Studies in Computational Intelligence 520

Mohammad Ayoub Khan
Saqib Saeed

Ashraf Darwish

Ajith Abraham Editors

Embedded and Real
Time System
Development:

A Software
Engineering
Perspective

Concepts, Methods and Principles

@ Springer

Studies in Computational Intelligence

Volume 520

Series Editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

For further volumes:
http://www.springer.com/series/7092

http://www.springer.com/series/7092

About this Series

The series “Studies in Computational Intelligence” (SCI) publishes new devel-
opments and advances in the various areas of computational intelligence—quickly
and with a high quality. The intent is to cover the theory, applications, and design
methods of computational intelligence, as embedded in the fields of engineering,
computer science, physics and life sciences, as well as the methodologies behind
them. The series contains monographs, lecture notes and edited volumes in
computational intelligence spanning the areas of neural networks, connectionist
systems, genetic algorithms, evolutionary computation, artificial intelligence,
cellular automata, self-organizing systems, soft computing, fuzzy systems, and
hybrid intelligent systems. Of particular value to both the contributors and the
readership are the short publication timeframe and the world-wide distribution,
which enable both wide and rapid dissemination of research output.

Mohammad Ayoub Khan
Saqib Saeed - Ashraf Darwish

Ajith Abraham
Editors

Embedded and Real Time
System Development:

A Software Engineering
Perspective

Concepts, Methods and Principles

@ Springer

Editors

Mohammad Ayoub Khan

Department of Computer Science and
Engineering

School of Engineering and Technology

Sharda University

Greater Noida

India

Saqib Saeed
Department of Computer Sciences

Ashraf Darwish
Faculty of Science
Helwan University
Cairo

Egypt

Ajith Abraham

Machine Intelligence Research Labs

Scientific Network for Innovation and
Research Excellence

Bahria University Auburn
Islamabad USA
Pakistan

ISSN 1860-949X

ISBN 978-3-642-40887-8

DOI 10.1007/978-3-642-40888-5
Springer Heidelberg New York Dordrecht London

ISSN 1860-9503 (electronic)
ISBN 978-3-642-40888-5 (eBook)

Library of Congress Control Number: 2013953267

© Springer-Verlag Berlin Heidelberg 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The software is the driving force for today’s smart and intelligent products. The
products and services have become more instrumented and intelligent. This trend
of interconnection between product and services is stretching software develop-
ment organizations and traditional software development model approaches to the
limit. Now a day’s embedded and real-time system contains complex software.
The complexity of embedded systems is increasing, and the amount and variety of
software in the embedded products are growing. This creates a big challenge for
embedded and real-time software development process. To reduce the complexity
of development cycle many development companies and researcher has paid their
attention to optimize the timeliness, productivity, and quality of embedded soft-
ware development and apply software engineering principles in embedded sys-
tems. Unfortunately, many available software development model do not take into
account the specific needs of embedded and systems development. The software
engineering principles for embedded system should address specific constraints
such as hard timing constraints, limited memory and power use, predefined
hardware platform technology, and hardware costs.

There is a need to develop separate metrics and benchmarks for embedded and
real-time system. Thus, development of software engineering principles for
embedded system and real-time system has been presented as an independent
discipline.

The book presents practical as well as conceptual knowledge of the latest tools,
techniques, and methodologies of embedded software engineering and real-time
systems. Each chapter presents the reader with an in-depth investigation regarding
the actual or potential role of software engineering tools in the context of the
embedded system and real-time system. The book presents state of the art and
future perspectives of embedded system and real-time system technologies, where
industry experts, researchers, and academicians had shared ideas and experiences
surrounding frontier technologies, breakthrough, and innovative solutions and
applications.

vi Preface

Organization of the Book

The book is organized into four parts and altogether 12 chapters. Part I, titled
“Embedded Software Development Process,” and contains “A Flexible
Framework for Component-Based Application with Real-Time Requirements and
its Supporting Execution Framework” and “Automatic Development of Embedded
Systems Using Model Driven Engineering and Compile-Time Virtualisation”. Part
II, named “Design Patterns and Development Methodology”, contains “MADES
EU FP7 Project: Model-Driven Methodology for Real Time Embedded Systems”—
“A Fuzzy Cuckoo-Search Driven Methodology for Design Space Exploration
of Distributed Multiprocessor Embedded Systems”. Part III, titled “Modeling
Framework”, contains “Model-Based Verification and Validation of Safety-Critical
Embedded Real-Time Systems: Formation and Tools”—“A Multi-Objective
Framework for Characterization of Software Specifications”. Part IV, titled “Per-
formance Analysis, Power Management and Deployment”, contains “An Efficient
Cycle Accurate Performance Estimation Model for Hardware Software Co-Design”—
“Software Deployment for Distributed Embedded Real-Time Systems of
Automotive Applications”. A brief description of each of the chapters follows:

“A Flexible Framework for Component-Based Application with Real-
Time Requirements and its Supporting Execution Framework,” presents funda-
mental process of embedded real-time systems to support component-based
development process, and the schedulability analysis of the resulting software.
Authors have proposed Model-Driven Software Engineering paradigm and its
associated technologies. The development process of the proposed model is
accompanied by an Eclipse-based tool-chain, and a sample case study.

“Automatic Development of Embedded Systems Using Model Driven
Engineering and Compile-Time Virtualisation,” presents discussion on applica-
tion of model-driven engineering and compile-time virtualization. This chapter
focuses upon new tools for the generation of software and hardware for modern
embedded systems. The presented approach promotes rapid deployment and design
space exploration. This integrated fully model-driven tool flow supports existing
industrial practices. The presented approach also has provision for automatic
deployment of architecture-neutral Java code over complex embedded
architectures.

“MADES EU FP7 Project: Model-Driven Methodology for Real Time
Embedded Systems,” presents a complete methodology for the design of RTES
in the scope of the EU funded FP7 MADES project. MADES aims to develop
novel model-driven techniques to improve existing practices in development of
RTES for avionics and surveillance embedded systems industries. It proposes an
effective subset of existing standardized UML profiles for embedded systems
modeling.

“Test-Driven Development as a Reliable Embedded Software Engineering
Practice”, presents Test-Driven Development (TDD) promotes testing software
during its development, even before the target hardware becomes available.

http://dx.doi.org/10.1007/978-3-642-40888-5_1
http://dx.doi.org/10.1007/978-3-642-40888-5_1
http://dx.doi.org/10.1007/978-3-642-40888-5_1
http://dx.doi.org/10.1007/978-3-642-40888-5_2
http://dx.doi.org/10.1007/978-3-642-40888-5_2
http://dx.doi.org/10.1007/978-3-642-40888-5_3
http://dx.doi.org/10.1007/978-3-642-40888-5_3
http://dx.doi.org/10.1007/978-3-642-40888-5_5
http://dx.doi.org/10.1007/978-3-642-40888-5_5
http://dx.doi.org/10.1007/978-3-642-40888-5_6
http://dx.doi.org/10.1007/978-3-642-40888-5_6
http://dx.doi.org/10.1007/978-3-642-40888-5_7
http://dx.doi.org/10.1007/978-3-642-40888-5_7
http://dx.doi.org/10.1007/978-3-642-40888-5_8
http://dx.doi.org/10.1007/978-3-642-40888-5_8
http://dx.doi.org/10.1007/978-3-642-40888-5_12
http://dx.doi.org/10.1007/978-3-642-40888-5_12
http://dx.doi.org/10.1007/978-3-642-40888-5_1
http://dx.doi.org/10.1007/978-3-642-40888-5_1
http://dx.doi.org/10.1007/978-3-642-40888-5_2
http://dx.doi.org/10.1007/978-3-642-40888-5_2
http://dx.doi.org/10.1007/978-3-642-40888-5_3
http://dx.doi.org/10.1007/978-3-642-40888-5_3
http://dx.doi.org/10.1007/978-3-642-40888-5_4
http://dx.doi.org/10.1007/978-3-642-40888-5_4

Preface vii

Principally, TDD promotes a fast feedback cycle in which a test is written before
the implementation. Authors have presented four different evaluation methods for
TDD. Also, a number of relevant design patterns are discussed to apply TDD in an
embedded environment.

“A Fuzzy Cuckoo-Search driven methodology for Design Space Exploration
of Distributed Multiprocessor Embedded Systems”, discusses a methodology for
conducting a Design Space Exploration (DSE) for Distributed Multi-Processor
Embedded systems (DMPE). Authors have used fuzzy rule-based requirements
elicitation framework and Cuckoo-Search for the DMPE.

“Model-Based Verification and Validation of Safety-Critical Embedded Real-
Time Systems: Formation and Tools,” presents a new concept of Verification,
Validation, and Testing (VV&T). The chapter covers software engineering to
system engineering with VV&T procedures for every stage of system design, e.g.,
static testing, functional testing, Unit testing, fault injection testing, consistency
techniques, Software-In-The-Loop (SIL) testing, evolutionary testing, Hardware-
In-The-Loop (HIL) testing, Black box testing, White box testing, Integration
testing, system testing, system integration testing, etc.

“A Multi-Objective Framework for Characterization of Software Specifications,”
presents the complexity of embedded systems. The complexity is exploding into
two interrelated but independently growing directions: architecture complexity and
application complexity. Authors have discussed a general purpose framework to
satisfy multiple objectives of early design space exploration. Authors have pro-
posed a multi-objective application characterization framework based on a visitor
design pattern. Authors have used MPEG-2 video decoder as benchmark that
shows viability of the proposed framework.

“An Efficient Cycle Accurate Performance Estimation Model for Hardware
Software Co-Design,” presents a proposal for performance estimation. Authors
have measured the performance of software in terms of clock cycles. In this
measurement the availability of hardware platform is critical in early stages of the
design flow. The authors have proposed to implement the hardware components at
cycle-accurate level such that the performance estimation is given by the micro-
architectural simulation in number of cycles. Authors have measured the perfor-
mance as a linear combination of function performances on mapped components.
The proposed approach decreases the overall simulation time while maintaining
the accuracy in terms of clock cycles.

“Multicast Algorithm for 2D de Bruijn NoCs,” presents De Bruijn topology for
future generations of multiprocessing systems. Authors have proposed de Bruijn
for Networks-on-Chips (NoCs). Also, the chapter proposes a multicast routing
algorithm for two-dimensional de Bruijn NoCs. The proposed routing compared
with unicast routing using Xmulator simulator under various traffics.

“Functional and Operational Solutions for Safety Reconfigurable Embedded
Control Systems,” presents run-time automatic reconfigurations of distributed
embedded control systems following component-based approaches. Authors have
proposed solutions to implement the whole agent-based architecture, by defining
UML meta-models for agents. Also, to guarantee safety reconfigurations of tasks

http://dx.doi.org/10.1007/978-3-642-40888-5_5
http://dx.doi.org/10.1007/978-3-642-40888-5_5
http://dx.doi.org/10.1007/978-3-642-40888-5_6
http://dx.doi.org/10.1007/978-3-642-40888-5_6
http://dx.doi.org/10.1007/978-3-642-40888-5_7
http://dx.doi.org/10.1007/978-3-642-40888-5_8
http://dx.doi.org/10.1007/978-3-642-40888-5_8
http://dx.doi.org/10.1007/978-3-642-40888-5_9
http://dx.doi.org/10.1007/978-3-642-40888-5_10
http://dx.doi.org/10.1007/978-3-642-40888-5_10

viii Preface

at run-time, a service and reconfiguration processes for tasks, and use the sema-
phore concept to ensure safety mutual exclusions is defined.

“Low Power Techniques for Embedded FPGA Processors,” presents low power
techniques for embedded FPGA processors. Authors have emphasized that clock
signals is a great source of power dissipation because of high frequency and load.
Authors have presented investigation and simulation of clock gating technique to
disable the clock signal in inactive portions of the circuit. The chapter also presents
Register-Transfer Level model in Verilog language.

“Software Deployment for Distributed Embedded Real-Time Systems of
Automotive Applications,” presents a deployment model for automatic applica-
tions. The chapter discussed the software deployment problem, tailored to the
needs of the automotive domain. Thereby, the focus is on two issues: the con-
figuration of the communication infrastructure and how to handle design con-
straints. It is shown, how state-of-the-art approaches have to be extended in order
to tackle these issues, and how the overall process can be performed efficiently, by
utilizing search methodologies.

Who and How to Read this Book

This book has three groups of people as its potential audience, (i) undergraduate
students and postgraduate students conducting research in the areas of embedded
software engineering and real-time systems; (ii) researchers at universities and
other institutions working in these fields; and (iii) practitioners in the R&D
departments of embedded systems. This book differs from other books that have
comprehensive case study and real data from software engineering practices.
The book can be used as an advanced reference for a course taught at the
postgraduate level in embedded software engineering and real-time systems.

Mohammad Ayoub Khan
Saqib Saeed

Ashraf Darwish

Ajith Abraham

http://dx.doi.org/10.1007/978-3-642-40888-5_11
http://dx.doi.org/10.1007/978-3-642-40888-5_12
http://dx.doi.org/10.1007/978-3-642-40888-5_12

Contents

Part I Embedded Software Development Process

A Flexible Framework for Component-Based Application with
Real-Time Requirements and its Supporting

Execution Framework
Diego Alonso, Francisco Sdnchez-Ledesma,

Juan Pastor and Bérbara Alvarez

Automatic Development of Embedded Systems Using Model Driven

Engineering and Compile-Time Virtualisation
Neil Audsley, Ian Gray, Dimitris Kolovos, Nikos Matragkas,
Richard Paige and Leandro Soares Indrusiak

Part II Design Patterns and Development Methodology

MADES EU FP7 Project: Model-Driven Methodology for Real
Time Embedded Systems.
Imran R Quadri, Alessandra Bagnato and Andrey Sadovykh

Test-Driven Development as a Reliable Embedded Software
Engineering Practice.
Piet Cordemans, Sille Van Landschoot, Jeroen Boydens

and Eric Steegmans

A Fuzzy Cuckoo-Search Driven Methodology for Design Space
Exploration of Distributed Multiprocessor Embedded Systems
Shampa Chakraverty and Anil Kumar

ix

http://dx.doi.org/10.1007/978-3-642-40888-5_1
http://dx.doi.org/10.1007/978-3-642-40888-5_1
http://dx.doi.org/10.1007/978-3-642-40888-5_1
http://dx.doi.org/10.1007/978-3-642-40888-5_2
http://dx.doi.org/10.1007/978-3-642-40888-5_2
http://dx.doi.org/10.1007/978-3-642-40888-5_3
http://dx.doi.org/10.1007/978-3-642-40888-5_3
http://dx.doi.org/10.1007/978-3-642-40888-5_4
http://dx.doi.org/10.1007/978-3-642-40888-5_4
http://dx.doi.org/10.1007/978-3-642-40888-5_5
http://dx.doi.org/10.1007/978-3-642-40888-5_5

X Contents

Part III Modeling Framework

Model-Based Verification and Validation of Safety-Critical
Embedded Real-Time Systems: Formation and Tools
Arsalan H. Khan, Zeashan H. Khan and Zhang Weiguo

A Multi-objective Framework for Characterization
of Software Specifications
Muhammad Rashid and Bernard Pottier

Part IV Performance Analysis, Power Management and Deployment

An Efficient Cycle Accurate Performance Estimation Model
for Hardware Software Co-Design.
Muhammad Rashid

Multicast Algorithm for 2D de Bruijn NoCs.
Reza Sabbaghi-Nadooshan, Abolfazl Malekmohammadi
and Mohammad Ayoub Khan

Functional and Operational Solutions for Safety Reconfigurable
Embedded Control Systems
Atef Gharbi, Mohamed Khalgui and Mohammad Ayoub Khan

Low Power Techniques for Embedded FPGA Processors
Jagrit Kathuria, Mohammad Ayoub Khan, Ajith Abraham
and Ashraf Darwish

Software Deployment for Distributed Embedded Real-Time Systems
of Automotive Applications

Florian Polzlbauer, Iain Bate and Eugen Brenner

Editors Biography.

153

185

213

235

251

283

305

http://dx.doi.org/10.1007/978-3-642-40888-5_6
http://dx.doi.org/10.1007/978-3-642-40888-5_6
http://dx.doi.org/10.1007/978-3-642-40888-5_7
http://dx.doi.org/10.1007/978-3-642-40888-5_7
http://dx.doi.org/10.1007/978-3-642-40888-5_8
http://dx.doi.org/10.1007/978-3-642-40888-5_8
http://dx.doi.org/10.1007/978-3-642-40888-5_9
http://dx.doi.org/10.1007/978-3-642-40888-5_10
http://dx.doi.org/10.1007/978-3-642-40888-5_10
http://dx.doi.org/10.1007/978-3-642-40888-5_11
http://dx.doi.org/10.1007/978-3-642-40888-5_12
http://dx.doi.org/10.1007/978-3-642-40888-5_12

Part I
Embedded Software Development Process

A Flexible Framework for Component-Based
Application with Real-Time Requirements
and its Supporting Execution Framework

Diego Alonso, Francisco Sanchez-Ledesma, Juan Pastor and Barbara Alvarez

Abstract This chapter describes a development approach for supporting a
component-based development process of real-time applications, and the schedu-
lability analysis of the resulting software. The approach revolves around the Model-
Driven Software Engineering paradigm and its associated technologies. They provide
the theoretical and technological support for defining the most suitable abstraction
levels at which applications are designed, analyzed, deployed, etc., as well as the
automatic evolution of models through the defined abstractions levels. To ensure that
the analyzed models correspond to the input architectural description, it is necessary
to establish univocal correspondences between the concepts of the domains involved
in the process. The development process is supported by an Eclipse-based tool-chain,
and a sample case study comprising the well-known cruise control problem illustrates
1ts use.

1 Introduction and Motivation

Developing software for Real-Time (RT) systems is a challenging task for software
engineers. Since these systems have to interact with both the environment and human
operators, they are subject to operational deadlines. Also, it is essential that they be
so designed as to involve no risk to the operators, the environment, or the system
itself. Thus, designers have to face two different problems, namely software design
and software analysis, complicated by the fact that time plays a central role in RT
systems. There are many well-known software disciplines that provide solutions to
each of the aforementioned problems in the literature:

D. Alonso (X)) - F. Sanchez-Ledesma - J. Pastor - B. Alvarez

Department of TIC, Universidad Politécnica de Cartagena, Cuartel de Antigones,
30202 Cartagena, Spain

e-mail: diego.alonso@upct.es

M. A. Khan et al. (eds.), Embedded and Real Time System Development: 3
A Software Engineering Perspective, Studies in Computational Intelligence 520,
DOI: 10.1007/978-3-642-40888-5_1, © Springer-Verlag Berlin Heidelberg 2014

4 D. Alonso et al.

Software design: Software Architecture constitutes the backbone for any success-
ful software-intensive system, since it is the primary carrier of a software system’s
quality attributes [27]. Component-Based Software Development (CBSD) is a
bottom-up approach to software development, in which applications are built from
small modular and interchangeable unit, with which the architecture of a system
can be designed and analyzed [29]. Frameworks [17] and design patterns [18] are
the most successful approaches to maximize software quality and reuse available
nowadays.

Software analysis: Software analysis is, perhaps, a broader area than software
design, since there are many characteristics that can be analyzed in a piece of
software, depending on the needs of each stakeholder. Thus, it is possible to use
model checking [4], validation and verification tools [5, 6], schedulability analysis
tools [21, 28], to mention but just a few.

However, is it very difficult to combine the results from both disciplines, since it
implies to reconcile the design and analysis worlds, which are concerned with very
different application aspects, and therefore use very different concepts: components
the former and threads the latter. To ensure that the analyzed models correspond to
the input architectural description, it is necessary to establish univocal correspon-
dences between the concepts of both domains. There are different ways of defining
such correspondences, but most of them imply constraining the implementation to
just a few alternatives, when it would be desirable to select among various alterna-
tives. Typical examples of this are component models that implement components
as processes; or those where all components are passive and invoked sequentially by
the run-time; or those that enforce a given architectural style, like pipes & filters, etc.

This chapter describes a flexible development approach for supporting a
component-based development process of real-time applications, and the schedu-
lability analysis of the resulting software. The word “flexible” in the previous sen-
tence is used to emphasize that our work does not impose a rigid implementation but
rather provides the user with some implementation options, as described in the rest of
the chapter. The approach revolves around the Model-Driven Software Development
(MDSD) paradigm [12, 26] and its associated technologies. They provide the theo-
retical and technological support for defining the most suitable abstraction levels at
which applications are designed, analyzed, deployed, etc., as well as the automatic
evolution of models through the defined abstractions levels. Thanks to model trans-
formations, models can automatically evolve from design to analysis without the
user having to make such transformation manually.

The approach described in this chapter comprises three abstraction levels, namely:
(1) architectural software components for designing applications, (2) processes for
configuring the application deployment and concurrency, and (3) threads and syn-
chronization primitives for analyzing its schedulability. Figure 1 represents the rela-
tionships existing among these levels by using the well-known MDSD pyramids.
This process has been integrated in an Eclipse-based tool-chain, also described in
this chapter.

A Flexible Framework for Component-Based Application 5

MeF

Meta-Object Facility

Meta-Meta { =
+ Concepts abstraction levels — |
Meta
Models (M2)
«conforrhs to» «confo}ms to» «conforins to»
1 1
Models (M1) : : :
M1gsp M1, 0, M1, . .

Fig. 1 Considered abstraction levels, organized in the well-known MDSD pyramid from two
orthogonal points of view: modeling languages and concepts

%

‘— S|aA3] uonodesysqe saSensue

MDSD is an emerging paradigm aimed at raising the level of abstraction dur-
ing the software development process. MDSD uses models as first-class artifacts,
allowing designers to create models with the desired/required level of detail. Two
central key concepts to MDSD are models and model transformations (which are
themselves considered models). Models represent part of the functionality, struc-
ture and/or behavior of a system. They are defined in terms of formal meta-models,
which include the set of concepts needed to describe a domain at a certain level
of abstraction, together with the relationships existing between them. Model trans-
formations [22], commonly described as meta-model mappings, enable the auto-
matic transformation and evolution of models into (1) other models, defined at either
the same (horizontal transformation) or different (vertical transformation) levels of
abstraction; and (2) any given textual format (e.g. code). The key characteristic to
MDSD success lies in the fact that models can work in the problem space rather
than in the solution space, e.g. source code. Compared to traditional object oriented
technologies, MDSD replaces objects by models, and model transformations appear
as a powerful mechanism for incremental and automatic software development [12].

Our objective is to provide a flexible approach that reconciles component-based
design and application execution with real-time analysis. For this purpose, we have
carefully designed a software framework that provides a configurable run-time
support for managing component distribution and concurrency. The chapter also
describes the main characteristics of such framework, together with the design forces
and design patterns that have been used. The development approach and tool-chain
are illustrated by modeling a simplified version of the well-known “Cruise Controller
Development” [19]. The presented case study comprises the architectural design, the
deployment configuration, and the temporal analysis of the final application with
Cheddar [28], which is a real-time scheduling tool, designed for checking task tem-
poral constraints of a real-time system.

6 D. Alonso et al.

2 Overall Approach of the Proposed Development Process

The three abstraction levels that comprise the proposed development approach are
supported, respectively, by a language for modeling component-based applications,
a component framework implemented in C++, and the Cheddar analysis tool. All
these tools are integrated and supported by a MDSD tool-chain that enables models
to smoothly evolve from components to objects and analysis models. The devel-
opment approach is based on the particular interpretation of the MDSD approach
offered by the Model-driven architecture (MDA) [23] standard. In MDA, Platform-
Independent Models are created at the level of abstraction provided by components,
and Platform-Specific Models are supported by an object oriented framework, enti-
tled FraCC (Framework for Concurrent Components) and implemented in C++,
which provides platform-specific run-time support. The evolution of the applica-
tion through the different abstraction levels is automatically performed by means of
model transformations. Obviously, this approach can be followed using other frame-
work, providing it fulfills the application requirements. In the field of RTS, there have
been very promising results with the MDA approach. Significant examples include
the Artist Design Network of Excellence in Embedded System Design [2] and the
OpenEmbeDD project [25].

Model transformations enable the automatic evolution of models into other models
or into executable code. But transformations are complex software artifacts, diffi-
cult to understand, develop and maintain. Moreover, model transformations have a
non-modular structure that prevents them from being reused (totally or partially) in
systems that may have similar requirements. The use of frameworks reduce the com-
plexity of model transformations, since they have only to specialize their hot-spots,
not to generate the whole application, and thus transformation maintenance and evo-
lution is dramatically simplified. As a side effect, MDA can help simplifying the use
of frameworks by hiding the complexity of their specialization mechanisms, as stated
in [1]. In addition, the use of software frameworks for the PSM level offers additional
advantages, namely: (1) they are normally designed for fulfilling the non-functional
requirements of the application domain they target; and (2) they can facilitate final
application reconfiguration, provided that they have tools for that purpose. On the
other side, the framework implementation is a very time-consuming task, making its
development only advisable when it can be reused in many similar applications.

In the proposed development approach, we distinguish three roles: that of frame-
work developer, that of MDA supporter, and that of application developer. These
roles can be played by the same or different persons or teams. This article focuses
on the application developer role, describing the tools and artifacts he/she can use to
develop component-based applications and analyze their temporal behavior. Starting
from a set of requirements (functional and non-functional), the application devel-
oper (1) designs the specific application using an architectural component-oriented
modeling language, (2) he/she then executes a model transformations in order to
generate the application, and (3) he/she can use the configuration tools provided by
FraCC to make further modifications to the generated application, thus configuring

A Flexible Framework for Component-Based Application 7

its deployment. In addition, models enable early validation and verification of appli-
cation properties, while other properties cannot be verified until the final implemen-
tation is obtained. Our purpose is twofold: to lessen development times and prototype
testing, by using a MDA development environment, and, on the other hand, to analyze
the application as soon as possible.

3 Related Work

In this section, we will briefly review some of the most relevant works related to
the technologies used in development approach presented in this book chapter:
component-based design and component models, analysis tools, frameworks and
pattern languages.

Among general-purpose component models, we may cite Fractal [8], the CORBA
component model [24], KobrA [3], SOFA 2.0 [9], SaveCCM [13], and ROBO-
COP [20], among others. Fractal, SOFA, SaveCCM and ROBOCOP provide dif-
ferent kind of ADLs to describe the application architecture, and a code generation
facility that generates the application skeleton in Java or C/C++, which must be later
completed by the developer. The CORBA CCM was developed to build component-
based applications over the CORBA communication middleware. It provides an IDL
to generate the external structure of the components. KobrA is one of the most popular
proposals, in which a set of principles is defined to describe and decompose a soft-
ware system following a downstream approach based on architectural components.
But in all cases the implementation of the code and structure of the component is
still completely dependent on the developer. A complete and updated classification
of component models can be found in [14], where the authors propose a classifi-
cation framework for studying component models from three perspectives, namely
Lifecycle, Construction and Extra-Functional Properties.

Regarding analysis tools, the Spin model checker [6] is a widely used software
tool for specifying and verifying concurrent and distributed systems that uses linear
temporal logic for correctness specifications. UPPAAL [5] is a toolbox for verifying
RTS, which provides modeling and query languages. UPPAAL is designed to verify
systems that can be modeled as networks of timed automata [7] extended with integer
variables, structured data types, user defined functions, and channel synchronization.
Cheddar [28] is a free real-time scheduling tool, designed for checking temporal
constraints of an RTS. MAST [21] defines a model to describe the timing behavior
of RTS designed to be analyzable via schedulability analysis techniques, and a set
of tools to perform such analysis. It can also inform the user, via sensitivity analysis,
how far or close is the system from meeting its timing requirements.

Frameworks are one of the most reused software artifacts, and their development
has been widely studied [17]. New, more general and innovative proposals have
recently appeared in the literature, focusing on the development and use of frame-
works for software systems development in general. In [16], the authors propose a
method for specializing object-oriented frameworks by using design patterns, which

8 D. Alonso et al.

provide a design fragment for the system as a whole. A design fragment, then, is a
proven solution to the way the program should interact with the framework in order
to perform a function. A conceptual and methodological framework for the defin-
ition and use of framework-specific modeling languages is described in [1]. These
languages embed the specific features of a domain, as offered by the associated
framework, and thus facilitate developers the use of such frameworks.

As Buschmann et al. [10] state, not all domains of software are yet addressed
by patterns. However, the following domains are considered targets to be addressed
following a pattern-language based development: service-oriented architectures, dis-
tributed real-time and embedded systems, Web 2.0 applications, software architec-
ture and, mobile and pervasive systems. The research interest in the real-time system
domain is incipient and the literature is still in the form of research articles. A tax-
onomy of distributed RT and embedded system design patterns is described in [15],
allowing the reader to understand how patterns can fit together to form a complete
application.

4 Component Model and Real-Time Execution Platform

This section describes the language we defined in order to model component-based
applications with real-time requirements, together with the platform that provides the
required run-time support for executing the applications. The modeling language has
been developed and integrated in the free and open source Eclipse platform, while the
execution platform is a component-based framework, programmed in C++. The main
characteristics of the former are described in Sect. 4.1, the supporting tool-chain is
shown in Sect. 5, and the chosen sample case study, the cruise control, is shown in
Sect. 6. The most important and relevant development details of the implementation
framework (the platform) are described in Sect. 4.2.

4.1 Modeling Primitives for Real-Time Component-Based
Applications

Modeling component-based applications with real-time requirements require the
definition of several modeling concepts, at different levels of abstractions, as shown
in Fig. 1. Firstly, it is necessary to model the building blocks with which to make
applications, the components, in such a way that real-time constraints can also be
modeled. Secondly, new applications should be built by reusing and composing
already defined components. And finally, it is necessary that the supporting run-time
platform enables the user to select the number of processes and threads in which
the components should be executed. All these concepts are present in the developed
modeling language, organized in the following packages:

A Flexible Framework for Component-Based Application 9

Component modeling: We adopt the classical definition, where components are
units that encapsulate their state and behavior, and which communicate only
through their ports. The messages components can exchange are defined and typed
by interfaces, which define the services the component requires/provides from/to
the rest of the application components. In our approach we model component
behavior by means of timed automata. Timed automata, which can be thought
of as being finite state—machines with timed events and timed conditions, is
a very suited formalism for modeling reactive systems with timing constraints.
Component activities, that is, the code executed by a component depending on its
current active state, are defined in terms of the services contained in the interfaces.
Interface definition, component modeling, timed automata modeling, and activity
definition are all performed in isolated models in order to maximize model reuse.
We define a final binding model, where activities are linked to timed automata’s
states, timed automata are linked to components, and then timed automata’s events
and activities are linked to required and provided interfaces, respectively.

Application modeling: An application is a set of components (instances) that
are connected through their ports, based on the compatibility of the interfaces
required/provided in each end.

Deployment modeling: Components can be executed by different processes, that
can assigned to different computational nodes. It is also possible to define the
number of threads of every process. This part of the language enables users to
decide the number of threads that will execute the component code, as well as
the allocation of the computational load to each thread. The deployment model
provides great flexibility to the approach, since different concurrency models
(number of processes and threads, as well as the allocated computational load)
can be defined for the same application without needing to change its architecture.
This model is also the input model for generating the analysis file for Cheddar, as
explained in Sect. 5.

Timed automata are the key artifacts of the language and modeling approach
described in this book chapter, since they decide which code the component executes,
and whether the component react to messages sent to it or not. They link structure
with code (represented by activities). Also, timed automata regions define the unit
of computational load assigned to threads in the Deployment modeling package,
since in a given region there is one and only one active state which code should
be executed by the component. Finally, activities represent logic units of work, that
must be performed periodically or sporadically, depending on the component state.
Activities in FraCC are programmed in C++ and then linked to the state in which
they are executed. Activities only depend on the interface definitions, and therefore
can be reused in several timed automata.

The described modeling language is embedded in the Eclipse tool-chain, as
described in Sect. 5, while some screenshots of its use are shown in Sect. 6, where a
cruise control system is developed by using the language and its associated tools.

10 D. Alonso et al.

4.2 Design Drivers and Pattern Language for a Flexible
and Analyzable Execution Platform

Considering the previously described modeling elements, it is necessary to provide
an execution environment that is consistent with the behavior described in the models.
We have designed a component-based framework for which the main architectural
drivers are:

AD1 Control over concurrency policy: number of processes and threads, thread
spawning (static vs. dynamic policies), scheduling policy (fixed priority sched-
ulers vs. dynamic priority scheduler), etc. Unlike most frameworks, these con-
currency issues are very important in order to be later able to perform real-time
analysis, and thus the framework should allow users to define them.

AD2 Control over the allocation of activities to threads, that is, control over the
computational load assigned to each thread, since we consider the activity associ-
ated to a state as the minimum computational unit. The framework allows allocat-
ing all the activities to a single thread, allocating every activity to its own thread,
or any combination. In any case, the framework ensures that only the activities
belonging to active states are executed.

AD3 To avoid “hidden” code, that is, code which execution is outside the devel-
oper’s control. The code that manages the framework is treated as “normal” user
code, and therefore he can assign it to any thread.

AD4 Control over the communication mechanisms between components (syn-
chronous or asynchronous).

ADS5 Control over component distribution in different nodes.

The design and documentation of the framework was carried out using design
patterns, which is a common practice in Software Engineering [11]. In order to
describe the framework we will use Figs. 2 and 3. Figure 2 shows the pattern sequence
that has been followed in order to meet the architectural drivers mentioned above,
while Fig. 3 show the classes that fulfill the roles defined by the selected patterns. At
this point, it is worth highlighting that the same patterns applied in a different order
would have led to a very different design.

Among the aforementioned drivers, the main one is the ability to define any num-
ber of threads and control their computational load (architectural drivers AD1 and
AD?2). This computational load is mainly determined by the activities associated
to the states of the timed automata. In order to achieve this goal, the COMMAND
PROCESSOR architectural pattern [10] and its highly coupled COMMAND pattern [18]
have been selected, and they were the firsts to be applied in the framework design, as
shown in Fig. 2. The COMMAND PROCESSOR pattern separates service requests from
their execution by defining a thread (the command processor) where the requests are
managed as independent objects (the commands). These patterns impose no con-
straints over command subscription to threads, number of commands, concurrency
scheme, etc. The roles defined by these two patterns are realized by the classes
ActivityProcessor and RegionActivity, respectively (see Fig. 3).

A Flexible Framework for Component-Based Application 11

CONCURRENCY TIMED INNER PORTS AND DISTRIBUTION AND
AUTOMATA COMPONENT COMMUNICATIONS DEPLOYMENT
ORGANISATION

Command Message
Processor o Composite - - - - - >@ Blackboard <& - - - - - - o R SRRt >. Proxy + Broker
Pd Data Transfer

+

Command ‘,x’/ Object ¢
’ Methods Monitor o Copied Brid
for State Value ridge

Abstract

o Strategy + Null Object @ Factory
+

Builder
Template @
Method Reactor

Fig. 2 Dependency relationships between the patterns considered in the framework development.
Though the patterns are numbered, the design was iterative, and most of the patterns had to be
revisited, leading to many design modifications

Another key aspect, related to AD3 and AD4, is to provide an object oriented
implementation of timed automata compatible with the selected patterns for concur-
rency control, in order to integrate it in the scheme defined by the aforementioned
COMMAND PROCESSOR pattern. It is also an aspect that has a great impact on the
whole design, since timed automata model the behavior of the components. Timed
automata are managed following the METHODS FOR STATES pattern [10], and the
instances of the classes representing it are stored in a hash table. The class Region
is an aggregate of States, and it is related to a subclass of RegionActivity,
which defines how regions are managed. FraCC provides two concrete subclasses:
FsmManager and PortManager. The formeris in charge of (1) the local manage-
ment of the region states (transition evaluation, state change, etc.), and (2) invoking
the StateActivity of the region active state, while the latter is in charge of send-
ing messages through output ports. The subclasses of RegionActivity constitute
the link between concurrency control and timed automata implementation, since they
are those that are allocated to command processors.

Conditions, transitions and events are modeled as separate classes, as shown in
Fig. 3. Condition is an abstract class used to model transitions’ conditions. It
provides an abstract method to evaluate the condition. The only concrete subclass
is StateActiveCondition, which tests whether a specific state is active. But
the user can create his own subclasses to model other kind of conditions. The class
Transition includes the source and target states, the event that triggers it, and a
set of conditions vectors that must be evaluated to determine if the transition should
be executed.

The next challenge is how to store and manage the component internal data,
including all the states and activities mentioned above, the data received or that must
be sent to other components, the transitions among states, event queues, etc. All these
datais organized following the BLACKBOARD pattern. The idea behind the blackboard
pattern is that a collection of different threads can work cooperatively on a common
data structure. In this case, the threads are the command processors mentioned above.

12 D. Alonso et al.

Proxy Pattern
SocketManager

DistributionMsgﬁble}—q DistributionManager

Message Pattern ProcessManager

| E—
V3ComponentCreator
K>—
Command Processor Pattern
0 Black Board Pattern
Command Pattern

T | 7

V3Data j

V3State }—(% State Region i tivity
} A

Methads for State

Pattern
‘
N [remseme|

Command Pattern

¢ ‘ ’ ===== } > o ‘
StateActiveCondition
Parameter: ActivityCode

Fig.3 Simplified class diagram of the developed framework showing some of the patterns involved
in its design

ComponentCreator

Bridge Pattern

=

f

V3MSG

LocalProxyManagerCreator

| o |

Component ‘ ActivityProcessor

V3InPort V30utPort

V3Component

V3Transition

Region

The main liabilities of the BLACKBOARD pattern (i.e. difficulties for controlling and
testing, as well as synchronization issues in concurrent threads) are mitigated by the
fact that each component has its own blackboard, which maintains a relatively small
amount of data. Besides, the data is organized in small hash tables. The roles defined
by this pattern are realized by the classes Data and V3Data.

As shown in Fig. 2, the BLACKBOARD pattern serves as a joint point between
timed automata and the input/output messages sent by components through their
ports. Component ports and messages exchanged between them are modeled as
separate classes. The classes representing these entities are the classes V3Port and
V3Msg, shown in Fig. 3. The communication mechanism implemented by default
in FraCC is the asynchronous without reply scheme, based on the exchange of
messages following the MESSAGE pattern. In order to prevent the exchange of many
small messages, we use the DATA TRANSFER OBIJECT pattern to encapsulated in
a single message all state information associated to a port interface, which is later
serialized and sent through the port. Finally, since components encapsulate their
inner state, we use the COPIED VALUE pattern to send copies of the relevant state
information in each message. All these patterns are described in [10].

A Flexible Framework for Component-Based Application 13

Component distribution is achieved by using Proxy components, which con-
trol the messages exchanged between components deployed into different nodes.
These Proxy components are “regular” components, in the sense that they have
ports with provided/required interfaces, just like the rest of the components. How-
ever, they are created at run-time, as stated in the deployment model, by the
LocalProxyManagerCreator class. FraCC encapsulates the communica-
tion protocol by means of the BRIDGE pattern, which enables the user to change
the used protocol. We currently support only the TCP protocol, embodied in the
SocketManager class, but other implementations are also possible.

S Description of the MDSD Tool-Chain: Modeling, Deployment
and Analysis of Applications

A scheme of the different kind of software artifacts (models, meta-models, model
transformations and tools) involved in the proposed development process is shown
in Figs. 4, 5 and 6. A screenshot of some of the editors and models developed for the
Eclipse-based tool-chain are shown in these figures, which are directly related to the
different abstraction levels shown in Fig. 1, layer M2.

It is worth remembering that the first step of the proposed approach is to design the
component-based application starting from its requirements. Applications in FraCC
are built by connecting components imported from existing libraries. If the required
components are not present in any of the available libraries, they should be firstly
created and added to a library. Figure 4 summarizes the development process of this
first step, as well as the modeling elements (as described in the previous section)
and tools the developer uses. The Eclipse screenshots shown on the bottom of Fig. 4
correspond to a new component definition (on the left), and to the definition of
a new application by connecting imported components (on the right).

Once the FraCC models have been created, the second step is to define how the
application is going to be deployed. The models and tools involved in this second
step are shown in Fig. 5. Starting from the FraCC models, an ATL transforma-
tion generates a default deployment model, which describes how the components
are deployed into computational distributed nodes and concurrent processes. The
developer can modify this model by using the deployment editor in order to fulfill
application requirements, creating the final deployment model.

From the deployment model, the developer can select either to launch and execute
the application by using the runtime support of FraCC or to generate analysis models
(see Fig. 6). Particularly, we have developed a model transformation that generates
a file for analyzing the schedulability of the FraCC application using Cheddar.
Nevertheless, the process is flexible enough to allow the generation of analysis models
for other tools. The separation between architecture and deployment enables the easy
generation and analysis of different deployment strategies, without modifying the
application architecture.

14

Requirements Specification

v

V3CF Comp. libraries
V3CF Model Editors

v

Platform Independent

Structural
i—) elements:

D. Alonso et al.

9

Components: self contained units that communicate only
through their ports.

Interfaces: Aggregates of typed messages.

Ports: input and output ports.

Relationships between structural elements:
Component declares their ports. Interfaces are bound to

ports.

Through ports, events and activities:

- Activities can be subscribed to port events.

- Activities can be subscribed to input ports messages and
can produce output port messages.

- Incoming messages are linked to the events they produce
when the messages arrive.

v

Extended Timed Automata: Component behavior.
Including regions, states, transitions, events and conditions.
Activities: Component functionality and component
management.

Activity interfaces consist of typed messages and events.

User does not
define region
activities, can set
their properties.

State declaration
and definition

Activity

declaration, linkage

to user function.

1

1

1

1

1

1

1

1

: Structural/

Component Model i Behavioral
V3CF Component Model | bindings

1

1

1

1

1

1

1

1

1

1

1 Behavioural

) elements:

Relationships between behavioral elements:
Transitions connect states, event and conditions are
assigned to transitions.

Activities produce and consume events and messages, and
they are linked to user code (compiled as a shared lbrary).

Architectural components are stored
in component libraries.
Applications can use existing
libraries and defined new ones.

CrgpControl Lib.mindr £
ibrary cruiseControl_Lib{
Component Cruise_Control_Comp{

InPort Velecity Port; Ports
Infort Control_Level Port; 1 .
InPort Brake_Port; declaration
DutPort Throttle Port:
UpdateRegion UpdateReg Pericd
Regien Brake_Region{

Period ;
He=——>0 state brake_ore_st(
Activity Brake OFf_sct{
Path “CruiseControl _Lib/Brake Off_Ac
GeneratesEvent Brake_Off_E Event §
¥

}
State Brake_On_St{
Activity Brake On_Act{
Path “CruiseControl Lib/Brake_0n_Act

e Control App.mnr =0
mport “CruiseControl_Lib.minfr=;

Application Cruise_ontrol App{
CruiseControl_Lib.Cruise_Control_Comp Cruise_Comtrol
CruiseControl_Lib.Sensor_Comp Velocity Sensor
CruiseControl_Lib.Senzor_Comp Brake_Sensor;
CruiseControl_Lib.Sensor_Cosp Control_Level_Sensor;
CruiseControl_Lib, Actuater_Cosp Throttle_Actuater;
Connect Cruise_Comtrol-CruiseControl Lib.Cruise_Com
Connect Cruise_Control-CruiseControl Lib,Cruise_Con!
Connect Cruise _Control-CruiseControl Lib.Cruise_Con'
Connect Cruise_Control-CruiseControl Lib.Cruise_Cont

Ports
interconnection

Fig. 4 Architectural software components for application design: artifacts, models, and eclipse
tool-chain screenshots

It should be highlighted that FraCC does not give any guidance as to the num-
ber of threads that have to be created or how activities should be assigned to them,
but it provides the necessary mechanisms to enable the user to choose the appro-
priate heuristic methods, for example the ones defined in [19]. Both the number
of threads as well as the allocation of RegionActivitys to them can be done
arbitrary, but the main objective should be “ensure application schedulability”. For
instance, a heuristic we normally use in our applications is to assign to the same
thread RegionActivitys that have similar periods.

A Flexible Framework for Component-Based Application 15

V3CF Component nodule minfradistr;
Model create outM @ outMM from inM @ inkM;
rule ApplicationZDistribution {
from f:inMMlApplication
to r: outMM!Root{package<-d),
d: outMMIDistribution(noses-f.name+’_distribution’, nodese-n),
n: outMMiNode (name<-'Master_node', processes<-p),
ATL Transformation p: outMM!Process (nome<-'Master_process', threads<-t),
t: outMM!Thread {name<-'Master_threaod",
V3CF Model to Default il regions<-f.componentInstances->
V3CF Application collect(ilthisModule.RegionZRegionRef(i . componentTy]

i Extends V3CF model with nodes, processes and threads.

Default Deployment — Deploy all application components in a single node.
Model @ F-——--—=--=-= > — One process with one thread and all the activities allocated
to such thread.
— All actions are serialized. No concurrency problems.

(Default application)

Cruise_Control_Dist1.minfr 2

Import "Cruise_Control_App.minfr=;
Distribution Cruise_Control Disti{

Node Neodel{
IP lecalhast;
Process processi{

Deployment Model L SecketPort 50001;
Editor ComponentInstances Cruise_Control_app.Brake_Sensor,Cru
Cruise_Control_App.Throttle_Actuator,Cruise_Control_App.\

2 Thread threadi{
Cruise_Centrol_App.Brake_Sensor-CruiseControl_Lib.Ser
Cruise fantral Ann Rrake Sensor-CruiseCentral 1ih,Ser

«| Tasks | B Console 23

— Definition of application nodes and network.

— Definition of processes per node and allocation of
components to processes.

— Definition of threads per process and allocation of
components activities to threads.

Configured Deployment | = - >
Model

Fig. 5 Configuration of application deployment: artifacts, models, and eclipse tool-chain screen-
shots

6 Case Study: Development of a Cruise Controller

The case study that illustrates the use of FraCC and its associated tool-chain is a
simplified version of the well-known “Cruise Controller Development” [19]. The
original case study includes calibration and monitoring functions, which are not
taken into account in the current example, since we decided to include only those
functional requirements directly related to real-time system development. Besides,
unlike the original solution, which is object-oriented, we develop a component-based
one.

The cruise control system is in charge of automatically controlling the speed of
a vehicle. The elements involved in the system are the brake and accelerator pedals,
and a control level. This level has tree switch positions: ACCEL, RESUME, and
OFF. The required cruise control functions are:

16 D. Alonso et al.

Configured Deployment
Model

\ 4 \ 4

process. threadss
ak_types"PERIODIC_TYPE® »
rane>

V3CF depl t .
. p oymen Model transformation
infrastructure. .
deployment to analysis
Deployer +

LocalProxyManagers (Cheddar model)

¥ "
<text_memory_Sizes Oc/text_mesary_siies

Craise, Comtrel Dt ode
e fdt Sesmh Optiony Help

a3 SRLIRGULET # U IUMEUUL I_FRUIULUL S SLIRULL
4 </address_space>
1% </address_spaces>

106 <tazks>
\ , \V 107 <task task_types"PERIODIC_TYPE™ »
108 <cpu_name>Cpul<fcpu_nane>

108 <address_space_namesAddr 1</address_space_names
V3CF Application Code 1 btk it L

N .. 1 11 <(apa(1qn2w< fe apacity>
(Framework instantiation) Cheddar Analysis — 112 <start_times O<fstart_times
L 3 Model 1 <pal iey>SCHED_FIFO</policy>
Instantiation V3CF classes. 14 <dead] ine>10000</deadl ine>

<eriticality> O</criticality»
<context_switch_overhead> Defcontext_switch_overhead:
<blocking_time> De/blocking times

<priority> 1</priority>

<text_memory_size> 0</text_memory_size>
<stack_nemory_sizes O¢/stack_memory_size>
<period>10000</per iod>

cjitrer> 0</jitters

123 <itasks

Fig. 6 Application and analysis models: artifacts, models, and eclipse tool-chain screenshots

ACCEL: with the cruise control level held in this position, the car accelerates
without using the accelerator pedal. After releasing the level, the reached speed
is maintained (referred to as the “cruising speed”) and also “memorized”.

OFF: by moving the control level to the OFF position, the cruise control is switched
off, independently of the driving or operating condition. The cruise control is
automatically switched off if the brake pedal is pressed.

RESUME: by switching the level to the RESUME position, the last “memorized”
speed can be resumed. The “memorized” speed is canceled when the car engine
is turned off.

6.1 Architecture of a Possible Solution

Due to their extension, it is not possible to show in a single figure all the components
plus the timed automata that model their behavior. Therefore, we will first show the
complete application architecture (see Fig. 7), while the rest of the timed automata
will be progressively introduced.

As shown in Fig. 7, the cruise control is configured as a centralized appli-
cation, comprising five components. Four of them encapsulate hardware access
(Brake_Sensor, Velocity_Sensor, Control_Level, Throttle_Actuator), while the fifth

A Flexible Framework for Component-Based Application 17

_ Resume_Msg
Velocity_Msg Off_Msg
Accel_Msg

<<component>> El
Control_Level

<<component>>
Velocity_Sensor

Shaft_Port Level_PorSf

<<component>> El
Cruise_Control

Brake_Po
______ . Throttle_Por

1
1
1
1
<<component>> : <<component>>
1
1
1
1

};

Brake_Sensor Throttle_Actuator

Brake_On_Msg Throttle_Msg
Brake_Off_Msg

Fig. 7 Architecture of the cruise control application. Interface messages are shown as comments

one (Cruise_Control) models the whole control system and orchestrates the rest of
the components.

The Cruise_Control component periodically receives messages from the sensor
components, and, based on the data they provide and on the system state, calculates
the action command and sends it to the Throttle_Actuator component. All the mes-
sages exchanged among components are always sent through the appropriate ports,
as shown in Fig. 7. The Cruise_Control timed automata comprises three orthogo-
nal regions: Brake_Region, Control_Level_Region, and Cruise_Control_Region, as
shown in Figs. 8 and 9, respectively. This last region comprises the following states:

Initial state. When the driver turns the engine on, the region enters the initial state.
The component remains in this state as long as no attempt is made to engage
cruise control. In initial state, unlike Crusing_Off state, there is no previously
stored cruising speed.

Crusing_Off state. When the driver either engages the level in the Off position
(Off_E event) or presses the brake (Brake_On_E event), the cruise control is
deactivated.

Accelerating state. When the driver engages the cruise control level in the ACCEL
position (Accel_E event), the component enters into the Accelerating state and

18 D. Alonso et al.

Brake_On Resume_Msg_
Do:Brake_On_E

Resume

Do:Resume_E

Accel_Msg_E

[ox]

Brake_Off_Msg_H rake_On_Msg_E Accel Msg_E Resume_Msg_E

Brake_Off

Fig. 8 Two of the regions that comprise the timed automata describing the behavior of the
Cruise_Control component: Brake_Region on the left (stores the state of the car brake), and Con-
trol_Level_Region on the right (stores the state of the control level)

Cruise_E

Accel E Resuming

Go: Reached_Cruising_E

Accelerating

Accel_E [Brake_Off]

Accel_E [Brake_Off] Resume] E [Brake_Off]

— Brake_On_E / Off_E
Initial - T -

-

Brake_On_E Reached_Cruising

\(Cruising_Of?\/
o F

Brake_On_E / Off E

Fig. 9 The last region that comprise the timed automata describing the behavior of the
Cruise_Control component

accelerates automatically, provided that the brake is not pressed (guard Brake_Off
state).

Cruising state. When the driver releases the level (Cruise_E event), the current
speed is saved as the cruising speed and the component enters the Cruising state,
the car speed is automatically maintained at the cruising speed.

Resuming State. When the driver engages the level in the Resume position
(Resume_E event), and providing the brake is not pressed, the car automatically
accelerates or decelerates to the cruising speed. When the car reaches the desired
speed, the region enters Cruising state (Reached_Crusing_E event).

Sensor components share the same timed automata, shown in Fig. 10 (left), though
the activity that is periodically executed in each case is different. The same applies to
the actuator component, shown in Fig. 10 (right). The activity associated to the state
in each component is in charge of reading the sensor state, and then send messages
to the Cruise_Control component.

A Flexible Framework for Component-Based Application 19

. > E Read_Senso; Write_Actuato

T=10ms T=10ms

Fig. 10 Regions for controlling the sensors (left) and actuator (right) components

All the components describe above contain an additional region in their timed
automata, not shown in the figures but present in the models, in charge of port
management (as described in Sect. 4.2).

6.2 Architecture Deployment and Cheddar Analysis

Once the deployment model has been completed, a model-to-text XTend transfor-
mation (see Fig. 6) generates an analysis file for the Cheddar analysis tool. In order
to perform the schedulability analysis, Cheddar requires the number of tasks, their
temporal characteristics (WCET and period), and the number of shared resources of
the application. The Threads of the deployment model are directly transformed into
Cheddar tasks, but shared resources must be derived from the deployment model,
given FraCC’s memory structure and the assignment of RegionActivitys
to threads made in the deployment model. Only buffers that are accessed by
RegionActivitys assigned to different threads should be protected.

As mentioned in Sect. 5, one of the main distinguishing features of FraCC is
the separation between architecture and deployment, which makes it possible to
test different deployments (number of computational nodes, number of concurrent
processes and threads, as well as the computational load assigned to every thread and
their timing properties) easily without needing to modify the architecture. Figure 11
shows the schedulability analysis results, performed with Cheddar, of three different
deployments of the cruise control application.

7 Conclusions and Future Work

The work described in this chapter is part of a more general approach for the
development of component-based application supported by MDA technologies. The
described MDA tool-chain hinders the complexity of the development process and
automates the generation of both the final application and the analysis models. From
our experience with the use of MDA technologies, model transformations are perhaps
the most complex MDA artifacts, both in their design and maintenance. The higher
the conceptual gap between the source and target abstraction levels, the higher the

20 D. Alonso et al.

(a - Cheddar : a free real time scheduling simulator = e
File Edit Tools Help

olelolala| <lx®=

| f

L | =l

(Scheduling feasibility, Processor Cpul :
(1} Feacibility test based on the processor utilization factor i

|- The base period is 10000 (see [18], page 5).

- B800 units of tine are unused in the base per.

- Processor utilization factor with deadlim is U 1M0 {zee [11, page 6.

- Processor utilization factor with period is 0,12000 {(zec [11. page 6).

- In the preenptive case, with RH, the task set is schedulable because the processer utilization facter 0,12000
iz equal or less than 1.00000 {zee [19], page 13).

(2} Feasibility test based on worst case task response tine :
|- Bound on task response tine @ (see [2], page 3, equation 4D,

threadl = 1200
|- ALL task deadlines will be met @ the task set is schedulable.

| - Cheddar : a free real time scheduling simulater -+ x|
| File Edit Tools Help

clelolsla| <=

] I -

(Scheduling feasibility, Processor Cpul :
(1} Feasibility test based on the processor utilization factor 3

- The base period is 10000 (see [181. paga 5).

- B800 units of tine are unused in the base per.

|- Processor utilization factor ulth deadl.iu .is U 1zmn {see [11, page B},

- Processor utilization factor with period iz 0,12000 (see [1], page B).

- In the preenptive case, with RH, the task set is schedulable because the processor utilization factor 0.12000
iz equal or less than 1.00000 {(zee [19], page 13).

[2) Feasibility test based on worst case task response tine @

~ Bound on twkéasponu tine : (see [2], page 3, equation 4).

threads => 400
- ALl task deadlines will be met : the task set iz schedulable,

(c). "

- Cheddar : a free real time scheduling simulator o
File Edit Tools Help

clelolala| o3

| i

= T

= o

[Scheduling feasibility, Processor Cpul @
1) Feasibility test based on the processor utilization factor 3

- The base period iz 10000 (see [18], page 5).

- 8800 units of tine are unused in the base per.

- Processor utilization factor with daadlim .is U 1zmn {zee [11, page B).

- Proceszor utilization factor with period iz 0,12000 (see [1], page B).

- In the preenptive case, with RH, the task set is schedulable because the processor utilization factor
(0.12000 iz equal or less than 1.00000 {zee [19], page 13).

2} Feasibility test based on worst case task response tine :

- Bound og task respmse tine 1 (see [2), page 3, equation 4).

thread2 —3‘ 1.1.00
thread3 => 1000
=» 900

threads => 700
thread? => 600
threadd => 500

threadl2 => 1
- ALL task deadlinns will be net : the task set iz schedulable,

Fig. 11 Schedulability results of the Cheddar analysis tool for three different deployments of
the cruise control application, as modeled in Fig. 7. a Analysis results of a deployment with one
thread to which all RegionActivityshave been assigned to. b Analysis results of a deployment
with five threads, to which RegionActivitys have been assigned to according to their periods.
¢ Analysis results of a deployment with twelve threads, one for each RegionActivity

A Flexible Framework for Component-Based Application 21

complexity of the transformation. Therefore, we decided to use a component frame-
work as the target of the model transformations that generate the application code.
This way, transformations have only to specialize its hot-spots, not to generate the
whole code.

The development approach and tool-chain presented in this paper allow develop-
ers to use components as design units and threads an synchronization primitives as
analysis units. FraCC is flexible enough to deal with changes in the application con-
currency properties without changing the architectural design. By allowing devel-
opers to control the number of threads, their timing properties and computational
load, he or she can analyze very different configurations before having to redesign
the application. As a side effect, the separation between architecture and deployment
enables the easy generation and analysis of different deployment strategies, without
modifying the application architecture. It also facilitates component reuse, since the
same functionality can be executed in different concurrency schemes.

It is also remarkable the way in which FraCC has been developed. The adoption
of a pattern-driven approach has greatly facilitated the design of such framework.
In addition, the selected patterns have been described like a pattern sequence. The
design was iterative, and most of the patterns had to be revisited, leading to many
design modifications.

Regarding future work, we are currently working on porting MinFr to non x86-
based platforms, mainly 32-bits micro-controllers, and developing a reporting tool
that presents the user with different deployment alternatives that optimize certain
parameters, like number of threads, shared resources, communication bandwidth,
etc. In the long term, we would like to integrate more complex analysis tools, like
Uppal and Mast, as well as to use a third party component-based framework, being
Robocop the most suitable alternative for our necessities. We are also working on
generating input models for analysis tools compliant with the UML MARTE profile
from instances of the framework.

Acknowledgments This work has been partially supported by the Spanish CICYT Project
EXPLORE (ref. TIN2009-08572), the Séneca Project MISSION-SICUVA (ref. 15374/P1/10), and
the Spanish MEC FPU Program (grant AP2009-5083).

References

1. K. Antkiewicz, M. Czarnecki, M. Stephan, Engineering of framework-specific modeling lan-
guages. IEEE Trans. Softw. Eng. 35(6), 795-824 (2009)

2. Artist-ESD, Artistdesign—European network of excellence on embedded systems design,2008—
2011

3. C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Laitenberger, R. Laqua, D. Muthig, B. Paech,
J. Wst, . Zettel, Component-based Product Line Engineering with UML (A-W Prof, Boston,
2001)

4. C. Baier, J. Katoen, Principles of Model Checking (The MIT Press, Cambridge, 2008)

22

~N

12.
13.

14.

15.

16.

18.

19.

20.

21.

22.
23.
24.
25.
26.
217.
28.

29.

D. Alonso et al.

. G. Behrmann, K. Larsen, O. Moller, A. David, P. Pettersson, Y. Wang, Uppaal—present and
future, in Proceedings of the 40th IEEE Conference on Decision and Control, vol. 3 (2001),
pp- 2881-2886

. M. Ben-Ari, Principles of the Spin Model Checker (Springer, Berlin, 2008)

. J. Bengtsson, W. Yi, in Timed Automata: Semantics, Algorithms and Tools. Lectures on con-
currency and Petri nets, vol. 3098 of LNCS (Springer, Berlin, 2004) pp. 87-124

. G. Blair, T. Coupaye, J. Stefani, (eds.) Component-based architecture: the Fractal initiative.
Ann. Telecommun. 64 (2009), Springer

. T. Bures, P. Hnetynka, F. Plasil. Runtime concepts of hierarchical software components. Int. J.
Comput. Inf. Sci. 8, 454-463, (2007)

. F. Buschmann, K. Henney, D.C. Schmidt, Pattern-Oriented Software Architecture, Volume 4:
A Pattern Language for Distributed Computing (Wiley, New York, 2007)

. F. Buschmann, K. Henney, D. Schmidt, Pattern-Oriented Software Architecture, Volume 5: On

Patterns and Pattern Languages (Wiley, New York, 2007)

J. Bézivin, On the unification power of models. J. Syst. Softw. 4(2), 171-188 (2005)

J. Carlson, P. Hakansson, J. Petterssonb, SaveCCM: an analysable component model for real-

time systems. Electron. Notes Theoret. Comput. Sci. 160, 127-140 (2006)

I. Crnkovic, S. Sentilles, A. Vulgarakis, M.R.V. Chaudron, A classification framework for

software component models. IEEE Trans. Softw. Eng. 37(5), 593-615 (2011)

L. Dipippo, C. Gill, Design Patterns for Distributed Real-Time Embedded Systems. Real-Time

(Springer, Berlin, 2009)

G. Fairbanks, D. Garlan, W. Scherlis. Design fragments make using frameworks easier, in

Proceedings of the 21st annual ACM SIGPLAN Conference on Object-oriented Programming

Systems, Languages, and Applications, OOPSLA 2006, ACM, (2006), pp. 75-88

. M. Fayad, D. Schmidt, R. Johnson, Building Application Frameworks: Object-Oriented Foun-

dations of Framework Design (Wiley, New York, 1999)

E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object-

oriented Software (A-W Prof, Boston, 1995)

H. Gomaa, Designing Concurrent, Distributed, and Real-Time Applications with UML. Object

Technology (Addison-Wesley, Boston, 2000)

H. Maaskant, Dynamic and Robust Streaming in and Between Connected Consumer-Electronic

Devices, volume 3 of Philips Research Book Series. Chapter A Robust Component Model for

Consumer Electronic Products (Springer, Berlin, 2005), pp. 167-192

J. Medina, M. Gonzélez-Harbour, J. Drake, Mast real-time view: A graphic uml tool for mod-

eling object-oriented real-time systems, in Proceedings of the 22nd IEEE Real-Time Systems

Symposium (RTSS), pp. 245-256, Dec 2001

T. Mens, P. van Gorp, A taxonomy of model transformation. Electron. Notes Theoret. Comput.

Sci. 152, 125-142 (2006)

OMG, Model driven architecture guide, version v1.0.1, omg/2003-06-01, June 2003

OMG, Corba component model, v4.0, formal/2006-04-01, 2006

OpenEmbeDD, Openembedd project, model driven engineering open-source platform for real-

time & embedded systems, 2008-2011

B. Selic, The pragmatics of model-driven development. IEEE Trans. Softw. Eng. 20(5), 19-25

(2003)

M. Shaw, P. Clements, The golden age of software architecture. IEEE Softw. 23(2), 31-39

(2006)

F. Singhoff, A. Plantec, P. Dissaux, J. Legrand, Investigating the usability of real-time schedul-

ing theory with the cheddar project. J. Real Time Syst. 43(3), 259-295 (2009)

C. Szyperski, Component Software: Beyond Object-oriented Programming, 2 edn. (A-W,

Boston, 2002)

Automatic Development of Embedded
Systems Using Model Driven Engineering
and Compile-Time Virtualisation

Neil Audsley, Ian Gray, Dimitris Kolovos, Nikos Matragkas,
Richard Paige and Leandro Soares Indrusiak

Abstract The architectures of modern embedded systems tend to be highly
application-specific, containing features such as heterogeneous multicore processors,
non-uniform memory architectures, custom function accelerators and on-chip net-
works. Furthermore, these systems are resource-constrained and are often deployed
as part of safety-related systems. This necessitates the levels of certification and the
use of designs that meet stringent non-functional requirements (such as timing or
power). This chapter focusses upon new tools for the generation of software and
hardware for modern embedded systems implemented using Java. The approach
promotes rapid deployment and design space exploration, and is integrated into a
fully model-driven toolflow that supports existing industrial practices. The presented
approach allows the automatic deployment of architecture-neutral Java code over
complex embedded architectures, with minimal overheads and a run-time support
that is amenable to real-time analysis.

1 Introduction

Due to their application-specific nature, the architectures of modern embedded sys-
tems are commonly very different to that of more general-purpose platforms. Such
systems contain non-standard features that are poorly supported by existing lan-
guages and development flows, which can make embedded design difficult, slow,
and costly.

Good examples of this trend can be observed in recent smartphone devices. The
Apple iPhone 3G, released in 2008, contained two main heterogenous processors (an
application processor and a baseband processor), four different memory technologies
of different speeds and sizes (DDR SDRAM, serial flash, NOR flash and SRAM),

N. Audsley (X)) - I. Gray - D. Kolovos - N. Matragkas - R. Paige - L. S. Indrusiak
Department of Computer Science, University of York, York, UK
e-mail: neil.audsley @york.ac.uk

M. A. Khan et al. (eds.), Embedded and Real Time System Development: 23
A Software Engineering Perspective, Studies in Computational Intelligence 520,
DOI: 10.1007/978-3-642-40888-5_2, © Springer-Verlag Berlin Heidelberg 2014

24 N. Audsley et al.

and a wide range of supplemental processing devices such as touchscreen controllers
and power management controllers [8]. In later versions of the device the application
processor itself became a heterogeneous, multicore, system-on-chip containing two
ARM Cortex-A9 CPUs with a SIMD accelerator, dual core GPU, and dedicated
image processing and audio processing cores. Developing software for such a system
is extremely challenging and requires large amounts of low-level, hardware-specific
software for each part of the system.

The difficulty of software development for complex architectures is compounded
by the observation that many embedded systems are deployed in resource-constrained
environments and so the efficiency of the final design is a top priority. Also, many
embedded systems are real-time systems and so are required to be analysed and
certified before deployment to ensure that they are fit for purpose.

This chapter discusses these problems in detail and considers existing solutions
in Sect. 2. An approach is then presented that is part of the MADES project, an EU
7th Framework Project [40]. The MADES project uses model-driven techniques to
seamlessly integrate model transformation (Sect. 3.2), software generation (Sect. 4)
and hardware generation (Sect. 5) flows to promote rapid development, design space
exploration, and increase the quality of the final systems. A case study is then pre-
sented in Sect. 6 to show how these tool flows work in practice. Finally, the chapter
concludes in Sect. 7.

2 Background

This section will discuss the unique challenges of embedded development and some
of the ways that they are currently addressed. Section 2.1 discusses the complex
hardware architectures found in embedded systems, Sect. 2.2 discusses the prob-
lems faced by developers of safety-critical and high-integrity systems, and Sect. 2.3
describes industrial concerns.

2.1 Heterogenous Hardware Platforms

The hardware architectures of embedded systems are becoming increasingly
non-standard and application specific. Large increases in on-chip transistor den-
sity coupled with relatively modest increases in maximum clock rates [20] have
forced the exploration of multi-processor architectures with heterogenous process-
ing components in order to meet increasing application performance requirements.
Consequentially, many modern embedded systems target Multiprocessor Systems-
on-Chip (MPSoCs)-based platforms. These architectures are a significant deviation
from the homogeneous, uniprocessor platforms that have traditionally been the main
component of embedded architectures.

Development of Embedded Systems Using MDE and CTV 25

Embedded architectures frequently contain multiple, heterogeneous processing
elements [25], non-uniform memory structures [3], and non-standard communication
facilities (e.g Network-on-Chip communications structures are used on the recent
Tilera 64-core TILEPro64 processor [44] and the Intel 48-core Single-Chip Cloud
Computer [26]). Embedded systems also make extensive use of application-specific
hardware, such as DSP cores, function accelerators, or configurable processors [11].
For example, Texas Instruments’ OMAP 5 range of devices [38] contain a dual-core
ARM Cortex Al5, two other smaller ARM cores, DSPs, and a GPU core.

The lack of a ‘standard’ architecture means that such systems are not well-
supported by the standard toolchains and languages that have been previously devel-
oped. This is because the abstraction models of existing programming languages
were not developed to cope such variety and variability of heterogeneous platforms.
Early computer architectures were largely uniform and entirely static, consisting of
a single processor with access to one contiguous block of memory. As a result, the
abstraction layers of programming languages hid many architectural details to aid the
programmer. This approach has been inherited by modern languages, which increas-
ingly rely on the presence of middleware or a distributed operating system to allow
the programmer access to hardware features and architectural mapping. Access to
features such as complex memory or custom hardware can only be achieved though
the use of abstraction-breaking techniques (link scripts, inline assembly, raw point-
ers etc.). These techniques are error-prone, difficult to port to new architectures, and
hard to maintain. Also, on resource-limited embedded systems complex operating
systems or middleware is infeasible.

2.2 Criticality

In addition to the problems described above, embedded systems are frequently
deployed in safety-related (i.e. safety-critical) environments, thereby categorising
them as hard real-time systems [6]. Such systems must be amenable to worst-case
execution time analysis so that their worst-case timing behaviour can be identified and
accounted for. This requires predictability at all stages of the design, from language
choice (frequently a high-integrity subset such as Ravenscar Ada [5] or Java [24])
through a real-time OS (such as MARTE OS [34]) to real-time hardware features
(such as the CAN bus, or SoOCBUS [45]).

The heterogenous hardware of embedded systems can often make guaranteeing
worst-case timing or resource use very difficult. Many hardware features have highly
variable response times. For example, the response time for a cache is relatively low
for a cache hit but very high for a cache miss. Characterising memory accesses as
hits or misses at analysis time is an active area of timing analysis research [16, 33],
made even harder when multi-level or shared caches are considered.

Once a suitable timing model of the hardware can be constructed that allows
analysis, restrictions must be imposed onto the programming model that developers

26 N. Audsley et al.

can use in order to support timing analysis of the application software. The commonly
used model [6] makes the following assumptions:

e The units of computation in the system are assigned a potentially dynamic priority
level.

e Atany given time the executing thread can be determined from the priorities in the
system and the states of the threads. i.e. Earliest Deadline First scheduling states
that the thread with the nearest deadline has the highest priority and should be
executing, unless it is blocked.

e Priority inversion (deviations from the above point) in the final system can be
prevented, or predicted and bounded.

e Threads contain code with bounded execution times. This implies bounds on loop
iterations, predictable paths through functions, restrictions on expected input data,
and limitations on exotic language features like code migration, dynamic dispatch,
or reflection.

e Blocking throughout the system is bounded and deadlock free.

Finally, once predictable hardware and software are developed it is still necessary
for the highest levels of certification (such as the avionics standard DO-178B) to
demonstrate traceability from requirements to software elements. Currently this is
not well supported by existing toolchains.

2.3 Industrial Applicability

Industry is generally reluctant to switch to new programming languages and tool-
chains as this imposes a drastically different development approach with implicit
problems of risk, acceptance and difficulties with legacy systems. In general, exist-
ing industrial methodologies must be supported rather than supplanted. Model-driven
engineering (MDE) is becoming more frequently used in industrial projects [29] and
represents a common way of tackling the higher abstractions of modern embedded
systems [18]. However, as with programming languages it is desirable to remain
with existing modelling standards (such as SysML [43] or MARTE [30]) and tooling
wherever possible. Another parallel with restricted programming languages is that
UML and profiles like MARTE are very complex and there are many different ways
to model the same concept, so restricted and more focussed subsets can help with
productivity.

2.4 Summary

In summary, the following issues are observed:

e Embedded systems employ complex, heterogeneous, non-standard architectures.

Development of Embedded Systems Using MDE and CTV 27

e Such architectures are poorly supported by existing programming methodologies
which tend to assume ‘standard’ hardware architectures.

e Embedded systems are frequently real-time or safety critical systems. This lim-
its the programming model which can be used and the middleware or operating
systems that can be deployed.

e Complex embedded architectures are frequently very difficult to analyse for worst-
case timing behaviour.

e Industrial developers are reluctant to move to new tools or development method-
ologies due to concerns over use of legacy code, certification, trust in existing
tools, and user familiarity.

3 Introduction to Model-Driven Engineering

The approaches introduced in this chapter will leverage Model-Driven Engineering
(MDE) to attempt to mitigate some of the problems previously described. This section
will introduce MDE, metamodels, and model transformations, and then describe the
model transformation framework that is used throughout the work described by this
chapter.

MDE is a software development paradigm, which aims to raise the level of abstrac-
tion in system specification and to increase the level of automation in system devel-
opment. In MDE, models, which describe different aspects of the system at different
levels of abstraction, are promoted to primary artifacts. As such, models “drive” the
development process by being subjected to subsequent transformations until they
reach a final state, where they are made executable, either by code generation or
model interpretation.

MBDE relies on two facts [21]. First, any kind of system can be represented by
models and second, any model can be automatically processed by a set of operators.
Since, models need to be understood and processed by machines, they need to con-
form to a metamodel. Metamodels are used as a typing system to provide precise
semantics to the set of models they describe. Therefore, a metamodel is a model,
which defines in a precise and unambiguous way a class of valid models. The meta-
model describes the abstract syntax of a modelling language. The homogeneity of
definition provided by metamodels enables engineers to apply operations on them
such as transformations or comparisons in an automatic and generic way. Figure 1
illustrates the basic relations of conformance and representation between a system,
a model and its corresponding metamodel.

3.1 Model Transformations

Model transformations play a key role in model-driven development. Czarnecki and
Helsen [7] identify the following areas in which they are most applicable:

28 N. Audsley et al.

[Metamodel]
A

conforms to

representation of

Fig. 1 Basic relations of representation and conformance in MDE (adapted from [21])

Generating lower-level models and code from higher-level, more abstract models;
Mapping between different models;

Querying and extracting information from models;

Refactoring models;

Reverse engineering of abstract models from concrete ones.

Model transformations are computer programs, which define how one or more
input models can be transformed into one or more output models. A model transfor-
mation is usually specified as a set of relations that must hold for a transformation to
be successful. The input and output models of the transformation have to conform
to a metamodel.

A model transformation is specified at the metamodel level and establishes a
mapping between all the models, which conform to the input and output metamodels.
Model transformations in MDE follow the model transformation pattern illustrated in
Fig. 2. The execution of the rules of a transformation program results in the automatic
creation of the target model from the source model. The transformation rules, as well
as the source and target models conform to their corresponding metamodels. The
transformation rules conform to the metamodel of the transformation language (i.e.
its abstract syntax), the source model conforms to the source metamodel and the target
model conforms to the target metamodel. At the top level of this layered architecture
lies the meta-metamodel, to which all the other metamodels conform.

3.2 Epsilon Model Transformations

Model transformation languages are used to specify model transformations. In gen-
eral, model transformations may be implemented in different ways, for example,
by using a general purpose programming language or by using dedicated, domain
specific model management languages.

In the context of MADES, the model transformation language used is the
Epsilon Generation Language (EGL) [35], which is the model-to-text transformation

Development of Embedded Systems Using MDE and CTV

<<instantiate>>

Source
Language

<<instantiate>>

Source
Metamodel

<<instantiate>>

Source Model

(MetaMetaModel

<<instantiate>>

j

Transformation
Language

<<instantiate>>

<use>>

Transformation
Engine

<<instantiate>>

Target
Language

<<instantiate>>

<<instantiate>>

29

Target Model

Fig. 2 Model transformation pattern [4]

language of the Epsilon framework [23]. Epsilon (Extensible Platform of Integrated
Languages for mOdel maNagement) is a family of consistent and interoperable,
task-specific, programming languages which can be used to interact with models to
perform common MDE tasks such as code generation, model-to-model transforma-

tion, model validation, comparison, migration, merging and refactoring.

Epsilon consolidates the common features of the various task-specific modelling
languages in one base language and then develops the various model management lan-
guages atop it. The Epsilon Connectivity Layer (EMC) abstracts different modelling

frameworks and enables the Epsilon task-specific languages to uniformly manage
models of those frameworks. The architecture of the Epsilon framework is illustrated

in Fig. 3.

Unit Testing Framework (Eunit)

Language (ETL)

Language (EVL)

Model-to-Text Refactoring Comparison Merging
Language (EGL) | | Language (EWL) Language (ECL) || Language (EML)
Transformation Validation

Migration Language (Flock)

|

Epsilon Object Language (EOL)

Epsilon Model Connectivity (EMC)

l EMF (XMI 2.x) II MDR (XMI 1.x) H

Z(CzZT)

XML

Fig. 3 Epsilon framework architecture

30 N. Audsley et al.

The approach proposed by this chapter is not dependent on the model manage-
ment framework. However, Epsilon was preferred because of some of its unique
features simplify the implementation activities. Such features include the support
of Epsilon for interactive model transformations, the fine-grained traceability mech-
anism of EGL, as well as the framework’s focus on reusability and modularity.
Moreover, Epsilon is a mature model management framework with an active and
large community.

4 Software Generation Using Compile-Time Virtualisation

Given the problems highlighted in Sect. 2, it can be seen that software development for
many modern embedded systems is very challenging. Any solution to these problems
must be industrially-acceptable so from the discussions in Sects. 2.3 and 2.2 the
following requirements can be obtained:

e No new programming languages or tools because of certification requirements.
e No large runtime layers, or complex translated code.
e Integration with model-driven development to aid developers.

The MADES project therefore uses a model-driven approach which integrates a
technique called Compile-Time Virtualisation (CTV) [14, 15]. Section 4.1 describes
CTV and motivates its use while Sect. 4.2.3 describes how CTV is integrated into
MADES.

4.1 Compile Time Virtualisation

Compile Time Virtualisation (CTV) is a source-to-source translation technique that
aims to greatly simplify the development of software for embedded hardware archi-
tectures. It does this by integrating hardware virtualisation to hide the complexities
of the underlying embedded architecture in a unique way that imposes minimal run-
time overheads and is suitable for use in real-time environments. CTV allows the
developer to write software for execution on a ‘standard’ desktop-style environment
without having to consider the target platform. This architecturally-neutral input
software is automatically translated to architecturally-specific output software that
will execute correctly on the target hardware. The output software is supported by
an automatically-generated, minimal-overhead, runtime that avoids the code size
increase of standard middleware technologies (such as CORBA [32]) and run-time
virtualisation-based systems (such as Java). CTV is a language-independent tech-
nique that can be applied to a range of source languages. It has currently been
demonstrated in C [14] and Java [13]. The rest of this chapter will discuss CTV as it
is applied to Java, but the approach is broadly the same in all languages.

Development of Embedded Systems Using MDE and CTV 31

[Architecture-] [.]
Mappings

neutral software

Executes on

Simple

rogrammin Exported
prog & hardware
Virtual model

Platform

Virtualisation
mappings

A
[Architecture-specific software]

Executes onKp Custom
Target Platform hardware

Fig. 4 Compile-time virtualisation introduces a virtual platform to make software development
easier

CTV introduces a virtualisation layer over the target hardware, called the Virtual
Platform (VP). This is shown in Fig. 4. The VP is a high-level view of the underlying
hardware that presents the same programming model as the source language (in this
case Java) to simplify development. For Java, it presents a homogeneous symmet-
ric multiprocessing environment with a single monolithic shared memory, coherent
caching, and a single uniform operating system. This is equivalent to a standard
desktop computer running an operating system like Linux or Windows and is the
environment in which Java’s runtime expects to operate. Therefore, the developer
can write normal, architecture-independent Java code.

As its name implies, the VP is a compile-time only construct, it does not exist
at run-time. This is because the VP’s virtualisation is implemented by a source-
to-source translation layer that is guided by the virtualisation mappings (that map
threads to CPUs and data to memory spaces). This can be seen in Fig. 5. The job of
the source-to-source translation is to translate the architecturally-independent input
software into architecturally-specific output code that will operate correctly on the
target hardware, according to the provided mappings.

Unlike a standard run-time virtual machine, the virtualisation mappings are
exposed to the programmer. This allows the programmer to influence the implemen-
tation of the code and achieve a better mapping onto the architecture. For example,
by placing communicating threads on CPUs that are physically close to each other,
or locating global data in appropriate memory spaces to minimise copying. Such
design space exploration can be performed very rapidly because software can be
moved throughout the target system without recoding.

