f; AN4365
’ ife.augmented Application note

Using STM32F4 MCU power modes with best dynamic efficiency

May 2014

Introduction
Power consumption presents a major challenge for recent embedded applications.

This application note is split into two main parts:
e The first part describes how to best configure the STM32F4 power modes and
measure the corresponding current consumptions specified in the datasheet.

e The second part describes a use case that highlights the power efficiency of STM32F4
for the competitive applications of the embedded system market.

This application note is provided with the STSW-STM32142 firmware package that contains

two projects:

e STM32F4_Current_Consumption_Measuring: gives a measuring application that can
be customized to measure the current consumption of different STM32F4 power
modes, and shows how to best configure the system for each mode.

e STM32F4 Low Power Application _Case: this is an example of an application based
on the ADC, 12C and DMA peripherals using STM32F4 low-power modes and features.

For more details about these examples, please refer to the “readme” files inside this
firmware package.

Table 1. Applicable products and tools

Type Part numbers

STM32F401 line

STM32F405/415 line
Microcontrollers STM32F407/417 line
STM32F427/437 line
STM32F429/439 line

Firmware STSW-STM32142

DocID025303 Rev 2 1/35

www.st.com

http://www.st.com

Contents AN4365

Contents
1 STM32F4 power consumptionciiiirrnnnnnnnnns 6
1.1 Powermodes 6
111 Low-power mode OVerviewt 6
1.1.2 Power mode power consumptionso 8
1.2 Power-saving methods and features 9
1.21 System clock configuration and management 9
1.2.2 Dynamic voltage and frequency scaling 9
1.2.3 Voltage regulatorbypass 10
1.2.4 Voltage regulator powertricks 10
1.2.5 ART configuration 10
1.2.6 I/O configuration 11
1.2.7 Using direct memory access (DMA) 11
1.2.8 Power mode switching 11
1.2.9 Code optimization 11
2 STM32F4 current consumption measuring 12
2.1 Current consumption measuring firmware 12
2.1.1 Current consumption application description 12
21.2 Firmware architecture description 18
213 How to use the current consumption firmware 19
2.2 Currentconsumption measuring, 20
2.2.1 Hardware/software environment description 20
222 Consumption measuring best practices 22
3 STM32F4 low-power applicationcaseouu.... 24
3.1 Application overview 24
3.1.1 Application functional description 25
3.1.2 Firmware architecture description, 27
3.2 How to use the application 28
3.2.1 Software requirements 28
3.2.2 Hardware requirements i 29
3.3 Current consumption measurement 31
3.3.1 Measuring current consumption 31
3.3.2 Current consumptionresults 32

2/35 DoclD025303 Rev 2 ‘Yl

AN4365 Contents

4 090 Lo 1= (o Y 1 33

5 Revision history i ittt 34

3

DocID025303 Rev 2 3/35

List of tables AN4365

List of tables

Table 1. Applicable products and tooIs. 1
Table 2. Used pins descCription oo 21
Table 3. Average measurement results 32

Table 4. Document revision history

4/35 DocID025303 Rev 2

3

AN4365

List of figures

List of figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.

3

Power mode switCh. 6
Current consumption of STM32F4 MCU powermodes 8
Main power mode switching menu firmware flowchart. 13
Run mode flowchart 14
Sleep mode flowchart. 15
Stopmode flowchart. e 16
Standby mode flowchart. 17
Current consumption measuring project overview, 18
Jumper for Idd consumption measuring 21
Hardware/software environment setting for Vpp=1.8V 22
STM32F4 sensor hub example. e 24
Application modules and dataflow........... 25
Application state machine. 26
Firmware architecture overview e 28
MDK-ARM application workspaces i 29
Hardware connections e 30
Application waveform overview e 31
Calculating Master average current consumption 31
Calculating sensor average current consumption., 32

DoclD025303 Rev 2 5/35

STM32F4 power consumption AN4365

1.1

1.1.1

6/35

STM32F4 power consumption

Embedded system designers are currently facing an urgent need to make a trade-off
between power efficiency and high performance, especially with recent high-performance
microcontrollers such as the STM32F4 series. Low-power modes are implemented with
other features to reduce the average current consumption over the life of the application.

This part aims to describe the STM32F4 power modes and the power consumption of each
mode, and highlights the features that contribute in power consumption reduction.

Power modes

In the high-performance STM32F4 series based on the ARM® Cortex™-M4 32-bit/DSP
processor cores, designers at STMicroelectronics have highly optimized low-power modes
to define the best compromise between low-power consumption, short startup time and
available wake-up sources.

In this part, we give an overview of the STM32F4 power mode consumptions.

Low-power mode overview

By default, and after power-on or a system reset, the STM32F4 is in Run mode, which is a
fully active mode that consumes much power even when performing minor tasks. Low-
power modes are available to save power when the CPU does not need to be kept running.

It is up to the user to switch between power modes during application processing in order to
reduce the overall average consumption by keeping the device as much as possible in low-
power modes, as described in Figure 1. The user should just select each time the low-power
mode with features that fit his design requirements.

Figure 1. Power mode switch

WA/MHz

A) -
% Run mode % L;v;ggwer

+——¢—>

Run Run

Low power Low power time

WA/MHZz U

a

Average consumption time

MSv34503V1

DoclD025303 Rev 2 ‘Yl

AN4365

STM32F4 power consumption

STM32F4 devices feature four main low-power modes:

Sleep mode:
— Only the CPU clock is stopped.

