
October 2015 DocID028201 Rev 2 1/20

1

AN4750
Application note

Handling of soft errors in STM32 applications

Introduction

Safety requirements on electronic devices increase permanently with massive expansion of
electronic control into almost any human activity, this huge expansion requires processes
compliant with specific standards. Primary target is to prevent human death, injury and
environmental damage, but many other lower level factors must be considered besides
safety during the design of an application, among them loss/ devaluation of a technological
process, or of critical data or communications. Not less relevant is “simple” customer
dissatisfaction in case of malfunction of a device under electronic control.

Developing processes satisfying national and international safety standards is a complex
task. The main factors are field experience, market requirements, insurance coverage,
globalization of trade and business. The standards are produced by specific legislative and
executive bodies while specific recognized test houses take care about safety inspection
and verification of all the required rules, processes and appliances.

STMicroelectronics supports two basic general level safety standards (ISO26262 functional
safety standard is focused at specific automotive products):

• IEC 60730 & IEC 60335 – specific ones targeting household appliances under electric
and electronic control, better known as “Class B” or “Class C” standard;

• IEC 61508 - more common industrial norm targeting safety integrity levels known as a
”SIL” or “ASIL” in the automotive industry.

For the first one, the main ST focus is Class B level support. The second one is a generic
industrial “mother” norm which produces many derivative standards for different application
fields like automotive, health, railway, avionic and many others. ST focuses applications
targeting up to SIL3 level of this standard.

An application targeting safety can get a speed-up of software development when some
pre-certified embedded self-test software modules (provided either by ST or by another third
party) are implemented properly into the final firmware. Both built-in HW features of an
implemented programmable electronic component and proper HW and SW methods
applied during the application design phase decrease probability of hazardous events,
thanks to efficient and early diagnostic of the component malfunction. Some applied HW
methods can even increase the component reliability.

This application note provides an overview of errors and their possible impact on
applications based on STM32 microcontrollers, focusing on so called “soft” errors handling,
while highlighting proper software and hardware methods to eliminate them. For additional
information and examples user can refer to following documents, available at www.st.com:

• AN3307 “Guidelines for obtaining IEC 60335 Class B certification for any STM32
application”

• AN4435 “Guidelines for obtaining UL/CSA/IEC 60335 Class B certification in any STM32
application”

• STM32 safety manuals.

www.st.com

http://www.st.com

Contents AN4750

2/20 DocID028201 Rev 2

Contents

1 Basic classification of failures . 5

2 Random failures methodology . 6

3 Random failures control techniques . 9

3.1 Detection methods . 9

3.2 Compensation methods . 9

4 Applicable redundancy techniques . 11

4.1 Structural redundancy .11

4.2 Functional redundancy .11

4.3 Temporal redundancy .11

4.4 Informational redundancy .11

5 Applied methods . 12

5.1 Vendor focus . 12

5.2 User focus . 12

5.3 Overview of methods applicable to handling soft errors 13

5.4 Specific hardware methods applied to SRAM . 14

5.5 Specific software methods applied to SRAM . 16

6 Conclusion . 18

7 Revision history . 19

DocID028201 Rev 2 3/20

AN4750 List of tables

3

List of tables

Table 1. Applicable methods to handle soft errors supported by STM32 HW features 13
Table 2. Document revision history . 19

List of figures AN4750

4/20 DocID028201 Rev 2

List of figures

Figure 1. Fault propagation in the failure cycle . 6
Figure 2. Failure rate distribution example. 7
Figure 3. Systems without (HFT=0, 1oo1) and with built-in (HFT=1, 1oo2d) redundancy 10
Figure 4. RAM scrubbing algorithm . 15

DocID028201 Rev 2 5/20

AN4750 Basic classification of failures

19

1 Basic classification of failures

Safety standards require to take care of both systematic and random failures.

Systematic failures are considered as predictable and can be deal with by strict application
of correct processes during the life time of both the electronic component and the
implemented firmware or software.

In STMicroelectronics, the requirements are collected in specific internal quality
documentation covering management of wide number activities like manufacturing,
operational procedures, design (including verification and validation), materials handling,
production testing, quality management, software development, documentation publishing,
field feedback, tracking of issues etc. Compliance and application of these internal rules is
subject to regular inspections and audits performed by worldwide recognized bodies.

