
September 2012 Doc ID 018624 Rev 5 1/45

AN3371
Application note

Using the hardware real-time clock (RTC)
 in STM32 F0, F2, F3, F4 and L1 series of MCUs

Introduction
A real-time clock (RTC) is a computer clock that keeps track of the current time. Although
RTCs are often used in personal computers, servers and embedded systems, they are also
present in almost any electronic device that requires accurate time keeping. Microcontrollers
supporting RTC can be used for chronometers, alarm clocks, watches, small electronic
agendas, and many other devices.

This application note describes the features of the real-time clock (RTC) controller embedded
in Ultra Low Power Medium-density, Ultra Low Power High-density, F0, F2 and F4 series
devices microcontrollers, and the steps required to configure the RTC for use with the calendar,
alarm, periodic wakeup unit, tamper detection, timestamp and calibration applications.

Examples are provided with configuration information to enable you to quickly and correctly
configure the RTC for calendar, alarm, periodic wakeup unit, tamper detection, time stamp
and calibration applications.

Note: All examples and explanations are based on the STM32L1xx, STM32F0xx, STM32F2xx
STM32F4xx and STM32F3xx firmware libraries and reference manuals of STM32L1xx
(RM0038), STM32F0xx (RM0091), STM32F2xx (RM0033), STM32F4xx (RM0090),
STM32F37x (RM0313) and STM32F30x(RM0316).

STM32 refers to Ultra Low Power Medium-density, Ultra Low Power High-density, F0, F2
and F4 series devices in this document.

Ultra Low Power Medium (ULPM) density devices are STM32L151xx and STM32L152xx
microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.

Ultra Low Power High (ULPH) density devices are STM32L151xx, STM32L152xx and
STM32L162xx microcontrollers where the Flash memory density is 384 Kbytes.

F2 series devices are STM32F205xx, STM32F207xx, STM32F215xx and STM32F217xx
microcontrollers.

STM32F3xx refers to STM32F30x, STM32F31x, STM32F37x and STM32F38x devices.

F4 series are STM32F405xx, STM32F407xx, STM32F415xx and STM32F417xx microcontrollers.

F0 series devices are microcontrollers.

Table 1 lists the microcontrollers concerned by this application note.

Table 1. Applicable products

Type Applicable products

Microcontrollers

STM32 F0
STM32 F2
STM32 F3 (STM32F30x, STM32F31x, STM32F37x, STM32F38x)

STM32 F4 (STM32F405xx, STM32F407xx, STM32F415xx, STM32F417xx)
STM32 L1

www.st.com

http://www.st.com

Contents AN3371

2/45 Doc ID 018624 Rev 5

Contents

1 Overview of the STM32 advanced RTC . 6
1.1 RTC calendar . 6

1.1.1 Initializing the calendar . 7

1.1.2 RTC clock configuration . 8

1.2 RTC alarms . 10

1.2.1 RTC alarm configuration . 10

1.2.2 Alarm sub-second configuration . 12

1.3 RTC periodic wakeup unit . 14

1.3.1 Programming the Auto-wakeup unit . 14

1.3.2 Maximum and minimum RTC wakeup period . 15

1.4 RTC digital calibration . 17

1.4.1 RTC coarse calibration . 17

1.4.2 RTC smooth calibration . 18

1.5 Synchronizing the RTC . 19

1.6 RTC reference clock detection . 20

1.7 Time-stamp function . 21

1.8 RTC tamper detection function . 22

1.8.1 Edge detection on tamper input . 22

1.8.2 Level detection on tamper input . 23

1.8.3 Active time-stamp on tamper detection event . 25

1.9 Backup registers . 25

1.10 RTC and low-power modes . 25

1.11 Alternate function RTC outputs . 26

1.11.1 RTC_CALIB output . 26

1.11.2 RTC_ALARM output . 28

1.12 RTC security aspects . 29

1.12.1 RTC register write protection . 29

1.12.2 Enter/exit initialization mode . 29

1.12.3 RTC clock synchronization . 30

2 Advanced RTC features . 31

3 RTC firmware driver API . 33

AN3371 Contents

Doc ID 018624 Rev 5 3/45

3.1 Start with the RTC driver . 33

3.1.1 Time and date configuration . 34

3.1.2 Alarm configuration . 34

3.1.3 RTC wakeup configuration . 34

3.1.4 Outputs configuration . 35

3.1.5 Digital calibration configuration . 35

3.1.6 TimeStamp configuration . 35

3.1.7 Tamper configuration . 35

3.1.8 Backup data registers configuration . 36

3.2 Function groups and description . 36

4 Application examples . 41

5 Revision history . 43

List of tables AN3371

4/45 Doc ID 018624 Rev 5

List of tables

Table 1. Applicable products and tools . 1
Table 2. Steps to initialize the calendar . 7
Table 3. Calendar clock equal to 1 Hz with different clock sources . 9
Table 4. Steps to configure the alarm. 11
Table 5. Alarm combinations . 11
Table 6. Alarm sub-second mask combinations . 13
Table 7. Steps to configure the Auto-wakeup unit . 14
Table 8. Timebase/wakeup unit period resolution with clock configuration 1 15
Table 9. Timebase/wakeup unit period resolution with clock configuration 2 16
Table 10. Min. and max. timebase/wakeup period when RTCCLK= 32768 . 17
Table 11. Time-stamp features. 21
Table 12. Tamper features (edge detection) . 23
Table 13. Tamper features (level detection) . 25
Table 14. RTC_CALIB output frequency versus clock source . 27
Table 15. Advanced RTC features . 31
Table 16. RTC function groups. 36
Table 17. Example descriptions . 41
Table 18. Document revision history . 43

AN3371 List of figures

Doc ID 018624 Rev 5 5/45

List of figures

Figure 1. RTC calendar fields . 6
Figure 2. Example of calendar display on an LCD . 7
Figure 3. STM32L1xx RTC clock sources . 8
Figure 4. STM32F2xx or STM32F4xx RTC clock sources. 8
Figure 5. Prescalers from RTC clock source to calendar unit . 9
Figure 6. Alarm A fields . 10
Figure 7. Alarm sub-second field . 12
Figure 8. Prescalers connected to the timebase/wakeup unit for configuration 1 15
Figure 9. Prescalers connected to the wakeup unit for configurations 2 and 3 16
Figure 10. Coarse calibration block . 17
Figure 11. Smooth calibration block. 18
Figure 12. RTC shift register . 19
Figure 13. RTC reference clock detection . 20
Figure 14. Time-stamp event procedure . 21
Figure 15. Tamper with edge detection . 23
Figure 16. Tamper with level detection . 24
Figure 17. Tamper sampling with precharge pulse . 24
Figure 18. RTC_CALIB clock sources . 27
Figure 19. Alarm flag routed to RTC_ALARM output. 28
Figure 20. Periodic wakeup routed to RTC_ALARM pinout. 29

Overview of the STM32 advanced RTC AN3371

6/45 Doc ID 018624 Rev 5

1 Overview of the STM32 advanced RTC

The real-time clock (RTC) embedded in STM32 microcontrollers acts as an independent
BCD timer/ counter. The RTC can be used to provide a full-featured calendar, alarm,
periodic wakeup unit, digital calibration, synchronization, time stamp, and advanced tamper
detection.

Refer to Table 15: Advanced RTC features for the complete list of features available on each
device.

1.1 RTC calendar
A calendar keeps track of the time (hours, minutes and seconds) and date (day, week,
month, year). The STM32 RTC calendar offers several features to easily configure and
display the calendar data fields:

● Calendar with:

– sub-seconds (not programmable)

– seconds

– minutes

– hours in 12-hour or 24-hour format

– day of the week (day)

– day of the month (date)

– month

– year

● Calendar in binary-coded decimal (BCD) format

● Automatic management of 28-, 29- (leap year), 30-, and 31-day months

● Daylight saving time adjustment programmable by software

Figure 1. RTC calendar fields

1. RCT_DR, RTC_TR are RTC Date and Time registers.

2. The sub-second field is the value of the synchronous prescaler’s counter. This field is not writable.

A software calendar can be a software counter (usually 32 bits long) that represents the
number of seconds. Software routines convert the counter value to hours, minutes, day of

MS19524V1

AM
PM hh mm s ssWeek

date Month YearDate

RTC-DR

12h or 24h format

RTC_TR RTC_SSR

DATE TIME

AN3371 Overview of the STM32 advanced RTC

Doc ID 018624 Rev 5 7/45

the month, day of the week, month and year. This data can be converted to BCD format and
displayed on a standard LCD, which is useful in countries that use the 12-hour format with
an AM/PM indicator (see Figure 2). Conversion routines use significant program memory
space and are CPU-time consuming, which may be critical in certain real-time applications.

When using the STM32 RTC calendar, software conversion routines are no longer needed
because their functions are performed by hardware.

The STM32 RTC calendar is provided in BCD format. This avoids binary to BCD software
conversion routines, which use significant program memory space and a CPU-load that may
be critical in certain real-time applications.

Figure 2. Example of calendar display on an LCD

1.1.1 Initializing the calendar
Table 2 describes the steps required to correctly configure the calendar time and date.

11:15:28:09 PM

WED OCT 26 2011

Table 2. Steps to initialize the calendar

Step What to do How to do it Comments

1
Disable the RTC registers Write
protection

Write "0xCA" and then
"0x53" into the
RTC_WPR register

RTC registers can be modified

2 Enter Initialization mode
Set INIT bit to ‘1’ in
RTC_ISR register

The calendar counter is
stopped to allow update

3
Wait for the confirmation of
Initialization mode (clock
synchronization)

Poll INITF bit of in
RTC_ISR until it is set

It takes approximately 2
RTCCLK clock cycles for
medium density devices

4
Program the prescalers register
if needed

RTC_PRER register:
Write first the
synchronous value and
then write the
asynchronous

By default, the RTC_PRER
prescalers register is initialized
to provide 1Hz to the Calendar
unit when RTCCLK = 32768Hz

5
Load time and date values in
the shadow registers

Set RTC_TR and
RTC_DR registers

6
Configure the time format (12h
or 24h)

Set FMT bit in RTC_CR
register

FMT = 0: 24 hour/day format

FMT = 1: AM/PM hour format

7 Exit Initialization mode
Clear the INIT bit in
RTC_ISR register

The current calendar counter is
automatically loaded and the
counting restarts after 4
RTCCLK clock cycles

8
Enable the RTC Registers
Write Protection

Write "0xFF" into the
RTC_WPR register

RTC Registers can no longer
be modified

Overview of the STM32 advanced RTC AN3371

8/45 Doc ID 018624 Rev 5

1.1.2 RTC clock configuration

RTC clock source

The RTC calendar can be driven by three clock sources LSE, LSI or HSE (see Figure 3 and
Figure 4).

