
Acta Technica Jaurinensis Vol. 4. No. 4. 2011

433

Real-time Program Models Used
in Tiny Embedded Systems

J. Kopják1, J. Kovács2
1Óbuda University/Kandó Kálmán Faculty of Electrical Engineering, Budapest

2Szécheny István University/Faculty of Engineering Sciences, Győr
e-mail: kopjak.jozsef@kvk.uni-obuda.hu, kovacs@sze.hu

Abstract: The paper present and compare some real-time control program models
used by programmers programming in tiny embedded systems,
microcontrollers. The paper does not demonstrate all programming models,
only the most important variations based on writer's opinion. The writer
tried to show the advantages and disadvantages of each programming
models discussed in article. The paper begins with traditional models like
sequential model, cooperative multitasking and continues with an
alternative cooperative multitasking method, timed cooperative model and
finish with event-driven model.

Keywords: cooperative multitasking, timed cooperative model, event-driven model,
real-time

1. Introduction
The improvement of microcontrollers using in embedded systems is very strong. Some
performances of microcontrollers are on same level like in personal computers. The
improvement of eight and sixteen bit controllers does not stop too. The controllers have
more and more peripheries. The tasks of microcontrollers do not stop on control
functions. Microcontrollers with cheep price have small cpu core with small ram size
and with rich number of peripheries. With rich number of peripheries is possible to
satiate user demands like LCD control, sensor-less BLDC fan motor control, lots of type
of serial communication with eight bit controllers too. To resolve these new problems
programmers needs to have new program modelling knowledge.

2. Real-time systems
Non real-time system are usually using in office technologies. In non real-time systems
incoming events followed each other in time in a same priority level are not served in a
queue followed each other. In these systems are known the average of processing time of
events, but we do not know the maximum time of answer of occurred event.

Real-time control is very important in solutions using in industrial and medical
environment. Every event has own priority in real-time system. Consecutively becoming
events in a same priority level are served in one after the other. The maximum of answer
time of incoming event is known and defined.

Vol. 4. No. 4. 2011 Acta Technica Jaurinensis

434

A critical aspect of real-time systems is how time itself is handled. The design of a
real-time system must identify the timing requirements of the system and ensure that the
system performance is both correct and timely. The three types of time constraints on
computation are: hard, soft, firm [1].

3. Sequential programming model
Sequential programming models are used in industrial solutions usually. Sequential
programming model is named linear programming model too. These programs are
composed from four software component: initialization, reading status of the inputs,
calculation or processing, refreshing values of the outputs. Figure 1 illustrates the
simplified flow chart of program based on sequential programming model.

Figure 1: Simplified flow chart of program based on sequential programming model

The advantage of sequential programming model is the design of program is very
similar to classical logical circuit design method. Simultaneously (in time) reading of all
inputs and writing of all outputs exclude the hazard known in logical circuits.

The disadvantage of the model is the source code contains lots of if-else control
structures and therefore is incomprehensible case of writing complex programs. Other
disadvantage of the model is the poor utilization of processor. The program always
recalculate the values of outputs, regardless of there is any change on inputs. The
program based on this model is always running, therefore uses all CPU time. The
reaction time of program depends on the program complexity due to constant
recalculations.

4. Cooperative multitasking
In cooperative multitasking the tasks are working together with each other. The tasks

are simple functions without input parameters and return value. The main program first
initializes the peripheral devices, after the initialization the program calls the task
functions in loop. Figure 2 illustrate the simplified flow chart of program based on
multitask programming model.

Source code written in cooperative multitasking model is more transparent than the
codes written in sequential method. The tasks can be easily separated, each task have
different job. These tasks are in different functions, and these functions are located in
different source files usually. If the task-functions are located in different source files

Acta Technica Jaurinensis Vol. 4. No. 4. 2011

435

the program developers can be work together easily, because they do not interfere with
each others work. Each developer has to modify only their own files, and don't need to
change content of files created by other developers.