On the other hand, limiting non predictable random failures requires the use of specific
software and hardware design techniques and methods described in more details in this
document.

From the product point of view we can recognize single point, latent or common cause type
of failures. Single point failures have an immediate effect, while the latent ones are dormant
and can aggregate with other faults. The common cause failures require special focus, as
they can potentially make useless even quite complex safety structures, e.g when several
components are affected contemporary. The structures most sensitive to common cause
failures are usually shared systems like power rails, clock distribution tree or common
control and synchronization signals. The heavier impact can be expected at extreme
ambient temperatures, in low power modes or under specific emission, radiation or
mechanical demands.

Random failures methodology AN4750

6/20 DocID028201 Rev 2

2 Random failures methodology

Not all the random failures result in hazardous events. In this case, they are considered as
“safe” failures in relation to the given safety task if there is no potential latent correlation with
some other error or fault. Basically, standards require monitoring dangerous failures related
directly or indirectly to defined safety task with potential to escalate a dangerous situation at
equipment under electronic control either directly or at whatever consequence.

Probability of a failure propagating into hazardous event is then decreasing when higher
ratio of just the dangerous errors is discovered and prevented (detected) in time while
minimizing number of dangerous errors staying dormant and undetected at the system.
Propagation of a fault into a failure cycle is shown in Figure 1, where

• Fault status means occurrence of abnormal condition with potential to cause a system
failure

• Error status is a discrepancy between the correct / true and the measured / observed /
computed value (necessary condition for possible detection)

• Failure status happens when system is not able to perform required function (and then
to prevent a hazardous event)

Figure 1. Fault propagation in the failure cycle

The detection and prevention action has to fit into overall Process Safety Time (PST)
available in the application to prevent any hazardous event once a dangerous fault occurs.
This interval must include all the possible delays and system reaction times (including
sensors and actuators). When calculating PST all the delays need be considered, among
them the so called Diagnostic test interval (DTI), i.e. the time necessary to perform a test
with specific diagnostic coverage.

DocID028201 Rev 2 7/20

AN4750 Random failures methodology

19

For quantification purpose, standards recognize a sure failure rate distribution scheme
(sketched in Figure 2) and some quantification factors calculated upon this categorization,
namely

• Safe Failure Fraction (SFF): the ratio between the entire covered failures rate including
the dangerous detected failures and the total failure rate;

• Diagnostic Coverage (DC), the ratio between the dangerous detected failures rate and
the entire dangerous failures rate.

SFF is computed from rates (approximate probabilities) of the different error classes and it is
strongly dependent on DC, as can be seen from the equations below:

SFF = (∑λS + ∑λDD) / (∑λS + ∑λD)

DC = ∑λDD / ∑λD

where:

• ∑λS is the total rate of safe failures (detected and undetected), equal to ∑λSD + ∑λSU

• ∑λD is the total rate of dangerous failures (detected and undetected), or ∑λDD + ∑λDU

• ∑λDD is the total rate of dangerous detected failures, equal to ∑λD x DC

• ∑λDU is the total rate of dangerous undetected failures, or ∑λD x (1-DC)

Figure 2. Failure rate distribution example

The rates are calculated based on PHF (probability of Failure per Hour) when system
operates at continuous or high demand mode (safety task is required permanently or
routinely) or on PFD (probability of Failure on Demand) when system works at low demand
mode (the safety task is not systematically required, e.g. an emergency button is pressed).
The rates are strongly dependent on application and definition of the safety task, which
implies that parts of hardware affect the safety.

Random failures can cause permanent (hard) or recoverable (soft) errors.

Random hard failures cause permanent physical destruction of the component. System is
unable to continue in normal operation without any compensation of the raised damage. If
no compensation is possible, the system has to be put into safe state until it’s repaired (the

Detected safe failures Undetected safe failures
Detected dangerous failures Undetected dangerous failures

ΣλSD

ΣλDD

ΣλUD

ΣλUS

Random failures methodology AN4750

8/20 DocID028201 Rev 2

error is passivated). Typically, the signal is stuck-at or shorted with another one. Standard
rate of hard failures can be expected in the range of 1-100 FIT/device.

Note: 1 FIT (Failure in Time) is the occurrence of a single failure in 109 hours of device operation.