Figure 3. STM32L1xx RTC clock sources

Note: RTCSEL[1:0] bits are the RCC Control/status register (RCC_CSR) [17:16] bits

Figure 4. STM32F2xx or STM32F4xx RTC clock sources

How to adjust the RTC calendar clock

The RTC features several prescalers that allow delivering a 1 Hz clock to calendar unit,
regardless of the clock source.

MS19525V1

HSE OSC
1-24 MHz

LSE OSC
32.768 kHz

LSI RC
37 kHz

HSE_RTC

HSE

LSE

LSI

/2, 4,
8,16

To RTC

RTCCLK

RTCSEL[1:0]

MS19526V1

LSI RC
32 kHz

LSE OSC
32.768 kHz

HSE OSC
4-26 MHz

HSE_RTC

LSI

LSE

HSE

To RTC

RTCCLK

RTCSEL[1:0]

LSI RC
32 kHz

/2 to 31

AN3371 Overview of the STM32 advanced RTC

Doc ID 018624 Rev 5 9/45

Figure 5. Prescalers from RTC clock source to calendar unit

Note: The length of the synchronous prescaler depends on the product. For this section, it is
represented on 13 bits.

The formula to calculate ck_spre is:

where:

● RTCCLK can be any clock source: HSE_RTC, LSE or LSI

● PREDIV_A can be 1,2,3,..., or 127

● PREDIV_S can be 0,1,2,..., or 8191

Table 3 shows several ways to obtain the calendar clock (ck_spre) = 1 Hz.

Synchronous 13-bit
prescaler (default=256)

RTC
Clock

PREDIV_A PREDIV_S

Ck_SpreAsynchronous
prescaler

Synchronous
prescaler Calendar unit

MS19527V1

Asynchronous 7-bit
prescaler (default = 128)

Shadow registers
(RTC_TR and

RTC_DR)

Table 3. Calendar clock equal to 1 Hz with different clock sources

RTCCLK
Clock source

Prescalers
ck_spre

PREDIV_A[6:0] PREDIV_S[12:0]

HSE_RTC = 1MHz
124

(div125)

7999

(div8000)
1 Hz

LSE = 32.768 kHz
127

(div128)
255

(div256)
1 Hz

LSI = 32 kHz(1)

1. For STM32L1xx, LSI = 37 KHz, but LSI accuracy is not suitable for calendar application.

127

(div128)

249

(div250)
1 Hz

 LSI = 37 kHz(2)

2. For STM32F2xx and STM32F4xx, LSI = 32 KHz, but LSI accuracy is not suitable for calendar application.

124

(div125)

295

(div296)
1 Hz

ck_spre RTCCLK
PREDIV_A 1+() PREDIV_S 1+()×

--=

Overview of the STM32 advanced RTC AN3371

10/45 Doc ID 018624 Rev 5

1.2 RTC alarms

1.2.1 RTC alarm configuration
STM32 RTC embeds two alarms, alarm A and alarm B, which are similar. An alarm can be
generated at a given time or/and date programmed by the user.

The STM32 RTC provides a rich combination of alarms settings, and offers many features to
make it easy to configure and display these alarms settings.

Each alarm unit provides the following features:

● Fully programmable alarm: sub-second (this is discussed later), seconds, minutes,
hours and date fields can be independently selected or masked to provide a rich
combination of alarms.

● Ability to exit the device from low power modes when the alarm occurs.

● The alarm event can be routed to a specific output pin with configurable polarity.

● Dedicated alarm flags and interrupt.

Figure 6. Alarm A fields

1. RTC_ALRMAR is an RTC register. The same fields are also available for the RTC_ALRMBR register.

2. RT_ARMASSR is an RTC register. The same field is also available for the RTC_ALRMBR register.

3. Maskx are bits in the RTC_ALRMAR register that enable/disable the RTC_ALARM fields used for alarm A
and calendar comparison. For more details, refer to Table 5.

4. Mask ss are bits in the RTC_ALRMASSR register.

An alarm consists of a register with the same length as the RTC time counter. When the
RTC time counter reaches the value programmed in the alarm register, a flag is set to
indicate that an alarm event occurred.

The STM32 RTC alarm can be configured by hardware to generate different types of
alarms. For more details, refer to Table 5.

Programming the alarm

Table 4 describes the steps required to configure alarm A.

MS19528V1

Day of week

Alarm date

AM
PM hh mm s

12h or 24h
format

RTC_ALRMAR

Alarm time

Date

Mask2Mask3 Mask1

ss

Mask0 Mask ss

RTC_ALRMASSR

AN3371 Overview of the STM32 advanced RTC

Doc ID 018624 Rev 5 11/45

Configuring the alarm behavior using the MSKx bits

The alarm behavior can be configured using the MSKx bits (x = 1, 2, 3, 4) of the
RTC_ALRMAR register for alarm A (RTC_ALRMBR register for alarm B).

Table 5 shows all the possible alarm settings. As an example, to configure the alarm time to
23:15:07 on Monday (assuming that the WDSEL = 1), MSKx bits must be set to 0000b.
When the WDSEL = 0, all cases are similar, except that the Alarm Mask field compares with
the day number and not the day of the week, and MSKx bits must be set to 0000b.

Table 4. Steps to configure the alarm

Step What to do How to do it Comments

1
Disable the RTC registers Write
protection

Write "0xCA" and then
"0x53" into the
RTC_WPR register

RTC registers can be modified

2 Disable alarm A
Clear ALRAE(1) bit in
RTC_CR register.

1. Respectively ALRBE bit for alarm B.

3
Check that the RTC_ALRMAR
register can be accessed

Poll ALRAWF(2) bit until
it is set in RTC_ISR.

2. Respectively ALRBWF bit for alarm B.

It takes approximately two
RTCCLK clock cycles (clock
synchronization).

4 Configure the alarm
Configure
RTC_ALRMAR(3)
register.

3. Respectively RTC_ALRMBR register for alarm B.

The alarm hour format must be
the same(4) as the RTC
Calendar in RTC_ALRMAR.

4. As an example, if the alarm is configured to occur at 3:00:00 PM, the alarm will not occur even if the
calendar time is 15:00:00, because the RTC calendar is 24-hour format and the alarm is 12-hour format.

5 Re-enable alarm A
Set ALRAE(5) bit in
RTC_CR register.

5. Respectively ALRBE bit for alarm B.

6. RTC alarm registers can only be written when the corresponding RTC alarm is disabled or during RTC
Initialization mode.

6
Enable the RTC registers Write
protection

Write "0xFF" into the
RTC_WPR register

RTC registers can no longer be
modified

Table 5. Alarm combinations
MSK3 MSK2 MSK1 MSK0 Alarm behavior

0 0 0 0
All fields are used in alarm comparison:
Alarm occurs at 23:15:07, each Monday.

0 0 0 1
Seconds do not matter in alarm comparison
The alarm occurs every second of 23:15, each Monday.

0 0 1 0
Minutes do not matter in alarm comparison
The alarm occurs at the 7th second of every minute of 23:XX, each
Monday.

0 0 1 1 Minutes and seconds do not matter in alarm comparison

0 1 0 0 Hours do not matter in alarm comparison

0 1 0 1 Hours and seconds do not matter in alarm comparison

Overview of the STM32 advanced RTC AN3371

12/45 Doc ID 018624 Rev 5

Caution: If the seconds field is selected (MSK0 bit reset in RTC_ALRMAR or RTC_ALRMBR), the
synchronous prescaler division factor PREDIV_S set in the RTC_PRER register must be at
least 3 to ensure a correct behavior.

1.2.2 Alarm sub-second configuration

The STM32 RTC unit provides programmable alarms, sub-second A and B, which are
similar. They generate alarms with a high resolution (for the second division).

The value programmed in the Alarm sub-second register is compared to the content of the
sub-second field in the calendar unit.

The sub-second field counter counts down from the value configured in the synchronous
prescaler to zero, and then reloads a value in the RTC_SPRE register.

Figure 7. Alarm sub-second field

Note: Mask ss is the most significant bit in the sub-second alarm. These are compared to the
synchronous prescaler register.

0 1 1 0 Hours and minutes do not matter in alarm comparison

0 1 1 1
Hours, minutes and seconds do not matter in alarm comparison
The alarm is set every second, each Monday, during the whole day.

1 0 0 0
Week day (or date, if selected) do not matter in alarm comparison

Alarm occurs all days at 23:15:07.

1 0 0 1 Week day and seconds do not matter in alarm comparison

1 0 1 0 Week day and minutes do not matter in alarm comparison

1 0 1 1 Week day, minutes and seconds do not matter in alarm comparison

1 1 0 0 Week day and hours do not matter in alarm comparison

1 1 0 1 Week day, hours and seconds do not matter in alarm comparison

1 1 1 0 Week day, hours and minutes do not matter in alarm comparison

1 1 1 1 Alarm occurs every second

Table 5. Alarm combinations (continued)
MSK3 MSK2 MSK1 MSK0 Alarm behavior

MS30110V1

Alarm sub-second

AM
PM hh mm s

12h or 24h
format

Alarm flag

Time

ssss

Mask ss

=

AN3371 Overview of the STM32 advanced RTC

Doc ID 018624 Rev 5 13/45

The Alarm sub-second can be configured using the mask ss bits in the alarm sub-second
register. Table 6: Alarm sub-second mask combinations shows the configuration possibilities
for the mask register and provides an example with the following settings:

● Select LSE as the RTC clock source (for example LSE = 32768 Hz).

● Set the Asynchronous prescaler to 127.

● Set the Synchronous prescaler to 255 (the Calendar clock is equal to 1Hz).

● Set the alarm A sub-second to 255 (put 255 in the SS[14:0] field).

Note: The overflow bits in the sub-second register bit (15,16 and 17) are never compared.

