Automated Visual Inspection
| - and Robot Vision

FROM THE BOOKS OF

QD(OQV SHEL_

Machine Vision

Machine Vision

Automated Visual
Inspection and
Robot Vision

David Vernon

Department of Computer Science
Trinity College Dublin Ireland

Prentice Hall
New York London Toronto Sydney Tokyo Singapore

First published 1991 by

Prentice Hall International (UK) Ltd
66 Wood Lane End, Hemel Hempstead
Hertfordshire HP2 4RG

A division of

Simon & Schuster International Group

© Prentice Hall International (UK) Ltd, 1991

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical,
photocopying, recording or otherwise, without prior
permission, in writing, from the publisher.

For permission within the United States of America
contact Prentice Hall Inc., Englewood Cliffs, NJ 07632.

Typeset in 10 on 12 point Times
by MCS Typesetters, Salisbury, Wiltshire, England

Printed and bound in Great Britain
by Cambridge University Press

Library of Congress Cataloging-in-Publication Data
is available from the publisher

British Library Cataloguing in Publication Data
Vernon, David

Machine vision.

I. Title

006.3

ISBN 0-13-543398-3

12345 959409392091

Everything that | can spy
Through the circle of my eye,
Everything that I can see

Has been woven out of me;

I have sown the stars, and threw
Clouds of morning and of eve
Up into the vacant blue;
Everything that | perceive,

Sun and sea and mountain high,
All are moulded by my eye:
Closing it, what shall I find?

— Darkness and a little wind.

James Stephens
The Hill of Vision

Contents

Preface

Acknowledgements

An introduction to computer vision

1.1 Computer vision: image processing or artificial intelligence?
1.2 Industrial machine vision vs. image understanding
1.3 Sensory feedback for manufacturing systems: why vision?
1.4 Examples of industrial machine vision problems and solutions
1.4.1 Measurement of steel bars
1.4.2 Inspection of computer screens
1.5 A typical system architecture

Hlumination and sensors

2.1 Illumination

2.2 Sensors
2.2.1 Image formation: elementary optics
2.2.2 Camera sensors
2.2.3 Camera interfaces and video standards
2.2.4 Characteristics of camera sensors
2.2.5 Commercially available cameras

Image acquisition and representation

3.1 Sampling and quantization
3.1.1 Spatial frequency and the effects of sampling
3.2 Inter-pixel distances
3.3 Adjacency conventions
3.4 Image acquisition hardware
3.5 Speed considerations

vii

Xi

Xiii

fu—

O 0O NN W=

15

15
17
17
19
22
23
27

28

28
29
34
35
37
41

Contents

4 Fundamentals of digital image processing

4.1.

4.2

4.3

4.4

Point operations
4.1.1 Contrast stretching
4.1.2 Thresholding
4.1.3 Noise suppression by image addition
4.1.4 Background subtraction
Neighbourhood operations
4.2.1 Convolution
4.2.2 Noise suppression
4.2.3 Thinning, erosion, and dilation
Geometric operations
4.3.1 Spatial warping
4.3.1.1 The spatial transformation
4.3.1.2 Grey-level interpolation
4.3.2 Registration and geometric decalibration
Mathematical morphology
4.4.1 Basic set theory
4.4.2 Structuring elements and hit or miss transformations
4.4.3 Erosion and dilation
4.4.4 Opening and closing
4.4.5 Thinning and the extraction of endpoints
4.4.6 Application: identification of endpoints of electrical wires
4.4.7 A brief introduction to grey-scale mathematical morphology

5 The segmentation problem

5.1
5.2

5.3

54

5.5

Introduction: region- and boundary-based approaches
Thresholding

5.2.1 Global, local, and dynamic approaches

5.2.2 Threshold selection

An overview of edge detection techniques

5.3.1 Gradient- and difference-based operators

5.3.2 Template matching

5.3.3 Edge fitting

5.3.4 Statistical techniques

5.3.5 Assessment of edge detection

Region growing

5.4.1 The split and merge procedure using quad-trees
Boundary detection

5.5.1 Boundary refining

5.5.2 Graph-theoretic techniques

5.5.3 Dynamic programming

5.5.4 Contour following

viii

44

45
46
49
51
52
53
53
56
61
67
67
69
71
74
74
74
75
76
78
79
80
80

85

85
86
87
87
90
92
99
103
105
106
106
107
108
109
109
110
110

6

Contents

Image analysis

6.1 Introduction: inspection, location, and identification
6.2 Template matching
6.2.1 Measures of similarity
6.2.2 Local template matching
6.3 Decision-theoretic approaches
6.3.1 Components of statistical pattern recognition process
6.3.2 Simple feature extraction
6.3.3 Classification
6.3.3.1 A synopsis of classification using Bayes’ rule
6.4 The Hough transform
6.4.1 Hough transform for line detection and circle detection
6.4.2 The generalized Hough transform
6.5 Histogram analysis

An overview of techniques for shape description

7.1 A taxonomy of shape descriptors
7.2 External scalar transform descriptors: features of the boundary
7.3 Internal scalar transform descriptors: features of the region
7.4 External space domain descriptors: spatial organization of the
boundary
7.4.1 An algorithm for resampling the boundary chain codes
7.5 Internal space domain descriptors: spatial organization of the
region

Robot programming and robot vision

8.1 A brief review of robot programming methodologies
8.2 Description of object pose with homogeneous transformations
8.3 Robot programming: a wire crimping task specification
8.4 A simple robot-programming language
8.5 Two vision algorithms for identifying ends of wires
8.5.1 A binary vision algorithm
8.5.2 A grey-scale vision algorithm
8.5.3 The vision/manipulator interface
8.6 The camera model and the inverse perspective transformation
8.6.1 The camera model
8.6.2 The inverse perspective transformation
8.6.3 Recovery of the third dimension
8.7 Three-dimensional vision using structured light

ix

118

118
119
119
121
122
122
123
124
126
130
130
134
136

140

141
141
143

145
148

150

156

157
158
164
181
189
189
192
195
196
197
200
202
203

9

Contents

Introduction to image understanding 211
9.1 Representations and information processing: from images to object

models 211

9.2 Organization of visual processes 212

9.3 Visual representations 214

9.3.1 The raw primal sketch 214

9.3.2 The full primal sketch 215

9.3.3 The two-and-a-half-dimensional sketch 221

9.3.4 Three-dimensional models 224

9.3.4.1 Volumelric representations 224

9.3.4.2 Skeletal representations 225

9.3.4.3 Surface representations 226

9.3.5 The extended Gaussian image 228

9.4 Visual processes 230

9.4.1 Stereopsis 230

9.4.2 Camera motion 231

9.4.3 Shading 243

9.5 Concluding remarks 248

Appendix: Separability of the Laplacian of Gaussian Operator 253

Index 255

reface

Machine vision is a multi-disciplinary subject, utilizing techniques drawn from
optics, electronics, mechanical engineering, computer science, and artificial
intelligence. This book is intended to be an in-depth introduction to Machine Vision
which will allow the reader quickly to assimilate and comprehend the essentials of
this evolving and fascinating topic. Significant emphasis will be placed on providing
the reader with a solid grounding in the fundamental tools for image acquisition,
processing, and analysis; a range of techniques, dealing with very simple two-
dimensional systems, through more sophisticated robust two-dimensional
approaches, to the current state of the art in three-dimensional robot vision, will be
explained in some detail. Both application areas of automated visual inspection and
robot vision are addressed. Recognizing that machine vision is just a component of
a larger automation system, a brief introduction to robot programming will be
provided, together with an explanation of the mechanisms by which robot vision
modules interact with the programming language. It is important to recognize that
the discipline of machine vision is presently undergoing a maturing process, with
sophisticated techniques drawn from current research being exploited more and
more in industrial systems. Without doubt, there is a long way to go, but the die
is well cast. Acknowledging this trend, the last chapter of the book is devoted to
the more research-orientated topics of three-dimensional image understanding and
early visual processing (e.g. stereopsis and visual motion). It would indeed be
foolhardy to attempt an exhaustive treatment of these areas; each deserves a volume
on its own. However, if the essence of the philosophy of robot vision in its broadest
sense is cogently imparted to the reader, then the exercise will have been successful
and worth while.

The book is directed at final-year undergraduate and first-year graduate
students in computer science and engineering, and at practising industrial engineers;
the fundamental philosophy being to impart sufficient knowledge so that the reader
will be competent to begin the implementation of a simple vision system and to
enable him/her to study each issue independently in more depth. To that end, care

Xi

is taken to provide adequate references to supporting texts, reports, and research

papers. In this way the boo
text and as a spring-board

k may be viewed both as a self-contained introductory
to more detailed and specific study.

xii

Acknowledgements

Special thanks are due to Kenneth Dawson of the Computer Vision Group,
Department of Computer Sciences, Trinity College, Dublin, for his work on the
raw primal sketch, the extended Gaussian image, and the polyhedral models; and
to Massimo Tistarelli and Prof. Giulio Sandini at the University of Genoa for their
help with the examples of camera motion and stereopsis. Many people in the Trinity
Computer Vision Group read draft versions of this book and I am grateful for their
contributions. I would also like to record a note of thanks to Dr R. Dixon, The
University, Manchester, for his many valuable comments on an earlier draft of this
book. Several of the examples in this book were facilitated by research funded by
the Commission of the European Communities under the European Strategic
Programme for Research and Development in Information T echnology: Project
419 — Image and Movement Understanding.

xiii

1

An introduction to computer
vision

1.1 Computer vision: image processing or
artificial intelligence?

What is computer vision and why would one be interested in studying it? It is
perhaps easier to answer these two questions in reverse order. There are several
reasons why one would be interested in computer vision, but the following two will
serve to illustrate the many directions from which one can view the subject area:

1. All naturally occurring intelligent life-forms exhibit an ability to interact with
and manipulate their environment in a coherent and stable manner. This
interaction is facilitated by on-going intelligent interplay between perception
and motion-control (i.e. action); visual perception is fundamentally important
to most intelligent life.

2. Most manufacturers are concerned with the cosmetic integrity of their
products; customers quite often equate quality of appearance with functional
quality. So, to ensure the successful long-term marketing of an item, it is
highly desirable that its appearance is checked visually before packaging and
shipping. Likewise, it is desirable that the inspection process be automated
and effected without human intervention.

These two motivations for the study of perception characterize two possible
extremes of interest in the processing, analysis, and interpretation of visual
imagery: from the philosophical and perhaps esoteric to the immediate and
pragmatic. And the subject matter of everything between these two extremes
presents one with wide and varied spectrums of commercial interest, difficulty and,
indeed, success.

The answer to the first question (what is computer vision?) now becomes a
little easier to identify. The world we live in and experience is filled with an endless
variety of objects, animate and inanimate, and, to borrow a phrase from David
Marr (of whom we shall hear more later in the book), it is by looking and seeing

1

An introduction to computer vision

that we come to know what is where in this world. So, if vision is a means to an
end — to know the world by looking — then computer vision is exactly the same
except that the medium by which the knowledge is gained is now a computational
instrument rather than the brain of some living creature. Without doubt, this is a
very broad definition. But the subject matter of computer vision is this broad:
topics such as image restoration, image enhancement, automated visual inspection,
robot vision, computer-based image understanding of general three-dimensional
scenes, and visual perception and cognition all fall under the umbrella of the term
‘computer vision’.

Although for centuries man has been interested in solving the puzzle of how
man comes to ‘see’, the first computational experiments in developing artificial
machine vision systems were conducted in the late 1950s and, over the last twenty-
five to thirty years computer-based vision systems of widely varying degrees of
complexity have been used in many diverse areas such as office automation,
medicine, remote sensing by satellite, and in both the industrial world and the
military world. The applications have been many and varied, encompassing
character recognition, blood cell analysis, automatic screening of chest X-rays,
registration of nuclear medicine lung scans, computer-aided tomography (CAT),
chromosome classification, land-use identification, traffic monitoring, automatic
generation of cartographic projections, parts inspection for quality assurance
industrial, part identification, automatic guidance of seam welders, and visual
feedback for automatic assembly and repair. Military applications have included
the tracking of moving objects, automatic navigation based on passive sensing, and
target acquisition and range-finding.

As we have seen, computer vision is concerned with the physical structure of
a three-dimensional world by the automatic analysis of images of that world.
However, it is necessary to qualify the use of the word image. First, the image is
a two-dimensional one and, hence, we inevitably lose information in the projection
process, i.e. in passing from a three-dimensional world to a two-dimensional image.
Quite often, it is the recovery of this lost information which forms the central
problem in computer vision. Second, the images are digital images: they are discrete
representations (i.e. they have distinct values at regularly sampled points) and they
are quantized representations (i.e. each value is an integer value).

Computer vision includes many techniques which are useful in their own
right, e.g. image processing (which is concerned with the transformation, encoding,
and transmission of images) and pattern recognition (frequently the application of
statistical decision theory to general patterns, of which visual patterns are but one
instance). More significantly, however, computer vision includes techniques for the
useful description of shape and of volume, for geometric modelling, and for so-
called cognitive processing. Thus, though computer vision is certainly concerned
with the processing of images, these images are only the raw material of a much
broader science which, ultimately, endeavours to emulate the perceptual capabilities
of man and, perhaps, to shed some light upon the manner by which he
accomplishes his amazingly adaptive and robust interaction with his environment.

2

Industrial machine vision vs. image understanding

1.2 Industrial machine vision vs. image
understanding

Computer vision, then, is an extremely broad discipline (or set of disciplines) and
in order to get to grips with it, we need to identify some way of classifying different
approaches. To begin with, we note that humans live and work within a general
three-dimensional world, pursuing many goals and objectives in an unconstrained
and constantly changing environment in which there are many varied and, often,
ill-defined objects. Industrial automation, on the other hand, is given to performing
single repeated tasks involving relatively few objectives, all of which are known and
defined, in manufacturing environments which are normally constrained and
engineered to simplify those tasks. Industrial systems do not yet work with general
three-dimensional environments (although the environments they do work in are
often much less structured than one would suppose) and vision systems for
manufacturing still exploit many assumptions, which would not generally apply to
unconstrained worlds with many objects and many goals, in order to facilitate
processing and analysis. There is a considerable dichotomy between the two
approaches — a situation which must change and is changing — it is for this reason
that the final chapter is concerned with advanced techniques and their migration to
the industrial environment. Let us look a little closer at each of these classes of
computer vision.

Approaches associated with general environments are frequently referred to
by the terms ‘image understanding’ or ‘scene analysis’. The latter term is now quite
dated as it typically refers to approaches and systems developed during the 1970s.
Vision systems specifically intended for the industrial environment are often
referred to generically as ‘industrial machine vision systems’.

Image understanding vision systems are normally concerned with three-
dimensional scenes, which are partially constrained, but viewed from one (and
often several) unconstrained viewpoint. The illumination conditions may be known,
e.g. the position of the room light might be assumed, but usually one will have
to contend with shadows and occlusion, i.e. partially hidden objects. As such, the
data or scene representation is truly a two-dimensional image representation of a
three-dimensional scene, with high spatial resolutions (i.e. it is extremely detailed)
and high grey-scale resolutions (i.e. it exhibits a large variation in grey-tone).
Occasionally, colour information is incorporated but not nearly as often as it
should be. Range data is sometimes explicitly available from active range-sensing
devices, but a central theme of image understanding is the automatic extraction of
both range data and local orientation information from several two-dimensional
images using e.g., stereopsis, motion, shading, occlusion, texture gradients, or
focusing. One of the significant aspects of image understanding is that it utilizes
several redundant information representations (e.g. based on the object edges or
boundaries, the disparity between objects in two stereo images, and the shading of
the object’s surface); and it also incorporates different levels of representation in

3

An introduction to computer vision

order to organize the information being made explicit in the represefntation in an
increasingly powerful and meaningful manner. For example_, an image under-
standing system would endeavour to model the scene with some form of
parameterized three-dimensional object models built from severa'l low-level
processes based on distinct visual cues. At present, image-understanding systems
utilize both explicit knowledge (or models) and software-embedded knowledge for
reasoning, that is, for controlling image analysis.

Most industrial machine vision systems contrast sharply with the above
approach. The scenes in an industrial environment are usually assumed to be two-
dimensional, comprising known isolated rigid parts, frequently with a contrasting
visual backdrop. Lighting is almost always a critical factor and must be very
carefully organized. Typically, the ambient room lighting will be totally inadequate,
and even confusing, so that each inspection station will require its own set of
dedicated lights, each designed for the task in hand. The images which industrial
machine vision systems use are frequently two-dimensional binary images (pure
black and white, with no intermediate grey-levels) of essentially two-dimensional
scenes. There is normally just one simple internal object representation or model;
the analysis strategy being to extract salient features (e.g. area, circularity, or some
other measure of shape) and to make some decision, typically using feature-based
discrimination. This process frequently uses software-embedded (hard-coded)
knowledge of the scene.

There are two complementary areas of industrial machine vision: robot vision
and automated visual inspection. Both of these use essentially the same techniques
and approaches, although the visual inspection tasks are, in general, not as difficult
as those involved in visual perception for robotic parts manipulation, identification,
and assembly. This is because the inspection environment is usually easier to control
and the accept/reject decisions required for inspection are often easier to determine
than the location and identification information needed for assembly. The
significant problems associated with robotic part handling, too, has meant that
advanced three-dimensional robot vision has not received the attention it merits.

1.3 Sensory feedback for manufacturing
systems: why vision?

The answer to this question must necessarily be double-barrelled:

1. We need feedback because the manufacturing system is not perfect and free
of errors: we wish to ensure that we are informed when errors begin to creep
into the process, so that we can take corrective action and ensure that quality
and productivity are maintained.

2. We use vision because it is by far the most versatile sense available and
conveys extremely rich information when compared with, e.g., sonar or infra-
red sensing. Furthermore, unlike tactile sensing, it senses the environment in

4

Sensory feedback for manufacturing systems: why vision?

a remote manner rather than having to be in contact with the objects being
analysed.

Systems which are equipped with (useful) visual capabilities are inherently adaptive
and can deal with uncertainty in the environment, or at least that is what one would
hope for. The upshot of this is that, by incorporating vision in the manufacturing
process, not only can we identify when things go wrong (e.g. in visual inspection)
but the uncertain and variable nature of the manufacturing environment can be
catered for.

Unfortunately, vision, while versatile, is also the most complex of the senses,
due mainly to the fact that most information in visual imag?s is implicitly coded
and requires extensive processing and analysis to make it explicit. Visual sensing is
difficult: in humans, ten of the estimated one hundred cortical areas in the brain
are devoted to vision and much work remains to be done before we can claim to
have even a modest grasp of visual sensing.

Given that one acknowledges that vision is (potentially) a very powerful sense,
let us look at some of the motivations for using visual processes in the industrial
workplace.

O Safety and reliability
Considerations of safety and reliability usually arise in environments which are
hazardous for humans (e.g. in close proximity to a milling bit) or because
manufactured parts are of critical importance and 100 per cent inspection is
required (e.g. defects in a brake lining might conceivably cause loss of life).
Machine vision also facilitates consistency in inspection standards; such
systems don’t suffer from the ‘Monday-morning’ syndrome and their performance
can be (and should be) quantitatively assessed.

O Product quality

High-volume production using humans seldom facilitates inspection of all parts but
automated visual inspection techniques may make it feasible; this depends on the
complexity of the task and the effective throughput that is required by the
manufacturing system. The latter consideration is particularly important if the
vision system is to be incorporated in an on-line manner, i.e. inspecting each part
as it is manufactured.

[0 Flexible automation

In environments where quality assurance is performed by a machine, it is feasible
to integrate the inspection task into the complete production or manufacturing
cycle, and allow it to provide feedback to facilitate on-line control. This provides
for the adaptive requirements of AMT (advanced manufacturing technology)
systems and facilitates the overall control by computer, such as is found (or, more
realistically, as will be found in the future) in advanced computer integrated
manufacturing (CIM) environments.

An introduction to computer vision

Integration within a CIM system is, however, one of the problems that_ is
forestalling the rapid deployment of vision technology in advanced manufacturing
environments, not least because the vision system will not usually know how to
communicate with, e.g., the CAD (computer aided design) database or another
manufacturer’s robotic palletizing system.

1.4 Examples of industrial machine vision
problems and solutions

Of the two sub-sections of industrial machine vision, automated visual inspection is
presently by far the most important area, accounting for at least 80 per cent of all
current applications. Within inspection, there is a great diversity of uses in fields
such as quality assurance, machine monitoring, and test and calibration. These
applications may be classified on a functional basis as either gauging, inspection,
or sorting:

e Gauging is concerned with the measurement of dimensional characteristics of
parts and with checking tolerances.

e Inspection, per se, is concerned with performing part verification, i.e.
establishing whether there are any parts or sections missing from the object
being inspected or whether there are any extraneous parts which should not
be present. Alternatively, one might be interested in performing flaw
detection, i.e. effecting the detection and classification of flaws (usually
surface flaws) on the part: for example, the detection of scratches on plastic
housings.

e Sorting is concerned with the identification and recognition of parts. Parts will
usually be on a conveyer system and it is pertinent to note that this does not
necessarily involve robot manipulation as the part can quite simply be pushed
into an appropriate bin using a simple pneumatically actuated flipper.

The applications of robot vision are less varied. At present, this is primarily due to
the uncertain nature of the industrial environment within which a robot will be
operating: there are typically three dimensions to deal with instead of two, partly
manufactured objects tend to be poorly finished having spurious material attached
(e.g. swarf) and they tend not to appear exactly where they are expected or are
supposed to be. The two application areas which are well developed are materials
handling and welding. The reasons for this are that these problems can often be
reduced to two-dimensions; objects on a conveyer or pallet are visualized as two-
dimensional silhouetted shapes and tracking a welding seam is conceived, locally,
as a two-dimensional exercise in the estimation of the disparity between the position
of the welding rod and the metal seam. The application which one would expect
to be the main subject matter of robot vision — part assembly — is very poorly
developed for the reasons given above and, additionally, because the assembly
operation requires greater dexterity on the part of the robot than is currently

6

Industrial machine vision: problems and solutions

offered by commercial manipulators. It is for this reason that the development of
compliant manipulation and the incorporation of tactile sensors in the robot
grippers are fundamentally important.

Despite these negative comments, there is still a great deal of potential for
existing vision technologies; there are many common industrial problems which can
be successfully and cost-effectively solved with the judicious use of well-understood
and simple vision tools. To illustrate this and some of the techniques that have been
alluded to so far, a few very simple examples are in order; a more sophisticated
application is described in detail in Chapter 8.

1.4.1 Measurement of steel bars

Raw material for steel ingots to be used in a casting process is delivered in four-foot
long bars with a circular cross-section. Individual ingots are then cut from the bar
and stacked in a wooden box before being moved to the next stage of the casting
process. To ensure high-quality casting with minimal wastage of raw material, it is
essential that the weight of the charges fall within acceptable tolerances. The
nominal tolerances on weight are £5 g.

If the cross-sectional area of the bar of raw material were constant, the
required weight would be given by an ingot of fixed length. Unfortunately, the
cross-sectional area is not constant and the outside diameter of the bar can vary
considerably (a 1.25" bar has a nominal variation of 0.01” but often exceeds this
limit). Thus, in order to ensure the correct weight of a cut charge, the cross-
sectional area of the bar must be monitored and a length of bar chosen such that
the volume (and hence weight) falls within the required tolerance.

To measure the cross-sectional area, an ‘outside diameter’ gauge comprising
a diametrically opposed light source and an image sensor is mounted on a robot end
effector and moved along the axis of the bar (see Figure 1.1). In this manner, the

Line-scan
sensor

N L/ Collimated
—Q— light source
NN

0

Diameter given by
width of shadow

Figure 1.1 Measurement and inspection of steel bars.

7

An introduction to computer vision

bar will form a ‘shadow’ on the light sensor, the size of which corresponds to the
diameter of the bar at that point. Thus, a profile of the bar can be puilt as the bar
passes through the gauge. One pass of the sensor generate.s a single signature
describing how the diameter varies over the scanned lenth. If 1t-1s assumed that the
bar is truly circular in cross-section, this single measure 1s su.fﬁcxeqt to c‘ompute Fhe
volume of the bar; several passes of the sensor at different orientations (i.e. rotating
the sensor about the axis of the bar after each pass) allow t.his assumption t_o be
dropped. The essential point to be noticed about this system is that the? techniques
used are inherently simple (measuring the length of a shadow cast dlfectly on a
sensor) and do not require any special sophisticated software. The gauging process
is very fast and consequently can be integrated into the production system as a
feedback device to control the ingot cutting operation directly.

1.4.2 Inspection of computer screens

Cathode ray tubes (CRTs) must be inspected and calibrated dur.ing thg assembly of
personal computers. The picture position, width, height, distortion, brlghtness,'and
focus need to be computed and, if any of these measurements lie outside specified
tolerances, real-time feedback is required to facilitate on-line adjustment. Such a
system has been configured using standard off-the-shelf equipment, comprising an

=—

v

= T

Change in brightness —8

Vertical eccentricity =D1~D2

Figure 1.2 Inspection of computer screens.

8

A typical system architecture

Apple Macintosh II, a data translation image acquisition device (framestore), and
a Panasonic CCD (charge coupled device) camera.

For the purposes of illustrating the image analysis, consider the problem of
identifying the position of the picture on the screen, such as is depicted in Figure
1.2. We wish to measure the distance between the edge of the picture (shown in
white) and the inside edge of the computer face-plate, i.e. the width of the black
border. To do this, we sample a small linear section (shown as the vertical X—X
section in Figure 1.2) and identify the transitions between white and black and
between black and grey. This is accomplished by estimating the rate of change in
intensity or colour along the strip. A signature of this intensity change is shown in
Figure 1.2; the required distances, D1 and D2, correspond to the distance between
the first two peaks we encounter as we journey from the centre of the strip to the
periphery. The CRT is adjusted until these two distances are, to within specified
tolerances, equal. All the other features which need to be checked, with the
exception of focus and brightness, are computed in a similar manner.

1.5 A typical system architecture

In the context of a manufacturing environment, a machine vision process will
typically encompass nine components: the manufacturing assembly line; some
mechanism for delivering the parts to the machine vision system; a method of
automatically presenting the part to the system (including part acquisition, part
positioning, and registration); some sensing system which provides a representation
understandable by computer systems (and digital systems, in general); the
representation itself; some process to extract pertinent features; a set of criteria
upon which some decision process can be based; a method facilitating the automatic
release of the system; some mechanism for collecting the processed part (see
Figure 1.3).

Rather than discuss in detail each component of the imaging system, as this
would pre-empt the subject matter of later chapters, we will present here no more
than a schematic overview (illustrated in Figure 1.4) denoting many components
and terms which have not yet been explained; the reader is asked to bear in mind
that their introduction here is by way of preview rather than a self-contained
exposition.

The imaging part of the machine vision system comprises sub-systems for
image formation, image acquisition and (pre-)processing, image analysis, and
image interpretation, The image formation system, consisting of the part
illumination, the sensing element and the associated optics, is critical to the
successful deployment of the system. This system generates an analogue
representation of the image scene, typically in the form of a conventional TV video
signal. The task of the image acquisition and processing sub-system is to convert
this signal into a digital image, and to manipulate the resultant image to facilitate
the subsequent extraction of information. The image analysis phase, working with

9

An introduction to computer vision A typical system architecture

(MANUFACTURING ASSEMBLY LINEJ

Control
information

Information across

interface

(DELIVERY TO INSPECTION DEVICE] o =
- [
§ s g ..
(AUTOMATIC ACQUISITIONJ “5 3 £
E £5 c)
I g 5
£ @2
[;JTOMATIC REGISTRATION AND POSITIONINﬂ = 5
[=] he)
g =
| £ 5 2
] = =
IMAGING SYSTEM o2 £0 3
CAMERA/LENS SUB-SYSTEM olE 93 E
LIGHTING SUB-SYSTEM flutomated 5 EE sg &
tsua 2 —
I inspection é.
system
IMAGE ANALYSIS AND 3 T
DECISION ALGORITHMS) 58 @
] Bm 35
s aE g
| 0g 82 °
AUTOMATIC RELEASE g% o° =2
E c [Z e}]
I 28 £5 &
[INSPECTION AND PART PICKUP]
Figure 1.3 Components of a machine vision system in the context of a g 2 § g’ %
manufacturing environment. - ° 28 3 &
S o @ g8 %c =
< f - g 2 $e 3% 6
. . . . s . g g § i K = 28 8% g
the processed image, is concerned with the extraction of explicit information 9 g ® gg g-g Sz 2
regarding the contents of the image (e.g. object position, size, orientation). Thus, 2k b I =8 <o =
there is a fundamental difference between image processing and image analysis: the
former facilitates transformations of images to (hopefully, more useful) images, "
. . . T . . [N} c
while image analysis facilitates the transformation from an image to an explicit |, 85 5 =A= ¢ < 5
(symbolic) piece of information. The final phase, image interpretation, is concerned NV 6% © ElI=g8 e & o=
: . . . o -—C:w—-.s @ ElIESE o®m £ £5 8
with making some decision (e.g. accept or reject) based upon the description of AN 8E E o E=l[EES E E 2¢ %
P = (3] = s [
what is in the image; it provides the link back to the environment to control the I Y52 Ur::.::i? N Q= Eg = §3 o
inspection process or the robot manipulator. “E.%’_.
Each sub-system requires its own specialized type of hardware: image .
formation uses camera technology, optics, and various light sources. Image c k)
acquisition requires an analogue-to-digital converter or ‘frame-grabber’ to capture % 2
a frame of video information; image processing is a computationally intensive task t 2 © §
Q @
o, o a o

(due to the amount of data comprising an image) and the predominant trend is to
accomplish as much of this in hardware as possible. Image analysis typically takes
place on a conventional micro/mini computer, though, again, there is a trend to
accomplish as much of the analysis as possible in dedicated hardware. Image

10 11

Image description

Digital image

Voltage signal
Figure 1.4 Typical system architecture (after Sanderson 1983).

An introduction to computer vision

interpretation is normally effected in software on a conventional computer, usually
the same one which implements the image analysis.

Exercises

1. Comment on the validity of the statement that ‘Industrial machine
vision and image understanding have nothing in common’.

2. Given that an inspection task typically comprises three main stages of
sensing, image processing, and image analysis, iden?ify the component
processes within each stage by describing the functional structure of a
task involving the automated visual inspection of O-ring seals. T‘he'
objective of the inspections task is to compute the outside and inside
diameters and the diameter ratios and to check that each of the three
values is within a certain tolerance. Pay particular attention to the
components related to image analysis.

3. Describe briefly the essential difference between information contained
in images and the information required to make a decision in a
manufacturing environment.

References and further reading

Ballard, D.H. and Brown, C.M. 1982 Computer Vision, Prentice Hall, New Jersey.

Batchelor, B.G., Hill, D.A. and Hodgson, D.C. (eds) 1985 Automated Visual Inspection,
IFS (Publications), Ltd, United Kingdom.

Besl, P.J., Delp, E.J. and Jain, R. 1985 ‘Automatic visual solder joint inspection’, IEEE
Journal of Robotics and Automation, Vol. RA-1, No. 1, pp. 42—56.

Binford, T.O. 1982 ‘Survey of model-based image analysis systems’, The Infernational
Journal of Robotics Research, Vol. 1, No. 1, pp. 18—64.

Brady, J.M. (ed.) 1981 Computer Vision, Elsevier Science Publishers, The Netherlands.

Brady, M. 1982 ‘Computational approaches to image understanding’, ACM Computing
Surveys, Vol. 14, No. 1, pp. 3~71.

Bolles, R.C. 1981 An Overview of Applications of Image Understanding to Industrial
Automation, SRI International, Technical Note No. 242.

Boyle, R.D. and Thomas, R.C. 1988 Computer Vision — A First Course, Bla:kwell Scientific
Publications, Oxford.

Chin, R.T. and Harlow, C.A. 1982 ‘Automated Visual Inspection: A survey’, IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-4, No. 6,
pp. 557-73.

Christiansen, D. 1984 ‘The automatic factory’, IEEE Spectrum, Vol. 20, No. 5, p. 33.

Connors, R.W., McMillin, C.W., Lin, K. and Vasquez-Espinosa, R.E. 1983 ‘Identifying and
locating surface defects in wood: part of an automated lumber processing system’,
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-5,
No. 6, pp. 573—-83.

12

References and further reading

Corby, N.R. 1983 ‘Machine vision for robotics’, IEEE Transactions on Industrial
Electronics, Vol. IE-30, No. 3, pp. 282-91.

Caudrado, J. L. and Caudrado, C. Y. 1986 ‘A.l. in computer vision’, Byte, Vol. 11, No. 1,
pp. 237-58.

Duda, R.O. and Hart, P.E. 1973 Pattern Classification and Scene Analysis, Wiley, New
York.

Fairhurst, M.C. 1988 Computer Vision for Robotic Systems, Prentice Hall International
(UK), Hertfordshire.

Fischler, M.A. 1981 Computational Structures of Machine Perception, SRI International,
Technical Note No. 233.

Gonzalez, R.C. and Safabakhsh, R. 1982 ‘Computer vision techniques for industrial
applications and robot control’, Computer Vol. 15, No. 12, pp. 17-32.

Gonzalez, R.C. and Wintz, P. 1977 Digital Image Processing, Addison-Wesley, Reading,
Mass.

Hall, E.L. 1979 Computer Image Processing and Recognition, Academic Press, New York.

Hanson, A.R. and Riseman, E.M. 1978 ‘Segmentation of natural scenes’, in Computer
Vision Systems, Hanson, A.R. and Riseman, E.M. (eds), Academic Press, New York.

Hara, Y., Akiyama, N. and Karasaki, K. 1983 ‘Automatic inspection system for printed
circuit boards’, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.
PAMI-5, No. 6, pp. 623-30.

Horn, B.K.P. 1986 Robot Vision, The MIT Press, Cambridge, Massachusetts.

Jarvis, J. 1982 Computer Vision Experiments on Images of Wire-Wrap Circuit Boards,
Conference Record on 1982 Workshop on Industrial Applications of Machine Vision,
pp. 144-50.

Kelley, R.B., Birk, J. R., Martins, H.A.S. and Tella, R. 1982 ‘A robot system which acquires
cylindrical workpieces from bins’, IEEE Transactions on Systems, Man, and
Cybernetics, Vol. SMC-12, No. 2, pp. 204—-13.

Kelley, R.B., Martins, H.A.S., Birk, J.R. and Dessimoz, J-D. 1983 ‘Three vision for
acquiring workpieces from bins’, Proceedings of the IEEE, Vol. 71, No. 17,
pp. 803-21.

Mabhon, J., Harris, N. and Vernon, D. 1989 ‘Automated visual inspection of solder paste
deposition on surface mount technology printed circuit boards, accepted for
publication in Computers in Industry.

Moore, F.W. 1987 ‘Remote visual inspection of nuclear fuel pellets with fibre optics and
video image processing’, Optical Engineering, Vol. 26, No. 2, pp. 152—5.

Nevatia, R. 1982 Machine Perception, Prentice Hall, New Jersey.

Pau, L.F. 1983 ‘Integrated testing and algorithms for visual inspection of integrated circuits’,
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-3,
No. 6, pp. 602-8.

Pau, L.F. 1984 ‘Approaches to industrial image processing and their limitations’, Electronics
and Power, February, pp. 135—40.

Pinker, S. (ed.) 1984 ‘Cognition’, The International Journal of Cognitive Psychology,
Vol. 18, Nos. 1-3.

Pratt, W.K. 1978 Digital Image Processing, Wiley, New York.

Pugh, A. (ed.) 1983 Robot Vision, IFS (Publications) Ltd, United Kingdom.

Rosenfeld, A. 1984 Why Computers Can’t See (Yet), Abacus, Vol. 1, No. 1, pp. 17-26,
Springer Verlag, New York.

Rosenfeld, A. and Kak, A. 1976 Digital Picture Processing, Academic Press, New York.

13

An introduction to computer vision

1982 Digital Picture Processing, Academic Press, New York.

. Kak, A.
Rosenfeld, A. and ummary and Forecast, Tech Tran Corp.

Sanderson, R.J. 1983 Machine Vision Systems: A S

Iilinois. . ' .
Spoehr, K.T. and Lehmkuhle, S.W. 1982 Visual Information Processing, Freeman and Co.,

Sureshs:alg. ,F Ir?zi(c:ll:lizwski, R.A., Levitt T.S. and Overland, J.E. 198? ‘A real-time automate'd
visual inspection system for hot steel slabs’, IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol. PAMI-5, No. 6, pp. 563—72. -

Vernon, D. (Rapporteur) 1987 Sensoric Feedback for Control and Decision Support
Systems, Report of a Workshop in the Framework of ESPRIT Conference 1987,

Directorate General XIII (eds.).
Vernon, D. 1989 ‘Computers See the Light’, Technology Ireland, Vol. 21, No. 1, pp. 21-3.

14

2

Illumination and sensors

2.1 [Humination

Scene and object illumination play a key role in the machine vision process. The
central purpose of imposing controlled constant illumination is to enhance visually
the parts to be imaged so that their flaws, defects, and features are highlighted and
so that their identification and classification by the vision system becomes somewhat
easier. Although the choice of lighting will typically be application-dependent, some
general points may be pertinent.

The common incandescent bulb is probably the simplest source of light. It is
cost-effective and it is easily adjusted for light intensity; however, it generally
provides directional illumination since it is, to an approximation, a point source of
light. Hence, incandescent bulbs cast strong shadows which invariably cause
problems for machine vision software. Special bulbs are normally required as
degradation in emitted light intensity is common with age. Furthermore,
incandescent bulbs emit considerable infra-red radiation; this does not cause
problems for humans as we are not sensitive to such light but some camera sensors,
particularly so-called CCD cameras, are sensitive and visual data can be washed out
by the reflected infra-red rays.

For most machine vision applications, a diffuse source of light is the most
suitable. Diffuse lighting is non-directional and produces a minimum amount of
shadow. Fluorescent lighting is the simplest and most common method of obtaining
diffuse illumination and is especially good for providing illumination of large areas.

In situations where the only features that need to be inspected are evident
from the silhouette of the object, back-lighting is the most appropriate. Back-
lighting, e.g. in the form of a light table, provides high contrast between the object
and the background upon which the object rests. Its advantage is that it facilitates
very simple object isolation or segmentation, a topic to which we will return in
Chapter 5.

15

An introduction to computer vision

1982 Digital Picture Processing, Academic Press, New York.

. Kak, A.
Rosenfeld, A. and ummary and Forecast, Tech Tran Corp.

Sanderson, R.J. 1983 Machine Vision Systems: A S

Iilinois. . ' .
Spoehr, K.T. and Lehmkuhle, S.W. 1982 Visual Information Processing, Freeman and Co.,

Sureshs:alg. ,F Ir?zi(c:ll:lizwski, R.A., Levitt T.S. and Overland, J.E. 198? ‘A real-time automate'd
visual inspection system for hot steel slabs’, IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol. PAMI-5, No. 6, pp. 563—72. -

Vernon, D. (Rapporteur) 1987 Sensoric Feedback for Control and Decision Support
Systems, Report of a Workshop in the Framework of ESPRIT Conference 1987,

Directorate General XIII (eds.).
Vernon, D. 1989 ‘Computers See the Light’, Technology Ireland, Vol. 21, No. 1, pp. 21-3.

14

2

Illumination and sensors

2.1 [Humination

Scene and object illumination play a key role in the machine vision process. The
central purpose of imposing controlled constant illumination is to enhance visually
the parts to be imaged so that their flaws, defects, and features are highlighted and
so that their identification and classification by the vision system becomes somewhat
easier. Although the choice of lighting will typically be application-dependent, some
general points may be pertinent.

The common incandescent bulb is probably the simplest source of light. It is
cost-effective and it is easily adjusted for light intensity; however, it generally
provides directional illumination since it is, to an approximation, a point source of
light. Hence, incandescent bulbs cast strong shadows which invariably cause
problems for machine vision software. Special bulbs are normally required as
degradation in emitted light intensity is common with age. Furthermore,
incandescent bulbs emit considerable infra-red radiation; this does not cause
problems for humans as we are not sensitive to such light but some camera sensors,
particularly so-called CCD cameras, are sensitive and visual data can be washed out
by the reflected infra-red rays.

For most machine vision applications, a diffuse source of light is the most
suitable. Diffuse lighting is non-directional and produces a minimum amount of
shadow. Fluorescent lighting is the simplest and most common method of obtaining
diffuse illumination and is especially good for providing illumination of large areas.

In situations where the only features that need to be inspected are evident
from the silhouette of the object, back-lighting is the most appropriate. Back-
lighting, e.g. in the form of a light table, provides high contrast between the object
and the background upon which the object rests. Its advantage is that it facilitates
very simple object isolation or segmentation, a topic to which we will return in
Chapter 5.

15

lllumination and sensors

In some manufacturing environments, it is necessary to inspect moving
objects. Depending on the characteristics of image sensor, it may be necessary to
‘freeze’ the motion of the object for an instant by the use of a strobe light or
electronic flash. The lamp emits a short (1 ms) burst of light, thus the moving object
is illuminated for a very short period and appears stationary. The activation of the
strobe must be synchronized with the acquisition of the image. Alternatively, you
can exploit cameras with a very fast ‘shutter speed’ or, rather, the electronic
equivalent, a very short exposure time. The exposure is usually referred to as the
integration time since it is the period over which the sensor integrates or averages
the incident light. One would normally choose the latter option of a short
integration time, since it is more ergonomic and less disruptive for humans.

1 Control of illumination and light levels

As many inspection systems base much of their analysis on the absolute intensity
of the incident light, the control of the object illumination can be important. In
particular, if image processing and analysis decisions are being made on the basis
of a fixed intensity datum (threshold), then some problems will occur if the
illumination, and hence the reflected light, changes. If possible, the vision system
should be able to adapt to such changes, although this does not necessarily mean
that it should be capable of dealing with dynamic changes. Most illumination
systems degrade quite slowly over time and it would be quite satisfactory if the
system were capable of self-calibration at the beginning of each day.

Other alternatives exist, however, to this adaptive approach. One solution is
to ensure that the illumination does, in fact, remain constant by monitoring it using
light meters and adjusting the illumination system appropriately. Alternatively, the
aperture of the camera lens might be altered. Note, however, that electronically
controlled aperture lenses (so-called auto-iris lenses) should not be employed
directly; their function is to alter aperture so that the average amount of light
passing through the lens remains constant. This is not appropriate for machine
vision systems as the grey-tone shade of a particular feature would vary, depending
on the intensity of the ambient lighting.

It was mentioned above that incandescent lighting is not suitable for some
cameras and, in general, one should ensure that the lighting system is compatible
with the image sensor. For example, mains-powered lighting is inherently ‘flickery’
due to the a.c. characteristics of the mains electricity supply. Humans do not notice
this, in general, because they effectively ‘integrate’ (or average) the incident
illumination over a short period of time. This process also accounts for our ability
to view moving objects in cinema films and perceive the motion to be continuous.
Machine vision sensors, as we shall see in the next section, do not integrate in quite
the same way and, when they acquire the image, the flicker can become apparent.
The use of an appropriate (d.c., say) power supply can alleviate this problem, when
it does occur.

16

Sensors

2.2 Sensors

The task of a camera system is to convert an optical picture, typically representing
a two-dimensional or three-dimensional scene, into some form suitable for use
with electrical systems. Since the camera represents the direct link between the
environment being examined and the information-processing system, it plays a
particularly significant role and merits a good deal of attention.

2.2.1 Image formation: elementary optics

Before commencing a discussion of cameras, image sensors, and image acquisition
components proper, we will first address a few fundamental issues on the optics of
a vision system and of lenses in particular.

Lenses are required to focus part of the visual environment onto the image
sensor. It is possible to construct an imaging system without lenses, using, for
example, a collimated light source to project a shadow of a (small) object onto the
sensor but such a configuration is not typical of the requirements of a vision system.

Lenses are defined by their focal length (quoted in millimetres: mm) and their
.aperture (the f number). These parameters determine the performance of the lens
in terms of light-gathering power and magnification, and it often has a bearing on
its physical size.

The focal length of a lens is a guide to the magnification it effects and its field
f)f view. Selecting the focal length which is appropriate to a particular application
is simply a matter of applying the basic lens equation:

1,11
u v
where /

v is the distance from the lens to the image,
u is the distance from the lens to the object,
f is the focal length.

Noting the magnification factor M is:
_ image size
object size

and, equivalently:

_ image distance
object distance

Thus:

uM
M+1

f:

17

[llumination and sensors

Hence, if we know the required magnification factor and the distance from the
object to the lens, we can compute the required focal length.

For example, if a 10cm wide object is to be imaged on a common
8.8 % 6.6 mm sensor from a distance of 0.5 m this implies a magnification factor of:

_88 _0.088
100

So:

_500% 0.088 _ 40 44
1.088

Thus, we require a 40.44 mm focal length lens. Typically, one would use a slightly
shorter focal length (e.g. 35 mm) and accept the slight loss in resolution due to the
larger field of view.

The minimum focal distance is the minimum distance between the front of the
lens and the object at which the object can still be in focus. Generally speaking,
lenses with short focal lengths have smaller minimum focal distances.

If the lens is required to focus on a relatively small object at short distances,
the minimum focal distance (typically 300 mm) may be too large. In that case, an
extension tube can be used to increase the distance, v, of the lens from the sensor
and hence decrease the distance, u, from the lens to the object. For a given focal
length, f, the lens equation stipulates that u decreases as v increases, if the image
is to remain in focus.

The f-number is a measure of the amount of light allowed to pass through the
lens and is a normalized measure of lens aperture. It is defined by the focal length
divided by the diameter of the aperture. The standard scale is 1.4, 2, 2.8, 4, 5.6,
8, 11, 16; each increase reduces the amount of light passing through the lens by
one-half.

The depth of field is the distance between the nearest and the furthest points
of a scene which remains in acceptable focus at any one aperture setting. In general,
the depth of field gets larger as the focused point moves away from the lens (given
constant aperture and focal length). Also, the depth of field increases significantly
as the aperture closes (i.e. as the f number increases) for any given focusing
distance.

Lenses have many types of standard mounts, for example the Pentax,
Olympus, Nikon bayonet mounts, but the standard on television, and CCTV
(Closed Circuit TV), cameras is a screw mount called the C mount. Since there is
a vast choice of 35 mm photographic lenses, it makes sense to be able to use these
photographic lenses with C mount cameras and there are several types of bayonet
adaptors available for C mount cameras. However, it should be remembered that
these lenses are usually much more bulky than the miniature lenses which are
specifically designed for CCD cameras. The reason for this is that a photographic
lens is designed to image a 35 mm format and, for a given focal length, the optical
surface must be much larger. CCD sensors (as we will see in the next section) are

18

Sensors

typically less than 10 mm in width and hence the optical surface can be much
smaller.

Many of the visual problems which cause difficulty in interpreting a scene can
often be solved by the use of simple filters on the camera lens. Filters are frequently
used by the television and video industries to produce special effects, for example,
the star-light filter used to make candlelight seem soft and star-like. Filters are just
as often used to reduce, or remove, such effects; polaroid sunglasses are probably
the most widely used ‘filters’ and are used to reduce glare. In machine vision, one
of the most annoying and potentially disruptive problems is that due to specular
reflection (mirror-like reflection on shiny objects). The use of a simple polarizing
filter on the camera lens can often reduce the effect of these reflections.

Some sensors are sensitive to segments of the electromagnetic spectrum which
do not convey visual data, e.g. infra-red radiation. The use of a simple infra-red
blocking filter can solve this problem in a simple and effective manner.

2.2.2 Camera sensors

There are essentially two types of video camera available: one, the vidicon, is based
on vacuum-tube technology and the other is based on semi-conductor technology.

Briefly, a vidicon tube is a photoconductive device which employs a
photosensitive sensor layer consisting of several million mosaic cells insulated from
one another on a transparent metal film (refer to the Figure 2.1). Each cell
represents a small capacitor whose charge is a function of incident light. The sensor
layer is scanned in a raster format with an electron beam over 625 lines in
accordance with the television standard (discussed in the next section). This beam
is deflected magnetically by a set of coils outside the tube bulb. The electron beam
makes up charge lost through the incidence of light in individual mosaic cells and

Transparent

. . front plate
Focusing coil P

[
R S ———— Lens

Cathode

-@ Deflected electron beam

\

Deflection coil

Sensor layer

Video signal

Figure 2.1 Schematic of the pickup tube of the Vidicon television camera.

19

Hlumination and sensors

so generates the video signal at the sensor element. This video signal is simply a
continuous analogue signal proportional to the light intensity of the focused
image. The camera electronics insert synchronization pulses (syncs.) to indicate scan
lines, fields and frame ends (see Section 2.2.3).

A distinction is made between the following camera types depending on the
sensor element: the standard vidicon has a sensor element comprised of antimony
sulphide (Sb2S3), the silicon diode vidicon has a sensor element made from silicon
(Si), while the plumbicon has a sensor element made of lead oxide (PbO).

Most solid-state cameras are based on charge-coupled device (CCD)
technology, though there are several variations on the theme. In order for the
reader to be at least acquainted with the names of these devices, they are listed here:

® charge transfer devices CTD
@ single transfer devices STD
@ bucket brigade devices BBD
@ charge coupled devices CCD
@ charge injection devices CID
@ surface charge coupled devices SCCD
@ bulk charge coupled devices BCCD

CCD technology is the most widespread, the basic structure of which is that of an
analogue shift register consisting of a series of closely spaced capacitors. Charge
integration (accumulation) by the capacitors, photosites, caused by the photons
comprising the incident light, provides the analogue representation of light
intensity. At the end of the integration period (exposure time) these charges are read
out of the sensor.

CCD sensors most commonly use one of three addressing strategies: interline
transfer, frame transfer, and column—row transfer.

The interline transfer CCD is organized into column pairs of devices. An
imaging column of photosensors is adjacent to an opaque vertical shift register (see
Figure 2.2). Charge accumulates in the imaging column until the end of the
integration period, when it is transferred to the opaque column. The signal then
shifts vertically into a horizontal shift register that represents the picture
sequentially, line by line. The advantage of the interline transfer is that the transfer
time (to opaque storage) is short compared to the integration period. This is
desirable because when transfer time approaches the integration time, solid-state
sensors tend to exhibit a locally contained spreading of the image response, called
smear. Thus, the interline transfer minimizes smear.

In the frame transfer organization (refer to Figure 2.3) the sensor consists of
vertical columns of CCD shift registers divided into two zones. One zone, where
charge accumulates during integration time, is photosensitive. When integration is
complete, the whole array is transferred in parallel to the opaque storage area of
the second zone.

A third type of solid-state sensor employs x—y addressing to transfer charge
from the photosite to the output signal amplifier. The sensor elements are addressed

20

Sensors

Light-sensitive photosites
Shielded CCD shift registers

l D —p—pp

@ Charges are shifted to the
shielded area

@ The charges in the column are
shifted down one cell

® A row of charge is then shifted

out +
g Output signal
- ® ——p — {to amplifier)
Figure 2.2 Interline transfer of charge in CCD sensors.
Light-sensitive photosites
@ All charges are shifted down to the "

shielded area
@ Each row of charge is then shifted
out

Shielded CCD shift registers

& Output
> 3 PP signal
(to amplifier)

Figure 2.3 Frame transfer of charge in CCD sensors.

by selecting individual column and row electrodes. Charge collected under the
column electrode is transferred to the row electrode and amplified for output.
All the devices discussed so far have been so-called ‘area sensors’, i.e. the
sensor has been a two-dimensional array of photosites. However, there is another
important class of solid-state sensor (and camera): this is the linear array sensor or

21

Illumination and sensors

line-scan sensor. In effect, these sensors ar¢ simply a one-dimensional array (row)
of photosites, and use exactly the same technology as the two-dimensional array
sensors. They differ in two important characteristics, however. Firstly, these
sensors can have between 256 and 4096 photosites in a row and, hence, can achieve
much greater resolution than state-of-the-art array cameras. Since they are
inherently one-dimensional devices they can only take pictures of slices of a two-
dimensional scene, and if a two-dimensional image is required, several such slices
must be acquired. Thus, these sensors are best suited to the inspection applications
in which the scene to be scanned is in continuous linear motion (or, indeed, where
the camera itself can be translated). The second point to notice about these sensors
is that the video signal that they generate does not correspond to any particular
video standard and what is produced is essentially a time-varying analogue voltage
which represents the incident light along the line of photosites. The repercussion of
this characteristic is that most systems which use a line-scan camera tend to have
custom-designed computer interfaces, although it is worth noting that matched line-
scan cameras and digitizers and, indeed, line-scan digitizers are now commercially
available (e.g. from Datacube Inc. and Imaging Technology Inc.).