Random soft failures are reversible, and some kind of recovery process is usually
applicable. Typically flip flop gate, a register or SRAM cell can be recoverably affected by
EMI or SER - cosmic or other flux (alpha or neutron particles or intermittent). This can cause
latent weakness, noise, a cross-talk or spike of a signal. Exceptionally, high energy particles
can cause permanent physical defects, too. Cosmic ray (neutron flux) depends on location
(latitude) and elevation so it’s partially predictable. The alpha flux is strongly dependent on
several technology parameters (e.g. mold compounds, soldering material emitting isotopes)
so it’s difficult to estimate or calculate it (material contamination adds further variables).

Radiation level is expressed in counts per hour per cm2 (cph/cm2) and flux can range from
0.001 up to 100 cph/cm2 in dependency of the contamination level of the used materials.

There is a strong dependence on technology used. Soft errors become more and more a
problem with increasing component density and layout rules below 130 nm, especially on
SRAM (usually other logic blocks of a microcontroller do not use so aggressive design rules.
and not all the flips in these blocks result into an error).

Other the most negative factors are lower supply voltage, lower cell capacitance, higher
clock speed, design complexity and frequency of use.

Even latitude and altitude influence the exposure level (the latter being more important), so
the problem can be serious for electronic dedicated to avionic and cosmic systems.

On the other hand, short bit-lines, wafer thinning, radiation hardening techniques, and use
of radiation protection materials are positively influencing factors. Thanks to these mitigation
techniques especially the scaling trend stays nearly flat for standard latitude systems in the
range of today’s commonly used technologies (180-40 nm).

Soft failures happen much more frequent then the hard ones. Typically, they are measured
in FIT per Mbit, and can be expected in the range of 200 to 2000 FIT/Mbit for a 90 nm
technology, affecting mainly flip-flop gates (internal logic) and SRAM cells (memories,
registers, buffers etc.). It could become a serious problem for devices featuring large
memories. Customer can ask for FIT information to be obtained from ST for specific
products.

Soft failures can be either latch-up or transient type. A detection-only method can be used to
deal with them, it can be integrated with a compensation, i.e. a more complex procedure
based on detection which allows the system to be resistant to errors and continue normal
operation. Usually both these methods are based on a minimum level of redundancy
present in the system.

Latch-up failures can be managed by both hardware and software, while transient failures
need fast hardware methods just to be captured. Software tests cannot ensure full covering
of these temporary and short life errors efficiently, as they are inherently slower and limited
by the execution time (DTI). That is why the diagnostic coverage of software tests can never
achieve the level of coverage provided by built-in dedicated hardware testing or
compensation structures.

DocID028201 Rev 2 9/20

AN4750 Random failures control techniques

19

3 Random failures control techniques

In principle, random failures can be managed by detection, optionally followed by
compensation.

3.1 Detection methods

When a redundancy is available in the system, the easiest method is a comparison of two
independent calculation results, inputs, data etc. Valuable detection method can be based
on acceptance test (e.g. valid interval, range or combination of values) too, when the
functional result is compared with some consistency constraints. Another detection method
is comparison of results from several components relative to each other or with specifically
calculated expected result (e.g. orthogonal tests used e.g. for RAM testing).

When detection is the only applicable method, after a detection of a dangerous error,
system should be stopped and placed into a fail-safe state or pass sure recovery process
like reset, roll back or another specific check like replacement of the impacted component
(to passivate the error). Exceptionally, if tolerable, system can continue to operate in a
someway degraded mode, or provide wrong / not valid results, indicating to its environment
that it has failed.

3.2 Compensation methods

Compensation methods usually allow system to continue normal operation.

Compensation can be provided by error correction or masking. In correction mode, the
correct result is calculated from an erroneous one using redundant information (e.g. ECC).
In masking mode, the erroneous result is ignored and redundant resources are used if
available (next channel, input, output or data). The correct result can be determined based
on result of sure voting process recognizing just the bad and correct part of the component,
or the corrupted and correct data.

Standards recognize Hard Fault Tolerance (HFT – the maximum number of errors which
system can absorb while it continues normal operation).

Besides specific functional testing, redundancy is the essential diagnostic principle. Most
detection and compensation techniques require a sure level of redundancy to be efficient.
Compensation is considerably more demanding than detection, as not only a discrepancy
but just the correct state has to be identified additionally. To do so, specific comparison and
voting mechanisms and logic has to be applied.