32 N. Audsley et al.

Application

[RTOS] [Application]

Refactored
Application

‘ Virtual ’ ‘ Virtual ’
Platform Platform
Virtual /F:ef‘?_dotr_ed
machiné) [Virtualisation layer | pplication
[Communication framework] [Communication Iibraries]
+
[Target hardware] [Target hardware]

Compile-time view Run-time view

Fig. 5 Compile-time virtualisation hides complex hardware, but only at compile-time

Also in contrast to run-time virtual machines, custom hardware can be exported
up to the programmer through the VP at design-time and presented in a form that is
consistent with the source language’s programming model, thereby allowing it to be
effectively exploited by the programmer.

Moving the virtualisation to compile-time rather than run-time helps to reduce
run-time overheads. Such overheads in a CTV system are small because all the
work is done by the refactoring engine at compile-time. However, a consequence of
applying the refactoring at compile-time is that all necessary analysis must be able
to be performed offline. This means that certain aspects of the input language are
restricted. However, as discussed in Sect. 2.2, in a real-time system such restrictions
are already imposed (e.g. in the Ravenscar [5, 24] and SPARK [17] real-time language
subsets). For more detail on this, see Sect. 4.2.2. In general, the principle is that:

A system which is implemented using Compile-Time Virtualisation trades runtime flexibility
for predictability and vastly reduced overheads.

For examples of how this trade off can reduce overheads, see Sect. 4.2.4.

Some additional benefits of the VP is that its use abstracts hardware changes
from the software developer. The developer only has to target the VP rather than the
actual hardware and if the hardware is changed at a later date, the same software can
be retargeted without any recoding or porting effort. Similarly, because the VP is
implemented to support development in existing languages, developers do not have
to be trained to use a new language and existing legacy code can be more easily
reused. Also, because the architecture-specific output code is still valid Java, no new
compilers or tool need to be written. This is of vital importance to high-integrity
systems that require the use of trusted compilers, linkers, and other tools.

The CTV approach is different to techniques such as Ptolemy II [9] which aim
to provide new higher-level and more appropriate abstractions for programming
complex systems. CTV is instead designed to allow existing languages and legacy
code to be used to effectively target such systems through the use of very low-
overhead virtualisation. The two different approaches can actually be complementary

Development of Embedded Systems Using MDE and CTV 33

and used together, with CTV used as a low-overhead intermediary to bring legacy

code or legacy programming languages into an otherwise Ptolemy-defined system.
CTV is the name for the general technique. Section 4.2 will now discuss AnvilJ,

the specific implementation of CTV that is implemented in the MADES project.

4.2 AnvilJ

Section 4.1 gave a broad overview of CTV. However, CTV is a language-independent
technique that can be implemented to work with a range of input languages. In
the MADES project the chosen source development language is Java (and its real-
time variants [12, 24]), therefore MADES uses AnvilJ, a Java-based implementation
of CTV that is described in the rest of this section. The Anvill system model is
described in Sect. 4.2.1. Whilst AnvilJ] can accept the majority of standard Java,
a few restrictions must be imposed and these are enumerated in Sect. 4.2.2. The
way that MADES integrates Anvill into its model-based design flow is discussed in
Sects. 4.2.3 and 4.2.4 concludes with a discussion of how AnvilJ results in a system
which displays minimal runtime overheads.

4.2.1 Anvil]J System Model

AnvilJ is an implementation of CTV for the Java programming language and its
related subsets aimed at ensuring system predictability, such as the RTSJ. The Anvill
system model is shown in Fig. 6. Its input is a single Java application modelled as
containing two sets:

e Anvil] Threads: A set of static final instances or descendants of
java.lang.Thread.
e Anvil] Shared Instances: A setof static final instances of any other class.

Collectively, Anvill Threads and Shared Instances are described using the umbrella
term AnvilJ Instances. Anvill Instances are static throughout the lifetime of the sys-
tem; they are created when the system starts and last until system shutdown.

An AnvilJ Instance may communicate with any other AnvilJ Instance, however
the elements it has created may not communicate with the created elements of other
AnvilJ Instances. This restriction allows the communication topology of the system to
be determined at compile-time and the required runtime support to be reduced, as dis-
cussed later. This approach is particularly suited to embedded development because it
mirrors many of the restrictions enforced by high-integrity and certification-focussed
language subsets (such as the Ravenscar subsets of Ada [5] and Java [24] or the
MISRA-C coding guidelines [41]).

34 N. Audsley et al.

Anvild Instances
A

~

N

AnvilJ {Anvild Shared

Input
application

Thread Instance
Y Y Y
Processing
node (JVM)

(Endpoint | [Endpoint]
| |

Target
architecture

[Channel] [Memory]

Fig. 6 The Anvill system model

In Anvill, the main unit of computation in the target hardware is the processing
node. A processing node models a Real-Time Java Virtual Machine (JVM) [31]
in the final system (or a standard JVM with accordingly reduced predictability).
The Java specification does not define whether a multicore system should contain a
single JVM for the entire system [1, 19] or one per core. Therefore Anvil] models
the JVMs, rather than the processors. The JVMs need not have similar performance
characteristics or features. As with all CTV implementations, every AnvilJ Instance
is mapped to exactly one node. AnvilJ Instances cannot migrate between processing
nodes, but (if supported by the Java implementation) other instances can.

Nodes communicate using channels, which are the communication primitives of
the target architecture. AnvilJ statically routes messages across the nodes of the sys-
tem to present the totally-connected communications assumed by Java. The designer
provides drivers for the channels of the system. Memories represent a contiguous
logical address space and endpoints connect processing nodes to other hardware
elements. Every Anvil] Shared Instance must be mapped to either exactly one node
(on the heap of the JVM), or exactly one memory where it will be available to all
nodes connected to that memory.

This model is compile-time static—the number of Anvill Instances does not
change at runtime. This is consistent with the standard restrictions that are imposed
by most real-time programming models (as discussed in Sect. 2.2. For example,
Ravenscar Ada [5] forbids all dynamic task allocation, whereas AnvilJ only forbids
dynamic AnvilJ Instances. This is in contrast to systems like CORBA which adopt
a “dynamic-default” approach in which runtime behaviour is limited only by the
supported language features. Such systems support a rich runtime model but the
resulting system can be heavyweight as they are forced to support features such as
system-wide cache coherency, thread creation and migration or dynamic message
routing, even if not required by the actual application. The approach of CTV is
“static-default” in which the part of the application modelled is static. The restricted
programming model promises less, but the amount of statically-available mapping
information allows the required runtime support to be significantly reduced.

Development of Embedded Systems Using MDE and CTV 35

Not all instances of java.lang.Thread need to be modelled as an Anvill
Instance. Equally, not all shared object instances need to be modelled at all. Enough
should be modelled to fulfill the constraint that program instances created by an
Anvil] Thread ¢ only communicate with other instances created by #, or another
AnvilJ Instance.

4.2.2 Restrictions on Input Code

In order to be correctly refactored, Anvill input programs must be written to con-
form to a small set of restrictions which are detailed in this section. These restrictions
are consistent with those required by existing real-time development processes (i.e.
SPARK [17] or MISRA-C [41], see Sect. 2.2) and in most cases are less restric-
tive. They allow the system to operate with hugely reduced runtime overheads (see
Sect. 4.2.4).

e Anvill threads and shared objects must be declared as static final fields.
This means that the refactoring engine can determine at compile-time their location
and number, which is not in general possible otherwise.

e All accesses to an Anvil] object must directly refer to the field (using dot notation
if the reference is in another class). It is forbidden to ‘leak’ a reference to an
Anvill object, for example by returning it from a method, passing it to a method,
or assigning it to a local variable of another class. Any of these actions will be
checked by the refactoring engine and prevented.

e The arguments and return values of shared methods that are exported by an AnvilJ
thread or shared object must implement java.io.Serializable interface.

e Threads on different nodes must only use other AnvilJ objects to communicate.
Threads may perform any action that only affects the local JVM. However, if it
calls methods or accesses fields with an instance on a different node that instance
must be tagged as an Anvil] Instance.

4.2.3 Integration with Model-Driven Engineering

To aid the use of Anvill, MADES integrates it directly into the model-driven engi-
neering (MDE) flow of the project. This is not mandatory for Anvill, which can be
used independently. In order to integrate AnvilJ it is necessary to provide the designer
with a way of expressing a high-level view of the target hardware (in terms of the
Anvil] system model) and a high-level view of relevant parts of the input software.
Not all the input software needs to be modelled, only the parts that are to be marked
as Anvill] Instances (Sect. 4.2.1). Also, the allocation of AnvilJ] instances from the
software model to the processing nodes of the hardware model must be provided.
This information is then translated from the designer’s model into the form which
isrequired by the AnvilJ tool. The translation is implemented using the Epsilon model
transformation language, which is described in detail in Sect. 3.2. In the MADES
framework, this information is provided by the designer through the use of 13 stereo-
types which are applied to classes in the system model. These MADES stereotypes

36

N. Audsley et al.

Table 1 Brief description of the MADES stereotypes

Stereotype

Description

«mades_hardwareobject»
«mades_clock»

«mades_channel»
«mades_ipcore»
«mades_memory»
«mades_processingnode»

«mades_endpoint»

«mades_memorymedia»
«mades_devicemedia»
«mades_channelmedia»
«mades_softwareobject»

«mades_thread»
«mades_sharedobject»

Superstereotype for all hardware stereotypes

Connected to «mades_processingnode» instances
and «mades_channel» instances to denote a
logical clock domain

A communication resource i.e. bus

Additional hardware i.e function accelerator

A single logical memory device

A computation element of the hardware platform.
Commonly this is a single processor, but as
described in Sect. 4.2.1, this corresponds to a
JVM in the final system

Superstereotype of all endpoint stereotypes.
Endpoints connect processing nodes to other
hardware and provide more information about
the connection. i.e. an ethernet endpoint may
provide a MAC address

Connects a «mades_processingnode» instance to a
«mades_memory» instance

Connects a «mades_processingnode» instance to a
«mades_ipcore» instance

Connects a «mades_processingnode» instance to a
«mades_channel» instance

Superstereotype for all software stereotypes

Represents an AnvilJ] Thread

Represents an AnvilJ Shared Instance

are described in Table 1. The modelling tool used in the MADES flow (Modelio
[28]) supports two additional diagram types that use the MADES stereotypes; the
detailed hardware specification and the detailed software specification. Allocations
are performed with a standard allocation diagram. Working with these additional
diagrams aids the designer because the MADES stereotypes can be automatically
applied.

For a more detailed look at how the modelling is performed to integrate AnvilJ,
Sect. 6 presents a case study that shows the development of a subcomponent of an
automotive safety system.

4.2.4 Overheads

AnvilJ’s static system model allows most of the required support to be implemented
at compile-time, resulting in a small runtime support system, especially when com-
pared with much larger (although more powerful) general-purpose frameworks. As
will be shown in this section, the main overhead in an Anvil] system is that of the
Object Manager (OM). The OM is a microkernel which exists on every processing

Development of Embedded Systems Using MDE and CTV 37

Table 2 Class file sizes for OM features

Feature set Approx. size (kB)
Thread creation and joining 5.7

Remote object locks 4.5

Shared methods 8.4
Sockets-based IComms (debug) 4.29

Full OM 34

node of the system and implements the Anvil] system model. The OMs use a
message-passing communications model to implement shared memory, locks, remote
method calls etc.

The full version of the OM compiles to approximately 34 kB of class files including
debugging and error information. However it is also possible to create smaller OMs
which only support a subset of features for when the software mapped to a node
does not require them. For example, if a node contains Anvil] Shared Instances but
no Anvill Threads then 5.7 kB of support for ‘Thread creation and joining’ can be
removed. If none of the shared methods of a node are called then the shared methods
subsection can be removed. The advantage of Anvill’s offline analysis is that this can
be done automatically each time, based on the exact input application and hardware
mappings. Table2 shows a breakdown of some of the feature sets of the OM and
their respective code footprint.

Figure 7 compares this size to other similar systems. It should be noted that this
comparison is provided purely to contextualise the size metric and demonstrate that
Anvill’s size is small, relative to related embedded frameworks. The other systems
graphed, especially the CORBA ORBs, are built to support general-purpose, unseen
software and consequentially are much more heavyweight.

3000
DMax ®EMin
2500
2000 -
1500 -
1000 -

500 -

CodefootprintinkB(approx.)

0 T T
Anvil Anvild PercPico uCLinux TAOORB ZENORB

Fig. 7 The code footprint of the Anvil] runtime compared to systems from a similar domains.
Anvil is a C-based implementation of CTV, Perc Pico [2] implements safety-critical Java on systems
without an OS, uClinux is a reduced Linux kernel for microprocessors with MMUs, and TAO [37]
and ZEN [22] are Real-Time CORBA ORBs

38 N. Audsley et al.

e e Detailed hardware
specification

MHS file

piepn

H

FGPA bitfile

FPGA design

Fig. 8 The hardware generation flow

In addition to the small code size of the OM, its runtime memory footprint is also
modest. The full OM in a desktop Linux-based system uses approximately 648 bytes
of storage when idle, which increases as clients begin to use its features.

5 Hardware Generation Using Model Transformations

The MADES hardware generation flow transforms a detailed hardware specification
diagram into an implementable hardware description. The generated hardware may
be a complex, heterogeneous system with a non-uniform memory architecture but
it is supported and programmed by the software generated by the code generation
transformations described in Sect. 4.

In order to best demonstrate the flexibility of the hardware generation flow, the
translations target Xilinx FPGAs. This is merely an implementation choice and does
not reflect any part of the flow which inherently requires Xilinx devices and tools
(or FPGAs in general). Other implementation structures can also be supported. The
transformation outputs a Microprocessor Hardware Specification (MHS) file [46]
which is passed to Xilinx Platgen, a tool that is part of Xilinx’s Embedded Devel-
opment Kit design tools [47]. Platgen is a tool which reads an MHS file and outputs
VHDL [36] which can then implemented on the target FPGA. This flow is illustrated
in Fig. 8.

The hardware generation flow is implemented using the Epsilon Generation Lan-
guage (EGL) (see Sect. 3.2). There are three main benefits gained from generating
hardware from the system model in this way:

Development of Embedded Systems Using MDE and CTV 39

e Very rapid prototyping and design space exploration can be achieved using this
method due to the fact that hardware architectures can be constructed in the devel-
oper’s modelling environment rather than vendor tools.

e MDE allows a vendor-neutral way of modelling and generating architectures. The
same models could be used to target a wide range of FPGAs, ASICs, or even other
hardware description languages like SystemC, however such an approach would
not support the full flexibility of these systems.

e The same model is used as a source for both the software generation and hard-
ware generation flows. These models share a consistent meta-model and so have
related semantics. This gives confidence in the final design, because the software
generation flow is refactoring code according to the same hardware model used
by the hardware generation flow. In essence, the two flows ‘meet in the middle’
and support each other.

When creating the detailed hardware specification diagram, the hardware only
needs to be modelled at a high level of abstraction. The platform is modelled as a
class stereotyped with the stereotype «mades_architecture». Each detailed hardware
specification contains exactly one such class. Properties in the «mades_architecture»
stereotype are used to guide the software generation process by denoting the entry
point class of the input application and allocating the initial Main thread to a process-
ing node.

The details of the architecture are modelled with the MADES hardware stereo-
types. Processing nodes («mades_processingnode») are the elements of compu-
tation in the platform. Each node supports a logical JVM. They communicate
with other nodes through the use of channels. Nodes connect to channels using
the «mades_channelmedia» endpoint stereotype. Memories («mades_memory») are
data-storage elements and are connected to channels using «mades_memorymedia».
Other hardware elements («mades_ipcore») are connected to channels through the
use of the «mades_devicemedia» endpoint stereotype.

The top-level hardware stereotype «mades_hardwareobject» defines a property
called iptype. This is passed to the hardware generation transformation to specify
the type of hardware which should be instantiated. Further properties can also be
passed depending on the value of iptype. For an example of this see the case study
in Sect. 6.5.

Clock domains are modelled by classes stereotyped with the «mades_clock»
stereotype. Clock synthesis is restricted by the capabilities of the implementation
target and the IP cores used. A set of design rules are first checked using model
verification to ensure that the design can be realised. These are:

e The total number of clock domains is not higher than the limit for the target FPGA.

e All communications across clock boundaries use an IP core that is capable of
asynchronous signalling (such as a mailbox).

e All IP cores that require a clock are assigned one.

Each clock has a target frequency in the model and is implemented using the
clock manager cores of the target FPGA. As with all FPGA design, the described

40 N. Audsley et al.

constraints are necessary but not sufficient conditions. During synthesis the design
may use more clock routing resources than are available on the device, in which case
the designer will have to use a more powerful FPGA or reduce the clock complexity
of the design.

Currently, interfaces (IO with the outside world) have to be taken from the IP
library or manually defined in VHDL or Verilog. It is not the aim of this approach to
provide high-level synthesis of hardware description languages such as in Catapult-C
[27] or Spec-C [10], although such approaches can be integrated by wrapping the
generated core as an IP core for the Xilinx tools.

6 Case Study: Image Processing Subsystem

This section will present a case study to illustrate the benefits of the MADES Code
Generation approach and show how CTV/Anvill is integrated into the design flow.
This case study will detail the development of a subsection of an automotive safety
system called the Car Collision Avoidance System (CCAS). The CCAS detects obsta-
cles in front of the vehicle to which it is mounted and, if an imminent collision is
detected, applies the brakes to slow the vehicle. In this case study we focus on a small
part of the detection subsystem and show how the MADES code generation allows
architecture-independent software to be generated to process the radar images with-
out concern for the target platform. Multiple hardware architectures can be modelled
and the software automatically deployed over auto-generated hardware.

Section 6.1 gives a block-level overview of the developed component and Sect. 6.2
discusses how the initial software is developed. The generation of the software and
hardware models is covered in Sects. 6.3 and 6.4. The generation of the target hard-
ware is detailed in Sect. 6.5 and finally Sect. 6.6 discusses deploying the software to
the generated hardware.

6.1 Subsystem Overview

The developed subsystem takes images from the radar (or camera) and applies JPEG-
style compression to reduce the size of the image and therefore reduce the demand
on on-chip communications. Once reduced in size, the images are passed on to other
parts of the system for feature extraction and similar algorithms. The block diagram
of the subsystem is given in Fig. 9. The main stages of the subsystem are as follows:

e Read Image: Periodically reads images from the input to the system from a radar
or camera.

e DCT: A Discrete Cosine Transformation moves the representation of the image
from the spatial domain into the frequency domain.

Development of Embedded Systems Using MDE and CTV 41

(Rz:lr(;]:rg/e (i:r;;r)#;ra)_» Read Image > DCT »| Quantization
sttsg;he < 3 Inverse DCT |
Display
Montoring
output

Fig. 9 Block diagram of the implemented subsystem. A monitoring output stage is included to
allow verification of the subsystem during system development

e Quantization: Data in the frequency domain is selectively discarded to compress
the image.

e Inverse DCT: Moves the image back into the spatial domain. The result is a
(compressed) image that can be passed to the rest of the system, or optionally fed
to a monitoring output stage.

e Display: Used for monitoring and debugging, the output stage uses a graphical
user interface to display the image to the user.

6.2 Software Development

Developing the software for this subsystem is very simple when using Anvill because
the developer can develop as if the code will execute on a standard desktop Java envi-
ronment. However, the developer must observe the restrictions detailed in Sect. 4.2.2.
Also it is not possible to develop the low-level drivers for the radar/camera input
through Anvil] directly, so for the purpose of testing and initial development stub
drivers should be used that operate on the development platform. Final hardware
interfacing must be done once deployment is underway as is normal practice.

The main restriction imposed by AnvilJ is that AnvilJ] Instances must be static
and only communicate through other Anvil] Instances. This forces the developer
to consider the structure of their code carefully, as is the case with all embedded
development. The refactoring engine of Anvil] allows the entire operation of the
subsystem to be detailed using a single Java program, even though the final hardware
platform may involve multiple heterogeneous processing elements. The code was
structured as follows:

e Each block of the subsystem (see Fig. 9) is implemented as a static final
thread. The threads are declared and started by a Main class that is responsible
for initialising the system.

e Each thread contains internal state that holds images passed into it from the previ-
ous stage, and methods that allow the previous stage to pass in images to process.

42 N. Audsley et al.

Fig. 10 Example of the architecturally-neutral software operating in the development environment
on a test image. The right-hand image is after processing

The thread processes images in its work queue, and passes completed images to
the next thread.

e Each thread is designated as an Anvill Thread. This ensures that all communica-
tions in the system go through AnvilJ Instances.

e The output stage is designated an AnvilJ Shared Instance.

e Standard implementations of the DCT and Quantize stages are used from open
source, freely-available code. This is one of the great advantages of AnvilJ in that
often legacy code can be integrated easily.

Having created the software, its functionality can be verified immediately simply
by executing the code in the development environment. It is not necessary to use
simulators, cross-compilation or similar. The result of the software operating on a
test image is shown in Fig. 10 and a listing of the Main class can be found in Fig. 11.
Note that the listing is standard Java code, no extra-linguistic features are required.

6.3 Software Modelling

In a model-driven development flow, the architecture-independent software will be
developed based on a software model. This model must be extended with a MADES
‘Detailed Software Specification’ diagram (detailed in the previous chapter) to inform
the AnvilJ tool of the AnvilJ Instances that are present in the input software. This
diagram links elements of the software model with the input software, using the
concept of ‘bindings’.

Bindings are a way of uniquely identifying source code elements (classes,
instances, fields, methods etc.) and are defined by the Eclipse JDT project [39].
The developer obtains the binding for an Anvill Instance from the AnvilJ GUI and
adds it to the binding property of the «mades_softwareobject» stereotype in the

Development of Embedded Systems Using MDE and CTV 43

public class Main {

private final static int QUALITY = 20;

public static final ReadThread readThread =
new ReadThread ();
public static final DCTThread dctThread =
new DCTThread (QUALITY) ;
public static final QuantizeThread quantizeThread =
new QuantizeThread (QUALITY);
public static final OutputStage outputStage =
new OutputStage (QUALITY);

public static void main(String [] args) {
readThread . start ();
dctThread . start ();
quantizeThread . start ();

readThread . join ();
dctThread . join ();
quantizeThread . join ();

}
}

Fig. 11 Listing of the Main class that initialises the implemented subsystem

software model. This links the instance in the detailed software specification diagram
to the source code.

Figure 12 shows the completed detailed software specification diagram. The dia-
gram is very simple as its only purpose is to add AnvilJ Elements to the software
model and link them to the source code with binding keys. Note that the use of the
«mades_thread» and «mades_sharedobject» stereotypes.

<<SwSchedulableResource>>
<<mades_thread>>

readThread

<<SwSchedulableResource>>
<<mades_thread>>

dctThread

+binding: Lcasestudy/
Main;.readThread)Lcasestudy/
ReadThread;

+binding: Lcasestudy/
Main;.dctThread)Lcasestudy/
DCTThread;

<<SwSchedulableResource>>
<<mades_thread>>

quantizeThread

<<SwMutualExclusionResource>>
<<mades_sharedobject>>

OutputStage

+binding: Lcasestudy/
Main;.quantizeThread)Lcasest
udy/QuantizeThread;

+binding: Lcasestudy/
Main;.outputStage)Lcases
tudy/OutputStage;

Fig. 12 The detailed software specification diagram for the case study subsystem

44 N. Audsley et al.

<<HwComputingResource>>
<<mades_architecture>>
CaseStudy Dual CPU Architecture
E <<HwMemory>> E <<HwMemory>>
<<mades_memory>> <<mades_memory>>
meml : cpulmem mem2 : cpu2mem
1 I 1
T E <<HwClock>>
: '_L <<mades_clock>>
= = = = clk : MainClock
<<HwMedia>> <<HwMedia>>
<<mades_channel>> <<mades_channel>> A
|
mbl : cpulmembus mb2 : cpu2membus i
i
T T i<<clockassociation>>
Lt Lt E
E <<HwProcessor>> E <<HwProcessor>> :
<<mades_processingnode>> <<mades_processingnode>> E
pl : cpul p2 : cpu2 i
M m i
l l E
E <<HwMedia>> | !
<<mades_channel>>
mb : mainbus

Fig. 13 The detailed hardware specification diagram for the case study target architecture. Not
shown are properties in the classes that describe each hardware element in greater detail

6.4 Hardware Modelling

Having modelled the software, this section will now describe how the target hardware
platformis modelled for AnvilJ integration. Recall that according to the AnvilJ system
model from Sect. 4.2.1, it is only necessary for the hardware model to cover a high-
level view of the capabilities of the target platform; in terms of processing nodes,
memories, channels, and application-specific IP cores.

In this case study we will describe two target platforms and show how the same
input software can be automatically deployed without recoding. The first presented
architecture is a dual-processor system with a non-uniform memory architecture,
shown in Fig. 13.

Once the detailed hardware model is complete, the hardware generation flow can
be initiated.

6.5 Hardware Generation

The designer uses the MADES model transformations of Sect. 3.2 to transform
the architecture modelled in Sect. 6.4 into an implementable hardware description.

Development of Embedded Systems Using MDE and CTV 45

PORT fpga_0O_uart _RX_pin = fpga_0O_uart_RX_pin, DIR

PORT fpga_0O_uart _TX_pin = fpga_0O_uart_TX_pin, DIR

PORT fpga_0_mainClk_pin = clock_mainClk, DIR =1,
SIGIS = CLK

PORT fpga_0_sys_1l_rst_pin = sys_rst_s, DIR =1,
SIGIS = RST, RST_POLARITY = 1

BEGIN microblaze
PARAMETER, INSTANCE = cpul
PARAMETER C_USE_BARREL = 1
PARAMETER HW_VER = &8.20.b
PARAMETER C_DEBUG_ENABLED = 0
BUS_INTERFACE DPLB = plbbus
BUS_INTERFACE IPLB = plbbus
PORT MB_RESET = mb_reset
BUS_INTERFACE ILMB = cpul_ilmb
BUS_INTERFACE DLMB = cpul_dlmb

END

Fig. 14 Fragment of the MHS generated by transforming the case study architecture of Fig. 13

As discussed previously in Sect. 5, the hardware generation flow targets Xilinx
FPGAs and uses the Xilinx IP libraries from Xilinx Embedded Development Kit
[47]. Accordingly, the hardware model must be augmented to include enough details
to instantiate these IP cores. This is done by adding properties to the classes of the
detailed hardware specification diagram. Full details of these properties are outside
the scope of this chapter and are given in the MADES documentation [40].

Each of the MADES hardware stereotypes has a mandatory property called
iptype. This is used by the Epsilon model transformation to inform it which Xil-
inx IP should be instantiated. Each supported IP has a set of attributes that may
be also set from the model. For example, the xps_uartlite IP core is a serial
transceiver and includes attributes such as C_BAUDRATE to set the expected baud
rate and C_USE_PARITY to switch on or off the use of parity bits. The hardware
generation flow checks for the presence of any mandatory attributes and warns the
user if they are not present.

Once the model is completed with the required information, the user runs the
hardware transformation to produce a Xilinx MHS file. A fragment of the MHS
generated by transforming the case study architecture of Fig. 13 is shown in Fig. 14.
This MHS file must be then converted into VHDL using the Xilinx design tools. For
the purpose of this case study, the target will be a Xilinx Virtex 5 FPGA [48]. At
the end of the implementation, an FPGA bitfile will be created which can then be
programmed to the device for testing.

6.6 Code Deployment

After modelling the software and hardware, a deployment diagram can be created
that maps instances from the detailed software specification to the detailed hardware
specification. For this case study, the initial allocation will locate the image reading

46 N. Audsley et al.

<<SwResource>>

CaseStudy Software

E <<Allocated>> <<HwComputingResource>>
<<SwSchedulableResource>> <<mades_architecture>>
<<mades_thread>> CaseStudy Dual CPU
G 8 e || g, Architecture
I N
Tlesy .
OCB
~-9te g <<Allocated>>
SETTOEIPD e <<HwProcessor>>
<<SwSchedulableResource>> s <<mad A de>s
<<mades_thread>> mades_processingnode
t2 : dctThread -T2y Pl cpul
- ¥tes, 4
i ‘f{y;et
<<Allocated>>
<<Allocated>>
<<SwSchedulableResource>> <<Allocate
,,,,,,,,,,,, >> Allocate <<HwProcessor>>
NradesRthieade T <<mades_processingnode>>
t3 : quantizeThread p2 : cpu2
ocaf
NS
xe?7’ -7
<<Allocated>> s 0%
<<SwMutualExclusionResource>> |&57-

<<mades_sharedobject>>

sl : OutputStage

Fig. 15 An allocation diagram that deploys software from the detailed software specification dia-
gram of Fig. 12 to the detailed hardware specification of Fig. 13

thread to CPU1 and all other threads to CPU2. The diagram that performs this
allocation can be seen in Fig. 13 .

With the addition of the allocation diagram the is model is now complete, so it
is exported in XMI format for use in the Eclipse IDE. Once imported to Eclipse, an
Epsilon model transformation is used to create an Anvill architecture description.
This file is created from the hardware, software, and allocation diagrams and is the
input to the AnvilJ refactoring engine. It tells Anvil] what the structure of the input
software will be, which elements are Anvill Instances, the topology of the target
platform, and how to place the AnvilJ Instances throughout the platform. Figure 16
shows the architecture description for the case study (Fig. 15).

Once an architecture description is created, the Anvill] refactoring engine can
be invoked at any time to refactor the architecturally-neutral Java application (an
Eclipse project) into a set of architecturally-specific output programs, one for each
processing node of the target platform as described in the hardware diagram. As
the case study architecture has two processing nodes, two output projects will be
created. AnvilJ is fully-integrated into the Eclipse Development Environment. After
refactoring is complete, the output applications can be verified by executing both.
Anvill’s default implementation uses TCP sockets for inter-node communications,
with the intent that developers replace this with the actual communications drivers
of the target platform. However, this default allows immediate testing on standard
networks. In this case, the two output projects coordinate as expected. The node with
ReadThread reads example radar images and passes them to the other node now
running in a separate JVM on which quantizeThread and dctThread process

Development of Embedded Systems Using MDE and CTV 47

<architecture name="CaseStudy Dual CPU Architecture”
mainclass="casestudy .Main” maincpuid="0">
<cpu name="cpul” id="0">
<thread binding="Lcasestudy/Main;.readThread)
Lcasestudy /ReadThread;” />
</cpu>
<cpu name="cpu2” id="1">
<thread binding="Lcasestudy/Main;.quantizeThread)
Lcasestudy /QuantizeThread ;” />
<sharedobject binding="Lcasestudy/Main;.outputStage)
Lcasestudy /OutputStage;”/>
<thread binding="Lcasestudy/Main;.dctThread)
Lcasestudy /DCTThread ; ” />
</cpu>
<channel name="plbbus”>
<endpoint cpu="cpul”/>
<endpoint cpu="cpu2”/>
</channel>
</architecture >

Fig. 16 The Anvil] architecture description for the case study. Note the binding keys correlate with
those of the software diagram in Fig. 12

them. outputStage displays the processed images. The two output binaries can
be placed on separate networked computers with the same functional behaviour. The
single input program has been automatically converted into a networked program
according to the allocation diagram in the system model.

6.7 Analysis of Deployed Code

During refactoring, Anvil] constructs a minimal runtime to support each output
project and refactors the code to use this runtime. The refactoring engine reports all
changes it is making to the input code for each output project so that the generated
code can be traced back to the input code. These changes are very small and only
occur at well-defined points. For example, these lines appear at the start of the run ()
method of the Main class of the input software:

readThread . start ();
dctThread . start ();
quantizeThread . start ();

48 N. Audsley et al.

After refactoring this becomes:

//Instantiate the Object Manager for node id 0
anvilj.refactored.Globals.om = new anvilj.ObjectManager (
new anvilj.Settings (true, false, false), 0,

new anvilj.socketcomms.SocketComms (0),
new anvilj.refactored.Architecture (),
new anvilj.refactored.ThreadCreator (),
new anvilj.refactored.SharedMessages(),
new anvilj.refactored.Routing());
anvilj.refactored.Globals.om.start ();

readThread . start ();

//Start thread id 1 on node id 1
anvilj.refactored.Globals.om.startThread (1, 1);
//Start thread id 2 on node id 1
anvilj.refactored.Globals.om.startThread (1, 2);

This code sets up and initialises the Object Manager (OM, Anvill’s runtime
support) for the current node. The implementation of the OM is automatically gener-
ated in the anvilj.refactored package and is unique to each processing node
of the final system. For example, the Anvil]l Routing object contains routes to the
other nodes of the system with which this OM will need to communicate. Nodes
that it does not communicate with are not detailed. If the code is updated then more
or fewer routes may be added, but this will always be a minimal size. Routes are
planned offline according to the detailed hardware specification diagram.

Note that two of the calls to Thread.start () have been rewritten by the
refactoring engine to calls into the OM. This is because the threads dctThread
and quantizeThread are allocated to another processing node, so they are started
by calling into the AnvilJ runtime. The runtime sends a ‘start thread” message to the
processing node that hosts the given thread. The call to start thread readThread
has not been translated, however, because it is allocated to the current node. If the
allocation diagram is altered and Anvill is rerun, the refactored calls will change.

6.8 Retargeting for New Platforms

Retargeting the case study for a new architecture is simply a case of preparing a
new detailed hardware specification diagram and amending the allocation diagram.
Figure 17 shows a revised target architecture. This is the same as the original case
study architecture (shown in Fig. 13) however a third processor has been added.
The revised allocation diagram allocates the threads more evenly and can be seen in
Fig. 18.

Once the model has been updated, it is re-exported as XMI and AnvilJ re-run.
As the hardware diagram now contains three processing nodes, this produces three
output projects with the Anvill Instances distributed as described by the allocation
diagram. Once again, initial functional verification can be performed by executing the
three output projects and observing that the functional behaviour is again identical.

Development of Embedded Systems Using MDE and CTV 49

<<HwComputingResource>>
<<mades_architecture>>
CaseStudy Triple CPU Architecture
E <<HwMemory>> E <<HwMemory>> E <<HwMemory>>
<<mades_memory>> <<mades_memory>> <<mades_memory>>
meml : cpulmem mem2 : cpu2mem mem3 : cpu3mem
e —
T ; E <<HwClock>>
] ,l' HI-. <<mades_clock>>
= = = = = = > clk : MainClock
<<HwMedia>> <<HwMedia>> <<HwMedia>>
<<mades_channel>> <<mades_channel>> <<mades_channel>>
mbl : cpulmembus mb2 : cpu2membus mb3 : cpu3membus
- - — <<clockassociation>>
L} Lt L}
E <<HwProcessor>> E <<HwProcessor>> g <<HWProcessor>>
<<mades_processingnode>> <<mades_processingnode>> <<mades_processingnode>>
pl : cpul p2 : cpu2 p3 : cpu3
a a) a)
g <<HwMedia>>
<<mades_channel>»>» 1
mb : mainbus

Fig. 17 Revised hardware specification diagram for the case study target architecture

<<SwResource>>
CaseStudy Software
<<Allocated>> <<HwComputingResource>>
<<SwSchedulableResource>> <<mades_architecture>>
«<mades_thread>> CaseStudy Triple CPU
G 8 e |l e, Architecture
T Yeare,
2 22
~Hoc,
<<Allocated>> e § SAAEEEIERD
RN <<HwProcessor>>
<<SwSchedulableResource>> Y cemad s i
<<mades_thread>> mades_processingnode
t2 : dctThread [-1%y . pl : cpul
~Yeage,
\\‘{!P\Cete
<<Allocated>> -1 E <<Allocated>>
<<SwSchedulableResource>> <<HwProcessor>>
<<mades_thread>> ‘\rﬂqj <<mades_processingnode>>
t3 : quantizeThread \‘ofar@ p2 : cpu2
Ue,
24,
~Ho,
\S‘gfe
<<Allocated>> ™4 E <<Allocated>>
<<SwMutualExclusionResource>> <<af ~ <<HwProcessor>>
<<mades_sharedobject>> et lffffte» Alloc <<mades_processingnode>>
____________ ate
sl : OutputStage 13 p3 : cpu3

Fig. 18 Revised allocation diagram for the case study

7 Conclusions

This chapter has presented some of the major problems encountered when devel-
oping complex embedded systems. The hardware architectures of such systems are
characterised by the use of non-standard, application-specific features, such as mul-

50 N. Audsley et al.

tiple heterogeneous processing units, non-uniform memory architectures, complex
interconnect, on-chip networks, and custom function accelerators. These features
are poorly supported by the programming languages most commonly used by indus-
try for embedded development (such as C, C++ and Java) because these languages
assume a ‘standard’ architecture with a simple programming model. Furthermore,
many embedded systems are real-time or safety-critical systems and so are subject to
many additional restrictions that affect the development process. Existing approaches
to solve these problems tend to lack industrial support; either because they compli-
cate certification through the use of new languages and tools; because they prevent
the use of legacy code; or because they are not integrated well enough into existing
development processes.

The chapter then described Anvill, a novel approach for the development of
embedded Java. Unlike most virtualisation systems that operate primarily at run-
time, Anvil] operates primarily at compile-time and uses a restricted programming
model based on a technique called Compile-Time Virtualisation. This restricted
model allows Anvill] to operate with vastly reduced runtime support that is pre-
dictable and bounded. In addition, whilst the CTV model imposes restrictions on the
programmer, these are shown to be less than is imposed by most real-time develop-
ment processes.

In order to aid industrial acceptance, Anvill is integrated into a model-based
engineering tool flow as part of the MADES project using traceable model trans-
formations implemented in the Epsilon framework. MADES’ modelling language
is augmented with a small set of stereotypes to provide the additional modelling
information required. The use of these transformations allows Anvil] to be used by
modellers and designers without manual intervention.

The use of model-driven engineering also allows the presented approach to auto-
mate the process of hardware development. An approach is shown which translates
the hardware diagrams from the system model into VHDL, a hardware description
language suitable for implementation on FPGAs. Whilst this does not expose the full
flexibility of VHDL or the chosen implementation fabric, it can be used for rapid pro-
totyping, functional verification, and design-space exploration. Due to the fact that
the hardware generation transformation and the software generation transformation
are described by the same metamodel, the generated software will execute correctly
on the generated hardware.

To demonstrate the approach, the chapter showed a case study based on the vision
subsystem of an automotive safety system. The required models are developed and
passed to AnvilJ, which refactors the input code to target two different complex
architectures without any code writing.

The use of AnvilJ does not make an unpredictable system predictable, however
when used in an otherwise real-time development process it will not make the sys-
tem less predictable. In general, worst-case execution time (WCET) analysis for
complex embedded architectures is a significant open problem. Almost all of the
schedulability and WCET analysis performed for uniprocessor systems no longer
applies to multiprocessor systems and many worst-case analytical models of com-
plex embedded hardware are still too pessimistic for real-world use. These issues

Development of Embedded Systems Using MDE and CTV 51

are being considered within the T-CREST [42] project which aims to build a time
predictable NoC based multiprocessor architecture, with supporting compiler and
WCET analysis.

References

10.

11.

12.

13.

14.

15.

16.

17.

19.

J. Andersson, S. Weber, E. Cecchet, C. Jensen, V. Cahill, Kaffemik—A distributed JVM on a
single address space architecture. SCI Europe 2001 Conference (2001)

Atego. Perc Pico (2011), http://www.atego.com/products/aonix-perc-pico/

R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, P. Marwedel. Scratchpad memory: design
alternative for cache on-chip memory in embedded systems. In CODES ’02 (2002), pp. 73-78
J. Bezivin. In Search of a Basic Principle for Model-Driven Engineering. UPGRADE-Eur. J.
Inf. Prof. (2004)

. A. Burns, B. Dobbing, G. Romanski, The ravenscar tasking profile for high integrity real-time

programs. In Ada-Europe "98 (Springer, Berlin, 1998) pp. 263-275

A.Burns, A.J. Wellings, Real-time systems and their programming languages (Addison-Wesley
Longman Publishing Co., Inc., Boston, 1990)

K. Czarnecki, S. Helsen. Feature-based survey of model transformation approaches. IBM Syst.
J. 45(3), (2006)

EE Times. Under the Hood—Update: Apple iPhone 3G exposed, December (2008), http://
www.eetimes.com/design/microwave-rf-design/4018424/Under-the-Hood-Update- Apple-
iPhone-3G-exposed

J. Eker, J. Janneck, E.A. Lee, J. Liu, X. Liu, J. Ludvig, S. Sachs, Y. Xiong, Taming
heterogeneity—the Ptolemy approach. Proc. IEEE 91(1), 127-144 (2003)

D.D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, S. Zhao, SpecC: Specification language and
design methodology (Kluwer Academic Publishers, Boston, 2000)

R. Gonzalez, Xtensa: A configurable and extensible processor. Micro, IEEE 20(2), 60-70
(2000)

J. Gosling, G. Bollella, The real-time specification for java (Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, 2000)

I. Gray, N.C. Audsley, Developing predictable real-time embedded systems using Anvill. In
Proceedings of The 18th IEEE Real-Time and Embedded Technology and Applications Sym-
posium (RTAS 2012) Beijing, China, April 17-19 (2012)

I. Gray, N. Audsley, Exposing non-standard architectures to embedded software using compile-
time virtualisation. International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems (CASES ’09) 2009

I. Gray, N. Audsley, Supporting Islands of Coherency for highly-parallel embedded archi-
tectures using Compile-Time Virtualisation. In 13th International Workshop on Software and
Compilers for Embedded Systems (SCOPES), 2010

N. Guan, M. Lv, W. Yi, G. Yu, WCET analysis with MRU caches: Challenging LRU for
predictability. In Proceedings of the IEEE 18th Real-Time and Embedded Technology and
Applications, Symposium (RTAS) 2012

S. Gupta, N. Dutt, R. Gupta, A. Nicolau, SPARK: a high-level synthesis framework for applying
parallelizing compiler transformations. In Proceedings of 16th International Conference on,
VLSI Design, pp. 461-466, Jan. 2003

. J. Hutchinson, J. Whittle, M. Rouncefield, S. Kristoffersen, Empirical assessment of MDE in

industry. In Proceedings of the 33rd International Conference on Software Engineering, ICSE
11, ACM, New York, pp. 471-480 (2011)

Terracotta Inc., The Definitive Guide to Terracotta—Cluster the JVM for Spring, Hibernate and
POJO Scalability (Apress, New York, 2008)

http://www.atego.com/products/aonix-perc-pico/
http://www.eetimes.com/design/microwave-rf-design/4018424/Under-the-Hood-Update-Apple-iPhone-3G-exposed
http://www.eetimes.com/design/microwave-rf-design/4018424/Under-the-Hood-Update-Apple-iPhone-3G-exposed
http://www.eetimes.com/design/microwave-rf-design/4018424/Under-the-Hood-Update-Apple-iPhone-3G-exposed

52

20.

21.

22.

23.

24.

25.
26.

217.
28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.
43.

44.

45.

N. Audsley et al.

ITRS, International Technology Roadmap for Semiconductors, 2007 edn. (2007), http://www.
itrs.net/

F. Jouault, J. Bézivin, M. Barbero, Towards an advanced model-driven engineering toolbox
(Innovations Syst. Softw, Eng, 2009)

R. Klefstad, M. Deshpande, C. O’Ryan, A. Corsaro, A.S. Krishna, S. Rao, K. Raman, The
performance of ZEN: A real time CORBA ORB using real time Java (In Proceedings of Real-
time and Embedded Distributed Object Computing Workshop, OMG, Sept, 2002)
L.R.R.FP.D.S. Kolovos, Extensible platform for specification of integrated languages for model
management (Epsilon) (2010), http://www.eclipse.org/gmt/epsilon

J. Kwon, A. Wellings, S. King, Ravenscar-Java: A high integrity profile for real-time Java. In
Joint ACM Java Grande/ISCOPE Conference (ACM Press, New York, 2002), pp. 131-140

P. Marwedel, Embedded System Design (Springer, New York, 2006)

T. Mattson, R.V. der Wijngaart, M. Riepen, T. Lehnig, P. Brett, W. Haas, P. Kennedy, J. Howard,
S. Vangal, N. Borkar, G. Ruhl, S. Dighe, The 48-core SCC processor: the programmer’s view
(Storage and Analysis (SC), In International Conference for High Performance Computing,
Networking, 2010), p. 2010

Mentor Graphics. Catapult-C synthesis (2009), http://www.mentor.com/catapult
Modeliosoft. Modelio—The open source modeling environment (2012), http://www.
modeliosoft.org/

P. Mohagheghi, V. Dehlen, Where Is the Proof>—A review of experiences from applying MDE,
in industry, In Model Driven Architecture U Foundations and Applications, vol. 5095, Lecture
Notes in Computer Science, ed. by 1. Schieferdecker, A. Hartman (Springer, Berlin, 2008), pp.
432-443

Object Management Group. UML Profile for MARTE: Modeling and Analysis of Real-Time
Embedded Systems (2009), http://www.omgmarte.org/

F. Pizlo, L. Ziarek, and J. Vitek, Real time Java on resource-constrained platforms with Fiji
VM. In Proceedings of JTRES, JTRES *09, ACM, New York, pp. 110-119 (2009)

A.L. Pope, The CORBA reference guide: understanding the Common Object Request Broker
Architecture (Addison-Wesley Longman Publishing Co., Inc., Boston, 1998)

J.Reineke, D. Grund, C. Berg, R. Wilhelm, Timing predictability of cache replacement policies.
Real-Time Syst. 37, 99-122 (2007). doi:10.1007/s11241-007-9032-3

M. Rivas, M. Gonzélez Harbour, MaRTE OS: An Ada Kernel for real-time embedded applica-
tions, in Reliable SoftwareTechnologies U Ada-Europe 2001, vol. 2043, ed. by D. Craeynest,
A. Strohmeier (Springer, Berlin, 2001), pp. 305-316

L.M. Rose, R.F. Paige, D.S. Kolovos, F.A. Polack. The Epsilon generation language. In
ECMDA-FA ’08: Proceedings of the 4th European conference on Model Driven Architec-
ture (Springer, Berlin, 2008), pp. 1-16

J.C.H. Roth, Digital systems design using VHDL (Pws Pub. Co., Boston, 1998)

D.C. Schmidt, D.L. Levine, S. Mungee, The design of the TAO real-time object request broker.
Comput. Commun. 21(4), 294-324 (1998)

Texas Instruments Inc. OMAP5430 mobile applications platform (2011), http://focus.ti.com/
pdfs/wtbu/OMAPS5_2011-7-13.pdf

The Eclipse Foundation. Eclipse Java development tools (2011), http://www.eclipse.org/jdt/
The MADES Consortium. The MADES Project (2011), http://www.mades-project.org/

The Motor Industry Software Reliability Association. Guidelines for the Use of the C Language
in Critical Systems. MISRA Ltd., 2004

The T-CREST Consortium. The T-CREST Project (2012), http://www.3sei.com/t-crest/

T. Weilkiens, Systems engineering with SysML/UML: Modeling, analysis design (Morgan Kauf-
mann Publishers Inc., San Francisco, 2008)

D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mattina, C.-C. Miao,
J. Brown, A. Agarwal, On-chip interconnection architecture of the tile processor. Micro, IEEE
27, 15-31 (2007)

D. Wiklund, D. Liu, SoCBUS: Switched Network on Chip for Hard Real Time Embedded
Systems. In IPDPS ’03, p. 78.1 (2003)

http://www.itrs.net/
http://www.itrs.net/
http://www.eclipse.org/gmt/epsilon
http://www.mentor.com/catapult
http://www.modeliosoft.org/
http://www.modeliosoft.org/
http://www.omgmarte.org/
http://dx.doi.org/10.1007/s11241-007-9032-3
http://focus.ti.com/pdfs/wtbu/OMAP5_2011-7-13.pdf
http://focus.ti.com/pdfs/wtbu/OMAP5_2011-7-13.pdf
http://www.eclipse.org/jdt/
http://www.mades-project.org/
http://www.3sei.com/t-crest/

Development of Embedded Systems Using MDE and CTV 53

46. Xilinx Corporation. Embedded System Tools Reference Guide—EDK 11.3.1. Xilinx Applica-
tion, Notes, UG111 (2009)

47. Xilinx Corporation. Platform Studio and the Embedded Development Kit (EDK) (2012), http://
www.xilinx.com/tools/platform.htm

48. Xilinx Corporation. Virtex-5 FPGA Configuration User Guide. Xilinx User Guides, UG191
(2006)

http://www.xilinx.com/tools/platform.htm
http://www.xilinx.com/tools/platform.htm

Part 11
Design Patterns and Development
Methodology

MADES EU FP7 Project: Model-Driven
Methodology for Real Time Embedded Systems

Imran R. Quadri, Alessandra Bagnato and Andrey Sadovykh

Abstract The chapter presents the EU funded FP7 MADES project that focus on
real-time embedded systems development. The project proposes a high abstrac-
tion level based model-driven methodology to evolve current practices for real-time
embedded systems development in avionics and surveillance industries. In MADES,
an effective SysML/MARTE language subset along with a set of new tools and tech-
nologies have been developed that support high-level design specifications, verifi-
cation and automatic code generation, while integrating aspects such as component
based Intellectual Property (IP) re-use. In this book chapter, we first present the
MADES methodology and related diagrams developed to fulfill our goals; followed
by a description of the underlying tool set developed in the scope of the MADES
project. Afterwards, we illustrate the MADES methodology in the context of a car
collision avoidance system case study to validate our design flow.

1 Introduction

Real-Time Embedded Systems (RTES) are gradually becoming an essential aspect of
our professional and personal lives. From avionics, transport, defense, medical and
telecommunication systems to general commercial appliances such as smart phones,
high definition TVs, gaming consoles; these systems are now omnipresent, and it
is difficult to find a domain where they have not made their mark. However, rapid

I. R. Quadri - A. Sadovykh
Softeam, 21 Avenue Victor Hugo, Paris 75016, France
e-mail: imran.quadri @softeam.fr

A. Sadovykh
e-mail: andrey.sadovykh @softeam.fr

A. Bagnato (B<)
TXT e-solutions, Via Frigia 27, 20126 Milan, Italy
e-mail: alessandra.bagnato @txtgroup.com

M. A. Khan et al. (eds.), Embedded and Real Time System Development: 57
A Software Engineering Perspective, Studies in Computational Intelligence 520,
DOI: 10.1007/978-3-642-40888-5_3, © Springer-Verlag Berlin Heidelberg 2014

58 I. R. Quadri et al.

evolution and continuous technological advances in the underlying hardware/software
along with sharp increase in targeted application domains have lead to new challenges
in the design specification and implementation of RTES, such as increasing costs,
increase in time to market and augmentation in the design gap between hardware
and software evolution. Currently, we are therefore faced with a need to design more
effective RTES. Hence effective design methodologies are needed to decrease the
overall development costs, while resolving issues such as related to system complex-
ity, verification and validation, etc.

Various methodologies and propositions have been proposed for this purpose.
A Platform or component based approach is widely accepted in the RTES industry,
permitting system conception and eventual design in a compositional manner. The
hierarchy related to the RTES is visible quite clearly, and designers are capable to
re-use components that have been either developed internally or by third parties.
Other methodologies make use of high abstraction levels, in order to elevate the low
level technical details. In addition, these systems should also be eventually developed,
and efforts must be made to maximize debugging and testing for minimizing the
manufacturing costs, power consumption levels and system size.

Itis in the context of improving the primary productivity of RTES, that this chapter
finds its proper place. One of the primary guidelines followed during these works
is the utilization of Model-Driven Engineering (MDE) [1] for RTES specification
and development. MDE is able to benefit from a component based model-driven
approach, allowing to abstract and simplify the system specifications using UML
(Unified Modeling Language) graphical language [2], while enabling the possibility
of integrating a compilation chain to transform the high-level models to executable
code for eventual implementation in execution platforms, such as Application-
Specific Integrated Circuits (ASICs) or Field-Programmable Gate Arrays (FPGAS).

MDE enables to elevate as well as partition the system design: by enabling paral-
lel independent specifications of both system hardware and software; their eventual
allocation, and the possibility of integrating heterogeneous components into the sys-
tem. Usage of UML increases system comprehensibility as it enables designers to
provide high-level descriptions of the system, easily illustrating the internal concepts
(system hierarchy, flows/connections, control/data dependencies etc.). The graphi-
cal nature of these specifications equally enables reuse or refinements, depending
upon underlying tools and user requirements. Additionally, MDE englobes different
technologies and tools such as UML profiles for high-level system specifications
and model transformations [3]. These transformations can automatically generate
executable models or code from the abstract high-level design models.

The contributions of this chapter relate to presenting a complete methodology
for the design of RTES in the scope of the EU funded FP7 MADES [4, 5] project.
MADES aims to develop novel model-driven techniques to improve existing prac-
tices in development of RTES for avionics and surveillance embedded systems
industries. It proposes an effective subset of existing standardized UML profiles
for embedded systems modeling: SysML [6] and modeling and analysis of real-time
and embedded systems (MARTE) [7], while avoiding incompatibilities resulting
from simultaneous usage of both profiles. The MADES methodology integrates new

MADES EU FP7 Project 59

tools and technologies that support high-level SysML/MARTE system design spec-
ifications, their verification and validation (V&V), component re-use, followed by
automatic code generation to enable execution platform implementation.

The contribution related to presenting the MADES methodology based on mixed
SysML/MARTE usage is of utmost importance. While a large number of works
deal with embedded systems specifications using only either SysML or MARTE,
we present a combined approach and illustrate the advantages of using these two
profiles. This aspect is significant in nature as while both these profiles provide
numerous concepts and supporting tools, they are in turn difficult to be mastered by
system designer. For this purpose, we present the MADES language, which focuses
on an effective subset of SysML and MARTE profiles and proposes a specific set of
unique diagrams for expressing different aspects related to a system, such as hard-
ware/software specifications and their eventual mapping. In the paper, an overview
of the MADES language and the associated diagrams is presented, that enables rapid
design and incremental composition of system specifications. The resulting models
then can be taken by the underlying MADES tool set for goals such as component
re-use, verification or automatic code generation, which are also briefly detailed in
the chapter.

Afterwards, we illustrate the various concepts present in the MADES language by
means of an effective real-life embedded systems case study: a car collision avoidance
system (CCAS) that integrates the MADES language and illustrates the different
phases of our design methodology and implementation approach. This case study
serves as a reference guide to the actual case studies provided by the MADES end
users: more specifically an onboard radar control unit provided by TXT e-solutions
and a ground based radar processing unit provided by Cassidian (an EADS company).
Hence, the results obtained from the CCAS case study are in turn integrated in the
actual MADES case studies.

2 Background: Using SysML and MARTE for RTES Design
and Development

In this section, we first provide an overview of the SysML and MARTE profiles
and then describe the related works focusing on their usage. While a large number of
researches exist that make use of either SysML or MARTE for high-level modeling of
RTES, due to space limitations, it is not possible here to give an exhaustive description
and we only provide a brief summary on some of the works that make use of SysML
or MARTE based high abstraction levels and MDE, for RTES design specification
and implementation.

60 I. R. Quadri et al.

2.1 Systems Modeling Language

System Modeling Language (SysML) is the first UML standard for system engi-
neering proposed by Object Management Group [8] that aims at describing complex
systems. SysML allows describing of the functional requirements in graphical or
tabular form to aid with model traceability, and provides means to express the com-
position of the system by means of blocks and related behavior by means of UML
inspired Activities, Interactions, State Machines, etc. This profile also provides the
designer with parametric formalisms which are used to express analytical models
based on equations.

However, while SysML is used in the RTES community, it was not mainly created
for modeling of embedded system designs. Non-functional properties such as timing
constraints, latency and throughput that are crucial for the design of RTES are absent
in this profile. This is not the case of the UML MARTE profile.

2.2 Modeling and Analysis of Real-Time and Embedded Systems

The MARTE profile extends the possibilities to model the features of software and
hardware parts of a real-time embedded system and their relations. It also offers
added extensions, for example to carry out performance and scheduling analysis,
while taking into consideration the platform services (such as the services offered
by an OS). The profile is structured in two directions: first, the modeling of concepts
of real-time and embedded systems and secondly, the annotation of the models for
supporting analysis of the system properties. These two major parts share common
concepts: for expressing non-functional properties (NFPs), timing notions, resource
modeling (such as computing, storage resources), UML inspired components based
modeling (concepts such as classes, instances, port and connectors) and allocation
concepts, among others.

Additionally, MARTE contains certain concepts present in other standards and
frameworks, which permit to increase synergy between designers of different
domains. Architecture Analysis and Design Language (AADL), that has its ori-
gins in the avionic domain, is a SAE! standard for the development of real-time
embedded systems. In [9], the authors compared the relationship between AADL and
MARTE concepts. Similarly, Automotive Open System Architecture (AUTOSAR)
[10] is a standardized and open automotive software architecture framework, devel-
oped jointly by different automobile manufacturers, suppliers and tool developers.
With regards to AUTOSAR, MARTE already covers many aspects of timing: such
as specification of over-sampling and under-sampling in end-to-end timing chains
(commonly found in complex control systems). In [11], the SPIRIT consortium’s
IP-XACT UML profile has been proposed, which is a specialization of the current
MARTE profile.

! Society of Automotive Engineers: http://www.sae.org/servlets/index.

http://www.sae.org/servlets/index

MADES EU FP7 Project 61

2.3 Related Works

The MoPCoM project [12] uses MARTE profile to target modeling and code gener-
ation of reconfigurable embedded systems. While the project inspires from SysML
concepts such as requirements and blocks, they are not fully integrated in the design
flow. The project uses the IBM Harmony? process coupled with Rhapsody® UML
modeling tool. Additionally, MoPCoM proposes two distinct flows for system mod-
eling and schedulability analysis that increase design efforts. Similarly, eDIANA
[13] is an ARTEMIS project that uses MARTE profile for RTES specification and
validation. However, detailed specification of software and hardware aspects are
not illustrated in the project. While TOPCASED [14] differs from MADES, as it
focuses primarily on IDE infrastructure for real-time embedded systems and not on
any particular implementations.

Project SATURN [15] is another EU FP7 project that aims to use high-level
co-modeling approach for RTES simulation and synthesis goals. However, the
project only takes SysML into account and proposes multiple UML profiles, for
co-simulation, synthesis and code generation purposes, respectively. The goal is to
use carry out hardware/software modeling via these profiles and generate SystemC
for eventual VHDL translation and FPGA implementation. Unfortunately, the project
does not utilizes the MARTE standard for hardware/software Co-Design [16] model-
ing and increases the learning curve due to the introduction of several new dedicated
profiles.

In [17], the authors provide a mixed modeling approach based on SysML and
the MARTE profiles to address design space exploration strategies. However, the
shortcomings of this approach is that they only provide implementation results by
means of mathematical expressions and no actual experimental results were illus-
trated. The OMEGA European project [18] is also dedicated to the development
of critical real-time systems. However it uses pure UML specifications for system
modeling and proposes a UML profile [19], which is a subset of an earlier UML
profile for Scheduling, Performance and Time (SPT) [20], that has been integrated
in MARTE. The MARTES project emphasizes on combined usage of UML and
SystemC for systematic model-based development of RTES. The results from this
project in turn, have contributed to the creation of the MARTE profile. While the EU
FP7 INTERESTED project [21] proposes a merged SysML/MARTE methodology
where SysML is used for requirement specifications and MARTE for timing aspects,
unfortunately it does not proposes rules on combined usage of both profiles.

The MADES project aims to resolve this issue and thus differentiates from the
above mentioned related works, as it focuses on an effective language subset com-
bining both SysML and MARTE profiles for rapid design and specification of RTES.
The two profiles have been chosen as they are both widely used in embedded systems
design, and are complimentary in nature [22]. MADES proposes automatic genera-
tion of hardware descriptions and embedded software from high-level models, and

2 http://www-01.ibm.com/software/rational/services/harmony/
3 http://www-01.ibm.com/software/awdtools/rhapsody/

http://www-01.ibm.com/software/rational/services/harmony/
http://www-01.ibm.com/software/awdtools/rhapsody/

62 I. R. Quadri et al.

integrates verification of functional and non-functional properties, as illustrated in
the subsequent section.

Thus as evident from the previously cited related works, both SysML and MARTE
are being widely used in both the academia as well as the real-time embedded
systems industry. SysML is normally used for high-level system design specifica-
tions and requirement engineering, while MARTE enables the possibility to enrich a
system specification with non-functional properties, hardware/software Co-Design
along with timing, performance and schedulability analysis aspects. A merge of both
SysML and MARTE thus seems quite logical, as it enables a designer to carry out
SysML based high-level requirements and functional system descriptions and then
enrich these models with MARTE concepts.

3 MADES Model-Driven Design Methodology

In this section, we provide a brief overview of the MADES design methodology,
as illustrated in Fig. 1. Initially, the high-level system design models are carried out
using the MADES language and associated diagrams, which are represented later
on in Sect.3.1. After specification of the design models that include user require-
ments, related hardware/software aspects and their eventual allocation; underlying

MADES Language
Design Models

Hardware-independent
software

o7 || &7

Hardware/ Hardware
software architecture
mappings | | description

s

Y
(Compile-Time Virtualization)

|
|
|
|
|
|
|
Hardware description:
|

generation
+ N e e = = -
: (Platform-specific software) |" — _ — _ P _ _ _,_)
| [Verification} (" User |(Simulation)
I\ Embedded software generation | | scripts input scripts) |
______________ | |
| |
| (Zot verification) |
| . . |
NS, Verification Y

Fig. 1 An overview of the MADES methodology

MADES EU FP7 Project 63

model transformations (model-to-model and model-to-text transformations) are used
to bridge the gap between these abstract design models and subsequent design phases,
such as verification, hardware descriptions of modeled targeted architecture and gen-
eration of platform-specific embedded software from architecturally neutral software
specifications. For implementing model transformations, MADES uses the Epsilon
platform [23], that enables model transformations, code generation, model compar-
ison, merging, refactoring and validation [24].

Verification activities in MADES include verification of key properties of designed
concepts (such as meeting deadlines, etc.) and that of model transformations inte-
grated in the design flow [25, 26]. For verification and simulation purposes, MADES
uses the Zot tool [27], which permits the verification of, among others, aspects such
as meeting of critical deadlines. While closed-loop simulation on design models
enables functional testing and early validation.

Additionally, MADES employs the technique of Compile-Time Virtualization
(CTV) [28], for targeting of non-standard hardware architectures, without requiring
development of new languages or compilers. Thus a programmer can write architec-
turally neutral code which is automatically distributed by CTV over a complex target
architecture. Finally, via model transformations, code generation (for example; such
as either in VHDL for hardware, and Real-Time Java for software) can be carried
that can be eventually implemented on modern state-of-the-art FPGAs. Currently
MADES model transformations target Xilinx FPGAs, however it is also possible
for them to adapt to FPGAs provided by other vendors such as Altera or Atmel.
A detailed description regarding the global MADES methodology can be found in
[29, 30].

3.1 MADES Language and Related Diagrams

Figure 2 gives an overview of the underlying MADES language present in the overall
methodology for the initial model based design specifications. The MADES language
focuses on a subset of SysML and MARTE profiles and proposes a specific set of
diagrams for specifying different aspects related to a system: such as requirements,
hardware/software concepts, etc. Along with these specific diagrams, MADES also
uses classic UML diagrams such as State and Activity diagrams to model internal
behavior of system components, along with Sequence and Interaction Overview
diagrams to model interactions and cooperation between different system elements.
Softeam’s Modelio UML Editor and MDE Workbench [31] enables full support of
MADES diagrams and associated language, as explained later on in Sect. 4.1. We
now provide a brief description of the MADES language and its related diagrams.

In the initial specification phase, a designer needs to carry out system design at
high abstraction levels. This design phase consists of the following steps:

64 I. R. Quadri et al.

System
Requirements

Initial Behavioral

Specification

Functional
Specification

Refined Functional
Specification

| Specification 1 ‘
. (" Detailed Hardware O | | 7 Detaled Software | |
L Specification iy b Specification £

Specification

Fig. 2 Overview of MADES language design phases

e System Requirements: The user initially specifies the functional requirements
related to the system. For this purpose, a MADES Requirements Diagram is uti-
lized that integrates SysML requirements concepts.

e [nitial Behavioral Specification: Afterwards, initial behavioral specification is car-
ried out by means of UML use cases, interactions, state machines or activities
during the preliminary analysis phase.

e Functional Specification: Once the behavioral specifications are completed, they
are then linked to SysML blocks (or internal blocks) by means of MADES Func-
tional Block (or Internal Functional Block) Specification Diagram, that contains
SysML block (or internal block) concepts. This functionality is independent of
any underlying execution platform and software details. It thus determines ‘what’
is to be implemented, instead of ‘how’ it is to be carried out.

e Refined Functional Specification: This level refines SysML aspects into MARTE
concepts: The Refined Functional Specification Diagram models MARTE com-
ponents, each corresponding to a SysML block. Here, MARTE’s High level Appli-
cation Modeling package is used to differentiate between active and passive com-
ponents of the system.

The refined functional specification phase links SysML and MARTE concepts but
avoids conflicts arising due to parallel usage of both profiles [22]. Only
the SysML and MARTE allocation aspects available in both profiles are used in the
refined functional specification design phase to avoid any possible conflict. While the
allocation concept is present both in SysML and MARTE, MARTE enriches the basic
SysML allocation aspects and is thus the one adopted for our methodology. SysML is
used for initial requirements and functional description, while MARTE is utilized for
the enriched modeling of the global functionality and execution platform/software
modeling along with their allocations, creating a clear separation between the two

MADES EU FP7 Project 65

profiles. Afterwards, the designer can move onto the hardware/software partition-
ing of the refined functional specifications. These following steps are elaborated by
means of MARTE concepts.

Related to the MARTE modeling, an allocation between functional and refined
functional level specifications is carried out using a MADES Allocation Diagram.
Afterwards, a Co-Design approach is used to model the hardware and software
aspects of the system. The modeling is combined with MARTE Non-Functional
Properties and Timed Modeling package to express aspects such as throughput, tem-
poral constraints, etc. We now describe the hardware and software modeling, which
are as follows:

e Hardware Specification: The MADES Hardware Specification Diagram in com-
bination with concepts defined in MARTE’s Generic Resource Modeling package
enables modeling of abstract hardware concepts such as computing, communica-
tion and storage resources. This phase enables a designer to describe the physical
system in a generic manner, without going into too much details regarding the
implementation aspects. By making use of MARTE GRM concepts, a designer
can describe a system such as a car, a transport system, flight management system,
among others.

e Detailed Hardware Specification: Using the Detailed Hardware Specification Dia-
gram with MARTE’s Hardware Resource Modeling package allows extension,
refinement or enrichment of concepts modeled at the hardware specification level.
It also permits modelling of systems such as FPGA based System-on-Chips (SoCs),
ASICs etc. A one-to-one correspondence usually follows here: for example, a
computing resource typed as MARTE ComputingResource is converted into
a hardware processor, such as a PowerPC or MicroBlaze [32], effectively stereo-
typed as MARTE HwProcessor. Afterwards, an Allocation Diagram is then
utilized to map the modeled hardware concepts to detailed hardware ones.

e Software Specification: The MADES Software Specification Diagram along with
MARTE’s Generic Resource Modeling package permits modeling of software
aspects of an execution platform such as schedulers and tasks; as well as their
attributes and policies (e.g. priorities, possibility of preemption).

e Detailed Software Specification: The MADES Detailed Software Specification
Diagram and related MARTE’s Software Resource Modeling are used to express
detailed aspects of the software such as an underlying Operating System, (OS),
threads, address space, etc. Once this model is completed, an Allocation Dia-
gram is used to map the modeled software concepts to detailed software ones:
for example, allocation of tasks onto OS processes and threads. This level can
express standardized or designer based RTOS APIs. Thus multi-tasking libraries
and multi-tasking framework APIs can be described here.

e Clock Specification: The MADES Clock Specification Diagram (not shown in
Fig.2) is used to express timing and clock constraints/aspects. It can be used to
specify the physical/logical clocks present in the system and the related constraints.
This diagram makes use of MARTE’s Time Modeling concepts such as clock types

66 I. R. Quadri et al.

and related constraints. Here, designers model all the timing and clock constraint
aspects that could be used in all the other different phases.

Iteratively, several allocations can be carried out in our design methodology: an
initial software to hardware allocation may allow associating schedulers and schedu-
lable resources to related computing resources in the execution platform, once the
initial abstract hardware/software models are completed, in order to reduce Design
Space Exploration (DSE).

Subsequently this initial allocation can be concretized by further mapping of the
detailed software and hardware models (an allocation of OS to a hardware memory,
for example), to fulfill designer requirements and underlying tools analysis results.
An allocation can also specify if the execution of a software resource onto a hardware
module is carried out in a sequential or parallel manner. Interestingly, each MADES
diagram only contains commands related to that particular design phase, thus avoid-
ing ambiguities of utilization of the various concepts present in both SysML and
MARTE, while helping designers to focus on their relative expertise. Additionally,
UML behavioral diagrams in combination with MADES concepts (such as those
related to verification) can be used for describing detailed behavior of system com-
ponents or the system itself.

Finally, the MADES language also contains additional concepts used for the
underlying model transformations for code generation and verification purposes,
which are not present in either SysML or MARTE, and are detailed in [29]. Once the
modeling aspects are completed, verification and code generation can be carried out.
These aspects are out of the scope of this chapter, and we refer the reader to [29, 33]
for complete details.

4 MADES Tool Set

We now describe the MADES tool set that enables to move from high level
SysML/MARTE modeling to verification, code generation and eventual implemen-
tation in execution platforms.

4.1 Modelio UML Editor and MDE Workbench

In the frame of the MADES project, Softeam [34] has developed a dedicated exten-
sion to its Modelio UML Editor and MDE Workbench. Modelio fully supports the
MADES methodology and underlying language while providing various additional
features such as automatic document generation and code generation for various
platforms. Modelio is highly extensible and can be used as a platform for building
new MDE features. The tool allows building UML?2 Profiles, combined with a reach
graphical interface for dedicated diagrams, model element properties editors and

MADES EU FP7 Project 67

action commands controls. The users have access to several extensions mechanisms:
light Python scripts or Java API. Finally, Modelio is available in both open source
and commercial versions, and nearly all the MADES diagrams are present in the
open source version of Modelio (all except the SysML inspired requirements speci-
fications), in order to carry out RTES modeling, using the MADES methodology.
As seen in Fig. 3, Modelio has developed unique MADES diagrams, as specified
earlier in Sect. 3.1, along with a set of unique commands for each specific diagram
and related design phase. Thus, when a designer is working on a particular phase
that suits his/her particular expertise: such as detailed hardware specification, he/she
will be able to create concepts such as processors, RAM/ROM memories, caches,
bridges, buses etc. The advantage of this approach is that designers do not have to
understand the various concepts present in SysML and MARTE and do not need to
guess which UML concept (such as classes, instances, ports) should be applicable to
which particular design phase, and which particular stereotype should be applied to
that concept. The commands are also assigned simple names in order for someone
not highly familiar with SysML/MARTE standards to guess at their functionality. For
example, in the figure, the Processor command present in the Class model
section of the command palette signifies the possibility of creation of a proces-
sor class. This command in turn automatically creates a dually stereotyped class
with two stereotypes: a MARTE HwProcessor stereotype and a MADES stereo-
type mades_processingnode. The second stereotype is used by the underlying
model transformations for verification and code generation purposes, in a complete
transparent manner for the end user. It should be observed that these additional con-
cepts which are not present in either SysML/MARTE are not needed to be mastered
by a designer carrying out the model based specifications. A designer just needs
to determine which concepts from the palette will be needed for modeling of the

 cok s Bkt - oy ot : - T
e "Diagram Explorer =]
® Cuagrarm MDA 7, Asabei | |l Detsbed Softmtrn Spacification Dingrar - W O0M Task |l Detaded Hardware Speciicmion . 1 ODM
" ==\ _Dedicated commands in Diagram Palette
: | 2 g
e e =

Sergt| 3} Sl | 400 H-!P'i
MADES Tab

Fig. 3 A screenshot of Modelio illustrating the MADES diagrams/command set

68 I. R. Quadri et al.

platform and the underlying MADES concepts are added automatically to these con-
cepts, thanks to a mapping between SysML/MARTE concepts and those needed
by the model transformations. This mapping has been defined in [29] and is only
needed for the detailed software/hardware specification design phases. Finally, over-
all design time and productivity can be increased due to the development of specific
diagram set and related commands in Modelio, available both in the open source and
commercial versions.

4.2 MADES Component Repository

The MADES Component Repository (CRP), as shown in Fig.4, is used to store,
search and download MADES components created by the MADES developers with
Modelio. The Component Repository module accesses a central MADES component
database while offering various web services to manage uploading, searching or
downloading of the components stored within the database, and the queries that have
been performed on its contents. The offered web services are accessible through an
ad-hoc Component Repository web-based flexible graphical user interface, as seen
in Fig. 5 or directly through Modelio itself.

Thus the CRP enables Intellectual Property (IP) re-use, enabling designers to
create, store or re-use IP blocks to build different applications, platforms or complete
systems, while reducing design time. Complete details about the MADES CRP can
be found in [29, 33].

8 8

L
‘Web Interface (JSP) |

Web Services Layer (SOAP, JAX-WS) l

l

l Apache Lucene search engine l

§'G seneg voneddy
w0 | sysedy

Fig. 4 Block structure of the MADES component repository

MADES EU FP7 Project 69

o COIWPONENT REPOSITORY

Home page to the Comp Repository Version 1.01
-‘“ component The Componant Repository MADES Module s used to store, search, browse and dowriosd MADES
MARTE components created by any modeing tool implementing MADES Language speafication,
Search component
e «
‘Searth companeat by dats The serices offered by the Comp Y are the 9
Grt componeat veribons * Stoce 3 componant in MADES C datab

e nia Compenants by * Execute 8 LOmponent search o retnieve components from MADES Components database
== * Retneve component data,

Broveie components by case
tool * Browse components in MADES Comp Aatab,

xg::-! ot * Delete components from MADES Component database. To delete a component enter the MADES
Components database by using one of the avalabie browsng services (Browse components by
3;:"';: Componrats by name, Browss componants by case tool, ¢1c..) Arst. After doing that, you ¢an INspact sach
component in the database and choose the ones to delete,

Brovese compoanents by date
— * Download retneved o into the local user fie system.

About MADES

» Modify components updating data in MADES database. To moddy & component enter the MADES
Components database by using one of the avalsble browsng services (Browse components by
name, Browse componeants by case tool, etc.) Arst. After Going that, you can inspect each
COmPOnent in the database and update the desred components data.

Al Companent Repositony Services are avalable from the navigation menu on the leit side of the
screen.

Fig. 5 The MADES component repository welcome page

4.3 Zot Verification Tool

Verification is carried out by transforming MADES diagrams into temporal logic
formulae, using the semantics defined in [26]. These are, in turn, fed to the Zot
verification tool, which signals whether the stated property holds for the modeled
system or not, and in the latter case, returns a counterexample, i.e., a system trace
violating the property.

In fact, once the temporal logic model is created from the diagrams describing the
system, the Zot tool can be used in two ways: to check whether user-defined properties
hold for the system; and to produce traces compatible with a formal model, in what
amounts to a simulation of the system. The simulation capabilities of the Zot tool
can be used, as described in [35], in combination with a simulation tool such as
OpenModelica [36] to perform closed-loop simulations of the designed embedded
system with its physical environment.

4.4 MADES Model Transformations

The underlying MADES model transformations focus on several areas, such as
generation of platform-specific software from architecturally-neutral software
specifications using CTV. The model transformations are capable of transforming
user-provided, hardware independent code and rewriting it to target the modeled
hardware architecture. The transformation builds a minimal overhead runtime layer

70 I. R. Quadri et al.

to Implement the modeled system, and translates the user-provided software to make
use of this layer. If the hardware or allocations are changed in the model then the
generated runtime layer is automatically reduced or expanded accordingly.

Additionally, generation of hardware descriptions of the modeled target
architecture is possible, as the MADES transformations allow for the generation
of implementable hardware descriptions of the target architecture from the input
system modeled via Modelio. The hardware related model transformations generate
hardware description for input to standard commercial FPGA synthesis tools, such
as Xilinx ISE and EDK tools. Presently, the model transformation are capable of
generation Microprocessor Hardware Specification (MHS) which can be taken by
Xilinx tools to generate the underlying hardware equivalent to that modeled using
the MADES language.

The model transformations also enable verification of functional/non-functional
properties, as results from Zot are fed back into Modelio in order to give the user
feedback on the properties and locate errors, if any are found. The code generation
facilities present in the model transformations are used to integrate the back-end of
the verification tool, which Zot, with the front-end, which are the models expressed
using the MADES language. Traceability support is also integrated in the model
transformations for tracing the results of the verification activity back to the mod-
els, for tracing the generated code back to its source models and finally for tracing
requirements to model elements such as use cases or operations, as well as to imple-
mentation files and test cases.

Thus these model transformations assist with mapping the programmer’s code to
complex hardware architectures, describing these architectures for implementation
(possibly as an ASIC or on an FPGA) and verifying the correctness of the final system.
Thus, while MADES does not support automatic hardware/software partitioning of a
system, it enables designers to carry out automatic hardware/software generation of
their specified models and enable software refactoring. Detailed descriptions about
these model transformations, along with their installation and usage guidelines have
been provided in [29, 33].

S MADES Methodology in Practice-Car Collision Avoidance
System Case Study

The car collision avoidance system or CCAS case study for short, when installed
in a vehicle, detects and prevents collisions with incoming objects such as cars and
pedestrians. The CCAS contains two types of detection modules. The first one is a
radar detection module that emits continuous waves. If a transmitted wave collides
with an incoming object, it is reflected and received by the radar itself. The radar
sends this data to an obstacle detection module (ODM), which in turn removes the
noise from the incoming signal along with other tasks such as a correlation algorithm.

MADES EU FP7 Project 71

The distance of the incoming object is then calculated and sent to the controller for
appropriate actions.

The image processing module is the second detection module installed in the
CCAS. It permits to determine the distance of the car from an object by means of
image tracking. The camera takes pictures of incoming objects and sends the data to
the image processing module, which executes a distance algorithm. If the results of
the computation indicate that the object is closer to the car than a specified default
value that means a collision can occur. The result of this data is then sent to the
controller. The controller when receiving the data, acts accordingly to the situation
at hand. In case of an imminent collision, it can carry out some emergency actions,
such as stopping the engine, applying emergency brakes; otherwise if the collision
is not imminent, it can decrease the speed of the car and can apply normal brakes.

The CCAS system development is described in detail subsequently. It should be
mentioned that various modeled components present in the case study are also stored
in the MADES CRP to serve as hardware/software product catalogues. For exam-
ple, a component showcasing a radar functionality can be re-used in another modeled
application dealing with an on board or ground based radar system. Similarly, a Dis-
crete Cosine Transformation or DCT* algorithm inside the image tracking subsystem
can have several implementations such as 1-D or 2-D based, which can be stored in
the CRP with different version names. Depending upon end user requirements and
Quality of Service criteria (performance, power consumption etc.), a designer can
swap one implementation with the other, facilitating IP re-use.

The CCAS design specifications start with SysML based modeling, which
involves the initial design decisions such as system requirements, behavioral analy-
sis and functionality description, before moving onto MARTE based design phases
(Fig. 6).

4 | [CCAS_MADES
[* Initial Behavioral Specification
[&) Functional Specification
[Refined Functional Specification
[f] Hardware Specification
[*7 Software Specification
@3 Allocation Specification
[® Clock Specification
[Analysis
[CCAS Library

&

Fig. 6 The CCAS installed on a car to avoid collisions with incoming objects

4 http://en.wikipedia.org/wiki/Discrete_cosine_transform

http://en.wikipedia.org/wiki/Discrete_cosine_transform

72 I. R. Quadri et al.

5.1 Requirements Specification

Using the SysML inspired MADES Requirements Diagram, system requirements
are described at the initial system conception phase. Here in the particular case of
CCAS, all the CCAS requirements were imported in Modelio from pre-existing
Microsoft Excel files; and the gathered requirements were restructured, and can be
enriched using SysML requirements (such as the requirements being traced, refined
or satisfied), as seen later on in Sect. 5.4.

