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Introduction

Safety requirements on electronic devices increase permanently with massive expansion of 
electronic control into almost any human activity, this huge expansion requires processes 
compliant with specific standards. Primary target is to prevent human death, injury and 
environmental damage, but many other lower level factors must be considered besides 
safety during the design of an application, among them loss/ devaluation of a technological 
process, or of critical data or communications. Not less relevant is “simple” customer 
dissatisfaction in case of malfunction of a device under electronic control.

Developing processes satisfying national and international safety standards is a complex 
task. The main factors are field experience, market requirements, insurance coverage, 
globalization of trade and business. The standards are produced by specific legislative and 
executive bodies while specific recognized test houses take care about safety inspection 
and verification of all the required rules, processes and appliances.

STMicroelectronics supports two basic general level safety standards (ISO26262 functional 
safety standard is focused at specific automotive products):

• IEC 60730 & IEC 60335 – specific ones targeting household appliances under electric 
and electronic control, better known as “Class B” or “Class C” standard;

• IEC 61508 - more common industrial norm targeting safety integrity levels known as a 
”SIL” or “ASIL” in the automotive industry.

For the first one, the main ST focus is Class B level support. The second one is a generic 
industrial “mother” norm which produces many derivative standards for different application 
fields like automotive, health, railway, avionic and many others. ST focuses applications 
targeting up to SIL3 level of this standard.

An application targeting safety can get a speed-up of software development when some 
pre-certified embedded self-test software modules (provided either by ST or by another third 
party) are implemented properly into the final firmware. Both built-in HW features of an 
implemented programmable electronic component and proper HW and SW methods 
applied during the application design phase decrease probability of hazardous events, 
thanks to efficient and early diagnostic of the component malfunction. Some applied HW 
methods can even increase the component reliability.

This application note provides an overview of errors and their possible impact on 
applications based on STM32 microcontrollers, focusing on so called “soft” errors handling, 
while highlighting proper software and hardware methods to eliminate them. For additional 
information and examples user can refer to following documents, available at www.st.com:

• AN3307 “Guidelines for obtaining IEC 60335 Class B certification for any STM32 
application”

• AN4435 “Guidelines for obtaining UL/CSA/IEC 60335 Class B certification in any STM32 
application”

• STM32 safety manuals.

www.st.com

http://www.st.com
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1 Basic classification of failures

Safety standards require to take care of both systematic and random failures.

Systematic failures are considered as predictable and can be deal with by strict application 
of correct processes during the life time of both the electronic component and the 
implemented firmware or software.

In STMicroelectronics, the requirements are collected in specific internal quality 
documentation covering management of wide number activities like manufacturing, 
operational procedures, design (including verification and validation), materials handling, 
production testing, quality management, software development, documentation publishing, 
field feedback, tracking of issues etc. Compliance and application of these internal rules is 
subject to regular inspections and audits performed by worldwide recognized bodies.

On the other hand, limiting non predictable random failures requires the use of specific 
software and hardware design techniques and methods described in more details in this 
document.

From the product point of view we can recognize single point, latent or common cause type 
of failures. Single point failures have an immediate effect, while the latent ones are dormant 
and can aggregate with other faults. The common cause failures require special focus, as 
they can potentially make useless even quite complex safety structures, e.g when several 
components are affected contemporary. The structures most sensitive to common cause 
failures are usually shared systems like power rails, clock distribution tree or common 
control and synchronization signals. The heavier impact can be expected at extreme 
ambient temperatures, in low power modes or under specific emission, radiation or 
mechanical demands.
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2 Random failures methodology

Not all the random failures result in hazardous events. In this case, they are considered as 
“safe” failures in relation to the given safety task if there is no potential latent correlation with 
some other error or fault. Basically, standards require monitoring dangerous failures related 
directly or indirectly to defined safety task with potential to escalate a dangerous situation at 
equipment under electronic control either directly or at whatever consequence.