2.2.3 Camera interfaces and video standards

The monochrome video signal standard used in the United States and Japan is
RS-170, a subset of the NTSC (National Television Systems Committee) standard.
Europe uses the international CCIR (International Radio Consultative Committee)
standard, which is similar to, but incompatible with, RS-170. Television video
signal standards are, unfortunately, inappropriate for the requirements of machine
vision and both standards present essentially the same problem to machine vision
applications. However, since the entertainment industry is still a far more lucrative
market for camera manufacturers than machine vision is, few image sensors and
cameras deviate from television standards. We will have a brief look at the CCIR
standards to better understand the limitations it imposes on the imaging system.

Approximately fifty pictures per second are necessary for a flicker-free
television picture. As the generation of a complete new picture every gth of a
second (20 ms) would place a severe load on the capabilities of the video amplifier
so, in an attempt to obtain a flicker-free image, the odd lines of a picture are
scanned first and then, in the following &th of a second, the even lines are scanned.
This means that a complete picture is established in ~th of a second. This
procedure whereby every alternate line is skipped in each field is called interlaced
scanning. Thus, the number of complete pictures per second, i.e. the picture frame
frequency is 25 Hz; the raster field frequency is 50 Hz. Each frame comprises 625
lines in the CCIR standard (525 in the NTSC RS-170 standard) thus, with twenty-
five pictures of 625 lines, 625 X 25 = 15625 lines will be scanned in a second. The
so-called line frequency, f, is, hence, 15625 Hz.

The signal from a line comprises the picture information, a synchronizing
pulse marking the end of a line (horizontal sync. pulse), and a blanking period. The

22

Sensors

time available for one line is:
T=1/f=1/156255=64X107%5=64 s

11.5 ps of this are used for the blanking and synchronizing signal. This consists
of a 6.5 us porch blanking signal and a 5 us sync. The sync. pulse signals the
beginning of one line and the end of another and the porch represents a quiescent
voltage level which prevents the beam appearing as a bright line during the line
flyback (when being displayed on a video monitor).

The end of the picture consisting of 625 lines, i.e. the frame, is characterized
by several picture pulses which are significantly different from the line pulses.
During these pulses, the picture is blanked and the beam returns to the top of the
picture for the next frame. A (simplified) diagrammatic representation of a video
signal is depicted in Figure 2.4.

Unfortunately for machine vision, the CCIR standard specifies a 4:3
horizontal-to-vertical aspect ratio for video signals. The television monitor has a
similar aspect ratio and thus an image of a square will appear square. However,
as we shall see shortly, image acquisition devices often have a 1:1 aspect ratio,
meaning that the rectangular video picture is effectively squeezed into a square
with a consequent geometric distortion. This has very severe repercussions for
vision-based gauging applications which we will address in Chapter 3.

2.2.4 Characteristics of camera sensors

There are several measures of the usefulness and reliability of a camera sensor;
these characteristics will be briefly considered in turn.

[0 Resolution

Given that the purpose of the camera sensor is to convert an incident analogue
optical image to some electrical signal, the resolution of a sensor can be defined as
the number of optical image elements which can be discriminated by that sensor

Reference white
voltage level

Reference black
voltage level

Blanking
voltage
level Sync. pulse

Sync. voitage level

Figure 2.4 Composite video signal.

23

[llumination and sensors

and represented by the resulting signal. The resolution is limited by the number of
photosites in the sensor since this defines the frequency with which the optical image
is sampled. The concept of image sampling is an important one and we will defer
detailed discussion of this issue until Chapter 3. For the moment, note that in solid-
state cameras the effective resolution of the sensor is approximately half that of the
number of photosites in any given direction. Resolution is also limited by the array
geometry and by how much opaque material separates the photosites: interline
transfer sensors have less effective resolution than frame transfer sensors due to the
presence of shielded buffers between each photosensitive line.

As we will see in Chapter 3, the resolution of the camera system is also
constrained by the limitations imposed by the CCIR video standard and by the
sampling frequency of the analogue-to-digital converter which converts the video
signal to a digital image.

Tube camera resolution is a function of the electron-beam diameter relative
to the area of the photoconductive layer. Tube camera resolution is generally higher
than that of solid-state cameras and easily outstrips the limitations imposed by the
CCIR standard.

1 Geometric faults
For television cameras with electron-beam scanning, deviations in constancy of the
vertical and horizontal deflection show up as faults in the geometrical placement of
the picture content. Standard industrial cameras are not designed as measuring
cameras but to generate a picture for subjective human examination, and they
exhibit relatively large geometrical faults. For the standard industrial television
camera it is usually * 1 per cent or = 2 per cent of the picture frame and it is usually
much larger with cheaper cameras.

With CCD cameras there are no geometrical faults due to electron beam
scanning; any geometric distortion is due to the lens.

[0 Sensitivity and transfer linearity
The input signal of an image sensor is a distribution of light or brightness. The
output signal is a current or voltage which is related to the brightness. The
sensitivity of the sensor is defined as the ratio of the output magnitude to the input
magnitude.

In general, the output will be some power function of the input magnitude:

output magnitude = (input magnitude)”

where y (gamma) is the exponent of the transfer function which, rearranging the
above equation, is given by:

_ log(output magnitude)
log(input magnitude)

A linear sensor would have a v of 1. The following are typical values of transfer

24

Sensors

linearity for common types of sensor:

Image sensor Gamma
Sb,S3 vidicon 0.6
PbO plumbicon 0.95
CCD 1

O Lag

Lag is often defined as the percentage of the signal current at a certain point of the
target some period after the illumination has been switched off. Typical values for
an elapsed time of 60 ms are shown below:

Image sensor Lag
Sb,S; 20%
PbO plumbicon 2% —-5%
CCD 1%

The lag introduces a limitation in the practical industrial application of TV cameras
in terms of the permissible speed of movement of an object under consideration.

1 Spectral sensitivity

The spectral sensitivity of an image sensor system is defined as the variation of the
output as a function of the wavelength of the incident light. Referring to Figure 2.5,
we see that solid-state image sensors are sensitive to light in the near infra-red
region of the spectrum, and since such radiation does not carry any useful visual
information, an infra-red cut filter should be used with such cameras, particularly
if they are to be used with incandescent lighting.

0 Blooming
If the sensor of a television camera is subjected to intensive brightness, then the

1.0~
[]
n
c
Qo
Q.
723
e
5 0.5
2
=
9 -~
& Ultra- Vidicon Near

vi/olet Violet Red \ infra-red. Infra-red
/7
|]]] I] | I |] |

400 500 600 700 800 + 900 1000 1100 - 1200
Wavelength {nm)

Figure 2.5 Spectral sensitivity of Vidicon and CCD cameras.

25

Hllumination and sensors

excess charge carriers spread into neighbouring zones and light is registered there
also. Thus, a thin beam of very bright light will be sensed over an area considerably
larger than the cross-sectional area of the beam. This effect is called ‘blooming’ and
is especially noticeable with specular (mirror-like) reflections. While tube cameras
are most susceptible to blooming, solid-state sensors, too, will exhibit this
characteristic under extreme conditions.

O Noise

Noise, unwanted interference on the video signal, is defined quantitatively by the
signal-to-noise ratio (S/N), i.e. the ratio of the amplitude of the wanted signal to
the average amplitude of the interference. For television cameras, the signal-to-
noise ratio is defined as the peak-to-peak video signal divided by the effective
amplitude of the noise. If one follows general practice in telecommunications and

Table 2.1 CCD Camera systems

Vendor Model Camera Sensor Output Interface
type resolution signal required
Sony XC-7T1CE CCD Area 756 % 581 CCIR Standard
framestore
Sony XC-57CE CCD Area 500 x 582 CCIR Standard
framestore
Panasonic WVS50 CCD Area 500 x 582 CCIR Standard
framestore
Pulnix TM-540 CCD Area 500 x 582 CCIR Standard
framestore
Fairchild CCD3000 CCD Area 488 x 380 CCIR Standard
framestore
Hitachi KP-120 CCD Area 320 % 240 CCIR Standard
framestore
Videk Megaplus CCD Area 1320 x 1035 Non- Special
interlaced framestore
analogue;
digital
Fairchild CCD1600R CCD Line-scan 3456X1 Analogue Requires camera
controller
Honeywell HVS 256 CCD Line-scan 256 x 1 RS232; Conventional
RS422 serial port
Fuiji PJ1 CCD Line-scan 2048 x 1 Analogue; Can be directly
Digital flags interfaced to
PLC"
Analytic IMS-90 CCD Line-scan 1024 x 1 Analogue; Slow-scan
Vision 2048 x 4 Digital framestore; can
Systems 4096 be directly
interfaced to
PLC

APLC: Programmable Logic Controller.

26

References and further reading

expresses the ratio of electrical variables of the same unit in logarithmic terms, one
can compute the level, defined as twenty times the decimal log of the ratio of the
linear variables and expressed in decibels (dB). Thus, a signal-to-noise ratio of
20 dB means that the picture quality is very bad (20 dB implies that log;o(S/N)
equals 1 and, thus, the signal-to-noise ratio is 10:1). For satisfactory quality, a
signal-to-noise ratio of 40 dB or more is required.

2.2.5 Commercially available cameras

Table 2.1 summarizes the characteristics of a number of popular CCD cameras
which are available at time of writing. We have listed only CCD cameras since these
are the most popular for industrial machine vision.

Exercises

1. Identify the basic operational differences between vidicon-tube
cameras and solid-state cameras. Which type of camera is more
appropriate for use in FMS (flexible manufacturing systems) requiring
automated vision for either inspection or robot guidance? Why is this
so?

2. What limitations does the European CCIR television standard impose
on the effective resolving power of imaging equipment? Is it an
appropriate standard for machine vision? Explain.

3. It is required to image a 5 cm wide object using a CCD camera,
whose sensor measures 8.8 mm x 6.6 mm, at a distance of 0.5 m. What
focal length lens should you choose? What options do you have if you
wish to image an object which measures only T mmx 1 mm.

References and further reading

Batchelor, B.G., Hill, D.A. and Hodgson, D.C. (eds) 1985 Automated Visual Inspection,
IFS (Publications) Ltd, U.K.

Blouke, M.M., Corrie, B., Heidtmann, D.L., Yang, F.H., Winzenread, M., Lust, M.L. and
Marsh, H.H. 1987 ‘Large format, high resolution image sensors’, Optical Engineering,
Vol. 26, No. 9, pp. 837-43.

CCIR, International Radio Consultative Committee 1982 Recommendations and Reports of
the CCIR, 1982, XVth Plenary Assembly, Geneva, Vol. XI, Part 1.

Dunbar, P. 1986 ‘Machine vision’, Byte, Vol. 11, No. 1, pp. 161-73.

Herrick, C.N. 1972 Television Theory and Servicing, Reston Publishing Company, Virginia.

Market Intelligence Research Co. 1986 Solid-state Cameras for Machine Vision, Market
Intelligence Research Company, 4000 Middle Field Road, Palo Alto, California,
94303, USA. (Vision, SME, Vol. 4, No. 1, p. 12.)

Tassone, J. 1987 ‘An illumination system for inspecting printed circuit boards with surface
mounted components’, Vision, SME, Vol. 4, No. 4, pp. 1-5.

27

3

Image acquisition and
representation

3.1 Sampling and quantization

Any visual scene can be represented by a continuous function (in two dimensions)
of some analogue quantity. This is typically the reflectance function of the scene:
the light reflected at each visible point in the scene. Such a representation is referred
to as an image and the value at any point in the image corresponds to the intensity
of the reflectance function at that point.

A continuous analogue representation cannot be conveniently interpreted by
a computer and an alternative representation, the digital image, must be used.
Digital images also represent the reflectance function of a scene but they do so in
a sampled and gquantized form. They are typically generated with some form of
optical imaging device (e.g. a camera) which produces the analogue image (e.g.
the analogue video signal discussed in the preceding chapter), and an analogue-
to-digital converter: this is often referred to as a ‘digitizer’, a ‘frame-store’, or
‘frame-grabber’.

The frame-grabber samples the video signal in some predetermined fashion
(usually in an equally spaced square grid pattern) and quantizes the reflectance
function at those points into integer values called grey-levels (see Figure 3.1). Each
integer grey-level value is known as a pixe/ and is the smallest discrete accessible
sub-section of a digital image. The number of grey-levels in the (equally spaced)
grey-scale is called the quantization or grey-scale resolution of the system. In all
cases, the grey-scale is bounded by two grey-levels, black and white, corresponding
to the minimum and maximum measurable intensity respectively. Most current
acquisition equipment quantizes the video signal into 256 discrete grey-levels, each
of which are conveniently represented by a single byte. In certain cases, a grey-scale
of —128 to +127 is more convenient; processed images need not necessarily
represent the reflectance function and pixels may assume negative values but the
grey-level can still be represented by a signed-byte integer.

The sampling density, the number of sampling points per unit measure, is

28

Sampling and quantization

Rectangular sampling pattern

- Grey-scale

Figure 3.1 Sampling and quantization.

usually referred to as the (spatial) resolution and, since the sampling device is
usually arranged as a square grid, it is measured in terms of the number of sampling
elements along each orthogonal axis. This normally corresponds to the extent of the
number of pixels in both the horizontal and vertical directions. Most current
commercial frame-grabbers have spatial resolutions of 512X 512 pixels. In
summary, digital image acquisition equipment is essentially concerned with the
generation of a two-dimensional array of integer values representing the reflectance
function of the actual scene at discrete spatial intervals, and this is accomplished
by the processes of sampling and quantization. Since these are fundamentally
important concepts, we will look at them in a little more depth in the remainder of
this section.

3.1.1 Spatial frequency and the effects of sampling

Recall that the objective of the image acquisition system (which includes the sensor
sub-system) is to convert an analogue optical image to a digital image in as faithful
a manner as possible. As we have seen, this is achieved by first using the sensor to
sample the analogue optical image, generating an analogue video signal, and then
by subsequently re-sampling the video signal and generating the digital signal.
Thus, there are three factors which can limit the effective resolution and fidelity of
the final digital image:

(a) the sensor sampling frequency;

(b) the bandwidth of the video signal;

(c) the sampling frequency of the analogue-to-digital converter, i.e. the
frame-grabber.

29

Image acquisition and representation

We shall consider each of these in turn. First, however, we need to look a little
closer at the idea of sampling an analogue image and to develop the concept of
spatial frequency. We will do this intuitively at first and then we will formalize the
ideas somewhat. Readers who find this area interesting should consult Duda and
Hart (1973) which contains a particularly lucid account of this topic.

High-frequency signals, such as high-pitch soundwaves, periodically change
their value over a very short period of time. Similarly, a high-frequency spatial
signal, such as an image, periodically changes its value (e.g. its intensity or grey-
level) over a very short distance, i.e. it changes abruptly from one grey-level to
another. Conversely, low spatial frequencies correspond to ‘slower’ changes in
intensity where the change occurs gradually from one position in the image to
another.

To make this idea more formal, consider a spatially unbounded analogue
optical image g(x, y). The Fourier transform G(fx, fy) of the image g(x, y) is
defined by:

G(fer J5) = F(g(x, y))
= So_o So_o g(x, y) exp[—27i(fex + ;)] dx dy (3.1

The inverse Fourier transform of G(f, fy) is defined by:
g(x,)= FHG(fn)

=| | cthp) ewprichxfimarar, G2
The variables f; and f, which identify the domain over which G(f, fy) is defined
are known as the spatial frequencies in the x- and y-directions, respectively, and
the domain is known as the spatial frequency domain. What do these variables
and this domain represent? The integral in equation (3.2) can be viewed as
a ‘generalized sum’ of complex exponentials, defined in terms of the spatial
frequencies f; and f,, and in terms of the spatial coordinates x and y. Each
exponential is weighted by a value given by G(fs, f,) and, thus, equation (3.2) is
an expansion (or expression) of the analogue optical function g(x, y) in terms of
this weighted generalized sum of exponentials. These weights are, in fact, given by
equation (3.1), i.e. the Fourier transform of the image function, and will, of course,
vary with image content. Since these complex exponentials can also be expressed in
terms of sine functions,™ a spatial frequency domain which has, for example, just
two non-zero values at, say (fx,, f;.) and (— fx, —f},) corresponds to a sinusoidal
variation in intensity in the spatial domain, i.e. to an image g(x,y) which
comprises sinusoidally undulating ‘stripes’ of alternating light and dark intensity.
The period and orientation of these stripes depends on the exact values of fi, and

x j .
e’ =cos §+1i sin 0.

30

Sampling and quantization

(b)

Figure 3.2 (a) An image comprising a sinusoidal variation in intensity
along the x axis; and (b) its Fourier transform, comprising two spatial
frequency components (fy, fy,) and (- fx,, —f,,), both of which are spatial
frequencies in the x direction.

31

Image acquisition and representation

fu. Conversely, an image g{x, y) which comprises a sinusoidal variation in
intensity can be expressed in terms of the spatial frequencies (/v /) and
(=fx» =f); see Figure 3.2. The ‘quicker’ these sinusoidal variations, i.e. the
greater the frequency of variation in the spatial domain, the further (fy, /) and
(= fe» —f) are from the origin in the G(f, fy) domain. Of course, a sinusoidal
variety in intensity is not a particularly common image. However, Fourier analysis
tells us that more complex functions can be constructed by including more terms
of varying weight in the ‘generalized sum’ of exponentials, i.e. by including further
spatial frequency components. The exact weight is, again, determined by equation
(3.1), i.e. the Fourjer transform. An abrupt change in intensity will require the
presence of a large number of terms which will correspond to high spatial
frequencies, many of which are far removed from the origin of the G(f:, fy)
domain; see Figure 3.3. Thus, we now have arrived at the interpretation we
required. That is: high spatial frequencies correspond to the presence of abrupt, or
sharp, changes in the intensity of the image.

The next issue to which we turn is that of sampling. In particular, we would
like to know what sampling frequency is required, i.e. how often one needs to
sample in the spatial domain in order to represent an image faithfully. Shannon’s
sampling theorem tells us that a band-limited image (i.e. an image which does not
comprise infinitely high spatial frequencies) can be faithfully represented (i.e.
reconstructed) if the image is sampled at a frequency twice that of the highest
spatial frequency present in the image. This sampling frequency is often referred to
as the Nyquist frequency.

We are now in a position to return to address the three issues we raised at the
beginning of this section: the effect of the sensor sampling frequency (resolution),
the video signal bandwidth, and the analogue-to-digital (frame-grabber) sampling
frequency on the effective resolving power of the image acquisition system.

First, we now see that a sensor which has, for example, 756 photosites in the
horizontal direction, i.e. along a line, will only be capable of representing a
sinusoidal variation in intensity which has a spatial frequency of 378 cycles per unit
distance. A pattern of 378 alternately light and dark bars with abrupt edges, i.e.
discontinuities in intensity, would obviously require a much higher sensor sampling
frequency to represent the image faithfully.

Second, the resolution of a television picture is also limited by the number of
lines and the frequency bandwidth of the video signal. We saw in Chapter 2 that
the line frequency for the CCIR standard video signal is 15 625 Hz. In addition, the
nominal bandwidth of the CCIR standard is 5.0 MHz, meaning that a signal can
transmit a video image with five million periodic variations in the signal (brightness)
levels. This results in an absolute maximum of 5 x 10 + 15625 = 320 periodic (or
sinusoidal) variations per line, that is, the maximum spatial frequency which can
be faithfully represented by a video signal is 320 cycles per line.

Third, a frame-grabber which has, for example, a sampling frequency of 512
pixels in the horizontal direction, will only be capable of faithfully representing a
sinusoidal variation in intensity which has a spatial frequency of 256 cycles per unit

32

Sampling and quantization

(b)

Figure 3.3 (a) An image comprising a step discontinuity in intensity
along the x axis; and (b) its Fourier transform, exclusively comprising
spatial frequency components fy, i.e. spatial frequencies in the x
direction.

33

Image acquisition and representation

distance. Again, a pattern of 256 alternately light and dark bars with abrupt edges
would require a much higher sampling frequency to represent the image faithfully.

3.2 Inter-pixel distances

As mentioned in the preceding chapter, video signals assume an aspect ratio of 4:3
(horizontal-to-vertical) and we noted in Section 3.1 that, although framestores with
4:3 aspect ratios are becoming available, they normally use a square aspect ratio of
1:1. The aspect ratio mis-match has serious repercussions for gauging or measuring
functions of an inspection system: the rectangular picture is being squeezed into a

100

4:3 aspect ratio

100 (video camera signals)

Image acquisition

1:1 aspect ratio
(framestores)

100

image display

100

4:3 aspect ratio
(video monitor signals)

1100

Figure 3.4 Distortion arising when acquiring a video signal with a
conventional (square) framestare.

34

Adjacency conventions

square image and, hence, the effective distance between horizontal pixels is § times
greater than that between vertical neighbours (see Figure 3.4).

The situation becomes even more unsatisfactory when one considers the
distance between a pixel and its diagonal neighbour. While most discussions of
inter-pixel distances usually assume the diagonal inter-pixel interval to be 2 Gee.
the length of the hypotenuse completing the right-angle triangle formed by the
horizontal inter-pixel interval of length 1 and the vertical inter-pixel interval of
length 1). However, if we are working with a framestore which has a square aspect
ratio and has a video signal which as a 4:3 aspect ratio, then the diagonal inter-pixel
interval is, in fact, 3, i.e. the length of the hypotenuse completing the right-angle
triangle formed by the horizontal inter-pixel interval of length % and the vertical
inter-pixel interval of length 1 (see Figure 3.5).

Unfortunately, this is not the complete story. The CCIR standard stipulates
that a picture comprises 625 lines. However, only 576 of these carry visual
information while the remainder are used for other purposes. Framestores with a
vertical resolution of 512 pixels (i.e. 512 lines) do not capture all 576 of these lines
of video; they only capture the first 512 of them. This introduces a further
distortion, resulting in an effective CCIR aspect ratio of 4:(3 X $2) = 4:2.66 or 3:2.
The effective vertical, horizontal and diagonal inter-pixel distances are thus 1, 3,

J3.

3.3 Adjacency conventions

There is yet another problem which is associated with the representation of digital
images: the exact spatial relationship of one pixel with its neighbours. In effect, this
problem is one of defining exactly which are the neighbours of a given pixel.
Consider the 3 x 3 neighbourhood in an image (shown in Figure 3.6) where the

5/3

4/3

Figure 3.5 Inter-pixel distances.

35

Image acquisition and representation

3 2 1
4 8 0
5 6 7

Figure 3.6 A 3 x3 pixel neighbourhood.

Figure 3.7 Adjacency conventions: a dark doughnut on a white table.

pixels are labelled O through 8; which pixels does pixel 8 touch? One convention,
called 4-adjacency, stipulates that pixel 8 touches (i.e. is connected to) pixels 0, 2,
4, and 6, but does not touch (i.e. is not connected to pixels 1, 3, 5, and 7). An
alternative convention, called 8-adjacency, stipulates that pixel 8 is connected to all
eight neighbours.

Adopting either convention universally can, however, lead to difficulties.
Figure 3.7 shows parts of a digital image depicting, in extremely simplified form,
a dark doughnut on a white table. If we apply the 4-adjacency convention, then we
have an obvious problem: there are four ‘doughnut segments’ (two vertical and two
horizontal) but none of the segments is touching: the segments are not connected.
Applying the 8-adjacency convention, the segments are now connected in a ring (as
we would expect) but now so too is the inside of the doughnut connected to the
outside: a topological anomaly.

In themselves, neither convention is sufficient and it is normal practice to use
both conventions: one for an object and one for the background on which it rests.
In fact, this can be extended quite generally so that the adjacency conventions are
applied alternately to image regions which are recursively nested (or embedded)

36

Image acquisition hardware

within other regions as one goes from level to level in the nesting. Thus, one would
apply 4-adjacency to the background region, 8-adjacency to the objects resting on
the background, 4-adjacency to holes or regions contained within the objects,
8-adjacency to regions contained within these, and so on. This convention means
that one never encounters topological anomalies such as the one described in the
above example. Because the 8-adjacency convention allows diagonally connected
neighbours, measurements of object features (e.g. its perimeter) will be more
faithful with 8-adjacency. Consequently, if it is possible to stipulate which
convention is to be applied to a particular object of interest, one should opt for the
8-adjacency convention.

The preceding discussion has been developed in the context of the acquisition
of digital images from area cameras. As we have seen, however, line-scan cameras
are extremely important imaging devices, particularly for high-resolution gauging
applications. The same sampling and quantization processes must also be used with
these linear array cameras, the only difference in this case is that only one line of
video information needs to be digitized. Similarly, the discussion of adjacency
conventions and inter-pixel distances applies equally. Image acquisition equipment
for line-scan sensors will often be custom-designed for a particular application and
configuration, although it is worth reiterating the point made earlier that matched
line-scan cameras and digitizers and, indeed, line-scan digitizers are now appearing
on the market. These line-scan digitizers are, in fact, general purpose devices which
can deal with many different scan rates. They are often referred to as slow-scan
digitizers. This is an unfortunate misnomer: they are really variable-scan digitizers
and can deal with extremely high data rates.

3.4 Image acquisition hardware

A typical machine vision system can be configured in two ways: by building it
yourself using off-the-shelf equipment or by buying a complete turnkey system. The
former alternative is very cost-effective but a significant amount of work needs to
be done to integrate the system, ensuring that the image acquisition and processing
devices are correctly matched with the host computer and can be controlled by
it. The latter alternative is more expensive but, depending on the application,
turnaround time on development should be much reduced.

There are two mutually dependent components to be chosen when configuring
a machine vision system with off-the-shelf equipment: the CPU and the framestore.
Most of the commercial framestores are dedicated to just a few of the more popular
computer buses, in particular, the VME bus, the Multibus, the Q-Bus, the IBM PC
bus, the Nu-bus (Apple Macintosh II), and to some extent the IBM MicroChannel
Architecture used in the newer PS-2 models. Each bus enforces certain restrictions
on the way the framestore is used and most of the functional differences are related
to the bus structure and the available support equipment (i.e. the framestore sister
boards).

37

Image acquisition hardware

Image acquisition and representation

‘1PAS[-4218 pagoads & Suisey UOISSI B ST 1 :SUTUROW PAJOLIISAI A[OUISIIXS UR SBY JX01U0d ST} Ul aImies) vV,
‘uoneI0dio) uolje[SUBL], BlR(],
‘uonerodio) ASojouyoa], SuiSewiy -
'pIeoq 10181 £q papuold Ayeuonsuny,
‘uonerodio) uole[sueL], BIE(o
‘uoneiodio) AJojouyoa], SuiSeur,

20BJIDJUI UBOS

ON S X ON ON 289X ON ON Sax ON ON Jlqeriep
ON ON ON ON JS9X ON ON Sax ON ON pieoq Surdijoloid
ON ON ON ON .Sk S9X 2S9X -5 Y ON ON 1S3IJUT JO BAIY
ON ON ON ON 259K ON ON LS9 ON ON UOTDRIXd ,2INjBag
ON — ON S9X »S9A Sox ON JS9K ON ON weidoIsiyg
suonersdo NIV
ON S3A ON Sax JSeX SOX S9K SS9 ON ON awi-feay
ON Sax ON S9X S9X So K SAX S9X ON ON SpIBOq 131SIS
sa8ewr
ON S3X ON SaX 29K SO X SSeX SOX Kreurg ON uonenq
- safeunn
ON Sax ON LE) Y JS9K Sax 589X 259X Lreurqg ON uoIsoIg
uyest sumear suijfesl ur SWQOY
ur jou ur jou g x g o1 dn EX¢ sageul
ON SOK ON SaX 59K S3A ,S2K SS9k Kreurg ON UONN[OAUOD)
868¢ Guuvg gN-dAW ~ Apupd qpung 001 smd
§TT 198¢ £09z 11§82 02piA XOW LV-dAW 00¢c Istiosr $a1438 UOISIADd
Ld L Ida «Ld 2quovipg XO4impy Iir LI INA plLl 243,
uonjesuadiiod
Sa X ON ON ON ON ON ON ON Sa K Sa K orjeI Joadse ¢y
4 1 I I 8 I 4 ¥ € 4 sndur oaprp
ON SIX ON Sax S S2L S3L SAL ON ON SNQ 02pIA Pajedipe
ON — ON — LS9k SaX ,S3& ,S9X SOK Sax W00z f[[o1dos [ue g
ON SOK So K Sax S9 K S3A Sax SaA L) Sax INOJOd-0pnasd
Sox Sax SO sex SaX S3 K S9X S3x SOL SaX S1NT indug
S9X SO& SOA SaX Sax Sax ON SOX SAL Sa K paddew K1oway
— — — SoX — —_ Sax — SO ON paddew Q1
aueld soydein
0 0 [4 0 [e19435 % - - 14 0 parEdIpa(g
Y4 96¢ ¥9 9¢T 9¢C 95T 9¢t 98¢ 9¢¢ 9¢¢ SIPA9] £21D
S9& S9X SaK SAX SOL S9X AL S9K S9& S9K HIDD
S9X S9 % SOx SoX SOX SOA SOA SSA SOA S9A 0LI-SY¥
lojdepe sng-O
HINA LV-dINA snquna
sng-O IS8T HNA
sng-nN. LV-0d 1V-Dd LvV-Dd HNA 1V-Od snq-Q dNA 1V-Dd LV-Dd Amqueduwod sng
CIS X 89L TIS XTIS 9ST X 9T TIS XTIS TIS XTIS TISXTIS TISXTIS TISXTIS TISXTIS TISXZIS uonnjosa1 ferredg
,bieoq 1ad _pieoq 1d
1 91 1 r JAuBy ¥ v 01 dn 7 v o1dn 4 SI9NQ JwWer]
8€8T Ao gN-dAW A,y dpuing oor suid
sz 1982 €092 1587 0apiA XOW LV-dAN 00z ISIlosT sauas uoisiAOd
Ld Ld 1la oLd 2qnovipg X04vpy ILI Iir ILI el LT anna]

AleMpIely JQQBIS-OWERLY [BPIAUINIOD JO MIIAIAQ ['C JGBL

39

38

Image acquisition and representation

It would not be appropriate to enter into a discussion of different CPUs here;
suffice it to say that most microprocessors are supported by VME bus and Multibus
boards (e.g. 68030, 80386, 32032), while Q-bus computers are generally MicroVax
based. The IBM PC AT bus is supported by IBM’s PC-AT and the multitude of
PC clones (most of which are now significantly faster than the AT).

Once an image has been digitized, it is stored on the frame-grabber in memory
as a square two-dimensional array. It may now be accessed, processed, and
analysed by the host computer. However, it is frequently desirable to process the
digital image somewhat before the computer ever uses the information, mainly
because the resultant image may be more amenable to subsequent analysis and it
may take the computer an inordinately long time to perform such processing. This
pre-processing can frequently be accomplished in one frame-time (40 ms) by
hardware resident on the frame-grabber or by sister boards for the frame-grabber.
This rate of processing is often called real-time image processing, as the image data
can be processed at the same rate at which the camera system generates it. Recall,
however, the comment in Chapter 1 that a more pragmatic definition of real-time
in machine vision is simply that the vision process should keep up with production
rates, i.e. if the vision system produces the information as quickly as it is required,
it runs in real-time.

To provide the reader with some idea of the capabilities that are provided by
some commercial frame-grabbers and sister boards, a brief summary of the main
characteristics is given in Table 3.1. Unfortunately, many of the capabilities that are
cited refer specifically to image processing techniques which are not covered until
the next chapter. To describe them here, however briefly, would be pre-emptive and
you should refer again to this section after having read Chapter 4.

Custom commercial systems, which can be bought complete with processing
and analysis software, and subsequently programmed to accomplish a required
function, tend to be significantly more expensive than a system configured from off-
the-shelf equipment. Since such systems are by their very nature unique, a direct
comparison is very difficult. However, a brief synopsis of some systems that are
available is included so that the reader can form some idea of their capabilities.

Universal Instruments Corp. market several printed circuit board (PCB)
inspection systems. Model 5511 exploits four high-resolution CCD cameras, each
of which views a small portion of the board from a different angle in order to
facilitate thorough inspection. The complete board is inspected by moving the PCB
on an X-Y table. It uses high-speed strobed light emitting diode (LED) illumination
to allow it to take images while the PCB is being moved on the X—Y table. This
increases the overall speed of the system quite significantly since it removes the
acceleration and deceleration time between snapshots. The quoted inspection
performance is an impressive twelve square inches per second. The 5515 is based
on the Motorola 68020 (nominally running at 20 MHz) and can use CAD data to
drive the inspection strategy.

IRI (International Robomation Intelligence) Ltd offer a wide variety of
systems, from development vision systems with imaging resolutions of 256 X 256

40

Speed considerations

and 512 X 512, to fully fledged turnkey PCB inspection systems. The development
systems are typically based on Motorola 680XX microprocessors and incorporate
a real-time operating system and an extensive library of image processing functions.
It should be emphasized that this library of functions is a collection of image
processing routines, rather than image analysis routines. The distinction will be
discussed in detail in the next chapter but suffice it for the present to note that a
significant amount of software development will be required in most cases before
a fully operational target system can be configured and incorporated in a
manufacturing environment. A typical IRI development system, the SD512 Vision
System, features 512 x 512x8 bit resolution, and can store eight images
simultaneously. It can interface to normal video cameras, to line-scan cameras, and
to special-purpose video cameras such as the Videk MEGAPLUS 1320 x 1035
sensor. Optional array processors are available to implement convolution and
algebraic operations in near real time (250 million operations per second). A
development system such as this would normally incorporate a MC68020 25 MHz
host processor, a MC68851 memory management unit, 8 Mbytes of memory, a
convolution processor, a correlation processor, CCD camera, colour monitor,
terminal, 56 Mbyte hard disk, eight camera ports, and 2 Mbytes of image memory.
Complete turnkey systems, e.g. the IRI PCB INSPECTOR would typically cost
between two and three times the cost of a development system.

In a similar vein to IRI Ltd, Computer Recognition Systems Ltd, in the
United Kingdom, offer a mix of configured development systems and application
engineering expertise and have developed machine vision systems for several
industries. A typical CRS development system comprises at least a VMEbus
workstation (MC68020, 1 Mbyte program RAM, 40 Mbyte hard disk, 5.25" floppy
disk drive, Idris operating system, Pascal, and C), two 512X 512 X 8 bit image
memory, 8 bit resolution frame-grabber, extensive image processing algorithm
library and development software, edge detector (simple 3 X 3 masks), and four
video inputs.

Note that these summaries, and indeed Table 3.1, are provided for illustration
only; while every effort has been made to ensure that this information is correct,
manufacturers are continually upgrading their products and specific models often
re-appear with much enhanced capabilities. As such, no responsibility can be
accepted for errors in the functional specifications or prices. You should contact the
vendor to ensure that the information is accurate and up-to-date.

3.5 Speed considerations

There are several issues which must be addressed when evaluating vision systems
and their potential processing speed. The first of these is obviously the processing
power of the host computer. An Intel 80286-based PC-AT will operate about three
times faster than an 8086-based PC, while an 80386-based system can deliver nearly
ten times the power of a PC. A DEC MicroVAX will outperform an LSI-11 or

41

Image acquisition and representation

PDP-11. Many of the newer, more powerful VME-bus systems are based on
Motorola’s 68030; but you should be sure to compare the processor clock
frequencies and memory access times of otherwise similar CPU boards.

No matter how fast the CPU is, if it can’t communicate effectively with the
framestore then the effective image acquisition time will become significant, i.e. the
image may be grabbed in th second but it may take nearly one second to transfer
it to the host. In general, memory-mapped framestores are the most efficient since
transfer may not be necessary; this is the distinct advantage of VME systems, such
as some of those marketed by Datacube and Imaging Technology. Many boards are
input/output (I/O) mapped, however, and image transfer must take place pixel by
pixel; some boards attempt to alleviate this bottleneck by offering DMA (direct
memory access) transfer capabilities.

Most microprocessor systems do not support floating point arithmetic directly
(the Inmos Transputer is one exception) and, if your application requires a
significant number of floating point operations, this may be another computational
bottleneck. Even if you can get a floating point co-processor, it is best to adhere
to integer arithmetic wherever possible when writing image analysis software.

As is evident from the survey of imaging systems in the preceding section,
most framestores facilitate simple image manipulation (such as contrast stretching,
thresholding, trivial segmentation: see next chapter for detailed explanation)
through the use of look-up tables (LUT). Each LUT will have an entry for every
grey-level that the system can deal with, typically 256 of them. This entry
corresponds to the value to which this grey-level is to be changed. When digitizing
the video signal each incoming pixel is checked against the LUT, and the table
value, not the digitized value, is stored in the frame buffer.

Most vendors now offer ALU (arithmetic logic unit) boards which contain
high-speed pipe-line processors. Basic operation includes 8 bit 2’s complement,
logical AND, OR, XOR, multiplication, and 16 bit addition. A full frame can
usually be processed in one frametime (40 ms). These boards are intended to
provide real-time frame summation, thresholding, contrast enhancement, and
relatively fast edge enhancement and filtering. If real-time filtering, such as edge
detection, is required then sister boards can often be deployed. It is important to
note that these systems generally utilize their own high-speed video bus to effect
communication between the frame-grabber and the sister processing boards.

As a concluding note, remember that the application requirements will dictate
the effective pixel throughout the inspection or robot vision system, which, in turn,
will dictate the required architecture and whether or not the application is feasible.
If real-time response is required, as it normally will be, this does not necessarily
mean that it must process the part in, say, 10 ms; it means that the machine vision
system must not delay the overall production system. If extremely fast on-the-fly
processing is required then one may have to restrict the functionality of the system
somewhat to ensure a feasible solution or, alternatively, one may have to deploy
dedicated hardware to implement either the initial processing or subsequent
analysis, or both.

42

References and further reading

Exercises

1. What compatibility problems would you encounter in measuring the
perimeter of objects when the alternate 8-adjacency/4-adjacency
convention is used?

2. What do you understand by the terms ‘quantization resolution’ and
‘sampling density’? Identify two adjacency conventions and discuss the
merits of each.

3. What adjacency convention would you choose in an application to
measure visually the perimeter of coastlines in ordnance survey maps
using a conventional 4:3 aspect ratio CCIR camera and a 1:1 aspect
ratio framestore? How would you ensure that your measurement is as
accurate as possible, given a fixed field of view?

4. What problems do you encounter when attempting to use line-scan
cameras?

5. Dedicated video buses are used to alleviate the communication
bottleneck between frame-grabbers and their sister boards. Why?

References and further reading

Agin, G, 1975 An Experimental Vision System for Industrial Application, SRI International,
Technical Report No. 103.

Agin, G. 1977 Servoing with Visual Feedback, SRI International, Technical Report No. 149.

Agin, G. 1980 ‘Computer vision systems for industrial inspection and assembly’, Computer,
Vol. 13, No. 5.

Beedie, M. 1986 ‘Image IC detects edges in real time’, Electronic Design, May, pp. 50—8.

Duda, R.O. and Hart, P.E. 1973 Pattern Classification and Scene Analysis, Wiley, New
York.

Dunbar, P. 1986 ‘Machine vision’, Byte, Vol. 11, No. 1, pp. 161-73.

Giordano, A., Maresca, M., Sandini, G., Vernazza, T. and Ferrari, D. 1985 4 Systolic
Convolver for Parallel Multiresolution Edge Detection, Internal Report, DIST,
University of Genoa.

Giordano, A., Maresca, M., Sandini, G., Vernazza, T. and Ferrari, D. 1987 ‘VLSI-based
systolic architecture for fast Gaussian convolution’, Optical Engineering, Vol. 26,
No. 1, pp. 63-8.

Healy, P. and Vernon D. 1988 Very Coarse Granularity Parallelism: Implementing 3-D
Vision with Transputers, Proc. Image Processing 88, Blenheim Online Ltd., London,
pp. 229—-45.

Li, H.F., Tsang, C.M. and Cheung, Y.S. 1983 ‘A low-cost real-time imaging and processing
system, Software and Microsystems, Vol. 2, No. 5, pp. 121-9.

Plessey Semiconductors Ltd 1986 PDSPI6401 2-Dimensional Edge Detector, Preliminary
product information.

Selfridge, P.G. and Mahakian, S. 1985 ‘Distributed computing for vision: architecture and
a benchmark test, IJEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. PAMY/7, No. 5, pp. 623-6.

43

4

Fundamentals of digital
image processing

Although the distinction between digital image processing and digital image analysis
is not immediately obvious, it is an extremely important one. Image processing can
be thought of as a transformation which takes an image into an image, i.e. it starts
with an image and produces a modified (enhanced) image. On the other hand,
digital image analysis is a transformation of an image into something other than an
image, i.e. it produces some information representing a description or a decision.
However, digital image analysis techniques are usually applied to previously
processed (enhanced) images. Since the analysis of enhanced images is accom-
plished quickly and easily by human observers, it is often erronecously assumed that
the analysis phase is easy, if not trivial. Although image processing techniques often
provide more pleasing or more visually accessible images when viewed by a human
observer, and the human is able to detect salient features without difficulty, it is
essential to realize that the interpretation of such emergent features is simple only
in the context of the powerful perceptual abilities of the human visual system.

For machine vision systems, the sole purpose of image processing is to
produce images which make the subsequent analysis more simple and more reliable.
We are not at all interested in how ‘well’ the image looks. In particular, the image
processing phase should facilitate the extraction of information, it should
compensate for non-uniform illumination, and, possibly, re-adjust the image to
compensate for distortions introduced by the imaging system.

Historically, digital image processing had two main thrusts to its develop-
ment. One was the natural extension of one-dimensional (temporal) digital signal
processing to two (spatial) dimensions. Consequently, two-dimensional signal
processing was approached from a mathematical basis, allowing a great deal of
rigorous manipulation to be performed, using classical linear system theory. The
second, more heuristic, thrust considers digital images as a set of discrete sample
points, performing arithmetic operations on the individual points. This contrasts
with the signal processing approach which treats images as a discrete representation
of a continuous two-dimensional function. We will continue our discussion of

44

Point operations

digital image processing from the second viewpoint, addressing some simple but
useful techniques, and drawing when appropriate from the signal processing
approach.

There are, broadly speaking, three distinct classes of operations: point
operations, neighbourhood operations, and geometric operations. We mentioned in
the preceding chapter that there is a trend to perform as much image processing as
possible in hardware, particularly in advanced frame-grabbers or in their sister
boards which have access to the image data via a dedicated video bus. Point and
neighbourhood operations are typically the type of operations that are performed
by these frame-grabber sister boards, while very few systems offer any extensive
operations for geometric image processing.

4.1 Point operations

A point operation is an operation in which each pixel in the output image is a
function of the grey-level of the pixel at the corresponding position in the input
image, and only of that pixel. Point operations are also referred to as grey-scale
manipulation operations. They cannot alter the spatial relationships of the image.
Typical uses of point operations include photometric decalibration, to remove the
effects of spatial variations in the sensitivity of a camera system; contrast stretching

101 100 | 103 | 105 107 | 105 | 103 | 110

110 140 | 120 122 | 130 | 130 121 120

134 | 134 | 135 131 137 | 138 120 | 121

132 | 132 132 | 133 133 160 | 160 | 155

134 | 140 140 | 135 | 140 | 156 160 | 174

130 | 138 | 138 150 | 169 | 1756 | 170 | 165

126 | 133 | 138 149 163 | 169 | 180 185

130 140 | 150 | 169 178 | 185 | 190 | 200

Figure 4.1 Digital image.

45

Fundamentals of digital image processing

(e.g. if a feature or object occupies a relatively small section of the total grey-scale
image, these point operations can manipulate the image so that it occupies the
entire range); and thresholding, in which all pixels having grey-levels in specified
ranges in the input image are assigned a single specific grey-level in the output
image. As we shall see, these operations are most effectively accomplished using the
hardware input look-up tables (LUTs) which are provided by most frame-grabbers.

4.1.1 Contrast stretching

Consider the contrived digital image shown in Figure 4.1. If we look at the
distribution of the grey-levels in this image, we find that there are grey-levels in the
ranges from 100 to 200. Obviously the complete range is not being used and the
contrast of this image would be quite poor. The contrived grey-level histogram
shown in Figure 4.2 illustrates graphically this poor use of the available grey-scale.
We wish to enhance the contrast so that all grey-levels of the grey-scale are utilized.
This contrast stretching is achieved by first shifting all the values so that the actual
pixel grey-level range begins at 0, i.e. add to every pixel the difference between the
final low value (0) and the initial low value (100): 0 — 100 = — 100. The effect of this
is shown in Figure 4.3.

Next, we scale everything, reassigning values in the range 0—-100 to the range
0-255, i.e. we scale by a factor = (255 — 0)/ (100 — 0) = 2.55; see Figure 4.4.

Thus, in this instance, to stretch the contrast so that all grey-levels in the grey-
scale are utilized, one must simply apply the following operation:

new pixel value:=(old pixel value-100)x2.55

Number of pixels

| [1 1 1 1 1 1 { I...J
20 40 60 80 100 120 140 160 180, 200 220 240 255

Grey-level

Figure 4.2 Grey-level histogram.

46

Point operations

Number of pixels

1 1 1 1 1 ! 1 1 1 | |
20 40 60 80 100 120 140 160 180 200 220 240 255

Grey-level

Figure 4.3 Shifted grey-level histogram.

Number of pixels

1 1 1 1 1 1 1] 1]] I
20 40 60 80 100 120 140 160 180 200 220 240 255

Grey-level

Figure 4.4 Stretched grey-level histogram.

By way of example, let us consider the application of this stretching to any pixel
having either the lowest grey-level (100) in the original image or the highest
grey-level (200) in the original image:

If old pixel value=100
new pixel value:=(100-100)%2.55
=0
If oldpixel value=200
new pixel value:=(200-100)x2.55
=255

47

Fundamentals of digital image processing
We can express the algorithm a little more formally in pseudo-code as follows:
/+« contrast stretching ina 512x512 pixel image »/

/+ HIGH and LOW are assumed to be the highest and. lowest
grey-levels, respectively, in the unstretched image «/

scale factor:=255/ (HIGH-LOW)

FOR i:=1T0512 DO
FOR j:=1to 512 DO

IF imageli, j]l < LOW
THEN
imageli, jl:=0
ELSE
IF imageli, j] > HIGH
THEN
imageli, j1:=255
ELSE

/x scale »/

imageli, jl:=Cimageli,jl - LOW)
xscale_factor

while the LUT formulation might be written as:

/% contrast stretching using LUT «/
scale factor:=255/ (HIGH-LOW)
/% initialise LUT »/

FOR i:=0 TO LOW-1 DO
LUTLi1:=0

FOR I:=LOW TO HIGH DO
LUTLilz=(i=-LOW) xscale-factor

FOR i:=HIGH+1 TO 255 DO
LUTLi1:=255

/% stretch using LUT %/

FOR i:=1T0 512 DO
FOR j:=1 to 512 DO

imageli, jl:=LUTL imageli,jl 1

48

Point operations

Figure 4.5 Contrast stretching. The grey-level histogram of the original
image (top-left) is shown at the top-right; the stretched image with its
histogram is shown below.

As an example, Figure 4.5 shows the results of applying this contrast
stretching algorithm to a real digital image. The associated grey-level histograms are
displayed to the right of the image.

There are many other approaches which can be used for contrast enhance-
ment, e.g. histogram equalization is a technique which computes the histogram of
the grey-level distribution in the image and reassigns grey-levels to pixels in an effort
to generate a histogram where there are equally many pixels at every grey-level,
thereby producing an image with a flat or uniform grey-level histogram.

4.1.2 Thresholding

Some scenes, e.g. those of bare printed circuit boards (PCBs), can be very simple,
from a visual point of view, in that they comprise just one or two types of objects:
in this case the solder tracks and the circuit board. Suppose we wish to process an
image of such a scene so that it exhibits extremely high contrast and so that the
solder tracks and circuit board are very easily distinguishable. If we stipulate that
there are just two allowable grey-levels, black and white, then this would certainly
result in the requisite contrast. The problem is to convert a grey-scale image
(typically with 256 grey-levels) into an image with just two levels of grey. Consider
again a contrived grey-scale histogram. In Figure 4.6 we can see that all the image

49

Fundamentals of digital image processing

pixels representing the circuit board probably have grey-levels in the range 0-160
while the solder tracks probably have grey-levels in the range 160—255. If we assign
all the pixels in the range 0—160 to be black and all pixels in the range 160—-255 to
be white we will give effect to this extreme contrast stretching. Happily, we also now
have an explicit labelling in our image: the circuit board pixels are labelled
(identified) with a grey-level of 0 and the solder is labelled with a grey-level of 255,
In effect we have nominated the grey-level 160 as the threshold and the
reassignment of pixel values is known as thresholding. The effect of thresholding
on the grey-scale histogram can be seen in Figure 4.7; the pseudo-code that follows
summarizes the thresholding algorithm:

/« Threshold an image in place (i.e. without an */
/+« explicit destination_image) «/

FOR iz:=1T0 512 DO
FOR j:=1 to 512 DO

IF imageli, jl > threshold
THEN
imageli, j1:=255

ELSE
imageli, j1:=0

The algorithm may also be formulated using a LUT:

/« Threshold an image inplace (i.e. without an «/
/+ explicit destination_image) using a LUT */

/% initialise LUT «/

FOR i:=0 TO threshold DO
LUTLi1:=0

FOR i:=threshold+1 TO 255 DO
LUTLi1]:=255

/% threshold using LUT %/

FOR i:=1 T0 512 DO
FOR j:=1 to 512 DO

imageli, jl:=LUTL imageli,jl 1]

Note that the subject of thresholding is an important one to which we will return
and will discuss in greater detail in Chapter 5, specifically with regard to the

50

Point operations

Number of pixels

Circuit board Solder tracks

1 I ! 1 1 1 1] 1 1 1
20 40 60 80 100 120 140 160 180 200 220 240 255

Grey-level

Figure 4.6 Grey-level histogram of a PCB.

Number of pixels

Circuit board Solder tracks

] 1 1 ! 1 1 1 1 1] 1 1
20 40 60 80 100 120 140 160 180 200 220 240 255

Grey-level

Figure 4.7 Grey-level histogram of a PCB after thresholding.

selection of the threshold point and to the incorporation of contextual information
when applying the threshold.
An example of digital image thresholding is shown in Figure 4.8.

4.1.3 Noise suppression by image addition

If it is possible to obtain multiple images of a scene, each taken at a different time,
and if the scene contains no moving objects, then the noise in the image can be
reduced by averaging these images. The rationale is quite simple: in the averaging
process the constant part of the image (that which is due to light reflected from
stationary objects) is unchanged while the noise, which will in general change from
image to image, will accumulate more slowly. The assumptions inherent in this

51

Fundamentals of digital image processing

Figure 4.8 Thresholding. A grey-scale image (top-left) with its histogram
(top-right) is thresholded at a grey-scale value of 128 (bottom-left); the
resultant histogram is shown in the bottom-left quadrant.

approach are as follows:

1. The noise in each image is indeed uncorrelated.
2. The noise has a zero mean value, i.e. it averages out to an image with a grey-
level of zero which contributes nothing to the real image.

With these assumptions, it is possible to show that averaging N images increases
the signal-to-noise ratio by JN.

Many commercial framestores incorporate facilities to accomplish this
averaging in real time (i.e. as the image is acquired) and, as such, it is worth bearing
this technique in mind as it involves very little computational overhead. However,
you should also bear in mind the assumptions upon which this technique is based;
not all noise has these desirable properties.

4.1.4 Background subtraction

Digital image subtraction refers to an operation in which the pixel values of two
images are subtracted on a point by point basis. It can be useful for the subtraction
of a known pattern (or image) of superimposed noise or, indeed, for motion
detection: stationary objects cancel each other out while moving objects are

52

Neighbourhood operations

highlighted when two images of the same dynamic scene, which have been taken
at slightly different times, are subtracted. This process of subtraction of an
uninteresting background image from a foreground image containing information
of interest is referred to, not surprisingly, as ‘background subtraction’.

Photometric decalibration is one of the most important applications of
background subtraction. In some circumstances, camera systems exhibit non-
uniform response to light across the field of view. Quite often, this is caused by the
lens and is manifested as an image centre which is somewhat brighter than the
periphery. This can cause severe problems if one is using thresholding techniques
to isolate objects. Since the grey-level which is assumed to correspond to the object
may change (from point to point) depending on the position in the image, one
solution (apart from replacing the lens) is to model this non-uniform response
by, e.g. taking an image of a uniformly shaded surface, identifying the minimum
grey-level of this image and subtracting this value from each pixel to generate an
image which represents the effective response of the camera. Images which are
subsequently acquired can then be processed by subtracting this calibration image
from them.