In Fig.7, we illustrate the different requirements of the CCAS system. It should
be mentioned that only the functional requirements of a system are described at
this level. Here, the different requirements for the CCAS are described: the Global
Collision Avoidance Strategy determines the global requirement for the
system which is to detect incoming objects by means of either the radar or the image
processing system. Additional requirements can be derived from this global require-
ment as shown in the figure shown above. It should be noted that this requirement
specification has a strong relation with other MADES diagrams. More specifically,
these specifications rely on initial behavioral and the functional specification phases,
for their completion, as elaborated later on.

The CCAS requirements state that if the distance from an object is less than 3m
than the CCAS should enter in a warning state. If it remains in that state for 300 ms
and distance is still less than 3 m, then the CCAS should decrease car speed and alert
the driver by means of an alarm and a Heads-up-display (HUD). If the distance falls
to 2m, the CCAS should enter in a critical warning state. If it remains in that state
for 300 ms and distance is still less than 2m, then CCAS should apply emergency
brakes, deploy airbags and alert the driver as well.

wxRequitments»

wxDgrivens

| w<Derive>>

“<Requirsments

Fig. 7 The global system requirements related to the CCAS

MADES EU FP7 Project 73

Driver | X W Speed Avoid Collisions

L

7 MNotifications to other |
< carsamdpedestrians) J
—————————~ =<Include>>

Fig. 8 The different case scenarios related to the CCAS

5.2 Initial Behavioral Specification

Once the requirement phase is partially completed, the next step is to describe the
initial behavioral specifications associated with the system. For the particular case of
CCAS, use cases are used to define the different scenarios associated with a car on
which the CCAS is installed, as shown in Fig. 8. The creation of a MADES use case
specification package guided the user by automatically creating a top level Use Case
Diagram using built-in features in Modelio. The Avoid Collisions scenario
makes use of other specified scenarios and is the one that is related to the system
requirements described earlier.

5.3 Functional Specification

Once the requirements and use case scenarios of our system are specified; we move
onto the functional block description of the CCAS system as described in Fig.9.
For this, MADES Functional Block Specification or Internal Functional Block
Specification Diagram(s) are used. This conception phase enables a designer to
describe the system functionality without going into details how the functional-
ity is to be eventually implemented. Here the functional specification is described
using SysML block definition diagram concepts. These functional blocks rep-
resent well-encapsulated components with thin interfaces that reflect an ideal-
ized system modular architecture. The functional description can be specified by
means of UML concepts such as aggregation, inheritance, composition etc. Equally,
hierarchical composition of functional blocks can be specified by means of internal
blocks, ports and connectors. Here we use these concepts for describing the global
composition of the CCAS. The Car block is composed of some system blocks
such as a Ignition System, Charging System, Starting System,

74 I. R. Quadri et al.

[= . [=) i 0| = [=

“eBlockes eBlockss eeBlockss <eBlocks> w<Blocke>

Starting System Doors Windows Wheel and Tire Parts E""'“B:::;“"""“

[=)]
eeBlockss exBlogio
Ignition System Electric Supply System
1
g m)
<eBlocion wclocion
Engine Oil System 1| Wiring Haresses
0j =]
<Blotion
<<Block»>
£ 1 1| Car Collision Avoidance
Transmission System Module
0 0|
<Blotor ecBlpekss
Engine Cooling System - 1 z Deiices
_— —0 e —
mwam ccBlotk>>
Steering System 1 4 | Air Conditioner System
d O
<Blocion <Blocion
Fuel Supply System Charging System
1 1
1 1 |1
=] B 0|
<Block> <cBlock <Blotior
Exhaust System Gauges and Meters Switches

Fig. 9 Functional specification of the CCAS

Engine Component Parts, Transmission System and finally the Car
Collision Avoidance Module which is the main component related to our
case study. Each functional block can be composed of internal blocks, however, this
step has not been illustrated in the chapter. Additionally, the initial behavioral specifi-
cations (Use cases in the case of CCAS) are mapped to appropriate functional blocks
(in this particular case, the Avoid Collisions Use case is allocated onto the
Car Collision Avoidance Module as seen in Fig. 10. This illustrates how
the behavioral specifications are realized by the functional structure of the CCAS. In
the MADES methodology, two types of allocations can be encountered; either for a
refinement or for a Co-Design (software/hardware mapping). In this particular case,

MADES EU FP7 Project 75

(]
Avoid Collisions e <<Blocke> <<Allocated>>

Car Collision Avoidance
Module

==<Allocate=> {Allocate_Dependency.kind(hybrid){{Allocate_Dependency.nature(spatialDistribution)}

Fig. 10 Mapping the Avoid Collisions use case to the Car Collision Avoidance
Module block

the first type is used [29]. For the sake of simplicity, in the chapter, a refinement
allocation (colored in orange) illustrates its related tagged values while these aspects
are omitted for the Co-Design allocation (colored in red).

5.4 Completing the Requirements

Having completed the previous steps, it is now possible to complete the requirement
specifications, as described in Fig. 11. As seen here, a related use case scenario and a
functional block have been added to the figure, which helps to complete and satisfy
the functional requirements. It should be noted that as seen in the figure, the Car
Collision Avoidance Module block is utilized to satisfy the global system
requirements, so it is this module that is the focus of the subsequent design phases.

Once the initial design descriptions have been specified, it is possible to partition
and enrich the high-level functionalities. For this, MARTE concepts are used to

Callision Avoidance Strategy ol fitcn Colielons ."|
- _
Siiaccic) between <<Derhes>
image tracking depending upon user :
-
* <cRequremets | sehequrementss <<equremerts>
Collision Strateqy i Y jangng Lanes Strategy ! Timing requirements

en the diver is about to

anes of if the car
dusiates from the current lane
ntionally, the driver should be

vaming state. If the
1 remains |1|h|§ state for

fevery 100 ms via the
tcommunication should take <:I ms,
idunng which the bus should be busy

should be tensioned and
be deployed. The brakes should be
tapplied for 100 ms

Fig. 11 Completing the functional requirements of the CCAS

76 I. R. Quadri et al.

determine which parts of the system are implemented in software or hardware along
with their eventual allocation. Additionally, MARTE profile enables the expression
of non-functional properties (NFP) related to a system, such as throughput, worst
case execution times, etc. The subsequent MARTE based design phases are described
in the following.

5.5 Refined Functional Level Specification

We now turn towards the MARTE based modeling of the CCAS. All necessary con-
cepts present at the Functional Level Specification Diagram correspond to an equiv-
alent (or refined) concept at the Refined Functional Level Specification Diagram.
Since we are only interested in the Car Collision Avoidance Module
at the functional level specification, an equivalent MARTE component is created.
The RH_Car Collision Avoidance Module is stereotyped as a MARTE
RtUnit that determines the active nature of the component. Figure 12 shows the
related modeling of this concept. The RtUnit modeling element is the basic build-
ing block that permits to handle concurrency in RTES applications [7]. It should be
mentioned that component structure and hierarchy should be preserved between the
functional and refined functional level specification diagrams. As in this particular
example, no hierarchical compositions are present at the functional level specifica-
tions for Car Collision Avoidance Module, they are equally not present
in the underlying refined functional level specifications.

5.6 Allocating Functional and Refined Functional Level
Specifications

Afterwards, a refinement allocation using the MADES Allocation Diagram is used to
map the functional level specification concepts to the refined functional level specifi-
cation concepts. This aspect is represented in Fig. 13. Using the MARTE allocation

Fig. 12 Refined functional
level specification of the @

CCAS <<RtUnit>>

RH_Car Collision
Avoidance Module

MADES EU FP7 Project 77

|
<<Block>> <<Allocated>>
Car Collision Avoidance
Module

<<Allocate>> {AIIOcate_Dependency.fldnd[structuraI}}{Allncate_Dependency,nature(spatiaIDistributinn}}
| &
<<RtUnit>> <<Allocated>>

RH_Car Collision
Avoidance Module

Fig. 13 Allocation between functional/refined functional level specifications

mechanism, we express that the allocation is structural (The structural aspects are
thus related from source to target) and spatial in nature.

5.7 Clock Specification

Once the initial specification has been carried out, modeling of hardware and soft-
ware aspects of the required functionality is possible in a parallel manner. For that
purpose, we first create a “clock catalogue” (itself stored in the MADES CRP) using
MARTE time concepts (which can be used to describe different timing aspects such
as physical/logical or discrete/dense clocks etc.), as illustrated in Fig. 14, depicting
the available clock elements (such as clock types) that are to be used by the execution
platform of the CCAS. Here, an initial ideal clock type serves as the basis for the
Main and System clock types. In this case study, all the clocks types are discrete in
nature using the MARTE Time package, and their clock frequencies can be specified
using the related tagged values (not visible in the figure).

Thus, three clock types are specified: an TdealClock (with a clock frequency
of 50MHz) that serves as base for the two other clock types, SystemClock and
HardwareClock (with respective frequencies of 100 and 150 MHz). All modeled

=] = =
=<ClockType=> <<ClockType=> <<ClockType=>
IdealClock Main Clock SystemClock

Fig. 14 Specification of clock types related to CCAS

78 I. R. Quadri et al.

concepts are appropriately stereotyped as ClockType. The IdealClock is the
basic clock type present in the system running at a certain frequency, while the other
two reference this basic clock and run at much higher frequencies.

5.8 Hardware Specification

At the hardware specification level, the abstract hardware concepts of the execution
platform are modeled first as shown in Fig. 15. The abstract hardware modeling con-
tains the controller for radar module along with its local memory; the image process-
ing module and a shared memory, a system clock and other additional hardware
resources (radar and camera modules, braking system, etc.); all of which communi-
cate via a CAN bus.

The MARTE GRM package stereotypes are applied onto the different hard-
ware resources: for example ComputingResource for the controller and the
image processing module, StorageResource for the local and shared memo-
ries, CommunicationMedia for the CAN bus, while DeviceResource is used
for the other hardware components. Here, the hardware specification also contains a
clock sysclk of the type SystemClock specified earlier in Fig. 14. Here using
the MARTE Time package, we add a clock constraint onto the clock, specifying that
this clock (and related clock type) runs at a rate 10 times faster than that of the ideal
clock (and the ideal clock type).

The hardware specification contains different hardware components which them-
selves are either further composed of sub components, or have internal behaviors,

ok * &] =2 |
{Constraint The ok has a ooClockRescurrens “Clockn
rate 10 timas faster than the .

Fig. 15 Abstract hardware specification of CCAS

MADES EU FP7 Project 79

expressed by means of classic UML behavioral diagrams. We now describe the inter-
nal behavior of three hardware components:

In Fig. 16, we describe the internal behavior of the Radar component by means
of a state machine diagram. The RadarBehavior state machine is stereotyped as
TimedProcessing (not shown in the Figure). This permits to bind the processing
of this behavior to time by means of a clock. Here the Radar remains in a single
receivingData state and continues to send data to the controller at each tick of
the SystemClock, every 100 ms.

In Fig. 17, the internal behaviour of the controller is specified. The controller
contains three states, noAction, warning and criticalwarning. The con-
troller initially remains in the noAc t i on state when distance from incoming objects
is greater than 3 m.

However, if the distance decreases to less than 3 m, then the controller switches to
the warning state. If it remains in that particular state for 300 ms and distance is still
less than 3 m but greater than 2 m, then a break interrupt is carried out and controller
sends the normal brake command to the Braking System. Similarly, if distance
decreases to less than 2m, then the controller enters into a criticalwarning
state. If it stays in that state for 300 ms and distance is still less than 2 m, then controller
sends an emergency brake command to the Braking System.

Figure 18 displays the behavior of the Braking System when it receives com-
mands from the controller. It normally remains in an idle state and depending
upon a particular command received, switches to either the normalBraking or
the emergencyBraking state. In a normal condition, the Braking System

SystemClockTick/send raw data()

Fig. 16 Behavior of the radar module present in the CCAS

notifyDistance [[distance <3 m]]
/l warning

-

notifyDistance [I[distance <3 m]]

d e]

notifyDistance[[distance < 2 m] && @now - @criticalwarning.enter < 300]

notifyDistance L
[[distance =3 m]] . | criticalwarning
notifyDistance [[distance <2 m]]

Fig. 17 Internal behavior of the CCAS controller

80 I. R. Quadri et al.

[@now - @emergencyBraking.enter = 100] (
emergencyBraking

notifyEmergencyBrakeEnd

9 -]

notifyNormalBrakeEnd

normalBraking

[@now - @normalBraking.enter = 10]

Fig. 18 Internal behavior of the braking system

applies brakes for 10 ms, while for an emergency condition, emergency brakes are
applied for 100 ms.

5.9 Software Specification

We now turn towards modeling of the software specification of the execution plat-
form of the CCAS, as displayed in Fig. 19. Here, schedulable tasks related to the
hardware modules are modeled along with their communications. A scheduler is
also present that manages the overall scheduling based on a fixed priority algorithm.

= coeirollerighisyscommunication |

7| + send ightning system command

= alarmtask ."
+ CONUOTHI5 £45COCOMMUNICIton

ControlerAlarmCommunication [
i+
+send alarm netfication command() 1 +send sensor sweep command() |

Fig. 19 Software specification of the CCAS (classes and their operations)

MADES EU FP7 Project 81

S comme: C

comma3; C

comma ;G

comm ; C

comm ; G

comms : ControlierLight SyaC

comm7 : Ci

Fig. 20 Software specification of the CCAS (instance level)

The different tasks are stereotyped as SchedulableResource, indicating that
they are scheduled by meansof a System Scheduler, itself appropriately stereo-
typed as a Scheduler. Each task contains a number of operations, indicating the
functionality related to that particular task. The software specification is also mod-
eled at the instance level as illustrated in Fig. 20, for an eventual allocation between
the software/hardware specifications.

5.10 Software to Hardware Allocation

Once the hardware and software specifications have been carried out, we carry out
Co-Design allocations between the two using the MADES Allocation Diagram. This
is done to map the CCAS software concepts to the hardware ones. Here in Fig. 21,
the majority of the tasks (such as Brake Actuator Task, Air Bag Task)
are allocated to the controller by means of a temporal allocation, while the Radar
and ODM tasks are allocated to their respective hardware modules by means of spatial
allocations (these properties are not shown in the Figure). While tasks related to the
image processing module such as Camera Task are mapped on to it by means of
a temporal allocation. Finally, all the communications are allocated to the CAN bus.

82 I. R. Quadri et al.

Fig. 21 Mapping software resources to the hardware modules of CCAS

It should be noted that while the Allocated stereotype on the software and hardware
concepts has been applied similarly to the concepts illustrated in Fig. 13, they have
not been displayed here for a better visualization.

‘We now move on to the detailed hardware and software specification design phases
of the CCAS. Here, in the context of this book chapter, we only focus on a particular
aspect of the CCAS, the Obstacle Detection Module and its corresponding
task, which were initially specified in the abstract hardware/software design phases.
We first describe the related enriched detailed hardware/software specifications, and
then carry out the final mapping. In [29], another module of the CCAS, the Image
Processing Module has been depicted with related detailed hardware/software
specifications along with their allocation. Additionally, verification, code generation
and synthesis on a Virtex V series FPGA has also been carried out regarding this
module. These aspects are also included in another chapter of this book, dealing with
MADES code generation aspects.

MADES EU FP7 Project 83

5.11 Detailed Hardware Specification

Once the initial abstract hardware specification has been modeled, the designer
can move on to modeling of the detailed hardware specification which corresponds
more closely to the actual implementation details of the execution platform. These
detailed specifications may correspond to a simple one-to-one mapping to the abstract
hardware specifications such as a ComputingResource being mapped to a
HwProcessor for example, albeit with some additional details such as operating
frequencies of processors, memory and address sizes for hardware memories, etc.
It is also possible to enrich the detailed specifications with additional details (such
as additional of behavior, internal structure etc.), as illustrated in Fig. 22 showcasing
the enriched HW Obstacle Detection Module.

Here in the figure, the HW Obstacle Detection Module is itself stereo-
typed as a MARTE HwComputingResource and mades_architecture.
All the components are automatically typed with MARTE and MADES stereotypes
automatically, thanks to the mapping between the stereotype sets in Modelio. For
example, the local bram memory is typed as a MARTE HwMemory and corre-
sponding mades_memory, while the gps is dually stereotyped as HwDevice
and mades_ipcore. The stereotypes having a prefix ‘mades’ denote concepts
needed by the underlying model transformations, such as an iptype attribute of
the mades_processingnode stereotype which tells the hardware generation trans-
formation which IP core (and the version) to use for the modeled processor such as
Microblaze or PowerPC processors. While it was possible to just add these concepts
to MARTE stereotypes as an extension of the profile, the advantage offered by our
approach is the MARTE profile remains intact and any underlying changes in the
model transformations can be mapped to MARTE concepts, transparent to the end

<<HwComputingR: des_archit <<Allocated>
HW Obstacle Detection Module
= | E e =B B
<<Hwhllemory>> <<HwClock>> <<HwDevice>>
<<mades_memory>> <<mades_clock>>] <<mades_ipcore>>
bram : BRAM odm Clock : [gps : GPS
[Main Clock
=] &
% <<HwDevice>>
= <<mades_ipcore>>
<<HwMedia>> o
des_ch I J noisefilter :
Media : PLB l Noise Filter

Fig. 22 Detailed hardware specification of the obstacle detection subsystem

84 I. R. Quadri et al.

user. For example, the MARTE concepts do not include the possibility of defin-
ing the type of a processor, such as a softcore or hardcore processor. These aspects
can be added to the mades_processingnode stereotype and the model transforma-
tions accordingly, without changing the original MARTE specifications. Hence this
approach also enables portability, as designers from other RTES industry and acad-
emia familiar with MARTE will be able to comprehend the specifications without
needing to interpret another domain-specific language (DSL).>

5.12 Detailed Software Specification

In parallel, a designer can model the detailed software specification as seen in Fig.23,
which basically correspond to an enriched version of the ODM Task defined in
Sect.5.9. Here, the refined SW Obstacle Detection Task contains several
threads along with their operations. The nfilter thread removes any noise from
the incoming signal, while the gps thread calculates the position and velocity of the
car containing the CCAS. The results are then sent to a corr thread that carries out
a correlation and detects if there are any obstacles in the trajectory of the car with
respect to its relative position. This data is then sent to an output thread which in
turn sends this data to the controller of the CCAS.

noise(in Parameter: Signal): Signal on(in coordinates: integer)
d(in velocity: integer)

Correlation thread

in corrdata: integer, in gpsdata: integer)

elation(in input Signal) integer

Fig. 23 Detailed software specification of the obstacle detection task

> Domain-Specific Language: http://en.wikipedia.org/wiki/Domain-specific_language.

http://en.wikipedia.org/wiki/Domain-specific_language

MADES EU FP7 Project 85

HW Obstacle Detection
Module

==Allocate>= {Allocate_Dependency.kind(structural){Allocate_Dependency.nature(spatialDistribution)}

Fig. 24 Mapping of ODM related hardware/detailed hardware specifications

5.13 Allocating Hardware to Detailed Hardware Specifications

Once the detailed hardware specifications have been modeled, it is possible to carry
out a refinement allocation that links the hardware to the detailed hardware speci-
fications. In particular, it enables to move from abstract hardware specifications to
detailed ones corresponding closely to an RTL (Register Transfer Level) implemen-
tation. In the specific case of CCAS and the obstacle detection aspects, we carry out
a refinement allocation from the Obstacle Detection Module (and related
instances) to the HW Obstacle Detection Module (and its instances), as
shown in Fig.24.

5.14 Allocation Software to Detailed Software Specifications

In a similar manner, the software specifications are refined and mapped onto the
detailed software specifications, as shown in Fig. 25. Here, the ODM Task is refined
toits detailed version, the SW Obstacle Detection Module viaarefinement
allocation.

<<fllocated>>
ODM Task

<<Allocate>> {Allocate_Dependencykind(structural)}{Allocate_Dependency.nature(spatialDistribution)}

Fig. 25 Allocating software and detailed software specifications

86 I. R. Quadri et al.

<<Allocated>>
HW Obstacle Detection Module

<cHw(

" ~-‘55N!ocate»

<<Allocate>>

<<Allocate>>

-

£
-

= .’/ g
- <<SwhutualExclusionResource>> 1 =<Allocate>>
I fobject>> ;
<<Allocated>>

output : Output

Fig. 26 Allocating the detailed software/hardware specifications of the ODM

5.15 Allocating Detailed Software to Detailed Hardware
Specifications

Finally, once all the detailed specifications related to the software and hardware
aspects of the obstacle detection subsystem have been modeled, it is possible to
carry out a final allocation from the detailed software to the detailed hardware spec-
ifications. Here, as seen in Fig. 26, the different threads are spatially allocated onto
the single Processor present inside the Hw Obstacle Detection Module.

Once this final design phase is completed, it is possible to carry out the subsequent
phases of the MADES methodology, such as code generation and implementation in
execution platforms. However, these steps have not been mentioned in this particular
context, and are the scope of the chapter dealing with MADES model transformations
and code generation.

6 Lessons Learned from the CCAS Project and Future
Research Directions

Following the proposed MADES methodology, we demonstrated how system
designers were able to use MADES’s SysML/MARTE subset within a given work
flow and with the aid of a modeling tool such as Modelio, in the particular case of

MADES EU FP7 Project 87

CCAS. The MADES methodology design phases can help and guide designers to
follow a flexible and generic work flow for their eventual case studies, and provided
semantics to the usage of UML, SysML and MARTE standards.

Particularly, inclusion of unique MADES diagrams for each MADES design phase
comprising of either SysML or MARTE concepts (depending on the design phase)
and a set of unique command set decreased the overall the design time and the learning
curve, as compared to usage in expert mode. Here expert mode refers to annotating
UML concepts (such as classes, instances, ports etc.) with the target profile concepts,
as found in traditional modeling practices present in normal open source or commer-
cial UML CASE tools [37, 38]. Using Modelio or other modeling tool in expert mode
for complex profiles like SysML and MARTE was found to be a very cumbersome
task, as the user has to first create UML concepts, such as classes, instances and
ports and then annotate them using the profiles accordingly. Additionally, utilization
of the profiles directly involved a lot of guess work in the cases where the designer
was not familiar with the profiles, resulting in arisal of significant design errors, due
to annotation of UML modeling concepts with incompatible profile concepts.

Therefore, usage of MARTE and SysML via MADES diagrams was found to be
much more easier and intuitive. In cases when the same MARTE concept could be
applied to different UML elements (classes, instances, connectors, ports, etc.) the
diagrams were able to guide the system designers. A concrete example can be given
on the HwProcessor stereotype, present in the MARTE profile that corresponds
to a processor at the detailed hardware modeling design phase. In MARTE and
normal UML CASE tools and editors, this stereotype can be rightly annotated to
different UML modeling elements, such as classes, instances but incorrectly to ports
as well, which does not makes sense from a hardware designer’s point of view.
In MADES the designers are guided by avoiding this mistake by only mapping the
HwProcessor stereotype to UML classes and instances, and this command is available
in the detailed hardware specification diagram as seen in Fig.3 and appropriately
named as a ‘Processor’. In this way, the designers do not have to be concerned
with the MARTE or UML concepts, and they can just select the hardware concepts
available as commands present in Modelio, and then carry out modeling according
to their design specifications.

The MADES CRP satisfied the needs of the MADES end users and task evalua-
tors. The evaluators were able to store manually as much information as desired for
keeping track of the various developed versions of the components as IPs in the CRP.
The evaluators stored for each component: its name, description, version, keywords
and tag, developer name, tool used for development and so on.

The integration of the CRP with a modeling environment such as Modelio is
also a significant contribution. Currently, final integration is in process between
Modelio and the CRP, which will enable designers to develop their component based
IPs, which can be in turn automatically stored in the CRP; enabling IP-reuse when
designers need to create systems requiring these components.

88 I. R. Quadri et al.

7 Conclusions

This chapter aims to present a complete methodology integrated in the MADES EU
FP7 project project, for the design and development of real-time embedded systems
using an effective subset of UML profiles: SysML and MARTE. we present our con-
tributions by proposing an effective subset of the two profiles, forming the basis of
MADES language and propose related set of unique diagrams. While both profiles
provide numerous concepts and supporting tools, in the scope of the MADES project,
the specific set of diagrams help to increase design productivity, decrease production
cycles and promote synergy between the different designers/teams working at differ-
ent domain aspects of the global system in consideration. These diagrams have been
developed after careful analysis and provide only those effective SysML or MARTE
stereotypes that are needed for a particular design phase. However, the designer
also has a choice to select all available stereotypes present in the two profiles, thus
enabling him to either work in an expert mode, or be guided via the MADES language
subset. Thus, our MADES methodology could inspire future revisions of the SysML
and MARTE profiles and may eventually aid in their evolution. This methodology is
generic in nature and can be applied to other studies and projects focusing on high
abstraction based design specifications. Finally, the different language concepts and
associated diagrams in the methodology have been illustrated in a case study related
to a car collision avoidance system.

Acknowledgments This research presented in this paper is funded by the European Community’s
Seventh Framework Program (FP7/2007-2013) under grant agreement No. 248864 (MADES). The
authors would like to thank all of the MADES partners for their valuable inputs and comments.

References

—

. OMG: Portal of the Model Driven Engineering Community (2007), http://www.planetmde.org

2. Object Management Group Inc.: Omg unified modeling language (OMG UML), superstructure,
v2.4.1 (2011), http://www.omg.org/spec/UML/2.4.1

3. S.Sendall, W. Kozaczynski, Model transformation: the heart and soul of model-driven software
development. IEEE Softw. 20(5), 42-45 (2003)

4. A. Bagnato et al., MADES: Embedded systems engineering approach in the avionics domain.
First workshop on hands-on platforms and tools for model-based engineering of embedded
systems (HoPES) (2010)

5. MADES: EU FP7 Project (2011), http://www.mades-project.org/

6. Object Management Group Inc.: Final Adopted OMG SysML Specification (2012), http://
www.omg.org/spec/SysML/1.3/

7. OMG: Modeling and Analysis of Real-time and Embedded systems (MARTE) (2011), http://

www.omg.org/spec/ MARTE/1.1/PDF

. OMG: Object Management Group (2012), http://www.omg.org/

. M. Faugere, T. Madeleine, R. Simone, S. Gerard, in MARTE: Also an UML Profile for Modeling
AADL Applications. ICECCS ’07: Proceedings of the 12th IEEE International Conference on
Engineering Complex Computer Systems, IEEE Computer Society (2007), pp. 359-364

10. H. Espinoza, An Integrated Model-Driven Framework for Specifying and Analyzing Non-

Functional Properties of Real-Time Systems, PhD thesis, University of Evry, FRANCE, 2007

Nelies]

http://www.planetmde.org
http://www.omg.org/spec/UML/2.4.1
http://www.mades-project.org/
http://www.omg.org/spec/SysML/1.3/
http://www.omg.org/spec/SysML/1.3/
http://www.omg.org/spec/MARTE/1.1/PDF
http://www.omg.org/spec/MARTE/1.1/PDF
http://www.omg.org/

MADES EU FP7 Project 89

11.
12.
13.
14.
15.

16.
17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.
38.

C. André, A. Mehmood, F. Mallet, R. Simone, Modeling SPIRIT IP-XACT in UML-MARTE.
MARTE workshop on design automation and test in Europe (DATE) (2008)

A. Koudri et al., Using MARTE in the MOPCOM SoC/SoPC Co-Methodology. MARTE work-
shop at DATE’08 (2008)

EDIANA: ARTEMIS project (2011), http://www.artemis-ediana.eu/

TOPCASED: The Open Source Toolkit for Critical Systems (2010), http://www.topcased.org/
W. Mueller et al., The SATURN Approach to SysML-based HW/SW Codesign, in /[EEE Com-
puter Society Annual Symposium on VLSI (ISVLSI) (2010)

D.D. Gajski, R. Khun, New VLSI tools. IEEE Comput. 16, 11-14 (1983)

M. Mura et al., Model-based design space exploration for RTES with SysML and MARTE, in
Forum on specification, verification and design languages (FDL 2008) (2008), pp. 203-208
Information Society Technologies, OMEGA: Correct Development of Real-Time Embedded
Systems (2009), http://www-omega.imag.fr/

L. Ober et al., Projet Omega: Un profil UML et un outil pour la modelisation et la validation
de systemes temps reel. 73, 33-38 (2005)

OMG: UML Profile For Schedulability, Performance, and Time (2012), http://www.omg.org/
spec/SPTP/

INTERESTED: EU FP7 Project (2011), http://www.interested-ip.eu/index.html

H. Espinoza et al., Challenges in Combining SysML and MARTE for Model-Based Design of
Embedded Systems, in ECMDA-FA’09 (Springer, 2009), pp. 98-113

D.S. Kolovos et al., Eclipse development tools for Epsilon. Eclipse Modeling Symposium on
Eclipse Summit Europe (2006)

N. Matragkas et al., D4.1: Model transformation and code generation tools specification. Tech-
nical report (2010), http://www.mades-project.org/

L. Baresi et al., D3.1: Domain-specific and User-centred Verification. Technical report (2010),
http://www.mades-project.org/

L. Baresi et al., D3.3: Formal Dynamic Semantics of the Modelling Notation. Technical report
(2010), http://www.mades- project.org/

Zot: The Zot bounded model/satisfiability checker (2012), http://zot.googlecode.com

I. Gray, N. Audsley, Exposing non-standard architectures to embedded software using compile-
time virtualisation. International conference on compilers, architecture, and synthesis for
embedded systems (CASES’09) (2009)

A. Bagnato et al., D1.7: MADES Final Approach Guide. Technical report (2012), http:/www.
mades-project.org/

1. Gray et al., Model-based Hardware Generation and Programming—The MADES Approach.
14th International Symposium on Object and Component-Oriented Real-Time Distributed
Computing Workshops (2011)

Modelio: Open source UML Editor and MDE Workbench (2012), www.modelio.org

Xilinx: MicroBlaze Soft Processor Core (2011), http://www.xilinx.com/tools/microblaze.htm
LR. Quadri et al., D1.6: MADES Tool Set—Final Version. Technical report (2012), http://
www.mades-project.org/

Softeam: Modeliosoft: Modelio Community Portal (2012), http://www.modeliosoft.com/en.
html

L. Baresi et al., Newblock D3.2: Models and Methods for Systems Environment. Technical
report (2012), http://www.mades- project.org/

OpenModelica: Open-source Modelica-based modeling and simulation environment (2012),
http://www.openmodelica.org/

NoMagic: Magic Draw: Architecture made simple (2012), http://www.magicdraw.com/
Papyrus: Eclipse Project on an Open source UML editor (2012), http://www.eclipse.org/
modeling/mdt/papyrus/

http://www.artemis-ediana.eu/
http://www.topcased.org/
http://www-omega.imag.fr/
http://www.omg.org/spec/SPTP/
http://www.omg.org/spec/SPTP/
http://www.interested-ip.eu/index.html
http://www.mades-project.org/
http://www.mades-project.org/
http://www.mades-project.org/
http://zot.googlecode.com
http://www.mades-project.org/
http://www.mades-project.org/
www.modelio.org
http://www.xilinx.com/tools/microblaze.htm
http://www.mades-project.org/
http://www.mades-project.org/
http://www.modeliosoft.com/en.html
http://www.modeliosoft.com/en.html
http://www.mades-project.org/
http://www.openmodelica.org/
http://www.magicdraw.com/
http://www.eclipse.org/modeling/mdt/papyrus/
http://www.eclipse.org/modeling/mdt/papyrus/

Test-Driven Development as a Reliable
Embedded Software Engineering Practice

Piet Cordemans, Sille Van Landschoot, Jeroen Boydens
and Eric Steegmans

Abstract Due to embedded co-design considerations, testing embedded software is
typically deferred after the integration phase. Contrasting with the current embedded
engineering practices, Test-Driven Development (TDD) promotes testing software
during its development, even before the target hardware becomes available. Prin-
cipally, TDD promotes a fast feedback cycle in which a test is written before the
implementation. Moreover, each test is added to a test suite, which runs at every step
in the TDD cycle. As a consequence, test-driven code is well tested and maintain-
able. Still, embedded software has some typical properties which impose challenges
to apply the TDD cycle. Essentially, uploading software to target is generally too
time-consuming to frequently run tests on target. Secondary issues are hardware
dependencies and limited resources, such as memory footprint or processing power.
In order to deal with these limitations, four methods have been identified and evalu-
ated. Furthermore, a number of relevant design patterns are discussed to apply TDD
in an embedded environment.

P. Cordemans (X)) - S. Van Landschoot - J. Boydens

KHBO Department of Industrial Engineering Science and Technology, Zeedijk 101,
B-8400 Ostend, Belgium

e-mail: Piet.Cordemans @kuleuven.be

S. Van Landschoot
e-mail: Sille.VanLandschoot@vives.be

J. Boydens
e-mail: Jeroen.Boydens @kuleuven.be

E. Steegmans
KU Leuven Department of Computer Science, Celestijnenlaan 200A, B-3001 Leuven, Belgium
e-mail: Eric.Steegmans @cs.kuleuven.be

M. A. Khan et al. (eds.), Embedded and Real Time System Development: 91
A Software Engineering Perspective, Studies in Computational Intelligence 520,
DOI: 10.1007/978-3-642-40888-5_4, © Springer-Verlag Berlin Heidelberg 2014

92 P. Cordemans et al.

1 Test-Driven Development

Test-Driven Development (TDD) is a fast paced incremental software development
strategy, based on automated unit tests. First, this section describes the rationale of
TDD (Sect. 1.1). Then, it describes the core of TDD (Sect. 1.2). Next, the advantages
and difficulties (Sect. 1.3) of developing by TDD are discussed. Finally, an overview
of unit testing frameworks (Sect. 2) is given.

1.1 TDD Rationale

As embedded systems are currently becoming more complex, the importance of their
software component rises. Furthermore, due to the definite deployment of embedded
software once it is released, it is unaffordable to deliver faulty software. Thorough
testing is essential to minimize software bugs. The design of embedded software is
strongly dependent on the underlying hardware. Co-design of hardware and software
isessential in a successful embedded system design. However, during the design time,
the hardware might not always be available, so software testing is often considered
to be impossible. Therefore testing is mostly postponed until after hardware devel-
opment and it is typically limited to debugging or ad-hoc testing. Moreover, as it
is the last phase in the process, it might be shortened when the deadline is nearing.
Integrating tests from the start of the development process is essential for a meticu-
lous testing of the code. In fact, these tests can drive the development of software,
hence Test-Driven Development.

It is crucial for embedded systems that they are tested very thoroughly, since the
cost of repair grows exponentially once the system is taken in production, as stated
in Fig. 1, which depicts the law of Boehm [1]. However, the embedded system can
only be tested once the development process is finished. In a waterfall-like strategy
for developing embedded systems, the testing phase is generally executed manually.
This ad-hoc testing is mostly heuristic and only focuses on one specific scenario.
In order to start testing embedded as early as possible, a number of problems arise.
One problem is hardware being unavailable early on in the development proces, and
another is the difficulty to automatically test embedded systems.

1.2 TDD Mantra

Test-Driven Development [2] consists of a number of steps, sometimes called the
TDD mantra. In TDD, before a feature is implemented, a test is written to describe
the intended behavior of the feature. Next, a minimal implementation is provided to
get the test passing. Once the test passes, code can be refactored. Refactoring is
restructuring code without altering its external behavior or adding new features

Test-Driven Development as a Reliable Embedded Software Engineering Practice 93

A
1000
B.W. Boehm, 1981
= Software Engineering Economics
©
o
(]
x
L
o
-
V2]
o 100 ——
o —
=
10 %
o L= =

Specification Design Programming Production
Lifecycle

Fig. 1 Law of Boehm

Fig. 2 TDD mantra Create Test

[Grien

Refactor

to it [3]. When the quality of code meets an acceptable level, the cycle starts over
again, as visually represented in Fig. 2.

TDD reverses the conventional consecutive order of steps, as tests should be
written before the code itself is written. Starting with a failing test gives an indication
that the scope of the test encompasses new and unimplemented behavior. Moreover,
if no production code is written without an accompanying test, one can assure that
most of the code will be covered by tests.

Also fundamental to the concept is that every step is supported by executing a
suite of automated unit tests. These tests are executed to detect regression faults
either due to adding functionality or refactoring code.

Fundamental to the concept of TDD is that refactoring and adding new behavior
are strictly separated activities. When refactoring, tests should remain passing. Yet
should a failure occur, it should be solved in quick order or the changes must be
reverted. On the other hand, when adding new functionality, the focus should stay
on the current issue, only conducting the refactorings when all tests are passing.
Refactoring can and should be applied to the tests themselves as well. In that situation
the implementation stays the same and can be reassured that the test does not change
its own scope.

94 P. Cordemans et al.

The properties of a good unit test can be described by the FI.R.S.T. acronym,
which is coined by Martin [4].

1. Fast: the execution time of the tests should be limited. If it takes too long, a suite
of many tests will limit development speed.

2. Independent: the setup and result of a test should be independent of other tests.
Dependencies between tests complicate execution order and lead to failing tests
when changing or removing tests.

3. Repeatable: the execution of a test should be repeatable and deterministic. False
positives and negatives lead to wrong assumptions.

4. Self-validating: the result of a test should lead to a failing or passing assertion.
This may sound obvious, nevertheless should the test lead to something else, like
a log file, it cannot be verified automatically.

5. Timely: this refers to the TDD way of writing tests as soon as possible.

1.3 Advantages and Difficulties

Programming according to the principles of TDD has a number of advantages. First
and foremost are those which result from incrementally developing an automated
test suite. Also TDD allows for a steady and measurable progression. Finally TDD
forces a programmer to focus on three important aspects.

Frequent testing

As TDD imposes to frequently run a test suite, four particular advantages result from
it. First, the tests provide a safety net when refactoring, alerting the programmer
when a refactoring went wrong, effectively altering the behavior of software. Next,
running tests frequently will detect regression when code for a new feature interferes
with other functionality. Furthermore, when encountering a bug later on (TDD cannot
guarantee the absences of bugs in code), a test can be written to detect the bug. This
test should fail first, so one can be sure it tests the code where the bug resides. After
that making the test pass will solve the bug and leave a test in place in order to detect
regression. Moreover, tests will ensure software modules can run in isolation, which
improve their reusability. Finally, a test suite will indicate the state of the code and
when all tests are passing, programmers can be more confident in their code.

Steady development

Next to the automated test suite, TDD also allows for a development rate, which
is steady and measurable. Each feature can be covered by one or more tests. When
the tests are passing, it indicates that the feature has been successfully implemented.
Moreover, through strategies like faking it, it becomes possible to adjust the devel-
opment rate. It can go fast when the implementation is obvious or slower when it
becomes difficult. Anyhow, progression is assured.

Encapsulation

Test-Driven Development as a Reliable Embedded Software Engineering Practice 95

Finally TDD is attributed to put the focus on three fundamental issues. First, focus
is placed on the current issue, which ensures that a programmer can concentrate
on one thing at a time. Next, TDD puts the focus on the interface and external
behavior of software, rather than its implementation. By testing its own software,
TDD forces a programmer to think how software functionality will be offered to the
external world. In this respect, TDD is complementary to Design by Contract where
a software module is approached by a test case instead of formal assertions. Lastly
TDD moves the focus from debugging code to testing. When an unexpected issue
arises, a programmer might revert to an old state, write a new test concerning an
assumption and see if it holds. This is a more effective way of working as opposed
to relying on a debugger.

TDD has a number of imperfections, which mainly concern the overhead intro-
duced by testing, thoroughness of testing and particular difficulties when automating
particular hard to test code.

Overhead

Writing tests covering all development code doubles the amount of code that needs to
be written. Moreover, TDD is specifically effective to test library code. This is code
which is not directly involved with the outside world, for instance the user interface,
databases or hardware. However when developing code related to the outside world,
one has to lapse on software mocks. This introduces an additional overhead, as well
as assumptions on how the outside world will react. Therefore it becomes vital to do
some manual tests, which verify these assumptions.

Test coverage

Unit tests will only cover as much as the programmer deemed necessary. Corner
cases tend to be untested, as they will mostly cover redundant paths through the
code. In fact writing tests which will cover the same path with different values are
prohibited by the rule that a test should fail first. This rule is stated with good reason,
as redundant tests tend to lead to multiple failing tests if regression is introduced,
hence obfuscating the bug. Testing corner case values should be done separately
from the activity of programming according to TDD. An extra test suite, which is
not part of the development cycle allows for a minimalistic effort to deal with corner
case values. Should one of these tests detect a bug, the test can easily be migrated to
the TDD test suite to fix the problem and detect regression.

On the other hand programmers become responsible to adhere strictly to the rules
of TDD and only implement a minimum of code necessary to get a passing test.
Especially in conditional code, one could easily introduce extra untested cases. For
instance an if clause should only lead to an else clause, if a test demands to do so.

Furthermore, a consecutive number of conditional clauses tend to increase the
number of execution paths without demanding to write extra test cases. Similar to
the corner case values, an extra test suite can deal with this problem. However,
TDD also encourages avoiding this kind of code, by demanding isolation. This will
typically lead to a large number of small units, for instance classes, rather than one
big complicated unit.

96 P. Cordemans et al.

Next a critical remark has to be made on the effectiveness of the tests written in
TDD. First, they are written by the same person who writes the code under test. This
situation can lead to narrow focused tests, which only expose problems known to the
programmer. In effect, having a large test suite of unit tests, does not take away the
need of integration and system tests. On the other hand code coverage is not guaran-
teed. It is the responsibility of the programmer to diverge from the happy path and
also test corner cases. Additionally, tests for TDD specifically focus on black box unit
testing, because these tests tend to be less brittle than tests, which also test the internals
of amodule. However for functional code coverage glass box tests are also necessary.

Finally, a unit test should never replicate the code that it is testing. Replication of
code in a test leads to a worthless test as bugs introduced in the actual code will be
duplicated in the test code. In fact, code complexity of tests should always be less
than the code under test. Moreover the tests that are written need to be maintained
as well as production code. Furthermore setting up a test environment, might require
additional effort, especially when multiple platforms are targeted.

The evaluation of the TDD strategy has been subject of multiple research projects.
George and Williams [5] have conducted a research on the effects of TDD on devel-
opment time and test coverage. Siniaalto [6] provides an overview of the experiments
regarding TDD and productivity. Nagappan [7] describes the effects of TDD in four
industrial case studies. Muller and Padberg [8] claim that the lifecycle benefit intro-
duced by TDD outweighs its required investment. Note that research on the alleged
benefits of TDD for embedded software is limited to several experience reports, such
as written by Schooenderwoert [9, 10] and Greene [11].

2 Embedded Unit Testing Frameworks

In TDD the most valuable tool, is a unit testing framework [12]. Most of these
frameworks are based upon an archetypal framework known as xUnit, from which
various ports exist, like JUnit for Java and CppUnit for C++. In fact for C and C++
more than 40 ports exist to date and most of them are open source. Regardless of
the specific implementation, most of these have some common structure, which is
shown in Fig. 3.

A unit testing framework consists of a library and a test runner. On the one hand the
library mostly provides some specific assertions, like checking equality for various
types. Optionally it might also check for exceptions, timing, memory leaks, etc. On
the other hand the test runner calls unit tests, setup, teardown and reports to the
programmer. Setup and teardown in combination with a test is called a test fixture.
First, setup provides the necessary environment for the unit test to execute. After
test execution, teardown cleans the environment. Both are executed accordingly in
order to guarantee test isolation. Instead of halting execution when it encounters
a failing assertion, the test runner will gracefully eject a message, which contains
valuable information of the failed assertion. That way all tests can run and a report
is composed of failing and passing tests. For organizational reasons tests might be
grouped into suites, which can be independently executed.

Test-Driven Development as a Reliable Embedded Software Engineering Practice 97

Test Runner

Library Suite
*assertions

Teardown

Report

Fig. 3 xUnit testing framework

Choosing a unit test framework depends on three criteria [13].

e Portability. Considering the different environments for embedded system applica-
tions, portability and adaptability are a main requisite for a unit test framework. It
should have a small memory footprint, allow to easily adapt its output and do not
rely on many libraries.

e Overhead of writing a new test. Writing tests in TDD is a common occurrence and
therefore it should be made easy to do so. However some frameworks demand a
lot of boilerplate code, especially when it is obligatory to register each test. As
registration of tests is quite often forgotten, this can lead to confusion.

e Minor features, such as timing assert functionality, memory leak detection and
handling of crashes introduced by the code under test, are not essential, but can pro-
vide a nice addition to the framework. Furthermore, some unit testing frameworks
can be extended with a complementary mocking framework, which facilitates the
creation of mocks.

Deciding on a unit test framework is a matter of the specifications of the target
platform. A concise overview is given.

e MinUnit [14] is the smallest C framework possible. It consists of two C macro’s,
which provide a minimal runner implementation and one assertion. This frame-
work can be ported anywhere, but it should be extended to be of any use and it
requires a lot of boilerplate code to implement the tests.

e Embunit [15] is a C based, self-contained framework, which can be easily adapted
or extended. However, it requires to register tests, which is error-prone and labor
intensive.

e Unity [16] is similar to Embunit and additionally contains a lot of embedded spe-
cific assertions. It is accompanied with a mocking framework and code generation
tools written in Ruby to deal with boilerplate code.

e UnitTest++ [17] is C++ based, which can be ported to any but the smallest embed-
ded platforms. Usability of the framework is at prime, but it requires some work
to adapt the framework to specific needs.

98 P. Cordemans et al.

e CppUTest [18] is one of the latest C++ testing frameworks, it also has a
complementary mocking framework, called CppUMock.

e GoogleTest [19] is the most full-blown C++ unit test framework to date. It pro-
vides integration with its mocking framework, GoogleMock. However it is not
specifically targeted to embedded systems and is not easily ported.

2.1 Mocking Hardware

Fundamental to automated testing of embedded software is to replace hardware
dependencies with software mock [20] representations. Switching between the real
and mock configurations should be effortless. Therefore hardware mocks must be
swapped with the real implementation without breaking the system or performing
elaborate actions to setup the switch. Five techniques have been identified, three based
upon object oriented principles and three C-based, which facilitate the process.

2.1.1 Interface Based Mock Replacement

In the interface based design, as shown in Fig. 4, the effective hardware and mock are
addressed through a unified abstract class, which forms the interface of the hardware
driver. Calls are directed to the interface thus both mock and effective hardware
driver provide an implementation. The interface should encompass all methods of
the hardware driver to ensure compatibility. Optionally the mock could extend the
interface for test modularity purposes. This enables customizing the mock on a test-
per-test basis, reducing duplication in the test suite.

It should be noted that the interface could provide a partial implementation for the
hardware independent methods. However, this would indicate that hardware depen-
dencies are mixed with hardware independent logic. In this situation a refactoring is
in order to isolate hardware dependent code.

Inheriting from the same interface guarantees compatibility between mock and
real hardware driver, as any inconsistency will be detected at compile time. Regarding
future changes, extending the real driver should appropriately reflect in the interface.

The main reason of concern with this approach is the introduction of late binding,
which inevitably slows down the system in production. However it should be noted
that such an indirection is acceptable in most cases.

2.1.2 Inheritance Based Mock Replacement

Figure 5 provides the general principal of inheritance based mock replacement.
Basically, the real target driver is directly addressed. Yet as the mock driver inherits
from the real target driver, it is possible to switch them according to their respective
environment. However it requires that all hardware related methods are identified,

Test-Driven Development as a Reliable Embedded Software Engineering Practice 99

TestFramework

1..N
Test

Code under test

Hardware Interface

I

denvironment» denvironment»
Target Host

Real Mock

Fig. 4 UML class diagram of interface based mock replacement in different environments

at least given protected member access and are declared as virtual. These conditions
allow overriding hardware related methods with a mock implementation on host.

However, these issues can be worked around with some macro preprocessing.
First, all private members can be adjusted to public access solely for testing purposes.
Also the virtual keyword can be removed in the target build.

Inheritance-based mock introduction is more about managing testability of code
than actual testable design. That being said, all overhead of testability can be easily
removed in production code. However, ensuring that the macro definitions do not
wreck havoc outside the file is fundamental in this approach. Nonetheless, also when
dealing with legacy code this approach is preferable. Considering the amount of

100 P. Cordemans et al.

Fig. 5 UML class diagram
of inheritance based mock TestFramework

replacement

1..N
Test

T
1
I
I

Code under test

«environment»
Target

RealDriver

hardwareCall ()

«environmenty»
Host

MockDriver

+ hardwareCall ()

refactoring, which is necessary to extract the hardware independent interface in the
interface-based approach, the adjustments for inheritance-based mock replacement

can be introduced without a layer of indirection.

Test-Driven Development as a Reliable Embedded Software Engineering Practice 101
2.1.3 Composition Based Mock Replacement

Interface or inheritance-based mock replacement realizes calling the effective
methods in a uniform manner. Nevertheless, the correct mock should be installed
in the first place, in order to be able to address hardware or mock functionality
without overhead of managing dependencies. Therefore a composition based de-
sign pattern, called Dependency Injection, allows to manage these dependencies in
a flexible manner.

Three different types of Dependency Injection [21] exist. First is constructor
injection, in which a member object reference is injected during object construction
of the composite object. The ConstructorInjection class

class ConstructorInjection {

public: ConstructorInjection (HardwareDependency* hw)
{ m_hw = hw };

virtual “ConstructorInjection();

private: HardwareDependency* m_hw;

Yi
shows a reference design of constructor injection. Next is setter injection,

class SetterInjection {

public: SetterInjection();

virtual ~SetterInjection() ;

void injectDependency (HardwareDependency* hw)
{ m_hw = hw };

private: HardwareDependency* m_hw;

Y

which performs the same operation as constructor injection. Yet, instead of the con-
structor a setter method is used to register the reference. This introduces the possibility
to change the reference at run-time without creating a new composite object. On the
other hand, when compared to constructor injection, it requires an additional over-
head in test management, namely the call of the setter method itself. Forgetting to do
so will lead to incorrect initialized objects under test. Moreover setter injection will
introduce additional overhead in the setup of the system in production. Considering
real-time systems or multiple run-time creation and cleanup of the objects, the over-
head becomes critical. Especially when considering resource constrained systems
like embedded processors. Therefore a sound advice is to only use setter injection
when its flexibility is required and otherwise use constructor injection by default.

Finally, interface injection registers the dependency by inheriting from an abstract
class, which contains a setter method. Two approaches can be followed with interface
injection. On the one hand, a specific class can be made for each type of objects to be
injected. On the other hand, a generic interface class can be provided, which allows
injecting objects of all types.

102 P. Cordemans et al.

The previous strategies were based on object-oriented features, however embedded
software is often written in C. The following techniques do not use OO features, yet
allow switching unnoticeable, at least in production, between real and mock code.

2.1.4 Link-Time Based Mock Replacement

First is link-time based mock replacement [22], also known as link-time polymor-
phism or link-time substitution. The idea is to provide a single interface of functions
in a header file and use the linking script or IDE to indicate which implementation
file corresponds to it, i.e. the file containing the actual implementation or a similar
file containing the mock implementation. Correspondingly the host build will refer
to the mock files and the target build to the real implementation files, as visually
represented in Fig. 6.

Practically the linker script (or IDE) will refer to three different subfolders. First
is the common folder, which contains all platform independent logic as well as
header files containing the hardware dependent function declarations. Next is the host
folder, which will include the mocks and finally the target folder with the correspond-
ing real implementations. Should a hardware implementation or mock file be miss-
ing,the linker will return an error message as a reminder. A practical example of the

COMMON
Code under test D

Declaration.h D

’
’ N
AN
N

7

«deploy» L AN «deploy»
Target build - *_ Host build
TARGET \, HosT
// \\
Reallmplementation.c D Mockimplementation.c D

Fig. 6 Host and target build refer to the mock and real implementation file respectively

Test-Driven Development as a Reliable Embedded Software Engineering Practice 103

link-time based configuration is not given, considering the multitude of build systems
and IDE’s.

2.1.5 Macro Preprocessed Mock Replacement

While the link-time based macro replacement involves delivering the desired source
code files to the linker, the macro preprocessed alternative involves preprocessor
directives, which manipulate the source code itself. For instance,

#ifdef TESTONHOST
#include "mockdriver.h"
#else

#include "realdriver.h"
#endif

provides an almost identical effect to its link-time based alternative. Moreover, macro
replacement allows to intersect inside a source file. First, the function call to be
mocked is replaced by a new function definition. Also, the testing framework to
implement the tests related to the code under test is injected in the file itself.

#ifdef TESTONHOST

#define functionMock (int argl, int arg2)
function(int argl, int arg2)

void functionMock (int argl, int arg2) {};

#endif

/* code containing function to be mocked */

#ifdef TESTONHOST

#include "unittestframework.h"
int main () {

/* run unit tests & report */

}

Although macros are commonly negatively regarded, the macros shown in the
previous two listings are generally safe and will not lead to bugs which are hard to
find. However the macro statements will pollute the source code, which leads to less
readable and thus less maintainable code. The main advantage of macro preprocessed
mock replacement is in dealing with legacy code. Capturing the behavior of legacy
code in tests is something that should be done with the least refactoring, because in
legacy code, tests are lacking to provide feedback on the safety of the refactoring
operations. Using macros effectively allows leaving the production code unchanged,
while setting up the necessary tests. Conversely, when developing new applications
link-time based mock replacement is preferred, as it does not have any consequences
on the production code.

104 P. Cordemans et al.
2.1.6 Vtable Based Mock Replacement

Polymorphism can be obtained in C code by manually building the vtable [23].
However, implementing dynamic dispatch in C is not preferred when comparing
it to either the preprocessing or link-time solution. Introducing the vtable in code
results in an execution time overhead, which can be critical when considering the
typical type of embedded C applications.

Furthermore constructing the vtable in C code is not preferred when C++is a viable
alternative. On the one hand, while C++ compilers can do extensive optimization on
virtual functions where the actual type can be discovered at compile-time, this cannot
be done by a C compiler. On the other hand, there is a manifold overhead in code
management to implement the vtable system in C when compared to the native OO
solution. In conclusion, the abstraction created by C++ allows to easily forget the
overhead introduced by late binding, yet also permits to improve code maintainability.

3 Test-Driven Development for Embedded Software

Ideally Test-Driven Development is used to develop code which does not have any
external dependencies. This kind of code suits TDD well, as it can be developed
fast, in isolation and does not require a complicated setup. However, when dealing
with embedded software the embedded environment complicates development. Four
typical constraints influence embedded software development and have their effect
on TDD. To deal with these issues four strategies have been defined [24-26], which
tackle one or more of these constraints. Each of these strategies leads to a specific
setup and influence the software development process. However, neither of these
strategies is the ideal solution and typically a choice needs to be made depending on
the platform and type of application.

3.1 Embedded Constraints

Development speed

TDD is a fast cycle, in which software is incrementally developed. This results in
frequently compiling and running tests. However, when the target for test execu-
tion is not the same as the host for developing software, a delay is introduced into
development. For instance, this is the time to flash the embedded memory and trans-
mit test data back to the host machine. Considering that a cycle of TDD minimally
consists of two test runs, this delay becomes a bottleneck in development accord-
ing to TDD. A considerable delay will result in running the test suite less frequent,
which in turn results to taking larger steps in development. This will introduce more

Test-Driven Development as a Reliable Embedded Software Engineering Practice 105

failures, leading to more delays, which in turn this will reduce the number of test
runs, etc.

Memory footprint

Executing TDD on a target platform burdens the program memory of the embedded
system. Tests and the testing framework are added to the program code residing in
target memory. This results in at least doubling the memory footprint needed.

Cross-compilation issues

In respect of the development speed and memory footprint issues, developing and
testing on a host system solves the previously described problems. However, the
target platform will differ from the host system, either in processor architecture or
build tool chain. These issues could lead to incompatibilities between the host and
target build. Comparable to other bugs, detection of incompatible software has a less
significant impact should it be detected early on. In fact, building portable software
is a merit on its own as software migration between target platforms improves code
reuse.

Hardware dependencies

External dependencies, like hardware interaction, complicate the automation of tests.
First, they need to be controlled to ensure deterministic execution of the tests. Fur-
thermore hardware might not be available during software development. Regardless
of the reason, in order to successfully program according to TDD, tests need to run
frequently. This implies that executing tests should not depend on the target plat-
form. Finally, in order to effectively use an external dependency in a test, setup and
teardown will get considerably more complicated.

3.2 Test on Target

In the Test on target strategy, TDD issues raised by the target platform are not dealt
with. Nevertheless, Test on target is a fundamental strategy as a means of verification.
First, executing tests on target deliver feedback as part of an on-host development
strategy. Moreover, during the development of system, integration or real-time tests,
the effort in mocking specific hardware aspects is too labor intensive. Finally, writing
validation tests when adopting TDD in a legacy code based system, provides a self-
validating, unambiguous system to verify existing behavior.

3.2.1 Implementation

Fundamental to Test on target is a portable, low overhead test framework, as shown
in Fig. 7. Secondary, some specific on-target test functionality, like timed asserts or

106 P. Cordemans et al.

L

) <<upload>>

| ST T

1 - —l\ Development |
I

~ .

| Software under \ <<upload>>

\ development 3
_____ -

Fig. 7 Test on target

memory leak detection, are interesting features to include. Finally, it is important to
consider the ease of adapting the framework when no standard output is available.

Tests are written in program memory of the target system, alongside the code
under test itself. Generally, the test report is transmitted to the host system, to review
the results of the test run. However, in extremely limited cases it becomes even
possible to indicate passing or failing tests on a single LED. Yet, this implies that
all free debug information is lost and therefore this should be considered as a final
resort on very limited embedded systems.

3.3 Process

Test on target is too time-consuming to comfortably develop embedded software,
because of frequent upload and execution cycles on target. Still it complements
embedded TDD in three typical situations.

First, it extends the regular TDD cycle on host, in order to detect cross-platform
issues, which is shown in the embedded TDD cycle, Fig. 8. Complementary to the
TDD cycle on host, three additional steps are taken to discover incompatibilities
between host and target. First, after tests are passing on the host system, the target
compiler is invoked to statically detect compile-time errors. Next, once a day, if all
compile-time errors are resolved, the automated on-target tests are executed. Finally,
every few days, provided that all automated tests are passing, manual system or
acceptance tests are done. Note that time indications are dependent on an equilibrium
between finding cross-compilation issues early on and avoiding too much delays.

A second valuable use of Test on target is the development of target-dependent
tests and code. For instance, memory management operations, real-time execution,
on-target library functionality and IO-bound driver functions are impossible to test
accurately on a host system. In these situations, forcing TDD on host will only delay
development. Furthermore, an undesirable number of mock implementations are

Test-Driven Development as a Reliable Embedded Software Engineering Practice 107

@ ©J. Grenning, 2004
1. Create test))

2. Red bar 1. Compile 1. Unit tests 1. Manual
3. Green bar for target in target tests

4. Refactor 2. Fix 2. Fix 2. Fix

+/- 10 minutes Few hours Daily Few days

Fig. 8 Embedded TDD cycle

needed to solve some of these cases, resulting in tests that only test the mock. TDD
should only be applied to software that is useful to test. When external software is
encountered, minimize, isolate and consolidate its behavior.

Finally, Test on target has its merit to consolidate behavior in software sys-
tems without tests. Changing existing software without tests giving feedback on its
behavior, is undesirable. After all this is the main reason to introduce TDD in the first
place. However, chances are that legacy software does not have an accompanying
test suite. Preceding refactoring of legacy software with on-target tests capturing the
system’s fundamental behavior is essential to safely conduct the necessary changes.

3.4 Code Example

In the following example, a focus is put on automation of tests for low level hardware-
related software, according to the Test on target strategy.

TEST (RepeatButtonTest)

{
Button *button = new Button (&IOPINO, 7);

button->setCurrentState (RELEASED) ;
CHECK (button->getState () == RELEASED) ;

button->setCurrentState (PRESSED) ;
CHECK (button->getState () == PRESSED) ;

button->setCurrentState (RELEASED) ;
button->setCurrentState (PRESSED) ;
CHECK (button->getState () == REPEAT) ;

delete button;
}

108 P. Cordemans et al.

This test' creates a button object and tries to check whether its state logic
functions correctly, namely two consecutive high states should result in REPEAT.
Now, one way to test a button is to press it repeatedly and see what happens. Yet this
requires manual interaction and is not feasible to manually test the button every time
a code change is made. However, automation of events related to hardware can be
solved with software. In this case an additional method is added to the button class,
setCurrentState, which allows to press and release the button in software.

Two remarks are generally put forward when adding methods for testing purposes.
On the one hand, these methods will litter production code. This can easily be solved
by inheriting from the original class and add these methods in a test subclass. On the
other hand, when a hardware event is mocked by some software, it might contain
bugs on its own. Furthermore there is no guarantee that the mock software is a good
representation of the hardware event it is replacing. Finally, is the actual code under
test or rather the mock code tested this way?

These remarks indicate that manual testing is never ruled out entirely. In the case
of automating tests and adding software for this purpose, a general rule of thumb is
to test it both manually and automated. If both tests have identical results, consider
the mock software as good as the original hardware behavior. The added value of the
automated test will return on its investment when refactoring the code under test or
extending its behavior.

3.5 Test on Host

Ideally, program code and tests reside in memory of the programmer’s development
computer. This situation guarantees the fastest feedback cycle in addition to indepen-
dence of target availability. Furthermore, developing in isolation of target hardware
improves modularity between application code and drivers. Finally, as the host sys-
tem has virtually unlimited resources, a state of the art unit testing framework can
be used.

In the Test on host strategy, development starts with tests and program code on
the host system. However, calls to the effective hardware are irrelevant on the host
system. Hence a piece of code replaces the hardware related functions, mocking
the expected behavior. This is called a mock, i.e. a fake implementation is provided
for testing purposes. A mock represents the developer’s assumptions on hardware
behavior. Once the developed code is migrated to the effective hardware system,
these assumptions can be verified.

I All code snippets are based on the UnitTest++ framework.

Test-Driven Development as a Reliable Embedded Software Engineering Practice 109

—

- T \ <<mi§rate>> _____
' Tests e S = Tests |
_____ - \ — — 1_ p—
— —l— — .I P
| Software under) <<migrate>> | "Software under)
\ development o \ development |
—— 1 p—— ' _—— 1_ p——
<<substitute>> M krd .
Real driver code |« - — - = — . — ock driver
: code

Fig. 9 Test on host

3.5.1 Implementation

The Test on host strategy typically consists of two build configurations, as shown in
Fig. 9. Regardless of the level of abstraction of hardware, the underlying components
can be mocked in the host build. This enables the developer to run tests on the
host system, regardless of any dependency on the target platform. However, cross-
platform issues might arise and these are impossible to detect when no reference
build or deployment model is available. Ideally, building effectively for the real
target platform will identify these issues. Although, running the cross-compiler or
deploying to a development board could already identify some issues before the
actual target is available.

3.5.2 Process

In order to deal with the slow cycle of uploading embedded program code, executing
tests on target and reporting, Test on host is presented as the main solution. In
order to do so an assumption is made that any algorithm can be developed and
tested in isolation on the host platform. Isolation from hardware-related behavior
is critical with the purpose of dynamically delegating the call to the real or mock
implementation.

Considering the differences between host and target platform, verification of cor-
respondence between target and host implementation is essential. These differences
are:

e Cross-compilation issues, which occur as compilers can generate different
machine code from the same source code. Also functions called from libraries

110 P. Cordemans et al.

for each platform might lead to different results, as there is no guarantee regarding
correspondence of both libraries.

e Assumptions on hardware-related behavior. Since the hardware reference is not
available on host, the mocks are representing assumptions made on hardware
behavior. This requires having an in-depth knowledge of hardware specifications.
Furthermore, as the hardware platform for embedded systems can evolve, these
specifications are not as solid or verified as is the case with a host system.

e Execution issues concerning the different platforms. These concern the difference
in data representation, i.e. word-size, overflow, memory model, speed, memory
access times, clocking differences, etc. These issues can only be uncovered when
the tests are executed on the target platform.

Test on host is the primary step in the embedded TDD cycle [23, 27-29], as shown in
Fig. 8. This cycle employs the technique of “dual targeting”, which is a combination
of Test on host and Test on target. In effect, development in this process is an activity
entirely executed according to Test on host, as a reasonable development speed can be
achieved. However, in order to cover up for the intrinsic deficiencies of Test on host,
Test on target techniques are applied. Specifically, time-intensive activities are exe-
cuted less frequent, which allows managing the process between development time
and verification activities. The embedded TDD cycle proscribes to regularly compile
with the target compiler and subsequently solve any cross-compilation issues. Next,
automated tests can be ported to the target environment, execute them and solve any
problems that arise. Yet, as this is a time-intensive activity it should be executed less
frequently. Finally, some manual tests, which are the most labor-intensive, should
only be carried out every couple of days.

3.5.3 Code Example

In this example, a one-wire reset method will be developed. As one-wire implies
bidirectional communication on a single wire, the reset command will require that
the connected pin direction changes in the process. This is the basis for the following
test:

TEST (ResetTempSensorTest)

{

/* I0 mapped memory representation on host */
unsigned int IOaddresses [8];

/* register to mock */
unsigned int *IODIRmock;

/* map it on the desired position in the array */
IODIRmock = IOaddresses + 7;
unsigned int pinNumber = 4;

Test-Driven Development as a Reliable Embedded Software Engineering Practice 111

/* mock external reset */
*TIODIRmock = OXFF;

TemperatureSensor *tempSensor =
new TemperatureSensor (I0addresses, pinNumber) ;
tempSensor->reset () ;

/* test the change of direction */
CHECK_EQUAL (*IODIRmock, OxXEF) ;
}

A problem is encountered since the test is going to run on host. Namely, memory-
mapped IO registers are not available and addressing the same memory addresses on
host will result in a crashing test. To deal with this problem, an array representing
a contiguous chunk of memory can be used. This array has a twofold purpose. On
the one hand it encourages the use of relative addressing, which isolates the use of
hardware specific memory locations. On the other hand this array can be addressed
by tests to simulate hardware behavior by changing the contents of the array directly.
With constructor injection, the temperature sensor can be assigned to a specific pin
on a port or when the test is executed on host, the mock can be injected that way.

This example is an illustration of how TDD influences code quality and low-level
design and how Test on host amplifies this effect. As a prerequisite to Test on host
hardware needs to be loosely coupled. This enables to reuse this code more easily,
in case the temperature sensor is placed on a different pin or if the code needs to be
migrated to a different platform.

3.6 Remote Testing

Test on host in conjunction with Test on target provides a complete development
process, in order to successfully apply TDD. Yet, it introduces a significant overhead
to maintain two separate builds and to write the hardware mocks. Remote testing
[30] is an alternative, which eliminates both of these disadvantages (Fig. 10).

Remote testing is based on the principle that tests and code under test do not need
to be implemented in the same environment. The main motivation to apply this to
embedded software is the observation that TDD requires a significant number of
uploads to the target system.

3.6.1 Implementation
Remote testing is based on the technology of remoting, for instance Remote

Procedure Calls (RPC), Remote Method Invocation (RMI) or Common Object
Request Broker Architecture (CORBA) [31]. Remoting allows executing subroutines

112 P. Cordemans et al.

L

— T T = = = ! ~— T T - -
| Software under) ; [Tests \l
\ development_| A
Skeletons “
Stubs
Broker on Target K— - — - —-— - — - = Broker on Host

Fig. 10 Remote testing

in

another address space, without the manual intervention of the programmer. When
this is applied to TDD for embedded software, remoting allows for tests on host to
call the code under test, which is located on the target environment. Subsequently,
the results of the subroutine on target are returned to the 7est on host for evaluation.

Regardless of the specific technology, a broker is required which will setup the
necessary infrastructure to support remoting. In homogeneous systems, such as net-
worked computing, the broker on either side is the same. However, because of the
specific nature of embedded systems, a fundamental platform difference between the
target and the host broker exists.

On the one hand the broker on target has a threefold function. First, it maintains
communication between host and target platform on the target side. Next, it contains
a list of available subroutines which are remotely addressable. Finally, it keeps a
list of references to memory chunks, which were remotely created or are remotely
accessible. These chunks are also called skeletons.

On the other hand the broker on host serves a similar, but slightly different func-
tion. For one thing it maintains the communication with the target. Also, it tracks
the stubs on host, which are interfaces on host corresponding to the skeletons
in the target environment. These stubs provide an addressable interface for tests,
as if the effective subroutine would be available in the host system. Rather than
executing the called function’s implementation, a stub merely redirects the call to
the target and delivers a return value as should the function have been called locally.

As the testing framework solely exists in the host environment, there is practically
no limitation on it. Even the programming language on host can differ completely
from the target’s programming language. In the spirit of CxxTest> a note is made

2 CxxTest [32] is a C++ testing framework, which was written in Python.

Test-Driven Development as a Reliable Embedded Software Engineering Practice 113

that C++ as a programming language to devise tests might require a larger amount
of boilerplate code than strictly necessary. Writing tests in another language is a
convenience which can be exploited with Remote testing.

Unfortunately, the use of remoting technology introduces an overhead into soft-
ware development. Setting up broker infrastructure and ensuring subroutines are
remotely accessible require a couple of additional actions. On target, a subroutine
must be extended to support a remote invocation mechanism called marshaling. This
mechanism will allow the broker to invoke the subroutine when a call from host “mar-
shals” such an action. Correspondingly on host, an interface must be written which
is effectively identical to the interface on target. Invoking the subroutine on host will
marshal the request, thus triggering the subroutine on target, barring communication
issues between host and target.

Some remoting technologies, for instance CORBA, incorporate the use of an
Interface Description Language (IDL). An IDL allows defining an interface in a lan-
guage neutral manner to bridge the gap between otherwise incompatible platforms.
On its own the IDL does not provide added value to remoting. However the spec-
ifications describing the interfaces are typically used to automatically generate the
correct serialization format. Such a format is used between brokers to manage data
and calls. As serialization issues concern the low level mechanics of remoting, an
IDL provides a high level format, which relieves some burden of the programmer.

3.6.2 Process

The Remote testing development cycle changes the conventional TDD cycle in the
first step. When creating a test, the interface of the called subroutine under test must
be remotely defined. This results in the creation of a stub on host which makes the
defined interface available on the host platform, while the corresponding skeleton
on target must also be created. Subsequent steps are straightforward, following the
traditional TDD cycle.

1. Create a test
2. Define an interface on host

(a) Call the subroutine with test values

(b) Assert the outcome

(c) Make it compile

(d) If the subroutine is newly created: add a corresponding skeleton on target
(e) Run the test, which should result in a failing test

3. Red bar

(a) Add an implementation to the target code
(b) Flash to the target
(c) Run the test, which should result in a passing test

4. Green bar: either refactor or add a new test.

114 P. Cordemans et al.

L

— _ \
7 “Stable i l Tests l
Sode base, § ______

g L
Skeletons 5 | Software under
5 \ development |

: —_— =

Stubs
Broker on Target K— - — - —-— - — - =) Broker on Host

Fig. 11 Remote prototyping

Remote testing only provides a means to eliminate one code upload. In order to
deal with the rather low return of investment inherent to Remote testing, an adaption
to the process is made, which results in a new process called Remote prototyping.

3.6.3 Remote Prototyping

Principally Remote prototyping involves developing code on the host platform, while
specific hardware calls can be delegated towards the respective code on target [33].
Addressing the hardware-related subroutines on host, delegating the call to the tar-
get and returning values as provided by the subroutine prototype are provided by
remoting infrastructure.

Software can be developed on host, as illustrated in Fig. 11, as all hardware
functionality is provided in the form of subroutine stubs. These stubs deliver the
subroutine definition on the host system while an effective call to the subroutine stub
will delegate the call to the target implementation.

Remote prototyping is viable under the assumption that software under develop-
ment is evolving, but once the software has been thoroughly tested, a stable state is
reached. As soon as this is the case the code base can be instrumented to be remotely
addressable. Subsequently, it is programmed into the target system and thoroughly
tested again to detect cross-compilation issues. Once these issues have been solved,
the new code on target can be remotely addressed with the aim of continuing devel-
opment on the host system.

An overview of the Remote prototyping process applied to an object oriented
implementation, for instance C++, is given in Fig. 12. A fundamental difference

Test-Driven Development as a Reliable Embedded Software Engineering Practice 115

exists when all objects can be statically allocated or whether dynamic creation of
memory objects is required.

In a configuration in which the target environment can be statically created, setup
of the target system can be executed at compile time. The broker system is not
involved in constructing the required objects, yet keeps a reference to the statically
created objects. Effectively the host system does not need to configure the target
system and treats it as a black box. Conversely the process of Remote prototyping with
dynamic allocation requires additional configuration. Therefore the target system is
approached as a glass box system. This incurs an additional overhead for managing
the on target components, yet allows dynamically reconfiguring the target system
without wasting a program upload cycle.

The dynamical Remote prototyping strategy starts with initializing both the broker
as well on target as on host side. Next, a test is executed, which initializes the environ-
ment. This involves setting up the desired initial state on the target environment. This
is in anticipation of the calls, which the software under development will conduct.
For instance, to create an object in the target, the following steps are performed, as
illustrated in Fig. 12.

1. The test will call the stub constructor, which provides the same interface as the
actual class.

2. The stub delegates the call to the broker on host.

3. The broker on host translates the constructor call in a platform independent com-
mand and transmits it to the target broker.

4. The broker on target interprets the command and calls the constructor of the
respective skeleton and in the meanwhile assigns an ID to the skeleton reference.

5. This ID is transmitted in an acknowledge message to the broker on host, which
assigns the ID to the stub object.

s

T ——
setup Broker Broker
on Target on Host
/—\ S ’;\ Tests
ubs
Skeletons \Class List
—_—————— \ D B
l{ | ID S
| — Lot N
execute : Stable code | |(Software |
e I L A -p»l under |
I | development)
___ _ o —

Fig. 12 Remote prototyping process with dynamically allocated objects

116 P. Cordemans et al.

After test setup, the test is effectively executed. Any calls to the hardware are
dealt with by the stub object, which are delegated to the effective code on target.
Likewise, any return values are delivered to the stub. Optionally another test run
can be done without rebooting the target system. A cleanup phase is in order after
each test has executed, otherwise the embedded system would eventually run out of
memory. Deleting objects on target is as transparent as on host, with the addition that
the stub must be cleaned up as well.

Remote prototyping deals with certain constraints inherent to embedded systems.
However, some issues can be encountered when implementing and using the Remot-
ing infrastructure.

Embedded constraints

The impact, especially considering constrained memory footprint and processing
power, of the remoting infrastructure on the embedded system is minimal. Of
course it introduces some overhead to systems which do not need to incorporate the
infrastructure for application needs. On the other hand Remote prototyping enables
conducting unit tests with a real target reference. Porting a unit test framework and
running the tests in target memory as an alternative will introduce a larger over-
head than the remoting infrastructure and lead to unacceptable delays in an iterative
development process.

Next, the embedded infrastructure does not always provide all conventional com-
munication peripherals, for instance Ethernet, which could limit Remote prototyp-
ing applicability. However, if an IDL is used, the effective communication layer is
abstracted. Moreover, the minimal specifications needed to setup Remote prototyping
are limited as throughput is small and no timing constraints need to be met.

Finally, Remote prototyping requires that hardware and a minimalistic hardware
interfacing is available. This could be an issue when hardware still needs to be
developed. Furthermore hardware could be unavailable or deploying code still under
development might be potentially dangerous. Lastly, a minimalistic software inter-
face wrapping hardware interaction and implementing the remoting infrastructure is
needed to enable remote prototyping. This implies that it is impossible to develop
all firmware according to this principle.

Issues

The encountered issues when implementing and using Remote prototyping can be
classified in three types. First are cross-platform issues related to the heterogeneous
architecture. A second concern arises when dynamic memory allocation on the target
side is considered. Thirdly, translation of function calls to common architectural
independent commands introduces additional issues.

Differences between host and target platform can lead to erratic behavior, such
as unexpected overflows or data misrepresentation. However, most test cases will
quickly detect any data misrepresentation issues. Likewise, over- and underflow
problems can be discovered by introducing some boundary condition tests.

Next, on-target memory management is an additional consideration which is a
side-effect of Remote prototyping. Considering the limited memory available on

Test-Driven Development as a Reliable Embedded Software Engineering Practice 117

target and the single instantiation of most driver components, dynamic memory
allocation is not desired in embedded software. Yet, Remote prototyping requires
dynamic memory allocation to allow flexible usage of the target system. This intro-
duces the responsibility to manage memory, namely creation, deletion and avoiding
fragmentation. By all means this only affects the development process and unit ver-
ification of the system, as in production this flexibility is no longer required.

Finally, timing information between target and host is lost because of the asynchro-
nous communication system, which can be troublesome when dealing with a real-
time application. Furthermore to unburden the communication channel, exchanging
simple data types are preferred over serializing complex data.

Tests

The purpose of Remote prototyping is to introduce a fast feedback cycle in the devel-
opment of embedded software. Introducing tests can identify execution differences
between the host and target platform. In order to do so the code under test needs to
be ported from the host system to the target system. By instrumenting code under
test, the Remote prototyping infrastructure can be reused to execute the tests on host,
while delegating the effective calls to the code on target.

3.6.4 Overview

Test on target, Test on host, Remote testing and Remote prototyping have been
defined as strategies to develop in a TDD fashion for embedded. These strategies
have advantages and disadvantages when a comparison between them is made [34].
Furthermore, because of the disadvantages, these strategies excel in a particular em-
bedded environment. In this section a comparison is made between each strategy
and an overview is given of how development in a project can be composed of
combinations of these strategies.

The baseline of this comparison is Test on target. Namely for the particular reason
that when the number of code uploads to target is the only consideration, Zest on
target is the worst strategy to choose. It is possible to demonstrate this when the
classical TDD cycle is considered, as in Fig. 13.

When TDD is strictly applied in Test on target, every step will require a code
upload to target. Considering the iterative nature of TDD, each step will be frequently

Fig. 13 Uploads to target Create Test
when Test on target is consid-
ered

8
[Ref}ctor SN &

118 P. Cordemans et al.

run through. Moreover since a target upload is a very slow act, this will deteriorate
the development cycle to a grinding halt. Thus reducing the number of uploads is
critical in order to successfully apply TDD for embedded software.

Remote Testing

When considering the effect of Remote testing on TDD for embedded software, the
following observation can be made. At a minimum with Test on target, each test will
require two uploads, i.e. one to prove the test is effectively failing and a second one,
which contains the implementation to make the test pass. Note that this is under the
assumption that the correct code is immediately implemented and no refactorings
are needed. If it takes multiple tries to find the correct implementation or when
refactoring the number of uploads rises.

In order to decrease the number of required uploads, tests can be implemented
in the host environment, i.e. Remote testing. Effectively this reduces the number of
uploads by the number of tests per subroutine minus one. One is subtracted because
a new subroutine will require to flash the empty skeleton to the target. Therefore
the benefit of Remote testing as a way to apply TDD to embedded software is lim-
ited, as demonstrated in Table 1. The ideal case is when a test passes after the first
implementation is tried.

Consider that tests have a relative low complexity when compared to production
code. This observation implies that a test is less likely to change than the effective
code under test, which indicates a reduction of the benefits of Remote testing. The
possibility of changing code to reach green bar, namely during the implementation
or refactoring phase, is higher than the (re)definition of the tests. Effectively this will
reduce the ratio of tests versus code under test requiring an update of code on target.
When only the number of uploads is taken into account, Remote testing will never
be harmful to the development process. Yet considering the higher complexity of
production code and refactoring, which mostly involves changing code under test,
the benefit of Remote testing diminishes rapidly. When other costs are taken into
account, this strategy is suboptimal when compared to Test on host. However, as a
pure testing strategy, Remote testing might have its merit. Though the application of
Remote testing in this context was not further explored.

