such information sharing between epochs could decrease noise sensitivity and
decrease the number of satellites required per epoch; however, information
sharing across epochs will require use of a dynamic model. Section 3.3.3 dis-
cusses advantages and disadvantages of alternative models and EKF solutions
for GPS-only solutions. Section 3.4 discusses methods for combining GPS and
IMU data.

Example 3.2 Throughout the remainder of this chapter we will extend the
example that begins here. The example will be analyzed in )t%. By this we mean
that we are analyzing a 2D world, not a 2D solution in a 3D world. We restrict
the analysis to a 2D world for a few reasons (1) the analysis will conveniently
fit within the page constraints of this chapter; (2) graphical illustrations are
convenient; and (3) several important theoretical issues can be conveniently
illustrated within the 2D example. The main conclusions from the 2D example
have exact analogs in the 3D world (discussed in Example 3.6).

In a 2D world, p(¢), v(t) € %? and there is a single angular rotation angle
Y(t) € R withw(t) = fp(t) € NR. All positions and ranges will be in meters.
All angles are measured in degrees. The quantities ¥ and w are not used in this
example, but are defined here for completeness as they are used in Example 3.6.
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To find the position corresponding to range measurements in the 2D
example, we define the position and clock bias error vector as

Sp=x—K=[x—%y—9bit—by"

The range is computed as

AR = (X — 97 + (% — 7 + b,

The line-of-sight vector (from satellite to user) is

—(X;—% (Y —3
hi:[ KB Tioh } 352
VX =32+ X =57 VX =D+ (- §)?
Because there are three unknowns, measurements from at least three satel-
lites will be required. Let us assume that there are satellites at locations

P; =10 x IOG[ELZZ]m for 61 = 90°, 6, = 85°, 03 = 20°, and 64 = —85° with
corresponding range measurements of p; = 9.513151e6, p» = 9.469241e6,
03 = 9.363915e6, and ps = 10.468545¢6. Then, if the initial position estimate
is X = [0.00,0.00,0.00]7, the sequence of positions and position corrections
computed by iterating Equation (3.48) and Equation (3.49) with R = I, is shown
in Table 3.1. Note that if the initial estimate, possibly obtained by propagation
of the estimate from a previous epoch, was accurate to approximately 10 m, then
one or possibly two iterations would provide convergence of a new estimate
consistent with the measurements of the current epoch to better than millimeter
accuracy. Also, even after the estimate of x has converged to micrometer accur-
acy, the error in the estimated measurement is still 0.44 m. This is the least
squared error that can be achieved by adjusting the three elements of x to fit the
four measurements of p.

TABLE 3.1

Results of Computations for Example 3.2

Iteration §x 16l X o — ol
0 NA NA  [0,0,0]

1 [5.01,5.09,0.14]e5 7.1e5  [5.011961,5.090871,1.364810]e5 23368.75
2 [-0.12,-0.91,—1.36]e4  1.6e4  [5.000000,5.000046,0.000062]e5 7.33
3 [0.01,—4.20, —421]0  6.0e0  [5.000000,5.000000,0.000002]e5 0.44
4 [-0.26, ~8.53,-9.29]e—7 1.3e—6 [5.000000,5.000000,0.000002]e5 0.44
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The error covariance matrix for the estimated position vector is

0.377 0.040 0.133
Ry = | 0.040 1.492 0.376
0.133 0.376 0.384

The variance of x is smaller than the variance of y due to the geometric alignment
of the satellites. Also, the estimates of x and y are correlated. Note that receivers
do not typically provide this covariance matrix as an output.

If only the first three measurements are used to estimate x, then the meas-
urements can be perfectly fit, but the error in the estimated position and the
error covariance matrix will increase.

3.3.3 KF for Stand-Alone GPS Solutions

This section discusses methods that have been proposed in the literature to
achieve improved performance by using the EKF to share information across
measurement epochs. Higher performance can be represented by increased
position accuracy or decreased requirements on the number of required satellites
per epoch.

Sharing information across measurement epochs requires models for the
dynamics of the user receiver and the receiver clock error. The receiver
clock dynamic model is discussed briefly in Section 3.3.3.1. Various pos-
sible dynamic models for the receiver antenna position are discussed in
Section 3.3.3.2 to Section 3.3.3.4. Each of these dynamic models will be lin-
ear; however, since the GPS measurement model is nonlinear, the solution still
requires an EKF.

The use of the EKF algorithm of Section 3.2.3 to solve the GPS navigation
problem is illustrated as a block diagram in Figure 3.1. The dynamic motion
equations are integrated between measurement times to predict the receiver
antenna position at subsequent measurement times. The measurement predic-
tion equations use the predicted antenna position and the computed satellite
position to predict range measurement for each satellite. The residuals between
the GPS measurements and the predicted measurements drive the EKF which
outputs the error state estimates. The error state estimates are fed back to correct
the predicted states, which are used to initialize the prediction step for the next
epoch.

Section 3.3.3.2 to Section 3.3.3.4 discuss the advantages and disadvantages
of three possible receiver state estimation algorithms. The EKF algorithm and
Figure 3.1 are applicable to all three approaches. The main distinctions between
the approaches are the definitions of the state vector and the dynamic model for
the state vector.
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Measurement residuals
GPS
Measurements +

FIGURE 3.1 Block diagram representation for a GPS-only navigation system solved
via KF. The dynamic motion prediction by either Equation (3.21) or Equation (3.38)
extrapolates from the present state estimate using the assumed dynamic model.

3.3.3.1 Clock model

Global positioning system receivers use oscillators with very stable frequencies.
Integration of this frequency provides the basis for the receiver clock time
signal. The error between the oscillator frequency and its specified frequency
represents the receiver clock drift rate. It is common to model the clock drift
rate as a random walk process. We scale these quantities by the speed of light
to represent the clock bias b, and drift rate f,, in meters and meters per second.
The dynamic model for x. = [b,, fu]T is

%, = F.x, + W, (3.53)

where

|0 1 | ow
el wes[] o5

and the power spectral density S, and Sy of the process noise w, and wy are
determined by the characteristics of the receiver clock [20]. The corresponding
state transition matrix and process noise covariance matrix for the discrete clock
model are:

c e 1A . | SeAr+s AR saE
®f = (nan =, | Q= ; (3.55)
S5 Spae
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where At = tx41 — tx. This clock model will be included as a portion of the
model in each of the following sections.

3.3.3.2 Stationary user (P model)

If it is known that the receiver antenna is stationary, then the position vector
X, = [x,y, z]T satisfies x, = 0. Combining the receiver position model with
the clock model, the dynamic model for a stationary user is

X 0 0]|x A/

Fl= 4 P 3.56
where w, = [wy, wy, wZ]T is the process noise for the position states. The state
transition matrix and process noise covariance matrix for the equivalent discrete

model are:
s [T 0 s _[Q 0
o, = |:O q)i] , Q= [ 0 Qi (3.57)

where Q']: is the process noise covariance matrix corresponding to w), in the
sense of Equation (3.6) and Equation (3.10), and I is a 3 x 3 identity matrix.
The linearized measurement model is

hl hc
hy he|[s

y=8p = : ‘ [SiljJrv (3.58)
h,, h.

where h, = [1, 0] characterizes the effect of the clock state §x. on the meas-
urement, 8p is defined in Equation (3.47), h; is defined in Equation (3.45),
3%, = [8x, 8y, 5z]T is the position error vector, Ry = R, denotes the covariance
of v as defined in (3.50), and 8x., = [8b,, (Sf,,]T is the clock state error
vector. With the above specifications, the parameters ®;,Hy, Q;, and Ry
required for the EKF implementation described in Section 3.2.3 have all been
defined.

For a receiver that is in fact stationary, w, = [wyx, wy, a)Z]T = 0. In this
case, Qf = OL. If the EKF algorithm is designed using Q” = 0I, then portions
of the diagonal of the state error covariance matrix P and of the gain matrix K
will asymptotically approach zero. This is desirable when the model is accurate
and the antenna is stationary. If the receiver antenna position is not stationary
or if the model is not accurate (e.g., time correlated multipath errors have been
ignored), then this property is not desirable. An ad hoc approach is to treat
the matrices Q7 and R as tuning parameters to adjust the convergence rate of
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the filter. However, a far better approach is to develop a more appropriate system
model.

3.3.3.3 Low dynamic user (PV Model)

For a receiver in a “low dynamic environment” it may be reasonable to assume
that the velocity vector is a random walk process. In this case, an eight
state model is appropriate with the acceleration vector modeled as white noise.
The state vector includes the position state X, receiver clock state X, and
velocity state X, = [vy, vy, VZ]T; therefore, the dynamic model is

X 01 0 X 0
X |[=10 0 0 X, | + | wy, (3.59)
X 0 0 F.||x W

where Wy, = [wy, Wyy, a)vz]T represents the process noise representation of the
unknown acceleration. The measurement model is

hy 0 h.

hy 0 h||%
: ). &

hm 0 hC

with the measurement noise covariance defined in Equation (3.50).

We will not provide an in-depth discussion of this model here, as the majority
of the comments about the model of the following section are also applicable to
the model of this section. However, it is important to note that few applications
involve white acceleration processes. In fact, the acceleration process is rarely
even stationary. Therefore, with this assumed dynamic model, the matrix Qy
is best considered as a tuning parameter and proper stochastic interpretations
of the various variables in the algorithm are no longer applicable.

3.3.3.4 High dynamic user (PVA model)

A GPS receiver may (and typically will) operate in applications where the
acceleration vector is time varying. In such “high dynamic environments,’
it is necessary to augment the three acceleration states x, = [ax,ay,az]T to
the system model. With the acceleration states modeled as first-order Markov
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processes, the process model for a high dynamic user is

%] 01 0 07[x 0
| o001 of|x 0
%10 0D 0f|x|T|wa (3-61)
X 0 0 0 F.||x. W,
where D = diag[—%, —%, —riv] is a design matrix containing the reciprocal

of the acceleration correlation times and W, = [@Wax, Way, waZ]T represents the
acceleration state process driving noise. The measurement model is

hi 0 0 b s
hy 0 0 he||sy
y= 8[0 = . Sxa +v (362)

with the measurement noise covariance defined in Equation (3.50).

As with the P and PV models, there is no rigorous method to properly select
the D and Qv parameters of the PVA model. The above model assumes different
correlation times for the horizontal vs. vertical accelerations. This assumption
obviously depends on whether the receiver is used in an aircraft, sea surface, or
land vehicle application. Although the receiver user may specify an application
class, correct values for D and Qy may not exist or be known for this design
approach. Therefore, these quantities are used to tune the performance of the
EKF algorithm. Even though there is no direct measurement of acceleration, the
augmented states may enable the filter to improve the accuracy of the navigation
solution by fusing sensor information across measurement epochs. Compared
to single epoch solutions, improved accuracy would be obtained by the EKF
methods if the vehicle were not accelerating during a period of time when an
insufficient number of satellites were available; however, receiver acceleration
would affect the estimation accuracy.

3.3.3.5 GPS KF examples

This section presents two examples of the use of the EKF in the solution of
the GPS state estimation problem. In each example, we work in the 2D world
introduced in Example 3.2 and include sufficient details to allow duplication of
the results by interested readers.

Example 3.3 This example considers the situation where a stationary receiver

is in operation with a PVA model. The state model is defined in Equation (3.61).
Using a 1 sec measurement epoch with R = 1 m?2, cov(w;rwa) = Q0l,
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Sp=1.10x 10719 8, = 0.65 x 1079, and 7, = 1.0, the resulting
discrete-time state transition and process noise covariance matrices are

L ILb 037, 0
0, I, 063, 0,
0, 0, 0371, 0,
0, 0 0, P,

o
~
Il

and

0.30I, 0.68I, 0.641,7[0,
_ 0.68I, 1.68I, 2.00L || 0,
Q=010 0.641, 2.00I, 4331, || 0,

0, 0, 0, Q.

where I, is a 2D identity matrix, 0 is a 2D null matrix, and

1 1 1.32 0.32 _
o, = |:O 1i| and Q.= cov(wgwc) = [0 o O65i| x 10710

The scalar parameter Q, which theoretically represents the spectral density of
the “acceleration driving noise,” is used to tune the size of the Q; matrix. We
generate noisy measurements using the following procedure: compute exact
ranges between the user and each satellite, add the clock bias b,, and add
Gaussian random noise with unit variance. The clock bias in the simulation
grows at a unit rate (i.e., b, = 1.07). The initial P matrix is defined by
the diagonal [1e6, 1e6, 12, 1e2,.1,.1, 1e6, 1]. At this point, we have enough
information to implement the discrete-time EKF.

The norm of the sequence of position estimation errors is shown in
Figure 3.2a which is the left column of Figure 3.2. Each row of the figure
shows the estimation error for the same sequence of measurements when only
the value of Q is changed in the EKF design. When the design specifies a large
acceleration driving noise (e.g., Q = 10), the estimation error is large with
significant energy at high frequencies. This is due to the fact that the large value
of Q causes the EKF computations to keep the Kalman gain relatively large,
favoring current measurements over information from past measurements that
is represented by the state estimate. When the design specifies a small accelera-
tion driving noise (e.g., @ = 0.001), the estimation error is smaller in magnitude
with significantly less energy at high frequencies. This is due to the fact that
the small value of Q causes the EKF computations to decrease the Kalman gain
over time causing the current measurements to make smaller corrections to the
information from past measurements that is represented by the state estimate.
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(a) Estimation error
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FIGURE 3.2 EKF-based GPS solutions for Examples 3.3 and 3.4. (a) Estimation error
for a stationary receiver using the PVA model and EKF with different settings of the
“covariance” parameter Q. (b) Actual (solid line) and estimated trajectory (dots) for a
moving receiver using the PVA model, EKF estimation, and different settings of the
“covariance” parameter Q.

This example shows the possible benefit of using the EKF to combine
measurements over time to attain improved accuracy. The performance that
is achieved will depend on the EKF parameter settings relative to the actual
dynamic situation of the receiver. If the process noise covariance matrix Qy is
too large, then the past information encapsulated in the prior estimate of the
state will be largely ignored in the computation by the EKF of the posterior state
estimate. If the matrix Qy is too small, then the estimated state may significantly
lag the actual state. This is further illustrated in the next example.

Example 3.4 In this example, the receiver is attached to a moving platform.
The platform trajectory is illustrated by the solid curve in each subgraph of
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(b) Trajectory vs. EKF estimated
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FIGURE 3.2 Continued.

Figure 3.2b. For the majority of the simulation, the motion is parallel to the
x-axis at 20 m/sec, except for a short period of time near + = 15 sec when
the platform performs a maneuver similar to an automobile lane change that
involves a nonzero yaw rate and lateral acceleration. The discrete-time model,
estimator design, and method of computing noisy measurements are the same
as in Example 3.3.

Figure 3.2b shows the estimated positions on an x—y graph to allow straight-
forward comparison between the estimated and actual trajectory for various
settings of the design parameter . The estimated positions are marked by a
dot every 0.1 sec even though the GPS measurement epoch is still 1.0 sec to
clearly indicate the estimated velocity (i.e., the slope of the estimated position
curve between GPS epochs).
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When the design uses a large Q, the variance of the estimated position is
large, but the estimator rapidly adjusts the estimated state so that the estimate
does not significantly lag the actual state following the vehicle maneuver. When
the design uses a small value for Q, the variance of the estimated position is
smaller; however, the estimated state significantly lags the actual state following
the vehicle maneuver.

Figure 3.2a and b are intentionally placed side-by-side to emphasize the
fact that there is no single optimal choice for the design parameter Q. The
desirable setting of Q depends on the application and maneuvering conditions.
Some receivers allow the user to effect the receiver estimation procedure (either
the model structure or the value of Q) through the user interface. It is the
responsibility of the user to understand the settings and their tradeoffs relative
to the application. This is especially true when the state estimate is being used
as the input to a control system.

Due to the structure of the ®; matrix, if the GPS H matrix has a null
direction d such that Hd = 0, then position, velocity, and acceleration errors
parallel to d will not be observable from the GPS measurements. Note that
the rows of the H matrix contain the line-of-sight unit vectors between the
receiver antenna and the satellite. Therefore, to accurately and rapidly track the
platform motion during (and after) a maneuver, the receiver must be tracking at
least one satellite located in a direction such that the line-of-sight unit vector has
a significant component in the same direction as the acceleration unit vector;
otherwise, the GPS measurements will be insensitive to the acceleration. In
particular, if a receiver is operating in an urban canyon! type of environment
and accelerates parallel to the direction in which the satellite signals are blocked
then the position, velocity, and acceleration accuracy in that direction will
deteriorate.

No amount of signal processing can help, unless additional sensors
(e.g., inertial, wheel speed, vision, precision clock) are added.

Finally, it is critical to note that estimation errors, even restricted to the
GPS measurement epochs, are correlated. They are not white discrete-time
processes. This is clearly illustrated in Figure 3.2b for small values of Q, but is
also true for larger values of Q. The fact that the position estimation errors are
not white is critical to understanding one of the drawbacks of using the GPS
position estimates to aid an INS (see Section 3.5.2.1).

3.3.3.6 Summary

The approaches discussed in the previous three sections have several aspects
that should be pointed out. First, as discussed following Equation (3.50),

I Thisis a canyon created by the urban environment (e.g., a road between tall buildings) that may
block satellite signals in specific directions [37-39].
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at each epoch the components of the estimated state vector will be correlated.
In addition, due to the fusion of measurements across epochs, even if the meas-
urement noise v is white, the state estimation error will be a colored noise
process. Second, the three preceding sections discussed estimation algorithms
in the order of increasing complexity. The required number of computations to
implement the EKF increases as the size of the state vector increases. Third,
performance will suffer if the application conditions do not match the algorithm
assumptions. If, for example, a P or PV algorithm or too small a value of Q is
used in a “high-dynamic environment,” then the estimated position may have
significant lag relative to the actual position. Fourth, use of Doppler meas-
urements can increase convergence rates, but opens up other modeling issues
[40]. Fifth, if GPS measurements are unavailable for some period of time, the
dynamic model is available to propagate the state estimates; however, accelera-
tion of the system during this time period can have serious adverse effects on the
accuracy of such predictions. This issue can be addressed well by, for example,
properly incorporating an inertial measurement system. Sixth, a recurrent issue
in the approaches of this section is that the stochastic model parameter Q could
not be properly selected. Instead it was used as performance tuning parameter.
Proper incorporation of IMU data into the approach will also allow proper
selection and interpretation of the parameter in a stochastic sense. Addition
of an IMU will increase the cost of the system, but offers the potential for
higher performance (e.g., bandwidth, accuracy, coast time, and sample rate)
and availability.

3.4 INERTIAL NAVIGATION SYSTEM

A strapdown INS incorporates an IMU that measures the acceleration and angu-
lar rate of the system and analytic routines on a computer that integrate the
inertial measurements to provide estimates of the vehicle position, velocity,
and attitude in a desired coordinate frame. This section reviews the strapdown
INS mechanization equations and the dynamic error model of the INS system.
Various methods for fusing the GPS and INS information are reviewed and
discussed in Section 3.5. The example in a 2D world is continued to highlight
various important issues related to GPS—INS integration.

This paragraph briefly defines the various coordinate frames that will be used
in the subsequent discussion. All coordinate frames are defined by orthogonal
axes in a right-handed sense. The body frame is attached to and moves with the
vehicle. The inertial measurements are resolved along the axes of the platform
frame. To simplify the discussion, we assume that the body and platform frames
are identical. The navigation frame is attached to the earth at a convenient point
of reference and determines the desired frame in which to resolve the vehicle
position and velocity vectors. The ECEF frame is attached to the center of and
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rotates with the Earth. A local geodetic frame has its origin fixed on the surface
of the earth and axes aligned with the directions of true north, east, and down
(along the parallel to the ellipsoid normal vector to complete the right-handed
coordinate frame).

3.4.1 Strapdown System Mechanizations

As illustrated in Figure 3.3, the accelerometers measure the specific force vector
£ in the body frame-of-reference and the gyros measure the angular rate of the
vehicle with respect to an inertial frame-of-reference wf’b = [p, ¢, r1T inthe body
frame-of-reference. The gyro measurements are integrated to compute the atti-
tude of the vehicle frame with respect to the navigation frame. The attitude is
used to compute the rotation matrix Cj, required to transform vectors between
the body and navigation frames. In particular, the specific force in the navigation
frame is

" = Cjt’ (3.63)

This rotation matrix can be represented as a direction cosine matrix which is
the solution of
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FIGURE 3.3 Block diagram representation (similar to figure 3.12 in Reference 41) of a
strapdown INS.
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where ﬂZb is the skew matrix form of “’Zn and

Wb = ol — Co( + o) (3.65)

The symbols wf, and w}, represent the rotation rate of the ECEF frame relative
to an inertial frame and the rotation rate of the navigation frame relative to
the earth frame (i.e., transport rate), respectively. Both vectors are resolved
in the navigation frame. The second term on the right of (3.65) compensates
the gyro measurements for the rotation rate of the navigation frame relative to
an inertial frame.

The dynamic equations for an INS system have different forms for different
navigation frames. Detailed derivations of the navigation equations with respect
to different navigation frames can be found in various references, for example,
in References 27, 34, and 41-43. The navigation equations for a terrestrial
navigation system operating in the local geodetic frame are:

v, =f" — Qo + wl) x v, +gf (3.66)

e

where V! = [V, Ve, vg]T is the velocity with respect to the Earth expressed
in the local geodetic frame (i.e., navigation frame), f" = [f,,fe, fd]T is the
specific force resolved to this navigation frame, and g; is the local gravity
vector expressed in the navigation frame. The local gravity vector is

g =g— o, x [0, xR (3.67)

which accounts for the mass attraction of the earth g and the centripetal accel-
eration caused by the Earth’s rotation. Note that g; is the acceleration sensed
by a stationary accelerometer located on the surface of the earth. Note also that
g, is a function of position.

Given an initial velocity, Equation (3.66) integrates acceleration to estimate
the velocity as a function of time. Prior to integration, the measured specific
force vector is corrected for Coriolis effects (second term) and gravity (third
term). Given an initial position, integration of velocity provides an INS estimate
of position. Given high rate IMU measurements (and a sufficiently fast com-
puter), the INS can integrate the above equations to provide high rate estimates
of position, velocity, attitude, angular rate, and acceleration. Since the INS is an
integrative process, the INS attenuates the high frequency measurement noise
from the IMU, but amplifies low frequency measurement errors such as biases.
Calibration and removal of the INS state and IMU instrument errors can be
accomplished through EKF data fusion, once the designer obtains a dynamic
model for the INS and IMU error processes.
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3.4.2 Error Model of INS System

The INS dynamics as represented in Equation (3.66) are nonlinear functions of
the INS state variables. As discussed in Section 3.2.3, the EKF will utilize a
linearized error-state model. The dynamic model for the error state of the INS
is derived in several references, for example, in References 27 and 41-43. After
minor simplification, it can be expressed as

sp 0 Fpv O 0 0 Sp wp

v Fyp Fw Fy, Fyy, 0 Sv wy + vy

spl=1] 0 0 Fp 0 Fpx, Sp | + | wp +vg (3.68)
X, 0 0 0 Fxx, 0 Xa wa

Xg 0 0 0 0 Fyox, | [ X¢ wg

which is the required time-varying linear model in the form of Equation (3.1).
The 15 state errors are defined as: tangent plane position error p =
[n, e, 8d]T, tangent plane velocity error §v = [dvy, SVE, Svp]T, attitude error
sp = [eN,eE,eD]T, platform frame accelerometer bias error x,, and plat-
form frame gyro bias error X,. Additional IMU error calibration states (e.g.,
gyro scale factors) could be considered for state augmentation. The various F
matrices in Equation (3.68) are derived and defined, for example, in chapter 6
of Reference 27. The F matrix is time-varying, since it is a function of velocity,
attitude, angular rate, and specific force. The F matrix contains unstable and
neutrally stable components; therefore, initial condition errors and measure-
ment errors can cause the INS error state to diverge. Fusion of the INS state
with external sensors, such as GPS, using the EKF can estimate and compensate
for these errors.

3.4.3 EKF Latency Compensation

During each INS integration step, the INS will first compensate the IMU meas-
urements for the calibration factors (e.g., biases) estimated by the EKF. Next,
the INS will integrate Equation (3.64) and Equation (3.66) (or similar equations
depending on the choice of navigation frame and attitude representation). The
equations are integrated for the duration of the application regardless of the
availability of aiding measurements. With regard to aiding, two time instants
should be distinguished. The time-of-applicability of an aiding measurement
is the time at which the measurement is accurate. The time-of-availability of a
measurement is the time at which the aiding measurement is available for use by
the computer performing the data fusion operation. While the INS integration
process is ongoing, the INS state must be saved at the time-of-applicability of
the aiding measurements.

© 2006 by Taylor & Francis Group, LLC



132 Autonomous Mobile Robots

In particular, for GPS aiding, the time-of-availability of a GPS measurement
is typically delayed from its time-of-applicability due to latency within the
receiver and communication delay between the receiver and the EKF processor.
A typical latency between the times of applicability and availability is on the
order of a few hundred milliseconds (i.e., typically <0.25 sec). Fortunately,
most receivers provide a one-pulse-per-second (1PPS) output signal that can
be configured to align in time with the GPS second. In addition, assuming
a one second GPS measurement epoch, the time-of-applicability of the GPS
measurement can be aligned with the GPS second. When the EKF processor
receives the 1PPS signal, it saves the INS state. By doing this, the EKF will
have the INS state coincident with the GPS measurement even though the GPS
measurement will not arrive until a significant fraction of a second later. At the
time-of-availability of the EKF estimated correction, the EKF can use the state
transition matrix to propagate the correction from its time-of-applicability to
its time-of-availability.

Example 3.5 Let ¢ denote an integer GPS second. At time ¢, the EKF pro-
cessor detects the 1PPS signal and saves the INS state x(¢). In addition, the
GPS processor saves the receiver tracking data and computes the pseudoranges
p(1). The pseudorange measurements are sent to the EKF processor arriving
attime r; = t 4+ 7 where 0 < t < 1 sec. At time #; the EKF processes the
pseudoranges to compute §x(#) which is available at some #, > #;. At this
point in time it is not correct to simply add the correction to the current INS
state, since §x(1) # §x(fp) (i.e., x(¢2) + 8x(¢) would not be correct). Note that
the time #, is known to the EKF processor and that the processor is already
propagating the state transition matrix ¢ by a method such as Equation (3.18),
because ® is required to propagate the state estimation error covariance matrix.
With these quantities being known and available, it is straightforward for the
EKEF processor to propagate the correction from its time-of-applicability to its
time-of-availability #, as

§x(tr) = ®(1p,1)5x(1)

Then, §x(#2) can be added to the INS state x(#2) to properly compensate the
system.

Alternative latency compensation methods are described in the literature,
see, for example, Reference 44.

3.5 INTEGRATION OF GPS AND INS

Due to their complementary characteristics, various methods have been sugges-
ted to implement a system to integrate GPS and INS with the goal of achieving
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performance that is superior to which either system could attain on its own.
This section will discuss different approaches for GPS/INS integration. The
main objective is to compare the relative advantages and disadvantages between
the alternative approaches.

3.5.1 INS with GPS Resetting

In this approach, the INS is integrated to provide its state estimate between
the GPS measurement epochs. At a GPS measurement epoch, the methods
of Section 3.3 are used to compute the position and velocity based only on
the GPS measurement data. The GPS position and velocity estimates are
used as the initial conditions for the INS state during the next period of
integration.

