

Deitel® How to Program Series Cover Theme

The cover theme for the DEITEL® HOw TO PROGRAM SERIES emphasizes social consciousness issues such
as going green, clean energy, recycling, sustainability and more. Within the text, in addition to conven-
tional programming exercises, we've included our Making a Difference exercise set to raise awareness of
issues such as global warming, population growth, affordable healthcare, accessibility, privacy of electronic
records and more. In this book, you'll use C++ to program applications that relate to these issues.
We hope that what you learn in C++ How to Program, 8/e will help you to make a difference.

Rainforests
The world’s rainforests are often referred to as the “Earth’s lungs,” the “jewels
of the Earth” and the “world’s largest pharmacy.” Approximately 50% of the
world’s tropical rainforests are in Central and South America, over 33% are in
Asia and Oceania (which consists of Australia, New Zealand and various South
Pacific Islands), and 15% are in Africa. Rainforests absorb from the atmos-
phere vast amounts of carbon dioxide—a gas that many scientists blame for
global warming—and they provide approximately 40% of the world’s oxygen.
They regulate water flow to surrounding areas preventing mudslides and crop
loss. Rainforests also support the livelihoods of 1.6 billion people, providing
food, fresh water, medicines and more. Approximately 25% of Western med-
icines used to treat infections, viruses, cancer and more are derived from plants
found in rainforests. The U.S. National Cancer Institute has found about 2100 rainforest plant species
that are effective against cancer cells. Fewer than one percent of rainforest plant species have been tested
for medical use.

Rainforests are being deforested at an alarming rate. According to a March 2010 report by the United
Nations Food and Agriculture Organization, deforestation has slowed over the last 10 years,
but more than 30 million acres of forests are still lost annually, and they’re not easily renewed.
The United Nations Environment Programme Plant for the Planet: Billion Tree Campaign is one of
many reforestation initiatives. To learn more about how you can make a difference, visit
www . unep.org/billiontreecampaign/index.asp. For further information visit:

www.rain-tree.com/facts.htm
www.savetherainforest.org/savetherainforest_007.htm
en.wikipedia.org/wiki/Rainforest

www. rainforestfoundation.org/

About Deitel & Associates, Inc.

Deitel & Associates, Inc., is an internationally recognized authoring and corporate training organization.
The company offers instructor-led courses delivered at client sites worldwide on programming languages
and other software topics such as C++, Visual C++®, C, Java™, C#®, Visual Basic®, Objective-C®, XML®,
Python®, JavaScript, object technology, Internet and web programming, and Android and iPhone app
development. The company’s clients include many of the world’s largest companies, as well as govern-
ment agencies, branches of the military and academic institutions. To learn more about Deitel Pearson
Higher Education publications and Dive Into® Series corporate training, e-mail deitel@deitel.com
or visit www.deitel.com/training/. Follow Deitel on Facebook® at www.deitel.com/deitelfan/
and on Twitter® @deitel.

Deitel® Series Page

How To Program Series

C++ How to Program, 8/E

C How to Program, 6/E

Java™ How to Program, 9/E

Java™ How to Program, Late Objects Version, 8/E
Internet & World Wide Web How to Program, 4/E
Visual C++® 2008 How to Program, 2/E

Visual Basic® 2010 How to Program

Visual C#® 2010 How to Program, 3/E

Small Java™ How to Program, 6/E

Small C++ How to Program, 5/E

Simply Series

Simply C++: An App-Driven Tutorial Approach

Simply Java™" Programming: An App-Driven
Tutorial Approach

Simply C#: An App-Driven Tutorial Approach

Simply Visual Basic® 2008, 3/E: An App-Driven
Tutorial Approach

CourseSmart Web Books
www.deitel.com/books/CourseSmart/

C++ How to Program, 5/E, 6/E, 7/E & 8/E
Simply C++: An App-Driven Tutorial Approach
Java™ How to Program, 6/E, 7/E, 8/E & 9/E

(continued next column)