Table 1 Remote testing benefit

Tests : # code uploads : # new remote subroutines Remote testing (%)
0

Worst case 1:1:1

2 TDD cycles (ideal) 2:2:1 25

3 TDD cycles (ideal) 3:3:1 33

X TDD cycles (ideal) X:X:1 Max = 49.99...
T:C:R

T—R
General case TIC * 100

Test-Driven Development as a Reliable Embedded Software Engineering Practice 119

Remote Prototyping

As the effectiveness of Remote testing is limited, an improvement to the process
is made when code is also developed on host, i.e. Remote prototyping. Remote
prototyping only requires a limited number of remote addressable subroutines to start
with. Furthermore, once code under development is stable, its public subroutines can
be ported and made remote addressable in turn. This is typically when an attempt can
be made to integrate newly developed code into the target system. At that moment
these subroutines can be addressed by new code on host, which is of course developed
according to the Remote prototyping principle.

Where Remote prototyping is concerned, it is possible to imagine a situation
which is in fact in complete accordance to Remote testing. Namely when a new
remote subroutine is added on target, this will conform to the idea of executing a Test
on host, while code under test resides on target. However code which is developed
on host will reduce the number of uploads, which would normally be expected in
a typical Test on target fashion. Namely each action which would otherwise have
provoked an additional upload will add to the obtained benefit of Remote prototyping.

Yet the question remains of how the Remote testing part of the process is related
to the added benefit of Remote prototyping. A simple model to express their relation
is the relative size of the related source code. Namely on the one hand the number
of Lines Of Code (LOC) related to remoting infrastructure added to the LOC of
subroutines which were not developed according to Remote prototyping, but rather
with Remote testing. On the other hand the LOC of code and tests developed on host.
These assumptions will ultimately lead to Table 2.

In Table 2 the following symbols are used:

T # tests
C # of code uploads
R # of new remote subroutines
Cp # of uploads related to Remote testing
Cy # of averted uploads on host
LOCp LOC related to Remote testing (Remoting infrastructure + traditionally
developed code)
LOCy LOC developed according to Remote prototyping

LOCp LOCyh
0= ——",p="—7"F"
LOCrorAL LOCroraL

Table 2 indicates a net improvement of Remote prototyping when compared with
Remote testing. Furthermore it also guarantees an improvement when compared to
Test on target. Nevertheless it also shows the necessity of developing code and tests
on host as the major benefit is obtained when B and Cy are high when they are
compared with respectively « and T.

120 P. Cordemans et al.

Table 2 Remote prototyping benefit

Tests « Target (Cp : R) B Host (Cy) Remote prototyping (%)
1 0 / 1 1 50
1 0 / 1 2 66
Max. 1 0 / 1 Y Max = 99.99...
1 0.75 1:1 025 1 12.5
Min. 1 1-8 1:1 B 1 Min = 1 % 100
General case T o Cp:R B Cy (a% + ,BTE—%H) * 100

Test on Host

Finally, a comparison can be made with the Test on host strategy. When only uploads
to target are considered, Test on host provides the best theoretical maximum perfor-
mance, as it only requires one upload to the target, i.e. the final one. Ofcourse, this is
not a realistic practice and definitely contradicts with the incremental aspect of TDD.
Typically a verification upload to target is a recurrent irregular task, executed at the
discretion of the programmer. Furthermore Test on host and the remoting strategies
have another fundamental difference. Namely while setting up remoting infrastruc-
ture is only necessary when a certain subroutine needs to be remotely addressable,
Test on host requires a mock. Although there are mocking frameworks which reduce
the burden of manually writing mocks, it still requires at least some manual adap-
tation. When the effort to develop and maintain mocks is ignored, a mathematical
expression similar to the previous expressions can be composed as shown in Table 3.
However it should be noted, that this expression does not consider the most important
metric for Test on host and is therefore less relevant’

In Comparison

In the previous sections, the only metric which was considered was the number of
code uploads. Although this is an important metric to determine which strategy is
more effective, there are also other metrics to consider.

First metric is the limited resources of the target system, namely memory footprint
and processing power. On the one hand when considering the Test on target case, tests

Table 3 Test on host benefit when only target uploads are considered
Tests (T) # Code uploads (C) # Verification uploads (U) Test on host (%)

1 1 1 50
Min. 1 C U Min = 0.0...1
Max. T C 1 Max = 99.99...
General case T C U (l — ﬁuc) * 100

3 This expression is included nevertheless, for the sake of completeness.

Test-Driven Development as a Reliable Embedded Software Engineering Practice 121

Table 4 Test on target, Test on host and Remote prototyping in comparison

Test on target Test on host Remote
prototyping
Slow upload - —— ++ + ++

Test and program Test and program Broker on target

on target on host
Restricted resources - —— +++ +/—

Target memory Host memory Host memory
and and and target
processing processing processing
power power power

Hardware dependencies +++ - —— +/—
Real hardware Mock hardware Intermediate
format
Overhead + - —— -

Test framework Mocks Remoting

infrastructure

and a testing framework will add to the required memory footprint of the program.
While on the other hand, the processing power of the target system is also limited,
so a great number of tests on target will slow down the execution of the test suite.
Another metric to consider are the hardware dependencies, namely how much effort
does it require to write tests (and mocks) for hardware-related code? Finally, what is
the development overhead required to enable each strategy. For Test on target this is
the porting of the testing framework, while Test on host requires the development and
maintenance of hardware mocks and finally Remote prototyping requires Remoting
infrastructure.

Table 4 provides a qualitative overview of the three strategies compared to each
other when these four metrics are considered.

The overview in Table 4 does not specify the embedded system properties, as the
range of embedded systems is too extensive to include this information into a decision
matrix. For instance, applying Remote prototyping does not have any overhead at all,
when remoting infrastructure is already available. Likewise when an application is
developed on embedded Linux, one can develop the application on a PC Linux system
with only minimal mocking needed, making 7est on host the ideal choice. Moreover
in this overview no consideration is given to legacy code, yet the incorporation of
legacy code will prohibit the use of the Test on host strategy.

When deciding which strategy is preferable, no definite answer can be given. In
general, Test on target is less preferred than Test on host and Remote prototyping,
while Remote prototyping is strictly better than Remote testing. Yet beyond these
statements all comparisons are case-specific. For instance when comparing 7est on
host versus Remote prototyping, it is impossible to make a sound decision without
considering the embedded target system and the availability of drivers, application
software, etc.

122 P. Cordemans et al.

4 Embedded TDD Patterns

The following sections deal with two structural patterns related to Test-Driven
Development for embedded software. First is 3-tier TDD, which deals with the dif-
ferent levels op complexity to develop embedded software. Subsequently is the MCH
pattern [35-37], an alternative with the same objective.

4.1 3-Tier TDD

In dealing with TDD for embedded software, three levels of difficulty to develop
according to TDD are distinguished. Each of these levels imply their specific prob-
lems with each TDD4ES strategy. A general distinction is made between hardware-
specific, hardware-aware and hardware independent code. When developing these
types of code, it is noted that the difficulty to apply TDD increases, as shown
in Fig. 14.

Hardware independent code

A fine example of hardware independent software is code to compose and tra-
verse data structures, state machine logic, etc. Regardless of the level of abstraction
these parts of code could be principally reused on any platform. Typically hardware
independent code is the easiest to develop with TDD. Because barring some cross-
compilation issues, it can be tested and developed on host (either as Test on host or
Remote prototyping). Typical issues that arise when porting hardware independent
code to target are:

e Type-size related, like rounding errors or unexpected overflows. Although most of
these problems are typically dealt with by redefining all types to a common size

Fig. 14 Three tiers of TDD Level of
for embedded software complexity
for TDD 4

Hardware specific

Hardware aware

Hardware independent

Test-Driven Development as a Reliable Embedded Software Engineering Practice 123

across the platforms, it should still be noted that unit tests on host will not detect
any anomalies. This is the reason to run tests for hardware independent code.

e Associated with the execution environment. For instance, execution on target might
miss deadlines or perform strangely after an incorrect context switch. The target
environment is not likely to have the same operating system, provided it has an
OS, as the host environment.

e Differences in compiler optimizations. Compilers might have a different effect on
the same code, especially when optimizations are considered. Also problems with
the volatile keyword can be considered in this category. Running the compiler on
host with low and high optimization might catch some additional errors.

Most importantly, developing hardware independent code according to TDD requires
no additional considerations for each of the strategies. Concerning Test on target,
the remark remains that all development according to this strategy is painstakingly
slow. Furthermore hardware independent code does not impose any limitations on
either Remote prototyping or Test on host, so there should be no reason to develop
according to Test on target.

Hardware-aware code

Next is hardware-aware code, which is a high level abstraction of target-specific
hardware components. A typical example of a hardware-aware driver is a Tempera-
ture sensor module. This does not specify which kind of Temperature sensor is used.
It might as well concern a digital or analog temperature sensor. Yet it would not be
surprising to expect some sort of getTemperature subroutine. Hardware-aware code
will typically offer a high level interface to a hardware component, yet it only presents
an abstraction of the component itself, which allows changing the underlying imple-
mentation. Developing hardware-aware code on host will require a small investment
when compared to a traditional development method, because hardware-aware code
will typically call a low level driver, which is not available on host. However the
benefits of TDD compensate for this investment. The particular investment depends
on the strategy used.

On the one hand when developing according to Test on host this investment will
be a mock low level driver. The complexity of this mock depends on the expected
behavior of the driver. This particular approach has two distinct advantages. First, it
allows intercepting expected non-deterministic behavior of the driver, which would
otherwise complicate the test.

A second advantage of using mocks to isolate hardware-aware code for testing
purposes. Namely, a consequence of the three-tier architecture is that unit tests for
hardware-aware code will typically test from the hardware independent tier. This
has two reasons. On the one hand a unit test typically approaches the unit under
test as a black box. On the other hand, implementation details of hardware-aware
and hardware-specific code are encapsulated, which means only the public interface
is available for testing purposes. In order to deal with unit test limitations, break-
ing encapsulation for testing is not considered as an option. Because it is not only
considered as a harmful practice, but is also superfluous as mocks enable testing the

124 P. Cordemans et al.

Fig. 15 Isolating the ST T T \
hardware-aware tier with a \
mock hardware component

Hardware-aware code
(under test)

Hardware-aware calls

Hardware-specific interface

/'_'_'_'\assenion

man-in-the-middle, also known as hardware-aware code. An overview of this pattern
is shown in Fig. 15.

Fundamental to the idea of using mocks is that the actual assertion logic is provided
in the mock instead of in the test. Whereas tests can test the publicly available
subroutines, a mock, which is put into the lower tier can assert some internals of the
code under test, which would otherwise be inaccessible.

The other preferred approach to develop hardware-aware code is Remote proto-
typing. As a strategy Remote prototyping is optimized to deal with hardware-aware
code. Namely, developing a part of code which is loosely coupled to a hardware
driver only requires the hardware driver functions to be remotely addressable. Once
this condition is fulfilled it enables developing the rest of the code on host, without
the need of developing mocks.

Yet when considering testing hardware-aware code as a black box, the addition
of mocks allowed to test from a bottom-up approach. As Remote prototyping does
not require including mocks, it appears to be limited to the typical top-down testing
style. To make it worse, injecting mocks with Remote prototyping is a convoluted
process, which is not recommended.

Nevertheless mocks, or at least similar functionality, can be introduced in a typical
Remote prototyping process. Instead of injecting a mock, the respective stub can be
enhanced with the aforementioned assertion logic. This creates a mock/stub hybrid,
which one the one hand delegates calls to target and on the other hand records and
validates the calls from the code under test. Figure 16 presents this mock/stub hybrid
in the context of Remote prototyping hardware-aware code.

A mock/stub hybrid allows to execute a double assertion, namely whether the
value is correct and the assertion logic provided by the mock part. Furthermore
it can be extended with more advanced mocking capabilities, like raising events,
returning fixed data, etc. This counteracts the principle of Remote prototyping of
calling the actual code on target, but allows introducing determinism in an otherwise
non-deterministic process. For instance, to explore the failure path of a sensor reading
in a deterministic way it would be too time-consuming to execute actual sensor

Test-Driven Development as a Reliable Embedded Software Engineering Practice 125

1
.

T ———

_—————
| Stable) ' Tests |
\ codebase | -————-

————— - s i
Skeletons | Software under
\ development |

_—— _——

Mock/stub
hybrid
Broker on Target K— - — - — - — - = Broker on Host

Fig.16 Remote prototyping with a mock/stub hybrid, which can assert the call order of the software
under test

readings until a failure has been invoked. Therefore it is easier to mock the failure,
which guarantees a failure every time the test is executed.

Hardware-specific code

Finally hardware-specific code is the code which interacts with the target-specific
registers. It is low level driver code, which is dependent on the platform, namely
register size, endianness, addressing the specific ports, etc. It fetches and stores
data from the registers and delivers or receives data in a human-readable type, for
instance string or int. An example of a hardware-specific code are drivers for the
various peripherals embedded in a microcontroller.

Hardware-specific code is the most difficult to develop with TDD, as test automa-
tion of code which is convoluted with hardware is not easily done. When considering
the strategies Test on host and Remote prototyping, each of these has its specific
issues. On the one hand, Test on host relies on mocks to obtain hardware abstrac-
tion. Although it can be accomplished for hardware-specific code, as demonstrated
in listing Sect.3.5.3, developing strictly according to this strategy can be a very
time absorbing activity. This would lead to a diminishing return of investment and
could downright turn into a loss when compared to traditional development methods.
Furthermore as hardware-specific code is the least portable, setting up tests with spe-
cial directives for either platform could be an answer. However these usually litter
the code and are only a suboptimal solution.

Optimally, the amount of hardware-specific code is reduced to a minimum and
isolated as much as possible to be called by hardware-aware code. The main idea
concerning hardware-specific code development is to develop low-level drivers with
a traditional method and test this code afterwards. For both Test on host and Remote
prototyping this results in a different development cycle.

126 P. Cordemans et al.

Test on host |:|

{TDD hardware independent E | Hardware specific driver
1
.
.

2) Sttt S § e — J
1 e P 4

| i TDD hardware aware driver :) ficati
\ : [unit tests] [hardware mocksji Driver verification

L) e moce i
HaS

D e e IR L L TR T LR A i R e— — —
*‘:TDDappIications : M

:
: : . 2 System tests
: [mtegratnontests}[driver mocks]; ' Y
.]

Fig. 17 3-tier development process with Test on host

3-tier TDD and Test on host

Test on host allows the concurrent development of hardware independent and specific
code, as shown in Fig. 17. As previously indicated, hardware independent code
naturally lends to test first development, while hardware-specific driver code can be
tested afterwards. Once a minimal interface and implementation of hardware-specific
code is available, hardware-aware code development can be started. Hardware mocks
resembling hardware-specific behavior are used to decouple the code from target and
enable running the tests on host. Once both hardware-specific and hardware-aware
code of the driver has reached a stable state, the hardware-aware part can be migrated
to target and instead of the mock the real hardware-specific code can be used. At that
moment hardware independent code can be integrated with mocks which provide the
hardware-aware interface. Finally all code can be combined on the target system, to
perform the system tests.

3-tier TDD and Remote prototyping

On the other hand the Remote prototyping process starts the same, but differs from
Test on host in the later steps. An attempt could be made to mock hardware internals
to enable hardware-specific development with Test on host. However, this is not
possible for Remote prototyping as a minimal remote addressable function must be
available on target. This naturally leads to a more traditional fashion of hardware-
specific code development, yet testing afterwards might as well be according to the
principles of Remote testing.

Nevertheless, once a minimal function is available it becomes possible to develop
using the Remote prototyping strategy. As indicated in Fig. 18, hardware-aware driver
development uses remote calls to the hardware-specific drivers. The infrastructure for
these calls is already present, should the hardware-specific drivers have been tested
with Remote testing. Once a stable state has been reached a migration of hardware-
aware code is in order to be incorporated in the remote addressable target system.
Finally, the applications can be developed in the same fashion. A final migration
allows performing system tests on target.

Test-Driven Development as a Reliable Embedded Software Engineering Practice

Remote prototyping

................................

:{TDD hardware independent :
|

| Yupnpuydt

{TDD applications :
: integration tests |: |

[N}
—— - (L} N

' —_—— —
! | Hardware specific driven
' development
| p— — —

~
[}
[}
: e —
:
: Stable drivers
b o— —— -J
X . 4
[}
[}
: — — —
[}
3 System tests
T

code migration

remote calls

Fig. 18 3-tier development process with Remote prototyping

4.2 MCH-Pattern

127

An alternative for 3-tier TDD is the MCH-pattern by Karlesky et al., which is shown in
Fig. 19. This pattern is a translation of the MVC pattern [38] to embedded software.
It consists of a Model, which presents the internal state of hardware. Next is the
Hardware, which presents the drivers. Finally the Conductor contains the control
logic, which gets or sets the state of the Model and sends command or receives
triggers from the Hardware. As this system is decoupled it is possible to replace each
component with a mock for testing purposes.

Fig. 19 MCH pattern

©Atomic object, 2007

S
ware

Hard '

128 P. Cordemans et al.

5 Conclusion

Test-Driven Development has proven to be a viable alternative to traditional
development, even for embedded software. Yet a number of considerations have
to be made. Most importantly, TDD is a fast cycle, yet embedded software uploads
are inherently slow. To deal with this, as shown in the strategies, it is of fundamental
importance to develop as much as possible on host. Therefore Remote prototyping
or Test on host is preferred. Choosing between the former and the latter is entirely
dependent on the target embedded system, tool availability and personal preference.
Once the overhead of one of these strategies could be greatly reduced the balance
may shift in favor of one or the other. Yet, at the moment of writing, Test on host is
the most popular. However Remote prototyping might present a worthy alternative.

Besides Remote testing and prototyping, the main contribution of this manual and
the research it describes is 3-tier TDD. This pattern allows isolating hardware and
non-deterministic behavior, which are both prerequisites for test automation. This
pattern presents a main guideline, which is not only applicable to development with
TDD, but generally relevant for all embedded software development. Namely, min-
imizing the hardware-specific layer improves a modular design, loosely coupled to
the hardware system. Such a design is more testable, thus its quality can be assured.
Furthermore the software components could be reused over different hardware plat-
forms. This is not only a benefit in the long run, when hardware platform upgrades are
to be expected. Moreover, it will help the hardware and software integration phase.
In this phase unexpected differences in hardware specifications can be more easily
solved in changing the software component. Automated test suites will ensure that
changing hardware-specific code to fit the integration does not break any higher-tier
functionality. Or at least it will be detected by a red bar.

Future directions

1. Hardware mocking
As briefly indicated in Sect. 2 mocks could be partially automatically generated by
amocking framework, which is complementary to a testing framework. No further
elaboration is given on the subject, but since hardware mocks are extensively used
in the Test on host strategy, a part of the work could be lifted from the programmer.

2. Related development strategies

Test-Driven Development is a fundamental practice in Agile or eXtreme Program-
ming methodologies. Yet, similar practices exist based on the same principles of
early testing. For instance, Behavior-Driven Development (BDD) is an iterative
practice where customers can define features in the form of executable scenar-
ios. These scenarios are coupled to the implementation. In turn this can be exe-
cuted indicating whether the desired functionality has been implemented. BDD for
embedded has some very specific issues, since functionality or features in embed-
ded systems is mostly a combination of hardware and software.

Test-Driven Development as a Reliable Embedded Software Engineering Practice 129

3. Code instrumentation for the Remote strategies
Developing stubs and skeletons for the Remote strategies requires a considerable
effort. However, the boilerplate code which is needed for the remoting infrastruc-
ture, could be generated automatically once the interface has been defined on host.

4. Quantitative evaluation of development strategies
In an effort to compare the development strategies a qualitative evaluation model
has been developed (Sect. 3.6.4). This model allows conducting quantitative case
studies in a uniform and standardized manner. Since the model is a simplified
representation of the actual process, it must be validated first. For instance by
a number of quantitative case studies, it could be indicated that the model is
correct. These would also allow further refinement of the model, so it incorporates
additional parameters. Finally an attempt could be made to generalize the models
to the development of other types of software.

5. Testing
TDD is strongly involved with testing, however as a testing strategy it does not
suffice. Real-time execution of embedded software is in some cases a fundamental
property of the embedded system. However it is impossible to test this feature
while developing, as premature optimization leads to a degenerative development
process. Nevertheless another practice from Agile is fundamental in the develop-
ment process. Continuous Integration (CI) is a process which advocates building
a working system as much as possible. Running a suite of automated unit, integra-
tion and acceptance tests overnight indicates potential problems. Adding real-time
specification tests in a nightly build might be able to detect some issues. However,
considering the case of premature optimization, a certain reservation towards the
value of these tests on a low level must be regarded.
Testing concurrent software is another issue which cannot be covered by tests
devised in a TDD process. As multi-core processors are getting incorporated in
embedded systems, these issues will become more important.

References

1. B.W.Boehm, Software Engineering Economics (Prentice-Hall Advances in Computing Science

and Technology Series) (Prentice Hall PTR, 1981)

K. Beck, Test-Driven Development: By Example (Addison-Wesley, 2003)

M. Fowler, Refactoring: Improving the Design of Existing Code (Addison-Wesley, 1999)

R. Martin, Clean Code: A Handbook of Agile Software Craftmanship (Prentice Hall, 2008)

B. George, L. Williams, A structured experiment of test-driven development. J. Inf. Softw.

Technol. Elsevier (2004)

M. Siniaalto, Test driven development: empirical body of evidence. Technical report, ITEA

(2006)

7. N. Nagappan, M. Maximilien, T. Bhat, L. Williams, Realizing quality improvement through
test driven development: results and experiences of four industrial teams. Empirical Softw.
Eng. 13, 289-302 (2008)

8. M. Miiller, F. Padberg, About the return on investment of test-driven development, in Interna-
tional Workshop on Economics-Driven Software Engineering Research EDSER-4, 2003

Nk

*

130

9.

10.

11.

12.
13.

14.
15.
16.
17.
18.
19.
20.
21.
22.

23.
24.

25.

26.

27.

28.
29.

30.
31.

32.

33.

34.

35.

36.

37.

38.

P. Cordemans et al.

N. Van Schooenderwoert, Embedded extreme programming: an experience report, in Embedded
Systems Conference (ESC), Boston, 2004

N. Van Schooenderwoert, Embedded agile: a case study in numbers, in Embedded Systems
Conference (ESC), Boston, 2006

B. Greene, Using agile testing methods to validate firmware. Agile Alliance Newsl. 4, 79-81
(2004)

P. Hamill, Unit Test Frameworks (O’Reilly, 2004)

N. Llopis, Games from within: exploring the c++ unit testing framework jungle, http://
gamesfromwithin.com/exploring-the-c-unit- testing-framework-jungle

Jtn002-minunit-a minimal unit testing framework for c, http://www.jera.com/techinfo/jtns/
jtn002.html

Embedded unit testing framework for embedded c, http://embunit.sourceforge.net/embunit/
chO1.html

Unity-test framework for c, http://sourceforge.net/apps/trac/unity/wiki

N. Llopis, C. Nicholson, Unittest++, http://unittest-cpp.sourceforge.net/

Cpputest, http://www.cpputest.org/

Googletest, google c++ testing framework, http://code.google.com/p/googletest/

G. Meszaros, xUnit Test Patterns: Refactoring Test Code (Addison-Wesley, 2007)

M. Fowler, Inversion of control containers and the dependency injection pattern (2004), http://
martinfowler.com/articles/injection.html

R. Koss, J. Langr, Test driven development in ¢. C/C++ Users J. (2002)

J. Grenning, Test-Driven Development for Embedded C (The Pragmatic Bookshelf, 2011)

J. Boydens, P. Cordemans, E. Steegmans, Test-driven development of embedded software,
in Proceedings of the Fourth European Conference on the Use of Modern Information and
Communication Technologies, 2010

P. Cordemans, S. Van Landschoot, J. Boydens, Migrating from debugging to testing embed-
ded software, in Proceedings of the 9th International Conference and Workshop on Ambient
Intelligence and Embedded Systems (AmiEs), 2010

P. Cordemans, S. Van Landschoot, J. Boydens, Test-driven development in the embedded world,
in Proceedings of the First Belgium Testing Days Conference, 2011

J. Grenning, Test-driven development for embedded c++ programmers. Technical report, Ren-
naisance Software Consulting, 2002

J. Grenning, Progress before hardware. Agile Alliance Newsl. 4, 74-79 (2004)

J. Grenning, Test driven development for embedded software, in Proceedings of the Embedded
Systems Conference 241, 2007

Host / target testing with the Idra tool suite, http://www.ldra.com/host_trg.asp

Corba/e: industry-standard middleware for distributed real-time and embedded computing
(2008), http://www.corba.org/corba-e/corba-e_flyer_v2.pdf

Cxxtest, http://cxxtest.tigris.org/

P. Cordemans, J. Boydens, S. Van Landschoot, Embedded software development by means of
remote prototyping, in Proceedings of the 20th International Scientific and Applied Science
Conference: Electronics-ET, 2011

P. Cordemans, J. Boydens, S. Van Landschoot, E. Steegmans, Test-driven development strate-
gies applied to embedded software, in Proceedings of the Fifth European Conference on the
Use of Modern Information and Communication Technologies, 2012

M. Fletcher, W. Bereza, M. Karlesky, G. Williams, Evolving into embedded development, in
Proceedings of Agile 2007, 2007

M. Karlesky, W. Bereza, C. Erickson. Effective test driven development for embedded software,
in Proceedings of IEEE 2006 Electro/Information Technology Conference, 2006

M. Karlesky, W. Bereza, G. Williams, M. Fletcher, Mocking the embedded world: test-driven
development, continuous integration, and design patterns, in Proceedings of the Embedded
Systems Conference 413, 2007

S. Burbeck, Applications programming in smalltalk-80(tm): how to use model-view-controller
(mvc) (1992), http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html

http://gamesfromwithin.com/exploring-the-c-unit-testing-framework-jungle
http://gamesfromwithin.com/exploring-the-c-unit-testing-framework-jungle
http://www.jera.com/techinfo/jtns/jtn002.html
http://www.jera.com/techinfo/jtns/jtn002.html
http://embunit.sourceforge.net/embunit/ch01.html
http://embunit.sourceforge.net/embunit/ch01.html
http://sourceforge.net/apps/trac/unity/wiki
http://unittest-cpp.sourceforge.net/
http://www.cpputest.org/
http://code.google.com/p/googletest/
http://martinfowler.com/articles/injection.html
http://martinfowler.com/articles/injection.html
http://www.ldra.com/host_trg.asp
http://www.corba.org/corba-e/corba-e_flyer_v2.pdf
http://cxxtest.tigris.org/
http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html

A Fuzzy Cuckoo-Search Driven Methodology
for Design Space Exploration of Distributed
Multiprocessor Embedded Systems

Shampa Chakraverty and Anil Kumar

Abstract This chapter presents a methodology for conducting a Design Space
Exploration (DSE) for Distributed Multi-Processor Embedded systems (DMPE).
We introduce the notion of a Q-node to include quality-scaled tasks in the appli-
cation model. A fuzzy rule-based requirements elicitation framework allows the
user to visualize and express the availability requirements in a flexible manner. We
employ Cuckoo Search (CS), a metaheuristic that mimics the cuckoo birds’ breed-
ing behavior, to explore the multi-objective design space. A fuzzy engine blends
together multiple system objectives viz. Performance, Qualitative Availability and
Cost-Effectiveness to calculate the overall fitness function. Experimental results illus-
trate the efficacy of the DSE tool in yielding high quality architectures in shorter run
times and with lesser parameter tuning as compared with genetic algorithm. The
fuzzy rules approach for fitness evaluation yields solutions with 24 % higher avail-
ability and 14 % higher performance as compared with a conventional approach using
prefixed weights.

1 Introduction

The Electronic Design Automation (EDA) industry has ushered in the era of pervasive
computing where digital devices are indispensible for executing every aspect of
modern civilization. Several EDA tools such as Vista from Mentor Graphics [1],
EDA360 from Cadence [2], Platform Architect from Synopsys [3] and Simulink from
Mathworks [4] are available for carrying out high level as well as low level system

S. Chakraverty (B<1)
Netaji Subhas Institute of Technology, Dwarka, Sector 3, New Delhi 110078, India
e-mail: shampa@ieee.org

A. Kumar
Samsung Research Institute, Noida, India
e-mail: anilk @ieee.org

M. A. Khan et al. (eds.), Embedded and Real Time System Development: 131
A Software Engineering Perspective, Studies in Computational Intelligence 520,
DOI: 10.1007/978-3-642-40888-5_5, © Springer-Verlag Berlin Heidelberg 2014

132 S. Chakraverty and A. Kumar

design. The field of EDA has been richly researched upon and utilized extensively
by both academia and industry. Nevertheless, there are certain critical issues that
specifically relate to the design of multi-objective DMPE systems. These issues
need to be addressed more systematically and in a manner that supports active user
participation in quantifying tradeoffs between conflicting design objectives.

Multi-processor design optimization falls under the category of NP-Complete
problems. Not only does it confront a very large search space but it has also to deal
with several design objectives simultaneously. The system must be designed so as to
achieve the desired real time performance levels, ensure a high degree of availability
and accuracy at its service points and possess the ability to reconfigure in the presence
of faults. All these deliverables must be achieved in a cost effective manner. Another
level of complexity arises from the sheer diversity of implementation platforms that
are available for executing the functional tasks. They include software implemen-
tations on a range of Instruction Set Architecture (ISA) based processors, hardware
implementations on Application Specific Integrated Circuits (ASIC) and bit map
implementations on Field Programmable Gate Arrays (FPGA). These are matched
by the plethora of bus types that are available to build the underlying communication
fabric with.

Literature is rife with examples of traditional mathematical and graph based
approaches for system optimization with focus on reliability. They include Mixed
Integer Linear Programming (MILP) [5], dynamic programming [6] and [7], integer
programming [8] and branch-and-bound [9] techniques. These approaches take a
very long run time to generate optimal architectures for even medium sized appli-
cations. Multi-objective design optimization problems have been tackled practically
by utilizing metaheuristic optimization algorithms. Meta-heuristic techniques do not
guarantee the best solution but are able to deliver a set of near optimal solutions
within a reasonable time frame. They generate an initial set of feasible solutions
and progressively move towards better solutions by modifying and updating the
existing solutions in a guided manner. Several metaheuristics such as Simulated
Annealing (SA) [10, 11], Tabu Search (TS) [12], Ant Colony Optimization (ACO)
[13, 14], Practical Swarm Optimization (PSO) [15, 16] and Genetic Algorithm (GA)
[17-19] have been used for reliable multiprocessor design optimization. However,
these approaches also suffer their own drawbacks. For example SA suffers from
time longevity for a low temperature cooling process. GA is an effective optimiza-
tion technique for large sized problems and can efficiently deal with the problem of
convergence on local sub-optimal solutions. But GA requires excessive parameter
tuning. In general existing approaches face difficulty in fitting into design explo-
ration semantics because of their random and unpredictable behavior. We have used
Cuckoo Search (CS), a new optimization algorithm developed by Yang and Deb that
is by inspired by the unique breeding behavior of certain cuckoo species [20], for our
multi-objective DMPE design optimization. Experiments demonstrate that it is able
to deliver a set of high quality optimal solutions within a reasonable period. Besides,
it needs minimal parameter tuning.

Animportant issue that needs due consideration is—how to harness the end-user’s
proactive participation in the process of system design? Reliability and Availability

A Fuzzy Cuckoo-Search Driven Methodology for Design Space Exploration 133

(R&A) are particularly customer-oriented quality parameters. Therefore we need to
develop a user-centric design methodology. Design objectives are often characterized
by a degree of uncertainty and imprecision. Sophisticated applications with fault tol-
erant capabilities embody a fair degree of complexity, making it even more difficult to
quantify in a precise manner their multiple qualitative requirements and to formulate
an objective function that encapsulates all the requirements and their interdependen-
cies in an exact and deterministic way. We adopt a two-pronged strategy to tackle this
situation. Firstly, a fuzzy rule-based requirements elicitation system allows the user
to describe her myriad availability requirements in a flexible and realistic manner.
Secondly, a fuzzy model of the optimization function smoothly blends together the
multiple objectives to evaluate the overall fitness function of solutions. The quality
of solutions obtained can thus be validated against the requirements captured.

In this chapter we present a Fuzzy Cuckoo Search driven Design Space Explo-
ration (FC-DSE) for multi-processor systems that tackles the issues we have broached
upon. Section 2 describes the design environment for FCS-DSE. Section 3 elucidates
the FCS-DSE methodology. Section 4 presents salient experimental results. We con-
clude the chapter in Sect. 5.

2 Design Environment

The proposed FCS-DSE system is a platform driven co-synthesis framework. It
entails a synergetic hardware software design approach with a user-friendly interface.
The design environment considers various functional and qualitative requirements of
a given application. It refers to a library of feasible technological options for realiz-
ing the processing and communication needs of the computing system. Using these
inputs, the co-synthesis system explores through the design space of heterogeneous
multiprocessor systems knit together by shared communication busses. Finally, it
culls out the best architectural solutions that satisfy the specified qualitative require-
ments of the application. The core challenges involved in the DSE process are:

e Resource selections: Since the hardware software system must be constructed
from scratch, the choice of its basic building blocks viz. its processing units and
communication links must be of good quality. The starting point is to allocate a
pool of these resources to pick and choose from.

e Task assignment: The next step is to distribute the tasks of an application among
the selected resources in a judicious manner. This step is crucial because a proper
mapping maximizes the cost savings achieved by resource sharing while ensuring
that all quality parameters are being satisfied.

e Task scheduling: All tasks must be scheduled to satisfy their stipulated partial
orderings, output deadlines as well as the sequential execution constraints due to
shared resources.

e Architecture optimization: The optimization algorithm must generate a set of archi-
tectural solutions that satisfy the specified objectives.

134 S. Chakraverty and A. Kumar

The FCS-DSE system starts with the following inputs:

2.1 Application Model

The application is modeled as a Conditional Task Precedence Graph (CTPG) =
G(V, E). In this chapter, we have used a 12-node CTPG, TGy, shown in Fig. 1 as a
running example to explain the DSE concepts and demonstrate experimental results.
The set of nodes V represent the application’s computation tasks. The set of edges
E C {(vl-, vi) | (vi,vj) € V} represent the communication tasks that carry data from
a source task v;, to the sink task v;. External inputs are applied at the primary inputs.
The application’s services that are utilized by the end user are presented at the primary
outputs. Their timely generation, accuracy and availability are of prime concern to
the user.

Node Type: There are three kinds of nodes in the CTPG. In Fig. 1, the input paths
of AND nodes are depicted as braced by a single arc. These tasks execute only when
all input paths are present. The OR nodes, shown without any brace, execute when at
least one of the inputs is present. We introduce a new type of quality-scaled Q node,
shown in Fig. 1 with their input paths doubly braced. The input paths of a Q node
contribute different degrees of accuracy to the sink task.

Weights are annotated at various points on the CTPG. There are two kinds of
edge weights. One set of edge weights represent the data volumes carried between
inter-communicating tasks. Another set of edge weights denote the accuracy levels
contributed by the inputs paths of a node. For the sake of clarity in Fig. 1 we omit
the data volumes and show only the accuracy levels on the edges of TGy,. The input
arrival times are labeled at the primary inputs. The deadline constraints of the services
are labeled on the primary outputs.

Timing Parameters: Our framework uses a stochastic timing model. The task
execution times, the volumes of data transferred between two interacting tasks and
thereby the data communication times and the input data arrival times are all con-
sidered to be bounded random variables. Only the output deadlines are fixed. Each
of these timing parameters is modeled as a Beta distribution with four defining
parameters: lower limit //, upper limit A/ and the shape parameters « and 8. The exe-
cution time distributions are obtained beforehand by extensive task profiling. First,
we obtain a frequency distribution of each task’s execution time on a given proces-
sor by randomly varying its input data as widely as possible. Next, a curve fitting
technique such as the Chi-squared estimation is used to extract the parameters of the
Beta distribution [21].

A Fuzzy Cuckoo-Search Driven Methodology for Design Space Exploration 135

Fig. 1 A 12 task precedence graph

2.2 Technology Library

The technology library is a repository of technical data pertaining to the range of
implementation platforms available. This includes databases for different types of
Processing Element (PEs), the task execution times on each platform and different
types of Busses (B).

(a) Processor database: The Processor database contains technical specifications of
the PE types. Table 1 illustrates a representative processor database for the PE
types used in our experiments. A task can exist as a software code running on
an Instruction Set Processor (ISP). The ISP can be either a General Purpose
Processor (GPP) catering to a wide range of tasks such as an IA-64 processor
or it can be a Special Purpose Processor (SPP) that executes a limited range of
domain specific tasks such as a Network Processor. The task can also be executed
on a hardware platform such as an ASIC. Another alternative is to generate a
bit-map configuration for the task and program it on an FPGA. The data for each
processor type includes its failure rate, repair rate, the set of external busses that
are supported by the PE type and its cost. The failure rates shown in Table 1
reveal that the reliability and cost of ASIC is highest followed by SPP and
then GPP.

136 S. Chakraverty and A. Kumar

Table 1 Database for processing element types

PE type Cost Busses supported Failure rate Repair rate
GPP go 10 bob1 by 0.0005 0.5

SPP s 30 bobiby 0.00009 0.06

ASIC ag 50 bob1 0.00002 0.09

ASIC g, 70 bo 0.00001 0.013

Table 2 Database for bus Bus type Cost Failure rate Repair rate Speed

types
bo 5 0.0006 0.09 0.5
b 10 0.0002 0.05 1
by 12 0.0006 0.5 2
Table 3 Task execution
times for TGy,: Lower Limit GPP o SPP so ASIC a9 ASIC a;
and Higher Limit. The o and Vo 59 78 * *
B parameters (not shown) are Vi 5,7 4.4 3,3 *
assumed to be equal to 0.5 \2) * 7,8 3.7,4 5,5
each V3 * 7,7 6,6 45,5
V4 8,10 7.8 * 3,3
Vs 11,15 9,12 7,7 *
\73 * 9,10 7.3,8 3,3
V7 10,15 8,12 7,7 *
Vg 4,5 34 * *
Vg 9,15 8,10 6,7 *
V10 11,16 * 7,8 *
Vi1 14,]7 14,15 9,9 6,6

(b) Bus database: The communication links of the distributed system are imple-
mented using time shared buses. Table 2 shows the technical data for each bus
type used by the DSE tool in our experiments. It includes its data transfer rate,
failure rate, repair rate and its cost.

(c) Execution Times database: The probability distributions of the execution times
for all tasks of the given application on each of the available PEs are stored in a
database of execution times. Table 3 is the database of task execution times for
the tasks of TGj; on the PE types in Table 1. Each entry in this table is a set
of Beta distribution parameters for the corresponding execution time. The lower
and upper limits of the timing distributions are shown in the table. The two shape
parameters of each of these Beta distributions are assumed to be 0.5 each. A *
denotes that it is infeasible to execute the task on the corresponding platform.
Observe that the GPP takes the maximum time to execute a given task. The SPP
takes lesser time while the ASICs incur the least execution time.

A Fuzzy Cuckoo-Search Driven Methodology for Design Space Exploration 137

If
(OL(po,) is Low .AND. QL (po,,) is Medium .OR..... QL (po,)
is Very High .AND. QL (po,) is Remote)

then
(IoA(po,) is High, IoA (po,,) is Very High,..., IoA(po,)

is Remote).

Fig. 2 A sample fuzzy rule for the user’s availability assessment

2.3 Availability Requirements Elicitation

The user ascribes different degrees of relative importance to the services available,
called Importance-of-Availability (IoA). It is to be noted that these /oA values change
under different situations. When the system is fully functional, the user assigns a
perceived relative importance to each one of system’s services. However, when one
or more service(s) degrade in quality, the perceptions can change dramatically. The
relative importance of the service points must then be assigned afresh.

The process of capturing the availability requirements begins when the user visu-
alizes different scenarios depicting the quality level that is available at each primary
output. The user’s availability requirements are expressed in linguistic terms by a set
of fuzzy rules. An example fuzzy rule is given in Fig. 2. It has an antecedent part and a
consequent part. Its antecedent combines the various output quality levels {QL(po;)}
using AND/OR operators. The set of output quality levels denotes a certain condition
called usage context. The consequent part of the fuzzy rule assigns /oA weights to
each of the primary outputs under the given usage context.

The user is free to input as many rules as deemed necessary to express all her
availability requirements. These rules are stored in a database. Table 4 illustrates the
set of fuzzy rules that were input for TGy, in our experiments. The topmost rule is
valid for the fully functional scenario when each service point is available with its
maximum accuracy (QL is Very High). The relative importance of the four outputs
in this condition are such that pog and po are considered less important that po, and
po3. Similarly, rules for other usage contexts are stored in the database.

Complimentary to the fuzzy framework for oA requirements elicitation, our co-
synthesis scheme incorporates a fuzzy engine to compose the multiple design objec-
tives during the optimization process. We shall describe its working in the next
section.

Given the above inputs viz. the RT application to be realized in the form of a
CTPG, the platform library comprising the needed technological databases and the
availability requirements described by a set of fuzzy rules, the FCS-DSE system
launches a design space exploration process that evaluates candidate architectural
solutions. The process finally yields a set of cost-optimal architectures.

138 S. Chakraverty and A. Kumar

Table 4 Fuzzy rules for user input contextual importance-of-availability requirements for TG,

Rule no QL(po) AND-ed combination ToA(po)

Poo POl Po2 po3 Poo Po1 po2 po3
1 VH VH VH VH H H VH VH
2 H H L L H H L L
3 R M H R H H H R
4 M M M M H H M L
5 L L L L H M L R
6 VH H H VH L H VH VH
7 H M L R H H M R
8 L L L L H M M R
9 M M M H H M H H

[[[
PE Type : Computation task mapping : B type: Communication task mapping
|

|
01234012345678910 11,012,01234567 89 101112 13141516

22111:5654312014102:210:10221312321 14 4121

Fig. 3 A representative solution for CTPG 7G>

2.4 Architecture Representation

An architectural solution for the given CTPG and associated databases is encoded
as a vector of integer values that define its architectural features. Figure 3 represents
a feasible solution encoding for 7G15.

The solution encodes the following features:

1. The number of instances of each PE type: {Npg}

2. The computation task (or node) to resource mappings {Ny_p}
3. The number of instances of each Bus types {Np}

4. The communication task (or edge) to bus mappings {Ng_p}.

Thus the total number of decision variables L is equal to:

L = |Npg| + |Ny_p| + |Ng| + |[Ng_B| (D

3 Design Space Exploration

The FCS-DSE system uses the Cuckoo Search (CS) algorithm to optimize the dis-
tributed multiprocessor architectures. A set of global, qualitative objectives govern
the optimization path. It embeds a fuzzy logic based fitness evaluator within CS to
assess the fitness of the solutions.

A Fuzzy Cuckoo-Search Driven Methodology for Design Space Exploration 139

In this section, we will first elucidate the various design objectives. Next we will
elaborate upon the fuzzy model that is employed for composing the multiple design
objectives. Finally we will explain the adaptation of the Fuzzy-CS metaheuristic to
our DMPE design problem.

3.1 Design Objectives

1. Real Time Performance: We employ a non-preemptive scheduling algorithm that

uses identities from probability theory to handle stochastic timings to assign
start and completion times to each task. It uses an ALAP-ASAP list scheduling
algorithm and a priority scheme that is based on the timeliness of tasks to meet
prescribed deadline constraints.
The system transits from a fully functional state to a partly functional state when-
ever any of its resources fail and undergoes a reverse transition when the failed
resource is repaired by replacement. The performance of the system varies for
each state. Let the system be in any given functional state Si. Performance is
calculated in terms of Deadline Meeting Ratio (DMR), defined as the ratio of the
number of services dj, that are able to meet their deadlines to the total number of
services Npo. A firm deadline constraint is imposed by incorporating the condi-
tion that if di is less than a pre-fixed number m, then DMR is taken to be zero.
Thus the performance of the architecture in any given state Sy is given as:

d
Perf = |:dk <m0 X })
po

2. Qualitative Availability: We define a metric Qualitative Availability (QA) that

integrates the notions of Availability and Accuracy (i.e. output quality). A Con-
tinuous Time Markov Chain (CTMC) model captures the underlying fail-repair
process of the multiprocessor system. In essence, the system transits between
different states of functionality. The steady-state probability Py of being in each
state S is calculated with the help of the CTMC model. In the fully functional
state, all outputs deliver their maximum accuracy levels. When the system enters
a partly functional state due to a fault, some of system’s services may suffer degra-
dation in their quality levels. We urge the reader to refer to [22] for a detailed
description.
As explained in Sect.2, the user hypothesizes various combinations of service
quality levels and accordingly prescribes fuzzy rules to re-assign changed impor-
tance values (IoA) to those services. In the face of a failure, a subset of these rules
becomes applicable. A fuzzy engine infers and combines these fuzzy rules to
generate a final, crisp IoA value to each primary output. The overall importance
IoAy of any partly functional state Sy is the summation of each of its output’s
IoAg (o,) value normalized by the summation of the fully functional state’s output
importance values, IoAfrf (0y).

140 S. Chakraverty and A. Kumar

2. 1oAi (0x)

IoA = m (3)

The overall system Qualitative Availability QA;ys is given by the following equa-
tion.

QAgys = D" I0Ay * Py (4)
k

The aim of DSE is to maximize QAy, and thereby ensure that the system continues
to serve user perceived critical services even in the presence of faults.

3. Cost_Effectiveness: The cost of realization Ct of a chromosome is the cumulative
cost of each resource deployed for realizing the architecture. The cost factor
includes a feasibility constraint whereby the budget Cryax should not be exceeded.
In addition there is a cost minimization objective. The Cost-effectiveness of a
solution is defined by the probability that the system is realizable under the
prescribed budget Ctpax. It is given by:

Ctmax -

Ct
Cost_Effectiveness = () x U(Ctmax — Ct) (5)
Ctmax

where U(.) is the unit step function.

3.2 Fuzzy Fitness Evaluator

Multi-objective design optimization has traditionally been dealt with by calculating
the Objective Function (OF) or fitness of a solution either by using fixed weights to
combine different objectives or by using the concept of Pareto-optimality to promote
all non-inferior solutions. However, the level of sophistication in modern applications
has surpassed the stage where one can formulate an OF that encapsulates all the
requirements and their interdependencies in an exact and deterministic way. In our
DSE scheme, we use a fuzzy model that allows the user/designer to prescribe a set
of fuzzy rules that seamlessly blend together multiple objectives. They rules are
processed by the Fuzzy Fitness Evaluator (FFE) engine.

Fuzzy Rules: Overlapping Fuzzy Sets { Remote, Low, Medium, High, Very High}
are defined on each of the Design Objectives (input variables) as well as on the overall
Fitness of the solutions (output variable) [26]. A set of fuzzy rules relate the composite
condition formed by the AND/OR combination of objectives in their antecedent to
the impact of this condition on the solution fitness in their consequent. Figure 4
illustrates a set of rules that combine three design objectives: the system’s overall
Performance, its Qualitative Availability (QA) and Cost_Effectiveness to determine
the overall solution Fitness.

A Fuzzy Cuckoo-Search Driven Methodology for Design Space Exploration 141

Rule 1:

if (Performance 1is Very High .OR. Cost_Effectiveness is
Very High .OR. Qualitative Availability is Very High)
then (Fitness is Very High)

Rule 2:

if (Performance 1is High .AND. Cost_Effectiveness is Me-
dium .AND. Qualitative Availability is Very High)

then (Fitness is Very High)

Rule 3:

if (Performance 1is Medium .OR. Qualitative Availabil-
ity is High .AND. Cost_Effectiveness is High)

then (Fitness is High)

Fig. 4 Examples of fuzzy rules for evaluating solution fitness by blending multiple objectives

Table 5 Fuzzy rules for fitness evaluation

Qualitative availability Performance Cost effectiveness Overall fitness

AND-ed combination

H H H H
VH H H VH
M VH H H
H H L M
L L H R
R H H R
M M H M

Legend VH Very High; H High; M Medium; L Low; R Remote

Notably, rules can be framed to depict a set of criteria based on the concept of
non-dominance as exemplified by Rule 1. The antecedent of this rule encapsulates a
condition where at least one the objectives is Very High. In its consequent, it implies
Very High solution fitness under this condition. In contrast, Rule 2 prescribes a lin-
guistically weighted combination of various objectives. Rule 3 describes a composite
condition by using both AND and OR operators. The user can specify many such
rules in a flexible and discernible manner to guide the evaluation of solution fitness.
Table 5 shows the set of rules that were input to the DSE tool for composing the
design objectives and evaluating the fitness of solutions for TGy5.

Membership Function: In [23], Kasabov defined standard types of membership
functions such as Z function, S function, trapezoidal function, triangular function
and singleton function. These membership functions define the degree to which an
input or output variable belongs to different but overlapping fuzzy sets. We chose the
trapezoidal membership function as it is sufficient to capture the imprecise relation-
ships between various objectives and is computationally simple. Figure 5 illustrates

142 S. Chakraverty and A. Kumar

A Remote Low Medium High Very high
1.0
0.5 993 &
02000001 ” /e
< S b b o) ¥ T K
0.0 L et || S S >
12 3 4 5 .6 7 8 9 10

Fig. 5 Trapezoid membership function for the input and output variables of the fuzzy fitness
evaluator

the trapezoid membership function that have been used to fuzzyfy all input objectives
and the solution fitness.

Working of the fuzzy engines: We adopt the Mamdani model for the fuzzy engine
employed to capture the IoA requirements of the application and also for the FFE
sub-system.

1. Fuzzification: The absolute values of input variables are mapped into the fuzzy
sets. The degree of membership of each input variable in each of the fuzzy sets
is determined by consulting its membership function.

2. Rules Activation: For a given set of crisp values of design objectives, several rules
may be invoked because each crisp value maps to more than one linguistic set. The
overall strength of a rule is determined by the value of the membership functions
of all the design objectives represented in its condition. The min() function for
conjunctive AND operators and the max function for the disjunctive OR operator
between conditions is used to determine input matching degree of a rule.

3. Inferring the consequent. The clipping method is used to infer the rule’s con-
clusion. For each component in the consequent, its membership above the rule’s
matching degree is cut off and maintained at a constant level.

4. De-fuzzification: De-fuzzification converts the fuzzy fitness values to a crisp over-
all fitness. The Centroid Of Area method is used to generate a final crisp value
for the output variables.

3.3 Cuckoo Search Driven DSE

Cuckoo Search (CS) is a metaheuristic search technique proposed by Yang and Deb
[20]. It evolves a population of solutions through successive generations, emulating
the unique breeding pattern of certain species of the cuckoo bird. Further, it uses
a heavy-tailed Levy flight probability distribution to generate its pattern of random
walk through the search space [25]. The Levy flight is simulated with a heavy tailed
Cauchy distribution. Levy flight driven random walk is found to be more efficient
than that obtained by Uniform or Gaussian distributions. In nature, it is used to
advantage by birds and animals for foraging.

A Fuzzy Cuckoo-Search Driven Methodology for Design Space Exploration 143

1. FCS_DSE (CTPG, Pop_size, Max_Gens, P,)

2. begin
3. Generate an initial set of architectural solutions
Eggs, for the given CTPG. |Eggs| = Pop_size.
4. while (! (Convergence) AND (generation !=Max-Gens)) {
5. Evaluate solution fitness values using FFE
engine.
Sort solutions according to descending fitness.
7. Choose a random solution Egg_. using Cauchy
distribution
8. Choose an architectural characteristic in Egg,
using Cachy distribution
9. Generate a new solution by modifying the charac-
teristic using Cauchy distribution .
10. Choose another solution Egg, using uniform dis-
tribution
11. if (Fitness(Egg,) > Fitness(Egg,))
then replace egg 6 with egg.
12. With probability Pa replace the least fitness
solution with a new solution built from
scratch.

13. } //while
14. end FCS _DSE

Fig.6 Pseudocode for the fuzzy Cuckoo Search driven design space exploration FCS_DSE function

The cuckoo lays its eggs in the nest of another bird that belongs to a differ-
ent species. Over many generations of evolution, the cuckoo has acquired excellent
mimicry to lay eggs that deceptively resemble the host bird’s eggs. Closer the resem-
blance, greater are the chances of the planted eggs being hatched by the host. The
cuckoo also times the laying and planting of her eggs cleverly so that they hatch
earlier than those of the host bird. Being first to hatch, the fledgling destroys new
born chicks of the host to further enhance its survival chances. However, once in a
while the host bird discovers the cuckoo eggs and either destroys them or simply
abandons the nest to build a new one.

The pseudo-code in Fig. 6 describes our FCS_DSE optimization algorithm.

e Any feasible architectural solution is an egg. The process starts with a set of new
solutions—the cuckoo’s eggs, laid one per nest (line 2). High quality solutions with
greater fitness correspond to those cuckoo eggs that most closely resemble host
eggs and therefore have greater chances of surviving. The subsequent steps are
performed for each generation till either the best fitness stabilizes or the maximum
number of generations is reached.

144 S. Chakraverty and A. Kumar

e The solutions are sorted according to their fitness values as calculated by the FFE
engine (lines 4, 5).

e The solutions are advanced one step at a time by generating a new solution from
an existing one (lines 6, 7, 8). The choice of a solution, its targeted architectural
feature and the modification in its value are all done by local random walk whose
steps are drawn from heavy tailed (Levy flight) Cauchy distributions. Levy flight
predominantly creates new solutions in the vicinity of good ones (exploitation),
but resorts to sudden bursts of variations (exploration).

e If the new solution turns out to be superior to a randomly picked up existing solu-
tion, it replaces the old one (lines 9, 10, 11). This process is akin to a cuckoo chick
(superior solution) destroying a host chick (inferior solution). It is an exploitative
search technique which favors good solutions.

e With a probability Pa, a low quality solution with least fitness is discarded from
the population and replaced another one built anew (line 12). This is analogous to
the discovery of poorly mimicked cuckoo eggs by the host bird, abandoning the
nest and building a new one from scratch. It helps the search process from getting
stuck in local minima.

e Finally, high quality solutions are passed on to the next generation and the process
is repeated. This ensures survival of the fittest.

4 Experimental Results

The Fuzzy Cuckoo Search driven Design Space Exploration (FCS-DSE) tool is
implemented using Object oriented design in C++. We conducted our experiments
on a Pentium dual core 2.59 GHz processor.

We input the synthetically generated 12-node CTPG TG, shown in Fig. 1 to the
FCS-DSE tool. TGy is representative of real time applications that require a high
degree of concurrency among its tasks and also impose some sequential constraints.
The Processor and Bus databases are given in Tables 1 and 2 respectively. Table 3
shows the execution time distributions of the tasks of TGy on available processor
types, Table 4 gives the fuzzy rules for loA requirements and Table 5 gives the fuzzy
rules for fitness evaluation. The fitness evaluation rules in Table 5 give a higher prefer-
ence to Qualitative Availability as compared to Performance and Cost_Effectiveness.

4.1 Task Allocation

Starting with a population of 20 chromosomes and the value of Pa set to 0.5, the
design exploration was conducted through 400 generations. The task-to-processor
mapping of the best architecture that was obtained at the end of exploration is shown
in Fig.7. The block diagram of the architecture is given in Fig. 8. The system uses

A Fuzzy Cuckoo-Search Driven Methodology for Design Space Exploration

2 1

POoo l

~ N
s ™) wt)) awny ami

Fig. 7 Architecture of the best solution for TG,

145

SPP sy {V}, Vs, Vg, Vs} by { es 9, €59} ;

bo {€2,6}
b, {83,6, €, 10/

ASICap{ vs; vz vip}

bofez7e7, 11}

> GPPg(){Vo, V4, Vg}

ASIC a; {v,, vii}

Fig. 8 Block diagram of the architecture

four processors to execute the computational tasks and four busses to implement the

communication tasks.
The following allocation patterns can be observed:

e Sequential tasks and tasks at different hierarchical levels share the same processor.
For example v precedes vs which in turn precedes vg. All three tasks share the

same processor SPP sp.

146 S. Chakraverty and A. Kumar

e Tasks at the same hierarchical level having equal precedence order are allocated
to different processors, thus allowing their concurrent execution. For example the
terminal tasks vg, vg, vig and vy are allocated to different PEs.

e Tasks that contribute to primary outputs with high /oA values are predominantly
allocated to ASICs. The first rule in Table 4 shows that the primary outputs po>
and po3 are given more importance than others in the fully functional condition.
Moreover they lose their importance drastically when their output quality level
reduces (for example see rules 4, 5 and 8 in Table 4). Hence the system assigns the
more reliable ASICs to implement the tasks v;, v3, v7, vio and vy that contribute
to po; and pos3.

e Tasks that contribute to less important outputs are mapped to less reliable, cheaper
processors. For example tasks vg, vi, v4, vs, v7 andvg contribute to outputs poy and
po1. Table 4 shows that these outputs have lesser important in the fully functional
state (rule 1). Even when their QL levels diminish, these outputs are still acceptable
(rules 4, 5 and 8). The DSE system aptly allocates a GPP for tasks vg, v4, v9 and
an SPP for tasks v, vs, v7 as they are less reliable and cheaper PEs than ASICs.

e Forthe best architecture, there are seven local inter-task communications and seven
remote inter-task communications. The remote data transfers are implemented on
four bus instances in a manner such that sequential edges share a bus (e3 ¢ and
e6.10) While concurrent edges are assigned to different busses (e2 6 and e;,7).

The above observations indicate that the FCS-DSE system allocates the resources
among the tasks of an application judiciously so as to enhance concurrency and
availability in a cost-effective manner.

4.2 Route-to-Optimization: CS Versus GA

In this experiment, we compared the performance of the CS optimization algorithm
with that of GA. GA is a widely used population based optimization algorithm that
improves solutions by emulating the natural evolution of species through gene mod-
ification by crossover and mutation [24]. In these experiments, we set the probability
of building solutions from scratch viz Pa as 0.25, 0.5 and 0.75 for three sets of exper-
iments respectively. The experiments were then repeated using GA on the same
data-set. For GA the Mutation Rate (MR) was set to 0.25 and 0.5 for two sets of
experiments respectively and the crossover frequency was fixed at 0.4.

Average fitness improvement: The average fitness indicates the health of a popula-
tion as a whole. As demonstrated in Fig. 8 and reported in [25], the average quality of
population obtained through CS was better than that obtained through GA through-
put the evolution process. Unlike GA that uses a uniform distribution for its random
moves, CS mimics the Levy flight by utilizing the heavy tail characteristics of a
Cauchy distribution. This allows a good balance of exploitation and exploration dur-
ing evolution. There are relatively long periods of exploitation when random moves
hover around the average of the Cauchy distribution. These are interspersed by bursts

A Fuzzy Cuckoo-Search Driven Methodology for Design Space Exploration 147

CS (Pa=.25) + CS (Pa=50) « CS (Pa=75)
GA (MR = .25) « GA (MR = .50)

o
n

Average Fitness
oS o O O

< SE RS

0 200 400

Fig. 9 Comparison of average fitness achieved by GA and CS

=== (S Best Fit. === GA Best Fit.

o
©

o©
3

Fitness Values

o
o

T T T T T 1
100 200 300 400 500 600
Generation

o

Fig. 10 Comparison of best fitness achieved by GA and CS

of exploitation when random moves are taken from the tail end of the distribution.
Significantly, these transitions from exploitative search to explorative search occur
naturally due to the characteristics of the heavy-tailed Cauchy distribution. In sharp
contrast GA requires adjustment of two parameters viz. crossover rate and mutation
rate to balance exploration and exploitation. CS thus relies on fewer tuning parame-
ters (Fig. 9)

e Best Fitness: Figure 10 gives a plot of the best fitness value achieved in each
generation for CS and GA driven optimization processes. The value of Pa for CS
was setto 0.5 and MR for the GA was set to 0.25. The best fitness is a monotonically
function across generations. This is due to the selection operator Elitism which
ensures that the best solution in any generation is preserved in the next generation.
We find that CS produces the better results in shorter run time. However, CS
was not able to make any further change in the best solution during extended run
time beyond 400 generations. In contrast to this, GA improved the fitness of best
solution during the extended time period. This happened because CS looks for new
solutions mostly in the vicinity of good solutions while GA explores the search
space evenly with the help of random moves taken from a uniform distribution.

148 S. Chakraverty and A. Kumar

Table 6 Final solutions obtained through various fitness evaluation methods

Probabilistic fitness Weighted sum Fuzzy Logic based
function fitness function fitness function
Execution time 201s 205s 253s
Availability 0.8143 0.7802 0.97078
Performance 0.75706 0.77345 0.88398
Cost feasibility 0.83096 0.5045 0.74
Overall fitness 0.512265 0.722608 0.81

4.3 Effectiveness of Fuzzy Fitness Evaluation

We experimented with the DSE tool to assess architectural solutions for TG12 by
inserting three different fitness evaluation functions within the optimization code:

1. Probabilistic fitness: Objectives are expressed as probabilistic quantities and mul-
tiplied together.

2. Weighted fitness: Each objective is assigned a predetermined weight and summed
up. The objectives Perf s, and QA and CF 55 were given weights equal to 0.35,
0.45 and 0.2 respectively. Thus availability has the highest weightage.

3. Fuzzy fitness: Fuzzy rules are invoked to compose the objectives and calculate
the overall fitness. The FFE sub-system that was described in Sect. 3 carries out
this function. The rules given in Table 5 were used to evaluate the overall fitness.
Note that these rules give greater preference to availability than performance or
cost.

Table 6 shows the quality of best solutions obtained through the probabilistic,
weighted and fuzzy based fitness evaluation methods for TG12. The fuzzy logic based
fitness function has produced the best solution. Its system availability is 24.45 %
higher than weighted fitness method and 19.24 % higher than the probabilistic fitness
methods. Moreover its performance also surpasses that obtained by the weighted
fitness method by 14.29 % and the probabilistic fitness method by 16.76 %. It is
cheaper than the solution of the weighted fitness method by 46.67 % but costlier than
the solution of the probabilistic fitness method by 10 %.

The above results highlight the fact that when fixed weights are used for each
objective throughout the exploration path as in the case of weighted and probabilistic
methods, then the optimization algorithm rejects several combinations of objectives
that are actually acceptable to the user. Fuzzy rules evaluate the fitness values more
faithfully, applying different criteria under different states of functionality. This gives
a better chance to a wider variety of solutions to participate in the next generation of
evolution.

A Fuzzy Cuckoo-Search Driven Methodology for Design Space Exploration 149

5 Conclusion

In this chapter, we presented a user-centric design exploration methodology for
designing multi-objective multiprocessor distributed embedded systems. The pro-
posed methodology taps the power of a slew of soft computing techniques. The
effective use of fuzzy logic provides users the flexibility to specify a range of avail-
ability requirements under the fully functional and various faulty situations. Fuzzy
rules also allow the user/designer can express rules expressing acceptable trade-offs
among various conflicting design objectives in terms of linguistic variables. These
fuzzy rules are blended together smoothly by a fuzzy engine. We demonstrated the
efficacy of a new optimization algorithm called Cuckoo Search for conducting the
DSE. In comparison with GA, CS required lesser parameter tuning and was able to
produce a range of higher quality solutions in shorter run times.

References

1. Mentor Graphics, Vista a complete TLM 2.0-based solution (2011), Available: http://www.
mentor.com/esl/vista/overview. Accessed 2 June 2011
2. Cadence, A cadence vision: EDA360 (2011), Available: http://www.cadence.com/eda360/
pages/default.aspx. Accessed 2 June 2011
3. Synopsys, Platform architect: SoC architecture performance analysis and optimization
(2011), Available: http://www.synopsys.com/Systems/ArchitectureDesign/pages/Platform
Architect.aspx. (Accessed 3 June 2011)
4. Simulink, mathworks. (Online)
5. R.Luus, Optimization of system reliability by a new nonlinear integerprogramming procedure.
IEEE Trans. Reliab. 24(1), 14-16 (1975)
6. D.Fyfte, W. Hines, N. Lee, System reliability allocation and a computational algorithm. IEEE
Trans. Reliab. 17(2), 64-69 (1968)
7. Y. Nakagawa, S. Miyazaki, Surrogate constraints algorithm for reliability optimization prob-
lems with two constraints. IEEE Trans. Reliab. 3(2), 175-180 (1981)
8. K. Misra, U. Sharma, An efficient algorithm to solve integer programming problems arising
in system-reliability design. IEEE Trans. Reliab. 40(1), 81-91 (1991)
9. C. Sung, C.Y. Kwon, Branch-and-bound redundancy optimization for a series system with
multiple-choice constraints. IEEE Trans. Relaib. 48(2), 108-117 (1999)
10. B. Suman, Simulated annealing-based multi-objective algorithm and their application for
system reliability. Eng. Optim. 35(4), 391-416 (2003)
11. V. Ravi, B. Murty, P. Reddy, Nonequilibrium simulated annealing algorithm applied to relia-
bility optimization of complex systems. IEEE Trans. Reliab. 46(2), 233-239 (1997)
12. S. Kulturel-Konak, D. Coit, A.E. Smith, Efficiently solving the redundancy allocation problem
using tabu search. IIE Trans. 35(6), 515-526 (2003)
13. Y.-C. Liang, A. Smith, An Ant System Approach to Redundancy Allocation, in Proceedings
of the 1999 Congress on Evolutionary Computation (Washington, D.C., 1999)
14. Y.-C. Liang, A. Smith, Ant colony paradigm for reliable systems design, in Reliability Engi-
neering, vol. 53, ed. by Computational Intelligence (Springer, Berlin, 2007), pp. 417-423
15. G. Levitin, X. Hu, Y.-S. Dai, Particle swarm optimization in reliability engineering, in Com-
putational Intelligence in Reliability Engineering, vol. 40, ed. by G. Levitin (Springer, Berlin,
2007), pp. 83-112

http://www.mentor.com/esl/vista/overview.
http://www.mentor.com/esl/vista/overview.
http://www.cadence.com/eda360/pages/default.aspx.
http://www.cadence.com/eda360/pages/default.aspx.
http://www.synopsys.com/Systems/ArchitectureDesign/pages/PlatformArchitect.aspx.
http://www.synopsys.com/Systems/ArchitectureDesign/pages/PlatformArchitect.aspx.

150

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

S. Chakraverty and A. Kumar

. P.Yin, S. Yu, W.PP. Wang, Y.T. Wang, Task allocation for maximizing reliability of a dis-

tributed system using hybrid particle swarm optimization. J. Syst. Softw. 80(5), 724-735
(2007)

P. Busacca, M. Marseguerra, E. Zio, Multiobjective optimization by genetic algorithms: appli-
cation to safety systems. Reliab. Eng. Syst. Safety 72(1), 59-74 (2001)

A. Konak, D.W. Coit, A.E. Smith, Engineering & system safety multi-objective genetic algo-
rithms: a tutorial. Reliab. Eng. Syst. Safety, 992—-1007 (2006)

L. Sahoo, A.K. Bhunia, P.K. Kapur, Genetic algorithm based multi-objective reliability opti-
mization in interval environment. Comput. Ind. Eng. 62(1), 152-160 (2012)

X. Yang, S. Deb, Engineering optimisation by cuckoo search. Int. J. Math. Model. Numer.
Optimisation 1(4), 330-343 (2010)

I. Olkin, L. Glesser, C. Derman, Probability Models and Applications, 2nd edn. (Prentice Hall
College Div, NY, 1994)

K. Anil, C. Shampa, A fuzzy based design Exploration scheme for High Availability Het-
erogeneous Multiprocessor Systems. eMinds: Int. J. Human-Computer Interact 1(4), 1-22
(2008)

N.K. Kasabov, Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering
(The MIT Press, Cambridge, 1996)

J. Anderson, A Survey of Multiobjective Optimization in Engineering Design, Technical Report
Department of Mechanical Engineering (Linkoping University, Sweden, 2000)

A. Kumar, S. Chakerverty, Design optimization for reliable embedded system using Cuckoo
search, in IEEE International Conference on Electronics Computer Technology (ICECT),
Kanyakumari, India, (2011)

L.A. Zadeh, Fuzzy sets. Inf. Control 8(3), 338-353 (1965)

Part III
Modeling Framework

Model-Based Verification and Validation
of Safety-Critical Embedded Real-Time
Systems: Formation and Tools

Arsalan H. Khan, Zeashan H. Khan and Zhang Weiguo

Abstract Verification, Validation and Testing (VV&T) is an imperative procedure
for life cycle analysis of safety critical embedded real-time (ERT) systems. It covers
software engineering to system engineering with VV&T procedures for every stage
of system design e.g. static testing, functional testing, unit testing, fault injection
testing, consistency techniques, Software-In-The-Loop (SIL) testing, evolutionary
testing, Hardware-In-The-Loop (HIL) testing, black box testing, white box testing,
integration testing, system testing, system integration testing, etc. This chapter dis-
cusses some of the approaches to demonstrate the importance of model-based VV&T
in safety critical embedded real-time system development. An industrial case study
is used to demonstrate the implementation feasibility of the VV&T methods.

1 Introduction

Real-time systems is one of the challenging research area today, which addresses both
software and hardware issues related to computer science and engineering design.
In a real-time system the correctness of the system performance depends not only
on the logical results of the computations, but also on the time at which the results
are produced [1]. A real-time system changes its state precisely at physical (real)
time instant, e.g., maintaining the temperature of a chemical reaction chamber is
a complex continuous time process which constantly changes its state even when

A. H. Khan (X)) - Z. Weiguo
Northwestern Polytechnical University, Xi’an, People’s Republic of China
e-mail: arsalanl @mail.nwpu.edu.cn

Z. Weiguo
e-mail: zhangwg@nwpu.edu.cn

Z. H. Khan
Center for Emerging Sciences, Engineering and Technology (CESET), Islamabad, Pakistan
e-mail: zkhan@ceset.pk

M. A. Khan et al. (eds.), Embedded and Real Time System Development: 153
A Software Engineering Perspective, Studies in Computational Intelligence 520,
DOI: 10.1007/978-3-642-40888-5_6, © Springer-Verlag Berlin Heidelberg 2014

154 A. H. Khan et al.

Operator Controlling System Controlled System

b ACTUATORS

COMMANDS

1

REAL-TIME

SYSTEM PLANT

ﬁ SENSORS

PLANT STATUS _
DISPLAY

Fig. 1 Typical real-time system

the controlling computer has stopped. Conceived from controlling the real world
phenomena, real-time systems are often comprised of the following three subsystems
shown in Fig. 1.

Controlled system is the device (the plant or object), we want to control according
to the desired characteristics. It also contains actuating devices i.e., motors, pumps,
and valves, etc. and sensors i.e., pressure sensor, temperature sensor, navigation
sensor, and position sensors, etc. Surrounding environmental effects (disturbances),
sensors noise and actuators limits are also considered as a part of this subsystem.

Operator environment is the human operator, who commands the controlling
system to control the output of the controlled system. It also contains the command
input device i.e., keyboards, joysticks, and brake pedals, etc.

Controlling system is the real-time system or the controller which acquires the
information about the plant by using sensors and controls it with actuators according
to user demands under sensors imperfection and actuating device limitation consid-
erations.

Real-time systems can be categorized based on two factors [2]. The factors out-
side the computer system classify the real-time systems as soft real-time, hard real-
time, fail-safe real-time and fail-operational real-time systems. The factors inside the
computer system classify the real-time systems as event-triggered, time-triggered,
guaranteed-timeless, best-effort, resource adequate and resource inadequate real-
time systems. Typically, in real-time systems, the nature of time is considered,
because deadlines are instants in time. Safety-critical real-time systems are mainly
concerned with the result deadlines based on the underlying physical phenomena of
the system under control.

Locke [3] describes the classification of the real-time systems according to the cost
of missing a desired deadline as shown in Fig. 2. In a soft real-time system, producing
a result after its deadline will still be valuable to some extent even if the outcome is
not as profitable as if the result had been produced within the deadline and it may
be acceptable to occasionally miss a deadline. Examples of such systems include
the flight reservation system, TV transmissions, automated teller machine (ATM),

Model-Based Verification and Validation 155

Real-Time Systems

(RTS)
[
Soft Firm Hard essential Hard critical
RTS RTS RTS RTS
I " . Hard essential Hard critical
A
Softldeadlme A F|rmldeadllne A Ideadline A Ideadline
[
3] () [
s 3 3 3
> > >
> > >
time time time v time
N (penalty) -0 (disaster)

Fig. 2 Four types of real-time systems and their effects of missing a deadline

video conferencing, games, virtual reality (VR), and web browsing, etc. In a firm real-
timesystem, producing a result after missing few deadlines will neither give any profit
nor incur any cost but missing more than few may lead to complete or catastrophic
system failure. Such systems include cell phones, satellite-based tracking, automobile
ignition system and multimedia systems, etc. In a hard essential real-time system,
a bounded cost will be the outcome of missing a deadline e.g., lost revenues in a
billing system. Lastly, missing a deadline of a hard critical real-time system will
have dreadful consequences e.g. loss of human lives and significant financial loss
[4]. Examples of such systems include avionics weapon delivery system, rocket and
satellite control, auto-pilot in aircraft, industrial automation and process control,
medical instruments and air-bag controller in automotives to name few.

Hard critical real-time or simply hard real-time systems are usually safety-critical
systems. These systems must respond in the order of milliseconds or less to avoid
catastrophe. In contrast, soft real-time systems are not as fast and their time require-
ments are not very stringent. In practice, a hard real-time system must execute a set
of parallel real-time tasks to ensure that all time-critical tasks achieve their speci-
fied deadlines. Determining the priority order of the tasks execution based on the
provided rules is called scheduling. The time scheduling problem is also concerned
with the optimal allocation of the resources to satisfy the timing constraints. Hard
real-time scheduling can be either static (pre run-time) or dynamic in nature.

In static scheduling, the scheduling of the tasks is determined in advance. A run-
time schedule is generated as soon as the execution of one task is finished by looking
in a pre-calculated task-set parameters table, e.g., maximum execution times, prece-
dence constraints, and deadlines. Clock-driven algorithms and offline scheduling
techniques are mostly used in static systems, where all properties of the tasks are
known at design time.

In dynamic scheduling there is no pre-calculated task-set, decisions are taken atrun
time based on set of rules for resolving conflict between tasks, we want to execute

156 A. H. Khan et al.

Real-Time
Scheduling

/\

Soft RTS Hard RTS

Aperiodic Periodic
Task Scheduling Task Scheduling

/\ /\

Preemptive Nonpreemptive Preemptive Nonpreemptive
Scheduling Scheduling Scheduling Scheduling

parallel processor uni-processor

Fig. 3 Taxonomy of real-time scheduling with embedded hardware implementation

at the same time. One common approach is the introduction of pre-emptive and
non-pre-emptive scheduling. Priority-driven algorithms are mostly employed in
dynamic systems, with combination of periodic and aperiodic or sporadic tasks.

In preemptive scheduling, the presently running task will be preempted upon
arrival of higher priority task. In nonpreemptive scheduling, the presently running
task will not be preempted until completion. Parallel processing system is dynamic
if the tasks can migrate between the processors and static if the tasks are bound to
a single processor [5]. In general, the static systems have inferior performance as
compared to dynamic systems in terms of overall job execution time. It is easy to
verify, validate and test a static system as compared to dynamic system for which
sometimes it may be impossible to validate the system. Because of this fact, hard
real-time systems are preferred over static systems. Figure 3 shows the taxonomy of
real-time systems scheduling with implementation architecture.

Often, the real-time systems are implemented with combination of both hard
real-time tasks and soft real-time tasks. Traffic control system is a typical example
of a critical hard real-time task to avoid crashes as compared to soft real-time tasks,
where optimized traffic flows can be experienced. In measurement systems, value
of timestamps is a hard real-time task and delivering timestamps is a soft real-time
task. Another example of such an application is a quality control using robotics where
defective product removal from the conveyer belt is a soft real-time task and stopping
it in emergency is a hard real-time task.

Generally, embedded systems are used to meet the real-time (RT) system per-
formance specifications in an individual processor form or in a complete sub-
system form i.e., System-On-Chip (SOC). Dedicated embedded hardware i.e., gen-

Model-Based Verification and Validation 157

Applica!lon
Software Other Hardware rTOS

Real-Time
Operating System
Memory (RTOS)
< R

—

‘ p AID Sensors
— ﬁ

ASIC/IFPGA

Processor(s) Gia
<~ ==
~ Actuators
% b
g ~
4
Diagnostic Port
Auxiliary Systems

we) (power, cooling,...)
LA
.g""

Video Processor

[P Converters

Human Command
Interface

Fig. 4 Building blocks of embedded real-time system

eral microprocessors, micro-controllers, field programmable gate arrays (FPGAs),
application specific integrated circuits (ASICs), and digital signal processors (DSPs),
involved in sensing and control with real-time scheduling algorithms are used
to deliver correct results at precise right time. Embedded real-time systems have
advance computing capabilities, fault tolerance (FT), and quality-of-service (QoS),
with additional constraints on size, weight, cost, resource optimization, time-to-
market, power, and reliability in harsh conditions. According to recent studies,
approximately 99 % of all the processors use in embedded systems. Main build-
ing blocks of embedded RT system are shown in Fig. 4.

Embedded systems are so common in our daily lives that even we do not notice
their presence. Most common applications of embedded systems are shown in Fig. 5.
Currently, multi-processor based embedded systems are widely used in communi-
cation systems, telecommunication and networking. According to recent research
survey, software development for embedded systems has risen to account more than
50 % of the total project cost because of the development trend towards more and
more use of multi-processor based architecture in next-generation embedded devices
[6]. Multi-processor systems are quite fast as compared to single processor based
systems but to ensure the reliability of these systems we still need more expertise
in software development and verification, validation and testing (VV&T) of these
systems.

Figure 6 shows the distribution of embedded systems in engineering applications.
Communication systems have the largest share of embedded market because of the
soft real-time requirements with multi-core processors and multiprocessors for high
speed signal processing. According to a survey, software development engineers
are expecting increase in multi-core processors usage in safety-critical applications

158 A. H. Khan et al.

Traffic
Management

Aircraft Flight Control

Fax Machine

N \

Television

Security System

Printer

g A ‘I
{14

it

Camera

Microwave Oven Ultra Sound Machine

Fig. 5 Embedded real-time systems around us

such as those found in aerospace and medical equipment industries by employing
advanced reliable verification, validation and testing procedures [6].

Since this chapter is mostly concerned with the safety-critical systems or hard real-
time systems, it will use the term real-time system to mean embedded, hard real-time
system, unless otherwise stated. Lack of expertise in embedded software development
and insufficient advancement in VV&T methodologies/tools are main problems to
cope, in order to transform the market trend towards multi-core processors architec-
ture in safety-critical systems. VDC’s 2010 Embedded System Engineering survey
shows that current embedded projects using multiprocessors/multicore architectures
have become larger, longer, and farther behind schedule than those utilizing single
processor designs because of the unavailability of dependable model based VV&T
tools. Figure 7 shows the importance of VV&T engineers in embedded real-time
products development.

Software engineers have the major role in the development of modern technology.
Due to the trend in next generation embedded real-time products and applications
voracious consumer market large amount of embedded software is required to fulfill
the customer demands. Embedded software quality, customer satisfaction, cost, and
delivery on time are the four main factors to dominate in competitive market. As
compared to late 1960s, now software engineering has improved a lot but still much
advancement is needed in this area. As the software market expands and improves
with the contribution of system engineering in ensuring the quality of product, the
problems still exist because of the complexity of systems [7]. All the four objectives,

Model-Based Verification and Validation 159

Communications/ Medical
Networking Instruments

Automotive /
Transportation
Systems &
Equipment

Aerospace
Electronics

Electronic

Consumer Testing
Elect!'onlc‘s / Equipment
Multimedia
Computers/
Office
Other
Automation

Government /
Military
Electronics Industrial Control

Fig. 6 Market shares of embedded systems in engineering systems

Algorithm
Developers

System
Engineer

Software
Engineer
Project
Managers
17.9%
o |5 Test/Verification/
IC/SOC 8.2% LD Validation Engineer
Engineer

Board Mechanical
Engineer Engineer

Fig.7 Percentage of full-time engineers working on projects in the year 2010 (extracted from [6])

i.e. quality, user satisfaction, costs according to budget and schedule are interdepen-
dent as each corner of a square shown in Fig. 8. These interconnected targets can
easily be achieved using model-based design and VV&T techniques, which is the
theme of this text.

