: ” life.augmented

ANA4457

Application note

Implementing an emulated universal asynchronous receiver
transmitter on STM32F4 microcontroller series

March 2015

Introduction

This application note describes how to implement an emulated universal asynchronous
receiver transmitter (UART) on STM32F4 series.

Such an emulator is needed in applications that require more UARTSs than the ones provided
by STM32F4 microcontrollers.

The emulated UART is full-duplex, supports up to 9 data bits and baud rates up to
115200 bps. It also offers a high flexibility since any I/O pin can be used as TX or RX line. In

addition, this UART emulation uses the DMA to minimize CPU usage.

This application note provides a basic example of communications between a hardware and
a software UART as well as a summary of CPU load and firmware footprint.

The STSW-STM32156 firmware package is delivered with this document and contains the
source code of the UART emulator with all firmware modules required to run the example.

Table 1. Applicable products

Type

Part numbers

Microcontrollers

STM32F4 series

Embedded software

STSW-STM32156

DoclD026046 Rev 1

1/24

www.st.com

http://www.st.com

Contents AN4457

Contents
1 UART emulator description i iiiiiinnn. 6
1.1 Main features 6
1.2 UART emulator block diagram 7
1.3 UART emulator principle 8
1.3.1 Data transmission 8
1.3.2 Single-frame transmission 8
1.3.3 Multiple-frame transmission 8
1.4 Datareception i e 9
1.4.1 Single-framereception 9
1.4.2 Multiple-frame reception 9
1.5 Baudrate 10
2 Software description i i i 11
21 Implementation structure 11
2.2 TransmisSiON 12
221 Frame transmission e 12
222 Transmissionroutine 13
2.3 Reception 14
2.3.1 Framereception e 14
2.3.2 Receptionroutine 15
24 UART emulator peripherals and main functions 16
241 Peripheral settings 16
242 Initialization and configuration function 16
243 UART mainfunctionst 17
3 Example i i it 18
3.1 Hardware requirements i 18
3.2 Software settings 19
3.3 Runningtheexample 19
3.4 Frame waveforms 20
4 UART emulator CPU load and footprint 21
4.1 CPU load ... 21

2/24 DoclD026046 Rev 1 ‘Yl

AN4457 Contents

4.2 UART emulator memory footprint 21
5 Conclusion i i ittt e 22
6 Revision history i s 23
Kys DoclD026046 Rev 1 3/24

List of tables AN4457

List of tables

Table 1. Applicable products 1
Table 2. Transmission/reception functions e 17
Table 3. Callback fuNCHIONS. 17
Table 4. UART Emulator and UART hardware connection. 18
Table 5. UART CPU Load e e e e e 21
Table 6. UART memory footprint e e 21
Table 7. Document revision history 23
4/24 DoclD026046 Rev 1 Kys

AN4457

List of figures

List of figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.

3

UART emulator block diagram 7
9-bit data transmission waveforms 8
9-bit data reception waveforms. 9
UART emulator application level view 11
Frame transmission routine flowchart. 12
Transmission routine flowchart. 13
Frame reception routine flowchart 14
Reception routine flowchart e 15
UART emulator and UART HW connection i 18
Example MDK-ARM WOIrKSPaCESttt e e e et 19
UART emulator frame withnoparity. 20
UART emulator frame withodd parity. 20

DoclD026046 Rev 1 5/24

UART emulator description

AN4457

1.1

6/24

UART emulator description

The principle consists in emulating the UART protocol via GPIO, EXTI, timer and DMA
peripherals.

Main features

The main features of the UART emulator are the following:

Full-duplex asynchronous communications up to 115200 bps
Programmable data word length: from 5 to 9 bits

Flexible GPIO usage: all GPIOs can be configured as UART_TX/RX
Configurable number of stop bits: 1 or 2 stop bits

Parity control
Transmission of parity bit
Parity check of received data frame

Transfer detection flags

Receive complete
Transmit complete

Error detection flags

Frame error
Parity error

DoclD026046 Rev 1

3

AN4457

UART emulator description

1.2

S74

UART emulator block diagram

Figure 1: UART emulator block diagram gives an overview of the interaction between the
hardware peripherals and the software modules that make up the UART emulator:
Software modules

They include the routines used for transmitting/receiving data and for formatting the
data to be sent by DMA or stored into SRAM. Flags indicating the UART status are also
available:

TC: Transmission Complete

This flag is set by software when data transmission is complete.