Often, the reason that this approach is proposed is its extreme simplicity.
For example, GPS receivers directly output user position and velocity. In this
approach, where the designer treats the position and velocity computed by the
GPS receiver as measurements for the state estimation process, the designer of
the integrated system need not solve the GPS system equations. In addition, the
design of this approach does not involve a KF (outside of the receiver). However,
the disadvantage of this simplicity is a low level of performance relative to the
level that could be achieved by a more advanced approach. Note, for example,
that the IMU errors are not estimated or compensated. Therefore, the rate of
growth of the INS error state does not decrease over time. Also, additional
sensors or multiple GPS antennae and additional processing are required to
maintain the attitude accuracy.

Various ad hoc procedures can be defined to improve performance of the
resetting approach, but performance analysis is typically not possible. The reset-
ting approach is not a recommended approach. Note that this approach does
not involve any advanced form of data fusion. The only point at which inform-
ation is exchanged is after the GPS measurement, when the INS state is reset.
Significantly better performance can be obtained by the methods described in
the following section.

3.5.2 GPS Aided INS

The following two sections discuss the EKF as a tool to use GPS measurements
to calibrate INS errors. In both approaches, the INS integrates the vehicle state
based on IMU measurements. In Step 1 of the EKF algorithm of Section 3.2.3,
the INS state is represented by x* and the IMU input is represented by u. The
linearized F matrix is given by Equation (3.68). The matrix Qy represents the
covariance of the integrated accelerometer and gyro measurement noise pro-
cesses. The matrix Qi can be computed accurately (see Example 3.1) and
is determined by the quality of the IMU. The only remaining quantities that
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FIGURE 3.4 Block diagram of a loosely coupled GPS aided INS.

must be specified for implementation of the EKF are the matrices H and R.
These matrices are distinct for the two methods to be discussed and will be
specified below.

3.5.2.1 Loosely coupled system

As illustrated in Figure 3.4, in a loosely coupled system, the EKF measure-
ments are the GPS position (or velocity or both). Residual measurements are
formed with the INS estimates of position (or velocity or both). The position
measurement residual is

1 0 0] ]én
Y =Pgps —Pmns=|0 1 0 de | + nx (3.69)
0 0 1 8d
If the INS error state is ordered as §x = [8pT,8vT,8pT,X;F,Xg]T as in

Equation (3.68); then, for Step 4 of the EKF algorithm, the linearized position
measurement matrix is

H; = [L, 0]

where Iis a3 x 3 identity matrix and 0 is a 3 x 12 matrix of zeros. In this approach,
the receiver clock model and associated error states need not be included in the
EKF model, as the receiver has already accounted for the receiver clock bias in
the estimation of the receiver antenna position.

For the implemented system to attain performance near that predicted the-
oretically, it is critical for the designer to understand at least the following
practical issues:

Correlated GPS position error vector: As discussed in Section 3.3.2
and demonstrated in Example 3.2, at any given epoch, the components of
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the vector of position errors are correlated. For the EKF estimation of the
INS error, the position error correlation matrix Ry (#) must be available and
due to the cross-correlation scalar measurement processing cannot be used.
Typically, GPS receivers will not provide Rx(#) along with the estimated
position.

Nonwhite measurement error processes: Asshownin Examples 3.3 and 3.4
the GPS position error processes are not white, but may have significant time
correlation. The time correlation may come from nonwhite GPS measurement
errors such as multipath or from the GPS solution method. In particular, when
the GPS receiver position solution incorporates a KF [45], then the time correl-
ation of the GPS position errors is increased. The designer of a loosely coupled
GPS aided INS approach should ensure that the GPS receiver is configured to
determine epoch-wise position and velocity solutions.

Doppler: The GPS “Doppler” measurement is typically not a true Doppler
measurement. Typically, the Doppler measurement is the change of the phase
of the carrier signal over some interval of time [40]. The interval of time is
often 1.0 sec. Because of this, the GPS velocity output computed from the
Doppler measurement is not the instantaneous velocity at some specific time-
of-applicability.

Lever arm: The INS computes the position of the IMU effective center
location. The GPS computes the position of the antenna phase center. These
two positions are not the same. The vector offset is referred to as the lever arm
and should be compensated for the EKF data fusion procedure.

The main motivation for the use of a loosely coupled approach, instead
of a tightly coupled approach, is that the former is simpler. A loosely coupled
approach can be implemented with an off-the-shelf GPS receiver and an off-the-
shelf INS. The designer need not work with clock models, GPS ephemeris data,
ephemeris calculations, or GPS basic measurements. Note that this approach
does attempt to estimate IMU calibration parameters (e.g., biases). As those
errors are calibrated, the rate of growth of the INS errors will decrease. However,
depending on the extent of the simplifications made in implementing the EKF
and the extent to which the above issues are addressed, the INS errors may not
be correctly estimated.

3.5.2.2 Tightly coupled system

As illustrated in Figure 3.5, in a tightly coupled system, the EKF measurements
are the GPS range (or phase change) measurements. Residual measurements are
formed with the INS estimates of range (or phase change). The INS estimates
the range using Equation (3.44) with &; = 0. To utilize that equation, the
satellite position is computed using ephemeris data downloaded through the
GPS receiver. Similarly, the GPS pseudorange or carrier phase measurements
are output by the GPS receiver.
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FIGURE 3.5 Block diagram of a tightly coupled GPS aided INS.

From Section 3.3, the range measurement residual is

hlgg, L] Isn

hCl, 1 Se

y=46p= ; sd (3.70)
h,Ce, 1| Lbu

where C¢, is the rotation matrix for transforming the representation of vectors
in navigation frame to the ECEF frame that is valid at the measurement epoch.
When using this implementation approach, the designer is responsible for
accommodating the receiver clock bias. As an alternative to including clock
bias states in the error model, the clock bias can be addressed by subtracting
the measurement of one satellite from the measurement of all other satel-
lites, but the resulting differenced signals then have correlated measurement
errors.

If the INS error state is ordered as §x = [8p”, by, 8v", by, 8pT, xJ, xg]T with
the INS error dynamics as in Equation (3.68) and the receiver clock dynamics
as in Section 3.3.3.1; then, for Step 4 of the EKF algorithm, the linearized
pseudorange measurement matrix is

H; = [HC;, 0]

where H is defined in Equation (3.47), 0 is an m by 13 matrix of zeros, and m is
the number of satellites available. Note that the components of the error in this
vector of measurements are uncorrelated. Whether or not the measurement error
can be considered white depends on which GPS error correction approaches
are used and the time between measurement epochs. If significantly correl-
ated measurement errors exist, then they should be addressed through state
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augmentation and possibly a Schmidt—Kalman filter implementation approach
[19,20].

As opposed to a loosely coupled system, the designer of a tightly coupled
system must implement ephemeris calculations, implement a receiver clock
model, and be familiar with various receiver specific issues and peculiarit-
ies. The payoff for this increased level of understanding is potentially better
performance. The higher performance is achievable because the various meas-
urement errors and their covariance can be properly modeled and incorporated
in the design approach. As in the loosely coupled approach, the tightly
coupled approach does attempt to estimate IMU calibration parameters (e.g.,
biases). As the errors are calibrated, the rate of growth of the INS errors will
decrease.

Example 3.6 This example uses the same hypothetical 2D world as in
Example 3.4. Simulation results are shown in Figure 3.6. The vehicle traject-
ory is also similar to that in the previous example. In this example, using GPS
measurement epochs that have 1 sec duration, at the (k + 1)th measurement
epoch (i.e., t = k + 1) the GPS range vector will be used as measurements in
the EKF to estimate the INS error state. The GPS measurements are computed
as the actual range plus a linearly increasing clock bias, and Gaussian ran-
dom noise with unit variance. In addition to the GPS receiver, the vehicle
is equipped with an IMU and a computer capable of integrating the INS
equations.
In two dimensions, the INS integrates the equation

i 0010 0][a 0 0 0
e 0001 0[]|e 0 0  0f[a
X=|[Vu=]0 0 0 0 Of|Vu|+|cosyy —singy O]]|a

be 000 0 O0ffP singy  cosyy 0| L&

i 0000 0] [y 0 0 1

(3.71)

between GPS measurement epochs, thatis, ¢ € [k, k4 1) sec. In these equations,
for a generic variable z, z denotes the computed value of z and Z denotes the
measured value of z. Using this notation, [§ay, 8a,, d@,] are the estimated values
of the IMU biases [§ay, da,, Sw,].

Let (ay, a,) be the measured acceleration vector and @, be the measured
yaw rate in body frame.

Considering bias errors, scale factor errors, and white measurement noise,
the assumed relations between the IMU measurements (a,, a,, @, ) and the actual
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FIGURE 3.6 EKF based GPS solutions for Example 3.6. (a) Position estimation results
for Example 3.6. Top — Estimated position trajectory (dotted) overlaid on the actual tra-
jectory (solid). Bottom — Position estimation errors vs. time (solid and dashed curves),
and EKF estimate of the position error standard deviation (dotted). (b) Estimation res-
ults for Example 3.6. Top — Velocity estimation errors vs. time (solid curves) and EKF
estimate of the velocity error standard deviation (dotted). Middle — IMU bias estima-
tion errors vs. time. Bottom — Yaw estimation error vs. time (solid) and EKF estimate
of the yaw error standard deviation (dotted).

values (a,, a,, w,) are:

ay = (1 + 8ky)ay, — day +ny (3.72)
ay = (1 + 8ky)a, — day, + n, (3.73)
& = (1 + 8ky)wy — Sy + 1y (3.74)

where $a,, 8a,, Sw, are bias errors, n,, n,, n, represent white noise processes
with variance of (5.0 x 1074, 5.0 x 1074, 5.0 x 10_6) respectively, and
(8ky, 8k, , 8k;-) represent sensor scale factor errors. We have included scale factor
errors at this point due to their importance, but will assume that the scale factor
errors are known to be identically zero in the following discussion.
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FIGURE 3.6 Continued.

To estimate the IMU bias vector, we append the bias error to the state vector
8x = [én, e, 8vy, Ve, 8V, Say, bay, Sw;]

and specify a dynamic model for the appended states. By its design, the IMU
performance is independent of vehicle maneuvering, as long as the IMU is
used within its bandwidth and output range specifications. Therefore, specific-
ation of the IMU bias stochastic models can be based on data acquired in
the lab. It is often sufficient to consider the IMU bias errors as random walk
variables

8ay, = nyp,
8ay, = nyp,
S, = np,

In this simulation example, (np,, np,, 1p;) have variance of (1.0 x 1078, 1.0 x
1078, 5.0 x 107!2) respectively. The augmented, linearized, dynamic model
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for the error state (used to implement the EKF) is

S5 ] o010 O 0 0 0] rén 7
Se 0001 O 0 0 0] se
SVn 0 000 —a cosyy —siny 0]/ sy,
SV, 0 00 0 a sing cosyr Of]fsy,
sy | |0 000 0 0 0 1||sy
Say, 0000 O 0 0 01 |sa,
Séty 0000 O 0 0 01 |sa,
s0,] |00 00 0 0 0 0| |sw,]
r 0 0 0 0 0 07
0 0 0 0 0 Of[n,]
cosyy —sinyy 0 O O Of |ny
sinyy cosyy O O O Of|n,
1o 0 1 0 0 0]]n, 673
0 0 0 1 0 0f]ny,
0 0 0 0 1 O [n,]
L 0 0 00 0 1]
where
B[ el o

The clock model and clock error states must also be appended. The resulting
equation can be written as

Skins = Finssxins + T'Wins (377)

With the variances specified above, the matrix Q is known. Note that
in this approach the matrices Q and R are well defined based on the
physics of the problem; they are not ad hoc tuning parameters as they were
in Section 3.3.3.

Between GPS measurement epochs that are separated by 1 sec (i.e., t €
[k,k + 1) sec for the (k 4 1)th epoch) the INS propagates the state estimate
using the IMU data. The INS also propagates the error covariance matrix P
according to Equation (3.40). The error covariance propagation does depend
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on the IMU data because the F matrix includes a,, a., and . Due to the
dependence of F on the IMU data, the matrices ® and Q; must be computed
during operation as discussed in Section 3.2.1.1.

At the GPS measurement epoch, the GPS pseudorange measurements are
used in an EKF to estimate the INS error state. When the INS error state
is available from the EKF, it is used to correct the INS state according to
Equation (3.43). As time progressed the IMU errors are calibrated and the
rate of growth of the INS errors decreases.

The top graph in Figure 3.6a shows both the estimated and the actual vehicle
trajectories. The lateral maneuver occurs at approximately + = 15 sec. The
bottom graph shows the position estimation error components as a function
of time. In addition to the estimation errors, the graph shows £+/P11 + P2
which represents the EKF prediction of the standard deviation of the position
estimation error. The variance of the position error decreases steadily over
the period of the simulation due to the decay of the initial position error, the
estimation of velocity, and the balancing of the acceleration biases with the yaw
estimation error.

The top graph of Figure 3.6b shows velocity estimation error components
and the EKF prediction of the standard deviation of the velocity estimation error
as functions of time. After the initial transients, the velocity estimation error
decreases steadily due to the decay of the initial velocity error and the balancing
of the acceleration biases with the yaw estimation error. The middle graph shows
the bias estimation error components as functions of time. The bottom graph
shows the yaw estimation error and the EKF prediction of the standard deviation
of the yaw estimation error as functions of time. Analysis of Equation (3.76)
shows that the yaw angle and gyro bias errors are observable only when the
acceleration vector [a; (), a.(#)] is nonzero. Therefore, the yaw error is not
adjusted by the EKF except for a brief interval following the maneuver. Close
inspection of Figure 3.6b shows that the yaw error standard deviation is slowly
increasing due to the accumulation of gyro measurement noise during the atti-
tude integration process. Note that the yaw estimation error does not approach
zero; however, its net effect on the velocity and position does approach zero
(in the absence of maneuvering). From Equation (3.71) we see that (neglecting
noise)

8V = vy — VA = ap — (@ cos ¥ — ay sin )
8vn = ap — ((ay — 8ay) cos(Y — 8¥) — (ay — day) sin(y — 8v))

Even when the acceleration vector is zero, we have

8V = (cos(y¥) cos(8v) + sin(yr) sin(8y))day
— (sin(yr) cos(8¥) — cos(y) sin(8vyr))da, (3.78)

© 2006 by Taylor & Francis Group, LLC



142 Autonomous Mobile Robots

Although the linearization of Equation (3.78) is used to formulate the third row
of Equation (3.76), for fixed ¥ the equation

(cos(¥) cos(8vr) + sin(y) sin(8yr))day
— (sin(¥r) cos(8¥) — cos(y) sin(8y))da, = 0

defines a surface of [8ay, 8a,, 8v] values such that §v,, = 0. The §v, dynamics
provide a second such null surface. As long as the EKF drives the vector
[8ay, 8ay,8¢] to the intersection of these two surfaces, the net effect of these
errors are balanced. For this 2D example, the intersection of the two surfaces
is defined by

|:Oi| _ [cosw —sin ¢] |: cosdy  sin Sw] |:521,{| (3.79)
0 sinyy  cosy || —sindy cosdy || day, ’

In particular, the EKF causes the accelerometer bias estimation errors 8a,
and d8a, to converge to zero, but 81 need not converge to zero. This is the
practical result of the fact that, without acceleration, the yaw error is not
observable.

In real 3D applications, the situation is more complex, since without
maneuvering the errors in estimating pitch and roll have similar effects as
accelerometer bias errors. Therefore, the linearized dynamics have unobserv-
able subspaces. As the vehicle maneuvers, the null surfaces change. Over time,

if the null surfaces change sufficiently, then the yaw and bias estimation errors
will converge toward zero (until the maneuvering stops).

Note that if GPS measurements are unavailable, the integration of the IMU
measurements by the INS is not interrupted. Therefore, this approach does
increase the availability of the state estimate (higher frequency and no dropouts
due to missing satellites). The bandwidth of the state estimate is also increased
since it is determined by the bandwidth of the IMU not the bandwidth of the
GPS receiver. The accuracy of the integrated solution will depend on the quality
of the IMU and the GPS receiver. The length of time that the INS can main-
tain a specified level of accuracy after losing reception of GPS signals will
predominantly depend on the quality of the IMU.

3.6 CHAPTER SUMMARY

This chapter has reviewed the use of the KF and EKF as a tool for fusing
information from various sensors that provide information about the state of
a dynamic system. Preconditions necessary for the use of these methods are
analytic models for the state dynamics and the relation between the state and
the measurement. One prominent application of these tools that satisfies these
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preconditions is the integration of GPS and INS. We have presented an analytic
overview of a few of the existing uses of the EKF in this application. Many other
alternatives have been suggested in the literature. We have used a 2D example
to work through various design issues and to illustrate various implementation
issues.

While the theory of this chapter has reviewed GPS aided INS in standard
vector form, four of the examples have utilized a fictional 2D world. There-
fore, it is useful to briefly consider how the conclusions of those examples
generalized to the 3D world in which an actual system must function. The
objectives of Example 3.2 were to illustrate the standard method of solution
of the GPS positioning problem and to demonstrate that the components of
the position estimate error vector were correlated (i.e., Ry is not diagonal).
The objectives of Examples 3.3 and 3.4 were to illustrate the use of the Q
matrix as a tuning parameter, to reinforce the fact that such tuning removes
the optimal stochastic properties from the KF, and to illustrate the fact that
there are not optimal settings of the tuning parameters that apply in all user
situations. In addition, that example demonstrates that the position estimate
error vector is not white, but has significant time correlation. The objectives of
Example 3.6 were to illustrate the error state modeling approach which allows a
proper stochastic interpretation of KF implementations,” to illustrate the state
augmentation process used for instrument calibration, to illustrate that in this
approach the Q and R matrices are not tuning parameters but are physically
determined, to illustrate that the observability of certain subspaces of the error
state are dependent on the vehicle motion, and to illustrate that the state estim-
ation error is uncorrelated with the vehicle motion due to the IMU and INS. All
these issues were more convenient to illustrate in a 2D example, but are equally
applicable to our 3D world.

Another implementation approach, referred to in the literature as Deep
or Ultratight integration, feeds information from the INS back into the GPS
receiver [46—48]. We have not discussed these methods in this chapter as their
implementation requires access to GPS receiver source code, which is not avail-
able to most GPS users. The objective of these techniques is to use the INS
estimates of the GPS receiver position and velocity to aid the receiver in acquir-
ing and tracking the GPS satellite signals. This would be especially beneficial
in low signal-to-noise ratio situations.
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4.1 INTRODUCTION

Landmarks are routinely used by biological systems as reference points during
navigation. Their employment in robotic navigation requires the development of
satisfactory sensor technologies for landmark selection and recognition, which
poses a big challenge. During the last two decades, landmarks and triangulation
techniques have been widely used in navigation of autonomous mobile robots
in industry [1,2]. Such a navigation strategy relies on identification and sub-
sequent recognition of distinctive environment features or objects that are either
known a priori or extracted dynamically. This process has inherent difficulties
in practice due to sensor noise and environment uncertainty [3]. This chapter
outlines a number of landmark-based navigation algorithms that are able to
locate the mobile robot and update landmarks autonomously.

Autonomous mobile robots need the capability to explore and navigate
in dynamic or unknown environments in order to be useful in a wide range
of real-world applications. Over the last few decades, many different types
of sensing and navigation techniques have been developed in the field of
mobile robots, some of which have achieved very promising results based
on different sensors such as odometry, laser scanners, inertial sensors, gyro,
sonar, and vision [4]. This trend has been mainly driven by the necessity
of deployment of mobile robots in unstructured environments or coexisting
with humans. However, since there is huge uncertainty in the real world and
no sensor is perfect, it remains a great challenge today to build robust and
intelligent navigation systems for mobile robots to operate safely in the real
world.

In general, the methods for locating mobile robots in the real world
are divided into two categories: relative positioning and absolute position-
ing. In relative positioning, odometry (or dead reckoning) [4] and inertial
navigation (gyros and accelerometers) [5] are commonly used to calculate
the robot positions from a starting reference point at a high updating rate.
Odometry is one of the most popular internal sensor for position estim-
ation because of its ease of use in real time. However the disadvantage
of odometry and inertial navigation is that it has an unbounded accumu-
lation of errors, and the mobile robot becomes lost easily. Therefore, fre-
quent correction based on information obtained from other sensors becomes
necessary.

In contrast, absolute positioning relies on detecting and recognizing dif-
ferent features in the robot environment in order for a mobile robot to reach
a destination and implement specified tasks. These environment features are
normally divided into four types [4] (i) active beacons that are fixed at known
positions and actively transmit ultrasonic [6], IR or RF signals for the calcu-
lation of the absolute robot position from the direction of receiving incidence;
(ii) artificial landmarks that are specially designed objects or markers placed at
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known locations in the environment; (iii) natural landmarks that are distinctive
features in the environment and can be abstracted by robot sensors; and (iv)
environment models that are built from prior knowledge about the environment
and can be used for matching new sensor observations. Among these envir-
onment features, natural landmark-based navigation is flexible as no explicit
artificial landmarks are needed, but may not function well when landmarks
are sparse and often the environment must be known a priori. Although the
artificial landmark and active beacon approaches are not flexible, the ability to
find landmarks is enhanced and the process of map building is simplified. They
have been widely adopted in many real-world applications, including Global
Positioning Systems (GPSs) [7] and retro-reflective barcode targets [3]. This
chapter only addresses the issues related to artificial landmarks and the associ-
ated navigation methods. More information on other landmarks can be found
in Reference 8.

To make the use of mobile robots in daily deployment feasible, it is neces-
sary to reach a trade-off between costs and benefits. Often, this calls for efficient
landmark detection and triangulation algorithms that can guarantee real-time
performance in the presence of insufficient or conflicting data from differ-
ent types of sensors. Therefore, the use of multiple sensors (laser, sonar, and
vision) and multiple landmarks (artificial and natural) for the position estima-
tion of a mobile robot becomes absolutely necessary. Unlike odometry-based
systems, landmark-based systems do not suffer from drift errors. However,
how to select and recognize good landmarks in different circumstances is a
nontrivial task since the different view angles of landmarks bring different
errors into the measurements. Therefore, it is often the case that some land-
marks are misidentified and this remains a challenging issue in many real-world
applications. Moreover, the cooperative navigation of multiple mobile robots
is a more flexible navigation method than navigation methods for a single
robot.

The rest of the chapter is structured as follows. Section 4.2 presents an
overview of our approach to landmark-based navigation, and proposes a multi-
sensor system that can locate the robot and update different kinds of landmarks
in the robot internal model concurrently. Section 4.3 describes a navigation
system based on a rotating laser scanner and artificial landmarks, in which a
triangulation method for calibrating the mobile robot position is also presented.
Then the visual-based navigation is addressed in Section 4.4 for the mobile robot
torecognize the digital and symbolic landmarks automatically. These landmarks
are very common in office environments (name plates) and highway systems
(road sign boards). Section 4.5 describes the localization system based on a
SICK laser scanner and two cylinder landmarks, in which cylinder landmarks
are fixed on two mobile robots and can change their relative position and distance
for localization. Finally, a brief summary and potential future extension are
given in Section 4.6.

© 2006 by Taylor & Francis Group, LLC



152 Autonomous Mobile Robots

4.2 LANDMARK-BASED NAVIGATION

In a landmark-based navigation system, the robot relies on its onboard sensors
to detect and recognize landmarks in its environment to determine its position.
This navigation system very much depends on the kind of sensors being used, the
types of landmarks, and the number of landmarks available. For instance,
Sugihara [9] used a single camera on a robot to detect the identical points in the
environment and then adopted an O(n’1g n) algorithm to find the position and
orientation of the robot such that each ray pierces at least one of the » points in
the environment. An extended version was proposed in References 10 and 11,
respectively. The localization based on distinguishable landmarks in the envir-
onment has been researched in Reference 12, in which the localization error
varies depending on the configuration of landmarks. Apart from vision systems,
other sensors have been widely used in position estimation, including laser [3],
odometry [13], ultrasonic beacons [6], GPS [7], IR [12], and sonars [14]. Since
no sensor is perfect and landmarks may change, none of these approaches
is adequate for a mobile robot to operate autonomously in the real world.
A landmark-based navigation system needs the integration of multiple sensors
to achieve robustness and cope with uncertainties in both sensors and land-
mark positions. This motivates us to pursue a hybrid approach to the problem
by integrating multiple sensors and different kinds of landmarks in a unified
framework.

In general, the accuracy of the position estimation in a landmark-based
navigation system is affected by two major problems. The first problem is that
the navigation system cannot work well when landmarks accidentally change
their positions. If natural landmarks are used in the navigation process, their
positions must be prestored into the environment map so that it is possible for
a mobile robot to localize itself during its operation. The second problem is
that sensory measurements are noisy when the robot moves on an uneven floor
surface or changes the speed frequently. The accuracy of robot positioning
degrades gradually, and sometimes becomes unacceptable during a continuous
operation. Therefore, re-calibration is needed from time to time and it becomes
a burden for real-world applications.

To effectively solve these problems, we propose a novel landmark-based
navigation system that is able to:

o Initialize its position through triangulation when necessary

e Update its internal landmark model when the position of landmarks
is changed or new landmarks become available

e Localize the robot position by integrating data from odometry, laser
scanner, sonar, and vision

Figure 4.1 shows the block diagram of our navigation system that is able
to implement concurrent localization and map building automatically. It is
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FIGURE 4.1 Landmark-based localization.

a closed-loop navigation process for position initialization, position updating,
and map building. The system consists of three parts: an initialization part, a
Kalman filter (KF) part, and a map-updating part:

e The initialization part includes a triangulation algorithm, which is
based on angular measurements from the multiple sensors. Whenever
the mobile robot is stationary, the triangulation algorithm is called to
recalibrate the robot location so that the accumulative position errors
can be corrected.

e The KF part aims to fuse measuring data from different sensors, and
reduce individual sensor uncertainties. More details are presented in
Section 4.3.3.

e The map building part is to update and maintain the internal world
model of the mobile robot. A recursive least square algorithm is
adopted to optimize the landmark position during operation. The
key idea is to optimize the internal landmark model during the robot
operation and add any new landmark that is consistently detected by
the laser scanners and vision systems into the localization process.
The choice of the least square criteria is of course based on the
assumption that measurement errors have Gaussian distributions.

As can be seen in Figure 4.1, we have considered two types of laser
scanners and one vision system for landmark detection and recognition. The
proposed navigation system is especially aimed at service robots that operate
in indoor environments such as offices and hospitals where the global map of
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the environment is two-dimensional. The position of the robot with respect to
this map is unknown and needs to be determined.

There are three kinds of landmarks that are considered in our design (i) single
strip retro-reflective landmarks, (ii) digital landmarks, and (iii) geometric land-
marks. The positions of the first two kinds of landmarks are pre-input into a
global map of the robot’s environment. The positions of the geometric land-
marks are abstracted and then registered into the global map dynamically. The
next three sections describe their application in robot navigation respectively.
Note that our navigation system is not restricted to these three kinds of land-
marks, and can be easily extended into other kind of landmarks and their
combination.