160 A. H. Khan et al.

Fig. 8 Four objectives in Schedule Cost
next generation software e e
engineering

Customer Quality

2 Background and Purpose

One of the most demanding application of embedded real-time system is the safety-
critical systems where little unseen software bug or hardware design malfunction
can cause unenviable damage to the environment and could result in loss of life
[8]. These expensive complex systems such as hybrid electric vehicles, autonomous
underwater vehicles (AUV), chemical plants, nuclear power plants, aircraft, satellite
launch vehicle (SLV) and medical imaging for non-invasive internal human inspec-
tions are designed in such a way to ensure system stability and integrity during all
of the system functional modes in normal scenario and some level of performance
and safe procedure in case of faults. Multiple distributed embedded real-time (RT)
computers are used in medical, aerospace, automobile and industrial applications for
fast real-time performance with controllability of the system.

Testing and qualification of a safety-critical embedded real-time system is of great
importance for an industrial product development and quality assurance system.
Embedded real-time system is a blend of advanced computer hardware and software
to perform specific control function with stringent timing and resource constraints
as a part of larger system often consists of other mechanical or electrical hardware.
For example to maintain the flow of a liquid through a pipe, we need some actuating
mechanism i.e., flow control valve and sensing device e.g., flow meter in a digital
closed loop as shown in Fig. 9. Where 1(t), ¢, y(t), Yk, €k, Uk, and u(t) are reference
command, sampled reference command, process output, sampled process output,
sampled error, sampled control signal and continuous control signal respectively.
At each phase of an embedded software development life-cycle, we require a quick
verification methodology with appropriate validation test cases because of tight time
schedules during product development.

The benchmark for measuring the maturity of an organization’s software process is
known as capability maturity model (CMM). In CMM there are five levels of process
maturity based on certain key process areas (KPA) as shown in Fig. 10. There are four
essential phases of embedded real-time software development process. First phase
is of the requirements realization/generation, review, analysis, and specification.

Model-Based Verification and Validation 161

_____________________ 1
! |
Reference | oD Ik €k Embedded Uk |
Inputs =T converter Control Laws |
r(t) I |
| Yi |
| AID D/A
| Converter Control SVStem Converter :
L] | _]
y(t) u(t)
____________________________ |
l \ 4 I
Outputs l <~ Flow <~ |
y(t) : «—)E meter Valve -~ |
-
L Controlled System pipe :

Fig. 9 Simplified block diagram of embedded real-time control system

* process change management

* technology change management
* defect prevention

* improvement procedures

* software quality management
* quantitative process management

* integrated software management
* organization process definition
* software product engineering

* intergroup coordination
* training program

* software quality assurance = Pe€r reviews

* software project planning

* requirements management
* software configuration management
* software project tracking and oversight

* comparison with next level
* software quality managed at individual level

Fig. 10 Capability maturity model (CMM) for software development organizations

Second phase is of system design and review. Third phase includes algorithm imple-
mentation and final phase is of extensive testing. Each of these phases has an output
which we have to validate. Interpretation of these phases may differ according to
the projects. Each particular style and framework which describes the activities at
each phase of embedded software development is called a “Software Development
Life-Cycle Model”.

162 A. H. Khan et al.

3 Methods in VV&T

Here, we provide a brief overview of the model based verification, validation, and
testing procedures employed for embedded system design. Verification is the process
of assessing a system or component to determine whether the products of a given
development phase satisfy the requirements imposed at the start of that phase whereas
validation is the process of assessing a system or component during or at the end
of the development process to determine whether it satisfies the specified product
requirements [9]. Verification, validation and testing (VV&T) is the procedure used
in parallel to system development for ensuring that an embedded real-time system
meets requirements and specifications and that it fulfills its deliberate purpose. The
principal objective is to determine faults, failures and malfunctions in a system and
evaluation of whether the system is functional in an operational condition.

There are various embedded real-time software development life-cycle (SDLC)
models available in technical literature. Some of the well known life-cycle models
are:

1. Incremental Models
2. Iterative Models

e Spiral Model
e Evolutionary Prototype Model

3. Single-Version Models

e Big-Bang Model

e Waterfall Model without “back flow”
e Waterfall Model with “back flow”

e “V” Model

3.1 Incremental Models

In this software product development model, the product is designed, implemented,
integrated and tested as sequence of incremental build as illustrated in Fig. 11. On
the bases of initial requirements a partial implementation of complete system is
performed. Then additional requirements and functionality is added. The incremental
model prioritizes requirements of the system and then implements them in groups.
Each subsequent incremental model of the system adds function to the previous
increment as shown in Fig. 11.

3.2 Iterative Models

As compared to the incremental models, iterative models do not start with a com-
plete initial specification of requirements and implementation. In fact, development

Model-Based Verification and Validation 163

Design| Code Test

Code

Test

IIHHH’IIHHHII

"HH%%%%HHHHH)

Implementation

W-HZmMEmMI-—-—COMmMI

Fig. 11 Incremental SDLC model

Fig. 12 Iterative SDLC BEGIN
model

COMPLETE

begins with specifying and implementing just part of the software, which can then be
reviewed and modified completely at each phase in order to identify further require-
ments. Figure 12 shows an iterative lifecycle model, which consist of repeating the
four phases in sequence. For further details see Ref. [10].

3.3 Single-Version Models

In this software product models, one VV&T procedure is followed without addition
or review of product design after requirements identification at later stage. Some of
the models categorize in this group are discuss next.

3.3.1 Big-Bang Model

Here a software developer works in isolation for some extended time period to solve
the problem statement. Developed product is then delivered to the customer with a
hope that client is satisfied.

164 A. H. Khan et al.

(a) (b)

Implementation Implementation

Fig. 13 Waterfall SDLC models. a Waterfall without “back flow”, b Waterfall with “back flow”

3.3.2 Waterfall Models

This is one of the oldest and widely used classical software development models
initially utilized in government projects. This model emphasizes on planning and
intensive documentation which makes it to identify design flaws before development.
The simplest waterfall lifecycle model consists of non-overlapping phases where each
phase “pours over” into the next phase as shown in Fig. 13a.

Waterfall model starts with the requirements phase; where, the function, behavior,
performance and interfaces are defined. Then, in the design phase; data structures,
software architecture, and algorithm details are decided. In implementation phase the
source code is developed in order to further proceed towards testing and maintenance
phases. There are many variants of simple waterfall model. One of the most important
is with correction functionality where detected defects are corrected by going back
to the appropriate phase as shown Fig. 13b.

3.3.3 V-Model

One of the most effective and employed lifecycle model used for software design and
VV&T is V-model [11] as shown in Fig. 14. In V-lifecycle model verification and
validation activities are performed in parallel with development process. At initial
development phase verification and validation are of static in nature whereas in later
development phases they are dynamic [10]. The static verification is concerned with
the requirements, analysis of the static system representation and tool based software
analysis. The VV&T after availability of software is of dynamic character with test
data generation, product functional performance testing, integrated system testing
and acceptance testing.

Model-Based Verification and Validation 165

Design Validation

ystem requiremets i 2
Modeling & ntegrated testing
Simulation and verification

System software HIL testing

Systems
Engineering

design
System software Unit testing.
review (PIL)

\ /

Rapid prototyping
(SIL)

| [mplementation

Fig. 14 Model-based embedded real-time software system development V-lifecycle model

The V-model can be considered as a unique product development model with
VV&T process which considers the corresponding quality control activities, rep-
resented by big arrow from right to left part of the V in Fig. 14. The left part of
V-model can be seen as the waterfall model from requirements description, require-
ments analysis, design definition, design review, down to implementation of software
code on real embedded hardware, including subsequent verification activities. The
right part of the V-model describes the testing activities, unit tests, HIL tests, inte-
gration tests, and system tests for qualification and acceptance. One of the important
advantages of this product development process is that project management can track
progress milestones. Each phases of this process model delivers a testified product.
Another benefit of this model is that an inspection can be performed as soon as a
product, or part of a product, is produced. Some typical examples are the inspection
of developed algorithm against the design document and inspection of the part of a
product through unit testing against requirements.

Here, we choose V-model to present for safety-critical embedded real-time system
development because of its stability, reliability and easy to use characteristics. In
literature, a lot of techniques and detail steps are available for verification, validation
and testing in V-model which are related with software engineering, software systems
engineering, and systems engineering, €.g.

1. Model checking
2. Inspection

3. Simulation

4. Static analysis

166

Verification

It focuses on the
correctness of the
algorithm, its outputs

Testing

Hardware
_ s Integration
N

Reviews
-~
7

A. H. Khan et al.

Validation

It focuses on the
functionality of the
product in the real

analysis, and
consistency in context
of the design

environment according
to the user
requirements using

User
system
inspection

s
SIL test
Walkthroughs / ne il

i Software | PIL test

Integration |

HIL Test |

specifications using N Acceptance , actual system
iterative test and \\ | System test test components,
analysis procedures Simulations ~ \ e goal simulators and testing

for product quality
improvement.

procedures for quality
control.

analysis

Static analysis
Prototyping

Inspection

Fig. 15 VV&T techniques in V-model and their interconnection

. Software-In-the-Loop testing (SIL)

. White-box and Black-box testing

. Processor-In-the-Loop testing (PIL)
. Evolutionary testing

. Hardware-In-the-Loop testing (HIL)
. Fault-injection testing

. Integrated and acceptance testing

1
1

— O O 0 O\

and many more. For a quick survey of VV&T techniques and IEEE standard for
software verification and validation see [12—14]. The interconnection between model
based VV&T techniques in V-model is shown in self-explanatory Fig. 15.

Model checking: In model-based VV&T procedure, model checking is one
of the most important techniques for analysis of complex safety-critical systems.
Matlab/Simulink® [15] is one of the most widely used embedded real-time system
model development, simulation, analysis, verification, validation, testing and rapid
prototyping model-based tool chain for safety-critical applications. In Simulink®
[16], stateflow charts and simulink models are used for system modeling as shown in
Fig. 16. There are several toolboxes available in Simulink i.e., Simulink Design Ver-
ifier™, Simulink Verification and Validation™, SystemTest™, and Simulink Code
Inspector™ for model checking and algorithm verification and validation according
to DO-178D and IEC 61508 industry standards. Custom Simulink models can be
developed using S-Function blocks.

Simulation: Simulation and model checking is performed repetitively against the
defined requirements and specifications. It is also used for analysis purposes to check
the design loopholes and test basis for final implemented software product.

Inspection: It is one of the verification techniques which are performed by group
of people having experience in development and execution of the VV&T object (the
product under study) and people having not. The team checks the VV&T object
line by line against a checklist by means of its source code. Inspection includes
walkthroughs, software reviews, technical reviews and formal inspection.

Model-Based Verification and Validation 167

L ™

plrats | | tnonerru

T

| e :
"Shift_logic' stateflow chart g [atpttace |
| Yananiazon
i@ Brake |
! Thettie Eraresm masaon speed
]
Double-click b s
cpen the GUI o
and select an | T
input manewver |

veticie moh

Fig. 16 Simulink automatic transmission control (ATC) system modeling

Static analysis: It means verifying a product without executing the VV&T object.
These checks are text analysis, requirement analysis and VV&T functionality review.
This review is performed by a team of VV&T experts and product designers. This
technique is able to find missing, deficient and unwanted functionality in the source
text of the product under analysis at early development phase.

Testing: Testing is carried out to check dynamically, whether the product require-
ments are fulfilled. Both, verification and validation can be performed by testing. The
biggest advantage of testing as compared to other V&V techniques is the analyz-
ing the system in realistic application environment. This allows the realistic online
and real-time behavioral examination of the developed product. Here we describe
some of the common In-the-loop testing procedures in model-based safety-critical
embedded real-time product development.

Component testing: It is performed in SIL to verify the individual, elementary
software component or collection of software components in a model-based closed-
loop real-time simulation environment. Each software code is extensively verified
with respect to requirements, timing and resource constraints. In model-based VV&T
process automatic code generation technology is used for rapid prototyping of sim-
ulation model or design fully implemented in embedded software code. Which can
also act as a final embedded real-time product or used as a simulator for further
product testing procedures i.e., PIL, HIL and system integrated testing.

White box testing: It is called code based testing [17] which treats the software
as a box that you can see into to verify the embedded real-time software code execu-
tion. Black box testing (also called specification based testing or functional testing
[17]) treats software as a box that you cannot see into. Here we have to check the
functionality of the implemented code according to the specification without con-
sideration to how the software is implemented. It looks what comes out of the box
when a particular input data is provided.

Processor-In-the-loop (PIL) testing: It is performed after successful implemen-
tation of design software on actual processing hardware with electronic hardware I/O
interface availability. SIL simulation results are compared with the PIL simulation

168 A. H. Khan et al.

Initialization
. initial population Are termination
generation criteria met?

.evalution of individuals /
i

Best individuals

S
T [Competition generate new Selection] l
population
Start T l Solution
[Migration] [Mating]
Reinsertion Mutation]
\ Offspring evaluation

Fig. 17 Structure of evolutionary algorithm

results to verify the compiler and processor. In PIL, we check the shortest and longest
execution times of the implemented embedded software algorithm through evolu-
tionary testing. Where each individual of the population represents a test value for
which the system under test is executed. For every test value, the execution time is
measured to determine the fitness level of individual.

Extended evolutionary testing: In this approach is presented in [18] which allow
the combination of multiple global and local searching strategies and automatic
optimal distribution of resources for the success of the strategies. In recent study
[19] evolutionary algorithm is used for generation of test traces that cover most or
all of the desired behavior of a safety-critical real-time system. Evolutionary testing
is also used for verification of developers’ tests (DT). For a detailed discussion of
evolutionary algorithms see [20]. General evolutionary algorithm execution flow is
shown in Fig. 17.

Hardware-In-the-Loop testing: It is performed with realistic input data and other
actual mechanical/electrical system components to validate the embedded real-time
software. HIL testing is the standard verification and qualification procedure for
safety critical products industry. HIL simulation response is compared with the PIL
testing results and SIL testing results to ensure the correctness of the embedded
real-time algorithm. Fault injection testing is also carried out with HIL simulation
testing to check the robustness of the system to unwanted environmental conditions.
Figure 18 illustrates the HILS testing of an unmanned aerial vehicle (UAV) to validate
the flight controller.

After successful HIL testing and verification of embedded RT flight control com-
puter (FCC), entire integrated system testing is performed. Where actual flight vehi-
cle sensors, actuators and engine are installed with the FCC and the real-time flight

Model-Based Verification and Validation 169

UAV Angular

] Motion

RT Simulation
Computer with HMI

3 - Axis Motion

Analog/Discrete _/ _
Platform Commands and
u Telemetry
Inertial Sensor Actuator
Feedback

Data

Other simulated
Sensor Data

¥FEF

El

Actuators
Commands

Flight Computer Actuators

Fig. 18 HIL testing of embedded real-time flight controller

ground data is logged for verification and comparison with the design requirements
and RT simulation. Integration testing checks the defects in the interfaces and interac-
tion between integrated subsystems. These integrated subsystems behave as elements
in an architectural design where the software and hardware works as a system [21].

Integrated and acceptance testing: Complete integrated system and formal
acceptance testing is performed in the presence of customer to validate the system
standard and customer requirements. After the certification and customer approval
product will go to the production department with specification and VV&T details
according to the requirement and quality standards.

170 A. H. Khan et al.

4 Challenges in Model Based ERT Systems VV&T

To cope with increasing demands in processing power of embedded real-time system
for controlling complex systems, multi-core architectures are the next generation pri-
ority in ERT software implementation and testing. It is sometime become impossible
to satisfactorily validate a multiprocessor dynamic system algorithm with real-world
scenario.

Real-world modeling of sensors is a challenging task because of performance
degradation due to ageing, quantization, vibration, noise and nonlinearities, etc. Ver-
ification of controllable behavior of ERT control system in sensor fault/failure case
is hard to perceive. Reliability of actuators is also a main factor to ensure the fast and
precise performance of an embedded control algorithm. Actuating devices are some-
time not possible to verify in complete system configuration because of their cost
and complexity for example aircraft’s thrust vectoring system is normally verified at
component level.

On-time project completion with reliable VV&T procedures is difficult using tra-
dition methodologies. Verification and validation of In-Vehicle control systems is an
open challenge for engineers due to increasing demand of safety, comfort, perfor-
mance, and sustainability [22]. Effective communication between software develop-
ers and VV&T engineers is a problem because of varying development platforms,
concepts, terminologies, and acronyms. So, it is preferable to use single software
development platform for all major activities from design, development to VV&T
i.e., Matlab/Simulink and Labview.

Environmental effects, uncertainties, modeling errors, and testing equipment limi-
tations are main hurdles in effective VV&T. Cost and resource requirements for mod-
eling and real-time simulation development is also a challenge for reliable VV&T
and also not widely shared because of the projects sensitivity. Rigorous and repeat-
able methods are required for modeling, simulation, testing, formal assessment and
qualitative assessment. The challenge is how to ensure that best optimized practices
are employed.

Autonomous, intelligent and adaptive ERT control algorithms VV&T is a major
challenge for uninhabited aerial vehicles (UAVs), automobiles, aircrafts, satellite
vehicles, and space robots certification [23-27].

5 Case Study in VV&T of Aerospace System

In industry, VV&T is incorporated as a standard procedure in the product design
cycle. Here, one of the most challenging industrial application is discussed in detail.
Hardware in the loop testing of an autonomous aerial vehicle is presented in the next
section.

Model-Based Verification and Validation 171

Embedded Flight Computer

Signal Controller Output Driver
Conditioning [FCC]

A/D, PWM, etc.

D/A, encoder etc. Telemetry PC

Airframe
nonlinear Model
(Simulation PC)

Hardware in the Loop Simulator

Fig. 19 Hardware in the loop testing of UAV avionics

5.1 VV&T of a Modern Autonomous UAV System

Anunmanned aerial vehicle is an autonomous embedded platform with many sensors,
actuators and multiprocessor systems where critical subsystems are responsible for
overall system performance. Hardware in the loop test setup is a part of VV&T
procedure as shown in the Fig. 14. The modern day flight vehicles are intelligent
systems used for various applications where survivability and mission completion is
one of the prime objectives. Figure 19 depicts the general layout of the HILS testing
for the verification of flight computer code and sensor/actuator integrity. Airframe
model with nonlinear environment, disturbances and wind gust model as well as
the flight profile is simulated in the Simulation PC. The six degrees of freedom (6-
DOF) motion simulator actually simulates the airframe with its inner axis, middle
and outer axis each corresponding to the roll, pitch and yaw of the UAV system.
Thus, the attitude of the UAV in the 3 axis as shown in the graphical interface on
the simulation PC is closely followed by the motion simulator. The flight control
computer (FCC) gives the actuator commands which are sensed by the nonlinear
simulation model. The IMU senses the corresponding roll/pitch/yaw of the UAV and
sends these measurements to the FCC which takes appropriate action to ensure the
attitude as per flight plan. In addition, the telemetry PC shows all the important flight
parameters to the user.

Two real-time test benches are setup using two separate technologies. One solu-
tion is based on Matlab real-time windows target (RTWT) with graphical autopi-
lot interface and other one based on start-of-the-art dSPACE real-time interface
(RTI) with ControlDesk technology for the flight testing of customized commercial

172 A. H. Khan et al.

Aerodynamic
Model

Atmosphere
Model

Sensors
>
>

Propulsion

\ Model /

Equations
of
Motion

- - Y

Fig. 20 Basic layout of AeroSim non-linear aircraft

of-the-self (COST) UAV system. A low cost off-the-shelf autopilot and sensor system
is used to develop this platform.

Here the plant model is a physical, functional, logical, and mathematical descrip-
tion of an aircraft and it’s environment which replicates the real complex system
characteristics using data fitting, system identification, physical modeling, parameter
estimation and first-principles modeling techniques. Most of the real-world systems
are highly nonlinear and their respective models can be developed by expressing them
in high-order complex mathematical terminologies to increase their accuracy. The
developed models are not 100 % accurate with respect to the true system; however,
they are quite useful for understanding and sufficient for controlling the system.

UAV nonlinear simulation model is modified from Aerosonde UAV Simulink
model available in AeroSim Blockset from Unmanned Dynamics [28]. The AeroSim
Blockset and Aerospace Blockset library provide almost all the aircraft model com-
ponents, environment models, and earth models for rapid development of 6-DOF
aircraft dynamic models. Figure 20 shows a basic layout of nonlinear aircraft model
subsystems from AeroSim Blockset library [28]. Customization of the aerodynamics,
propulsion, and inertia Aerosonde UAV simulink models is performed after exten-
sive experimentation on our small UAV. Generally, the equation of motion, earth
and atmosphere Simulink models are not modified because they are independent of
the aircraft system used. Brief description of adapted aircraft subsystem models is
presented in next section. First order actuator dynamics with saturation limits are
used to simulate the control surface characteristics.

Model-Based Verification and Validation 173

Aerodynamic model of a 6-DOF conventional aircraft is usually derived from
equations of X, Y, and Z forces acting on the vehicle body x, y, and z direction and L,
M, and N moments acting on vehicle body X, y, and z direction [29]. Force equations
used can be found in [29] and they are expressed below. The summation of the forces
in each body axis gives linear velocity state equations.

F
=rv—gqw—gysinf + — (1)
m
o s Fy
v_pw—ru—l—gosmgbcost?—i—;)
. / F;
W =gqu— pv+gycospcost + — 3)
m

where u, v, and w are the body axis linear velocities in m/s, p, g, and r are the body
axis angular rates in rad/s, ¢, 0, and 1) are the body attitude angles, Fy, Fy, and F,
are the force components in each body axis.

Moment Equations are derived by considering moment about the aerodynamics
center of the aircraft, the 6-DOF moment equations are given as

p=(ar+cp)g+cal+cN (4)
G =cspr—ce(p> —r?) + 1M (5)
P = (cgp —car)q + c4L + coN (6)

where c1—cg are the interia coefficients which are computed using AeroSim library.
The moments L, M, and N include all the available loads (i.e. aerodynamics, thrust,
winds) and they are given with respect to the current location of aircraft center of
gravity (CG).

The kinematic equations of the aircraft rotation motion using classical Euler angles
¢, 0, and 1 with the body angular rates p, ¢, and r and aerodynamics angles «, (3,
and -y are given by

qﬁ: p + tan 6(g sin ¢ + r cos ¢) 7

9=qcos¢—rsin¢ ®)

¢:qsin¢+rcosqb ©)
cos

0 =~+acos¢+ [sing (10)

The propulsion system models the interaction between the electric motor and pro-
peller dynamics. The electrical characteristics of motor is used to describe the motor
dynamics and rotation speed of propeller (w)) is used to describe the propulsion
dynamics. Our small aircraft flight dynamics are sensitive to propulsion dynamics
because of the large torque from the propulsion system as relative to its size. The
propulsion system dynamics is expressed in the following equation using conserva-
tion of angular momentum.

174 A. H. Khan et al.

Unotor + Ipropeller)wp = Tnotor — Tpropeller (11)

where Ljoror and Ipropeirer are the moment of inertia of rotating motor body and
propeller respectively in kgmz, Tnotor and Tpropelier are the output torque at motor
shaft and torque generated by propeller respectively in Nm.

The inertia model consists of the aircraft inertia parameters, including mass,
CG position, and moment of inertia coefficients. The aircraft moment of inertia is
described by the moment of inertia matrix / as

Ixx _Ixy _Ixz
I=| —Iy —Iyy =1y,
_sz _Izy IZZ

Beside the aircraft moment of inertia matrix, propulsion system moment of inertia
coefficients are determined using pendulum method in lab experimentation setup.

The linearized state-space aircraft model obtained at trim point in desired flight
envelope using numerical linearization is given by:

X =Ax+ Bu (12)
y=Cx+ Du (13)

where x is state vector consists of [p 0 Y pgruvwhw p]T where ¢, 0, and 1) are the
Euler angles in rad, p, ¢, and r are body axis angular rates in rad/s, u, v, and w are
the body axis velocities in m/s, & is the altitude in m and w), is the propeller speed
in rad/s. The control input vector u consists of elevator, aileron, rudder and throttle
inputs given by [6, 0, 0, 6,17 inrad. y is the output vector consists of [V 3 a ¢ 0 p h]T
where V is the airspeed in m/s, 3 is the sideslip angle in rad and « is the angle of
attack (AOA) in rad. The properties of the system are expressed in state matrix A
(n xn) and input matrix B (n x r) that weight the inputs. The output equation matrices
C and D are determined by the particular choice of output variables.

The flight control algorithm is based on classical Proportional-Integral-Derivative
(PID) controller tuned at trimmed flight conditions. Figure 21 shows the complete
UAYV model-based flight control loop with pilot commands input and real-time flight

Senses

Cantiel Algorithm

Alroratt Dynamics

Pilat Display

Fig. 21 UAV flight control simulation loop in Simulink

Model-Based Verification and Validation 175

status display in Simulink. Initially, control algorithm is implemented in C S-function
form and then executed on 32-bit MPC565 embedded microprocessor running at
56 MHz using Simulink embedded target code generation technology. Flight code is
first verified with dummy control surfaces on actual actuators using digital-to-analog
converters (DAC) and analog-to-digital converters (ADC) of NI6025E DAQ card.
Afterward simulated sensors are replaced by available real sensors using high speed
Quatech RS232/RS422 serial interface in HILS.

Autopilot flight control computer has embedded hardware which can be com-
pletely programmed through Simulink using Embedded Target toolbox for Motorola
PowerPC (ETMPC) and Real-Time Workshop Embedded Coder (RTWEC). This
high performance embedded solution is equipped with floating point unit (FPU),
third generation time processor unit (TPU), 1 MB of Flash memory and queued
serial multichannel modules (QSMCM) that offer highspeed UART and SPI func-
tionality. Flight control algorithm based on CS-function is replaced by actual flight
control processing hardware for PIL simulation testing and verification.

Matlab/Simulink provides modeling and simulation of UAV flight control loop
with external mode to communicate with embedded hardware and nonlinear plant
components in real-time windows environment. Figure 22a shows the bank angle
(¢) tracking of UAV with roll rate (p), pitch rate (q), and yaw rate (r) state variables
in real-time (RT) and HIL simulation cases. Commanded actuator deflection with
feedback data acquisition through NI6025e connected in HIL simulation setup is
shown in Fig. 22b.

In Fig. 22 RT simulation means that plant model (containing flight dynamics,
actuators, and sensors) and Controller model (in terms of discrete time PID controller
equations) both are running on the simulator processor (PowerPC 750GX) in Hard
RT environment also known as ‘software in loop simulation’ (SIL). While, HIL
simulation means that actual UAV flight controller based on powerPC processor
(MPC565) will come into loop with other actual flight components like pilot stick,
actuators and sensors. Only simulation RT data acquisition and flight simulation
online comparison is performed through simulator’s processor in HIL simulation for
further analysis and V&V purposes.

Aircraft flight simulation avionics interface is developed using Gauges Blockset
library as shown in Fig. 23. It includes airspeed indicator, artificial horizon, altimeter,
turn coordinator, horizontal situation indicator, and a compass. UAV nonlinear 6-DOF
simulation model consists of full nonlinear equations of motion. Aircraft actuator sub-
system consists of nonlinear actuators model with rate-limiter and position-limiter.
Sensor subsystem consists of sensor dynamics with noise and disturbance model.
Complete simulation is running at 20 ms sample time thread and flight controller is
executed at 40 ms sample time thread.

Flight data telemetry is performed on-board using high speed RS422 link with
data checksum capability at 20 ms sampling rate. RF telemetry is also carry out
for remote online flight data display and diagnostics in case of accident at 40 ms.
HIL simulation is the extension of PIL and SIL simulations that includes actual
actuators with dummy control surfaces and sensors on a 6-DOF motion platform
for replicating the aircraft motion during flight. Actuators motion is also monitored

A. H. Khan et al.

176

Time [sec]

[oas/Bap] d

Time [sec]

Time [sec]

Time [sec]

100

oyeuq Jie

Q

[6ep] "™

Time [sec]

Time [sec]

Fig.22 RT and HIL simulation responses. a RT and HIL simulation response in tracking bank angle

command (¢) with states, b Comparison of RT and HIL simulation control surfaces deflections

Model-Based Verification and Validation 177

08 + awE 8= & amm s L B s aEm

Fig. 23 UAV real-time avionics display at different flight conditions in RTWT

for troubleshooting any problem in FCC command implementation. Pilot command
input is also rate and position limited to avoid improper command which can cause
damage to the system.

Model-based UAV system development in Matlab/Simulink helps to reduce the
risk, developmental costs, and time. HIL simulation offers complete system testing,
verification, and validation of UAV on ground with actual flight components in hard
real-time environment. Further, advantages include;

e Rapid testing and identification of FCS issues before real flight test.

e Multiple simulation runs are possible to verify the accuracy and repeatability of
system performance.

e Provides a test bed for different flight controllers performance testing and compari-
son. Fault injection mechanism is also possible to test the fault-tolerance capability
of the FCS in closed-loop environment.

e Provides a close to real environment for the pilot and flight test engineers to feel
the actual flight situations.

e It can be used for each individual subsystem testing, verification and validation by
simulating the other system components in real-time environment.

e It can be used for post-flight analysis and test flight data verification.

Initially, PID controllers are implemented for each longitudinal and lateral mode
of UAV flight development and testing. Further work includes optimal controller
design, adaptive controller design and inclusion of actuators fault-tolerance using
control allocation (CA) strategies as detailed in [30, 31]. Also a fault detection and
isolation (FDI) block can be introduced in modular flight controller design to handle
actuators and sensors faults. FlightGear a free open-source flight simulator can also
be you to visualize the aircraft flight motions.

Another HIL simulation setup is developed with Matlab/Simulink model-based
environment using dSPACE hard real-time software development kit and dedicated
hardware. It is not as cost effective solution as the former one but has superior real-
time performance with on-line data display and precise high-speed data storage. For
hard real-time performance testing, verification, and validation dSPACE systems are

178 A. H. Khan et al.

10 x 10
) — = — = — = — = — = — = — = — = — = — =
pjo.0a) 1 1 1 1 1 1
¥: 0.001166 | i i i i i ——TET
| i i i i i i — TET(max)
o tre--- Foo- R R 1= e 1= --q---1— TET@vg) [
) i i i i i i i . .
o}
2,
® 0gl---- e el e o oo R S S S
E oo oo
}—
c
o i
S 0.6 - - m - memm = I Y:0.0008545 - = —l= = = = —l= = = — A= = = A=~ = — 4 =~ —
=] |
o T
Q k10"
<
& 5.7
-2 I e e SN [S Lo_aoo
©
- ' ! ! ! N e LR L
I I I I I | | | | |
02L---- benen beees .. feeen :,,S.SSMMM»M?\,,
| | | | | T
| | | | [1 A R) R R
182 18.4 186 188 19| 19.2
0 L L L L

0 10 20 30 40 50 60 70 80 90 100
Simulation Time [sec]

Fig. 24 Aircraft real-time simulation task execution time (TET) at each sample instant using
DS1005PPC board

generally preferable. Here, we use Matlab2008b with ControlDesk 3.3 for the devel-
opment of HIL simulation platform for UAV flight controller VV&T. UAV flight
simulation task execution time (TET) in dSPACE is quite impressive as shown in
Fig. 24. Worse case time required to complete real-time task in dSPACE is approxi-
mately 1.2 ms and on average approximately 560 s are required to compete different
tasks in complete 100 s UAV flight controlled simulation.

We used modular processor board DS1005 PPC for real-time execution of sim-
ulation which consists of PowerPC 750GX processor running at 933 MHz having
128 MB SDRAM, 16 MB flash memory, and two general-purpose timers. High speed
PHS bus interface is used to communicate with other modular DAQ cards. DS2201
modular I/O board is used for DAC, ADC and DIO requirements. DS4201-S high
speed serial interface board is used for RS232 and RS422 communication for sensors
and telemetry data saving from FCC. dSPACE’s TargetLink code generation technol-
ogy can generate highly readable and optimized code for resource-limited embedded
real-time systems. Graphical user interface is also developed in ControlDesk to visu-
alize the flight data and status as shown in Fig. 25.

6 Solutions and Recommendations

Model-based software tools: Model-based real-time software development and
VV&T techniques are now become market demand because of reliability, flexi-
bility, and fast solution. Here we present some of the model-based embedded real-
time systems design tools available in Matlab/Simulink® which is now become an

Model-Based Verification and Validation

[actuators *]

- UAY_Autopilat - ControlDesk Developer Yersio

Fle Edt View Tooks Experment Instrumentstion Platform Parameter Edtor CAN Window Help

mbT

re @ |BRFE £0

179

& X

K (OPE XN

Y= o B pe% |yl
= URY_Paopion
B uav_sutegdot. cdd Control Effectors
8 simddation_stabus.lay.
- wav_sim.scf
B uav_sien.map s 60 s 1
[wav_sm.ppc
BB wav_smare
0 x
m " = m
B
o :
™ L} E] 100
a,ﬁ-ﬁ| T e e |
A5 B un_sm variable ISze [Tipe | orign | Descrpt &
+ [Model Root B fnaTme 131 Floslestedbtr Semdark Ll
I Labeis W curmentTim 131 Flostlessidptr Curreek
“ 0 Taskinio B modetstensios 1x1 Flostleeetd Feaed 5t
< ¥
[T T T5 T, Log Veewer J, interproter i File Selector) & uav_simulation uav_sim,sdf |
RN] B12j2012 (1%

For Help, press Fl.

= UAY_Autopilot - Controlesk Developer an - [avionics *]

Fle Edt View Took Ewperiment Instrumentstion Plstform Parameter Edtor CAN Window Help

MiE R Sl

PR D% mbT

re @ ARF 4T

= x
7K ||O@FE X~

Avionics Display

=W wem Vasiatle ETET Torin Toeserot &
[l Model Root 0 fnalTine 1xl Fostlsestfts Serndat =
@ Labels B curmant Tens Ixl Fiostlesstafer Current
“ [0 Tasklrio W modeltentios Ll Flostieeett Ficed st
»
A 4] =[x]\ Log Viewsr A Interprater tle Selector A Buav_simulation'way_sim.sdi /
Fior ek, press Fl. RN M efizioz a7

Fig. 25 Real-time simulation graphical user interface in controlDesk. a UAV real-time control
effectors deflections [deg] layout in controlDesk, b UAV real-time avionics display layout in con-

tolDesk

180 A. H. Khan et al.

educational and industrial standard for complete system design [32]. There are var-
ious hardware/software solutions available within Matlab/Simulink® for real-time
embedded system development and its verification, validation and testing. Following
are the three ways to prepare complete embedded RT system.

Using Matlab/Simulink® family of products: There are following Matlab/
Simulink family of products available for model-based verification, validation and
testing in safety-critical product design:

1. Simulink: Simulation and model-based system design.
2. Simulink Coder: Generate C and C++ code from simulink and stateflow model.
3. Embedded Coder: Generate optimized embedded C and C++ code.
4. Simulink Verification and Validation: Use for simulink models and generated
codes verification.
5. Simulink Code Inspector: Source code review according to DO-178 safety stan-
dards.
6. Simulink Design Verifier: Verify design according to requirements and generate
test vectors.
7. Real-Time Workshop: Generate simplified, optimized, portable, and customiz-
able C code from Simulink model-based design.
8. Real-Time Windows Target: Execute Simulink models in real time on Win OS
based PC.
9. xPC Target: Use for real-time rapid prototyping and HIL simulation on PC
hardware.
10. xPC TargetBox: Embedded industrial PC for real-time rapid prototyping.
11. Real-Time Workshop Embedded Coder: Embedded real-time code generator for
product deployment.

Using Hard Real-Time Operating Systems (RTOS): In this approach, we develop
our system model and simulation in Matlab/Simulink® and generate C code with
some modifications for porting to RTOS. Then we run generated code in RTOS
with customized graphical user interface (GUI) with some necessary improvements.
For detailed procedure as a reference see [33]. Various free and commercial hard
real-time OS available for this type of embedded hardware and software VV&T.
Advantages of this procedure are customized multiple user interfaces, thousands
of available hardware I/O interfaces and hard real-time verification and validation
utilizing maximum hardware performance.

Using Commerical-Of-The-Shelf (COTS) Solutions: Several complete improved
rapid prototyping hardware and GUI development solutions are available with
Simulink model-based system design. Some of them are as follows:

1. dSPACE Systems Inc. (ControlDesk, dSPACE simulators, dSPACE RapidPro,
and TargetLink)

2. OPAL-RT Technologies, Inc. (RT-LAB, RT simulators (eMEGAsim, eDRIVE-
sim and eFLYsim), RCP controllers)

3. Applied Dynamics International (Advantage Framework (SIL and HIL simula-
tion environment), Beacon family (embedded code generator) and Emul8 family
(rapid prototyping environment).

Model-Based Verification and Validation 181

Development time

v

s | 35 S| s
ol x| 8| o3| 3
Before . <3 = | £ | g = Q Software
using Software design =3 o 3 =¥ o = . .
a 8 o 3 - £l Verification
AcG i 5| s
£ > 3
Att RN E
wer : = |12 3|8 Software '
using Software design 2 sl 8 = Verification l———20%
ACG = |2 = | =
o o o =]
=] = =]
M°‘<7\|,' gfed Software Software .
(Future) design Verification

Fig. 26 Product development time reduction using model based design (Ref. [22])

4. Quanser Inc. (Real-time control software design, implementation and rapid pro-
totyping tools for algorithm VV&T)

NI LabVIEW real-time toolkits

Humsoft (Real-time toolbox and Data acquisition boards for VV&T)

TeraSoft Inc. (HIL and RCP hardware solutions for VV&T)

UEI Inc. (Real-time HIL and RCP hardware solutions)

. DSPtechnology Co. Ltd (RTSim (HIL and RCP hardware and software))

10. Pathway Technologies Inc. (RCP electronic control units for software VV&T)
11. add2 Ltd (RT HIL and RCP hardware and software for algorithm VV&T)

—SwvwNown

etc. ..
These model-based verification and validation solutions are cost effective, reliable

and fast as compare to other tradition solutions. In embedded real-time product design
VV&T takes 40—-50 % project time which can easily be reduce utilizing model-based
automatic code generation (ACG), verification, validation, and testing techniques as
shown in Fig. 26 by taking an example of automobile industry. All above ways for
the development and VV&T of ERT software made Matlab/Simulink a promising
candidate for increasing productivity and reducing project cost. Modular “off the
self” hardware platforms availability provide maximum flexibility for cost, selection
of communication interfaces, and performance requirements.

7 Conclusion

Verification, Validation and Testing technologies are important for next genera-
tion safety critical systems. This chapter has described ongoing work in applying
and extending COTS, specifically HIL simulations, to the VV&T of an embedded

182 A. H. Khan et al.

real-time software product. In addition, a detailed overview of methods followed in
verification, validation and testing are also listed. Verification and Validation of the
embedded software through V-model using Matlab/Simulink is found to successfully
present the product life cycle model. Hardware in the loop (HIL) testing plays an
important role in V-model by physically connecting the embedded controller, sensor
and actuators in the closed loop to verify the data integrity, interfacing and decision
logic of the controller based on the sensor information. Two case studies are used to
demonstrate the underlying concepts in VV&T and its practical implementation.

References

1. J.A. Stankovic, Misconceptions about real-time computing: a serious problem for next-
generation systems. Computer 21(10), 10-19 (1988)

2. H. Kopetz, Real-Time Systems Design Principles for Distributed Embedded Applications
(Kluwer Academic Publishers, London, 1997)

3. C.D. Locke, Best-Effort Decision Making for Real-Time Scheduling. Technical Report
(CMUCS-86-134 Carnegie-Mellon University, Department of Computer Science, USA, 1986)

4. M. Grindal, B. Lindstrom, Challenges in testing real-time systems. Presented at in 10th inter-
national conferene on software testing analysis ad review (eurostar’ 02), Edinburgh, Scotland,
2002

5. J.W.S. Liu, Real-Time Systems (Prentice Hall, New Jersey, 2000)

6. VDC Research, Next Generation Embedded Hardware Architectures: driving Onset of Project
Delays, Costs Overruns, and Software Development Challenges. Technical report, Sept 2010

7. M. van Genuchten, Why is software late? An empirical study of reasons for delay in software
development. IEEE Trans. Softw. Eng. 17(6), 582-590 (1991)

8. Elalflight 1862, Aircraft Accident Report 92—1 1. Technical report (Netherlands Aviation Safety
Board, Hoofddorp, 1994)

9. IEEE Standard 610.12-1990, Standard Glossary of Software Engineering Terminology (IEEE
Service Center, NY, 1990)

10. 1. Sommerville, Software Engineering, 6th edn. (Addison-Wesley Publishing Company, MA,
2001)

11. W. W. Royce, Managing the development of large software systems. Proceedings of Western
Electronic Show and Convention, pp. 1-9, 1970. Reprinted in Proceedings of the 9th Interna-
tional Conference on, Software Engineering, pp. 328-338, 1987

12. C. Kaner, J. Falk, H. Nguyen, Testing Computer Software, 2nd edn. (Van Nostrand Reinhold,
NY, 1999)

13. R.V. Binder, Testing Object-Oriented Systems: Models, Patterns, and Tools (Addison-Wesley,
MA, 1999)

14. IEEE Standard 1028-1988, IEEE Standard for Software Reviews (IEEE Service Center, NY,
1988)

15. Simulink Verification and Validation, User’s Guide, Mathworks, Inc., http://www.mathworks.
com

16. Matlab and Simulink Mathworks. http://www.mathworks.com

17. J.A. Whittaker, What is software testing? And why is it so hard? IEEE Softw. 17(1), 70-79
(2000)

18. J. Wegener, M. Grochtmann, Verifying timing constraints of real-time systems by means of
evolutionary testing. Real-Time Syst. 15(3), 275-298 (1998)

19. J. Hénsel, D. Rose, P. Herber, S. Glesner, An Evolutionary Algorithm for the Generation of
Timed Test Traces for Embedded Real-Time Systems. IEEE Fourth International Conference
on Software Testing, Verification and Validation (ICST), 2011, pp. 170-179

http://www.mathworks.com
http://www.mathworks.com
http://www.mathworks.com

Model-Based Verification and Validation 183

20.
21.
22.
23.

24.

25.

26.

27.

28.
29.

30.

31.

32.
33.

R.L. Haupt, S.E. Haupt, Practical Genetic Algorithms (Wiley, New York, 2004)

B. Beizer, Software Testing Techniques, 2nd edn. (VNR, New York, 1990)

Toyota, North America Environmental Report (Toyota Motor North America, Inc., NY, 2010).
S.A. Jacklin, J. Schumann, P. Gupta, K. Havelund, J. Bosworth, E. Zavala, K. Hayhurst, C.
Belcastro, C. Belcastro, Verification, Validation and Certification Challenges for Adaptive
Flight-Critical Control Systems (AIAA Guidance, Navigation and Control, Invited Session
Proposal Packet, 2004)

L. Pedersen, D. Kortenkamp, D. Wettergreen, 1. Nourbakhsh, A survey of space robotics.
Robotics (2003)

N. Nguyen, S.A. Jacklin, Neural Net Adaptive Flight Control Stability, Verification and Vali-
dation Challenges, and Future Research (IJCNN Conference, Orland Florida, 2007)

J.M. Buffington, V. Crum, B. Krogh, C. Plaisted, R. Prasanth, Verification and Validation of
Intelligent and Adaptive Control Systems, in 2nd AIAA Unmanned Unlimited Systems Confer-
ence (San Diego, CA, 2003)

J. Schumann, W. Visser, Autonomy software: V&V challenges and characteristics, in Proceed-
ings of the 2006. IEEE Aerospace Conference, 2006

Unmanned Dynamics LLC. Aerosim Blockset Version 1.2 User’s Guide, 2003

B.L. Stevens, F.L. Lewis, Aircraft Control and Simulation (John Wiley & Sons, Inc., 1992).
ISBN 0-471-61397

A.H. Khan, Z. Weiguo, Z.H. Khan, S. Jingping, Evolutionary computing based modular con-
trol design for aircraft with redundant effectors. Procedia Eng. 29, 110-117 (2012). (2012
International Workshop on Information and Electronics Engineering)

A.H.Khan, Z. Weiguo, S. Jingping, Z.H. Khan, Optimized reconfigurable modular flight control
design using swarm intelligence. Procedia Eng. 24, 621-628 (2011). (International Conference
on Advances in Engineering 2011)

MathWorks User Stories. http://www.mathworks.com/company/user_stories/index.html

N. ur Rehman, A.H. Khan, RT-Linux Based Simulator for Hardware-in-the Loop Simulations.
International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad,
2007, pp. 78-81

http://www.mathworks.com/company/user_stories/index.html

A Multi-objective Framework for
Characterization of Software Specifications

Muhammad Rashid and Bernard Pottier

Abstract The complexity of embedded systems is exploding into two interrelated
but independently growing directions: architecture complexity and application com-
plexity. Consequently, application characterization under the real input conditions
is becoming more and more important. State-of-the-art application characterization
frameworks mainly focus on a single design objective. A general purpose frame-
work is required to satisfy multiple objectives of early design space exploration. This
chapter proposes a multi-objective application characterization framework based on
a visitor design pattern. High level source specifications are transformed into a trace
tree representation by dynamic analysis. Trace tree representation is analysed by
using visitor design pattern to get run-time characteristics of the application. Among
other outcomes, application orientation and inherited spatial parallelism are key con-
cerns in this article. Experimental results with MPEG-2 video decoder shows viability
of the proposed framework.

1 Introduction

Software specifications of multimedia standards are complex and itis virtually impos-
sible to analyse these applications without generic automated tools [1, 2]. As aresult,
architectural implementation choices based on merely designer experience without
objective measures become extremely difficult or impossible task and may lead to
costly re-design loops. Measuring application complexity without any architecture
directives is critical at the beginning of a design cycle. The process of measur-
ing application complexity at early stages of the design flow is called application

M. Rashid ()
Umm Al-Qura University, Makkah, Saudi Arabia
e-mail: mfelahi @uqu.edu.sa

M. Rashid - B. Pottier
University of Bretagne Occidentale, CNRS, UMR 3192, Lab-STICC, Brest, France

M. A. Khan et al. (eds.), Embedded and Real Time System Development: 185
A Software Engineering Perspective, Studies in Computational Intelligence 520,
DOI: 10.1007/978-3-642-40888-5_7, © Springer-Verlag Berlin Heidelberg 2014

186 M. Rashid and B. Pottier

characterization [3]. The objective of application characterization is to effectively
map complex applications on heterogeneous multi-core architectures.

The performance gain in multi-core architectures depends upon application par-
allelization across the cores. Sequential languages such as C, C++, Smalltalk are
portable, high performance and maintainable for uni-processors. However, an effi-
cient implementation on multi-core platforms raises two key challenges: (a) parallel
tasks must be extracted from sequential specifications and (b) there must be an
excellent match between extracted tasks and architecture resources. Any significant
mismatch results in performance loss and a decrease of resource utilization [4, 5].
Therefore, application characterization through dynamic analysis is very important
at the beginning of design cycle.

In existing application characterization frameworks [6—15], analysis results are
restricted to a single design objective such as application affinity, communication
bandwidth, data level parallelism, task level parallelism, spatial parallelism and so on.
However, a general purpose application characterization framework at early stages
of the design cycle is a critical requirement.

In this article, we propose a general purpose application characterization frame-
work for early design space exploration. The application is written in an object
oriented language Smalltalk [16] and is automatically transformed into a trace tree
representation by dynamic analysis [17]. The trace tree represents implementation-
independent specification characteristics. It provides information about the inherent
characteristics of the application. We present a generic analysis approach to analyse
the trace tree representation for design space exploration.

The exploration of design space for embedded systems involves multiple analy-
sis requirements [18]. The proposed framework is generic such that it can extract
various application characteristics depending upon a particular analysis requirement
by simply defining new analysis operations on the trace tree representation. In this
article, we focus on extraction of spatial parallelism as well as application orientation
in terms of processing, control and memory accesses.

In order to highlight the significance of analysis results, spatial parallelism infor-
mation is used to describe sequential application in the form of parallel process
networks. For this purpose, we propose AVEL framework that exposes inherent par-
allelism and communication topology of the application similar to streaming pro-
gramming languages [19]. The AVEL processes are abstract programmable units and
implemented with behavioral code of Smalltalk. Experimental results with MPEG-2
video decoder [20] proves viability of the proposed framework.

This article is organized as follows: Sect. 2 describes state-of-the-art in: appli-
cation analysis techniques, application characterization and streaming languages.
Section 3 provides essential background knowledge to understand the contents in
subsequent sections. Section 4 proposes a general purpose dynamic analysis frame-
work to extract run-time characteristics of the application. Section 5 presents some
usage scenarios of analysis results. Section 6 provides experimental results with
MPEG-2 video decoding application. Section 7 describes the application in the form
of parallel process networks. Finally, Sect. 8 concludes the article.

A Multi-objective Framework for Characterization of Software Specifications 187

2 Review of Related Work

We have divided our related work into three categories: application analysis tech-
niques, application characterization and streaming programming languages.

2.1 Application Analysis Techniques

The purpose of presenting application analysis techniques is to provide the back-
ground for state-of-the-art application characterization approaches described in
Sect. 2.2. Application analysis techniques are further sub-divided into two types:
static analysis and dynamic analysis.

In static analysis, we are interested in Worst Case Execution Times (WCET) which
are in general very difficult and even impossible to compute, hence the necessity to
develop methods for WCET estimation that are fast to compute and safe [21]. Several
techniques for WCET estimation have been proposed. Wihelm et al. has presented
an excellent review of existing techniques [22].

Drawback of static analysis is that it can only detect upper and lower bounds
while the processing complexity of multimedia algorithms heavily depends on the
input data statistics. Microarchitecture of the modern microprocessors is so complex
with caches, pipelines, pre-fetch queues and branch prediction units that accurately
predicting their effects in execution time is a real challenge. More specifically, static
analysis techniques attempt to determine bounds on the execution times of different
tasks when executed on a particular hardware while the objective in this article is to
determine the algorithmic characteristics without any architecture declaratives.

A systematic survey of program comprehension through dynamic analysis is pre-
sented in [17]. In dynamic analysis, code instrumentation is performed by modifying
the source code. Code instrumentation is the process of inserting additional instruc-
tions or probes into the source code. The limitation of source code modification
technique is that all instrumented functions have to be re-parsed and re-compiled
[23]. Another re-compilation may be needed to reinstall the original functions.

Debugger and instruction-level profiling are also the forms of dynamic analysis.
Although, debugger does not modify the source code, the disadvantage is the con-
siderable deceleration of the system execution. Instruction-level profiling provides
information at function level. The information gathered with profilers strictly depends
on the underlying machine and on the compiler optimizations. This is against the
requirement of high level system design in which complexity evaluation depends
only on the algorithm itself.

Richner et al. have also presented an example of a trace representation by dynamic
analysis [24]. It extracts trace events representing the function calls during execu-
tion. However, the analysis goals should not restrict the type of information to be
collected. The objective is to extract maximum dynamic data and then depending on
the requirements of a particular analysis, extract and use an appropriate sub-set of
the dynamic data.

188 M. Rashid and B. Pottier

Table 1 Comparison of application characterization techniques for design space exploration

Tools/Authors Source specifi- Analysis Instrumentation ~ Objective
cations techniques

Abdi et al. [6] C Static/Dynamic Source code Prune out the
design space

Silvano et al. [7] SystemC Static Source code HW/SW par-

/Dynamic titioning

Rul et al. [8] C Dynamic Source code Function level
parallelism

SPRINT [9] C Dynamic Source code Function level
parallelism

Commit [10] Streamlt Dynamic Source code Extraction of
parallelism

LESTER [13] C Dynamic Source code Application
characteriza-
tion

Prihozhy et al. [14] C Dynamic Source code Application
characteriza-
tion

2.2 Application Characterization

In this section, we describe state-of-the-art application characterization frameworks
based on static analysis, dynamic analysis or a combination of both. A comparison
is presented in Table 1.

Abdi et al. have presented an application characterization approach based on
dynamic profiling and static re-targeting [6]. Dynamic profiling provides inherit
characteristics of the application by instrumenting and simulating the source spec-
ifications without any architecture directives. In the re-targeting stage, output of
the dynamic profiling is coupled with the target characteristics. The design space
is explored with the results that are accurate enough to prune out infeasible design
alternatives.

The approach of Silvano et al. is based on a combination of static and dynamic
analysis [7]. Application specified in a subset of systemC is first statically analyzed.
It provides a set of data to express the affinity of the system functionalities towards
a set of processing elements such as GPP, DSP and FPGA. After static analysis,
dynamic analysis is performed to extract some run-time aspects of the application
including profiling and communication cost. Finally, results from static and dynamic
analysis are combined to estimate the load associated with each system functionality
for HW/SW partitioning.

The primary goal of the work performed by Abdi et al. [6] and Silvano et al. [7]
is to obtain application affinity metrics. These metrics are either dedicated to prune
out the infeasible design space or HW/SW partitioning. They do not consider the
extraction of spatial parallelism in their analysis.

A Multi-objective Framework for Characterization of Software Specifications 189

A profile-based technique to extract parallelism from a sequential application is
presented by Rul et al. [8]. It transforms source specifications to a graph-based rep-
resentation for identifying parallel code. It measures memory dependencies between
different functions of the application. Therefore, the granularity of extracted paral-
lelism is larger and is not well-suited to extract fine grain parallelism.

SPRINT tool [9] generates an executable concurrent model in SystemC starting
from C code and user defined directives. First, it transforms C code to control flow
graph which is further transformed to model different concurrent tasks. Again, this
tool only extracts function level parallelism and ignores fine grain parallelism. More-
over, no application orientation is provided to bridge the application-architecture gap.

Commit research group from Massachusetts Institute of Technology (MIT)
presents a methodology to extract coarse grained pipeline parallelism in C programs
[10]. The output is in the form of stream graph as well as a set of macros for paral-
lelizing the programs and communicating the required data. However, the work in
[10] does not provide any details about other forms of parallelism. The work is fur-
ther expanded to expose task, data and pipeline parallelism present in an application
written in a streaming programming language Streamlt [11].

LESTER research group has proposed a C based high level exploration method-
ology [12, 13]. The input application is transformed into an internal hierarchical
graph based representation to compute some design metrics. These design metrics
characterize the application in terms of computation operations, memory transfer
operations, control operations and processing parallelism.

Ravasi and Mattavelli introduce an integrated tool for the complexity analysis
of C descriptions in [23]. The tool is capable of measuring all C language operators
during the execution of algorithms. The tool capabilities also include the simulation
of virtual memory architectures, extending it to data transfer and storage analysis. It is
extended to measure the parallelization potential of complex multimedia applications
in [14, 15] by defining critical path metric.

The work of Ravasi and Mattavelli [14, 23] and LESTER [5, 13] take into account
application characterization as well as the extraction of spatial parallelism. Despite
their significant contributions in providing application-architecture mapping guide-
lines, these approaches are restricted to some special design metrics. These design
metrics may not be able to fulfil some analysis requirements in a holistic design
environment, such as to compute the amount of data transfer between two specific
functions, or to compute the value of a specific variable in each step of the program
execution.

2.3 Streaming Languages

‘We have described in the introductory part of this article that spatial parallelism infor-
mation is used to describe the application in the form of parallel process networks.
This section provides a brief overview of the streaming languages used for writing
applications in the form of parallel process networks.

190 M. Rashid and B. Pottier

Streaming Programming Languages

v v v

Hardware Specific Constructs—based Functional Languages

vov v vy v v

Cg Caravela Brook Streamlt Spidle Streams-C Sassy Sisal DirectFlow

Fig. 1 Classification of streaming programming languages

The idea of language dedicated to stream processing is not new and has already
been discussed in existing literature [25]. The languages of recent interests
are Cg [26], Brook [27], Caravela [28], Streamlt [11], Spidle [29], Streams-C
[30], Sisal [31], Sassy [32] and DirectFlow [33]. Existing stream languages can be
divided into three categories as shown in Fig. 1.

The first type of languages are geared towards the features of specific hardware
platform such as Cg [26], Brook [27] and Caravela [28]. All of these languages
are dedicated to program Graphical Processing Units (GPUs). Cg language is a
C-like language that extends and restricts C in certain areas to support the stream
processing model. Brook abstracts the stream hardware as a co-processor to the host
system. Kernel functions in Brook are similar to Cg shaders. These two languages
do not support the distributed programming. Caravela applies stream computing to
the distributed programming model.

The second type of languages introduce constructs for gluing components of
stream library. The examples are StreamlIt [11], Spidle [29] and Streams-C [30].
Streamlt and Spidle are stream languages with similar objectives. However, the for-
mer is more general purpose while the latter is more domain specific. Streamlt is
a Java extension that provides some constructs to assemble stream components.
Spidle, on the other hand, provides high level and declarative constructs for specify-
ing streaming applications. Streams-C has a syntax similar to C and is used to define
high level control and data flow in stream programs.

The third type of languages are functional languages such as Sisal [31], Sassy [32]
and DirectFlow [33]. Sisal offers automatic exploitation of parallelism as a result
of its functional semantics. Sassy is a single assignment of C language to enable
compiler optimizations for parallel execution environments targeting particularly
the reconfigurable systems. DirectFlow system is used for describing information
flow in the case of distributed streaming applications.

Before describing the proposed framework, some background knowledge is
required. Section 3 will provide essential background to understand the contents
described in this article.

A Multi-objective Framework for Characterization of Software Specifications 191
3 Background and Definitions

This section briefly reviews the basic concepts of an object oriented language
Smalltalk. Then, the concept of visitor design pattern is illustrated. The proposed
application analysis technique is based on visitor design pattern concept.

Smalltalk [16] is uniformly object-oriented because everything that the program-
mer deals with is an object, from a number to an entire application. It differs from
most languages in that a program is not defined declaratively. Instead, a computation
is defined by a set of objects. Classes capture shared structure among objects, but
they themselves are objects, not declarations. The only way to add code to classes
is to invoke methods upon them. Smalltalk is a reflective programming language
because its classes inherently support self modifications.

Definition 7.1 Reflective Programming—the programming paradigm driven by
reflection. The reflection is the process by which an application program observe
and/or modify program execution at run-time. In other words, the emphasis of the
reflective programming is dynamic program modification. For example, the instru-
mentation in dynamic analysis of application programs can be performed without
re-compiling and re-linking the program.

Definition 7.2 Visitor Design Pattern—itrepresents an operation to be performed on
the elements of an object structure [34]. It defines a new operation without changing
the classes of the elements on which it operates. Its primary purpose is to abstract
functionality that can be applied to an aggregate hierarchy of “element objects”.

The general organization of visitor design pattern is shown in Fig. 2. Abstract
class for object structure is represented as AbstractElement while the abstract class
for visitor hierarchy is represented as AbstractVisitor. “Visitor]” and “Visitor2” are
inherited from abstract class. The functionality is simply extended by inheriting more
and more visitor classes as each visitor class represents a specific function.

I

v

v

AbstractVisitor AbstractElement
VisitElementA acceptVisitor
VisitElementB P
Visitor1 Visitor2 ElementA ElementB
VisitElementA VisitElementA acceptVisitor acceptVisitor
VisitElementB VisitElementB operationA operationB

Fig. 2 General organization of visitor design pattern

192 M. Rashid and B. Pottier
3.1 Example of Visitor Design

Consider a compiler that parses an input program and represents the parsed pro-
gram as an Abstract Syntax Tree (AST). An AST may have different kinds of nodes
such that multiple operations can be performed on an individual node. Examples of
nodes in an AST are assignment nodes, variable reference nodes, arithmetic expres-
sion nodes and so on. Examples of operations performed on an AST are program
re-structuring, code instrumentation, computing various metrics and so on.

Operations on the AST treat each type of node differently. One way to do this is
to define each operation in the specific node class. Adding new operations requires
changes to all of the node classes. It can be confusing to have such a diverse set of
operations in each node class. Another solution is to encapsulate a desired operation
in a separate object, called as visitor. The visitor object then traverses the elements of
the tree. When a tree node accepts the visitor, it invokes a method on the visitor that
includes the node type as an argument. The visitor will then execute the operation
for that node—the operation that used to be in the node class.

3.2 Uses and Benefits of Visitor Based Design

The visitors are typically used: (a) when many distinct and unrelated operations
are performed on objects in an object structure and (b) when the classes defining
the object structure rarely change and we want to define new operations over the
structure. Visitor based design provides modularity such that adding new operations
with visitors is easy. Related behavior is not spread over the classes defining the object
structure. Visitor lets the designer to keep related operations together by defining them
in one class. Unrelated sets of behavior are partitioned in their own visitor subclasses.
The Smalltalk environment has a visitor class called as ProgramNodeEnumerator.

Definition 7.3 ProgramNodeEnumerator—an object to visit AST produced from
the Smalltalk source code. The structure of AST is determined by the source code and
the syntax rules of Smalltalk. Therefore, AST is also called as Program Node Tree.
Consequently, ProgramNodeEnumerator class in Smalltalk environment provides a
framework for recursively processing a Program Node Tree [34].

4 Application Analysis Framework

This section proposes an application analysis framework. The first part of this section
describes application transformation into a trace tree representation (Sect. 4.1). The
second part presents analysis of trace tree representation (Sect. 4.2).

Figure 3 shows the proposed application analysis framework. It is divided into
two parts: The first part is related to transformation of Smalltalk source specifications
into a trace tree representation by dynamic analysis. The second part is concerned
with trace tree analysis to get desirable analysis results. The inputs to the first part

A Multi-objective Framework for Characterization of Software Specifications 193

SOURCE SPECIFICATION INPUT TEST SEQUENCE

(1) INSTRUMENTATION a:an (2) EXECUTION .
3 Visitor
2

Parsing g Process Probing Messages

& Analysis
=2 Operations
£
A

AST Instrumentation Generate Record Events

Trace Tree

Representation
Trace Building

Compiling

Record Events

(3) VISUALIZATION
.
inding

First Part Second Part

ANALYSIS
RESULTS

Fig. 3 Dynamic analysis framework for application characterization

are executable specifications along with real input data and the output is trace tree
representation of input specifications. The input to the second part is trace tree and
the output is in the form of analysis results.

4.1 Application Transformation into Trace Tree

This section describes the first part of proposed application analysis framework.
It takes Smalltalk executable source specifications along with real input data. As
the analysis is performed on executable specifications, therefore the input data is
the real data and not merely synthetic vectors. For example, in case of MPEG-2
video decoding application analysis, the input is in the form of MPEG-2 video bit-
stream. Dynamic analysis is performed to transform source specifications into a
trace tree representation. The trace tree contains information about the execution of
an application at run-time and represents implementation independent specification
characteristics.

First part of Fig. 3 summarizes three essential steps of dynamic analysis to
transform source specifications into a trace tree representation. These sub-steps are
instrumentation, execution and visualization. Instrumentation step is responsible to
instrument the source specifications by automatically inserting probes inside the
source code. Execution step takes the instrumented specifications along with real
input data and runs the instrumented specifications. Each probe activation is recorded
during the Execution step. Visualization step displays the results in the form of a trace
tree and bounds original source specifications to the corresponding trace tree repre-
sentation.

194 M. Rashid and B. Pottier

4.1.1 Instrumentation of Source Specifications

Input to the instrumentation step is original specifications and the output is the
instrumented specifications. Instrumentation is performed by automatically inserting
probes inside the source specifications. A probe is a statement added to a statement
of the original source code, with no disruption to its semantics. The probe is written
to extract the required information during execution. The base for the code modifi-
cation is the Abstract Syntax Tree (AST) produced by the Smalltalk environment.
Instrumentation step generates probing messages in four sub-steps as shown in Fig. 3.

The first sub-step is to parse the source code for AST generation. The second
sub-step is to instrument the AST. This sub-step automatically generates additional
nodes in the original AST. The output is an instrumented AST. The third sub-step is
to compile the instrumented AST. The output is the compiled source code. Finally,
the original source code is replaced with the compiled source code.

4.1.2 Execution of Instrumented Specifications

It performs trace recording through the activation of probes in the instrumented code.
The input to this step is the instrumented source code in the form of probing messages
from the instrumentation phase. In addition to the instrumented code, real input data
is provided to execute the instrumented code.

Once the instrumented code and the input data are available, the trace recording
is done through the activation of probes in the instrumented code and the recording
of events in the trace. Each probe is implemented as a message sent to a collector
along with the information from the execution context. The collector receives the
message, creates a corresponding record event and adds it to the trace tree.

4.1.3 Trace Visualization

It binds each event in the trace to the original source code in the form a trace tree
as shown in Fig. 4. The right hand side represents the original source code while
the left hand side represents its trace tree representation. Each entity in the source
code, such as different variables and operators on the right hand side, is linked to the
corresponding trace tree entity. It is illustrated by drawing arrows in Fig. 4.

It means that one can go through all the application source code, starting from
the beginning and observe the corresponding arrangement in the trace tree for each
single element. It may help in comprehension of the source code.

A Multi-objective Framework for Characterization of Software Specifications

195

Actions
L) #add on:offsetskide: A add: aBock or: dest offset: offset stride: stride
(=
- | aBlock dest offset stride | 0to. 63 by. 0 do. [i| self idctRow. aBlock index i].

~{_ aBlock <- #(169 §3-29-69-29000 -
~_jdest<-#000000000000000

- Offset <- 1416 1o 8 do: [0] selfioctCol: aBlock index 1],
) stride <- 176
Oto: 7 do: [y
1o 8do: [=)

dest at: offset + (stride * y + x) put. (((aBlock

~sell

Source Code

- #idelColindex:

[#ma

) #min:

-

) #+

L

- dest[1417) <- 0
~{_) #akput:

[

E
"
i o

+ (dest at offset + (stride * v +) max: 0) min. 255)])

Fig. 4 Trace tree representation and corresponding source specification

196 M. Rashid and B. Pottier

4.2 Trace Tree Analysis

The output of first part is a trace tree which represents the sequence of recorded
events in a tree-like form. A typical use of the trace tree is to hierarchically show the
structure of function calls during a particular execution of the source specification.
Once source specification is transformed into a trace tree representation, we perform
operations on the trace tree for different types of analysis.

4.2.1 Multiple Analysis Operations on Trace Tree

Multiple analysis operations can be performed on basic entities of the trace tree. For
example:

e Checking the value of each variable in every step of the program execution

e In the context of code rewriting, one may perform operations for type-checking,
code optimization and flow analysis

e For early design space exploration, application orientation and extraction of spatial
parallelism are the key concerns.

4.2.2 Different Visitors for Multiple Analysis Operations

We keep basic entities of the trace tree independent from analysis operations that
apply to them. Related operations that we want to perform on the trace tree entities
are packaged in a separate object named as “visitor” and pass it to the elements
of trace tree. There are different visitors for multiple analysis operations. We have
already explained the concept of visitor design patten in Sect. 3.

The proposed analysis framework is generic as it is not restricted to a particular
set of analysis operations. It allows the designer to extend the framework by defining
new analysis operations to fulfill different requirements of design space exploration.
For each analysis operation, there is a corresponding visitor for the trace tree, making
a visitor hierarchy similar to the visitors on a parse tree [34]. For example, in this
article, we have defined visitors for application orientation and spatial parallelism
information. However, the framework can easily be extended by simply defining new
visitors.

5 Usage Scenarios in a Holistic Design Environment

Section 4 presented a generic application analysis framework for application charac-
terization at higher abstraction level. The proposed analysis framework can perform
multiple analysis operations on the trace tree representation of source specifica-
tions, depending upon a particular requirement of the design space exploration. This
section provides some usage scenarios of the proposed framework in a holistic design

A Multi-objective Framework for Characterization of Software Specifications 197

environment. Itincludes: (1) application orientation, (2) spatial parallelism, (3) guide-
lines for mapping and (4) guidelines for performance estimation.

5.1 Application Orientation

Application orientation provides guidelines about architecture selection. An appli-
cation may have three types of operations: computational operations, memory oper-
ation and control operations. Our analysis results describe the application in terms
of percentages of these three basic types of operations.

Computation Oriented Operations include arithmetic operations such as
addition, multiplication, subtraction etc. and logical operations such as “and”, “or”
etc. The analysis results show the percentage of each type of computation operations
in a function. For example, if most of the operations are multiplications, then target
architecture should have dedicated hardware multipliers, hence guiding the designer
towards architecture selection.

Memory Oriented Operations tell the designer that a particular function is data
access dominated and is most likely to require a high data bandwidth. It indicates
that the computations are not performed on previously computed data reside in local
memories but performed on the input data entering into the trace tree. Therefore, in
the case of real time constraints, some efficient mechanism of data movement and
high performance memories are required.

Control Oriented Operations guide the designer to evaluate the need for complex
control structures to implement a function. The functions with high percentage of this
types of operations are good candidate for a GPP implementation rather than a DSP
implementation, since the latter is not well suited for control dominated functions.
In addition to this, a hardware implementation of these control dominated functions
would require large state machines.

5.2 Spatial Parallelism

Trace tree representation shows the existing parallelism among the operations of the
function. It implies the possibility of mapping different operations or functions to
different processing elements of the target architecture for concurrent execution. In
other words, we can exploit the inherited spatial parallelism present in the application.

We represent the amount of average inherited spatial parallelism for every function
in the source specification by “P” such that functions with higher “P” values are
considered as appropriate to architectures with large explicit parallelisms. Functions
with lower “P” value are rather sequential and acceleration can only be obtained by
exploiting temporal parallelism.

198 M. Rashid and B. Pottier

Definition 7.4 Average Inherited Spatial Parallelism (P)—The value of average
inherited spatial parallelism at any hierarchical level of a trace tree is computed by
dividing the total number of operations by its critical path.

Definition 7.5 Critical Path—The critical path at any hierarchical level of a trace
tree is the number of longest sequential chain of operations (processing, control,
memory). It is computed for each hierarchical level.

When we compute the value of “P” for any hierarchical level in a trace tree, we
assume that the parallel execution of sub-hierarchical levels is possible and the value
of “P” is given as the ratio between the sum of all operations in the sub hierarchical
levels of the node and the longest of all the critical paths.

For example, if a node “A” in the trace tree has three sequential sub-nodes “B”,
“C” and “D” containing 10, 20 and 30 sequential operations respectively. Now the
value of “P” at each sub-node “B”, “C” and “D” is | as they contain only sequential
operations and hence no spatial parallelism. However, the value of “P” at node “A”
is 2 (60 divided by 30) assuming that all the sub-nodes can be executed in parallel.

5.3 Guidelines for Mapping

The mapping process requires application model in the form of different functions as
well as architecture model in the form of processing elements and interconnections
to map the application behavior on the architecture model. The obtained analysis
results identify the most complex functions in terms of computations, which may
be the best candidates for mapping to the fastest processing elements (PEs). The
designers also prefer to map the functions which communicate heavily with each
other to the same PE or to the PEs connected by dedicated busses.

5.4 Guidelines for Performance Estimation

The performance estimation of different functions of the application on multiple
processing elements of the architecture is another important issue in the design space
exploration. For example, assuming a function F1 is mapped to processing element
PEL. If F1 contains “X” integer-type multiplication operations and executing such
an operation on PE1 requires “Y” clock cycles (known to designer from architecture
model). Then the execution time of function F1 on processing element PE1 will be:
Execution Time = (X) x (Y) = XY clock cycles.

A Multi-objective Framework for Characterization of Software Specifications 199
6 Experimental Results

The purpose of this section is to provide analysis results for MPEG-2 video decoding
application [20]. The basic principles of MPEG-2 decoding application are first
described in Sect. 6.1. A Smalltalk implementation of MPEG-2 decoder is used to
perform experiments in Sect. 6.2.

6.1 MPEG-2 Video Decoding Application

MPEG-2 is a generic coding method of moving pictures and of associated audio
because it serves a wide range of applications, bit-rates and resolutions [20]. The
basic principle is to remove the redundant information prior to transformation and
re-inserting it at the decoder. There are two types of redundancies: spatial redundancy
and temporal redundancy. Spatial redundancy is the correlation of pixels with their
neighbouring pixels with in the same frame. Temporal redundancy is used to remove
the correlation of pixels with neighbouring pixels across the frames.

MPEG-2 video decoding process is shown in Fig. 5. Input to the decoder is the
incoming MPEG-2 video bit-stream. The first step is to perform Huffman decoding
which generates: (1) quantized macroblocks encoded in the frequency domain (2)
predictively encoded motion vectors. In the subsequent steps, the quantized mac-
roblocks are inverse transformed while the motion compensation is performed to
decode offset encoded motion vectors.

Inverse transformation is due to spatial redundancy reduction at encoder. It maps
each 8 x 8 block from the frequency domain back to the spatial domain. Each block
is reordered, inversely quantized and then followed by an two-dimensional (2D)
Inverse Discrete Cosine Transform (IDCT). Similarly, encoded motion vectors are
decoded. Motion compensation is due to the temporal redundancy reduction at the
encoder side and recovers predictively coded macroblocks. It uses motion vectors to
find a corresponding macroblock in a previously decoded reference picture. Frame

Video Bit—Stream
—p| Huffman Decoding | j,| Inverse Scan [y,| Inverse Quantization

Reconstructed pictures
2D Inverse Discrete Cosine Transform | 3,1 Motion Compensation

Frame Memory

Fig. 5 MPEG-2 video decoding process

200 M. Rashid and B. Pottier

Table 2 Orientation results

for 2D-IDCT Function Computation Memory Control P
idctCol:index: 76.36 23.64 0 1
idctRow:index: 76.36 23.64 0 1
add:on:offset:stride:x 77.11 22.89 0 24.14

memory is used to store the reference frames. The reference macroblock is added to
the current macroblock, to recover the original picture data.

6.2 Application Orientation and Spatial Parallelism Results

This section performs experiments with different blocks of MPEG-2 video decoder
to get analysis results in terms of application orientation and spatial parallelism.
For simplicity, we present experimental results with Two Dimensional Inverse Dis-
crete Cosine Transform (2D-IDCT) and Huffman Decoding to illustrate our analysis
approach.

6.2.1 Inverse Discrete Cosine Transform

2D-IDCT for 8 x 8 image blocks is transformed into a trace tree using the flow
in Fig. 3. We perform analysis operations on the trace tree representation to
get analysis results. Table 2 shows the analysis results for different functions in
2D-IDCT. The first column represents the name of method. The second, third and
fourth columns represent the percentages of computation, memory and control in
each method respectively. The last column represents the amount of inherited spatial
parallelism.

From the structural point of view, 2D-IDCT is composed of two identical and
sequential one-dimensional IDCT (1D-IDCT) sub-blocks, operating on rows and
columns. The method “idctCol:index:” and method “idctRow:index:” in Table 2
represent 1 D-IDCT operations on columns and rows respectively. The corresponding
trace trees have the same orientation values for both methods as shown in Table 2.
The method “add:on:offset:stride:” in Table 2 represent 2D-IDCT.

The first observation is that the percentage of control operations is zero since it is
composed of deterministic loops and does not contain any test. Secondly, the com-
putation percentage for 2D-IDCT functional blocks are higher so it is computation
oriented. The results also show a good percentage of memory operations.

Figure 6 shows the percentage of each type of computation in 2D-IDCT. It does
not contain any floating point operations. It implies that processors with dedicated
floating point units are not necessary and processor selection should focus on integer
performance. Furthermore, 27 % operations are multiplications such that selected
processors may have dedicated hardware multipliers.

A Multi-objective Framework for Characterization of Software Specifications 201

Logical
9
Subtractions ~_ .
18 Additions
46 | — Additions Multiplications
Subtractions
Logical
27 9

Multiplications
Fig. 6 Percentages of computation types for 2D-IDCT

In Table 2, the lowest level of granularity is exhibited by 1D-IDCT sub-blocks
operating on rows and columns. The value of “P” is 1 indicating no fine grain spatial
parallelism. It shows that these sub-block methods are sequential in nature and do not
contain any inherited spatial parallelism. However, the amount of spatial parallelism
increases at the higher level of granularity. The value of “P” at this level is 24.14,
indicating that a coarse grain parallelism is available.

The fact that there is no need for complex control structures, the high data-accesses
and the coarse grain parallelism implies that optimizations can be obtained with a
pipelined architecture with possible coarse grain dedicated hardware modules provid-
ing a large bandwidth. So if high performances are required, an ASIP (Application
Specific Instruction-set Processor) or a programmable dedicated hardware can be
introduced within the SoC.

6.2.2 Huffman Decoding

Table 3 shows the analysis results for huffman decoding methods. It can be noticed
that these functions have relatively high percentages of control operations denot-
ing heavily conditioned data-flows. The percentage of computation operations also
indicates an important computation frequency. There are less number of memory
operations as compared to computations and control operations. It indicates that
these methods are control and computation oriented.

Figure 7 shows the orientation of Huffman Decoding. There are no multiplications,
so selected processors have no need for dedicated hardware multipliers. The results
show that 45 % of the computations are logical operations.

We have not shown the value of P in Table 3 because the value of P remains
1 (the value of P for sequential code) at all hierarchical levels of the trace tree. It
reveals that suitable target architecture for Huffman decoding algorithm may be a
GPP. There is no need for a DSP and for a complex data path structure, since there
is no spatial parallelism at any hierarchical level.

202 M. Rashid and B. Pottier

Table 3 Orientation results

for huffman decoding Function Computation Memory Control
getChromaDCDctDiff 49 2 49
getCodedBlockPattern 52 5 43
getLumaDCDctDiff 60 2 38
getMacroblockAddrIncrement 50 5 45
getMacroblockMode: 58.3 8.4 333
getMotionDelta: 58.2 3 38.8
getQuantizerScale: 75 0 25
Huffman Decoding 60 7 33
_~Additions
30
Additions

Logical —
45 Multiplications

Subtractions
Logical

25

Subtractions

Fig. 7 Percentages of computation types for huffman decoding

This section has presented the analysis results for 2D-IDCT and Huffman Decod-
ing in MPEG-2 decoder in terms of application orientation and spatial parallelism.
The next section will further illustrate the significance of spatial parallelism infor-
mation by representing the application in the form of parallel process networks.

7 Process Oriented Application Descriptions

We have explained in the introductory part of this chapter that the performance
gain in multi-core architectures depends upon application parallelization across the
cores. It requires the extraction of inherited spatial parallelism present in sequential
applications written in high level languages (such as C, C++ Smalltalk). Section 6
provided spatial parallelism results for MPEG-2 video decoding application. In this
section, we exploit the spatial parallelism information and represent the application
in the form of parallel process networks by using AVEL framework. The objective
is to describe source specification of the application in form of parallel process
networks to perform parallel and distributed computations. The state of the art in
parallel process networks representation is described in Sect. 2.3.

A Multi-objective Framework for Characterization of Software Specifications 203
7.1 Syntax of AVEL Framework

AVEL framework specifies three kinds of processes which are composed hierarchi-
cally. The first type is the Primitive Process which is the leaf of a process network
hierarchy and implements an atomic behavior. The second type is the Node Process
which is the composition of other processes and behaviors. It allows an hierarchical
description of process network. The third type is the Alias Process which is declared
outside the main process and is re-used by another processes. We use Alias Process to
factorize complex behaviors in the code. The syntax to declare the Primitive Process
or the Node Process is given as:

Process Name {Output Connections} [Behavior]

The Process Name is used as an identifier in the process network. To simplify
connections between different nodes of the process network, only the output con-
nections are declared. The Behavior of a process can be atomic or composite. For
the Primitive Process, the atomic behavior is an identifier used to make a link with
its corresponding function in the smalltalk specification. For the Node Process, the
composite behavior corresponds to a sub-network of processes such that the first
process is connected to the input ports of its hierarchy and the last process is con-
nected to the output ports. For example, if the output of the process “ProcessA” with
behavior “BehaviorA” is connected to the process “ProcessB” at output port “17,
then it is specified as:

ProcessA {ProcessB@1} [BehaviorA]
The graphical representation of the Primitive Process and the Node Process syntax
is shown in Figs. 8 and 9 respectively.
The syntax to declare an Alias Process is given as:

Process Name (process name) [Output Connections]

The graphical representation of the Alias Process syntax is shown in Fig. 10.