(continued)

Simply Visual Basic 2008: An App-Driven
Tutorial Approach, 3/E

Visual Basic® 2010 How to Program

Visual Basic® 2008 How to Program

Visual C#® 2010 How to Program, 4/E

Visual C#® 2008 How to Program, 3/E

Deitel® Developer Series

C++ for Programmers

AJAX, Rich Internet Applications and Web

Development for Programmers
Android for Programmers: An App-Driven
Approach
C# 2010 for Programmers, 3/E
iPhone for Programmers: An App-Driven Approach
Java™ for Programmers
JavaScript for Programmers

LiveLessons Video Learning Products
www.deitel.com/books/LivelLessons/

C++ Fundamentals

Java™ Fundamentals

C# Fundamentals

iPhone® App Development Fundamentals

JavaScript Fundamentals
Visual Basic Fundamentals

To receive updates on Deitel publications, Resource Centers, training courses, partner offers and more,
please register for the free Deitel® Buzz Online e-mail newsletter at:

www.deitel.com/newsletter/subscribe.html

follow us on Twitter®

@deitel

and become a Deitel & Associates fan on Facebook®

www.deitel.com/deitelfan/

To communicate with the authors, send e-mail to:
deitel@deitel.com

For information on government and corporate Dive-Into® Series on-site seminars offered by Deitel &

Associates, Inc. worldwide, visit:
www.deitel.com/training/
or write to
deitel@deitel.com

For continuing updates on Prentice Hall/Deitel publications visit:

www.deitel.com
www . pearsonhighered.com/deitel/

Check out our Resource Centers for valuable web resources that will help you master C++, other impor-
tant programming languages, software, and Internet- and web-related topics:

www.deitel.com/ResourceCenters.html

www.deitel.com/books/CourseSmart/
www.deitel.com/books/LiveLessons/
www.deitel.com/newsletter/subscribe.html
www.deitel.com/deitelfan/
www.deitel.com/training/
www.deitel.com
www.pearsonhighered.com/deitel/
www.deitel.com/ResourceCenters.html

EIGH" |—| EDITION

Paul Deitel

Deitel ¢ Associates, Inc.

Harvey Deitel

Deitel ¢ Associates, Inc.

DEITE®

Prentice Hall
Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Vice President and Editorial Director: Marcia J. Horton
Editor-in-Chief: Michael Hirsch

Associate Editor: Carole Snyder

Vice President, Marketing: Patrice Jones

Marketing Manager: Yezan Alayan

Senior Marketing Coordinator: Kathryn Ferranti

Vice President, Production: Vince O’Brien

Managing Editor: Jeff Holcomb

Associate Managing Editor: Robert Engelhardt

Operations Specialist: Lisa McDowell

Art Director: Linda Knowle

Cover Design: Abbey S. Deitel, Harvey M. Deitel, Marta Samsel
Cover Photo Credit: © James Hardy/PhotoAlto/Getty Images
Media Editor: Daniel Sandin

Media Project Manager: Wanda Rockwell

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear
on page Vi.

The authors and publisher of this book have used their best efforts in preparing this book. These efforts include the
development, research, and testing of the theories and programs to determine their effectiveness. The authors and pub-
lisher make no warranty of any kind, expressed or implied, with regard to these programs or to the documentation
contained in this book. The authors and publisher shall not be liable in any event for incidental or consequential dam-
ages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Copyright © 2012, 2008, 2005, 2003, 2001 Pearson Education, Inc., publishing as Prentice Hall. All rights reserved.
Manufactured in the United States of America. This publication is protected by Copyright, and permission should be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use
material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, 501
Boylston Street, Suite 900, Boston, Massachusetts 02116.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been
printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

Deitel, Paul J.
C++ : how to program / P.J. Deitel, H.M. Deitel. -- 8th ed.
p. cm.
Includes index.
ISBN 978-0-13-266236-9
1. C++ (Computer program language) I. Deitel, Harvey M. II. Title.