4.2 Neighbourhood operations

A neighbourhood operation generates an ‘output’ pixel on the basis of the pixel at
the corresponding position in the input image and on the basis of its neighbouring
pixels. The size of the neighbourhood may vary: several techniques use 3 X3 or
5x 5 neighbourhoods centred at the input pixel, but many of the more advanced
and useful techniques now use neighbourhoods which may be as large as 63 X 63
pixels. The neighbourhood operations are often referred to as “filtering operations’.
This is particularly true if they involve the convolution of an image with a filter
kernel or mask. Such filtering often addresses the removal (or suppression) of noise
or the enhancement of edges, and is most effectively accomplished using convolver
(or filtering) hardware, available as sister boards for most frame-grabbers.

Other neighbourhood operations are concerned with modifying the image, not
by filtering it in the strict sense, but by applying some logical test based on, e.g.
the presence or absence of object pixels in the local neighbourhood surrounding
the pixel in question. Object thinning, or skeletonizing, is a typical example of this
type of operation, as are the related operations of erosion and dilation, which,
respectively, seek to contract and enlarge an object in an orderly manner.

Since convolution is such an important part of digital image processing, we
will discuss it in detail before proceeding.

4.2.1 Convolution

The convolution operation is much used in digital image processing and, though it
can appear very inaccessible when presented in a formal manner for real continuous

53

Fundamentals of digital image processing

functions (signals and images), it is quite a simple operation when considered in a
discrete domain. . o

Before discussing discrete convolution, let us consider why one is interested
in the operation in the first place. The two-dimensional convolution integral, which

is given by the equation:
gGy=roh=| [s=mj—m hGmmdmdn

embodies the fact that the output g of a shift-invariant linear system (i.e. most
optical electronic and optoelectronic systems, to a good approximation, and most
filtering techniques) is given by the sconvolution’ or application of the input signal
f with a function h which is characteristic of the system. Thus, the form of g
depends on the input f (obviously) and on the form of the system A through which
it is being passed. The relationship is given by the convolution integral. The
function # is normally referred to as the filter, since it dictates what elements of the
input image are allowed to pass through to the output image. By choosing an
appropriate filter, we can enhance certain aspects of the output and attenuate

Filter Alm, n)

Input image f(i, /) \

101 100 | 1083 106 Y1107 { 105 | 103 | 110

KRNl

110 | 140 120 |} 122

i1

ALCLONTE ALY, -)

130 |} 130 |3 121 | 120

[[ERWIN | LASNERE

hoe.on ho, -1

137 {£138 [{ 120 | 121

Hij e 1)

fligt ~y
T [T Y —

133 |§ 150 1§ 16049

Hiv1 EI(IH./H]

ho, + 1

134 | 134 135 131

133

fli+ 1,4- 10

132 | 132 132’

134 | 140 | 140 | 135 | 140 | 156 | 160 | 174 t

1 1
gli, Y= 230, Hi=m, j-n} him,n)

mn 1

130 138 | 139 { 150 | 169 176 | 170 | 165

126 | 133 138 | 149 | 163 169 | 180 | 185

130 { 140 | 150 | 169 | 178 | 185 | 190 | 200

Figure 4.9. Convolution.

54

Neighbourhood operations

others. A particular filter 4 is often referred to as a ‘filter kernel’. Attempts to form
a conceptual model of this convolution operation in one’s mind are often fruitless.
However, it becomes a little easier if we transfer now to the discrete domain of
digital images and replace the integral with the sigma (summation) operator. Now
the convolution operation is given by:

g,)=rf*h= %] 2 fGi—m,j—n) h(m,n)
b n
The summation is taken only over the area where f and 4 overlap. This
multiplication and summation is illustrated graphically in Figure 4.9. Here, a filter
kernel 4 is a 3 x 3 pixel image, with the origin /4(0, 0) at the centre, representing a
mask of nine distinct weights: A(—1, — 1)...A(+ 1, +1); see Figure 4.10. The kernel
or mask is superimposed on the input image, the input image pixel values are
multiplied by the corresponding weight, the nine results are summed, and the final
value of the summation is the value of the output image pixel at a position
corresponding to the position of the centre element of the kernel. Note that the
convolution formula requires that the mask # be first rotated by 180° since, e.g.,
fG—-1,7j—1) must be multiplied by A(1,1), f((—1,/) must be multiplied by
h(1,0),..., and f(i+1,j+ 1) must be multiplied by ~A(—1, —1). Quite often, the
rotation by 180° is omitted if the mask is symmetric.
The algorithm to generate g is given by the following pseudo-code:

FOR i:z=(low _Limit of i +1) TO Chigh_Limit_ of_ i - 1) DO
FOR j:=(low_Limit_of_j + 1) TO Chigh_Limit_of_j - 1) DO

/+ for each feasible point in the image
... form the convolution «/

temp:=0

FOR m:= -1 TO +1 DO
FOR n:=-1TO +1 DO
temp:=temp+Fli-m, j-nl « HLlm, nl

GLi, jl:=temp

Before returning to the discussion of neighbourhood operators, a short note
about the relationship of the convolution operator to classical two-dimensional
digital signal processing is appropriate. This can be safely skipped without any loss
of continuity.

All image systems introduce some amount of distortion into an image, for
example image blur due to camera shake. Since optical and electrical systems are
(to an approximation) linear, the imaging system may also be assumed to be linear.
This implies that, in the language of linear system theory, it has some transfer
function H(wy, wy). This is the frequency domain equivalent of the system impulse
response A(x, y) in the spatial domain; A(x,) typifies how the system would

55

Fundamentals of digital image processing

Al=1, =11 h{=1,00 | A(=1,+1)

h(o, -1 h(0,0} hto, +1)

Al+1, =10] Al(+1,0) hl+1, +1)

Figure 4.10 3 x 32 convolution filter h.

respond if a single unit spike were input to it. Thus, the transfer function describes
how some input image is transformed into some output image. Since the output of
this system is a distortion of the correct image we would expect that if we could
model the system, i.e. define its transfer function, compute the inverse, and apply
it to the distorted image, we would arrive at a much better approximation to the
original. This is accomplished by convolving the inverse impulse response with the
image: this operation is referred to as a ‘deconvolution’. Alternatively, the image
may be transformed to the frequency domain using the digital Fourier transform,
multiplied by the inverse of the transfer function, and transformed back to the
spatial domain by use of the inverse Fourier transform.

4.2.2 Noise suppression

If we define noise as any unwanted contamination of an image then the mechanism
by which noise is removed depends on the assumption we make regarding the form
of this unwanted contamination. One of the most common (and realistic)
assumptions made about noise is that it has a high spatial frequency (refer back to
Section 3.1.1). In this case, it is often adequate to apply a low-pass spatial filter
which will attenuate the higher spatial frequencies and allow the low spatial
frequency component to pass through to the resultant destination image. Of course
if the image itself exhibits high spatial frequencies then it will be somewhat
degraded after filtering.

These low-pass filters can be implemented by convolving the image with some
simple mask; the mask values constitute the weighting factors which will be applied
to the corresponding image point when the convolution is being performed. For
example, each of the mask values might be equally weighted, in which case the
operation we are performing is simply the evaluation of the local mean of the image
in the vicinity of the mask.

56

Neighbourhood operations

Figure 4.11 shows this local neighbourhood average mask and Figure 4.12
illustrates the application of the mask to part of an image. Referring to Figure 4.12,
we can see that the result of this filtering, i.e. the value of the output pixel which
would be placed in the output image at the same position as the input pixel
corresponding to the centre position of the mask, is:

101%1/9 + 100%1/9 + 103%1/9
+ 110%1/9 + 140%1/9 + 120%1/9
+ 134%1/9 + 134%1/9 + 135%1/9

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Figure 4.11 Local average mask.

101 100 103
* * *
1/9 1/9 1/9
110 140 120
* * *
1/9 1/9 1/9

105 107 105 103 110

122 130 130 121 120

134 134 135
* *

* 131 137 138 120 121
119 1/9 1/9

132 132 132 133 133 150 160 1565

134 140 140 135 140 156 160 174

130 138 139 150 169 175 170 1656

126 133 138 149 163 169 180 185

130 140 180 169 178 185 190 200

Figure 4.12 Image smoothing using local average mask.

57

Fundamentals of digital image processing

which is equivalent to:

1/9% [101 + 100 + 103
+ 110 + 140 + 120
+ 134 + 134 + 135]

which is equal to 121. . _
Thus, the central point becomes 121 instead of 140 and the image will appear

much smoother. This averaging or smoothing is, of course, applied at all points of
the image. . .
Occasionally, it may be more useful to apply this smoothing subject to some
condition, e.g. the centre pixel is only assigned if the difference between the average
value and the original pixel value is greater than a previously set threshold. This
goes some way towards removing noise without smoothing out too much of the

detail in the original image.
The algorithm may be expressed in pseudo-code as follows:

/+« For a 512x512 image, indexed from O to 511 *x/

FOR i:=1T0 510 DO
FOR j:=1 T0 510 DO

/+« for each feasible point in the image: compute
average «/

average:=(source imageli-1, j-1]
source_imageli-1, jl
source_imageli-1, j+1]
source_imageli, j-11
source imageli, jl
source imageli, j+11
source imageli+1, j=-11
source_imageli+1, jl
source_imageli+1, j+11

“ 4+ 4+ F 4

/9
/+« destination image assumes the average value «/

destination_imageli, jl:=average

There are other noise-suppression techniques, of course. For example, median
filtering is a noise-reducing technique whereby a pixel is assigned the value of the
median of pixel values in some local neighbourhood. The size of the neighbourhood
is arbitrary, but neighbourhoods in excess of 3 X 3 or 5 X 5 may be impractical from
a computational point of view since the evaluation of the median requires that the
image pixel values be first sorted. In general, the median filter is superior to the
mean filter in that image blurring is minimized. Unfortunately, it is computationally

58

Neighbourhood operations

complex and is not easily effected in hardware and thus tends not to be used much
in machine vision.

Gaussian smoothing, whereby the image is convolved with a Gaussian
function, is perhaps one of the most commonly used smoothing techniques in
advanced computer vision since it possesses several useful properties.
Unfortunately, it is not yet widely used in industrial machine vision because the
sizes of the masks are very large and the processing is consequently computationally
intensive. It should be noted, however, that some vendors do offer dedicated image
processing boards for Gaussian filtering and, if such hardware is available, this type
of smoothing should be considered. The Gaussian function G(x, y) is defined by:

G(x,y)= exp [~ (x* + y?)/20%]

27102
where o defines the effective spread of the function: Gaussian functions with a small
value for o are narrow, whereas those with a large value for ¢ are broad. Figure
4.13 illustrates the shape of a Gaussian function with o= 1.5,3.0, and 6.0 pixels
respectively. The mask weights are included for reference. Note that, since the
Gaussian function is defined over an infinite support, i.e. it has non-zero (but very
small) values at x, y = * oo, we must decide at what point to truncate the function.
Normally, one chooses the quantization resolution of the function by deciding on
the integer number which will represent the maximum amplitude at the centre point
(e.g. 1000), and then one chooses the mask size which includes all non-zero values.
Typically, a mask size of 23 x 23 pixels would be required to represent a two-
dimensional Gaussian function with a value of 3.0 pixels for ¢. Fortunately, there
is no need to use two-dimensional Gaussian functions since the convolution
of a two-dimensional Gaussian can be effected by two convolutions with
one-dimensional Gaussian functions. Specifically:

G(x, y)*I(x, y)= G(x)* {G(p)* I(x, y))

Thus, the image is first convolved with a ‘vertical’ Gaussian and then the resulting
image is convolved with a ‘horizontal’ Gaussian.

Why is the Gaussian such a popular smoothing function? The reason is quite
straightforward. While the primary purpose of a smoothing function is to reduce
noise, it is often desirable to be able to choose the resolution at which intensity
changes are manifested in the image, i.e. to choose the level of detail which is
retained in the image. For example, an image which has been smoothed just a little
(small ¢) will retain a significant amount of detail, while one which has been
smoothed a great deal (large o) will retain only the gross structure (you can
accomplish the same thing yourself by squinting). In more formal terms, we wish
to sharply delimit the spatial frequencies (see Section 3.1.1) which are present in the
image, i.e. to localize the spatial frequency bandwidth of the image. On the other
hand, we also need to ensure that the smoothing function does not distort the image
excessively by smearing the features. To allow for this, we need to ensure that

59

Fundamentals of digital image processing

1 186 0.2

135 606
65 506
28 411
11 324
3 249 -20 X 20
1 186
135
a5
65
43
28
18
11
6
3
2
1

Figure 4.13 The Gaussian function for three values of ¢ (1.5, 3.0, and 6.0)

together with their corresponding discrete one-dimensional masks; note

that the result of convolution with these masks should be normalized by
dividing by the sum of the mask weights.

60

Neighbourhood operations

the function has a limited support in space. The Gaussian function optimizes the
trade-off between these two conflicting requirements.

4.2.3 Thinning, erosion, and dilation

Thinning is an iterative neighbourhood operation which generates a skeletal
representation of an object. It assumes, of course, that you know exactly what
constitutes the object in the image and what constitutes the background (i.e.
everything which is not part of the object). Such an image is said to have been
segmented into its component parts: the topic of segmentation is extremely
important and will be discussed in detail in the next chapter.

The skeleton of an object may be thought of as a generalized axis of symmetry
of the object and hence it is a suitable representation for objects which display
obvious axial symmetry. The medial axis transform (MAT) proposed by Blum is
one of the earliest and most widely studied techniques for generating the skeleton.
More recently, Brady has introduced the related (but extended) concept of
smoothed local symmetries (SLS) which we will discuss in the last section of
Chapter 7.

The skeleton is frequently used as a shape descriptor which exhibits three
topological properties: connectedness (one object generates one skeleton);
invariance to scaling and rotation; and information preservation in the sense that
the object can be reconstructed from the medial axis. The concept of thinning a
binary image — an image comprising just two grey-levels: black and white — of an
object is related to such medial axis transformations in that it generates a
representation of an approximate axis of symmetry of a shape by successive
deletion of pixels from the boundary of the object. In general, this thinned
representation is not formally related to the original object shape and it is not
possible to reconstruct the original boundary from the object.

Thinning can be viewed as a logical neighbourhood operation where object
pixels are removed from an image. Obviously, the removal must be constrained
somewhat so that we have a set of conditions for pixel removal. The first restriction
is that the pixel must lie on the border of the object. This implies that it has at least
one 4-connected neighbouring pixel which is a background pixel. The removal of
pixels from all borders simultaneously would cause difficulties: for example, an
object two pixels thick will vanish if all border pixels are removed simultaneously.
A solution to this is to remove pixels of one border orientation only on each pass
of the image by the thinning operator. Opposite border orientations are used
alternately to ensure that the resultant skeleton is as close to the medial axis as
possible,

The second restriction is that the deletion of a pixel should not destroy the
object’s connectedness, i.e. the number of skeletons after thinning should be the
same as the number of objects in the image before thinning. This problem depends
on the manner in which each pixel in the object is connected to every other pixel.
A pixel can be considered to be connected to, and a component of, an object if it has

61

Fundamentals of digital image processing

Figure 4.14 A critically connected object.

a grey-level of 255 and at least one adjacent object pixel (note that we are assuming
object pixels have a grey-level of 255 — white — and background pixels have a grey-
level of 0 — black). Consider now the 5 pixel object shown in Figure 4.14. The pixel
C ‘connects’ the two object segments AB and ED, that is, if C were removed then
this would break the object in twoj; this pixel is ‘critically connected’. Obviously,
this property may occur in many more cases than this, and critical-connectivity may
be characterized as follows:

Given a pixel, labelled 9 and its eight adjacent neighbours, labelled 0-7 (see
Figure 3.6), and assume that writing the pixel number (e.g. 7) indicates
presence, i.e. it is an object pixel, whereas writing it with an overbar (e.g. 7
indicates absence, i.e. it is a background pixel. Assume, also, normal Boolean
logic sign conventions (+ indicates logical OR, and . indicates logical AND).
Then pixel 8 is critically connected if the following expression is true.

8.{[(1+2+3).(5+6+17).4.0]
+[(1+0+7).3+4+5).2.6]
+B.GE+6+T7+0+1).2
+[1.3+4+5+6+7).2.0]
+ 7.0 +2+3+4+5).0.6]

+[5.(7+0+1+2+3).4.6])

Figure 4.15 depicts these six neighbourhood conditions which correspond to the
presence of critical connectivity. Hence, the second restriction implies that if a pixel
is critically connected then it should not be deleted.

A thinning algorithm should also preserve an object’s length. To facilitate
this, a third restriction must be imposed such that arc-ends, i.e. object pixels which
are adjacent to just one other pixel, must not be deleted.

Note that a thinned image should be invariant under the thinning operator,
i.e. the application of the thinning algorithm to a fully thinned image should
produce no changes. This is also important as it provides us with a condition for
stopping the thinning algorithm. Since the pixels of a fully thinned image are either
critically connected or are arc-ends, imposing the second and third restrictions
allows this property to be fulfilled. The final thinning algorithm, then, is to scan
the image in a raster fashion, removing all object pixels according to these three
restrictions, varying border from pass to pass. The image is thinned until four
successive passes (corresponding to the four border orientations) producing no

62

Neighbourhood operations

changes to the image are made, at which stage thinning ceases. Figure 4.16
illustrates the result of thinning an object in a binary image.

The concepts of erosion and dilation are related to thinning in the sense that
erosion can be considered as a single pass of a thinning operator (stripping object
pixels of all four border orientations). However, there is one significant difference
in that, for most applications, one does not mind if the object breaks in two and,
hence, the complex check for critical connectivity is no longer required. In fact, it

[(1+2+3).(5+6+7).4.0] [{(1+0+7).(13+4+5).2.6

[3.(6+6+7+0-+1).2.4] [1.(3+4+5+6+7).2.0]

[7.(1+2+3+4+5).0.8] {BA7+0+1+2+3).4.8)]

Figure 4.15 Neighbourhoods exhibiting critical connectivity.

63

Fundamentals of digital image processing

Figure 4.16 A grey-scale image (top-left) is thresholded to produce a
binary image (top-right) which is then thinned (bottom-right). The image
at the bottom-left is an intermediate partially thinned version.

is this property of object splitting that makes the erosion operation particularly
useful. The dilation operation effects the reverse of erosion, i.e. an expansion of
the object into all those background pixel cells which border the object. Thus,
erosion ‘shrinks’ an object while dilation ‘enlarges’ it. This interpretation of
erosion and dilation, although common, is quite a loose one. The operations of
erosion and dilation do have a much more formal meaning in the context of a
branch of image processing referred to as mathematical morphology. We will
return to mathematical morphology in Section 4.4 but, for the present, we will
continue with the informal treatment.

To see the usefulness of erosion and dilation operations, consider the
following common printed circuit board inspection problem. Typically, in PCB
manufacturing, a film negative depicting the appropriate pattern of electrical
contacts (pads) and conductors (tracks) is contact-printed on a copper-clad board
which has been covered with a photoresistive solution. The board is then etched,
leaving just the copper circuit patterns. Such a process can lead to many problems
with the final circuit pattern, e.g. the track may be broken, it may be too wide or
too thin, or there may be spurious copper remaining on the PCB. These potential
faults (shorts and breaks) are impossible for conventional functional (electrical)
testing to detect and it is for this reason that these visual techniques are so useful.

64

Neighbourhood operations

Figure 4.17 PCB track with extraneous copper.

Figure 4.18 Dilated PCB track.

Figure 4.19 PCB track with a neck.

65

Fundamentals of digital image processing

Figure 4.20 Eroded PCB track.

If the tracks (and/or pads) are too large or have extraneous copper attached (see
Figure 4.17), then dilating the image a number of times will cause the two tracks
to merge (see Figure 4.18) and a subsequent analysis of the track connectivity will
identify this potential fault. Conversely, a track which is too thin or has a neck (see
Figure 4.19) will break when eroded (Figure 4.20). Similar connectivity analysis will
identify this potential circuit break.

A pseudo-coded algorithm for erosion can be formulated as follows:

/% erosion «/

FOR all pixels in the image
IF the pixel is an object pixel AND all its
neighbours are
object pixels
copy it to the destination image

while a dilation algorithm can be formulated as:

/x dilation «/

FOR all pixels in the image
IF the pixel is anobject pixel
make it and its eight neighbours object pixels
in the destination image

Figure 4.21 illustrates the effect of several applications of these erosion and dilation
algorithms to an object in a binary image.

66

Geometric operations

Figure 4.21 A grey-scale image (top-left) is thresholded to produce a
binary image (top-right) which is then eroded twice (bottom-left). The
application of two passes of the dilation algorithm is shown at
bottom-right.

4.3 Geometric operations

Geometric operations change the spatial relationships between objects in an image,
i.e. the relative distances between points a, b and ¢ will typically be different after
a geometric operation or ‘warping’. The applications of such warping include
geometric decalibration, i.e. the correction of geometric distortion introduced by
the imaging system (most people are familiar with the barrel distortion that arises
in photography when using a very short focal length ‘fish-eye’ lens), and image
registration, i.e. the intentional distortion of one image with respect to another so
that the objects in each image superimpose on one another. The techniques used in
both these applications are identical and will be discussed in detail before describing
actual usage.

4.3.1 Spatial warping

The approach to geometric image manipulation described here is called spatial
warping and involves the computation of a mathematical model for the required

67

Fundamentals of digital image processing

distortion, its application to the image, and the creation of a new corrected
(decalibrated or registered) image.

The distortion may be specified by locating control points (also called fiducial
points) in the input image (the image to be warped) and identifying their
corresponding control points in an ideal (undistorted or registered) image. The
distortion model is then computed in terms of the transformation between these
control points generating a spatial warping function which will allow one to build
the output image pixel by pixel, by identifying the corresponding point in the input
image.

Since, in general, the estimates of the coordinates of input pixels yielded by
the warping function will not correspond to exact (integer) pixel locations, we also
require some method of estimating the grey-level of the output pixel when the
‘corresponding’ pixel falls ‘between the integer coordinates’ (see Figure 4.22). The
question is: how do the four pixels surrounding the computed point contribute to
our estimate of its grey-level, i.e. how do we interpolate between the four? We will
return to this question later; suffice it at present to summarize the two requirements

of geometric operations:

Input image Output image

,\/

Position of
estimated
input pixel

Grey-level of estimated
input pixel

Figure 4.22 Spatial transformation and grey-level interpolation.,

68

Geometric operations

(a) a spatial transformation which allows one to derive the position of a
pixel in the input which corresponds to the pixel being ‘filled’ or
generated in the output;

(b) an interpolation scheme to estimate the grey-level of this input pixel.

Note that the grey-level interpolation algorithm may be permanently established in
the software whereas the spatial transformation will change as the environment
changes (e.g. camera, lens, registration requirements).

4.3.1.1 The spatial transformation

The spatial transformation is expressed in general form as a mapping from a point
(x,) in the output image to its corresponding (warped) position (i, j) in the input

image:
(0, 7) = (Wx(x, y), Wy(x, »))

That is, the first coordinate, i, of the warped point is a function of the current
position in the output; likewise for the second coordinate, j. Thus, given any point
(x, y) in the output image, the coordinates of the corresponding point in the input
image may be generated using the warping functions W, and W, respectively. It
would, of course, be ideal if we had some analytic expression for W, and W, but
this is rarely the case. Instead, we normally model each spatial warping function by
a polynomial function. So, we assume that, for example, the warping functions are
given by the following equations:

n n

We(x, y)= 2 2] apgx”y?
7 q

n n
Wy(x, ¥)= 25 25 bpgxPy1
p q

For example, if n=2 (which is adequate to correst for most distortions):

We(x,) = aoox®y° + a1ox*y° + azox?y°
+ a1 Xy + anxlyt + ay x?y?
+ ao2x’y? + apx'y? + apxty?

Wy (X,) = boox"y° + brox'y® + baox?y°
+ b()1)€0}’1 + bux‘yl + buxzy‘
+ boax®y? + biax'y? + baax?y?

Now, the only thing that remains to complete the specification of the spatial
warping function is to determine the values of these coefficients, i.e. to compute
aoo—da22 and boo—b2z.

To do this, we have to assume that we know the transformation exactly for
a number of points (at least as many as the number of coefficients; nine in this case),
that is, to assume that we know the values of x and y and their corresponding i

69

Fundamentals of digital image processing

and j values. We then write the relationships explicitly in the form of the two
equations above. We then solve these equations simultaneously to determine the
value of the coefficients. Remember that we have two sets of simultaneous
equations to set up: one for the ‘@’ coefficients and one for the ‘b’ coefficients,
However, the same values relating x, y to i, j can be used in each case. This is now
where the control points come in as we are going to use these to provide us with
the (known) relationships between (x, y) and (I, j).

If we have nine unknown coefficients, as in the example above, then in order
to obtain a solution we require at least nine such observations,
(Cx1, ¥1), (1, j1)) -o- {(Xo, ¥9), (B9, o)), say. Such a system is said to be exactly
determined. However, the solution of these exact systems is often ill-conditioned
(numerically unstable) and it is usually good practice to overdetermine the system
by specifying more control points than you need (and hence generate more
simultaneous equations). These equations can then be solved, yielding the
coefficients and hence the warping functions, using standard personal computer
based maths packages such as MATLAB®.

For the sake of completeness, we include here details of how to solve such an
overdetermined system. The reader can safely skip this section if (s)he so wishes.

The first point to note is that an overdetermined system (where the number
of equations is greater than the number of unknown values) does not have an exact
solution and there are going to be some errors for some points. The idea, then,
is to minimize these errors. We will use the common approach of minimizing the
sum of the square of each error (i.e. to generate the so-called least-square-error
solution).

Consider, again, a single control point and assume we are attempting to
compute the apq coefficients:

. 0 1 2.0
1= a00x10y‘[+ a10X1 yxo + axXx 1)1
1
+ a()lxloyll + allxlly1 -+ 4321)612.}’1l
0,1 1,2 2,2
+ ao2Xx1 Y1 tanXx: yi© + anxi)

If we use m control points in total we will have m such equations which (noting that
x° and y° are both equal to 1) we may write in matrix form as:

; 1,2 1,112 121,22 2
i Xy X"y xeyr i yr yixy yixi° v aoo el
: 1,2 1 1 1.2 12 1,22, 2
b | | 1x2x®ye xa ya X"y yatxa yatxat e W U I
N Co1L 2 1o 1y 1o 2 1,2 1, 2, 2, 2))
Im 1Xm X" Y™ Xm Ym X" Ym Y™ Xm' Y™ X" Y 1%} €m

We have to include the errors since there will not be a set of ago—a22 which will
simultaneously provide us with exactly i;—in, in the overdetermined case.
Let us abbreviate this matrix equation to:

i=Xa+e

70

Geometric operations

Similar
j=Xb+e

We req : a, so we might think of multiplying across by X~! to obtain an
appropt : expression. Unfortunately, X is non-square (number of equations is
greater - 1the number of coefficients) and one cannot invert a non-square matrix.
Howeve /e can indulge in a little algebra and calculus to derive an expression for
ainterr of X and i:

i=Xa+e

e=i-Xa

We forr 1e sum of the square of each error by computing e’e:
ele=({ - Xa)T(i — Xa)

Differen ing e’e with respect to a, to find out how the errors change as the
coefficie change:

d(e’e) _

@ 0-XDT3G - Xa) + (i — Xa)* (0 — XI)

(= XD)"(i — Xa)+ (" - (Xa)")(— XI)
—IX"(i ~ Xa) + (" — a"X")(~ XT)
= —IX"i+ IX"Xa - i"XT + a"X"XI

But noting that i"X7T and a"X"XT are 1 x 1 matrices and that the transpose of a
1 x 1 matrix is equal to itself, we transpose these two sub-expressions:

= —IX%i + IX"Xa - IX"i + IX"Xa
= 2I)(X"Xa - X™0)

The sum of the square of each error is minimized when d(eTe)/ d(a) is equal to zero,
thus: .

0=2(I)X"Xa - X" i)
X™X) "X Xa = (XTX)" ' XTi
a=(X"x)"'x"
(XTX)"1XT is commonly referred to as the ‘pseudo-inverse’ of X and is written X",

When this has been computed, the coefficient matrix a may be computed by
simply multiplying X' by #; b is obtained in a like manner.

4.3.1.2 Grey-level interpolation

Once the spatial mapping function has been found, the output image can be built,
pixel by pixel and line by line. The coordinates given by the warping function,
denoting the corresponding points in the input image, will not in general be integer
values and the grey-level must be interpolated from the grey-levels of the
surrounding pixels.

71

Fundamentals of digital image processing

The simplest interpolation function is nearest-neighbour interpolation (zero-
order interpolation) whereby the grey-level of the output pixel (which is what we
are trying to estimate) is given by the grey-level of the input pixel which is nearest
to the calculated point in the input image (see Figure 4.23). The computation
involved in this interpolation function is quite trivial but the function generally
yields quite adequate results. If the image exhibits very fine detail in which adjacent
pixel grey-level varies significantly, i.e. the image exhibits high spatial frequencies,
some of this detail may be lost. In such cases, bi-linear (i.e. first-order) inter-
polation should be considered since the estimate is made on the basis of four
neighbouring input pixels. Consider the case shown in Figure 4.24 where we need
to estimate the grey-level of a point somewhere between image pixels (i, j), (i, j + 1),
(i+1,/), and (i+1,j+ 1). Let the position of this point relative to pixel (7, j) be
given by coordinates (p,g); 0< p,g<1. The grey-level at point (p,q) is
constrained by the grey-level at the four neighbouring pixels and is a function of
its position between these neighbours. To estimate the grey-level, f(p,q), we fit a
surface through the four neighbours’ grey-levels, the equation of which will in
general identify the grey-level at any point between the neighbours. The surface we
fit is a hyperbolic paraboloid and is defined by the bilinear equation:

f(p,g)=ap+bg+cpg+d

There are four coefficients, a, b, ¢, and d, which we must determine to identify this

101 100 | 103 106 | 107 106 | 103 | 110

110 | 140 120 | 122 | 130 | 130 121 120

134 | 134 136 131 137 138 | 120 | 121

132 | 132 | 132 133 | 133 150 | 160 | 155

134 | 140 | 140 | 135 | 140 | 156 160 | 174
130 | 138 | 139 150 | 169 | 175 170 | 165 /

126 133 138 | 149 163 | 169 180 | 185 .
Y [Computed point

Nearest neighbour

130 | 140 | 150 | 169 | 178 | 185 | 190 | 200

Figure 4.23 Nearest-neighbour interpolation.

72

Geometric operations

q
]]
p i, /) Fli, j+ 1)
[}
a4 flitp, j+g—
[[]
Fli+1, j) Flit1, j+1)

Figure 4.24 Bilinear interpolation.

function for any given 2 X 2 neighbourhood in which we wish to interpolate. Thus
we require four simultaneous equations in a, b, ¢, and d; these are supplied from
our knowledge of the grey-level at the four neighbours given by relative coordinates
0,0), (0,1), (1,0), (1,1). Specifically, we know that:

ax0+bx0+cx0xX0+d=f3,J) “4.n
ax0+bXx1+cxX0x1+d=f(Jj+1) 4.2)
axX1+bx0+cx1x0+d=f(+1,)) 4.3

axXl+bxl+ex1Ix1+d=f(i+1,j+1) (4.4
Directly from (4.1), we have:
d=f{,J) 4.5)
Rearranging (4.2) and substituting for d, we have:
b=f,j+1)—SfG)) (4.6)
Rearranging (4.3) and substituting for d, we have:
a=fG+1,))=f0J) 4.7
Rearranging (4.4) and substituting for a, b, and d, we have:
c=f+1,j+ 1)+ f0)~ fG+1,)—fGJj+1) 4.8)

Equations (4.5)—(4.8) allow us to compute the coefficients @, b, ¢, and d, which
define the bilinear interpolation for a given 2 x 2 neighbourhood with known pixel
grey-levels.

For example, if the coordinates of the point at which we wish to estimate the
grey-level are (60.4, 128.1) and the grey-level at pixels (60, 128), (60, 129), (61, 128),

73

Fundamentals of digital image processing

and (61, 129) are 10, 12, 14, and 15, respectively, then the grey-level at this point,
in relative coordinates, is given by:

£(0.4,0.1) = (14— 10) X 0.4
+(12-10) X 0.1
+(15+ 10— 14— 12) x 0.4 % 0.1
+10
=11.76

4.3.2 Registration and geometric decalibration

This technique for spatial warping can be used directly to effect either registration
of two images or to correct the geometric distortion which may have been
introduced by the imaging system. In the former case, one merely needs to identify
several corresponding points in the two images and use these as the control points
when generating the polynomial coefficients. In the latter case, one might use the
imaging system to generate an image of a test card (e.g. a square grid) and
superimpose an undistorted copy of this pattern on the distorted image. The
corresponding control points can then be explicitly identified in each version of the
pattern. For example, in the case of the grid pattern, the control points might be
the points of intersection of the grid lines.

4.4 Mathematical morphology

4.4.1 Basic set theory

Mathematical morphology is a methodology for image processing and image
analysis which is based on set theory and topology. As such, it is a formal and
rigorous mathematical technique and we need to establish a basic ‘language’ before
proceeding. For the most part, this is the language of set theory. In the following,
points and vectors will be denoted by latin lowercase letters: x, y, z; sets will be
denoted by latin uppercase letters: X, Y, Z; and the symbol ¢ denotes the empty set.
The more common set operations we will encounter in this brief treatment of
morphology include the following:

@ Set inclusion. This is written: Y C X, i.e. Y is a subset of (is included in) the
set X. This is defined as y € Y = y€ X: if y is an element of Y, then y is also
an element of X.

e Complement. For any set X, the complement of X is written X°. This is the
set of all elements which are nof elements of X.

@ Union. The union of two sets X and Y, written XU Y, is defined:

XUY={x|xeXor xeY)}
This should be read: the set X union Y is the set of all x such that x is an

element of X or x is an element of Y.

74

Mathematical morphology

o Intersection. The intersection of two sets X and Y, written X N Y, is defined:
XNY=(X°UY*®

In effect, the intersection of two sets is the complement of the union of their
respective complements. Thus, the intersection of X and Y is the complement
of the set of elements which are not in X or not in Y, i.e. the set of elements
which is common to both sets X and Y.

Let us now consider two further concepts. The first is translation. The translation
of a set X by 4 is denoted Xj. This is a set where each element (point) is translated
by a vector h. Second, we need to introduce a general symbolism for set
transformation. A transformation of a set X is denoted by ¥(X). ¥() is the set
transformation and in an expression such as ¥ =¥ (X), Y is the transformed set.

Finally, we require the concept of duality of set transformations. Given some
transformation ¥, we define the dual of the transformation ¥*:

(X)) = (¥ (X°)°

For example, intersection is the dual of union since XN Y = (X°U Y°)°.

4.4.2 Structuring elements and hit or miss transformations

We are now in a position to continue with the discussion of mathematical
morphology. Let us begin with the concept of a structuring element.

A structuring element B,, centred at x, is a set of points which is used to
‘extract’ structure in a set, X, say. For example, the structuring element might be
a square or a disk, as shown in Figure 4.25, or any other appropriate shape.

Now we define a kit or miss transformation as the ‘point by point’
transformation of a set X, working as follows. We choose, and fix, a structuring
element B. Define B,' to be that subset of B, (recall B, is the translate of B to a
position x) whose elements belong to the ‘foreground’ and B,? to be the subset of
B, whose elements belong to the ‘background’ (i.e. B! N\ B% = ¢).

Figure 4.25 Square and circular structuring elements.

75

Fundamentals of digital image processing

A point x belongs to the hit or miss transform, denoted X ® B, if and only
if B! is included in X and B.? is included in X° the complement of X:

X ® B={x|B:! C X;B.*> C X°)

Thus, X ® B defines the points where the structuring element B exactly matches

(hits) the set X, i.e. the image. .
For example, let B be the structuring element shown in Figure 4.26(a) and let

X be the set shown in Figure 4.26(b). Then X ® B is the set shown in Figure
4.26(c).

4.4.3 Frosion and dilation

In Section 4.2.3, we informally introduced the concepts of erosion and dilation. We
will now define them formally. Let B be the transposed set of B, i.e. the

000000
000000
000000
O0000O0
0O0®000
Q00000

(c)

Figure 4.26 (a) Structuring element B; (b) image set X; (c) B ‘hit or miss’
X:X® B.

76

Mathematical morphology

symmetrical set of B with respect to its origin. Then, the erosion operation is
denoted © and the erosion of a set X with B is defined:

XO©B={x|B.C X}

Note that this is equivalent to a hit or miss transformation of X with B, where
B?= ¢, i.e. where there are no background points. Note also that X © B is not an
erosion — it is the Minkowski subtraction of B from X.

Intuitively, the erosion of a set by a structuring element amounts to the .
generation of a new (transformed/eroded) set where each element in the '
tran}s{formed set is a point where the structuring element is included in the original
set X.

For example, let B and X be the structuring element and set shown in Figure
4.27(a) and (b), respectively; then X © B is depicted in Figure 4.27(c).

In a more complex case, if B is a circular structuring element, Figure 4.28
schematically illustrates the effect of erosion.

®

®

(a)
Q00000
oNoNoNoNoNe)
CO0O®@®00
C®e®®O0O0
CO0O®000
(oNoNoNoNoNe]

(b)
000000
000000
CO®®o0o0
OC0® 000
000000
O0000O0

(c)

Figure 4.27 (a) Structuring element B; (b) image set X; (c) the erosion of
X with B:XOB.

77

Fundamentals of digital image processing

Figure 4.28 Erosion of X by a circular structuring element B.

Dilation is a closely related operation. In fact, dilation is the dual of erosion.
The dilation operation is denoted by the symbol @. Thus:
X®B=X‘OB
That is, the dilation of X is the erosion of X°. This amounts to saying that the

erosion of a set (e.g. an object) with a given structuring element is equivalent to the
dilation of its complement (i.e. its background) with the same structuring element,

and vice versa.

4.4.4 Opening and closing

After having eroded X by B, it is not possible in general to recover the initial set
by dilating the eroded set X © B by the same B. This dilate 1‘ec0n‘stltutes only a part
of X, which is simpler and has fewer details, but may be considered as that gart
which is most essential to the structure of X. This new set (i.e. the results of erosion
followed by dilation) filters out (i.e. generates) a new subset of X which is extremely
rich in morphological and size distribution properties. This transformation is called

an opening. .
The opening of a set X with a structuring element B, denoted Xp, is defined:

Xp=(XOB)® B
The closing of X with respect to B, denoted X%, is defined:
Xt=(X®B)OB
Opening is the dual of closing, i.e.:
(X)p= (X"
and
(Xp)° = (X)®

78

Mathematical morphology

The opening is the domain swept out by all the translates of B which are included
in X. This effects a smoothing of the contours of X, cuts narrow isthmuses,
suppresses small islands and sharp edges in X.

4.4.5 Thinning and the extraction of endpoints

As we have seen in Section 4.2.3, an approximation to the skeleton can be achieved
by an iterative transformation known as thinning. From the perspective of
mathematical morphology, the thinning of a set X by a sequence of structuring
elements L, is denoted

X O (L)
that is
((..(XOLHYOLHOLY)...OLY)
X O L is defined:
XOL=XIX®L

That is, the set X less the set of points in X which hit L. Thus, if X &® L identified

border points, and L is appropriately structured to maintain connectivity of a set,

then repeated application of the thinning process successively removes border

points from a set until the skeleton is achieved. At this point, further application

of the thinning transform yields no change in the skeletal set. This, of course,

should be reminiscent of the thinning algorithm discussed in Section 4.2.3.
Recalling the definition of a hit and miss transformation:

X®L={x|'L«C X;%L,C X9
LeN2Le=¢
We can now proceed to develop a thinning algorithm by defining L. The sequence
{L} which is used for thinning is based on a single structuring element and is
generated by rotating the structuring element (through 360° in increments of 45°

for a square lattice). This sequence (L} is shown in Figure 4.29. The thinning
algorithm then amounts to the repeated transformation of a set X; = Xi. defined:

Xiv1=(((..(Xi O L1) O L2) O L3)... O Lg)

L L? L? L4 L8 L8 L’ 8
@ ®6 0 ® @ O OO0 000 O©OO o e
oee @ 60 600 @0 @ Ce6 O@ee
o0 00O OO0 ® O ® LN N @ o @

Figure 4.29 Sequence of structuring elements used in the thinning
operation.

79

Fundamentals of digital image processing

E' E? E® E* E® E® E’ E®
000 0O0O® 0®0 00 000 000 OO0 00O
cee® 0O®0 OO0 O8O0 60 Oeo0 O0®eOo 0eo
000 000 00O 00O 00O ®00 OO0 O0OO0e

Figure 4.30 Structuring elements used to identify end-points.

The skeleton is achieved when Xi=Xii1. Initially Xo =X, i.e. the original
(unthinned) image.

Given a skeleton set X, we can identify the endpoints, i.e. points which are
connected to just one other point, using the hit or miss transform and an appro-
priate set of structuring elements {(E}, shown in Figure 4.30. Thus, the endpoints
of the skeleton are given by:

8 .
y=U XQE
i=0

That is, the union of all those points which kit with one of these endpoint
structuring elements.

4.4.6 Application: identification of endpoints of electrical
wires

In Chapter 8, we will be considering a complete vision and robotics case study:
automated crimping of electrical wires. Part of this application is concerned with
the identification of the positions of the ends of these electrical wires lying on a flat
surface. In Chapter 8, we will be employing conventional techniques, but for the
sake of illustration we will briefly consider a morphological approach here.
Assuming that we are dealing with a grey-scale image of long thin wires (see Figures
8.18 and 8.19), then there are just three simple steps in achieving our objective:

Step 1. Threshold the grey-level image to obtain a binary image. Call this set X;.
Step 2. Generate the skeleton X3:

X=X QO (L)}
Step 3. Identify endpoints of skeleton Xj:

8
Xs=U X2 Q E
i=0

X is the set of all endpoints of these electrical wires.

4.4.7 A brief introduction to grey-scale mathematical
morphology

So far, all of the mathematical morphology has assumed that we are dealing with

80

Mathematical morphology

Intensity

X position

(a)

Intensity
(b)

Intensity

= - L

X position
{c)
Figure 4.31 (a) A one-dimensional slice of a two-dimensional image
function. (b) Thresholding this one-dimensional function at a value T

generates a set xa= {x|x > T} depicted by the bold line.
(¢) Representation of an image by a sequence of such sets.

81

Fundamentals of digital image processing

a set X and its complement X¢, i.e. that we have been dealing with binary images
comprising a foreground (the set of object points X) and a b.ackground (the sc?t
of all other points X°). Unfortunately, grey-scale mathematical morpt}olog}f is
considerably more difficult to understand than binary morphology_ and this section
is just intended to serve as an introduction to the manner in which we approach
grey-level images from a morphological point of view. ‘ .

For the following, we will consider one-dimensional slices of a two-
dimensional image function. This makes it easier to represent in diagrams and it is
somewhat easier to follow. Thus, a slice along the X-axis (i.e. a line of) a grey—sqale
image can be viewed as shown in Figure 4.31(a). If we threshold this function
choosing values > x, that is, generate a set x:

xn=I{x|x=2T]

where T is the threshold value, we generate the set of points shown in a bold
horizontal line in Figure 4.31(b). A grey-scale image, then, is considered to be a
function f and is a sequence of sets:

Je {a(hH

and the grey-scale image is effectively the entire sequence of sets generated by
successively decreasing the threshold level, as shown in Figure 4.31(c).
Grey-level erosion is defined:

f>feB)
and equivalently:
(o ()} = () © B))

This grey-level erosion is the function, or sequence of sets, which are individually
the erosion of sets generated at successive thresholds. Figure 4.32 illustrates the
erosion of a (one-dimensional) function with a flat structuring element.

X position

Intensity

Figure 4.32 Erosion of a one-dimensional function with a flat structuring
element; the eroded function is depicted by the thin curve.

82

References and further reading

X position

Intensity

Figure 4.33 Dilation of a one-dimensional function with a flat structuring
element; the dilated function is depicted by the thin curve.

Similarly, grey-level dilation is defined:

f~7®B)
(D) = () @ BY)

and Figure 4.33 illustrates the dilation of a (one-dimensional) function with a flat
structuring element.

Exercises

1. Why is convolution a useful operation in image processing? Be
specific in your answer by identifying the relationship between
convolution and filtering.

2. ldentify and annotate two simple techniques for noise removal in
digital images; detail any assumptions upon which the techniques are
based.

3. What is the essential difference between erosion and thinning? What
is the relationship between thinning and the medial axis transform?

4. Why are look-up table (LUT) formulations of algorithms
computationally efficient?

5. If two images can be registered by translation and rotation operations,
is it necessary to use spatial warping techniques? Will grey-level
interpolation be an issue?

References and further reading

Arcelli, C. 1979 ‘A condition for digital points removal’, Signa/ Processing, Vol. 1,
pp. 283-5.

83

Fundamentals of digital image processing

Blum, H. 1967 ‘A transformation for extracting new descriptors of shape’, in Models for
the Perception of Speech and Visual Form, W. Wathen-Dunn (ed.), MIT Press
Cambridge, Massachusetts, pp. 153-71.

Brady, M. and Asada, H. 1984 ‘Smoothed local symmetries and their implementation’, The
TInternational Journal of Robotics Research, Vol. 3, No. 3, pp. 36—61.

Castleman, K.R. 1979 Digital Image Processing, Prentice Hall, New York.

Gonzalez, R.C. and Wintz, P. 1977 Digital Image Processing, Addison-Wesley, Reading,
Massachusetts.

Hall, E.L. 1979 Computer Image Processing and Recognition, Academic Press, New York.

Hilditch, C.J. 1983 ‘Comparison of thinning algorithms on a parallel processor’, Image and
Vision Computing, Vol. 1, No. 3, pp. 115-32.

Kenny, P.A., Dowsett, D.J., Vernon, D. and Ennis J.T. 1990 ‘The application of spatial
warping to produce aerosol ventilation images of the lung immediately after perfusion
with the same labelled isotope’, Physics in Medicine and Biology, Vol. 35, No. 5,
679-85.

Motzkin, Th. 1935 ‘Sur Quelques Proprietes Caracteristiques des Ensembles Bornes Non
Convexes’, Atti. Acad. Naz. Lincei, 21, pp. 773-9.

Nackman, L.R. and Pizer, S.M. 1985 ‘Three dimensional shape description using the
symmetric axis transform 1: Theory’, IEEE Transactions on Pattern Analysis and
Moachine Intelligence, Vol. PAMI-7, No. 2, pp. 187-202.

Pratt, W.K. 1978 Digital Image Processing, Wiley, New York.

Rosenfeld, A. and Kak, A. 1982 Digital Picture Processing, Academic Press, New York.

Rosenfeld, A. 1975 ‘A characterization of parallel thinning algorithms’, Information and
Control, Vol. 29, pp. 286-91.

Serra, J. 1982 Image Analysis and Mathematical Morphology, Academic Press, London.

Tamura, H. 1978 ‘A comparison of line-thinning algorithms from a digital geometry
viewpoint’, Proceedings 4th International Joint Conference on Patiern Recognition,
pp. 715-19.

Zhang, T.Y. and Suen, C.Y. 1984 ‘A fast parallel algorithm for thinning digital patterns’,
Communications of the ACM, Vol. 27, No. 3, pp. 236-9.

84

5

The segmentation problem

5.1 Introduction: region- and boundary-based
approaches

Segmentation is a word used to describe a grouping process in which the
components of a group are similar with respect to some feature or set of features.
The inference is that this grouping will identify regions in the image which
correspond to unique and distinct objects in the visual environment.

There are two complementary approaches to the problem of segmenting
images and isolating objects: boundary detection and region growing. Region
growing effects the segmentation process by grouping elemental areas (in simple
cases, individual image pixels) sharing a common feature into connected two-
dimensional areas called regions. Such features might be pixel grey-level or some
elementary textural pattern, e.g. the short thin bars present in a herringbone
texture.

Boundary-based segmentation is concerned with detecting or enhancing the
boundary pixels of objects within the image and subsequently isolating them from
the rest of the image. The boundary of the object, once extracted, may easily be
used to define the location and shape of the object, effectively completing the
isolation.

An image comprising boundaries alone is a much higher level representation
of the scene than is the original grey-scale image, in that it represents important
information explicitly. In cases where the boundary shape is complicated, the gap
between these two representations is wide and it may be necessary to introduce an
intermediate representation which is independent of the shape. Since boundaries of
objects are often manifested as intensity discontinuities, a natural intermediate
representation is composed of local object-independent discontinuities in image
intensity, normally referred to as ‘edges’. The many definitions of the term edge
can be summarized by the observation (or premise) that an edge occurs in an image

85

Fundamentals of digital image processing

Blum, H. 1967 ‘A transformation for extracting new descriptors of shape’, in Models for
the Perception of Speech and Visual Form, W. Wathen-Dunn (ed.), MIT Press
Cambridge, Massachusetts, pp. 153-71.

Brady, M. and Asada, H. 1984 ‘Smoothed local symmetries and their implementation’, The
TInternational Journal of Robotics Research, Vol. 3, No. 3, pp. 36—61.

Castleman, K.R. 1979 Digital Image Processing, Prentice Hall, New York.

Gonzalez, R.C. and Wintz, P. 1977 Digital Image Processing, Addison-Wesley, Reading,
Massachusetts.

Hall, E.L. 1979 Computer Image Processing and Recognition, Academic Press, New York.

Hilditch, C.J. 1983 ‘Comparison of thinning algorithms on a parallel processor’, Image and
Vision Computing, Vol. 1, No. 3, pp. 115-32.

Kenny, P.A., Dowsett, D.J., Vernon, D. and Ennis J.T. 1990 ‘The application of spatial
warping to produce aerosol ventilation images of the lung immediately after perfusion
with the same labelled isotope’, Physics in Medicine and Biology, Vol. 35, No. 5,
679-85.

Motzkin, Th. 1935 ‘Sur Quelques Proprietes Caracteristiques des Ensembles Bornes Non
Convexes’, Atti. Acad. Naz. Lincei, 21, pp. 773-9.

Nackman, L.R. and Pizer, S.M. 1985 ‘Three dimensional shape description using the
symmetric axis transform 1: Theory’, IEEE Transactions on Pattern Analysis and
Moachine Intelligence, Vol. PAMI-7, No. 2, pp. 187-202.

Pratt, W.K. 1978 Digital Image Processing, Wiley, New York.

Rosenfeld, A. and Kak, A. 1982 Digital Picture Processing, Academic Press, New York.

Rosenfeld, A. 1975 ‘A characterization of parallel thinning algorithms’, Information and
Control, Vol. 29, pp. 286-91.

Serra, J. 1982 Image Analysis and Mathematical Morphology, Academic Press, London.

Tamura, H. 1978 ‘A comparison of line-thinning algorithms from a digital geometry
viewpoint’, Proceedings 4th International Joint Conference on Patiern Recognition,
pp. 715-19.

Zhang, T.Y. and Suen, C.Y. 1984 ‘A fast parallel algorithm for thinning digital patterns’,
Communications of the ACM, Vol. 27, No. 3, pp. 236-9.

84

5

The segmentation problem

5.1 Introduction: region- and boundary-based
approaches

Segmentation is a word used to describe a grouping process in which the
components of a group are similar with respect to some feature or set of features.
The inference is that this grouping will identify regions in the image which
correspond to unique and distinct objects in the visual environment.

There are two complementary approaches to the problem of segmenting
images and isolating objects: boundary detection and region growing. Region
growing effects the segmentation process by grouping elemental areas (in simple
cases, individual image pixels) sharing a common feature into connected two-
dimensional areas called regions. Such features might be pixel grey-level or some
elementary textural pattern, e.g. the short thin bars present in a herringbone
texture.

Boundary-based segmentation is concerned with detecting or enhancing the
boundary pixels of objects within the image and subsequently isolating them from
the rest of the image. The boundary of the object, once extracted, may easily be
used to define the location and shape of the object, effectively completing the
isolation.