RC: Reception Complete

This flag is set by software when data reception is complete.

FE: Framing Error

This flag allows frame error detection.

PE: Parity Error

This flag is set by software when a parity error occurs in receive mode.

Hardware modules
They consist of all the STM32F4 peripherals involved in UART emulation:

GPIO: I/O ports used as transmitter or receiver pins.

EXTI: in reception mode, the start bit falling edge is detected via an EXTI.
DMA: data transfers are performed by DMA.

TIM: it ensures that data are transmitted and received at the required speed.
SRAM: data are formatted and stored in the SRAM.

Figure 1. UART emulator block diagram

RX
X

Reception Routine

‘ Format Data

- - RC TC Transmission Routine

Status Flags

» EXTI

I

GPIO

DMA

UART Emulator

MSv37806V1

1.

The status flags and the error flags are shown in green and red, respectively.

DoclD026046 Rev 1

7/24

UART emulator description

AN4457

1.3

1.3.1

1.3.2

1.3.3

8/24

UART emulator principle

Data transmission

The transmitter can send 5-, 6-, 7-, 8- or 9-bit data frames depending on user data length
configuration.

Figure 2 shows the waveforms of a 9-bit transmit emulation.

Figure 2. 9-bit data transmission waveforms

One bit
duration

< Data(9bits)

TX Line Start LSB >< >< >< >< >< >< >< >< MSB Stop
vV XY Y Y Y Y Y Y Y Yy

First TRq: Timer SeTclgnd TRq TRq TRq TRq TRq TRq TRq TRq TRq
Requests DMA to a
set the First bit

MSv37807V1

Single-frame transmission

The transmission sequence includes the following steps:

1. The CPU formats the frame to be sent to the memory.

2. The timer sends to the DMA a request to set GPIO to 0 (start bit).

3. The timer starts counting the start bit duration according to the defined baudrate.

4. When the bit duration has elapsed, the timer sends to the DMA a request to set the
next bit from memory.

Once the frame transmission is complete, the TC flag (UART transmission complete) is set.

Multiple-frame transmission

Multiple -frame transmission is based on two buffers. When the DMA transfers the first
frame into the first buffer, the CPU formats the second frame in the second buffer. After each
frame transfer, the DMA TC flag must be cleared and the DMA reconfigured with the new
source address (address of first or second buffer). This operation is repeated until all frames
are transmitted. When this is done, the TC flag (UART transfer complete flag) is set.

3

DoclD026046 Rev 1

AN4457 UART emulator description
1.4 Data reception

The reception is launched when the start bit is detected via an external interrupt on UART

RX line.

Figure 3 shows the waveforms of a 9-bit receive emulation.

Figure 3. 9-bit data reception waveforms
< Data(9bits)
RX Line Yy Start [LsB X X X X X X X X MSB Stop
/4'..':::::::
half Hi | One it | : : ! ! ! | | DMA sampling
Falling edge duration + duration frame
Detection (EXTI) T T T T T T T T T T T <«
\ \ Timer Requests
Timer Requests DMA DMA to get the last
to get the 1st bit bit
MSv37808V1
1.4.1 Single-frame reception

Reception starts when the start bit is detected. The reception sequence includes the

following steps:

1. The CPU checks if the UART is ready and the RX buffer empty.

2. The timer sends a request to the DMA to start data transfer after a half bit duration.

3. The timer starts counting the bit duration according to the defined baudrate and then
sends to the DMA a request to transfer the next bit. This step is repeated until the end
of the frame.

Once the frame reception is complete, the RC flag (UART reception complete) is set.

1.4.2 Multiple-frame reception

When the falling edge of the start bit is detected, the reception goes on until all frames are

received and the RC flag is set.

When the DMA transfer of each frame is complete, the CPU formats data and stores them in

SRAM.

Note: During DMA transfer, the CPU is free for other tasks.

3

The application must assign the highest priority to the external interrupt for bit start
detection.

DoclD026046 Rev 1 9/24

UART emulator description AN4457

1.5

10/24

Baudrate

The UART emulator supports baudrates up to 115200 bps.