The Cortex-M4 clock is stopped and the peripherals are kept running. The current
consumption increases with the clock frequency. As in Run mode, the user should be
aware of system configuration rules that concern the system clock and voltage
regulator scales.

Stop mode:

— Lowest power consumption while all the SRAM and registers are kept.
— PLL, HSI, HSE are disabled.

— Al clocks in 1.2 V domain are switched-off.

— Voltage regulator is working in Normal mode or Low-power mode.

— Flash memory is working in Stop mode or Deep-power down mode.

The Cortex-M4 core is stopped and the clocks are switched off (the PLL, the HSI and
the HSE are disabled). SRAM and register content are kept. All /O pins keep the same
state as the Run mode. The voltage regulator is working in Normal or Low-power mode
and the Flash memory can be configured in Stop mode or Deep-power down mode to
save more static power.

Standby mode:

— The lowest power consumption.

— The 1.2 domain is powered off (regulator is disabled).

— SRAM and register contents are lost except in the backup domain.

The Cortex-M4 core is stopped and the clocks are switched off. The voltage regulator is
disabled and the 1.2 V domain is powered-off. SRAM and register contents are lost
except for registers in the Backup domain (RTC registers, RTC backup register and
backup SRAM), and Standby circuitry. This mode has the lowest current consumption,
which depends on the configuration of both backup SRAM (not available for
STM32F401x) and RTC.

VBAT mode:
— The main digital supply (Vpp) is turned off.

— Thecircuit is supplied through Vgar pin which should be connected to an external
supply voltage (a battery or any other source).

This mode is used only when the main digital supply (Vpp) is turned off and the Vgar
pin is connected to an external supply voltage (a battery or any other source). The Vgar
pin powers the Backup domain (RTC registers, RTC backup register and backup
SRAM).

For a further description of these low-power mode features and low-power technology of
STM32F4, you can refer to application note “How to achieve the lowest current consumption
with STM32F2xx” (AN3430) and to reference manuals RM0090 and RM0368, available
from the ST Website.

3

DocID025303 Rev 2 7/35

STM32F4 power consumption

AN4365

1.1.2

Power mode power consumptions

Figure 2 summarizes the power consumption of the various power modes of each STM32F4

device.

Figure 2. Current consumption of STM32F4 MCU power modes

Typ currentV,, range
S

Notes:

* Run mode conditions: CoreMark executed from Flash, peripherals off

Measurements conditions:
24\4 HA/MHz Room temperature
.,_ Wake-up time: 110 ps
@ 180 MHz 310 pA
Wake-up time: 17 ps 22 pA
3.1pA
238 pA/MHz Wake-up time: 375 ps
@ 168 MHz 120 pA
— 40 mA Wake-up time: 105 ps 2.2 pA <1 pA
@ 168 MHz sl 3.1 pA
Wake-up time: 17 pis Wake-up time: 318 ps i
128 pA/MHz sk
@ 60 MHz 9 pA
Wake-up time: 113 s ;2 I-lﬁ
137 pA/MHz 41 pA Ly <1pA
@ 84 MHz Wake-up time: 21 ps ~ Wake-up time: 314 s X
Dynamic Run mode* Stop mode Standby mode V- mode
w/o and w/ RTC w/o or w/ RTC
. STM32F427/437 and STM32F429/439 . STM32F405/415 and STM32F407/417 STM32F401

Consumptions of both the Run and the Sleep modes depend on the operating frequency.
That is why we find that the dynamic Run mode consumption is presented in Figure 2 by the
ratio yA/MHz at the maximum frequency of each device and when all peripherals are
disabled.

For Run mode, the values are measured when the CoreMark benchmark is executed from
Flash.

The lowest power drain is achieved when both Standby mode and Va1 mode are used. The
Standby mode current is by 2 or 3 pA for all STM32F4 MCUs. The Vgat mode current is less
than 1 YA, dedicated to battery use.

The use of these low-power modes is reinforced by the implementation of various power-
saving features in order to reach a highly optimized consumption.

3

DoclD025303 Rev 2

AN4365

STM32F4 power consumption

1.2

Note:

1.2.1

1.2.2

3

Power-saving methods and features

In this part, we give a brief description of power-saving features that help a lot to reduce
current consumption and reach an optimal trade-off between performance processing and
power efficiency.

The majority of these features are common in all STM32F2 and STM32F4 MCUs, so the
user can get more details by referring to application note “How to achieve the lowest current
consumption with STM32F2xx” (AN3430) and to reference manuals RM0090 and RM0344.

System clock configuration and management

The clock controller in STM32F4 provides a high degree of flexibility with various clock
sources (external crystal HSE, internal oscillator HSI, phase-locked loop PLL, internal
oscillator LSI, external oscillator LSE), which are used to run the core and peripherals.

Dynamic power dissipation of CMOS logic is proportional to the operating frequency when
the operating voltage is fixed. The system over-clocking should be avoided by slowing the
system clock when the maximum rate is not needed.

The user should pay attention to the minimum system clock required by some peripherals
that need a specific clock like Ethernet, USB high speed and full speed, 12S and SDIO.
Several prescalers are used to configure the AHB frequency, the high-speed APB (APB2)
and the low-speed APB (APB1) domains. To optimize power consumption, the user should
use the highest prescalers in order to provide just the needed clocks to peripherals and
avoid over-clocking that causes a consumption penalty. Power consumption can be further
lowered by gating clocks to the APBx and AHBXx peripherals when they are not in use.