4.3 LASER SCANNER AND RETRO-REFLECTIVE LANDMARKS

4.3.1 Laser Scanner and Angle Observation

The localization system based on the laser scanner and retro-reflective land-
marks is a promising absolute positioning technique in terms of performance
and cost [8]. Using this technology, the coordinates of retro-reflective land-
marks are prestored into an environment map. During its operation, the robot
uses its onboard laser sensor to scan these landmarks in its surroundings and
measure the bearing relative to each of them [1]. Then the position estimation
of the mobile robot is normally calculated by using two distinctive methods:
triangulation [12] and Kalman filtering [14].

Research here is based on a rotating laser scanner that is able to measure the
angle between the robot base line and the beam line from either the leading or
the falling edge of landmarks in the horizontal plane. As shown in Figure 4.2,
the laser scanner is situated on top of the physical center of the robot, scanned
360° in azimuth up to 50 m range at a constant speed of 2 Hz. Note that an
IR laser beam (870 nm) from a HeNe laser diode emits energy of 0.5 mW,
which is eye-safe. As can be seen, there are six landmarks in this environment,
namely By, B2, . . ., Bg. The landmarks are in the form of a single strip for easy
detection from a large distance, instead of traditional bar-codes. All landmarks
have an identical size of 50 cm in length and 10 cm in width. The positions of
the landmarks are surveyed in advance and prestored into the robot memory as
a look-up table, represented by the coordinates in the world frame:

m = [Blv AR 7Bi7 .. ,BN] = [(bxl’byl)s I ] (bxisbyi)s .. ] (41)
where (by;, by;) are the coordinates of the ith landmark and N is the total number
of landmarks in use.

These landmarks can return strong reflective signals to the scanner, that
is, the area inside dotted lines in Figure 4.2. The reflected light from these
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FIGURE 4.2 Landmarks and an onboard laser scanner.

landmarks is measured by a photo-detector inside the scanner. The scanner
outputs the relative angles (with respect to the robot frame) measured by the
scanner encoder at the falling edge of each landmark. The measurement vari-
ance would increase when the mobile robot moves around. This is because

the vibration of the laser scanner would appear when the floor surface is not
smooth.

4.3.2 Triangulation Algorithm

In the case of a stationary robot, the laser scanner senses all six landmarks,
as shown in Figure 4.3, from a single location continuously. Then these data
can be used to calculate the initial position and heading of the robot by the trian-
gulation algorithms proposed in References 8 and 15. There are two ways to do
triangulation. First, triangulation can be recursively implemented by choosing
three landmarks in Figure 4.3 in turn when the mobile robot is stationary. It is
actually identical to the “3-point problem” in land surveying. The laser scanner

detects the falling edges of three landmarks and in turn provides three angle
measurements, denoted by 8; (i = 1, 2, 3):

1 byi —y

Bi = tan™
by —x;

4.2)

where 6 is the robot orientation, (by;, by;) are the coordinates of the landmark

Bi, and (x;, y;) are the coordinates of the laser scanner in a global frame.
Based on the trigonometric identity, the equations for calculating the robot

position and orientation are easy to derive from Equation (4.2). More details can
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FIGURE 4.3 Triangulation example.

be seen from References 12 and 16. There are two problems in this triangulation
process:

e First, the triangulation algorithm is normally sensitive to the positions
of the three landmarks being used. When three targets are in an
optimal position (about 120° apart), the results are very accurate.
Otherwise, the robot position and orientation have big variances with
respect to an optimal value.

e Second, itis very difficult to identify which landmark has been detec-
ted if all landmarks are identical. Mismatch is more likely to happen
in practice when obstacles obscure one or more landmarks.

Alternatively, we can use all landmarks to make a least square solution with
redundant observations so that the individual solutions do not depend on the
specific choice of the landmarks. This solution is nonlinear, however, the equa-
tions can be readily linearized and used with the standard least square algorithm.
The advantage of this approach is that the redundant observations can be used
to check and, hopefully, eliminate blunders (misidentification of the targets,
etc.) in the observation automatically. This approach can be readily automated
and is, indeed, very popular in surveying. But it needs more computation time
compared with the first approach.

Since the laser scanner can only measure the angles to the different land-
marks, and cannot distinguish one landmark from another, a key problem is
how to determine the correspondence between the measured angle and the
landmark [1]. Therefore, the initialization of the robot position is normally
done manually. Also, re-calibration is done manually when the mobile robot
gets lost. This is inconvenient for real-world applications. It is necessary to find
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a feasible way to initialize the position of a mobile robot automatically, which
can be found in Reference 3.

4.3.3 KF-Based Navigation Algorithm

The triangulation algorithm is difficult to implement when the robot moves
around since it is necessary to compensate the time frame as each of three
landmarks is detected at different robot positions. Skewis and Lumelsky [12]
proposed a triangulation algorithm to attack this problem. However, there was
no satisfactory result being obtained after the algorithm was tested. This is
mainly due to the following reasons:

e Each of the landmarks is in a single strip and not encoded, that is,
indistinguishable from one another.

e Noisy readings come from the laser scanner as some angle measure-
ments are caused by random objects.

e In general, the robot environment is nonconvex. Therefore, not all
landmarks can be seen by the laser scanner. Moreover some land-
marks may be obscured by dynamic objects such as humans and
other robots.

The KF algorithm is a natural choice for robot localization since it provides
a convenient way to fuse the data from multiple sensors, for example, the laser
scanner and odometry. However, it normally requires a linear dynamic model
and a linear output model. However, in this research, both models are nonlinear
as follows:

x(k + 1) = f(x(k), u(k)) + w(k) (4.3)
z(k + 1) = h(B;, x(k)) + v(k) 4.4)
where f(x(k), u(k)) is the nonlinear state transition function of the robot. w(k) ~
N(0, Q(k)) indicates a Gaussian noise with zero mean and covariance Q(k).
h(B;, x(k)) is the nonlinear observation model and v(k) is Gaussian noise with

zero mean and covariance R(k).
The control vector is calculated by two optical encoders at each cycle time k:

uk) = [Ad, AO1T 4.5)

and the state transition function of the robot is

x(k) + Ad cos6
f(x(k),uk)) = | y(k) + Adsin8 (4.6)
0(k) + A6
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For the laser scanner, the observation model is

hB:. () = arctan 22X g0 4.7)
" byi — x(k) '

Since the models (4.3) and (4.4) are nonlinear, the EKF [17] must be used here

to integrate the laser measurements and encoder readings. Note that the EKF is
recursively implemented as follows:

Step 1: Prediction — 1t predicts the next position of the robot using
odometry.

x(k + 1/k) = £(x(k), u(k)) (4.8)
plk + 1/k) = VIP(k/k)VET + Q(k) 4.9)

where Vf is the Jacobean matrix of the transition function, and is
obtained by linearization

1 0 —Ad®k)sind(k)
VE=|0 1 Ad(k)cosé(k) (4.10)
0 0 1

Step 2: Observation — It makes actual measurements.
The measurement of the laser scanner is

z(k + 1) = h(B;, x(k)) (4.11)
The predicted angular measurement is
z(k +1) = h(Bi, x(k + 1/k)) (4.12)

Step 3: Matching— It compares the real measurement with the predicted
measurement.
To calculate the innovation, use

vik+1) =zk+1)—zk+1) (4.13)
The innovation covariance is:

Stk + 1) = VhP(k + )VhT + R(k + 1) (4.14)

© 2006 by Taylor & Francis Group, LLC



Landmarks and Triangulation in Navigation 159

where VB is the Jacobean matrix of the measurement function:

oh  oh
Vh=|—, —, -1 (4.15)
ox  dJy

For each measurement, a validation gate is used to decide whether it
is a match or not:

vik+ DS+ DVvik+1) <G (4.16)

If it is true, the current measurement is accepted. Otherwise, it is
disregarded.

Step 4: Updating — 1Tt corrects the prediction error from odometry
readings.
The filter gain is updated by:

Wk +1) =Pk +1/k)VhTS  (k + 1) 4.17)
The robot state is then calculated by:
x(k+1/k+1) =xk+1/k) + Wk + Dvk+ 1) (4.18)
The covariance is updated by:

P(k +1/k +1) =Pk + 1/k) — W(k + DSk + DWT (k + 1)
(4.19)

Step 5: Return to Step 1 to recursively implement the four steps earlier.

The algorithm is essentially very simple although it contains some very use-
ful features. It produces the estimate of the current robot position at each cycle
by integrating odometry data with only one angle measurement from the laser
scanner. Recursively, it combines every new measurement with measurements
made in the past to estimate the robot position, or “make a compromise.” This
can be seen as a pseudo “triangulation” technique in a dynamic sense.

4.3.4 Implementation and Results

The proposed navigation algorithm based on angle-only observations was
implemented in our robotics research laboratory. The mobile robot equipped
with a rotating laser scanner and single-stripe landmarks were fixed on the walls
within the laboratory. The mobile robot was commanded to follow a close-loop
route at a speed of 0.3 m/sec. The route is near circular with a diameter of 4 m.
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FIGURE 4.4 Navigating a close-loop route inside building.

Figure 4.4 presents the results gathered from the robot operation. There
are three sets of data, namely a planned trajectory, a trajectory calculated from
odometry, and a trajectory estimated by the EKF. As can be seen, the trajectory
produced by odometry deviated further than the one generated by the EKF.
Both odometry data and the EKF data look very close to the planned trajectory
since the trajectory plotting is scaled down too much. However, the odometry
data will deviate further away from the desired trajectory if the mobile robot
travels continuously, which is due to the accumulative error of odometry.

4.4 VISION AND DIGITAL LANDMARKS

Visual robot navigation can be roughly classified into two major approaches:
one is the iconic or appearance-based method that directly compares the raw data
with the internal map and another is the feature-based method that focuses on
the prominent features [18]. A feature-based navigation algorithm is often sim-
pler and reliable, especially in dynamic environments. For instance, Atiya and
Hager [19] used a stereo vision system to obtain vertical image edges in order to
determine robot position. The observed landmark and stored map labeling prob-
lem is solved by a set-based method. Se et al. [20] proposed a random sample
consensus (RANSAC) approach to determine the global position of the robot
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by matching the SIFT (scale invariant feature transform) features. Feature-based
methods are often very efficient, and we have adopted it in our design.

However, the presence of nonunique feature landmarks causes the serious
concern in feature-based visual navigation. Therefore, instead of undistinguish-
able landmarks addressed in the previous section, we propose a new type of
artificial landmarks, which draws inspiration from wide applications of License
Plate Recognition (LPR). These landmarks are embedded with characters and
digit numbers that are similar to the name plates in offices and the license plates
used in transport. A similar approach is presented in Reference 21, which pro-
posed a visual landmark learning and recognition system for use in mobile
robot navigation tasks that can read text inside well-defined landmarks such as
nameplates, streets, and roads. However, there is no indication of its real-time
performance.

Figure 4.5a presents the format of the proposed landmark, and Figure 4.5b
shows a real landmark held by a person. Each landmark has the following
features:

e Five characters, the letter L followed by four digits, are printed on
the landmark.

e Each of the five characters has the same size, and the clearances
between the characters are all the same (H, W, and D in Figure 4.1a).
We currently select the parameters: L = 33, D = 200, H = 66,
and W = 34 (mm), which may be changed in different application
environments.

e The positions of the characters are also known (L in Figure 4.5a).

4.4.1 Landmark Recognition

The digits are the index of the landmark and the algorithm can identify the
landmark with a digits recognition method. The standard size of the charac-
ters contains enough information for robot localization. Since the proposed
landmark is similar to a license plate, many algorithms developed for license
recognition can be used here directly, including the fuzzy-map method for
locating the plate and the neural network for character recognition [22], and
the fast plate location method based on vertical edges of the images [23].
Figure 4.6 shows a new landmark recognition algorithm that consists of three
major modules: region finding, digits finding, and digits recognition.

4.4.1.1 Region finding module

This module is to find out all the probable regions that contain the landmark
digits and exclude as much background as possible. Considering the features
of the digits (sharply rising and falling edge in pairs in a horizontal scan line),
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FIGURE 4.5 The proposed digital landmark. (a) The format of the landmark. (b) An
example of the landmark.

we develop a simple region finding algorithm for extracting potential regions
from images being captured.

While scanning the lines, the program will count the edge pairs (a pair is
composed of a rising edge and a falling edge), and record the line sections
that contain more than four edge pairs. In a scan line, the program may record
more than one section if the pairs are further away from each other. The region
extraction module analyzes the line sections recorded and finds out the probable
regions based on the following assumptions:

e The line sections will gather closely in the digits region.

e The numbers of line sections in the digits region will not be less
than 10.

e The clearance between line sections in a digit region will be limited.
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FIGURE 4.6 Landmark recognition algorithm.

4.4.1.2 Digits finding module

The digits finding module is mainly based on an edge following algorithm. The
steps can be described as follows:

e Do top-down line scans of a potential region until an edge pixel of a
digit is found.

e Follow the edge of the digit and record the parameters (position,
width, height, etc.).

e Repeat steps above until all the digits in the region have been found.

4.4.1.3 Digits recognition module

The digits recognition module works in several steps as follows:

e Normalization — It divides the image areas and normalizes them to
64 x 64 arrays regardless of the original size of the digits. If some
noisy areas were found with the digits, this step will normalize them
as well, in order to avoid losing information. Figure 4.7a is the result
of normalization of the digits detected.

e Thinning — It is to extract out the skeleton (one-pixel-wide central
line of a line). The skeleton is essential for texture analysis of a pat-
tern. The end points, bifurcate points, etc. can be extracted from
the skeleton. The program adopts an updated Hilditch algorithm
to implement the thinning operation. Figure 4.7b is the result of
thinning. There are often some noises in the thinning image, for
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FIGURE 4.7 Normalization, thinning, and noise removing.

example, some odd pixels which will generate fake endpoints and
bifurcate points.

e Noise removal — This step removes the noisy pixels according to
the following rules (i) The isolated pixels are removed; (ii) short
lines (the length is less then 60 pixels) are removed; and (iii) short
odd lines are removed. An odd line is composed of the pixels from
an endpoint to a bifurcate point. The bifurcate point pixel is pre-
served while processing. Figure 4.7¢ is an example of noise removed
images.

e Feature extraction — It extracts a grid based 9-element feature vec-
tor F = (fi,f>,....fo)T for each of the normalized probable digits
(NPD). The nine elements express the ratio of the number of black
pixels in a subarea. The following figure gives the serial number
of the subareas in a NPD. The borderlines of subareas are the four
lines shown in Figure 4.7d, and the coordinate value of a NPD is
from 0 to 63 in both x and y axes. The elements are defined by the
following equation:

N;

-
C Y iogNi

(4.20)
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where N; is the number of the black pixels in the ith subarea shown
in Figure 4.7d. For instance the feature vector for the letter “L” in
Figure 4.7c is (0.2343, 0, 0, 0.246, 0, 0, 0.246, 0.168, 0.144) T.
We can find that in the NPD for “L,” no black pixel is in subarea 1,
2, 4, and 5; and the black pixels in subareas 7 and 8 are relatively
smaller than those of the subarea 0, 3, and 6. Because the features
are relative values instead of absolute ones, the feature values are
free from the different exposure level of the image, which causes the
different width of the character strokes. The features are robust to the
sloping digits, which may be due to a sloping camera. The image in
Figure 4.5b is an example for sloping digits. We found in the NPD
that the distribution of black pixels in each subarea of the NPD does
not change due to the slope. The feature extracted from it also proves
the same.

e Feature matching — It calculates the scalar products of the fea-
ture vector extracted in the earlier step and those from the features
library; then it will give out the result according to the minimum
scalar product. This step also contains a simple judgment of the
results if more than one probable region is found. The following
conditions are adopted to do this, if (i) five digits are found in
a region; (ii) the first character of a region is recognized as “L”;
(iii) the minimum scalar products are very small; and (iv) the region
is more probable to be the right one. Another function of this
step is to connect the characters recognized into a string accord-
ing to the right region judgment and positions of digits and then
output it.

4.4.2 Position Estimation

Assume that the robot position is expressed by the vector p = (x,y, G)T, and
three coordinate systems are adopted for our implementation:

e {W}: the global coordinates. The localization is to find out W P, the
position vector in {W}.

e {L}: the landmark coordinates. It is fixed on the current landmark
which is being seen. The original point is fixed on the position shown
in Figure 4.5a.

e {I}: the image coordinates. It is fixed on the image plane.

If a landmark is “seen” by the robot, it is able to identify the landmark and
get the position information of the landmark in {W} from the database, and
therefore the transformation matrix CZVis known. If the position in {L},LP, is
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deduced, the localization can be done by the transformation
Yp=c).Lp 4.21)
The problem now is to calculate

L L L oL\T
P=(x:,y:,60.) (4.22)

In this section, two methods of localization, that is, triangulation, and least
square estimation (LSE), are investigated in terms of two cases: single landmark
and double landmarks.

4.4.2.1 Triangulation method

Figure 4.8 is the sketch map of landmark imaging, using a pinhole model. P1
and P2 are two of the vertical edges of the five characters (10 edges alltogether).
The positions of P1 and P2 are known as (p%, 0) and (pé, 0). The parameters of
the landmark are shown in Figure 4.5a.

According to the pinhole model, we get:

O —yr _H 04 —Y)r H

— —a 3 - 4.23
7 7 7 b #423)

where r is the resolution with the unit of MPD (millimeters per dot), and (x{ , y{ )
is the coordinate value of the ith feature point, both endpoints of the selected
vertical edges.
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FIGURE 4.8 Landmark detection.
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Assume that the position of the lens center is (x; ,yL) According to
Pythagoras theory, we have:

L L\2 L2 2
—x7)° 4+ =1
{(pi 2)2 (yz)z ; (4.24)
(p2 _'xc) + (yc) = 12
Considering that yé‘ is always a positive value, we have:
2 _ 2 L2 L2
L_lizh+pry —p
L=
2055 = xp) (4.25)
e =/l = &k —pp)?

In Figure 4.9, the direction may be easily obtained as:
L_ L 1
— X, X1r
0 = 41 + 42 = tan_l (pl—Lc> + taIl_l (}CL) (426)
c

By combining Equation (4.25) and Equation (4.26), we have

2 2
I} =G +p5 —ph
205 = ph)

Xy
W | = \/(x——p)z 4.27)
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We substitute P into Equation (4.21), and then the localization is com-
pleted. Equation (4.27) is the result of localization. The coordinates given by
the program are in {L}. The errors of this method are caused by the imprecise
extraction of each character. Differentiating Equation (4.27), we have:

————(Lidly — hdb)
L vz = PD) L_ L
dx l —
L 1 ~di — L e (4.28)
Yo | = 22— (L - P — (xk — :
do; \/ 1 ! ‘ pl L\/ L ) L
dxl _ zyc(pl _xc) (de+ dyc
Ll R OE -2 U0
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FIGURE 4.9 Landmark-based localization of the robot.

Equation (4.28) shows the relationship between localization errors and char-
acter extraction errors. It can be seen that the localization error is relative to [;
and /», as well as the distances between the robot and the features, which will
be large when the observing angle is large. In the two-landmark case, the two
features p1 and p, can be selected from different landmarks, which can provide
more accurate position results.

4.4.3 Least Square Estimator (LSE)

In a real application, the robot continuously samples data using its onboard
camera. Errors may be reduced by fusing the data of individual samples. In this
section, LSEs are used in terms of two different cases: single landmark case
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and dual landmark case. The method proposed here is the extension of Boley’s
LSE [24].

4.4.3.1 Single-landmark LSE (SLSE)

The single-landmark LSE algorithm is based on the coordinates shown in
Figure 4.9a. The origin point is placed at the landmark, and the x-axis is set
parallel to the robot moving trajectories. From each sampling point on a robot
trajectory, the bearings to the landmark are measured as «; (i = 0, 1,...,n),
by using the methods in Section 4.2. The position of each sample is noted in
the vector z; = (x;, y,-)T, the distances between each position, and zp, which
can be obtained from the readings of odometry, are noted as d; = z; — z0 =
(x; — x0, yo)T. It is easy to observe that:

d:
tan(e;) = 2T % (4.29)
Yo
Rewriting Equation (4.29), we have:
xo cos(aj) — yo sin(e;) = —d; cos(a;) (4.30)
Row-by-row collecting all the equations for i = 1,...,n, we have over
determined equations which can be expressed as:
Azg=0b (4.31)
where
cos(or;) —sin(ag) —d cos(or1)
cos(ap) —sin(ap) X0 —d> cos(ayp)
: : Y0 :
cos(a,) —sin(ay,) —d,, cos(ay,)
Using the Least Square method, we can estimate z as follows:
0= (A"A)""'ATp (4.32)
In this method, we adopt samples at the positions z; (i = 1,...,n) as the

reference sample (RS) to estimate the robot position zg.

4.4.3.2 Dual-landmark LSE (DLSE)

In this case, the coordinates are built on two landmarks. The original point is set
to one landmark and the x-axis point to the other one. The coordinate values of
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two landmarks are known as (0, 0) and (D, 0), where D is the distance between
two landmarks.

For each sampling point z;, both landmarks are measured as («1;, )T, and
two equations will be generated:

d .
tan(ary) = T
Yo + dyi 4.33)
xo+dyg—D '
tan(ap)) = —————
Yo + dy;

where dy; and dy; are the displacement of the sampling points in two directions,
which are obtained from the readings of the odometer.

Rewriting Equation (4.33), and collecting the equations for each RS,
we have:

Azg=b (4.34)

where

cos(ayy) —sin(aqq)

A cos(ap)  —sin(ai,) R <x0>
cos(apy) —sin(apy) Yo
cos(a2y)  — sin(azn)

sinaudyl — dxl COosS 11

- sin a1, dyy — dy, COS 1,

sinaz1dyy — (dy2 — D) cos ay

sin ap,d2 — (dyy — D) cos any

The position zq can also be deduced from Equation (4.32).

4.4.4 Implementation and Results

The experiments are carried out using a “Logitech QuickCam” web camera
(1/4” CCD sensor, 4.9 mm lens). In our implementation, the mobile robot is
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FIGURE 4.10  Single landmark—based LSE.

moving along a straight line at different distances to the landmark that was
fixed on the wall. After landmark recognition, the robot’s position is calculated
through the triangulation method described in Section 4.2 [3,12,16].

Then LSE is implemented in two ways, namely batch processing and recurs-
ive processing. The experimental results for single landmark are presented
in Figure 4.10. In contrast, the experimental results for dual landmarks are

presented in Figure 4.11.
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As we can see from Figure 4.10a and Figure 4.11a, the batch filtering
algorithm gave better localization results than the recursive filtering algorithm,
but it is not real time. Although the recursive filters have relatively large errors
(the left side of each line) at the beginning, the estimated results converge
rapidly when more data is available. The final result is therefore applicable in

a real-time system.
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FIGURE 4.11 Dual landmark-based LSE.
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4.5 SICK LASER SCANNER AND GEOMETRIC LANDMARKS

Geometric landmarks are widely used for robot navigation, which are normally
static. Recently, Howard and his colleagues [25] proposed a new approach
by equipping their robots with geometric landmarks that are easily found and
movable within the environment. In their implementation, a large heterogeneous
team of robots was adopted, each of which carried a SICK scanner and two geo-
metric landmarks (cylinders). Motivated by their research, we have equipped
each of our robots with a SICK scanner and a cylinder so that colocalization
can be implemented.

Since indoor environments usually contain many straight lines, the detection
process is greatly aided if the landmark always has identical range signatures
regardless of relative position or orientation. This is the case for one shape only,
the circle. This characteristic aids detection but is not helpful when determin-
ing relative positions between two or more robots because rotational changes
cannot be perceived. Two distinguishable circles guarantee unique localization.
If the circles are indistinguishable then localization is one of the two places.
Figure 4.12 shows a typical mapping situation involving co-location. Two cyl-
inders A and B are shown; these cylinders could be individual robots or one
robot carrying two cylinders. The advantage of observing two robots is that
large separations may be used, leading to more accurate localization, however,
mounting both cylinders on one robot reduces the number of robots required,
the observer and the mobile landmark robot. Figure 4.12 presents a cooperative
localization and mapping scenario involving three robots R1, R2, and R3. R1 is
equipped with a laser scanner and the remaining robots are mobile landmarks.
The initial positions of R2 and R3 allow R1 to map the room on the left. Under
the observation of R1, at position A, R2 and R3 move across the corridor to the

R1 R2 R2

e .® Rl
K_,@/F/\@ ®

R

R3

FIGURE 4.12 Cooperative localization scenario involving three robots.
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second room where they adopt positions B and C. Now R1 can continue to D
using R2 and R3 as artificial landmarks and map the second room.

Once the relative positions of the companion robots are known, map building
is possible. The main difficulty is achieving fast and reliable detection of circles
of known radius from noisy range data. The detection of shapes in images is
a large area of research within the computer vision community and contains
several relevant techniques such as the Hough Transform and least squares
fitting approaches.

4.5.1 Circular Hough Transform

The Hough Transform [25] has been highly successful in the vision community,
thanks to its tolerance of image noise and excellent straight-line detection. The
Hough Transform may be generalized to any geometric primitive. However, the
introduction of each new parameter adds another dimension to the Hough space.
The geometric increase in storage and processing required for the accumulator
grids have repercussions on performance. A typical high-resolution laser scan is
given in Figure 4.13a which shows a relatively cluttered environment with two
circular landmarks that are indicated with dashed lines. The standard Hough
Transform is particularly ineffective for circle extraction from laser range data
because of the uneven distribution of points in Cartesian space. The laser scanner
samples at regular intervals of 6 resulting in an increased density of read-
ings from nearer objects. A nearby straight edge obstacle may be detected in
preference to the circles.

This is rectified by a Range Weighted Hough Transform (RWHT) as dis-
cussed in Reference 26. The weight function applied is a simple linear increase
from the origin of the scan. This linear increase negates the effect of the 1/r
fall in point density. The improvement is immediately apparent in Figure 4.13b
where the peaks of the circle centers can be distinguished from nearby walls.
As can be seen, the two highest peaks correspond to the circular landmarks.

Only a 2D Hough parameter space is required for the circle search because
the radii of the circles are known. The two parameters are the coordinates of the
candidate circle center. The confusion of straight lines with circles is a serious
problem that refuses to be resolved. A possible solution would be to first remove
all points corresponding to straight lines and then perform the circular Hough
Transform on the remaining points, however this is very time consuming. The
process for Hough Transform circle detection is summarized in Figure 4.14.

There are a number of reasons why the circular Hough Transform is not
particularly suited to this application. Range data are different from image data
for which the Hough Transform was first devised. Another problem is that it
always returns an answer even if the geometric primitive is not present in the
data. The determination of peak significance by comparison with others and
the kind of data expected requires a relatively complicated statistical analysis.
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FIGURE 4.13  Circular Hough transform.

4.5.2 Least Squares Fitting of Circles

Poor performance of the Hough Transform approach prompted research into
least squares curve fitting approaches. It is evident from Reference 27 that fitting
circles to points is a nontrivial process, mainly because the resulting equations
are highly nonlinear and circles cannot be elegantly expressed in Cartesian
coordinate systems. No least squares algorithm suitable for range data could be
found, therefore one was devised.

One of the problems with the circular Hough Transform is that there is
much information specific to range scans that is not included in the search for
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FIGURE 4.14  Flowchart of the circular Hough transform detection process.

circles. One important property of circles is that they are highly symmetric and
so appear identical when viewed from any angle; this greatly eases the burden
of detection. Also, the range data has an inherent sequence that is not obvious in
Cartesian coordinates. Detection of a circle occurs when a sequence of adjacent
points lie close to the circumference of that circle. Relaxing the requirement
for the detection of occluded targets allows the following algorithm shown in
Figure 4.15b.