An image comprising boundaries alone is a much higher level representation
of the scene than is the original grey-scale image, in that it represents important
information explicitly. In cases where the boundary shape is complicated, the gap
between these two representations is wide and it may be necessary to introduce an
intermediate representation which is independent of the shape. Since boundaries of
objects are often manifested as intensity discontinuities, a natural intermediate
representation is composed of local object-independent discontinuities in image
intensity, normally referred to as ‘edges’. The many definitions of the term edge
can be summarized by the observation (or premise) that an edge occurs in an image

85

The segmentation problem

if some image attribute (normally image intensity) changes its value dis-
continuously. In particular, edges are seen as local intensity discontinuities while
boundaries are global ones. The usual approach to segmentation by boundary
detection is to first construct an edge image from the original grey-scale image, and
then to use this edge to construct the boundary image without reference to the
original grey-scale data by edge linking to generate short-curve segments, edge-
thinning, gap-filling, and curve segment linking, frequently with the use of domain-
dependent knowledge. This association of local edges is normally referred to as
boundary detection and the generation of the local edge image is referred to as edge
detection.

Boundary detection algorithms vary in the amount of domain-dependent
information or knowledge which they incorporate in associating or linking the
edges, and their effectiveness is obviously dependent on the quality of the edge
image. The more reliable the edge elements in terms of their position, orientation
and, indeed, authenticity, the more effective the boundary detector will be.
However, for relatively simple, well-defined shapes, boundary detection may
become redundant, or at least trivial, as edge detection performance improves.
Since computational complexity for the segmentation process as a whole is a
function of the complexity of both the edge detection and boundary detection then
minimal segmentation complexity may be achieved by a trade-off between the
sophistication of the edge detector and the boundary detector.

It is worth noting, however, that since edge detection is essentially a filtering
process and can often be effected in hardware, while boundary detection will
require more sophisticated software, the current (and, probably, correct) trend is
to deploy the most effective and sophisticated edge detector (e.g. the Canny
operator or the Marr—Hildreth operator) and to simplify the boundary detection
process.

The remainder of this chapter is devoted to a discussion of a region-based
segmentation technique (thresholding), edge detection, region growing and, finally,
boundary detection.

5.2 Thresholding

Grey-level thresholding, which we covered briefly in Chapter 4, is a simple region-
based technique. However, we include it in a section on its own here because it is
a very commonly used and popular technique. As we saw in Chapter 4, in situations
where an object exhibits a uniform grey-level and rests against a background of a
different grey-level, thresholding will assign a value of 0 to all pixels with a grey-
level less than the threshold level and a value of 255 (say) to all pixels with a
grey-level greater than the threshold level. Thus, the image is segmented into two
disjoint regions, one corresponding to the background, and the other to the object.

86

Thresholding

5.2.1 Global, local, and dynamic approaches

In a more general sense, a threshold operation may be viewed as a test involving
some function of the grey-level at a point, some local property of the point, e.g.
the average grey-level over some neighbourhood, and the position of the point in
the image. Thus, a threshold operation may be viewed as a test involving a function
T of the form:

T(x,y, N(x,¥), g(x,»)

where g(x, y) is the grey-level at the point (x, y) and N(x, y) denotes some local
property of the point (x, y). If g(x,y) > T(x, y, N(x, »), g(x, ¥)) then (x, y) is
labelled an object point, otherwise it is labelled a background point, or conversely.
This is the most general form of the function 7, however, and three classes of
thresholding (global, local, and dynamic) may be distinguished on the basis of
restrictions placed on this function (see Weszka, 1978). These are:

T=T(g(x,) Global thresholding: the test is dependent only
on the grey-level of the point.
T=T(N(x,y), gx,y) Local thresholding: the test is dependent on a

neighbourhood property of the point and on
the grey-level of the point.

T=T(x,y, N(x,), g(x,y)) Dynamic thresholding: the test is dependent on
the point coordinates, a neighbourhood
property of the point and on the grey-level of
the point.

It is pertinent to note, however, that most systems utilize the simplest of these three
approaches, global thresholding: the threshold test is based exclusively on the
global threshold value and on the grey-level of a test-point, irrespective of its
position in the image or of any local context. The approach is facilitated either by
constraining the scene to ensure that there is no uneven illumination or by
photometrically decalibrating the image before thresholding. The advantage of this
approach is that the thresholding can be accomplished by commonly available
hardware using a look-up table, as described in Chapter 4.

5.2.2 Threshold selection

The selection of an appropriate threshold is the single major problem for reliable
segmentation. Of the several techniques which have been proposed, most are based
on the analysis of the grey-level histogram, selecting thresholds which lie in the
region between the two modes of the (bi-modal) histogram. The assumption that
the histogram is indeed bi-modal, with one mode corresponding to the grey-level
representing the object and the other to the grey-level representing the background,
is often not valid; histograms are frequently noisy and the two modes may be

87

The segmentation problem

difficult to detect (see Figure 5.1). Just as often, the object will gener.at‘e a single
mode while the background will comprise a wide range of grey-level, giving rise to
a uni-modal histogram (see Figure 5.2). While several applica.tions of a simple
smoothing (or local averaging) operator to a noisy histogram will help w.xth noisy
bi-modal histograms, it will be of little use with uni-modal histograms. Figure 5.3

Frequency

Black object § White background

255
° Grey-scale

Figure 5.1 Noisy bi-modal grey-scale histogram.

Frequency

White background

0 255
Grey-scale

Figure 5.2 Uni-modal grey-scale histogram.

88

Thresholding

Figure 5.3 Grey-scale histogram smoothing: top-left: no smoothing; top-
right: one application of a 3x 1 neighbourhood average operator;
bottom-left: two applications; bottom-right: three applications.

illustrates the effect of smoothing a grey-scale histogram by iterative application of
a local 3 X 1 neighbourhood averaging operator.

Another useful approach to thresholding selection is to use the average grey-
level of those pixels which are on the boundary between the object and the
background as an estimatc of the threshold value. As the grey-level of this
boundary pixel will typically lie between those of the object and the background,
it provides a good indication of the threshold value (see Figure 5.4). The difficulty,
of course, lies in deciding which pixels are on the boundary.

One of the best approaches is to use a reliable edge detector, such as the
Marr—Hildreth operator described in the next section, to identify these boundary
points. The threshold selection procedure first uses a Marr—Hildreth operator to
locate edges in the image and the mean grey-level of the image pixels at these edge
locations is computed. This mean represents the global threshold value. To illus-
trate this approach, Figure 5.5 shows the binary image generated by thresholding
the original grey-scale image at a threshold equal to the mean grey-level of the
boundary points generated using the Marr—Hildreth operator. It should be noted
that, although this threshold selection technique is computationally complex and
may take a significant amount of time to compute, it is only a calibration exercise
and need not be performed before every threshold operation.

89

The segmentation problem

Edge pixels Edge pixels
255
—__—-—-——\-\ N_,"’_—-—“
Grey-level
Mean grey-level
G of edge pixels:
threshold value
(o]

{b)

Figure 5.4 Using edge pixels to select a threshold: (a) image of dark,
round object on a light background with section X - X shown; (b) profile
of image intensity along section X —X.

5.3 An overview of edge detection techniques

As might be expected when dealing with a process which is fundamental to image
segmentation, the literature concerning edge detection is large. This section will
not attempt to review all detectors in detail; rather it will survey and describe the
different approaches to edge detection and illustrate the approach with specific
algorithms.

There are four distinct approaches to the problem of edge detection:

(a) gradient- and difference-based operators;
(b) template matching;

90

An overview of edge detection techniques

(b)

Figure 5.5 Automatic threshold selection using the Marr-Hildreth theory
of edge detection: (a) original grey-scale image; (b) automatically
thresholded binary image.

91

The segmentation problem

(c) edge fitting;
(d) statistical edge detection.

Each of these four approaches will be considered in turn.

5.3.1 Gradient- and difference-based operators

If we define a local edge in an image to be a transition between two regions of
significantly different intensities, then the gradient function of the image, which
measures the rate of change, will have large values in these transitional boundary
areas. Thus gradient-based, or first-derivative-based, edge detectors enhance the
image by estimating its gradient function and then signal that an edge is present if
the gradient value is greater than some defined threshold.

In more detail, if 3/0x and 3/dy represent the rates of change of a two-
dimensional function f(x,) in the x- and y-directions, respectively, then the rate
of change in a direction 6 (measured in the positive sense from the X-axis) is given

by:
aof af

E—JECOS 6+-a-.; sin 6

The direction 6, at which this rate of change has the greatest magnitude is given by:

of | af
arctan[gi / ax]

(BN

The gradient of f(x, y) is a vector at (x, y) with this magnitude and direction. Thus
the gradient may be estimated if the directional derivatives of the function are
known along (any) two orthogonal directions. The essential differences between all
gradient-based edge detectors are the directions which the operators use, the
manner in which they approximate the one-dimensional derivatives of the image
function in these directions, and the manner in which they combine these
approximations to form the gradient magnitude.

These gradient functions are intuitively easy to understand when we confine
ourselves to the discrete domain of digital images where partial derivatives become
simple first differences. For example, the first difference of a two-dimensional
function in the x-direction is simply:

Sx+1,y)—f(x,»)

Similarly, the first difference of a two-dimensional function in the y-direction is
simply:

with magnitude:

SO,y + 1) = f(x, ¥)

92

An overview of edge detection techniques

An operator due to Roberts estimates the derivatives diagonally over a 2 x 2
neighbourhood. The magnitude of the gradient g(x, y), at an image point (x, y),
is approximated by taking the RMS of the directional differences:

g, =R, y) = J[{f,») = fx+ Ly + D) 2 ¥ (f(n,y + 1) — fOx+ 1, p)} 7

R(x, y) is usually referred to as the Roberts cross operator. The differences may be
combined in a way other than the RMS to provide a computationally simpler
version, the Roberts absolute value estimate of the gradient function, given by:

g,) =R(6»)=f(x,y)= flx+ L,y+ |+ |fC,y+ 1)~ fx+1,)]

Rosenfeld and Kak have argued that a third version, the Roberts max operator,
given by:

g(x,y)=R(x,y)=Max (| f(x,y) - f(x+ 1L,y + D|,| f(x,y+ 1) = f(x+ 1,»)|)

affords better invariance to edge orientation. Applying the Roberts max operator
to edges of equal strength, but of different orientation, produces less variation in
the resultant magnitude value than if the cross operator were used.

To illustrate these edge detectors, a test image with fairly fine structure (a tray
of electrical wires) was acquired: see Figure 5.6. The Roberts RMS, absolute value,
and Roberts max operators are shown in Figures 5.7, 5.8, and 5.9 respectively.

One of the main problems with the Roberts operator is its susceptibility to
noise because of the manner in which it estimates the directional derivatives, i.e. the
first differences, of the image function f(x, ¥). This has prompted an alternative
estimation of the gradient by combining the differencing process with local
averaging. For example, the Sobel operator estimates the partial derivative in the

Figure 5.6 A tray of wires.

93

The segmentation problem

An overview of edge detection techniques

Figure 5.8 Roberts absolute value edge detection operator.

x-direction over a 3 x 3 region centred at f(x, y) by:

Se= fx+Ly-D+2f(x+1L,y)+ f(x+1,y+ 1))
U =Ly-D+2f(x— 1, p)+ f(x—1,y+ 1))

This essentially takes the difference of a weighted average of the image intensity on
either side of f(x, y). Similarly:

Sy={f(x=1Ly+D+2f(x,y+ 1)+ f(x+ 1, y+ 1))
—{fx=-Ly-D+2f(x,y—D+ f(x+1,y— 1)}

94

Figure 5.10 Sobel RMS edge detection operator.

The gradient may then be estimated as before by either calculating the RMS (see
Figure 5.10):

g(x, y) = §=[(Si+57)
or by taking the absolute values (see Figure 5.11):
g(x,)= S=|5|+|5|

In an analogous manner Prewitt suggests an approximation of the partial

95

The segmentation problem

derivatives by:
Po={f(x+1L,y-D+ flx+1,y)+f(x+1,y+ 1)}
—{fx=1,y-D+f(x-1Ly)+f(x—1,y+ 1)}
Po={f(x-1Ly+ D+ flx,y+ 1)+ f(x+1,y+ 1)
—{fx-1L,y-D+flx,y-D+flx+1,y-1)}

and the gradient may be estimated as before (see Figures 5.12 and 5.13).
Quite often, the directional differences are estimated using simple convolution

Figure 5.11 Sobel absolute value edge detection operator.

Figure 5.12 Prewitt RMS edge detection operator.

96

An overview of edge detection techniques

Figure 5.13 Prewitt absolute value edge detection operator.

kernels, one kernel for each different operator. These yield two partial derivative
images, which are then combined on a point by point basis, either as the RMS or
as the sum of absolute values, to produce the final gradient estimate. Figure 5.14
illustrates the convolution kernels for the Roberts, Sobel, and Prewitt operators.
Strictly speaking, the kernel should first be rotated by 180° before the convolution
is performed (see Section 4.2.1). However, this is normally omitted since the
resultant error of 180° in the gradient direction can be ignored.

Once the gradient magnitude has been estimated, a decision as to whether or
not an edge exists is made by comparing it to some predefined value; an edge is
deemed to be present if the magnitude is greater than this threshold. Obviously the
choice of threshold is important and in noisy images threshold selection involves a
trade-off between missing valid edges and including noise-induced false edges.

So far, edge detection has been discussed on the basis of first-derivative
directional operators. However, an alternative method uses an approximation to
the Laplacian:

2 2
2.2
ax* 0dy
i.e. the sum of second-order, unmixed, partial derivatives. The standard
approximation is given by:

L(x,y)=f0,»)=1/4{fC, y+ D)+ fC, y =D+ f(x+ L,y) + f(x =1, y)}

The digital Laplacian has zero response to linear ramps (and thus gradual changes
in intensity) but it does respond on either side of the edge, once with a positive sign
and once with a negative sign. Thus in order to detect edges, the image is enhanced
by evaluating the digital Laplacian and isolating the points at which the resultant

V=

97

The segmentation problem

1 0 0 1
0 -1 -1 0
(a)
1| -2 -1 -1] o 1
0 0 0 -2 o] 2
1 2 1 -1 0 1
(b)
~1 -1 -1 -1 0] 1
0] 0 0 -1 0 1
1 1 1 -1 0 1

(c)

Figure 5.14 Convolution kernels for estimation of the partial derivatives
with (a) Roberts; (b) Sobel; and (c) Prewitt edge detection operators.

image goes from positive to negative, i.e. at which it crosses zero. The Laplacian
has one significant disadvantage: it responds very strongly to noise.

A different and much more successful application of the Laplacian to edge
detection was proposed by Marr and Hildreth in 1980. This approach first smooths
the image by convolving it with a two-dimensional Gaussian function, and
subsequently isolating the zero-crossings of the Laplacian of this image:

V2{I(x,) * G(x, »))

where I(x, y) represents the image intensity at a point (x, y) and G(x, y) is the
two-dimensional Gaussian function, of a given standard deviation o, defined by:

G(x,y)=

53 exp[— (x* + y?)[20%

98

An overview of edge detection techniques

Despite some criticism of this technique, it is very widely used. The operator
possesses a number of useful properties: for example: the evaluation of the
Laplacian and the convolution commute so that, for a Gaussian with a given
standard deviation, we can derive a single filter: the Laplacian of Gaussian:

V2{I(x,)% G(x, y)} = V*G(x,) * I(x, ¥)

Furthermore, this two-dimensional convolution is separable into four one-
dimensional convolutions (see Appendix I for a derivation):

2
VHI(x, 9)* G(x, y)} = G(x) * [l(x,y)* ;’—yz G(y)}

2
£ G(y)» {Hx,y)* - G(x)}

Bearing in mind that an implementation of the operator requires an extensive
support, e.g. 63 X 63 pixels for a Gaussian with standard deviation of 9.0, this
separability facilitates significant computational savings, reducing the required
number of multiplications from n® to 4n for a filter kernel size of n pixels. The
Laplacian of Gaussian operator also yields thin continuous closed contours of zero-
crossing points. This property is most useful in subsequent processing, such as when
characterizing the intensity discontinuities or edges as object boundaries.

The location of the zero-crossings in space is not the only information that
can be extracted from the convolved image: the amplitude (which is related to the
slope) and orientation of the gradient of the convolved image at the zero-crossing
point provide important information about edge contrast and orientation. The
slope of a zero-crossing is the rate at which the convolution output changes as it
crosses zero and is related to the contrast and width of the intensity change.

Since the Gaussian is used to smooth the image and since different standard
deviations yield edges detected at different scales within the image (successively
smoothing out image detail), Marr’s theory also requires the correlation of edge
segments derived using Gaussians of different standard deviation. However, the
edges detected by one operator alone are often sufficiently reliable for many
industrial applications: see Figure 5.15. In any event, we will return to this issue of
multi-scale or multi-resolution edge detection when we discuss image understanding
in Chapter 9.

5.3.2 Template matching

Since an ideal edge is essentially a step-like pattern, one straightforward approach
to edge detection is to try to match templates of these ideal step edges with regions
of the same size at every point in the image. Several edge templates are used, each
template representing an ideal step at a different orientation. The degree of match
can, for example, be determined by evaluating the cross-correlation between the

99

The segmentation problem

Figure 5.15 Marr-Hildreth edge detection operator.

template and the image.® The template producing the highest correlation
determines the edge magnitude at that point and the edge orientation is assumed to
be that of the corresponding template. Detection is accomplished by thresholding
in the same manner as discussed for gradient approaches. These templates are often
referred to as edge masks.

Such a set of masks, due to Kirsch, is:

11 1 1711 -1 1 1 -1-1 1
1-2 1 -1-2 1 -1-2 1 -1-2 1
“1=-1-1 -1-1 1 -1 1 1 T 1 1

-1 -1-1 1-1-1 1 1-1 11 1
1-2 1 1-2 -1 1-2-1 1-2-1
111 11 1 1 1-1 1-1-1

Figure 5.16 illustrates the effect of the application of this set of masks.
Another set, due to Prewitt, is:

555 -355 -3-3 5 -3-3-3
-3 0-3 -3 05 -3 05 -3 0 5
-3-3-3 -3-3-3 -3-3 5 -3 5 5
-3-3-3 -3-3-3 5-3-3 5 5-3
-3 0-3 5 0-3 5 0~-3 5 0-3

555 5 5-3 5-3-3 -3-3-3

This edge detection technique is shown in Figure 5.17.

* . . N . . .
Cross-correlation is discussed in Chapter 6 on image analysis.

100

An overview of edge detection techniques

Figure 5.17 Prewitt template edge detection operator.

All the masks discussed so far, with the exception of the Laplacian of
Gaussian, when convolved with the image, will produce an enhanced image with
large values, not only at the centre of the edge, but also at points close to that edge.
Subsequent thresholding of such an enhanced image will generate an edge map with
thick edges. Nevatia and Babu suggested a template-matching algorithm (see Figure
5.18) which produces a thin edge. In this case, six 55 masks (corresponding to
edges at 0°, 30°, 60°, 90°, 120°, and 150° orientations) are correlated with the

101

The segmentation problem

image. An edge is deemed present at a particular orientation if:

(a) the response at that orientation exceeds a set threshold; and
(b) it is not dominated by responses at neighbouring points in a direction that is
normal to the candidate edge.

Figure 5.18 Nevatia-Babu template edge detection operator.

Edge strength

Suppressed
edges

Detected edges

Figure 5.19 Non-maxima suppression.

102

An overview of edge detection techniques

In particular, the edge magnitude must be higher than the edge magnitude of the
pixels on either side of it, in a direction normal to the edge orientation (see Figure
5.19), and the neighbouring pixels are also required to have edge orientations
similar to (within thirty degrees) that of the central point. This general technique
is referred to as ‘non-maxima suppression’ and was originally proposed by
Rosenfeld and Thurston in 1971.

5.3.3 Edge fitting

As mentioned above, an ideal edge can be modelled as a step discontinuity in
intensity at a particular location in the image. A step function can be defined in a
circular region by a function S(x, y) defined as follows (refer to Figure 5.20):

b (xcosf+ysinf)<p

S(X,J’)={b+h (xcosB+ysinh)=p

where

h is the step height (intensity difference);

b is the base intensity;

o and 6 define the position and orientation of the edge line with respect to the
origin of this circular region.

The approach to edge detection in this case is to determine how closely this
model fits a given image neighbourhood and to identify the values of b, A, p, and
f that minimize some measure of the distance between this circular step function
and a corresponding area in the image. This is the basis of Hueckel’s operator. The
error, & between the ideal step S(x, y, b, h, 0, 8), defined over a circular region C

b -

Figure 5.20 Parameters defining a step function in a circular region.

103

The segmentation problem

and (some) circular sub-image f(x, y) of the same size can be given by:

£2= Z (f(x9y)_S(x:y:_byh1p’9))

x,yeC

Note that f(x, y) is the image intensity at a point (x, y) and S(x, y, b, h, p, 0) is the
ideal step edge for chosen values of b, i, p, and 0 at a point (x, y). The summation
is to be performed over the entire region C and b, h, p, and 6 are to be chosen so
that &2 is minimized. This minimization process is simplified by expanding both
f(x,y) and S(x,y,b,h,p,0) in terms of a set of orthogonal (Fourier) basis
functions and using the corresponding coefficients (f; and s, say) in the error
measure given above instead of f(x, y) and S(x, y, b, h, p, 0). In practice, only the
first eight terms of the expansion are used. The operator was designed to detect the
presence of two edge elements in the circular neighbourhood simultaneously,
reporting only the more dominant edge. Each edge requires four parameters to
describe it and it was for this reason that the eighth term was chosen as the cut-off.
Thus, the problem is now to minimize:

]
E*= 3 (fi~s)

Hueckel then presents and proves a theorem which, in effect, reduces this problem
to one of extremization of a function in 8 and he derives subsequent expressions for
o, b, and A. The decision as to whether an edge is present or not is based on the
amplitude of the computed step as well as the degree of fit. Bearing in mind the
computational complexity of the Hueckel edge fitting technique, the results are, in
general, quite disappointing (see Figure 5.21).

Figure 5.21 Hueckel edge detection operator.

104

An overview of edge detection techniques

5.3.4 Statistical techniques

If you consider a small region or window in an image (¢.g. a 7 X 7 pixel area), you
can view an edge as a boundary between two inhomogeneous sub-regions. On the
other hand, if the entire region is homogeneous, then no edge exists. This is the
basis of an edge detection technique due to Yakimovsky (see Figure 5.22) who
treated edge detection as an exercise in hypothesis testing, choosing between the two
following hypotheses:

HO: The image values on two sides of a line through the window are taken from
the same region.

H1: The image values on one side are from one region and on the other side from
a different region.

Assuming that each region comprises pixels having normally distributed grey-levels
and each pixel in the region is mutually independent, Yakimovsky argued that the
choice can be made by considering the ratio of (a) the grey-level standard deviation
of the combined region (raised to the power of the number of pixels in the region)
to (b) the product of the grey-level standard deviations of both individual regions,
each with standard deviation raised to the power of the number of pixels in the
respective region.

To decide whether an edge of a given orientation exists in a window, one can
bisect the window at that orientation, thus creating two sub-regions, calculate the
appropriate standard deviations and decide as to the presence of an edge based on
some selected threshold. This may be done for several orientations, for example
0°, 30°, 60°, 90°, 120°, and 150°. There are several other statistical edge detectors
but this one serves to illustrate the approach.

Figure 5.22 Yakimovsky edge detection operator.

105

The segmentation problem

5.3.5 Assessment of edge detection

One point on which there is a definite consensus in the computer vision community
is that it is difficult quantitatively to evaluate and compare edge detector
performance. Reasons for this include the fact that there are a large number of
detectors and each detector incorporates its own inherent edge model. Thus, certain
edge detectors may be more appropriate or more successful in certain circum-
stances. Also, edge detectors will display differing degrees of noise immunity: some
may be too sensitive to noise; others will cater for (certain types of) noise but
possibly at the cost of missing valid edges. A generic mathematical analysis of
detectors is difficult, even for simple images, due to the frequent complexity and
non-linearity of the detectors (but see Hildreth, 1985, and Torre and Poggio, 1986,
for discussions of the topic). It is also worth noting that many of the detectors
which can claim some degree of optimality (e.g. Canny, Marr—Hildreth, Fleck) are
optimal only with respect to the criteria they choose as relevant. To coin a phrase:
“You pick your optimality criteria and you take your choice.’

In spite of these difficulties, a quantitative evaluation is clearly desirable even
if only to provide a very rough guide to the relative performance of detectors in
limited circumstances. If a clear-cut objective analytic measure is difficult to
establish (but, again, see Torre and Poggio, 1986), an empirical assessment may
often suffice. It cannot be stressed too much, however, that empirical tests are only
relevant in the application domain in which they are carried out. One figure of
measure that can be used in such tests was suggested by Pratt (Pratt, 1978; Abdou
and Pratt, 1979) and provides a way of assessing the performance of edge detectors
in localizing the position of edges. Specifically, a figure of merit R, yielding a value
in the interval 0.0-1.0, is defined:

Iy
1 1
R= 5
max(la, I1) i=1 1 + ad

where 1 and I, represent the number of ideal and actual edge map points, d is the
separation distance of an actual edge point normal to a line of ideal edge points.
The value « is a scaling constant and is adjusted to penalize edges offset from their
true location. It is typically set at 0.111. Normalizing the figure of merit by the
maximum of the number of actual and ideal edgepoints ensures that fragmented
and smeared edges are penalized.

5.4 Region growing

As we noted at the beginning of this section, region growing effects the
segmentation process by grouping elemental areas which share a common feature
into large connected two-dimensional areas called ‘regions’, with the implicit
assumption that these resultant regions correspond to some real-world surface or
object. Thus, the central idea underlying region-growing techniques is to merge

106

Region growing

initially small regions (e.g. individual pixels) into large ones. This merging process
must then address two questions: upon what criterion will two regions be merged
and at what point will merging cease? To answer the first question, we must define
more rigorously what we understand by the term region. A region is an aggregate
(collection) of pixels all of which satisfy some uniformity predicate U(p), such that
the value of U(p) is true if some local property of the neighbourhood of pixel p
satisfies the uniformity predicate and false otherwise. Most region-growing
techniques base the test for uniformity on some feature of the grey-level. The
answer to the question: ‘what is the criteria for merging two regions?’ is thus, quite
simply, the uniformity predicate. Two adjacent regions are merged if the merged
region satisfies the uniformity predicate. The answer to the second question: ‘at
what point does merging cease?’ is now clear. Merging (or growing) ceases when
no two adjacent regions satisfy the uniformity predicate. Thus, the region-growing
procedure is an iterative one: small regions are merged to form larger ones; these
are then merged (if appropriate) to form still larger ones, and so on until no more
regions can be merged. A natural consequence of this approach is that sophisticated
data structures are required to keep track of the intermediate regions and their
features.

In the trivial global thresholding technique, the uniformity predicate is simply
that the grey-level of the pixel (region) in question should lie within a pre-set range
of grey-levels; the final regions are grown in one step as only one test is needed for
each pixel and there are no intermediate regions.

5.4.1 The split and merge procedure using quad-trees

This region-growing algorithm, developed by Horowitz and Pavlidis in 1976, makes
use of an image representation called the quad-tree. A quad-tree is a tree (a
collection of nodes organized in a hierarchical manner) in which each node has
either four sons or no sons.

The root of the quad-tree is a node which represents the average grey-level of
the entire image. The leaves of a full quad-tree, i.e. the nodes which do not have
any offspring, correspond to the individual pixels of the image. The parent of a
group of four nodes corresponds to the average grey-level of a 2 X 2 neighbourhood
of the image: if each of these four pixels/nodes have the same grey-level, then,
obviously, there is no need to represent them explicitly as the parent node can do
the job just as well and they can be deleted. Similarly, the parent of each of these
nodes corresponds to a further 2 x 2 grouping of these 2 X 2 neighbourhoods;
again, the off-spring are present in the quad-tree if and only if they have different
grey-levels. The hierarchical aggregation continues until one reaches the root of the
tree which clearly represents the average grey-level of its sons, and hence the
average grey-level of the entire image. Thus, one can see that the quad-tree is a
useful method of image compression if there are large regions of uniform grey-level
since much of these regions can be represented by nodes close to the root, without
the need to have nodes for the individual pixels; see Figure 5.23.

107

The segmentation problem

Figure 5.23 A quad-tree representation of an 8 x 8 binary image.

The split and merge procedure begins with a quad-tree of a given depth,
typically where the depth is such that the leaves correspond not to pixels but to
larger blocks. Leaves are then merged: if four leaves from a parent satisfy the
uniformity predicate then the leaves are deleted and the parent inherits their average
grey-level (assuming that we are going to use grey-level as a way of labelling a
region). This merging continues at the next highest level, and then at subsequent
levels, until no more merging is possible. At this stage a splitting procedure is
initiated. Here, the quad-tree is traversed and at each leaf the uniformity predicate
of the corresponding group is evaluated; if the value is false then the block is split
and the four corresponding nodes are added to the node. This process continues
until all leaves satisfy the uniformity predicate. At this stage, the quad-tree is
traversed horizontally. The neighbours of each leaf are examined and adjacent
leaves from different parents which satisfy the uniformity predicate are linked
together to form a region.

It is worth noting that, for industrial applications, region-growing techniques
are considered too computationally complex (and hence too slow) to be of much
use and should only be considered when thresholding or edge detection techniques
are incapable of yielding satisfactory results.

5.5 Boundary detection

As we discussed previously, edge detection is only the first stage of the boundary-
based segmentation process. We also need to aggregate these local edge elements,
which are a relatively featureless representation, into structures better suited to the
process of interpretation. This is normally achieved using processes such as edge
thinning (recall that gradient-based template matching edge detectors produce thick
edges), edge linking, gap-filling, and curve-segment linking in order to generate a
distinct, explicit, and unambiguous representation of the boundary. There are
several techniques for boundary detection and they vary in the amount of
knowledge or domain-dependent information that is used in the grouping process.
These approaches include, in order of decreasing use of domain-dependent

108

Boundary detection

information, boundary refining, the Hough transform, graph searching, dynamic
programming, and contour following. Since the Hough transform will be described
in detail in the next chapter, we will confine ourselves here to the other four
techniques, placing emphasis on contour following. However, the reader can, if
he/she likes, skip ahead and preview the Hough transform section without any

difficulty.

5.5.1 Boundary refining

Boundary refining methods use an initial a priori estimate of the position of the
boundary to guide a search for the actual, or real, boundary and subsequently to
refine this initial estimate. The estimate may have been generated by the analysis
of lower-resolution images or, alternatively, explicit high-level knowledge can be
utilized, for example knowledge that the boundary lies on, or close to, a given
curve. For example, Bolles incorporated this technique in an algorithm which builds
boundaries by searching in a direction at right-angles to the @ priori boundary for
Jocal edges and selects the element with the highest gradient value, provided its
direction is (almost) parallel to the boundary direction (Bolles, 1977). This is
repeated at regular intervals along the approximate a priori boundary and, if
sufficient edge elements are extracted, then these locations are fitted with some
analytic function, e.g. a low-degree polynomial. This parameterized curve then
represents the actual boundary.

Another approach, referred to as divide-and-conquer or iterative end-point fit
boundary detection, is often applicable where a low curvature boundary is known
to exist between two edge clements. The general idea here is to fit an initial line
between the two points; if the normal distance from the line to the point of
maximum gradient magnitude is less than some pre-set tolerance, the approx-
imation is complete, otherwise the point of greatest normal distance from the line
becomes a break-point on the boundary, forming two new line segments. All new
segments are then subjected, in an iterative manner, to this same process.

5.5.2 Graph-theoretic techniques

A second approach to boundary detection, which need not depend significantly on
the existence of a priori knowledge, treats the aggregation or association of edge
points into boundaries as a (low-cost) graph traversal. In particular, edge points are
viewed as nodes in a graph and there is a cost function or weight associated with
connecting two neighbouring points or nodes; the desired boundary may be
interpreted as the minimal cost (or any low-cost) path through the graph. The cost
function or weight associated with connecting two edge points is normally defined
to be a function of the distance between them, the difference in their directions, and
edge strength,

109

The segmentation problem

5.5.3 Dynamic programming

This approach formulates the boundary-following procedure as a dynamic
programming problem by defining a cost function which embodies a notion of the
‘best boundary’. This is not dissimilar to the idea of the graph-theoretic technique
in that the path specified by the boundary minimizes the cost function. For
example, suppose that a local edge detection operator is applied to a grey-level
image to produce edge magnitude and direction information at points xi, ..., x,.
One possible criterion for a good boundary is a weighted sum of high cumulative
edge strength and low cumulative curvature, that is, for a curve with n segments:

n—1

H(xi, oy Xn) = an s(xe)+c kZ} g (Xe, Xe41)

with the implicit constraint that consecutive points must be grid neighbours:
ket — xell < 2

The function g (xx, Xk +1) embodies the difference in direction between edge element
X and element xi41. Note that ¢ is a negative constant. The function s(x) is the
edge strength (or gradient magnitude). The evaluation function H(x,..., x») is in
the form of a serial optimization problem where not all variables in the evaluation
function are simultaneously inter-related, and can be solved by a multi-stage
optimization process referred to as serial dynamic programming (Bellman and
Dreyfus, 1962).

5.5.4 Contour following

Contour following is a simple approach which uses no domain-dependent
information and ‘follows’ the boundary or contour exclusively on the basis of
locally derived data. The basis of the technique is, essentially, to start with a point
that is believed to be on the boundary (some local edge point, say) and to extend
the boundary by adding a neighbouring point in the contour direction (i.e. the
direction which is normal to the gradient direction). This process of extension is
reiterated, starting at this new boundary pixel. In this way a contour is followed
around the boundary (see Figure 5.24). The basis for selecting a candidate varies
from task to task and from algorithm to algorithm but normally is dependent at
least on the gradient direction and on the gradient magnitude. Since contour
following techniques are often based on gradient edge detectors, these techniques
are normally most successful with images in which there is little noise. For the
purpose of illustration, the following section details a simple contour following
algorithm.

To begin with, contour following algorithms cannot assume that the
boundary constitutes a closed curve. Thus, the boundary is followed in two
directions: first in the forward boundary direction and then in the reverse direction.
The forward boundary direction is arbitrarily designated the direction equal to the

110

Boundary detection

Figure 5.24 Contour following.

edge normal (or gradient) direction +90° and the reverse direction corresponds to
the edge normal direction ~90°. The boundary following algorithm proceeds on a
pixel to pixel basis, tracing the local maximum gradient given by the gradient
direction at that point on the boundary to the next pixel.

Tracing continues as long as the difference between the current and candidate
pixel gradient directions is not too large; this helps to avoid following boundaries
into noisy areas which are characterized by frequent changes in edge direction. If
no acceptable edge is encountered when tracing, a search is made in two zones
ahead of the boundary: the first zone separated by a gap of one pixel from the
current boundary point, the second by two pixels. If a suitable edge is found, the
intervening gap pixels are filled in and the trace is restarted from this point. If none
is found then the boundary is traced in the reverse direction from the original start
point, provided this has not already been done.

The boundary following algorithm terminates when the boundary can be
followed no further: that is, if neither the tracing nor the searching algorithms yield
a valid boundary point. Boundary following also terminates if the original start
point is re-encountered during tracing, signifying that a boundary is represented by
a closed curve. Thus, the extraction of both open and closed contours is facilitated.

As the algorithm traces around the boundary, it builds a boundary chain code
(BCC) representation of the contour. The BCC is defined and discussed in detail
in Chapter 7. For the purposes of this section it is sufficient to summarize its
essential structure and properties. A boundary chain code comprises an integer
pair, denoting the coordinates of an origin point on the contour, and a sequence

111

The segmentation problem

(or chain) of integer values representing the direction of the next pixel on the
contour. The range of possible directions is coarsely quantized and there are just
eight possible directions corresponding to each of the eight pixels which are
adjacent to the centre pixel in a 3 X 3 neighbourhood. The boundary following
algorithm adheres to the Freeman chain code convention: the pixel to the right of
centre (east neighbour) is given by the direction 0, the north-east pixel is given by
the direction 1. Continuing anti-clockwise around the neighbourhood, the south-
east neighbour is given by the direction 7. Figure 5.25 illustrates these direction
codes.

To avoid following multiple close parallel boundaries caused by the presence
of ‘thick’ edge responses, pixels in directions normal to the boundaries extracted by
the following algorithm are suppressed, i.e they are labelled, so as to exclude them
from later consideration by either the trace or search modules.

The next two sections discuss the component trace and search modules of the
contour following algorithm in more detail.

[0 The trace algorithm

The purpose of the trace algorithm is to follow a sequence of boundary pixels and
to generate a model of the boundary, i.e. the BCC, by recording all the boundary
pixels visited. It is assumed that the boundary pixels correspond to the pixels
exhibiting the local maximum gradient magnitude and that the gradient direction
indicates, approximately at least, the neighbouring boundary pixel. The boundary
direction, D, of an (edge) point is given by the edge gradient direction G as
D =G+ 2 for the forward direction and as D= G —2 for the reverse direction
(+90° and —90° respectively). All directional additions and subtractions are
modulo 8 operations. The tracing algorithm chooses as candidates for inclusion in
the boundary those pixels given by directions D, D + 1, and D - 1, that is, the pixel
directly ahead of the current pixel and one pixel on either side of it. For example,

Figure 5.25 Freeman direction codes.

112

Boundary detection

if D = 1 (boundary direction is 45°), then pixels 0, 1, and 2 are chosen as candidates
(pixel labels adhere to the convention described in Chapter 3: see Figure 3.6, i.e.
they are labelled sequentially from O to 7 in an anti-clockwise rotation from the
middle right-hand pixel in a 3 X 3 neighbourhood).

The potential of each of these candidates to be a boundary point is evaluated
as the difference between the points gradient magnitude and the predefined gradient
magnitude threshold. If the pixel has been visited previously, either by the tracing
or searching algorithms, or if the pixel overlaps the image boundary, then it is
assumed to have a negative potential. The candidate with the highest positive
potential is selected as the next boundary point from which to continue the trace
and is implicitly included in the list of boundary points by updating the BCC. If
no candidate satisfies this condition, tracing is suspended and the search algorithm
is invoked.

BlB|&8
A|B Alalalsg
AlB A

X AlB X A
A|B
A|B
AlB

(a) (b)

D+1

D+1

Dx1

D-1

D-1

)

Figure 5.26 (a) Zone-of-influence A. (b) Zone-of-influence B. (c) Allowable
directional variation of zones A and B.

113

The segmentation problem

[l The search algorithm
If all three neighbouring candidate boundary pixels selected by the trace algorithm
fail to satisfy the criteria for inclusion in the boundary, then the boundary follower
searches for other potential boundary pixels which are not immediate neighbours
of the current boundary pixel. The position and direction of this search is
dependent on the direction of the current boundary point; the associated region for
searching is termed the ‘zone of influence’ of the current boundary pixel. Two zones
of influence, labelled A4 and B, of a boundary pixel are defined, based on the
boundary direction D. Zone A comprises those pixels ahead of the boundary
direction, separated from the current point by a one-pixel gap. Pixels in zone B are
separated by a two-pixel gap. Figure 5.26(a) shows the pixels in zones A and B with
D = 0. Figure 5.26(b) shows these zones when D = 1. The zone A configuration for
directions D =2,4, and 6 is simply a rotation of the configuration where D = 0;
similarly, simple rotations of zones A and B corresponding for direction D=1
define the configurations for directions D=3,5, and 7.

A pixel in a particular zone of influence is selected for inclusion in the
boundary if it satisfies the following two criteria:

(a) the gradient magnitude is greater than the given threshold;
(b) the gradient direction is within a certain directional range.

This directional range is based on the orientation of the current boundary point and
the position of this candidate pixel relative to the current boundary point. Figure
5.26(c) defines the allowable directional variations for zones A and B, with the
boundary direction equal to zero. The directional variations corresponding to other
orientations may be determined simply by substituting the new direction for D in
the diagram.

The order in which the individual pixels are tested within a zone is important.
In general, they are searched in the following order:

Direction of boundary —

B O~ w

Since searching terminates as soon as an acceptable edge point is encountered, this
ordering favours the extraction of a point that coincides with the boundary
direction. In addition, zone A is searched before zone B; thus, the bridging of short
boundary gaps is favoured over larger gaps. If a search is successful the BCC is
updated to include the selected pixel and the intermediate gap pixel(s). If the search
is not successful, boundary following in the current bias (forward or reverse) is
terminated.
Figure 5.24 illustrates the operating of this contour following algorithm.

114

References and further reading

Exercises

1. Discuss thresholding as a segmentation process. Describe three
possible methods for automatic threshold selection.

2. Gradient-based edge detection operators require some method for
approximating the partial derivatives of an intensity function (i.e. an
image) in two orthogonal directions. Why? How can the gradient
direction and magnitude be estimated from these partial derivatives?
Identify one simple gradient operator and explain how it affects each
of the above components of edge detection.

3. What is the relationship of the Laplacian operator and the gradient
operator? Identify a significant shortcoming of the Laplacian operator
and state how it is ameliorated by the Marr-Hildreth operator.

4. Describe how the Marr-Hildreth theory of edge detection might be
used to facilitate automatic threshold selection for binary image
segmentation.

5. How would the contour following algorithm described in this chapter
fare in a noisy image?

References and further reading

Abdou, L.E. and Pratt, W.K. 1979 ‘Quantitative design and evaluation of enhancement/
thresholding edge detectors’, Proceedings of the IEEE, Vol. 67, No. 5, (May), pp.
753-63.

Argyle, E. 1971 “Techniques for edge detection’, Proc. IEEE, Vol. 59, pp. 285-7.

Bellman, R. and Dreyfus, S. 1962 Applied Dynamic Programming, Princeton University
Press, Princeton, New Jersey.

Canny, J. 1986 ‘A computational approach to edge detection’, IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. PAMI-8, No. 6, pp. 679-98.
Cooper, D. and Sung, F. 1983 ‘Multiple-window parallel adaptive boundary finding in
computer vision’, JEEE Transactions on Pattern Analysis and Machine Intelligence,

Vol. PAMI-5, No. 3, pp. 299-316.

Davis, L.S. 1975 ‘A survey of edge detection techniques’, Computer Graphics and Image
Processing, Vol. 4, No. 3, pp. 248-70.

Fischler, M.A. and Bolles, R.C. 1986 ‘Perceptual organisation and curve partitioning’, IEEE
Transactions of Pattern Analysis and Machine Intelligence, Vol. PAMI-8, No. 1,
pp. 100-5.

Fram, J.R. and Deutsch, E.S. 1975 ‘On the quantitative evaluation of edge detection
schemes and their comparison with human performance’, IEEE Transactions of
Computers, Vol. C-24, No. 6, pp. 616-28.

Frei, W. and Chen, C-C. 1977 ‘Fast boundary detection: a generalization and a new
algorithm’, IEEE Transactions on Computers, pp. 988-98.

Giordano, A., Maresca, M., Sandini, G., Vernazza, T. and Ferrari, D. 1985 A Systolic

115

The segmentation problem

Convolver for Parallel Multiresolution Edge Detection, Internal Report, DIST -
University of Genoa.

Giordano, A., Maresca, M., Sandini, G., Vernazza, T. and Ferrari, D. 1987 ‘VLSI-based
systolic architecture for fast Gaussian convolution’, Optical Engineering, Vol. 26,
No. 1, pp. 63-8.

Griffith, A.K. 1973 ‘Edge detection in simple scenes using a priori information’, IEEE
Transactions on Computers, Vol, 22, No. 4, pp. 371-80.

Grimson, W.F.L. and Hildreth, E.C. 1985 ‘Comments on digital step edges from zero
crossings of second directional derivatives’, IEEE Trans. on Pattern Analysis and
Machine Intelligence, Vol. PAMI-7, No. 1, pp. 121-7.

Guari, E. and Wechsler, H. 1982 ‘On the difficulties involved in the segmentation of
pictures’, IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. PAMI-4, No. 3.

Haralick, R.M. 1984 ‘Digital step edges from zero-crossing of second directional
derivatives’, IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. PAMI-6, No. 1, pp. 58—68.

Hildreth, E.C. 1981 ‘Edge detection in man and machine’, Robotics Age, Sept/Oct,
pp. 8-14.

Hildreth, E.C. 1985 Edge Detection, A1 Memo No. 858, MIT AI Lab.

Hueckel, M. 1971 ‘An operator which locates edges and digitises pictures’, JACM, Vol. 18,
No. 1, pp. 113-25.

Hueckel, M. 1973 ‘A local visual operator which recognises edges and lines’, JACM,
Vol. 20, No. 4, pp. 643-7.

Hueckel, M. 1973 ‘Erratum to “a local visual operator which recognizes edges and lines”’,
JACM, Vol. 21, No. 2, p. 350.

Huertas, A. and Medioni, G. 1986 ‘Detection of intensity changes with subpixel accuracy
using Laplacian—Gaussian masks’, IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. PAMI-8, No. 5, pp. 651—64.

Jacobus, C. and Chien, R. 1981 ‘Two new edge detectors’, IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. PAMI-3, No. 5, pp. 581-92,

Juvin, D. and de Cosnac, B. 1984 ‘ANIMA 2: Un Systeme Generale de Vision Pour la
Robotique’, Proceedings of the Premier Colloque Image, CESTA, Biarritz,
pp. 165-9.

Kasvand, T. 1975 ‘Iterative edge detection’, Computer Graphics and Image Processing,
Vol. 4, pp. 279-86.

Kelly, M.D. 1971 ‘Edge detection in pictures by computer using planning’, Machine
Intelligence, B. Meltzer and D. Michie (eds.), Vol. 6, pp. 397-409, Edinburgh,
Edinburgh University Press.

Kirsch, R. 1971 ‘Computer determination of the constituent structure of biological images’,
Computers and Biomedical Research, Vol. 4, No. 3, pp. 315-28.

Lee, C.C. 1983 ‘Elimination of redundant operations for a fast Sobel operator’, IEEE
Transactions on Systems, Man, and Cybernetics, Vol. SMC-13, No. 3, pp. 242-5.

Lunscher, W.F. and Beddoes, M.P. 1986 ‘Optimal edge detector design I: Parameter
selection and noise effects’, IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. PAMI-8, No. 2, pp. 164-77.

Lunscher, W.F. and Beddoes, M.P. 1986 ‘Optimal edge detector design II: Coefficient
quantisation’, IEEE Transactions on Pattern Analysis and Machine Intelligence, Yol.
PAMI-8, No. 2, pp. 178-87.

116

References and further reading

Marr, D. 1976 ‘Early processing of visual information’, Philosophical Transactions of the
Royal Society of London, B275, pp. 483-524.

Marr, D. and Hildreth, E. 1980 “Theory of edge detection’, Proceedings of the Royal Society
of London, B207, pp. 187-217.

Mero, L. and Vassy, Z. 1975 ‘A simplified and fast version of the Hueckel operator for
finding optimal edges in pictures’, Proceedings of the International Joint Conference
on Artificial Intelligence, Tbilisi, Georgia, USSR, pp. 650-5.

Nalwa, V.S. and Binford, T.O. 1986 ‘On detecting edges’, IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. PAMI-8, No. 6, pp. 699-714.

Nazif, A.M. and Levine M.D. 1984 ‘Low level segmentation: an expert system’, IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-6, No. 5,
pp. 555-177.

Nevatia, R. 1977 ‘Note: Evaluation of a simplified Hueckel edge-line detector’, Journal of
Computer Graphics and Image Processing, pp. 582-8.

Nevatia, R. and Babu, K. 1980 ‘Linear feature extraction and description’, Computer
Graphics and Image Processing, Vol. 13, pp. 257-69.

Perkins, W.A. 1980 ‘Area segmentation of images using edge points’, IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. PAMI-2, No. 1, pp. 8-15.

Prewitt, J.M.S. 1970 ‘Object enhancement and extraction’ in Picture Processing and
Psychopictorics, B. Lipkin and A. Rosenfeld (eds.), Academic Press, New York,
pp. 75—149.

Roberts, L.G. 1965 ‘Machine perception of three-dimensional solids’ in Optical and Electro-
Optical Information Processing, J.T. Tippett et al. (eds.), MIT Press, Cambridge,
Massachusetts, pp. 159-97.

Rosenfeld, A. and Thurston, M. 1971 ‘Edge and curve detection for visual scene analysis’,
[EEE Transactions on Computers, Vol. C-20, No. 5, pp. 562-9.

Sandini, G. and Torre, V. 1985 ‘Thresholding techniques for zero-crossings’, Proceedings
of ‘Winter 85 Topical Meeting on Machine Vision®, Incline Village, Nevada.
Torre, V. and Poggio, T.A. 1986 ‘On edge detection’, IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol. PAMI-8, No. 2, pp. 147-63.

Weszka, J.S. 1978 ‘A survey of threshold selection techniques’, Computer Graphics and
Image Processing, Vol. 7, pp. 259—65.

Weszka, J.S., Nagel, R.N. and Rosenfield, A. 1974 ‘A threshold selection technique’, IEEE
Transactions on Computers, Vol. C-23, No. 12, pp. 1322-7.

Wiejak, J.S. 1983 ‘Regions estimation and boundary estimation’, Image and Vision
Computing, Vol. 1, No. 2, May 1983, pp. 99-102.

Yakimovsky, Y. 1976 ‘Boundary and object detection in real world images’, JACM, Vol. 23,
No. 4, pp.599-618.

117

6

Image analysis

6.1 Introduction: inspection, location, and
identification

Image analysis is the term that is used to embody the idea of automatically
extracting useful information from an image of a scene. The important point
regarding image analysis is that this information is explicit and can be used in
subsequent decision making processes. Techniques vary across a broad spectrum,
depending on the complexity of the image and, indeed, on the complexity of the
information to be extracted from it. The more commonly used image analysis
techniques include template matching, statistical pattern recognition, and the
Hough transform. Unfortunately, this classification is not particularly useful when
one is trying to identify a technique for a potential application. However, we can
also classify the types of analysis we wish to perform according to function. There
are essentially three types of things we would wish to know about the scene in an
image. First, we might wish to ascertain whether or not the visual appearance of
objects is as it should be, i.e. we might wish to inspect the objects. The implicit
assumption here is, of course, that we know what objects are in the image in the
first place and approximately where they are. If we don’t know where they are, we
might wish to find out. This is the second function of image analysis: location. Note
that the location of an object requires the specification of both position and
orientation (in either two dimensions or three dimensions). Also, the coordinates
might be specified in terms of the image frame of reference (where distance is
specified in terms of pixels) or in the real world where distances correspond to
millimetres, say. The latter obviously necessitates some form of calibration, since
initial measurements will be made in the image frame of reference. Finally, if we
do not know what the objects in the image are, we might have to perform a third
type of analysis: identification.

Generally speaking, inspection applications utilize the template matching
paradigm, location problems utilize the template matching paradigm and the

118

Template matching

Hough transform, while the problem of identification can be addressed using all
three techniques, depending on the complexity of the image and the objects. From
time to time, all of them make use of some of the more advanced techniques to be
described in later chapters. For example, if we are interested in the local shape
or three-dimensional structure, we might exploit the structured-light techniques
described in Chapter 8.

6.2 Template matching

Many of the applications of computer vision simply need to know whether an image
contains some previously defined object or, in particular, whether a pre-defined
sub-image is contained within a test image. The sub-image is called a template and
should be an ideal representation of the pattern or object which is being sought in
the image. The template matching technique involves the translation of the template
to every possible position in the image and the evaluation of a measure of the match
between the template and the image at that position. If the similarity measure is
large enough then the object can be assumed to be present. If the template does
represent the complete object for which you wish to check the image, then the
technique is sometimes referred to as ‘global template matching’, since the template
is in effect a global representation of the object. On the other hand, local template
matching utilizes several templates of local features of the object, e.g. corners in
the boundary or characteristic marks, to represent the object.

6.2.1 Measures of similarity

Apart from this distinction between global and local template matching, the only
other aspect which requires detailed consideration is the measure of similarity
between template and image. Several similarity measures are possible, some based
on the summation of differences between the image and template, others based on
cross-correlation techniques. Since similarity measures are widely used, not just in
this image template matching situation, but also for evaluation of the similarity
between any two signatures (i.e. characteristic signals), such as when comparing
shape descriptors, it is worth discussing these similarity measures in more detail. We
will look at measures based on Euclidean distance and cross-correlation.

A common measure employed when comparing the similarity of two images
(e.g. the template ¢(i,j) and the test image g(i,/)) is the metric based on the
standard Euclidean distance between two sectors, defined by:

E(n, n) =J{Z S 180,)~ ti= m, j—)] 2}
i

The summation is evaluated for all i, such that (i — m) is a valid coordinate of the
template sub-image. This definition amounts to translating the template £(/, j) to a
position (m, n) along the test image and evaluating the similarity measure at that

119

Image analysis

point. Thus, when searching for a template shape, the template is effectively moved
along the test image and the above template match is evaluated at each position.
The position (m, n) at which the smallest value of E(m, n) is obtained corresponds
to the best match for the template.