Probability of a failure propagating into hazardous event is then decreasing when higher 
ratio of just the dangerous errors is discovered and prevented (detected) in time while 
minimizing number of dangerous errors staying dormant and undetected at the system. 
Propagation of a fault into a failure cycle is shown in Figure 1, where

• Fault status means occurrence of abnormal condition with potential to cause a system 
failure

• Error status is a discrepancy between the correct / true and the measured / observed / 
computed value (necessary condition for possible detection)

• Failure status happens when system is not able to perform required function (and then 
to prevent a hazardous event)

Figure 1. Fault propagation in the failure cycle

The detection and prevention action has to fit into overall Process Safety Time (PST) 
available in the application to prevent any hazardous event once a dangerous fault occurs. 
This interval must include all the possible delays and system reaction times (including 
sensors and actuators). When calculating PST all the delays need be considered, among 
them the so called Diagnostic test interval (DTI), i.e. the time necessary to perform a test 
with specific diagnostic coverage.
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For quantification purpose, standards recognize a sure failure rate distribution scheme 
(sketched in Figure 2) and some quantification factors calculated upon this categorization, 
namely

• Safe Failure Fraction (SFF): the ratio between the entire covered failures rate including 
the dangerous detected failures and the total failure rate;

• Diagnostic Coverage (DC), the ratio between the dangerous detected failures rate and 
the entire dangerous failures rate.

SFF is computed from rates (approximate probabilities) of the different error classes and it is 
strongly dependent on DC, as can be seen from the equations below:

SFF = (∑λS + ∑λDD) / (∑λS + ∑λD)

DC = ∑λDD / ∑λD

where:

• ∑λS is the total rate of safe failures (detected and undetected), equal to ∑λSD + ∑λSU

• ∑λD is the total rate of dangerous failures (detected and undetected), or ∑λDD + ∑λDU

• ∑λDD is the total rate of dangerous detected failures, equal to ∑λD x DC

• ∑λDU is the total rate of dangerous undetected failures, or ∑λD x (1-DC)

Figure 2. Failure rate distribution example

The rates are calculated based on PHF (probability of Failure per Hour) when system 
operates at continuous or high demand mode (safety task is required permanently or 
routinely) or on PFD (probability of Failure on Demand) when system works at low demand 
mode (the safety task is not systematically required, e.g. an emergency button is pressed). 
The rates are strongly dependent on application and definition of the safety task, which 
implies that parts of hardware affect the safety.

Random failures can cause permanent (hard) or recoverable (soft) errors.

Random hard failures cause permanent physical destruction of the component. System is 
unable to continue in normal operation without any compensation of the raised damage. If 
no compensation is possible, the system has to be put into safe state until it’s repaired (the 

Detected safe failures Undetected safe failures
Detected dangerous failures Undetected dangerous failures

ΣλSD

ΣλDD

ΣλUD

ΣλUS
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error is passivated). Typically, the signal is stuck-at or shorted with another one. Standard 
rate of hard failures can be expected in the range of 1-100 FIT/device.

Note: 1 FIT (Failure in Time) is the occurrence of a single failure in 109 hours of device operation.

Random soft failures are reversible, and some kind of recovery process is usually 
applicable. Typically flip flop gate, a register or SRAM cell can be recoverably affected by 
EMI or SER - cosmic or other flux (alpha or neutron particles or intermittent). This can cause 
latent weakness, noise, a cross-talk or spike of a signal. Exceptionally, high energy particles 
can cause permanent physical defects, too. Cosmic ray (neutron flux) depends on location 
(latitude) and elevation so it’s partially predictable. The alpha flux is strongly dependent on 
several technology parameters (e.g. mold compounds, soldering material emitting isotopes) 
so it’s difficult to estimate or calculate it (material contamination adds further variables). 

Radiation level is expressed in counts per hour per cm2 (cph/cm2) and flux can range from 
0.001 up to 100 cph/cm2 in dependency of the contamination level of the used materials.

There is a strong dependence on technology used. Soft errors become more and more a 
problem with increasing component density and layout rules below 130 nm, especially on 
SRAM (usually other logic blocks of a microcontroller do not use so aggressive design rules. 
and not all the flips in these blocks result into an error).

Other the most negative factors are lower supply voltage, lower cell capacitance, higher 
clock speed, design complexity and frequency of use.

Even latitude and altitude influence the exposure level (the latter being more important), so 
the problem can be serious for electronic dedicated to avionic and cosmic systems.

On the other hand, short bit-lines, wafer thinning, radiation hardening techniques, and use 
of radiation protection materials are positively influencing factors. Thanks to these mitigation 
techniques especially the scaling trend stays nearly flat for standard latitude systems in the 
range of today’s commonly used technologies (180-40 nm).

Soft failures happen much more frequent then the hard ones. Typically, they are measured 
in FIT per Mbit, and can be expected in the range of 200 to 2000 FIT/Mbit for a 90 nm 
technology, affecting mainly flip-flop gates (internal logic) and SRAM cells (memories, 
registers, buffers etc.). It could become a serious problem for devices featuring large 
memories. Customer can ask for FIT information to be obtained from ST for specific 
products.