Figure 2: Simplified flow chart of program based on cooperative multitask

programming model

Following piece of C-language source code represents the main loop responsible for
calling the task functions.
int main (void)
{
 vInitSystem();// Initialization of peripherals
 while(1) // Infinitive function calling loop
 {
 vTask1(); // Calling task function named vTask1
 vTask2(); // Calling task function named vTask2
 vTask3(); // Calling task function named vTask3
 }
}

Developing source code in cooperative multitasking model required more software
planning time than sequential solution. The designer has to divide the whole program-
task to small individual working tasks in a first phase of development. Tasks are
communicating with each other on global variables or with another name: via
mailboxes. The cooperating task functions usually read its inputs values at the
beginning and writing they output values at end of each running sequence. The program
scans its inputs and updates its outputs values several times during a one circle in the
main loop.

The task should complete own running sequence as soon as possible to got the
shortest program response time. The tasks should not use blocking or waiting loops.
Using blocking loops would drastic incise the response time of running system. Some
blocking loops examples: Waiting for releasing a push button or waiting for an UART
peripheral register flag. The tasks have to remember the current state of running and
return back to the calling function in case when a resource is not available.

The task functions should be structured using state machine model due to lack of a
blocking waits. In state machine model the functions are using static local variables to
store them next states. The backbone of each task function is a switch-case structure.
The task first examines the value of the state description variable, and then jumps to the
program code of the state. Following piece of C-language source code illustrates the
body of task function based on state machine model.

Vol. 4. No. 4. 2011 Acta Technica Jaurinensis

436

void vTask(void)
{
 /* State description variable. Initial state is:
 INIT_STATE */

 static enum { INIT_STATE, STATE1, STATE2, STATE3 }
 xState = INIT_STATE;

 /* Selection of sub-task based on the value of state
 variable */
 switch (xState)
 {
 case INIT_STATE: // Initialization tasks
 /* ... */
 xState = STATE1; // Selection of next state
 break; // End of actual running

 case STATE1: // First task
 /* ... */
 xState = STATE2; // Selection of next state
 break; // End of actual running
 /* ... */
 default: // Protection state:
 // Normally the program never gets here.
 xState = INIT_STATE; // Re-initialization of
 // task-function
 }
}

The advantage of cooperative multitasking model is the possibility of creation quasi-
parallel multitask system without using pre-emptive multitask operation system. The
disadvantage of cooperative multitasking model is the pretension of good developer
programming skills. The response time of program is depends on the tasks execution
time. The execution time of task is not a constant value, because every task state has
other execution time. The response time of program will be swinging, but is possible to
calculate the fastest and slowest reaction time of system. The shortest reaction time of
system is the sum of fastest running time of tasks, and the longest response is the sum of
slowest running time of tasks.

Another disadvantage of the cooperative multitasking is that the program is not able
to manage energy consumption of the processor. The processor runs the code always, it
can not go to energy-efficient mode (sleep or idle), this means the processor will be
have maximum energy consumption.

5. Timed cooperative multitasking
The traditional cooperative multitasking model do not deal with time, it means if
somebody would like to create timed functions or events then the programmer must to
create own timer to measure the elapsed time. In timed cooperative multitasking model
the tasks do not run always like in classical cooperative multitasking model, only when
they blocking or waiting time has expired.

If somebody would like to implement timed cooperative multitasking model, then he
must create own lightweight kernel to manage the task functions. There is some known
implementation of cooperative multitasking, with other name co-rutins, like FreeRTOS.
FreeRTOS is an open source operating system for embedded systems written in C
language.[2] The implemented kernels working with time, but the time is not the basic
element of they kernel model, therefore we design a own lightweight cooperative
multitask kernel.

To demonstrate the difference between classical cooperative multitasking and the
timed cooperative multitasking we made an example program. In our program are two

Acta Technica Jaurinensis Vol. 4. No. 4. 2011

437

tasks. The tasks are running quasi-parallel. The mission of each task is very simple:
Invert value of one output pin. Next code example written is C language shows the
implementation of these tasks.
/* Task function of task #1*/
void vTask1 (void)
{
 mTurnOnLED(3); // The task starts here
 mToggleLED(1); // Toggle LED #1
 mTurnOffLED(3); // The task stops here
}

/* Task function of task #2*/
void vTask2 (void)
{
 mTurnOnLED(0); // The task starts here
 mToggleLED(2); // Toggle LED #2
 mTurnOffLED(0); // The task stops here
}

Our initial kernel is very simple. Next code example shows our initial, not timed
kernel.
/* endless loop */
while (1)
{
 vTask1(); // Call Task1 function
 vTask2(); // Call Task2 function
}

The Figure 3 illustrate the result of program running is simulator. In picture you can find
4 lines. The line with label “Task #1” is in high level when the task #1 is running, and is in
low level when the task is in “not running” state. The line with label “Task #2”
demonstrates the actual state of the task #2 (the conditions of high and low level is similar
like in previously described line). Line with label “PIN #1” and line with label “PIN #2”
shows the output of Task #1 and Task #2 (toggle LED on output pin). We can see in the
figure that the both tasks are running always in circa half of the processors time.