The similarity measure based on the Euclidean distance is quite an appealing
method, from an intuitive point of view. To see why, consider a complete one-
dimensional entity, e.g. size (represented by, say, length). To compare the
difference in size of two objects, we just subtract the values, square the difference
and take the square root of the result, leaving us with the absolute difference in size:

d=Jl(s1 —5)°]
Extending this to the two-dimensional case, we might wish to see how far apart two

objects are on a table, i.e. to compute the distance between them. The difference
in position is simply:

d= [0 —x)*+ (1 —32)°]
Similarly, in three dimensions
d=Jl(x1—x)*+ (1 —r2)* + @1 — 22)7]

We can easily extend this to #n dimensions (although we lose the intuitive concept
of ‘distance’) by just making each coordinate an independent variable which
characterizes the entities we are comparing. For example, a 10 X 10 image template
comprises 100 independent pixels, each of which specifies the template sub-image.
Thus, we are now dealing with a 10 x 10 = 100-dimensional comparison and the
difference between the two sub-images is:

d = [{ [image(1,1) — template(1,1)] > + --- + [image(10,10) ~ template(10,10)] *}

which is identical to our definition of the Euclidean metric.

A frequently used and simpler template matching metric is based on the
absolute difference of g(i,j) and ¢(} — m,j— n) rather than the square of the
difference. It is defined by:

S(m,n)=2; ; | &G,) —ti—m,j-n)]

Alternatively, the square root in the Euclidean definition can be removed by
squaring both sides of the equation and letting the similarity measure be E2(m, n).
Hence:

E*(m,n)= 2, 2, [g(i, /)* - 280, /) ti—m,j—n)+1t(i—m,j—n)’
i

As before, the summation is evaluated for all / and J, such that (—m,j—n)isa
valid coordinate of the template sub-image. Note that the summation of the last
term is constant since it is a function of the template only and is evaluated over the
complete domain of the template. If it is assumed that the first term is also

120

Template matching

constant, or that the variation is small enough to be ignored, then E2(m, n) is small
when the summation of the middle term is large. Thus, a new similarity measure
might be R(m, n), given by:

R(m,n)=2; 2 g, j) ti—m, j—n)

again summing over the usual range of / and j; R(m,n) is the familiar cross-
correlation function. The template #(i — m, j — n) and the section of g(i, j) in the
vicinity of (s, n) are similar when the cross-correlation is large.

If the assumption that the summation of g(i,) is independent of m and n is
not valid, an alternative to computing R is to compute the normalized cross-
correlation N(mn, n) given by:

N(m,n)=R(m,n)/ /[Z 5 g(z',j)z}

summing over the usual range of / and j. Note that, by the Cauchy—Schwarz
inequality:

N(m, n) SJ[Z 2 t(i—m,j—n)z]
i

Hence, the normalized cross-correlation may be scaled so that it lies in the range

0to 1 by dividing it by the above expression. Thus, the normalized cross-correlation

may be redefined:

N(m,n)=R(m’”)/[J[Zi-" 5 g(i,j)z] \/[Z 3 t(i—m,j—n)ZB

Figure 6.1 illustrates the use of cross-correlation in which a template of a
human eye was recorded and subsequently located in a series of images. The cross-
hair denotes the position at which the maximum cross-correlation between template
and image occurred.

6.2.2 Local template matching

One of the problems of template matching is that each template represents the
object or part of it as we expect to find it in the image. No cognizance is taken of
variations in scale or in orientation. If the expected orientation can vary, then we
will require a separate template for each orientation and each one must be matched
with the image. Thus template matching can become computationally expensive,
especially if the templates are large. One popular way of alleviating this
computational overhead is to use much smaller local templates to detect salient
features in the image which characterize the object we are looking for. The spatial
relationships between occurrences of these features are then analysed. We can infer
the presence of the object if valid distances between these features occur.

In summary, template matching techniques are useful in applications that can

121

Image analysis

Figure 6.1 Eye-tracking using normalized cross-correlation.

be severely restricted and where the number of objects, and the variability of these
objects, is small; it is not an approach that is applicable in general situations.

6.3 Decision-theoretic approaches

If the objective of the image analysis is to find objects within the image and
identify, or classify, those objects then an approach based on statistical decision
theory may be the most appropriate route to take. The central assumption in this
approach is that the image depicts one or more objects and that each object belongs
to one of several distinct and exclusive pre-determined classes, i.e. we know what
objects exist and an object can only have one particular type or label.

6.3.1 Components of a statistical pattern recognition process

There are effectively three components of this type of pattern recognition process:
an object isolation module, a feature extraction module, and a classification
module. Each of these modules is invoked in turn and in the order given, the output
of one module forming the input of the next. Thus, the object isolation module
operates on a digital image and produces a representation of the object. The feature
extraction module then abstracts one or more characteristic features and produces

122

Decision-theoretic approaches

a (so-called) feature vector. This feature vector is then used by the classification
module to identify and label each object.

Since we will be covering some of these topics again in more detail later on,
e.g. methods for object isolation and description, we will just give a brief overview
of the representative techniques at this stage.

Object isolation, often referred to as ‘segmentation’, is in effect the grouping
process which we discussed in the preceding chapter. The similarity measure upon
which the grouping process is based in this instance is the grey-level of the region.

Once we have segmented the image, we have essentially identified the objects
which we wish to classify or identify. The next phase of the recognition scheme is
the extraction of features which are characteristic of the object and which will be
used in the classification module. The selection of the features to be used is an
extremely important task, since all subsequent decisions will be based on them,
and frequently it is intuition and experience which guides the selection process.
Normally, we will identify a number of reasonable feasible potential features, test
these to check their performance, and then select the final set of features to be used
in the actual application. When selecting features, you should bear in mind the
desirability of each feature being independent (a change in one feature should not
change the value of another feature significantly), discriminatory (each feature
should have a significantly different value for each different object), reliable
(features should have the same value for all objects in the same class/group).
Finally, it is worth noting that the computational complexity of the pattern
recognition exercise increases very rapidly as the number of features increases and
hence it is desirable to use the fewest number of features possible, while ensuring
a minimal number of errors.

6.3.2 Simple feature extraction

Before proceeding to discuss the mechanism by which we can classify the objects,
let us first take a look at some representative features that we might use to describe
that object.

Most features are either based on the size of the object or on its shape. The
most obvious feature which is based on size is the area of the object: this is simply
the number of pixels comprising the object multiplied by the area of a single pixel
(frequently assumed to be a single unit). If we are dealing with grey-scale images,
then the integrated optical density (IOD) is sometimes used: it is equivalent to the
area multiplied by the average grey-level of the object and essentially provides a
measure of the ‘weight’ of the object, where the pixel grey-level encodes the weight
per unit area.

The length and the width of an object also describe its size. However, since
we will not know its orientation in general, we may have to first compute its
orientation before evaluating the minimum and maximum extent of its boundary,
providing us with a measure of its length and width. Thus, these measures should
always be made with respect to some rotation-invariant datum line in the object,

123

Image analysis

e.g. its major or minor axis. The minimum bounding rectangle is a feature which
is related to this idea of length and width. This is the smallest rectangle which can
completely enclose the object. The main axis of this rectangle is in fact the principal
axis of the object itself and, hence, the dimensions of the minimum bounding
rectangle correspond to the features of length and width.

Quite often, the distance around the perimeter of the object can be useful for
discriminating between two objects (quite apart from the fact that one can compute
the area of the object from the perimeter shape). Depending on how the object is
represented, and this in turn depends on the type of segmentation used, it can be
quite trivial to compute the length of the perimeter and this makes it an attractive
feature for industrial vision applications.

Features which encode the shape of an object are usually very useful for the
purposes of classification and because of this, Chapter 7 has been entirely given
over to them. For the present, we will content ourselves by mentioning two very
simple shape measures: rectangularity and circularity. There are two popular
measures of rectangularity, both of which are easy to compute. The first is the ratio
of the area of the object to the area of the minimum bounding rectangle:

R= Aobject

Amin. bound. rectangle

This feature takes on a maximum value of 1 for a perfect rectangular shape and

tends toward zero for thin curvy objects.
The second measure is the aspect ratio and is simply the ratio of the width of

the minimum bounding rectangle to its length:

Wmin. bound. rectangle

Aspect ratio =

min. bound. rectangle

The most commonly used circularity measure is the ratio of the square of the
perimeter length to the area:

C= Aobject
- 2
Pobject
This assumes a maximum value for discs and tends towards zero for irregular
shapes with ragged boundaries.

6.3.3 Classification

The final stage of the statistical pattern recognition exercise is the classification of
the objects on the basis of the set of features we have just computed, i.e. on the
basis of the feature vector. If one views the feature values as ‘coordinates’ of a
point in n-dimensional space (one feature value implies a one-dimensional space,
two features imply a two-dimensional space, and so on), then one may view the
object of classification as being the determination of the sub-space of the feature

124

Decision-theoretic approaches

space to which the feature vector belongs. Since each sub-space corresponds to a
distinct object, the classification essentially accomplishes the object identification.

For example, consider a pattern recognition application which requires us to
discriminate between nuts, bolts, and washers on a conveyor belt. Assuming that
we can segment these objects adequately, we might choose to use two features on
which to base the classification: washers and nuts are almost circular in shape, while
bolts are quite long in comparison, so we decide to use a circularity measure as one
feature. Furthermore, washers have a larger diameter than nuts, and bolts have an
even larger maximum dimension. Thus, we decide to use the maximum length of
the object (its diameter in the case of the nuts and washers) as the second feature.
If we then proceed to measure these feature values for a fairly large set of these
objects, called the training set, and plot the results on a piece of graph paper
(representing the two-dimensional feature space, since there are two features) we
will probably observe the clustering pattern shown in Figure 6.2 where nuts, bolts,
and washers are all grouped in distinct sub-spaces.

At this stage, we are now ready to classify an unknown object (assuming, as
always, that it is either a nut, a bolt or a washer). We generate the feature vector
for this unknown object (i.e. compute the maximum dimension and its circularity
measure A/PZ) and see where this takes us in the feature space (see Figure 6.3). The
question is now: to which sub-space does the vector belong, i.e. to which class does
the object belong? One of the most popular and simple techniques, the nearest-
neighbour classification technique, classifies the object on the basis of the distance
of the unknown object vector position from the centre of the three clusters,
choosing the closest cluster as the one to which it belongs. In this instance, the

o €©© Washers
L

Nuts

Circularity
AlP?

Maximum dimension

Figure 6.2 Feature space.

125

Image analysis

Circularity

AlP? @ Washers
(S

Maximum dimension

Figure 6.3 Coordinates of an unknown object in the feature space.

Circularity

AlP? Washers
@
N

?

Bolts

Nearest neighbour

Maximum dimension
Figure 6.4 Nearest neighbour classification.

object is a nut (see Figure 6.4). This technique is called, not surprisingly, the
nearest-neighbour classifier. Incidentally, the position of the centre of each cluster
is simply the average of each of the individual training vector positions.

6.3.3.1 A synopsis of classification using Bayes’ rule

There are, however, more sophisticated approaches to classification. The one which

126

Decision-theoretic approaches

we are going to describe here utilizes Bayes’ theorem from statistical decision theory
and is called the maximum-likelihood classifier. We will develop the discussion
using an example which requires only one feature to discriminate between two
objects; we do this because it is easier to visualize (and draw!) the concepts being
discussed.

Suppose that in a situation similar to that described in the preceding example,
we wish to distinguish between nuts and bolts (no washers this time). In this
instance, the circularity measure will suffice and we now have just one feature and
one-dimensional feature space with two classes of object: nuts and bolts. Let us
refer to these classes as Cy and Cy. Let us also refer, for brevity, to the circularity
feature value as x. The first thing that is required is the probability density
functions (PDFs) for each of these two classes, i.e. a measure of the probabilities
that an object from a particular class will have a given feature value. Since it is not
likely that we will know these a priori, we will probably have to estimate them. The
PDF for nuts can be estimated in a relatively simple manner by measuring the value
of x for a large number of nuts, plotting the histogram of these values, smoothing
the histogram, and normalizing the values so that the total area under the histogram
equals one. The normalization step is necessary since probability values have values
between zero and one and the sum of all the probabilities (for all the possible
circularity measures) must necessarily be equal to a certainty of encountering that
object, i.e. a probability value of one. The PDF for the bolts can be estimated in
a similar manner.

Let us now continue to discuss in a little more detail the probability of each
class occurring and the probability of objects in each class having a particular value
of x. We may know, for instance, that the class of nuts is, in general, likely to occur
twice as often as the class of bolts. In this case we say that the a priori probabilities
of the two classes are:

P(Cy) = 0.666 and P(Cy) = 0.333

In fact, in this case it is more likely that they will have the same a priori
probabilities (0.5) since we usually have a nut for each bolt.

The PDFs tell us the probability that the circularity x will occur, given that
the object belongs to the class of nuts C, in the first instance and to the class of
bolts Cy, in the second instance. This is termed the ‘conditional probability’ of an
object having a certain feature value, given that we know that it belongs to a
particular class. Thus, the conditional probability:

P(x|Cs)

enumerates the probability that a circularity x will occur, given that the object is
a bolt. The two conditional probabilities P(x| Cp) and P(x | Cy) are shown in Figure
6.5. Of course, this is not what we are interested in at all. We want to determine
the probability that an object belongs to a particular class, given that a particular
value of x has occurred (i.e. been measured), allowing us to establish its identity.
This is called the a posteriori probability P(C;| x) that the object belongs to a

127

Image analysis

Probability

Pix | C,)

Pix | Cp)

Circularity A/P?

Figure 6.5 Conditional probabilities.

particular class [and is given by Bayes’ theorem:

P(x| Ci) P(Ci)

P(C,‘ I x) = P(X)

where:
2
P(x) = Z; P(x| Ci) P(Ci)

P(x) is a normalization factor which is used to ensure that the sum of the a
posteriori probabilities sums to one, for the same reasons as mentioned above.

In effect, this Bayes’ theorem allows us to use the a priori probability of
objects occurring in the first place, the conditional probability of an object having
a particular feature value given that it belongs to a particular class, and actual
measurement of a feature value (to be used as the parameter in the conditional
probability) to estimate the probability that the measured object belongs to a given
class.

Once we can estimate the probability that, for a given measurement, the
object is a nut and the probability that it is a bolt, we can make a decision as to
its identity, choosing the class with the higher probability. This is why it is called
the maximum likelihood classifier. Thus, we classify the object as a bolt if:

P(Cp| x) > P(Cu| x)

Using Bayes’ theorem again, and noting that the normalizing factor P(x) is the
same for both expressions, we can rewrite this test as:

P(xl Co)P(Cy) > P(X1 Cn) P(Cy)

128

Decision-theoretic approaches

Figure 6.6 illustrates the advantage of the maximum-likelihood classifier over the
nearest-neighbour classifier: if we assume that the chances of an unknown object
being either a nut or a bolt are equally likely (i.e. P(Cp) = P(Cy)), then we classify
the unknown object as a bolt if:

P(x|Cp) > P(x| Cn)

For the example shown in Figure 6.6, P(x| Cy) is indeed greater than P(x| Cy) for
the measured value of circularity and we classify the object as a bolt. If, on the
other hand, we were to use the nearest-neighbour classification technique, we would
choose the class whose mean value ‘is closer to’ the measured value. In this case,

Nearest neighbour

Probability D, D | /

Pix| C,)

Pix | Cy)

.

Circularity A/P? V__/

Measured
value of
circularity

Figure 6.6 Advantage of using maximum likelihood classifier over
nearest neighbour classifier.

129

Image analysis

the distance D, from the measured value to the mean of the PDF for nuts is less
than Dy, the distance from the measured value to the mean of the PDF for bolts;
we would erroneously classify the object as a nut.

We have restricted ourselves to a simple example with just one feature and a
one-dimensional feature space. However, the argument generalizes directly to an
n-dimensional case, where we have n features, in which case the conditional
probability density functions are also n-dimensional. In the two-dimensional case,
the PDFs can be represented by grey-scale images: the grey-level encoding the
probability.

6.4 The Hough transform

The Hough transform is a technique which is used to isolate curves of a given shape
in an image. The classical Hough transform requires that the curve be specified
in some parametric form and, hence, is most commonly used in the detection of
regular curves such as lines, circles, and ellipses. Fortunately, this is not as
restrictive as it might first seem since most manufactured parts do, in fact, have
boundaries which are defined by such curves. However, the Hough transform has
been generalized so that it is capable of detecting arbitrary curved shapes. The main
advantage of this transform technique is that it is very tolerant of gaps in the actual
object boundaries or curves and it is relatively unaffected by noise. We will begin
by describing the classical Hough transform for the detection of lines; we will
indicate how it can be applied to the detection of circles; and then we will discuss
the generalized Hough transform and the detection of arbitrary shapes.

6.4.1 Hough transform for line detection and circle detection

We wish to detect a set of points lying on a straight line. The equation of a straight
line is given in parametric form by the equation:

xXcosop+ysinop=r

where r is the length of a normal to the line from the origin and ¢ is the angle this
normal makes with the X-axis (refer to Figure 6.7).
If we have a point (x;, y;) on this line, then:

Xicoso+yisinp=r

For a given line, r and ¢ are constant. Suppose, however, that we do not know
which line we require (i.e. r and ¢ are unknown) but we do know the coordinates
of the point(s) on the line. Now we can consider r and ¢ to be variable and x; and
Ji to be constants. In this case, the equation:

Xi COS p+y;isin¢p=r

defines the values of r and ¢ such that the line passes through the point (x;, yi). If

130

The Hough transform

X €cos ¢+y sin p=r

& X

"

Figure 6.7 Parametric representation of a straight line.

we plot these values of r and ¢, for a given point (x;, yi), on a graph (see Figure
6.8) we see that we get a sinusoidal curve in the (» — ¢) space, i.e. in a space where
r and ¢ are the variables. The transformation between the image plane (x- and
y-coordinates) and the parameter space (r- and ¢-coordinates) is known as the
Hough transform. Thus, the Hough transform of a point in the image plane is a
sinusoidal curve in the Hough (r — ¢) space. However, collinear points in the image
plane will give rise to transform curves which all intersect in one point since they
share common r; and ¢; and they all belong to the line given by:

X CcoS ¢;+y sin ¢ =1r;

This, then, provides us with the means to detect collinear points, i.e. lines. First
of all we must sample the Hough transform space, i.e. we require a discrete
representation of (r — ¢) space. Since ¢ varies between 0 and 27 radians, we need
only decide on the required angular resolution to define the sampling. For example,
a 6° resolution on the angle of the line might suffice, in which case we will have
360°/6° = 60 discrete values of ¢. Similarly, we can limit » by deciding on the
maximum distance from the origin (which is effectively going to be the maximum
size of the image, 256 pixels in length, say). Our representation of (r — ¢) space is
now simply a two-dimensional array of size 256 X 60, each element corresponding
to a particular value of r and ¢: see Figure 6.9, This is called an accumulator since
we are going to use it to collect or accumulate evidence of curves given by particular
boundary points (x, y) in the image plane. For each boundary point (x;, ¥;) in the
image we increment all accumulator cells such that the cell coordinates (r, ¢) satisfy
the equation:

Xicos ¢+ ysin p=r

131

~

Image analysis

Orientation 27

Figure 6.8 Hough transform of a point (xj, y).

256

+++

‘bmin (bmax

Figure 6.9 Hough transform accumulator array.

132

The Hough transform

When we have done this for all available (x;, y;) points we can scan the accumulator
searching for cells which have a high count since these will correspond to lines for
which there are main points in the image plane. In fact, because there are likely to
be some errors in the actual position of the x- and y-coordinates, giving rise to
errors in r and ¢, we search for clusters of points in the accumulator having high
counts, rather than searching for isolated points.

Since edge detection processes are often employed in generating the candidate
boundary points in the image and, in general, these yield not only the position of
the edge (xi, yi) but also its orientation 8, where 6 = ¢ + 90°.* We can use this
information to simplify the Hough transform and, knowing x;, y;, and ¢, use:

X;CoOS ¢+yisinp=r

to compute r giving the coordinates of the appropriate accumulator cell to be
incremented. The following pseudo-code summarizes this procedure:

/%« Pseudo-code for Hough Transform: Line Detection «/

@ Quantize the Hough transform space: identify maximum
and minimum values of r and ¢ and the total number of
r and ¢ values.

® Generate an accumulator array A(r, ¢); set all values
to O.

® For all edge points (xj,yi) in the image
Do
compute the normal direction ¢ (gradient direction
or orientation -90°) ¢
compute r from x; cos ¢+yj sin ¢=r
increment A(r, ¢)

® Forall cells inthe accumulator array
Do
search for maximum values
the coordinates r and ¢ give the equation of the
corresponding Line in the image.

Just as a straight line can be defined parametrically, so can a circle. The equation
of a circle is given by:

(x—a)>+(y-b)=r?

*Some edge detectors, e.g. the Sobel operator, are usually formulated such that they directly yield the
gradient direction which is equivalent to ¢.
T Remember to normalize the result so that it lies in the interval 0—2.

133

Image analysis

where (a, b) are the coordinates of the centre of the circle and r is its radius. In this
case, we have three coordinates in the parameter space: 4, b, and r. Hence, we
require a three-dimensional accumulator with an attendant increase in the
computational complexity of the algorithm. Figure 6.10 illustrates the use of the
Hough transform to detect the boundary between the cornea and iris of a human
eye.

One further point is worth noting: the Hough transform identifies the
parameter of the curve (or line) which best fits the data (the set of edge points).
However, the circles that are generated are complete circles and the lines are
infinite. If one wishes to identify the actual line segments or curve segments which
generated these transform parameters, further image analysis will be required.

6.4.2 The generalized Hough transform

In the preceding formulation of the classical Hough transform, we used the
parametric equation of the shape to effect the transform from image space to
transform space. In the case where the shape we wish to isolate does not have a
simple analytic equation describing its boundary, we can still use a generalized form
of the Hough transform. The essential idea is that, instead of using the parametric
equation of the curve, we use a look-up table to define the relationship between the
boundary coordinates and orientation, and the Hough parameters. Obviously, the
look-up table values must be computed during a training phase using a prototype
shape.

Figure 6.10 Hough transform for detection of circular shapes.

134

The Hough transform

Suppose we know the shape and orientation of the required object, e.g. see
Figure 6.11, the first step is to select an arbitrary reference point (Xrer, Vret) in the
object; we now define the shape in terms of the distance and angle of lines from
the boundary to this reference point. For all points of the boundary, we draw a line
to the reference point. We then compute the orientation of the boundary, € say,
and make a note in the look-up table of the distance and direction from the
boundary point to the reference point at a location in the look-up table indexed by
the boundary orientation ;. Since it is probable that there will be more than one
occurrence of a particular orientation as we travel around the boundary, we have
to make provision for more than one pair of distance and angle values. This
Jook-up table is called an R-table.

The Hough transform space is now defined in terms of the possible positions
of the shape in the image, i.e. the possible ranges of Xrer and yrer (instead of r and
¢ in the case of the Hough transform for line detection). To perform the transform
on an image we compute the point (Xier, Yret) from the coordinates of the boundary
point, the distance r and the angle (:

Xeef =X+ 7 COS 3
Vet =y +rsin f

The question is: what values of r and 8 do we use? These are derived from the
R-table by computing the boundary orientation € at that point and using it as an
index to the R-table, reading off all the (r,8) pairs. The accumulator array cell
(Xret, Yrer) is then incremented. We reiterate this process for all edge points in the
image. As before, we infer the presence of the shape by identifying local maxima
in the accumulator array.

There is just one problem: we have assumed that we know the orientation
of the shape. If this is not the case, we have to extend the accumulator by
incorporating an extra parameter ¢ to take changes in orientation into
consideration. Thus, we now have a three-dimensional accumulator indexed by

(Xrufl Yvel)

Figure 6.11 Generalized Hough transform — definition of R-table
components.

135

Image analysis

(Xtef, Vref, @) and we compute:
Xeet =X+ 1 cos (B+¢)
Yeg=y+rsin (B+¢)

for all values of ¢ and update each accumulator cell for each value of ¢. The
following pseudo-code again summarizes this procedure:

/+« Pseudo-code for Generalized Hough Transform

@ Trainthe shape by building the R-table:
For all points on the boundary
compute orientation @ (gradient di rection +90°)
compute r and 8
add an (r,B) entry into the R-table
at a location indexed by @

® Quantize the Hough transform space: identify maximum
and minimum values of Xref, Yref, and ¢ and identify
the total number of Xref, Yref, and ¢ values.

® Generate an accumulator array A(Xref, Yref,) ;
set all values to O.

® For all edge points (xj,yi) in the image
Do
compute the orientation @ (gradient direction
+90°)
compute possible reference points Xref, Yref
For each table entry, indexed by Q
For each possible shape orientation ¢
compute Xref=Xij+r cos (B+¢)
Yref=yi+tr sin (B+4)
increment A(Xrefe Yref, ¢

® Forall cells inthe accumulator array
Do

search for maximum values
thg coord_inates Xref, Yref, and ¢ give the position and
orientation of the shape in the image.

6.5 Histogram analysis

We began this chapter with a function classification of image analysis, noting that
there are essentially three common objectives: inspection, location, and

136

Histogram analysis

identification. As we have seen, each of these can be tackled using various
combinations of the techniques which have been discussed in Sections 6.2—6.4. It
would be wrong, however, if the impression was given that this is all there is to
image analysis. Indeed, in the introduction we did note that some of the more
advanced techniques to be dealt with in the remaining chapters are often brought
to bear. In certain circumstances, however, there are other simpler approaches
which can be taken and often it is the very simplicity which makes them attractive.
Such analysis techniques are often heuristic in nature, but no less useful for that.
The following material on histogram analysis is intended to give a feel for this type
of simple and practical approach.

The grey-level histogram of an image often contains sufficient information to
allow analysis of the image content and, in particular, to discriminate between
objects and to distinguish objects with defects. It has the distinct advantage that it
is not necessary to segment the image first and it is not dependent on the location
of the object in the image. The analysis is based exclusively on the visual
appearance of the scene or image as a whole. As a simple example, consider the case
where one is inspecting a bright shiny object, i.e. one which exhibits specular
reflectivity. In bright field illumination, where the camera and the light source are
approximately aligned, a great deal of light will be reflected and the histogram of
the imaged object will be biased towards the bright end of the scale. Blemishes, or
unwanted surface distortions, will tend to diffuse the light and less bright specular
reflections will be imaged. In this case, the histogram will be biased more towards
the dark end of the spectrum. In effect, the two cases can be distinguished by
considering the distribution of grey-levels in the image, i.e. by analysis of the
histogram.

There are two ways to consider histogram analysis:

(a) by extracting features which are descriptive of the shape of the histogram;
(b) by matching two histogram signatures.

In the former case, discrimination can be achieved using the classification
techniques we discussed in Section 6.3, whereas in the latter case, the template
matching paradigm of Section 6.2 is more appropriate.

The following (statistical) features are frequently used as a means of
describing the shape of histograms:

. L=l
Mean: b= Y, bP(b)
b=0
L=1 _
Variance: op*= y, (b—b)*P(b)
b=0

L-1
Skewness: bs=—5 3, (b—b)’P(b)
Ob™ b=0

137

Image analysis
1 L-1 -
Kurtosis: bg=—, 2, (b—b)*P()-3
Ob b=0

r-1
Energy: bn= bZO [P(b)]?

. These features are based on ‘normalized’ histograms, P(b), defined as:

_N®)

P(b)="5
where M represents the total number of pixels in the image, N(b) is the
conventional histogram (i.e. a function which represents the number of pixels of a

given grey-level b). Note that L is the number of grey-levels in the grey-scale.

Exercises

1. Statistical pattern recognition is sometimes used in industrial vision
systems, but it is not always an appropriate technique. Identify the
characteristics of an application for which the approach would be
suitable. Detail the component processes of the statistical pattern
recognition procedure. Given that one wishes to distinguish between
integrated circuit chips and other discrete components on a printed
circuit board during an inspection phase of an integrated FMS
(Flexible Manufacturing System), identify an appropriate feature space
and describe, in detail, how the classification might be effected.

2. Two types of defects commonly occur during the manufacture of 6 cm
wide strips of metal foil. They are circular (or near circular) pin-holes
of various sizes and longitudinal hairline cracks. Describe how an
automated visual inspection system would distinguish between these
flaws, given that the metal foil is bright silver in colour.

3. Explain with the use of diagrams, how the use of Bayes’ rule facilitates
improved classification vis-a-vis the nearest-neighbour classification
scheme.

4. Show how the Hough transform can be generalized to cater for
arbitrary two-dimensional shapes. What are the limitations of such a
generalization?

References and further reading

Dessimoz, J-D., Birk, J.R., Kelley, R.B., Martins, A.S. and Chi Lin, I. 1984 ‘Matched filters
for bin-picking’, IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. PAMI-6, No. 6, pp. 686—97,

138

References and further reading

Duda, R.O. and Hart, P.E. 1973 Pattern Classification and Scene Analysis, New York,
Wiley.

Fu, K. 1982 ‘Pattern recognition for automatic visual inspection’, Computer, Vol. 15,
No. 12, pp. 34—-40.

Hough, P.V.C. 1962 Methods and Measures for Recognising Complex Patterns, US Patent
3069654, 18 December.
Illingworth, J. and Kittler, J. 1987 ‘The adaptive Hough transform’, IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. PAMI-9, No. 5, pp. 690-8.
Sklansky, J. 1978 ‘On the Hough technique for curve detection’, Vol. C-27, No. 10,
pp. 923—6.

Turney, J.L., Mudge, T.N. and Volz, R.A. 1985 ‘Recognizing partially occluded parts’,
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-T7,
No. 4, pp. 410-21.

139

7

An overview of techniques
for shape description

Many machine vision applications, and robot vision applications in particular,
require the analysis and identification of relatively simple objects which may have
to be manipulated. While it is very desirable that a vision system should be able to
deal with random three-dimensional presentation of objects, it is also, in general,
beyond the current capabilities of most commercial systems. If, however, the
objects are (to an approximation) two-dimensional, the problem is more tractable,
requiring the description and classification of planar shapes which may, or may not,
be partially occluded. In Chapter 9, we will return to the more complex issues of
three-dimensional object description and representation when we discuss image
understanding. For the present, however, we will stay with the simpler two-
dimensional approaches and this chapter introduces some of the more common
techniques in shape description. Note well, though, that this chapter is not intended
to be a complete and rigorous survey of the area of shape description. It is, rather,
intended to provide a useful overview of some popular techniques and to identify
a taxonomy, or classification, to facilitate the discussion of shape descriptors.
Before proceeding, a brief digression is in order. As we saw in the section on
edge detection, topics of fundamental importance in computer vision typically give
rise to a very large number of widely differing techniques. Unlike edge detection,
however, the issue of shape description and representation is very far from being
resolved; although edge detection is not a closed subject by any means, it is a much
more mature topic than that of shape. The difficulty with shape is that it is not clear
exactly what we are trying to abstract or represent: it seems to depend strongly on
the use to which we intend putting the resulting representation (see, for example,
Brady, 1983). Practitioners in some areas (e.g. mathematical morphology) go a
little further and put forward the idea that shape is not an objective entity, in the
sense of having an independent existence, and depends both on the observed and
observer. Although these issues are important, it would not be wise to get locked
into a deep discussion of them in a book such as this. It is sufficient to note here
that shape as an issue in computer vision is both ubiquitous and ill-defined; the

140

External scalar transform descriptors

solution to the riddle of a general understanding of shape will probably shed light
on many other areas in advanced computer vision, if only because it epitomizes the
stone wall with which we are currently presented when we wish to develop truly
adaptive robust visual systems.

7.1 A taxonomy of shape descriptors

Perhaps the most useful and general taxonomy of shape description is that
introduced by Pavlidis in 1978 in which he classifies shape descriptors according to
whether they are based on external or internal properties of the shape and according
to whether they are based on scalar transform techniques or on space domain
techniques. External descriptors are typically concerned with properties based
on the boundary of the shape, while internal descriptors, as you would expect,
take cognizance of the complete region comprising the shape. Scalar transform
techniques generate vectors of scalar features while space domain techniques
generate spatial or relational descriptions of certain characteristics of features of
the shape. Thus, Pavlidis identifies the following four distinct types of shape
descriptor:

(a) external scalar transform techniques utilizing features of the shape boundary;

(b) internal scalar transform techniques utilizing features of the shape region;

(c) external space domain techniques utilizing the spatial organization of the
shape boundary;

(d) internal space domain techniques utilizing the spatial organization of the
shape region.

7.2 External scalar transform descriptors:
features of the boundary

External scalar transform descriptors are based on scalar features derived from the
boundary of an object. Simple examples of such features include the following:

® the perimeter length;

@ the ratio of the major to minor axis of the minimal bounding rectangle of the
shape (see Figure 7.1);

@ the number and size of residual concavities lying within the bounds of the
shape’s convex hull (see Figure 7.2);

@ the ratio of the area of a shape to the square of the length of its perimeter
(A/P?): this is a measure of circularity which is maximized by circular shapes;

@ the ratio of the area of a shape to the area of the minimal bounding rectangle:
this is a measure of rectangularity and is maximized for perfectly rectangular
shapes.

141

An overview of techniques for shape description

Figure 7.1 Bounding rectangle of a simple two-dimensional shape.

Residual
B

/ concavities

\ Convex hull

Figure 7.2 Residual concavities within the convex hull of a simple
two-dimensional shape.

More sophisticated scalar transform techniques are often based on the Fourier
series expansion of a periodic function derived from the boundary. For example,
consider the shape depicted in Figure 7.3. The rotation 6 of the tangent at the
boundary of the object will vary between 0 and 27 radians as the boundary is
traversed. In particular, 6 will vary with the distance, s, around the perimeter and
can be expressed as a function 8(s). If L is the length of the boundary of the shape,
6(0) =0 and #(L) = — 2. Unfortunately, this is obviously not a periodic function
and so we cannot express it in terms of a Fourier series expansion. However, an

142

Internal scalar transform descriptors

Figure 7.3 Rotation of tangent to a boundary of a shape.

alternative formulation, suggested by Zahn and Roskies, can be. Let ¢ = (2n/L)s
(thus: 0 < ¢ < 27) and define a new function ¢ (z):
(1) = e<ﬁ> 1
2

Now, ¢(0) = ¢ (27) = 0. This function is not dependent on the size, position, and
orientation of a shape and, hence, the low-order coefficients of its Fourier series
expansion can be used as features for translation, rotation, and scale invariant
shape recognition. Unfortunately, it suffers from the disadvantage, common to
all transform techniques, of difficulty in describing local shape information, e.g.
it would have difficulty in discriminating between two shapes where the only
dissimilarity is a small notch in the perimeter.

7.3 Internal scalar transform descriptors:
features of the region

Internal scalar transform techniques generate shape descriptors based on the entire
shape. One of the most popular is the method of moments. The standard two-
dimensional moments m,, of an image intensity function g(x, y) are defined:

Muy = S S glx,y) x*y'dxdy w,v=0,1,2,3..
which, in the discrete domain of digital images becomes:

M= 2, 2, g(x,») x*y' u,v=0,1,2,3...

x oy

summed over the entire sub-image within which the shape lies.

143

An overview of techniques for shape description

Unfortunately, these moments will vary for a given shape depending on where
the shape is positioned, i.e. they are computed on the basis of the absolute position
of the shape. To overcome this, we can use the central moments:

paw =2, 21 806, V)(x=X)“(y=3) u,v=0,1,2,3...
x oy

where:

m - _ Mo
tie and y=—
Moo Moo

X =

That is, ¥ and ¥ are the coordinates of the centroid of the shape. Thus, these
moments take the centroid of a shape as their reference point and hence are position
invariant.

Assuming that the intensity function g(x, y) has a value of one everywhere
in the object (i.e. one is dealing with a simple segmented binary image), the
computation of mgo is simply a summation yielding the total number of pixels
within the shape, since the terms in x and y, when raised to the power of zero,
become unity. If one also assumes that a pixel is one unit area, then myqo is
equivalent to the area of the shape. Similarly, mo is effectively the summation of
all the x-coordinates of pixels in the shape and mo,; is the summation of all the
y-coordinates of pixels in the shape; hence mio/moo is the average x-coordinate and
mo1/ moo is the average y-coordinate, i.e. the coordinates of the centroid.

The central moments up to order three are:

Moo = Moo
pro="0
por =0

P20 = M0 — XM1o

poz = Moz — YMo1

p11 = My — YMio

U3 = Map — 3Xmyo + 25("2”210

po3 = Mo3 — 3Imoz + 25 *mo:

iz = Mz — 2Imyy — Xmoz + 292myo
H21 = Moy ~ 2Xmyy — Ymao + 2)‘czmm

These central moments can be normalized, defining a set of normalized central
moments 7;j:

.
where:

k=((+)2)+1 i+j=2
However, moment invariants (linear combinations of the normalized central
moments) are more frequently used for shape description as they generate values

144

External space domain descriptors

which are invariant with position, orientation, and scale changes. These seven

invariant moments are defined as: . .
Aokt muaviet to

@1 =120 + N02)) rck-wi-ww.'?
$2 = (20 — M02) + 4nu , Need b folele
é3 = (30 — 3112)" + (3121 — 7103) twhoplee 7

b4 = (30 + 112)> + (121 + n03)?
és = (130 = 3m12) (30 + 112) (130 + 112)* = 3(n21 + 03)?)
+ (3121 — 103) (21 + 103) {3(n30 + 112)> — (21 + 703)?)
b6 = (120 ~ 102) (130 + M12) — (21 + 703)?}
+ 4n11(n30 + 112) (21 + no3)
é7 = (3121 — 103) (30 + N12) {(30 + 112)* = 3(n21 + n03) %}
= (3112 = 130) (21 + 103) (3(n30 + 712)* — (21 + 703)?)

The logarithm of ¢: to ¢7 is normally used to reduce the dynamic range of the
values when using these moment invariants as features in a feature classification
(i.e. shape recognition) scheme.

Shape descriptors based on moment invariants convey significant information
for simple objects but fail to do so for complicated ones. Since we are discussing
internal scalar transform descriptors, it would seem that these moment invariants
can only be generated from the entire region. However, they can also be generated
from the boundary of the object by exploiting Stokes’ theorem or Green’s theorem,
both of which relate the integral over an area to an integral around its boundary.
We will return to this in the next section on external space domain shape descriptors
when describing the BCC (boundary chain code).

7.4 External space domain descriptors: spatial
organization of the boundary

One popular technique is the use of syntactic descriptors of boundary primitives,
e.g., short curves, line segments, and corners. Thus, the shape descriptor is a list
or string of primitive shapes and the formation of the list or string must adhere to
given rules: the shape syntax or grammar. A polar radii signature, encoding the
distance from the shape centroid to the shape boundary as a function of ray angle,
is another much simpler external space domain descriptor (see Figure 7.4).

Descriptors based on external space domain techniques are generally efficient,
require minimal storage requirements, and, in the case of the more sophisticated
syntactic techniques expounded by Fu ef al. are based on well-developed general
methodologies such as the theory of formal languages: syntactic patterns are
recognized by parsing the string of primitive patterns in a manner somewhat similar
to the way a compiler parses a computer program to check its syntax (see Fu, 1982).
In the case of the simple external space domain descriptors, e.g. radii signatures,
the recognition strategy is based on correlation or matching of template signatures,
rather than on sophisticated parsing techniques.

145

An overview of techniques for shape description

Figure 7.4 Radii signature.

Figure 7.5 Boundary chain code (BCC) directions.

One of the most common external space domain descriptors is the boundary
chain code (BCC), introduced in Chapter 5. It should be emphasized, however, that
the BCC is more useful for shape representation rather than shape recognition. The
BCC encodes piecewise linear curves as a sequence of straight-line segments called
links. A link a; is a directed straight-line segment of length T'(J2)” and of angle

146

External space domain descriptors

a; X 45° (referenced to the X-axis of a right-handed Cartesian coordinate system);
T is the grid spacing and is normally set equal to unity; ¢; may be any integer in
the range 0—7 and represent the (coarsely quantized) direction of the link; p is the
modulo two value of a;;i.e. p=0if a;is even and p = 1 if ¢; is odd. Thus, the link
length in directions 1,3, 5, and 7 is equal to /2 and is equal to 1 in directions 0, 2, 4,
and 6 (see Figure 7.5). However, you should bear in mind the discussion on inter-
pixel distances in Chapter 3. Freeman also proposed the inclusion of signal codes
in the chain to facilitate, for example, descriptive comments, chain termination,
and the identification of the chain origin. Figure 7.6 illustrates a BCC
representation of a simple shape.

Although it is widely used as a technique for shape representation, a BCC is
a non-uniformly sampled function, that is, the distance between the sample points
along the boundary may be either 1 or 2 depending on whether the neighbouring
boundary points are horizontal/vertical neighbours or diagonal neighbours
respectively. Thus, a BCC is dependent on the orientation of the object boundary
on two distinct bases:

@ Each link encodes the absolute direction of the boundary at that point.
e The link length (1 or 2) varies with the boundary direction.

Any shape descriptor which is derived from this non-uniformly sampled BCC is

BCC:2112076556

Figure 7.6 A BCC representation of a simple shape.

147

An overview of techniques for shape description

inherently sensitive to changes in orientation. To alleviate this rotational variance
it is necessary to remove the dependency on link length, ensuring that the link
lengths of the BCC are all equal, specifically by resampling the BCC in uniformly
spaced intervals. Note that this resampling technique will generate non-integer
coordinate values for the pixels they represent; the actual image pixel values can
be obtained for shape reconstruction, which is of interest when displaying the
segmented shape, simply by rounding the real-valued coordinates. The fact that the
node coordinate values are non-integer is not important if the descriptor is being
used for the purposes of shape recognition since one is interested only in
correspondence between link values (or the corresponding transformed property)
and not the absolute position that they might represent in the image.

Since BCCs are so popular, one simple algorithm for transforming a non-
uniformly sampled BCC into a uniformly sampled BCC is presented below. The
algorithm, while not as general as others which have been suggested in the computer
vision literature, has proven to be adequate for the purposes of constructing
rotation-invariant shape descriptors.

7.4.1 An algorithm for resampling boundary chain codes

Let NUS BCC and US_BCC represent the non-uniformly sampled and uniformly
sampled BCCs, respectively. Let a point given by a non-uniformly sampled BCC
be represented by (nus_x, nus_y) and let a point given by a uniformly
sampled BCC be represented by (us_x, us_y).

NUS BCC and US_BCC start at the same point on the contour:
(nus_x, nus_y)=(us_x, us_y) initially:

WHILE there are more NUS BCC Links to be resampled DO
Generate the next NUS_ BCC points: (nus_x, nus_y)
/% resample x/
REPEAT
/% generate new US BCC Link and append to US_BCC «/
Generate three candidate uniformly sampled
points:
(us_x1, us y1), (us_x2, us_y2), (us_x3, us_y3)
at adistance of 1 unit from the current uniformly
sampled point (us_x, us_y)

indirections corresponding to the NUS BCC Link
direction, 1.

148

External space domain descriptors

Test all three points and choose the point which
isclosest to

(nus_x, nus_y) (using the Euclidean distance
metric)

Reassign the current (us_x, us_y) to be this point

Append to the US BCC a Link with a direction
corresponding to this chosen point

UNTIL |us_x =~ nus_x|<0.5AND | us_y ~nusy|<0.5

/ % (u;?:_x, ‘us_y) now Lies within the bounds of the */
/% gridpixel given by (nus x, nus_y) */

Figure 7.7 illustrates this resampling process: the original non-uniformly sampled

"\9___6

B @@ Original BCC

<, & © © Resampled BCC

Figure 7.7 Resampling a BCC.

149

An overview of techniques for shape description

boundary is depicted by dots joined by a dotted line and the resampled boundary
is depicted by circles joined by a dashed line.

As mentioned above, the BCC is most useful as a method for the
representation of shapes and recognition is normally based upon other descriptors
derived from the BCC. For example, the moment shape descriptors discussed
previously can be generated from the boundary points given by a BCC. Thus, after
Wilf (1981), we have:

1 n

Moo == 2, Ai
2 i=1
1 n

Mo =7 E Ai(yi—3 A7)
3 iz
1 n

Moy = = Z Ai(Xi"%Axi)
34

m20=:11- Z A;(xiz— xiAxi+§Ax,-2)

i=1

n
myy = L 25 Ai(xiyi—§xi Ayi—1yi Axi+5 Axi Ayi)

n
Moz = i ,21 Ai(y = yi Ayi+ 3§ Ayi)
Where x;-; and y;- are the coordinates of a point on the perimeter of the shape
and x; and y; are the coordinates of the subsequent point on the perimeter, as given
by the BCC; Ax; is defined to be (x; — xi-1); Ay; is defined to be (y; — yi~1); and
Ajis defined to be (x; Ay: — yi Axi); n is the number of points on the boundary (i.e.
the number of BCC links).

7.5 Internal space domain descriptors: spatial
organization of the region

Internal space domain techniques comprise descriptors which utilize structural or
relational properties derived from the complete shape. The medial axis transform
(MAT), which was mentioned in the section on thinning in Chapter 5, is an example
of a commonly used space domain descriptor in that it generates a skeletal line-
drawing from a two-dimensional shape. A point in the shape is on the medial axis
if and only if it is the centre of a circle which is a tangent to the shape boundary
at two non-adjacent points. Each point on the medial axis has a value associated
with it which indicates the radius of this circle. This represents the minimum
distance to the boundary from that point and thus facilitates the reconstruction of
the object. There are various methods for generating the medial axis, the most

150

Internal space domain descriptors

intuitive of which is one that is often referred to as the ‘prairie fire technique’; it
is analogous to setting fire to the boundary of a dry grassy field and letting the
flame burn inwards. The points at which the flame fronts meet are on the medial
axis. The MAT is sensitive to local distortions of the contour and small deviations
can give rise to extraneous skeletal lines. For example, Figure 7.8 illustrates the
MAT of a rectangle with a ‘bump’.

Other descriptors can be derived using integral geometry: for example, an
object shape can be intersected by a number of chords in different directions and
the locations and the length of the intersection can be used in various ways as a
shape descriptor. One example of this type of descriptor is the normal contour
distance (NCD) shape descriptor (see Vernon, 1987). It is essentially a one-
dimensional signature in which each signature value represents an estimate of the
distance from a point on an object’s boundary, with a local orientation of m, to
the opposing boundary point which lies on a path whose direction is normal to m.
The NCD signature is evaluated over the length of the available boundary. The
NCD signature does not require knowledge of the complete boundary and can
be used for recognition of partially occluded objects. Note that, if the contour
represents a partial boundary, there may not be another boundary point which lies
on a path which is normal to the contour and, hence, some segments of the NCD
may be undefined.

To conclude this section on internal space domain descriptors, we will discuss
the smoothed local symmetries (SLS) representation, which was introduced by
Brady. This is a sophisticated and interesting technique because it represents shape
with both region-based descriptors and contour-based descriptors. As such, it is
more than an internal space domain descriptor and does not require the entire shape
to be visible for extraction of useful shape description primitives. An SLS
representation has the following three components:

1. A set of spines which are the loci of local symmetries of the boundary of the
shape.

Figure 7.8 Medial axis transform (MAT) of a rectangular shape with a
‘bump’.

151

An overview of techniques for shape description

A description of the local shape of the boundary contour in terms of
parametric curves (Brady uses circles and spirals) and in terms of primitiveg
of curvature discontinuity. These primitives effectively describe the manner
in which the local contour curves are joined together to form the complete
boundary shape.

A description of the region subtended by two locally symmetric curves. This
is effected by a small number of region labels (e.g. cup, sector, wedge, and

(a)

(c)

Figure 7.9 (a) Dorsal fin of a shark. (b) Geometry defining a smoothed
local symmetry (SLS). (c) Schematic SLS for a complex shape.

152

Internal space domain descriptors

so on), each of which has several attributes associated with it. They include
the width of the region and the curvature of the associated spine.

For example, consider Figure 7.9(a) which depicts the dorsal fin of a shark. The
shape of the fin is defined by two curves 4B and BC;

@ The curve AB is convex and is described by a circular arc.
e The curve BC is concave and is also described by a circular arc.
e The junction between the two curves at B is an acute-angled corner.

These three items form the contour-based description. The descriptor of the region
between the two curves AB and BC is labelled a beak (the labelling that is used is
based on the relative concavity/convexity of the two sides of a local symmetry) and
the spine curves to the right. This raises the issue of how the spine is identified.
Referring to Figure 7.9(b), let « be the angle subtended by the inward normal to
the contour at a point p on the curve 4B and let 8 be the angle subtended by the
outward normal to the contour at a point ¢ on the curve BC. A point g on the curve
BC forms a local symmetry with the point p on the curve AB if the sum of their
respective angles is equal to 180°, i.e. if o+ 8= 180°. Several such points g can
exist for a given point p. The spine of the SLS is effectively formed by the set mid-
points of chords pg which satisfy this condition for local symmetry (for an exact
formulation, see Brady and Asada, 1984).

At this stage, we might remark on the similarity between the SLS and the
MAT. However, the SLS differs in several important ways: the local symmetry
which is implicit in the MAT is made explicit in the SLS; global symmetries, such
as that which lies between a long fork (see Figure 7.10), are not made explicit by
the MAT; and the SLS includes the attributed contour and regions descriptors
discussed above — the SLS is more than just a collection of spines. Finally, let us
note that the SLS representation is also intended to be used as a descriptor of
complex shapes, which can be viewed as a network of locally symmetric parts (see
Figure 7.9(c)). The connections in the network are relationships between the sub-
parts and carry information (or attributes) which can help disambiguate between
similar objects.

Figure 7.10 Global SLS of a forked object.

153

An overview of techniques for shape description

Exercises

1. Discuss how an object skeleton would be used as a shape descriptor,
paying particular attention to issues of shape recognition.

2. Generate a BCC representing a circle of diameter 10 pixels. Derive a
uniformly sampled version and compare the perimeter length of both
versions with the theoretical value.

3. Would a radii signature shape descriptor be useful for the recognition
of occluded shapes? Why?

4. Bearing in mind that the minimum bounding rectangle of an arbitrarily
oriented shape requires the prior estimation of its major axis, how
would you go about computing this shape descriptor?

References and further reading

Anderson, R.L. 1985 ‘Real-time grey-scale video using a moment-generating chip’, IEEE
Journal of Robotics and Automation, Vol. RA-1, No. 2, pp. 79-85.

Ballard, D.H. and Sabbah, D. 1983 ‘Viewer independent shape recognition’, IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-5, No. 6,
pp. 653—60.

Bamiceh, B. and De Figueiredo, R.J.P. 1986 ‘A general moment-invariants/attributed-graph
method for three-dimensional object recognition from a single image’, IEEE Journal
of Robotics and Automation, Vol. RA-2, No. 1, pp. 31-41.

Berman, S., Parikh, P. and Lee, C.S.G. 1985 ‘Computer recognition of two overlapping
parts using a single camera’, IEEE Computer, pp. 70—80.

Bolles, R.C. 1980 Locating Partially Visible Objects: The Feature Focus Method, SRI
International, Technical Note No. 223.

Bolles, R.C. and Cain, R.A. 1982 ‘Recognizing and locating partially visible objects: the
local-feature-focus method, The International Journal of Robotics Research, Vol. 1,
No. 3, 1982, pp. 57-82.

Brady, M. 1983 ‘Criteria for representations of shape’, Human and Machine Vision, A.
Rosenfeld and J. Beck (eds), Academic Press, New York.

Brady, M. and Asada, H. 1984 ‘Smoothed local symmetries and their implementation’, The
International Journal of Robotics Research, Vol. 3, No. 3, pp. 36-61.

Freeman, H. 1961 ‘On the encoding of arbitrary geometric configurations’, IRE
Transactions on Electronic Computers, pp. 260—8.

Freeman, H. 1974 ‘Computer processing of line-drawing images’, ACM Computing Surveys,
Vol. 6, No. 1, pp. 57-97.

Fu, K-S. (ed.) 1980 Digital Pattern Recognition, Springer Verlag, Berlin.

Hu, M.K. 1962 ‘Visual pattern recognition by moment invariants’, IRE Transactions on
Information Theory, Vol. IT-8, pp. 179-87.