Soft failures can be either latch-up or transient type. A detection-only method can be used to 
deal with them, it can be integrated with a compensation, i.e. a more complex procedure 
based on detection which allows the system to be resistant to errors and continue normal 
operation. Usually both these methods are based on a minimum level of redundancy 
present in the system.

Latch-up failures can be managed by both hardware and software, while transient failures 
need fast hardware methods just to be captured. Software tests cannot ensure full covering 
of these temporary and short life errors efficiently, as they are inherently slower and limited 
by the execution time (DTI). That is why the diagnostic coverage of software tests can never 
achieve the level of coverage provided by built-in dedicated hardware testing or 
compensation structures.
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3 Random failures control techniques

In principle, random failures can be managed by detection, optionally followed by 
compensation.

3.1 Detection methods

When a redundancy is available in the system, the easiest method is a comparison of two 
independent calculation results, inputs, data etc. Valuable detection method can be based 
on acceptance test (e.g. valid interval, range or combination of values) too, when the 
functional result is compared with some consistency constraints. Another detection method 
is comparison of results from several components relative to each other or with specifically 
calculated expected result (e.g. orthogonal tests used e.g. for RAM testing).

When detection is the only applicable method, after a detection of a dangerous error, 
system should be stopped and placed into a fail-safe state or pass sure recovery process 
like reset, roll back or another specific check like replacement of the impacted component 
(to passivate the error). Exceptionally, if tolerable, system can continue to operate in a 
someway degraded mode, or provide wrong / not valid results, indicating to its environment 
that it has failed.

3.2 Compensation methods

Compensation methods usually allow system to continue normal operation. 

Compensation can be provided by error correction or masking. In correction mode, the 
correct result is calculated from an erroneous one using redundant information (e.g. ECC). 
In masking mode, the erroneous result is ignored and redundant resources are used if 
available (next channel, input, output or data). The correct result can be determined based 
on result of sure voting process recognizing just the bad and correct part of the component, 
or the corrupted and correct data.

Standards recognize Hard Fault Tolerance (HFT – the maximum number of errors which 
system can absorb while it continues normal operation).

Besides specific functional testing, redundancy is the essential diagnostic principle. Most 
detection and compensation techniques require a sure level of redundancy to be efficient. 
Compensation is considerably more demanding than detection, as not only a discrepancy 
but just the correct state has to be identified additionally. To do so, specific comparison and 
voting mechanisms and logic has to be applied.
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Figure 3. Systems without (HFT=0, 1oo1) and with built-in (HFT=1, 1oo2d) redundancy

Note: NooM notation is used to describe number of outputs and redundant channels available in 
the system.  
Here 1oo2d means one common output of two channels with built-in diagnostic (voting 
system). 
Similarly, a 2oo2 system can be used when two independent actuators are used instead of 
the common one directly connected to System A and B outputs (e.g. two vents in series 
closing a pipe flow, or two independent circuit breakers connected in series interrupting a 
signal or a power line).
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4 Applicable redundancy techniques

The required level of redundancy can be achieved by wide range of different methods and 
techniques. Such techniques can be achieved with both hardware and software, or a 
combination of them to maximize efficiency and diagnostic coverage. Added comparison of 
outputs and specific voting mechanisms between correct and failure path are integral parts 
of each redundancy system implementation when compensation is required.

4.1 Structural redundancy

Structural redundancy is based on parallel identical (symmetrical) structures performing the 
same task contemporary.

At system level, dual registers, memories, CPUs or even built-in entire microcontrollers can 
be used. At application level, some critical inputs or outputs can be doubled or tripled (both 
digital and analog), pair of cooperating microcontrollers can be used, doubled sensors, 
actuators, communication buses can be applied etc.

4.2 Functional redundancy

Functional redundancy is based on parallel diverse (asymmetrical) HW structures or 
different SW methods which are applied for a single task.

For example, CPU behavior can be monitored by specific built-in HW checker, or a 32-bit 
microcontroller performing the main task can be monitored by external simpler 8-bit one 
checking some interleaving results or guard some specific aspects of the main system 
behavior while comparing its inputs and outputs. Software can recalculate and recheck 
result of some complex flow point calculation by some rough simplified algorithm using e.g. 
integer calculation with fixed point or result from some complex logical decision scheme to 
be compared with simplified ones.

4.3 Temporal redundancy

Temporal redundancy is implemented when the same method is applied more times by the 
same HW or SW in different time slots.

