
April 2015 Doc ID16895 Rev 2 1/24

1

AN3126
Application note

Audio and waveform generation using the DAC in 
 STM32 microcontrollers

 

Introduction

This application note provides some examples for generating audio waveforms using the 
Digital to Analog Converter (DAC) peripheral embedded in the microcontrollers of the 
STM32Fx and STM32Lx series.

This document applies to products listed in Table 1, and should be read in connection with 
application note AN4566 “Extending the DAC performance of STM32 microcontrollers”.

A digital to analog converter, DAC, is a device that has the opposite function to that of an 
analog to digital converter, i.e. it converts a digital word to a corresponding analog voltage.

The STM32 DAC module is a 12-bit word converter, with up to three output channels to 
support audio functions.

The DAC can be used in many audio applications such as security alarms, Bluetooth 
headsets, talking toys, answering machines, man-machine interfaces, and low-cost music 
players

STM32 DAC can also be used for many other analog purposes, such as analog waveform 
generation and control engineering.

The application note is organized in two main sections:

• Section 1 describes the main features of the STM32 DAC module.

• Section 2 presents two examples.

– In the first example, the DAC is used to generate a sine wavefom.

– In the second example, the DAC is used to generate audio from .WAV files.

Table 1. Applicable products

Type Product series

Microcontrollers

STM32F0

STM32F1

STM32F2

STM32F3

STM32F4

STM32F7

STM32L0

STM32L1

STM32L4

www.st.com

http://www.st.com


Contents AN3126

2/24 Doc ID16895 Rev 2

Contents

1 DAC main features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Data format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Dual channel mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Dedicated timers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 DMA capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 DMA underrun error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.7 White noise generator  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.7.1 Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.7.2 Typical applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.8 Triangular wave generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

1.8.1 Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.8.2 Typical applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.9 Buffered output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Application examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Using the DAC to generate a sine waveform . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.2 Digital Sine waveform pattern preparation . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.3 Fixing the sine wave frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Using the DAC to implement an audio wave player . . . . . . . . . . . . . . . . . 18

2.2.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Audio wave file specifications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.3 .WAV file format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Audio wave player implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Revision history  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23



Doc ID16895 Rev 2 3/24

AN3126 List of tables

3

List of tables

Table 1. Applicable products  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. DAC configurations for STM32 microcontrollers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 3. Preprogrammable triangular waveform amplitude values. . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 4. Digital and analog sample values of the sine wave  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 5. Document revision history  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23



List of figures AN3126

4/24 Doc ID16895 Rev 2

List of figures

Figure 1. DAC data format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 2. STM32F100x DAC trigger channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 3. DAC interaction without DMA  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 4. DAC interaction with DMA  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 5. Pseudo random code generator embedded in the DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 6. Noise waveform  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 7. Noise waveform with changeable offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 8. Triangular waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 9. Triangular waveform with changeable offset  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 10. Non buffered channel voltage (with and without load)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 11. Buffered channel voltage (with and without load) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 12. Sine wave model samples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 13. Sine wave generated with ns = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 14. Sine wave generated with ns = 255 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 15. Flow of data from MicroSD Flash memory to external speakers  . . . . . . . . . . . . . . . . . . . . 18
Figure 16. Wave Player flowchart  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 17. CPU and DMA activities during wave playing process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21



Doc ID16895 Rev 2 5/24

AN3126 DAC main features

23

1 DAC main features

1.1 Overview

STM32 microcontrollers integrate DAC with different configurations and features:

• 1 to 3 DAC output channels

• Noise waveform generation

• Triangular waveform generation

• DMA under run flag

• Dedicated analog clock

Table 2 summarizes the different STM32 DAC configuration.