Random failures control techniques AN4750

10/20 DocID028201 Rev 2

Figure 3. Systems without (HFT=0, 1oo1) and with built-in (HFT=1, 1oo2d) redundancy

Note: NooM notation is used to describe number of outputs and redundant channels available in
the system.
Here 1oo2d means one common output of two channels with built-in diagnostic (voting
system).
Similarly, a 2oo2 system can be used when two independent actuators are used instead of
the common one directly connected to System A and B outputs (e.g. two vents in series
closing a pipe flow, or two independent circuit breakers connected in series interrupting a
signal or a power line).

DocID028201 Rev 2 11/20

AN4750 Applicable redundancy techniques

19

4 Applicable redundancy techniques

The required level of redundancy can be achieved by wide range of different methods and
techniques. Such techniques can be achieved with both hardware and software, or a
combination of them to maximize efficiency and diagnostic coverage. Added comparison of
outputs and specific voting mechanisms between correct and failure path are integral parts
of each redundancy system implementation when compensation is required.

4.1 Structural redundancy

Structural redundancy is based on parallel identical (symmetrical) structures performing the
same task contemporary.

At system level, dual registers, memories, CPUs or even built-in entire microcontrollers can
be used. At application level, some critical inputs or outputs can be doubled or tripled (both
digital and analog), pair of cooperating microcontrollers can be used, doubled sensors,
actuators, communication buses can be applied etc.

4.2 Functional redundancy

Functional redundancy is based on parallel diverse (asymmetrical) HW structures or
different SW methods which are applied for a single task.

For example, CPU behavior can be monitored by specific built-in HW checker, or a 32-bit
microcontroller performing the main task can be monitored by external simpler 8-bit one
checking some interleaving results or guard some specific aspects of the main system
behavior while comparing its inputs and outputs. Software can recalculate and recheck
result of some complex flow point calculation by some rough simplified algorithm using e.g.
integer calculation with fixed point or result from some complex logical decision scheme to
be compared with simplified ones.

4.3 Temporal redundancy

Temporal redundancy is implemented when the same method is applied more times by the
same HW or SW in different time slots.

Typical example is lock step dual core microcontrollers where each core performs the same
task but in different phases of the core clock pulses. At application level, software can
repeat the same calculation or logical task more times sequentially and compare the results.

4.4 Informational redundancy

Informational redundancy is the most common one when added information is implemented
at data and evaluated for compliancy by HW or SW (e.g. implementation of parity bit, ECC,
CRC check pattern, data protocoling, data copies etc.).

Applied methods AN4750

12/20 DocID028201 Rev 2

5 Applied methods

5.1 Vendor focus

From a safety point of view, a microcontroller is a complex programmable electronic
component which has to satisfy specific requirements coming from the related standards.

When supporting safety for a microcontroller, a vendor considers the product as a
component out of context as its final application and safety task are not known in advance.
The effort is always to cover the component overall reliability and fulfill the overall budget of
diagnostic coverage defined by the standards for a given safety integrity level targeted by
the application.

Complex components like microcontrollers can be considered like partial components
involved in the safety task. Each part contributes to the overall component safety budget
with its own diagnostic coverage and weight.

An effective way to keep the required overall safety budget is to focus on crucial and generic
modules of the microcontroller, especially those with the largest contribution and the ones
more commonly used by most of the applications. Any small safety improvement on these
modules brings the biggest gain for the overall safety budget of the component due to its big
weight and importance, thus benefiting all applications.

For soft errors, the most effective section is that used by the SRAM, which takes significant
part of the die entire area and it’s used by each and every application. That is why this
application note takes a specific care about methods applicable on volatile memories.

According to safety standards, definition of soft errors requires recoverable capability. From
this point of view, we can consider as an example, data retention failures in programmable
NVMs. After detection of any of these failures (e.g. by built in ECC or by a software check) a
correct pattern can be programmed back into the memory (if it is known) during a proper
recovery process driven by software.

Besides hardware safety features focused on memories (because of their significant
contribution), many other supporting features are implemented in STM32 microcontrollers.

An overview is given in Table 1. More details can be found in dedicated reference and safety
manuals.

5.2 User focus

Once the user includes microcontroller into an application design and the safety task is
specified then the safety support can be spread out in much more efficient way to cover the
specific sections involved in the required safety case.