The algorithm assumes the center of the circular target is at the scan angle of
the current scan point being analyzed. The mean of the least squares differences
is then calculated by Equation (4.38) and Equation (4.39). Scan angles with this
quantity below a threshold (comparable to the accuracy of the laser scanner)
are likely contenders for having the center of the target circle situated along
them. Figure 4.15a illustrates the geometry involved with laser scan points
depicted by crosses. Point A is the current scan point being evaluated and the
circle represents the search target. The candidate circle for A is assumed to be
positioned with center C, as shown on the line OA where O is the origin of the
laser scan. Assuming the laser scan returns points evenly distributed over 6 then
the number of nearest neighbors to be incorporated is determined. Points that
lie within an angle of AOB from A are candidate points where

N R
AOB = arcsin ———— (4.35)
(R+0A)

and R is the radius of the circular landmark.

Care has to be taken regarding scan points lying near D and B, which are
subject to glancing edge effects. The causes of these effects are specular reflec-
tion and pixel mixing which occurs when the laser spot spans an environmental
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FIGURE 4.15 Least squares fitting of circles. (a) Geometric construction illustrating
the least squares method for circle location. (b) Flowchart of the least-squares circle
detection algorithm.

range discontinuity. The subset of laser range points processed is

_ r] r2 PR rn
S = (91 - 9n> (4.36)

where r and 6 are the polar coordinates of the scan points in the coordinate
system of the robot. The position of the hypothesis circle in polar coordinates is

Fn+l +R
©)-(4
2

The distance of the ith point from circle circumference is

d; = \/ C2 +r? —2Cyricos(Co — ;) — R (4.38)
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FIGURE 4.16 Reciprocal root mean least squares differences of the laser scan in
Figure 4.13b.

Ultimately the mean least squares difference is calculated in the usual
fashion as

zzz—lidz (4.39)
_ni—l i '

This indicates how far, on average, the points are from the circumference of the
hypothesis circle and the reciprocal is proportional to the likelihood of detection.
This is repeated for each point in the scan. The points that exceed a threshold
probability imply successful circle detection at that position. Figure 4.16 plots
the reciprocal root mean least square differences for the example laser scan
in Figure 4.13b. Note that the two prominent peaks correspond to the circular
landmarks.

What is apparent from Figure 4.16 is the accurate detection and localiza-
tion of the two circular targets with the smaller of the two circle peaks being
nearly twice as big as the largest background peak. This ensures a super-
ior performance of 98% reliability vs. 50% for a RWHT. A comparison of
Figure 4.13b and Figure 4.16 emphasizes the effectiveness of the least squares
algorithm over the RWHT for reliable circular target extraction from laser
range data. The least squares algorithm takes advantage of range data spe-
cific characteristics like sequence and a single observation point. The more
generic RWHT does not utilize this extra information and so the least squares
method is not only 25 times more accurate but also faster and requires less
memory.
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FIGURE 4.17 Pose change calculation from two observations.

4.5.3 Cooperative Position Estimation

The two cylindrical targets are observed from two different poses and the obser-
vations superimposed. This is shown in Figure 4.17 with the second observation
cylinder positions indicated with an apostrophe, that is, A’ and B’. The pose
change consists of a rotation and translation. The rotation angle is the change in
angle of the line joining the two circles. Once the rotation of the robot between
the poses is known, the rotation effect can be reversed, that is, placing the cyl-
inders at the positions C and D, as shown in Figure 4.17. The change in position
or translation of the robot between observations is given by the difference in
position of the midpoints of CD and AB. Knowing the rotation @ and translation
T of the robot between successive scans, enables the amalgamation of scan data
to produce a global map. Scan data, L, is transformed point by point into the
coordinate frame of the global map, L, by

i (Tx cosf —sinf)
b= <TY) * (sin@ cos @ )L’ (4.40)

Given that a robot can observe other stationary robots, how may it determine
changes in its pose? Changes in pose may be described as linear combinations of
two geometric transforms, translation and rotation. An important consideration
is if the observed robots are distinguishable; if they can be unambiguously iden-
tified then the determination of pose change between landmark observations is
trivial. The rotation is calculated from the change in angle of the lines joining
the landmarks, and the translation is the average displacement of each point to
its image point. If the landmarks are indistinguishable then it is not so straight-
forward because each point cannot be associated with absolute certainty to the
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same point in the subsequent sensor update. Problems also arise with symmetric
distributions of landmarks.

If the relative positional information of indistinguishable landmarks is avail-
able then three are sufficient to unambiguously determine pose. Initially two
would appear sufficient, however the ambiguity of identity means that land-
marks may be rotated 180°. Even though only three asymmetrically distributed
indistinguishable landmarks are needed for unambiguous pose determination,
the fewer landmarks required, the better. Is it possible to have reliable pose
updates using only the relative positions of two landmarks? There are a number
of ways that this may be achieved. The simplest is to use distinguishable land-
marks, for instance circles of sufficiently different radii. If indistinguishable
landmarks have to be used then they may be placed in such a configuration
as localization is only required in one half plane. An example would be when
they are against a wall then the robot cannot be localized in the half plane
behind the wall and still be able to detect the landmarks. Use of odometry and
fast updates means that the large pose changes that would cause ambiguity
would never happen between updates or would be detected by the odometry
Sensors.

4.5.4 Implementation and Results

The experimental platform is a Magellan Pro-robot equipped with a SICK LMS
200 laser range finder. The range finder has a scanning angle width of 180°
and a resolution of 0.5°. The laser range finder is almost an ideal sensor with
unrivalled accuracy, acquisition time, and range. The main problems are cost,
mass (4.5 kg), and power consumption (17.5 W). The characteristics of this
LMS are detailed in References 28 and 29.

Experiments were performed to test the localization accuracy delivered and
involved driving the robot along a straight line and in a square. The deviation
of the colocation positions from this straight line give an indication of the
localization error in the direction perpendicular to the line. This error depends
approximately linearly on the angular resolution of the laser scanner, the range
and separation of the geometric targets. The localization error was of the order
of 0.02 m at ranges of 0 to 8 m with the laser scanner operating at a resolution
of 0.25°.

Error in the range to the targets introduces error into the position estimation
of the robot. Figure 4.18 illustrates the dependence of the pose uncertainty on
the range error. The origin O is the true position of the robot and O’ is its worst
case perceived position if the range to the target A is over estimated and that to
target B is underestimated. The error estimate is greatly simplified if a far field
approximation is used which implies

AB << OM (4.41)
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.

B B

FIGURE 4.18 Geometric construction used to calculate the localization error.

in this approximation the following similarities prove useful
sinf ~ tan 6 ~ 6 4.42)

for small angles of @ in radians. As OM = O’M then for the displacement of
O’ the angle of rotation is

. 2 AA AA’
OMO' = arctan (- ) ~ 2= (4.43)

J2 AB AB

Note the +/2 factor is due to the addition of the errors in quadrature. Finally the
position error can be expressed as

_ AA
00’ ~ vV2—0OM (4.44)
AB

The far field approximation, expressed in Equation (4.41), falters if the targets
are near and for large target separations, however in these situations the error
is minimal. It should also be clear from Figure 4.19 that the dependence of
position error o, on angular error oy for the laser scanner is simply

ox ~ OMoy (4.45)

The angular error for the SICK LMS 200 is ca. 0.5° so at a range of 4 m the
position error due to angular error is around 0.03 m. Targets separated by 2 m
with radii 0.1225 m at a range of 4 m observed with a range error of 0.01 m
produced a position error of 0.03 m. This prediction is close enough to the error
observed at this range in Figure 4.20.
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FIGURE 4.19  Plot showing the increase of position error with range to targets and line
of best fit.
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FIGURE 4.20 Localization along square path (solid line indicates true path taken and
circles are the geometric targets used for localization).

A typical set of continuous localization results are displayed in Figure 4.20.
The robot was moved one loop around a 1.57 m square at 0.2 m/sec. The laser
scanner mounted on the robot has a maximum scan angle of 180° and so the
robot had to reverse along some edges of the square in order to maintain tracking.

© 2006 by Taylor & Francis Group, LLC



Landmarks and Triangulation in Navigation 183

The target cylinders were located at (0, 1) and (—1, 0) because in these positions
they can always be observed by the 180° scanner, allowing continuous position
updates. The localization error can easily be extracted from Figure 4.20 and is
of the order of 0.03 m. The position accuracy is better toward the origin of the
graph because the robot is nearer to the target positions of (0, 1) and (—1, 0).

4.6 CONCLUSIONS

This chapter addresses the problem of landmarks and triangulation in naviga-
tion of mobile robots. A novel landmark-based navigation system is proposed,
which consists of three types of landmarks (retro-reflective, digital, and geo-
metric) and three types of sensors (laser, vision, and odometry), as well as sonar
sensors. Some corresponding navigation and triangulation algorithms have been
developed so that the robot is able to estimate its position and update its internal
map continuously in a dynamic environment.

To improve the localization accuracy for mobile robots in continuous opera-
tion, the EKF algorithm has been adopted in the navigation process to integrate
odometry data and angle observations from the laser scanner in order to provide
a useful solution toward real-world applications. A triangulation module is
embedded into the proposed architecture to re-calibrate the robot’s position
when the robot is stationary or gets lost. The experimental results are presented
to show its applicability.

A digital landmark-based localization algorithm for mobile robots is demon-
strated, which uses a fast digits recognition method. The algorithm provides
an easy solution to landmark identification in complex environments, which
is robust to slope images. Some advantages of the algorithm are the flexible
extendibility of digital landmarks and the low computation cost of landmark
recognition. We are currently investigating the following four issues (i) other
information in the single landmark, for example, the edges of middle characters,
may be used; (ii) other data fusion methods to use pre-known position inform-
ation (from dead-reckoning or EKF); (iii) multiple landmarks may be seen in
some conditions, and triangulation methods may be used; and (iv) localization
algorithms based on texture landmarks.

The feasibility of cooperative localization based on one sensing robot and
two landmark robots is also investigated. It is implemented by a least squares
fitting approach optimized for the sequential natural of the range data and
the highly symmetric aspect of the circular geometric targets. This coloca-
tion scheme allows fast position and orientation determination with bounded
errors and reliability indicators in unknown indoor environments. The robust
localization algorithm lays the foundation for mapping featureless and highly
symmetric environments. Continuous localization was performed at 0.2 m/sec.
Continuous localization can be provided, however these scans should not be
incorporated into the global map, only the ones taken when stationary should
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be used to improve the quality of the global map. Improvements in colocation
accuracy should be possible allowing either the extension of the range over
which cooperative localization is possible or reducing the separation of the
targets so that they may be mounted on one robot thus allowing cooperative
mapping with only two robots. These improvements in colocation accuracy
would primarily come from over-sampling the least squares fitting algorithm.

Although multiple sensors and multiple landmarks have been adopted in
the proposed navigation system, they have been independently investigated
and tested so far. A natural extension of future research is to investigate the
integration of three landmark-based navigation algorithms. Moreover, the pro-
posed navigation algorithms have potential applications for service robots in
homes, offices, and hospitals. It can also be used for outdoor beacon-based
navigation such as GPS navigation systems.
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Modeling and Control

For robotic systems that are embodied, situated and mobile, intelligent inter-
action with the environment and the successful operation in response to
higher-level commands is crucial before such systems can qualify as autonom-
ous and intelligent. This implies the ability of each robot to, at least, be capable
of controlling the equipped hardware so as to take the action that is required of
the robot, which ranges from moving between points, to changing the pose of
equipment like robotic grippers and manipulators. Effective control of a robot’s
hardware faculties, and making use of sensor feedback, is therefore extremely
important.

Due to Brockett’s theorem, it is well known that nonholonomic systems with
restricted mobility cannot be stabilized to a desired configuration (or posture)
via differentiable, or even continuous, pure-state feedback. Therefore, different
approaches have been proposed, which includes discontinuous, hybrid, and time
varying control laws. Many elegant control strategies have been proposed for
various nonholonomic systems. Among them, research results can generally be
classified into two classes. The first class is kinematic control, which provides
the solutions only on a pure kinematic level, where the systems are represented
by their kinematic models and velocity acts as the control input. One commonly
used approach for the controller design of nonholonomic systems is to convert,
with appropriate state and input transformations, the original systems into some
canonical forms for which the design can be carried out more easily. Chapter 5
explores the use of discontinuous control laws for the kinematic control of
nonholonomic systems. The chapter also presents the design of a hybrid variable
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and a switching strategy to guarantee robust stability of the closed loop system
in the presence of disturbances and measurement noise.

The second class of results on the control of nonholonomic systems is
dynamic control, where the torque and force are taken as the control inputs. Both
trajectory tracking and force control are manageable for a constrained robot if
the exact robot dynamic model is available for controller design. In real applica-
tions, however, perfect cancellation of the robot dynamics is almost impossible.
As such, adaptive control was proposed to deal with parameter uncertain-
ties. Approximator-based adaptive control approaches have been extensively
studied in the past decade using Lyapunov analysis for general nonlinear sys-
tems. Motivated by previous works on the control of nonholonomic constrained
mechanical systems and the approximation-based adaptive control of nonlinear
systems, the adaptive neuro-fuzzy (NF) control is developed in Chapter 6 for
the control of nonholonomic constrained systems using the Lyapunov stability
analysis in a unified procedure.

In addition, we should note that actuator dynamics constitute an import-
ant component of the complete robotic dynamics, especially in the case of
high-velocity movement and highly varying loads. Many control methods have
therefore been developed to take into account the effects of actuator dynamics.
However, very few works in literature have considered the control of nonholo-
nomic systems with actuator dynamics. To address this, Chapter 7 considers the
stabilization problem for general nonholonomic mechanical systems at the actu-
ator level, taking into account the uncertainties in dynamics and the actuators.
The controller design consists of two stages. In the first stage, to facilitate con-
trol system design, the nonholonomic kinematic subsystem is transformed into
a skew-symmetric form and the properties of the overall systems are discussed.
Then, a virtual adaptive controller is presented to compensate for the parametric
uncertainties of the kinematic and dynamic subsystems. In the second stage, an
adaptive controller is designed at the actuator level and the controller guarantees
that the configuration state of the system converges to the origin.

The last chapter of this part of the book considers the control of nonholo-
nomic (specifically, car-like) robots for vehicle following. This is an important
aspect of advanced autonomous mobile robot systems in which robots may
very likely outnumber human operators. The nonholonomic nature of car-
like mobile robot motion imposes intrinsic difficulties in control design. This
chapter, hence, presents a unified control design for tracking maneuvers of two
car-like mobile robots. The vehicle tracking maneuvers are formulated into an
integrated framework, with forward tracking, backward tracking, driving, and
steering, at the kinematics and dynamics levels. A nonlinear controller with a
few design parameters is designed for maneuvers with simultaneous driving and
steering for vehicle tracking — in both forward tracking and backward track-
ing maneuvers. Tracking stability is ensured by the proper design of a stable
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performance target dynamics with a set of sufficient conditions for selecting
design parameters.

Together with the effective use of sensors, effective control of the con-
figuration of the robots’ hardware forms the basic and necessary capabilities
that bring mobile robotic systems closer to autonomy. The possession of the
sensing and control capabilities presented in the first two parts of the book is
indispensable for autonomous mobile robots, and will fuse with higher level
decision-making mechanisms, which focus on more abstract cognitive planning
abilities, to bring forth truly autonomous and intelligent systems.
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5.1 INTRODUCTION

In this chapter we study the stabilization problem for nonholonomic systems.

Nonholonomic control systems are becoming increasingly important in
research and industry as they present many interesting features and potenti-
alities. From the researchers’ point of view nonholonomic control systems are
a prototype of strongly nonlinear systems, requiring a fully nonlinear analysis,
since all first approximation methods are inadequate. Thus, the design of a good
control law for a given nonholonomic system is a challenging task. On the other
hand, from an industrial point of view, nonholonomic systems are extremely
appealing for their efficiency and flexibility. They can be used as means of
transport, inspection, and operation in free space and hostile environments.

Before moving to the technical discussion, it is worth pointing out why we
deal with nonholonomic control systems and why we focus on noncontinuous,
hybrid, or time-varying stabilizers. A possible answer to the first question can
be found in the words of D. Edelen [1]: “Real problems in the real world rarely
exhibit themselves in those pleasant forms wherein one can model them in terms
of systems with holonomic constraints. [...] The second law of thermodynamics
tells us that such holonomic representations must ultimately degenerate from
the domain of the real into ethereal flights of fancy.”

A more practical answer comes from everyday life. Consider the problem
of parking a car, we can only drive forward or backward and steer to the left or
to the right. Observe a falling cat, an astronaut, a gymnast, or a diver: they can
change configuration requiring no contact with fixed objects. These examples
seem to be weakly related but, from a mathematical point of view, they are all
examples of nonholonomic control problems.

Consider now the second question. In the earlier examples an experienced
operator is able to perform the proper succession of operations in order to drive
a nonholonomic system from an initial configuration to a final one. However,
when the ability of the operator is not enough or when we desire to automatic-
ally reconfigure a nonholonomic system, it is necessary to design a regulator.
Hence the birth of the theory of nonholonomic control or nonholonomic motion
planning. Unfortunately, one of the first results of such a theory was a negative
one [2]: there exists no continuously differentiable, time invariant, control law
able to asymptotically stabilize a controllable nonholonomic system. There-
fore, many researchers have proposed and studied discontinuous, hybrid, or
time varying control laws.

We now briefly review some of the existing results on the control of non-
holonomic systems (see References 3 and 4 for further detail). The control
strategies for nonholonomic systems can be divided into two main groups:
open loop strategies and closed loop (feedback) strategies. In the latter group
we can further distinguish between continuous and discontinuous control laws. !

LA third possible approach is the one based upon sampled-data control laws.

© 2006 by Taylor & Francis Group, LLC



Stabilization of Nonholonomic Systems 193

In open loop strategies (see e.g., [S—7]) the control signal is calculated
off-line starting from the knowledge of the initial and the final configurations
of the system. By their own nature, these strategies are not able to compensate
for disturbances and model errors, therefore, in practise, the reached config-
uration may differ significantly from the desired final one. Nevertheless, it is
possible to include open loop strategies in an iterative design method, which
possesses some robustness properties. This approach is known as iterative state
steering [8].

In closed loop strategies (see e.g., [9—16] for time-varying feedbacks, [17—
21] for discontinuous ones, [12,22,23] for middle strategies [discontinuous and
time varying], [24,25] for hybrid control laws, and [26-28] for multi-rate meth-
ods) the control signal is computed online, based on the knowledge of the actual
configuration of the system and of the final one. They can potentially com-
pensate for model errors and disturbances. However, the result of Reference 29
states that there does not exist a continuous homogeneous controller that
robustly stabilizes nonholonomic systems against modeling uncertainties. This
has motivated further research in this direction. Many researchers have been
trying to solve this problem using discontinuous feedback (see [8,30-33]), or to
find special instances in which a continuous feedback can yield robust stability
(see e.g., [34]).

From the very brief discussion above it is apparent that several tools are
available for the control of nonholonomic systems. However, to date, it is not
possible to single-out a control strategy (or a set of tools) that performs better
than the other ones. This is mainly due to the following facts. A good control
law should have two basic features. First, it should drive the system from its
initial state to the final one in a simple way, second it should be robust against
model mismatches, noisy measurements, and the approximate knowledge of
initial conditions. Open loop strategies are generally able to grant the first item,
but nothing can be said on their robustness, although they can be exploited in
robust iterative designs. On the other hand, closed loop strategies are potentially
more robust, but the dynamics of the closed loop system may not be natural. In
particular the closed loop system may show oscillatory response, which is not
at all necessary or required to reach the desired final configuration. Note finally
that closed loop strategies are potentially more robust than open loop ones.
However, we will show that the robust stabilization problem for nonholonomic
systems has very special properties, and it is intrinsically hard.

5.2 PRELIMINARIES AND DEFINITIONS

In this chapter, we discuss the problem of designing stabilizing control laws for
nonholonomic systems described by equations of the form

X =g®u (5.1)
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withx € U € R",u € R", and m < n. Despite its simple formulation this
problem does not possess a simple solution, as can be inferred from the Theorem
of Brockett [2]. This theorem, yielding necessary conditions for smooth sta-
bilizability for general nonlinear systems, provides necessary and sufficient
conditions for feedback stabilizability of nonholonomic systems.

Theorem 5.1 [2] Let ¢ = g(q)u be given, with g € R",u € R™, g(qo)up =
0, g(+) continuously differentiable in a neighborhood of qo. Assume, moreover,
that span{g(q)} is a nonsingular distribution of dimension m in a neighborhood
of qo. Then:

1. There exists a continuously differentiable control law which makes
(g0, uo) asymptotically stable iff m > n.

2. There exists a continuously differentiable and dynamic feedback law
which makes® (qo, £, uo) asymptotically stable iff m > n.

The first part of Theorem 5.1 is due to Brockett [2], while the second
one to Pomet [10] (see also the work of Ryan [35] for a more general result in
the framework of nonsmooth stabilizability). We will not present the proof of
the above theorem, which can be found in the literature [2,10,36]; we simply
mention that the provided obstruction to stabilizability has a topological nature.
The essence of Theorem 5.1 is that the only inferesting nonholonomic systems
are those for which the distribution g(g) drops dimension precisely at gg, is
not continuously differentiable at go, or is not defined at go. In such cases
we cannot infer anything about the existence of C! (smooth), time invariant,
static or dynamic, asymptotically stabilizing control laws. Motivated by the
conclusions of Brockett’s Theorem we focus on:

o State feedback control laws described by equations of the form
u = a(x) (5.2)

where o : R" — R™ is a discontinuous function of its arguments.
e State feedback, hybrid, control laws described by equations of
the form

u=kx,sqg), Sq=kgx,sg) (5.3)

2 & denotes the state of the dynamic controller.
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where s evolves in the finite set® {1,2},k : R” x {1,2} — R™ is
continuous in x for each fixed s;; kg : R" x {1,2} — {1,2}, and s,
is defined as s, (¢) = limg—; 54(5);

e Time varying, state feedback, sampled-data, control laws described
by equations of the form

u = up (x(kT), kT) (5.4)

where T > 0 is the sampling time, and ur : R" x R — R™ is a
continuous function of its arguments.

Remark 5.1 Whenever we deal with discontinuous control laws, functions
which are not defined at some points, for example, are unbounded at x = 0,
are allowed. In particular the term discontinuous will be used throughout this
chapter to denote functions which are unbounded, hence undefined, in a certain
set; for example, the function )1_{ is discontinuous at x = 0.

The purpose of the control law is to guarantee that each initial state in a given
set converges asymptotically to the origin. However, as we use different control
laws, we will need different definitions of stability.

Definition 5.1 [20] A control law described by equations of the form (5.2)
almost stabilizes® the system (5.1) in the region Q2 if the following holds:

(i) Forallinitial states xo € Q2 the closed loop system admits a unique
(forward) solution
(ii) For all initial states xo € Q2 one has, along the trajectories of the
closed loop system, lim;_,  ||x(?)]| =0
Moreover, the control law almost exponentially stabilizes the system (5.1)
in the region Qq if in addition
(iii) There exist positive constant co and Ly such that for all initial states
xo € Qo and for all t > 0 one has, along the trajectories of the
closed loop system, ||x(t)|| < coexp ™’

Hybrid and sampled-data control laws are discussed in relation with robust
stabilization problems. To discuss the properties of hybrid control laws we need
to introduce a notion of robustness with respect to small noise. To this end,

3 For this controller to make sense we equip {1,2} with the discrete topology, that is, every set is
an open set.

4 This terminology differs from that introduced in Reference 37. Note also that stability has to be
understood as Lagrange stability.

5 The set 2o does not need to be a neighborhood of the origin, but may be an open and dense set
with the origin at its boundary.
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consider two functions e and d satisfying the following regularity assumptions:
eand d are in LS (R" x [0, +00); R"), and are continuous in x for each . We
introduce® these functions as a measurement noise e and an external noise d
and define the perturbed system with u given by Equation (5.3), that is,

X =gk +e(x,1),s4(1) +d(x,1)

_ (5.5
sq =kg(x + e(x,1),5q)

In this context the definition of global exponential stability is as follows.

Definition 5.2 [32] Let e and d be two functions satisfying our standing
regularity assumptions. The origin of the system (5.5) is said to be a globally
exponentially stable equilibrium on R" if the following two properties hold:"

(i) For every (xo,50) € R" x {1,2}, there exists a solution of (5.5)
starting from (xo, so). Moreover all maximal solutions of (5.5) are
defined on [0, 4+-00).

(ii) There exists 8 of class K and C > 0 such that, for all r > 0 and
Sor all (xo,s0) € R" x {1,2} with |xo| < §(r) and for all maximal
solutions (X, Sy) of (5.5) starting from (xo, so), one has

X)) <re”™, V¥i=0 (5.6)
Finally, we characterize robustly stabilizing controllers.?

Definition 5.3 [32] The controller (k, ky) is a robustly globally exponentially
stabilizing controller if there exists a continuous function p : R" — R such that
p(x) > 0, for all x # 0, and such that for any two functions e and d satisfying
our standing regularity assumptions and

sup [e(x, )| < p(x), esssupg_old(x,)| < p(x) 5.7

R>o

forall x € R", the origin of (5.5) is a globally exponentially stable equilibrium
on R"™

6 Using similar arguments we could also consider an actuator noise.

7 A function y : R>( — R is of class K if it is continuous, strictly increasing, and zero at zero.
Itis of class Koo, if it is of class K and unbounded. A continuous function 8 : R>g X R>g — R>q
is of class ICL if B (-, ) is of class /C for each T > 0 and B(s, -) is decreasing to zero for each s > 0:
8 Note that our notion of robust stability is closely related to the classical notion of Input-to-State
stability [38].
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To discuss generalized sampled-data control laws, consider the perturbed
model

X =g@ulx,1) +dx,t) (5.8)

where d € R™ is a disturbance. Assume the system is between a sampler
and zero-order hold. Then it is possible to define a parameterized family® of
discrete-time models of (5.8) described by

x(k+1) = Fr(k,x(k), u(k),d(k)) (5.9)

where the free parameter 7 > 0 is the sampling period, and x(k) =
x(kT),u(k) = u(kT), and d(k) = d(kT). If we use the approximate model
(5.9) to design a discrete-time controller we obtain a discrete-time controller
ut (x(k), k) that is also parameterized by T. Consider now the resulting closed
loop system, namely

x(k+ 1) = Fr(k,x(k), ur (x(k), k), d(k)) (5.10)

Definition 5.4 [39] The family of systems (5.10) is semiglobally practically
input-to-state stable (SP-ISS) if there exist B € KL and y € K, such that for
any strictly positive real numbers Ay, Ay, 8 there exists T* > 0 such that the
solutions of the closed loop system satisfy

[x(k, ko, X0, d)| < B(IxXol, (k — ko)) + v (ldlloc) + & (.11

forallk > ko, T € (0,T*), |xo| < Ay, and ||d|lcoc < Ag4. Moreover, if d = 0,

andthe above holds, the system is semiglobally practically asymptotically stable
(SP-AS) and ut is called a SP-AS controller.