Table 2. DAC configurations for STM32 microcontrollers 

Series Product RPN
DAC 

outputs
White noise 
generator

Triangular 
wave 

generator

DMA 
capability

DMA 
underrun 

error

F0

STM32F030xx
STM32F031xx
STM32F038xx
STM32F042xx
STM32F048xx
STM32F070xx

0 - - - -

STM32F051xx
STM32F058xx

1 No No Yes No

STM32F071xx
STM32F072xx
STM32F078xx
STM32F091xx
STM32F098xx

2 Yes Yes Yes Yes

F1

STM32F101x4/6/8B
STM32F102xx

STM32F103x4/6/8B
0 - - - -

STM32F100xx
STM32F101xC/D/E/F/G
STM32F103xC/D/E/F/G

STM32F105xx
STM32F107xx

2 Yes Yes Yes Yes

F2 STM32F2xxxx 2 Yes Yes Yes Yes



DAC main features AN3126

6/24 Doc ID16895 Rev 2

F3

STM32F301xx
STM32F302xx
STM32F318xx

1 Yes Yes Yes Yes

STM32F303xB/C/D/E
STM32F358xx
STM32F398xx

2 Yes Yes Yes Yes

STM32F3328
STM32F3334
STM32F3373
STM32F3378

3
Yes

(only for 2 
channels)

Yes
(only for 2 
channels)

Yes Yes

F4

STM32F401xx
STM32F411xx

0 - - - -

STM32F405xx
STM32F407xx
STM32F415xx
STM32F417xx
STM32F427xx
STM32F429xx
STM32F437xx
STM32F439xx
STM32F446xx

2 Yes Yes Yes Yes

F7 STM32F7xxxx 2 Yes Yes Yes Yes

L0

STM32L031xx
STM32L041xx
STM32L051xx
STM32L071xx
STM32L081xx

0 - - - -

STM32L052xx
STM32L053xx
STM32L062xx
STM32L063xx

1 Yes Yes Yes Yes

L1 STM32L1xxxx 2 Yes Yes Yes Yes

L4 STM32L4xxxx 2 Yes Yes Yes Yes

Table 2. DAC configurations for STM32 microcontrollers (continued)

Series Product RPN
DAC 

outputs
White noise 
generator

Triangular 
wave 

generator

DMA 
capability

DMA 
underrun 

error



Doc ID16895 Rev 2 7/24

AN3126 DAC main features

23

1.2 Data format

The DAC accepts data in 3 integer formats: 8-bit, 12-bit right aligned and 12-bit left aligned. 
A 12-bit value can range from 0x000 to 0xFFF, with 0x000 being the lowest and 0xFFF 
being the highest value.

Figure 1. DAC data format

1.3 Dual channel mode

Note: This feature is supported only for products that embed at least 2 DACs.

The DAC has two output channels, each with its own converter. In dual DAC channel mode, 
conversions could be done independently or simultaneously.

When the DAC channels are triggered by the same source, both channels are grouped 
together for synchronous update operations and conversions are done simultaneously.

1.4 Dedicated timers

In addition to the software and External triggers, the DAC conversion can be triggered by 
different timers.

TIM6 and TIM7 are basic timers and are basically designed for DAC triggering.

Each time a DAC interface detects a rising edge on the selected Timer Trigger Output 
(TIMx_TRGO), the last data stored in the DAC_DHRx register is transferred to the 
DAC_DORx register (an example for STM32F100x is given in Figure 2).

ai18300



DAC main features AN3126

8/24 Doc ID16895 Rev 2

Figure 2. STM32F100x DAC trigger channels

1.5 DMA capabilities

The STM32 microcontrollers have a DMA module with multiple channels. Each DAC 
channel is connected to an independent DMA channel. In the case of STM32F100x 
Microcontrollers, the DAC channel 1 is connected to the DMA channel 3 and DAC channel2 
is connected to DMA channel 4.

When DMA is not utilized, the CPU is used to provide DAC with the pattern waveform. 
Generally the waveform is saved in a memory (RAM), and the CPU is in charge of 
transferring the data from RAM to the DAC.