Dynamic voltage and frequency scaling
Dynamic current: | =PV =C*V *f

So, reducing the operating voltage of the device is a useful step to reduce the overall power
consumption. Furthermore, many embedded systems do not require the system’s full
processing capabilities at all times because not all subsystems are always active. When this
is the case, the system can remain in the active mode without the processor running at its
maximum operating frequency. The voltage supplied to the processor can be lowered when
a lower frequency is sufficient. With such intelligent power management, we reduce the
power drawn from the battery by monitoring the processor input voltage in response to the
system’s performance requirements.

That consists in scaling the STM32F4 regulator output voltage that supplies the 1.2 V
domain (core, memories and digital peripherals) when we lower the clock frequency based
on processing needs.

DocID025303 Rev 2 9/35

STM32F4 power consumption AN4365

1.2.3

1.2.4

1.2.5

10/35

STM32F4 MCUs offer the following scales:
o STM32F427x/437x/429x/439x: three voltage scales
— scale3 (up to 120 MHz)
— scale2 (from 120 to 144 MHz)
— scale1 (up to 180 MHz)
e STM32F405x/415x/407x/417x: two voltage scales
— scale2 (up to 144 MHz)
— scale1 (up to 168 MHz)
e STM32F401x: two voltage scales
— scale3 (up to 60 MHz)
— scale2 (up to 84 MHZ)

Voltage regulator bypass

This feature consists in using an external source for the CPU core voltage instead of an
internal LDO regulator voltage output. When bypassing the voltage regulator, we can save
up to 50% of power when the supply voltage is 3.3 V and up to 35% in case when the supply
voltage is 1.8 V.

Voltage regulator power tricks

There are new tricks implemented in STM32F4 MCUs to reduce current consumption by
monitoring the regulator voltage output.

e Over-drive mode: this mode allows the CPU and the core logic to operate at a higher
frequency than the normal mode for a given voltage scaling (scale1, scale2 or scale3).
This mode is available only with STM32F429x/439x devices.

e Low-voltage mode: in Stop mode, we can further reduce the voltage output of the low-
power regulator by using the Low-voltage mode. This mode is only available in Stop
mode with STM32F429x/439x and STM32F401x devices.

e Under-drive mode: the 1.2 V domain is preserved in Reduced-leakage mode. This
mode is only available in Stop mode when the main regulator or the low-power
regulator is in Low-voltage mode. Under-drive mode is available only with
STM32F429x/439x devices.

ART configuration

The ART accelerator implements an instruction prefetch queue and instruction/data caches,
which increase the overall system performance speed and efficiency by increasing the
Flash memory access.

When the user does not need the system’s full processing performance and wants to further
reduce the consumption, it is recommended to disable the prefetch buffer by software.
Disabling the prefetch buffer avoids extra Flash access that consumes almost up to 10% of
the overall consumption without affecting much the overall performance, depending on the
code alignment on the Flash memory.

3

DocID025303 Rev 2

AN4365

STM32F4 power consumption

1.2.6

1.2.7

1.2.8

1.2.9

3

1/0 configuration

By default, STM32F4 pins are configured as inputs, except some JTAG pins which can
impact the power consumption of the device in different power modes because pins are very
sensitive to external noise in input mode /0.

To avoid extra I/O current, all pins should be configured as analog input (AIN); in this mode
the Schmitt trigger input is disabled, providing zero consumption for each 1/O pin.

We recommend that the 1/O speed frequency (driving level) be configured at the lowest
possible speed or as an output push-pull configuration, outputting 0 to the ODR. The user
should also disable the MCO pin of the clock output if not used.

Using direct memory access (DMA)

STM32F4 devices have peripherals with DMA. This feature is not just useful to improve
performance, it can also be used to reduce power. Peripherals with just one buffer register
require the CPU to remain in operation in order to read from the buffer so it does not
overflow. However, with DMA, the CPU can go to sleep until the DMA transfer completes.
This allows the device to consume less average current over the life of the application.

Power mode switching

Power mode switching in application processing reduces the overall average consumption
by keeping the device as much as possible in low-power modes. Figure 1 illustrates this
power management method.

For example:
Total power = I grage * V, With:

- - I - .
Iaverage= (IRun TlmeRun + IStandby TlmeStandby+ ISleep TlmeSIeep+ IStop TlmeStop) / Total time

Code optimization

The user should apply the best optimization techniques to minimize the number of cycles
required for active processing tasks and the active current required.

Using compiler optimization minimizes the time spent executing instructions (speed) and
minimizes branches in code (size), and so minimize the current draw.

Making direct read/write to/from registers instead of using firmware which contains many
loops and instructions avoids an extra current consumption.

To achieve the lowest current consumption, the user can do extra optimizations which can
not be performed by a compiler optimizer. Simplifying the program flow for common cases
will avoid significant processing time and reduce the required memory.

DocID025303 Rev 2 11/35

STM32F4 current consumption measuring AN4365

2

2.1

211

Note:

12/35

STM32F4 current consumption measuring

Many users need to know the best configuration that will let them reproduce the datasheet’s
current consumption values. In this part, we give a firmware that provides the ideal
configurations for the power modes and let measure the power modes’ current consumption
for different STM32F4 devices.

Current consumption measuring firmware

This section gives details on the firmware, hardware, software/tools environment used to
measure the current consumption of different power modes.

Current consumption application description

The STM32F4’s current consumption firmware supports all STM32F4 devices:
STM32F429x/439x,STM32F40x/41x and STM32F401x.

This firmware aims to let the user measure the dynamic and static current consumption of
different power modes using his own discovery board of each STM32F4’s device. The user
can perform measurements while changing some parameters.