Lin, C.C. and Chellappa, R. 1987 ‘Classification of partial 2-D shapes using Fourier
descriptors’, IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. PAMI-9, No. 3, pp. 686—90.

154

B

References and further reading

Nackman, L.R. and Pizer, S.M. 1985 ‘Three-dimensional shape description using the
symmetric axis transform 1: Theory’, IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. PAMI-7, No. 2, pp. 187-202,

Pavlidis, T. 1978 ‘A review of algorithms for shape-analysis’, Computer Graphics and Image
Processing, Vol. 7, pp. 243-58.

Pavlidis, T. 1980 ‘Algorithms for shape analysis of contours and waveforms’, IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-2, No. 4,
pp. 301-12.

Shahraray, B. and Anderson, D.J. 1985 ‘Uniform resampling of digitized contours’, IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-7, No. 6,
pp. 674-81.

Tang, G.Y. 1982 ‘A discrete version of Green’s theorem’, JEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. PAMI-4, No. 3, pp. 242-9.

Vernon, D. 1987 ‘Two dimensional object recognition using partial contours’, Image and
Vision Computing, Vol. 5, No. 1, pp. 21-7.

Wiejak, J.S. 1983 ‘Moment invariants in theory and practice’, Image and Vision Computing,
Vol. 1, No. 2, pp. 79-83.

Wilf, J.M. 1981 ‘Chain-code’, Robotics Age, Vol. 3, No. 2, pp. 12-19,

Wong, R.Y. 1978 ‘Scene matching with invariant moments’, Computer Graphics and Image
Processing, Vol. 8, pp. 16-24.

Zhan, C.T. and Roskies, R.Z. 1972 ‘Fourier descriptors for plane closed curves’, /EEE
Trans. Computers, Vol. C-21, pp. 269-81.

155

8

Robot programming and
robot vision

So far, we have discussed in some detail the automatic processing and analysis of
images and image data. Any information about position and orientation of objects
has been derived in an image frame for reference, that is, with respect to the two-
dimensional array of pixels representing the imaged scene. However, objects only
exist in the so-called real world (i.e. the world we are imaging) and if we wish to
do something useful with the information we have extracted from our digital
images, then we have to address the relationship between images and the three-
dimensional environment from which they are derived. Even then, this is typically
not enough since there is little point in knowing where things are if we don’t know
how to manipulate and move them. In this chapter, we turn our attention to these
issues and we will discuss how we can usefully describe the three-dimensional
position and orientation of objects relative to any other object, how to go about
configuring a task to effect their manipulation, and how, given their image position
and orientation, we can derive their three-dimensional pose.

Recall that imaging is a projective process from a three-dimensional world to
a two-dimensional one and, as such, we lose one dimension (typically the object
depth or range) when we perform this imaging. As we noted in Chapter 1, much
of computer vision is concerned with the recovery of this third dimension but, so
far in this book, we have not dealt with it in any detail. Most of the discussion
of recovery of depth information is included in the next chapter on image
understanding. However, to make this chapter complete and self-contained, we
discuss at the end a popular and versatile technique called structured-light, which
allows us to compute the distance between a camera and objects in the field of view.

Before proceeding, we will briefly review robot programming methodologies
to provide a context for the approach that we adopt in this book.

156

A brief review of robot programming methodologies

8.1 A brief review of robot programming
methodologies

Modern robotic manipulators, which have their origins in telecheric and
numerically controlled devices, have been developing for the past twenty-five years.
As robots have developed, so too have various methods evolved for programming
them and, consequently, modern commercially available robot manipulators make
use of many programming techniques which exhibit a wide spectrum of sophisti-
cation. There are, broadly speaking, three main categories of robot programming
system which are, in order of the level of sophistication: guiding systems; robot-
level or explicit-level systems; and task-level systems.

Guiding systems are typified by the manual lead-through approach in which
the manipulator is trained by guiding the arm through the appropriate positions
using, for example, a teach-pendant, and recording the individual joint positions.
Task execution is effected by driving the joints to these recorded positions. This
type of manual teaching is the most common of all programming systems, and
though several variations on the theme have been developed, such as trajectory
control, the explicit interactive nature remains the same.

Robot-level programming systems, for the most part, simply replace the
teach-pendant with a robot programming language: manipulator movements are
still programmed by explicitly specifying joint positions. However, several lan-
guages also facilitate robot control in a three-dimensional Cartesian space, rather
than in the joint space. This is effected using the inverse kinematic solution of the
manipulator arm (the kinematic solution allows you to compute the position of the
end-effector or gripper in a three-dimensional Cartesian frame of reference, given
the manipulator joint positions; the inverse kinematic solution allows you to com-
pute the joint positions for a given position and orientation of the end-effector).
The more advanced of these languages incorporate structured programming control
constructs (such as are found in most modern programming languages, e.g. ADA,
Modula-2, and Pascal) and they make extensive use of coordinate transformation
and coordinate frames, With this approach, the robot control is defined in terms
of transformations on a coordinate frame (a set of XYZ-axes) associated with, and
embedded in, the robot hand. Off-line programming is more feasible as long as the
transformations representing the relationships between the frames describing the
objects in the robot environment are accurate. It is this approach which we adopt
in this book and these techniques will be discussed in detail in the remainder of the
chapter.

Task-level robot programming languages attempt to describe assembly tasks
as sequences of goal spatial relationships between objects and, thus, they differ
from the other two approaches in that they focus on the objects rather than on the
manipulator. The robot is merely a mechanism to achieve these goals. They
typically require the use of task planning, path planning, collision avoidance and

157

Robot programming and robot vision

world-modelling: this level of sophistication is not yet widely available on a
commercial basis.

8.2 Description of object pose with
homogeneous transformations

Robot manipulation is concerned, in essence, with the spatial relationships between
several objects, between objects and manipulators, and with the reorganization of
these relationships. We will use homogeneous transformations to represent these
spatial relationships. However, we first need to review a little vector algebra to
ensure that we are equipped with the tools to develop this methodology.

A vector v=ai + bj + ck, where i,j and k are unit vectors along the X-, Y-,
and Z-axes of a coordinate reference frame (see Figure 8.1), is represented in
homogeneous coordinates as a column matrix:

where:

o _
il I
Tl TIx

o
Il
T I~

Thus, the additional fourth coordinate w is just a scaling factor and means that a
single three-dimensional vector can be represented by several homogeneous
coordinates. For example, 3i + 4f + 5k can be represented by

3 6
4 8
5] or by | 10
1 2

Note that, since division of zero by zero is indeterminate, the vector

S O OO

is undefined.

158

Object pose with homogeneous transformations

ai +bj+ck

Figure 8.1 Coordinate reference frame.

Vectors can be combined in two simple ways. Given two vectors a and b:

a= axi'F" ayj+ azk
b= bxi+ byj+ bzk

The vector dot product is defined:
a-b = axby + ayby + azb;
and is a scalar quantity. The vector cross product is defined:
ax b =(aybs — azby)i + (a:bx — axb)j + (a:by — aybi)k

It may also be written as:

i j k
axb=|a a a
b. b b,

that is, as the expansion of this 3 X 3 determinant.

A general transformation H, in three-dimensional space, representing
translation, rotation, stretching, and perspective distortions, is a 4 x4 matrix
in homogeneous formulation. Given a point represented by the vector u, its
transformation v is represented by the matrix product:

v=Hu

Robot programming and robot vision

The transformation H corresponding to a translation by a vector ai + bj -+ ck is:

1 0 0 «a
01 0 b
H=TRANS(a,b,c)= 00 1 ¢
0 0 0 1
X
For example: to transform u = i by H:
w
1 0 0 «a X
_ 10 1 0 b y
v=Hu=14 91 c| |z
|0 0 0 1 w
[x -+ aw
| y+bw
T z+ow
| w
[x/w+a
1 yw+b
T | zfw+e
1

Thus, we have the familiar property of translation of a vector by another vector
being simply the addition of their respective coefficients.

The transformation corresponding to rotations about the X-, Y-, or Z-axes
by an angle @ are:

1 0 0 0]

0 cosf® ~—sinf O

Rou(X,0) = 0 sin cosf O
|0 0 0 1]

" cosf O sinf O]

_ 0 1 0 0
RotY,0)=1 _6no 0 cosd 0
| 0 0 0 1]

[cos§ —sinf 0 O]

Rot(Z,0) = sxgﬁ cogﬂ (1) 8
0 0 0 1]

Now, from our point of view, we come to the most important aspect of
homogeneous transformations in that we can interpret the homogeneous
transformation as a coordinate reference frame. In particular, a homogeneous

160

Object pose with homogeneous transformations

transformation describes the position and orientation of a coordinate frame with
respect to another previously defined coordinate frame. Thus, the homogeneous
transformation represents not only transformations of vectors (points) but also
positions and orientations.

Specifically, a coordinate frame is defined by four things: the position of its
origin and the direction of its X-, Y-, and Z-axes. The first three columns of the
homogeneous transformation represent the direction of the X-, Y-, and Z-axes of
the coordinate frame with respect to the base coordinate reference frame, while the
fourth column represents the position of the origin. This is intuitively appealing: a
homogeneous transformation, which can be a combination of many simpler
homogeneous transformations, applies equally to other homogeneous trans-
formations as it does to vectors (pre-multiplying a 4 X 1 vector by a 4 X 4 matrix
yields a 4 X 1 vector; pre-multiplying a 4 X 4 matrix by a 4 X 4 matrix yields a 4 x 4
matrix which is still a homogeneous transformation). Thus, we can take a
coordinate reference frame and move it elsewhere by applying an appropriate
homogeneous transformation. If the coordinate frame to be ‘moved’ is originally
aligned with the so-called base coordinate reference frame, then we can see that the
homogeneous transformation is both a description of how to transform the base
coordinate frame to the new coordinate frame and a description of this new
coordinate frame with respect to the base coordinate reference frame. For example,
consider the following transformation:

H = Trans (10,10, 0) Rot (Y, 90)

0010
0100
- Trans (10,1000 | _ | o o ¢
| 0 0 0 1
0 0 1 10]
_ 01 0 10
-1 00 O
0 00 1

The transformation of the three vectors corresponding to the unit vectors
along the X-, Y-, and Z-axes are:

1
1

0 01 10] 1 " 10]

0 1 0 10{ |0f_ | 10
-1 00 o ol | -1}
| 000 1] |1] [1
T 0 0 1 10] [o] [10]

0 1 0 10| 1y _| 11| o
-1 00 0 of 0}’
| o000 1] 1] | 1

161

Robot programming and robot vision

0 01 10 0 11

01 0 10 0] | 10 .
100 0 1= 0 respectively

0 00 1 1 1

The direction of these (transformed) unit vectors is formed by subtracting the
vector representing the origin of this coordinate frame and extending the vectors to
infinity by reducing the scale factor to zero. Thus, the direction of the X-, Y-, and
Z-axes of this (new) frame are

0

—1l , and

SO = O
(=N

Similarly, the transformation of the null vector, i.e. the vector which
performs no translation and thus defines the origin of the base coordinate frame,
is given by:

10 0 01 1070
10 | o1 0 10f]0
o[-t 00 0f]o0
1 000 1] |1

These four results show us that the new origin is at coordinates (10, 10, 0); the new
X-axis is directed along the Z-axis of the base coordinate reference frame in the
negative direction; the new Y-axis is directed along the Y-axis of the base
coordinate reference frame in the positive direction; and the new Z-axis is directed
along the X-axis of the base coordinate reference frame in the positive direction.
This can be seen in Figure 8.2. You should try to do this transformation graphically
but remember when deciding in which sense to make a rotation that: a positive
rotation about the X-axis takes the Y-axis towards the Z-axis; a positive rotation
about the Y-axis takes the Z-axis fowards the X-axis; a positive rotation about the
Z-axis takes the X-axis towards the Y-axis.

The rotations and translations we have been describing have all been made
relative to the fixed base reference frame. Thus, in the transformation given by:

H=Trans(10,10,0) Rot (Y, 90)

the frame is first rotated around the reference Y-axis by 90°, and then translated
by 10i + 10j + Ok.

This operation may also be interpreted in reverse order, from left to right, viz:
the object (frame) is first translated by 107+ 10j + Ok; it is then rotated by 90°
around the station frame axis (Y'). In this instance, the effect is the same, but in
general it will not be. This second interpretation seems to be the most intuitive since
we can forget about the base reference frame and just remember ‘where we are’:
our current station coordinate reference frame. We then just need to decide what

162

Object pose with homogeneous transformations

4
y §

N

<y

X

H=Trans{10,10, 0} Rot (Y, 90)

Figure 8.2 Interpreting a homogeneous transformation as a coordinate
frame.

transformations are necessary to get us to where we want to be based on the
orientation of the station axes. In this way, we can get from pose to pose by
incrementally identifying the appropriate station transformations, Hi, H;, Hs,
... Hy, which we apply sequentially, as we go, and the final pose is defined with
respect to the base simply as:

H=H +H,«H3yx ... xH,.

In order to clarify the relative nature of these transformations, each of these
frames/transformations is normally written with a leading superscript which
identifies the coordinate frame with respect to which the (new) frame/
transformation is defined. The leading superscript is omitted if the defining frame
is the base frame. Thus the above transform equation is more correctly written:

H=H« M, « Y pps o« g

As a general rule, if we post-multiply a transform representing a frame by a second
transformation describing a rotation andfor translation we make that rotation/
transformation with respect to the frame axis described by the first transformation.
On the other hand, if we pre-multiply the frame transformation representing a

163

Robot programming and robot vision

rotation/transformation then the rotation/transformation is made with respect to
the base reference coordinate frame.

At this stage, we have developed a system where we can specify the position
and orientation of coordinate reference frames anywhere with respect to each other
and with respect to a given base frame. This, in itself, is quite useless since the
world you and I know does not have too many coordinate reference frames in it.
What we really require is a way of identifying the pose of objects. In fact, we are
about there. The trick, and it is no more than a trick, is to atiach a coordinate
frame to an object, i.e. symbolically glue an XYZ-frame into an object simply by
defining it to be there. Now, as we rotate and translate the coordinate frame, so
too do we rotate and translate objects. We shall see this at work in the next section
on robot programming.

8.3 Robot programming: a wire crimping task
specification

Perhaps the best way to introduce robot programming is by example and, so, we
will develop our robot programming methodology in the context of a specific
application: automated wire crimping.

The wire crimping task requires that a robot manipulator grasp a wire from
a tray of wires (see Figure 8.3). The wires are short and curved but they are flexible
and the curvature varies from wire to wire. We will assume that, although the wires

164

Robot programming: a wire crimping task specification

Figure 8.3 (a) A tray of flexible electrical wires (b) an image of ‘which
yields a point on a wire which is suitable for grasping (c) allowing the
robot to pick up the wire and manipulate it.

165

Robot programming and robot vision

overlap, they all lie flat on the tray. The wire must be grasped near its end by the
robot, at a point which has been identified using a vision system, and the wire end
must be inserted in a crimping machine, and the crimped end then must be inserted
in a plastic connector. There are a few other related tasks, such as crimping the
other end and inserting it in another connector, but, for the purposes of this
example, we will assume that the task is complete once the wire has been crimped
the first time. In addition, we must ensure that the manipulator does not obstruct
the camera’s field of view at the beginning of each crimp cycle and, thus, it must
be moved to an appropriate remote position. By defining a series of manipulator
end-effector positions Mn, say, this task can be described as a sequence of
manipulator movements and actions referred to these defined positions. For
example, the task might be formulated as follows:

MO: Move out of the field of view of the camera.
Determine the position and orientation of the wire-end and the grasp point
using the vision system.
M1: Move to a position above the centre of the tray of wires.
M?2: Move to an approach position above the grasp point.
M3: Move to the grasp position
Grasp the wire.
M4: Move to the depart position above the grasp point.
MS5: Move to the approach position in front of the crimp.
M6: Move to a position in which the wire-end and the crimp are in contact.
M7: Move to a position such that the wire-end is inserted in the crimp.
Actuate the crimping machine.
M8: Move to the depart position in front of the c¢rimping machine.
M9: Move to a position above the collection bin.
Release the wire.

This process is repeated until there are no more wires to be crimped.

One of the problems with this approach is that we are specifying the task in
terms of movements of the robot while it is the wire and the crimp in which we are
really interested. The object movements are implicit in the fact that the manipulator
has grasped it. However, we will try to make up for this deficiency to some extent
when we describe the structure of the task by considering the structure of the task’s
component objects: the manipulator, the end-effector, the wire grasp position,
the wire end, the crimping machine, and the crimp. In particular, we will use the
explicit positional relationships between these objects to describe the task structure.
Since coordinate frames can be used to describe object position and orientation,
and since we may need to describe a coordinate frame in two or more ways (there
is more than one way to reach any given position and orientation), we will use
transform equations to relate the two descriptions. A simple example, taken from
‘Robot manipulators’ by R. Paul (1981), will serve to illustrate the approach.

Consider the situation, depicted in Figure 8.4, of a manipulator grasping a toy
block. The coordinate frames which describe this situation are as follows:

166

Robot programming: a wire crimping task specification

z
Y\

76

Figure 8.4 A manipulator grasping a block.

V4 is the transform which describes the position of manipulator with
respect to the base coordinate reference frame.

276 describes the end of the manipulator (i.e. the wrist) with respect to the
base of manipulator, i.e. with respect to Z.

T6E describes the end-effector with respect to the end of the manipulator,
i.e. with respect to 76.

B describes a block’s position with respect to the base coordinate
reference frame.

BG describes the manipulator end-effector with respect to the block, i.e.
with respect to B.

In this example, the end-effector is described in two ways, by the transformations
leading from the base to the wrist to the end-effector:

Z*x2T6xT°E
and by the transformations leading from the block to the end-effector grip position:
B*5G
Equating these descriptions, we get the following transform equation:
Z+%T6+ T°E= B +2G
Solving for 76 by multiplying across by the inverse of Z and TSp:
ZT6= 2 ' xBx2G«T°E"!

167

Robot programming and robot vision

76 is a function of the joint variables of the manipulator and, if known, then
the appropriate joint variables can be computed using the inverse kinematic
solution. 76, then, is the coordinate which we wish to program in order to effect
the manipulation task: an arm position and orientation specified by 76 is thus
equivalent to our previous informal movement Mn:

Move Mn = Move 2T6

and, since we can compute 76 in terms of our known frames, we now have an arm
movement which is specified in terms of the frames which describe the task
structure. Assigning the appropriate value to 76 and moving to that position,
implicitly using the inverse kinematic solution:

2T6:= Z"' «B*xBG+ TOE~!
Move %76

What we have not yet done, and we will omit in this instance, is to fully specify
each of these frames by embedding them in the appropriate objects and specifying
the transformations which define them. We will do this in full for the wire crimping
application.

Before proceeding, it is worth noting that, in this example, as the position of
the end-effector with respect to the base reference system is represented by:

Z«%T6x TSE

this allows you to generate general-purpose and reusable robot programs. In
particular, the calibration of the manipulator to the workstation is represented by
Z, while if the task is to be performed with a change of tool, only £ need be altered.

Returning again to the wire crimping application, the transforms (i.e. frames)
which are used in the task are as follows.

As before:

VA is the transform which describes the position of manipulator with
respect to the base coordinate reference frame.

%16 describes the end of the manipulator (i.e. the wrist) with respect
to the base of manipulator, i.e. with respect to Z.

TR describes the end-effector with respect to the end of the

manipulator, i.e. with respect to 76.

We now define:

ooV the position of the end-effector out of the field of view of the
camera and defined with respect to the base coordinate reference
system.

CEN the position of the end-effector centred over table defined with

respect to the base coordinate reference system.
WDUMP the position of the end-effector over the bin of crimped wires,
defined with respect to the base coordinate reference system.

168

Robot programming: a wire crimping task specification

w the position of the wire end, defined with respect to the base
coordinate reference system.
YwG the position of end-effector holding wire, defined with respect to

the wire end.

Vo4 the position of end-effector approaching grasp position, defined
with respect to the wire-grasp position.

YSwD the position of end-effector departing grasp position (having
grasped the wire), defined with respect to the original wire-grasp

position.

CcM the position of the crimping machine, defined with respect to the
base coordinate reference system.

M the position of the crimp (ready to be attached), defined with
respect to the crimping machine.

ccA the position of the wire end approaching crimp, defined with
respect to the crimp.

ccc the position of the wire end in contact with the crimp, defined
with respect to the crimp.

ccr the position of the wire end inserted in the crimp, defined with
respect to the crimp.

ccp the position of the wire end departing from the crimping machine
(the crimp having been attached), defined with respect to the
crimp.

The manipulator movements MO through M9 can now be expressed as
combinations of these transforms:

MO: T6=2Z"'+00V+E!

Ml: T6=Z"'«CENx*E™!

M2: T6=Z'+W+WGsWA=+E™!
M3: T6=Z"'+«Ws+WG+E™!

M4: T6=Z"'+W*«WG+WD+E™!
MS5: T6=Z"1+CM«C*CA WG «E™"
M6: T6=Z"'+CM+«C*xCC+*WG*E™!
M7: T6=Z"1'+«CM+C+CI+WG+E™!
M8: T6=Z"'+CM*+C+CD+WG=*E™!
M9: T6=Z"'«WDUMP+E™!

Note that WA, WD, CA, CI, and CD are all translation transformations concerned
with approaching and departing a particular object. In order to allow smooth
approach and departure trajectories, these translation distances are iterated from
zero to some maximum value or from some maximum value to zero (in integer
intervals) depending on whether the effector is approaching or departing. For
example: "CWA is the approach position of the end-effector before grasping the
wire and is (to be) defined as a translation, in the negative Z-direction of the WG

169

Robot programming and robot vision ‘) Robot programming: a wire crimping task specification

frame, of the approach distance z_approach, say. Thus:
"W A = Trans(0, 0, — (z_approach))

where:

z_approach = z_approach_initial
z_approach_initial — delta
z_approach_initial — 2 * delta

0
It should be noted well that this type of explicit point-to-point approximation of
continuous path control would not normally be necessary with a commercial
industrial robot programming language since they usually provide facilities for
specifying the end-effector trajectory.

To complete the task specification, we now have to define the rotations and
translations associated with these transforms/frames. Most can be determined by Xz
empirical methods, embedding a frame in an object and measuring the object
position and orientation. Others, W and WG in particular, are defined here and
their components determined by visual means at run time.

Figure 8.5 Z - the base of the manipulator.

1 Z: The position of the position of manipulator with respect to the base
coordinate reference frame

We will assume that the base coordinate system is aligned with the frame embedded Z

in the manipulator base, as shown in Figure 8.5. Thus:

Z = I = Identity transform

Note that the frame defining the manipulator base is dependent on the kinematic
model of the robot manipulator.

[0 T6: the position of the end of the manipulator with respect to its base
at Z Yre
The T6 frame, shown in Figure 8.6, is a computable function of the joint variables. 76
Again, the frame which defines the end of the manipulator is based on the Xrs
kinematic model. However, there is a convention that the frame should be
embedded in the manipulator with the origin at the wrist, with the Z-axis directed By
outward from the wrist to the gripper, with the Y-axis directed in the plane of H
movement of the gripper when it is opening and closing, and with the X-axis
making up a right-hand system. This is shown more clearly in Figure 8.7 which
depicts a more common two-finger parallel jaw gripper.

It is also worth noting that, although we will specify the orientation of T6 by
solving for it in terms of other frames/transforms in the task specification, there is | Figure 8.6 T6 - the end of the manipulator.
a commonly used convention for specifying the orientation of objects, in general,
and 76 in particular. This convention identifies three rotations about the station

170 : 171

Robot programming and robot vision

—& N

Roll

z Y
Pitch

Figure 8.7 Specifying the orientation of T6 using roll, pitch, and yaw
angles.

coordinate frame embedded in the object which are applied in turn and in a
specified order. The rotations are referred to as a roll of ¢ degrees about the station
Z-axis, a pitch of 8 degrees about the station Y-axis, and yaw of degrees about
the station X-axis. The order of rotation is specified as:

RPY(¢,6,) = Rot(Z, ¢)Rot(Y,0)Rot(X, })

Thus, the object is first rotated ¢~ about the Z-axis, then 6° about the current
station Y-axis, and finally y° about the station X-axis; refer again to Figure 8.7.

Ol E: the position of the end-effector with respect to the end of the
manipulator, i.e. with respect to T6

The frame E representing a special-purpose end-effector for grasping wires is

embedded in the tip of the effector, as shown in Figure 8.8, and hence is defined

by a translation 209 mm along the Z-axis of the 76 frame and a translation of

—15 mm along the Y-axis of the 76 frame. Thus:

TSE = Trans(0, — 15, 209)

1 OOV: the position of the end-effector out of the field of view of the
camera .

This position is defined, with respect to the base coordinate system, such that the

end-effector is directed vertically downwards, as shown in Figure 8.9. Thus ooV

is defined by a translation (of the origin) to the point given by the coordinates

(150, 300, 150) followed by a rotation of — 180° about the station X-axis:

OO0V = Trans(150, 300, 150) Rot(X, —180)
[0 CEN: the position of the end-effector centred over the tray, defined with

respect to the base coordinate reference frame
This position is defined such that the end-effector is directed vertically downwards

172

Robot programming: a wire crimping task specification

\TG E

Y76 Xre Ye X

Figure 8.8 E - the end-effector.

z
a
e
Ve
Z, ZT6E
X: =00V
Ze
—p Y
V4 Y,

Xz

X

Figure 8.9 OOV - the end-effector out of the camera’s field of view.

over the centre of the tray, as shown in Figure 8.10. Thus, CEN is defined by a
translation (of the frame origin) to the point given by the coordinates (0, 360, 150)
followed by a rotation of —180° above the station X-axis:

CEN = Trans(0, 360, 150) Rot(X, —180)

0 WDUMP: the position of the end-effector over the bin of crimped wires,
defined with respect to the base coordinate reference frame

This position is defined such that the end-effector is directed — 45° to the horizontal

over the centre of a bin as shown in Figure 8.11. Thus, WDUMP is defined by a

translation of the frame origin to the point given by the coordinates (0, 500, 160)

followed by a rotation of —135° about the station X-axis.

WDUMP = TRANS(0, 500, 160) Rot(X, —135)

[0 W: the position of the wire end, defined with respect to the base
coordinate reference frame
The origin of the wire frame W is defined to be at the end of the wire, with its

173

Robot programming and robot vision

z
A
1
Z;
Ye
ZT6E
Xe =CEN
Z: R
>y
z Y,

Xz

X
Figure 8.10 CEN - the end-effector centred over the tray of wires.

V4
4
e
Z7T6 E=
WDUMP
Xe
Y, Z
L

X

Figure 8.11 WDUMP - the end-effector over the bin of crimped wires.

174

Robot programming: a wire crimping task specification

Z-axis aligned with the wire’s axis of symmetry. The X-axis is defined to be normal
to the tray on which the wires lie, directed vertically upwards. The Y-axis makes
up a right-hand system. Since we are assuming that the wires are lying flat on the
tray, both the X- and Y-axes lie in the plane of the tray. Furthermore, we will
assume that the tray lies in the X—Y plane of the base reference frame. Thus:

W = Trans(x, y, 0)Rot(z,0)Rot(y, —90)

It is the responsibility of the vision system to analyse the image of the wires and
to generate the components of this frame automatically, specifically by computing
x,y, and 6. W is illustrated in Figure 8.12,

0 WG: the position of the end-effector holding the wire, defined with respect
to the wire end
The origin of the wire gripper frame WG is defined to be located a short distance
from the origin of W, on the wire’s axis of symmetry. The Z-axis is defined to be
normal to the plane of the tray, directed downwards. The Y-axis is defined to be
normal to the axis of symmetry of the wire, in the plane of the tray. The Y-axis
makes up a right-hand system. WG is illustrated in Figure 8.13.
It is important to note that we define the WG frame in this manner since this

Xw z
Zw

/ YW Y

Figure 8.12 W — the position of the wire-end.

// XW
Zw
Yw
Xwe
/ we ™ Yuo
4
Zwe

Figure 8.13 WG — the wire grasp position.

175

Robot programming and robot vision

is how the end-effector E will be oriented when grasping the wire, i.e. with the
Z-axis pointing vertically downwards and the Y-axis at right-angles to the wire.
As with W, the vision system must return a homogeneous transformation
defining this frame; we cannot assume that WG will be a fixed offset from W since
we are assuming that the curvature of the wire near the end will vary from wire to

wire.

1 WA?: the position of the end-effector approaching the grasp position,
defined with respect to the wire-grasp position

This is defined to be a position directly above the wire grasp point. As such, it

simply involves a translation in the negative direction of the Z-axis of the WG

frame. Since it is wished to approach the wire along a known path, many approach

positions are used in which the translation distances get successively smaller. This

motion, then, approximates continuous path control. Thus:

WA = Trans (0,0, — (z_approach)),

where

z_approach = z_approach_initial
z_approach_initial — delta
z_approach_initial — 2 * delta

0
WA is illustrated in Figure 8.14.
[0 WD: the position of the end-effector departing the grasp position (having
grasped the wire), defined with respect 1o the original wire-grasp position

In a similar manner to WA, WD is defined as a translation in the negative direction
of the Z-axis of the WG frame, except that in this case the translation distance

becomes successively greater. Hence:
WD = Trans(0, 0, — (z_depart)),

where:

z.depart =0,
delta,
2 x delta,

z_depart_final

0 CM: the position of the crimping machine, defined with respect to the
base coordinate reference system .
The frame CM, representing the crimping machine, is defined to be embedded in

176

Robot programming: a wire crimping task specification
a corner of the machine, as shown in Figure 8.15. Thus:

CM = Trans(150, 300, 0)

Note that the coordinates of the origin of CM, (150,300,0), are determined
empirically.

O C: the position of the crimp (ready to be attached), defined with respect to
the crimping machine

The origin of C, representing the crimp, is defined to be at the front of the crimp,

of the radial axis; the Z-axis is defined to be coincident with the radial axis (directed

in toward the crimp), the X-axis is defined to be directed vertically upward, and the

Y-axis makes a right-hand system; see Figure 8.16. Thus:

C = Trans(40, 40, 65)Rot (Y, 90)Rot (Y, 180)

0 CA: the position of the wire end approaching the crimp, defined with
respect to the crimp

CA is a frame embedded in the end of the wire, in exactly the same manner as W,

except that it is positioned in front of, i.e. approaching, the crimp. Thus, as shown

in Figure 8.17, CA simply involves a translation of some approach distance in the

negative direction of the Z-axis of C.

Since, in a similar manner to WA, we want to approach the crimp along a
known path, many approach positions are used such that the translation distance
gets successively smaller.

Thus:

CA = Trans(0, 0, — (z_approach)),
where:

zZ_approach = z_approach_initial
z_approach_initial — delta,
z_approach_initial — 2 * delta

0

[0 CC: the position of the wire end in contact with the crimp, defined with
respect to the crimp

Since the frames embedded in the end of the wire and the frame embedded in the

crimp align when the wire is in contact with the crimp, this transform is simply the

identity transform. Had either of these two frames been defined differently, CC

would have been used to define the relationship between the end of the wire and

the crimp, which would be, in effect, a series of rotations.

177

Robot programming and robot vision

A
Xwa
W, Ywa
A\
Zwa - Xu
"
W Ywe
Zwe

Figure 8.14 WA — the position of the end-effector approaching the grasp

position.

Xz

cMm

Yem

Figure 8.15 CM - the position of the crimping machine.

178

Robot programming: a wire crimping task specification

[0 CI: the position of the wire end inserted in the crimp, defined with respect
to the crimp

CI is a frame embedded in the end of the wire, in exactly the same manner as CA4,

except that it represents the wire inserted in the crimp. Thus, CI simply involves a

translation of some insertion distance in the positive direction of the Z-axis of C.

+ N

Z,

XZ Xc

Figure 8.16 C - the position of the crimp.

179

Robot programming and robot vision

Xea

Xe
Yea CA

Ye c

Figure 8.17 CA — the position of the wire end approaching the crimp.

In a similar manner to CA, many insertion positions are used such that the
translation distances get successively greater. Thus:

CI = Trans(0,0, z_insert),

where:
z_insert =0,
delta,
2 * delta,

z_insert_final

0 CD: the position of the wire end departed from the crimping machine (the
crimp having been attached), defined with respect to the crimp

In a similar manner to CA, CD is defined as a translation in the negative direction

of the Z-axis of the C frame, except that in this case the translation distance

becomes successively greater. Hence:

CD = Trans (0,0, — (z_depart)),
where:
Z_depart =0,
delta,
2% delta,
z_depart_final

The task specification is now complete and it simply remains to program the robot
by implementing these transform equations. We will accomplish this in terms of a
simple robot programming language described in the next section.

180

A simple robot-programming language

8.4 A simple robot-programming language

We introduce here a very simple robot-programming language to illustrate how this
manipulator task might be coded. The robot language, RCL, is not intended to be
a fully fledged programming language. It is, rather, intended to facilitate the direct
implementation of the manipulator task specifications, described in the preceding
section, in a structured programming environment. As such, it is intended to
facilitate the representation of coordinate frames and computations on frames, to
provide an elegant and simple interface to robot vision facilities, and to provide
structured programming control constructs. RCL is an interpretative language,
implemented using a simple recursive descent algorithm. The philosophy behind the
specification of the language syntax is that an RCL program should be almost
identical in appearance to the task specification. Thus, both arithmetic and
frame/transform expressions are allowed; a built-in frame data-type is provided and
several predefined functions are provided for the specification of translations
and rotations. The robot vision interface is facilitated by providing two built-in
functions which return, among other things, frames defining the position and
orientation of the required objects. A complete RCL program comprises two parts:
a frame variable definition part and a series of statements. These statements may
be either arithmetic expression statements, frame expression statements, built-in
functional primitives, or structures programming control construct statements.
Since the language components divide naturally into these five distinct sections,
each of these topics will be described and discussed in turn.

[0 Data-types and variable declarations

There are only two data-types in RCL: an integer type and a predefined frames
type. Variables of integer type are declared implicitly when the variable identifier
is used in the program; there is no need (indeed, no facility exists) to declare integer
variables explicitly in the program. However, variables of the frame type must be
explicitly declared at the beginning of the program. Frame variables are
functionally important and this is recognized by the requirement to define them
explicitly. Frame variables are declared in the frame declaration part, introduced by
the keyword FRAME, and by listing all the required frame variables. Since frame
variables have such an important and central function in the program, they are
distinguished by a leading character ” i.e. all frame variables begin with the
character *.

O Functional primitives

Several built-in functional primitives have been incorporated in RCL. These
functions are broadly concerned with the three categories of system initialization,
robot motion, and visual sensing. The system initialization primitives include the
functions LOAD_ROB which loads the robot parameters from file allowing RCL
to control two different robots, and LOAD CAM which loads the twelve

181

Robot programming and robot vision

coefficients of the camera model (to be discussed in Section 8.6) from file. The robot
motion primitives include the functions GRASP, RELEASE, HOME, DELA Y,
and MOVE. The GRASP and RELEASE functions simply cause the end-effector
gripper to close and open fully; the HOME function causes the robot manipulator
to return to a predefined home position; and the DELAY function causes the robot
program to be suspended for a specified period of time. The MOVE function
accepts the one parameter, a frame expression, and causes the robot manipulator
to move to a particular position and orientation as specified by the 76 frame
definition given by the frame expression parameter. Thus, in typical situations, the
T6 frame is assigned the value of transform/frame equation (as discussed in the
preceding section on task specification) and the appropriate manipulator movement
is effected by passing this 76 variable to the MOVE function.

The visual sensing primitive of interest here is the function WIRE which
provides the interface to the robot vision sub-system, specifically to determine the
position and orientation of a suitable wire for grasping, based on the heuristic
grey-scale image analysis techniques detailed in Section 8.5. It returns two frame
variables corresponding to the frames W and WG of the wire-crimping task
discussed above.

[0 Arithmetic expression statements

This type of statement simply provides the facility to evaluate integer expressions,
involving any or all of the standard multiplication, division, addition, and division
operators (*,/, +, and —, respectively) and to assign the value of this expression
to an integer variable. This expression may be parenthesized and the normal
precedence relations apply. The expression operands may be either integer variables
or integer constant values.

O Frame expression statements

The frame expression statement type is a central feature of RCL. It allows frame
variables and frame functions to be combined by homogeneous transformation
matrix multiplication, represented in RCL by the infix operator x, and the resultant
value to be assigned to a frame variable. Additionally, frame expressions can be
used directly as parameters in the MOVE function. The syntax of the frame
statement, expressed in Backus—Naur form, is as follows:

<frame_statement> ::= <frame variable>:=<frame expression>
Sframe_expression>::= <frame entity> {x<frame entity>}
<frame entity> <frame_variable> | <frame function>

<frame_function> <inv_function> |

<rotx_function> |

<roty_function> |

<rotz_function> |

|

|

i

<rpy_function>
<trans_function>

182

A simple robot-programming language

Thus, the frame expression allows the combination of a frame variable and/or any
of the six in-built frame functions. These functions, INV, ROTX, ROTY, ROTZ,
RPY and TRANS, implement transforms corresponding to a homogeneous
transformation inversion, rotation about the x-,y-, and z-axes, manipulator
orientation specification using the standard roll, pitch and yaw convention, and
translation, respectively.

The INV function takes one parameter, a frame expression, and returns
frame value equivalent to the inverse of the frame parameter value.

The ROTX, ROTY, and ROTZ functions take one parameter, an integer
expression representing the values of the rotation in degrees, and return frame value
equivalent to the homogeneous transformation corresponding to this rotation.

‘The RPY function takes three parameters, all integer expressions,
representing the values of the roll, pitch and yaw rotations. Again, it returns frame
value equivalent to the homogeneous transformation corresponding to the
combination of these rotations.

The TRANS function takes three parameters, again all integer expressions,
representing the x-, y-, and z-coordinates to the translation vector. It returns a
frame value equivalent to the homogeneous transformation corresponding to this
translation.

To illustrate the use of the frame expression, consider the first move in the
wire-crimping task. This is represented by a move corresponding to the frame 76,
given by the expression:

T6=Z"'+«O0V+E™!
where:

Z =identity transform
OOV = Trans(150, 300, 150)Rot(x, — 180)
E = Trans(0, —15,209)

Assuming the frames *Té,*Z, 200V, and *E have been declared, this is written
in RCL as:

~Z := TRANS(0,0,0);

AQ0V := TRANS(150,300,150)*ROTX(-180);
~E := TRANS(0,-15,209);

AT6 1= INV(AZ) 00V« INV(*E);

and a move to this position is effected by the statement:

MOVE(AT6);

0 Structured programming control constructs
The structured programming control constructs include a REPEAT-UNTIL
statement, an IF~-THEN-ELSE-ENDIF statement, a FOR statement, and a

183

Robot programming and robot vision A simple robot-programming language

WHILE statement. These statements adhere to the normal functionality of such 5 /« the position of the end~effector »/

structured control constructs. /« out of the field-of-view of the camera «/
Since the syntax and semantics of the RCL language are based on the task

specification methodology described in detail in the preceding section, the i oovx := 150;

implementation of the wire-crimping task becomes a very simple translation oovy :=300;

oovz :=150;
~outofview = TRANS(oovx,o00ovy,oovz) % RPY(0,0,-180);

’

process. This was illustrated in the preceding section by the implementation of the
first move of the task. The remaining moves are equally amenable to translation

and understanding and the final wire-crimping program follows: /% the position of the end-effector over «/

0 An RCL implementation of the wire-crimping task /%« the binof crimped wires */
/***/ H -
/% o/ wdumpx := Oéo
. . . . dumpy := 550;
/ W :
: RCL Wire Crimping Program For 6R/600 Manipulator :; wdumpz := 160;

Awiredump := TRANS(wdumpx,wdumpy,wdumpz) «
RPY(0,0,-135);

/ LA R R R E R SR EEEEEEEREEEREREEEEEEEREEEEEEEEEEEEERER XX T /

/% Frame Declarations «/
/% the positionof the end-effector «/

FRAME *wire, /« centred over the tray of wires «/
Awiregrasp,
“wireapproach, centrex := 0;
“wiredepart, centrey := 360;
Acrimp, , centrez :=150;
Acrimpapproach, 5 Acentre := TRANS(centrex,centrey,centrez) «
Acrimpdepart, RPY(0,0,-180);
Acrimpcontact,
Acrimpinsert, /% the position of the crimping machine »/
Acrimpmachine,
Awiredump, ; cmx = 150;
Acentre, cmy :=300;
Aoutofview, cmz :=0;
"z, Acrimpmachine := TRANS(cmx,cmy,cmz);
AT6,
reffector; /% the positionof the crimp, ready to be «/
/+« attached; as position defined with »/
/% the position of the manipulator is coincident »/ /%« respect to the crimping machine »/
/%« with the base coordinate reference frame »/ cx :=55;
cy :=55;
AZ := TRANS(0,0,0); cz := 85;
Acrimp := TRANS(cx,cy,cz) « ROTY(90) » ROTZ(180);
/% the end-effector is at the tip of the «/
/% Wwire gripper; apositiondefined with «/ /% the position of the wire-end in contact with «/
/% respect to the end of the manipulator «/ /%« the crimp %/
ey := -=15; Acrimpcontact := TRANS(0,0,0);
ez = 195; .
“effector := TRANS(O,ey,ez); /% the position of the wire—end inserted in the crimp «/

184 185

Robot programming and robot vision

insertionlength :=5;
Acrimpinsert := TRANS(O,0,insertionlength);

/% load the robot model of the Smart Arms «/
/%« 6R/600 manipulator from file «/

LOAD_ROB;
/x load the components of the camera model from file 4/
LOAD CAM;

/% incremental distances for point-to-point «/
/% approximation to continuous path movement «/

delta :=3;

/% time delay between gross manipulator x/
/% point-to-point movements x/

lLag := 20;

REPEAT

/% move out of the field~of-view of the camera «/
AT6 1= INV(*Z) « "outofview « INV(Aeffector);
MOVE (AT6) ;

DELAY(lag);

/+ determine the position and orientation of the «/
/% wire-end and wire grasping point using vision %/

WIRE(Awire,*wiregrasp);

/% if not error in the robot vision routine «/
/% proceed with the task «/

IF errcode =0
THEN

/% move to a position above the centre of the trays/
AT6 := INV("Z) x “centre « INV(*effector);
MOVE (~T6);

DELAY(lag);
RELEASE;

186

A simple robot-programming language

/% when grasping, the end-effector is defined &/
/x to be between the jaws of the gripper &/

ey :=5;
~“effector := TRANS(O,ey,ez);

/x move to an approach point above the grasp point %/

approachdistance := 30;

Awireapproach := TRANS(0,0,-approachdistance);
AT6 := INV(*Z) » “wire « "wiregrasp « *wireapproach
* INV (heffector);

MOVE(~T6) ;

DELAY(lag);

/% move to the grasp point through «/
/% successive approach points %/

approachdistance := approachdistance - delta;

REPEAT

Awireapproach := TRANS(0,0,~approachdistance);
AT6 2= INV(AZ) &« *wire « *wiregrasps
“wireapproach « INV(*effector);

MOVE (AT6);

approachdistance := approachdistance - delta;

UNTIL approachdistance <= 0;

/+« move to the final grasp point and grasp the wire %/

AT6 := INV(AZ) % *Wire « *wiregrasp « INV(*effector);
MOVE(AT6) ;
GRASP;

/% move to the depart position through «/
/% successive depart points «/

departdistance :=delta;

REPEAT
Awiredepart := TRANS(0,0,~-departdistance);
AT6 := INV(”Z) « *wire « *wiregrasp » *wiredepart
* INV(~effector);
MOVE(AT6) ;
departdistance := departdistance + delta;
UNTIL departdistance > 30;

187

Robot programming and robot vision

approachdistance := 40;

/+« the end-effector is defined to be at the «/
/%« inside of the upper jaw of the gripper «/
/% now that the wire has been grasped »/

ey := -15;
Aeffector := TRANS(O,ey,ez);

Acrimpapproach := TRANS(0,0,-approachdistance);
/% move to an approach position «/
/% in front of the crimp %/

AT6 1= INV(AZ) %« Acrimpmachine » “crimp «
Acrimpapproach « *wiregrasp » INV(*effector);

MOVE(AT6);

DELAY(lag);

/+« bring the wire into contact with the crimp «/
/% by moving through successive approach points «/

approachdistance := approachdistance —delta;

REPEAT
Acrimpapproach := TRANS(O,0,-approachdistance);
AT6 2= INV(”2Z) « “crimpmachine » “crimp «
Acrimpapproach » “wiregrasp » INV(*effector);
MOVE (AT6) ;
approachdistance := approachdistance - delta;
UNTIL approachdistance <= 0;

/x final contact position «/

AT6 1= INV(”Z) % *crimpmachine » “crimp «
Acrimpcontact « *wiregrasp x INV(*effector);
MOVE (~T6);

/% insert wire incrimp &/

AT6 := INV(2AZ) x “crimpmachine » “crimp «
Acrimpinsert x Awiregrasp » INV(*effector);

MOVE (AT6);

/%« actuate the crimping machine »/
/% «» this isavirtual action » »/

DELAY(lag);

188

Two vision algorithms for identifying ends of wires

/« Wwithdraw with the crimped wire «/
/% through successive depart positions «/

departdistance :=delta;

REPEAT

Acrimpdepart : TRANS(D,O,—departdistance);
AT6 = INV(AZ) » “crimpmachine & Acrimp
Acrimpdepart « “wiregrasp « INV(~effector);
MOVE(AT6) ;

departdistance := departdistance + delta;
UNTIL departdistance > 35;

i

/« move to a position above the collection bin */
AT6 1= INV(AZ) « Awiredump « INV(*effector);
MOVE(AT6) ;

DELAY(lag);

RELEASE;

/x return to the position above the «/
/« centre of the tray «/

AT6 := INV(”Z) % “centre « INV(*effector);
MOVE (~T6);

DELAY) Lag);

ENDIF;

/% this is repeated until there are no more wires «/
/% to be crimped; WIRE returns error code 20 %/

UNTIL errcode = 20;

8.5 Two vision algorithms for identifying ends
of wires

8.5.1 A binary vision algorithm

The main problem in this application is to identify the position and orientation of
both a wire end and of a suitable grasp point to allow the robot manipulator to pick
up the wire and insert it in a crimp. If we assume that the wires are well-scattered
and lie no more than one or two deep, then all the requisite information may be
gleaned from the silhouette of the wire and, hence, binary vision techniques can be

189

Robot programming and robot vision

used. In order to facilitate simple image analysis, we threshold the image and thin
the resultant segmented binary image.

The original image is acquired at the conventional 512 X 512 pixel resolution
with eight-bit grey-scale resolution (see Figure 8.18). To ensure fast processing and
analysis, we first reduce the resolution to 128 x 128 pixels (see Figure 8.19) resulting
in a reduction of the complexity of subsequent operations by a factor of sixteen.
This reduction is important as the computational complexity of thinning operations
is significant. There are essentially two ways in which this reduced resolution image
may be generated: by sub-sampling the original image every fourth column and
every fourth line or by evaluating the average of pixel values in a 4 X 4 window. As

Figure 8.18 512 x 512 image.

Figure 8.19 128 x 128 image.

190

Two vision algorithms for identifying ends of wires

we saw in Chapter 4, it is desirable to reduce the image noise and, since this can
be accomplished by local averaging, the reduced resolution image in this
implementation is generated by evaluating the local average of a 4 x4 (non-
overlapping) region in the 512 X 512 jmage. This also minimizes the degradation in
image quality (referred to as aliasing) which would result from sub-sampling.

The image is then segmented by thresholding in the manner discussed in
Chapter 4; the threshold value is automatically selected using the approach
associated with the Marr—Hildreth edge detector (see Section 4.1.9). Figure 8.20
shows the binary image generated by thresholding the original grey-scale image at
the automatically determined threshold.

Once the binary image has been generated, the next step is to model the wires
in some simple manner. The skeleton is a suitable representation of electrical wires,
objects which display obvious axial symmetry. In this instance, we use the thinning
technique described in Section 4.2.3; Figure 8.21 illustrates the application of this
thinning algorithm to the binary image shown in Figure 8.20.

Having processed the image, we now proceed to its analysis. There are
essentially two features that need to be extracted from the image:

(a) the position of a point at which the robot end-effector should grasp the wire
and the orientation of this point on that wire;

(b) the position and orientation of the wire end in relation to the point at which
the wire is to be grasped.

The orientations are required because unless the wire is gripped at right-angles to
the tangent at the grasp point, the wire will rotate in compliance with the finger
grasping force. The orientation of the endpoint is important when inserting the wire
in the crimping-press as the wire is introduced along a path coincident with the
tangent to the wire at the endpoint. Based on the skeleton model of the wires, a wire

Figure 8.20 Binary image.

191

Robot programming and robot vision

!

Figure 8.21 Thinned image.

segment may be defined as a subsection of a wire bounded at each end by either
a wire-crossing or by an arc-end (wire segment end). Thus, a wire segment with two
valid endpoints, at least one of which is an arc-end, and with a length greater than
some predefined system tolerance, contains a feasible grasp point. This is a point
some suitable fixed distance (15 mm) from the wire end.

Once the positions of both the grasp-point and the endpoint are known, the
orientations or tangential angles of these two points are estimated. The tangent to
the wire at the grasp-point is assumed to be parallel to the line joining two skeletal
points equally displaced by two pixels on either side of the grasp-point. The tangent
to the wire end is assumed to be parallel to a line joining the endpoint and a skeletal
point three pixels from the end. Both of these tangential angles are estimated using
the world coordinates corresponding to these pixel positions; these world coord-
inates are obtained using the camera model and inverse perspective transformation
to be described in Section 8.6.

A typical selected grasp-point is shown in the thinned image (Figure 8.21) of
the original image of a tray of wires (Figure 8.20).

8.5.2 A grey-scale vision algorithm

If the organization of the wires becomes more complex than assumed in the
preceding section, with many layers of wires occluding both themselves and the
background, the required information can no longer be extracted with binary
imaging techniques. The grey-scale vision system described in this section addresses
these issues and facilitates analysis of poor contrast images. It is organized as two
levels, comprising a peripheral level and a supervisory level. All shape identification
and analysis is based on boundary descriptors built dynamically by the peripheral

192

Two vision algorithms for identifying ends of wires

level. The supervisory level is responsible for overall scheduling of activity, shape
description, and shape matching. The use of an area-of-interest operator facilitates
efficient image analysis by confining attention to specific high-interest sub-areas
in the image. Thus, the algorithm described here uses three key ideas: dynamic
boundary following (see Chapter 5); planning based on reduced resolution images,
and a two-level organization based on peripheral and supervisory hierarchical
architecture. These three ideas facilitate efficient analysis and compensate for the
additional computational complexity of grey-scale techniques. The system is based
on 256 X 256 pixel resolution images; the reduced resolution image is generated by
local averaging in every 2 X 2 non-overlapping region in the acquired 512 x 512
image. The choice of resolution was based on a consideration of the smallest
objects that need to be resolved and the minimum resolution required to represent
these objects.

[0 The peripheral level

The peripheral level corresponds to conventional low-level visual processing,
specifically edge detection and the generation of edge and grey-scale information
at several resolutions, and segmentation using boundary detection. The Prewitt
gradient-based edge operator described in Chapter 5 is used as it provides
reasonable edges with minimal computational overhead, especially in comparison
to other edge operators. The edge detector operates on both 256 X 256 and 64 x 64
resolution images. High-resolution edge detection is used for image segmentation
and low-resolution edge detection is used by an area-of-interest operator.

The ability of any edge detector to segment an image depends on the size of
the objects in the image with respect to the spatial resolution of the imaging system.
The system must be capable of explicitly representing the features (edges) that
define the objects, in this case electrical wires. When dealing with long cylinder-like
objects, the constraining object dimension is the cylinder diameter. At least three
pixels are required to represent the wire (across the diameter) unambiguously: one
for each edge and for the wire body. Using wires of diameter 1.0 mm imposes a
minimum spatial resolution of 2 pixels/mm or a resolution of 256 X 256 for a field
of view of 128 x 128 mm. Using a spatial resolution of 1 pixel/mm will tend to
smear the object (given that we are reducing the resolution by local averaging and
not by sub-sampling). Edge detection tests at this resolution showed that such
smearing does not adversely affect the boundary/feature extraction performance if
the wire is isolated (i.e. the background is clearly visible) but in regions of high
occlusion where there are many wires in close proximity to the edge or boundary,
quality does degrade significantly. Tests using a spatial resolution of 0.5 pixels/mm
indicated that a detector’s ability to segment the image reliably is severely impaired
in most situations.