We stress that, in practice, when designing a discrete-time controller for a
continuous-time plant the final goal is to achieve stabilization for the sampled-
data system. It is therefore important to note that, as discussed in References 40
and 42, SP-ISS (SP-AS) of the discrete time closed-loop systems implies, under
the considered assumptions, SP-ISS (SP-AS) of the sampled-data controlled
systems.

5.3 DISCONTINUOUS STABILIZATION

Discontinuous, time invariant, control laws have been dealt with in several
research papers, see for example, References 17, 19, and 43; however, our

9 The approximate model, to be useful for control design, has to satisfy the so-called one-step
consistency property [40,41].
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starting point is completely different. First of all we show that, under some
technical assumptions, a nonholonomic system admits a smooth stabilizer only
if a subset of the differential equations describing the system are not defined
on a certain hyperplane passing through the origin of the coordinates system.
Hence, we focus on such a class of systems and we give sufficient conditions for
the existence of stabilizing control laws. Finally, we show that any smooth non-
holonomic system can be always transformed into a system which is not defined
on a certain hyperplane, say P, passing through the origin of the coordinates
system. Using the above results, we will propose in Section 5.3.4 a general
procedure to design discontinuous almost asymptotically stabilizers for non-
holonomic control systems. Such a procedure yields a control law which is not
defined on P; hence the closed loop system is not defined on P. However, we
will prove that every initial condition which lies outside P yields trajectories
which converge asymptotically to the origin.

5.3.1 Stabilization of Discontinuous Nonholonomic
Systems

In this section we discuss the issue of smooth asymptotic stabilizability for
systems described by equations of the form (5.1) with x € R" and u € R™*.
We exploit a few basic facts from geometric control theory, as presented in
Reference 44. Note however that proper care has to be taken as we deal with
discontinuous functions.

Lemma 5.1 [20] Consider the system

X1 = g11(x1,x2)u (5.12)

X = g21(x1, x2)u1 + 822(x1,x2)u

with x; € RP,x; € R P x = col(x;,x) € RLuy € RP,up € R™,
u = col(uy,up) € R™? andm+p <n (gij(x1,x2) are matrix functions of
appropriate dimensions). Assume that the matrix function g21(x1,x2) is smooth
in an open and dense set U, that the matrix functions g11(x1,x2) and g2 (x1,x2)
are smooth in U,'0 and that the distribution

G = span{g) (x1,Xx2), - - ., 8m+p(x1,%2)}

10 et U be an open and dense set. We denote with U the smallest simply connected open set
properly containing U.
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where gi(x1,X2) denotes the ith column of the matrix

2(x1,x2) = |:811(X1,X2) 0 i|

g21(x1,x2)  g22(x1,X2)

is nonsingular in U. Finally, assume, without lack of generality, that the set U
contains the origin of R".
Then the following holds:

1. Set uy = ui(x1,x2) with
ui(0,x) =0 (5.13)

for all x;. Then, for every uy, the n — p-dimensional manifold M =
{x € U: x; = 0} is invariant for the system

X1 = g Ger, x2)up (x1,x2)
. (5.14)
X2 = g21(x1, x2)up (x1,x2) + g22(x1,x2)u2

2. If the matrix function g11(x1,x2) has constant rank equal to p in U
and there exists a smooth scalar function ¢ (x1) such that the matrix
function ¢ (x1)g21(x1,x2) is smooth in U, then the n — p-dimensional

distribution
A = span Opxn—p)
Iip

is controlled invariant.'!

Remark 5.2 As discussed in Reference 17, under mild hypotheses and with
a proper choice of coordinates, it is always possible to write the kinematic
equations of a nonholonomic system with equations having the form (5.12), with

0 1
grx,x) =1, gilx,x) = [*(M xz)}’ gn(x1,x2) = [*(xl'"x2)]

This form is known as normal form [17].

Lemma 5.1 is instrumental to yield a necessary condition and a certain
number of sufficient conditions for asymptotic stabilizability of nonholonomic
systems described by equations of the form (5.12).

1 Opx(n_.p) denotes the zero matrix of dimensions p x (n — p) and I denotes the identity matrix
of dimension s.
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Theorem 5.2 [20] Consider a system described by equations of the form
(5.12). Let U be a neighborhood of the origin. Assume there exists a smooth
control law

U= u(x1.x0) = |:u1(xl,x2)i|

uz(x1,x2)

defined on U, which locally asymptotically stabilizes the resulting closed loop
system. Moreover, assume that:

(i) The control uy(x1,x2) satisfies the condition (5.13)
(ii) The vector field g1 (x1, x2)u1 (x1,x2) is a smooth n— p-dimensional
vector field defined in U
(iii) The matrix functions g11(x1,x2) and g22(x1,Xx2) are smooth in U.

Then there exists a smooth matrix function g% (x1, x2), defined on U, such lhgt
8%(0,x2) # O(u—p)xp, and a smooth scalar function 8" (x1,x2), defined on U,
such that g°(0,x2) = 0, having the property that

8%(x1,x2)

5.15
gl (x1,x2) ©1)

g21(x1,x2) =

that is, the matrix function g21(x1,x) is not defined for x; = 0.

Remark 5.3 Strictly speaking, it is not correct to discuss the asymptotic
stability of the origin for a system described by equations of the form (5.12)
with g21(x1,x2) fulfilling condition (5.15), as such a system is not defined at
the origin. Hence, the origin is not an equilibrium. However, it is possible to
overcome this problem using the following definition of asymptotic stability. We
say that a smooth control law locally (globally) asymptotically stabilizes system
(5.12) if the closed loop system is smooth in a neighborhood of the origin (in R")
and the origin is a locally (globally) asymptotically stable equilibrium of the
closed loop system. For example, the system x = )I—Cu is globally asymptotically

stabilized by the smooth control u = —x*.

We now discuss sufficient conditions for asymptotic stabilizability of
systems described by equations of the form (5.12).

Theorem 5.3  [20] Consider the system (5.12) defined in an open and dense
set U, such that U contains the point x = 0. Consider the following hold.

(i) The matrix functions g11(x1,x2) and g (x1,x2) are smooth in U.
(ii) The matrix function g1(x1,x2) is smooth in U.
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(iii) The matrix function gy (x1,Xx2) depends on xo only, that is,
g22(x1,x2) = g22(x2) for some function g2 (-).

(iv) There exists a smooth vector function uy(x1,x2), zero for x; = 0
and for all xy, that is, ui (0,x2) = 0, such that

—00 < x1Xg11(x1,x2)u (x1,x2) <0

for some positive definite matrix X and for all nonzero xi in U.
Moreover go1(x1,x2)u1(x1,X2) is smooth in U and it is a function
of x» only, that is, g1 (x1,x2)u1(x1,x2) =f2(xz),f0r some function
Jzz(') such thatfg(O) =0.

(v) There exists a smooth function u>(x2) that renders the equilibrium
x2 = 0 of the system

Ky = f(x) + g0 (x2)ua(x2)
locally asymptotically stable.

Then, the smooth control law

U= uxy.xy) = |:Ml(xlax2)]

u2 (x2)
locally asymptotically stabilizes the system (5.12).

As should be clear from Theorem 5.3, the possibility of rendering the
manifold x; = 0 invariant for the closed loop system, allows the asymptotic
stabilization problem to be solved in two successive steps. Hypothesis (iv)
determines the component u#; of the control law; whereas the component u,
must be chosen to fulfill hypothesis (v). Observe that the choice of u; is crucial,
as the existence of a smooth function u;(x;) fulfilling hypothesis (v) depends
on such a choice. The hypotheses of Theorem 5.3 may be easily strengthened
to obtain a global result.

Theorem 5.4  Consider the system (5.12) defined in an open and dense set
U, such that U = R". Suppose (i), (ii), (iii), and (iv) of Theorem 5.3 hold.
Moreover, suppose that the following holds:

(v) There exists a smooth function uy (xa) which renders the equilibrium
xp = 0 of the system

%2 = fr(x) + g (x)uz(x2)

globally asymptotically stable.
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Then the smooth control law

U= u(x1.x0) = |:ul(xl,x2)i|

uz(x2)
globally asymptotically stabilizes the system (5.12).

Example 5.1 The following simple example illustrates the obtained results.
Consider the system

1= (f + )
. X2
Xy = ——u1+up
X1
defined on U = {x € R2|x1 = 0} and fulfilling hypotheses (i), (ii), and (iii)
of Theorem 5.4. Setting u; = —x; we fulfill also (iv) and (v). Hence, simple
calculations show that the smooth (linear) control law

_|
= —2)62
yields a globally asymptotically stable closed loop system.

Before concluding this section we discuss another extension of Theorem 5.3.

Theorem 5.5  [20] Consider the system (5.12) defined in an open and dense
set U, such that U contains the point x = 0. Suppose (i), (ii), and (iii) of
Theorem 5.3 hold. Suppose, moreover, that the following holds:

(iv)" There exists a smooth vector function u(xy,xp), zero for x; = 0,
and for all x;, that is, uy(0,x2) = 0, such that

—00 < X1 Xg11(x1,x2)ui (x1,x2) < —x)0x;

for some positive definite matrices X and Q and for all nonzero
x1 in U. Moreover g21(x1,x2)u1 (x1,Xx2) is smooth in U and it is
a function of xa only, that is, g>1(x1,x2)u1(x1,x2) = f_z(xz), for
some function fz(-) such that fz(O) =0.

(v)" There exists a smooth function u(x) which renders the equilib-
rium xp = 0 of the system

% = H(x2) + g0 (x)ux(x2)

locally exponentially stable.
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(v)" Then the smooth control law

us(x2)

u (xl,xz):|

u=u(xy,x) = [

locally exponentially stabilizes the system (5.12).

The hypotheses of Theorems 5.3, 5.4, and 5.5 seem very restrictive.
However, it is possible to transform several smooth nonholonomic systems
in such a way that the aforementioned hypotheses are automatically fulfilled.

5.3.2 The o Process

In this section we discuss the use of nonsmooth coordinates changes to trans-
form continuous systems into discontinuous ones. We consider a choice of
coordinates system in which, to a small displacement near a fixed point, there
corresponds a great change in coordinates. The polar coordinates system pos-
sesses such a property; however the cartesian to polar transformation requires
transcendental functions; therefore, when not needed, we avoid using the polar
coordinates, using another procedure: the so-called o process (see Reference 45,
where the o process is used to resolve singularities of vector fields).

Mainly, the o process consists of a nonsmooth rational transformation, but,
with abuse of notation, we denote with the term o process every nonsmooth
coordinates transformation possessing the property of increasing the resolution
around a given point.

Example 5.2 Consider the two dimensional system with one control

x=g10,u, ¥y =g yu

and perform the coordinates transformation

Z X
MR PA

The resulting system is

_ &G —waiGw)
Z

z=gi(z,zwW)u, w (5.16)
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and it is discontinuous if one of the g;(z, zw) is such that g;(0,0) # 0. If the
system (5.16) is not discontinuous we can further transform it with a second o
process. !?

5.3.3 The Issue of Asymptotic Stability

Theorems 5.3, 5.4, and 5.5 yield sufficient conditions for stabilizability of
discontinuous nonholonomic systems, while the o process allows to map a
continuously differentiable system into a discontinuous one. To have a practic-
ally useful result, we have to show that asymptotic stability of the transformed
(discontinuous) system implies almost asymptotic stability of the original
(continuously differentiable) system. Moreover, to implement a discontinuous
control we must define it on the points of singularity.

Consider a continuously differentiable nonholonomic system described

by equations of the form (5.1). Set x = col(x1,x2) with x; € R and
x2 =col(x21,...,x2,—-1) € R”~! and define the o process]3
&1 X
= = 5.17
5 [52 o (x1,x2) ©-17)
where & = col(8a1, . . .. E2,0-1), 0 (x1,X2) = col(01(x1,x2), ..., 0n—1(x1,X2)),
and o;(x1,x2) =x;‘lf/xl’ witho; > 1l and B; > O, foralli = 1,...,n — 1.

The application of the o process (5.17) to the system (5.1) yields a new system
which is, in general, not defined for £&; = 0. Suppose now that the transformed
system, with state &, is exponentially stabilized by a control law u = u(§),
that is, [£1(¢)] < c1exp(—A1?) and |£2;(¢)| < cai exp(—Ap;t) for some positive
M,A2isc1,and cp; and foralli = 1,...,n — 1. Then |x1(¢)| < ¢y exp_W and
i (1) < (c1e2) Vi exp(Z2E1 221y for all i = 1,...,n — 1. We conclude
that exponential convergence to zero of the state & of the transformed system
implies exponential convergence to zero of the state x of the original system.

Remark 5.4 The previous conclusions also remain valid if the stabilizer is
dynamic. This fact is useful to design dynamic, output feedback, discontinuous
stabilizers for nonholonomic systems [46].

Remark 5.5 Asymptotic stability of the system with state & does not imply
asymptotic stability of the system with state x, as the inverse of the coordinates
transformation (5.17) does not map neighborhood of & = 0 into neighborhood
of x = 0, as illustrated in Figure 5.1. Therefore, exponential stability (in the
sense of Lyapunov) of the closed loop system with state & implies only almost
exponential stability of the closed loop system with state x.

12 Note that the composition of o processes yields a o process.
13 The coordinates transformation (5.17) defines a o process only if ¥;8; > 1.
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Xo E..z

&1

FIGURE5.1 The anti-o process x| = &1,xp = &€&, does not map the ball 512 —|—§22 =R?
into a neighborhood of the origin in the xjx;-plane.

The continuously differentiate control law which stabilizes a given
discontinuous nonholonomic system needs to be transformed back to the ori-
ginal coordinates via inversion of the o process (in Reference 45 such procedure
is denoted anti-o process). Note that the anti-o process yields a discontinuous
control law

o Ap—1
| x2,n— 1
’ ﬁnfl
X

anti-o X1
u€1,6215 - E20-1) —> u | X1, =0
X

Such a control law cannot be directly implemented, because it is not defined
at x; = 0. Nevertheless, it is implementable provided that some conditions are
fulfilled.

Theorem 5.6 [20] Consider a smooth nonholonomic system
X =gxu (5.18)

with x € R", u € R", and n > m. Assume that x;(0) # 0. Apply the o
process (5.17) and suppose there exists a continuously differentiable control
law u = u(&) globally exponentially stabilizing the transformed system, that
is, |£1(1)| < crexp ™! and & (1) < ca; exp 2, for some positive A1, A, c1,
and cy; and foralli = 1,...,n — 1. Assume moreover that there exist positive
constants co < ¢y and hg > Iy such that'* ¢ exp_)‘ot < |&(®)|. Assume
finally that

pi=0 (5.19)

14 This implies that the state £; does not converge to zero in finite time.
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foralli =1,...,n— 1. Then for every € > 0 there exists a § > 0 (depending
on €) satisfying § < co < |x1(0)] = 1£1(0)| < ¢y, such that the trajectories of
the system in closed loop with the C° control law

xal xo‘nfl
ulxy, %, ..., %’"" if |x1| > 6
u= xll x|"71 (5.20)

0 elsewhere

converge to the set Qe = {x € R"|||x|| < €} in some finite time T, and remain
therein for all t > T,.

At this point the reader may argue whether it is possible or not to let § go
to zero, that is, what we can conclude about the (discontinuous) control law

ulx ol S ifx; #0
U= b ! (5.21)
Op1 if x; = 0

Observe that the control law (5.21) is discontinuous at x; = 0 as a function of
x, but it is continuous as a function of ¢, since x1(#) = 0 only asymptotically
(if x1(0) # 0, which is without lack of generality). Moreover, by hypothesis,
the variables &; = xgl’ /x| tend to zero when ¢ goes to infinity. Thus

o On—1
lim u | x1(2), lel(t), el xz’”_l(t) =u(0,0,...,00=0
—00 xllsl (f) x,‘fn—l(t)

As a consequence, the control law (5.21) is well defined and bounded,
along the trajectories of the closed loop system, for all # > 0 and, viewed
as a function of time, is even continuous (i.e., it is at least CO) as t
goes to infinity. Finally, using Theorem 5.6, with § = 0, and assuming
that the conditions (5.19) hold, we conclude that the control law (5.21)
almost exponentially stabilizes the system (5.18) on the open and dense set
Q = {x e R*x; # 0}

Remark 5.6 The assumption x1(0) # 0 is without lack of generality,
as it is always possible to apply preventively an open loop control, for
example, a constant control, driving the system away from the hyperplane
x1 =0/[32,33,47].

Remark 5.7 By a general property of one dimensional dynamical systems,

we conclude that the state variable x| = &) evolving from a nonzero initial
condition approaches the equilibrium x; = 0 without ever crossing it, that is,
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there exists no finite time T such that x1(T) = 0. Thus, the singular plane
x1 = 0is never crossed, but is just approached asymptotically. Moreover, every
trajectory starting in QT = {x € R'x; > 0} (7 = {x € Rx; < 0})
remains in QT (Q7) for every finite t and approaches the border of QT (Q27)
as t goes to infinity.

5.3.4 An Algorithm to Design Almost Stabilizers

In this section we propose a procedure to design discontinuous control laws for
smooth nonholonomic systems described by equations of the form (5.12). The
procedure is composed of the following steps.

() Transform a given smooth nonholonomic system, by means of a
o process, into a discontinuous system.

(II) Check if the discontinuous system admits a smooth control law
yielding asymptotic stability. In case of positive answer proceed
to step III, otherwise return to step I and use a different o process.

(IIT) Build a smooth stabilizer for the transformed system.
(IV) Apply the anti-o process to the obtained stabilizer to build a
discontinuous control law for the original system.

The crucial points of the algorithm are the selection of the o process (step I)
and the design of the smooth asymptotically stabilizing control law for the
transformed system (step III). In particular, step III can be easily solved for
low dimensional systems; whereas there is no constructive or systematic way
to perform step I successfully; that is, to select a o process which allows to
conclude positively the algorithm.

Finally, to obtain a discontinuous nonholonomic system described by
equations of the form (5.12), with go(x1,xp) fulfilling condition (5.15), the
following simple result may be useful.

Proposition 5.1 [20] Consider a nonholonomic system described by equa-
tions of the form (5.12). Assume that gi1(x1,x2) = I, and that the
matrices g1(x1,x2) and g (x1,x2) have smooth entries in R". Consider a
coordinates transformation (o process) described by equations of the form

0]
§l=x1, &= M
o(x1)

where ®,(x1,x2) is a smooth mapping such that ®,(0,x2) # 0 and o(x1)
is a smooth function which is zero at x; = 0. Then the transformed system
is always described, in the new coordinates, by equations of the form (5.12)
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but, in general, the matrix g21(&1, &>) is not defined at &, = 0, that is, fulfills
condition (5.15).

The presented discontinuous stabilization approach has been exploited in
the control of underactuated spacecraft in Reference 36 and has been given
an interesting geometric interpretation in Reference 48 and related references.
Finally, in Reference 49 and related works, it has been shown that the proposed
approach can be interpreted in terms of a state-dependent time-scaling.

5.4 CHAINED SYSTEMS AND POWER SYSTEMS

From this section onward, we focus on two special classes of nonholonomic
systems: chained systems and power systems. They occupy a special place in the
theory of nonholonomic control. Many nonholonomic mechanical systems can
be represented by, or are feedback equivalent to, kinematic models in chained
form or in power form. Chained systems have been introduced in Reference 7,
where sufficient conditions for (local) feedback equivalence to chained forms
have also been given. Power systems have been introduced in Reference 50.
Therein, it has also been shown that chained systems and power systems are
globally feedback equivalent. Chained systems!? are described by equations of
the form

)211 = Uuj
Xy =1up
&5 = xou (5.22)

)'C,, = Xp—1U].

Power systems are described by equations of the form

X1 = u
Xy =up
X3 = xX1uU2
(5.23)
. 1 n—2
Xp = m}cl uy.

15 Tnthe terminology of Reference 7, Equations (5.22) describe a one-chain single generator system.
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5.5 DiscoNTINUOUS CONTROL OF CHAINED SYSTEMS

To begin with, we transform system (5.22) through the o process

§1=x1
&b =x
6, L (5.24)
n x%n—3)
Xn
En = —(n—2)

yielding a discontinuous system described by equations of the form

El=wum
b =wuw

: En—p — (n —3)&,—1 (5.25)
gn—l = U
&1
3 n—1 — -2 n
gn = %-ls#ub

Remark 5.8 The o process (5.24) is a special case of (5.17) with o; = 1 for
alli=1,...,.n—1and Bi=i—1foralli=1,...,n— 1. Observe that such
Bi fulfill the conditions (5.19).

Consider now the system (5.25) and apply the control u; = —k&, with
k > 0. A simple computation shows that the resulting system, described by
equations of the form

£ = A&+ bou (5.26)
where & = [£1,&,...,&],
[~k 0 0 0 0
0 0 0 0 0
0 —k k 0 0
A=10 0 —k 2% 0 (5:27)
0 0 0 0 - (n—2)k]
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and
bh=[0 1 0 --- 0] (5.28)

is stabilizable with the second control input u;. Therefore, recalling the results
established in Section 5.3, we give the following statement.

Proposition 5.2 [20] The discontinuous control law

1731 —kx1
u = = X3
up pax2 +p3i; ot pn-d

X

5.29
xﬁié =+ Dn ﬁz ¢ )
X 1

withk > 0 and p = [0,p2,p3,...,Pn—1,Pnl such that the eigenvalues of the
matrix A + bap have all negative real part, almost exponentially stabilizes the
system (5.22) in the open and dense set Q1 = {x € R"|x; # 0}.

Remark 5.9 [f we rewrite the control law (5.29) as

73] —kxl
U= = _
u paxa+ Bxs 4+ iﬁfé Xn—1 + 5

1 1

we can regard it as a linear control law with state dependent gains.

5.5.1 An Example: A Car-Like Vehicle

In this section we consider the problem of designing a discontinuous controller
for a prototypical nonholonomic system: a car-like vehicle. For simplicity we
consider an ideal system, that is, the wheels roll without slipping and all pairs
of wheels are perfectly aligned and with the same radius. A thorough analysis
of the phenomena caused by nonideal wheels can be found in Reference 51.
The problem of stabilizing a car-like vehicle has been addressed with different
techniques by several authors, see References 5 and 7 for open loop strategies
and References 9, 12, and 52, for state feedback control laws. In what follows,
exploiting the results in Section 5.3, we design a discontinuous state feedback
controller. This control law, because of its singularity, is not directly implement-
able. However, as discussed in Section 5.3, and in Reference 33 and 53, and
in Section 5.7, it is possible to build modifications yielding uniform ultimate
boundedness or (robust) exponential stability.
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The kinematic model of a car with rear tires aligned with the car and front
tires allowed to spin about the vertical axis [7] is

X = cos v

y =sinfv;

o (5.30)
6= 7 tan 0v

$=mn

where (x,y) denotes the location of the center of the axle between the two rear
wheels, 6 the angle of the car body with respect to the x-axis, ¢ the steering
angle with respect to the car body, and v; and v; the forward velocity of the rear
wheels and the velocity of the steering wheels, respectively (see Figure 5.2).
Applying the control transformation

uj
V
! cos 6
V2 | | —3sin® ¢ tan 6 sec Ou; + [ cos? 30
7 1 cos“ ¢ cos” Buy

o

FIGURE 5.2 Model of an automobile.
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and the o process

& =x
1 3
& = Ysec 0 tan ¢
tan 6
& =
X
2
o=

we obtain a system described by equations of the form

&1 =u

£ =u
b=
. -2

&4 = &5—154141

thatis, by equations of the form (5.25) with n = 4. Thus, using Proposition (5.2),
we design the state feedback control law

up| _ —ké&i
u P282 + 383 + pads
In the original coordinates the feedback law is described by

X

vi = —k
cosf

3
vy = k= sin® ¢ tan 0 sec 0
I cos 6

1 tan 0
+ I cos® ¢ cos® 6 |:p2 <—sec39 tanc/)) +p3 <£> + p4 (%):|
/ x X
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To have almost exponential stability of the closed loop system it is necessary
to have k > 0 and to set p3, p3, and p4 such that!'© 0(Ayg) € €, where

b2 P3 P4
As=|—-k k O
0 —k 2k

It must be noticed that the matrix A4 is a submatrix of the matrix A 4+ bop
considered in Proposition 5.2. This is without lack of generality as only n — 1
eigenvalues of the matrix A 4+ byp can be set with the vector p, whereas one
eigenvalue is always equal to —k. Figure 5.3 and Figure 5.4 show the results of
simulations carried out with the proposed controller.

5.5.2 Discussion

Discontinuous, state feedback, control laws to almost exponentially stabilize
chained systems, have been presented. In contrast to other results, the given
control laws are extremely simple and possess an intuitive interpretation in terms
of linear feedback with state dependent gain scheduling. It is worth stressing
that the design of the stabilizing control law involves mainly linear control tools,
that is, stability of the closed loop system depends on the stability of some linear
systems. A drawback of the proposed approach is the possibility for numerical
problems to appear in real time implementations. In fact, most of the features
of the closed loop system derive from the simplification in the product xilul.
If such a simplification takes place only approximately, for example, for the
presence of measurement noise, the limit lim,, ¢ xilu 1(x]“), where x’f is the
available measure on x|, may be unbounded.

5.6 ROBUST STABILIZATION — PART |

The results in Section 5.4 can be interpreted as follows. For nominal and ideal
conditions (e.g., exact integration, noise free measurements) and as long as
x1(0) # 0, the discontinuous controllers proposed therein are well defined
and yield bounded control action, along the trajectories of the closed loop
system. Moreover, as detailed in Reference 53, the analysis carried out in
References 19-21, 43, and 54-56 is correct and yields an adequate picture
of the ideal properties of this class of discontinuous controllers. However, a
substantial difference is to be expected in a nonideal situation, as the control
law blows up, that is, provides unbounded control action, whenever the discon-
tinuity surface x; = 0 is intersected, for example, in the presence of external

16 5 (A) denotes the spectrum of the square matrix A and ¢~ denotes the open left-half of the
complex plane.
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FIGURE 5.3 (a) Time histories of x(¢) (solid), y(¢) (dashed), ¢ (¢) (dash-dotted), and
0(z) (dotted). (b) Translational (solid) and rotational (dashed) velocity controls.

disturbances. In what follows we perform a very simple robustness analysis,
with reference to an interesting situation, namely in the presence of external
disturbances and model errors, and for a prototype system.

Consider a three dimensional chained system perturbed by a constant
nonzero disturbance entering the third equation,]7 that is,

X1 =uj, xXp=uy, X3=xu+d (5.31)

17 The disturbance models a violation of the nonholonomic constraint, that is, xpx1 —x3 # 0.
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FIGURE5.4 Parking maneuver. The dashed line describes the trajectory, in the xy-plane,
of the center of the axle between the two rear wheels.

with d # 0. For such a system we point out some structural limitations, namely
the nonexistence of sufficiently regular control laws yielding a closed loop
system with converging solutions.

Proposition 5.3 [53] Consider system (5.31) with d # 0 and a con-
trol law u(x,t) such that, for any initial condition, x;(t) and u;(x(t),t) are
absolutely continuous functions of time and 1im;_ o [X1(t)| = X1.00. Then,
lim;—, o0 [x3(2)| = o0.

Proposition 5.3 points out a limitation of any regular control law applied to
system (5.31) with d # 0. However, this limitation does not apply if we simply
ask for boundedness (and not convergence) of the trajectories of the controlled
system or if we use more general control signals.