» Identifier || { Connections »| Identifier |,] |,

Y

g
—
v
—

A

Fig. 8 Primitive process syntax (represents a leaf in process network hierarchy)

— | Identifier | | { Connections o] I »| Processes |,] | __,

Y

Fig. 9 Node process syntax (represents hierarchical description of a process network)

204

M. Rashid and B. Pottier

—

A 4
~

Connections | |] [,

Identifier || (i Identifier .

Fig. 10 Alias process syntax (factorizes complex behaviors in the program)

7.2 Example of AVEL Program

In order to illustrate the syntax of AVEL processes, an AVEL program ‘“Example”
with hierarchical composition of the processes is shown below. The graphical repre-
sentation of the “Example” program is shown in Fig. 11.

01.
02.
03.
04.
05.

06.
07.
08.
09.
10.
11.
12.
13.
14.

Strz{}

[
Priml{Prim2@1l} [Priml]
Prim2{} [Prim2]

Example{}
[
Split{StrA@l StrB@l} [splitter]
StrA{StrZ}{Join@l}
StrB{StrC@l}
[
PrimA {PrimB@1l} [prima]
PrimB{} [primb]

]
Example E
Prim1 PrimA
StrA StrB
Prim2 PrimB
PrimA
StrC
PrimB

v

Fig. 11 Graphical representation of “Example” program (takes an input stream and splits it into
two processes

A Multi-objective Framework for Characterization of Software Specifications 205

15. StrC{StrB}{Join@2 }
16. Join{}[joiner]
17.]

“Example” (line 6) is an AVEL process network that takes an input stream and
splits it into two other processes “StrA” and “StrB” (line 8). “StrZ” (line 01) is
a Node Process because its behavior contains other Primitive Processes “Priml”
and “Prim2” (line 03 and 04 respectively). “StrB” (line 10) is also a Node Process
because its behavior contains other Primitive Processes “PrimA” and “PrimB” (line
12 and 13 respectively). “StrA” (line 09) and “StrC” (line 15) are Alias Processes
because their behaviors reuse predefined processes “StrZ” and “StrB” respectively.
“Split” (line 08 in above program) and “Join” (line 16 in above program) are two
Primitive Processes: Former is responsible for distributing input stream between its
outputs while the latter is responsible for merging an output stream from its inputs.

7.3 MPEG-2 Video Decoder in AVEL

We have described MPEG-2 video decoding in Sect. 6.1. However, it did not explain
the parsing of incoming video bit stream into an object stream. As its name implies,
parser reads the incoming video bit stream to extract different syntactic structures.
The process of parsing the incoming video bit-stream consists of many layers of
nested control flow. It makes the parser unsuitable for streaming computations. As
AVEL is intended for streaming computations, parsing of MPEG-2 bit stream into
an object stream is implemented in a higher level language like Smalltalk rather than
AVEL.

The transformation of video bit-stream into an object stream ensures that all syn-
tactic structures above macroblocks have been treated. The following AVEL program
shows slice (a collection of macroblocks) processing in MPEG-2 decoder. Figure 12
shows the graphical representation of the “ProcessSlice” AVEL Program.

01. ProcessSlice {} [

02. MBAddr {MBMode@1} [mbaddr]
03. MBMode {Split@1l} [mbmode]
04. Split {IntraMB@l

05. FieldMB@1

06. FrameMB@1

07. Pattern@l

08. DMVEl

09. NoMotion@l} [splitter]
10. IntraMB {join@1}

11. [

12. VLD{InverseScan@l} [v1d]

13. InverseScan{InverseQuant@l} [is]

206 M. Rashid and B. Pottier

ProcessSlice
Split
v v v ¥ v
IntraMB (FieldMB) (NoMotion) (FrameMB) (Pattern) (DMV)
VLD ¥ ¥ ! ¥
Inv. Scan
Inv. Q
Inv. DCT
¥
Join
I
v

Fig. 12 Graphical representation of ProcessSlice AVEL program

14. InverseQ{IDCT@1} [ig]
15. IDCT {}[idct]
16. 1

17. FieldMB {} {Join@2}
18. FrameMB {} {Join@3}
19. Pattern {} {Join@4}
20. DMV {} {Join@5}

21. NoMotion{} {Join@6}
22. Join {} [joiner]
23. 1]

The slice processing (line 01 in the above program) starts by calculating the mac-
roblock address increment (line 02 in the above program and shown as “MBAddr” in
Fig. 12). It indicates the difference between current macroblock address and previous
macroblock address. We have implemented it as a primitive process with behavior
“mbaddr”. The behavior of this process contains inherent parallelism. We can imple-
ment this process as node process which contains other primitive processes. However,
we have shown it as a primitive process in Fig. 12) for simplicity. After calculating
macroblock address increment, macroblock mode (line 03 in the above program) is
calculated which indicates the method of coding and contents of the macroblocks
according to tables defined in MPEG-2 standard [20]. Each type of macroblock is
treated differently. We have implemented it as a primitive process with behavior
“mbmode”. However, we can implement it as node process containing other primi-
tive processes.

A Multi-objective Framework for Characterization of Software Specifications 207

The output of “MBMode” is given to any of the six processes (line 04-09 in the
above program). All of these processes “IntraMB”, “FieldMB”, “FrameMB”, “Pat-
tern”, “DMV” and “NoMotion” are node processes and consists of other primitive
processes. But for simplicity, we have shown only “IntraMB” as node process (line
10 in the above program) and all of other processes are shown as primitive processes.

“IntraMB” further consists of primitive processes. These processes are “VLD”,
“InverseScan”, “InverseQ”, and “IDCT” (line 12-5 in above program). Again, we
have implemented all of these processes as primitive process. We can implement
these processes as node process which contains other primitive processes depending
upon the amount of spatial parallelism obtained from analysis framework.

8 Conclusions

In this article, we proposed a generic application analysis methodology for early
design space exploration of embedded systems. Source specifications in a high level
object oriented language Smalltalk were transformed into a trace tree representa-
tion by dynamic analysis. Unlike conventional dynamic analysis techniques, code
instrumentation was performed on abstract syntax tree rather than source code. We
executed the instrumented application to get trace tree representation. A generic
application analysis approach was used to characterize the trace tree representation.
Unlike conventional analysis approaches, the proposed approach was not restricted
to a set of particular design metrics.

To illustrate the significance of proposed framework, we performed analysis oper-
ations on the trace tree representation of MPEG-2 video decoding application and
obtained application characterization results in terms of: (a) processing, control and
memory orientations (b) spatial parallelism. We used spatial parallelism information
to model computational intensive part of the source specifications in the form of
parallel process networks.

References

1. S.S. Bhattacharyya et al., Overview of the MPEG reconfigurable video coding framework. J.
Signal Process. Syst. 63(2), 251-263 (2011)

2. Y.Q. Shi, H. Sun, Image and video compression for multimedia engineering: fundamentals,
algorithms, and standards, 2nd edn. (Cambridge, Massachusetts, USA, 2008)

3. G. Ascia, V. Catania, A.G. Di Nuovo, M. Palesi, D. Patti, Efficient design space exploration for
application specific systems-on-a-chip. J. Syst. Arch. 53(10), 733-750 (2007). Special Issue
on Architectures, Modeling, and Simulation for Embedded Processors

4. 1. Bacivarov, W. Haid, K. Huang, L. Thiele, Methods and tools for mapping process net-
works onto multi-processor systems-on-chip, in Handbook of Signal Processing Systems, Part
4(2010), pp. 1007-1040

208 M. Rashid and B. Pottier

5. 1.P. Diguet, Y. Eustache, G. Gogniat, Closed-loop based self-adaptive HW/SW embedded
systems: design methodology and smart cam case study. ACM Trans. Embed. Comput. Syst.
10(3) (2011)

6. S. Abdi, Y. Hwang, L. Yu, G. Schirner, D. Gajski, Automatic TLM generation for early vali-
dation of multicore systems. IEEE Des. Test Comput. 28(3), 10-19, May—June 2011

7. C. Silvano, et al., Parallel programming and run-time resource management framework for
many-core platforms. In 6th International Workshop on Communication-centric Systems-on-
Chip, Aug 2011, pp. 1-7

8. S.Rul, H. Vandierendonck, K.D. Bosschere, Function level parallelism driven by data depen-
dencies. SIGARCH Comput. Archit. News 35(1), 55-62 (2007)

9. J. Cockx, K. Denolf, B. Vanhoof, R. Stahl, SPRINT: A tool to generate concurrent transaction-
level models from sequential code. EURASIP J. Adv. Signal Process. 2007, article ID. 75373,
15 pp. (2007)

10. W.Thies, V. Chandrasekhar, S. Amarasinghe, A practical approach to exploiting coarse-grained
pipeline parallelism in C programs, in Proceedings of the 40th Annual IEEE/ACM International
Symposium on Microarchitecture (Micro-40), Illinois, USA, Chicago, Dec 2007, pp. 356-369

11. W. Thies, S. Amarasinghe, An Empirical Characterization of Stream Programs and its Impli-
cations for Language and Compiler Design, PACT Austria, Sept 2010, pp. 11-15

12. N.B. Amor, Y.L. Moullec, J.P. Diguet, J.L. Philippe, M. Abid, Design of a multimedia processor
based on metrics computation. Adv. Eng. Soft. 36(7), 448458 (2005)

13. Y. Moullec, J.P. Diguet, N. Amor, T. Gourdeaux, J.L. Philippe, Algorithmic-level specification
and characterization of embedded multimedia applications with design trotter. J VLSI Signal
Process. Syst. 42(2), 185-208 (Feb 2006)

14. A. Prihozhy, M. Mattavelli, D. Mlynek, Evaluation of the parallelization potential for effi-
cient multimedia implementations: dynamic evaluation of algorithm critical path. IEEE Trans.
Circuits Syst. Video Technol. 93(8), 593-608 (2005)

15. C. Lucarz, G. Roquier, M. Mattavelli, High level design space exploration of RVC codec
specifications for multi-core heterogeneous platforms, in DASIP (2010), pp. 191-198

16. 1. Tomek, The joy of smalltalk, Feb 2002, 700 pp [Online]. Available:www.iam.unibe.ch/
ducasse/FreeBooks/Joy/

17. B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, R. Koschke, A systematic survey of
program comprehension through dynamic analysis. IEEE Trans. Soft. Eng. 35(5), (2009)

18. A.Sengupta, R. Sedaghat, Z. Zeng, Multi-objective efficient design space exploration and archi-
tectural synthesis of an application specific processor (ASP). J. Microprocessors Microsyst:
Embed. Hardware Des. (MICPRO) 35(4), (2011)

19. W. Thies, An empirical characterization of stream programs and its implications for language
and compiler design, in Proceedings of the 19th International Conference on Parallel Archi-
tectures and Compilation Techniques, PACT ’10, Vienna, Austria, Sept 2010

20. ISO/IEC 13818-2, Generic coding of moving pictures and associated audio information-part
2: video, 1994, also ITU-T Recommendation H.262

21. H. Koziolek, Performance evaluation of component-based software systems: A survey.J. Per-
form. Eval. 67(8) (Elsevier Science, 2010)

22. R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat, C. Ferdi-
nand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat, P. Stenstrom, The
worst-case execution-time problem: overview of methods and survey of tools. Trans. Embed.
Comput. Syst. 7(3) (2008) article 36

23. M. Ravasi, M. Mattavelli, High abstraction level complexity analysis and memory architecture
simulations of multimedia algorithms. IEEE Trans. Circuits Syst. Video Technol. 15(5), 673—
684 (2005)

24. V.Uquillas Gomeza, S. Ducasse, T. D’Hondta, Ring: A unifying meta-model and infrastructure
for smalltalk source code analysis tools. Comput. Lang. Syst. Struct. 38(1), 44-60 (2012)

25. R. Stephens, A survey of stream processing. Acta Informatica 34(7), 491-541 (July 1997)

26. W.R.Mark, R.S. Glanvilley, K. Akeleyy, M.J. Kilgardy, Cg: A system for programming graphics
hardware in a C-like language. ACM Trans. Graph. 22(3), 896-907 (2003)

www.iam.unibe.ch/ducasse/FreeBooks/Joy/
www.iam.unibe.ch/ducasse/FreeBooks/Joy/

A Multi-objective Framework for Characterization of Software Specifications 209

217.

28.

29.

30.

31.

32.

33.

34.

N. Goodnight, R. Wang, G. Humphreys, Computation on programmable graphics hardware.
IEEE Trans. Compu. Graph. Appl. 25(5), 12-15 (2005)

S. Yamagiwa, L. Sousa, Modeling and programming stream-based distributed computing based
on the meta-pipeline approach. Int. J. Parallel Emergent Distrib. Syst. 24(4), 311-330 (2009)

C. Consel, H. Hamdi, L. Reveillere, L. Singaravelu, H. Yu, C. Pu, Spidle: A DSL approach to
specifying streaming applications, in Proceedings of 2nd International Conference on Gener-
ative Programming and Component, Engineering (GPCE’03) (2003), pp. 1-17

M. Gokhale, J. Stone, J. Arnold, M. Kalinowski, Stream-oriented FPGA computing in
the streams-C high level language, in Proceedings of the Sth IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM’00), Napa Valley, California, USA, Apr
2000, pp. 49-56

J.L. Gaudiot, T. DeBoni, J. Feo, W. Bohm, W. Najjar, P. Miller, The Sisal Model of functional
programming and its implementation, in Proceedings of the 2nd International Aizu Symposium
on Parallel Algorithms/Architecture Synthesis, Aizu-Wakamatsu, Fukushima, Japan, March
1997, pp. 112-123

S. Malek, N. Esfahani, D.A. Menasc, J.P. Sousa, H. Gomaa, Self-architecting software sys-
tems (SASSY) from QoS-annotated models, in Proceedings of the Workshop on Principles of
Engineering Service Oriented Systems, Canada, 2009

C.-K. Lin, A.P. Black, DirectFlow: A Domain-specific language for information-flow systems.
Lect. Notes Comput. Sci. 4609/2007 299-322 (2007)

E.Gamma, R. Helm, R. Johnson, J.M. Vlissides, Design Patterns, Elements of Reusable Object-
Oriented Software (Addison-Wesley Professional Computing Series, 1995)

Part IV
Performance Analysis, Power Management
and Deployment

An Efficient Cycle Accurate Performance
Estimation Model for Hardware Software
Co-Design

Muhammad Rashid

Abstract Software performance in terms of clock cycles can be measured on the
hardware platform. However, the availability of hardware platform is critical in early
stages of the design flow. One possible solution is to implement the hardware com-
ponents at cycle-accurate level such that the performance estimation is given by the
micro-architectural simulation in number of cycles. But the design space exploration
at this level may require huge simulation time. This article presents a cycle-accurate
performance estimation methodology with reduced simulation time. The simulation
results are computed and stored in a performance estimation database. The results
are used for mapping application functions on architecture components. We esti-
mate the application performance as a linear combination of function performances
on mapped components. The proposed approach decreases the overall simulation
time while maintaining the accuracy in terms of clock cycles. We have evaluated the
design with H.264 application and found that it reduces 50 % of the simulation time.

1 Introduction

Software is a dominant part of current embedded applications due to flexibility,
time-to-market and cost requirements issues. In HW/SW co-design process, soft-
ware development is responsible for more than 75 % of the design delays [7]. This
delay exists because the system is poorly conceived and complex algorithms fail
to adequately address systems performance. Comparison of estimated application
behavior on a number of different hardware components is called performance esti-
mation. A key to successfully accomplishing this task is the design space exploration
(DSE). It involves simulation of different implementation alternatives for software
performance estimation.

M. Rashid (B<)
Umm Al-Qura University, Makkah, Saudi Arabia
e-mail: mfelahi@uqu.edu.sa

M. A. Khan et al. (eds.), Embedded and Real Time System Development: 213
A Software Engineering Perspective, Studies in Computational Intelligence 520,
DOI: 10.1007/978-3-642-40888-5_8, © Springer-Verlag Berlin Heidelberg 2014

214 M. Rashid

Software performance estimation of a function on each processing element is a
very time consuming and difficult task. Any change in the hardware architecture
may require a new partitioning scheme for the associated software. There are three
requirements on the software performance estimation technique. First, it should be
adaptable to reflect varying architecture features. Secondly, it should take into account
the compiler options. Finally, the performance estimation technique should consider
the data-dependent performance variations. Therefore, fast software performance
estimation tools, to perform simulations at different abstraction levels, are needed in
early stages of the design flow [12].

The well-known abstraction levels for performing simulations are Register Trans-
fer Level (RTL), Transaction Level Modelling (TLM) and cycle-accurate.
Performance estimation at RTL requires great quantities of simulation time to explore
the huge architectural solution space [19]. TLM tools reduces simulation time com-
pared with RTL by using higher abstraction of inter component communication activ-
ity with acceptable cost of timing accuracy. The problem with TLM based techniques
is the lack standardization. Consequently, industry/research labs have developed their
own internal TLM standards such that the models from different providers have dif-
ferent degree of accuracy [1]. Cycle-accurate simulations [3] is another alternative
for performance estimation. Despite of accurate performance estimation, it is often
too slow to be used inside the DSE loop.

This article proposes a DSE framework, which consists of five stages. However,
the core of the framework is the second stage in which a software performance
estimation methodology at cycle-accurate level is presented. Application behavior
is modeled as a composition of function blocks. The performance of each function
block on different processing elements is stored in a performance estimation data-
base. The information in the database is used for mapping different function blocks
in application software to different processing elements in hardware architecture.
Once mapping decision is made, we estimate the system performance as a linear
combination of function block performances on mapped components.

The focus of performance estimation technique in this article is on simulation
of individual processing elements (PEs), which forms a major bottleneck in achiev-
ing high simulation speeds. Traditionally, individual PEs have been simulated using
Instruction Set Simulators (ISS). A number of recent works have suggested various
ISS acceleration techniques, such as compiled simulation [17] or just-in-time com-
piled simulation [2]. However, due to the increasing complexity of MPSoCs, even
such improvements are not enough to achieve the desired simulation speed. We will
describe the ISS acceleration techniques in Sect. 2 of this article.

In order to implement the proposed performance estimation methodology, a sim-
ulation platform is required which: (1) models all architecture features and (2) per-
formance estimation is made with the binary executable after compilation. We use
SoCLib library [21], an open source platform for virtual prototyping of MPSoCs, to
describe architectural components.

‘We build a simulation platform by instantiating different modules from the SoCLib
library and execute the considered application on the target simulation platform.
The core of the platform is a library of SystemC simulation moules. However, the

An Efficient Cycle Accurate Performance Estimation Model 215

native SoCLib simulation modules are not sufficient to implement the proposed
performance estimation methodology. Consequently, we create one new module and
modify one of the native module in the SoCLib library.

The SoCLib simulator models all architecture features and estimation is made
with the binary executable after compilation. Therefore, first two requirements of
the performance estimation, consideration of architectural features and compiler
optimizations, are satisfied. The third requirement, consideration of data dependent
behavior, is met by simulating each function with different input data. Accordingly,
we compute the Worst Case Execution Time (WCET) and the Average Case Execu-
tion Time (ACET) for individual functions blocks.

To summarize, the contributions of this article are as follows:

e A complete DSE framework is proposed. It consists of five stages. The in-depth
description of the second stage, a performance estimation methodology at cycle-
accurate level with reduced simulation time, is presented.

e Inordertoimplement the proposed cycle-accurate performance estimation method-
ology, SoCLib simulation library is extended.

The rest of this article is organized as follows: Sect. 2 describes the related work
in software performance estimation. Section 3 presents a DSE framework with five
stages. Section 4 presents the performance estimation stage of the proposed frame-
work. Simulations are performed and the performance results of individual function
blocks are stored in a performance estimation database. Section 5 presents SoCLib
library of simulation models. Experimental results with H.264 video encoding appli-
cation are provided in Sect. 6. Finally, we conclude the article in Sect. 7.

2 Review of Related Work

This section presents various simulation techniques for performance estimation
proposed in recent works. We divide the existing simulation techniques into four
categories as shown in Fig. 1. The four simulation techniques are: instruction set
simulation, partial simulation, annotation-based simulation and hybrid simulation.

2.1 Instruction Set Simulation

An Instruction Set Simulator (ISS) functionally mimics the behavior of a target
processor on a host work station. It is further subdivided into interpretive simulation
and compiled simulation.

Interpretive Simulator is a virtual machine implemented in software. An instruc-
tion word is fetched, decoded and executed at runtime in a simulation loop. Sim-
pleScalar [S] and SimOS [18] are the typical examples. Interpretive Simulation is
the basic ISS technique which is flexible but slow. To increase the simulation speed,
the concept of compiled simulation was proposed.

216 M. Rashid

Cycle Accurate Simulation

Instruction Set Simulation Annotation—based Simulation Partial S lation Hybrid Simulation

Interpretive Simulation ~ Compiled Simulation Sample-based Simulation Trace—based Simulation

v v v

Statically Compiled Dynamically Compiled Just—in-time Compiled

Fig. 1 Classification of simulation techniques

Compiled Simulation is used to improve the simulation performance by shifting
the time consuming operations, such as instruction fetching and decoding, from
runtime to compile time. It is further subdivided into dynamically compiled, statically
compiled and Just-in-time (JIT) compiled simulations. Dynamically compiled and
statically compiled techniques have in common that a given application is decoded at
compile time. In order to compare dynamic and static compilation with interpretive
simulation, we divide the processing of application code into three steps: instruction
decoding, operation sequencing and operation scheduling as shown in Table 1.

In interpretive simulation technique, all processing phases are performed at run-
time [5, 18]. In dynamically compiled simulation technique, instruction decoding
and operation sequencing phases are performed at compile time, while the operation
scheduling phase is still performed at runtime [17]. In statically compiled simulation
technique, all the three phases are performed at compiled time [4]. A JIT compiled
simulation technique [2] exploits special features of architecture description lan-
guages to combine flexibility and high simulation speed. The compilation of target
binary takes place at runtime and the result is cached for reuse.

2.2 Partial Simulation

Partial simulation techniques are used to obtain performance estimation of the whole
application without having to simulate it to completion. It is further subdivided into
sampling-based and trace-based partial simulation techniques.

Table 1 Application code processing phases in different simulation techniques

Simulation technique Instruction Operation Operation
decoding sequencing scheduling

Interpretive simulation [5, 18] Runtime Runtime Runtime

Dynamically compiled [17] Compile time Compile time Runtime

Statically compiled [4] Compile time Compile time Compile time

An Efficient Cycle Accurate Performance Estimation Model 217

Sampling-based Partial Simulation Technique advocates the sampling of
selected phases of an application to estimate the performance of a processing ele-
ment. An analytical sampling technique is presented in [20]. Representative samples
are selected by analyzing the similarity of execution traces. Samples are represented
by basic block vectors and can be obtained by performing a functional simulation
at the pre-processing phase. SMARTS [22] is another sampling microarchitecture
simulator. Functional simulation can be used to fast-forward the execution until sam-
ples are met. Detailed simulation is performed on these samples, and the obtained
performance information is used to extrapolate that of the whole application.

Trace-based Partial Simulation Technique generates a synthetic trace to rep-
resent the performance. A trace is some information of interest generated during the
execution of a program on a simple and fast simulation model. Later, analysis tools
can process the traces off-line in a detailed fashion. An example of trace-based partial
simulation is [6].

2.3 Annotation-based Simulation

In this technique, performance information is annotated into the application code and
executed at the native environment. During the native execution, the previous anno-
tated information is used to calculate the application performance. One example of
annotation-based performance estimation is [9]. The C source code of the application
is first lowered to an executable intermediate representation (IR). A set of machine
independent optimizations, such as constant propagation, constant folding and dead
code elimination are performed to remove redundant operations. The optimized IR
is then analyzed to estimate the operation cost of each basic block. These costs are
then annotated back to the IR, which in turn are natively compiled and executed
to estimate the performance of the application. The performance estimation from
a cycle accurate virtual prototype is exported to a concurrent functional simulator
in [11]. Target binaries are simulated on cycle-accurate simulators to obtain timing
information. This timing information is annotated back to the original C code at
source line level. Finally, the SystemC simulation is performed on annotated code
for fast performance estimation.

2.4 Hybrid Simulation

This technique combines the advantages of ISS, such as applicability to arbitrary
programs and accurate estimation, with native execution of selected parts of the
application. Native execution refers to the execution of a program directly on a
simulation host and is typically much faster than ISS.

The pioneer work in this category is [13]. It proposes a hybrid performance esti-
mation technique for single processors. Some parts of an application are executed

218 M. Rashid

on the native host machine, whereas the rest runs on an ISS. Natively executed parts
are the most frequently executed portion of the code. Since native execution is much
faster than ISS, significant simulation speed is achieved.

The HySim framework [8] combines native execution with ISS similar [13].
However, it generates the C code containing performance information from the
original C source code, similar to the annotation-based techniques [11]. It analyzes
the source code of the application, and annotates operation cost and memory accesses.
These annotations are evaluated at runtime to generate performance information in
terms of processor cycles and memory latencies.

2.5 Comments on Existing Simulation Techniques

Due to system complexity, the ISS acceleration techniques such as dynamically com-
piled simulation, statically compiled simulation or JIT compiled simulation were not
enough to achieve the desired simulation speed. Consequently, the partial simulation
techniques, such as sampling and tracing, were proposed. The major drawback of
sampling-based technique is that a large amount of pre-processing is needed for dis-
covering the phases of the target application. The proposed performance estimation
methodology in this article does not require to identify the regions of a program
that are selectively simulated in detail while fast-forwarding over other portions.
Therefore, no pre-processing is required.

The problem with trace-driven simulation is that the generated traces might
become excessively large. Another issue is that trace-driven simulation relies on
post-processing and cannot provide performance information at runtime. Annotation-
based simulation techniques [9—11] provide simulation speedup as compared to pure
ISS but still suffer with some restrictions. For example, the approach in [9] is applica-
ble for RISC like processors and does not support super-scalar or VLIW architectures.
The technique in [11] does not fully parse the C code. Similarly, developing a binary-
to-C translator requires considerable efforts in [10]. The proposed approach in this
article does not estimate the performance of the entire application. Instead, we use
the simulation to estimate the performance of function blocks before the design space
exploration loop.

Although simulation speedup is achieved in hybrid simulation techniques [8, 13],
the major concern is the selection of application functions for native execution. For
example, the limitation of [13] is that a training phase is required to build a procedure
level performance model for the natively executed code. Similarly in [8], functions
for native execution must contain no target dependent optimization. Our technique
does not impose any restriction on the application code as the complete application
is executed on the ISS of the target architecture.

An Efficient Cycle Accurate Performance Estimation Model 219

3 Proposed Design Space Exploration

Section 2 provided state-of-the-art in reducing the simulation speed for fast DSE. We
highlighted some major limitations in the existing approaches. The subsequent parts
of this article will present a cycle-accurate performance estimation technique in a
DSE framework. First, this sections presents the proposed DSE framework. Then,
Sect. 4 will describe the performance estimation technique.

The proposed framework is shown in Fig. 2. It contains five stages: applica-
tion specification, cycle-accurate performance estimation, computation architecture
selection, code partitioning and communication architecture selection.

Application Transformation:

The application description is given in the form of reference C code. The proposed
DSE framework starts by transforming a reference sequential code into composition
of functional blocks. An application transformation methodology is presented in [16].
The application behavior may consist of hardware blocks written in RTL specifica-
tions (hardware IPs) or software blocks written as C functions. Hardware IPs are
provided with their performance values. However, the performance of a software IP
can not be determined a priory. We estimate the performance of software function
blocks by performing simulations at cycle-accurate level in the second step of the
proposed DSE framework which is the main concern of this article.

Performance Estimation:

The proposed DSE framework consists of two inner design loops: computation
architecture selection loop and communication architecture selection loop. Before
entering into computation architecture selection loop, it is necessary to estimate the

(1) Application Transformation (2) Software Performance Estimation
(Composition of Function Blocks) (SoCLib Simulation Platform)
(c) v
»
Ll

(3) Computation Architecture Selection Performance Estimation Database

(La) v v

(4) Code Partitioning Architecture Library
(Computation)
(b) (5) Communication Architecture Selection < Architecture Library

_: (Communication)

(a) Computation Architecture Selection Loop

(b) Communication Architecture Selection Loop
(C) Global Outer Design Space Exploration Loop

Fig. 2 Proposed design peace exploration framework

220 M. Rashid

performance of software function blocks. A performance estimation technique will
be described in Sect. 4 to perform simulations at cycle-accurate level.

Cycle-accurate simulation results of individual functional blocks are stored in a
performance estimation database. The information in this database is used by the
computation architecture selection loop in two different ways. First, it is used for
component selection and mapping decision for each function block. Second, the
performance of the entire application is estimated as a linear combination of block
performances on the mapped components. In case the performance information of
a function block is already recorded in the database, there is a trade-off whether we
estimate the block performance again for a new application or not.

Computation Architecture Selection:

The third step performs computation architectural selection design loop. The
inputs to this step are: application specification, performance estimation database
contents and an initial architecture. It performs: (1) appropriate processing ele-
ment selection, (2) mapping function blocks to the selected processing element and
(3) evaluation of the estimated performance to check whether the given time con-
straints are met. In this step, a very abstract notion of communication overhead is
used and is computed as the product of fixed cost and the number of data samples.
This is because the communication architecture has not been determined yet.

Code Partitioning:

Once the mapping decision is made, the code for each processing element is
synthesized in the fourth step. HW/SW co-simulation is performed to obtain memory
traces from all processing components. The memory traces include both local and
shared memory accesses from all processing elements. Memory traces are classified
into three categories: code memory, data memory and shared memory. Code and
data memories are associated with local memory accesses while shared memories
are associated with inter-component communication.

Communication Architecture Selection:

The fifth step performs second inner design loop of the DSE framework. Based on
the memory trace information generated by processing elements, the communication
architectural selection loop selects the optimized communication architecture.

Outer Design Space Exploration Loop:

A global DSE loop updates the communication cost after the communication
architecture is determined from the communication architectural selection loop. The
key benefits of separating the computation from the communication are lower time
complexity and extensibility.

4 Performance Estimation Technique

Section 3 presented the DSE framework with five stages. This section will present the
second step of the proposed DSE framework by presenting a performance estimation
methodology at functional level of the embedded software.

An Efficient Cycle Accurate Performance Estimation Model 221

Basic Principle:

Application behavior specified in function blocks is instrumented and
cross-compiled on ISS of the target processor. We assume that all architectural
features of the processor are accurately modeled in the simulator. The compiled
code is simulated on the simulation platform at cycle-accurate level to obtain the
run time profile of each function block. It includes number of execution cycles and
memory access counts. From the run time profile, we determine the representa-
tive performance values and store it in a performance estimation database. Once we
have the performance estimation values for individual blocks, the performance of the
entire application is computed as a linear combination of function block performance
values.

Cyclic Dependency Problem:

The software performance estimation depends upon two things: compiler options
and architecture features. Depending upon the compilation options, the performance
variation can be as large as 100 %. Even though, function block performances were
already recorded in the performance estimation database, we have to examine which
compiler options were used before using performance values. The most important
architecture feature is the memory system. If a cache system is used, cache miss rate
and miss penalty, both affect the software performance.

As aresult, there is a cyclic dependency between the performance estimation and
the DSE. The system architecture is determined after the DSE but the performance
estimation is required before the DSE. However, the accurate performance estimation
is only possible after system architecture is determined. For example, memory access
time is dependent on the communication architecture and memory system. This cyclic
dependency is shown in Fig. 3.

Solution to Cyclic Dependency Problem:

This problem is solved by specifying the performance value of a software block
on a processor with not a number but a pair: (CPU time, memory access counts).
The CPU time is obtained from simulation assuming that the memory access cycle
is 1 (perfect memory hypothesis). We record the memory access counts separately
as the second element of the performance pair. Then, the block performance on a
specific architecture will be the sum of the CPU time and the memory access counts
multiplied by the memory access cycles. Memory access latency is defined from the

< Design Space Exploration >
A
v
G’erformance Estimatior)q—(System Architecture)

Fig. 3 Cyclic dependency problem

222 M. Rashid

architecture and its value can be updated after performing the fifth step, which is the
communication architecture selection loop, in the proposed DSE framework shown
in Fig. 2. Such separation of memory access counts breaks the cycle dependency
between the performance estimation and the design space exploration.

Data-Dependant Performance Estimation:

In addition to compiler options and architecture features, performance value of
a software function block depends on input data. It is observed that the worst case
takes much longer than the average case behavior. Therefore, for each function block,
simulation is performed more than once with different input data. As a result, WCET
and ACET are computed for each function block.

Definition 1 Worst Case Execution Time (WCET)—the maximum execution time
of a function during multiple simulations with different input data. It should not be
confused with the conventional meanings of the WCET used in static analysis. There
is no guarantee of the worst case performance because we use the inputs that are not
exhaustive in any sense. It just says that the performance is no worse than this value
with high probability.

Definition 2 Actual Case Execution Time (ACET)—the average execution time of
a function block during multiple simulations with different input data. Performance
results with the WCET can be too pessimistic. ACET may reveal more realistic
performance results for average case optimization.

However, it might be a problem to use the ACET as the performance measure for
real time applications due to non-uniform execution time.

Definition 3 Non-uniform Execution Time—the phenomenon of executing different
frames in a video sequence with different execution time. The in-depth discussion
of non-uniform execution time will be presented in Sect. 6.4.

Performance Estimation with Real Test Data:

For estimating the performance of each block, a common method is to build a
test bench program where a test vector generator provides input argument values
to the function. This method has two serious drawbacks. First, it is very laborious
to build a separate test bench program and analysis environment for each function
block. Second, good test vectors are not easy to define.

The proposed approach overcomes these drawbacks by running the entire appli-
cation. Since the entire application is already given at the specification stage, no
additional effort of building a separate simulation environment is needed. And test
vectors to the function blocks are all real, better than other synthetic test vectors.
Since we are using the real test vectors for a function block, the average case perfor-
mance value is meaningful when computing the average performance of the entire
application by summing up the performance values of function blocks.

In order to measure the performance estimation, we obtain the number of processor
clock cycles for a particular task execution. For more precise performance estimation,
we can also measure the information related to the caches associated to a processor
(number of cache Miss and Hit).

An Efficient Cycle Accurate Performance Estimation Model 223

To summarize, the main features are:

e The performance value of a software block on an architecture component is
specified as a pair: (CPU time, memory access counts).

e The proposed technique simulates the function blocks with different data set to
obtain WCET and ACET for each function block.

4.1 Performance Estimation Database

The estimated performance information is recorded in a performance estimation
database. There are multiple entries for each (functional block, processing compo-
nent) pair depending upon the compiler options. Even with a given compiler option,
a function block may have a different performance value at each execution because
its performance is data dependent. For data dependent performance variations, we
compute the WCET (Definition 1) and the ACET (Definition 2). The WCET and
ACET results are stored in a performance estimation database.

Also, we need to distinguish the functional block performances by block
parameters. For example, the execution time of an FIR filter is proportional to the
number of filter taps. Different sets of filter coefficients are defined as block parame-
ters while the same block definition is used. A block parameter that has an effect on
the block performance is called a factor of the block. In short , the following tuple
is updated to the performance estimation database.

(function name, processing element, compiler options, memory reads, memory
writes, WCET, ACET)

The performance results in the performance estimation database is used by the
computation architecture selection loop in two different ways. First, it is used for
component selection and mapping decision for individual function blocks in the
application. Second, the performance of the entire application is estimated as a linear
combination of block performances on the mapped components.

4.2 Application Performance Estimation

This section explains performance estimation during computation architecture selec-
tion loop of the design space exploration framework in Fig. 2. The entire application
performance is estimated as a linear combination of block performances for each
candidate system architecture and mapping decision. Let:

e “Fk” be the name of the function such that for function “F1”, the value of “k” is
equal to 1, for function “F2” the value of “k” is equal to 2 and so on.

e “Pi” be the name of the mapped component such that for component “P1”, “P2”,
“P3”,... “Pn” the value of “i” isequalto 1,2,3...,n.

224 M. Rashid

e “T(k, i)” be the CPU time taken by function “Fk” mapped on component “Pi”.

e “M(k)” and “I(k)” be the number of memory accesses and the number of invoca-
tions for function “Fk” respectively.

e “C(k, I)” be the communication requirement of function “Fk” to the next function
block “FI”.

e “N(m)” be the memory access overhead of the selected candidate architecture.

e “N(c)” be the channel communication overhead of the selected architecture.

Then, the estimated performance of the entire application becomes,
Zl(k)*{T(k,i)+M(k)>kN(m)+C(k,l)>kN(c)} (1)

The accuracy of the estimated performance, provided in Eq. 1, depends on the
accuracy of each term. For example, the value of “N(m)” and “N(c)” can be updated
after performing communication architecture selection loop. Accuracy is also depen-
dent on modeling of the candidate processing element.

Another cause of inaccuracy may come from the cache behavior. When the initial
state of cache is different, the simulated cache behavior is also different, to make
the performance estimation inaccurate. It also affects the number of memory access
counts.

The third term in Eq. 1 may be included in the second term if the communication is
performed through memory and asynchronous protocol is used. Otherwise, we need
to pay extra overhead of synchronization and/or communication activities, indicated
by the last term of Eq. 1.

For example, if an application has four functions F1, F2, F3 and F4 such that: (a)
the functions F1 and F2 are mapped to processing element (PE) P1 and (b) functions
F3 and F4 are mapped to processing element P2 as shown in Table 2.

By putting the values in Eq. 1, we obtain that the total execution cycles for function
F1, F2, F3 and F4 are 325, 100, 300 and 320 respectively. A linear combination of
these values will give the total number of execution cycles of the complete application.

This section described the basic principles of proposed performance estimation
technique. Cyclic dependency between performance estimation and design space
exploration for architecture selection was solved by specifying the performance value
of a software function on an architecture component with a pair: (CPU time, memory
access counts). Moreover, the proposed technique satisfied the three requirements
for software performance estimation. The results of individual function blocks were
stored in a performance estimation data base (Sect. 4.1). Performance of the entire
application was computed by Eq. 1 in Sect. 4.2.

Table 2 Example of

performance estimation with Functions PEs T(k, i) I(k) M(k) N(m) C(k, L) N(c)

Eq. 1 F1 P1 30 5 5 5 5 2
F2 P1 35 2 3 5 0 2
F3 P2 25 5 5 4 5 3
F4 P2 40 4 10 4 0 3

An Efficient Cycle Accurate Performance Estimation Model 225

SoClib Simulation Platform

—> TTY
Instruction é
Cach B
z
=]
5
Processor Eg «—> Instruction RAM

o L
> 3
g
] Data &)
Cach 7 E

=~ le—> Data RAM

Fig. 4 SoCLib simulation platform

5 SoCLib Simulation Platform

Section 4 presented a performance estimation technique at cycle-accurate level. In
order to implement the proposed technique, a simulation platform is required. We
have chosen SoCLib [21] simulation platform for our experiments with H.264 appli-
cation in Sect. 6. SoCLib is a library of open-source SystemC simulation mod-
ules. Example of simulation models available in SoCLib are processor models like
“PowerPC”, “ARM”, “MIPS”, standard on-chip memories and several kinds of
networks-on-chip. The “VCI” communication protocol is used to interface between
IPs. In order to realize a simulation platform, components are chosen from a database
of SystemC modules.

5.1 Realization of SoCLib Simulation Platform

A simulation platform is obtained by direct instantiation of hardware modules as
shown in Fig. 4. A processor is used with its associated data and instruction cache.
Standard memories such as instruction RAM and data RAM are used for storing the
program and data respectively. A VCI Generic Micro Network (VGMN) is used to
communicate between different components of the simulation platform. A dedicated
component is used for displaying output (referred as TTY).

In order to realize a simulation platform, we write the top module “fop.cpp” file
which contains all required SoCLib component definitions (e.g. Processor, RAM,
TTY etc). We define a mapping table to simplify the memory map definitions and the
hardware component configurations before instantiating any hardware components.
Mapping table itself is NOT a hardware component and it is used by the platform

226 M. Rashid

Modified SoCLiB Simulation Platform

«—> TTY
|| Instruction | R %\
Cach ;
g e VCI_Profile_Helper
r4
z %
Processor = g
S S Instruction RAM
T [e—>
1 (Modified)
QD
I Data | E
Cach g g
- Data RAM
(Modified)

Fig. 5 Modified SoCLib simulation platform

designer to describe the memory mapping and address decoding scheme of any
shared memory architecture build with the SoCLib hardware components. All the
required SoCLib components are added to mapping table. We then create all the
required components and associated signals and connect components and signals.
Finally we define “sc_main” in the top module, and run simulation.

5.2 Modified Simulation Platform: An Extension of SoCLib

The information required for the proposed performance estimation framework can
not be extracted through the already available tools in the SoCLib library. Therefore,
modifications in various modules of the SOCLib platform or creation of new modules
isrequired. In order to implement the proposed performance estimation methodology,
we create a new module “VCI_Profile_Helper” and modify the existing module for
instruction and data RAM. It allows to extract the required performance information
which is not possible through already available tools in SoCLib [21]. In an open
source framework like SoCLib, it is easy to make these changes. However, it may
require some development time to modify the existing module or creating new ones.

The purpose of the new module “VCI_Profile_Helper” is to count number of
execution cycles for a function block on a processing element during simulation.
The purpose of modification in instruction and data RAMs is to generate a memory
access profile for extraction of the information such as: time at which the request is
made, the address of the transaction and the type of transfer etc. This information is
stored in a simple text file during simulation. We modify the simulation platform such
that the new simulation platform instantiate the component “VCI_Profile_Helper”
and modified RAMs as shown in Fig. 5.

An Efficient Cycle Accurate Performance Estimation Model 227

Input Data
Application SystemC Simulation Platform
(Composition of Functional Blocks) (SoCLib)

(GCC Cross Compiler) (GCC)

Application Executable Simulation Executable

Simulation at cycle—accurate level

v

Performance Estimation Library

Fig. 6 Simulation flow using SoCLib simulation platform

5.3 Simulation Flow Using SoCLib Simulation Platform

Figure 6 represents the simulation flow that will be used in our experiments (Sect. 6).
Application is compiled with the GNU GCC tool suite. SOCLib simulation platform
models all architecture features. It is compiled with the GCC and yields a binary
executable named “simulation.x”. The results of the simulation at cycle-accurate
level for each function with different input data are stored in performance estimation
database. Since the platform simulator models all architecture features and the binary
executable is obtained after compilation. In addition to this, simulation is performed
with different types of data set. Therefore, the simulation flow incorporates the three
basic requirements of performance estimation.

This section described a simulation platform to implement the proposed perfor-
mance estimation technique. The next section will use this simulation platform to
perform experiments with H.264 video encoding application.

6 Experimental Results

This section presents experimental results for the performance estimation technique
(Sect. 4) by using the SocLib simulation platform (Sect. 5) with X264 application
which is an open source implementation of H.264.

228 M. Rashid

6.1 Experimental Setup

The target simulation platform and simulation flow are shown in Figs. 5 and 6
respectively. In the simulation platform of Fig. 5, we have used cycle-accurate simula-
tion models of different processors from SoCLib library. It includes ARM, PowerPC
and MIPS with associated instruction and data cache. We encode 745 frames of
QCIF format moving picture. The frame sequence consists of one I-type frame and
the subsequent 734 P-type frames. We estimate the performance of each function
block on PowerPC405, ARM7TDMI and ARM966 processors.

6.2 Performance Estimation on PowerPC405 Processor

The performance estimation results of X264 video encoder for PowerPC405 with
32 KB of instruction and data cache are summarized in Table 3. The first column
of Table 3 lists all function blocks in the application. For each function block, sim-
ulations are performed with different data sets to obtain WCET (Definition 1) and
ACET (Definition 2) listed in the second and the third columns respectively.

The diversity “D” is shown in the fifth column and is obtained by dividing the
WCET with ACET. Total execution time (TET) for each function block is shown in
the fourth column and is obtained by multiplying execution time (WCET or ACET
depending upon the value of “D” for the function block) with total number of calls.
We observe that the value of “D” is comparatively large for the mc_chroma block,
get_ref block and the IDCT block. Therefore, using the WCET for these function
blocks is not adequate measure of estimated performance for cost sensitive designs.

If the cache miss penalty is zero, which implies perfect cache hypothesis or no
external memory access, the processor times become the performance of function

Table 3 Execution cycles of X264 video encoder

Name WCET AET TET D Reads Writes
Functions for SATD 8,993 8,150 1.05 x 10'! 1.10 528 802
Functions for SAD 3,596 3,129 1.6 x 1010 1.15 928 1,578
get_ref 28,355 16,423 1.1 x 10! 1.72 1,125 510
mc_chroma 29,259 17,517 7.9 x 1010 1.67 1,844 729
Intra prediction 2,041 1,777 53 x 10° 1.15 376 543
Functions for DCT 2,541 2,330 2.5 x 10° 1.1 1,953 967
Functions for IDCT 2,253 750 9 x 108 3.0 837 458
Functions for Q 1,165 997 2.1 x 10° 1.17 775 513
Functions for IQ 830 755 9.8 x 108 1.1 540 423
Entropy encoding 2,179 1,866 4.1 x 1010 1.16 568 784
Miscellaneous 8.6 x 10°

Total 3.7 x 101

An Efficient Cycle Accurate Performance Estimation Model 229

[l Perfect cache [l Memory access penalty
0.4 0.39

0.34 0.33

0.32
0.29

0.26)

0.24

Error (%)

0.16

0.08 A

0_
FOREMAN AKIYO MAD GARDEN SUZE

Image

Fig. 7 Error of the estimated performance

blocks. Therefore, the linear combination of block performances results in a value
of 378, 316, 262, 400 cycles and shown as 3.7 x 10! in the last row of Table 3. The
total execution time of the entire application without code augmentation results in
a value of 377, 726, 530, 900 cycles. Note that the error between two results is just
0.155 %. It proves the accuracy of the proposed technique.

Now if we consider the cache miss penalty, the accuracy of the proposed technique
is slightly degraded. The last two columns of Table 3 shows the total number of
memory reads and memory writes for each function block that corresponds to cache
misses. Figure 7 illustrates the error of the estimated performance obtained from
Eq. 1 compared with the simulation results considering the cache miss penalty.

It shows that the error of the estimated performance is still under 0.5 % assuming
that cache miss penalty is 5 bus cycles. It is important to note that frame sizes play
an important role in the cache miss penalty. We can explain the effect of frame size
on the cache miss penalty by the following example.

Suppose the memory system of the architecture is assumed to have two-level
cache management. Usually, the size of the first level (L1) cache is small such that
only a few data of reference frame can be cached, but the second-level (L2) cache is
larger and it might be able to store the whole reference frame. Consider the scenario
that the frame size is small such that the reference frame can be stored in the L2
cache. Under such a scenario, the cache miss penalty is equal to the access time of
the L2 cache. In contrast, the cache miss penalty of the L1 cache is equal to that of

230 M. Rashid

Table 4 Total execution time

. Processor name Total execution time
on different processors

PowerPC405 (1) 3.7 x 10'!
PowerPC405 (2) 2.9 x 10'!
ARM7TDMI (1) 6.5 x 10!
ARM7TDMI (2) 4.6 x 10'!
ARMO966 (1) 5.2 x 101!
ARMO966 (2) 3.6 x 10!

the L2 cache, if frame size is larger such that the required data cannot be obtained
from the L2 cache. Therefore, the cache miss penalty of the L1 cache highly depends
on the hit rate of L2 cache and the hit rate of the L2 cache is related to frame size.

Since all function blocks are executed in a single processor, there is no commu-
nication overhead included in this experiment. Figure 7 also shows the experimental
results with other image samples. Here, we estimate the block performance separately
for each image sample since the performance values are quite different depending
on the scene characteristics.

6.3 Performance Estimation on Different Processors

Section 6.2 presented the experimental results on PowerPC405. This section shows
the performance estimation of H.264 video encoder on different processors as
shown in Table 4. As candidate processing elements, we have used PowerPC405,
ARM7TDMI and ARM966 with an L1 cache only. The total number of exe-
cution cycles for one PowerPC405 processor, two PowerPC405 processors, one
ARMT7TDMI processor, two ARM7TDMI processors, one ARM966 processor and
two ARM966 processors are 3.7 x 1011, 2.9x 10!, 6.5x 10!, 4.6 x 10'!, 5.2x 10!
and 3.6 x 10!! respectively.

6.4 Non-uniform Execution Time of Input Video Sequence

Performance estimation in Sect. 6.3 is made by taking the ACET or WCET depending
upon the diversity between them. However, It might be a problem to use the ACET as
the performance measure for real time applications. Figure 8 shows the variations of
H.264 video encoder execution time. ACET is represented as “Ave” and the WCET
is represented as “Max” in Fig. 8.

Depending upon the mode of operation, the execution time varies. This variation
of execution time is due to the multiple ways of macroblock analysis in different
video frames. If such variations in execution time is ignored in the computation of
average execution time and the implementation barely accommodates the average
performance, all P frames will result in deadline miss.

An Efficient Cycle Accurate Performance Estimation Model 231

Bl Real M Average Maximum
Execution Cycles

50,000,000

40,000,000

30,000,000

20,000,000

10,000,000

0_

I"P P P P P P P P P AveMax

Fig. 8 The consecutive frames, average and worst case execution cycles

One solution to this problem is to use different performance measure instead of
the ACET. As shown in Fig. 8, using the WCET is a costly solution. The more
optimized solution is to record the execution time of each block in case of the worst
case behavior of the whole application. Then, we compared the recorded execution
time with the average execution time of each block and choose the maximum. In
this way, no deadline miss occurs and we save 14 % of the estimated execution time
compared with the worst case estimation.

6.5 Decrease in Simulation Time

The simulation time of the entire X264 video encoding application with PowerPC405
processor is 16 h and 30 min. This simulation time is recorded for a QCIF video of 745
frames with one I-type frame and the subsequent 734 P-type frames. Simulation is
performed for all function blocks in the application. In order to reduce the simulation
time, performance values of function blocks in performance estimation database are
used as shown in Table 5.

Decrease in simulation time during each iteration is shown in the third column
of Table 5. 25 % decrease is obtained by using “SATD” performance values from
performance estimation database. Similarly, 30 % decrease is obtained by using
“get_ref” values from performance estimation database and so on.

232 M. Rashid

Table 5 Decrease in simulation time

Type of simulation Simulation time Decrease in simulation time (%)
Complete application 16 h and 30 min -

SATD values from database 12 h and 20 min 25

get_ref values from database 11 h and 35 min 30

SATD and get_ref values 7 h and 25 min 55

Whether we estimate the performance of function block again for a new application
or not is a trade-off. The performance of a function block may depend on what appli-
cation it is used in and what are the input value ranges. Estimating the function block
performance again with a new application gives more accurate information for the
next design space exploration step. However, it costs time overhead of candidate
processor. If the number of candidate processors are large, this overhead may be too
huge to be tolerated within the tight budget of design time.

This section has presented the experimental results of the proposed performance
estimation technique with X264 application. The PowerPC405, ARM7TDMI and
ARM966 from SoCLib library were used to perform simulations. Experimental
results included the cache miss penalty as well as the non-uniform execution time.
Finally, the decrease in simulation time was illustrated in Table 5.

7 Conclusions

This article presented a DSE framework consisting of five stages, with the empha-
sis on software performance estimation at cycle-accurate level. The proposed per-
formance estimation methodology stored performance estimation results of each
function block on a simulation platform in a performance estimation database. The
database values were used for architecture components selection.

After component selection and mapping decision was made, the performance
of the entire application was computed as a linear combination of individual func-
tion blocks performance values. The proposed technique considered the effects of
architecture features, compiler optimizations and data dependent behavior of the
application. We have extended the SoCLib library to build a simulation platform for
experiments.

Experimentation with H.264 encoder has proved that the proposed performance
estimation technique satisfy the requirements of accuracy and adaptability at the same
time. A simple linear combination of performance numbers has given an accurate
(within 1 %) performance estimate of the entire application.

An Efficient Cycle Accurate Performance Estimation Model 233

References

1.

2.
3.

o0

10.

12.

13.

14.

15.

16.

17.

18.

19.

20.

S. Abdi, Y. Hwang, L. Yu, G. Schirner, D.D. Gajski, Automatic TLM generation for early
validation of multicore systems. IEEE Des. Test Comput. 28(3), 10-19 (2011)

J. Aycock, A brief history of just-in-time. ACM Comput. Surv. 35(2), 97-113 (June 2003)

I. Boandhm, B. Franke, N. Topham, Cycle-accurate performance modelling in an ultra-fast
just-in-time dynamic binary translation instruction set simulator, in International Conference
on Embedded Computer Systems (SAMOS), (2010), pp. 1-10

. G. Braun, A. Hoffmann, A. Nohl, H. Meyr, Using static scheduling techniques for the retar-

geting of high speed, compiled simulators for embedded processors from an abstract machine
description, in Proceedings of the 14th International Symposium on System Synthesis (ISSS’01)
(Montreal, Quebec, Canada, October, 2001), pp. 57-62

. D. Burger, T.M. Austin, The SimpleScalar Tool Set, Version 2.0. Technical report CS-TR-

1997-1342 (1997)

. L. Eeckhout, K. De Bosschere, H. Neefs, Performance analysis through synthetic trace genera-

tion, in Proceedings of the IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS’00) (Austin, Texas, USA, April, 2000), pp. 1-6

. Evan Data Corporations, in Software Development Platforms-2011 Rankings (2011).
. L. Gao, K. Karuri, S. Kraemer, R. Leupers, G. Ascheid, H. Meyr, Multiprocessor performance

estimation using hybrid simulation, in Proceedings of the 45nd Design Automation Conference
(DAC’08). Anaheim, CA, USA 8-13, 325-330 (June 2008)

. K. Karuri, M.A. Al Faruque, S. Kraemer, R. Leupers, G. Ascheid, H. Meyr, Fine-grained appli-

cation source code profiling for ASIP design, in Proceedings of the 42nd Design Automation
Conference (DAC’05) (Anaheim, California, USA, June, 2005), pp. 329-334

M.T. Lazarescu, J.R. Bammi, E. Harcourt, L. Lavagno, M. Lajolo, Compilation-based software
performance estimation for system level design, in Proceedings of the IEEE International High-
Level Validation and Test Workshop (Washington, DC, USA, November, 2000), pp. 167-172

. T. Meyerowitz, A. SangiovanniVincentelli, M. Sauermann, D. Langen, SourceLevel timing

annotation and simulation for a heterogeneous multiprocessor, in Proceedings of the Design,
Automation and Test in Europe Conference (DATE’08) (Munich, Germany, March, 2008), pp.
276-279

M.H. Rashid, in System Level Design: A Holistic Approach. (Lap Lambert Academic Pub-
lishing, 2011).

A. Muttreja, A. Raghunathan, S. Ravi, N.K. Jha, Hybrid simulation for energy estimation of
embedded software. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 26(10), 1843—1854
(2007)

J. Park, S. Ha, Performance analysis of parallel execution of H.264 encoder on the cell processor,
in Proceedings of 5th IEEE/ACM Workshop on Embedded Systems for Real-Time Multimedia
(ESTIMedia’07), Salzburg, Austria, October 2007, pp. 27-32

W. Qin, J. D’Errico, X. Zhu, A Multiprocessing Approach to Accelerate Retargetable and
Portable Dynamic-compiled Instruction-set Simulation. 4th International Conference on Hard-
ware/software Co-design and System Synthesis (CODES+ISSS’06), Seoul, Korea, October
2006, pp. 193-198.

M. Rashid, F. Urban, B. Pottier, A transformation methodology for capturing data flow speci-
fication, in Proceedings of the IASTED International Conference on Parallel and Distributed
Computing and Networks (PDCN’09) (Innsbruck, Austria, February, 2009), pp. 220-225

M. Reshadi, N. Dutt, P. Mishra, A retargetable framework for instruction-set architecture sim-
ulation. ACM Trans. Embed. Comput. Syst. 5(2), 431-452 (2006)

M. Rosenblum, E. Bugnion, S. Devine, S. Herrod, Using the SimOS machine simulator to
study complex computer systems. ACM Trans. Model. Comput. Simul. 7(1), 78-103 (1997)
M.S. Suma, K.S. Gurumurthy, Fault simulation of digital circuits at register transfer level. Int.
J. Comput. Appl. 29(7), 1-5 (2011)

T. Sherwood, E. Perelman, G. Hamerly, S. Sair, B. Calder, Discovering and exploiting program
phases. IEEE Micro 23(6), 84-93 (2003)

234 M. Rashid

21. Soclib, Simulation Platform, www.soclib.fr

22. R.E. Wunderlich, T.F. Wenisch, B. Falsafi, J.C. Hoe, SMARTS: accelerating microarchitecture
simulation via rigorous statistical sampling, in Proceedings of the 30th Annual International
Symposium on Computer Architecture (ISCA’03) (San Diego, USA, June, 2003), pp. 84-95

www.soclib.fr

Multicast Algorithm for 2D de Bruijn NoCs

Reza Sabbaghi-Nadooshan, Abolfazl Malekmohammadi
and Mohammad Ayoub Khan

Abstract The performance of the network is measured in terms of throughput. The
throughput and efficiency of interconnect depends on network parameters of the
topology. Therefore, topology of any communication networks has an important
role to play for efficient design of network. The De Bruijn topology has the potential
to be an interesting option for future generations of System-on-Chip (SoC). Two-
dimensional (2-D) de Bruijn is proposed for Networks-on-Chips (NoCs) applications.
We can improve performance in the two dimensional Bruijn NoCs by improvement
of routing algorithm. In this chapter, we have proposed a multicast routing algo-
rithm for 2-D de Bruijn NoCs. The proposed routing algorithm is compared with
unicast routing using Xmulator under various traffics conditions. Based on compar-
ison results, the proposed routing has significantly improved the performance and
power consumption of the NoC in comparison with unicast routing under light and
moderate traffic loads in hot spot and uniform traffics with various message lengths.

1 Introduction

With recent advances in VLSI technologies, modern chips can embed large number
of processing cores as a multi-core chip. Such multicore chips require efficient com-
munication architecture to provide a high performance connection between the cores.
Network-on-Chip (NoC) has been recently proposed as a scalable communication

R. Sabbaghi-Nadooshan (X)) - A. Malekmohammadi
Electrical Engineering Department, Islamic Azad University Central Tehran Branch, Tehran, Iran
e-mail: R_sabbaghi@iauctb.ac.ir

A. Malekmohammadi
e-mail: Malekmohammadi.abolfazl @ gmail.com

M. A. Khan
Department of Computer Science and Engineering, Sharda University, Greater, Noida, India
e-mail: ayoub@ieee.org

M. A. Khan et al. (eds.), Embedded and Real Time System Development: 235
A Software Engineering Perspective, Studies in Computational Intelligence 520,
DOI: 10.1007/978-3-642-40888-5_9, © Springer-Verlag Berlin Heidelberg 2014

236 R. Sabbaghi-Nadooshan et al.

architecture for multicore chips [1]. In NoC paradigm, every core communicates with
other cores using on-chip channels and an on-chip router. On-chip channels construct
a predefined structure called topology. The NoC is a communication centric intercon-
nection approach which provides a scalable infrastructure to interconnect different
IPs and sub-systems in a SoC [2]. The NoC can make SoC more structured, reusable
and can also improve their performance. Since the communication between the var-
ious processing cores will be deciding factor for the performance of such systems,
therefore we need to focus on making this communication faster as well as more
reliable.

Also, the network topology has direct impact on important NoC parameters e.g.,
network diameter, bisection width, and the routing algorithm [3]. The topology has
a great impact on the system performance and reliability. It generally influences net-
work diameter (the length of the maximum shortest path between any two nodes),
layout and wiring [4]. These characteristics mainly determine the power consumption
and average packet latency [5]. Before we delve deeper into the widely used topolo-
gies, the main characteristics of network topology which are described in Table 1
should be understood first.

Authors have proposed several topologies in the literature such as mesh topol-
ogy [6], hypercube topology [7], tree topology [8], and de Bruijn topology. Each of
these topologies has its pros and cons; for example, mesh topology is used in the
fabrication of several NoCs because of its simple VLSI implementation; however,
other topologies are also favored by NoC designers due to their exclusive features.
The de Bruijn topology is one of those topologies which provide a very low diameter
in comparison with the mesh topology, however imposes a cost equal to a linear

Table 1 Characteristics of network topology

Characteristics Description

Bisection of network A bisection of a network is a cut that partitions the entire network
nearly in half

Throughput The throughput of a network is the data rate in bits per second that the
network accepts per input port. The ideal throughput is defined as
the throughput assuming a perfect routing and flow control i.e.
Load is balanced over alternate paths and no idle cycles on
bottleneck channels

Latency The latency of the network is the time required for a message to
traverse a network, i.e. a time taken for a packet, flit or message to
reach from source to destination. It also includes the time taken for
computing arbitration logic as well as routing computation and
other delays

Diameter The diameter (D) of a network is the maximum internodes distance.
The smaller the diameter of a network, the less time it takes to send
a message from one node to the farthest node

Node degree The node degree is defined as the number of physical channels
emanating from a node. This attribute shows the node’s 1/0
complexity

Multicast Algorithm for 2D de Bruijn NoCs 237

array topology. The De Bruijn topology is a well-known structure which is initially
proposed [9] for parallel processing networks. Several researchers have studied topo-
logical properties [10], routing algorithms [11, 12], VLSI layout efficiency [10] and
other aspects of the de Bruijn networks [13]. NoC designers also favor to the de
Bruijn topology, since it provides logarithmic diameter and cost equal to a linear
array topology [13].

Considering the reputation of the mesh topology and the low network diameter
of de Bruijn topology, de Bruijn can be inspired mesh-based topology for NoCs.
In our previous work [14] we have suggested two dimensional Bruijn for NoCs,
and the proposed topology has better performance relation to mesh. However, we
can improve performance in the two dimensional Bruijn NoCs. We have used three-
dimension layout or torus as we used in [15, 16]. Furthermore, we can improve
routing algorithm. In this chapter, we use multicast routing for the improvement of
performance.

2 Multicast Routing Algorithm

2.1 The de Bruijn Topology

Since the proposed network topology is based on de Bruijn, this section briefly
introduces the de Bruijn topology [17, 18]. An n-dimensional de Bruijn topology
is a directed graph including k" nodes. In this topology, node u = (u,, ..., uy) is
connected to the node v = (v, ..., vy) ifandonly ifu; =v;4; 1<i<n-—1.In
other words, node v has a directed link to node u if and only if

u=vxk+r(modk", 0<r<k-1 (1)

According to definition of de Bruijn topology, in-degree and out-degree of all
nodes is equal to k. Therefore, the degree of each node is equal to 2k. In addition,
the diameter of de Bruijn topology is equal to n which is optimal. Owing to the fact
that these connections are unidirectional, the degree of the network is the same as
a one-dimensional mesh network (or linear array network). The diameter of a de
Bruijn network with size N, that is, the distance between nodes 0 and N — 1, is equal
to log(N).

In a de Bruijn network the two operations namely shuffle operation and shuffle-
exchange operation are defined as follows to ease the routing algorithm in this net-
work. In the shuffle operation, address of the current node i.e., v = (v,—_1, ..., Vo)
is logically rotated by one bit in the left direction. In the shuffle-exchange operation,
address of the current node i.e., v = (v,—1, ..., vo) is logically rotated by one in the
left direction and then the least significant bit is complemented. Consider a k = 2
de Bruijn network as shown in Fig. 1. Using the shuffle operation, node 1 goes to
node 2, and using the shuffle-exchange operation, node 1 goes to node 3. Using these

238 R. Sabbaghi-Nadooshan et al.

" SIS

NS
1 3 7

Fig. 1 The de Bruijn network with (a) 8 nodes and (b) 16 nodes

two operations, the following routing algorithm can deliver any packet in a de Bruijn
network.

For routing algorithm, Ganesan [11] splits the de Bruijn networks into two trees
i.e., T1 and T2, (see Fig. 2) to perform the routing with at most four steps. At first,
the message is routed between T1 to T2 if it is necessary, and then in T2, and then the
message is routed between T2 to T1 and finally in T1. A two-dimensional de Bruijn
topology is a two-dimensional mesh topology in which nodes of each dimension
form a de Bruijn network. An 8 x 8 two-dimensional de Bruijn is shown in Fig. 3.

The proposed routing algorithm for two-dimensional de Bruijn exploits two trees
T1 and T2 in each dimension of the network. Like XY routing in mesh networks,
the deterministic routing first applies the routing mechanism in rows to deliver the
packet to the column at which the destination is located. Afterwards, the message is
routed to the destination by applying the same routing algorithm in the columns.

U
TREE T1 | TREE T2 7
1

NODESOFT2 5 6 1 sosorri 0 ! 2 3

Fig.2 Trees T1 and T2 for N=8§

Multicast Algorithm for 2D de Bruijn NoCs 239

ioj jf/ = (0.3 B () P s W (K

3 1.4 é 1.5 1.6 1.7

2,0 2.1 2,2 2.3) 2.4 2.5 2,6 2,7
\ ’Z\

3.0 3.1 3.2 3.3 3.4~ 3.5 3.6 3.7

4,0 %’ 4,1 4.2 4,3) 4.4 4.5 E 4.6 4.7

5,0 5,1 5,2 5,3 5.4 5.5 5,6 5,7

6,0 6.1 6,2 6,3 6,4 6,5 6.6 6,7
/ x

7,0 7,1 7,2 7,3 7,4 E 7,5 7,6 7,7

Fig.3 A two-dimensional de Bruijn with 64 nodes composed from eight 8-node de Bruijn networks
(as shown in Fig. 1a) along each dimension

2.2 The Proposed Multicast Algorithm

Deterministic routing is based on minimum hop and distance between source and
destination nodes, unlike partially adaptive and fully adaptive is fixed and is shown
with dg_p. In deterministic routing, if the specific node k is a part of the route, number
of hops between nodes of source S and destination D equal to the distance between
source node and specific node k plus the distance between node k and destination
node and vice versa. Above condition will be

ds_p =ds_x +di—p ()

If a specific node k is next bode (N), then the above condition will be as follows:
Condition 0:

ds—p =ds—N +dnN-pD €)]

where d is number of hops between two nodes S is source node D is destination
node N is next node.

240 R. Sabbaghi-Nadooshan et al.

In this chapter, all nodes that are necessary for routing source S to destination D,
are shown with P (S, D). Also main route is the route that source node moves to
marked destination node.

In proposed multicast routing (that is based on minimum distance between nodes
of source and destination); a destination is selected randomly (D) and marked.
Message routes as unicast to deliver it to the marked destination (Dg). At each hop,
N (that is next node in current message) and Dp (that is one of destination nodes
except marked destination node in current message) are placed in condition (0). If
condition O for specific destination (D p) is true, the next node in main route belongs
to P(S, Dp). Therefore, message is not duplicated and routing is continued with a
message. Otherwise, next node in main route with next node in P (S, Dp) is different
and for routing D p, message should be duplicated. Therefore, a necessary condition
to duplicate the message is below condition.

Condition 1:

ds-p, #ds—N +dN-Dp “4)

where d is number of hops between two nodes S is source node Dp is one of
destination nodes (except the marked destination node in current message) N is next
node in current message.

Condition (1) is not sufficient to duplicate the message because when it is true for
a specific destination D p, for next steps, will remain true and message will duplicate
at each hop to routing Dp frequently but for routing each destination node, only
one message is needed. Therefore, condition (2) (that prevents to copy the repeated
message) is necessary.

Condition 2:

ds_pp =ds_c +dc_pp)

where d is number of hops between two nodes S is source node Dp is one of
destination nodes (except the marked destination node in current message) C is
current node in current message.

Conditions (1) and (2) check whose next node and current node in main route
belongs to P(S, Dp) respectively. Actually, in two conditions, last common node
between main route and P (S, Dp) determine to duplicate the message.

If condition (1) and condition (2) for Dp are true simultaneously, the message
should duplicate to routing Dp (and Dp is marked). In other words, the message is
duplicated if and only if, current node between two routes is the common and next
node is different in same two routes. Above steps for all messages into a network
perform until the number of messages into network equal to number of destinations.

2.3 Giving an Example

As an example, we suppose that node (3, 0) has message for nodes (5, 4), (7, 5) and
(1, 1) as Fig. 4.

Multicast Algorithm for 2D de Bruijn NoCs 241

CNCNONCRONCHONGE
CNCNCNONCNCORONC

@ source @ destination —p Mubizast path

Fig. 4 Tree-based multicast algorithm based on unicast XY routing

For unicast routing we have:

3,00—> 3,1) > 3,2) > 3,4 —> (6,4 — (5,4
3,00—> 3,1)> (3,2 » (3,5 — (1,5
B3,0—-3,1H—>6G1H—> & 1DH—> ({1,

For multicasting, one destination is selected randomly (dO : (5,4)) and message is
routed as unicast R((3,0),(5,4)). At each hop, two above conditions (1), (2) for the
remaining destinations ((7, 5), (1, 1)) are checked and if both of conditions are true,
message will be duplicated.

In first step (Fig. 5), condition (1) is false for both of destinations (7, 5), (1, 1)
but second condition is true for them. Therefore, the next node (3, 1) in first path is
shared with two other paths. Now, there is only one message into the network.

§$=3,0,C=3,0,N=@G,1),D={(7,5),d, 1}

In second step as Fig. 6, condition (2), (1) are true for destination (1, 1). Thus,
message will be duplicated to route (1, 1) and in this new message destination node
(1, 1) is marked. However, for destination (7, 5), according to condition (1) that is
false, message will not duplicate. Now, there are two messages into the network.

242

(@

M . Number of hops
betweon two nodes

O Source node
O Destnaton node
O Neaxt node

- -
ol - '
ool g
-
Fd
-~
P /0
\ A
I 0%

()

R. Sabbaghi-Nadooshan et al.

M’Ntmbmof hops -3
between twa nodes
o Source node -
-

Condition1

Condition2

Copy msg

=
O Desbnation nade a /’ - /
O(‘,‘urrmrnrm /// ///,.3
-~ A
\ g
-~ - £y rd v
-~ = N r
-~ & 7/ o
s ‘m O =1 : c :'
NS q‘*; \
o et \
~ v
~ \
Y
~ \%, N
G P
~ \
Tan. N
g ~ -
~ \\
o)
di d2
false false
True True
false false

Fig.5 Firsthop checking. a the dgp; # dsn+dnpi (condition 1), b dsp; = dsc+dcpi (condition 2),

¢ Table

§=3,0,C=@G,1),N=(@3,2),D={(7,5),,1)}

In third step (Fig. 7), condition (1), (2) are true for destination (7, 5) and message
will be duplicated to route it and (7, 5) is marked in this new message. Even so
condition (2) for destination (1, 1) is false. Therefore, message will not copy. Now,

there are three messages into the networks.

After this step (when the number of destinations equal to number of messages),
at all next steps, condition (2) for all destinations will be false and no message will

be duplicated. Furthermore, routing will be as unicast. Pseudo code of proposed
algorithm is shown in Fig. 8.

Multicast Algorithm for 2D de Bruijn NoCs 243

(a) (b)
M, Number of hops o, __M_, Numbar of hops o,
- 2 between twa nodes
betwaoen two nodes
-~ O Source node “,
O Source node A /// A ///
et Dessination nade aF
o Dessnaton node c\/ - / D s~ //
n i -
i //% O Current node - Pt
O Next node - ke 5 P
- \ F4 " - \ X
- 4 H -~ 4 /s
-~ F -~ % y
- " k2 / st !
i -~ %7 7 . i 4 0,
- ¢ ‘ ¢ S c
‘@ @ @----- @D~ -+
\\. .g*‘) \
~
~ 9‘}3 \ -.,\ *s v \
- ‘3 \ ~ N
~ < b
~ x \Y ~ N\,
~ % ~ NG
~ N7y -~ 7
~ < ~ \
- \ oo~
%oy \ NN \
SR A \ i T
~ -~ \

(c)
di d2
Condition1 false | True
Condition2 True | True
Copy msg false | True

Fig. 6 Second hop checking. a the dsp; # dsn + dnp; (condition 1), b dsp; = dsc + dcp;
(condition 2), ¢ Table

3 Simulation Results

To evaluate the performance of suggested routing, we develop a discrete event sim-
ulator operating at the flit level using xmulator [19]. We set the networks link width
to 128 bits. Each link has the same bandwidth and one flit transmission is allowed
on a link. The power is calculated based on a NoC with 65nm technology whose
routers operate at 2.5 GHz. We set the width of the IP cores to 1 mm, and the length
of each wire is set based on the number of cores it passes. The number of virtual
channels is two and maximum of simulation events are 15,000,000. The simulation
results are obtained for 8§ x 8 de Bruijn NoCs with XY routing algorithm, using the
routing algorithms described in the previous section. The message length is assumed
to be 32 and 64 flits and messages are generated according to a Poisson distribution
with rate A. The traffic pattern can be Uniform and Hotspot [20].

244 R. Sabbaghi-Nadooshan et al.

(a) (b)
M N of ho M Number of hops Dy
—_ RMner P s = P Letween two nodes
Detwean two nodes .
- O Sourca node P
O Source node A -~ "y
e o O Cestination node =B LT
O Destnation node W7y) O 7
. -~ /,5' O Currere node - /b
() Nextnode P . S & o A
g 1Y /b_..' - o + 7"
- [/ - 1 /
-~ = %) " / /d/ N 4 e
=5 -~ A / 0, s :-_ e c _ _@
s de=3 N
-2 - @ . % %
~ *
e ~ 5 ‘VA‘ 3 \ y: ~ ? v \\
~ . L \ e ~ & N,
2
S o v \3{3 o \\\J
7% L At
- \ N ‘\'-'af\ \
Sor \ Nag N
oy ~ \ BT
~
) &
o,
SA
- ®
(c)
d1 d2
Condition1 True True
Condition2 True false
Copy msg True | false

Fig. 7 Third hop checking. a the dsp; # dsn + dnpi (condition 1), b dsp; = dsc + dcpi
(condition 2), ¢ Table

In the following figures the average message latency and power consumption are
shown. The x-axis of these figures indicates the generation rate and y-axis indicates
power and delay in our simulations. Figure 9 compares the average message latency
for different traffic patterns with different message lengths of 32 and 64 flits. As can
be seen, the multicast routing has smaller average message latency with respect to
the unicast routing algorithm for the full range of network load under various traffic
patterns (especially in uniform traffic). For hotspot traffic load a hotspot rate of 16 %
is assumed (i.e. each node sends 16 % of messages to the hotspot node (node (7, 7))
and the rest of messages to other nodes uniformly). As can be seen in the figures, the
multicast routing can better cope with non-uniformity of the network traffic and its
performance improvement over unicast under hotspot traffic pattern.

Figure 10 demonstrates power consumption of the multicast routing and uni-
cast routing with various traffic patterns. Simulation results indicate that the power

Multicast Algorithm for 2D de Bruijn NoCs 245

Distance (source, current node, next node, destination):
Calculates the number of hops between nodes of source-
destination (d,), current -destination (d,), source-
current (d,) and next node-destination(d,) .

Next node: it is after current node

des: set of destinations

Input: multicast set : <source, {D,,D,,D,,....,D}>

1: Created messages=0

2: While (des # 0)

3: select a destination from des randomly and marked it.

4: Created messages++

5 While (created messages > 0)

6 If (current node == any one des)

7 des=des-{marked destination in current message}
8: Created messages - -

9: End if

10: If (created messages==0)

11: select a destination from des randomly and marked it
12: Created messages++

13: End If

14: For all created messages

15: For all destinations (D,) € des-{marked

destination in current message}
16: //according to current and destination nodes in mes-
sage, next node is available.

17: distance (source, current node, next node, D,)
18: If ((dg, <> dy + d) && (d,,= d, + d,.))
/ /dSN:dSC+ 1

19: copy a message for routing D,

20: Marked D,

21: Created messages++;

22: Route as unicast from current node to D,
(marked destination)

23: End If

24 : End For

25: End For

26: End While

27: End While

Fig. 8 Multicast pseudo code

consumption of multicast routing is less than the power dissipated of unicast routing
for light to medium traffic loads. However, it begins to behave differently near heavy
traffic regions where the unicast routing saturates and cannot handle more traffic.
Obviously, handling more traffic load (after the point that the unicast is satu-
rated) requires more power for multicast routing. Note that when the unicast routing

246 R. Sabbaghi-Nadooshan et al.

(a)

)

5 100

E 90

[0} 80 =@-multicast-U 32F
g 70) -
29 go p =4 unicast-U 3

% % 50 multicast-hot 32F
S 40 e unicast-hot 32F
g 30 ‘ : : : ‘

z & & & & & &

< O v) © & Q

90 90 00 90 90 98

Message Generation Rate (1)

(b)
o 300
(0]
I3
S 250
>
[&]
$ 200 |
T
-
% 150
% 100 / —s—multicast-U 64F
= =f==Uunicast-U 64F
(0]
g S50 multicast-hot 64F
2 ==unicast-hot 64F
< o0

.00001 .00101 .00201 .00301 .00401 .00501
Message Generation Rate ()

Fig. 9 Compares the latency for different traffic patterns with different message lengths of 32
and 64

50
45
40
35
30

gg —m—multicast-U 32F

15 / —i—unicast-U 32F
12 / multicast-hot 32F
—¥=unicast-hot 32F

Power (nj/ cycles)

> > » » » » »
3 () O) \)) O M)
O ¥ \ © & O v
FHFE &S

Message Generation Rate (1)

Fig. 10 Demonstrates power consumption for various traffic patterns and message lengths of 32
and 64

Multicast Algorithm for 2D de Bruijn NoCs 247

approaches its saturation region, the multicast routing can still handle the traffic
effectively and the saturation point for them is higher than that unicast routing.

In Fig. 11a, the average message latency is plotted as a function of message
generation rate at each node for the multicast routing and unicast routing for different
message lengths of 32 and 64 flits. As can be seen in the Fig. 11a, the multicast routing
has smaller average message latency with relation to the unicast routing. Figure 11b
compares the total network power in different message lengths of 32 and 64. The
obtained result of xmulator indicates the multicast routing goes to the saturation later
and can send more packages; therefore has more power.

(a)
? 200
8 180
ﬁ 160
>% Eg
T D —@-multicast 64F
@ S 100
g o 80 =d==unicast 64F
[0) 60 multicast 32F
2 40
= 20 =e=unicast 32F
(0]
= 0
<
» 2 » N\ » » y
&L &S
O N N N O O Q
Q° Q° Q° Q* Q° Q° Q°

Message Generation Rate (1)

—_
(=2

)

=@-multicast 32F
=d==Uunicast 32F

multicast 64F

Power (nj/ cycles)

=o=unicast 64F

d P DD DD DD
O” O AO” 1O O (O (O AQ” O O
FFFIFPIFP IS LTS
RSN R

Message Generation Rate (1)

Fig. 11 Compares the performance and total network power in different message lengths of 32
and 64

248 R. Sabbaghi-Nadooshan et al.

4 Conclusion

Two-dimensional de Bruijn topology and routing algorithm is proposed for NoC.
There are many methods to improve the performance of de Bruijn topology. One of
them is improvement of routing algorithm. This chapter has proposed multicast rout-
ing algorithm for two-dimensional de Bruijn NoCs. The algorithms are compared
using Xmulator simulator. Simulation experiments were conducted to assess the
network latency and power consumption of the proposed routing. Results obtained
shows the proposed routing has improved in terms of performance and power con-
sumption of the NoC in comparison with unicast routing under light and moderate
traffic loads in hot spot and uniform traffics with various message lengths.