Table 6. Alarm sub-second mask combinations

MASKSS Alarm A sub-second behavior Example result

0
There is no comparison on sub-second for alarm. The alarm is
activated when the second unit is incremented.

The alarm is activated every
1 second

1
Only the AlarmA_SS[0] bit is compared to the RTC sub-second
register RTC_SSR

The alarm is activated every
(1/128) s

2
Only the AlarmA_SS[1:0] bit is compared to the RTC sub-second
register RTC_SSR

The alarm is activated every
(1/64) s

3
Only the AlarmA_SS[2:0] bit is compared to the RTC sub-second
register RTC_SSR

The alarm is activated every
(1/32) s

4
Only the AlarmA_SS[3:0] bit is compared to the RTC sub-second
register RTC_SSR

The alarm is activated every
(1/16) s

5
Only the AlarmA_SS[4:0] bit is compared to the RTC sub-second
register RTC_SSR

The alarm is activated every
125 ms

6
Only the AlarmA_SS[5:0] bit is compared to the RTC sub-second
register RTC_SSR

The alarm is activated every
250 ms

7
Only the AlarmA_SS[6:0] bit is compared to the RTC sub-second
register RTC_SSR

The alarm is activated every
500 ms

8
Only the AlarmA_SS[7:0] bit is compared to the RTC sub-second
register RTC_SSR

The alarm is activated every 1 s

9
Only the AlarmA_SS[8:0] bit is compared to the RTC sub-second
register RTC_SSR

The alarm is activated every 1 s

10
Only the AlarmA_SS[9:0] bit is compared to the RTC sub-second
register RTC_SSR

The alarm is activated every 1 s

11
Only the AlarmA_SS[10:0] bit is compared to the RTC sub-second
register RTC_SSR

The alarm is activated every 1 s

12
Only the AlarmA_SS[11:0] bit is compared to the RTC sub-second
register RTC_SSR

The alarm is activated every 1 s

13
Only the AlarmA_SS[12:0] bit is compared to the RTC sub-second
register RTC_SSR

The alarm is activated every 1 s

14
Only the AlarmA_SS[13:0] bit is compared to the RTC sub-second
register RTC_SSR

The alarm is activated every 1 s

15
Only the AlarmA_SS[14:0] bit is compared to the RTC sub-second
register RTC_SSR

The alarm is activated every 1 s

Overview of the STM32 advanced RTC AN3371

14/45 Doc ID 018624 Rev 5

1.3 RTC periodic wakeup unit
Like many STMicroelectronics microcontrollers, the STM32 provides several low power
modes to reduce the power consumption.

The STM32 features a periodic timebase and wakeup unit that can wake up the system
when the STM32 operates in low power modes. This unit is a programmable downcounting
auto-reload timer. When this counter reaches zero, a flag and an interrupt (if enabled) are
generated.

The wakeup unit has the following features:
● Programmable downcounting auto-reload timer.

● Specific flag and interrupt capable of waking up the device from low power modes.

● Wakeup alternate function output which can be routed to RTC_ALARM output (unique
pad for alarm A, alarm B or Wakeup events) with configurable polarity.

● A full set of prescalers to select the desired waiting period.

1.3.1 Programming the Auto-wakeup unit
Table 7 describes the steps required to configure the Auto-wakeup unit.

Table 7. Steps to configure the Auto-wakeup unit

Step What to do How to do it Comments

1 Disable the RTC registers Write protection
Write "0xCA" and
then "0x53" into the
RTC_WPR register

RTC registers can be
modified

2 Disable the wakeup timer.
Clear WUTE bit in
RTC_CR register

3
Ensure access to Wakeup auto-reload
counter and bits WUCKSEL[2:0] is allowed.

Poll WUTWF until it
is set in RTC_ISR

It takes approximately
2 RTCCLK clock cycles

4 Program the value into the wakeup timer.
Set WUT[15:0] in
RTC_WUTR register See Section 1.3.2:

Maximum and minimum
RTC wakeup period5 Select the desired clock source.

Program
WUCKSEL[2:0] bits
in RTC_CR register

6 Re-enable the wakeup timer.
Set WUTE bit in
RTC_CR register

The wakeup timer
restarts downcounting

7 Enable the RTC registers Write protection
Write "0xFF" into the
RTC_WPR register

RTC registers can no
more be modified

AN3371 Overview of the STM32 advanced RTC

Doc ID 018624 Rev 5 15/45

1.3.2 Maximum and minimum RTC wakeup period
The wakeup unit clock is configured through the WUCKSEL[2:0] bits of RTC_CR1 register.
Three different configurations are possible:

● Configuration 1: WUCKSEL[2:0] = 0xxb for short wakeup periods
(see Periodic timebase/wakeup configuration for clock configuration 1)

● Configuration 2: WUCKSEL[2:0] = 10xb for medium wakeup periods
(see Periodic timebase/wakeup configuration for clock configuration 2)

● Configuration 3: WUCKSEL[2:0] = 11xb for long wakeup periods
(see Periodic timebase/wakeup configuration for clock configuration 3)

Periodic timebase/wakeup configuration for clock configuration 1

Figure 8 shows the prescaler connection to the timebase/wakeup unit and Table 8 gives the
timebase/wakeup clock resolutions corresponding to configuration 1.

The prescaler depends on the Wakeup clock selection:

● WUCKSEL[2:0] =000: RTCCLK/16 clock is selected

● WUCKSEL[2:0] =001: RTCCLK/8 clock is selected

● WUCKSEL[2:0] =010: RTCCLK/4 clock is selected

● WUCKSEL[2:0] =011: RTCCLK/2 clock is selected

Figure 8. Prescalers connected to the timebase/wakeup unit for configuration 1

When RTCCLK= 32768 Hz, the minimum timebase/wakeup resolution is 61.035 µs, and the
maximum resolution is 488.28 µs. As a result:

● The minimum timebase/wakeup period is (0x0001 + 1) x 61.035 µs = 122.07 µs.

The timebase/wakeup timer counter WUT[15:0] cannot be set to 0x0000 with
WUCKSEL[2:0]=011b (fRTCCLK/2) because this configuration is prohibited. Refer to the
STM32 reference manuals for more details.

● The maximum timebase/wakeup period is (0xFFFF+ 1) x 488.28 µs = 2 s.

Table 8. Timebase/wakeup unit period resolution with clock configuration 1

Clock source
Wakeup period resolution

WUCKSEL[2:0] = 000b (div16) WUCKSEL[2:0] = 011b (div2)

LSE = 32 768 Hz 488.28 µs 61.035 µs

MS19529V1

WUCKSEL[1:0]

RTCCLK

16-bit wakeup
auto-relaod timer

Prescaler /
2,4,8,16

RTC_WUTR

WUCKSEL[2]

Periodic
wakeup flag

Overview of the STM32 advanced RTC AN3371

16/45 Doc ID 018624 Rev 5

Periodic timebase/wakeup configuration for clock configuration 2

Figure 9 shows the prescaler connection to the timebase/wakeup unit and Table 9 gives the
timebase/wakeup clock resolutions corresponding to configuration 2.

Figure 9. Prescalers connected to the wakeup unit for configurations 2 and 3

When RTCCLK= 32768 Hz, the minimum resolution for configuration 2 is 61.035 µs, and the
maximum resolution is 32s.

As a result:

● The minimum timebase/wakeup period is (0x0000 + 1) x 61.035 µs = 122.07 µs.

● The maximum timebase/wakeup period is (0xFFFF+ 1) x 32 s = 131072 s (more than
36 hours).

Periodic timebase/wakeup configuration for clock configuration 3

For this configuration, the resolution is the same as for configuration 2. However, the
timebase/wakeup counter downcounts starting from 0x1FFFF to 0x00000, instead of
0xFFFF to 0x0000 for configuration 2.

When RTCCLK= 32768,

● The minimum timebase/wakeup period is:

(0x10000 + 1) x 61.035 µs = 250.06 ms

● The maximum timebase/wakeup period is:

(0x1FFFF+ 1) x 32 s = 4194304 s (more than 48 days).

Table 9. Timebase/wakeup unit period resolution with clock configuration 2

Clock source

Wakeup period resolution

 PREDIV_A[6:0] = div128
PREDIV_S [12:0] = div8192

 PREDIV_A[6:0] = div2(1)

PREDIV_S [12:0] = div1

1. PREDIV_A minimum value is ‘1’ on medium density devices.

LSE = 32 768 Hz 32 s 61.035 µs

MS19530V1

RTC Clock

16-bit wakeup auto-
reload timer

Asynch. 7-bit prescaler
(default=128)

Wakeup
autoreload

timer
(RTC_WUTR)

WUCKSEL[2]

Periodic
wakeup flag

Asynchronous
prescaler

(PREDIV_A)

Synchronous
prescaler

(PREDIV_S)

Synchronous 13-bit
prescaler (default=256)

AN3371 Overview of the STM32 advanced RTC

Doc ID 018624 Rev 5 17/45

Summary of timebase/wakeup period extrema

When RTCCLK= 32768 Hz, the minimum and maximum period values, depending on the
configuration, are listed in Table 10.

1. These values are calculated when RTCCLK = 32768 Hz

1.4 RTC digital calibration

1.4.1 RTC coarse calibration

The digital coarse calibration can be used to compensate crystal inaccuracy by adding
(positive calibration) or masking (negative calibration) clock cycles at the output of the
asynchronous prescaler (ck_apre).

A negative calibration can be performed with a resolution of about 2 ppm, and a positive
calibration can be performed with a resolution of about 4 ppm. The maximum calibration
ranges from -63 ppm to 126 ppm.

Figure 10. Coarse calibration block

You can calculate the clock deviation using AFO_CALIB, then update the calibration block. It
is not possible to check the calibration result, as the 512 Hz output is before the calibration
block. You can check the calibration result with certain products, as the 1 Hz CK_Spre
output is after the coarse calibration block. Refer to Table 15: Advanced RTC features.

Note: The calibration settings can only be changed during initialization.
The full calibration cycle lasts 64 minutes.
The calibration is done during the first minutes (from 0 to 62 min depending on the
configuration) of the calibration cycle.

We recommend the use of coarse calibration for static correction only. Due to the points
listed in note 1, changing the calibration settings brings errors:
- Entering initialization mode stops the calendar and reinitializes the prescalers
- The calibration change rate must be very much smaller than the calibration window size in
order to minimize the impact of the error brought by the change on the final accuracy.

Table 10. Min. and max. timebase/wakeup period when RTCCLK= 32768
Configuration Minimum period Maximum period

 1 122.07 µs 2 s

2 122.07 µs more than 36 hours

3 250.06 ms more than 48 days

MS19531V1

RTC Clock

Asynch. 7-bit prescaler
(default=128)

Asynchronous
prescaler

Synchronous
prescaler

Synchronous 13-bit
prescaler (default=256)

C
oa

rs
e

ca
lib

ra
tio

n

Shadow registers
(RTC_TR, RTC_DR)

Calendar

512 Hz AFO_CALIB

Ck_Spre

Overview of the STM32 advanced RTC AN3371

18/45 Doc ID 018624 Rev 5

Consequently, the coarse calibration is not adequate for a dynamic calibration (such as the
compensation of the quartz variations due to external temperature changes).

The reference clock calibration and the coarse calibration cannot be used together.