The baudrate generation is ensured by the timer using different parameters such as clock
division, prescaler and period (ARR value).

The calculation of timer period (bit duration) is based on the following formula:

timer_period = timer frequency/UART baudrate

Example

Configuration

Timer prescaler =0

Timer clock division = 0

AHB clock = system clock = 84 MHz
APB2 frequency = 21 MHz

UART baudrate = 9600 bps

Result
APB2 prescaler = 4
as a result
timer frequency = (84/4)x2 = 42 MHz
and

timer period = 420000009600

3

DoclD026046 Rev 1

AN4457 Software description
2 Software description
2.1 Implementation structure

3

Figure 4 shows the UART emulator software structure starting from application level.

Figure 4. UART emulator application level view

APPLICATION

UART emulator

l

board.c
board.h

MSv37809V1

DoclD026046 Rev 1

11/24

Software description AN4457

2.2 Transmission

2.21 Frame transmission

Figure 5 describes the implementation of the function that sends a give number of bytes
using DMA and timer.

TxXferCount is a counter that is incremented after the completion each DMA transfer.

FirstBuffer_Tx and SecondBuffer_Tx: the DMA source address switches between two
buffers addresses. The first buffer is used by DMA as source data, while the second buffer is
used by the CPU to format data.

Figure 5. Frame transmission routine flowchart

TxXferCount is
Even ?

A 4 A 4
DMA source =& DMA source =
FirstBuffer_Tx &SecondBuffer_Tx

L]

Enable DMATCIT

L]

Enable DMA and Timer

MSv37810V1

3

12/24 DoclD026046 Rev 1

AN4457

Software description

2.2.2

3

Transmission routine

Figure 6 gives an overview of the UART emulator transmission routine.

Figure 6. Transmission routine flowchart

UART EMUL TX

Initialize parameters

UART Status
= ready ?

no

L

Hal_Error

=vyes

Format frame

v

Transmit Frame

TxXferCount
< data_size?

no

L

Disable interrupts

Y

Set UART TC Flag

Y

Reset TxXferCount

Y

Set UART TC Call
back

v

Update UART Status

MSv37812V1

DoclD026046 Rev 1 13/24

Software description

AN4457

2.3

2.3.1

14/24

Reception

Frame reception

Figure 7 describes the implementation of the function that receives a given number of bytes
via DMA and timer.

RxXferCount: is a counter that is incremented after the completion each DMA transfer.

FirstBuffer_Rx and SecondBuffer_Rx: the DMA destination address switches between
two buffers addresses. The first buffer is used by DMA as data transfer destination, while
the second buffer is used by the CPU to format data.

Figure 7. Frame reception routine flowchart

RxTransferCount
is Even ?

/ A4
DMA destination = DMA destination =
&FirstBuffer_Rx &SecondBuffer_Rx
Enable DMATC IT

Enable DMA and Timer

MSv37813V1

3

DoclD026046 Rev 1

AN4457

Software description

2.3.2

3

Reception routine

Figure 8. Reception routine flowchart

Figure 8 flowchart gives an overview of the UART emulator reception routine.

UART EMUL RX

Initialize
parameters

yes

Hal_Error

Enable EXTI

Bit start
detection ?

ReceiveByte

Y

Format Byte

RxXferCount
< data_size?

Disable interrupts

L]

Set UART RC Flag

L]

Reset RxXferCount

Set UART RC Call
back

Update UART
Status

MSv37811V1

DoclD026046 Rev 1

15/24

Software description AN4457

24

2.41

2.4.2

16/24

UART emulator peripherals and main functions

Peripheral settings

This section describes the configuration of the peripherals used inside the emulator.
e GPIO
— BSRR and IDR are used as destination and source registers for DMA transfers.
— Two pins must be configured as input and output by the user application.
— The input pin mode is configured as an EXTI line with falling edge detection.
¢ DMA2
— Channel 6 and stream 1 are used for transmission.
— Channel 6 and stream 2 are used for reception.
— The transfer is performed by words.
— DMA transfer complete interrupt is used at the end of frame transfers.
e Timer1
— Timer channel 1 is configured as capture compare for DMA transmit requests.
— Timer channel 2 is configured as capture compare for DMA receive requests.
— No clock division: CKD[1:0] =00.
— No prescaler: PSC[15:0]=0.
e SRAM
Four SRAM buffers are used to format data:

— uint16_t pFirstBuffer_Tx[12] and uint16_t pSecondBuffer_Tx[12] are the buffers
for formatting data in transmission mode.