Proposition 5.4 [53] Consider the system (5.31) with d # 0 known. There
exist absolutely continuous controls u;(t) such that x(t) remains bounded for
all t = 0. Moreover, if x2(0) = 0 there exist impulsive controls u;(t) such that
x(t) remains bounded for all t > 0 and x3(t) converges to a constant value.

Several points are left open by the above discussion. These will be partly

addressed and solved in the next two sections, where we present robust hybrid
and sampled-data stabilizers for chained and power systems.
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5.7 RoOBUST STABILIZATION — PART 1l

In this section we consider the robust stabilization problem for nonholonomic
systems in the presence of measurement errors and exogenous disturbances.
This problem has been only partly investigated, and several attempts have been
made to study the robustness properties of existing control laws or to robustify
given controllers [34,53,57]. Most of the robust stabilization results and invest-
igations focus on the problems of parametric uncertainties or model errors, see
for example, [58] where the problem of local robust stabilization by means of
time-varying control laws have been studied; [57], where a similar problem
has been addressed using the class of discontinuous control laws discussed in
Section 5.4 and [8,24] where several types of hybrid control laws have been used
to achieve local robustness against unknown parameters or unmodelled dynam-
ics. On the other hand, the fundamental problems of robustness in the presence
of sensor noise, external disturbances, and actuator disturbances have been
only partially addressed, see for example, [33,53]. These problems are of spe-
cial interest and relevance whenever discontinuous control laws are employed,
as for such control laws classical robustness results and Lyapunov theory are not
directly applicable, see however Reference 59, where a discontinuous control
law, possessing a Lyapunov stability property, has been constructed. In what
follows we make use of the class of discontinuous control laws presented in
Section 5.4 and we show how, adding a proper modification together with a
hybrid variable, it is possible to obtain a closed loop system with global sta-
bility properties and which is globally robust against measurement noises and
exogenous disturbances. The proposed controller takes inspiration from the
results in References 33, 60, and 61.

5.7.1 The Local Controller

Consider the system (5.22) and the control law u; : R” — R? defined by

X3 Xn
uy(x) = —x1,  uy(x) = parxo —i—p3x—1 + P (5.32)
X1

with the p; such that the matrix

p2+1l p3 Pn—1 Pn

-1 2 0 0

io| o - 0 0
0 0 -1 n-1
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is Hurwitz.!® Let P = P’ > 0 be such that A’P + PA < 0, and let z be a variable
in R U {400} defined by

Y'PY ifx; #0
2=z +oo ifx; =0 ( )

with!?

X2 X3 Xn
Y:Y(X): T T T
X1 Xl xl

, VxeR"x #0

Consider now the perturbed closed loop system composed of the chained
system (5.22) perturbed by an additive disturbance d and in closed loop with
u = u;(x 4+ e), where e represents a measurement noise. For such a perturbed
system the following fact holds.

Lemmas.2 There exists a continuous function p; : R — R satisfying p;(§) >
0,V€ # 0, such that, for all e and d satisfying the regularity assumptions in
Section 5.2 and Equation (5.7) with p = p;(x1), and for all xo satisfying
72(x0) < M, there exists a Carathéodory solution X starting from xo and all
such Carathéodory solutions are maximally defined on [0,400). Moreover
there exists a function §; of class Koo and C > 0 such that, for all r and M, and
for all xg satisfying |xo| < 6;(r) and z(xg) < M, we have |X(t)| < ra/Me= €
and z(t) < Me=, for all t > 0.

Lemma 5.2 states that, for any M > 0, the region z(x) < M is robustly
forward invariant, that is, it is positively invariant in the presence of a class of
measurement noise and external additive disturbances. Moreover, any trajectory
in such a region converges exponentially to the origin.

5.7.2 The Global Controller

Let 4 > 0 and consider the control law u, defined as uj; = 1 and uze =
—uxy. Consider the perturbed closed loop system composed of the chained
system (5.22) perturbed by an additive disturbance d and in closed loop with
u = ug(x + e), where as before e represents a measurement noise. For such a
perturbed system the following fact holds.

18 The eigenvalues of the matrix A can be arbitrarily assigned by a proper selection of the
coefficients p;.

19 The variable Y differs from the variable used in the o-process in Section 5.4 and in References 20
and 57. It is not difficult to show that using the o-process therein it is possible only to prove a
weaker version of Theorem 5.7.
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Lemma 5.3 There exists a continuous function p, : R" — R satisfying
pg(x) > 0,Vx # Osuch that, for any initial condition, the considered perturbed
system where e and d satisfies the regularity assumptions in Section 5.2 and
Equation (5.7) with p = pg(x), admit a unique Carathéodory solution, defined
forallt > 0. Moreover there exists a function 84 of class Koo such that, for any
r > 0 and for any M > O there exists a time Ty = Tq(M, 84(r)) such that, for
all Caratheéodory solutions X with initial condition xo with |xo| < 84(r), one
has z(X(t)) < M forallt > Tg, and |X(t)| < r forallt < T,.

Lemma 5.3 states that, for any M > 0, the trajectories of the perturbed sys-
tem enter the region z(x) < M in finite time, while remaining bounded for all ¢.

5.7.3 Definition of the Hybrid Controller and Main
Result

We are now ready to define the hybrid controller robustly stabilizing system
(5.22). To this end, for any strictly positive number M, we define the subset
Iy of R" as T'yy = {x,x1 # 0,z < M}, where z is defined by (5.33). Let
M5, > M > 0. The hybrid controller (k, k) is defined making a hysteresis
between u; and u, on I'yy, and 'y, that is,

u(x) ifsg=1andx; #0
k(x,s50) =140 ifs;j=1andx; =0 (5.34)
ug(x) ifsg=2

1 if x €Ty, U{0}
ka(x,54) = {sq if x € Ty, \Ty, (5.35)
2 ifx ¢ Ty, U {0}

Theorem 5.7 [32] The hybrid controller (k,ky), described in Section 5.7.1,
Section 5.7.2, and Section 5.7.3 robustly globally exponentially stabilizes
system (5.22).

5.7.4 Discussion

A hybrid control law globally robustly exponentially stabilizing a chained
system has been proposed. This controller retains the main features of the
discontinuous controller proposed in Section 7.4, while allowing to counteract
(small) exogenous disturbances and measurement noise. A similar, but local,
result was developed in Proposition 3 of Reference 33. Note finally that the idea
of switching between a local and a global controller to achieve stabilization in
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the large has been advocated in several papers, and typically in the context
of stabilization of unstable equilibria of mechanical systems. However, what
makes the present result interesting is that we aim at achieving robust asymptotic
stability rather than asymptotic stability.

5.8 RoOBUST STABILITAZION — PART 1l

In the aforementioned discussion, we have implicitly assumed that the control
signals are continuous, that is, are generated by an analog device, and measure-
ment signals are also continuous. In real applications, however, control signals
are (in general) computed by a digital device, and measurements are obtained
by sample and hold of physical signals. This implies that, from a realistic point
of view, it is necessary to regard the system to be controlled as a sampled-data
system. Control of nonlinear sampled-data systems has recently gained a lot
of interest, see for example, References 40 and 62. The main issue in address-
ing and solving sampled-data control problems for nonlinear systems is the
definition of an adequate discrete time model, which should describe (with a
given accuracy) the behavior of the sampled-data system. This problem has been
widely addressed in the numerical analysis literature, see References 40 and 41.
In particular, it has been shown that approximate discrete time models obtained
using standard Euler approximation are adequate for control, provided that one
is ready to trade global properties with semi-global properties and asymptotic
properties with practical properties.

5.8.1 Robust Sampled-Data Control of Power Systems

In this section we focus on systems in power form (see Equation (5.23)) and on
their Euler approximate discrete time model given by

x1(k + 1) = x1(k) + Tui (k) + di (x (k). k)
x2(k + 1) = x2(k) + Tup (k) + da(x(k), k)

x3(k + 1) = x3(k) + Txy (k)uz (k) + dz(x(k), k)
(5.36)

" P us (k) + dy (x(k), k)

k1) =00 + o

where we have also included the additive disturbance d(x(k), k) € R".

Theorem 5.8 [42] Consider the Euler approximate model in Equation (5.36)
with d(x(k),k) = 0 for all k. Let p(s) = gols|” with b > 0 and go > 0 and
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W) = Y1, cilxil, with ¢; > 0a; € {2,3,...). Then there exists T* > 0
such that for all T € (0, T*) the controller ur := (uir, uzr)’ where*0
uir = — g1x1 — p(W)(cos((k + DT) — § sin((k + 1)T))
+ %Ap sin((k + 1)T)
upr = — gasign(Ly, W)|Ly, WI* 2p (W) 4 2(g1x1 + p(W) cos((k + 1)T))

x cos((k + DT) — egrxy sin((k + 1)T)) (5.37)

with g1 > 0,82 > 0,a > 0 and a sufficiently small ¢ > 0, is a SP-AS controller
for the system (5.36) and the function

Vr(k,x) = (g1x1 4+ p(W) cos(kT))* + p(W)* — egix1 0(W) sin(kT)
(5.38)

is a (strict) SP-AS Lyapunov function for the closed loop system (5.36), (5.37).

The control law is similar to the one proposed in Reference 50 and the
Lyapunov function is a modification of the one proposed in Reference 10.
The proposed result provides a discrete-time counterpart and to some extent a
generalization of Theorem 2 of Reference 10. Theorem 5.8 states that Vr is a
strict SP-AS Lyapunov function for the closed loop system. It is well known that
the existence of a strict SP-AS negative Lyapunov function allows to address
the stabilization problem in the presence of disturbances.

Proposition 5.5 [42] There exist T* > 0 such that for all T € (0,T*) the
controller (5.37) is a SP-ISS controller for system (5.36) and the function (5.38)
is a SP-ISS Lyapunov function for the closed loop system (5.36), (5.37.)

5.8.2 An Example: A Car-Like Vehicle Revisited

In this section we apply the proposed result to the model of a car-like vehicle
introduced in Section 5.5.1. Consider the model (5.30) and the coordinate
transformation [50,52]

X1 =X
Xy = sec’ (0) tan(¢p)

(5.39)
x3 = x sec’(0) tan(¢p) — [ tan(6)

x4 =1ly+ %xzsec3 (6) tan(¢p) — Ix tan(0)

20f2 denotes the vector [0, 1,x1, ..., ﬁxi’_z]/ and Lp, W = %—‘;{V.fg.
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yielding
)'Cl = uj
X2 = up
. (5.40)
X3 = X1uU2
. 1.2
X4 = jxl us

where u; = vicosf and up = %(5603 () tan(¢)). Applying Theorem 5.8 we
construct the controller

uir = —3x1 + p(W)(cos((k + )T) — §sin((k + DT))
wrr = up(2p (W) — 3exy sin((k + DT) + 2(3x1 + p(W) 541
x cos((k + 1)T)) cos((k + 1)T))

with k = 1,p(W) = % YW), and up = —%sign(LfZW(x))F/|Lf2W(x)|,
which is a SP-AS controller for the Euler model (5.40). Figure 5.5 shows
simulation results when the controller (5.41) is applied to control the plant
(5.40). We have used x, = (0,0,0,1)’,7T = 0.2, and € = 0.35.

5.8.3 Discussion

The problem of robust stabilization of nonholonomic systems in power form
has been addressed and solved in the framework of nonlinear sampled-data
control theory. It has been shown that, by modifying the periodic controller in
Reference 10, SP-AS and SP-ISS can be achieved. The main drawback of the
proposed controllers is the slow convergence rate, which is, however, intrinsic
to smooth time-varying controllers [12].

5.9 CONCLUSIONS

The problem of (discontinuous) stabilization and robust stabilization for non-
holonomic systems has been discussed from various perspectives. It has been
shown that, in ideal situations, a class of discontinuous controllers allow to
obtain fast convergence and efficient trajectories. This approach is, however,
inadequate in the presence of disturbances and measurement noise, hence it is
necessary to modify the proposed control by introducing a second controller,
a hybrid variable, and a switching strategy, which together guarantee robust
stability. Both these controllers have been designed in continuous time. It is
therefore difficult to quantify the loss of performance arising from a sampled-
data implementation. As a result, we have discussed the robust stabilization
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FIGURE 5.5 Response of the car model controlled using the controller (5.41): (a) vari-
ables x, y, and 0; (b) trajectory of the center of the axel between the two rear wheels; (c)
control signals; (d) Lyapunov function.

problem in the framework of nonlinear sampled-data systems. The discussion
in the chapter has highlighted main issues:

e For the class of nonholonomic system described by Equation (5.1) it
is not possible to single out the best control strategy, that is, several
control strategies with diverse and conflicting properties exist.

o It may be difficult to provide general stabilization results for nonholo-
nomic systems described by Equation (5.1), hence it is convenient to
consider special (canonical) forms, such as chained forms or power
forms. The use of canonical forms allows the explicit construction
of (robustly) stabilizing control laws, and the in-depth study of the
asymptotic properties of closed loop systems.

Several issues have been left aside in this chapter. We mention the stabilization
problem for systems with high-order nonholonomic constraints, the stabiliz-
ation problems for systems which are not feedback equivalent to chained or
power forms (e.g., the so-called ball and plate system, and all systems arising
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in dextrous manipulation), the stabilization of dynamic models of nonholo-
nomic systems, and the adaptive stabilization of nonholonomic systems with
unknown parameters. Finally, the important problem of trajectory tracking for
nonholonomic systems has not been discussed at all. We believe that the list
of reference (although by no means complete) provides adequate pointers to
investigate and study the above issues.
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6.1 INTRODUCTION

In recent years, control and stabilization of mechanical systems with
nonholonomic constraints has been an area of active research. Due to Brockett’s
theorem [1], it is well known that nonholonomic systems with restricted mobil-
ity cannot be stabilized to a desired configuration (or posture) via differentiable,
or even continuous, pure-state feedback, although it is controllable. A number
of approaches including (i) discontinuous time-invariant stabilization [2,3],
(ii) time-varying stabilization [4], and (iii) hybrid stabilization [5] have been
proposed for the problem (see the Survey Paper 6 and the references therein for
more details).

For the controller design of nonholonomic systems, there are efforts focused
on the kinematic control problem, where the systems are represented by their
kinematic models and the velocity acts as the control input. One commonly

229
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used approach for the controller design of nonholonomic systems is to convert,
with appropriate state and input transformations, the original systems into
some canonical forms for which the design can be carried out more easily
[7,8]. Using the special algebraic structures of the canonical forms, various
feedback strategies have been proposed to stabilize nonholonomic systems in
the literature [9-12]. The majority of these constructive methods have been
developed based on exact system models. However, it is more practical to design
the controller against possible existence of modeling errors and external dis-
turbances. A hybrid feedback algorithm based on supervisory adaptive control
was presented to globally asymptotically stabilize a wheeled mobile robot
[13]. Output feedback tracking and regulation controllers were presented in
Reference 14 for practical wheeled mobile robots. Robustness issues with regard
to disturbances in the kinematic model have also been investigated.

In practice, however, it is more realistic to formulate the nonholonomic
system control problem at the dynamic level, where the torque and force are
taken as the control inputs. In actual applications, however, exact knowledge of
the robot dynamics is almost impossible. Adaptive control strategies were pro-
posed to stabilize dynamic nonholonomic systems [15]. Sliding mode control
was applied to guarantee the uniform ultimate boundedness of tracking error
in Reference 16. In Reference 17, stable adaptive control was investigated for
dynamic nonholonomic chained systems with uncertain constant parameters.
Using geometric phase as a basis, control of Caplygin dynamical systems was
studied in Reference 18, and the closed-loop system was proved to achieve the
desired local asymptotic stabilization of a single equilibrium solution. Thanks
to the research in References 19 and 20, the motion control part of the problem
can be reduced to a problem similar to the free-motion control of a robot with
less degrees of freedom. Robust adaptive motion controllers were proposed in
References 21 and 22 using the linear-in-the-parameter property of the system
dynamics and the bound of the robot parameters.

The difficulty in precise dynamic modeling has invoked the development
of approximator-based control approaches, using Lyapunov synthesis for the
general nonlinear system [23-28]. Neural networks (NNs) are well known for
its ability to extend adaptive control techniques to systems in nonlinear-in-the-
parameters. The universal approximation properties of NNs in the feedback
control systems successfully avoid the use of regression matrices, and assump-
tions such as certainty equivalence. It requires no persistence of excitation
conditions by using the robustifying terms. For a comprehensive study of
the subject, readers are referred to Reference 29 and the references therein.
For fuzzy logic systems, it provides natural and linguistic representation of
human’s (or expert’s) knowledge, reasoning about vague rules that describe
the imprecise and qualitative relationship between the system’s input and out-
put. The combination of NNs and fuzzy logic systems can overcome some
of the individual weaknesses and offer some appealing features. It offers an
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architecture that uses fuzzy algorithms to represent the knowledge in a natural
and interpretable manner, while preserving the learning ability of NN as well as
the associated convergence and stability. The neuro-fuzzy (NF) system is a
NN-based fuzzy logic control and decision system, and is suitable for online
systems identification and control.

For adaptive NF control system design, the parameterized NF approx-
imators are generally expressed as a series of the commonly used radial
basis function (RBF) because of its nice approximation properties, that is,
y = Z/’ w;¢ (0, |x — ¢jll), where w; is the connection weight, and ¢; and
oj are the center and width respectively that decide the shape of the function
¢. The major challenge in the RBF approximation problem lies in the selection
of the receptive center and width, that is, ¢; and o; as they both appear non-
linearly. In general, there are three kinds of methods to determine ¢; and oj.
The first is the grid-type partition method, which uses a grid partitioning of the
multidimensional space and defines a number of fuzzy sets or nodes for each
variable. This is the most intuitive approach but the problem is the exponential
growth of fuzzy rules or nodes in relation to the dimension of the input space.
The second kind is the clustering algorithm, such as fuzzy C-means (FCM) [30]
and the nearest-neighborhood cluster algorithm [31]. These methods are found
to be useful in choosing parameters, but require off-line learning. In addition, the
gradient descent method is usually employed for fine tuning the parameters c;
and o; by clustering algorithm so that the approximation accuracy is improved.
The last type consists of optimization approaches such as genetic algorithms
(GA). However, the problem with either the gradient descent method or GA is
that the learning and the adaptation speeds are slow. On the other hand, most
of the adaptive control schemes using RBF as an approximator only consider
the updating law of weights w; to simplify the design [32]. However, it is obvi-
ous that the parameters, ¢; and o; are important in capturing the fast-changing
system dynamics, reducing the approximation error, and improving the control
performance [33]. An adaptive scheme of tuning both the weights w; and the
center and width, ¢; and o}, was presented in Reference 34.

Motivated by previous works on the control of nonholonomic constrained
mechanical systems and the approximation-based adaptive control of nonlinear
systems, adaptive NF control is developed in this chapter for nonholonomic con-
strained mobile robotic systems using Lyapunov stability analysis in a unified
procedure. Despite the differences between the NNs and fuzzy logic systems,
they actually can be unified at the level of the universal function approxim-
ator, termed as the NF networks which are multilayer feedforward networks
that integrate the TSK-type fuzzy system and RBF NN into a connectionist
structure. Indeed, for simple systems, the rules are fairly easy to derive with
physical insight, however, they become unreasonably difficult for systems with
strong nonlinear couplings yet without a good physical understanding. Because
of the difficulty in deriving the rules in fuzzy systems for systems with little
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physical insights, we present the adaptive laws to design the outputs of the
“rules” numerically using adaptive (NN) control techniques. It is shown that
the motion tracking error converges to zero, the force tracking error is uniformly
bounded, and the closed-loop stability is guaranteed without the requirement
of the PE condition.

The rest of the chapter is organized as follows. The dynamics of mobile
robot systems subject to nonholonomic constraints are briefly described
in Section 6.2. Multilayer NF systems as the key design tool are introduced
in Section 6.3. The main results of the adaptive NF control design are presented
in Section 6.4, and a simulation example is provided in Section 6.5. Concluding
remarks are given in Section 6.6.

6.2 DyNAMICS OF NONHOLONOMIC MOBILE ROBOTS

In general, a nonholonomic mobile robot system having an n-dimensional con-
figuration space with generalized coordinates ¢ = [q1, .. .,q,]" and subject to
(n — m) constraints can be described by [35]

M(q)g+ C(q.9q + G(q) = B(g)t +f + 1 (6.1)

where M (g) € R"™" is the inertia matrix and M(¢)T = M(q) > 0, C(q,§) €
R™ ™ is the centripetal and coriolis matrix, G(g) € R" is the gravitation force
vector, B(q) € R™"*" is the full-rank input transformation matrix and is assumed
to be known, as it is a function of fixed geometry of the system, 7 € R" is the
input vector of forces and torques, f € R”" is the constrained force vector,
and 7y € R" denotes bounded unknown disturbances including unstructured
unmodeled dynamics. The dynamic system (6.1) has the following properties
[32,36]:

Property 6.1 Matrices M (q), G(q) are uniformly bounded and uniformly con-
tinuous if q is uniformly bounded and continuous, respectively. Matrix C(q, q)

is uniformly bounded and uniformly continuous if q is uniformly bounded and
continuous.

Property 6.2 Matrix M — 2C is skew-symmetric, that is, xX (M — 2C)x = 0,
Vx # 0.

When the system is subjected to nonholonomic constraints, the (n — m)
nonintegrable and independent velocity constraints can be expressed as

J(@)g=0 (6.2)

where J(g) € RO*™*" ig the matrix associated with the constraint.
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The constraint (6.2) is referred to as the classical nonholonomic constraint
when it is not integrable. In the chapter, constraint (6.2) is assumed to be
completely nonholonomic and exactly known. The effect of the constraints can
be viewed as restricting the dynamics on the manifold 2y, as

Quh = {(g, P (@)g =0}

It is noted that since the nonholonomic constraint (6.2) is nonintegrable, there
is no explicit restriction on the values of the configuration variables.

Based on the nonholonomic constraint (6.2), the generalized constraint
forces in the mechanical system (6.1) can be given by

f=I"@xr (6.3)

where A € R"™" is known as friction force on the contact point between the
rigid body and environmental surfaces.

Since J(g) € R™™>"_ it is always possible to find an m rank matrix
R(g) € R formed by a set of smooth and linearly independent vector fields
spanning the null space of J(g), that is,

RY(¢)J"(q) =0 (6.4)

Denote R(q) = [r1(g). ..., m(g)] and define an auxiliary time function z(t) =
[21(®), ..., Zm(®)]T € R™ such that

g =R(@z(t) = ri(@z1(®) + -+ - + rm(@)zm () (6.5)

Equation (6.5) is the so-called kinematic model of nonholonomic systems in the
literature. Usually, z(#) has physical meaning, consisting of the linear velocity
v and the angular velocity w, that is, z() = [v w]T. Equation (6.5) describes
the kinematic relationship between the motion vector ¢(¢) and the velocity
vector z(t).

Differentiating (6.5) yields

i =R(@):+ R(q)% (6.6)
From (6.5), z can be obtained from ¢ and ¢ as

:=[R"@R)I'R" ()¢ (6.7)
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The dynamic equation (6.1), which satisfies the nonholonomic constraint (6.2),
can be rewritten in terms of the internal state variable z as

M(q)R(q) + [M(q)R(g) + C(q, PRz + G(q) = B(@)t + T (A + 14
(6.8)

Substituting (6.5) and (6.6) into (6.1), and then premultiplying (6.1) by RT (¢),
the constraint matrix JT(q)A can be eliminated by virtue of (6.4). As a
consequence, we have the transformed nonholonomic system

g =R(@z=ri(@z1+ -+ rm(@m (6.9)
Mi(@)Z+ Ci1(q, Pz + Gi(q) = B1(@)T + ta1 (6.10)
where
Mi(q) = R"M()R
C1(q.9) = R'IM(@)R + C(q. )R]
Gi(9) = R'G(g)
Bi(q) = R'B(q)
Ty = RTTd
which is more appropriate for the controller design as the constraint A has been
eliminated from the dynamic equation.

Exploiting the structure of the dynamic equation (6.10), some properties
are listed as follows.

Property 6.3 Matrix Di(q) is symmetric and positive-definite.
Property 6.4 Matrix D1 (@) —2C1(q, q) is skew-symmetric.

Property 6.5 D(q), G(g), J(q), and R(q) are bounded and continuous if
z is bounded and uniformly continuous. C(q,§) and R(q) are bounded if
% is bounded. C(q,§) and R(q) are uniformly continuous if % is uniformly
continuous [37].

In the following, the kinematic nonholonomic subsystem (6.5) is converted
into the chained canonical form. The nonholonomic chained system considered
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in this chapter is the m-input, (m— 1)-chain, single generator chained form given
by Walsh and Bushnell [38]

G Q<ism—DA<j=m—1) (61D
Xjnj = Uj+1

Note that in Equation (6.11), X = X1, X2, ..., Xm]T € R" with X; =
(X122 X1, ] 2 < j < m) are the states and u = [uy,u2, ..., up]"
are the inputs of the kinematic subsystem.

The class of nonholonomic systems in chained form was first introduced
in Reference 7 and has been studied as a benchmark example in the literature.
It is the most important canonical form that is commonly used in the study
of nonholonomic control systems. The necessary and sufficient conditions for
transforming system (6.5) into the chained form are given in Reference 39.
Theoretical challenges and practical interests have provided substantial motiv-
ation for the extensive study of nonholonomic systems in chained form. The
following assumption is made.

Assumption 6.1 The kinematic model of the nonholonomic system given by
(6.5) can be converted into the chained form (6.11) by some diffeomorphic
coordinate transformation X = T1(q) and state feedback v = T(q)u where
u is a new control input.

The existence and construction of these systems have been established in
References 38 and 40. For the notations on the differential geometry used below,
readers are referred to Reference 41.

Proposition 6.1 Consider the drift-free nonholonomic system

q=r1(9)il +"'+rm(q)im

where ri(q) are smooth, linearly independent input vector fields. There exist
state transformation X = T1(q) and feedback z = T>(q)u on some open set
U C R"ro transform the system into an (im—1)-chain, single-generator chained
form, if and only if there exists a basis f1, . ..,fm for Ay := span{ry, ..., 1y}
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which has the form

fi = @/3q) + Y _f(@)d/dq;

i=2

=Y f@dfdq, 2<j<m

i=1
such that the distributions
G = span{ad}lfz,...,ad}lfm :0<i<j}, 0<j<n-—-1

have constant dimension on U and are all involutive, and G,_1 has dimension
n—10onU/[38,40].

For a two-input controllable system, a constructive method was reproduced
in Reference 10 and it is given here for completeness. Consider

g=ri@z1+n@n (6.12)

where r1(g), r2(q) are linearly independent and smooth, ¢ € R”, and z =
[z1,22]".

Define
) -2
Ao :=span{ry, ra,ady 12, . .., ad;’1 r}
) -2
Ay :=span{r,ad, ra,..., ad:’1 r}
Ay =span{ry, ad, ra,.. ., ad:‘r3r2}

If Ag(q) = R", Vg € U (where U is some open set of R"), A; and A,
are involutive on U, and r{(q) satisfies [r1, A;] C Ay, then there exist two
independent functions 1 : U — Rand & : U — R which satisfy the following
relationships:

dhy -A; =0, dhy-rp=1

dhy - Ay =0, dhy-ad} *ry #0
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LetTi(q) : g — X as

x1=h1

Xy = Lfl_zhz

Xn—1 = Lr1 ha
Xp=hy
It may be verified that 7' (g) is a valid change of coordinates by evaluating the

Jacobian of T1(g) at the origin.
Since erLfl_zhz £0,let Th(q) : 2 — uas

21 =Uuj
= ————lua — (] ho)un]
L,Ly “hy
Then, the local coordinate transformation X = Tj(q) and state feedback

z = T2(q)u render system (6.12) into the chained form

)'Cl = Uul
X2 = up
X3 = xouy

Xp = Xp—1U]

Remark 6.1 Under -certain conditions which has been stated in
Proposition 6.1, the kinematic model (6.5) can be converted into a chained
form driven by integrators.