Typical example is lock step dual core microcontrollers where each core performs the same 
task but in different phases of the core clock pulses. At application level, software can 
repeat the same calculation or logical task more times sequentially and compare the results.

4.4 Informational redundancy

Informational redundancy is the most common one when added information is implemented 
at data and evaluated for compliancy by HW or SW (e.g. implementation of parity bit, ECC, 
CRC check pattern, data protocoling, data copies etc.).
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5 Applied methods

5.1 Vendor focus

From a safety point of view, a microcontroller is a complex programmable electronic 
component which has to satisfy specific requirements coming from the related standards.

When supporting safety for a microcontroller, a vendor considers the product as a 
component out of context as its final application and safety task are not known in advance. 
The effort is always to cover the component overall reliability and fulfill the overall budget of 
diagnostic coverage defined by the standards for a given safety integrity level targeted by 
the application.

Complex components like microcontrollers can be considered like partial components 
involved in the safety task. Each part contributes to the overall component safety budget 
with its own diagnostic coverage and weight.

An effective way to keep the required overall safety budget is to focus on crucial and generic 
modules of the microcontroller, especially those with the largest contribution and the ones 
more commonly used by most of the applications. Any small safety improvement on these 
modules brings the biggest gain for the overall safety budget of the component due to its big 
weight and importance, thus benefiting all applications.

For soft errors, the most effective section is that used by the SRAM, which takes significant 
part of the die entire area and it’s used by each and every application. That is why this 
application note takes a specific care about methods applicable on volatile memories.

According to safety standards, definition of soft errors requires recoverable capability. From 
this point of view, we can consider as an example, data retention failures in programmable 
NVMs. After detection of any of these failures (e.g. by built in ECC or by a software check) a 
correct pattern can be programmed back into the memory (if it is known) during a proper 
recovery process driven by software.

Besides hardware safety features focused on memories (because of their significant 
contribution), many other supporting features are implemented in STM32 microcontrollers. 

An overview is given in Table 1. More details can be found in dedicated reference and safety 
manuals.

5.2 User focus

Once the user includes microcontroller into an application design and the safety task is 
specified then the safety support can be spread out in much more efficient way to cover the 
specific sections involved in the required safety case.

Many efficient methods can be applied based on detailed knowledge of the application 
requirements, its design, the process and the equipment under control. Redundancy and 
knowledge of the system behavior are the crucial principles, to be applied either separately 
or in a common way. Inputs and outputs can be multiplied or checked by feedback loops, 
tested for logical states, values or expected responses in trends or time intervals. 
Communicated data can be secured by redundant information or even doubled. The 
processes can be monitored for their correct timing and flow order to check correct and 
complete sequences of control. Correct decisions can be taken based on comparison of 
results coming from redundant and independent flows, analysis, calculations or data.
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5.3 Overview of methods applicable to handling soft errors

Table 1 gives an overview of direct or indirect methods applicable by both hardware and 
software to handling soft errors in STM32 microcontrollers, and their relation to IEC 60355 
standard requirements. The overview is informative only. Most of the listed items and 
methods have an overlay, as they comply either directly or indirectly with different diagnostic 
purposes.

Table 1. Applicable methods to handle soft errors supported by STM32 HW features 

HW feature
or

SW method
Addressed goals Methods

IEC 60355 - Class B 
references

ARM Cortex® core 
exceptions / periodical 
core self-test

Permanent faults affecting 
the core functionality 
unpredictable software or 
system behavior or 
malfunction capture

Handling system exception 
interrupts, testing 
sequence of instructions 
manipulating with core 
registers

IEC 60335 R.1.1

– H.2.16.5

– H.2.16.6

– H.2.19.6

Checking application 
interrupt system

Expected and unexpected 
interrupt check

Checking missing or too 
frequent application 
interrupts

IEC 60335 R.1.2

– H.2.16.5

– H.2.18.10.4

Clock measurement and 
check

Detection of wrong or 
missing frequency, specific 
XTAL checks

Clock security system CSS 
control, independent 
watchdog, internal clock 
cross reference 
measurement

IEC 60335 R.1.3

– H.2.18.10.1

– H.2.18.10.4

ECC on Flash memory/ 
invariable memory self-test 
(self test supported by 
built-in CRC module)

Permanent faults affecting 
the system Flash memory 
cells and address decoder

ECC or CRC signature 
computation at block of 
memory performed 
regularly within DTI