The approach consists in building a kind of power mode switching menu which would let the
user switch from one power mode to another using the button and following dedicated LED
signals available on the STM32F4 discovery boards.

This measuring application can be used directly to perform and measure all power modes
available in each device. On the other hand, the user has the ability to customize the
firmware by selecting only the power modes and sub-modes that require measuring. Some
parameters can be changed to perform measurements with all the possible configurations of
the power modes.

Using the switching menu consists in following the steps below, as described in Figure 3:

e After power-on, the green and red LEDs light up, and remain lit until the user presses
the button to enter the first selected mode/sub-mode.

e Once the button is pressed, the LEDs blinking routine starts to indicate which power
mode/sub-mode will be entered: first, the red LED blinks a number of times that
indicate the power mode that will be entered. After that, the green LED begins blinking
a number of times that indicates the sub-mode that will be entered.

e Once the LEDs are switched off, the device enters the selected power mode to let the
user measure the current. For Run mode, the device executes the CoreMark
benchmark, and when it finishes after at least 10 s, both LEDs are turned on. For
Sleep, Stop and Standby modes, the device just remains at these low-power modes,
waiting to wake-up when the button is pushed. After wake-up, the LEDs light up,
waiting again for the user to press the button to switch to the next mode/sub-mode.

e After exiting the power mode/sub-mode, the green and red LEDs light up again, waiting
for the user to press the button to switch to the next mode/sub-mode and begin a new
power mode measurement. The last mode is Standby mode, and once the user pushes
the wake-up button, a reset is generated to start from the beginning.

For more details about the LED blinking number of each mode and sub-mode, you should
refer to tables in the “readme.txt” file.

DoclD025303 Rev 2 ‘Yl

AN4365 STM32F4 current consumption measuring

Figure 3. Main power mode switching menu firmware flowchart

v

START

v

Initialize GPIOs LEDs and wakeup pin

Is Run mode

defined? No

Enter defined Run sub-modes to be
measured one by one
(For more details refer to Run steps
flowchart below)

Is Sleep mode
defined?

Enter defined Sleep sub-modes to be
measured one by one
(For more details refer to Sleep steps
flowchart below)

Is Stop mode
defined?

Enter defined Stop sub-modes to be
measured one by one
(For more details refer to Sleep steps
flowchart below)

L«

Is Standby mode
defined?

Enter defined Sleep sub-modes to be
measured one by one

l
P

Reset button is pressed to restart ‘

l

MSv34505V1

3

DoclD025303 Rev 2 13/35

STM32F4 current consumption measuring

AN4365

14/35

Figure 4. Run mode flowchart

¥

Wait for user button to be pressed:
Red and green LEDs light up

vé

User button No
pressed?

Yes <«
N

hich sub-mode

defined?

Indicate Run mode and sub-mode:
Execute LED blinking routine

A\ 4

Execute CoreMark benchmark at
defined Run sub-mode

Still other defined

sub-mode? No

Pass to the next mode ‘

MSv34506V1

DoclD025303 Rev 2

3

AN4365

STM32F4 current consumption measuring

3

Figure 5. Sleep mode flowchart

o

Wait for user button
to be pressed:
Red and green LEDs light up

Pl
, X

User button No

pressed ?

Which sub-mode
defined ?

Indicate Sleep mode and sub-mode:
Execute LEDs blinking routine

v

Enter Sleep sub-mode

User button
pressed ?

Exit Sleep sub-mode

Still other defined
sub-mode ?

Pass to the next mode

MSv34507V1

DoclD025303 Rev 2

15/35

STM32F4 current consumption measuring

AN4365

Figure 6. Stop mode flowchart

v

Wait for user button to be pressed:
Red and green LEDs light up

) 4

User button No
pressed?
Yes <
\ 4

hich sub-mode
defined ?

Indicate Stop mode and sub-mode:
Execute LEDs blinking routine

v

Enter Stop sub-mode

User button
pressed?

Yes

Exit Stop sub-mode

Still other defined
sub-mode?

Pass to the next mode

MSv34508V1

16/35 DoclD025303 Rev 2

3

AN4365

STM32F4 current consumption measuring

Figure 7. Standby mode flowchart

Wait for user button to be pressed:

Red and green LEDs light up

A

User button
pressed?

defined ?

Indicate Standby mode and
sub-mode:
Execute LEDs blinking routine

v

Enter Standby sub-mode

Is sub-mode with
RTC?

- - User button
RTC counter start counting until pressed?
overflow (20 s)
Yes
dL
-
\ 4
Wake-up from Standby and Reset

MSv34509V1

DoclD025303 Rev 2

3

17/35

STM32F4 current consumption measuring AN4365

21.2 Firmware architecture description

For Run mode, the CoreMark benchmark is executed at the defined system configuration.
CoreMark is a standard code developed by the Embedded Processor Benchmark
Consortium (EEBMC) to provide a standard set of benchmarks that IDMs subscribe to, in
order to measure the performance of their MCUs under “real world” conditions.

Figure 8 shows the different parts of the STM32F4 current consumption measuring project.