Caution: Digital coarse calibration may not work correctly if PREDIV_A < 6.

1.4.2 RTC smooth calibration

The RTC clock frequency can be corrected using a series of small adjustments by adding or
subtracting individual RTCCLK pulses.The RTC clock can be calibrated with a resolution of
about 0.954 ppm with a range from -487.1 ppm to +488.5 ppm.

This digital smooth calibration is designed to compensate for the inaccuracy of crystal
oscillators due to temperature, crystal aging.

Figure 11. Smooth calibration block

You can compute the clock deviation using AFO_CALIB, then update the calibration block. It
is possible to check the calibration result using calibration output 512 Hz or 1 Hz for the
AFO_CALIB signal, depending on the products. Refer to Table 15: Advanced RTC features.

Smooth calibration consists of masking and adding N (configurable) 32 kHz pulses that are
well distributed in a configurable window (8 s, 16 s or 32 s).

The number of masked or added pulses is defined using CALP and CALM in the
RTC_CALR register.

By default, the calibration window is 32 seconds. It can be reduced to 8 or 16 seconds by
setting the CALW8 bit or the CALW16 bit in the RTC_CALR register:

Example 1: Setting CALM[0] to 1, CALP=0 and using 32 seconds as a calibration window
results in exactly one pulse being masked for 32 seconds.

Example 2: Setting CALM[2] to 1, CALP=0 and using 32 seconds as a calibration window
results in exactly 4 pulses being masked for 32 seconds.

Note: Both CALM and CALP can be used and, in this case, an offset ranging from -511 to +512
pulses can be added for 32 seconds (calibration window).

When the asynchronous prescaler is less than 3, CALP cannot be set to 1.

The formula to calculate the effective calibrated frequency (FCAL), given the input frequency
(FRTCCLK), is:

FCAL = FRTCCLK x [1 + (CALP x 512 - CALM) / (220 + CALM - CALP x 512)].

MS30112V1

RTC
Clock

Asynch. 7-bit prescaler
(default=128)

Asynchronous
prescaler

Synchronous
prescaler

Synchronous 15-bit
prescaler (default=256)

Shadow registers
(RTC_TR, RTC_DR)

Calendar

512 Hz AFO_CALIB

Ck_Spre

S
m

oo
th

ca

lib
ra

tio
n

AN3371 Overview of the STM32 advanced RTC

Doc ID 018624 Rev 5 19/45

A smooth calibration can be performed on the fly so that it can be changed when the
temperature changes or if other factors are detected.

Checking the smooth calibration

The smooth calibration effect on the calendar clock (RTC Clock) can be checked by:

● Calibration using the AFO_CALIB (512 Hz or 1 Hz).

● Calibration using the sub-second alarms.

● Calibration using the Wakeup timer.

1.5 Synchronizing the RTC

The RTC calendar can be synchronized to a more precise clock, “remote clock”, using the
RTC shift feature. After reading the RTC sub-second field, a calculation of the precise offset
between the time being maintained by the remote clock and the RTC can be made. The
RTC can be adjusted by removing this offset with a fine adjustment using the shift register
control.

Figure 12. RTC shift register

It is not possible to check the “Synchronization” Shift function using the AFO_CALIB output
since the shift operation has no impact on the RTC clock, other than adding or subtracting a
few fractions from the calendar counter.

Correcting the RTC calendar time

If the RTC clock is advanced compared to the remote clock by n fractions of seconds, the
offset value must be written in SUBFS, which will be added to the synchronous prescaler’s
counter. As this counter counts down, this operation effectively subtracts from (delays) the
clock by:

Delay (seconds) = SUBFS / (PREDIV_S + 1)

If the RTC is delayed compared to the remote clock by n fractions of seconds, the offset
value can effectively be added to the clock (advancing the clock) when the ADD1S function
is used in conjunction with SUBFS, effectively advancing the clock by:

Advance (seconds) = (1 - (SUBFS / (PREDIV_S + 1))).

MS30111V1

RTC Clock

Asynch. 7-bit prescaler
(default=128)

Asynchronous
prescaler

Synchronous
prescaler

Synchronous 15-bit
prescaler (default=256)

Shadow registers
(RTC_TR, RTC_DR)

Calendar

512 Hz AFO_CALIB

Ck_Spre

Shift
(RTC_SHIFTER)

delay advance

Overview of the STM32 advanced RTC AN3371

20/45 Doc ID 018624 Rev 5

1.6 RTC reference clock detection
The reference clock (at 50 Hz or 60 Hz) should have a higher precision than the 32.768 kHz
LSE clock. This is why the RTC provides a reference clock input (RTC_50Hz pin) that can
be used to compensate the imprecision of the calendar frequency (1 Hz).

The RTC_50Hz pin should be configured in input floating mode.

This mechanism enables the calendar to be as precise as the reference clock.

The reference clock detection is enabled by setting REFCKON bit of the RTC_CR register.

When the reference clock detection is enabled, PREDIV_A and PREDIV_S must be set to
their default values: PREDIV_A = 0x007F and PREVID_S = 0x00FF.

When the reference clock detection is enabled, each 1 Hz clock edge is compared to the
nearest reference clock edge (if one is found within a given time window). In most cases, the
two clock edges are properly aligned. When the 1 Hz clock becomes misaligned due to the
imprecision of the LSE clock, the RTC shifts the 1 Hz clock a bit so that future 1 Hz clock
edges are aligned. The update window is 3 ck_calib periods (ck_calib is the output of the
coarse calibration block).

If the reference clock halts, the calendar is updated continuously based solely on the LSE
clock. The RTC then waits for the reference clock using a detection window centered on the
Synchronous Prescaler output clock (ck_spre) edge. The detection window is 7 ck_calib
periods.

The reference clock can have a large local deviation (for instance in the range of 500 ppm),
but in the long term it must be much more precise than 32 kHz quartz.

The detection system is used only when the reference clock needs to be detected back after
a loss. As the detection window is a bit larger than the reference clock period, this detection
system brings an uncertainty of 1 ck_ref period (20 ms for a 50 Hz reference clock) because
we can have 2 ck_ref edges in the detection window. Then the update window is used,
which brings no error as it is smaller than the reference clock period.

We assume that ck_ref is not lost more than once a day. So the total uncertainty per month
would be 20 ms *1* 30 = 0.6 s, which is much less than the uncertainty of a typical quartz
(1.53 minute per month for 35 ppm quartz).

Figure 13. RTC reference clock detection

Note: The reference clock calibration and the coarse calibration cannot be used together.

The reference clock calibration is the best (ensures a high calibrated time) if the 50 Hz is
always available. If the 50 Hz input is lost, the LSE can be used.

The reference clock detection cannot be used in Vbat mode.

The reference clock calibration can only be used if you provide a precise 50 or 60 Hz input.

MS19545V1

CK_Spre
Calendar

Shadow registers
(RTC_TR
RTC_DR)

Autodetection
of 50 or 60 Hz

Voltage
adaptor 220V
to 5V or 3.3V

AN3371 Overview of the STM32 advanced RTC

Doc ID 018624 Rev 5 21/45

1.7 Time-stamp function
The Time-stamp feature provides the means to automatically save the current calendar.

Figure 14. Time-stamp event procedure

Provided that the time-stamp function is enabled, the calendar is saved in the time-stamp
registers (RTC_TSTR, RTC_TSDR, RTC_TSSSR) when a time-stamp event is detected on
the pin that the TIMESTAMP alternate function is mapped to. When a time-stamp event
occurs, the time-stamp flag bit (TSF) in RTC_ISR register is set.

Note: The time-stamp sub-second register is not available for all products. Please refer to
Table 15: Advanced RTC features.

AM
PM hh mm s

TIME
(RTC_TR)

MS19532V1

Date Week
date Month Year

DATE
(RTC_DR)

ss

Sub-second
(RTC_SSR)

12h or 24h
format

Calendar Unit

AM
PM hh mm s

TIME
(RTC_TSTR)

Date Week
date Month Year

DATE
(RTC_TSDR)

ss

Sub-second
(RTC_TSSSR)

Copy:
RTC_TSTR = RTC_TR
RTC_TSDR = RTC_DR
RTC_TSSSR = RTC_SSR

On Time- Stamp
event

Table 11. Time-stamp features

What to do How to do it Comments

Enable Time-stamp
Setting the TSE bit of
RTC_CR register to 1

Map TIMESTAMP pin
alternate function

Selecting with TSINSEL bit
in RTC_TCR register

Only for F2 series devices.
The TIMESTAMP pin can be either PI8
or PC13.

Detect a time-stamp event by
interrupt

Setting the TSIE bit in the
RTC_CR register

An interrupt is generated when a time-
stamp event occurs.

Detect a time-stamp event by
polling

By polling on the time-
stamp flag (TSF(1)) in the
RTC_ISR register

To clear the flag, write zero on the TSF
bit.(2)

Overview of the STM32 advanced RTC AN3371

22/45 Doc ID 018624 Rev 5

1.8 RTC tamper detection function
The RTC includes n tamper detection inputs. The tamper input active level/edge can be
configured and each one has an individual flag (TAMPxF bit in RTC_ISR register).

A tamper detection event generates an interruption when the TAMPIE bit in RTC_TAFCR
register is set.

The configuration of the tamper filter, “TAMPFLT bits”, defines whether the tamper detection
is activated on edge (set TAMPFLT to “00“), or on level (TAMPFLT must be different from
“00“).

Note: The number of tamper “n” depends on products. Each input has a “TAMPxF” individual flag
in the RTC_TAMP register.

1.8.1 Edge detection on tamper input

When the TAMPFLT bits are set to zero, the tamper input detection triggers when either a
rising edge or a falling edge is observed on the corresponding TAMPLEVEL bit.

Detect a Time-stamp
overflow event(3)

By polling on the time-
stamp over flow flag
(TSOVF(4)) in the RTC_ISR
register.

– To clear the flag, write zero on the
TSOVF bit.

– Time-stamp registers (RTC_TSTR
and RTC_TSDR, RTC_TSSSR(1))
maintain the results of the previous
event.

– If a time-stamp event occurs
immediately after the TSF bit is
supposed to be cleared, then both
TSF and TSOVF bits are set.

1. TSF is set 2 ck_apre cycles after the time-stamp event occurs due to the synchronization
process.

2. To avoid masking a time-stamp event occurring at the same moment, the application must not
write ‘0’ into TSF bit unless it has already read it to‘1’.

3. A time-stamp overflow event is not connected to an interrupt.

4. There is no delay in the setting of TSOVF. This means that if two time-stamp events are close
together, TSOVF can be seen as '1' while TSF is still '0'. As a consequence, it is recommended
to poll TSOVF only after TSF has been set.