IEC 60335 R.1.4.1

– H.2.19.3.1

– H.2.19.3.2

– H.2.19.8.2

Parity bit at SRAM / 
variable memory self-test

Permanent faults affecting 
the system SRAM memory 
cells and address decoder

Single bit per 8-bit word 
checked at the byte 
reading or periodic 
Walkpath test performed 
regularly within DTI

IEC 60335 R.1.4.2, 1.4.3

– H.2.19.6

– H.2.19.8.2

Control flow monitoring 
 
Independent & Window 
watchdogs

Proper software timing 
program counter loss of 
control or hang-up

Run-time control of the 
application software flow 
and application related 
timing, handling the 
watchdogs timeouts

IEC 60335 R.1.6.3

– H.2.18.10.2

– H.2.18.10.4

– H.2.18.18

Doubled GPIO digital 
inputs or outputs, loopback 
scheme for digital outputs

Permanent and transient 
faults on GPIO lines used 
as digital inputs and 
outputs

Application design
IEC 60335 R.1.7

– H.2.18.13

Analog inputs and outputs 
range/plausibility check

Permanent faults affecting 
ADC and multiplexers

Application design
IEC 60335 R.1.7.2

– H.2.18.13
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5.4 Specific hardware methods applied to SRAM

One of the most efficient methods is dual RAM structure with comparators. The RAM is 
divided in two blocks and all the data are mirrored. Each reading is preceded by hardware 
comparison of the values from both areas. A bit less efficient is protection of the words by 
EDC or ECC (error detection or correction codes). Standardly, a Hamming code is applied 
with distance greater than 3 (sure number of checking bits has to be added to each 32-bit 
word) which involves SEC-DED at minimum (a single error correction and double error 
detection within a single word). 

Some STM32 microcontrollers use parity bit (one bit per 8-bit word) applied either to the 
whole or to a part of the RAM which is sufficient to recognize single bit or odd bits errors at 
the protected word. As not all the multiple bit errors are covered, the method is efficient 
when distributed design of bits collected at single word is applied (design multiplex factor – 
physical distance of two columns carrying two logically neighbored bits - should be kept 
greater than 4). In this case, probability of having contemporary multiply bits error during a 
single flux or EMI attack is relatively low. 

Communication hardening 
HW & SW techniques, 
handling protocol errors

Errors in data transaction
Protocoling, doubled 
channels, CRC pattern, 
repeating messages

IEC 60335 R.1.6

– H.2.19.8.1

– H.2.19.4.1

– H.2.18.2.2

– H.2.18.14

Information redundancy for 
safety critical data 

Stack hardening 
techniques

Redundancy for 
transactions within the 
MCU, volatile memory 
keeping safety critical 
information

Verification of safety 
variables 

Plausibility of passed 
parameters

IEC 60335 R.1.5

– H.2.19.8.2

Power supply supervisors 
(POR, PDR, BOR) 

Internal temperature 
monitoring 

Option bytes protection 

SRAM protection 

Configuration lock /

Periodical read back of 
configuration registers 
(including unused 
peripherals)(1)

Safe conditions to ensure 
correct function of all parts 
of the system

Interrupt to call emergency 
shutdown task or keeping 
the device under reset, 
verification of all the safety 
critical system 
configurations,

Not available

1. The reduction of the probability of cross-interference between peripherals that can potentially conflict on the same output 
pins (latent faults).

Table 1. Applicable methods to handle soft errors supported by STM32 HW features (continued)

HW feature
or

SW method
Addressed goals Methods

IEC 60355 - Class B 
references
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Cumulative bit errors perform another case when two single bit errors can occur in the same 
word by two consequent attacks appearing at different times. That is why it is suggested to 
combine hardware parity check with regular scrubbing of not frequently used areas of the 
SRAM especially done by software which can prevent such cumulative errors by detecting 
single bit errors in time, an example is shown in Figure 4. 

Figure 4. RAM scrubbing algorithm

In addition to preventing multiple bit errors, such a scrubbing method can be useful to detect 
latent errors (and then potential data discrepancy) in the SRAM in advance, e.g. before 
executing a safety critical procedure.

Simple example code performing such testing on Nucleo F030R8 board is associated to this 
application note. The source files of this example are available upon request, users should 
contact the local Field Application Engineer.