QA76.73.C153D45 2012
005.13'3--dc22

2011000245

10987654321
ISBN-10: 0-13-266236-1
ISBN-13: 978-0-13-266236-9

Prentice Hall
is an imprint of

PEARSON

o ——

In memory of Ken Olsen,
Founder of Digital Equipment Corporation (DEC):

We are deeply grateful for the opportunities

DEC extended to us, enabling us to form and grow
Deitel e Associates, Inc.

Paul and Harvey Deitel

Trademarks

DEITEL, the double-thumbs-up bug and DIVE INTO are registered trademarks of Deitel and Associates,
Inc.

Microsoft and the Windows logo are either registered trademarks or trademarks of Microsoft Corpora-
tion in the United States and/or other countries.

UNIX is a registered trademark of The Open Group.

Throughout this book, trademarks are used. Rather than put a trademark symbol in every occurrence of
a trademarked name, we state that we are using the names in an editorial fashion only and to the benefit
of the trademark owner, with no intention of infringement of the trademark.

Chapters 25-26 and Appendices F-I are PDF documents posted online at the book’s
Companion Website, which is accessible from www.pearsonhighered.com/deitel.

Preface XXi

I Introduction to Computers and C++

I
1.1 Introduction 2
1.2 Computers: Hardware and Software 5
1.3 Data Hierarchy 6
1.4 Computer Organization 7
1.5 Machine Languages, Assembly Languages and High-Level Languages 9

1.6 Introduction to Object Technology 10
1.7 Operating Systems 13
1.8 Programming Languages 15
1.9 C++ and a Typical C++ Development Environment 17
1.10 Test-Driving a C++ Application 21
1.11 Web 2.0: Going Social 27
1.12 Software Technologies 29
1.13 Future of C++: TR1, the New C++ Standard and the Open Source

Boost Libraries 31
1.14 Keeping Up-to-Date with Information Technologies 32
1.15 Wrap-Up 32
2 Introduction to C++ Programming 37
2.1 Introduction 38
2.2 First Program in C++: Printing a Line of Text 38
2.3 Modifying Our First C++ Program 42
2.4 Another C++ Program: Adding Integers 43
2.5 Memory Concepts 47
2.6 Arithmetic 48
2.7 Decision Making: Equality and Relational Operators 51

2.8 Wrap-Up 55

www.pearsonhighered.com/deitel

viii

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11

Contents

Introduction to Classes, Objects and Strings

Introduction

Defining a Class with a Member Function
Defining a Member Function with a Parameter
Data Members, ser Functions and ger Functions
Initializing Objects with Constructors

Placing a Class in a Separate File for Reusability
Separating Interface from Implementation
Validating Data with sez Functions

Wrap-Up

Control Statements: Part |

Introduction

Algorithms

Pseudocode

Control Structures

if Selection Statement

if...else Double-Selection Statement

while Repetition Statement

Formulating Algorithms: Counter-Controlled Repetition
Formulating Algorithms: Sentinel-Controlled Repetition
Formulating Algorithms: Nested Control Statements
Assignment Operators

Increment and Decrement Operators

Wrap-Up

Control Statements: Part 2

Introduction

Essentials of Counter-Controlled Repetition
for Repetition Statement

Examples Using the for Statement
do...whiTle Repetition Statement

switch Multiple-Selection Statement

break and continue Statements

Logical Operators

Confusing the Equality (==) and Assignment (=) Operators
Structured Programming Summary
Wrap-Up