6.3 MuLti-LAYER NF SYSTEMS

Despite the differences between the NNs and fuzzy logic systems, they actually
can be unified at the level of the universal function approximator, which are
multilayer feedforward networks that integrate the TSK-type fuzzy system and
RBF NN into a connectionist structure.

Typically, fuzzy logic systems are rule-based systems, which consists of the
fuzzifier, the fuzzy rule base, the fuzzy inference engine, and the defuzzifier.
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The purpose of the fuzzifier is to provide scale mapping of the crisp input to
corresponding linguistic forms noted as labels of fuzzy set. The fuzzy rule base
stores knowledge base for linguistic data and is expressed as a collection of
fuzzy IF-THEN rules. The typical fuzzy rule used in the Takagi—Sugeno—Kang
(TSK) model [42] is in the following form:

R:IFzyis F{ AND zpis F} --- AND z,, is F!,
THEN ) = k) + klz) + - + klz,

where Fll (i =1,2,...,n) are fuzzy sets, k; (j =0,1,...,n) are real-valued

parameters, z = [z1,22,. - ,za]T is the system input, yl is the system output
due torule R!, and [ = 1,2, ..., N. For the zero-order TSK-fuzzy system, we
have y! = ké. The fuzzy inference engine is the kernel of the fuzzy system and
uses the fuzzy IF-THEN rules to determine a mapping from the input universe
to the output universe based on fuzzy logic policies. The role of the defuzzifier
is the scale mapping of the linguistic value to a corresponding crisp output
value. For simple systems, the rules are fairly easy to derive with physical
insight. However, they become unreasonably difficult for systems with strong
nonlinear couplings yet without a good physical understanding.

On the other hand, the NNs can build up a very nice mapping between
system’s inputs and outputs. Due to its great learning capability, it can be
used to approximate any continuous function to any desired accuracy. Despite
the differences between the NNs and fuzzy logic systems, they can, in fact,
be unified at the level of the universal function approximator which integrates
the TSK-type fuzzy system and RBF NN into a connectionist structure. Nodes
in the first layer are called input linguistic nodes and corresponds to input
variables. These nodes only transmit input values to the next layer directly.
Nodes in the second layer play the role of membership functions specifying the
degree to which an input value belongs to a fuzzy set. The nodes in the third
layer are called rule nodes which represent fuzzy rules. The fourth layer is the
output layer. The links in the third layer act as the precondition of fuzzy rules
and the links in the fourth layer act as the consequence of fuzzy rules.

The output of the whole NF system is then given by

ny l—lr_li (i)
i=1MA
YO =) Wi | s 6.13)
; |: o T Hak (xi):|
where x = [x1,x2, ... ,xn,-]T, M 4k (x;) is the membership function of linguistic
variable x; with
2
X; — Cj
Mgk (X;) = exp [—%} 6.14)
l Oik
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For clarity, let us define the weight vector and fuzzy basis function vector
respectively as

T
W =[wi,wa,...,wp,]

T
S(X,C,U) = [SI’SZ,' . '7snr]

n; n n; T T TqT
where s; = [TiL; a1 () /132 TTiLy mar Gl ¢ = leyseps.0h6,, 17, and

o =[o],0],...,0,1T. Then, Equation (6.13) can be represented as

y= WIS, c,0) (6.15)

Remark 6.2 For Equation (6.15), W and S(x, c,o) are the weights and the
(normalized) basis functions in NN terminology, while they are the outputs of
the rules and the weighted firing strength in fuzzy logic terminology. Because
of the difficulty in deriving the rules in fuzzy systems for systems with little
physical insights, we would hereby like to present the adaptive laws to design
the outputs of the “rules” numerically using adaptive (NN) control techniques.

It has been proven that, if the number of the fuzzy rules n, is sufficiently
large, a fuzzy logic system (6.15) is capable of uniformly approximating any
given real continuous function, A(x), over a compact set 2, C R™ to any
arbitrary degree of accuracy in the form

h(x) = W*TS(x, c*,0") +ex), VxeQ,CR" (6.16)

* and o* are the ideal constant vectors, and e(x) is the

where W*, ¢
approximation error. The following assumption is made for W*, c¢*, o*,

and €(x).

Assumption 6.2 The ideal NF vectors W*, c*, o*, and the NF approximation
error are bounded over the compact set, that is,

Wl < Wims NIE¥ < cmy 107 S 0y |e()] < €7
Vx € Qy with wy, Cp, O, and €* being unknown positive constants.

Remark 6.3 The optimal weight vector W*, ¢*, and o* in (6.16) is an
“artificial” quantity required only for analytical purposes. Typically, W*, c*,
and o* are chosen as the value of W that minimizes € (x) for all x € Q, C R™,

that is,

(W*,c*,0%) := arg gin { sup |h(x) — WTS(x, c,a)|}

60 L xeQy
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Remark 6.4 The approximation error €(x), is a critical quantity and can be
reduced by increasing the number of the fuzzy rules n,. According to the univer-
sal approximation theorem, it can be made as small as possible if the number
of fuzzy rules n, is sufficiently large.

From the analysis given above, we see that the system uncertainties are
converted to the estimation of unknown parameters W*, ¢*, o*, and unknown
bounds €*.

As the ideal vectors/constants W*, ¢*, o*, and €* are usually unknown,
we use their estimates W, ¢, &, and ¢ instead. The following lemma gives the
properties of the approximation errors W()T S(x,c,0) — w*'s (x,c*,0%). The
definition of induced norm of matrices is given here first.

Definition 6.1 For an m x n matrix A = {a;}, the induced p-norm, p = 1,2
of A is defined as

lA]l1 = max Z |ajj column sum
i=1

lAllz = max {V4i(ATA)}

Usually, ||A||> is abbreviated to ||A]|.
The Frobenius norm is defined as the root of the sum of the squares of all
elements

IAIE =) aj = r(ATA)
with tr(-) the matrix trace, that is, sum of diagonal elements.
Lemma 6.1 [34, 43] The approximation error can be expressed as

WIS, 8,6) — W S(x, ¢*,0%)

= W'S—-8e-86)+W'Se+85,6)+d, (6.17)
where S = S(x,6,6), W = W W* ¢ =¢—c* and 6 = 6 — o* are defined
as approximation error, andS = [le,SZC, e, S mc]T € RIrx(ixne) iy

A aSi . 1 .
iC=_ GR(}’!,XVL,«)X ) lzl""3nr

ac le=¢,0=6
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Y A A A T . ) .
and S, =[8,,,5,,,- - Smol € R X i) yyith
R as; . 1 .
S = — e ROwmIX1 i g,

90 le=to=6
and the residual term d,, is bounded by

il < e 18] W+ o - 185 W+ 1w - 182
HIUW* - 18,61+ W (6.18)

Proof The Taylor series expansion of S(x,c*,o*) with respect to (x,¢,&)
can be expressed as
Al

S(x,c*,0%) = S(x,&,6) —8.¢ — 8,6 + O(x,&,6) (6.19)

where O(x, ¢, ) denotes the sum of the high order terms in the Taylor series
expansion.
Using (6.19), we obtain

WIS, &,6) — W S(x, ¢*, 0™)
= (W + WHTS(x,8,6) — W* [S(x,6,6) — 8.6 — 8.6 + O(x,&,5)]
= WIS+ W — W) 8.+ (W —W)TS. 6 — Ww* 0(x,2,6)
= WIS+ WTS.e — WIS e — ¢+ WS, 6 — WIS (6 — o)
— W O(,8,5)
=W'S-8e-86)+W'S.e+5,6)+d, (6.20)
where the residual term d,, is given by
dy = WTSLc* +8.0%) — W* 0(x,2,5)

Noting that W = W—-Wé¢=¢—c*andé = 6 —o*, Equation (6.20)
implies that

dy=WTS — W' s* — (W —wHTS-5.6 -8 6)
— WHS.@ =) + 8,6 — M)

= WTS.c* + WIS, o* — W' §.e —w*' 8 6 + W (§ — 5%

with $* = S(x,c*,0%).
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Since every element of the vector (3‘ —8*)isbounded in [—1, +1], we have

ny
T A A
W* (S =85 < D W= IW*)

i=1

Sy ATe AT ATa T
Considering WTS.c* = tr(WTS.c*} < WISl - ek = IS. Wl - lIc*],
we have

AT A AT A A A
\dul < ¥ - 182 WI =+ o[- 18], Wi+ IW* - [18Lell
WL 18061+ Wl

Thus, we have shown that (6.18) holds.

6.4 ApaprTIVE NF CoNTROL DESIGN

In this section, the adaptive NF control is presented for nonholonomic mobile
robots with uncertainties and external disturbances.
The following lemmas are useful in the controller design.

Lemma 6.2 Let e = H(s)r with H(s) representing an (n X m)-dimensional
strictly proper exponentially stable transfer function, r and e denoting its input
and output, respectively. Then r € L3 (LY, implies that e,é € L} (L}, e is
continuous, and e — 0 as t — oo. If, in addition, r — 0 as t — oo, then

e— 0/[32].

Lemma 6.3  Given a differentiable function ¢ (1): R — R, ifp(t) € L, and
¢(t) € Loo, then ¢(t) — 0 ast — 00, where Lo and Ly denote bounded and
square integrable function sets, respectively.

Consider the constrained dynamic equation (6.1) together with (n—m) inde-
pendent nonholonomic constraints (6.2). For simplicity of design, the following
assumptions are made throughout this section.

Assumption 6.3 Matrix R (q)B(q) is of full rank, which guarantees all m
degrees of freedom can be (independently) actuated.

It has been proven that the nonholonomic system (6.1) and (6.2) cannot be
stabilized to a single point using smooth state feedback [18]. It can only be
stabilized to a manifold of dimension (n — m) due to the existence of (n — m)
nonholonomic constraints. Though the nonsmooth feedback laws [44] or time-
varying feedback laws [4] can be used to stabilize these systems to a point,

© 2006 by Taylor & Francis Group, LLC



Adaptive Neural-Fuzzy Control of Mobile Robots 243

it is worth mentioning that different control objectives may also be pursued,
such as stabilization to manifolds of equilibrium points (as opposed to a single
equilibrium position) or to trajectories.

By appropriate selection, a set of vector z(#) € R™, the control objective can
be specified as: given a desired z4(¢), z4(¢), and desired constraint A4, determine
a control law such that for any (¢(0),g(0)) € 2, z(¢) and g asymptotically
converge to a manifold Qg specified as

Qnha = {(¢, P1z(®) = 24, § = R(@)2a (D)} (6.21)

while the constraint force error (A — Xy4) is bounded in a certain region. The
variable z(¢) can be thought as m “output equations” of the nonholonomic
system.

Assumption 6.4 The desired reference trajectory z4(t) is assumed to be
bounded and uniformly continuous, and has bounded and uniformly continuous
derivatives up to the second order. The desired ).4(t) is bounded and uniformly
COntinuous.

Let us define the following notations as

e.=2—124 (6.22)
e =i—Ag (6.23)
Zr =124 — p1e; (6.24)

s=é,+ pre; (6.25)

where z, is the reference trajectory described in internal state space.
Apparently, we have

=2 +s (6.26)
For force control, define y as
. —1,4T
m=—ppu—p3 J A (6.27)

where 1 € R”. For the convenience of controller design, combining s and u to
form the following new hybrid variables

oc=Rs+pu (6.28)
V=Rz — 1 (6.29)
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From (6.26), (6.28), and (6.29), we have
o+v=RZ (6.30)
The time derivatives of v and o are given by
D =Rz +R% — [ (6.31)
6 =R:+R:— (6.32)
From the dynamic equation (6.8) together with (6.30) and (6.32), we have

M(q)6 + C(q,g)o +M(q)v + C(g,§)v + G(g) = B()T + I (@1 + 14
(6.33)

Consider the control law as

Bt = M(q)V + C(q,q)v + G(q) — Koo —JThg + ksJ e — Kisgn(o)

n n n n n
—bn YD bmyloitil —be Y D beylowil —bg Y fgloil
i=1

i=1 j=1 i=1 j=1
(6.34)

where matrix K, > 0, constant k) > 0, matrix Ky = diag{k;} with kg; > |E;|
and E; is the element of vector E (defined later), M (@, C (¢,9), and G(q) are
the estimates of M(q), C(g, q), and G(q), respectively, the elements of which,
that is, m;j(q), ¢;j (g, q), and g;(q) can be expressed by NF networks as

T
mij(q) = Wy, S(q: Cpii» Ony) + €my () (6.35)
. T . .

Cij(q’ Q) = sz S(C], q, C:(U, O—ctj) + €c;j (6], Q) (636)

*T * *
8i(q) = Wy, 8(q,cq,,04,) + €4,(q) (6.37)
where W,Tw, WC*U, W;’, are ideal constant weight vectors, C:Fn,;,v’ Cf,;,v’ c;. are the
G*,- are the ideal constant width vectors,

ideal constant center vectors, o, , 0.,
ij ij 8

and €y, (), €c;;(q. q), €,(q) are the approximation errors.
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In addition, I;m, I;c, and Bg are the estimates of constants b, b%, and bz,
respectively, which are defined by

br 2 max(b},) > 0, b}, £ max{Winy, Cogs Oy (6.38)
N * x A
b= max{bcij} > 0, bc,-,— =max{we;, Cc;» 0c;} (6.39)
i
bg = mlax{bgi} > 0, bgi =max{wy,, Cg;, Og;} (6.40)

and qu,] q}cl.j, and ng,. are known positive functions defined by

n P PN & A & A
By = 0800, Wony 1+ 1800, Wy 4 130, Gy 14+ 185, G+ mmy— (6.41)

- AT A ~ T A ~ ~ S A

Gey = IS0 Wyl + 18, Wyl + 18], &yl + IS}, 6e,ll 4y (642)
ij ij ij ij

- AT A AT A ~ ~ 3 A

Gos = 130, Werll + 1135, Well + 18, Ell + 113, S, + g (6.43)

Using the “GL” matrix (denoted by upright and bold symbol with curly
bracket) and operator (denoted by “e”) introduced in Reference 32, the function
emulators (6.35)—(6.37) can be collectively expressed as

M(q) = [{Wi}" o (Su}l + En (6.44)
C(g.q) = {WEYT o {Sc)l + Ec (6.45)
G(q) = W5 o (S} + Eg (6.46)

where [{W3,}, {Sar}], [{WE ), {Sc}], and [{WE}, {SG}] are the desired weights
and basis function GL matrices pairs of the NF emulation of M(q), C(q, g),
and G(q), respectively; and Eys, Ec, Eg are the collective NF reconstruction
errors, respectively.

The estimates M (@, C (q,9), f}(q), can, accordingly, be expressed as

M(q) = [{Wn}" o {Su}] (6.47)
C(g:q) =[{Wc)T o (Sch (6.48)
G(g) = [{We)T o {Sq)] (6.49)

Note that in real implementation, the actual control torque t must be
provided rather than Bt given in (6.34). There are various approaches available
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in the literature to solve t from (6.34), either analytically or numerically. In this
chapter, the following scheme is applied to compute the control torque t with
rigor and rationality.

Define

u= Bt (6.50)
Premultiplying both sides of (6.50) by RT, we obtain
R'u=R"Br
From Assumption 6.3, it is known that RTBis nonsingular. Thus, 7 is obtained as
= R"'B)"'RTu (6.51)

Substituting (6.51) and (6.47)—(6.49) into the dynamic equation (6.33) yields
the closed-loop system error equation as

M6 + Co = ({Wu)T o (S )] — [IW5,) T e (Sar) D
+ (Wl T o (Sc)l — [IWEIT o (SciDv

+ (W) o (SG1T — [IWEIT  (SG1)

— Koo +JTh — E — Kgsgn(o)

n n n n n
—bw Y Y Puyloiiil = be YY" elowil — bg Y dgilol
i=1

i=1 j=1 i=1 j=1
(6.52)

where E = Eyv + Ecv + Eg — 14.
The stability of the closed-loop system will be illustrated in the following
theorem.

Theorem 6.1 Consider the nonholonomic mobile robot system described by
dynamic equation (6.1) and the (n — m) independent nonholonomic constraints
(6.2). If the control law is chosen by (6.34), and the parameter adaptation laws
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are chosen by

Wi = —Tusi  ((Smi} — {Swei) — (Smoi)) o (6.53)
Wei = —Tci o ((Sci} — {Scei} — {Scoih)vos (6.54)
Wi = —T6i(S6i — Seei — Scoi)oi (6.55)
Cui = —Opi o (SWisi}io; (6.56)
Cei = —O¢; o (SWeeilvo; (6.57)
Ci = —OGiSWioi (6.58)
Sy = —Eumi o SWaroi}ooi (6.59)
Sci=—Ecie {S/V\ch}vm (6.60)
Y6i = —EG6iSWeoioi (6.61)
. n n ~
b =Vom Y_ Y Gmyloiiy| (6.62)
i=1 j=1
. n n
be=Yoe Y Peyloij] (6.63)
i=1 j=1
. n _
by = Vg Y _ bgloil (6.64)

i=1

where matrices Ty, Uci, Ui, Oumi, Oci, Oci, Emis E i, EGi are symmetric
positive definite, and constants Ypm, Ve, Ybg > 0, the signals e; and é; asymp-
totically converge to zero, and all the other closed loop signals are semiglobally
uniformly ultimately bounded.
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Proof  The time derivative of %O’TM o along (6.52) is

™M = —6"K,0 — 6 "E — 0" Ksgn(o) + 0 JTA —oTCo
+ o ([({(Wu}" o (Su}] — [{W3)T o (Su Db
+ o ([{Wc}T o {ScH — [{WET o {Scihv
+ 0 ([({We)" o (S} — (W51 o (SaiD)

n
_l;mZZ(Z’mUWiVJ b ZZ¢C,,|01V] gz¢g,|01

i=1 j=1 i=1 j=1
(6.65)

Using the properties (6.17) and (6.18) given in Lemma 6.1, we have the
following property for the NF approximation error:
o ([(Wu)T o (Su}] = [{(W3)" o {Su)D¥
= o T([{War)T o (1Sur) — (Sme) — (Swo D]
+[{Cu}" @ (SWaichl + [{Zu)T o SWaro 1 + Dys)d (6.66)

where GL matrices {SMC}, {SM(,}, {S/\\VMC}, {S/V\VMG}, and matrix Dy, are
defined respectively as:

{Sme1} {Swot1}
{SMC} = s {SMO'} = :
{SMcn} {SMan}
{S/\\’VMcl} {S/‘TVMUI}
{SWy} = . {SWuye) =
{SWysen} {SWason}
with
{Smeit = Smeir -+ Swteindr Smeij = g/cmij Cmy

{Smoit ={Smoit -+ Smoin}, Smoij = Scr,,,./.&m:j

{S/‘X,Mci} = {S/WIMC” T S/‘W,Mcin}v SWMC!] Cmg ' M

SWioi} = (SWaoit -+ SWatgin), SWMmj = S - Wm,,
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and Dy, = [dmuij] with

AT A A ~
|dmuij| < Nl |l - ||SC,,, Wy || + llom; Il - ||S¢/7my. Wong | + Wy, I - ||S,f~ml,jcm,-,~||
* o7 ~ *
W1 185, gl + 15, 1 (6.67)

Noting Assumption 6.2, the following can be obtained:

AT A A
i I 18, Wony I+ o, 1 - 135, Wony I+ W3 1 - 1S, G |
+ Wi - 13, Gyl + 1 m,,n

VA T3
< g 180, Wy |+ 0y 135, Wy |+ i,

X (13L,, &my |l + 135, Gy |+ 1m,)

A AT A ~
< B, 80, Wy |+ 185, Wan I+ 130, &y 1+ 135, 6my |+ 1)
= b}y, bm, (6.68)

Thus, (6.66) becomes

o T (({War)T o (Sur}1 — (W31 @ {Sar} D)
TUWar)" o (S} — {Sate} — (Sara D1+ HCar)T @ {SWire)]
+[{Zu)" o SWao )b + Z iaidmm
i=1 j=1
< o T((War)" o ((Sur} — (Sare} — (Suro D1+ [{Car) T @ (SWise}]
+[{Eu)" o SWuo )b + Z Z by my |01
i=1 j=1
< o T(((War}T o (1Sur} — (Sute} — (Suto D1+ [{Car} T @ {SWisc}]
+[{Za)T o (SWaso ) D)0 + B}, Z Z b0 Vj] (6.69)

i=1 j=1
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Similarly, we have the following inequalities for other approximation
errors as

o "Wl o (Scil — [{WET o (Sciv
<o T ([({We)T o (8¢} — Scet — (Sco D1+ [{Ce)T o (SWee )]

+UE)T o (SWeolDv + 55 D> e, o] (6.70)

i=1 j=1
o T({We)T o (Se)1 — W5 T o {S6) D)

<o ({W6)" o ({6} — (See) — (Sco D1+ HCo) T o (SWae)]

+[{Zc)" o (SWeo D) + b5 D gl (6.71)
i=1

where definition for GL matrices {Scc} {SCJ} {SWCC} {SWCG} {SGL}
{SGC,} {SWGC} and {SWGU} which is omitted here for conciseness, can be
similarly made.

Consider the Lyapunov function candidate

1 N (L Js
V= EaTM<7+§ > WLZ‘FM}WM:"FE > WEiFCiIWCi"'EZWEi
i=1 i=1 =1

G I oy s [N
x TG Wai + D) Z C1i®3 Curi + 5 Z CL0/ Cai
i=1 i=1

+5 ZCGIGGI CGI + = Z 2:Ml"‘Ml ZMZ +5 Z 2:Cl ZCi
i=1 i=1 i=1

1 1 1
+ = ZEGI“G:ZGI+ ybmbz—i— ybclbz—l— ybg1b2+ —p3ut

6.72)

with () = () — ()*.
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By virtue of (6.52), (6.69) to (6.71), the time derivative of V is given by

. . 1 . "L 1A "L A
V=0"Ms + EGTMG + Y Wyl i Wi+ Y WET W
i=1 i=1

n . n . n .
+ > WaTG Wai+ ) €@y Cui + ) €0 Ca
= i=1 i=1

n n n
~ 1A ~T __1& T 18
+) CLOGICai+ Y EuEyEui+ Y E6Eq Sa
i i=1 i=1
n T . . . .
+ Z ZGiEZ}i] XGi+ yb:n] binbm + Vbzlbcbc + Vbjglbgbg + /03MTI)«
i=1

™o —oTCo — O'TKUO' —oTE - GTKSsgn(o) +o Ty

| =

=

+ 0T ([{Wu)" o (1S} — (Swe} — (Smo D]

+[{Cu) T @ (SWaie)] + [{Em)T o (SWaro } D)0

+ 0T ([({(We}T o (S} — {Sce} — (Sca D]

+HCe)T o (SWeell + [Ec)T o (SWeo J D

+ 0" ([{We)" o (1S} — (See) — 860 )]

+H{C6)T o (SWaell + [{Z6)T o (SWo D)

+ Xn: WIT W+ Xn: WLI W+ Xn: WEILI o W,
i i=l1 i=1

n . n . n .
ST -1 ST o1 & AT -1
+ Z Ci®y; Cui + Z Cei®c; Cai + Z C:i9g; Cai
i1 i—1 i—1

n n
T o1& ~ 1<
+ Z i E i Tmi + Z ch—-a Sci+ Z sz Gi Zi
i i i1

n n
_Emzz‘lgmiﬂaivj b ZZ¢CU|UIUJ Z¢g,|01

i=1 j=I i=1 j=I

+ Vi Bimbim + Vg bebe + vy bebg + p3u" 1 (6.73)
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As matrix M — 2C is skew-symmetric, aT(M —2C)0 =0,Vx #0.