For the future work, the fault tolerant can be used in multicast routing algorithm.
Furthermore, this multicast method can be used for other digraph networks such as
two-dimensional shuffle-exchange networks [21].

References

1. A.Jantsch, H. Tenhunen, Network on Chip (Kluwer Academic Publishers, Dordrecht, 2003)

2. W.J. Dally, H. Aoki, Deadlock-free adaptive routing in multicomputer networks using virtual
channels. IEEE Trans. Parallel Distrib. Syst. 4, 466—475 (1993)

3. PP. Pande, C. Grecu, M. Jones, A. Ivanov, R. Saleh, Performance evaluation and
design trade-offs for network-on-chip interconnect architectures. IEEE Trans. Comput. 54,
1025-1040 (2005)

4. E. Salminen, A. Kulmala, T.D. Hamalainen, Survey of network-on-chip proposals. OCP-IP
white paper (2008)

5. A. Flores, J.L. Aragon, M.E. Acacio, An energy consumption characterization of on-chip
interconnection networks for tiled CMP architectures. J. Supercomputing 45, 341-364 (2008)

6. U.Y. Ogras, R. Marculescu, Application-specific network-on-chip architecture customiza-
tion via long-range link insertion. IEEE/ACM International Conference on Computer Aided
Design (2005)

7. M. Chatti, S. Yehia, C. Timsit, S. Zertal, A hypercube-based NoC routing algorithm for
efficient all-to-all communications in embedded image and signal processing applications.
HPCS 623-630 (2010)

8. H. Matsutani, M. Koibuchi, Y. Yamada, H. Amano, Fat H-tree: a cost-effective tree-based
on-chip-networks. IEEE Trans. Parallel Distrib. Syst. 20, 1126-1141 (2009)

9. N.G. de Bruijn, A combinatorial Problem. Koninklijke Nederlands Akad. van Wetenschappen
Proc. 49, 758-764 (1946)

10. M.R. Samanathan, D.K. Pradhan, The de Bruijn multiprocessor network: a versatile parallel
processing and sorting network for VLSI. IEEE Trans. Comp. 38, 567-581 (1989)

11. E. Ganesan, D.K. Pradhan, Wormhole routing in de Bruijn networks and Hyper-de Bruijn
Networks, in IEEE International Symposium on Circuits and Systems (ISCAS) (2003),
pp- 870-873

12. H. Park, D.P. Agrawal, A novel deadlock-free routing technique for a class of de Bruijn based
networks, in 7th IEEE Symposium on Parallel and Distributed Processing (1995), pp. 92-97

13. M. Hosseinabady, J. Mathew, D.K. Pradhan, Application of de Bruijn graphs to NoC. DATE
(2007), pp. 111-116

14. R.Sabbaghi-Nadooshan, M. Modarressi, H. Sarbazi-Azad, The 2d DBM: an attractive alterna-
tive to the mesh topology for network-on-chip, in IEEE International Conference on Computer
Design (2008), pp. 486490

Multicast Algorithm for 2D de Bruijn NoCs 249

15.

16.

17.

18.

19.

20.
21.

R. Sabbaghi-Nadooshan, M. Modarressi, H. Sarbazi-Azad, The 2D digraph-based NoCs:
attractive alternatives to the 2D mesh NoCs. J. Supercomputing 49, 1-21 (2012)

R. Sabbaghi-Nadooshan, H. Sarbazi-Azad, The kautz mesh: a new topology for SoCs, in
International Conference on SoC Design (2008), pp. 300-303

G.P. Liu, K.Y. Lee, Optimal routing algorithms for generalized de Bruijn digraph, inInterna-
tional Conference on Parallel Processing (1993), pp. 167-174

J. Mao, C. Yang, Shortest path routing and fault-tolerant routing on de Bruijn networks.
Networks 35, 207-215 (2000)

A.Nayebi, S. Meraji, A. Shamaei, H. Sarbazi-Azad, Xmulator: a listener-based integrated sim-
ulation platform for interconnection networks, in Proceedings of Asian International Conef-
erence on Modelling and Simulation (2007), pp. 128-132

J. Duato, S. Yalamanchili, L.M. Ni, Interconnection Networks. Morgan Kaufman (2003)

R. Sabbaghi-Nadooshan, M. Modarressi, H. Sarbazi-Azad, 2D SEM: a novel high-
performance and low-power mesh-bases topology for networks-on-chip. Int. J. Parallel Emer-
gent Distrib. Syst. 25, 331-344 (2010)

Functional and Operational Solutions for Safety
Reconfigurable Embedded Control Systems

Atef Gharbi, Mohamed Khalgui and Mohammad Ayoub Khan

Abstract The chapter deals with run-time automatic reconfigurations of distrib-
uted embedded control systems following component-based approaches. We clas-
sify reconfiguration scenarios into four forms: (1) additions-removals of components,
(2) modifications of their compositions, (3) modifications of implementations, and
finally (4) simple modifications of data. We define a new multi-agent architecture for
reconfigurable systems where a Reconfiguration Agent which is modelled by nested
state machines is affected to each device of the execution environment to apply
local reconfigurations, and a Coordination Agent is proposed for any coordination
between devices in order to guarantee safe and coherent distributed reconfigurations.
We propose technical solutions to implement the whole agent-based architecture, by
defining UML meta-models for agents. In the execution scheme, a task is assumed
to be a set of components having some properties independently from any real-time
operating system. To guarantee safety reconfigurations of tasks at run-time, we define
service and reconfiguration processes for tasks and use the semaphore concept to
ensure safety mutual exclusions. We apply the priority ceiling protocol as a method
to ensure the scheduling between periodic tasks with precedence and mutual exclu-
sion constraints.

A. Gharbi () - M. Khalgui
INSAT, Tunis, Tunisia
e-mail: atef.elgharbi @gmail.com

M. Khalgui
e-mail: khalgui.mohamed @ gmail.com

M. A. Khan
Sharda University, Gr. Noida, India
e-mail: ayoub@ieee.org

M. A. Khan et al. (eds.), Embedded and Real Time System Development: 251
A Software Engineering Perspective, Studies in Computational Intelligence 520,
DOI: 10.1007/978-3-642-40888-5_10, © Springer-Verlag Berlin Heidelberg 2014

252 A. Gharbi et al.

1 Introduction

Nowadays, the new generations of distributed embedded control systems are more
and more sophisticated since they require new forms of properties such as reconfig-
urability, reusability, agility, adaptability and fault-tolerance. The first three proper-
ties are offered by new advanced component-based technologies, whereas the last two
properties are ensured by new technical solutions such as multi-agent architectures.

New generations of component-based technologies have recently gained popular-
ity in industrial software engineering since it is possible to reuse already developed
and deployed software components from rich libraries. A Control Component is
a software unit owning data of the functional scheme of the system. This advan-
tage reduces the time to market and allows minimizations of the design complexity
by supporting the system’s software modularity. This chapter deals with run-time
automatic reconfigurations of component-based applications by using multi-agent
solutions. An agent is assumed to be a software unit allowing the control of the
system as well as its environment before applying automatic reconfigurations. The
reasons for which reconfigurations may be taken are classified into two categories
[33]: (1) corrective reasons: if there is one component which is misbehaving, then
it is automatically substituted by a new one which is assumed to run correctly. The
new component is supposed to have the same functionalities as the old one. (2)
Adaptive reasons: even the component-based application is running well, dynamic
adaptations may be needed as a response to the new environment evolutions, in order
to extend new functionalities or to improve some required functional properties.
Dynamic reconfigurations can cover the following issues: (1) architecture level which
means the set of components to be loaded in memory to constitute the implemented
solution of the assumed system; (2) control level which means the compositions
of components; (3) implementation level which means the behavior of compo-
nents encoded by algorithms; and (4) data level which means the global values. We
define a multi-agent architecture for reconfigurable embedded control systems where
a Reconfiguration Agent is affected to each device of the execution environment to
apply automatic reconfigurations of local components, and a Coordination Agent
which is used for coordination between distributed Reconfiguration Agents in order
to allow coherent distributed reconfigurations. The Coordination Agent is based on
a coordination protocol using coordination matrices which define coherent simulta-
neous reconfigurations of distributed devices. We propose useful meta-models for
Control Components and also for intelligent agents. These meta-models are used
to implement adaptive embedded control systems. As we choose to apply dynamic
scenarios, the system should run even during automatic reconfigurations, while pre-
serving correct executions of functional tasks.

Given that Control Components are defined in general to run sequentially, this
feature is inconvenient for real-time applications which typically handle several
inputs and outputs in a too short time constraint. To meet performance and tim-
ing requirements, a real-time must be designed for concurrency. To do so, we
define at the operational level some sequential program units called real-time tasks.

Functional and Operational Solutions 253

Thus, we define a real-time task as a set of Control Components having some real-
time constraints. We characterize a task by a set of properties independently from
any Real Time Operating System (RTOS). We define service processes as soft-
ware processes for tasks to provide system’s functionalities, and define reconfigura-
tion processes as tasks to apply reconfiguration scenarios at run-time. In fact, service
processes are functional tasks of components to be reconfigured by reconfigura-
tion processes. To guarantee a correct and safety behavior of the system, we use
semaphores to ensure the synchronization between processes. We apply the famous
algorithm of synchronization between reader and writer processes such that execut-
ing a service is considered as a reader and reconfiguring a component is assumed to
be a writer process. The proposed algorithm ensures that many service processes can
be simultaneously executed, whereas reconfiguration processes must have exclusive
access. We study in particular the scheduling of tasks through a Real Time Operating
System. We apply the priority ceiling protocol proposed by Sha et al. [49] to avoid
the problem of priority inversion as well as the deadlock between the different tasks.
The priority ceiling protocol supposes that each semaphore is assigned a priority
ceiling which is equal to the highest priority task using this semaphore. Any task
is only allowed to enter its critical section if its assigned priority is higher than the
priority ceilings of all semaphores currently locked by other tasks.

In this chapter, we continue our research by proposing an original implementation
of this agent-based architecture. We assume that agent controls the plant to ensure the
system running physically. The design and the implementation of such agent under
Real-Time constraints are the scope of this study. The main contributions of this
chapter are the following: (1) a complete study of Safety Reconfigurable Embedded
Control Systems from the functional level (i.e. dynamic reconfiguration system with
a multi-agent system) to the operational level (i.e. decomposition of the system into
a set of tasks with time constraints); (2) a global definition of real-time task with
its necessary parameters independently from any real-time operating system; (3) the
scheduling of these real-time tasks considered as periodic tasks with precedence and
mutual exclusion constraints. To our best of knowledge, there is no research works
which deal with these different points together.

We present in Sect. 2 the state of art about dynamic reconfiguration. Section3
presents the benchmark production systems FESTO and EnAS that we follow as
running examples in the chapter. We define in Sect. 4 a multi-agent architecture
and the communication protocol to ensure safety in a distributed embedded control
systems. Section 5 presents the real-time task model and studies the safety of its
dynamic reconfiguration as well as the scheduling between the different tasks. We
finally conclude the chapter in Sect. 6.

2 Dynamic Reconfiguration

The new generation of industrial control systems is addressing today new crite-
ria as flexibility and agility [43, 48]. We distinguish two reconfiguration policies:
static and dynamic policies such that static reconfigurations are applied off-line to

254 A. Gharbi et al.

apply changes before any system cold start [3], whereas dynamic reconfigurations are
dynamically applied at run-time. Two cases exist in the last policy: manual reconfig-
urations applied by users [47] and automatic reconfigurations applied by intelligent
agents [2]. We are interested in automatic reconfigurations of an agent-based embed-
ded control system when hardware or software faults occur at run-time. The system
is implemented by different complex networks of Control Components. In literature,
there are various studies about dynamic reconfigurations applied to component-based
applications. Each study has its strength and its weakness. In the article [35], the
authors propose to block all nodes involved in transactions (considered as sets of
interactions between components) to realize dynamic reconfigurations. This study
has influenced many research works later. Any reconfiguration should respect the
consistency propriety which is defined as sets of logical constraints. A major dis-
advantage of this approach is the necessity to stop all components involved in a
transaction. In the article [4], problem of dynamic reconfigurations in CORBA is
treated. The authors consider that consistency is related to Remote Procedure Call
Integrity. To ensure this property, they propose to block the incoming before the out-
going links. However, the connection between components must be acyclic in order
to be able to block connections in the right order. A dynamic reconfiguration language
based on features [41] is proposed. The authors use the control language MANIFOLD
where processes are considered as black boxes having ports of communication. In
this case, the communication is anonymous. The processes having access to shared
data are connected in cyclic manners to wait tokens that visit each one at turn (as in
token ring). Although the novelty of this solution, there is a loss of time especially
at waiting until receiving the token to access to the shared data or also to reconfigure
the system. Another study [46] is proposed to apply dynamic updates on graphical
components (for example button, graphical interface, ...) in a .Net framework. To
do so, the authors associate for each graphical component an appropriate running
thread. The synchronization is ensured through the reader-writer-locks. The dynamic
reconfiguration is based on blocking all involved connections. Due to rw-locks,
this solution works only on local applications. In addition, they define [45] a new
reconfiguration algorithm ReDAC (Reconfiguration of Distributed Application with
Cyclic dependencies) ensuring dynamic reconfigurations in distributed systems to
be based on running multi-threads. This algorithm is applied to capsules which are
defined as groups of running components. As disadvantage, the proposed algorithm
uses counter variables to count on-going method calls for threads which lead to
consume further space memory and treatment time.

To our best of knowledge, there is no research works which treat the problem of
dynamic software reconfigurations of component-based technology with semaphores.
The novelty of this chapter is the study of dynamic reconfiguration with semaphore
ensuring the following points: (1) blocking connections without blocking involved
components; (2) safety and correctness of the proposed solution; (3) independence
of any specific language; (4) verification of consistency (i.e. logical constraints)
delegated to the software agent; (5) suitable for large-scale applications.

Functional and Operational Solutions 255

3 Benchmark Production Systems: FESTO and EnAS

We present two Benchmark Production Systems': FESTO and EnAS available in the
research laboratory at the Martin Luther University in Germany.

3.1 The FESTO System

The FESTO Benchmark Production System is a well-documented demonstrator used
by many universities for research and education purposes, and it is used as a running
example in the context of this chapter. FESTO is composed of three units: Distrib-
ution, Test and Processing units. The Distribution unit is composed of a pneumatic
feeder and a converter to forward cylindrical work pieces from a stack to the testing
unit which is composed of the detector, the tester and the elevator. This unit performs
checks on work pieces for height, material type and color. Work pieces that success-
fully pass this check are forwarded to the rotating disk of the Processing unit, where
the drilling of the work piece is performed. We assume in this research work two
drilling machines Drill_machinel and Drill_machine?2 to drill pieces. The result of
the drilling operation is next checked by the checking machine and the work piece
is forwarded to another mechanical unit. In this research chapter, three production
modes of FESTO are considered according to the rate of input pieces denoted by
number_pieces into the system (i.e. ejected by the feeder).

e Case 1: High production. If number_pieces > Constant1, then the two drilling
machines are used at the same time in order to accelerate the production. In
this case, the Distribution and the Testing units have to forward two succes-
sive pieces to the rotating disc before starting the drilling with Drill_machinel
AND Drill_machine2. For this production mode, the periodicity of input pieces
isp=11s.

e Case 2: Medium production. If Constant2 < number_pieces < Constantl,
then we use Drill_machinel OR Drill_machine2 to drill work pieces. For this
production mode, the periodicity of input pieces is p = 30 s.

e Case 3: Light production. If number_pieces < Constant2, then only the drilling
machine Drill_machinel is used. For this production mode, the periodicity of input
pieces is p = 50 s.

On the other hand, if one of the drilling machines is broken at run-time, then we
have to only use the other one. In this case, we reduce the periodicity of input pieces
to p = 40 s. The system is completely stopped in the worst case if the two drilling
machines are broken.

! Detailed descriptions are available in the website: http://aut.informatik.uni-halle.de.

http://aut.informatik.uni-halle.de

256 A. Gharbi et al.

3.2 The EnAS System

The Benchmark Production System EnAS was designed as a prototype to demon-
strate energy-antarcic actuator/sensor systems. For the sale of this contribution, we
assume that it has the following behavior: it transports pieces from the production
system (i.e. FESTO system) into storing units. The pieces in EnAS shall be placed
inside tins to close with caps afterwards. Two different production strategies can
be applied: we place in each tin one or two pieces according to production rates of
pieces, tins and caps. We denote respectively by nbpjcces, nbyins+caps the production
number of pieces and tins (as well as caps) per hour and by Threshold a variable
(defined in user requirements) to choose the adequate production strategy. The EnAS
system is mainly composed of a belt, two Jack stations (J; and J>) and two Gripper
stations (G and G»). The Jack stations place new produced pieces and close tins
with caps, whereas the Gripper stations remove charged tins from the belt into storing
units. Initially, the belt moves a particular pallet containing a tin and a cap into the
first Jack station Jj.
According to production parameters, we distinguish two cases,

e First production policy: If (nbpjcces/nbrins+caps < Threshold), then the Jack
station J; places from the production station a new piece and closes the tin with
the cap. In this case, the Gripper station G| removes the tin from the belt into the
storing station St;.

e Second production policy: If (nbpjcces/nbiinstcaps > Threshold), then the Jack
station J; places just a piece in the tin which is moved thereafter into the second
Jack station to place a second new piece. Once J, closes the tin with a cap, the belt
moves the pallet into the Gripper station G» to remove the tin (with two pieces)
into the second storing station St,.

4 Multi-agent System

We define a multi-agent architecture for distributed safety systems. Each reconfigu-
ration agent is affected in this architecture to a device of the execution environment
to ensure Functional Safety. Nevertheless, the coordination between agents in this
distributed architecture is inevitable because any individual decision may affect the
performance of the others. To guarantee safe distributed reconfigurations, we define
the concept of Coordination Matrix that defines correct reconfiguration scenarios to
be applied simultaneously in distributed devices and we define the concept of Coor-
dination Agent that handles coordination matrices to coordinate between distributed
agents. We propose a communication protocol between agents to manage concurrent
distributed reconfiguration scenarios.

The communication protocol between agents respects the different following
points: (1) The Reconfiguration agents control the plant constituted by several phys-
ical processes. (2) At the beginning, all the Reconfiguration agents are assigned

Functional and Operational Solutions 257

Table 1 The agent characteristics

Agent type Percepts Actions Goals Environment
Reconfiguration Something needs an Reconfigure the Safe state Physical plant
agent intervention plant
Coordination agent Reconfiguration Contact the other ~ Coordination The whole
request agents between agents system

a specific reconfiguration. (3) The Reconfiguration agent controlling the system
can not apply more than one reconfiguration at any time. (4) The Reconfiguration
agent decides to apply a new reconfiguration if some conditions are verified. (5) The
Reconfiguration may be applied in a local system (in this case, only the associated
Reconfiguration agent is concerned) or in a distributed system (in this case, many
Reconfiguration agents have to coordinate together to put the whole system in a
safe state). (6) The Reconfiguration agent does not know if the other agents will
cooperate to put the system into safe state. (7) At the reception of a reconfigura-
tion request, the agent chooses one action from the available possibilities (accept
or refuse). The Reconfiguration agent may refuse the request if it is not possible to
apply this new reconfiguration. (8) An agent is called cooperative if it always accepts
the reconfiguration request. An agent is called selfish if it always refuses the new
reconfiguration.

Before introducing the communication protocol, we begin with presenting a
Reconfiguration Agent as well as the coordination agent. To resume the charac-
teristics of each one, the Table 1 presents the main information.

4.1 Software Architecture of Reconfiguration Agents

We propose an agent-based architecture to control embedded systems at run-time.
The agent checks the environment’s evolution and reacts when new events occur by
adding, removing or updating Control Components of the system. To describe the
dynamic behavior of an intelligent agent that dynamically controls the plant, we use
nested state machines in which states correspond to finite state machines. A finite
state machine can be defined as a state machine whose states, inputs and outputs are
enumerated. The nested state machine is represented as the following:

NSM = (SM1, SM>, ..., SM,,)
Each state machine (SM;) is a graph of states and transitions. A state machine
treats the several events that may occur by detecting them and responding to each

one appropriately. We define a state machine as the following:

SM; = (S;, Sio, 1;, O;, Pre-cond,;, Post-condi, t;)

258 A. Gharbi et al.
o S; = {si1, ..., sip}: the states;

e S0 the initial state;

e [; ={l, ..., I} the input events;

e 0; ={01, ..., Oj}: the ouput events;

e Pre-cond, : the set of conditions to be verified before the activation of a state;

e Post-cond;: the set of conditions to be verified once a state is activated;

e 1i : S; x I; = S;: the transition function.

We propose a conceptual model for a nested state machine in Fig. 1 where we
define the classes Nested State Machine, State machine, State, Transition, Event
and Condition. The Nested State Machine class contains a certain number of State
machine classes. This relation is represented by a composition. The Transition class
is double linked to the State class because a transition is considered as an association
between two states. Each transition has an event that is considered as a trigger to fire
it and a set of conditions to be verified. This association between the Transition class
and Event and Condition classes exists and is modeled by the aggregation relation.

Nested State
machine

listSM
initialSM
inputEvent
outputEvent

* H H R

nextSM ()
setSM ()
setinputEvt ()
setOutputEvt ()
setlnitialSM ()
addSM ()
removeSM ()
linkSM ()
unlinkSM ()

o+ o+

1 Event
eventlD
immediate
State machine State Transition + setDescription ()
* + getDescription ()

listStates # transitionlD

PR, # statelD # eventlD
b inoEvon # listEvents ! from *} L ConditioniD

inputven # listConditions 1 .| # initiaStatelD
outputEvent to M InitialState! >

targ *
+ nextState ()
1 «| + setinputEvt () + setEvent () s
+ seisuates ¢ + setOutputEvt () + setCondition () Condition
M setgptu tE (t) + setinputCond () + addEvent()
M se“ l'jt'pIUSt‘; 0 + setOutputCond () + removeEvent () # conditionID
: :zdglt::e ()a =0 + addEvent () + addCondition ()
Stat + removeEvent () + entry ()

: ::Zr:r‘:‘elztsfa:e(()) + addCondition () + exit () + setDescription ()

. + removeCond () "
+ disconnectState () + getDescription ()

Fig

. 1 The Meta-model nested state machine

Functional and Operational Solutions 259

Input Event

Execution context
Current state

Current state
machine

\i

List of events

Execute ()

NextState ()

NextStateMachine ()

Information about
Component base current state

Agent description

Fig. 2 The internal agent behavior

We propose a generic architecture for intelligent agents depicted in Fig. 2. This
architecture consists of the following parts: (1) the Event Queue to save different
input events that may take place in the system, (2) the intelligent software agent
that reads an input event from the Event Queue and reacts as soon as possible, (3)
the set of state machines such that each one is composed of a set of states, (4) each
state represents a specific information about the system. The agent, based on nested
state machines, determines the new system’s state to execute according to event inputs
and also conditions to be satisfied. This solution has the following characteristics: (1)
The control agent design is general enough to cope with various kinds of embedded-
software based-component application. Therefore, the agent is uncoupled from the
application and from its Control Components. (2) The agent is independent of nested
state machines: it permits to change the structure of nested state machines (add state
machines, change connections, change input events, and so on) without having to
change the implementation of the agent. This ensures that the agent continues to
work correctly even in case of modification of state machines. (3) The agent is not
supposed to know components that it has to add or remove in a reconfiguration case.

260 A. Gharbi et al.

In the following algorithm, the symbol Q is an event queue which holds incoming
event instances, ev refers to an event input, S; represents a State Machine, and s; j a
state related to a State Machine S;. The internal behavior of the agent is defined as
follow:

1. the agent reads the first event ev from the queue Q;

2. searches from the top to the bottom in the different state machines;

3. within the state machine SM;, the agent verifies if ev is considered as an event
input to the current state s;; (i.e. ev € I related to s; ;). In this case, the agent
searches the states considered as successor for the state s; ; (states in the same
state machine SM; or in another state machine SM;);

4. the agent executes the operations related to the different states;

5. repeats the same steps (1-4) until no more event exists in the queue to be treated.

Algorithm 1: GenericBehavior

begin
while (Q.length() > 0) do
ev < Q.Head()
For each state machine SM; do
sij < currentState;
If ev € I(s; ;) then
For each state s; x € next(s; ;)
such that s; ; related to S; do
If execute(s; ;) then
currentState; <— s; i
break
end if
end for
For each state 5, x € next(s;)
such that s; ; related to S; do
If execute(s; ;) then
currentState; <— S
break
end if
end for
end if
end for
end while
end.

First of all, the agent evaluates the pre-condition of the state s; ;. If it is false, then
the agent exits, Else the agent determines the list of Control Components concerned
by this reconfiguration, before applies the required reconfiguration for each one.
Finally, it evaluates the post-condition of the state s; ; and generates errors whenever
it is false.

Functional and Operational Solutions 261

Function execute(s; ;) : boolean
begin
If —s; j.PreCondition then
return false
else
listCC <« getInfo(s; j.info)
For each CC € listCC do
CC.reconfigure()
end for
If —s; j.PostCondition then
Generate error
end if
return true
end if
end.

4.2 Communication Protocol

To guarantee safe distributed reconfigurations, we define the concept of Coordination
Matrix that defines correct reconfiguration scenarios to be applied simultaneously
in distributed devices and we define the concept of Coordination Agent that handles
coordination matrices to coordinate between distributed agents.

Let Sys be a distributed safe system of n devices, and let Agy,...,Ag, be n
agents to handle automatic distributed reconfiguration scenarios of these devices.
We denote in the following by Reconfiguration arkahe & reconfiguration scenario
applied by Ag, (a € [1, n]) as follows: (1) the correspondlng ASM state machine is
in the state ASM;,. Let cond“ be the set of conditions to reach this state, (2) the CSM
state machine is in the state CSM;, j, Let cond be the set of conditions to reach
this state, (3) the DSM state machine is in the state DSMy, p,- Let cond,fav hy be the
set of conditions to reach this state. To handle coherent distributed reconfigurations
that guarantee safe behaviors of the whole system Sys, we define the concept of
Coordination Matrix of size (n, 4) that defines coherent scenarios to be simultane-
ously applied by different agents. Let CM be such a matrix that we characterize as
follows: each line a (a € [1, n]) corresponds to a reconfiguration scenario
Reconfiguration? oo kasha © be applied by Ag, as follows:

CMla, 1] =i, CMla,2] =j,; CMla,3]l=kys; CMla,4] = h,

According to this definition: If an agent Ag, applies the reconfiguration scenario
Reconfiguration® cmia,1].cM[a.2].CM[a.3].CM[a,4], Then each other agent Ag, (b €
[1, n]\{a}) has to apply the scenario Reconﬁgurationb CM[b,11,CM[b,2],CM[b,3],CM[b,4]
(Fig. 3). We denote in the following by idle agent each agent Ag;, (b € [1, n]) which
is not required to apply any reconfiguration when others perform scenarios defined
in CM. In this case:

262 A. Gharbi et al.

1 2 3 4 Reconfigurations to be
applied simultaneously

Ags| 1 | | | i
| | | |
| ! | !

Ada ia ja Ka ha Reconfiguration to
| | | | be applied by Ag,
| | | |
| | | |
' : : . Agent does not

Ag, '|b= 0 l'b =0 'kb= 0 :1.,: 0 |« react
| | | |
! P !

f f Reconfiguration to

A i k h

% | ° |Ic | ¢ | © be applied by Ag.
[[[:
Ag,| ! ' ' :

Fig. 3 The coordination matrix

CM[b, 1] = CM[b, 2] = CM[b,3] = CM[b,4] =0

a — a — a —
condeyq 1) = condeya,n) = €Ondeyia 3),cmia,a) = True

We propose a communication protocol between agents to manage concurrent
distributed reconfiguration scenarios. We guarantee a coherent behavior of the whole
distributed system by defining a Coordination Agent (denoted by CA(£(Sys))) which
handles the Coordination Matrices of £(Sys) to control the rest of agents (i.e. Agq,,
a € [1, n)) as follows:

e When a particular agent Ag, (a € [1, n]) should apply a reconfiguration scenario
Reconfiguration! o ;. (i.e. under well-defined conditions), it sends the follow-
ing request to CA(S (Sys)) to obtain its authorization:

request(Agq, CA(5(Sys)), Reconﬁgurationfa Jorkasha).

e When CA(&(Sys)) receives this request that corresponds to a particular coordina-
tion matrix CM € &(Sys) and if CM has the highest priority between all matrices
of Concur(CM)U{CM}, then CA(&(Sys)) informs the agents that have simultane-
ously to react with Ag, as defined in CM. The following information is sent from
CA(§(Sys)):

For each Agp, b € [1,n] \ {a} and CM[b,i] # 0,Vi € [1,4]: reconfiguration
(CA(E(Sys)), Agp, Reconﬁgumtionl&M[b’lLCM[b’2]’CM[b’3]’CM[b’4])

e According to well-defined conditions in the device of each Agj, the CA(&(Sys))

request can be accepted or refused by sending one of the following answers:

- If Conaff7 = cond’? = condfb h, = True
then the following reply is sent from Agy, to CA(£(Sys)): possible_reconfig
(Agp, CA(%(Sys.)), Recogﬁgurationl&M[b’IJ’CM[b‘ZJ,CM[b’3J,CM[b’4J).

— Else the following reply is sent from Ag,, to CA(§(Sys)): not_possible_reconfig
(Agp, CA(5(Sys)), ReconﬁgumtionléM[b’ 1],CM[b,Z],CM[b,3],CM[h,4])'

Functional and Operational Solutions 263

Reconfiguration Coordination Reconfiguration
agent i agent agent j

request for reconfiguration] |
Search the

)coordinalion matrix J_

*[j:=1..nbR, j <> i] Ask for reconfiguration

\

b —

refuse

Cancel the new reconfiguration

-t
]

)[anesp = nbR-1]

| T
I accept |
D . Apply the new reconfiguration *[i:=1..nbR, j <> i] apply the new reconfiguration ‘L_J

Fig. 4 The communication scenario

e If CA(£(Sys)) receives positive answers from all agents, then it authorizes recon-
figurations in the concerned devices: For each Agp, b € [1, n] and CM[b, i] # 0,

Vi € [1, 4], apply (ReconﬁgurationZM[b’1]‘CM[b’Z]’CM[bj]’CM[bA]) in devicey,. Else
If CA(£(Sys)) receives a negative answer from a particular agent, then

— If the reconfiguration scenario Reconﬁgumtionf’a o kasha allows optimizations of
the whole system behavior, then CA (£ (Sys)) refuses the request of Ag,, by send-
ing the following reply: refused_reconfiguration(CA(E(Sys)), Agq,

Rec""ﬁg”m’ion%ma, 1],CM[a,2J,CM[u,3],CM[a,4J))’

When a Reconfiguration Agent (denoted by RA;) needs to apply a new recon-
figuration, it sends a request to the Coordination Agent. The Coordination Agent
asks all the known Reconfiguration Agents (denoted by RA;, Vj € [1..NbR],j <> i
where NDR represents the number of Reconfiguration Agents) if it is possible to
apply the new reconfiguration introduced as parameter. The Reconfiguration Agent
(RA;) studies this proposition and sends its response which may be accept or
refuse the new reconfiguration (depending on its related state). Whenever the
Coordination Agent receives positive responses from all the Reconfiguration Agents
(RA;Vj € [1..NbR], j <> i)(i.e. the number of positives answers is equal to NbR—1),
then it decides to apply the new reconfiguration for all Reconfiguration Agents
RA; (Vj € [1..NbR]) by sending a confirmation message. Whenever the Coordi-
nation Agent receives only one negative response from a Reconfiguration Agents

264 A. Gharbi et al.

System

SystemID
listAgent

+ addAgent ()
+ deleteAgent ()
+ searchAgent ()

Message

content

perfomative
receiver

sender

time

Control Agent

AgentlD

nameAgent Send/receive

+ setContent ()
+ getContent ()

+ setPerformative ()

+ subscribe ()
+ unsubscribe ()
+ communicate ()

Coordination
Agent

listAgent
matrices
actualMatrix

+ searchAgents ()
+ setMatrices ()

+ decideMatrix ()
+ setMatrix ()

+ communicate ()

+ getPerformative ()
+ setReceiver ()

+ getSender ()

+ getTime ()

+ setTime ()

Reconfiguration
Agent

CoordinatorlD
actualReconfig

+ searchCoordinator ()
+ searchReconfig ()

+ decideReconfig ()

+ setReconfig ()

+ communicate ()

Fig. 5 The agent-based control in a distributed system

(RA;,j € [1..NbR],j <> i), it decides to cancel this reconfiguration and informs
the corresponding agent by its decision (i.e RA;). Figure 4 depicts the interaction
between Reconfiguration and Coordination agents to ensure dynamic reconfigura-
tion in a distributed system.

Before sending or receiving a message, the Reconfiguration Agent searches
the Coordination Agent with the method searchCoordinator(). The Coordination
Agent in its turn searches also the list of Reconfiguration Agents with the method
searchAgents().

The method receive() used by both Coordination Agent and Reconfiguration
Agent permits to receive a message sent by another agent. Whenever receive() is

Functional and Operational Solutions 265

invoked through CA_Communicate() and RA_Communicate() methods, if the agent
does not receive a message, it is blocked (but without blocking the other activities of
the same agent).

A message is defined by the following data: (1) content: the subject of the message
(such as the reconfiguration to be applied); (2) performative: the performative indi-
cates what the sender wants to achieve (for example ACCEPT, REFUSE, CANCEL,
CONFIRM); (3) time: it is necessary to treat messages ordered by time; (4) sender:
the agent emitting the message; and (5) receiver: the agent receiving the message.
Figure 5 depicts the different classes such as ControlAgent, CoordinationAgent,
ReconfigurationAgent, Message and System.

In the following, we present the Communicate method defined for both Recon-
figuration and Coordination Agent. The CA_Communicate method defined for the
Coordination Agent has as variables: (1) i representing the reconfiguration agent
which initiates the request of reconfiguration; (2) j which corresponds to the recon-
figuration agent receiving the request of reconfiguration from the coordination agent;
(3) NbR which represents the total number of reconfiguration agents; (4) NbResp con-
sidered as the current number of responses approving the new reconfiguration by the
reconfiguration agents; (5) matrix representing the new matrix to be applied if all the
reconfiguration agents accept.

Algorithm CA_Communicate()

begin
switch (step)
case 0:
/I Wait a request from a Reconfiguration Agent
reply < receive();
if (reply != null)
if (reply.getPerformative() = REQUEST)
i < reply.getSender();
Matrix < decideMatrix(reply.getContent());
step++;
else
block();
break;

case 1:
/I Send the proposition to all Reconfiguration Agents
for j =1 to NbR do
if <>1)

msg.addReceiver(reconfigurationAgents[j]);
msg.setContent(Matrix[j]);
msg.setPerformative(PROPOSE);
msg.setTime(currentTime());
send(msg);

step++;

break;

266

A. Gharbi et al.

case 2:

/I Receive all accept/refusals from Reconfiguration Agents reply < receive();

if (reply != null)
if (reply.getPerformative() = ACCEPT)
nbResp++;
if (nbResp = nbR-1)
step++;
else
if (reply.getPerformative() = REFUSE)
step < 4;
else
block();
break;

case 3:
// Send accept response to all Reconfiguration Agents

for j =1 to NbR do
msg.addReceiver(reconfigurationAgents[j]);
msg.setPerformative(CONFIRM);
msg.setTime(currentTime());
msg.setContent(Matrix[j]);
send(msg);
setMatrix(Matrix);

step < 0;

break;

case 4:

/I Send refuse response to the Reconfiguration Agent i
msg.addReceiver(reconfigurationAgents[i]);
msg.setPerformative(CANCEL);
msg.setTime(currentTime());
send(msg);
step < 0;
break;

end

The RA_Communicate method defines the Reconfiguration Agent behavior as
follows: (1) whenever the Reconfiguration Agent receives a request to apply a new
reconfiguration by the Coordination Agent, it evaluates this proposition and decides
whether to accept or to refuse it. The Reconfiguration Agent sends its response.
(2) whenever the Reconfiguration Agent receives a confirmation to apply the new

reconfiguration from the Coordination Agent, then it applies it.

Algorithm RA_Communicate()

begin

switch (step)

case 0:

// ' Wait a request from a Coordination Agent

Functional and Operational Solutions 267

reply < receive();
if (reply !=null)
if (reply.getPerformative() = REQUEST)
newReconfig < reply.getContent();
response.setReceiver(CoordinatorID);
if (decideReconfig(newReconfig))
response.setPerformative(ACCEPT);
else
response.setPerformative(REFUSE);
send(response)
step++;
else
block();
break;

case 1:
/I Wait the response from a Coordination Agent
reply < receive();
if (reply != null)
if (reply.getPerformative() = CONFIRM)
setReconfig(newReconfig);
step < 0;
break;
end

We developed a complete tool “ProtocolReconf™, to verify the communication
protocol. The tool “ProtocolReconf™ offers the possibility to create the Reconfigura-
tion and Coordination Agents by introducing the necessary parameters. It is required
to define the different scenarios that the Reconfiguration Agent can support so that
when a modification occurs in the system, it should look for the convenient reconfig-
uration. For the Coordination Agent, it is necessary to define the set of Coordination
Matrices to apply to the whole system [21].

5 Real-Time Task: Definition, Dynamic Reconfiguration
and Scheduling

In this section, we present a Real-Time Task as a general concept independently from
any real-time operating system, its dynamic reconfiguration, the scheduling between
several tasks and the implementation in a specific real-time operating system (which
is RTLinux).

268 A. Gharbi et al.

Fig. 6 Real time task Real-Time Task
CC, CC, CC,
Method>, Method,, ... Method,

5.1 Real Time Task Definition

A real time task is considered as a process (or a thread depending on the Operating
System) having its own data (such as registers, stack, ...) which is in competition
with other tasks to have the processor execution. A task is handled by a Real-Time
Operating System (RTOS) which is a system satisfying explicitly response-time con-
straints by supporting a scheduling method that guarantees response time especially
to critical tasks.

In this paragraph, we aim to present a real-time task as a general concept inde-
pendently from any real-time operating system.

To be independent from any Real-Time Operating System and to be related to our
research work, we define a task 7; as a sequence of Control Components, where a
Control Component is ready when its preceding Control Component completes its
execution. 7; ; denotes the j-th Control Component of 7; (Fig. 6). Thus, our application
consists of a set of periodic tasks T = (1, 12, ..., T,,). All the tasks are considered as
periodic this is not a limitation since non-periodic task can be handled by introducing
a periodic server.

Running Example. In the FESTO Benchmark Production System, the tasks t1 to
19 execute the following functions:

e (11) Feeder pushes out cylinder and moves backward/back;

e (12) Converter pneumatic sucker moves right/left;

e (13) Detection Module detects workpiece, height, color and material;

e (t4) Shift out cylinder moves backward/forward;

e (t5) Elevator elevating cylinder moves down/up;

e (76) Rotating disc workpiece present in position and rotary indexing table has
finished a 90 rotation;

e (17) Driller 1 machine drills workpiece;

e (tg) Driller 2 machine drills workpiece;

e (19) WarehouseCylinder removes piece from table.

In the following paragraphs, we introduce the meta-model of a task. We study also
the dynamic reconfiguration of tasks. After that, we introduce the task scheduling.

Functional and Operational Solutions 269

Finally, we present the task implementation within RTLinux as a Real-Time Oper-
ating System.

5.2 A Meta-model Task

In this chapter, we extend the work presented in [42] by studying both a task and a
scheduler in a general real-time operating system where each task is characterized
by:

identifer: each task 7; has a name and an identifier.

temporal properties: each task t; is described by a deadline D; (which corresponds
to the maximal delay allowed between the release and the completion of any
instance of the task), a period T;, a worst-case execution time C;. It is released
every T; seconds and must be able to consume at most C; seconds of CPU time
before reaching its deadline D; seconds after release (C; < D; < T;). We assume
that these attributes are known, and given as constants (Table2).

constraints: resources specification p;, precedence constraints and/or QoS proper-
ties to be verified.

state: A Real-Time Operating System implements a finite state machine for each
task and ensures its transition. The state of a task may be in one of the following
possible states Ready, Running, Blocked or Terminated. Every task is in one of a
few different states at any given time:
Ready The task is ready to run but waits for allocation of the processor. The
scheduler decides which ready task will be executed next based on priority crite-
rion (i.e. the task having the highest priority will be assigned to the processor).
Blocked A task cannot continue execution because it has to wait (there are many
reasons such that waiting for event, waiting on semaphore or a simple delay).
Running In the running state, the processor is assigned to the task, so that its
instructions can be executed. Only one task can be in this state at any time, while
all the other tasks can be simultaneously in other states.
Terminated When a task terminates its execution, the task allocator deletes it
and releases the resources taken by this task (Fig. 7).

priority: eachtaskis assigned a priority value which may be used in the scheduling.

1 = (Dy; Ci; Ti; I;; O3 pi; (CCY, ..., CCMY);

a deadline D;;

an execution time C;;
a period Tj;

a set of inputs I;;

a set of outputs O;;

270 A. Gharbi et al.

Table 2 A task set example

Task Comp. time C; Period T; Deadline D;
71 20 70 50
12 20 80 80
) 35 200 100
T4 62 90 81

Task created

Task having the
highest priority

Unblocked but it ig
not the highest
priority
Unblocked and it is
the highest priori

blocked

Task finishes
its execution

Waiting for
unavailbale resource

terminated

Fig. 7 Task states

e a sct of constraints p;;
e a set of n; Control Components (n; > 1) such that the task 7; is constituted by
ccl,cc, ... ccr.

One of the core components of an RTOS is the task scheduler which aims to
determine which of the ready tasks should be executing. If there are no ready tasks
at a given time, then no task can be executed, and the system remains idle until a task
becomes ready (Fig. 8).

Running Example. In the FESTO Benchmark Production System, when the task
11 is created, it is automatically marked as Ready task. At the instant t1,it is executed
by the processor (i.e. it is in the Running state). When the task t| needs a resource
at the instant t2, it becomes blocked. Whenever the resource is available at the

Functional and Operational Solutions 271

Scheduler

Blocked tasks Ready tasks
Fig. 8 Scheduling task
State
A
Blocked —
| I
| |
Running — | —
I I I
: L
Ready [1 L :
|
I
Terminated e
» Time
t1 t2 3 t4 t5

Fig. 9 The variation of states related to the task t;

instant t3, the task t is transformed into ready state. Finally, it is executed again
since the time t4. It is terminated at the instant t5 (Fig. 9).
A scheduler related to a real-time operating system is characterized by (Fig. 10):

readyTask: a queue maintaining the set of tasks in ready state.

executingTask: a queue maintaining the set of tasks in executing state.

minPriority: the minimum priority assigned to a task.

maxPriority: the maximum priority assigned to a task.

timeSlice: the threshold of preempting a task (the quantity of time assigned to a
task before its preemption).

Several tasks may be in the ready or blocked states. The system therefore maintains a
queue of blocked tasks and another queue for ready tasks. The latter is maintained in
a priority order, keeping the task with the highest priority at the top of the list. When
a task that has been in the ready state is allocated the processor, it makes a state
transition from ready state to running state. This assignment of the processor is called
dispatching and it is executed by the dispatcher which is a part of the scheduler.
Running Example. In the FESTO Benchmark Production System, we consider
three tasks t1, 12 and t3. having as priority pl, p2 and p3 such that pl < p2 < p3.

272

A. Gharbi et al.

Task
Scheduler

Task-name
readyTask Task-d :
executingTask Task-Perlot_l
minPriority I:z:-ev?g-ll!ne
maxPriority Queue]
timeSlice Task-Pred
runningTask Task-Qth :
Scheduler-State Task-Priority
criterla Task-State

Initialize ()

T Prop 0 enqueue () getinfo()

verifyTemporalProp L dequeue () getPriority ()
verifyQoSProp () maintain_| isEmpty () 1 *| setPriority ()
chooseTask () Length () addPred ()
Create () setPred ()
Syspend () getState ()
Kill _() setState ()
Actlvate_() setTemporal ()
preemptionLock () addComponent ()
preemptionUnlock () removeComponent ()

setQoS ()

Fig. 10

The real time operating system

Priority
Context
e ot
-
A
Context
switch Task 3
=

Task 1

t1

» Time

Fig. 11 The context switch between tasks

We suppose that the task t1 is running when the task 7> is created at the instant t1. As
a consequence, there is a context switch so that the task t| stays in a ready state and
the other task 1) begins its execution as it has higher priority. At the instant t2, the
task t3 which was already blocked waiting a resource, gets the resource. As the task
T3 is the highest priority, the task t) turns into ready state and T3 executes its routine.

The task t3 continues processing until it has completed, the scheduler enables T to
become running (Fig. 11).

Functional and Operational Solutions 273

5.3 Feasible and Safety Dynamic Reconfiguration of Tasks

We want to study the system’s safety during reconfiguration scenarios. In fact, we
want to keep tasks running while dynamically reconfiguring them. We assume for
such system’s task several software processes which provide functional services,
and assume also reconfiguration processes that apply required modifications such as
adapting connections, data or internal behaviors of the component. The execution of
these different tasks is usually critical and can lead to incorrect behaviors of the whole
system. In this case, we should schedule which process should be firstly activated
to avoid any conflict between processes. Consequently, we propose in this section
to synchronize processes for coherent dynamic reconfigurations applied to several
tasks.

5.3.1 Reconfiguration and Service Processes

We want in this section to synchronize service and reconfiguration processes of a
task according to the following constraints: (1) whenever a reconfiguration process is
running, any new service process must wait until its termination; (2) a reconfiguration
process must wait until the termination of all service processes before it begins its
execution; (3) it is not possible to execute many reconfiguration processes in parallel;
(4) several service processes can be executed at the same time. To do that, we use
semaphores and also the famous synchronization algorithm between readers and
writer processes such that executing a service plays the role of a reader process and
reconfiguring a task plays the role of a writer process. In the following algorithm,
we define serv and reconfig as semaphores to be initialized to 1. The shared variable
Nb represents the number of current service processes associated to a specific task.
Before the execution of a service related to a task, the service process increments
the number Nb (which represents the number of service processes). It tests if it is the
first process (i.e. Nb is equal to one). In this case, the operation P(reconfig) ensures
that it is not possible to begin the execution if there is a reconfiguration process.

P(serv)
Nb <~ NB+1
if (NB = 1) then
P(reconfig)
end if
V(serv)

After the execution of a service related to a task, the corresponding process decre-
ments the number Nb and tests if there is no service process (i.e. Nb is equal to zero).
In this case, the operation V (reconfig) authorizes the execution of a reconfiguration
process.

P(serv)
Nb <~ NB — 1

274 A. Gharbi et al.

if (NB =0) then
V(reconfig)
end if
V(serv)

Consequently, each service process related to a task does the following instructions:

Algorithm 2: execute a service related to a task

begin service
P(serv)
Nb < NB + 1
if (NB = 1) then
P(reconfig)
end if
V(serv)

execute the service

P(serv)
Nb < NB-1
if (NB =0) then
V(reconfig)
end if
V(serv)
end service

Running Example. Let us take as a running example the task Test related to the
EnAS system. To test a piece before elevating it, this component permits to launch
the Test Service Process. Figure 12 displays the interaction between the objects
Test Service Process,Service semaphore and Reconfiguration semaphore. The flow
of events from the point of view of Test Service Process is the following: (1) the
operation P(serv) leads to enter in critical section for Service semaphore; (2) the
number of services is incremented by one; (3) if it is the first service, then the operation
P(reconfig) permits to enter in critical section for Reconfiguration semaphore; (4)
the operation V (serv) leads to exit from critical section for Service semaphore; (5)
the Test Service Process executes the corresponding service; (6) before modifying
the number of service, the operation P(serv) leads to enter in critical section for
Service semaphore; (7) the number of services is decremented by one; (8) if there
is no service processes, then the operation V (reconfig) permits to exit from critical
section for Reconfiguration semaphore; (9) the operation V (serv) leads to liberate
Service semaphore from its critical section.

With the operation P(reconfig), a reconfiguration process verifies that there is
no reconfiguration processes nor service processes which are running at the same
time. After that, the reconfiguration process executes the necessary steps and runs
the operation V (reconfig) in order to push other processes to begin their execution.
Each reconfiguration process specific to a task realizes the following instructions:

Functional and Operational Solutions

275

Algorithm 3: reconfigure a task

begin reconfiguration
P(reconfig)

execute the reconfiguration
V(reconfig)
end reconfiguration

Running Example. Let us take as example the task Elevate related to EnAS
system. The agent needs to reconfigure this task which permits to launch the Elevate
Reconfiguration Process. Figure 13 displays the interaction between the following
objects Elevate Reconfiguration Process and Reconfiguration semaphore. The flow
of events from the point of view of Elevate Reconfiguration Process is the follow-
ing: (1) the operation P(reconfig) leads to enter in critical section for Reconfigura-

Test Service
Process

P(serv)

Service
semaphore

1

Reconfiguration

semaphore

|
|
|
L

Critical
Nb < Nb + 1 section
[Nb =1] P(reconfig) _
D V(serv)
Execute Critical
service | section
P(serv) _
Critical
section

Nb < Nb -1

[Nb =0] V(reconfig)

V(serv)

\d

-—O 1Tt

Fig. 12 The service process scenario

- ——

276 A. Gharbi et al.

Elevate Reconfiguration Reconfiguration
Process semaphore

1

P(reconfig)

\

Critical

Execute section

reconfiguration

V(reconfig)

A

- —C 31— {1

Fig. 13 The reconfiguration process scenario

tion semaphore; (2) the Elevate Reconfiguration Process executes the correspond-
ing reconfiguration; (3) the operation V (reconfig) leads to liberate Reconfiguration
semaphore from its critical section.

5.3.2 Verification of Safety of the Synchronization

To verify the safety of the synchronization, we should verify if the different con-
straints mentioned above are respected.

First property: whenever a reconfiguration process is running, any service
processes must wait until the termination of the reconfiguration. Let us suppose
that there is a reconfiguration process (so the integer reconfig is equal to zero and
the number of current services is zero). When a service related to this component is
called, the number of current services is incremented (i.e. it is equal to 1) therefore
the operation P(reconfig) leads the process to be in a blocked state (as the integer
reconfig is equal to zero). When the reconfiguration process terminates the reconfig-
uration, the operation V (reconfig) permits to liberate the first process waiting in the
semaphore queue. In conclusion, this property is validated.

Second property: whenever a service process is running, any reconfiguration
processes must wait until the termination of the service. Let us suppose that there
is a service process related to a component (so the number of services is greater or
equal to one which means that the operation P(reconfig) is executed and reconfig is
equal to zero). When a reconfiguration is applied, the operation P(reconfig) leads
this process to be in a blocked state (as the reconfig is equal to zero). Whenever
the number of service processes becomes equal to zero, the operation V (reconfig)
allows to liberate the first reconfiguration process waiting in the semaphore queue.
As a conclusion, this property is verified.

Functional and Operational Solutions 277

Third property: whenever a reconfiguration process is running, it is not possible
to apply a new reconfiguration process until the termination of the first one. Let
us suppose that a reconfiguration process is running (so reconfig is equal to zero).
Whenever, a new reconfiguration process tries to execute, the operation P(reconfig)
puts it into a waiting state. After the reconfiguration process which is running is ter-
minated, the operation V (reconfig) allows to liberate the first reconfiguration waiting
process. Consequently, this property is respected.

Fourth property: whenever a service process is running, it is possible to apply
another process service. Let us suppose that a service process P1 is running. When-
ever, a new service process P2 tries to begin the execution, the state of P2 (activated
or blocked) depends basically on the process P1:

e if P1 is testing the shared data Nb, then the operation P(serv) by the process
P2 leads it to a blocking state. When the process P1 terminates the test of the
shared data Nb, the operation V (serv) allows to launch the process waiting in the
semaphore’s queue.

e if P1 is executing its service, then the operation P(serv) by the process P2 allows
to execute normally.

Thus, this property is validated.

5.4 Task Scheduling with Priority Ceiling Protocol

How to schedule periodic tasks with precedence and mutual exclusion constraints is
considered as important as how to represent a task in a general real-time operating
system. In our context, we choose the priority-driven preemptive scheduling used
in the most real-time operating systems. The semaphore solution can lead to the
problem of priority inversion which consists that a high priority task can be blocked
by a lower priority task. To avoid such problem, we propose to apply the priority
inheritance protocol proposed by Sha et al. [49].

The priority inheritance protocol can be used to schedule a set of periodic tasks
having exclusive access to common resources protected by semaphores. To do so,
each semaphore is assigned a priority ceiling which is equal to the highest priority
task using this semaphore. A task t; is allowed to enter its critical section only if
its assigned priority is higher than the priority ceilings of all semaphores currently
locked by tasks other than t;.

Schedulability test for the priority ceiling protocol: a set of n periodic tasks using
the priority ceiling protocol can be scheduled by the rate-monotonic algorithm if the
following inequalities hold, Vi, 1 <i <n,

Ci/Ti + Co/To + -+ Ci/T; + Bi)T; < i(2"" = 1)

where B; denotes the worst-case blocking time of a task 7; by lower priority tasks.

278 A. Gharbi et al.
Task
Execute End
R1 reconfiguration P(R) reconfiguration V(R) reconfiguration
Begin Execute End
1 service P(S) P(R) V(S) service P(S) V(R) V(S) _service
Begin Execute End
service P(S) P(R) V(S) service P(S) V(R) V(S) service
S2
2 B 4 5 t6 7 8 t9 t10 H1 2 13 114 t15 16 t17 t8 t19 t20 t21 22 23 time

[Critical section guarded by S [l Critical section guarded by R

Fig. 14 The priority ceiling protocol applied to three tasks R1, S1 and S2

Table 3 The event and its corresponding action in Fig. 14

Event Action

t0 S2 begins execution

tl S2 locks S. The task S2 inherits the priority of S

t2 The task S1 is created. As it has more priority than S2, it begins its execution

t3 The task S1 fails to lock S as its priority is not higher than the priority ceiling of the
locked S. The task S2 resumes the execution with the inherited priority of S

t4 The task S2 locks R. The task S2 inherits the priority of R. The task R1 is created and
preempts the execution of S2 as it has the highest priority

t5 The task R1 fails to lock R as its priority is not higher than the priority ceiling of the
locked R. The task S2 resumes the execution of the critical section

t6 The task S2 unlocks S

t7 The task S2 executes a service

t8 The task S2 locks S

t9 The task S2 unlocks R and therefore has as priority the same as S. The task R1 becomes
having the highest priority. As it has more priority than S2, it resumes its execution

t10 The task R1 locks R

tll The task R1 executes the reconfiguration

t12 The task R1 unlocks R

t13 The task R1 terminates its execution

t14 The task S2 unlocks S (thus S2 becomes having the lowest priority). Therefore, the task
S1 resumes its execution

t15 The task S1 locks S

t16 The task S1 locks R

t17 The task S1 unlocks S

t18 The task S1 executes its service

t19 The task S1 locks S

20 The task S1 unlocks R

21 The task S1 unlocks S

22 The task S1 achieves its execution

23 The task S2 resumes the execution and terminates its service

Running Example. In the FESTO Benchmark Production System, we consider
three tasks R1 (a reconfiguration task), S1 and S2 (service tasks) having as priority

Functional and Operational Solutions 279

pl, p2 and p3 such that pl > p2 > p3. The sequence of processing steps for each
task is as defined in the section previous paragraph where S (resp. R) denotes the
service (resp. reconfiguration) semaphore:

R1 = {... P(R) execute reconfiguration V(R) . . .}
S1={...PS)...P(R)...V(S) execute service P(S) ... V(R)...V(S)...}
S2={...P(S)...P(R)...V(S) execute service P(S) ... V(R)...V(S)...}

Therefore, the priority ceiling of the semaphore R is equal to the task RI (because
the semaphore R is used by the tasks R1, SI and S2 and we know that the task R1 is
the highest priority) and the priority ceiling of the semaphore S is equal to the task
S1 (because the semaphore S is used by the tasks S1 and S2 and the priority task of
S1 is higher). We suppose that the task S2 is running when the task S1 is created at
the instant t3. We suppose also that the task R1 is created at the instant t5. Fig. 14, a
line in a high level indicates that the task is executing, a line in a low level indicates
that the the task is blocked or preempted by another task. Table 3 explains more in
details the example.

6 Conclusion

This chapter deals with Safety Reconfigurable Embedded Control Systems. We pro-
pose conceptual models for the whole component-based architecture. We define a
multi-agent architecture where a Reconfiguration Agent is affected to each device of
the execution environment to handle local automatic reconfigurations, and a Coor-
dination Agent is defined to guarantee safe distributed reconfigurations. To deploy
a Control Component in a Real-Time Operating System, we define the concept of
real-time task in general (especially its characteristics). The dynamic reconfiguration
of tasks is ensured through a synchronization between service and reconfiguration
processes to be applied. We propose to use the semaphore concept for this syn-
chronization such that we consider service processes as readers and reconfiguration
processes as writers. We propose to use the priority ceiling protocol as a method
to ensure the scheduling between periodic tasks with precedence and mutual exclu-
sion constraints. The main contributions presented through this work are: the study
of Safety Reconfigurable Embedded Control Systems from the functional to the
operational level and the definition of a real-time task independently from any real-
time operating system as well as the scheduling of these real-time tasks considered
as periodic tasks with precedence and mutual exclusion constraints. The chapter’s
contribution is applied to two Benchmark Production Systems FESTO and EnAS
available at Martin Luther University in Germany.

280 A. Gharbi et al.

R

1
2

10.

11.

12.

16.

17.

18.
19.

20.

21.

22.

23.

eferences

. M. Akerholm, J. Fredriksson, A Sample of Component Technologies for Embedded Systems

. Y. Al-Safi, V. Vyatkin, An ontology-based reconfiguration agent for intelligent mechatronic
systems (Springer, New York, 2007). Third International Conference on Industrial Applications
of Holonic and Multi-Agent Systems

. C. Angelov, K. Sierszecki, N. Marian, Design models for reusable and reconfigurable state
machines, in EUC 2005, LNCS 3824 eds. by L.T. Yang et al., International Federation for
Information Processing (2005), pp. 152-163

. C. Bidan, V. Issarny, T. Saridakis, A. Zarras, A dynamic reconfiguration service for CORBA,
in CDS 98: Proceedings of the International Conference on Configurable Distributed Systems
(IEEE Computer Society, 1998)

. K.-J. Cho, et al., A study on the classified model and the agent collaboration model for network
configuration fault management. Knowl. Based Syst., 177-190 (2003)

. M. Colnaric, D. Verber, W.A. Halang, A data-centric approach to composing embedded, real-
time software components. J. Syst. Softw. 74, 25-34 (2005)

. F. Cottet, J. Delacroix, C. Kaiser, Z. Mammeri, Scheduling in Real-Time Systems (Wiley, New
York, 2002)

. L. Crnkovic, Component-based Approach for Embedded Systems (2003)

. L. Crnkovic, M. Larsson, Building Reliable Component-based Software Systems (Artech House,

2002)

I. Crnkovic, M. Larsson, Grid Information Services for Distributed Resource Sharing (Artech

House, UK, 2002). Building reliable component-based software systems

M. de Jonge, Developing Product Lines with Third-Party Components. Electronic Notes in

Theoretical Computer Science (2009), pp. 63-80

ENS50126, Railway Applications the Specification and Demonstration of Dependability, Reli-

ability, Availability, Maintainability and Safety (RAMS) (Comite Europeen de Nomalisation

Electrotechnique, 1999)

. EN50128, Railway Applications Software for Railway Control and Protection Systems (Comite
Europeen de Nomalisation Electrotechnique, 2002)

. EN50129, Railway Applications Safety Related Electronic Systems for Signalling (Comite
Europeen de Nomalisation Electrotechnique, 2002)

. ENO954, Safety of Machinery Safety-related Parts of Control Systems (Comite Europeen de

Nomalisation Electrotechnique, 1996)

R. Faller, Project experience with IEC 61508 and its consequences. Saf. Sci. 42, 405-422

(2004)

T. Genler, O. Nierstrasz, B. Schonhage, Components for Embedded Software The PECOS

Approach

T. Genssler, et al., PECOS in a Nutshell (2002)

A. Gharbi, H. Gharsellaoui, M. Khalgui, S. Ben Ahmed, Functional safety of distributed embed-

ded control systems, in Handbook of Research on Industrial Informatics and Manufacturing

Intelligence: Innovations and Solutions, eds. by M.A. Khan, A.Q. Ansari (2011)

A. Gharbi, M. Khalgui, S. Ben Ahmed, Functional safety of discrete event systems. First

Workshop of Discrete Event Systems (2011)

A. Gharbi, M. Khalgui, S. Ben Ahmed, Inter-agents communication protocol for distributed

reconfigurable control software components. The International Conference on Ambient Sys-

tems Networks and Technologies (ANT), 8—10 Nov 2010

A. Gharbi, M. Khalgui, S. Ben Ahmed, Model checking optimization of safe control embed-

ded components with refinement. 5th International conference on Design and Technology of

Integrated Systems in Nanoscale Era (2010)

A. Gharbi, M. Khalgui, S. Ben Ahmed, Optimal model checking of safe control embedded

software components. 15th IEEE International Conference on Emerging Technologies and

Factory Automation (2010)

Functional and Operational Solutions 281

24.

25.
26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.
39.

40.

41.

42.

43.

44,
45.

46.

47.

48.

49.

A. Gharbi, M. Khalgui, H.M. Hanisch, Functional safety of component-based embedded control
systems. 2nd IFAC Workshop on Dependable Control of Discrete Systems (2009)
http://www.program-Transformation.org/Tools/KoalaCompiler. Last accessed on 11 July 2010
IEC 1131-3, Programmable Controllers, Part 3: Programming Languages (International Elec-
trotechnical Commission, Geneva, 1992)

IEC 61508, Functional Safety of Electrical/Electronic Programmable Electronic Systems:
Generic Aspects. Part 1: General requirements (International Electrotechnical Commission,
Geneva, 1992)

IEC60880, Software for Computers in the Safety Systems of Nuclear Power Stations (Interna-
tional Electrotechnical Commission, 1987)

IEC61511, Functional Safety: Safety Instrumented Systems for the Process Industry Sector
(International Electrotechnical Commission, Geneva, 2003)

IEC61513, Nuclear Power Plants Instrumentation and Control for Systems Important to Safety
General Requirements for Systems (International Electrotechnical Commission, Geneva, 2002)
G. Jiroveanu, R.K. Boel, A distributed approach for fault detection and diagnosis based on
Time Petri Nets. Math. Comput. Simul., 287-313 (2006)

M. Kalech, M. Linder, G.A. Kaminka, Matrix-based representation for coordination fault detec-
tion: a formal approach. Comput. Vis. Image Underst.

A. Ketfi, N. Belkhatir, P.Y. Cunin, Automatic Adaptation of Component-based Software Issues
and Experiences (2002)

M. Khalgui, H.M. Hanisch, A. Gharbi, Model-checking for the functional safety of control
component-based heterogeneous embedded systems. 14th IEEE International conference on
Emerging Technology and Factory Automation (2009)

J. Kramer, J. Magee, The evolving Philosophers problem: dynamic change management. IEEE
Trans. Softw. Eng. 16 (1990)

P. Leitao, Agent-based distributed manufacturing control: A state-of-the-art survey. Eng. Appl.
Artif. Intell. (2008)

A.J. Massa, Embedded Software Development with eCos, 1st edn (Prentice Hall, Upper Saddle
River, NJ, USA, 2002)

S. Merchant, K. Dedhia, Performance Comparison of RTOS (2001)

C. Muench, The Windows CE Technology Tutorial: Windows Powered Solutions for the Devel-
oper (Addison Wesley, Reading, 2000)

S. Olsen, J. Wang, A. Ramirez-Serrano, R.W. Brennan, Contingencies-based reconfiguration
of distributed factory automation. Robot. Comput. Integr. Manuf., 379-390 (2005) (Safety
Reconfigurable Embedded Control Systems 31)

G.A. Papadopoulos, F. Arbab, Configuration and Dynamic Reconfiguration of Components
Using the Coordination Paradigm (2000)

P. Pedreiras, L. Almeida, Task Management for Soft Real-Time Applications based on General
Purpose Operating, System (2007)

G. Pratl, D. Dietrich, G. Hancke, W. Penzhorn, A new model for autonomous, networked
control systems. IEEE Trans. Ind. Inform. 3(1) (2007)

QNX Neutrino, Real Time Operating System User Manual Guide (2007)

A.Rasche, A. Polze, ReDAC—Dynamic Reconfiguration of distributed component-based appli-
cations with cyclic dependencies (2008)

A. Rasche, W. Schult, Dynamic updates of graphical components in the .NET Framework, in
Proceedings of SAKSO7 Workshop eds. by A. Gharbi, M. Khalgui, M.A. Khan, vol. 30 (2007)
M.N. Rooker, C. Sunder, T. Strasser, A. Zoitl, O. Hummer, G. Ebenhofer, Zero Downtime
Reconfiguration of Distributed Automation Systems : The eCEDAC Approach (Springer, New
York, 2007). Third International Conference on Industrial Applications of Holonic and Multi-
Agent Systems

G. Satheesh Kumar, T. Nagarajan, Experimental investigations on the contour generation of a
reconfigurable Stewart platform. IJIMR 1(4), 87-99 (2011)

L. Sha, R. Rajkumar, J.P. Lehoczky, Priority inheritence protocols: an approach to real-time
synchronization. IEEE Trans. Comput. 39(9), 1175-1185 (1990)

http://www.program-Transformation.org/Tools/KoalaCompiler

282 A. Gharbi et al.

50. D.D. Souza, A.C. Wills, Objects, Components and Frameworks: The Catalysis Approach
(Addison-Wesley, Reading, MA, 1998)

51. D.B. Stewart, R.A. Volpe, P.K. Khosla, Design of dynamically reconfigurable real-time soft-
ware using port-based objects. IEEE Trans. Softw. Eng. 23, 592-600 (1997)

52. C. Szyperski, D. Gruntz, S. Murer, Component Software Beyond Object- Oriented Program-
ming (The Addison-Wesley Component Software Series, 2002)

53. R. van Ommering, F. van der Linden, J. Kramer, J. Magee, The Koala Component Model for
Consumer Electronics Software (IEEE Computer, Germany, 2000), pp. 78-85

54. M. Winter, Components for Embedded Software—The PECOS Approach

55. R. Wuyts, S. Ducasse, O. Nierstrasz, A data-centric approach to composing embedded, real-
time software components. J. Syst. Softw. (74), 25-34 (2005)

Low Power Techniques for Embedded
FPGA Processors

Jagrit Kathuria, Mohammad Ayoub Khan, Ajith Abraham
and Ashraf Darwish

Abstract The low-power techniques are essential part of VLSI design due to
continuing increase in clock frequency and complexity of chip. The synchronous
circuit operates at highest clock frequency. These circuits drive a large load because
it has to reach many sequential elements throughout the chip. Thus, clock signals
have been a great source of power dissipation because of high frequency and load.
Since, clock signals are used for synchronization, they does not carry any information
and certainly doesn’t perform any computation. Therefore, disabling the clock signal
in inactive portions of the circuit is a useful approach for power dissipation reduction.
So, by using clock gating we can save power by reducing unnecessary clock activities
inside the gated module. In this chapter, we will review some of the techniques avail-
able for clock gating. The chapter also presents Register-Transfer Level(RTL) model
in Verilog language. Along with RTL model we have also analyzed the behaviors of
clock gating technique using waveform.

J. Kathuria ()
HMR Institute of Technology and Management, New Delhi, India
e-mail: jagritkathuria@gmail.com

M. A. Khan

Department of Computer Science and Engineering, Sharda University, Gr. Noida, India
e-mail: ayoub@ieee.org

A. Abraham
Machine Intelligence Research Labs (MIR Labs), Auburn, Washington, USA
e-mail: ajith.abraham @ieee.org

A. Darwish
Helwan University, Cairo, Egypt
e-mail: amodarwish@yahoo.com

M. A. Khan et al. (eds.), Embedded and Real Time System Development: 283
A Software Engineering Perspective, Studies in Computational Intelligence 520,
DOI: 10.1007/978-3-642-40888-5_11, © Springer-Verlag Berlin Heidelberg 2014

284 J. Kathuria et al.

1 Introduction

The Moore’s law states that the density of transistors on an Integrated Circuit (IC)
will double approximately every two years. However, there are many challenges.
The power density of the IC increases exponentially in every generation of tech-
nology. We also know that bipolar and nMOS transistors consume energy even
in a stable combinatorial state. However, CMOS transistors consume lower power
largely because power is dissipated only when they switch states, and not when
the state is steady. The power consumption has been always an important area of
research in circuit design. Also, there is a paradigm shift from traditional single
core computing to multi-core System-on-Chip (SoC). A SoC consists of computa-
tional intellectual property cores, analog components, interface and ICs to imple-
ment a system on a single-chip. More than billion transistors are expected to be
integrated on a single-chip. Multiple cores can run multiple instructions simulta-
neously, increasing overall speed for programs amenable to parallel computing.
Processors were originally developed with only one core. The traditional multi-
processor techniques are no longer efficient because of issues like congestion in
supplying instructions and data to the many processors. The Tilera processors has
a switch in each core to route data through an on-chip mesh network to avoid data
congestion [12]. Hence, SoCs with hundreds of IP cores are becoming a reality.
The growth of number of cores in single-chip is shown in Fig. 1. The fundamental
idea to reduce the power consumption is to disconnect the clock when the device
is idle. This technique is called clock gating. In synchronous circuits the clock
signal is responsible for significant part of power dissipation (up to 40 %) [3].
The power density has once again increased in multi-core processing and SoC. The
Register Transfer Level (RTL) clock gating is the most common technique used for
optimization and improving efficiency but still it leaves one question that how effi-
ciently the gating circuitry has been designed. The gated clock is widely accepted
technique in order to optimize power that can be applied at system, gate and RTL
level. The clock gating can save more power by shutting off the clock to register if
there is no change in the state. The clock gating technique has ability to retain the
state of register while clock is shut off.

1.1 Clock Gating

The clock signal and associated circuitry dominates in every synchronous
design. The clock signal switches every cycle, thus it has an activity factor of 1.
Therefore, the clock circuitry consumes huge amount of the on-chip dynamic power.
To reduce the power clock gating technique has been widely used to limit the activity
factor. Thus, clock gating reduces the dynamic power dissipation by disconnecting
the clock source from an unused or ideal circuit block. We also understand that

Low Power Techniques for Embedded FPGA Processors 285

4096 — Adapteva 0

2048 —

1024 —|
o 512
5 - i
¥ Ambric AM2045 &
o 256 — Picochip PC102 —0,
A
o —
|
0 —
_2 64 Inte[Teraﬂop—%O—TlLEﬁ-@
3 —
b

16 — MIT Raw © ¢ o

Ilntel Corei7
IBM Powerd é) *
4 — S0
Intel 4004 Intel 286 lnteI|Pentiurn ® g ° o
1 —] 00 © © ¢ ¢ o L o 0O
L L L L L L T O I L L L

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
Year

Fig. 1 Growth of IP cores in single-chip

power is directly proportional to voltage and the frequency of the clock as shown in
the following equation:

Power = Capacitance x (Voltage)2 x (Frequency) @))

Generally, the system clock is connected to the clock pin on every flip-flop in the
design. Therefore, we can observe main sources of power consumption as follows:

1. Power consumption in combinational logic due to evaluation on each clock cycle.
2. Power consumed by flip-flops in case of steady inputs.

The clock gating can reduce power consumed by flip-flops and combinational net-
work. The simplest approach for clock gating is to identify a set of flip-flops who
shares a common enable signal. Generally, the enable signal is ANDed with the clock
to generate the gated clock. The gated clock is then fed to the clock ports of all of
the flip-flops. The clock gating is a good technique to reduce the power, however,
several considerations in implementing clock gating is needed. We have listed some
of the important consideration as follows:

286 J. Kathuria et al.

1. The enable signal shall remain stable during high period of the clock. The enable
signal can switch when clock is in low period.

2. The glitches at the gated clock should be avoided.

3. The clock skew at gating circuitry must be avoided. Hence, gating technique need
a careful design.

This chapter presents an exhaustive survey and discussion on several techniques
for clock gating. The chapter also presents analysis on RTL design and simulation.
Also, chapter discusses some of the fundamental mechanisms employed for power
reduction.

2 Timing Analysis

In the steady state behavior of combinational circuit the output is a function of the
inputs under the assumption that inputs have been stable for a long time relative to
the delays in the circuit. However, the actual delay from an input change to output
change in a real circuit is non-zero which depends on many factors.

Glitches—The unequal arrival of input signals produces transient behavior in a logic
circuit that may differ from what is predicted by a steady-state analysis. As shown
in Fig. 2, the output of a circuit may produce a short pulse, often called glitch; at a
time steady state analysis predicts that the output should not change [14].
Hazards—A hazard is a circuit which may produce a glitch. A hazard exists when
a circuit has some possibility of producing glitches [6, 14]. This is an unwanted
glitch that occurs due to unequal path or unequal propagation delays through a
combinational circuit.There are two types of hazards as follows.

1. Static Hazard

(a) Static-1 Hazard—If the output momentarily goes to sate ‘0’ when the output
is expected to remain in state ‘1’ as per the steady state analysis, the hazard
of this nature is known as static-1 Hazard.

(b) Static-0 Hazard—If the output momentarily goes to sate ‘1’ when the output
is expected to remain in state ‘0’ as per the steady state analysis, the hazard
of this nature is known as static-0 Hazard.

2. Dynamic Hazard—When the output is supposed to change from 0 to 1 (or from 1
to 0), the circuit may go through three or more transients and produce more than
one glitch. Such multiple glitch situations are known as dynamic hazards.

In the Fig. 3, we can see to glitch when en is switching from high to low and CLK is
switching from low to high. In a similar fashion we can see a glitch in Fig. 4 where
en and CLK both are switching from high to low (Fig. 5).

Low Power Techniques for Embedded FPGA Processors 287

Verilog code for AND based gating:
module DFF (input d,en,clk,reset, output reg q);
and al (gclk,clk,en);
always @ (posedge gclk or negedge reset)
begin
if (!reset)
g<=1"b0;

—] =

CLK CLK

Fig. 2 Glitches when En and CLK is applied randomly at the inputs of AND based clock gating

2.1 Clock Gating Techniques

Most of the clock-gating has been applied at RTL level. In this section we present
six different techniques for clock gating at RTL level. The RTL clock-gating can be
applied at three level:

1. System-level
2. Sequential
3. Combinational

The system-level clock-gating stops the clock for an entire circuitry. The system-
level technique effectively disables entire functionality of the system. While as com-
binational and sequential selectively suspend clocking while the block continues to
produce an output. This chapter considers a counter for evaluating various clock gat-
ing technique. We start our discussion with AND gate as fundamental clock gating
technique (Fig. 8).

2.2 AND Gate

In the beginning, many authors have suggested use of AND gate for clock gating
due to simple logic design [4, 14, 15]. Here, we will analyze the response of the
sequential circuit while applying fundamental AND gate technique for clock gating.
In order to control the state of clock we need an enable (En) input to AND gate other

288 J. Kathuria et al.

Verilog code for AND based gating:
module DFF (input d,en,clk,reset, output reg q);
and al (gclk,clk,en);
always @ (posedge gclk or negedge reset)
begin
if (!reset)
g<=1’b0;
else
q<=d;
end
endmodule

en [.
ck [L[L7 I
reset

a e
Gelk | | |

Fig. 3 Glitches when En and CLK is applied randomly at the inputs of AND based gating

than clock (CLK). To demonstrate the concept we present schematic, RTL code and
output waveform. Throughout the chapter we have took 4-bit counter to apply clock
gating technique. Let’s first analyze basic 4 bit nagative edge counter as shown in
Fig. 6. As shown in Fig. 7, initially at reset = 0, the counter initialized to O and
thereafter when reset = 1 the counter increments at each negative edge of the clock.

Let’s Analyze response of counter circuit with AND clock gating as shown in
Fig. 8. In Fig. 9 we can observe that enable is stable to high when clk is rising,
therefore, counter is incremented on active edge of the clock. However, in Fig. 10,
when en is starts changing from positive edge to the next positive edge, then counter
increments one extra time, due to tiny glitch. Another scenario of negative edged
triggered is shown in Fig. 11. We can observe response of counter when en changes
from clock cycle starting from negative edge to the next negative edge. In this case
output of the counter changes after one clock cycle. Therefore, counter works cor-
rectly as the inputs are supplied for sufficient amount of time and signal is stable as
show in Fig. 11.

However, if the input timing of en and Clk are not synchronized then it may lead
to unpredictable results. In Fig. 12, any momentary changes in en signal while Clk
is active will produce hazard in Gclk. This situation may be dangerous and could
jeopardize the correct functioning of the entire system [6].

Low Power Techniques for Embedded FPGA Processors 289

Verilog code for NOR based gating:
module DFF (input d,en,clk,reset, output reg q);
nor al(gclk,clk, “en);
always @ (posedge gclk or negedge reset)
begin
if (!reset)
g<=1'Db0;
else
q<=d;
end
endmodule

ck | J | J | J | J | J
reset

q | I
gclk | | |

Fig. 4 Glitches when En and CLK is applied randomly at the inputs of NOR based Gating

Output Output
D-FF D-FF
R CLK
CLK - O
Fig. 5 Schematic of basic AND and NOR based gating technique
Fig. 6 Basic counter(negative Outout
edge triggered) 4 bit P
Counter’
CLK
E—
O

2.3 NOR Gate

Using NOR gate for clock gating is a very suitable technique for reduce the power
where we need actions to be performed on positive edge of the global clock
[6, 14]. Therefore, we will now observe response of counter based on NOR
gating. The schematic of NOR based clock gating is shown in Fig. 13. In this figure
we can observe that counter will work when en signal is active because we have
connected an inverter at the input of the NOR gate. In Fig. 14 waveform shows
incorrect output of the counter when en changes to /, from negative edge of the
clock to the next negative edge of the clock. In this case the counter is positive edge

290 J. Kathuria et al.

triggered so by observing GClk we can say that due to small glitch when en signal
changes to inactive at negative edge of the clock the counter increments once more.
The important thing is that we can use this configuration where we want to analyze
circuit response on positive edge of the clock. However, in this case the target system
should be negative edge triggered with NOR Clock gating, we can verify this from
Fig. 16. In the Fig. 15 correct output of the counter is shown when counter is positive
edge triggered in this case output is correct because en signal is changing from pos-
itive edge of the clock to the next positive edge of the clock. In the Fig. 17, we have
shown a major problem of hazards when any momentary hazard at the enable could
be pass on to the Gelk when clk = ‘0’ this situation is particularly very dangerous
and could jeopardize the correct functioning of the entire system [6].