64
65
65
68
71
77
81
84
90
95

101

102
102
103
104
107
108
113
114
120
130
134
135
138

152

153
153
155
158
162
164
173
174
179
180
185

Contents ix

6 Functions and an Introduction to Recursion 194
6.1 Introduction 195
6.2 Program Components in C++ 196
6.3 Math Library Functions 197
6.4 Function Definitions with Multiple Parameters 198
6.5 Function Prototypes and Argument Coercion 203
6.6 C++ Standard Library Headers 205
6.7 Case Study: Random Number Generation 207
6.8 Case Study: Game of Chance; Introducing enum 212
6.9 Storage Classes 215
6.10 Scope Rules 218
6.11 Function Call Stack and Activation Records 221
6.12 Functions with Empty Parameter Lists 225
6.13 Inline Functions 225
6.14 References and Reference Parameters 227
6.15 Default Arguments 231
6.16 Unary Scope Resolution Operator 232
6.17 Function Overloading 234
6.18 Function Templates 236
6.19 Recursion 239
6.20 Example Using Recursion: Fibonacci Series 242
6.21 Recursion vs. Iteration 245
6.22 Wrap-Up 248
7 Arrays and Vectors 267
7.1 Introduction 268
7.2 Arrays 269
7.3 Declaring Arrays 270
7.4 Examples Using Arrays 271
7.4.1 Declaring an Array and Using a Loop to Initialize
the Array’s Elements 271
7.4.2 Initalizing an Array in a Declaration with an
Initializer List 272
7.4.3 Specifying an Array’s Size with a Constant Variable
and Setting Array Elements with Calculations 273
7.4.4 Summing the Elements of an Array 275
7.4.5 Using Bar Charts to Display Array Data Graphically 276
7.4.6 Using the Elements of an Array as Counters 277
7.4.7 Using Arrays to Summarize Survey Results 278

7.4.8 Static Local Arrays and Automatic Local Arrays 281

X

7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9

9.10
9.11

10

10.1

Contents

Passing Arrays to Functions

Case Study: Class GradeBook Using an Array to Store Grades
Searching Arrays with Linear Search

Sorting Arrays with Insertion Sort

Multidimensional Arrays

Case Study: Class GradeBook Using a Two-Dimensional Array
Introduction to C++ Standard Library Class Template vector
Wrap-Up

Pointers

Introduction

Pointer Variable Declarations and Initialization
Pointer Operators

Pass-by-Reference with Pointers

Using const with Pointers

Selection Sort Using Pass-by-Reference
sizeof Operator

Pointer Expressions and Pointer Arithmetic
Relationship Between Pointers and Arrays
Pointer-Based String Processing

Arrays of Pointers

Function Pointers

Wrap-Up

Classes: A Deeper Look, Part |

Introduction

Time Class Case Study

Class Scope and Accessing Class Members

Separating Interface from Implementation

Access Functions and Utility Functions

Time Class Case Study: Constructors with Default Arguments
Destructors

When Constructors and Destructors Are Called

Time Class Case Study: A Subtle Trap—Returning a Reference to a

private Data Member
Default Memberwise Assignment
Wrap-Up

Classes: A Deeper Look, Part 2

Introduction

283
287
293
294
297
300
307
313

330

331
331
332
335
339
343
347
349
352
354
357
358
361

379
380
381
388
389
390
393
398
399

402
405
407

414

415

10.2
10.3
10.4
10.5
10.6
10.7
10.8

11.1
11.2
11.3
11.4
11.5

11.6
11.7
11.8
11.9
11.10

11.11
11.12
11.13
11.14
11.15

12

12.1
12.2
12.3
12.4

Contents

const (Constant) Objects and const Member Functions
Composition: Objects as Members of Classes

friend Functions and friend Classes

Using the this Pointer

static Class Members

Proxy Classes

Wrap-Up

Operator Overloading; Class string

Introduction

Using the Overloaded Operators of Standard Library Class string
Fundamentals of Operator Overloading

Overloading Binary Operators

Overloading the Binary Stream Insertion and Stream Extraction
Operators

Overloading Unary Operators

Opverloading the Unary Prefix and Postfix ++ and -- Operators
Case Study: A Date Class