Figure 3. DAC interaction without DMA 

ai18302

 
DAC 

 
RAM 

(Pattern Table 1) 
(Pattern Table 2) 

Channel 1 
Output 

Channel 2 
Output 

DAC Triggers 

CPU 



Doc ID16895 Rev 2 9/24

AN3126 DAC main features

23

When using the DMA, the overall performance of the system is increased by freeing up the 
core. This is because data is moved from memory to DAC by DMA, without needing any 
actions by the CPU. This keeps CPU resources free for other operations.

Figure 4. DAC interaction with DMA

1.6 DMA underrun error

When the DMA is used to provide DAC with the pattern waveform, there are some cases 
where the DMA transfer is faster than the DAC conversion, In this case, DAC detects that a 
part of the pattern waveform has been ignored and was not converted. It then sets the "DMA 
underrun Error" flag.

The underrun error can be handled using a shared IRQ channel with the triggering Timer or 
by a dedicated interrupt when DAC is not triggered by TIM6.

1.7 White noise generator

1.7.1 Definition 

The STM32 microcontrollers DAC provides user with a pseudo random code generator, 
sketched in Figure 5. Depending on what taps are used on the shift register, a sequence of 
up to 2n-1 numbers can be generated before the sequence repeats.

ai18303

 
DAC 

 
DMA 

 
RAM 

(Pattern Table 1) 
(Pattern Table 2) 

Channel 1 
Output 

Channel 2 
Output 

DAC Triggers 

CPU 



DAC main features AN3126

10/24 Doc ID16895 Rev 2

Figure 5. Pseudo random code generator embedded in the DAC

The noise produced by this generator has a flat spectral distribution and can be considered 
white noise. However, instead of having a Gaussian output characteristics, it is uniformly 
distributed, see Figure 6.

Figure 6. Noise waveform

The offset of the noise waveform is programmable. By varying this offset using a 
preconfigured table of offsets (signal pattern), user can obtain a waveform which correspond 
to the sum of the signal pattern and the noise waveform.



Doc ID16895 Rev 2 11/24

AN3126 DAC main features

23

Figure 7. Noise waveform with changeable offset

1.7.2 Typical applications

The STM32 microcontrollers come with 12-bit enhanced ADC with a sampling rate of up to 
1 M samples/s. In most applications, this resolution is sufficient, but in some cases where 
higher accuracy is required, the concept of oversampling and decimating the input signal 
can be implemented to save the use of an external ADC solution and to reduce the 
application power consumption.

More details about these methods are explained in the application note AN2668, in the 
section titled “Oversampling using white noise”.

White noise generator can be also used in the production of electronic music, usually either 
directly or as an input for a filter to create other types of noise signal. It is used extensively in 
audio synthesis, typically to recreate percussive instruments such as cymbals which have 
high noise content in their frequency domain.

White noise generator can be used for control engineering purposes, it can be used for 
frequency response testing of amplifiers and electronic filters. 

White noise is a common synthetic noise source used for sound masking by a Tinnitus 
masker. 

1.8 Triangular wave generator

1.8.1 Definition

The STM32 DAC provides the user with a triangular waveform generator with a flexible 
offset, amplitude and frequency.

Theoretically, a triangular waveform is a wave form comprised of an infinite set of odd 
harmonic sine waves (see Figure 9). 

The amplitude of the triangular waveform can be fixed using the MAMPx bits in the 
DAC_CR register.

ai18306

Noise waveform 

Pattern waveform (offset) 

Result waveform 



DAC main features AN3126

12/24 Doc ID16895 Rev 2

          

For more details about the triangular waveform, please read the dedicated sections in the 
reference manuals of the STM32 products.

The triangular waveform frequency is related to the frequency of the trigger source.

Figure 8. Triangular waveform

The offset of the triangular waveform is programmable (see Figure 9). By varying the offset 
of the triangular waveform with a preconfigured table of offsets (signal pattern), user can 
obtain a waveform which corresponds to the sum of the signal pattern and the triangular 
waveform.