Figure 8. Current consumption measuring project overview

= AN4365 STMIZFdo_Low_Power FW_V XY.Z
+ _himresc
Libraries folder —_— +

Libraries
] CMSIS sub-folder - Projects
[1 STM32F4xx_StdPeriph_Driver v STMI2F&ec low power application case
sub-folder STM22F&oc power modés measuring

' EWARM
' MDK-ARM
+ mc
- sIC

.| core_list_join.c

|| cone_main.c

|| cone_matrix.c

Project folder — > <
[1EWARM and MDK — ARM projects

[J User source files

[1User header files

|| core_portme.c
| core_state.c
| core_utilc

|| main.c
.| pwr_modes ¢
L stm3ZF&o_itc

| readme bd
o | Release_Notes Html
] MCD-ST Liberty SW License Agreement V2 pdf

o | Release_Notes html

) Readme file

—

MSv34510V1

The drivers of the firmware are:

e main.c: contains the initialization code and starts the application as per the selected
power modes and sub-modes.

e pwr_modes.c: contains all the selected sub-mode configurations of all STM32F4
devices.

e core_portme.c: controls the CoreMark benchmark.
e STM32F4_it.c: contains the interrupt handlers for the application.

e core_list_join.c & core_main.c &core_matrix.c & core_state.c & core_util.c: these
drivers implement the CoreMark benchmark functions.

. readme.txt: this file describes how to use the firmware.

3

18/35 DoclD025303 Rev 2

AN4365

STM32F4 current consumption measuring

2.1.3

3

How to use the current consumption firmware

This part provides guidelines on how to use the firmware to achieve the required
measurements.

By default, all modes and sub-modes of each device are defined to be measured at power
switching menu runtime. The user should just load the required code into the device’s Flash
memory and start measuring mode by mode. To customize the firmware, proceed as
follows:

. Define Power mode

As a first step, the user checks the defined power mode in file “main.h” and excludes any
undesirable power mode from the measurement process by commenting the corresponding
macros.

In this example, we comment the RUN and SLEEP mode macros in order to measure only
the Stop and Standby modes.

/* Uncomment the corresponding line to select power mode(s) that
will be measured */

//#define RUN_ MODE
//#define SLEEP MODE
#define STOP_MODE
#define STANDBY MODE

To debug code, the user should uncomment the DEBUG macro in “main.h”.
o Define Power sub-modes

“pwr.modes.h” contains all the power sub-mode macros for all STM32F4 devices. By
default, all available sub-modes are defined to be measured. If the user wants to customize
his switching menu and measure specific sub-modes, he needs to comment macros of
those he will not measure. This way, the firmware will execute only the defined power sub-
modes one by one. Only for Standby mode, we can define and measure one only sub-mode
because the device will reset at the moment of waking-up.

The following is an example for Stop mode, performed while measuring current
consumption for an STM32F429x/439x device. We want to measure only Stop modes with
low-power regulator, so we should keep both selected sub-modes, and comment the other
ones:

//#define StopMainRegFlashStop enter

//#define StopMainRegFlashPwrDown enter

#define StopLowPwrRegFlashStop enter

#define StopLowPwrRegFlashPwrDown enter

//#define StopMainRegUnderDriveFlashPwrDown enter
//#define StopLowPwrRegUnderDriveFlashPwrDown enter

After defining the modes and sub-modes, some parameters can be customized, i.e. the ART
accelerator status and the supply voltage value.

DocID025303 Rev 2 19/35

STM32F4 current consumption measuring AN4365

2.2

2.2.1

20/35

e Define ART accelerator configuration

We can enable the full ART with both data/instruction caches and prefetch buffer by
uncommenting both corresponding macros. We can enable the ART except prefetch by
commenting the prefetch macro. See the example below.

/* Enable ART */
#define ART Enable
/* Enable prefetch when ART is enabled */

// #define Prefetch Enable

e Define the voltage supply value

The voltage supply used in the discovery kit while measuring should be specified by
uncommenting either the 3.3 V macro or the 1.8 V macro, like in the example below.

/* Define the Power supply value */
/* vdd = 3,3 V */

#define VDD3 3

* vdd = 1,8 V */

//#define VDDl 8

Current consumption measuring

This section describes the applicable software and hardware environment set-up.

Hardware/software environment description

To start measuring on your STM32F4’s discovery board, the minimum requirements are as
follows:

e One of STM32F4’s discovery boards: STM32F401C-DISCO MB1115B /
STM32F4DISCOVERY MB997C / STM32F429I-DISCO MB1075B

e “USB type A to Mini-B” cable, to power the board (through USB connector CN1) from a
host PC and to connect to the embedded ST-LINK/V2 for debugging and programming

e An ammeter

e A power supply

Before you start measurements, you should establish the connection with the STM32F4
discovery board as shown in Figure 9 by proceeding as follows:

e Connect the supply voltage cables to the dedicated external supply input pins (GND pin
for the ground, and 3 V pin for the 3.3 V or 1.8 V). LED LD2 (PWR) will light up.

e Remove the Idd jumper of the discovery board dedicated to current consumption
measurement (JP1 for STM32F40x/41x, JP2 for STM32F401x and JP3 for
STM32F429/439x) and connect the ammeter cables. Ensure that the ammeter is set to
the mA scale.

DoclD025303 Rev 2 ‘Yl

AN4365

STM32F4 current consumption measuring

Figure 9 shows an Idd jumper circuitry of STM32F4291-DISCO MB1075B. (For more details,
please refer to user manual UM1670 Discovery kit for STM32F429/439 lines).

Figure 9. Jumper for Ildd consumption measuring

EXd P2 VDD
=
7 12 O
1K
LDz
LED, red

You can refer to Table 2 to know more about the used pins described in previous parts.