Table 11. Time-stamp features (continued)

What to do How to do it Comments

AN3371 Overview of the STM32 advanced RTC

Doc ID 018624 Rev 5 23/45

Figure 15. Tamper with edge detection

Note: With tamper events, sampling and precharge features are deactivated.

1.8.2 Level detection on tamper input

Setting the tamper filter “TAMPFLT” to a value other than zero means that the tamper input
triggers when a selected level (high or low) is observed on the corresponding TAMPLEVEL
bit.

A tamper detection event is generated when either 2, 4 or 8 (depending on TAMPFLT value)
consecutive samples are observed at the selected level.

MS30113V1

RTC_TAMP1

RTC_TAMPx

STM32

Edge detection

Tamper 1
switch

Tamper x
switch

Table 12. Tamper features (edge detection)

What to do How to do it Comments

Enable Tamper
Set the TAMP1E bit of
RTC_TAFCR register to 1

Select Tamper1 active edge
detection

Select with TAMP1TRG bit
in RTC_TAFCR register

The default edge is rising edge.

Map Tamper1 pin alternate
function

Select with TAMP1INSEL
bit in RTC_TAFCR register

For F2/4 series devices, the Tamper1
pin can be either PI8 or PC13.

Detect a Tamper1event by
interrupt

Set the TAMPIE bit in the
RTC_TAFCR register

An interrupt is generated when a
tamper detection event occurs.

Detect a Tamper1 event by
polling

Poll on the time-stamp flag
(TAMP1F) in the RTC_ISR
register

To clear the flag, write zero on the
TAMP1F bit.

Overview of the STM32 advanced RTC AN3371

24/45 Doc ID 018624 Rev 5

Figure 16. Tamper with level detection

Using the level detection (tamper filter set to a non-zero value), the tamper input pin can be
precharged by resetting TAMPUDIS through an internal resistance before sampling its state.
In order to support the different capacitance values, the length of the pulse during which the
internal pullup is applied can be 1, 2, 4 or 8 RTCCLK cycles.

Figure 17. Tamper sampling with precharge pulse

Note: When the internal pullup is not applied, the I/Os Schmitt triggers are disabled in order to
avoid extra consumption if the tamper switch is open.

The trade-off between the tamper detection latency (using the precharge feature) and the
power consumption through the weak pullup/pulldown can be reduced by using a tamper
sampling frequency feature.

The tamper sampling frequency is determined by configuring the TAMPFREQ bits in the
RTC_TAMP register.

Note: When using the LSE (32768 Hz) as the RTC clock source, the sampling frequency can be 1,
2, 4, 8, 16, 32, 64, or 128 Hz.

MS30114V1

RTC_TAMP1

RTC_TAMPx

STM32

Level detection

Tamper 1
switch

Tamper x
switch

X
X

C1

Cx

MS30115V1

Start sampling

Precharge = 1RTCCLK

Precharge = 2RTCCLK

Precharge =4RTCCLK

RTC clock

Floating input

Switch opened

AN3371 Overview of the STM32 advanced RTC

Doc ID 018624 Rev 5 25/45

1.8.3 Active time-stamp on tamper detection event

By setting the TAMPTS bit to 1, any tamper event (with edge or level detection) causes a
time-stamp to occur. Consequently, the time-stamp flag and time-stamp overflow flag are set
at the moment when the tamper flag is set and work in the same manner as when a normal
time-stamp event occurs.

Note: It is not necessary to enable or disable the time-stamp function when using this feature.

1.9 Backup registers
RTC_BKPxR, where x=0 to n backup registers (80 bytes), are reset when a tamper
detection event occurs. These registers are powered-on by VBAT when VDD is switched off,
so that they are not reset by a system reset, and their contents remain valid when the device
operates in low-power mode.

Note: The number “n” of backup registers depends on the product. Please refer to Table 15:
Advanced RTC features.

1.10 RTC and low-power modes
The RTC is designed to minimize the power consumption. The prescalers used for the
calendar are divided into synchronous and asynchronous.

Increasing the value of the asynchronous prescaler reduces the power consumption.

Table 13. Tamper features (level detection)

What to do How to do it Comments

Enable Tamper
Set the TAMP1E bit of
RTC_TAFCR register to 1

Configure Tamper1 filter
count

Configure TAMPFLt bits in
RTC_TAFCR register

Default value is 0.

Configure Tamper1 sampling
frequency

Configure TAMPFREQ bits
in RTC_TAFCR register

Default value is 1Hz

Configure tamper
precharge/discharge
duration

Set/Reset TAMPPUDIS bit
in RTC_TAMPCR register

select Tamper1 active
edge/Level detection

Select with TAMP1TRG bit
in RTC_TAFCR register

Edge or Level is depending on tamper
filter configuration.

Map Tamper1 pin alternate
function

Select with TAMP1INSEL
bit in RTC_TAFCR register

For F2 series devices, the Tamper1 pin
can be either PI8 or PC13.

Detect a Tamper1event by
interrupt

Set the TAMPIE bit in the
RTC_TAFCR register

An interrupt is generated when
tamper detection event occurs.

Detect a Tamper1 event by
polling

Poll on the time-stamp
flag (TAMP1F) in the
RTC_ISR register

To clear the flag, write zero on the
TAMP1F bit.

Overview of the STM32 advanced RTC AN3371

26/45 Doc ID 018624 Rev 5

The RTC keeps working in reset mode and its registers are only reset by a VDD or VBAT
power-on, if both supplies have previously been powered off or the Backup Domain is reset
on STM32F2xx devices.

Registers are only reset by a power-on reset. RTC register values are not lost after a reset
and the calendar keeps the correct time and date.

After a system reset or a power-on reset, the STM32 operates in Run mode. In addition, the
device supports five low power modes to achieve the best compromise between low power
consumption, short startup time and available wakeup sources.

The RTC peripheral can be active in the following low power modes:

● Sleep mode

● Low power Run mode (only for ULPM and ULPH density devices)

● Low power Sleep mode (only for ULPM and ULPH density devices)

● Standby mode

● Stop mode

Refer to the low power modes section of the STM32 reference manuals for more details
about low power modes.

1.11 Alternate function RTC outputs
The RTC peripheral has two outputs:

● RTC_CALIB, used to generate an external clock.

● RTC_ALARM, a unique output resulting from the multiplexing of the RTC alarm and
wakeup events.

1.11.1 RTC_CALIB output
The RTC_CALIB output is used to generate a variable-frequency signal. Depending on the
user application, this signal can play the role of a reference clock to calibrate an external
device, or be connected to a buzzer to generate a sound.

The signal frequency is configured using the 7 LSB bits (PREDIV_A [6:0]) of the
asynchronous prescaler PREDIV_A[7:0].

RTC_CALIB is the output of bit 4 of the 7-bit asynchronous prescaler PREDIV_A. If
PREDIV_A[5]=0, no signal is output on RTC_CALIB.

Setting 512 Hz as the output signal

1. Select LSE “32768 Hz” as RTC clock source.

2. Set the asynchronous prescaler to the default value “128“.

3. Enable the output calibration by setting “COE” to ‘1’.

4. Select 512 Hz as the calibration output by setting CALSEL to ‘0’.

AN3371 Overview of the STM32 advanced RTC

Doc ID 018624 Rev 5 27/45

Setting 1 Hz as the output signal

1. Select LSE “32768 Hz” as the RTC clock source.

2. Set the asynchronous prescaler to the default value “128“.

3. Set the synchronous prescaler to the default value “256“.

4. Enable the output calibration by setting “COE” to ‘1’.

5. Select 1 Hz as the calibration output by setting CALSEL to ‘1’.

Figure 18. RTC_CALIB clock sources

Maximum and minimum RTC_CALIB 512 Hz output frequency

The RTC can output the RTCCLK clock divided by a 7-bit asynchronous prescaler. The
divider factor is configured using bits PREDIV_A[6:0] of the RTC_PRER register.

RTC_CALIB maximum and minimum frequencies are 31.250 kHz and 500 Hz, respectively.

Table 14. RTC_CALIB output frequency versus clock source

RTC clock source

RTC_CALIB output frequency

Minimum
(PREDIV_A[6:0] = 111 111b)

(div64)

Maximum
(PREDIV_A[6:0] = 100 000b(1))

(div32)

1. PREDIV_A[5] must be set to ‘1’ to enable the RTC_CALIB output signal generation. If PREDIV_A[5] bit is zero, no signal
is output on RTC_CALIB.

HSE_RTC = 1MHz 15,625 kHz 31.250 KHz

LSE = 32768 Hz
512 Hz

(default output frequency)
1.024 KHz

LSI(2) = 32 kHz

2. For STM32L1xx, LSI = 37 KHz.

500 Hz 1 KHz

LSI(3) = 37 kHz

3. For STM32F2xx and STM32F4xx, LSI = 32 KHz.

578.125 Hz 1156.25 Hz

MS30116V1

512 Hz
AFO_CALIB

1 Hz

CALSEL

CalendarSynchronous
prescaler

Asynchronous
prescaler

Shadow registers
(RTC_TR and

RTC_DR)
Synchronous 15-bit

prescaler (default=256)
Asynchronous 7-bit

prescaler (default=128)
Ck_Spre

RTC Clock

Overview of the STM32 advanced RTC AN3371

28/45 Doc ID 018624 Rev 5

1.11.2 RTC_ALARM output
The RTC_ALARM output can be connected to the RTC alarm unit A or B to trigger an
external action, or routed to the RTC wakeup unit to wake up an external device.

RTC_ALARM output connected to an RTC alarm unit

When the calendar reaches the alarm A pre-programmed value in the RTC_ALRMAR
register (TC_ALRMBR register for alarm B), the alarm flag ALRAF bit (ALRBF bit), in
RTC_ISR register, is set to ‘1’. If the alarm A or alarm B flag is routed to the RTC_ALARM
output (RTC_CR_OSEL[1:0] =”01” for alarm A, and RTC_CR_OSEL[1:0] =”10” for alarm B),
this pin is set to VDD or to GND, depending on the polarity selected. The output toggles
when the selected alarm flag is cleared.

Figure 19. Alarm flag routed to RTC_ALARM output

RTC_ALARM output connected to the wakeup unit

When the wakeup downcounting timer reaches 0, the wakeup flag is set to ‘1’. If this flag is
selected as the source for the RTC_ALARM output (OSEL[1:0] bits set to ‘11’ in RTC_CR
register), the output will be set depending on the polarity selected and will remain set as
long as the flag is not cleared.