Many efficient methods can be applied based on detailed knowledge of the application
requirements, its design, the process and the equipment under control. Redundancy and
knowledge of the system behavior are the crucial principles, to be applied either separately
or in a common way. Inputs and outputs can be multiplied or checked by feedback loops,
tested for logical states, values or expected responses in trends or time intervals.
Communicated data can be secured by redundant information or even doubled. The
processes can be monitored for their correct timing and flow order to check correct and
complete sequences of control. Correct decisions can be taken based on comparison of
results coming from redundant and independent flows, analysis, calculations or data.

DocID028201 Rev 2 13/20

AN4750 Applied methods

19

5.3 Overview of methods applicable to handling soft errors

Table 1 gives an overview of direct or indirect methods applicable by both hardware and
software to handling soft errors in STM32 microcontrollers, and their relation to IEC 60355
standard requirements. The overview is informative only. Most of the listed items and
methods have an overlay, as they comply either directly or indirectly with different diagnostic
purposes.

Table 1. Applicable methods to handle soft errors supported by STM32 HW features

HW feature
or

SW method
Addressed goals Methods

IEC 60355 - Class B
references

ARM Cortex® core
exceptions / periodical
core self-test

Permanent faults affecting
the core functionality
unpredictable software or
system behavior or
malfunction capture

Handling system exception
interrupts, testing
sequence of instructions
manipulating with core
registers

IEC 60335 R.1.1

– H.2.16.5

– H.2.16.6

– H.2.19.6

Checking application
interrupt system

Expected and unexpected
interrupt check

Checking missing or too
frequent application
interrupts

IEC 60335 R.1.2

– H.2.16.5

– H.2.18.10.4

Clock measurement and
check

Detection of wrong or
missing frequency, specific
XTAL checks

Clock security system CSS
control, independent
watchdog, internal clock
cross reference
measurement

IEC 60335 R.1.3

– H.2.18.10.1

– H.2.18.10.4

ECC on Flash memory/
invariable memory self-test
(self test supported by
built-in CRC module)

Permanent faults affecting
the system Flash memory
cells and address decoder

ECC or CRC signature
computation at block of
memory performed
regularly within DTI

IEC 60335 R.1.4.1

– H.2.19.3.1

– H.2.19.3.2

– H.2.19.8.2

Parity bit at SRAM /
variable memory self-test

Permanent faults affecting
the system SRAM memory
cells and address decoder

Single bit per 8-bit word
checked at the byte
reading or periodic
Walkpath test performed
regularly within DTI

IEC 60335 R.1.4.2, 1.4.3

– H.2.19.6

– H.2.19.8.2

Control flow monitoring

Independent & Window
watchdogs

Proper software timing
program counter loss of
control or hang-up

Run-time control of the
application software flow
and application related
timing, handling the
watchdogs timeouts

IEC 60335 R.1.6.3

– H.2.18.10.2

– H.2.18.10.4

– H.2.18.18

Doubled GPIO digital
inputs or outputs, loopback
scheme for digital outputs

Permanent and transient
faults on GPIO lines used
as digital inputs and
outputs

Application design
IEC 60335 R.1.7

– H.2.18.13

Analog inputs and outputs
range/plausibility check

Permanent faults affecting
ADC and multiplexers

Application design
IEC 60335 R.1.7.2

– H.2.18.13

Applied methods AN4750

14/20 DocID028201 Rev 2

5.4 Specific hardware methods applied to SRAM

One of the most efficient methods is dual RAM structure with comparators. The RAM is
divided in two blocks and all the data are mirrored. Each reading is preceded by hardware
comparison of the values from both areas. A bit less efficient is protection of the words by
EDC or ECC (error detection or correction codes). Standardly, a Hamming code is applied
with distance greater than 3 (sure number of checking bits has to be added to each 32-bit
word) which involves SEC-DED at minimum (a single error correction and double error
detection within a single word).

Some STM32 microcontrollers use parity bit (one bit per 8-bit word) applied either to the
whole or to a part of the RAM which is sufficient to recognize single bit or odd bits errors at
the protected word. As not all the multiple bit errors are covered, the method is efficient
when distributed design of bits collected at single word is applied (design multiplex factor –
physical distance of two columns carrying two logically neighbored bits - should be kept
greater than 4). In this case, probability of having contemporary multiply bits error during a
single flux or EMI attack is relatively low.