Table 2. Used pins description

Discovery board . ldd 3V pin of Ground
jumper Vpp supply

STM32F4DISCOVERY Pin 5 or Pin 6 of header .
MB997C JP1 25X2 (P1) Pin 49/50 of header 25X2 (P1)
STM32F401C-DISCO Pin 5 or Pin 6 of header .
MB1115B JP2 25X2 (P1) Pin 49/50 of header 25X2 (P1)
STM32F429I-DISCO P3 Pin 1 or Pin 2 of header |Pin 63 or Pin 64 of header 32X2
MB1075B 32X2 (P1) (P1)

To start measuring, the user should establish the connection of the described parts as

shown on Figure 10.

3

DocID025303 Rev 2

21/35

STM32F4 current consumption measuring AN4365

2.2.2

22/35

Figure 10. Hardware/software environment setting for Vpp=1.8 V

Consumption measuring best practices

After setting the hardware and software environment, the user can run the STM32F4 power
consumption firmware and start measuring the current consumption in each mode.

To measure current consumption with the STM32F4 discovery board using the power
consumption switching menu, you should proceed as follows:

e If Run mode is defined, press the button to enter the first selected Run sub-mode.
Once the LEDs stop blinking, the device starts executing the CoreMark benchmark and
the user should measure the corresponding current before the LEDs return to lighting
status after almost 10 s.

o If Sleep mode is defined, press the button to enter the first selected Sleep sub-mode.
Once the LEDs stop blinking, the device enters the first selected Sleep sub-mode.

DoclD025303 Rev 2 ‘Yl

AN4365

STM32F4 current consumption measuring

3

Once the user has taken the measurement, he should press the button to wake-up
from sleep and pass to the next sub-mode or mode.

If Stop mode is defined, proceed as described for Sleep mode.

If Standby mode is defined, press the button to enter the selected standby sub-mode.
If the sub-mode is with RTC and the wake-up button is not pressed, the device will
wake-up and reset after 20 s. The user should make the measurement before wake-up.
If the defined sub-mode is without RTC, the user should press the button to wake-up
the device after finishing the measurement.

The user should be aware about some constraints while performing the measurement:

For Run, Sleep and Stop modes, the user should put the ammeter in mA scale. For
Standby mode, the user should switch to the pA scale of the ammeter to be able to
measure the standby current.

It is recommended to connect the power supply source to the discovery board only
after power-on at the defined voltage supply (3.3 V or 1.8 V).

The user should ensure that only one of the two power sources is connected: either the
USB connector or the power supply source.

Another concern is the voltage drop out of the ammeter. When set to a low-current
range for measuring static power (stop, standby), there is usually a notable drop across
the ammeter due to its impedance. This can interfere with voltage-sensitive case (1.8 V
measurements), and often a power-down reset will occur. This can be avoided by
increasing the power supply voltage output or using regulation techniques relative to
the Vpp input to the device.

DocID025303 Rev 2 23/35

STM32F4 low-power application case AN4365

3 STM32F4 low-power application case

Sensors are a fundamental part of the human/machine interface. This part of the application
note provides an example of a sensor hub based on STM32F4 devices and focuses on the
low-power modes used to reduce the consumption of this application.

The figure below describes a complete sensor hub example, from which we built the
simplified application described in the next section.

Figure 11. STM32F4 sensor hub example

STM32F401 as sensor hub in medical, industrial and consumer applications

Sensors
B =Ansor "“ Motion coprocessor Main processor
Gyroscope @ 1 8_/I3_3 v 1_?_\!
Compass +

12C (1 Mbit/s) 12C (1 Mbit/s) B
Proximity 4-'-’0 SPI (42 Mbit/s) STM32F401 SPI (42 Mbit/s) A;%'('iztslﬂ?
12-bit ADC USB OTG FS PESST

Ambient light ;Q’

Micro $

The next parts of this application note describe the following main items:
e Application case overview

e Software and hardware environment

e Current consumption measurement

3.1 Application overview

This application consists of a communication between a sensor hub and a sensor based on
two STM32F4 devices. One device is configured as master (sensor hub) and the other as
slave (sensor).

The main features of the application are:

e ADC with 1024 Vga1 voltage samples

e Low-power techniques described in the first chapter

e Sensor hub FFT samples transformation with maximum device frequency

3

24/35 DoclD025303 Rev 2

AN4365 STM32F4 low-power application case

311 Application functional description

e Hardware description

The main STM32F4 modules used by this application are:
— ADC peripheral: used to convert voltages coming from Vgar

— DMA peripheral: used to transmit data from the ADC to memory, from memory to
[2C and from 12C to memory, and to reduce the CPU load

— 12C peripheral: configured as Slave Transmitter and Master Receiver and used to
control the transmission between devices

— RTC peripheral: used to wake-up CPU from Standby after a defined wake-up
time
— User button: used to startup the application

Figure 12. Application modules and data flow

FFT
1024 samples
FFT Buffer CPU CPU
(Buf[2048]) Cortex-M4 Cortex-M4 Memory
FFT
aRx Buffer
[1024] I
T 1024 samples
DMA 12C 12C |g DMA
RTC
PAO

0s PAS PAO 1I0s ADC Vear
USER
button

STM32F4 (Master) STM32F4 (Sensor)
MSv34514V1

e Software description
This software example makes the application operate in master and slave configurations.

Two devices are connected and set up both the transmit and receive data between each
other using a common 12C bus.

The state machine in Figure 13 describes the application and the procedure of the
transmission between the two devices.

Initially, the master/slave pair remains in Standby mode.

First, the user presses the user button and the application starts. Then, the master wakes up
and wakes the slave by toggling pin PA5 (connected to slave PAQ) and then enters in low-
power mode (Sleep).