The example uses STM32F0 but it can be adapted easily to other products featuring 
hardware parity on SRAM. User can simply include the attached files into template directory 
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of Cube HAL (EWARM project). The scrubbing procedures are written as optimized code in 
IAR assembler (see stm32f0xx_pchck_IAR.s file). In main.h header file user can control 
configuration. Software can perform detection-only or add compensation method in 
dependency of conditional compilation parameters defined there. In case of compensation, 
the algorithm performs backup copy of the working data during RAM working area 
scrubbing. This method is suitable when data in the working area aren’t changed frequently, 
so it cannot be applied to the area dedicated to stack. When a parity error is detected in the 
working part of RAM, correct data is restored from its backup copy.

The parity error detection raises hard fault exception. Its handling is a bit tricky, as the 
correct return address has to be restored by specific wrapper before returning from the 
handler together with the pointer of the tested address, else the test flow is interrupted and 
no more able to continue correctly.

The wrapper is simplified just for case of applied LDMIA or LDR instructions and for the 
memory access done by CPU (access done by DMA is a different case). The built-in LED on 
Nucleo board flashes quickly at normal run while it slows down when an error appears (PEF 
flag is found set).

User can split the area under check into slices (by applying proper parameters – intervals - 
when the scrubbing function is called), and ensure the control of the area in separated 
steps. When doing compensation in such case, user has to respect corresponding location 
of backup area because the procedure also executes an automatic refresh of the backup 
content (during the scrubbing).

To prevent scrubbing process failure the area under check has to be initialized by whatever 
content after power on. This is done by calling RAM_parity_init(): this function overwrites the 
overall RAM content including the stack. It should be called from startup in the best case. 
When no initialization of the RAM area is included before the scrubbing procedures starts 
the HW parity error event can be simulated for some cells, as the whole RAM content is 
coincident.

5.5 Specific software methods applied to SRAM

Parity feature is not supported in all STM32 microcontrollers, or for all the available memory 
areas. Furthermore, except testing the memory content, standards requires to check correct 
function of data paths as well.

As there is no specific HW check implemented on busses for most of STM32 devices, it is 
suggested to perform Walkpath test either at application initialization or periodically. This 
test is carried out in a reasonable time, with limited performance overhead. Abraham or 
Galpat tests with considerably higher diagnostic coverage could be applied, however they 
need considerably higher number of steps and so they result in larger performance 
overhead and long execution period.

ST firmware uses destructive and transparent Walkpath test. The first one is used at start up 
test when the whole RAM is tested, while the second one is used at run time just on the area 
where critical part of data is stored, and it’s performed step by step, testing small  
inter-overlaid blocks of the memory cells collecting subsequent addresses. Anyway, the 
Walkpath test ensures coverage for the SRAMs not supported by parity feature.

Additionally, redundancy principle can be combined here when just the critical part of data is 
double stored by complementary values (each critical value can be stored at a pair of 
variables placed at non adjacent memory addresses keeping the value and its 
complement). Software then must ensure that a a valid backup copy of the critical part of 
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data is kept. It must handle every write and read operation in this area with specific 
procedures performing correct data mirroring (in case of write) and checking consistency 
(when reading). If no Walkpath test is carried out during run time, some regular “scrubbing” 
(comparison of the areas content) can be performed in background, as it is done in the 
parity case to detect latent errors affecting the critical data in advance.

Stack hardening techniques can be applied too, when all critical parameters are passed 
redundantly and compared, and/or when their plausibility is checked at entry of called 
subroutines. Stack area boundaries can be regularly checked for corruption of specific 
patterns stored there to ensure that the stack pointer never crosses its dedicated area.
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6 Conclusion

Soft errors can be critical, especially for microcontrollers featuring large memory areas, 
parity or CRC checks are valid hardware techniquest for their detection (but not correction). 
The most efficient hardware method for correction of protected critical data is ECC. To learn 
more about these and other implemented indirect supporting features, user should study 
reference and safety manuals of the specific product used in the application.

In addition to these detection and correction mechanisms (already ensuring a good 
protection level for the STM32 MCUs), STMicroelectronics implements mitigation 
techniques at design level to ensure a higher level of protection, along with demanding 
technology shrink.

A large number of additional hardware and software methods can be applied to handle soft 
errors in final applications. These methods are mostly based on sure level of redundancy, 
their complexity depends on the level of safety integrity required by the system, and on 
discriminating if detection only or correction is the required method to dealing with the 
errors.

Some methods can be applied in both cases, however the most effective diagnostic can be 
defined only with detailed knowledge of the application and definition of the safety task to 
target. It’s then possible to identify the specific parts of the microcontroller to be covered.

When starting the design a safety system, it is for sure valuable to discuss it with expert 
companies, or directly with the certification authorities, to avoid inefficient development 
efforts.
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