2.4 Latch Based and Clock Gating

Till now, we have analyzed two type of clock gating technique based on AND and
NOR gate. Now, we will discuss latch based AND clock gating technique as shown

Verilog code for basic counter:
module counter (input reset,clk, output reg [4:1]q9);
always @ (negedge clk,negedge reset)
begin
if (!reset)
g<=4"b0000;
else
g<=qgtl;
end
endmodule

reset
ok | | \ | \ | \ | \ | \ | \

q 0000 Jooo1 Joo10 Joo11 Jo100)

Fig. 7 Correct output of the basic counter without clock gating

Output

Output)
4 bit 4 bit

En GCLK §ounter En GCLK ;ounter
K CLE 5
O

Fig. 8 Clock gating using AND gate circuit

Low Power Techniques for Embedded FPGA Processors 291

Verilog code for positive edged triggered counter:
module gated (input reset,clk,en, output reg[4:1] qg);
and nol (Gclk,en,clk);
always @ (posedge Gclk,negedge reset)
begin
if (!reset)
qg<=4"b0000;

else
g<=g+l;
end
endmodule
reset
ck J | J | J | J | J | | |
en e
q 0000 Jooo1 [oo10 Joo11
Gelk | I | J |

Fig. 9 Correct output of positive edge triggered counter

reset

ck | I I I I I I I I I I |
en | r = r’>
q 0000 [0001 [0010 [0011 [0100

Gelk | 1 I [1 I

Fig. 10 Output with glitch in positive edge triggered counter

in Fig. 18. In this design we have inserted a latch between one input of AND gate
and En input signal. In the previous designs, En was directly connected to the AND
gate input, but here this will come through a latch. The latch is needed for correct
behavior, because En may have have hazards that must not propagate through AND
gate when global clock GLCK is high [1, 11, 13]. Moreover, we can notice that the
delay of the logic for the computation of En may on the critical path of the circuit,
therefore, effect must be taken into account during time verification [1, 5, 8, 11]. We
can observe from Fig. 19 that counter will take one extra clock cycle to change the
state and after that it will work normally until En is de-asserted. Also, at the time of
de-assertion it will take one extra clock cycle to change the state.

In Fig. 20 we have verified that unwanted outputs due to hazards at the En has
been eliminated. In Fig. 21, we can observe that when controlling latch is positive
and counter is also positive edge triggered then output of the counter is incorrect
because it increments the one more time even when En is low due to a tiny glitch
due (Fig. 22).

292 J. Kathuria et al.

Verilog code for negative edge triggered counter:
module gated (input reset,clk,en, output regl4:1] qg);
and nol (Geclk, en, clk);
always @ (negedge Gclk,negedge reset)
begin
if (!reset)
g<=4’'b0000;
else
g<=qg+1l;
end
endmodule

reset
ck | | \ | \ \ | \ | \

en [I

q 0000 J0001 [0010
Gcelk |

Fig. 11 Correct output of negative edge triggered counter

reset

ck | \ \ \ \ \ \ \ \ \ \
en | [[] [

q 0000 [0001 [0010 [o011
Gelk | [1 [

Fig. 12 Hazards problem when AND clock gating circuitry is used

——Output L Output
4 bit 4 bit

E: GCLK gounter E; GCLK gounter
CLK O CLK O

Fig. 13 Clock gating using NOR gate circuit

2.5 Latch Based NOR Clock Gating

Latch based NOR gated technique is shown in Fig. 23. As we can observe from figure
that we have inserted a latch between one input of NOR gate and Ern input signal.
In the NOR based clock gating the En signal was directly connected to NOR gate
input, but in this design En is coming through a latch.

We can observe from Fig. 24 that initially counter is taking one extra clock cycle
to change the state. Thereafter, this will work normal until En is de-asserted. At the

Low Power Techniques for Embedded FPGA Processors 293

Verilog code for figure 14 and 15:
module gated (input reset,clk,en, output regl[4:1] q);
nor nol (Geclk, "en, clk);
always @ (posedge Gclk,negedge reset)
begin
if (!reset)
g<=4"b0000;

else
g<=qtl;
end
endmodule
reset
ck | | \ | \ | \ | \ | \ | |
en | e
q 0000 [0001 [oo10 o011 [o100 o101
Gelk | \ \ \ \ | \

Fig. 14 Incorrect output of counter when counter is positive edge triggered

reset

ck | l \ l \ l \ l \ l \ l
en L [%J

q 0000 [0001 [0010 [0011
Gek | l \ l \ [1

Fig. 15 Correct output of counter when counter is positive edge triggered

reset | \

ck | | | | \ | \ | | \
en | \

q 0000 {0001 {0010 [0011
Gok | \ \ | \ 1

Fig. 16 Output of counter when enable changes from positive edge to next positive edge but counter
is negative edge triggered

time of de-assertion also it will take one extra clock cycle to change the state. In
Fig. 25, we have verified that unwanted outputs due to hazards at the En signal has
been eliminated.

In Fig. 26, we can observe that when controlling latch is negative and counter
is also negative edge triggered then output of the counter is incorrect because it

294 J. Kathuria et al.

reset

ck | | \ | \ \ | \ | \ | \
en | [[r
q 0000 {0001 {0010 {0011

Gek | [[M

Fig. 17 Hazards problem when NOR gate is used for clock gating

increments the counter one extra time even when En is low due to a tiny glitch as
shown in Fig. 27.

2.6 Multiplexer Based Clock Gating

In multiplexer based clock gating, we use multiplexer to close and open a feedback
loop around a basic D-type flip-flop under the control of En signal as shown in
Fig. 28. Therefore, the resulting circuit is simple, robust, and compliant with the
rules of synchronous design. However, this approach takes fairly expensive because
per bit one multiplexer is needed which is energy inefficient. This is because of
switching at the clock input of a disabled flip-flop that amounts to wasting energy
in discharging and recharging the associated node capacitances. In Figs. 29 and 30,
we have shown the negative and positive edge triggered counter respectively. We
can observe from these waveforms that when En is high then at each negative and
positive edge of the clock respectively counter increments and when En goes low
then counter holds the state.

3 New Design

In this section, we will discuss another efficient design that will save more power. In
this circuit a clock gating cell for gating is used that is similar to latch based clock
gating. The gated clock generation circuit is shown in Figs. 31 and 34 using negative
latch and positive latch respectively. These circuits also have one comparison logic,
first logic circuit and second logic circuit. This circuit saves power in such a way that
even when target’s device clock is ON, the controlling device’s clock is OFF and also
when the target device’s clock is OFF then also controlling device’s clock is OFF.
This way we can save more power by avoiding unnecessary switching at clock signal
[9]. When En becomes high at that time GEN is low so XNOR will produce x =0’
which goes to the first clock generation logic that generates clock for controlling
device (latch). In first logic we have an OR gate which have Global Clock GCLK as
an input at the other input of OR gate. This logic will generate a clock pulse that will
drive the controlling latch when x turns to low (Figs. 32 and 33).

Low Power Techniques for Embedded FPGA Processors 295

Verilog code for positive latch:
module dlatchP (input data,clk,reset,output reg q);
always @ (clk, data)
begin
if (reset == 1'b0)
g <= 1’b0;
else 1f(clk==1'bl)
q <= data;
end
endmodule

Verilog code for negative latch:
module dlatchN (input data,clk,reset,output reg q);
always @ (clk, data)
begin
if (reset == 1’'Db0)
g <= 1"b0;
else 1f(clk==1"b0)
g <= data;
end
endmodule

En

D Q —Output
4 bit
GCLK Counter

CLK—C> R
O | O

Fig. 18 Clock gating of negative edge counter using negative latch based AND gate circuit

The second clock generation logic has an AND gate with GEN and Global clock
GCLK atits input. In the next clock pulse, when GEN turns to high the second clock
generation logic which is an AND gate with GEN and Global clock GCLK at its
input and when Gen goes high then it generates clock pulse that goes to the target
device. Since GEN 1is high the XNOR will produce x = ‘1’ thus OR will produce
at CClk constant high until En turns to low. This way GClk will be running and
CClk will be at constant high state that means latch will hold its state without any
switching. The circuit shown in Fig. 34 performs similar sequence of operations as
explained for the circuit shown in Fig. 31. When En turns to high at that time GEN
is low so XOR will produce x =‘1" that goes to the first clock generation logic that

296 J. Kathuria et al.

Verilog code for figure 19 and 20:

module gated (input reset,clk,en, output regl[4:1] qg);
dlatchN dff (en,clk, reset,qgl);

and nol (Geclk,gl, clk);

always @ (negedge Gclk,negedge reset)

begin
if (!reset)
g<=4"b0000;
else
g<=g+1;
end
endmodule

reset

ck | I 1 | I | I | I | I |
en] I
q 0000 0001 0010 0011

qt [e e
Gek] |] | 1

Fig. 19 Normal output of negative edge nounter when negative latch based AND gated clock is
used

reset

ck | [1 J | J | J J | J
en 1 1 1

q 0000 0001 [0010

ql R 1 1

Gelk 1 [1

Fig. 20 Output of negative edge counter when there are some random Hazards at En

En—1D Q ——Output
4 bit

Counter|
CLK > R \ GCLK >
< |/ o

Fig. 21 Clock gating of positive edge counter using positive latch based AND gate circuit

generates clock for controlling device (Latch). In first logic we have an AND gate,
which have global clock as input at the other input of AND gate. This logic will
generate a clock pulse that will drive the controlling latch when x turns to high. In
the next clock pulse, when GEN turns to high our second clock generation logic
which is an OR gate which has Q* and Global clock at its input and when Q* goes

Low Power Techniques for Embedded FPGA Processors 297

Verilog Code for figure 22:
module gated (input reset,clk,en, output regl[4:1] q);
dlatchP dff (en,clk, reset,ql);
and nol (Geclk,gl, clk);
always @ (posedge Gclk,negedge reset)

begin

if (!'reset)

q<=4'b0000;

else
g<=g+l;
end
endmodule

reset | |
ck I I | I | I | I |
en | > 1
q 0000) 0001 0010 J0011 [0100
qt L 1
Gelk 1 | [1 |

Fig. 22 Output of counter when latch is positive and counter is also positive edge triggered

En

D @ —Output
4 bit
GCLK [Counter

CLE— R

O O

Fig. 23 Clock gating of negative edge counter using positive latch based NOR gate circuit

‘0’ it generates clock pulse that goes to the target device. Since GEN 1is high then
XOR will produce x = 0 and OR will produce at CClk constant low until En turns
to low. This way GClk will be running and CClk will be at constant low state that
means latch will hold its state without any switching.

The output of counter for circuit shown in Fig. 31 is shown in Figs. 32 and 33.
In Figs. 32 and 33 the enable signal changes from negative edge to next negative
edge and positive edge to next positive edge respectively. We can also observe that
target circuit is negative edge triggered and positive edge triggered respectively. The
presented design produces correct output that gives us solution of the problem that
persists in previous four types of clock gating. The output of counter for circuit
shown in Fig. 34 is shown in Figs. 35 and 36. In Figs. 35 and 36 the enable signal
changes from negative edge to next negative edge and positive edge to next positive
edge respectively. The target circuitry is negative edge triggered and positive edge

298 J. Kathuria et al.

Verilog code for figure 24 and 25:
module gated (input reset,clk,en, output reg [4:1]1q);
dlatchP dff (en,clk, reset,ql);

not no(nl,qgl);

nor nol (Gclk,nl,clk);

always @ (negedge Gclk,negedge reset)

begin

if (!reset)
g<=4"b0000;

else
g<=g+1l;

end
endmodule
reset
ck L[LI eI
en L 1
q 0000 J0001 [00710 J0011
L L O L O —
Gelk | 1

Fig. 24 Normal output of negative edge counter when positive latch based OR gated clock is used

reset

ck |] | | | | | | | | |] |
en 1 I I
q 0000 (0001 [0010

qf 1 R S L S
Gelk 1 1

Fig. 25 Output of negative edge counter when there are some random Hazards at En

En——D Q

Output
4 bit

GCLK |[Counter
CLK—> Rr ﬁ))—()}
O O

Fig. 26 Clock gating of negative edge counter using negative latch based NOR gate circuit

triggered respectively. The presented design produces correct output which gives us
solution of the problem that persists in the previous four types of clock gating.

Low Power Techniques for Embedded FPGA Processors 299

dlatchN dff (en, clk, reset,ql);
not no(nl,gl);
nor nol (Geclk,nl,clk);
always @ (negedge Gclk,negedge reset)
begin
if (!reset)
g<=4"b0000;
else
g<=qg+1l;
end
endmodule

reset

ck | f | f | f | f | f | f \
en

q 0000 J0001_ Y0010 0011 J0100_JoTfof1

at
Gelk [1 |] 1] 1 |

Fig. 27 Output of counter when latch is negative and counter also negative edge triggered

QA D]fP at each //| Abit Output
LOAD flip flop of 4 COUNTER
counter’s D
input
inp En 1
MUX CLK

Fig. 28 Mux based clock gating for counter [5, 7, 8]

4 Conclusions

In this chapter, we have presented review of existing clock gating techniques. We
have also discussed merits an demerits of these techniques. We have seen that first
two techniques (AND and NOR based clock gating) have problem glitches if inputs
are random and not stable for sufficient amount of time at inputs. While, in latch
based AND and NOR techniques the problem of hazard has been removed, however
glitches still exists. In the multiplexer based clock gating technique we don’t have
these problem, however, it consumes more area and power. The last design is more
appropriate that removed glitches and hazards. In this design the clock gating applied
at controllers side and also at target circuitry. This techniques saves more power than
any other existing technique.

300 J. Kathuria et al.

Verilog code for figure 29:
module Mux_counter (input en, reset, clk,
output reg [4:1]q9);
always @ (negedge clk,negedge reset)
begin
if (!reset)
g<=4"b0000;

else
if (en==1)
a<=qt+l;
end
endmodule

en | L |

reset

clk

q 0000 [ooo1 Joo1o Joo11 Jo100 Jo1o1 [o110 Jo111)

Fig. 29 Output of negative edge triggered counter with multiplexer based clock gating

Verilog Code for figure 30:

module Mux_counter (input en, reset,clk,
output reg [4:1]q);

always @ (posedge clk,negedge reset)
begin

if (!reset)

g=4"b0000;

else

if (en==1)

a=q+1;

end

endmodule

en !
reset
clk

q 0000 fooo1 Joo1o Joo11 Jo1oo Jo1o1 Joi10 Jo111 J1000 1001

Fig. 30 Output of positive edge triggered counter with multiplexer based clock gating

Low Power Techniques for Embedded FPGA Processors 301

I \
4))
En D X
Negative omN /.
Latch

D
CClk
\ Reset / GCLK

Fig. 31 Generation of gated clock when negative latch is used [9]

CLK-

Verilog code for figure 32:
module gated (input en,reset,clk, output reg [4:1]1q9);
or ol (CClk,x,clk);
dlatchN dl (en,clk, reset,Gen);
xnor xn (x,Gen,en);
and al (Gclk,Gen, clk);
always @ (negedge Gclk,negedge reset)
begin
if (!reset)
g<=4’b0000;

elise
a<=qg+1;
end
endmodule

en | 1 I
reset | |
1S [e e Y O B O I
g 0000 {0001 {0010 {0011 | 0100 (0101 J0110 [0111
Celk [[[[[
x [[[[[
Gen | 1 I
Gelk | 1 [[O I [) A B Y

Fig. 32 Output of negative edge counter with gated clock for circuit shown in Fig. 31

302 J. Kathuria et al.

Verilog code for figure 33:
module gated (input en, reset,clk, output reg [4:1]Q9);
or ol (CClk, x,clk);
dlatchN dl (en, clk, reset,Gen);
xnor xn(x,Gen,en);
and al (Gclk,Gen, clk);
always @ (posedge Gclk,negedge reset)
begin
if (!reset)
g<=4"b0000;

else
g<=g+1;
end
endmodule

en | 1 J L T
reset | |
clk
g 0000 {0001 {0010 0011 [0100 0101 {0110 J0111 J1000
Celk [[[[[
x [[[[[
Gen | 1 J L T
Gelk | 1

Fig. 33 Output of positive edge counter with gated clock for circuit shown in Fig. 31

4)
En D Q X
Positive GEN

Latch

D Q*

CClk GCLK

___ Reset /

CLK

Fig. 34 Generation of gated clock when positive latch is used [9]

Low Power Techniques for Embedded FPGA Processors 303

Verilog code for figure 35:
module gated(input en,reset,clk, output reg [4:1]19);
and ol (CClk, x,clk);
dlatchP dl (en,clk, reset,Gen);
Xor xn(x,Gen,en);
or al (Gclk, "Gen, clk);
always @ (negedge Gclk,negedge reset)
begin
if (!reset)
g<=4"b0000;

else
g<=g+1l;
end
endmodule

en | 1 \ ——_—
reset ||
(o S [e) s Y O I Y
q 0000 0001 [0010 J0o11 0100 Jo101 fo110 Joi11
Celk | \ | | \ \
X L [T [1 1 [1
Gen | 1 J [
Gelk [) Y O B O

Fig. 35 Output of negative edge counter with gated clock for circuit shown in Fig. 34

Verilog code for figure 36:
module gated (input en, reset,clk, output reg [4:1]q);
and ol (CClk, x,clk);
dlatchP dil (en,clk, reset,Gen);
xor xn(x,Gen,en);
or al (Gclk, “Gen, clk);
always @ (posedge Gclk,negedge reset)
begin
if (!reset)
g<=4"b0000;

else
g<=g+1l;
end
endmodule
en | 1 I e
reset | |
[=1 S I O Y O I
q 0000 0001 (0010 J0011 0100 JO101 [0110J0111
Celk | | | | |
X | | | | | |
Gen | 1 I e
Gelk L] O B

Fig. 36 Output of positive edge counter with gated clock for circuit shown in Fig. 34

304

J. Kathuria et al.

References

1.

10.

11.

12.

13.

14.
15.

L. Benini, G. De Micheli, E. Macii, M. Poncino, R. Scarsi, Symbolic synthesis of clock-gating
logic for power optimization of synchronous controllers (Transactions on Design Automation
of Electronic Systems, Oct, 1999)

. M. Dale, Utilizing clock-gating efficiency to reduce power (EE Times, India, 2008)
. D. Dobberpuhl, R. Witek, A 200 MHz 64 b dual-issue CMOS microprocessor, IEEE Interna-

tional Solid-State Circuits Conference (1992), pp. 106—-107

. F. Emnett, M. Biegel, Power reduction through RTL clock gating. SNUG San Jose 2000
. S. Huda, M. Mallick, J.H. Anderson, Clock gating architectures for FPGA power reduction.

Field Programmable Logic and Applications (FPL) 2009

. H. Kaeslin, ETH Zurich digital integrated circuit design from VLSI architectures to CMOS
fabrication (Cambridge University Press, Cambridge, 2008)
. T. Kitahara, F. Minami, T. Ueda, K. Usami, S. Nishio, M. Murakata, T. Mitsuhashi, A clock-

gating method for low-power LSI design, TOSHIBA Corporation, 1998

. V.G. Oklobdzjja, V.M. Stojanovic, D.M. Markovic, N.M. Nedovic, Digital system clocking

high-performance and low-power aspects (Wiley Interscience, US, 2003)

. Patent, US20100109707, http://www.freepatentsonline.com/y2010/0109707.html, Accessed

on 26 Feb 2011

F. Rivoallon, Reducing switching power with intelligent clock gating, Xillix WP370 (V 1.2),
5 Oct 2010

P.J. Shoenmakers, J.FE.M. Theeuwen, Clock Gating on RT-Level VHDL, in Proceedings of the
international Workshop on logic synthesis, Tahoe City, June 7-10, 1998, pp. 387-391

Tilera, Tile64 Processor. Tilera Corporation, San Jose, http://www.tilera.com/products/
processors/TILE64 (2012), Accessed on Jan 2012

V. Tirumalashetty, H. Mahmoodi, Clock gating and negative edge triggering for energy recovery
clock (ISCAS, New Orleans, 2007), pp. 1141-1144

F.J. Wakerly, Digital design principles and practices (Prentice Hall, US, 2005)

G.K. Yeap, Practical low-power digital VLSI design (Kluwer Publishing, UK, 1998)

http://www.freepatentsonline.com/y2010/0109707.html,
http://www.tilera.com/products/processors/TILE64
http://www.tilera.com/products/processors/TILE64

Software Deployment for Distributed
Embedded Real-Time Systems
of Automotive Applications

Florian Pélzlbauer, Iain Bate and Eugen Brenner

Abstract Automotive applications can be described as distributed embedded
software which perform real-time computation on top of a heterogeneous hard-
ware platform. One key phase in designing distributed software systems is software
deployment. Therein it is decided how software components are deployed over the
hardware platform, and how the communication between software components is per-
formed. These decisions significantly determine the system performance. This chap-
ter tackles the software deployment problem, tailored to the needs of the automotive
domain. Thereby, the focus is on two issues: the configuration of the communication
infrastructure and how to handle design constraints. It is shown, how state-of-the-art
approaches have to be extended in order to tackle these issues, and how the overall
process can be performed efficiently, by utilizing search methodologies.

1 Introduction

In the past, automotive electronics and avionics systems were designed in a fed-
erated manner. Most functionality was implemented by special-purpose hardware
and hardware-tailored software. One control unit performed only one or at most a
limited number of individual functions, and functions had their own dedicated hard-
ware. As the functionality steadily increased, the number of control units has also

F. Polzlbauer (D<)
Virtual Vehicle, Graz, Austria
e-mail: florian.poelzlbauer @v2c2.at

1. Bate
Department of Computer Science, University of York, York, UK
e-mail: iain.bate@cs.york.ac.uk

E. Brenner
Institute for Technical Informatics, Graz University of Technology, Graz, Austria
e-mail: brenner @tugraz.at

M. A. Khan et al. (eds.), Embedded and Real Time System Development: 305
A Software Engineering Perspective, Studies in Computational Intelligence 520,
DOI: 10.1007/978-3-642-40888-5_12, © Springer-Verlag Berlin Heidelberg 2014

306 F. Polzlbauer et al.

increased. Nowadays cars contain up to 80 control units. During the last several years,
a paradigm shift has occurred. The design of electronics has moved from a hardware-
oriented to a software/function-oriented approach. This means that functionality
is mainly based on software which is executed on general-purpose hardware. In
order to enable this trend an interface layer (AUTOSAR [2]) was introduced which
separates the application software from the underlying hardware. At the same time,
software development steadily moves from hand-coded to model-driven. In model
driven development, system synthesis is an important design step to give a partition-
ing/allocation. The synthesis transforms the Platform Independent Model (PIM) of
the system, held in views such as UML’s class and sequence diagram, into a Platform
Specific Model (PSM), held in views such as UML’s deployment diagrams. Design-
languages which support model-driven development (such as UML, EAST-ADL,
MARTE, etc.) provide dedicated diagrams (e.g.: component, deployment, commu-
nication, timing).

In order to deploy the application software onto the execution platform, several
configuration steps need to be performed. In the literature this is often referred to
as the Task Allocation Problem (TAP). TAP is one of the classically studied prob-
lems in systems and software development. It basically involves two parts. Firstly
allocating tasks and messages to the resources, i.e. the processors and networks
respectively. Secondly assigning attributes to the tasks and messages. Tasks repre-
sent software component, and are described by their timing and resource demand
(e.g. memory). Messages represent communication between tasks, and are described
by their data size and timing. Processors represent the computational units which
execute tasks, and are described by their processing power and memory. Networks
enable cross-processor communication, and are described by their bandwidth and
protocol-specific attributes. In its simplistic form it is an example of the Bin Packing
Problem (BPP) where the challenge is to avoid any resource becoming overload-
ing [11]. This “standard” version of the problem is recognised as being NP-hard.
Solutions normally involve three components: a means of describing the problem,
a fitness function that indicates how close a solution is to solving the problem, and
a search algorithm. A wide range of techniques have been used for searching for
solutions with heuristic search algorithms, branch and bound, and Integer Linear
Programming being the main ones. The problem was later expanded to cover:

1. hard real-time systems where schedulability analysis is used to ensure that the
system’s timing requirements are met as failing to meet them could lead to a
catastrophic effect [3]

2. reducing the energy used [1]

3. making them extensible [19], i.e. so that task’s execution times can be increased
while maintaining schedulability

4. handling change by reducing the likelihood of change and the size of the changes
when this is no longer possible [8]

5. supporting mode changes with the number of transitions minimized [6] and fault
tolerance [7].

Software Deployment for Automotive Applications 307

Open Issues of State-of-the-Art

The list above represents an impressive subset of the problems that need to be solved,
however it still does not meet all needs of modern hard real-time systems. There are
(at least) two important problems not covered.

e Firstly there are often constraints over the solution, e.g. replicas of tasks cannot
reside on the same processor, or that tasks should reside on the same processor
near a certain physical device.

e Secondly, communication demand of applications is steadily increasing. Thus,
due to limited bandwidth, bus systems are becoming a bottleneck. State-of-the-
art bus configuration approaches do not tackle this problem, since they use the
bandwidth in an inefficient way. This is due to the fact that frames are hardly
utilized, and thus too much overhead data is generated. This not only leads to poor
bandwidth usage, but may also lead to unschedulable bus systems. The Frame
Packing Problem (FPP) deals with this issue, by packing several messages into
a single bus frame, thus improving bandwidth usage and reducing the likelihood
of an unschedulable solution when in fact a schedulable one is feasible. In the
coming years the communications bus is likely to become a greater bottleneck.

Both these problems have been studied to a limited extent, however this chapter
shows how they can be solved more effectively and efficiently (including the scala-
bility to larger more complex systems) using automotive systems as an example.

Outline

The structure of this chapter is as follows. The software deployment problem is
outlined in Sect. 2 starting with an explanation of the standard TAP before explaining
the needs of hard real-time systems using the domain of automotive systems as an
example. Next, a solution to the FPP is presented and demonstrated compared to the
previous state-of-the-art approaches. Then, the standard TAP (including the FPP) is
extended to deal with the constraints from the automotive industry, before finally
directions for future work are outlined.

2 The Software Deployment Problem

The purpose of this section is to explain the standard TAP, and outline how it
might be solved. The standard TAP refers to the allocation of tasks and messages to
processors and networks respectively. Originally it did not consider constraints over
and dependencies between tasks.

2.1 The Standard Problem

Assuming a given software application (consisting of several communicating tasks)
and a given execution platform (consisting of several processors, connected via

308 F. Polzlbauer et al.

networks). Software deployment (or task allocation) deals with the question, how
the software application should be allocated onto the execution platform. Thereby,
objectives need to be optimized and constraints need to be satisfied. Applied to hard
real-time systems, the process consists of the following design decisions:

e task allocation: local allocation of tasks onto processors

e message routing: routing data from source processor to destination processor via
bus-systems and gateway-nodes

e frame packing: packing of application messages into bus frames

e scheduling: temporal planning of the system execution (task execution on proces-
sors, frame transmission on bus-systems).

These steps are followed by system performance and timing analysis in order to
guarantee real-time behaviour. Due to the different design decisions involved, the
terms software deployment or task allocation seem inappropriate to describe the
overall process. The term system configuration seems more adequate. This is why
it will be used throughout this chapter, from this point on.

2.2 Solving the Standard Problem

For several years, system configurations have be designed manually by engineers. To
a large degree, this approach is still performed today. Due to the steadily increasing
system complexity, the manual approach reaches several limitations:

e It is hard for engineers to keep in mind all direct and indirect interactions (e.g.
direct precedence relationships between tasks or indirect relationships such as
preemption and blocking) within the system. Design mistakes may occur.

e Generating a system configuration is time consuming. Due to time constraints,
only a small number of system configurations are generated and evaluated. Thus
it is unlikely that the generated system configuration is close to optimal.

In order to overcome these issues, design automation can be applied. Therein,
design decisions are performed by algorithms. Thanks to high computation power
available, a very high number of system configurations can be generated and eval-
uated within a reasonable time frame (e.g. several hundred thousand configura-
tion can be evaluated within several hours). This automated approach significantly
increases the coverage of the design space, and thus increases the probability of
finding near-optimal solutions. Consequently it increases the confidence into the so-
lution. However, due to the enormous design space, complete coverage is impossible.
Experience has shown that approaches have to be efficient, in order to be applicable
to the typical size and complexity of real world systems [18, 19].

In order to perform system configuration Design Space Exploration (DSE), the
meta-heuristic search algorithm Simulated Annealing (SA) can be utilized. Itis a well
known algorithm in the domain of artificial intelligence. Its name and inspiration
come from annealing in metallurgy, a technique involving heating and controlled

Software Deployment for Automotive Applications 309

Algorithm 1: System Configuration Optimization algorithm (based on Simu-
lated Annealing search algorithm)

o 0 AN R W N -

WO NN NN NNN N D e e e e e e e ek
S XTI AU R WN =S L NN R WN =D

Input: config.init /* initial configuration */

Data: t /* temperature */

Data: itermax /* max.iterations */

Data: iter.at.t max /* max.iterations at constant t */
begin SystemConfigurationSimulatedAnnealing

/¥ initialize */;
cost.init = cost(config.init);
config.current = config.init /¥ start at initial configuration *¥/;
cost.current = cost.init;
config.best = config.init;
cost.best = cost.init;
/* search, until stopping-criteria is reached */;
while stop() = false do
while iter.at.t < iter.at.t.max do
[* propose new configuration ¥/,
config.new = neighbour(config.current);
cost.new = cost(config.new);
/* accept move? */;
if acceptMove() = true then
/* improvement of best configuration? */;
if cost.new < cost.best then
/¥ remember best */;
config.best = config.new;
cost.best = cost.new;
end
end
iter.at.t++;
[*next iteration at constant t ¥/,
end
cool(t);
iter.at.t = 0;
/¥ resume search at lower t ¥/;
end

end
Output: config.best /* best configuration found */

cooling of a material. It has proven to be very robust, and can be tailored to specific
problems with low effort. However, the main reason for using SA is that it is shown
in [5] how SA can be tailored to address system configuration upgrade scenarios.
This aspect will be re-visited in Sect. 7.

In order to apply SA to a specific problem (here: system configuration), the fol-

lowing methods have to be implemented:

e neighbour: Which modification can be applied to a system configuration, in order

to get a new system configuration? These represent the modification an engineer
would perform manually.

310 F. Polzlbauer et al.

e energy (cost): How “good” is a system configuration? This represents the metrics
that are used to evaluate a system configuration.

Algorithm 1 shows the overall procedure. The search starts from an initial con-
figuration, which is either randomly generated or given by the user. By applying
the neighbour function, a new configuration is generated. By analysing its cost, the
SA determines whether or not to accept it. After a certain number of iterations, the
value of parameter ¢ (which represents the temperature in the annealing process) is
decreased, which impacts the acceptance rate of worse configurations. The overall
search stops, due to a defined exit criteria (usually a defined number of iterations or
a defined cost-limit).

The following optimization objectives are encoded into the cost function.

e number of needed processors — min
e bus utilization — min
e processor CPU utilization — max and balanced.

The individual terms are combined into a single value, using a scaled weighted
sum. Determining adequate weights is challenging, and should be done systemati-
cally [15].

cost = 2 Wi - cost @))

2 Wi
In order to get a modified system configuration, different neighbour moves can
be performed. Most commonly used are:

e re-allocate a task to another processor

e swap the allocation of two tasks (which reside on different processors)

e change scheduling attributes: For priority-based scheduling, changing the priority
of a task. For time-triggered scheduling, change the time-slot assignment.

To ensure that the temporal attributes of the system meet the requirements, two
analyses need to be performed: Before starting the DSE, worst-case execution time
(WCET) analysis must be performed for each task. During the DSE, schedulability
analysis must be performed. Therefore, worst-case response time (WCRT) analysis
can be applied.

ri +Jj
ri=Ji+Bi+Ci+ > [’T f—‘cj)

vjehp(i) J

Software Deployment for Automotive Applications 311

3 The Needs of the Automotive Industry

Electronics and embedded software was introduced into automotive systems in 1958.
The first application was the electronically controlled ignition system for combus-
tion engines. It was introduced in order to meet exhaust emission limits. Over the
years, a wide range of functionality of a car was implemented by electronics and
embedded software. Thereby, the embedded real-time software was developed in a
federated manner. Software was tailored to special-purpose hardware, and almost
each software-component was executed on a dedicated hardware-unit. As a con-
sequence, the software-components were quite hardware-dependent, which made
it hard to migrate software-components to new hardware-units. Also, the number
of hardware-units dramatically increased, which increased system cost and system
weight.

To overcome these issues, a paradigm shift has occurred during the last several
years. Software is executed on general-purpose hardware. Processing power of this
hardware steadily increases, thus allowing to execute several software-components
on a single hardware-unit. In order to make it easier to migrate software-components
to new hardware-units, software-components are separated from the underlying hard-
ware. This is enabled by the introduction of an interface layer, which abstracts
hardware-specific details, and provides standardized interfaces to the application-
layer software-components. In the automotive domain, the AUTOSAR standard [2]
has positioned itself as the leading interface-standard. The main part of AUTOSAR
with respect to TAP is the Virtual Function Bus (VFB). This allows two software-
components to communicate with each other without explicit naming and location
awareness. Basically the source would send a system-signal to the destination via
a VFB call. The actual details of where and how to send the signal is decided by
the Runtime Environment (RTE), which instantiates the VFB calls on each proces-
sor. Taking this approach restricts changes to the RTE when a new task alloca-
tion is generated. In other domains, similar trends can be observed. In the avionics
domain, the Integrated Modular Avionics (IMA) standard implements a very similar
concept referred to as Virtual Channels (instead of VFB calls) and System Blueprints
(containing the lookup tables).

Challenges

In order to solve the automotive system configuration problem, the general sys-
tem configuration approaches need to be tailored to automotive-specific demands.
Thereby, the following issues are the most challenging ones. To a large degree, these
issues are not sufficiently covered in the literature.

e The configuration of the communication infrastructure needs to tackle details
of automotive bus protocols. Thereby, a special focus needs to be set on frame
packing.

312 F. Polzlbauer et al.

e Automotive system configuration is subject to a set of heterogeneous design con-
straints. Only a subset of them is covered in the literature. Efficient methods for
ensuring constraint satisfaction are needed.

e Automotive systems are rarely designed “from scratch”. Instead, existing systems
(or parts of thereof) are taken as an initial solution. These are extended in order to
meet current requirements. In addition, system components may be used within
several system variants. Consequently, several legacy design decisions may be in
place, which must be taken into account during system configuration. This imposes
additional constraints.

e The search algorithms need to scale to realistic sizes and complexities of systems.
A significant influence on scalability is how hard it is to synthesise a schedulable
solution. Broadly speaking the closer the resources are to their utilisation limits
the more difficult the challenge.

3.1 Frame Packing

A large number of automotive systems perform control-related tasks. Physical data is
sensed by sensors, read by IOs and processed by application software-components.
The output data is then fed back into the physical world via IOs and actuators. Due
to cost constraints, the accuracy of sensors, IOs and actuators is limited to 8—12 bits.
As a consequence, most data is encoded by 1 to 16 bits variables.

Most automotive bus-systems transmit bus frames which can contain up to 8 byte
payload data (LIN, CAN). Emerging bus-systems like FlexRay and automotive Ether-
net can transmit more payload data (e.g. 254 byte for FlexRay). However, in addition
to the payload data, protocol-related data (header, checksum,...) must be transmit-
ted. For LIN and CAN these protocol data consume 64 bits per frame. Based on the
packing density of a frame, the bandwidth efficiency is between 1,5 % (1 : 1 4 64)
and 50 % (64 : 64 + 64). Over the years, the communication demand of automotive
systems has steadily increased. However, the available bus bandwidth is a limited
resource. Due to physical constraints, the bandwidth of a shared bus cannot easily
be increased. As a consequence, bandwidth-efficient frame packing is needed. This
is why frame packing is heavily used in the automotive domain by engineers. Typi-
cally, frames contain between 48 and 64 bits payload. However, almost no work in
the literature on system configuration considers this issue. Instead, almost all works
consider only the following options:

e If a message fits into a frame (message.size < frame.payload.max), each message
is packed into a separate frame.

e If a message does not fit into a frame (message.size > frame.payload.max), the
message is split into several parts, each part is packed into a separate frame, and
the parts are re-joined at the receiving processor.

These simplistic assumptions lead to several negative attributes of the communi-
cation configuration: First, it is a non-realistic approach, which is not accepted by

Software Deployment for Automotive Applications 313

industry. Second, the approach leads to a high number of frames. The frame-set has
poor bandwidth usage, since too much bandwidth is consumed by the protocol-
overhead data. The high number of frames also leads to increased interference
between frames, thus leading to increased response times (and decreased schedula-
bility). In order to overcome these issues, realistic frame packing must be performed
by system configuration approaches. Therefore, several messages must be packed
into a single bus frame. Packing objective should be to minimise the bandwidth
demand of the resulting frame-set.

The Frame Packing Problem (FPP) is defined as follows: A set of messages
M = {my,ma, ..., m,} must be packed into a set of bus frames F = {f1, f>, ..., fx},
subject to the constraint that the set of messages in any frame fits that frame’s max-
imum payload. Usually, the FPP is stated as an optimization problem. The most
common optimization objectives are: (1) minimize the number of needed frames; or
(2) maximize the schedulability of the resulting frame-set. A message is defined by
m; = [s;, T, D;]. A frame is define by f; = [pm;, M;, T}, D;]. In general each frame
may have its individual max.payload (depending on the bus protocol). However, usu-
ally all frames on the same bus have the same max.payload. Symbols are explained
in Table 2.

3.2 Design Constraints

Design constraints may have a wide variety of sources. Most relevant are:

e safety considerations: If safety analysis of the entire system has been performed
(e.g. hazard and risk analysis, in accordance with ISO 26262 [10]), safety require-
ments can be derived. These impose constraints on design decisions.

e compatibility to legacy systems: Automotive systems are usually designed in
an evolutionary fashion. A previous version of the system is taken as a start-
ing point and is extended with additional features, in order to satisfy current
demands/requirements. Thus, legacy components may impose constraints on
design decisions.

e engineer’s experience: Engineers who have been designing similar systems typi-
cally have figured out “best practices”. These may exclude certain design decisions,
thus imposing additional constraints.

e legal requirements: Certain design solutions may not be allowed, in order to comply
to legal regulations.

Within the AUTOSAR standard, design constraints that might occur have been
specified in the AUTOSAR System Template. Therein, a variety of constraint-types can
be found. However, these constraints are not only relevant for automotive systems,
and could easily be applied to other domains (e.g. rail, aerospace, automation,...).
Table 1 provides a summary of the constraint-types. They can be categorized within
6 classes.

314 F. Polzlbauer et al.

Table 1 Constraint-types specified within AUTOSAR system template

Constraint-class Constraint-type Literature
A: limited resources A-1: processor CPU speed Yes
A-2: processor memory Yes
A-3: bus bandwidth Yes
B: real-time behaviour B-1: task deadline Yes
B-2: communication deadline Yes
B-3: end-to-end deadline Yes
C: allocation (task to processor) C-1: dedicated processors Yes
C-2: excluded processors Yes
C-3: fixed allocation Yes
D: dependencies (task to task) D-1: grouping No*
D-2: separation Yes
E: data routing (data to bus) E-1: processor-internal only No*
E-2: dedicated buses No
E-3: excluded buses No
E-4: same bus No
E-5: separated buses No
F: frame packing (data to frame) F-1: dedicated frame No
F-2: same frame No
F-3: separated frames No

*Not stated as a constraint, but used as means to reduce bus utilization

Since all embedded software must content itself with limited resources, these
constraints are well studied in the literature. Automotive systems must be reliable,
and thus have to satisfy additional constraints. Most safety-related functions must
guarantee real-time behaviour, especially if human life is at risk (e.g. drive-by-wire
application in a car). If the function is high-critical, it may be needed to apply
redundancy. Therefore replicated tasks must not reside on the same processor (task
separation), certain processors are inadequate for handling certain tasks (excluded
processors), and data must be transferred via separated buses, probably even within
separated bus frames.

It is interesting to note, that several constraint-types are not addressed in the
literature. Especially constraints that focus on the configuration of the communication
infrastructure have not been tackled. This can be explained, because most works on
system configuration (e.g. task allocation) use simplified models for cross-processor
communication. These models do not cover all relevant details of the communication
infrastructure, and thus the use of detailed constraints seems obsolete. In automotive
systems though, these constraints are of high importance.

Software Deployment for Automotive Applications 315

4 Solving the Frame Packing Problem

The FPP can be seen as a special case of the Bin Packing Problem (BPP), which
is known to be a NP-hard optimization problem. In the literature there are sev-
eral heuristics for the BPP [4]. Well known on-line heuristics are: next fit, first fit,
best fit, etc. Off-line heuristics extend these approaches by applying initial sorting,
resulting in: next fit decreasing, best fit decreasing, etc. In general, off-line approaches
outperform on-line approaches, since off-line approaches can exploit global knowl-
edge, whereas on-line approaches have to take decisions step-by-step, and decisions
cannot be undone.

Inspired by the main concepts of BPP heuristics, heuristics for the FPP have been
developed. It is interesting to note that there are only a few works in the literature
addressing the FPP, although the FPP has significant impact on the performance of
the system. Most FPP algorithms mimic some BPP heuristic. Sandstrom et al. [17]
mimics next fit decreasing, where messages are sorted by their deadline. Saket and
Navet [16] mimics best fit decreasing, where messages are sorted by their periods. In
addition, the sorted message-list is processed alternately from the beginning and the
end. In [14] messages are sorted by their offsets. References [14, 16] combine the
FPP with the scheduling problem. References [18, 19] include the FPP into the TAP.
Thereby FPP and TAP are formulated as a Mixed Integer Linear Problem (MILP),
and solved sequentially

Table 2 Symbols used for

frame packing Symbol Description
m Message
f Frame
M Set of messages
F Set of frames
D Deadline
T Period
T Period of message
Ty Period of frame
Sm Data size of message
payf Payload of frame
pm Max. payload of frame
ohy Overhead of frame
br Baudrate of bus

bw Bandwidth demand

316 F. Polzlbauer et al.

4.1 Insufficiencies of State-of-the-Art Approaches

Besides these differences, all state-of-the-art FPP algorithms share one common
issue: The packing decision is made based on one condition only:

message.size < frame.payload.left 3)

Due to limited bus bandwidth, frame packing should be bandwidth demand
minimizing. The bandwidth demand of a frame is determined by two factors: data
(payload and overhead) and period.

_ payr + ohy

bwy 7

“4)

The payload contains all packed-in messages. The overhead contains all protocol-
specific data. Since a frame may have several messages packed-in, the frame must
be transmitted at a rate which satisfies the rate of all packed-in messages. Thus the
lowest message period determines the frame period.

Ty = min {T}} @)

i =mef

In order to achieve minimal bandwidth demand, the following aspects must be
tackled:

1. The number of frames must be minimized, in order to minimize the overhead
data.

2. Messages which are packed into the same frame should have similar periods, in
order to avoid sending a message more frequently than needed.

Some state-of-the-art FPP approaches try to tackle these.

1. Messages are packed into frames, for as long as there is space left. This reduces the
number of needed frames, and thus the bandwidth consumption by the overhead
data.

2. Messages may be sorted by their period, before performing the packing. This
way, the period variation is reduced. Thus, messages with similar periods are
packed into the same frame.

Although both strategies (dense packing and initial sorting) may help reducing
bandwidth demand, they cannot guarantee minimal bandwidth demand. Here is the
flaw: During the packing procedure, only the necessary condition (see Eq. 3) is
considered. Instead, each packing step must be subject to optimality considerations.

Software Deployment for Automotive Applications 317
4.2 Optimality Criteria for Frame Packing

Sophisticated frame packing should be bandwidth demand minimizing. The opti-
mal/ideal situation is to have fully utilized frames and all messages inside a frame
having the same (or very similar) periods. In general (since both the data size as well
as the period of messages varies) the real situation represents a trade-off: If messages
with different periods are packed into a frame, the frame must be sent at the lowest
period, and thus some of the messages are sent more frequently than needed. This
increases the bandwidth consumption. On the other hand, the more messages are
packed into a frame, the less frames are needed. Thus less overhead data is sent. This
reduces the bandwidth consumption. The optimal trade-off can be accomplished as
follows:

Assume the following minimal example: There exists a frame that already has
some messages packed-in. Another message needs to be packed-in and it can fit
the existing frame. The question is: Should the message be packed into the existing
frame (thus extending it), or should the message be packed into a new frame? This
decision can be taken in an optimized way, by analysing the bandwidth demand of
the two alternatives (left and right side of equation):

payr + sm + ohy payr + ohy n Sm + ohr

(6)
Ty Ty T
— —_—
extended frame existing frame new frame

Note that the period of a frame is determined by the message with the lowest
period inside the frame. By adding a message, the period of the extended frame TJZ
may change. Originally it is 7.

T; = min {Ty U T} (N

Depending on the relation between T, and 7, there are 3 cases for this packing
situation. For each of them, an optimal decision can be made.

Casel: T, =Ty

If the periods of the frame and the message are equal, it is always beneficial to extend
an existing frame. Creating a new frame is never beneficial, because of the additional
overhead data.

payy + sm + ohy payr + ohy 4 + ohy ®
T T T

ohy < 2 ohy ©)]

318 F. Polzlbauer et al.

Casell: 7, > Ty = Tf’ =Ty

The trade-off is: By extending the frame, the message will be sent more frequent than
needed, but no additional overhead is created. By creating a new frame, additional
overhead is created, but the message will not be sent too frequent.

ayr + Sy + oh ayr + oh Sm + oh
payr m Lf _ payr f i m L (10)
Ty Ty T
Sm _ Sm ¥ oly (11)
Ty T

At the threshold period of the message, the two alternatives perform equally.

Sm + ohy

T =Ty =" (12)
m

Thus, the optimal solution is:

e T, < T, = extending the frame is beneficial
e T, > T, = creating a new frame is beneficial

Caselll: 7, < Ty = T, =T,

The trade-off is: By extending the frame, the frame will need to be sent more frequent,
but no additional overhead is created. By creating a new frame, the original frame
will not be sent more frequent, but additional overhead is created.

+ Sm +oh + oh, + oh,
payy + sm +ohy _ payy 0f+sm ohy (13)

Tm Tf Tm
payr _ payy + ohy (14)
T Ty
The threshold period is: .
T: =T,]ﬁ (15)

Thus, the optimal solution is:

e T, < T = creating a new frame is beneficial
o T, > T, = extending the frame is beneficial.

Software Deployment for Automotive Applications 319

4.3 Improved Frame Packing Heuristic

The main issue of state-of-the-art frame packing heuristics is: During packing only the
necessary packing condition (see Eq. 3) is checked. In case the periods of messages
vary significantly, the approaches perform poorly, even if messages are sorted by
their periods.

To overcome this issue, the packing decision must be taken by also incorporating
the trade-off optimality criteria, derived above. The proposed frame packing heuristic
(see Algorithm 2) incorporates these criteria. Its structure is inspired by the Fixed
Frame Size approach of [17] which mimics next fit decreasing. However, messages are
not sorted by their deadline. Instead messages are sorted by their period, inspired by
Saket and Navet [16]. However, the packing procedure is not done in a bi-directional
way.

Algorithm 2: Frame packing (based on optimal decisions)

Input: messages
1 sort(messages, T, increasing) /* sort by T [0..n] */;
2 frame = new frame;
3 foreach message do

4 if frame.payload.left > message.size then
5 /* take most beneficial decision */;
6 benefit = extendOrNew(message, frame);
7 if benefit = extend then
8 ‘ pack(message, frame);
9 else if benefit = new then

10 ‘ pack(message, new frame);

11 end

12 else

13 \ pack(message, new frame);

14 end

15 end

Output: frames

Within the ExtendOrNew method, the most beneficial decision is determined using
the optimality criteria presented earlier. This way each packing step has minimal
increase of bandwidth demand.

Due to the NP-hard nature of the FPP, the proposed approach cannot guarantee
an optimal packing. However, experimental evaluation shows that it outperforms
state-of-the-art approaches. On the one hand, the bandwidth demand of the resulting
frame-set is significantly decreased. On the other hand, the schedulability of the
frame-set is less sensitive against timing uncertainties.

Table 3 shows the improvements in bandwidth demand. On the left side,
improvements are shown due to number of sending processors and bus baudrate.
The main improvements can be seen for systems with higher number of sending
processors. Such systems will be used in future automotive applications. On the

320 F. Polzlbauer et al.

Table 3 Improvement of

Poelzlbauer ef al. compared #nodes Improvement (%) M.essage Improvement
to state-of-the-art P 125k 256k 500k (bit) (%)

1..3 0.0 0.0 0.0 1...8 0...18

5 59 23 0.0 1...16 0...18

10 14.4 62 33 1...24 0...19

15 138 150 24 1...32 0...16

20 176 162 6.2 1...64 0...6

right side, improvements are shown due to message size. An interesting finding is
that the improvements are almost the same for a wide range of message sizes. Cur-
rently, physical data is mainly encoded in up to 16 bit variables. Future applications
may need higher accuracy, thus 32 bit variables may be used. The proposed approach
also handles these systems in an efficient way. More details on the evaluation can be
found in [13].

5 Handling Constraints

The task of finding a system configuration is challenging and time-consuming. By
applying design automation, and thus using search algorithms, a large number of
potential configurations can be evaluated within reasonable time. However, finding
a system configuration for industrial applications is subject to a set of heterogeneous
constraints. Table 1 gives an overview. Thus the question arises: How can these
constraints be handled and satisfied?

In order to determine, how many of the constraints are satisfied (and how many
are violated) by a configuration, the cost function of the SA search framework needs
to be extended. Therefore, the cost term constraint violations is added. It is stated as a
minimization term. Configurations which violate constraints are punished. Ideally no
constraints are violated. Due to the heterogeneous nature of the constraints, different
constraint-types may be of different importance. This can be addressed by applying
a weighted sums approach. Each constraint-type is evaluated as:

; # of elements that violate a constraint-type (16)
cost; = : .
7 #of elements that have a constraint-type associated

Basically, this extended SA search framework should be able to find system con-
figurations which satisfy all constraints. Since constraint violations are punished, the
search should be directed towards regions of the design space where all constraints
are satisfied. However, experimental evaluation reveals some more diverse findings.
For some constraint-types, this approach works. Configurations are modified, until
the number of constraint violations becomes quite low. The approach works quite
well for E-1 processor-internal only. This can be explained by the fact, that this

Software Deployment for Automotive Applications 321

constraint-type is in alignment with another optimization target (bus utilization —
min). For some other constraint-types (e.g. C-1 dedicated processor) the approach
is able to reduce the number of constraint violations, but cannot eliminate them. In
addition, it takes a lot of search iterations, until the number of constraint violations
drops. For other constraint-types (e.g. F-2 same frame) the approach fails entirely.
Concluding, this approach is inefficient and ineffective, and thus is not applicable
to industrial system configuration instances. The question arises: How can the set of
heterogeneous constraints be handled and satisfied in an efficient way?

5.1 Improving Efficiency

In order to overcome these issues, and to handle constraints in an efficient way, two
issues must be addresses:

1. neighbour: The neighbour-moves are not aware of the constraints. Thus infeasible
configuration may be generated. However, neighbour-moves should be aware of
the constraints, and only generate configuration within feasible boundaries.

2. pre-conditions: In order to be able to satisfy a constraint, a set of pre-conditions
may need to be fulfilled (e.g. certain packing constraints need certain routing con-
ditions). Thus it is highly important to fulfill these pre-conditions, else constraints
can never be satisfied.

It is advised to split the entire system configuration problem into several sub-
problems, and to handle design decisions and constraints within these sub-problems.
Considering the various interactions, the following sub-problems seem appropriate:

e task allocation and message routing
e frame packing
e scheduling.

5.1.1 Task Allocation and Message Routing

In order to increase the efficiency of the search, the neighbour-moves for task alloca-
tion are modified as follows: Each task has a set of admissible processors associated.
Only processors out of these sets are candidates for allocation modifications.

The question is: How can the sets of admissible processors be derived, so that all
allocation- and routing-constraints are satisfied? To achieve this, a set of rules are
derived and applied. Most of these rules are applied before the search-run. Thus it is
a one time effort.

E-1: By grouping the sender- and the receiver-task (forming a task-cluster), it
can be ensured that the task allocation algorithm will allocate both tasks to the
same processor. Thus, the communication between these tasks is always performed
processor-internal.

322 F. Polzlbauer et al.

E-2 and E-3: Based on these sets, a set of admissible buses can be calculated for
each message.
B \ Bex if Bded = {}

Bgea \ Bex otherwise (17)

Bagm =

This admissible message-routing implies a set of admissible processors X for
the sender- and receiver-task of this message. Only processors connected to the
admissible buses of the message are potential candidates for hosting the sender-

and receiver-task.
P(t—> m—t)
adm

= P connected to By (18)

Since a task may send and receive several messages, only the intersected set X is
a potentially admissible processor for each task.

X = mP(t—>m—>t) (19)

adm

E-4: Two messages can only be routed via the same bus, if their sender-tasks reside
on the same processor and also their receiver-tasks reside on the same processor.
Thus, E-4 can be satisfied by two D-1 constraints.

C-1 and C-2: Based on these sets, a set of admissible processors can be calculated
for each task. Thereby, the set of admissible buses (derived from E-2 and E-3) of
the sent/received messages has also to be taken into account.

p o J@NX)\ P if Pgea = {} (20)
adm (Pged N X) \ P,y otherwise
D-1: Similar to E-1, this constraint can be resolved by grouping the associated tasks
(forming a task-cluster). If tasks are grouped, the set of admissible processors for
a task cluster c is:

P = (") Padn @1

tec

D-2: The set of admissible processors can be updated dynamically (during the
design space exploration).

Paa’m.dyn = Pudm \Pex‘a’yn (22)
Pey.qyn = P of tasks that the current task must be separated from (23)

C-3: If an allocation is fixed, the task allocation algorithm will not modify that
allocation.

Software Deployment for Automotive Applications 323
5.1.2 Frame Packing

In order to satisfy frame packing constraints, both aspects need to be tackled. On
the one hand, the frame packing heuristic needs to be constraint-aware. On the other
hand, the necessary pre-conditions (task allocation and message routing) have to be
fulfilled. Within this context, pre-condition fulfillment is crucial:

F-2: Two messages can only be packed into the same frame, if both messages are
sent from the same processor and routed via the same bus. This can be stated by
E-4.

F-1: Similar to F-2, a message can only be packed into the dedicated frame, if they
are sent from the same processor and routed via the same bus.

Assuming the pre-conditions are fulfilled, the frame packing constraints can be
satisfied by the following constraint-aware packing heuristic. It consists of 4 phases,
which are performed sequentially:

Phase 1: F-1: Dedicated frame packing is typically used, because the same frame
catalogue is used within different cars. To satisfy this constraint, messages that
have this constraint associated, will only be packed into the dedicated frame.
Phase 2: F-3: Messages which have this constraint associated are packed into
separated frames each.

Phase 3: F-2: Messages which have this constraint associated are packed into the
same frame.

Phase 4: All remaining messages (which have no constraint associated) can be
packed according to the packing algorithm presented in Sect. 4.

5.2 Implications on Design Space Exploration

Based on the considerations and rules presented earlier, design space exploration can
be performed more efficiently. Exploration steps (performed via neighbour moves)
are performed based on the following principles:

e Task clusters are treated as single elements during task allocation. Therefore, if a
task cluster is re-allocated, all tasks inside that task cluster will be re-allocated to
the same processor.

e When picking a “new” processor for a task/task cluster, only processors from the
set of admissible processors are used as candidates.

e Frame packing is performed due to the constraint-aware packing heuristic.

As a consequence, a large number of infeasible configurations is avoided, since
constraints are not violated. Thus, the efficiency of the search increases. In addition,
constraint satisfaction can be guaranteed for certain constraint-types.

Unfortunately, not all constraint-types can be resolved. For a set of constraint-
types (A-1, A-2, A-3, B-1, B-2, B-3, E-5) no rules how to satisfy them, could be

324 F. Polzlbauer et al.

Table 4 Constraint encoding as “mandatory” or as “desired”

Type Mandatory Desired Rationale

A-1 x Utilization < 100 % required for schedulability

A-2 X Utilization < 100 % not required for schedulability
A3 x Utilization < 100 % required for schedulability

B-1 X Guide search through un-schedulable regions

B-2 X Guide search through un-schedulable regions

B-3 X Guide search through un-schedulable regions

E-5 xx X Depending on source of constraint (e.g. safety analysis)

Note All other constraint-types can be resolved. Thus they are always satisfied, and don’t need to be
encoded into the search algorithm any more. Options marked as “xx” represent the option preferred
by the authors

derived. These constraints are addressed by the cost-term constraint violations.
Thereby they can either be represented as a mandatory or as desired. The following
implications should be taken into account, when deciding between these options:

e mandatory: If a mandatory constraint is violated, the configuration is treated as
being infeasible. Thus it will be rejected. Consequently, the configuration is not
considered as the starting point for generating new configurations.

e desired: A configurations that does not satisfy a desired constraint is not rejected.
Instead it is punished by a high cost value. However, the configuration can still be
picked as the starting point for subsequent exploration steps.

The difference may sound minor, but actually has significant impact on the DSE.
Using desired constraints enables the search to gradually traverse through infeasi-
ble regions. However, even configurations with “moderate” cost may be infeasible.
Using mandatory constraints ensures that all constraints are satisfied for feasible
configurations.

Table 4 provides a proposal, in which way each constraint-type could be
encoded. The proposal tries to tackle the nature of the constraint-types as well as
efficiency considerations, in order to find the most appropriate encoding for each
constraint-type.

By resolving constraints and using constraint-aware neighbour moves, the design
space exploration can be performed more efficiently. Experimental evaluation shows
that the improvements are two-fold: On the one hand, fewer constraints are vio-
lated during the search. On the other hand, the best obtained solution has improved
attributes due to the optimization targets. Figure 1 shows the number of con-
straint violations during a search-run (for different constraint-types). It evidences the
efficiency of the proposed approach of constraint resolving: Without resolving (just
using the cost-term to punish a constraint violation) the number of violations is very
high. With resolving, the number of violations is significantly lower, or in several
cases even zero. More details (especially on the impact on the best obtained solution)
can be found in [12].

Software Deployment for Automotive Applications 325

6 Applicability to Real-World Systems

The presented methodologies in this chapter are described tool-independent.
However, in order to be applicable for engineers, the methodologies need to be
incorporated into state-of-the-art automotive engineering tools. Consequently, the
system model (consisting of tasks, messages, processors and networks) needs to be
represented in an appropriate format. This could either be a higher-level one (e.g.
EAST-ADL) or a more detailed one (e.g. AUTOSAR). The generated outputs of the
methodologies are again represented in such formats. Network-specific outputs, such
as frame packing, could be encoded into the FIBEX format (which is the state-of-the-
art format for automotive networks). Software allocation and scheduling information
could be represented in the AUTOSAR format.

The computational model assumes that data produced by a task may trigger the
execution of a task which reads the data. If this was not being done, the generating
task could produce another instance of the data, and overwrite the older ones. Thus
the implementation of the system must ensure that these receiving tasks are executed
at appropriate rates and in an appropriate order. Such implementation-specific details
need to be addressed in the AUTOSAR RTE generation process (which is not covered
in this chapter).

7 Future Research Directions

Automotive electronics and embedded software are developed in accordance to the
following life cycle:

e Every few years, a new hardware-platform is developed. Here, new technol-
ogy may be introduced, especially at the hardware-level. E.g. new bus protocols
(like FlexRay or automotive Ethernet) and new micro-controllers (e.g. multi-core

I g task grouping
1 3 1 3
AN e e
1 I _ 1 08f
07 i, 07
06 & 1 08
05 T 1 05t Ly Ly
0.4 : 1 04f —
03 ! 1 a3l
02 & 02
0.1 f— R 1 o
0 . 'u'] I T = 0
0 05 1 15 2 25 3 0 05 1 15 2 25 3

4

iteration x 10 iteration x 10

Fig. 1 Constraint satisfaction efficiency without and with constraint resolving

326 F. Polzlbauer et al.

architectures). The goal of this phase is to find a platform which is extensible for
future requirements. Within this phase, almost all design decisions may be mod-
ified. This phase may be called finding a system configuration which maximizes
extensibility.

e During the following years, this system configuration is used as the basis. New
technologies are rarely introduced. Modifications to the system configuration may
mainly be due to 2 scenarios:

— Minor modifications are applied to the system configuration. The goal is to
improve the system. This may be called system configuration improving.
Thereby, most design decision taken for the initial configuration must be treated
as constraints.

— Additional components (e.g. software) are added to the system, in order to meet
new requirements. The goal is to find a system configuration for the extended
system. This may be called system configuration upgrade. Thereby almost
all design decisions from the initial system must be treated as constraints.
In addition, the new configuration should be similar to the initial configura-
tion, in order to reduce effort for re-verification.

Consequently, future research activities have to be two-fold: On the one hand,
emerging technologies such as multi-core architectures and automotive Ethernet have
to be tackled. On the other hand, it must be investigated how these development-
scenarios can be addressed. Concerning the latter, basically most ingredients are
already at hand.

e In order to find a platform configuration, which is extensible for future modifi-
cations/extensions, the key issue is to have test-cases (i.e. software architectures)
which represent possible future requirements. This can be addressed by using
change scenarios [8]. In addition, the configurations can be analysed with respect
to parameter uncertainties. Well known approaches use sensitivity analysis for
task WCET [19]. This can be extended towards other parameters (e.g. periods),
thus resulting in multi-dimensions robustness analysis [9].

e The second issue is to actually perform a system configuration modification.
A typical improvement scenario could be: reassign priorities to tasks on a cer-
tain processor, in order to fix timing issues. Therefore, state-of-the-art optimiza-
tion approaches could be used, e.g. SA. Of course, the neighbour-moves must be
constraint-aware.

e Within a system configuration upgrade, both the software-architecture as well
as the hardware-architecture may be subject to changes. Typically new addi-
tional software-components (and communication between software-components)
are added. In order to provide sufficient execution resources, additional processors
may be needed. These scenarios can be addressed as follows: In [6] it is shown,
how a system configuration can be found for multi-mode systems. Thereby, the
goal is to have minimal changes between modes, thus enabling efficient mode-
switches. If the different versions of the system (initial system, extended system)
are treated as modes, similar methods can be used. However, there is one signifi-

Software Deployment for Automotive Applications 327

cant difference: Emberson and Bate [6] assumed that the hardware-platform is the
same for all modes. In a system configuration upgrade scenario, this assumption
is no longer valid.

e Thus, when performing system configuration modifications and system configura-
tion extensions, the key issue is to deal with legacy decisions. These must be treated
as constraints. Therefore, constraint handling is needed. This can be addressed by
the methodology presented in Sect. 5.

In order to address and solve system configuration upgrade scenarios, the fol-
lowing next steps have to be performed: First, a metric for determining changes has
to be derived, and tailored to automotive needs. Second, the approach in [6] needs
to be extended, so that it can handle changes in the hardware-platform. Third, the
constraint handling approach needs to be incorporated with the part that will deal
with changes.

Acknowledgments The authors would like to acknowledge the financial support of the “COMET
K2—Competence Centres for Excellent Technologies Programme” of the Austrian Federal Ministry
for Transport, Innovation and Technology (BMVIT), the Austrian Federal Ministry of Economy,
Family and Youth (BMWFJ), the Austrian Research Promotion Agency (FFG), the Province of
Styria and the Styrian Business Promotion Agency (SFG). We also thank our supporting industrial
(AVL List) and scientific (Graz University of Technology) project partners.

References

1. T. AlEnawy, H. Aydin, Energy-aware task allocation for rate monotonic scheduling, in
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), (2005),
pp. 213-223

2. AUTOSAR (automotive open system architecture), http://www.autosar.org Revision 4.0. Ac-
cessed 9 Sept 2012

3. A.Burns, M. Nicholson, K. Tindell, N. Zhang, Allocating and scheduling hard real-time tasks on
a point-to-point distributed system. Workshop on Parallel and Distributed, Real-Time Systems
(1993), pp. 1120

4. E.G. Coffman, M.R. Garey, D.S. Johnson, Approximation algorithms for bin packing: a survey,
in Approximation Algorithms for NP-hard Problems, Chap. 2 (PWS Publishing Co., Boston,
MA, USA, 1996), pp. 46-93

5. P. Emberson, Searching For Flexible Solutions To Task Allocation Problems. PhD thesis,
University of York, Department of Computer Science, 2009

6. P. Emberson, I. Bate, Minimising task migration and priority changes in mode transitions,
in IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), (2007)
pp- 158-167

7. P. Emberson, I. Bate, Extending a task allocation algorithm for graceful degradation of real-
time distributed embedded systems, in /IEEE Real-Time Systems Symposium (RTSS) (2008),
pp. 270-279

8. P. Emberson, I. Bate, Stressing search with scenarios for flexible solutions to real-time task
allocation problems. IEEE Trans. Softw. Eng. 36(5), 704-718 (2010)

9. A. Hamann, R. Racu, R. Ernst, Multi-dimensional robustness optimization in heterogeneous
distributed embedded systems, in IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS) (2007), pp. 269-280

10. ISO 26262, Road Vehicles—Functional Safety. Revision 1.0

http://www.autosar.org

328

11.
12.

13.

14.

15.

16.

17.

19.

F. Polzlbauer et al.

D.S. Johnson, M.R. Garey, A 71/60 theorem for bin packing. J. Complex. 1(1), 65-106 (1985)
F. Polzlbauer, 1. Bate, and E. Brenner. Efficient constraint handling during designing reliable
automotive real-time systems. International Conference on Reliable Software Technologies
(Ada-Europe) (2012), pp. 207-220

F. Polzlbauer, 1. Bate, E. Brenner, Optimized frame packing for embedded systems. IEEE
Embed. Syst. Lett. 4(3), 65-68 (2012)

P. Pop, P. Eles, Z. Peng, Schedulability-driven frame packing for multicluster distributed em-
bedded systems. ACM Trans. Embed. Comput. Syst. 4(1), 112-140 (2005)

S. Poulding, P. Emberson, I. Bate, J. Clark, An efficient experimental methodology for configur-
ing search-based design algorithms, in IEEE High Assurance Systems Engineering Symposium
(HASE) (2007) , pp. 53-62

R. Saket, N. Navet, Frame packing algorithms for automotive applications. Embed. Comput.
2(1), 93-102 (2006)

K. Sandstrém, C. Norstrom, and M. Ahlmark. Frame packing in real-time communication. In-
ternational Conference on Real-Time Computing Systems and Applications (RTCSA) (2000),
pp. 399403

. W. Zheng, Q. Zhu, M. Di Natale, A. Sangiovanni-Vincentelli, Definition of task allocation

and priority assignment in hard real-time distributed systems, in /[EEE Real-Time Systems
Symposium (RTSS) (2007), pp. 161-170

Q. Zhu, Y. Yang, E. Scholte, M. Di Natale, A. Sangiovanni-Vincentelli, Optimizing extensibil-
ity in hard real-time distributed systems, in /[EEE Real-Time and Embedded Technology and
Applications Symposium (RTAS) (2009), pp. 275-284

Editors Biography

Mohammad Ayoub khan is working as Associate Professor, Department of
Computer Science and Engineering, School of Engineering and Technology,
Sharda University, Plot No. 32-34, Knowledge Park III, Greater Noida, UP
201306, India with interests in Radio Frequency Identification, microcircuit
design, and signal processing, NFC, front end VLSI (Electronic Design
Automation, Circuit optimization, Timing Analysis), Placement and Routing in
Network-on-Chip, Real Time and Embedded Systems. He has more than 11 years
of experience in his research area. He has published more than 60 research papers
in the reputed journals and international IEEE conferences. He is contributing to
the research community by various volunteer activities. He has served as
conference chair in various reputed IEEE/Springer international conferences. He is
a senior member of professional bodies of IEEE, ACM, ISTE and EURASIP
society. He may be reached at ayoub@ieee.org, +91-9871632098.

Saqib Saeed is an assistant professor at the Department of Computer Science
Shangrila Road, Sector E-8, Bahria University Islamabad, PIN/ZIP Code: 44000,
Pakistan. He has a Ph.D. in Information Systems from University of Siegen,
Germany, and a Master’s degree in Software Technology from Stuttgart University
of Applied Sciences, Germany. He is also a certified software quality engineer
from American Society of Quality. His research interests lie in the areas of human-
centered computing, computer supported cooperative work, empirical software
engineering and ICT4D. He may be reached at saqib.saced @gmail.com.

Ashraf Darwish received the Ph.D. degree in computer science from Saint
Petersburg State University, Russian Federation in 2006 and is currently an
assistant professor at the Faculty of Science, Helwan University, Cairo, P.O. 1179,
Egypt. Dr. Darwish teaches artificial intelligence, information security, data and
web mining, intelligent computing, image processing (in particular image
retrieval, medical imaging), modeling and simulation, intelligent environment,
body sensor networking.

M. A. Khan et al. (eds.), Embedded and Real Time System Development: 329
A Software Engineering Perspective, Studies in Computational Intelligence 520,
DOI: 10.1007/978-3-642-40888-5, © Springer-Verlag Berlin Heidelberg 2014

330 Editors Biography

Dr. Darwish is an editor and member of many computing associations, such as
IEEE, ACM, EMS, QAAP, LICIT, IJSIEC, IJIIP, IJITNA, IJCISIM, SMC, Quality
Assurance and Accreditation Authority (Egypt) and a board member of the
Russian-Egyptian Association for graduates, and Machine Intelligence Research
Lab (MIR Lab) USA.

Dr. Darwish is author of many scientific publications and his publications
include papers, abstracts and book chapters by Springer and IGI publishers. He
keeps in touch with his mathematical background through his research. His
research, teaching and consulting mainly focuses on artificial intelligence,
information security, data and web mining, intelligent computing, image
processing, modeling and simulation, intelligent environment, body sensor
networks, and theoretical foundations of computer science. He may be reached
at modarwish@yahoo.com, Tel/Fax: +2 2555 2468.

Ajith Abraham received the Ph.D. degree in Computer Science from Monash
University, Melbourne, Australia. He is currently the Director of Machine
Intelligence Research Labs (MIR Labs), Scientific Network for Innovation and
Research Excellence (SNIRE), P.O. Box 2259, Auburn, Washington, DC 98071,
USA, which has members from more than 100 countries. He serves/has served the
editorial board of over 50 International journals and has also guest edited 40
special issues on various topics. He has authored/co-authored more than 850
publications, and some of the works have also won best paper awards at
international conferences. His research and development experience includes more
than 23 years in the industry and academia. He works in a multidisciplinary
environment involving machine intelligence, network security, various aspects of
networks, e-commerce, Web intelligence, Web services, computational grids, data
mining, and their applications to various real-world problems. He has given more
than 60 plenary lectures and conference tutorials in these areas. He has an h-index
of 50+ with nearly 11K citations as per Google Scholar. Since 2008, Dr. Abraham
is the Chair of IEEE Systems Man and Cybernetics Society Technical Committee
on Soft Computing and also represented the IEEE Computer Society Distinguished
Lecturer Programme during 2011-2013.He is a Senior Member of the IEEE, the
IEEE Computer Society, the Institution of Engineering and Technology (U.K.) and
the Institution of Engineers Australia (Australia), etc. He is actively involved in
the Hybrid Intelligent Systems (HIS); Intelligent Systems Design and Applications
(ISDA); Information Assurance and Security (IAS); and Next Generation Web
Services Practices (NWeSP) series of international conferences, in addition to
other conferences. More information at: http://www.softcomputing.net.
ajith.abraham @ieee.org, Personal WWW://http://www.softcomputing.net. Postal
address for delivering the books: Professor (Dr.) Ajith Abraham, Aster 13C,
Skyline Riverdale Apartments, North Fort Gate, Petah, Tripunithura, Kochi, KL
682301, India.

WWW://http://www.softcomputing.net

	Preface
	Contents
	Part IEmbedded Software Development Process
	1 A Flexible Framework for Component-Based Application with Real-Time Requirements and its Supporting Execution Framework
	1 Introduction and Motivation
	2 Overall Approach of the Proposed Development Process
	3 Related Work
	4 Component Model and Real-Time Execution Platform
	4.1 Modeling Primitives for Real-Time Component-Based Applications
	4.2 Design Drivers and Pattern Language for a Flexible and Analyzable Execution Platform

	5 Description of the MDSD Tool-Chain: Modeling, Deployment and Analysis of Applications
	6 Case Study: Development of a Cruise Controller
	6.1 Architecture of a Possible Solution
	6.2 Architecture Deployment and Cheddar Analysis

	7 Conclusions and Future Work
	References

	2 Automatic Development of Embedded Systems Using Model Driven Engineering and Compile-Time Virtualisation
	1 Introduction
	2 Background
	2.1 Heterogenous Hardware Platforms
	2.2 Criticality
	2.3 Industrial Applicability
	2.4 Summary

	3 Introduction to Model-Driven Engineering
	3.1 Model Transformations
	3.2 Epsilon Model Transformations

	4 Software Generation Using Compile-Time Virtualisation
	4.1 Compile Time Virtualisation
	4.2 AnvilJ

	5 Hardware Generation Using Model Transformations
	6 Case Study: Image Processing Subsystem
	6.1 Subsystem Overview
	6.2 Software Development
	6.3 Software Modelling
	6.4 Hardware Modelling
	6.5 Hardware Generation
	6.6 Code Deployment
	6.7 Analysis of Deployed Code
	6.8 Retargeting for New Platforms

	7 Conclusions
	References

	Part IIDesign Patterns and Development Methodology
	3 MADES EU FP7 Project: Model-Driven Methodology for Real Time Embedded Systems
	1 Introduction
	2 Background: Using SysML and MARTE for RTES Design and Development
	2.1 Systems Modeling Language
	2.2 Modeling and Analysis of Real-Time and Embedded Systems
	2.3 Related Works

	3 MADES Model-Driven Design Methodology
	3.1 MADES Language and Related Diagrams

	4 MADES Tool Set
	4.1 Modelio UML Editor and MDE Workbench
	4.2 MADES Component Repository
	4.3 Zot Verification Tool
	4.4 MADES Model Transformations

	5 MADES Methodology in Practice-Car Collision Avoidance System Case Study
	5.1 Requirements Specification
	5.2 Initial Behavioral Specification
	5.3 Functional Specification
	5.4 Completing the Requirements
	5.5 Refined Functional Level Specification
	5.6 Allocating Functional and Refined Functional Level Specifications
	5.7 Clock Specification
	5.8 Hardware Specification
	5.9 Software Specification
	5.10 Software to Hardware Allocation
	5.11 Detailed Hardware Specification
	5.12 Detailed Software Specification
	5.13 Allocating Hardware to Detailed Hardware Specifications
	5.14 Allocation Software to Detailed Software Specifications
	5.15 Allocating Detailed Software to Detailed Hardware Specifications

	6 Lessons Learned from the CCAS Project and Future Research Directions
	7 Conclusions
	References

	4 Test-Driven Development as a Reliable Embedded Software Engineering Practice
	1 Test-Driven Development
	1.1 TDD Rationale
	1.2 TDD Mantra
	1.3 Advantages and Difficulties

	2 Embedded Unit Testing Frameworks
	2.1 Mocking Hardware

	3 Test-Driven Development for Embedded Software
	3.1 Embedded Constraints
	3.2 Test on Target
	3.3 Process
	3.4 Code Example
	3.5 Test on Host
	3.6 Remote Testing

	4 Embedded TDD Patterns
	4.1 3-Tier TDD
	4.2 MCH-Pattern

	5 Conclusion
	References

	5 A Fuzzy Cuckoo-Search Driven Methodology for Design Space Exploration of Distributed Multiprocessor Embedded Systems
	1 Introduction
	2 Design Environment
	2.1 Application Model
	2.2 Technology Library
	2.3 Availability Requirements Elicitation
	2.4 Architecture Representation

	3 Design Space Exploration
	3.1 Design Objectives
	3.2 Fuzzy Fitness Evaluator
	3.3 Cuckoo Search Driven DSE

	4 Experimental Results
	4.1 Task Allocation
	4.2 Route-to-Optimization: CS Versus GA
	4.3 Effectiveness of Fuzzy Fitness Evaluation

	5 Conclusion
	References

	Part IIIModeling Framework
	6 Model-Based Verification and Validation of Safety-Critical Embedded Real-Time Systems: Formation and Tools
	1 Introduction
	2 Background and Purpose
	3 Methods in VV&T
	3.1 Incremental Models
	3.2 Iterative Models
	3.3 Single-Version Models

	4 Challenges in Model Based ERT Systems VV&T
	5 Case Study in VV&T of Aerospace System
	5.1 VV&T of a Modern Autonomous UAV System

	6 Solutions and Recommendations
	7 Conclusion
	References

	7 A Multi-objective Framework for Characterization of Software Specifications
	1 Introduction
	2 Review of Related Work
	2.1 Application Analysis Techniques
	2.2 Application Characterization
	2.3 Streaming Languages

	3 Background and Definitions
	3.1 Example of Visitor Design
	3.2 Uses and Benefits of Visitor Based Design

	4 Application Analysis Framework
	4.1 Application Transformation into Trace Tree
	4.2 Trace Tree Analysis

	5 Usage Scenarios in a Holistic Design Environment
	5.1 Application Orientation
	5.2 Spatial Parallelism
	5.3 Guidelines for Mapping
	5.4 Guidelines for Performance Estimation

	6 Experimental Results
	6.1 MPEG-2 Video Decoding Application
	6.2 Application Orientation and Spatial Parallelism Results

	7 Process Oriented Application Descriptions
	7.1 Syntax of AVEL Framework
	7.2 Example of AVEL Program
	7.3 MPEG-2 Video Decoder in AVEL

	8 Conclusions
	References

	Part IVPerformance Analysis, Power Management and Deployment
	8 An Efficient Cycle Accurate Performance Estimation Model for Hardware Software Co-Design
	1 Introduction
	2 Review of Related Work
	2.1 Instruction Set Simulation
	2.2 Partial Simulation
	2.3 Annotation-based Simulation
	2.4 Hybrid Simulation
	2.5 Comments on Existing Simulation Techniques

	3 Proposed Design Space Exploration
	4 Performance Estimation Technique
	4.1 Performance Estimation Database
	4.2 Application Performance Estimation

	5 SoCLib Simulation Platform
	5.1 Realization of SoCLib Simulation Platform
	5.2 Modified Simulation Platform: An Extension of SoCLib
	5.3 Simulation Flow Using SoCLib Simulation Platform

	6 Experimental Results
	6.1 Experimental Setup
	6.2 Performance Estimation on PowerPC405 Processor
	6.3 Performance Estimation on Different Processors
	6.4 Non-uniform Execution Time of Input Video Sequence
	6.5 Decrease in Simulation Time

	7 Conclusions
	References

	9 Multicast Algorithm for 2D de Bruijn NoCs
	1 Introduction
	2 Multicast Routing Algorithm
	2.1 The de Bruijn Topology
	2.2 The Proposed Multicast Algorithm
	2.3 Giving an Example

	3 Simulation Results
	4 Conclusion
	References

	10 Functional and Operational Solutions for Safety Reconfigurable Embedded Control Systems
	1 Introduction
	2 Dynamic Reconfiguration
	3 Benchmark Production Systems: FESTO and EnAS
	3.1 The FESTO System
	3.2 The EnAS System

	4 Multi-agent System
	4.1 Software Architecture of Reconfiguration Agents
	4.2 Communication Protocol

	5 Real-Time Task: Definition, Dynamic Reconfiguration and Scheduling
	5.1 Real Time Task Definition
	5.2 A Meta-model Task
	5.3 Feasible and Safety Dynamic Reconfiguration of Tasks
	5.4 Task Scheduling with Priority Ceiling Protocol

	6 Conclusion
	References

	11 Low Power Techniques for Embedded FPGA Processors
	1 Introduction
	1.1 Clock Gating

	2 Timing Analysis
	2.1 Clock Gating Techniques
	2.2 AND Gate
	2.3 NOR Gate
	2.4 Latch Based and Clock Gating
	2.5 Latch Based NOR Clock Gating
	2.6 Multiplexer Based Clock Gating

	3 New Design
	4 Conclusions
	References

	12 Software Deployment for Distributed Embedded Real-Time Systems of Automotive Applications
	1 Introduction
	2 The Software Deployment Problem
	2.1 The Standard Problem
	2.2 Solving the Standard Problem

	3 The Needs of the Automotive Industry
	3.1 Frame Packing
	3.2 Design Constraints

	4 Solving the Frame Packing Problem
	4.1 Insufficiencies of State-of-the-Art Approaches
	4.2 Optimality Criteria for Frame Packing
	4.3 Improved Frame Packing Heuristic

	5 Handling Constraints
	5.1 Improving Efficiency
	5.2 Implications on Design Space Exploration

	6 Applicability to Real-World Systems
	7 Future Research Directions
	References

	Editors Biography