Dynamic Memory Management

Case Study: Array Class

11.10.1 Using the Array Class

11.10.2 Array Class Definition

Operators as Member Functions vs. Non-Member Functions
Converting between Types

explicit Constructors

Building a String Class

Wrap-Up

Object-Oriented Programming: Inheritance

Introduction

Base Classes and Derived Classes

protected Members

Relationship between Base Classes and Derived Classes

12.4.1 Creating and Using a CommissionEmpToyee Class

12.4.2 Creating a BasePTusCommissionEmployee Class Without
Using Inheritance

12.4.3 Creating a CommissionEmpTloyee—
BasePTlusCommissionEmployee Inheritance Hierarchy

12.4.4 CommissionEmployee—BasePlusCommissionEmpTloyee
Inheritance Hierarchy Using protected Data

xi

415
423
429
431
436
441
445

451
452
453
456
457

458
462
463
464
469
471
472
475
483
483
485
487
488

499

500
500
503
503
504

508

514

519

Xii

12.5
12.6
12.7
12.8

13

13.1
13.2
13.3

13.4
13.5
13.6

13.7

13.8

13.9
13.10

14
14.1
142
143
14.4

Contents

12.4.5 CommissionEmployee—BasePTusCommissionEmployee
Inheritance Hierarchy Using private Data

Constructors and Destructors in Derived Classes

public, protected and private Inheritance

Software Engineering with Inheritance

Wrap-Up

522
527
527
528
529

Object-Oriented Programming: Polymorphism 534

Introduction
Introduction to Polymorphism: Polymorphic Video Game
Relationships Among Objects in an Inheritance Hierarchy
13.3.1 Invoking Base-Class Functions from
Derived-Class Objects
13.3.2 Aiming Derived-Class Pointers at Base-Class Objects
13.3.3 Derived-Class Member-Function Calls via
Base-Class Pointers
13.3.4 Virtual Functions
Type Fields and switch Statements
Abstract Classes and Pure virtual Functions
Case Study: Payroll System Using Polymorphism
13.6.1 Creating Abstract Base Class EmpToyee
13.6.2 Creating Concrete Derived Class SalariedEmployee
13.6.3 Creating Concrete Derived Class CommissionEmpTloyee
13.6.4 Creating Indirect Concrete Derived Class
BasePlusCommissionEmployee
13.6.5 Demonstrating Polymorphic Processing
(Optional) Polymorphism, Virtual Functions and Dynamic
Binding “Under the Hood”
Case Study: Payroll System Using Polymorphism and Runtime
Type Information with Downcasting, dynamic_cast, typeid
and type_info
Virtual Destructors
Wrap-Up

Templates

Introduction

Function Templates
Overloading Function Templates
Class Templates

535
536
536

537
540

541
543
549
549
551
552
556
558

560
562

566

569
573
573

579
580
580
583
584

14.5
14.6

15

15.1
15.2

15.3

15.4

15.5
15.6

15.7

15.8
15.9
15.10

16

16.1

Contents

Nontype Parameters and Default Types for Class Templates
Wrap-Up

Stream Input/Output

Introduction

Streams

15.2.1 Classic Streams vs. Standard Streams

15.2.2 dostream Library Headers

15.2.3 Stream Input/Output Classes and Objects

Stream Output

15.3.1 Output of char * Variables

15.3.2 Character Output Using Member Function put

Stream Input

15.4.1 get and getline Member Functions

15.4.2 istream Member Functions peek, putback and ignore

15.4.3 Type-Safe 1/0

Unformatted I/O Using read, write and gcount

Introduction to Stream Manipulators

15.6.1 Integral Stream Base: dec, oct, hex and setbase

15.6.2 Floating-Point Precision (precision, setprecision)

15.6.3 Field Width (width, setw)

15.6.4 User-Defined Output Stream Manipulators

Stream Format States and Stream Manipulators

15.7.1 Trailing Zeros and Decimal Points (showpoint)

15.7.2 Justification (1eft, right and internal)

15.7.3 Padding (fi11, setfil1)

15.7.4 Integral Stream Base (dec, oct, hex, showbase)

15.7.5 Floating-Point Numbers; Scientific and Fixed
Notation (scientific, fixed)

15.7.6 Uppercase/Lowercase Control (uppercase)

15.7.7 Specifying Boolean Format (boolalpha)

15.7.8 Setting and Resetting the Format State via
Member Function flags

Stream Error States

Tying an Output Stream to an Input Stream
Wrap-Up

Exception Handling: A Deeper Look

Introduction

xiii

590
591

595

596
597
597
598
598
601
601
601
602
602
605
605
605
606
607
607
609
610
612
612
613
615
616