Then, on the Slave side, the ADC starts conversions of Vg1 voltages and the DMA stores
these converted values in memory. During this operation, the CPU stays in Sleep mode.

Once the DMA transfer is completed, the CPU wakes up just to configure the 12C slave to
start transmitting data to master and returns back to sleep mode until the slave (sensor)
finishes the transmission.

3

DocID025303 Rev 2 25/35

STM32F4 low-power application case AN4365

On the Master side, the 12C receives data from the slave and proceeds the same way as the

slave.

When the DMA completes transfer to memory, the CPU takes in charge the FFT
transformation of the data in the memory and goes again to standby, but this time for a
period of about 200 ms controlled by the RTC peripheral. Once this period is elapsed, the

CPU restarts the operations loop.

Figure 13. Application state machine

0

RTC Wakeup
(<200ms)

WakeUp flag

PAO =0

DMA Transfer

~~~~~~ .. DMA Transfer DMA Transfer |  DMA Transfer
12C 1024 “*.. Complete Ongoing
ADC Samples Transfer >,

DMA Transfer
Ongoing

DMA Transfer
Ongoing Sensor

Master

:l Run mode
:l Low-power modes

MSv34524V1

Low-power state machine

Stdby: when the device is powered-on or reset, it enters Standby mode, waiting for a user
button push to wake up.

Run1_M: system clock configuration

Run2_M: 12C and DMA configurations

Sleep: DMA samples transfer during CPU Sleep mode

Run3_M: clearing of DMA pending flags on receiver stream and CPU FFT data
transformation starts with the maximum device frequency.

StdBy RTC WU: the CPU stays in standby for about 200 ms, waiting for the RTC wakeup

S74

26/35 DocID025303 Rev 2




AN4365

STM32F4 low-power application case

Note:

3.1.2

3

Sensor (Slave) state machine

Run1_S: system clock configuration

Run2_S: ADC and DMA configurations and start of Vgat sampling

Sleep1: DMA samples transfer to memory during CPU Sleep mode

Run3_S: 12C and DMA configurations and start of data transmission to the sensor hub
Sleep2: DMA samples transfer from Sensor to Master via 12C during CPU Sleep mode
Run4_S: clearing of DMA pending flags on transmitter stream

Stdby: once operations are finished, the sensor CPU enters in Standby mode waiting for a
request from the Master to wake-up again.

Debug mode

By default, the debug connection is lost if the application puts the MCU in Standby, for
example. This is due to the fact that the CPU is no longer clocked.

However, by setting some configuration bits in the DBGMCU_CR register, the software can
be debugged even when using the low-power modes extensively. This is done by
uncommenting #define DEBUG in main.h

Auto-wakeup

The RTC (clocked by LS| ~32 KHz) provides a programmable time base for waking-up the
sensor hub from Standby mode at regular intervals (~200 ms).

To follow the functional behavior of this application, the user has to visualize signals with an
oscilloscope or go in Debug mode.

Firmware architecture description

This application uses the STM32F4 library and contains the following main source files:
e main.c: contains the overall needed functions for the application
e  STM32F4_it.c: contains the interrupt handlers for the application

e STM32F4_system.c: contains the system clock configuration for the STM32F4
devices used in the application

DocID025303 Rev 2 27135




STM32F4 low-power application case AN4365

3.2

3.2.1

28/35

Figure 14. Firmware architecture overview

= | AN4365_STM3IZFbe_Low_Power_FW_VXY.Z

4 || _htmresc
Libraries folders > + Libraries
[ CMSIS subfolder =~ || Projects
(1 STM32F4xx StdPeriph_Driver subfolder - STM32F4oc_Low_Power_Application_Case
+- }, EWARM
s MDK-ARM
+ inc
= src
...... main_c
Projects folders > < e T
[ EWARM and MDK-ARM projects N -
[ User source files P i -] system_stm3Xac.c
[ User header files - || readme bd
1 Readme file H- 0 5TM32F&oc_Power_Modes_Measuring
i Release_MNotes html
----- i MCD-5T Liberty SW License Agreement V2 pdf

e e & | Release_Notes himl

MSv34515V1

How to use the application

Software requirements

To use this example, you need to load it on two STM32F4 discovery boards. In the toolchain
interface, choose the dedicated workspace to configure the 12C peripheral as a Master or
Slave device.

This application offers six workspaces:

e STM32F401_MB1115B_M

e STM32F401_MB1115B_S

e STM32F429 MB1075B_M

e STM32F429_MB1075B_S

e STM32F407_MB997C M

e STM32F407_MB997C_S

The STM32F401_MB1115B_M, for example, is a workspace for STM32F401x devices with
the MB1115B Discovery board and configured as Master (M). To use a configuration as

sensor, the user should choose the workspace with suffix “_S”, such as
STM32F401_MB1115B_S.

3

DocID025303 Rev 2




AN4365 STM32F4 low-power application case

Figure 15. MDK-ARM application workspaces

$5 | [sTvsara01_me11158 M [=] 48

5TME2F401 ME1115B M

Project STM32F401_MEB1115B_5S

E"E STM22F401 MEL115E B STM32F429_ME1075B_M |
- T |STM32F429_MEL1075E 5

123 User STM32F407_MB997C_M
- [#] main.c STM32F407 MB997C 5

f- [#] stm32fdo_it.c
H-77 STM32Fdw_StdPeriph_Driver
M-73 CMSIS
=425 MDK-ARM
startup_strm32f40_d1wous
----- @ startup_strm32f401:00s
257 startup_stm32f429_43%0cs

I+

MSV34521V1

3.2.2 Hardware requirements

To setup the application, the user should connect the two discoveries through 12C lines and
GND, as shown in Figure 16.