There are several approaches which may be taken to boundary building; this
system uses a dynamic contour following algorithm and is the same one described
in detail in Chapter 5. As the algorithm traces around the boundary, it builds a
boundary chain code (BCC) representation of the contour; see Chapter 7. The

193

Robot programming and robot vision

complete BCC represents the segmented object boundary and is then passed to the
supervisory level for analysis. Figure 8.22 illustrates the boundary following process
at various points along the wire contours. The disadvantage of the contour
following technique is that, because the algorithm operates exclusively on a local
basis using no a priori information, the resulting segmentation may not always
be reliable and the resulting contour may not correspond to the actual object
boundary. In particular, the presence of shading and shadows tends to confuse the
algorithm.

The boundary following algorithm, which effects the object’s segmentation,
is guided by processes at the supervisory level on two distinct bases. Firstly, the
supervisory level defines a sub-section of the entire image to which the boundary
following process is restricted: this sub-area is effectively a region within the image
in which the vision system has high interest. Secondly, the supervisory level supplies
the coordinates of a point at which the boundary following procedure should begin.
This is typically on the boundary of the object to be segmented.

O The supervisory level
The supervisory phase is concerned with overall scheduling of activity within the
vision system and with the transformation and analysis of the boundaries passed to
it by the peripheral level.

In guiding the peripheral level, its operation is confined to specific areas of
high interest and it is supplied, by the supervisory level, with start coordinates for
the boundary following algorithm. An interest operator was used which identifies

Figure 8.22 Boundary following.

194

Two vision algorithms for identifying ends of wires

a sequence of sub-areas within the image, ordered in descending levels of interest.
This operator is based on the analysis of the edge activity in a reduced resolution
image and allows the system to avoid cluttered areas with many (occluding) wires
and concentrate on points of low scene population which are more likely to contain
isolated and accessible wires. The area of interest is one-sixteenth of the size of the
original image and is based on a 4 x 4 division of a 64 x 64 pixel resolution image.

The approach taken to the wire-crimping application is to extract a contour,
representing the boundary of a group of wires, in a specific area of interest in the
image and to analyse this boundary to determine whether or not it contains a
boundary segment describing a wire end. What is required of the supervisory
processes is to ascertain which part of the contour, if any, corresponds to the wire-
end template and subsequently to determine the position and orientation of both
the end of the wire and a suitable grasp-point. As we noted in Chapter 7, the use
of BCC-based shape descriptors to identify shapes is not reliable and, instead, the
wire end is identified by heuristic analysis, formulated as follows.

A boundary segment characterizing a wire end is defined to be a short segment
(20 units in length) in which the boundary direction at one end differs by 180° from
the direction at the other end, and in which the distance between the endpoints is
less than or equal to 5 units. In addition, the wire end should be isolated, i.e. there
should be no neighbouring wires which might foul the robot end-effector when
grasping the wire. This condition is identified by checking that the edge magnitude
in the low-resolution image in a direction normal to the boundary direction is less
than the usual threshold used by the edge detection process. Figure 8.23 illustrates
a wire end extracted from a boundary using this heuristic technique.

8.5.3 The vision|manipulator interface

Once the wire end shape has been identified, it is necessary to determine the
components of the homogeneous transformations representing the two frames, W
and WG, which denote the position and orientation of the wire end and the position
and orientation of the grasp position with respect to the wire end. In the task
specification discussed above, we defined the origin of the wire frame W to be at
the end of the wire, with its Z-axis aligned with the wire’s axis of symmetry,
directed away from the end. The X-axis of W was defined to be normal to the tray
on which the wires lie (and, hence, is normal to image plane) directed vertically
upwards. The Y-axis makes up a right-hand system. The origin of the wire gripper
frame WG was defined to be located on the Z-axis of the W frame, in the negative
Z-direction, and located a short distance from the origin of W. The Z-axis of WG
is defined to be normal to the plane of the tray, directed downwards. The Y-axis
is defined to be normal to the axis symmetry of the wire, in the plane of the tray.
The X-axis makes up a right-hand system. Refer again to Figures 8.11 and 8.12.

We can see that, to determine the components of the frame W, we only need
to identify the position of the end of the wire and orientation of the axis of
symmetry of the wire at its end, which gives us the direction of the Z-axis. The

195

Robot programming and robot vision

Figure 8.23 ldentification of a wire-end (with W frame attached).

Y-axis is at right-angles to it and the X-axis has already been defined. Similarly, we
only need to identify the orientation of the axis of symmetry of the wire at the
grasp-point to determine WG; this gives us the direction of the X-axis; the Y-axis
is at right-angles to it and the Z-axis has already been defined.

The main problem at this stage is that any orientation and position will be
computed in the image frame of reference, i.e. using pixel coordinates. This is not
satisfactory since the robot task specification is formulated in the real-world frame
of reference. Obviously, the relationship between these two reference frames must
be established. Once it is, we can transform the relevant image positions (the end
of the wire and other points on its axis) to the real-world frame of reference and
then compute the required orientations. This relationship is the subject to which we
now turn our attention.

8.6 The camera model and the inverse
perspective transformation

Generally speaking, when we use machine vision to identify the position and
orientation of objects to be manipulated by a robot, we must do so with reference
to real-world coordinates, i.e. in the real-world frame of reference. However, all the
techniques we have dealt with in preceding chapters have been confined to the image
frame of reference; we now need to establish the relationship between this image
coordinate reference frame and the real-world coordinate reference frame.

196

Camera model and inverse perspective transformation

For any given optical configuration, there are two aspects to the relationship:
the camera model, which maps a three-dimensional world point to ité
corresponding two-dimensional image point, and the inverse perspective
transformation, which is used to identify the three-dimensional world point(s)
corresponding to a particular two-dimensional image point. Since the imaging
process is a projection (from a three-dimensional world to a two-dimensional
image), the inverse process, i.e. the inverse perspective transformation, cannot
uniquely determine a single world point for a given image point; the inverse
perspective tranformation thus maps a two-dimensional image point into a line (an
infinite set of points) in the three-dimensional world. However, it does so in a useful
and well-constrained manner.

For the following, we will assume that the camera model (and, hence, the
inverse perspective transformation) is linear; this treatment closely follows that of
Ballard and Brown (1982). Details of non-linear models can be found in the
references to camera models in the bibliography at the end of the chapter.

8.6.1 The camera model

Let the image points in question be given by the coordinates

)

which, in homogeneous coordinates, is written

~ < -

Thus:

~ |8

and:
y=2
t

Let the desired camera model, a transformation which maps the three-dimensional
world point to the corresponding two-dimensional image point, be C. Thus:

X
u
C}z)=v
lt

197

Robot programming and robot vision

Hence C must be a 3 x4 (homogeneous) transformation:

Ciu Cn Ciz Cu
C=|Cy Cn Ci Cu
Ci1 Ci Cs3 Cy

and:
X
Ci Ci2 Ciz Cu Y u
Cyy Cr Caz Caa 2 =1
Cis1 C2 Ciz Cx 1 t
Expanding this matrix equation, we get:
Cux+Ciy+Cuiz+Cu=u 6}
Coux+ Cuny+ Caz+ Cu=v)
Caix+ Cuy+ Ciz+ Cu=t (3)
but:
u=Ut
v=Vt
so:
u-Ut=0 (4)
v=-Vt=0 3

Substituting (1) and (3) for u and ¢, respectively, in (4) and substituting (2) and (3)
for v and ¢, respectively, in (5):

Cux+ Cipy+ Ci3z+ Ciy — UC31x — UC3y — UC332 = UC3 =0 (6)
Coix+ Cpy+ Co3z+ Cos — VCiix — VCiy — VCi3z — VCia =0 (7

Remember that these two equations arose from the association of a particular world
point

[B TR

with a particular and corresponding image point

u
vf.
t

If we establish this association (i.e. if we measure the values of x, y,z, U, and V),

198

Camera model and inverse perspective transformation

we will have two equations in which the only unknowns are the twelve camera
model coefficients (which we require). Since a single observation gives rise to two
equations, six observations will produce twelve simultaneous equations which we
can solve for the required camera coefficients C;;. Before we proceed, however, we
need to note that the overall scaling of C is irrelevant due to the homogeneous
formulation and, thus, the value of C3 may be set arbitrarily to 1 and we can
rewrite (6) and (7), completing the equations so that terms for each coefficient of
C are included, as follows:

Cux+Cry+ Ci3sz+ Cu+ G0+ 220
+ C230 + C240 — UC51x — UCs5y ~ UCa3z= U

C110 + C120 + C130 + C140+ Co1x + Crny
+ Co3z+ Cog— VCa1x — VC32y - VCiz=V

This reduces the number of unknowns to eleven. For six observations, we now have
twelve equations and eleven unknowns: i.e. the system of equations is over-
determined. Reformulating the twelve equations in matrix form, we can obtain a
least-square-error solution to the system using the pseudo-inverse method which we
described in Chapter 4.

Let

'xl yl zl 1 0 0 0 0 —=Uly! _Ulyl___Ulzl_‘

0 0 0 0 x' yl zt 1 —vVix! —piy! —pig!

2 2 2 2.2 2.,2 2.2

x>y zc1 0 0 0 0 —-U*x* -U"y -U=z

03 0 0 0 x* y2 22 1 —V3x* —V%y?r %2

3 3 3.3 3.,3 3,3

x>y z21 0 0 00 -Ux" =-Uy -Uxz

X=10 0 00 x*y*z22 1 —Vx -y -ve’

x4tz 1 0 0 0 0 -Ux* Uy —U%*

0 0 0 0 x* y* z¢ 1 —WVx* —viy* -

¥y zZ 1 0 0 00 -UX -U%y -U7Z

0 0 00 x° y° 2% 1 —Vx* —V° —vz°

x$ 35 z51 0 0 0 0 —-USx® —USy® —US®

[0 0 0 0 x5 y° 281 —Vox® —VS° —V%°)
o
Cr2
Cis
Cua
Ca
c=|Ci
Cas
Coa
Csy
Ci2
| C33]

199

Robot programming and robot vision

U6

e

where the trailing superscript denotes the observation number.
Then:

c=(X"X)"'XTy
= XTy

We assumed above that we make six observations to establish the relationship
between six sets of image coordinates and six sets of real-world coordinates.®
This is, in fact, the central issue in the derivation of the camera model, that is,
the identification of a set of corresponding control points. There are several
approaches. For example, we could present the imaging system with a calibration
grid, empirically measure the positions of the grid intersections, and identify the
corresponding points in the image, either inactively or automatically. The empirical
measurement of these real-world coordinates will be prone to error and this error
will be manifested in the resultant camera model. It is better practice to get the
robot itself to calibrate the system by fitting it with an end-effector with an
accurately located calibration mark (e.g. a cross-hairs or a surveyor’s mark) and by
programming it to place the mark at a variety of positions in the field of view of
the camera system. The main benefit of this approach is that the two components
of the manipulation environment, the robot and the vision system, both of which
are reasoning about coordinates in the three-dimensional world, are effectively
coupled and, if the vision system ‘sees’ something at a particular location, that is
where the robot manipulator will go.

8.6.2 The inverse perspective transformation

Once the camera model C has been determined, we are now in a position to
determine an expression for the coordinates of a point in the real world in terms
of the coordinates of its imaged position.

* o
In general, it is better to overdetermine the system of equations significantly by generating a larger set
of observations than the minimal six.

200

Camera model and inverse perspective transformation

Recalling equations (1)—(5):

Cix+Cpy+Ciz+Cu=u=Ut
Coux+Coy+ Cuz+Cu=v="Vt
Cix+ Cy + Cyz+ Cay =t

Substituting the expression for # into the first two equations gives:

U(Csix+ Csoy + Ca3z + C34Crix) = Crix + Ciay+ Ci3z2+ Cia
V(Cs1x + Cs2y + C33z2 + C34Cr1x) = Corx + Coay + Casz + Coy
Hence:

(C11 — UC31)x + (C12 — UC32)y + (C13— UC33)z + (Cra — UC34) = 0
(Co1 = VC31)x + (Coz — VC32)y + (Caa — VCi33)z+ (Cas — VC34) =0

Letting:
a1 =C11 — UCs;
b1 =Cin— UCs,
c1=C13— UCss
di=Ci4— UCs
and:
@ = Co1 — VCsy
by =Ca— VC s
2= Ca3— V(i3
dy=Cry— VCss
we have:

ax+biy+caz+di=0
a2x+b2y+cZz+dz=0

These two equations are, in effect, equations of two planes; the intersection of these
planes determines a line comprising the set of real-world points which project onto

the image point
U
vl

Solving these plane equations simultaneously (in terms of z):

Y= z(bicz — bac1) + (bidz — badh)
- (d1bz ~a2b1)

_ (@201 — a12) + (@2 d1 ~ a1dz)
7 (a1by — a2b)

Thus, for any given zo, U, and V, we may determine the corresponding Xo and yo,
i.e the real-world coordinates.

201

Robot programming and robot vision

8.6.3 Recovery of the third dimension

The camera model and the inverse perspective transformation which we have just
discussed allow us to compute the x- and y- real-world coordinates corresponding
to a given position in the image. However, we must assume that the z-coordinate,
i.e. the distance from the camera, is known. For the wire-crimping application in
which the wires lie on a table at a given and constant height (i.e. at a given z), this
is quite adequate. In general, however, we will not know the coordinate of the
object in the third dimension and we must recover it somehow. As we have already
noted, a significant part of computer vision is concerned with exactly this problem
and three techniques for determining depth information will be discussed: one in
the next section of this chapter and two in Chapter 9. The purpose of this section
is to show how we can compute zo if we have a second image of the scene, taken
from another viewpoint, and if we know the image coordinates of the point of
interest (e.g. the wire end) in this image also.

In this instance, we have two camera models and, hence, two inverse per-
spective transformations. Instead of solving two plane equations simultaneously,
we solve four plane equations. In particular, we have:

ax+biy+cz+di=0
mx+bhy+cz+d=0
pix+qiy+rz+si=0
DX+ @y +rz+5=0

where

a1 = C111 - U1C131
by =Cly; — UlCls,
C1 = C113 - U1C133
di =Clyy ~ UlCla,
pr=C2;; — U2C23;
g1 = C212 — U2C232
r = C213 - (/20233
§1=C214 = U2C234

and Cl; and C2;; are the coefficients of the camera model for the first and second
images respectively. Similarly, U1, V1 and U2, V2 are the coordinates of the point
of interest in the first and second images respectively. Since we now have four
equations and three unknowns, the system is overdetermined and we compute a
least-square-error solution using the pseudo-inverse technique discussed in
Chapter 4.

It should be noted that the key here is not so much the mathematics which
allow us to compute xo, ¥o, and zp but, rather, the image analysis by which we
identify the corresponding point of interest in the two images. It is this
correspondence problem which lies at the heart of most of the difficulties in
recovery of depth information. To complete the chapter, the next section describes

a2=C121 - V1C131
b2 = Cla — VICl3,
(.'2=C123— VIC'133
d2= C124" V1C134
D= C231 — V2C23,
q2= C22 — V2C23;
12 = C223 — V2C233
§2=C224 — V2C234

202

Three-dimensional vision using structured light

a simple, popular, and useful technique for analysing images and computing depth
information.

8.7 Three-dimensional vision using structured
light

Active ranging using structured light is one of the most popular ranging techniques
in industrial vision. The essential idea is to illuminate the object in such a way so
that

(a) we know the position and direction of the source of illumination;

(b) the point being illuminated is easily identifiable (e.g. we illuminate a very
small part of the surface of the object with a dot of light);

() we know the position of the sensor (camera) and can compute the direction
to the illuminated part of the object surface.

Thus, we can draw two lines, one along the ray of illumination from the light source
to the object surface and the other from the position of the sensed illumination on
the image through the focal point to the object surface. The object surface is at
the intersection of these two lines (see Figure 8.24) and to compute the three-
dimensional position of this point on the surface of the object, we just have to
compute the point of intersection of these two lines.

The basis of the approach is that it solves, in a simple but contrived way, the
correspondence problem to which we alluded in the preceding section. The solution
is not without problems, however. Since the approach will yield the range to only
one small point on the object’s surface, we either have to scan the surface with the
dot of light, computing the range at each point, or illuminate more than one point

Object

Light ra
Reflected d Y
light ray

Focal point Known

attitude
image

Point source
of iHumination

Image of illuminated point

Figure 8.24 Active triangulation.

203

Robot programming and robot vision

at the same time. The former approach is not normally employed, except in
specialized laser-scanning applications, since one would have a significant overhead
in image acquisition; the latter approach popularly utilizes stripes of light (and is
hence referred to as light striping) or grids of light to illuminate the object. In these
cases, the derivation of range involves the computation of the point of intersection
of the plane of light and the line from an image point on the sensed line through
the focal point (see Figures 8.25 and 8.26).

If we calibrate the vision system and determine the camera model, then, for
any point in the image, we can derive the equation of a single line in the real world.
To identify the coordinates of the single point which reflected light causing the
imaged point, we need an additional constraint. One such constraint might be the
knowledge that the real-world point lies on some plane (which is not coincident with
the line of sight). For example, in Section 8.6 where we derived the inverse
perspective transformation, we assumed that the point lay on the plane given by
z = 2o. In the case of light striping, use the same idea and illuminate the object with
a single plane of light and, if we know the equation of this plane, then the
identification of the three-dimensional world point coordinates simply requires the
computation of the intersection of the line of sight (given by the inverse perspective
transformation) and this plane. In order to determine the equation of the light
plane, one can locate several points on it, identify their three-dimensional
coordinates and fit a plane through these points. One simple way of identifying
points in the plane of light is to place blocks of different known heights on the work
surface in the path of the light beam. Knowing the real z-coordinate, the real-world
x- and y-coordinates of points on the resulting stripe are then computed by imaging
the stripe and applying the inverse perspective transformation of the camera to the
measured points.

Having identified a number (M, say) of points on the plane at several different
heights, one can use these x, y, and z values to generate a set of simultaneous plane

Object

Reflected

light stripe Plane source

of illumination

Focal point
Image

Figure 8.25 Light striping.

204

Three-dimensional vision using structured light

Three-dimensional object

——

Structured light Obiject reflecting Imaged light pattern
pattern light pattern (viewed from an
oblique angle)

Figure 8.26 ‘Structured light'.

equations:
aXi+ayitaszi+a=0, i=1...M

and solve them using the pseudo-inverse method. Unfortunately, this equation has
a degenerate solution in which all the coefficients are zero. To avoid this possibility,
we can reformulate (1) (from Bolles et al., 1981) by dividing across by az and
letting:

2op

as

2 _p,

as

% _ p,

a3
Thus:

bixi+byyi+zi+bi=0

and hence:

bixi+ bayi+ b=z

205

Robot programming and robot vision

A least-square-error solution to this set of equations, written in matrix form as:

X1 y1 1 4t

X2 Y2 1 b —22

X3 V3 1| *%{b| = — 23 M>3
: b3 :

XM YMm 1 —2IM

can now be generated using the pseudo-inverse method.
The only restriction in this case is that the plane of light cannot be normal to
the Z-axis since an equation of this form cannot be used to represent such a plane

(i.e. Z cannot be constant).
The equation of the plane of light is thus:

bixi+byyi+zi+b3=0

and the three-dimensional position of a point in an imaged light stripe can be found
by solving the set of simultaneous equations given by the two plane equations

Camera @

Plane of
light

lluminated stripe

Camera @

Plane of
light

Deflection d 45°
..-.—.-’ }

| - |

\ Height #

Figure 8.27 Height measurement using light stripes.

206

Three-dimensional vision using structured light

provided by the inverse perspective transformation:

x(c1n — ucst) + y(ci2 — ucs2) + z(C13 — UCs3) = Ucss — c14
X(C21 = ves1) + y(cz2 — ve32) + 2(Ca3 — UC33) = VC3s — Coa

and the light plane:
bix+by+z=—by

The plane of light can be generated either using a laser scanner or it can be
generated by projecting a collimated light source through a slit. The advantage of
using a laser is that it can illuminate the object in the presence of ambient lighting,
e.g. by using an infra-red laser and an infra-red sensitive sensor (CCD sensor),
while the slit projection approach will typically require a somewhat darkened
environment or an extremely bright light source. Furthermore, this approach
suffers from a problem common to all so-called triangulation systems of this type:
that only surface points which are visible from both illumination source and sensor
can be used to yield range measurements. Hence, hidden parts in concavities will
cause some problems.

As a final note, it is worth remarking that this structured light approach is
quite general in the sense that it allows you to generate all three real-world
coordinates for points on an imaged light stripe. If you are only interested in
deriving the height of the object rather than its range, then you can adopt a simpler
approach. Consider a plane of light which is incident to the work surface at an
angle of 45° (see Figure 8.27). An object on the work surface in the path of the
beam will cause the illuminated stripe to be deflected by an amount which is
proportional to the height of the block. In fact, for the example shown, the
deflection will be equivalent to the height of the block (in an image frame of
reference). Thus, to measure the height you merely need to calibrate the system by
computing the relationship between a deflection d and a height 4 in the real world
(using a block of known height) and subsequently measure deflections.

Exercises

1. Describe the use of transform equations in robot task specification,
illustrating your answer with at least one example.

2. What is meant by the camera model and the inverse perspective
transformation? How do these transformations relate to the transform
equations used in the robot task specification?

3. Cylindrical steel ingots, held in a clamp after they have been cut from
a bar, require chamfering (i.e. trimming the edge of the cut) to
minimize the possibility of jamming when they are introduced into a
cast. This can be accomplished by a robot with a high-speed rotating

207

Robot programming and robot vision

grinding wheel mounted on the end effector. Identify a sequence of
end-effector movements which will effect this chamfering task and
generate a complete task specification by:
(iy identifying the appropriate coordinate frames for each distinct
object/end-effector position;
(ii) specifying the task transform equations; and
(iii) solving the task transform equations to achieve an explicit
sequence of movements for the end effector.
Each coordinate frame specified in (i) above should be explicitly
defined and you should use figures where appropriate.
How would you exploit CAD (computer aided design) information
regarding the clamp position and the ingot diameter?

4. In some industrial quality control tasks, the objects to be checked and
assured are three-dimensional and all the visible surfaces must be
viewed and inspected. In what circumstances would it be useful to
deploy an articulated robot-mounted camera system rather than
several distinct cameras?

Using homogeneous transformations and task transform
equations to specify object position and orientation, describe with the
aid of diagrams how one would configure a robot program to inspect
all five visible faces of a cubic object using a camera mounted on the
end effector of the robot.

" References and further reading

Adams, R. 1983 ‘Welding apparatus with vision correction’, Robotics age, Nov[Dec, pp.
43-6.

Adorni, G. and Di Manzo, M. 1980 A Natural Language as a Means of Communications
between Men and Robots, Internal Report, Institute of Electrotechnics, University of
Genoa, 1980.

Agin, G. 1979 Real-time Control of a Robot with a Mobile Camera, SRI International,
Technical Report No. 179,

Agin, G.J. 1985 Calibration and Use of a Light Stripe Range Sensor Mounted on the Hand
of @ Robot, CMU-RI-TR-20, The Robotics Institute, Carnegie-Mellon University.

Ayache, N., Faverjon, B., Boissonnat, J.D. and Bollack, B. 1984 ‘Manipulation
Automatique de Pieces Industrielles en Vrac Planaire’, Proceedings of the First Image
Symposium, CESTA, Biarritz, pp. 869-75.

Bogaert, M. and Ledoux, O. 1983 ‘3-D perception in industrial environment’, Proceedings
of SPIE, Vol. 449, pp. 373-80.

Bolles, R.C. 1981 Three-Dimensional Locating of Industrial Parts, SRI International,
Technical Note No. 234.

Bolles, R.C., Kremers, J.H. and Cain, R.A. 1981 4 Simple Sensor to Gather 3-D Data, SR1
International, Technical Note No. 249.

208

References and further reading

Bonner, S. and Shin, K.G. 1982 ‘A comparative study of robot languages’, Computer,
Vol. 15, No. 12, pp. 82-96.

Brooks, R.A. 1983 ‘Planning collision-free motions for pick-and-place operations’, The
International Journal of Robotics Research, Vol. 2, No. 4, pp. 19-44,

Chiang, M.C., Tio, J.B.K. and Hall, E.L. 1983 ‘Robot vision using a projection method,
Proceedings of SPIE, Vol. 449, pp. 74—81.

Drezner, Z. and Nof, S.Y. 1984 ‘On optimizing bin picking and insertion plans for assembly
robots’, IIE Transactions, Vol. 16, No. 3, pp. 262-70.

El-Hakim, S.F. 1985 ‘A photogrammetric vision system for robots’, Photogrammetric
Engineering and Remote Sensing, Vol. 51, No. 5, pp. 545-52.

Goldman, R. 1982 Design of an Interactive Manipulator Programming Environment,
Department of Computer Science, Stanford University, Stanford, STAN-CS-82-955.

Grossman, D.D. 1977 Programming of a Computer Controlled Industrial Manipulator by
Guiding through the Motions, IBM Research Report RC6393, IBM T.J. Watson
Research Centre, Yorktown Heights, N.Y.

Guo, H-L., Yachida, M. and Tsuji, S. 1986 ‘Three dimensional measurement of many line-
like objects’, Advanced Robotics, Vol. 1, No. 2, pp. 117-30.

Hall, E.L., Tio, J.B.K., McPherson, C.A. and Sadjadi, F. 1982 ‘Measuring curved surfaces
for robot vision’, Computer, Vol. 15, No. 12, pp. 42—54.

Jarvis, R.A. 1983 ‘A perspective on range finding techniques for computer vision’, IEEE
Transactions on Pattern Analysis and Muchine Intelligence, Vol. PAMI-5, No. 2,
pp. 122-39.

Lavin, M.A. and Lieberman, L.I. 1982 ‘AML/V: An industrial machine vision programming
system’, The International Journal of Robotics Research, Vol. 1, No. 3, pp. 42—56.

Lozano-Perez, T. 1982 Robot Programming, MIT Al Memo No. 698.

Luh, J.Y.S. and Klaasen, J.A. 1983 ‘A real-time 3-D multi-camera vision system’,
Proceedings of SPIE, Vol. 449, pp. 400-8.

Luh, J.Y.S. and Klaasen, J.A. 1985 ‘A three-dimensional vision by off-shelf system with
multi-cameras’, IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. PAMI-7, No. 1, pp. 35-45.

Mujtaba, M. 1982 ‘Motion sequencing of manipulators’, Ph.D. Thesis, Stanford University,
Report No. STAN-CS-82-917.

Mujtaba, M. and Goldman, R. 1979 The AL User’s Manual, STAN-CS-79-718, Stanford
University.

Nagel, R.N. 1984 ‘Robots: Not yet smart enough’, IEEE Spectrum, Vol. 20, No. 35,
pp. 78-83.

Paul, R. 1979 ‘Robots, models, and automation’, Computer, July, pp. 19-27.

Paul, R. 1981 Robot Manipulators: Mathematics, Programming, and Control, MIT Press,
Cambridge, Massachusetts, 1981.

Summers, P.D. and Grossman, D.D. 1984 ‘XPROBE: An experimental system for
programming robots by example’, The International Journal of Robotics Research,
Vol. 3, No. 1, pp. 25-39.

Taylor, R.H. 1983 An Integrated Robot System Architecture, IBM Research Report.

Taylor, R.H., Summers, P.D. and Meyer, J.M. 1982 ‘AML: A manufacturing language’,
The International Journal of Robotics Research, Vol. 1, No. 3, pp. 19-41.

Tsai, R.Y. 1987 ‘A versatile camera calibration technique for high-accuracy 3D machine
vision metrology using off-the-shelf TV cameras and lenses’, IEEE Journal of
Robotics and Automation, Vol. RA-3, No. 4, pp. 323-44.

209

Robot programming and robot vision

Vernon, D. 1985 ‘A hierarchically-organized robot vision system’, Proceedings of AI
EUROPA, Wiesbaden, West Germany.

Volz, R.A., Mudge, T.N. and Gal, D.A. 1983 Using Ada as a Programming Language for
Robot-Based Manufacturing Cells, RSD-TR-15-83. Centre of Robotics and Integrated
Manufacturing, Robot Systems Division, College of Engineering, University of
Michigan.

Yachida, M., Tsuji, S. and Huang, X. 1982 ‘Wiresight — a computer vision system for 3-D
measurement and recognition of flexible wire using cross stripe light’, Proceedings of
the 6th International Conference on Pattern Recognition, Vol. 1, pp. 220-2.

210

9

Introduction to image
understanding

9.1 Representations and information processing:
from images to object models

This book began by borrowing a phrase from David Marr and defining computer
vision as the endeavour to ‘say what is where in the world by looking’ by the
automatic processing and analysis of images by computer. We immediately
distinguished between industrial machine vision and image understanding,
identifying the former as the heavily engineered pragmatic application of a small
sub-set of the broad spectrum of imaging techniques in quite restricted, and often
two-dimensional, domains. Image understanding, on the other hand, addresses
general three-dimensional environments where one lifts the restrictions on the
possible organization of the visual domain. Thus, image understanding must take
into consideration the considerable loss of information which arises when a three-
dimensional world is imaged and represented by two-dimensional digital images. In
particular, it must address the recovery of range or depth information. We noted
that a considerable amount of effort is expended in accomplishing this. Again,
approaches which are associated with image understanding endeavour to avoid
intrusive sensing techniques, i.e. imaging systems which depend on the transmission
of appropriate signals (infra-red, laser, or ultrasonic beams; or grids of structured
light) to facilitate the process. Instead, a more passive approach is adopted, using
whatever ambient information exists, in an anthropomorphic manner.

There is, however, more to image understanding than just the recovery of
depth information. If we are going to be able to identify the structure of the
environment, we need to do more than develop a three-dimensional range map since
this is still an image and the information which we need is still implicit. We require
an explicit representation of the structure of the world we are imaging. Hence, we
still need the process of segmentation and object recognition that we dealt with in
the preceding chapters. Our difficulty is that now the data we are dealing with is
much more complex than before and the simplistic image segmentation, template

211

Robot programming and robot vision

Vernon, D. 1985 ‘A hierarchically-organized robot vision system’, Proceedings of AI
EUROPA, Wiesbaden, West Germany.

Volz, R.A., Mudge, T.N. and Gal, D.A. 1983 Using Ada as a Programming Language for
Robot-Based Manufacturing Cells, RSD-TR-15-83. Centre of Robotics and Integrated
Manufacturing, Robot Systems Division, College of Engineering, University of
Michigan.

Yachida, M., Tsuji, S. and Huang, X. 1982 ‘Wiresight — a computer vision system for 3-D
measurement and recognition of flexible wire using cross stripe light’, Proceedings of
the 6th International Conference on Pattern Recognition, Vol. 1, pp. 220-2.

210

9

Introduction to image
understanding

9.1 Representations and information processing:
from images to object models

This book began by borrowing a phrase from David Marr and defining computer
vision as the endeavour to ‘say what is where in the world by looking’ by the
automatic processing and analysis of images by computer. We immediately
distinguished between industrial machine vision and image understanding,
identifying the former as the heavily engineered pragmatic application of a small
sub-set of the broad spectrum of imaging techniques in quite restricted, and often
two-dimensional, domains. Image understanding, on the other hand, addresses
general three-dimensional environments where one lifts the restrictions on the
possible organization of the visual domain. Thus, image understanding must take
into consideration the considerable loss of information which arises when a three-
dimensional world is imaged and represented by two-dimensional digital images. In
particular, it must address the recovery of range or depth information. We noted
that a considerable amount of effort is expended in accomplishing this. Again,
approaches which are associated with image understanding endeavour to avoid
intrusive sensing techniques, i.e. imaging systems which depend on the transmission
of appropriate signals (infra-red, laser, or ultrasonic beams; or grids of structured
light) to facilitate the process. Instead, a more passive approach is adopted, using
whatever ambient information exists, in an anthropomorphic manner.

There is, however, more to image understanding than just the recovery of
depth information. If we are going to be able to identify the structure of the
environment, we need to do more than develop a three-dimensional range map since
this is still an image and the information which we need is still implicit. We require
an explicit representation of the structure of the world we are imaging. Hence, we
still need the process of segmentation and object recognition that we dealt with in
the preceding chapters. Our difficulty is that now the data we are dealing with is
much more complex than before and the simplistic image segmentation, template

211

Introduction to image understanding

matching or feature extraction and classification paradigms are wholly inadequate.
To be able to proceed from raw two-dimensional images of the world to explicit
three-dimensional structural representations, we must adopt a much more sophisti-
cated stance and we must acknowledge that no single process or representation is
going to be generally adequate. Thus, there is one central theme which runs through
the current, and now conventional, approach to image understanding: that we
require intermediate representations to bridge the gap between raw images and the
abstracted structural model.

These representations should make different kinds of knowledge explicit and
should expose various kinds of constraint upon subsequent interpretations of the
scene. It is the progressive integration of these representations and their mutual
constraint to facilitate an unambiguous interpretation of the scene that most
characterizes the branch of vision known as image understanding. It is perhaps
useful to note that most of the progress that has been made in the past few years
has not, in fact, been in this area of representation integration, or data fusion as
it is commonly known, but rather in the development of formal and well-founded
computational models for the generation of these representations in the first place.
As we shall see, this is no accident. Nevertheless, there remains a great deal of work
to be done in the area of data fusion. '

In summary then, we can characterize image understanding as a sequence of
processes concerned with successively extracting visual information from one
representation (beginning with digital images), organizing it, and making it explicit
in the representation to be used by other processes. From this perspective, vision
is computationally modular and sequential. What we must now proceed to look at
are the possible organizations of visual processes, the representations, and the
visual processes themselves. We will begin with the organization of visual processes,
emphasizing one particular approach and giving an overview of the area; we will
then proceed to the other two component topics.

9.2 Organization of visual processes

At present, it is not clear how information in one representation should influence '

the acquisition and generation of information in another representation. Some
possibilities include the following three:

1. A bottom-up flow of data in which information is made explicit without
recourse to a priori knowledge. Thus, we form our structural representation
purely on the basis of the data implicit in the original images.

2. Heterarchical constraint propagation. This is similar to the bottom-up
approach but we now have the additional constraint that cues, i.e. a given
information representation, at any one level of the hierarchical organization
of representations can mutually interact to delimit and reduce the possible
forms of interpretation at that level and, hence, the generation of the

212

Organization of visual processes

information representations at the next level of the hierarchy. Perhaps one of
the simplest examples is the integration of depth values generated by two
independent processes such as binocular stereo and parallax caused by a
moving camera. This approach typifies much current thinking in image
understanding.

3. A top-down, model driven, information flow whereby early vision is guided
by firm expectations of what is to be seen. It should be noted that this model-
based vision is quite different from the knowledge-based approach which was
fashionable in artificial intelligence a decade ago, in which the effort was to
design control processes that could utilize the appropriate knowledge at the
appropriate time, with inadequate attention being paid to the representations
used, the processes using them, and, indeed, the reasons for utilizing those
representations.

We will restrict our attention in the remainder of this chapter to the first
approach to image understanding. It should be noted that this emphasis is more
by way of convenience than by way of making a statement about the relative
importance of the three approaches. Model-based vision, for example, is currently
a very popular paradigm and there is a wealth of interesting work being done in
the area. The present enthusiasm for data fusion, too, in the computer vision
community reflects the importance of the approach of heterarchical constraint
propagation. Both these topics would require a volume each to do them justice. We
choose the bottom-up approach here because it is often an essential component of
the other two paradigms and it will serve to highlight the fundamental visual
representations and processes without clouding the issue with additional
considerations, however important they might be.

David Marr, at MIT, exerted a major influence on the development of this
new computational approach to vision. Marr modelled the vision process as an
information processing task in which the visual information undergoes different
hierarchical transformations at and between levels, generating representations
which successively make more three-dimensional features explicit. He indicated that
there are three distinct levels at which the problem must be understood: a computa-
tional level, a representational and algorithmic level, and an implementation level.
The computational level is concerned with the ‘what’ and ‘why’ of the problem:
what is to be computed, why it is to be computed, and what is the best strategy for
computing it? The representational and algorithmic levels address the ‘how’ of the
problem: how is this theory to be implemented? This necessitates a representation
for the input and the output. The third level, hardware implementation, addresses
the problem of how to realize these representations and algorithms physically.
Thus, this approach removes one from the image environment and addresses the
more fundamental problems of the task, formulating a theory of computation and
then putting this theory into effect by applying the available visual abilities.

The importance of a computational theory is stressed very strongly by Marr
and he illustrates his case by pointing out that attempting to understand perception

213

Introduction to image understanding

solely from the neurological standpoint is as fruitless as trying to understand bird
flight from the study of feathers. One must first understand aerodynamics; only
then does the structure of the feathers make sense. Marr’s contribution was not
simply confined to championing this new, and now popular, approach; he also
detailed techniques for implementing these philosophies. His idea was, in essence,
to generate successive representations of information, each representation being
richer in the type of information it makes explicit. We shall now have a brief look
at each of these representations.

9.3 Visual representations

9.3.1 The raw primal sketch

Beginning with a grey-level image, Marr proposed the generation of a Raw Primal
Sketch, which consists of primitives of edges, terminations, blobs, and bars at
different scales. We will explain each of these four terms shortly. Each primitive has
certain associated properties: orientation, width, length, position, and strength.
The computation of the raw primal sketch requires both the measurement of
intensity gradients of different scale and the accurate measurement of location of
these changes. This causes a problem, however, since no single measuring device
can be optimal simultaneously at all scales. For example, a watchmaker will use a
micrometer for very fine measuring work and calipers for coarse work, both of
which are useless to a surveyor measuring up a building site. Thus, we need an edge
detector which can operate at different scales and is well-localized in the frequency
domain, that is, the spatial frequencies (the rate of variation of image intensity with
distance) to which it is sensitive are confined to given ranges. Since edges are also
localized in space (i.e. in the image), this means that the measuring device must also
be spatially localized.

Obviously, the requirements of spatial localization and confinement in spatial
frequency are at variance: devices for measuring variation over large distances must
themselves be large. Marr and Hildreth proposed a compromise. They suggested
that one should use smoothing filters to select information in the grey-level intensity
image at different scales, but choose a type of smoothing that optimizes these two
opposing demands (of spatial frequency and positional localization). The Gaussian
distribution is the only appropriate smoothing distribution with these properties.
Marr suggested that the raw primal sketch should be generated using the
Marr—Hildreth theory of edge detection (which we discussed in Chapter 5), i.e. by
convolving the image with Laplacian-of-Gaussian functions, each Gaussian having
a different standard deviation (hence the facility for analysis at different scales).
Points at which the resultant image go from positive to negative, i.e. zero-crossings,
are isolated; see Figures 9.1-9.4. These points correspond to instances of sharp
intensity change in the original image. Note that these images have been
automatically post-processed to remove spurious noisy zero-crossings. This is

214

Visual representations

Figure 9.1 A grey-scale image.

accomplished by analysing various features of the contour points and comparing
their values to statistics of these features collected from the entire image (see
Vernon, 1988).

By analysing the coincidence of zero-crossings in particular positions at
different scales, one can infer evidence of physical reality, i.e. of a real physical
edge, and it is these spatially coincident and hence (hopefully) real physically
meaningful zero-crossings that are then represented by the primitives of the raw
primal sketch. We can now define each of the four primitives.

Edge primitives are, effectively, local line segment approximations of thc? zero-
crossing contours (see Figure 9.5); curves comprise a sequence of edges, delimited
at either end by the termination primitives (see Figure 9.6). Instances of local
parallelism of these edges are represented by bars (see Figure 9.7), .while blobs
represent the zero-crossing contours which are not present, i.e. w'h1ch have no
spatial coincidence, in all of the zero-crossing images derived at the dlfferfsnt scales,
i.e. using different standard deviations for the Gaussian smoothing (see Figure 9.8).

9.3.2 The full primal sketch

As the information made explicit in the raw primal sketch is still local and spatia}ll_y
restricted, i.e. it does not convey any global information about shape in an explicit
manner, we now wish to group these primitives so that the groups correspond to
physically meaningful objects. In this sense, the grouping process is exactly what

215

Introduction to image understanding Visual representations

(b)

Figure 9.2 Zero-crossings derived by convolving the image with a j Figure 9.3 Zero-crossings derived by convolving the image with a
Laplacian of Gaussian filter in which the standard deviation of the Laplacian of Gaussian filter in which the standard deviation of the
Gaussian is 3.0 pixels: (a) all zero-crossings; (b) after removal of noisy ' Gaussian is 6.0 pixels: (a) all zero-crossings; (b) after removal of noisy
zero-crossings. zero-crossings.

216 217

Introduction to image understanding

(b)

Figure 9.4 Zero-crossings derived by convolving the image with a
Laplacian of Gaussian filter in which the standard deviation of the
Gaussian is 9.0 pixels: (a) all zero-crossings; (b) after removal of noisy
zero-crossings.

218

Visual representations

Figure 9.6 The raw primal sketch: terminations.

219

Introduction to image understanding

Figure 9.8 The raw primal sketch: blobs.

220

Visual representations

we mean by segmentation, which we described in Chapter 5. Since we are now
dealing with more complex data, the segmentation processes must be more
sophisticated. Many of them are based on Gestalt ‘figural grouping principles’,
named after the Gestalt school of psychology formed in the early part of this
century. For example, primitives can be grouped according to three criteria:
continuity, proximity, and similarity. In the first case, for instance, lines bounded
by terminations which are co-linear would be grouped. Primitives which are
spatially proximate are also candidates for the formation of groups, while so too
are primitives which belong to the same class, i.e which are similar. These criteria
are not independent and the final groupings will be based on the relative weights
attached to each criterion.

The contrived example shown in Figure 9.9, comprising three types of
fictitious token, illustrates these three criteria. The horizontal row would be
grouped on the basis of spatial proximity and continuity; the vertical columns
would be grouped on the basis of similarity and, to an extent, continuity, whereas
the single diagonal group is formed on the basis of continuity of absence of tokens.
This may seem a little strange: grouping entities which do not exist. However,
it becomes a little more sensible when we note that, apart from the criteria of
grouping, there are also definite grouping principles. The first, the principle of
explicit naming, states that grouped entities are to be treated as single entities and
given an explicit name. This means that they become tokens or primitives in their
own right and can be subsequently grouped. Thus, grouping to form the primal
sketch is essentially a recursive process; the same grouping principles and criteria
applying to all levels of the group hierarchy. Now the situation in Figure 9.9
becomes a little clearer. The groups we identified are not necessarily achieved in one
pass of the grouping algorithm; typically, it would take two: one to form the groups
identified in Figure 9.10 and a second pass to group the new horizontal groups into
the horizontal groups originally shown in Figure 9.9. Now, however, we have new
tokens comprising the termination points of these intermediate horizontal tokens;
it is the grouping of these terminations, on the basis of continuity, that forms the
diagonal group.

There is a second grouping principle, the principle of least commitment,
which is pragmatic in nature. It addresses the problem that, since grouping can be
applied recursively to tokens, groups can be formed which do not segment the
physical objects successfully, and it may be necessary to backtrack and undo a
grouping process. The principle of least commitment states that these ‘mistakes’ are
expensive and, therefore, grouping should be applied conservatively.

In summary the outcome of such grouping, the full primal sketch, makes
region boundaries, object contours and primitive shapes explicit. It is a segmented
representation and it exploits processes which are knowledge-free.

9.3.3 The two-and-a-half-dimensional sketch

The next level of representation is the two-and-a-half dimensional sketch. This is

221

Introduction to image understanding

+ 0 + 4+t o+ o+ o+

+ + 4+ o EF o+ F

Figure 9.9 Grouping processes.

derived both from the full primal sketch and from the grey-level image by using
many visual cues, including stereopsis, apparent motion, shading, shape, and
texture. We will have a brief look at the first three of these visual processes in
Sections 9.4.1, 9.4.2 and 9.4.3. The two-and-a-half-dimensional sketch is a rich
viewer-centred representation of the scene containing not only primitives of spatial
organization and surface discontinuity, but also of the local surface orientation at
each point and an estimate of the distance from the viewer. The surface orientation
is usually represented by a unit vector which is normal to the surface; this is
commonly referred to as the ‘surface normal vector’ (see Figure 9.11).

Recall from Chapter 8 that there are three degrees of freedom in the general

222

Visual representations

Figure 9.10 Recursive grouping.

e

Figure 9.11 The surface normal vector.,

specification of orientation of a vector. For example, we used the roll, pitch, and
yaw angles to specify the orientation of the robot end effector. In this case,
however, we only require two angles since the vector is symmetric and the roll angle
is redundant. Thus, the two-and-a-half-dimensional sketch can be thought of as a
two-dimensional array of 3-valued entities, representing the distance from the
camera to the surface and the two angles specifying the surface normal vectors.
Figure 9.12 shows a schematic of the two-and-a-half-dimensional sketch for
a spherical object; the surface normal vectors are projected on to the image plane
so that vectors at the boundary of the sphere are the longest and those at the centre,
facing the viewer, are the shortest and, in effect, have no length. The intensity with
which the vectors are drawn is proportional to their distance from the camera so
that the boundary vectors are the brightest and the central vectors are the darkest.
It is important to realize that this array-based, or iconic, representation is not the
complete two-and-a-half-dimensional sketch; since it is also based on the full primal
sketch, it integrates the information about grouping and segmentation. Thus, it is
a viewer-centred three-dimensional model, in that all distances are defined with

223

Introduction to image understanding

Figure 9.12 The two-and-a-half-dimensional sketch.

respect to the camera coordinate system, with integrated surface-based object

representations.
Some of the visual processes which are involved in deriving local surface

orientation and depth are discussed in Section 9.4.

9.3.4 Three-dimensional model

The final stage of this information processing organization of visual processes lies
in the analysis of the two-and-a-half-dimensional sketch and the production of
an explicit three-dimensional representation. There are two issues which must be
addressed:

1. The conversion from a viewer-centred representation to an object-centred
representation. This is, in effect, the transformation between a camera
coordinate system and the real-world coordinate system and is exactly the
process we discussed in Chapter 8 in the section on the camera model.

2. The type of three-dimensional representation we choose to model our objects.
There are three types of three-dimensional representation based on
volumetric, skeletal, and surface primitives.

9.3.4.1 Volumetric representations

Volumetric representations work on the basis of spatial occupancy, delineating the

224

Visual representations

segments of a three-dimensional workspace which are, or are not, occupied by an
object. The simplest representation utilizes the concept of a voxel image (voxel
derives from the phrase volumetric element) which is a three-dimensional extension
of a conventional two-dimensional binary image. Thus, it is typically a uniformly
sampled three-dimensional array of cells, each one belonging either to an object or
to the free space surrounding the object. Because it is a three-dimensional data-
structure, voxel image requires a significant amount of memory and, hence, tends
to be quite a coarse representation. For example, a 1 m® work space comprising
1 cm? voxels will require approximately 1 Mbyte of memory (assuming that a voxel
is represented by one byte; although eight voxels could be packed into a single byte,
you do not then have simple direct access to each voxel).

The oct-tree is another volumetric representation. However, in this instance,
the volumetric primitives are not uniform in size and you can represent the spatial
occupancy of a work space to arbitrary resolution in a fairly efficient manner. The
oct-tree is a three-dimensional extension of the quad-tree which we discussed in
Chapter 5. In the same way as a quad-tree described the occupancy of a two-
dimensional image by identifying large homogeneous areas in the image and
representing them as single nodes in a tree, the position in the tree governing the
size of the region, so too is the three-dimensional spatial occupancy represented by
such a tree. Initially, the work space is represented by a single cubic volume. If the
work space is completely occupied by an object (a very unlikely situation), then the
work space is represented by a single root node in the oct-tree. In the more likely
situation that the volume is not completely occupied, the cube is divided into eight
sub-cubes of equal volume. Again, if any of these sub-cubes are completely
occupied then that volume is represented by a node at the second level in the tree;
alternatively, the sub-cube is further sub-divided into another eight cubes and the
same test for complete spatial occupancy is applied. This process is reiterated until
we reach the required resolution for spatial occupancy, i.e. the smallest required
cubic volume: this is equivalent to the voxel in the preceding representation.

Note that, because the sub-division of volumes, and hence the generation of
new nodes in the oct-tree, only takes place at the boundary between the object and
the free-space surrounding it, this representation is extremely efficient (in terms
of storage requirements) for regular solids since the interior of the object is
represented by a few nodes close to the root of the tree. Furthermore, the
coarseness of the object representation is easily controlled by limiting the depth to
which the tree can grow, i.e. by placing a limit on the size of the smallest volumes.

9.3.4.2 Skeletal representations

The generalized cylinder, also referred to as the ‘generalized cone’, is among the
most common skeletal three-dimensional object representations. A generalized
cylinder is defined as the surface created by moving a cross-section along an axis.
The cross-section may vary in size, getting larger or smaller, but the shape remains
the same and the axis may trace out any arbitrary three-dimensional curvilinear

225

Introduction to image understanding

path. Thus, a single generalized cylinder can represent, e.g., a cone (circular cross-
section; linear decrease in diameter; linear axis), a sphere (circular cross-section;
sinusoidal variation in diameter; linear axis), or a washer (rectangular cross-section;
constant area; circular axis). However, a general three-dimensional model
comprises several generalized cones and is organized in 2 modular manner with each
component subsequently comprising its own generalized cylinder-based model.
Thus, the three-dimensional model is a hierarchy of generalized cylinders; see

Figure 9.13.

9.3.4.3 Surface representations

Finally, we come to the third type of three-dimensional model which is based on
surface representations. We immediately have a choice to make and to decide which
type of surface primitives (or surface patches) we will allow: planar patches or
curved patches. Although there is no universal agreement about which is the better,
the planar patch approach is quite popular and yields polyhedral approximations

Figure 9.13 Generalized cylinder representation of a tooth-brush.

226

Visual representations

of the object being modelled. This is quite an appropriate representation for man-
made objects which tend predominantly to comprise planar surfaces. It is not,
however, a panacea for three-dimensional representational problems and it would
appear that many of the subtleties of three-dimensional shape description cannot
be addressed with simplistic first-order planar representations. Nevertheless, it does
have its uses and, even for naturally curved objects, it can provide quite a good
approximation to the true shape, if an appropriate patch size is used. For example,
Figure 9.14 shows a sphere comprised of triangular planar patches.

To conclude this brief overview of three-dimensional object representations,
it should be noted that we have not addressed the usefulness of these models for
object recognition. The subject of three-dimensional shape representation and
matching is a difficult one and there are at present no entirely satisfactory answers
to the problems it poses. At the same time, we can make a few short comments
about the representations which we have discussed. Note first, however, that these
comments are made in the context of ideal object representations: as we will see in
the next few sections, the three-dimensional models that we build directly from two-
dimensional images tend to be incomplete, noisy and often are only approximations
to the expected form.

The voxel image represents the three-dimensional shape in an implicit manner
(in the same way as a two-dimensional binary image represents two-dimensional
shapes) and recognition can be effected by three-dimensional template matching.
However, all the problems associated with this technique (see Chapter 6) still apply
and, indeed, they are exacerbated by the increase in the dimensionality of the
model.

Figure 9.14 A sphere comprised of triangular planar patches.

227

Introduction to image understanding

Object recognition using oct-trees essentially requires a graph (or tree)
matching algorithm. However, since the oct-tree will vary with the orientation of
the object, especially at the lower levels, the matching algorithm must be able to
detect structural similarities in sub-sets of the tree.

Similarly, a tree matching technique can be used to facilitate matching models
based on generalized cylinders, since the representation is a hierarchical structure
of nodes comprising three parametric entities: the axis, the cross-section, and the
variation of cross-section.

Finally, it is difficult to accomplish object recognition using planar surface
models for anything except the simplest of regular objects since the size and
position of each patch, and the total number of patches, will vary considerably with
the orientation of the original object and the completeness of the data. Instead,
object recognition can be effected by backtracking somewhat and regenerating an
iconic (array-based) version of the two-and-a-half-dimensional sketch. The recog-
nition process is accomplished by matching this two-dimensional representation
with a template. It assumes, however, that the template and object poses have first
been registered; otherwise, several (indeed a very large number) of object templates
will have to be used in the template matching process, each one generated by
projecting the three-dimensional model on to the two-and-a-half-dimensional
sketch at different orientations. It is this task of three-dimensional pose estimation
to which we now turn.