MS19535V1

Alarm B

ss, mm, HH/date

Alarm A

ss, mm, HH/date

hh:mm:ss
(12/24 format)

Day/date/
month/year

Calendar

=

=

Alarm A
flag

Alarm B
flag

RTC_ALARM
output

OSEL[1:0]

AN3371 Overview of the STM32 advanced RTC

Doc ID 018624 Rev 5 29/45

Figure 20. Periodic wakeup routed to RTC_ALARM pinout

1.12 RTC security aspects

1.12.1 RTC register write protection
To protect RTC registers against possible parasitic write accesses after reset, the RTC
registers are automatically locked. They must be unlocked to update the current calendar
time and date.

Writing to the RTC registers is enabled by programming a key in the Write protection
register (RTC_WPR).

The following steps are required to unlock the write protection of the RTC register:

1. Write 0xCA into the RTC_WPR register.

2. Write 0x53 into the RTC_WPR register.

Writing an incorrect key automatically reactivates the RTC register write access protection.

1.12.2 Enter/exit initialization mode
The RTC can operate in two modes:

● Initialization mode, where the counters are stopped.

● Free-running mode, where the counters are running.

The calendar cannot be updated while the counters are running. The RTC must
consequently be switched to the Initialization mode before updating the time and date.

When operating in this mode, the counters are stopped. They start counting from the new
value when the RTC enters the Free-running mode.

The INIT bit of the RTC_ISR register enables you to switch from one mode to another, and
the INITF bit can be used to check the RTC current mode.

The RTC must be in Initialization mode to program the time and date registers (RTC_TR
and RTC_DR) and the prescalers register (RTC_PRER). This is done by setting the INIT bit
and waiting until the RTC_ISR_INITF flag is set.

To return to the Free-running mode and restart counting, the RTC must exit the Initialization
mode. This is done by resetting the INIT bit.

Only a power-on reset can reset the calendar. A system reset does not affect it but resets
the shadow registers that are read by the application. They are updated again when the
RSF bit is set. After a system reset, the application can check the INITS status flag in the
RTC_ISR register to verify if the calendar is already initialized. This flag is reset when the

MS19536V1

RTC_ALARM
output

OSEL[1:0]=11

Wakeup unit

16-bit autoreload
timer

Periodic
wakeup flag

Overview of the STM32 advanced RTC AN3371

30/45 Doc ID 018624 Rev 5

calendar year field is set to 0x00 (power-on reset value), meaning that the calendar must be
initialized.

1.12.3 RTC clock synchronization
When the application reads the calendar, it accesses shadow registers that contain a copy
of the real calendar time and date clocked by the RTC clock (RTCCLK). The RSF bit is set in
the RTC_ISR register each time the calendar time and date shadow registers are updated
with the real calendar value. The copy is performed every two RTCCLK cycles,
synchronized with the system clock (SYSCLK). After a system reset or after exiting the
initialization mode, the application must wait for RSF to be set before reading the calendar
shadow registers.

When the system is woken up from low power modes (SYSCLK was off), the application
must first clear the RSF bit, and then wait until it is set again before reading the calendar
registers. This ensures that the value read by the application is the current calendar value,
and not the value before entering the Low power mode.

By setting the “BYPASHAD” bit to ‘1’ in the RTC_CR register, the calendar values are taken
directly from the calendar counters instead of reading the shadow register. In this case, it is
not mandatory to wait for the synchronization time, but the calendar registers consistency
must be checked by the software. The user must read the required calendar field values.
The read operation must then be performed again. The results of the two read sequences
are then compared. If the results match, the read result is correct. If they do not match, the
fields must be read one more time, and the third read result is valid.

Note: After resetting the BYPASHAD bit, the shadow registers may be incorrect until the next
synchronization. In this case, the software should clear the “RSF” bit then wait for the
synchronization (“RSF” should be set) and finally read the shadow registers.

AN3371 Advanced RTC features

Doc ID 018624 Rev 5 31/45

2 Advanced RTC features

Table 15. Advanced RTC features

RTC features F0 series F3 series F2 series ULPM
density F4 series ULPH

density

Prescalers

Asynchronous X (7 bits) X (7 bits) X (7 bits) X (7 bits) X (7 bits) X (7 bits)

Synchronous X (15 bits) X (13 bits) X (13 bits)
X (13
bits)

X (15 bits) X (15 bits)

Calendar

Time

12/24 format X X X X X X

Hour,
minutes and
seconds

X X X X X X

Sub-second X X X X

Date X X X X X X

Daylight operation X X X X X X

Bypass the shadow
registers

X X X X

Alarm

Alarms
available

Alarm A X X X X X X

Alarm B X X X X X

Time

12/24 format X X X X X X

Hour, minutes
and seconds

X X X X X X

Sub-second X X X X

Date or week day X X X X X X

Tamper
detection

Configurable input mapping X X X X

Configurable edge
detection

X X X X X X

Configurable Level
detection (filtering,
sampling and precharge
configuration on tamper
input)

X X X X

Number of tamper inputs 2 inputs 2 inputs
2 inputs /
1 event

1 input /
1 event

2 inputs /
2 events

3 inputs /
3 events

Advanced RTC features AN3371

32/45 Doc ID 018624 Rev 5

Time
Stamp

Configurable input mapping X X X X

Time

Hours,
minutes and
seconds

X X X X X X

Sub-seconds X X X X

Date X X X X X X

Active Time Stamp on
tamper detection event

X X X X X X

RTC
Outputs

AFO_Alar
m

Alarm event X X X X X X

Wakeup event X X X X X X

AFO_Calib
512 Hz X X X X X X

1 Hz X X X X

RTC
Calibration

Coarse Calibration X X X X

Smooth Calibration X X X X

Synchronizing the RTC X X X X

Reference clock, detection X X X X X X

Backup
registers

Powered-on Vbat X X X X

Reset on a tamper
detection

X X X X X X

Reset when Flash readout
protection is disabled

X X X X

RTC clock source
configuration register

RCC_BDC
R

RCC_BDC
R

RCC_BDC
R

RCC_CS
R

RCC_BDC
R

RTC_CS
R

Number of backup registers 5 20 20 20 20 32

Table 15. Advanced RTC features (continued)

RTC features F0 series F3 series F2 series ULPM
density F4 series ULPH

density

AN3371 RTC firmware driver API

Doc ID 018624 Rev 5 33/45

3 RTC firmware driver API

This driver provides a set of firmware functions to manage the following functionalities of the
RTC peripheral:

● Initialization

● Calendar (Time and Date) configuration

● Alarm (alarm A and alarm B) configuration

● Wakeup timer configuration

● Daylight saving configuration

● Output pin configuration

● Digital calibration configuration

● Synchronization configuration

● Time-stamp configuration

● Tamper configuration

● Backup data register configuration

● RTC Tamper and Time-stamp pin selection and Output type configuration

● Interrupts and flag management

For the STM32F2xx family, the RTC driver stm32f2xx_rtc.c/.h can be found in the directory:
STM32F2xx_StdPeriph_Lib_vX.Y.Z\Libraries\STM32F2xx_StdPeriph_Driver.

For the STM32L1xx family, the RTC driver stm32l1xx_rtc.c/.h can be found in the directory:
STM32L1xx_StdPeriph_Lib_vX.Y.Z\Libraries\STM32L1xx_StdPeriph_Driver.

For the STM32F4xx family, the RTC driver stm32f4xx_rtc.c/.h can be found in the directory:
STM32F4xx_StdPeriph_Lib_vX.Y.Z\Libraries\STM32F4xx_StdPeriph_Driver.

For the STM32F0xx family, the RTC driver stm32f0xx_rtc.c/.h can be found in the directory:
STM32F0xx_StdPeriph_Lib_vX.Y.Z\Libraries\STM32F0xx_StdPeriph_Driver.

For the STM32F3xx family, the RTC driver stm32f3xx_rtc.c/.h can be found in the directory:
STM32F3xx_StdPeriph_Lib_vX.Y.Z\Libraries\STM32F3xx_StdPeriph_Driver.

These five drivers provide a fully compatible API making it easy to move from one product to
another.

3.1 Start with the RTC driver
Before using the RTC features:

● Enable the RTC domain access (see following note)

● Configure the RTC prescaler (Asynchronous and Synchronous) and RTC hour format
using the RTC_Init() function.

RTC firmware driver API AN3371

34/45 Doc ID 018624 Rev 5

Note: After a reset, the backup domain (RTC registers, RTC backup data registers and backup
SRAM) is protected against any possible unwanted write access. To enable access to the
RTC domain and RTC registers:

– Enable the Power Controller (PWR) APB1 interface clock using the
RCC_APB1PeriphClockCmd() function.

– Enable the access to the RTC domain using the PWR_BackupAccessCmd()
function on STM32F2xx and STM32F4xx devices, or the PWR_RTCAccessCmd()
function on STM32L1xx, STM32F0xx and STM32F3xx devices.

– Select the RTC clock source using the RCC_RTCCLKConfig() function.

– Enable RTC Clock using the RCC_RTCCLKCmd() function.

3.1.1 Time and date configuration
To configure the RTC Calendar (Time and Date), use the RTC_SetTime() and
RTC_SetDate() functions.

To read the RTC Calendar, use the RTC_GetTime(), RTC_GetDate() and
RTC_GetSubSecond() functions.

To add or subtract one hour to/from the RTC Calendar, use the
RTC_DayLightSavingConfig() function.

3.1.2 Alarm configuration

RTC Alarm

To configure the RTC alarm, use the RTC_SetAlarm() function.

To enable the selected RTC alarm, use the RTC_AlarmCmd() function.

To read the RTC alarm, use the RTC_GetAlarm() function.

RTC Alarm Sub-second

To configure the RTC alarm sub-second, use the RTC_AlarmSubSecondConfig() function.

To read the RTC alarm sub-second, use the RTC_GetAlarmSubSecond() function.

3.1.3 RTC wakeup configuration
To configure the RTC Wakeup Clock source, use the RTC_WakeUpClockConfig() function.

To configure the RTC WakeUp Counter, use the RTC_SetWakeUpCounter() function.

To enable the RTC WakeUp, use the RTC_WakeUpCmd() function.

To read the RTC WakeUp Counter register, use the RTC_GetWakeUpCounter() function.

AN3371 RTC firmware driver API

Doc ID 018624 Rev 5 35/45

3.1.4 Outputs configuration
The RTC has two different outputs:

● AFO_ALARM, used to manage the RTC alarm A, alarm B and WaKeUp signals. To
output the selected RTC signal on RTC_AF1 pin, use the RTC_OutputConfig()
function.