Table 3. Preprogrammable triangular waveform amplitude values 

MAMPx[3:0] bits Digital Amplitude
Analog Amplitude (Volt)

(with Vref+ = 3.3V)

0 1 0.0016

1 3 0.0032

2 7 0.0064

3 15 0.0128

4 31 0.0257

5 63 0.0515

6 127 0.1031

7 255 0.2062

8 511 0.4125

9 1023 0.8250

10 2045 1.6483

≥ 11 4095 3.3000

ai18307

 
3.3V 

Time 

D
A

C
 o

ut
pu

t x
 V

ol
ta

ge
 

0V 

Offset 

Frequency 

Amplitude 



Doc ID16895 Rev 2 13/24

AN3126 DAC main features

23

Figure 9. Triangular waveform with changeable offset

1.8.2 Typical applications

Triangular wave generators are often used in sound synthesis as its timbre is less harsh 
than the square wave because the amplitude of its upper harmonics falls off more rapidly.

Triangular wave generator circuits are also used in many modem circuit applications.

1.9 Buffered output 

To drive external loads without using an external operational amplifier, DAC channels have 
embedded output buffers which can be enabled and disabled depending on the user 
application.

When the DAC output is not buffered, and there is a load in the user application circuit, the 
voltage output will be lower than the desired voltage. Enabling the buffer, the voltage output 
and the voltage desired are similar.

Figure 10. Non buffered channel voltage (with and without load)

Triangular waveform 

Pattern waveform (offset) 

Result waveform 

ai18308

ai18309

DAC 
DAC_Channel_1  

DOR = 0xFFF  


DAC 
DAC_Channel_1  

DOR = 0xFFF  
 3.3V 

 

R = 5.1K 

GND

1.2 V1.2 V

3.3 V

3.3 V3.3 V



DAC main features AN3126

14/24 Doc ID16895 Rev 2

Figure 11. Buffered channel voltage (with and without load)

ai18310

DAC 
DAC_Channel_1  

DOR = 0xFFF  


DAC 
DAC_Channel_1  

DOR = 0xFFF  
 3.3V 

 

R = 5.1K 

GND

3.3 V3.3 V

3.3 V

3.3 V3.3 V



Doc ID16895 Rev 2 15/24

AN3126 Application examples

23

2 Application examples

2.1 Using the DAC to generate a sine waveform

2.1.1 Description

This example describes step by step how to generate a sine waveform.

A sine waveform is also called a sine tone with a single frequency, it is known as a pure tone 
or sinus tone. The sine tones are traditionally used are stimuli in determining the various 
responses of the auditory system.

2.1.2 Digital Sine waveform pattern preparation

To prepare the digital pattern of the waveform, we have to do some mathematics.

Our objective is to have 10 digital pattern data (samples) of a sine wave form which varies 
from 0 to 2*PI. 

Figure 12. Sine wave model samples

The sampling step is (2*PI)/ ns (number of samples).

The result value of sin(x) is between -1 and 1, we have to recalibrate it to have a positive 
sinewave with samples varying between 0 and 0xFFF (which correspond, the range from 
0 V to 3.3 V).

ySineDigital x( ) x
2π
ns
------⋅⎝ ⎠

⎛ ⎞ 1+sin⎝ ⎠
⎛ ⎞ 0xFFF 1+( )

2
---------------------------------⎝ ⎠

⎛ ⎞=

Digital inputs are converted to output voltages on a linear conversion between 0 and VREF+.