Communication hardening
HW & SW techniques,
handling protocol errors

Errors in data transaction
Protocoling, doubled
channels, CRC pattern,
repeating messages

IEC 60335 R.1.6

– H.2.19.8.1

– H.2.19.4.1

– H.2.18.2.2

– H.2.18.14

Information redundancy for
safety critical data

Stack hardening
techniques

Redundancy for
transactions within the
MCU, volatile memory
keeping safety critical
information

Verification of safety
variables

Plausibility of passed
parameters

IEC 60335 R.1.5

– H.2.19.8.2

Power supply supervisors
(POR, PDR, BOR)

Internal temperature
monitoring

Option bytes protection

SRAM protection

Configuration lock /

Periodical read back of
configuration registers
(including unused
peripherals)(1)

Safe conditions to ensure
correct function of all parts
of the system

Interrupt to call emergency
shutdown task or keeping
the device under reset,
verification of all the safety
critical system
configurations,

Not available

1. The reduction of the probability of cross-interference between peripherals that can potentially conflict on the same output
pins (latent faults).

Table 1. Applicable methods to handle soft errors supported by STM32 HW features (continued)

HW feature
or

SW method
Addressed goals Methods

IEC 60355 - Class B
references

DocID028201 Rev 2 15/20

AN4750 Applied methods

19

Cumulative bit errors perform another case when two single bit errors can occur in the same
word by two consequent attacks appearing at different times. That is why it is suggested to
combine hardware parity check with regular scrubbing of not frequently used areas of the
SRAM especially done by software which can prevent such cumulative errors by detecting
single bit errors in time, an example is shown in Figure 4.

Figure 4. RAM scrubbing algorithm

In addition to preventing multiple bit errors, such a scrubbing method can be useful to detect
latent errors (and then potential data discrepancy) in the SRAM in advance, e.g. before
executing a safety critical procedure.

Simple example code performing such testing on Nucleo F030R8 board is associated to this
application note. The source files of this example are available upon request, users should
contact the local Field Application Engineer.

The example uses STM32F0 but it can be adapted easily to other products featuring
hardware parity on SRAM. User can simply include the attached files into template directory

Applied methods AN4750

16/20 DocID028201 Rev 2

of Cube HAL (EWARM project). The scrubbing procedures are written as optimized code in
IAR assembler (see stm32f0xx_pchck_IAR.s file). In main.h header file user can control
configuration. Software can perform detection-only or add compensation method in
dependency of conditional compilation parameters defined there. In case of compensation,
the algorithm performs backup copy of the working data during RAM working area
scrubbing. This method is suitable when data in the working area aren’t changed frequently,
so it cannot be applied to the area dedicated to stack. When a parity error is detected in the
working part of RAM, correct data is restored from its backup copy.

The parity error detection raises hard fault exception. Its handling is a bit tricky, as the
correct return address has to be restored by specific wrapper before returning from the
handler together with the pointer of the tested address, else the test flow is interrupted and
no more able to continue correctly.

The wrapper is simplified just for case of applied LDMIA or LDR instructions and for the
memory access done by CPU (access done by DMA is a different case). The built-in LED on
Nucleo board flashes quickly at normal run while it slows down when an error appears (PEF
flag is found set).

User can split the area under check into slices (by applying proper parameters – intervals -
when the scrubbing function is called), and ensure the control of the area in separated
steps. When doing compensation in such case, user has to respect corresponding location
of backup area because the procedure also executes an automatic refresh of the backup
content (during the scrubbing).

To prevent scrubbing process failure the area under check has to be initialized by whatever
content after power on. This is done by calling RAM_parity_init(): this function overwrites the
overall RAM content including the stack. It should be called from startup in the best case.
When no initialization of the RAM area is included before the scrubbing procedures starts
the HW parity error event can be simulated for some cells, as the whole RAM content is
coincident.

5.5 Specific software methods applied to SRAM

Parity feature is not supported in all STM32 microcontrollers, or for all the available memory
areas. Furthermore, except testing the memory content, standards requires to check correct
function of data paths as well.

As there is no specific HW check implemented on busses for most of STM32 devices, it is
suggested to perform Walkpath test either at application initialization or periodically. This
test is carried out in a reasonable time, with limited performance overhead. Abraham or
Galpat tests with considerably higher diagnostic coverage could be applied, however they
need considerably higher number of steps and so they result in larger performance
overhead and long execution period.