● AFO_CALIB, used to manage the RTC Clock divided by a 64 (512 Hz) signal and the
calendar clock (1 Hz). To output the RTC Clock on the RTC_AF1 pin, use the
RTC_CalibOutputCmd() function.

3.1.5 Digital calibration configuration
To configure the RTC Coarse calibration value and the corresponding sign, use the
RTC_CoarseCalibConfig() function.

To enable the RTC Coarse calibration, use the RTC_CoarseCalibCmd() function.

To configure the RTC smooth calibration value and the calibration period, use the
RTC_SmoothCalibConfig() function.

3.1.6 TimeStamp configuration
To configure the RTC_AF1 trigger and enable the RTC TimeStamp, use the
RTC_TimeStampCmd() function.

To read the RTC TimeStamp Time and Date register, use the RTC_GetTimeStamp()
function.

To read the RTC TimeStamp sub-second register, use the
RTC_GetTimeStampSubSecond() function.

The TAMPER1 alternate function can be mapped either to RTC_AF1(PC13) or RTC_AF2
(PI8) depending on the value of TAMP1INSEL bit in RTC_TAFCR register. You can use the
RTC_TimeStampPinSelection() function to select the corresponding pin.

3.1.7 Tamper configuration
To configure the RTC Tamper trigger, use the RTC_TamperConfig() function.

To configure the RTC Tamper filter, use the RTC_TamperFilterConfig() function.

To configure the RTC Tamper sampling frequency, use the
RTC_TamperSamplingFreqConfig() function.

To configure the RTC Tamper pins input precharge duration, use the
RTC_TamperPinsPrechargeDuration() function.

To enable the precharge of the Tamper pin, use the RTC_TamperPullUpCmd() function.

To enable the TimeStamp on Tamper detection event, use the
RTC_TimeStampOnTamperDetectionCmd() function.

To enable the RTC Tamper, use the RTC_TamperCmd() function.

The TIMESTAMP alternate function can be mapped to either RTC_AF1 or RTC_AF2
depending on the value of the TSINSEL bit in the RTC_TAFCR register. You can use the
RTC_TamperPinSelection() function to select the corresponding pin.

RTC firmware driver API AN3371

36/45 Doc ID 018624 Rev 5

3.1.8 Backup data registers configuration
To write to the RTC backup data registers, use the RTC_WriteBackupRegister() function.

To read the RTC backup data registers, use the RTC_ReadBackupRegister() function.

3.2 Function groups and description
The STM32 RTC driver can be divided into 14 function groups related to the functions
embedded in the RTC peripheral.

● RTC configuration to the default reset state

● RTC initialization and configuration functions

● RTC time and date configuration functions

● RTC alarm configuration functions

● RTC wakeup timer configuration functions

● RTC daylight saving configuration functions

● RTC output pin configuration functions

● RTC digital calibration (coarse and smooth) configuration functions

● RTC time-stamp configuration functions

● RTC Tamper configuration functions

● RTC backup registers configuration functions

● RTC tamper, time-stamp pin selection

● RTC shift control synchronization function

● RTC flags and IT management functions

Table 16. RTC function groups

Group
ID Function name Description ULPM

density
ULPH

density
F0

series
F2

series
F3

series
F4

series

1
Function used to set the RTC configuration to the default reset state

RTC_DeInit
Deinitializes the RTC registers to
their default reset values.

Yes Yes Yes Yes Yes Yes

AN3371 RTC firmware driver API

Doc ID 018624 Rev 5 37/45

2

Initialization and Configuration

RTC_Init

Initializes the RTC registers
according to the specified
parameters in RTC_InitStruct
<Hour format, Asynchronous
predivisor, Asynchronous
predivisor>.

Yes Yes Yes Yes Yes Yes

RTC_StructInit
Fills each RTC_InitStruct member
with its default value.

Yes Yes Yes Yes Yes Yes

RTC_RefClockCmd
Enables or disables the RTC
reference clock detection.

Yes Yes Yes Yes Yes Yes

RTC_EnterInitMode Enters the RTC initialization mode. Yes Yes Yes Yes Yes Yes

RTC_ExitInitMode Exits the RTC initialization mode. Yes Yes Yes Yes Yes Yes

RTC_WriteProtectionC
md

Enables or disables the RTC
registers write protection.

Yes Yes Yes Yes Yes Yes

RTC_WaitForSynchro
Waits until the RTC time and date
registers (RTC_TR and RTC_DR)
are synchronized.

Yes Yes Yes Yes Yes Yes

RTC_TimeStructInit
Fills each RTC_TimeStruct
member with its default value (Time
= 00h:00min:00sec).

Yes Yes Yes Yes Yes Yes

RTC_BypassShadowC
md

Enables or disables the bypass
shadow feature.

Yes Yes Yes Yes

3

RTC time and date functions

RTC_SetTime

Sets the RTC current time < RTC
hours, RTC minutes, RTC seconds,
RTC 12-hour clock period
(AM/PM)>.

Yes Yes Yes Yes Yes Yes

RTC_SetDate

Sets the current RTC date. <
Calendar weekday, Calendar
Month, Calendar date, Calendar
year>.

Yes Yes Yes Yes Yes Yes

RTC_GetTime Gets the current RTC time. Yes Yes Yes Yes Yes Yes

RTC_GetDate Gets the current RTC date. Yes Yes Yes Yes Yes Yes

RTC_DateStructInit
Fills each RTC_DateStruct member
with its default value (Monday 01
January xx00).

Yes Yes Yes Yes Yes Yes

RTC_TimeStructInit
Fills each RTC_TimeStruct
member with its default value (Time
= 00h:00min:00sec).

Yes Yes Yes Yes Yes Yes

RTC_GetSubSecond
Gets the RTC current calendar sub-
seconds value.

Yes Yes Yes Yes

Table 16. RTC function groups (continued)

Group
ID Function name Description ULPM

density
ULPH

density
F0

series
F2

series
F3

series
F4

series

RTC firmware driver API AN3371

38/45 Doc ID 018624 Rev 5

4

RTC alarms functions

RTC_SetAlarm

Sets the RTC specified alarm
configuration:

“Alarm time fields, Alarm masks,
Alarm date/Weekday selection,
Alarm Date/Weekday value”.

Yes Yes Yes Yes Yes Yes

RTC_GetAlarm
Gets the RTC specified alarm
configuration.

Yes Yes Yes Yes Yes Yes

RTC_AlarmCmd
Enables or disables the RTC
specified alarm.

Yes Yes Yes Yes Yes Yes

RTC_AlarmStructInit

Fills each RTC_AlarmStruct
member with its default value (Time
= 00h:00mn:00sec / Date = 1st day
of the month/Mask = all fields are
masked).

Yes Yes Yes Yes Yes Yes

RTC_AlarmSubSecond
Config

Configure the RTC alarm A/B sub-
seconds value and mask.

Yes Yes Yes Yes

RTC_GetAlarmSubSeco
nd

Gets the RTC alarm sub-seconds
value.

Yes Yes Yes Yes

5

RTC wakeup timer functions

RTC_WakeUpClockCon
fig

Configures the RTC wakeup clock
source.

Yes Yes Yes Yes Yes Yes

RTC_SetWakeUpCount
er

Sets the RTC wakeup counter
value.

Yes Yes Yes Yes Yes Yes

RTC_GetWakeUpCount
er

Returns the RTC wakeup timer
counter value.

Yes Yes Yes Yes Yes Yes

RTC_WakeUpCmd
Enables or disables the RTC
wakeup timer.

Yes Yes Yes Yes Yes Yes

6

RTC daylight saving functions

RTC_DayLightSavingCo
nfig

Adds or subtracts one hour to/from
the current time depending on the
daylight saving parameter.

Yes Yes Yes Yes Yes Yes

RTC_GetStoreOperatio
n

Returns the daylight saving stored
operation.

Yes Yes Yes Yes Yes Yes

7
RTC output pin configuration function

RTC_OutputConfig
Configures the RTC output for the
output pinout (RTC_ALARM pin)

Yes Yes Yes Yes Yes Yes

Table 16. RTC function groups (continued)

Group
ID Function name Description ULPM

density
ULPH

density
F0

series
F2

series
F3

series
F4

series

AN3371 RTC firmware driver API

Doc ID 018624 Rev 5 39/45

8

RTC digital coarse calibration functions

RTC_DigitalCalibConfig
Configures the coarse calibration
settings.

Yes Yes Yes Yes

RTC_DigitalCalibCmd
Enables or disables the digital
calibration process.

Yes Yes Yes Yes

RTC_CalibOutputCmd

Enables or disables the connection
of the RTCCLK/PREDIV_A[6:0]
clock to be output through the
relative pinout (RTC_CALIB pin).

Yes Yes Yes Yes Yes Yes

RTC_CalibOutputConfig
Configure the calibration pinout
(RTC_CALIB) Selection (1 Hz or
512 Hz).

Yes Yes Yes Yes

RTC_SmoothCalibConfi
g

Configures the smooth calibration
settings.

Yes Yes Yes Yes

9

RTC timestamp functions

RTC_TimeStampCmd

Enables or disables the RTC Time-
stamp functionality with the
specified time-stamp pin
stimulating edge.

Yes Yes Yes Yes Yes Yes

RTC_GetTimeStamp
Get the RTC time-stamp value and
masks.

Yes Yes Yes Yes Yes Yes

RTC_GetTimeStampSu
bSecond

Get the RTC time-stamp sub-
seconds value.

Yes Yes Yes Yes

10

RTC tamper functions

RTC_TamperTriggerCon
fig

Configures the tamper edge trigger. Yes Yes Yes Yes Yes Yes

RTC_TamperCmd
Enables or disables the tamper
detection.

Yes Yes Yes Yes Yes Yes

RTC_TamperFilterConfi
g

RTC_TamperPullUpCmd. Yes Yes Yes Yes

RTC_TamperSamplingF
reqConfig

Configures the tamper sampling
frequency.

Yes Yes Yes Yes

RTC_TamperPinsPrech
argeDuration

Configures the tamper pins input
precharge duration.

Yes Yes Yes Yes

RTC_TimeStampOnTa
mperDetectionCmd

Enables or disables the precharge
of tamper pin.

Yes Yes Yes Yes

RTC_TamperPullUpCm
d

Enables or disables the time-stamp
on Tamper detection event.

Yes Yes Yes Yes

Table 16. RTC function groups (continued)

Group
ID Function name Description ULPM

density
ULPH

density
F0

series
F2

series
F3

series
F4

series

RTC firmware driver API AN3371

40/45 Doc ID 018624 Rev 5

11

RTC backup registers functions

RTC_WriteBackupRegis
ter

Writes data in a specified RTC
backup data register.