The analog output voltages on each DAC channel pin are determined by the following 
equation:

DACOutput VREF
DOR

DAC_MaxDigitalValue
-----------------------------------------------------------=

ai18311

0 
1000 
2000 
3000 
4000 
5000 

0 2 4 6 81 3 5 7 9

ySineDigital

0 
0.805 
1.611 
2.147 
3.223 
4.029 

ySineAnalog(Volt) 



Application examples AN3126

16/24 Doc ID16895 Rev 2

Note: For right-aligned 12-bit resolution: DAC_MaxDigitalValue = 0xFFF

For right-aligned 8-bit resolution: DAC_MaxDigitalValue = 0xFF

So the analog sine waveform ySineAnalog can be determined by the following equation

ySineAnalog x( ) 3.3Volt
ySineDigital x( )

0xFFF 1+
-------------------------------------=

          

The table is saved in the memory and transferred by the DMA, the transfer is triggered by 
the same timer that triggers the DAC

2.1.3 Fixing the sine wave frequency

To fix the frequency of the sinewave signal, you have to set the frequency of the Timer 
Trigger output.

The frequency of the produced sine wave is 

fSinewave

fTimerTRGO

ns
------------------------------=

So, if TIMx_TRGO is 1 MHz, the frequency of the DAC sine wave is 10 kHz.

Note: To have a high quality sine wave curve, it is recommended to use a high number of samples 
ns (the difference can be appreciated by comparing Figure 13 with Figure 14).

Table 4. Digital and analog sample values of the sine wave 

Sample

(x)

Digital Sample Value

ySineDigital (x)

Analog Sample Value (Volt)

ySineAnalog(x)

0 2048 1.650

1 3251 2.620

2 3995 3.219

3 3996 3.220

4 3253 2.622

5 2051 1.653

6 847 0.682

7 101 0.081

8 98 0.079

9 839 0.676



Doc ID16895 Rev 2 17/24

AN3126 Application examples

23

Figure 13. Sine wave generated with ns = 10

Figure 14. Sine wave generated with ns = 255

ai18312

 

0

1

2

3

4

ySineAnalog(Volt) 

time 

ai18313

 

0 
1000 
2000 
3000 
4000 
5000 

0 51 102 153 204

ySineDigital 

0

0.805

1.611

2.147

3.223

4.029

ySineAnalog(Volt)

255 
time



Application examples AN3126

18/24 Doc ID16895 Rev 2

2.2 Using the DAC to implement an audio wave player

2.2.1 Description

The purpose of this application demo is to provide an audio player solution for the STM32 
microcontroller for playing .WAV files. The approach is optimized to use a minimum number 
of external components, and offers the flexibility for end-users to use their own .WAV files. 
The audio files are provided to the STM32 from a MicroSD memory card. 

Figure 15. Flow of data from MicroSD Flash memory to external speakers

The audio wave player demonstration described in this section is a part of the  
STM32100B-EVAL demonstration firmware. You can download this firmware and the 
associated user manual (UM0891) from the STMicroelectronics website www.st.com.

ai18314

TIM6 

 
DAC 

 
DMA 

CPU SPI  
RAM 

.WAV 



Doc ID16895 Rev 2 19/24

AN3126 Application examples

23

2.2.2 Audio wave file specifications

This application assumes that the .WAV file to be played has the following format:

• Audio Format: PCM (an uncompressed wave data format in which each value 
represents the amplitude of the signal at the time of sampling)

• Sample rate: may be 8000, 11025, 22050 or 44100 Hz

• Bits Per Sample: 8-bit (Audio sample data values are in the range [0-255])

• Number of Channels: 1 (Mono)

2.2.3 .WAV file format

The .WAV file format is a subset of the Resource Interchange File Format (RIFF) 
specification used for the storage of multimedia files. A RIFF file starts with a file header 
followed by a sequence of data chunks. A .WAV file is often just a RIFF file with a single 
"WAVE" chunk consisting of two sub-chunks: 

1. a fmt chunk specifying the data format

2. a data chunk containing the actual sample data.

The WAVE file format starts with the RIFF header: it indicates the file length. 

Next, the fmt chunk describes the sample format, it contains information about: Format of 
the wave audio : (PCM/...), Number of channels (mono/stereo), sample rate (number of 
samples per seconds : e.g., 22050), and the sample Data size (e.g. 8bit/16bit). Finally, the 
data chunk contains the sample data.