Figure 3: Result of running program write in traditional cooperative multitask model

To create a timed task calling we need one global timer, which measure the continuous
global time in tick. Operating system usually measure the time in tick. The tick counter
is 16 or 32 bit long unsigned variable, but it can be an 8 bit counter in very small
systems. We are using 16 bit wide architecture to test our kernel; therefore our tick
counter is 16 wide too. In this example the timer increase the value of tick counter in
every one millisecond.

We need an array list too. The array list contains the task descriptors. One element of
array is a structure, which represents one task. The descriptor structure has three fields:

Vol. 4. No. 4. 2011 Acta Technica Jaurinensis

438

the pointer of task function, the recall interval in tick and the time stamp of last call.
Next code example shows the declaration of task descriptor structure.
/* Type define: Task Entry structure */
typedef struct
{
 void (*pvTaskPointer) (void);//Pointer of task func.
 TICK_TYPE tickRecallInterval; //Recall interval
 TICK_TYPE tickLastTimeStamp; //Time stamp of last call
} TASK_ENTRY;

Next piece of code shows the description list of tasks. The list must be closed with
predefined closing entry where the value of function pointer is NULL. When the array
is closed with closing entry, the programmer do not need to predefine the size of array
list, because the parser part of the program could determinate the size of given array.
static TASK_ENTRY xTaskList[] =
{
 {vTask1, 3, 0},
 {vTask2, 6, 0},
 {NULL, 0, 0} // End of Task List (closing entry)
};

The kernel first calculates the difference of current time and the time stamp of last
call, and when this value is greater than or equal to tasks recall time then calls the task
function. Next piece of code shows the implementation of kernel.
/* Local variables */
TICK_TYPE tickCurrentTime;
HTASK_ENTRY hTask;
UBASE_TYPE uxTaskIndex = 0;

/* endless loop*/
while (1)
{
 hTask = &xTaskList[uxTaskIndex++];//Get handle of task
 if(hTask->pvTaskPointer != NULL)
 { /* If task entry is not closing entry: */
 tickCurrentTime = tickGetCurrentTime();
 if ((tickCurrentTime - hTask->tickLastTimeStamp)
 >= hTask->tickRecallInterval)
 {/* If task time was expired */
 hTask->pvTaskPointer(); // Call task function
 hTask->tickLastTimeStamp = tickCurrentTime;
 }
 }
 else
 {
 uxTaskIndex = 0; // Restart loop counter
 }
}

Figure 4: Result of timed cooperated multitasking

Acta Technica Jaurinensis Vol. 4. No. 4. 2011

439

The Figure 4 illustrates the result of program running in simulator. In picture you can
find 4 lines. The meanings of the lines are same like in Figure 3. You can see in the
figure, that the both tasks are running only when they blocking time has expired.

6. Event-driven programming model
Before analyzing the event-driven programming model let's look at the concept of the
event. The event is an occurrence (incidence), which may change the status an object
[3]. The events are signals from the outside of world in generally. Events are describing
dynamic changes of inputs. Events can be external -hardware- events such as a button
press or a tank becomes full or internal – software – events such as queue is full or
semaphore was taken.

The objects are informed about events through messages. The message in complex,
distributed system can be objects too, such as a communications packet (MODBUS
message or TCP/IP packet). In single-processor systems we are using a simple function
calls to transmit the messages.

In traditional event-driven model based programs are only passive objects. The
objects recalculates they output values do the effect of change they input values. The
event-driven program runs only when the input values are changing. The response time
of program depend on the number of changing input values in same time, and do not
depend on the controlled network complexity.

The traditional event-driven system consists the following actors:

Interrupt service routines (ISR) – The processors interrupt periphery calls the
interrupt service routines in case of external or internal interrupt event. Hardware
interrupt can be a change of the value of input pin (Interrupt On Change), incoming data
on communication port or end of data transmission. Internal hardware event can be a
timer overflow or end of analog-digital conversion. The interrupt service routines create
event-telegrams, which are posted to event queues by ISRs.