ST firmware uses destructive and transparent Walkpath test. The first one is used at start up
test when the whole RAM is tested, while the second one is used at run time just on the area
where critical part of data is stored, and it’s performed step by step, testing small
inter-overlaid blocks of the memory cells collecting subsequent addresses. Anyway, the
Walkpath test ensures coverage for the SRAMs not supported by parity feature.

Additionally, redundancy principle can be combined here when just the critical part of data is
double stored by complementary values (each critical value can be stored at a pair of
variables placed at non adjacent memory addresses keeping the value and its
complement). Software then must ensure that a a valid backup copy of the critical part of

DocID028201 Rev 2 17/20

AN4750 Applied methods

19

data is kept. It must handle every write and read operation in this area with specific
procedures performing correct data mirroring (in case of write) and checking consistency
(when reading). If no Walkpath test is carried out during run time, some regular “scrubbing”
(comparison of the areas content) can be performed in background, as it is done in the
parity case to detect latent errors affecting the critical data in advance.

Stack hardening techniques can be applied too, when all critical parameters are passed
redundantly and compared, and/or when their plausibility is checked at entry of called
subroutines. Stack area boundaries can be regularly checked for corruption of specific
patterns stored there to ensure that the stack pointer never crosses its dedicated area.

Conclusion AN4750

18/20 DocID028201 Rev 2

6 Conclusion

Soft errors can be critical, especially for microcontrollers featuring large memory areas,
parity or CRC checks are valid hardware techniquest for their detection (but not correction).
The most efficient hardware method for correction of protected critical data is ECC. To learn
more about these and other implemented indirect supporting features, user should study
reference and safety manuals of the specific product used in the application.

In addition to these detection and correction mechanisms (already ensuring a good
protection level for the STM32 MCUs), STMicroelectronics implements mitigation
techniques at design level to ensure a higher level of protection, along with demanding
technology shrink.

A large number of additional hardware and software methods can be applied to handle soft
errors in final applications. These methods are mostly based on sure level of redundancy,
their complexity depends on the level of safety integrity required by the system, and on
discriminating if detection only or correction is the required method to dealing with the
errors.

Some methods can be applied in both cases, however the most effective diagnostic can be
defined only with detailed knowledge of the application and definition of the safety task to
target. It’s then possible to identify the specific parts of the microcontroller to be covered.

When starting the design a safety system, it is for sure valuable to discuss it with expert
companies, or directly with the certification authorities, to avoid inefficient development
efforts.

DocID028201 Rev 2 19/20

AN4750 Revision history

19

7 Revision history

Table 2. Document revision history

Date Revision Changes

01-Sep-2015 1 Initial release.

06-Oct-2015 2

Updated Introduction, Section 2: Random failures methodology,
Section 5.1: Vendor focus, Section 5.4: Specific hardware methods
applied to SRAM, Section 5.5: Specific software methods applied to
SRAM and Section 6: Conclusion.

Updated Figure 2: Failure rate distribution example and Figure 3:
Systems without (HFT=0, 1oo1) and with built-in (HFT=1, 1oo2d)
redundancy.

Removed former Figure 3: FIT rate vs. technology.

Updated Table 1: Applicable methods to handle soft errors supported
by STM32 HW features.

AN4750

20/20 DocID028201 Rev 2

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

	1 Basic classification of failures
	2 Random failures methodology
	Figure 1. Fault propagation in the failure cycle
	Figure 2. Failure rate distribution example

	3 Random failures control techniques
	3.1 Detection methods
	3.2 Compensation methods
	Figure 3. Systems without (HFT=0, 1oo1) and with built-in (HFT=1, 1oo2d) redundancy

	4 Applicable redundancy techniques
	4.1 Structural redundancy
	4.2 Functional redundancy
	4.3 Temporal redundancy
	4.4 Informational redundancy

	5 Applied methods
	5.1 Vendor focus
	5.2 User focus
	5.3 Overview of methods applicable to handling soft errors
	Table 1. Applicable methods to handle soft errors supported by STM32 HW features

	5.4 Specific hardware methods applied to SRAM
	Figure 4. RAM scrubbing algorithm

	5.5 Specific software methods applied to SRAM

	6 Conclusion
	7 Revision history
	Table 2. Document revision history