2.3 Audio wave player implementation

The Audio wave player application is based on the SPI, DMA, TIM6, and DAC peripherals.

At start up, the application first uses the SPI to interface with the MicroSD card and parses 
its content, using the DOSFS file system, looking for available .wav files in the USER folder. 
Once a valid .wav file is found, it is read back though the SPI, and the data are transferred 
using the CPU to a buffer array located in the RAM. The DMA is used to transfer data from 
RAM to DAC peripheral. TIM6 is used to trigger the DAC which will convert the Audio digital 
data to an analog waveform.

Before the audio data can be played, the header of the WAV file is parsed so that the 
sampling rate of the data and its length can be determined.

The task of reproducing audio is achieved by using sampled data (data contained in the 
.WAV file) to update the value of the DAC output, this data is coded in 8 bits (with values 
from 0 to 255), 

The DAC Channel 1 is triggered by TIM6 at regular interval specified by the sample rate of 
the .WAV file header.

The .WAV files are read from the MicroSD Memory using a DosFS file system.

In the Demo code, code files handling the waveplayer demo are:

waveplayer.c

waveplayer.h

The wave player demo is called using WavePlayerMenu_Start() function which has the 
flowchart shown in Figure 16.



Application examples AN3126

20/24 Doc ID16895 Rev 2

Figure 16. Wave Player flowchart

(*) when DMA is transferring data from one RAM buffer, CPU is transferring data from the 
MicroSD Flash memory to the other RAM buffer.

ai18315

 

Enable DMA,TIM6,DAC clocks  

WavePlayer_menuStart()

Config DAC channel 1 to be triggered 
by TIM6 TRGO 

Config DMA ch3 to transfer 512 bytes 
from wavBuffer1 to DAC ch1 8bit 

DHR register 

Enable DAC channel 1 and DMA 
connection 

Enable DAC channel 1 output 

Parse the .wav file to Check if it is a 
Valid file and Get all needed 

information from the .wav header. 

Display Error 

if .wav file status OK 

Connect TIM6 TRGO to its update 
event 

Enable TIM6  
(start the Transfer from RAM to DAC) 

Enable DMA channel3 

Configure the TIM6 frequency to  have 
the correct .wav sample rate 

Initialize WaveDataLength with .wav 
file audible data size 

if WaveDataLength!= 0 

Read 512 next bytes from the .wav file 
and Save them in wavBuffer2 (*) 

If DMA transfer from wavBuffer1 to 
DAC ch1 is completed (*) 

Clear DMA channel3 flag 

Decrement the WaveDataLength by 512 
and if WaveDataLength < 512 then 

WaveDataLength = 0 

Disable DMA , Config DMA  to transfer 512 
bytes from wavBuffer2 to DAC ch1 8bit 

DHR register, and enable DMA  

Read 512 next bytes from the .wav file 
and Save them in wavBuffer1 (*) 

If DMA transfer from wavBuffer2 to 
DAC ch1 is completed (*) 

Decrement the WaveDataLength by 512 
and if WaveDataLength < 512 then 

WaveDataLength = 0 

Clear DMA channel3 flag 

Disable DMA, Configure DMA transfer 512 
bytes from wavBuffer1 to DAC ch1 8bit 

DHR register, and Enable DMA 

Disable DMA 

Exit  

Yes 

Yes 

Yes 

No 

No 

No 



Doc ID16895 Rev 2 21/24

AN3126 Application examples

23

In this application, coprocessing is mandatory to permit a simultaneous Wave read (from the 
external memory source) and write (in the DAC register).

Figure 17. CPU and DMA activities during wave playing process

ai18316

Transfer 512 bytes data from wavBuffur_1 to DAC  
(Transfer triggered by TIM6_TRGO) 

 Idle 
(No activity) 

CPU 

DMA 

TIM6_TRGO . . . . . . . . . . . . . . . . . . . . . . . . . .  