Noting that

c WY e Sidlv =[o1 02 -+ 0n]

= Z{WMi}T o (Sui}io;
i=1

and similarly
o THWu )T o (1S} — (Sare) — (S DIV

= (Wi} o (Sui} — {Swmei} — Smoid)vo;

i=1

oTHCw)T @ (SWachD = Y {Cari}T @ (SWisei}bo;

i=1

o T{Em)T o (SWiso D = Z{iMz‘}T o (SWysoi}io;

i=1

o THWeIT o (1Sc) — (Sce) — (Sco DIy

= (Wei)" o (1Sci} — (Scei} — Scoihvo
i=1
oTHC} o (SWeehlv = Y {Ci}" o (SWeeihvo;
i=1
o THZc)T o (SWeohlv =Y {Zci)T o (SWeoibvo;

i=1

(W17 e {Spr1}o

(Wi} @ {Spa}v

(6.74)

oT[{We)" e (1S6} — (S6e) — (Sao D1 =Y WE:S6i — Scei — Scoi)oi

i=1

n
oT[{Cq)" @ SWiell = Y CLSWoeioi

i=1

~ — " T —
oT{Z6)T @ (SWeoll = ) Z;:8Waoioi

i=1
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Equation (6.73) becomes
. 1 .
V< EO'TMO' —o'Co — GTKUG —oE— GTKSsgn(o) +o T
n ~
+ Z{WMi}T o ({Spi} — {Smcit — {Smsib)vo;
i=1

+ > {Cui}" @ (SWireikvoi + Y {Zi)" o (SWasoi}ios

i=1 i=1

+ ) {Weit" o ((Sci} — {Sceit — {Scoid)voi

i=1

+ 3 {Cci)T o (SWeaihvoi + Y (Zci o (SWegibvor

i=1 i=1

n n n
~ ~ ~ ~ e ~T ——
+ Y WEiSei — Scei — Scon)oi + Y CLSWaeioi + Y 6 8Waoioi

i=1 i=1 i=1

n . n . n ]
+ Z Wil Wi + Z WET o Wei + Z WG, TG Wai
i=1 i=1 i=1

+ Z Chi®5i Cui + Z C&0: Cai+ Z CGi0; Cai
i=1

i=1 i=1
n T . n T . n T .
- -1 - =—l¥ - ——1 %
+ Z):Mi-'-‘-zm Tmi+ Z LoBg Xat Z 26iEGi XGi
i=1 i=1 i=1

n n n n n
b DD Gmyloitil = be DD Geyloivjl — by Y by loil
i=1

i=1 j=I i=1 j=1
+ Voms Bbin + Ve bebe + vyg bgbg + p3u" it (6.75)
Substituting the weight vectors updating laws (6.53)-(6.55), the center vectors
updating laws (6.56)—(6.58), the width vectors updating laws (6.59)—(6.61), and
the constant parameters updating laws (6.62)—(6.64) into (6.75) yields
V<—0"Keo —0"E — 0 Ksgn(o) + oI h + pauT 2 (6.76)

Noting that kg; > |E;| > 0, it is obvious that [—oTE — UTKssgn(U)] <0.In
addition, from (6.27), we know that 1 = —ppuu — ,03_1]Tk and from (6.28),
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ol =sTRT + ,uT. Thus, we have

o I+ p3 (L + k) = —paosp i+ sTRITA - (6.77)

Noting RTJT = 0 from (6.4), we then have
V<—0"Keo = prp3u’ e <0 (6.78)
AsV >0 zAlnd VA < 0; 1% € LOO.A FroEn thei deﬁpitior} of V, it follows that o,
w € L%, Wi, Wei Wi, Cuis Ceis Cai, Zmi, Zein i € Los, i = 1,...,n

with n; denoting the compatible size of the vectors, and 5,,1 Z;C, l;g € Loo.
Integrating both sides of (6.78), we have

t
f o TKyo < V(0) — V() < V(0) (6.79)
0

Hence o € L.
From (6.28), we have s = (RTR)"'RT(c — 1), hence s € L7 since R is
bounded. From Lemma 6.2, it can be concluded that e;, ¢, € LZ.
From (6.27), (6.29), and (6.31), we have
Mv+Cv+G=M®R:; +R:, — ) + C(RZ, — ) + G
= MRz + R%,) + CRz + G — Cpu + p3 'MJ ™A (6.80)
From (6.26), it is known that
g =Rz +Rs (6.81)
G =Ri + R%, + Rs + RS (6.82)

Replacing T by (6.51) in dynamic equation (6.1) by noting f = JT(g)A,
Equations (6.80)—(6.82), the closed-loop system becomes

MRs + MRs + CRs — (M — M)(Rz, + R%,) — (C — O)Rz, — (G — G)

n n
+ Cut+ Koo + Kisgn(0) +bw ) Y~ buyloivj|

i=1 j=1
n n n
+be Y Y esloivil +bg Y bgiloil — 14
i=1 j=1 i=1
= (o3 'M + 1,)J"x (6.83)
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Invoking (6.44)—(6.46) and (6.47)—(6.49), Equation (6.83) then becomes
MRs + MR; + CRs — ([{Wy}T o {Syr}] — [{W3}T o {Sar} ) (R, + RZ))
— ({Wc}" o (Sch — [{WE)T o (ScIDR:,
— ({W6}" o (S} — [{W5)T o (SaiD) + Cu

n o n n n
+ Ky0 + Kgsgn(o) + by Zz(im,ﬂalvjl + l;c Z Z‘iciﬂaivﬂ

i=1 j=1 i=1 j=1

n
by " ¢ loil + Eyt(Rzy + R%:) + EcR% + Eg — 4
8 8

i=1

= (o3 "M +1,)J"a (6.84)

Since M (g) is nonsingular, multiplying J(q)M -1 (g¢) on both sides of (6.84)
yields

JRs +JM™! [CRs — (HWar)T o {Sar}] — LW )T @ (S} (R, + RZ))

— (W) o (Sc)l — WET o (ScIDRz,

— (W) T @ {Se)1 — HWEIT @ {SGID) + Ce
+ Koo + Kisgn(0) + b Y Y Guyloibjl +be Y Y deyloi|

i=1 j=1 i=1 j=1

n
by > Buloil + Eu (R, + REy) + EcRE, + Eg — rd]
i=1

=IM (o' M + 1,)J A (6.85)

Since we have established that e;,é; € L7, from Assumption 6.4 and
(6.24), it can be concluded that z,(¢),Z,(t) € LZ. As r is shown to be
bounded, so is z from (6.26). Hence, ¢(t) = Rz(t) € L.,. It follows that
M(q),M(q),C(q,9),C(q,q) € LX", and G(q),G(g) € L”,. Thus, the left
hand side of (6.85) is bounded. In fact, p3 can be properly chosen to keep
(03 i+ I,,) on the right hand side of (6.85) from being singular. Hence, we
have A € L™. As A4 is bounded, so are e and Bt.

From (6.1), we can conclude that g € L.
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As X e L™ and p e L, from Equation (6.27), it is obvious that
i€ L%, Thus, from (6.31), we have v € L7 . Since z,Z € LZ, have been
established before, we can conclude from (6.32) that ¢ € L7 . Now, with
o,u €Ll 6,p el according to Lemma 6.3, we can conclude that o and p
asymptotically converge to zero. Hence, from (6.28), it can be concluded that
s — 0 ast — oo. According to Lemma 6.3, we can also obtain e;,e, — 0
ast — 00.

Since ¢,§ € LZ,, q and ¢ are uniformly continuous. Therefore, from
Property 6.1, we can conclude that matrices M(q), C(q, §), G(q), S(q), J(q),
b(q), C (g,9), and G(q) are uniformly continuous.

Remark 6.5 If Bt is directly replaced by (6.34) in the dynamic equation (6.1)
without considering the real implementation issue, a wrong conclusion may be
drawn.

Substituting (6.34) and (6.47) to (6.49) into the dynamic equation (6.33)
yields the closed-loop system error equation as

M6 + Co = ({Wu)T o (Su}] — W) T o (Sar) D
+ ({WelT o (Sc)l — [IWEIT o (SciDy
+ (W1 T o (SG)1 — [IWEIT o (SG1D)

— Koo + (1 4+k)J e, — E — Kysgn(o)

n n n n n
—bw Y Y Puyloilil —be Y Y besloijl = bg Y bgiloil

i=1 j=1 i=1 j=1 i=1
(6.86)

which is misleading as it seems there is control effort applied to force error
e). and the wrong conclusion of asymptotic convergence of e, may be drawn.
This is due to the ignorance of the inherent property R'JT = 0. Thus, for the
proposed scheme in this chapter, one can only guarantee the boundedness of
ey, which will be confirmed in the simulation study.

6.5 SIMULATION STUDIES

Consider amobile robot moving on a horizontal plane, driven by two rear wheels
mounted on the same axis, and having one front passive wheel. The dynamic
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model can be expressed in the matrix form (6.1) with

m 0 mL sin 6
M(qg) = 0 m —mlL cos 0
mLsinf —mLcosf 1
0 0 mLOcosh cosf cosb
Clg,g) =0 0 mLBsinb |, G(g)=0, B(q) =Ri1 sinf  sinf
0 0 0 Ry —R

(6.87)

where ¢ = [x¢ y¢ 01T € R? is the generalized coordinate with (x.,y.) being
the coordinates of the center of mass of the vehicle, and 6 being the orientation
angle of the vehicle with respect to the X-axis, T = [z, 71T € R? is the input
vector with 7, and t; being the torques provided by the motors mounted on the
right and left respectively, m is the mass of the vehicle, / is its inertial moment
around the vertical axis at the center of mass, L denotes the distance between
the mid-distance of the rear wheels to the center of mass, 2R denotes the radius
of the rear wheels, and 2R, is the distance between the two rear wheels. The
constraint forces are f = JT(g)A.

The nonholonomic constraints confine the vehicle to move only in the direc-
tion normal to the axis of the driving wheels, that is, the mobile bases satisfying
the conditions of pure rolling and nonslipping

Xesin@ — yecos® + L =0 (6.88)

From (6.88), it is known that J(g) and R(g) are in the form

sinf cosf® —Lsinf
JT(q)=|—cosO |, R(g)=|sinf Lcosb (6.89)
L 0 1

Thus, the constraint forces can be written as f = J1(g)A with

A = mi.sin @ — m¥. cos 6 + mLb (6.90)
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In addition, the kinematic model (6.5) of the nonholonomic systems in terms
of linear velocity v and angular velocity w can be written as

. X cosf —Lsin6
) v 21 ) ) v
z= |: :| = |: ] Ye| = |sinf Lcosé |: i| (6.91)
w 2 . w
0 0 1

The desired manifold Q2,14 is chosen as

Qnnd = {(¢, 4, M1z = z24(D), ¢ = S(@)za(D), A = rg}

withzy =24 =0, Ay = 10.

The existence of sgn-function in the controller (6.34) may inevitably lead
to chattering in control torques. To avoid such a phenomenon, a sat-function is
used to replace the sgn-function. The sat-function is given by

1 ifo > ¢

sat(o) = | 1 ifo < —e

—o otherwise
€

where € = 0.01 and K; = 5 are chosen in the simulation.

The simulation is carried out using NF networks which are essentially the
TSK-type fuzzy system with its membership function being chosen as the
Gaussian function. Each element of the unknown system matrices M (q) and
C(q,q) is modeled by the NF networks, which makes it different from con-
ventional adaptive control design, where a relatively large amount of a prior
knowledge about the system dynamics and the linear parametrization condition
are required. The proposed adaptive NF controller, on the other hand, can be
treated as an indirect adaptive scheme or partitioned NF systems [29,45], and
does notrequire any precise knowledge on the system dynamics. The parameters
in each NF subsystem can be separately tuned, which yield a faster updating
speed, as can be seen from the simulation results.

In the simulation, the parameters of the system are taken as: m = 10 kg,
I = 5kgm? R = 005m, R, = 05m, L = 04 m, 750) =
[0.5sin7, O.1sinz, 0.2cost]T, ¢(0) = [2.0, 0.5, 0.785]T, §4(0) =
[0.2, 0.2, 017, and p1 = diag(5,5), p2 = 1, p3 = 10. The control gain K,
and force control gain K, are selected as K, = diag(l, 1), K, = 1. The
neural weights adaptation gains are chosen as I'yy = 0.11y,, I'c = 0.11y,, with
Ni = 100 and N = 200 being the number of rules of the NF system to estimate
matrices M and C, respectively.
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FIGURE 6.1 Responses of the states of the system.
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FIGURE 6.2 Control torques of the mobile robot.
The simulation results are shown in Figure 6.1 to Figure 6.5, among which,
Figure 6.1 shows that the system’s states response, including x., y¢, 0, X,

Ve, and é, are all bounded, and the control torques are bounded as can be
seen in Figure 6.2. The estimates of the NN weights are shown to be bounded
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FIGURE 6.3 Responses of the norm of the NN weights.
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FIGURE 6.4 Responses of the internal states z.

© 2006 by Taylor & Francis Group, LLC



Adaptive Neural-Fuzzy Control of Mobile Robots 261

g by .
£ b
R
= ol ]
3 2 (I
2 by
S gL ;
o) 1
[0}
X b
5_4-:‘ i
N I
il
I
5ty J
§
_6 L L L L L
0 0.5 1 15 2 25 3

Time (sec)

FIGURE 6.5 Responses of the linear velocity v and angular velocity .

in Figure 6.3 using some norms of the estimates for illustration. Figure 6.4
confirms that the stabilization of internal state z is achieved, while the linear
velocity v and angular velocity w are shown to converge asymptotically to zero
in Figure 6.5.

In the simulations, the parameters have been selected at will to demonstrate
the effectiveness of the proposed method. Different control performance can be
achieved by adjusting parameter adaptation gains and other factors, such as
the size of the networks, and the exploration of the knowledge of the systems.
In fact, the control method has been developed as a turn-key solution without the
need for much detailed analysis of the physical systems. For the best perform-
ance, the physical properties should be explored and implemented in control
system design. By examining the exact expressions for D(g) and C(g, ¢), we
know that many of their elements are constants, such as m, I, and 0. In actual
control system design, there is no need to estimate the Os, while adaptive laws
can be used to update the unknown m and I more elegantly.

6.6 CONCLUSION

In this chapter, adaptive NF control has been investigated for uncertain
nonholonomic mobile robots in the presence of unknown disturbances. Despite
the differences between the NNs and fuzzy logic systems, a unified adaptive NF
control has been presented for function approximation. Because of the difficulty
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in deriving the rules in fuzzy systems for systems with little physical insights,
the outputs of the “rules” are updated numerically using adaptive control tech-
niques. It is shown that the controller can drive the system motion to converge to
the desired manifold and at the same time guarantee the asymptotic convergence
of the force tracking error without the requirement of the PE condition. By using
NF approximation, the proposed controller is indeed a turned key solution for
control system design as it requires little information on the system dynam-
ics. Numerical simulation has been carried out to show the effectiveness of the
proposed method for uncertain mobile robots.
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7.1 INTRODUCTION

A number of typical mobile robots can be described by the chained form or
more general nonholonomic systems. Due to Brockett’s theorem [1], it is
well known that nonholonomic systems with restricted mobility cannot be
stabilized to a desired configuration (or posture) via differentiable, or even
continuous, pure-state feedback [2]. The design of stabilizing control laws for
these systems is a challenging problem which has attracted much attention in
the control community. A number of approaches have been proposed for the
problem, which can be classified as (i) discontinuous time-invariant stabiliza-
tion [3], (ii) time-varying stabilization [4], and (iii) hybrid stabilization [5, 6].
In References 7 and 8, an elegant approach to constructing piecewise continu-
ous controllers has been developed. A nonsmooth state transformation is used

267
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to overcome the obstruction to stabilizability due to Brockett’s theorem, and
a smooth time-invariant feedback is used to stabilize the transformed system.
In the original coordinates, the resulting feedback control is discontinuous.
Various time varying controllers have been proposed in the literature [4,9]. The
kinematic nonholonomic control systems can be asymptotically stabilized to
an equilibrium point by smooth time-periodic static state feedback. However,
the convergence rate for this method is comparatively slow. Hybrid controllers
combine continuous time features with either discrete event features or discrete
time features [6,10].

Among the many control strategies that have been proposed for various non-
holonomic systems, research results can generally be classified into two classes.
The first class is kinematic control, which provides the solutions only at the pure
kinematic level, where the systems are represented by their kinematic models
and velocity acts as the control input. Based on exact system kinematics, dif-
ferent control strategies have been proposed [4,5,8]. Recently, a few research
works have been carried out to design controllers against possible existence
of modeling uncertainties and external disturbances [11-13]. Robust exponen-
tial regulation is proposed in Reference 11 by assuming known bounds of the
nonlinear drifts. It is also required that the xp-subsystem is Lipschitz. To relax
this condition, adaptive state feedback control is proposed in Reference 12 for
systems with strong nonlinear drifts.

It is noted that one commonly used approach for control system design
of nonholonomic systems is to convert, with appropriate state and input trans-
formations, the original systems into some canonical forms for which controller
design can be carried out more easily [14—17]. The chained form [14] and the
power form [15] are two of the most important canonical forms of nonholo-
nomic control systems. The class of nonholonomic systems in chained form was
first introduced by Murray and Sastry [14] and has been studied as a benchmark
example in the literatures. It is well known that many mechanical systems with
nonholonomic constraints can be locally, or globally, converted to the chained
form under coordinate change and state feedback [5,14]. The typical examples
include tricycle-type mobile robots and cars towing several trailers. A new
canonical form, called extended nonholonomic integrators (ENI) was presen-
ted in Reference 17, and it was shown that nonholonomic systems in ENI form,
chained and power forms are equivalent, and can thus be dealt with in a unified
framework. Using the special algebraic structures of the canonical forms, vari-
ous feedback strategies have been proposed to stabilize nonholonomic systems
in the literature [16-21].

The second class is dynamic control, taking inertia and forces into account,
where the torque and force are taken as the control inputs. Different researchers
have investigated this problem. Sliding mode control is applied to guarantee
the uniform ultimate boundedness of tracking error in Reference 24. In Ref-
erence 23, stable adaptive control is investigated for dynamic nonholonomic
chained systems with uncertain constant parameters. In Reference 24, adaptive
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robust stabilization is considered for dynamic nonholonomic chained systems
with external disturbances. Using geometric phase as a basis, control of
Caplygin dynamical systems was studied in Reference 2, and the closed-loop
system was proved to achieve the desired local asymptotic stabilization of
a single equilibrium solution. The principal limitation associated with these
schemes is that controllers are designed at the velocity input level or torque
input level and the actuator dynamics are excluded.

As demonstrated in Reference 25, actuator dynamics constitute an important
component of the complete robot dynamics, especially in the case of high-
velocity movement and highly varying loads. Many control methods have
therefore been developed to take into account the effects of actuator dynamics
(see, for instance, References 26-29). However, the literature is sparse on the
control of the nonholonomic systems including the actuator dynamics.

In this chapter, the stabilization problem is considered for general nonholo-
nomic mobile robots at the actuator level, taking into account the uncertainties
in dynamics and the actuators. The controller design consists of two stages. In
the first stage, to facilitate control system design, the nonholonomic kinematic
subsystem is transformed into a skew-symmetric form and the properties of the
overall systems are discussed. Then, a virtual adaptive controller is presented
to compensate for the parametric uncertainties of the kinematic and dynamic
subsystems. In the second stage, an adaptive controller is designed at the actu-
ator level and the controller guarantees that the configuration state of the system
converges to the origin.

This chapter is organized as follows: the model and model transformation
of the system including actuator dynamics are presented in Section 7.2. The
adaptive control law and stability analysis are presented in Section 7.3. Simu-
lation studies are presented in Section 7.4 to show that the proposed method is
effective. The conclusions are given in Section 7.5.

7.2 DYNAMIC MODELING AND PROPERTIES

In general, a nonholonomic system including actuator dynamics, having
an n-dimensional configuration space with generalized coordinates g =

g1, ., q,,]T and subject to n — m constraints can be described by [30]
J(@g=0 (7.1
M (@) + C(q,9)q + G(q) = B@KNI + " (9 (7.2)
d/
LE +RI+K,w=v (7.3)

where M(g) € R™" is the inertia matrix which is symmetric positive def-
inite, C(q,q) € R™" is the centripetal and coriolis matrix, G(g) € R"
is the gravitation force vector, B(g) € R™" is the input transformation
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matrix, Ky € R™” is a positive definite diagonal matrix which character-
izes the electromechanical conversion between current and torque, I denotes
an r-element vector of armature current, J(g) € R ™" is the matrix
associated with the constraint, and A € R"™ is the vector of constraint
forces. The terms L = diag[L1, L, L3, ...,L;], R = diag[R,R2,R3,...,R/],
K, = diag[K.1, K2, K3, . .. Karl, © = [w1,@2,...,0.]T, and v € R" rep-
resent the equivalent armature inductances, resistances, back emf constants,
angular velocities of the driving motors, and the control input voltage vector,
respectively. Constraint 7.1 is assumed to be completely nonholonomic for all
g € W' and t € N. To completely actuate the nonholonomic system, B(g) is
assumed to be a full-rank matrix and r > m.
Dynamic subsystem (7.2) has the following properties [31,32]:

Property 7.1 There exists a so-called inertial parameter p and vector 6 with
components depending on the mechanical parameters (mass, moment of inertia,
etc.,) such that

M(g)v + C(q,y)v + G(q) = ®(q,4,v, V)6 (7.4)

where ® is a matrix of known functions of q, q,v, and v; and 6 is a vector of
inertia parameters and assumed completely unknown in this chapter.

Property 7.2 M — 2C is skew-symmetric.

If matrix N € R™*" is skew-symmetric, then N = —NT and YINY = 0 for
allY € R™.

Since J(g) € R"™*" it is always realizable to find an m rank matrix
S(g) € RV formed by a set of smooth and linearly independent vector fields
spanning the null space of J(g), that is,

ST @I @) =0 (7.5)
Since S(q) = [s1(q),...,sm(g)] is formed by a set of smooth and linearly

independent vector fields spanning the null space of J(gq), define an auxiliary
time function v = [v1,...,vm]! € R™ such that

g =S@v@®) =si(@vi + -+ sm(@vm (7.6)
Equation (7.6) is the so-called kinematic model of nonholonomic systems in
the literature.

Differentiating Equation (7.6) yields

§=S@v+S@gv (7.7)
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(@]
FIGURE 7.1 Differential drive wheeled mobile robot.

Substituting (7.6) and (7.7) into Equation (7.2), we have the transformed
kinematic and dynamic subsystems of the whole nonholonomic system

g =S@v=s1(@vi+-+5m(@vm (7.8)

M(@)S(q)v + Ci(q,§)v + G(q) = B(@)KnI +J A (7.9)

where
Ci(g,9) =M(@S + C(q,9)S

In the actuator dynamics (7.3), the relationship between w and v is dependent
on the type of mechanical system and can be generally expressed as

w = uv (7.10)

The structure of u depends on the mechanical systems to be controlled.
For instance, in the simulation example, a type (2,0) differential drive
mobile robot is used to illustrate the controller design, where p can be

derived as
11 L
’u_]_i’[l _Li| (7.11)

where P and L are shown in Figure 7.1.
Eliminating @ from the actuator dynamics (7.3) by substituting (7.10), one
obtains

dr
La + RI+ K uv =v (7.12)
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Until now we have brought the kinematics (7.1), dynamics (7.2), and actuator
dynamics (7.3) of the considered nonholonomic system from the generalized
coordinate system g € R" to feasible independent generalized velocities v € R™
without violating the nonholonomic constraint (7.1).

For ease of controller design in this chapter, the existing results for the con-
trol of nonholonomic canonical forms in the literature are exploited. In the fol-
lowing, the kinematic nonholonomic subsystem (7.8) is first converted into the
chained canonical form, and then to the skew-symmetric chained form for which
a very nice controller structure [18] exists in the literature and can be utilized.
This will be detailed later. The nonholonomic chained subsystem considered
in this chapter is m-input, (m — 1)-chain, single-generator chained form given
by [9,24]

X1 = uy
Yi=wmxir1 Q<i<n-DA<j<m-1) (7.13)
Xjnj = Ujt1

Note that, in Equation (7.13), X = [x1,X>, ... XnlTe R withX; =[x;_12,...,
xj,l,njfl] (2 <j < m) are the states and u = [uy,us, ..., upm]T are the inputs of
the kinematic subsystem.

The chained form is one of the most important canonical forms of nonholo-
nomic control systems. It has been shown in References 5 and 14 and references
therein that many nonlinear mechanical systems with nonholonomic constraints
on velocities can be transformed, either locally or globally, to the chained form
system via coordinates and state feedback transformation. The necessary and
sufficient conditions for transforming system (7.8) into the chained form are
given in Reference 33. The following assumption is made in this chapter.

Assumption 7.1 The kinematic model of a nonholonomic system given by
Equation (7.8) can be converted into chained form (7.13) by some diffeomorphic
coordinate transformation X = T1(q) and state feedback v = T>(q)u where u
is a new control input.

The existence and construction of the transformation for these systems have
been established in the literature [9,34]. It is given here for completeness of the
presentation. For detailed explanations of the notations on differential geometry
used below, readers are referred to Reference 35.

Proposition 7.1 Consider the drift-free nonholonomic system

g =s1(@vi+ -+ su(@vm
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where s;(q) are smooth, linearly independent input vector fields. There exist
state transformation X = Ti(q) and feedback v = T>(q)u on some open set
U C R"to transformthe system into an (m—1)-chain, single-generator chained
form, if and only if there exists a basis f1, . . .,fm for Ao := span{si, ..., Sy}
which has the form

fi=0/3q) + ) _fi(@)d/dg;
i=2

5= f@dfdg, 2<j<m

i=2
such that the distributions

G = span{ad;-lfz, .. .,ad}lfm :0<i<j},

0<j=<n-1

have constant dimension on U, are all involutive, and G,,_1 has dimensionn—1
onU [9,34].

Using the constructive method given in Reference 14, a two input
controllable system, that is,

g = s1(@v1 + s2(@)v2 (7.14)

where s1(q), s2(g) are linearly independent and smooth, g € R", v = [v, wlT,
can be transformed into chained form (7.13) as

X1 = uy

X2 = up

X3 = xou (7.15)
Xn = Xp—1U]

Under Assumption 7.1, that is, the existence of transformations X =
T1(g),v = T2(q)u, dynamic subsystem (7.9) is correspondingly converted into

My(0S2(X)it + Co(X, X)u + Go(X) = By(OKNI +JT (X% (1.16)
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where

My(X) = M(Q)lqﬂ;l(x)
S$H(X) = S(C])T2(Q)|q:Tl_'(X)
Co(X,X) = C1(q,§)T» + M(q)S(q)Tz(q)lq=T;‘<X)
G2(X) = Gl yorx)
By(X) = B@)l_g-1x
LX) = 1(61)|q:Tl—1(X)

The actuator dynamics is transformed to
di
La +RI + K, Q(u, 0, X) = v (7.17)

where
0= MTZ(Q)Mq:T]*l X)

Next, let us further transform the chained form into skew-symmetric chained
form for the convenience of controller design. This transformation is the simple
extension of the transformation of the one-generation, two-inputs, single-
chained system given by Samson [18]. As shown in References 18, 23, and
24 by introducing the skew-symmetric chained form, via Lyapunov-like ana-

lysis, it is easier to design Uy = [up, ..., um]T and a time-varying control u;
to globally stabilize [x1,X>, ... , X, 1T of the kinematic subsystem, as will be
detailed later.

The kinematic model of chained form (7.13) can be equivalently written as

m
X =hi(X)ur+ Y hyjuy = hi(X)uy + Uy (7.18)
j=2
where
By (X) = [1,%13, -+ s X101, 05 -+ o s X135+« - s Xm—1.m,_1» 01"

hy =[hap,... ,hz,m]T

and hyj,j = 2,...,mis an n-dimensional vector with the 1 + Zjl:zl(ni — D)th
element being 1 and other elements being zero.
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Consider the following coordinates transformation

71 = X1
Zj2 = Xj2
pe (7.19)
%3 = X3
Zji+3 = PjiZi+l T Lnziipz (1<i<n—=3)A=<j<m-1)
where p;; are real positive numbers, and Ly1z;; = (9zj,;/0X)h1(X) are the

Lie derivatives of z;; along h1 (X). This transformation can convert the original
chained system into the skew-symmetric chained form.

Define Z = [21,212, - - - Z0nys - - - 2 Zm—=125 - « - s Zn—1mp_ 1 ]T € R". Coordin-
ate transformation (7.19) can also be written in a matrix form as below:

Z=v¥X

where ¥ = diag[1, ¥y, ..., ¥,,_1]T with ¥ = [;,;] € R%* "%~ being

i =1 G=1,2...,m—1)

Yii =0 G<izi,j=1,2,....,n — 1)

Yii=0 (i +j)mod2 #0)

Vii = pji-3¥ji—2 +¥ji—i-1 (G=34,....m—Li=12,....np — 1)

(7.20)

It is explicit that matrix W is of full rank. Moreover, Ly,z;,;U =0 (1 < i <
n; — 1), and Lp,zjn Uz = ujy1. Taking the time derivative of z; ;3 and using
(7.18), we have

0zj,i+3 .
5; X = (Lnyzjira)ur + (Lnyzjirs) U (7.21)

Zjit3 =
From (7.19), we know that for 0 < i < n; — 4, there is
Ly zjiv3 = —0j,it1Zj,i+2 + Zjita (7.22)
Hence, for 0 < i < n; — 4, Equation (7.21) becomes
Zjir3 = —Pjirt1Zip2 +wiziipa (1 <j<m-—1) (7.23)
while for i = n; — 3

Zi+3 = L g +ujp1 (1 <j<m-—1) (7.24)
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Thus the original system has been converted into the following skew-
symmetric chained form with actuator dynamics:

21 = ug
Zjo = U133
ZGi+3 = =P zZir2 T urzjira (1 <j<m—-10<i<n —4)
iy = Ln1zjnjur + uj41 (7.25)
M3(Z)S5(Z)it + C3(Z, Z)u + G3(Z) = B3(Z)KnI + J1 (Z)A (7.26)
d/
L+ Rl + KaQ3(u, 11, 2) = v (7.27)
where

M3(Z) = Ma(X)|x—w-1(z)
C3(Z,7) = CZ(X’X)|x=\II—1(Z)
G3(Z) = G2(X)x—w-1(2)
B3(Z) 