— uint16_t pFirstBuffer_Rx[12], uint16_t pSecondBuffer Rx[112 are the buffers for
formatting data in reception mode.

Initialization and configuration function
The initialization of the UART is performed by HAL _UART_Emul_lInit function which allows
to:
e setup the following UART parameters:
— Baudrate
— Frame length
— Stop bit
— Parity.
e enable clocks for all the peripherals used: Timer, DMA, GPIOs
e configure the DMA: channel, stream, mode, TC interrupt,...
e configure the Timer: channel, period,...

3

DoclD026046 Rev 1

AN4457

Software description

243 UART main functions

This section provides a set of functions ensuring UART transmission/reception emulation.

Table 2. Transmission/reception functions

Function

Parameters

Description

HAL_UART_Emul_Transmit_DMA

uint16_t Size)

(UART_Emul_HandleTypeDef *huart, uint8_t *pData,

huart. UART Emulator handle
pData: Pointer to data buffer Sends data
Size: Amount of data to be sent

uint16_t Size)

HAL_StatusTypeDef HAL_UART_Emul_Receive_DMA
(UART_Emul_HandleTypeDef *huart, uint8_t *pData,

huart. UART Emulator handle
pData: Pointer to data buffer Receives data
Size: Amount of data to be received

Callback functions are also available. They allow the user to implement his own code in the

user file.

Table 3. Callback functions

Function

Parameters

Description

___weak void HAL_UART_Emul_TxCpltCallback
(UART_Emul_Handle TypeDef *huart)

huart. UART Emulator handle

This function is called at the end
of transmit process.

___weak void HAL_UART_Emul_RxCpltCallback
(UART_Emul_Handle TypeDef *huart)

huart: UART Emulator handle

This function is called at the end
of receive process.

___weak void HAL_UART_Emul_ErrorCallback
(UART_Emul_Handle TypeDef *huart)

huart: UART Emulator handle

This function is called when a
communication error is detected.

3

DoclD026046 Rev 1

17/24

AN4457

Example

3 Example
The example provided in STSW-STM32156 illustrates data exchange between the UART
emulator and the hardware UART.

3.1 Hardware requirements

18/24

The hardware required to run this example is the following:

e Two Nucleo boards (NUCLEO-F401RE)

e Two Mini-USB cables to power the boards and to connect the Nucleo embedded ST-
LINK for debugging and programming.

The connection between the two Nucleo boards through UART lines is described in Figure 9
and Table 4.

Figure 9. UART emulator and UART HW connection

Nucleo board Nucleo board

A B
UART TXEE E@ RX Hardware
emulator RX[1] [1TX UART

Push-button

e RESET
R
RESET - =
s LED2
4
LED2

—|§’|— GNDT /J” [|] GND

MSv37814V1

Table 4. UART Emulator and UART hardware connection
Nucleo board B (hardware UART)

Nucleo board A (UART emulator)

UART TX (PC10) UART RX (PA10)
UART RX (PC11) UART TX (PA9)
GND GND

3

DoclD026046 Rev 1

AN4457 Example
3.2 Software settings
The project example includes two workspaces: UART_EMUL and UART_HW (see
Figure 10).
To make the program work, follow the steps described below:
1. Open your preferred toolchain (EWARM or MDK-ARM).
2. Rebuild all files and load your image into target memory.
3. Run the example.
Figure 10. Example MDK-ARM workspaces
File Edit View Projet Flash Debug Peripherals Tools
=" - Ny . j | m
2N AN 5% | [varT_EMUL o K|
Sl UART_HW B
-1 I3 Project: Project
= 49 UART_EMUL
+-id Doc
#{ 1 Drivers/BSP/STM32Fd:-Nucleo
+-Ld Drivers/CMSIS
L Drivers/STM32Fdo HAL_Driver
+ +d Example/MDK-ARM
-5 Example/User
7 _] main.c
¥ _] stm32fdncit.c
3] stm32fdoc_hal_msp.c
3.3 Running the example
To run the example follow the sequence below:
1. Power on the two boards.
2. Load the code in each board MCU.
3. Press the user button key on board A. The example then starts running and the UART
emulator starts transmitting data.
4. The UART hardware receives the data and sends them back to UART emulator.
5. The data transmitted by the UART emulator is compared to received ones: if data do
not match, the green LED (LEDZ2) toggles continuously.
Note: For more details, refer to the readme.txt inside the firmware package.