3

DoclD025303 Rev 2 29/35




STM32F4 low-power application case AN4365

Multimeter
current measure

Figure 16. Hardware connections

12C
connections

To run the application on STM32F4 devices, the following steps are required:

1.

Connect the two 12Cs of the two devices.

2. Power both discoveries through mini USB connectors.

3.  From Windows, launch the adequate toolchain and load the two boards with Master
and sensor programs.

4. Connect the multimeter to the desired board instead of each discovery Idd jumper
(JPx) as described in Table 2.

5. Press the master user button to start the application and then the multimeter displays
the average power consumption of each device.

Note: The R30 resistance should be removed from the MB1115B discovery.

The R31 and R34 resistances should be removed from the MB997C discovery.

30/35

3

DocID025303 Rev 2




AN4365

STM32F4 low-power application case

3.3

3.3.1

Note:

3

Current consumption measurement

The average current consumption is the sum of the total energy consumed by the system in
Dynamic and Static power modes, divided by the average system loop time. The average
current is important because it provides a single value, which can be used to accurately
determine battery life or the total energy use of the system.

This application involves speed (maximum device frequency used for FFT), complexity
(sampling and transfer of 1024 samples) and STM32F4 low-power efficiency using the
Sleep and Standby modes associated with other low-power techniques (described in the
previous chapter).

Measuring current consumption

Figure 17. Application waveform overview

Master current consumption

Figure 18. Calculating Master average current consumption

100% (Total operations: 376ms)

A
v

0,11% | 0,08% 49% 0,6% 50,19%

StdBy

4+“—>¢—>P¢— Sleep ————P¢—>¢——
(RTC wakeup)

Run1_M Run2_M Run3_M

MSv34516V1

Average Current (mA)~= (Run1_M*0,11 + Run2_M*0,08 + Sleep*49 + Run3_M*0,6 + StdBy*50,19)/100

The standby period on the Master side is controlled by the RTC which is driven by the LSI
RC oscillator. The LS varies from 17 KHz to 47 KHz (refer to the STM32F4 datasheet). This
means that the period can be changed from one device to another, and this can slightly
impact the consumption.

DocID025303 Rev 2 31/35




STM32F4 low-power application case AN4365

3.3.2

32/35

Sensor current consumption

Figure 19. Calculating sensor average current consumption

100% (Total operations: 376ms)

<
<

v

0,11%]0,02%| 2,8% |0,04% 49% 0,05% 47,98%

Sleep2 StdBy
PP PP PP
Run1_S Run2_S Sleep1 Run3_S Run4_S

MSv34518V1

Average Current (mA)~= (Run1_S*0,11 + Run2_S*0,02 + Sleep1*2,8 + Run3_S§*0,04 + Sleep2*49 +
Run4_S*0,05 + StdBy*47,98)/100

Current consumption results

Table 3 shows some measures taken with a firmware compiled with the MDK-ARM V4.73
toolchain and device powered with 3 V. For more details about hardware requirements, refer
to Section 3.2.2.

Table 3. Average measurement results

Consumption (mA)
Device
Master Sensor
STM32F401xC 1.10 1.75
STM32F429xx 1.60 2.00
STM32F407xx 1.60 2.05

3

DocID025303 Rev 2




AN4365

Conclusion

4

3

Conclusion

This application note demonstrates the low-power features integrated into the STM32F4
series that ensure the trade-off between power efficiency and high performance.

The first part of the document provides an overview about these power features and
describes how to well configure and measure the different power modes.

The second part is based on an application case of communication between master and
sensor that takes the advantage of different STM32F4 low-power features to reach a lower
current consumption.

DocID025303 Rev 2 33/35




Revision history

AN4365

5

34/35

Revision history

Table 4. Document revision history

Date Revision Changes
28-Mar-2014 1 Initial release.
12-May-2014 2 Updated Introduction.

DocID025303 Rev 2

3




AN4365

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

‘Yl DoclD025303 Rev 2 35/35




	1 STM32F4 power consumption
	1.1 Power modes
	1.1.1 Low-power mode overview
	1.1.2 Power mode power consumptions

	1.2 Power-saving methods and features
	1.2.1 System clock configuration and management
	1.2.2 Dynamic voltage and frequency scaling
	1.2.3 Voltage regulator bypass
	1.2.4 Voltage regulator power tricks
	1.2.5 ART configuration
	1.2.6 I/O configuration
	1.2.7 Using direct memory access (DMA)
	1.2.8 Power mode switching
	1.2.9 Code optimization


	2 STM32F4 current consumption measuring
	2.1 Current consumption measuring firmware
	2.1.1 Current consumption application description
	2.1.2 Firmware architecture description
	2.1.3 How to use the current consumption firmware

	2.2 Current consumption measuring
	2.2.1 Hardware/software environment description
	2.2.2 Consumption measuring best practices


	3 STM32F4 low-power application case
	3.1 Application overview
	3.1.1 Application functional description
	Low-power state machine
	Sensor (Slave) state machine
	Debug mode
	Auto-wakeup

	3.1.2 Firmware architecture description

	3.2 How to use the application
	3.2.1 Software requirements
	3.2.2 Hardware requirements

	3.3 Current consumption measurement
	3.3.1 Measuring current consumption
	Master current consumption
	Sensor current consumption

	3.3.2 Current consumption results


	4 Conclusion
	5 Revision history