Yes Yes Yes Yes Yes Yes

RTC_ReadBackupRegis
ter

Reads data from the specified RTC
backup data register.

Yes Yes Yes Yes Yes Yes

12

RTC tamper, timestamp pins selection functions

RTC_OutputTypeConfig
Configures the RTC output pin
mode (OpenDrain / PushPull).

Yes Yes Yes Yes Yes Yes

RTC_TimeStampPinSel
ection

Selects the RTC time-stamp pin. Yes Yes

RTC_TamperPinSelecti
on

Selects the RTC tamper pin. Yes Yes

13
RTC Shift control synchronization

RTC_SynchroShiftConfi
g

Configures the synchronization
shift control settings.

Yes Yes Yes Yes

14

RTC flags and interrupts functions

RTC_ITConfig
Enables or disables the specified
RTC interrupts.

Yes Yes Yes Yes Yes Yes

RTC_GetFlagStatus
Checks whether the specified RTC
flag is set or not.

Yes Yes Yes Yes Yes Yes

RTC_ClearFlag Clears the RTC pending flags. Yes Yes Yes Yes Yes Yes

RTC_GetITStatus
Checks whether the specified RTC
interrupt has occurred or not.

Yes Yes Yes Yes Yes Yes

RTC_ClearITPendingBit
Clears the RTC interrupt pending
bits.

Yes Yes Yes Yes Yes Yes

Table 16. RTC function groups (continued)

Group
ID Function name Description ULPM

density
ULPH

density
F0

series
F2

series
F3

series
F4

series

AN3371 Application examples

Doc ID 018624 Rev 5 41/45

4 Application examples

The RTC firmware driver is provided with a set of examples, so that you can quickly become
familiar with the RTC peripheral.

This section provides descriptions of examples that are delivered within the STM32F2xx,
STM32F4xx and STM32L1xx Standard Peripherals Libraries available from
http://www.st.com/.

For the STM32F2xx family, the examples can be found in the following directory:
STM32F2xx_StdPeriph_Lib_vX.Y.Z\Project\STM32F2xx_StdPeriph_Examples\RTC\

For the STM32L1xx family, the examples can be found in the following directory:
STM32L1xx_StdPeriph_Lib_vX.Y.Z\Project\STM32L1xx_StdPeriph_Examples\RTC\

For the STM32F4xx family, the examples can be found in the following directory:
STM32F4xx_StdPeriph_Lib_vX.Y.Z\Project\STM32F4xx_StdPeriph_Examples\RTC\

For the STM32F0xx family, the examples can be found in the following directory:
STM32F0xx_StdPeriph_Lib_vX.Y.Z\Project\STM32F0xx_StdPeriph_Examples\RTC\

For the STM32F3xx family, the examples can be found in the following directory:
STM323F3xx_StdPeriph_Lib_vX.Y.Z\Project\STM32F3xx_StdPeriph_Examples\RTC\

Table 17. Example descriptions

Example Description Covered features

 RTC Hardware
Calendar (1)

This example describes how to use the RTC peripheral calendar
features: seconds, minutes, hours (12 or 24 format), day, date, month,
and year.

As an application example, it demonstrates how to set up the RTC
peripheral, in terms of prescaler and interrupts to be used to keep time
and to generate an alarm interrupt.

– Hardware calendar

– Alarm (interrupt)

– Prescalers
– RTC backup registers

RTC Backup
domain (2)

This example demonstrates and explains how to use the peripherals
available on the Backup domain. These peripherals are the RCC
BDCR register containing the LSE oscillator configuration and the RTC
Clock enable/disable bits.
This example embeds the RTC peripheral and its associated Backup
Data registers, and the Backup SRAM (4KB) with its low power
regulator (which enables it to preserve its contents when the product is
powered by VBAT pin).

As an application example, it demonstrates how to set up the RTC
hardware calendar, and read/write operations for RTC Backup Data
registers and BKPSRAM (Backup SRAM).

– RTC Backup registers
– Backup SRAM

– Low power regulator
for Backup SRAM

– Hardware calendar

– Wakeup (interrupt)

Auto calibration
using LSI

This example demonstrates and explains how to use the LSI clock
source auto calibration to get a precise RTC clock.

The Low Speed Internal (LSI) clock is used as the RTC clock source.

The RTC WakeUp is configured to generate an interrupt each 1s. The
WakeUp counter is clocked by the RTC CK_SPRE signal (1Hz) and its
counter is set to zero.

– Prescalers
– RTC backup registers

– Hardware calendar

– Wakeup (interrupt)

Application examples AN3371

42/45 Doc ID 018624 Rev 5

Tamper
detection

This example shows how to write/read data to/from RTC backup data
registers and demonstrates the Tamper detection feature. It configures
the RTC_AF1 pin Tamper to be falling edge, and enables the Tamper
interrupt. On applying a low level on the RTC_AF1 pin, the RTC backup
data registers are reset and the Tamper interrupt is generated.

– Tamper (interrupt)
– RTC backup registers

Time Stamp

This example describes how to use the RTC peripheral and the Time
Stamp feature. It configures the RTC_AF1 pin TimeStamp to be falling
edge and enables the TimeStamp detection. On applying a low level on
the RTC_AF1 pin, the calendar is saved in the time-stamp registers
thanks to the timestamp event detection.

– Time-stamp (interrupt)

– Prescalers
– Wakeup (interrupt)

– Hardware calendar

– RTC backup registers

StopWatch

This example illustrates how to use the STM32F4xx new RTC
sub-seconds and Tamper (filter, sampling) features. It simulates
a precise chronometer with 10 record time possibilities stored in
the Backup registers (10 registers for time (second, minutes and
hours) and 10 registers for sub-seconds).

– Time-stamp
(interrupt)

– Tamper (interrupt)
– Hardware calendar
– RTC backup

registers

RTC Timer

This example provides a short description of how to use the
RTC peripherals with Alarm sub-seconds feature to simulate a
timer with a refresh time equal to 250 ms ((1 second/ 8) * 2).
The RTC is configured to generate a sub-second interrupt every
125 ms (8 interrupts per second).

– Hardware calendar
– Alarm sub-second

1. For Ultra Low Power Medium-density example, Alarm feature is not used.

2. This example is delivered only with F2/4 - series FW examples.

Table 17. Example descriptions (continued)

Example Description Covered features

AN3371 Revision history

Doc ID 018624 Rev 5 43/45

5 Revision history

Table 18. Document revision history

Date Revision Changes

20-May-2011 1 Initial release

24-Nov-2011 2

Updated Chapter 1: Overview of the STM32 advanced RTC
Updated Figure 1: RTC calendar fields on page 6

Updated Figure 2: Example of calendar display on an LCD on page 7

Updated Figure 5: Prescalers from RTC clock source to calendar unit
on page 9

Updated Figure 6: Alarm A fields on page 10
Added Section 1.2.2: Alarm sub-second configuration on page 12

Updated Figure 9: Prescalers connected to the wakeup unit for
configurations 2 and 3 on page 16

Updated Table 9: Timebase/wakeup unit period resolution with clock
configuration 2 on page 16
Updated Section 1.4.1: RTC coarse calibration on page 17

Added Section 1.4.2: RTC smooth calibration on page 18

Added Section 1.5: Synchronizing the RTC on page 19
Updated Figure 14: Time-stamp event procedure on page 21

Added Section 1.8: RTC tamper detection function on page 22

Added Section 1.11.1: RTC_CALIB output on page 26
Updated Figure 18: RTC_CALIB clock sources on page 27

Added Figure 19: Alarm flag routed to RTC_ALARM output on
page 28

Updated Section 1.12.3: RTC clock synchronization on page 30

Added Section 2: Advanced RTC features on page 31
Added STM32F4xx information to Section 3: RTC firmware driver
API on page 33
Updated Table 17: Example descriptions on page 41

17-Feb-2012 3

Added Ultra Low Power High-density information to the Introduction
Changed all ‘ULPM density devices’ to ‘ULPM and ULPH density
devices’.
Added a ULPH density column to Table 15: Advanced RTC features
and to Table 16: RTC function groups.

Revision history AN3371

44/45 Doc ID 018624 Rev 5

24-May-2012 4

Updated the title.

Added F0 series devices and STM32F0xx in the Introduction.

Added a new driver line to Section 3: RTC firmware driver API.
Added ‘and STM32F0xx devices’ to the Note in Section 3.1: Start
with the RTC driver.
Added an F0 series column to Table 15: Advanced RTC features and
to Table 16: RTC function groups.

27-Sep-2012 5

Added F3 to the title.

Added STM32F30x, STM32F31x, STM32F37x and STM32F38x to
the Note:, STM32F3xx elsewhere.
Added STM32 F3 series to Table 1.
Added an F3 series column to Table 15: Advanced RTC features and
Table 16: RTC function groups.

Table 18. Document revision history (continued)

Date Revision Changes

AN3371

Doc ID 018624 Rev 5 45/45

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	1 Overview of the STM32 advanced RTC
	1.1 RTC calendar
	1.1.1 Initializing the calendar
	1.1.2 RTC clock configuration

	1.2 RTC alarms
	1.2.1 RTC alarm configuration
	1.2.2 Alarm sub-second configuration

	1.3 RTC periodic wakeup unit
	1.3.1 Programming the Auto-wakeup unit
	1.3.2 Maximum and minimum RTC wakeup period

	1.4 RTC digital calibration
	1.4.1 RTC coarse calibration
	1.4.2 RTC smooth calibration

	1.5 Synchronizing the RTC
	1.6 RTC reference clock detection
	1.7 Time-stamp function
	1.8 RTC tamper detection function
	1.8.1 Edge detection on tamper input
	1.8.2 Level detection on tamper input
	1.8.3 Active time-stamp on tamper detection event

	1.9 Backup registers
	1.10 RTC and low-power modes
	1.11 Alternate function RTC outputs
	1.11.1 RTC_CALIB output
	1.11.2 RTC_ALARM output

	1.12 RTC security aspects
	1.12.1 RTC register write protection
	1.12.2 Enter/exit initialization mode
	1.12.3 RTC clock synchronization

	2 Advanced RTC features
	3 RTC firmware driver API
	3.1 Start with the RTC driver
	3.1.1 Time and date configuration
	3.1.2 Alarm configuration
	3.1.3 RTC wakeup configuration
	3.1.4 Outputs configuration
	3.1.5 Digital calibration configuration
	3.1.6 TimeStamp configuration
	3.1.7 Tamper configuration
	3.1.8 Backup data registers configuration

	3.2 Function groups and description

	4 Application examples
	5 Revision history