3

DoclD026046 Rev 1 19/24

Example

AN4457

3.4

20/24

Frame waveforms

Figure 11 and Figure 12 show examples of configurations of ‘A’ character transfer:
e First configuration (see Figure 11):

Baudrate: 9600 baud
Word length: 8 bits
Number of stop bit: 1 stop bit
Parity: none.
Figure 11. UART emulator frame with no parity

Channel

MSv37816V1

e Second configuration (see Figure 12):

Baudrate: 9600 baud

Word length: 8 bits

Number of stop bit: 1 stop bit
Parity: parity odd.

Figure 12. UART emulator frame with odd parity

8bits Data

MSv37817V1

DoclD026046 Rev 1

3

AN4457

UART emulator CPU load and footprint

4

4.1

4.2

3

UART emulator CPU load and footprint

The UART emulator uses the CPU for several tasks such as data formatting, DMA interrupt
handling both for transmission and reception and EXTI interrupt handling for reception.

CPU load

The CPU load depends on whether the transmit or receive process is active. When UART
full-duplex mode is active, the CPU load is increased. Refer to Table 5 for an example.
The software settings used to obtain the results given in Table 5 are the following:

e System clock: 84 MHz

e Toolchain: MDK-ARM V5.14, optimization level3(-O3) for size

e Word length: 8 bits

e One stop bit

e No parity.

Table 5. UART CPU Load

Transmission Reception
Baudrate (bps)
Load CPU (%) MIPS Load CPU (%) MIPS
4800 24 2 4 3
9600 5 4 8.8 7
115200 6 5 9 7.5

UART emulator memory footprint

Table 6 gives an estimate of the code size required by the UART emulator software
compiled with MDK-ARM V5.14, optimization level3(-O3) for size.

Table 6. UART memory footprint

Flash memory footprint (bytes)

RAM footprint (bytes)

2872

400

DoclD026046 Rev 1

21/24

Conclusion

AN4457

5

22/24

Conclusion

This application note demonstrates that the product capability can be increased by adding
an emulated UART.

This solution has many advantages such as saving CPU usage by using DMA for data
transfer. In addition, the user can configure any GPIO as UART transmitter or receiver.

3

DoclD026046 Rev 1

AN4457

Revision history

6

3

Revision history

Table 7. Document revision history

Date

Revision

Changes

30-Mar-2015

1

Initial release.

DoclD026046 Rev 1

23/24

AN4457

IMPORTANT NOTICE — PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics — All rights reserved

3

24/24 DoclD026046 Rev 1

	Table 1. Applicable products
	1 UART emulator description
	1.1 Main features
	1.2 UART emulator block diagram
	1.3 UART emulator principle
	1.3.1 Data transmission
	1.3.2 Single-frame transmission
	1.3.3 Multiple-frame transmission

	1.4 Data reception
	1.4.1 Single-frame reception
	1.4.2 Multiple-frame reception

	1.5 Baudrate

	2 Software description
	2.1 Implementation structure
	2.2 Transmission
	2.2.1 Frame transmission
	2.2.2 Transmission routine

	2.3 Reception
	2.3.1 Frame reception
	2.3.2 Reception routine

	2.4 UART emulator peripherals and main functions
	2.4.1 Peripheral settings
	2.4.2 Initialization and configuration function
	2.4.3 UART main functions
	Table 2. Transmission/reception functions
	Table 3. Callback functions

	3 Example
	3.1 Hardware requirements
	Table 4. UART Emulator and UART hardware connection

	3.2 Software settings
	3.3 Running the example
	3.4 Frame waveforms

	4 UART emulator CPU load and footprint
	4.1 CPU load
	Table 5. UART CPU Load

	4.2 UART emulator memory footprint
	Table 6. UART memory footprint

	5 Conclusion
	6 Revision history
	Table 7. Document revision history