Event-telegraphs – The event-data structures consist of a minimum of two parts: The
signal of the event conveys the type of the occurrence, and event parameters convey the
quantitative information about the occurrence [4]. Following piece of C-language
source code illustrates example for event-telegraph structure.
typedef struct EventTag
{
 unsigned int uiEventID; // Event ID
 unsigned int uiParam; // Event parameter
} Event;

Event queue – Event queue is a list (first in first out type list) of event telegraphs. The
interrupt service routines put the event telegraphs to the end of queue and the event
handler loop gets events from queue. Care should be taken when implementing the
event queue because is shared resource. The event telegraphs arrive to the queue
asynchronously. All operation with event queue should be made in critical section;
exclude multiple writes, or read and write, in queue in same time.

Event message processing loop – The event message processing loop located in the
main program. The event message processing loop is an infinite loop. The loop first
tries to get message for event queue. If there is a waiting message in the queue, then the

Vol. 4. No. 4. 2011 Acta Technica Jaurinensis

440

loop process it based on message ID and message parameters. If there is no message
waiting to be processed, then the loop puts the processor to the power saving mode. The
interrupts will be wake up the processor from power-saving mode.

Not only the interrupt service routines can put events to the queue, but the event
processing loop too. It can be happens the actual event processing ends with generation
of new event. In such cases, the generated event is added to the end of the queue of
events. Figure 5 illustrates the traditional event-driven program structure.

Figure 5: Traditional event-driven program structure

Event-driven systems require a distinctly different way of thinking than traditional
sequential programs [4]. The event-driver program do not wait for an external event, the
program react to events [5]. The program must be designed in if-then conditions, for
example: if the set pin of set-reset flip-flop change to true, then the output of flip-flop
must be set to true; if the reset pin of set-reset flip-flop change to true, then the output of
flip-flop must be set to false.[6]

The structure of event processing loop is similar to the functions developed basis on
state-machine model. The core of loop is an switch-case structure. The switch tag jumps
to the selected function description based on incoming event ID. Following piece of C-
language sample code illustrates the body of event processing loop.
while(1)
{
 /* Getting event from event queue */
 if(xQueueReceive(xEventQueue, &xReceivedEvent, 0)
 == pdPASS)
 { // On successful reception:
 /* Jump to selected task based on message ID */
 switch (xReceivedEvent.uiEventID)
 {
 case BUTTON: // The button has bean sent
 /* ... */ // the message
 break; // End of message processing

 case TIMER: // The timer has bean sent
 /* ... */ // the message
 break; // End of message processing
 }
 else // There is no event waiting to be processed:
 {
 Idle(); // The processor goes to power saving mode
 }
}

The advantage of program based on traditional event-driven model is that the model
includes the automatic control of processor power consumption. If the message comes
when the event queue is empty the response time of program is the message processing
plus the answer generation time. The disadvantage is that the program can not rank
events based on their importance and is not suitable to create modular program.

Acta Technica Jaurinensis Vol. 4. No. 4. 2011

441

7. Conclusions
All programming models presented here have their own reason for existence. For
smaller tasks may be useful to use design models presented at the beginning of the
article, for complex systems are better solutions described in the second half of the
article. Complex models are using more processor for administrative tasks instead of
real problem, thereby reducing the effectiveness of the processor. On battery powered
solutions should be used solution where the models automatically manage the
processors energy consumption.

References

[1] Bruce Powel Douglass: Real-Time UML: developing efficient objects for
embedded systems, 1998.

[2] Richard Barry: Using The FreeRTOS Real Time Kernel, 2009.
[3] Angster Erzsébet: Az Objektumorientált tervezés és programozás alapjai, 1997.
[4] Miro Samek: Practical UML Statecharts in C/C++, Second Edition, 2009.
[5] Dr. Kondorosi Károly, Dr. László Zoltán, Dr. Szirmay-Kalos László: Objektum-

Orientált Szoftverfejlesztés, 2003.
[6] József Kopják, Dr. János Kovács: Event-driven control program models running

on embedded systems, 2011.

Vol. 4. No. 4. 2011 Acta Technica Jaurinensis

442