9.3.5 The extended Gaussian image

The two-and-a-half-dimensional sketch provides us with the local orientation at
each point on the surface of the object. These surface normals can be represented
on a unit sphere called a Gauss map. If we attach a unit mass to each endpoint,
we now observe a distribution of mass over the Gaussian sphere and this
distribution is called the ‘extended Gaussian image’ (EGI) of the object. The EGI
is effectively a two-dimensional histogram of surface normal orientations,
distributed on a sphere, and the attitude, or pose, of an object is greatly constrained
by the global distribution of EGI mass over the visible Gaussian hemisphere.
Constraints on the viewer direction can be derived from the position of the EGI
mass centre, and from the directions of the EGI axis of inertia. To determine object
pose, we simply match partial EGIs, derived from the observed scene, with template
EGIs derived from our stored prototypical model.

For example, Figure 9.15 shows a contrived, e.g. artificial, object in several
poses, together with the associated EGIs. In this case, the mass at a point on the
EGI (which is proportional to the surface area of the object with that attitude) is
coded by grey-level. Note that the distribution of mass is not uniform; this is caused
by quantization errors in the orientation of the facets of both the Gaussian sphere
and the object surfaces. ’

228

N}
7 g
.

¢

&
A¥AY.
ATFAY,
FL NN
Fava

A

¥
’

&
"Q‘"‘!*v‘.'

5.

L 4

S N
ravaV.a e
T TATAVAY,
INININININE
IN/\ 4

I\

o
-~
AN

FaVAYAVAY,

A

TaVAVATAY .V

TN/
N
¥
b =

>

\7
B
\/

>
o 3

‘_;ﬁ

/.
s
b
Y5
1 959
™Y
9

€

Visual representations

s
7CIN

\ 7
A
.

)
v,
™
S i -
Fem
7

4

S
A
g

- T
E ot s W
o

[
i

<
W
-«
L
W e
%A%
A

Wb
aTATS

P

229

| AVAYAY,

* N
NI
"} £ =
va's,

¥
¥
\J
g
v

N\

AVA

vaVay.
T

/3

AY,
AVAVLV,
VAVAVAVLY,
e AVAVLY,
> S TAVAVA
. “&'&VA’A
Mo “:"‘V,’:

%3
L
*

)
~‘£
hY)

g g

X
»

BN

Figure 9.15 An artificial object and its extended Gaussian image (EGI).

Introduction to image understanding

9.4 Visual processes

We began this chapter by suggesting that there is a great deal more to image
understanding than the recovery of depth information from two-dimensional
images, and we then proceeded to look at the representations and organization of
visual processes which comprise an image understanding system. Nevertheless, as
we have stated several times, the recovery of depth information is important and
s0 we return now to the visual processes which are involved constructing the two-
and-a-half-dimensional sketch: the computation of depth information and of local
surface orientation.

9.4.1 Stereopsis

Our interest here is in the use of two views of a scene to recover information about
the distance of objects in the scene from the observer (the cameras). In a sense, we
have already discussed stereopsis, or stereo for short, in the last chapter when we
dealt with the camera model, the inverse perspective transformation, and the
recovery of depth information. We discussed in detail how the inverse perspective
transformation allows us to construct a line describing all the points in the three-
dimensional world which could have been projected onto a given image point. If
we have two images acquired at different positions in the world, i.e. a stereo pair,
then for the two image coordinates which correspond to a single point in three-
dimensional space, we can construct two lines, the intersection of which identifies
the three-dimensional position of the point in question. Thus, there are two aspects
to stereo imaging:

(a) the identification of corresponding points in the two stereo images;
(b) the computation of the three-dimensional coordinates of the world point
which gives rise to these two corresponding image points.

Since we have already covered the second aspect in detail (and you are encouraged
to review these techniques in Chapter 8), the main problem in stereo is to find the
corresponding points in the left and right images and this is what we will discuss
here. Before we proceed, however, it is perhaps worth while noting that quite
often stereo techniques are presented without discussing the inverse perspective
transformation formally; instead, stereo is discussed in the context of the
computation of the stereo disparity (i.e. the relative shift in position of an imaged
point in the two stereo images) and the subsequent computation of depth on the
basis of knowledge of the geometry of the two camera systems, i.e. the focal length
of the lens, the distance between the lens centres, the size of the sensor, and the
relative attitude of the focal axes of the two cameras. We have not done this here
because it neglects the calibration of the camera systems: it is difficult to measure
the distance between lens centres empirically, the relative attitude of focal axes, and

230

Visual processes

the focal length quoted on camera lenses is only nominal; quite often, two
‘identical’ lenses will have slightly different focal lengths.

We return now to the stereo correspondence problem. In characterizing a
stereo system, we must address the following:

(a) the kind of visual entities on which the stereo system works;
(b) the mechanism by which the system matches visual entities in one image with
corresponding entities on the other.

Typically, the possible visual entities from which we can choose include, at an
iconic level, zero-crossing points, patches (small areas) in the intensity image, and
patches in filtered images; or, at a more symbolic level, line segment tokens, such
as are made explicit in the raw primal sketch.

The matching mechanism which establishes the correspondence will depend
on the type of visual entities which we have chosen: iconic entities will normally
exploit some template matching paradigm, such as normalized cross-correlation
(see Chapter 6), while token entities can be used with more heuristic search
strategies. As an example, the stereo disparity image shown in Figure 9.16, in
which disparity is inversely proportional to grey-level, is derived by convolving the
stereo pair (see Figure 9.17) with a Laplacian of Gaussian filter, computing
the zero-crossings, and correlating patches in the convolved image, centred on the
zero-crossing points at discrete intervals along the zero-crossing contour.

9.4.2 Camera motion

The analysis of object motion in sequences of digital images, or of apparent motion
in the case of a moving observer, to provide us with information about the structure
of the imaged scene, is an extremely topical and important aspect of current image
understanding research. However, the general object motion problem is difficult,
since the motion we perceive can be due to either the rotation of the object, a
translation of the object, or both. We will not attempt to address this problem here
and the interested reader will find references to some seminal work in the area in
the bibliography at the end of the book. We confine our attention to the somewhat
easier problem of camera motion and, in particular, to the study of apparent
motion of objects in a scene arising from the changing vantage point of a moving
camera. This restriction is not necessarily a limitation on the usefulness of the
technique; on the contrary, the concept of a camera mounted on the end-effector
of a robot, providing hand—eye coordination, or on a moving autonomously guided
vehicle (AGV), providing navigation information, is both appealing and plausible.

*This disparity representation, which is based on the zero-crossings of Laplacian of Gaussian filtered
images, is merely a short-hand way of summarizing the relative position of corresponding points in the
two images. Given a zero-crossing point, we can compute its corresponding position in the second stereo
image from its disparity, represented here as intensity. This assumes that we know the direction in which
the corresponding point lies; for a stereo pair of cameras which have parallel focal axes, the direction
is horizontal.

231

Introduction to image understanding

(b)
Figure 9.16 (a) Left stereo image. (b) Right stereo image.

232

Visual processes

Figure 9.17 Disparity of a stereo pair of images.

From an intuitive point of view, camera motion is identical to the stereo
process in that we are identifying points in the image (e.g. characteristic features
on an object) and then tracking them as they appear to move due to the changing
position (and, perhaps, attitude) of the camera system. At the end of the sequence
of images, we then have two sets of corresponding points, connected by optic flow
vectors, in the first and last images of the sequence. Typically, we will also have a
sequence of vectors which tack the trajectory of the point throughout the sequence
of images. The depth, or distance, of the point in the world can then be computed
in the manner discussed in Chapter 8 and in the preceding section.

However, there are a number of differences. First, the tracking is achieved
quite often, not by a correlation technique or by a token matching technique, but
by differentiating the image sequence with respect to time to see how it changes
from one image to the next. There is often a subsequent matching process to ensure
the accuracy of the computed image change, and sometimes it is not the grey-scale
image which is differentiated but, rather, a filtered version of it. Nevertheless, the
information about change is derived from a derivative (or, more accurately, a first
difference) of the image sequence. Second, the ‘correspondence’ between points is
established incrementally, from image to image, over an extended sequence of
images. Thus, we can often generate accurate and faithful maps of point
correspondence which are made explicit by a two-dimensional array of flow vectors
which describe the trajectory of a point over the image sequence.

In this book, we will confine our attention to two simple types of camera
motion in order to illustrate the approach. The first describes a trajectory along the

233

Introduction to image understanding

—— {0 +0_J~C

Optical axis Lens

Figure 9.18 Translational motion along the optic axis.

VAN

Fixation point Optical axis

Figure 9.19 Rotational motion about a fixation point.

optical axis of the camera (see Figure 9.18), while in the second the camera is
rotated about a fixation point (see Figure 9.19). The optic flow field resulting from
this first type of egocentric motion is very easy to compute as all flow vectors are
directed radially outward from the focus of expansion (FOE),* i.e. the centre of the
image. For camera motion in rotation about a fixation point, the rotational
component of optical flow can be determined directly from the known camera
trajectory and the direction of the translational component is also constrained by
the camera motion. Knowing the direction of the flow vector, the magnitude of the
visual motion is directly derived from a time-derivative of a sequence of images
acquired at successive points along the camera trajectory.

*The focus of expansion is the point which defines the direction from which all the optic flow vectors

appear to emanate, i.e. all flow vectors are co-linear with a line joining the FOE and the origin of the
flow vector.

234

Visual processes

There is one main difficulty when attempting to compute the true optical flow,
i.e. the visual motion, of a point in the image. It is generally referred to as the
aperture problem. Consider a contour in an image and let us say that we only have
a small local window of visibility around the point of interest on the contour (see
Figure 9.20). If the position of the contour changes due to the camera motion, then
we cannot say with any certainty in which direction it moved, based purely on the
local information available in this small local window. The only thing we can
compute with certainty is the orthogonal component of the velocity vector, i.e. the
component which is normal to the local contour orientation. This vector
component is referred to as v*, and the second component is referred to as the
tangential component, v'. Thus, the true velocity vector v is given by:

v=vt+0'

If the luminance intensity does not change with time (i.e. there are no moving
light sources in the environment) the component of the orthogonal velocity vector
for each image point is given by:

L~
| V1|
T+At
T
VT
VJ.
T+At
T

Figure 9.20 The aperture problem.

235

Introduction to image understanding

where 8 indicates the partial derivative operator and | V/| is the local intensity
gradient.

In the technique described here, we compute the time derivative of a V*G
filtered image instead of the raw intensity image and compute the optical flow at
zero-crossing contours. This means that the amount of data to be processed is
limited and, furthermore, the effects of noise are less pronounced.

The computation of v* (the orthogonal component of velocity) is based on
a computation of the time derivative using image subtraction, in the same way as
we saw that gradient-based edge detectors can be affected by local pixel differences,
according to the relationship described above.

The computation of the true velocity depends on the prior knowledge of the
parameters of the camera motion: the position of the camera at time 7T and T+ At
from the fixation point; 6 the rotational angle of the camera around the Y-axis, and
W, and W, the components of the translational velocity of the camera along the
X-axis and the Z-axis respectively. The velocities W, and W, are defined with
respect to the coordinate system of the camera at time T (see Figure 9.21). Using
basic trigonometric relations, we find:

Dz sinB
Wy = —=—
* At
Wy=
Dy —D; cos 8
W,=—""——
‘ At

where D; and D, are the distances of the camera from the fixation point at time
T and T + At respectively.

These computed egomotion parameters are used to determine the true image
velocity vector v. Note that v comprises two components, v; and vr, one due to
camera translation W= (W, Wy, W;) and the other to camera rotation
w = (Wy, Wy, Wz)"

o (XWe=FW. yW.— FW,
‘o z Z

= (xywx — (X2 + Foy +yur, (3 + F*)wx — Xpuwy — xwz)
T F ’ F

V=V + U
where:

F is the focal length of the lens,

x and y are the coordinates of the point in the image plane at time 7, and

Z is the distance from the camera to the world point corresponding to image
point (x, »).

236

Visual processes

Y
z I Camera
X
Fixation point
6
D2
D1 z
0
X
z Position of camera
2 at time 7+ At
P Position of camera
X at time T

Figure 9.21 Camera coordinate system and the parameters associated
with camera motion.

For the constrained camera motion shown in Figure 9.19, the camera translational

velocity is given by the equations for W, W, and W, above, while the rotational
velocity w is (0, 6/ At,0).

b= (x(Dl ~Dy cos) — FD, sin § y(D; — D, cos 6)
Z At ’ Z At

U= <’“(x2+F2)H — xy0
FAt ° FAt

In these two equations for v, and vy, the only unknown is Z (which is what we wish

237

Introduction to image understanding

to determine). Thus, to determine v; and vy, and hence Z, we exploit the value of
v, the orthogonal component of velocity, computed at an earlier stage. This can
be accomplished directly by solving the attendant system of equations or by a

geometrical construction.
In the solution by geometrical construction, v is determined from the

intersection of three straight lines derived from v: (for which all terms are known),
v* (which was computed previously), and the position of the FOE.
First, v; defines the first line of the construction (refer to Figure 9.22).
Second, the position of the FOE defines the direction of vy, since v is parallel
to the line joining the FOE and the point (x,) in question. Thus, the second line
is parallel to v, and passes through the point given by v:(see Figure 9.22). The
coordinates of the FOE are given by:

" . (Vs FWy)
FOE, JFOE Wz ’ Wz

where Wy, W,, and W, are the known velocities of the camera in the x-, y-, and z-

directions respectively.
Finally, we note again that v is also given by the sum of the orthogonal

component and the tangential component of velocity:

v=vt 40"

.

Since these two vectors are orthogonal to one another, and since v* is known, this
relationship defines a third line through the point given by v* and normal to the
direction of v*. Hence, v is given by the intersection of the second and the third

lines: see Figure 9.22.
In the simpler case of translatory motion along the optic axis, 8 is equal to

Ut

FOE

Figure 9.22 Computation of true velocity v from v*, vy at a point P on
a zero-crossing contout.

238

Visual processes

zero and the translational component of velocity reduces to:

b= (x(D1 -D;) yD-D,)
t Z . 7

while the rotational component »; is now zero.

Computing v in this manner and, in particular, computing v using image
differences, errors can still be recorded in the final flow. A significant improvement
can be achieved by performing a contour-to-contour matching between successive
frames, along the direction of the flow vectors, tuning the length of the flow vectors
to the correct size. The tracking procedure searches in the direction of the flow
vector until the next contour is found, then it searches in the direction of the new
flow vector, and so forth until the whole image sequence is processed. Although a
small difference between successive frames is required to guarantee the accuracy in
the computation of the orthogonal component v+, a long baseline is required for
the depth measurement. For this reason, many images are normally considered and
the flow field obtained for a sequence of images is used for range computation: the
flow vector from the first image to the last image being employed in the
computation of depth.

The algorithm for computing the optical flow can be summarized as follows:

Convolve the images with a Laplacian of Gaussian
operator

Extract the zero-crossings

Compute the difference between the v23G of successive
frames of the sequence

Compute the velocity component in the direction
perpendicular to the orientation of the contour

Compute the velocity along the contour using the known
motion parameters

Search for the zero-crossings of the second frame
projected from the first frame in the directionof the
velocity vector.

The depth, for each contour point, is computed as before by applying the inverse
perspective transformation, derived from camera models corresponding to the
initial and final camera positions, to the two points given by the origin of the optical
flow vector and the end of the optical flow vector.

To illustrate this approach to inferring the depth of objects, motion sequences
of two different scenes were generated, each comprising nine images. These scenes
were of a white 45° cone with black stripes at regular intervals and a ‘toy-town’

239

Introduction to image understanding

Visual processes

Figure 9.23 A black and white cone.

environment (see Figures 9.23, 9.24, 9.26 and 9.27). For the purposes of
illustration, Figures 9.23 through 9.28 depict the results of the rotational motion
only. Each of the constituent images in these image sequences were then convolved
with a Laplacian of Gaussian mask (standard deviation of the Gaussian
function = 4.0) and the zero-crossings contours were extracted. Since the Laplacian
of Gaussian operator isolates intensity discontinuities over a wide range of edge
contrasts, many of the resultant zero-crossings do not correspond to perceptually
significant physical edges. As before, an adaptive thresholding technique was
employed to identify these contours and to exclude them from further processing.

The zero-crossings contour images and their associated convolution images
were then used to generate six time derivatives; since the time derivative utilizes a
five-point operator combining the temporal difference with temporal averaging, the
time derivative can only be estimated for images 3,4,5,6, and 7; the associated
orthogonal component of velocity was then computed, followed by the true optical
flow vectors. An extended flow field was then estimated by tracking the flow vectors
from image 3 through images 4,5 to image 6 on a contour-to-contour basis, i.e.
tracking a total of three images (see Figures 9.25 and 9.28). Depth images
(representing the distance from the camera to each point on the zero-crossing
contour) were generated for each scene (Figures 9.25 and 9.28) from the tracked
velocity vectors. Finally, a range image representing the range of all visible points
on the surface was generated by interpolation (again, Figures 9.25 and 9.28).

240

Figure 9.24 The nine views of the black and white cone.

Figure 9.25 Top left: the black and white cone. Top right: the optical
flow vectors. Bottom left: zero-crossings with intensity proportional to
distance from camera. Bottom right: range image with intensity
proportional to distance from camera.

241

Introduction to image understanding

Figure 9.26 A toy-town scene.

Figure 9.27 The nine views of the toy-town scene.

242

Visual processes

Figure 9.28 Top left: the toy-town scene. Top right: the optical flow
vectors. Bottom left: zero-crossings with intensity proportional to
distance from camera. Bottom right: range image with intensity
proportional to distance from camera.

9.4.3 Shading

The construction of the two-and-a-half-dimensional sketch requires one further
element: the computation of the local orientation of a point, i.e. the surface normal
vector. The analysis of the shading of a surface, based on assumed models of the
reflectivity of the surface material, is sometimes used to compute this information.

The amount of light reflected from an object depends on the following
(referring to Figure 9.29):

(a) the surface material;
(b) the emergent angle, e between the surface normal and the viewer angle;
(c) the incident angle, i, between the surface normal and light source direction.

There are several models of surface reflectance, the simplest of which is the
Lambertian model. A Lambertian surface is a surface that looks equally bright
from all viewpoints, i.e. the brightness of a particular point does not change as the
viewpoint changes. It is a perfect diffuser: the observed brightness depends only on
the direction to the light source, i.e. the incident angle i.

Let E be the observed brightness, then for a Lambertian surface:

E=pcosi

243

Introduction to image understanding

Incident light

Reflected light

Figure 9.29 Incident and emergent angles.

All points on this line have
surface orientations and

a brightness value which
satisfy cos /=£,

Figure 9.30 Lambertian sphere and iso-brightness lines.

where p is a constant called the ‘surface albedo’ and is peculiar to the surface
material under analysis.

The reflectance properties of Lambertian surfaces are encapsulated by images
of Lambertian spheres of radius 1 upon which we draw (for convenience) lines
joining points of equal brightness, i.e. iso-brightness lines. There will, in general,
be many points on the surface of the sphere which satisfy E = p cos i for a given
brightness Ep; see Figure 9.30. More often, a projection of these iso-brightness
values onto a plane is used. This is called a reflectance map. The most commonly
used projection is one onto a plane which is parallel to the viewer’s image plane
and is a tangent to the sphere; see Figure 9.31. This is effected by drawing a line
from the point on the sphere opposite the viewer, through the point to be projected.

244

Visual processes

Projection plane

41N

Iso-brightness Reflectance map

lines

Figure 9.31 Generation of the reflectance map.

A brightness value determines only a curve on the reflectance map rather than
a single point, since there will be several points on the sphere having equal
brightness, i.e. the points on an iso-brightness line. Thus, an extra constraint is
required to determine uniquely the orientation of the imaged point from the
brightness: this is supplied by assumptions of surface smoothness (or continuity)
that the surface should not vary much from the surface direction at neighbouring
parts. Obviously, we need some coordinates on the reflectance map to anchor the
process and from which we can infer the orientation of neighbouring points.

On occluding boundaries of objects without sharp edges, the surface direction
is perpendicular to the viewer’s line of sight. All such directions project onto a circle
of radius 2 on the reflectance map and, thus, we know immediately the surface
orientation of every occluding contour point and, more importantly, the
correspondence between a given occluding boundary point and the point to which
it maps on the reflectance function. This is achieved by observing that the required
point of the reflectance map must correspond to the surface normal direction at the
occluding boundary. Since the surface orientation changes smoothly, all points on

245

Introduction to image understanding

Figure 9.32 Three-dimensional raw primal sketch of a striped cone.

Figure 9.33 Reconstructed surface model of the striped cone.

246

Visual processes

Figure 9.34 Extended Gaussian image depicting the distribution of
surface normals on the polyhedral model of the cone.

the surface close to the occluding boundary must have an orientation which is not
significantly different from that of the occluding boundary. The surface orientation
of each point adjacent to the occluding boundary can now be computed by
measuring the intensity value and reading off the corresponding orientation from
the reflectance map in a local area surrounding the point on the map which
corresponds to the current occluding boundary anchor point. This scheme of local
constraint is reiterated using these newly computed orientations as constraints, until
the orientation of all points on the surface have been computed.

This technique has been studied in depth in the computer vision literature and
it should be emphasized that this description is intuitive and tutorial in nature; you
are referred to the appropriate texts cited in the bibliography at the end of the
chapter. As we have noted, however, there are a number of assumptions which
must be made in order for the technique to work successfully, e.g. the surface
orientation must vary smoothly and, in particular, it must do so at the occluding
boundary (the boundary of the object at which the surface disappears from sight).
Look around the room you are in at present. How many objects do you see which
fulfil this requirement? Probably very few. Allied to this are the requirements that
the reflective surface has a known albedo and that we can model its reflective
properties, or, alternatively, that we can calibrate for a given reflective material,
and, finally, that one knows the incident angle of light. This limits the usefulness
of the techniques for general image understanding.

247

Introduction to image understanding

There are other ways of estimating the local surface orientation. As an
example of one coarse approach, consider the situation where we have a three-
dimensional raw primal sketch, i.e. a raw primal sketch in which we know the depth
to each point on the edge segments, and if these raw primal sketch segments are
sufficiently close, we can compute the surface normal by interpolating between the
edges, generating a succession of planar patches, and effectively constructing a
polyhedral model of the object (see Section 9.3.4.3). The surface normal is easily
computed by forming the vector cross-product of two vectors in the plane of the
patch (typically two non-parallel patch sides). For example, the three-dimensional
raw primal sketch of the calibration cone which is shown in Figure 9.32 yields the
polyhedral model shown in Figure 9.33, the extended Gaussian image of which is

shown in Figure 9.34.

9.5 Concluding remarks

Having read this book, and this chapter in particular, you could be excused for
thinking that computer vision is an end in itself, that is, that the task is complete
once we arrive at our unambiguous explicit three-dimensional representation of the
world. This is quite wrong. Vision is no such thing; it is merely part of a larger
system which might best be characterized by a dual two-faced process of making
sense ofinteracting with the environment. Without action, perception is futile;
without perception, action is futile. Both are complementary, but highly related,
activities. Any intelligent action in which the system engages in the environment,
i.e. anything it does, it does with an understanding of its action, and quite often
it gains this by on-going visual perception.

In essence, image understanding is as concerned with cause and effect, with
purpose, with action and reaction as it is with structural organization. That we have
not advanced greatly in this aspect of image understanding and computer vision
yet is not an indictment of the research community; in fact, given the disastrous
consequences of the excessive zeal and ambition in the late 1970s, it is perhaps no
bad thing that attention is currently focused on the formal and well-founded bases
of visual processes: without these, the edifice we construct in image understanding
would be shaky, to say the least. However, the issues we have just raised, in effect
the temporal semantics of vision in contribution to and in participation with
physical interactive systems, will not go away and must be addressed and
understood someday. Soon.

Exercises

1. What do you understand by the term ‘subjective contour’? In the
context of the full primal sketch, explain how such phenomena arise

248

References and further reading

and suggest a technique to detect the occurrence of these contours.
Are there any limitations to your suggestion? If so, identify them and
offer plausible solutions.

2. Given that one can establish the correspondence of identical points in
two or more images of the same scene, where each image is
generated at a slightly different viewpoint, explain how one can
recover the absolute real-world coordinates of objects, or points on
objects, with suitably calibrated cameras. How can one effectively
exploit the use of more than two such stereo images? How would you
suggest organizing the cameras for this type of multiple camera stereo
in order to minimize ambiguities?

3. Describe, in detail, one approach to the construction of the two-and-a-
half-dimensional sketch and identify any assumptions exploited by the
component processes.

4. s the two-and-a-half-dimensional sketch a useful representation in its
own right or is it merely an intermediate representation used in the
construction of higher-level object descriptions?

5. ‘The sole objective of image understanding systems is to derive
unambiguous, four-dimensional (spatio-temporal) representations of
the visual environment and this can be accomplished by the judicious
use of early and late visual processing.” Evaluate this statement
critically.

6. ‘Image understanding systems are not intelligent; they are not capable
of perception, and, in effect, they do not understand their
environment.’ Discuss the validity of this statement.

7. Do exercise 1 in Chapter 1.

References and further reading

Ahuja, N., Bridwell, N., Nash, C. and Huang, T.S. 1982 Three-Dimensional Robot Vision,
Conference record of the 1982 workshop on industrial application of machine vision,
Research Triangle Park, NC, USA, pp. 206-13.

Arun, K.S., Huang, T.S. and Blostein, S.D. 1987 ‘Least-squares fitting of two 3-D point
sets’, IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. PAMI-9,
No. 5, pp. 698-700.

Bamieh, B. and De Figueiredo, R.J.P. 1986 ‘A general moment-invariants/attributed-graph
method for three-dimensional object recognition from a single image’, IEEE Journal
of Robotics and Automation, Vol. RA-2, No. 1, pp. 31-41.

Barnard, S.T. and Fischler, M.A. 1982 Computational Stereo, SR1 International, Technical
Note No. 261.

Ben Rhouma, K., Peralta, L. and Osorio, A. 1983 ‘A “K2D” perception approach for

249

Introduction to image understanding

assembly robots’, Signal Processing II: Theory and Application, Schurrler, HW.
(ed.), Elsevier Science Publishers B.V. (North-Holland), pp. 625-32.

Besl, P.J. and Jain, R. 1985 ‘Three-dimensional object recognition’, ACM Computing
Surveys, Vol. 17, No. 1, pp. 75—145.

Bhanu, B. 1984 ‘Representation and shape matching of 3-D objects’, IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. PAMI-6, No. 3, pp. 340-51.
Brady, M. 1982 ‘Computational approaches to image understanding’, ACM Computing

Surveys, Vol. 14, No. 1, pp. 3-71.

Brooks, R.A. 1981 ‘Symbolic reasoning among 3-D models and 2-D images’, Artificial
Intelligence, Vol. 17, pp. 285—-348.

Brooks, R.A. 1983 ‘Model-based three-dimensional interpretations of two-dimensional
images’, IEEE Transactions on Pattern Analysis and Machine Inielligence,
Vol. PAMI-5, No. 2, pp. 140-50. _

Dawson, K. and Vernon, D. 1990 ‘Implicit model matching as an approach to three-
dimensional object recognition’, Proceedings of the ESPRIT Basic Research Action
Workshop on ‘Advanced Matching in Vision and Artificial Intelligence’, Munich, June
1990.

Fang, J.Q. and Huang, T.S. 1984 ‘Some experiments on estimating the 3-D motion
parameters of a rigid body from two consecutive image frames’, IEEE Transactions
on Pattern Analysis and Machine Intelligence, Vol. PAMI-6, No. 5, pp. 545-54.

Fang, J.Q. and Huang, T.S. 1984 ‘Solving three-dimensional small rotational motion
equations: uniqueness, algorithms and numerical results’, Computer Vision, Graphics
and Image Processing, No. 26, pp. 183-206.

Fischler, M.A. and Bolles, R.C. 1986 ‘Perceptual organisation and curve partitioning’, JEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-8, No. 1,
pp. 100-5.

Frigato, C., Grosso, E., Sandini, G., Tistarelli, M. and Vernon, D. 1988 ‘Integration of
motion and stereo’, Proceedings of the 5th Annual ESPRIT Conference, Brussels,
edited by the Commission of the European Communities, Directorate-General
Telecommunications, Information Industries and Innovation, North-Holland,
Amsterdam, pp. 616-27.

Guzman, A. 1968 ‘Computer Recognition of Three-Dimensional Objects in a Visual Scene’,
Ph.D. Thesis, MIT, Massachusetts.

Haralick, R.M., Watson, L.T. and Laffey, T.J. 1983 ‘The topographic primal sketch’, The
International Journal of Robotics Research, Vol. 2, No. 1, pp. 50-72.

Hall, E.L. and McPherson, C.A. 1983 ‘Three dimensional perception for robot vision’,
Proceedings of SPIE, Vol. 442, pp. 11742,

Healy, P. and Vernon, D. 1988 ‘Very coarse granularity parallelism: implementing 3-D
vision with transputers’, Proceedings Image Processing °88, Blenheim Online Ltd,
London, pp. 229-45.

Henderson, T.C. 1983 ‘Efficient 3-D object representations for industrial vision systems’,
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-5,
No. 6, pp. 609—18.

Hildreth, B.C. 1983 The Measurement of Visual Motion, MIT Press, Cambridge, USA.
Horaud, P., and Bolles, R.C. 1984 ‘3DPO’s strategy for matching 3-D objects in range
data’, International Conference on Robotics, Atlanta, GA, USA, pp. 78-85.
Horn, B.K.P. and Schunck, B.G. 1981 ‘Determining optical flow’, Artificial Intelligence, 17,

Nos 1-3 pp. 185-204.

250

References and further reading

Horn, B.K.P. and Ikeuchi, K. 1983 Picking Parts out of a Bin, Al Memo No. 746, MIT Al
Lab.

Huang, T.S. and Fang, J.Q. 1983 ‘Estimating 3-D motion parameters: some experimental
results’, Proceedings of SPIE, Vol. 449, Part 2, pp. 435-7.

Ikeuchi, K. 1983 Determining Attitude of Object From Neddle Map Using FExtended
Gaussian Image, MIT Al Memo No. 714.

Tkeuchi, K., Nishihara, H.K., Horn, B.K., Sobalvarro, P. and Nagata, S. 1986 ‘Determining
grasp configurations using photometric stereo and the PRISM binocular stereo
system’, The International Journal of Robotics Research, Vol. 5, No. 1, pp. 46—65.

Jain, R.C. 1984 ‘Segmentation of frame sequences obtained by a moving observer’, IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-6, No. 5,
pp. 624-9.

Kanade, T. 1981 ‘Recovery of the three-dimensional shape of an object from a single view’,
Artificial Intelligence, Vol. 17, pp. 409—-60.

Kanade, T. 1983 ‘Geometrical aspects of interpreting images as a 3-D scene’, Proceedings
of the IEEE, Vol. 71, No. 7, pp. 789-802.

Kashyap, R.L. and Oomen, B.J. 1983 ‘Scale preserving smoothing of polygons’, IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-5, No. 6,
pp. 667-71.

Kim, Y.C. and Aggarwal, J.K. 1987 ‘Positioning three-dimensional objects using stereo
images’, IEEE Journal of Robotics and Automation, Vol. RA-3, No. 4, pp. 361-73.

Kuan, D.T. 1983 ‘Three-dimensional vision system for object recognition’, Proceedings of
SPIE, Vol. 449, pp. 366-72.

Lawton, D.T. 1983 ‘Processing translational motion sequences’, CVGIP, 22, pp. 116—44.

Lowe, D.G. and Binford, T.0O. 1985 ‘The recovery of three-dimensional structure from
image curves’, IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. PAMI-7, No. 3, pp. 320-6.

Marr, D. 1976 ‘Early processing of visual information’, Philosophical Transactions of the
Royal Society of London, B275, pp. 483—524.

Marr, D. and Poggio, T. 1979 ‘A computational theory of human stereo vision’, Proceedings
of the Royal Society of London, B204, pp. 301-28.

Marr, D. 1982 Vision, W.H. Freeman and Co., San Francisco.

Martin, W.N. and Aggarwal, J.K. 1983 ‘Volumetric descriptions of objects from multiple
views’, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-
5, No. 2, pp. 150-8.

McFarland, W.D. and McLaren, R.W. 1983 ‘Problem in three dimensional imaging’,
Proceedings of SPIE, Vol. 449, pp. 148-57.

McPherson, C.A., Tio, J.B.K., Sadjadi, F.A. and Hall, E.L. 1982 ‘Curved surface
representation for image recognition’, Proceedings of the IEEE Computer Society
Conference on Pattern Recognition and Image Processing, Las Vegas, NV, USA,
pp. 363-9.

McPherson, C.A. 1983 ‘Three-dimensional robot vision’, Proceedings of SPIE, Vol. 449,
part 4, pp. 116-26.

Nishihara, H.K. 1983 ‘PRISM: a practical realtime imaging stereo matcher’, Proceedings of
SPIE, Vol. 449, pp. 134—42.

Pentland, A. 1982 The Visual Inference of Shape: Computation from Local Features, Ph.D.
Thesis, Massachusetts Institute of Technology.

Poggio, T. 1981 Marr’s Approach to Vision, MIT Al Lab., Al Memo No. 645.

251

Introduction to image understanding

Pradzy, K. 1980 ‘Egomotion and relative depth map from optical flow’, Biol. Cybernetics,
36, pp. 87-102.

Ray, R., Birk, J. and Kelley, R.B. 1983 ‘Error analysis of surface normals determined by
radiometry’, IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. PAMI-5, No. 6, pp. 631-71.

Roberts, L.G. 1965 ‘Machine perception of three-dimensional solids’ in Optical and Electro-
Optical Information Processing, J.T. Tippett et al. (eds), MIT Press, Cambridge,
Massachusetts, pp. 159-97.

Safranek, R.J. and Kak, A.C. 1983 ‘Stereoscopic depth “perception for robot vision;
algorithms and architectures’, Proceedings of IEEE International Conference on
Computer Design: VLSI in Computers (ICCD °83), Port Chester, NY, USA, pp. 76-9.

Sandini, G. and Tistarelli, M. 1985 ‘Analysis of image sequences’, Proceedings of the IFAC
Symposium on Robot Control.

Sandini, G. and Tistarelli, M. 1986 Recovery of Depth Information: Camera Motion
Integration Stereo, Internal Report, DIST, University of Genoa, Italy.

Sandini, G. and Tistarelli, M. 1986 ‘Analysis of camera motion through image sequences’,
in Advances in Image Processing and Pattern Recognition, V. Cappellini and R.
Marconi (eds), Elsevier Science Publishers B.V. (North-Holland), pp. 100-6.

Sandini, G. and Vernon, D. 1987 ‘Tools for integration of perceptual data’, in ESPRIT *86:
Results and Achievements, Directorate General XIII (eds), Elsevier Science Publishers
B.V. (North-Holland), pp. 855-65.

Sandini, G., Tistarelli, M. and Vernon, D. 1988 ‘A pyramid based environment for the
development of computer vision applications’, IEEE International Workshop on
Intelligent Robots and Systems, Tokyo.

Sandini, G. and Tistarelli, M. 1990 ‘Active tracking strategy for monocular depth inference
from multiple frames’, IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 12, No. 1, pp. 13-27.

Schenker, P.S. 1981 “Towards the robot eye: isomorphic representation for machine vision’,
SPIE, Vol. 283, ‘3-D machine reception’, pp. 30—47.

Shafer, S.A. 1984 Optical Phenomena In Computer Vision, Technical Report TR 135,
Computer Science Department, University of Rochester, Rochester, NY, USA.
Vernon, D. and Tistarelli, M. 1987 ‘Range estimation of parts in bins using camera motion’,
Proceedings of SPIE’s 31st Annual International Symposium on Optical and
Optoelectronic Applied Science and Engineering, San Diego, California, USA, 9

pages.

Vernon, D. 1988 Isolation of Perceptually-Relevant Zero-Crossing Contours in the
Laplacian of Gaussian-filtered Images, Department of Computer Science, Trinity
College, Technical Report No. CSC-88-03 (17 pages).

Vernon, D. and Sandini, G. 1988 ‘VIS: A virtual image system for image understanding’,
Software Practice and Experience, Vol. 18, No. 5, pp. 395-414.

Vernon, D. and Tistarelli, M. 1991 ‘Using camera motion to estimate range for robotic parts
manipulation’, accepted for publication in the IEEE Transactions on Robotics and
Automation.

Wertheimer, M. 1958 ‘Principles of perceptual organisation’, in D.C. Beardslee and M.
Wertheimer (eds), Readings in Perception, Princeton, Van Nostrand.

Wu, C.K., Wang, D.Q. and Bajcsy, R.K. 1984 ‘Acquiring 3-D spatial data of a real object’,
Computer Vision, Graphics, and Image Processing, Vol. 28, pp. 126-33.

252

Appendix: Separability of
the Laplacian of Gaussian
operator

The Laplacian of Gaussian operator is defined:
V2(I(x, »)* G(x,)} = V’G(x, »)* I(x, ¥)

where I(x, y) is an image function and G(x, y) is the two-dimensional Gaussian
function defined as follows:

1
5o exp[—(x?+y?)[20%

The Laplacian is the sum of the second-order unmixed partial derivatives:

0% 9?

ot T3

dx* dy

This two-dimensional convolution is separable into four one-dimensional
convolutions:

G(x,y)=
V=

2
VI(x,)+ G(x,)} = G(x) * {I(x,y)* 5"’;2 G(y)}

+G(y)* [I(x,y)* %2-5 G(x)}

This can be shown as follows:

2 2
P60) = (St) (10030 + s expl= (45320

2
=5‘3).C_2 (I(x,y)* # exp [— (x* +y2)/202]>

253

Appendix

+ 2 (I(x, »)*

270?

557 exp[—(x? +y2)/202]>

62
=342 (I(X,J’)*
2

d
+~___.
ay?

573 €Xp (— x*[20?) exp (—y2/202)>

<I(x,y)* 53 eXp (- x*/20%) exp (—y2/202)>

2
= (ﬁr; exp (—y2/202)<5‘2;j§—%r;exp (- x2/202>) *I(x, y)

__1_ L w2(n 2 3_2 1
+ QZFGexP(x*[20)(ayszZraexP (_.yz/zaz» *I(x, y)
62 aZ
) {G(x) ay? G(y)} *1(x, y) + {G(y) e G(x)} * I(x, y)

L;:t (3%/3x®G(x) be A(x) and let (3%/ay*)G(») be A(»), then we can rewrite the
apove as:

=(G(x) AN *I(x, »)+ (G(y) A(x)} * I(x,)
Noting the definition of the convolution integral:

seeyyene)= |~ " fe-my=n) hom,n) am an

we can expand the above:

Il

S_w S: G(x—m) A(y~n) I(m,n)dmdn

* S—w S_m G(y—n) A(x—m) I(m,n) dm dn

=]

A(y—n) I(m,n)dn dm

g: G(x—m) 5_

+ S_w G(y—n) ST A(x—m) I(m,n) dm dn

aZ 2
— G(x)* {I(x, 02y G(y)} LG [1<x, e G(x)}

254

Index

@ posteriori probability, 127-8
a priori probability, 127
action, 248
adaptors, 18
adjacency conventions, 35
albedo, 244
aliasing, 191
analogue-to-digital converters, 10
aperture, 17
aperture problem, 235
architecture

vision systems, 9—12
arithmetic operations, 44
aspect ratio

images, 34

shape, 124

video signal, 23
auto-iris lens, 16
automated visual inspection, 4

back-lighting, 15

background subtraction, 52-3

bandwidth, 29 '

bayonet mounts, 18

BCC, see boundary chain code

bi-linear interpolation, 72—-4

blanking period, 22

blemishes, 137

blooming, 25, 26

boundary chain code, 111, 145
re-sampling, 148—50

boundary detection, 85, 86, 108—14
boundary refining, 109

contour following, 110—14, 193

divide-and-conquer, 109

dynamic programming, 110

graph-theoretic techniques, 109

iterative end-point fit, 109
bright field illumination, 137
buses, 37

CCIR (International Radio Consultative
Committee), 22—3

C mount, 18
camera
CCD, 15, 25

commercially available systems, 26, 27
exposure time, 16
integration time, 16
interfaces, 22—3
line scan, 22
linear array, 21
model, 192, 196—200, 224
motion, 231-40
mounts, 18
plumbicon, 20
shutter-speed, 16
vidicon, 19

Cartesian space, 157

CCD cameras, 15

centroid, 144

CIM, 5

circularity, 124

classification, 124-30, 140
Bayes’ rule, 12630
maximum likelihood, 126-30

255

classification (continued)
nearest-neighbour, 125-6

closing, 78-9

compliant manipulation, 7

compression, 107

computer integrated manufacturing, 5

computer vision, 1-2

conditional probability, 127-9

continuous path control, 170

contrast stretching, 42, 45, 46—9

control points, 68, 200

convex hull, 141

convolution, 53-6

coordinate frames, 157—64

critical connectivity, 62

cross-correlation, 99, 119, 121, 145

data fusion, 212
decalibration,
geometric, 67, 74
photometric, 45
decision theoretic approaches, 122-30
depth, recovery of, 202-7, 211, 239
depth of field, 18
difference operators, 92—9
diffuse lighting, 15
digital image
acquisition and representation, 28—42
definition of, 2
digitizer
line scan, 22, 37
slow-scan, 37
variable-scan, 37
video, 28
dilation, 53, 63—6, 76—8
discontinuities, in intensity, 32, 85
dynamic programming, 110

edge,

definition of, 85

detection
assessment of, 106
difference operators, 92—9
edge-fitting, 103—4
gradient operators, 92—9
Hueckel’s operator, 103—4
Kirsch operator, 100
Laplacian, 97-8

Index

Laplacian of Gaussian, 98—9
Marr—Hildreth operator, 98~9, 191
multi-scale edge detection, 99
Nevatia—Babu operator, 101-2
non-maxima suppression, 102
Prewitt operators, 95-7, 100
Roberts operators, 93, 97
Sobel operators, 93-5, 97
statistical operators, 105
template matching, 99—103
Yakimovsky operator, 105

egocentric motion, 234

end effector trajectory, 170

enhancement, 42, 53

erosion, 53, 61, 63—6, 76—8

Euclidean distance, 119-20

exposure time, 16

extended Gaussian image (EGI), 228

extension tube, 18

Sf-number, 17, 18
feature
extraction, 122
vector, 123
fiducial points, 68
field-of-view, 17
filters
infra-red blocking, 19
low-pass, 56
median, 58
optical, 19
polarizing, 19
real-time, 42
flexible automation, 5
fluorescent lighting, 15
focal length, 17
Fourier
series expansion, 142-3
transform, 30
frame-grabber, 10, 28, 38-9
frame-store, 28, 38-9
full primal sketch, 215, 221

gamma, 24
gauging, 6, 34
Gaussian,
smoothing, 59-61, 214
Gauss map, 228

256

generalized
cone, 225-6
cylinder, 225-6
Gestalt

figural grouping principles, 221

psychology, 221
geometric

decalibration, 67

faults, 24

operations, 45, 67-74
gradient operators, 92—9
grey-scale

operations, 45

resolution, 28
grouping principles, 221

heterarchical constraint propagation,
212-13

histogram

analysis, 136—8

energy, 138

equalization, 49

grey-level, 49

kurtosis, 138

mean, 137

skewness, 137

smoothing, 89

variance, 137
hit or miss transformation, 75
homogeneous coordinates, 158
homogeneous transformations, 158—63
Hough transform, 118

accumulator, 131

circle detection, 133—4

generalized, 134—-6

line detection, 130-3
Hueckel’s operator, 103—4

illumination
back-lighting, 15
bright field, 137
control of, 16
diffuse, 15
fluorescent, 15
incandescent bulbs, 15
infra-red, 15
strobe, 16
structured light, 156, 203—~7

Index

image

acquisition, 9, 28

adjacency conventions, 35

analysis, 9-10, 44, 118-38

definition of, 2

formation, 9

inter-pixel distance, 34

interpretation, 10

processing, 2, 910, 44—83

quantization, 28-9

registration, 67

representation, 28—37

resolution, 29

sampling, 28-34

subtraction, 52-3

understanding, 3, 211—48
impulse response, 55
incandescent bulbs, 15
information representations, 3
infra-red radiation, 15
inspection, 6, 118
integral geometry, 151
integrated optical density, 123
integration time, 16
inter-pixel distances, 34
interlaced scanning, 22
interpolation

bi-linear, 72—4

grey-level, 68, 71—4

nearest neighbour, 72
inverse kinematic solution, 157, 168
inverse perspective transformation, 192,

196, 200-3, 230

joint space, 157

kinematic solution, 157
Kirsch operator, 157

lag, 25
Laplacian, 97—8
Laplacian of Gaussian, 98-9, 214
Lambertian surface, 243
lens
adaptors, 18
aperture, 17
auto-iris, 16
bayonet mounts, 18

257

lens (continued)
C mount, 18
depth of field, 18
equation, 17
extension tubes, 18
f-number, 17, 18
field-of-view, 17
focal length, 17
minimum focal distance, 18
light striping, 204
line frequency, 22
line scan sensors, 22
linear array sensors, 21
linear system theory, 44, 55
look-up tables (LUTSs), 42

machine vision, 3—4, 211
manipulation

compliant, 7
manufacturing systems, 4—6
Marr, David, 21314
Marr—Hildreth operator, 89, 98-9, 191,

214

mathematical morphology, 64, 140

closing, 78—9

dilation, 76~8

erosion, 76—8

grey-level, 80-3

hit or miss transformation, 75

Minkowski subtraction, 77

opening, 78-9

structuring element, 75

thinning, 79-80
medial axis transform, 61, 150
median filter, 58
minimum bounding rectangle, 124, 141
minimum focal distance, 18
model driven vision, 213
moments, 143-5

central, 144

from boundary chain code, 150

invariants, 144—5
morphological operations, 74—83
motion,

detection, 52

egocentric, 234

measurement, 231-40
multi-scale edge detection, 99

Index

nearest neighbour interpolation, 72
neighbourhood operations, 45, 53—66
Nevatia—Babu operator, 101-2
NTSC (National Television Systems
Committee), 22

noise

sensor, 26

suppression, 51-2, 53, 56—61
non-maxima suppression, 102
normal contour distance, 151
Nyquist frequency, 32

object recognition, 211, 227-8

occluding boundaries, 245

oct-tree, 225

opening, 78-9

operations,
geometric, 45, 67-74
morphological, 74—-83
neighbourhood, 45, 53-66
point, 45-53

optic flow vector, 233-5

optics,17-19

pattern recognition, 118
statistical, 122-30
perception, 1, 2, 248
perimeter length, 141
photometric decalibration, 45, 53
photosites, 20
picture frame frequency, 22
pixel, 28
plumbicon, 20, 25
point operations, 45—53
point-to-point control, 170
polyhedral models, 226, 248
porch, 23
power supply, 16
Prewitt operators, 95~7
probability,
a posteriori, 127-8
a priori, 127
conditional, 127-9
density function, 127
product quality, 5

quad-trees, 107, 225
quantization, 28—9

258

radii signatures, 145
range data, 3, 211
range estimation, 202-7, 239
raster field frequency, 22
raw primal sketch, 214—15
real-time processing, 40
rectangularity, 124
reflectance
function, 28
map, 244
model, 243
region growing, 85, 106—8
registration, 67, 74
reliability, 5
representations
extended Gaussian image (EGI), 228
full primal sketch, 215, 221
generalized cone, 225-6
generalized cylinder, 225-6
iconic, 223
image, 2837
oct-tree, 225
organisation of, 4, 212—14
polyhedral, 226
quad-trees, 107, 225
raw primal sketch, 214-15
skeletal, 224, 225-6
surface, 224, 226—8
three-dimensional model, 223, 2248
two-and-a-half-dimensional sketch,
221-4
viewer-centred, 223
volumetric, 2245
residual concavities, 141
resolution, 23—4, 28, 29
Roberts operators, 93, 97
robot programming, 156—89
Cartesian space, 157
coordinate frames, 157
guiding systems, 157
inverse kinematic solution, 157
joint space, 157
kinematic solution, 157
language, 181—4
off-line programming, 157
robot-level systems, 157
task-level systems, 157
task specification, 164

Index

teach pendant, 157
robot vision, 4, 156, 189
RS-170, 22

safety, 5
sampling, 28-34
Nyquist, 32
scalar transform techniques, 141—5
scene analysis, 3
segmentation, 15, 42, 85-114, 137, 211
boundary detection, 85, 86
region growing, 85
thresholding, 86—90
sensitivity, 24, 25
sensors, 17-27
blooming, 25, 26

CCD, 20-2
characteristics, 23—7
gamma, 24
geometric faults, 24
lag, 25

line scan, 22
linear array, 21
noise, 26
optics, 17-19
resolution, 23—4
sensitivity, 24
signal-to-noise ratio, 26
spectral sensitivity, 25
transfer linearity, 24
sensory feedback, 4—6
set
complement, 74
inclusion, 74
intersection, 75
theory, 74—5
translation, 75
union, 74
shading, 243
Shannon’s sampling theorem, 32
shape descriptors, 124, 130-53
circularity, 124
convex hull, 141
Fourier series expansion, 142-3
integral geometry, 151
medial axis transform, 150
minimum bounding rectangle, 124, 141

259

Index

shape descriptors (continued)
moments, 143-5, 150
normal contour distance, 151
perimeter length, 141
radii signatures, 145
rectangularity, 124, 141
residual concavities, 141
scalar transform techniques, 141-5
smoothed local symmetry, 151-3
space domain techniques, 141, 145-53
syntactic, 145
taxonomy, 141
shutter speed, 16
signal-to-noise ratio, 26
similarity measures,
cross-correlation, 99, 119, 121
Euclidean distance, 119-20
skeleton, 53, 61, 191
SLS, 61
smoothed local symmetry (SLS), 61, 151-3
smoothing, 58—61
Sobel operators, 93-5, 97
sorting, 6
space domain techniques, 141, 145-53
spatial
frequency, 29, 30, 56
warping, 67-74
spectral sensitivity, 25
specular reflections, 19, 137
split and merge procedure, 107—8
station frame, 162
statistical pattern recognition, 122—30
stereo
correspondence, 231
disparity, 230
stereopsis, 230-1
strobe light, 16
structured light, 156, 203-7
structuring element, 75
surface normal vector, 222, 248
surface orientation, 245, 247, 248
synchronization pulses, 20, 22
syntactic descriptors, 145

tactile sensing, 4
task specification, 164

teach pendant, 157
template matching,
edges, 99—-103
local, 121
patterns, 118, 119-22
thinning, 53, 61-3, 79-80, 190
threshold selection, 87-90
thresholding, 42, 46, 4951, 86-90, 190
trajectory control, 157
transfer function, 55
transfer linearity, 24
triangulation, 207
TV signals, 9
two-and-a-half-dimensional sketch, 221—4

vector
cross product, 159
dot product, 159
rotation, 160
translation, 160
velocity vector, 235
video signals, 9
aspect ratio, 23
bandwidth, 29
blanking period, 22
interfaces, 22—-3
interlaced scanning, 22
line frequency, 22
picture frame frequency, 22
porch, 23
raster field frequency, 22
standards
CCIR (International Radio
Consultative Committee), 22—3
NTSC (National Television Systems
Committee), 22
RS-170, 22
vidicon, 19, 25
voxel, 225

wire crimping, 164
Yakimovsky operator, 105

zero-crossings, 98, 214

260

MACHINE VISION

Automated Visual Inspection and Robot Vision

David Vernon

Machine vision, an evolving and fascinating topic, is a multi-
disciplinary subject, utilising techniques drawn from optics,
electronics, mechanical engineering, computer science and artificial
intelligence. This book provides an in-depth introduction to
machine vision allowing the reader to quickly assimilate and
comprehend all the necessary issues in industrial vision: sensors,
image acquisition, processing, analysis, and integration with robot
systems. Practical aspects are treated equally with theoretical issues,
equipping the reader with the understanding to implement a

vision system.

Special features of the book include:

e Complete, self-contained treatment of all topics essential to the
implementation of industrial vision systems, from cameras
to robots

® Detailed case-study (chapter 8) introducing robot manipulation
® State-of-the-art developments in 3D robot vision

The author, Dr David Vernon, a lecturer at Trinity College, Dublin,
Ireland, has lectured undergraduate and postgraduate courses on
computer vision since 1983. He has also designed and presented
several courses on machine vision to industry and is active in several
international research projects in machine vision.

-

ISBN 0-13-543394-3

x%g;? | 95;:” ‘“ N“
9 "780135"433980

Prentice Hall

	Prelims.pdf
	Chap001.pdf
	Chap002.pdf
	Chap003.pdf
	Chap004.pdf
	Chap005.pdf
	Chap006.pdf
	Chap007.pdf
	Chap008.pdf
	Chap009.pdf