512 pulses 

Transfer 512 byte data 
from MicroSD memory in 
wavBuffer_2 

Decrement the WaveDataLength 
counter and DMA reconfiguration 

 

Transfer 512 bytes data from wavBuffur_2 to DAC  
(Transfer triggered by TIM6_TRGO) 

Transfer 512 byte data 
from MicroSD memory in 
wavBuffer_1 

Idle 
(No activity) 

. . . . . . . . . . . . . . . . . . . . . . . . . .  

512 pulses 

. . . . . .  

 

Decrement the WaveDataLength 
counter and DMA reconfiguration 



Conclusion AN3126

22/24 Doc ID16895 Rev 2

3 Conclusion

This application note and in particular the examples given inSection 2 have been provided 
to help you get familiar with the DAC’s main features.

The first example (in Section 2.1) shows how to generate an analog waveform, using the 
example of a sine waveform. The second example (in Section 2.2) offers a straightforward 
and flexible solution for using the STM32, to play .WAV files, stored in an SPI MicroSD Flash 
memory.

You can use these examples as starting points for developing your own solution using 
STM32 microcontrollers.



Doc ID16895 Rev 2 23/24

AN3126 Revision history

23

4 Revision history

          

Table 5. Document revision history 

Date Revision Changes

28-May-2010 1 Initial release.

16-Apr-2015 2

Updated Introduction, Section 1.3: Dual channel mode and Section 3: 
Conclusion.

Updated formulas in Section 2.1.2: Digital Sine waveform pattern 
preparation.

Updated Figure 2: STM32F100x DAC trigger channels and Figure 5: 
Pseudo random code generator embedded in the DAC.

Added Table 1: Applicable products and Table 2: DAC configurations for 
STM32 microcontrollers.

Added Section 1.1: Overview, and Note in Section 1.3: Dual channel 
mode.



AN3126

24/24 Doc ID16895 Rev 2

          

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and 
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on 
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order 
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or 
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved


	Table 1. Applicable products
	1 DAC main features
	1.1 Overview
	Table 2. DAC configurations for STM32 microcontrollers (continued)

	1.2 Data format
	Figure 1. DAC data format

	1.3 Dual channel mode
	1.4 Dedicated timers
	Figure 2. STM32F100x DAC trigger channels

	1.5 DMA capabilities
	Figure 3. DAC interaction without DMA
	Figure 4. DAC interaction with DMA

	1.6 DMA underrun error
	1.7 White noise generator
	1.7.1 Definition
	Figure 5. Pseudo random code generator embedded in the DAC
	Figure 6. Noise waveform
	Figure 7. Noise waveform with changeable offset

	1.7.2 Typical applications

	1.8 Triangular wave generator
	1.8.1 Definition
	Table 3. Preprogrammable triangular waveform amplitude values
	Figure 8. Triangular waveform
	Figure 9. Triangular waveform with changeable offset

	1.8.2 Typical applications

	1.9 Buffered output
	Figure 10. Non buffered channel voltage (with and without load)
	Figure 11. Buffered channel voltage (with and without load)


	2 Application examples
	2.1 Using the DAC to generate a sine waveform
	2.1.1 Description
	2.1.2 Digital Sine waveform pattern preparation
	Figure 12. Sine wave model samples
	Table 4. Digital and analog sample values of the sine wave

	2.1.3 Fixing the sine wave frequency
	Figure 13. Sine wave generated with ns = 10
	Figure 14. Sine wave generated with ns = 255


	2.2 Using the DAC to implement an audio wave player
	2.2.1 Description
	Figure 15. Flow of data from MicroSD Flash memory to external speakers

	2.2.2 Audio wave file specifications
	2.2.3 .WAV file format

	2.3 Audio wave player implementation
	Figure 16. Wave Player flowchart
	Figure 17. CPU and DMA activities during wave playing process


	3 Conclusion
	4 Revision history
	Table 5. Document revision history