617
618
618

619
620
622
623

632
633

xXiv

16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9
16.10
16.11
16.12
16.13

17

17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8
17.9
17.10
17.11
17.12

18

18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9
18.10
18.11

Contents

Example: Handling an Attempt to Divide by Zero
When to Use Exception Handling

Rethrowing an Exception

Exception Specifications

Processing Unexpected Exceptions

Stack Unwinding

Constructors, Destructors and Exception Handling
Exceptions and Inheritance

Processing new Failures

Class unique_ptr and Dynamic Memory Allocation
Standard Library Exception Hierarchy

Wrap-Up

File Processing

Introduction

Files and Streams

Creating a Sequential File

Reading Data from a Sequential File

Updating Sequential Files

Random-Access Files

Creating a Random-Access File

Writing Data Randomly to a Random-Access File
Reading from a Random-Access File Sequentially
Case Study: A Transaction-Processing Program
Object Serialization

Wrap-Up

Class string and String Stream Processing

Introduction

string Assignment and Concatenation
Comparing strings

Substrings

Swapping strings

string Characteristics

Finding Substrings and Characters in a string
Replacing Characters in a string

Inserting Characters into a string

Conversion to C-Style Pointer-Based char * Strings
Iterators

633
639
640
641
642
642
644
645
645
648
650
652

658

659
659
660
664
669
670
671
675
677
679
686
686

696

697
698
700
703
703
704
706
708
710
711
713

Contents XV

18.12 String Stream Processing 714
18.13 Wrap-Up 717
19 Searching and Sorting 724
19.1 Introduction 725
19.2 Searching Algorithms 725

19.2.1 Efficiency of Linear Search 726

19.2.2 Binary Search 727
19.3 Sorting Algorithms 732

19.3.1 Efficiency of Selection Sort 733

19.3.2 Efficiency of Insertion Sort 733

19.3.3 Merge Sort (A Recursive Implementation) 733
19.4 Wrap-Up 740
20 Custom Templatized Data Structures 746
20.1 Introduction 747
20.2 Self-Referential Classes 748
20.3 Dynamic Memory Allocation and Data Structures 749
20.4 Linked Lists 749
20.5 Stacks 764
20.6 Queues 768
20.7 Trees 772
20.8 Wrap-Up 780
21 Bits, Characters, C Strings and structs 791
21.1 Introduction 792
21.2 Structure Definitions 792
21.3 typedef 794
21.4 Example: Card Shuffling and Dealing Simulation 794
21.5 Bitwise Operators 797
21.6 Bit Fields 806
21.7 Character-Handling Library 810
21.8 Pointer-Based String Manipulation Functions 815
21.9 Pointer-Based String-Conversion Functions 822

21.10 Search Functions of the Pointer-Based String-Handling Library 827
21.11 Memory Functions of the Pointer-Based String-Handling Library ~ 831
21.12 Wrap-Up 835

xXvi

22

22.1
222
22.3
22.4
22.5

22.6

22.7

22.8

Contents

22.11 Wrap-Up

Standard Template Library (STL) 850
Introduction to the Standard Template Library (STL) 851
Introduction to Containers 853
Introduction to Iterators 856
Introduction to Algorithms 861
Sequence Containers 863
22.5.1 vector Sequence Container 864
22.5.2 1ist Sequence Container 871
22.5.3 deque Sequence Container 875
Associative Containers 877
22.6.1 multiset Associative Container 877
22.6.2 set Associative Container 880
22.6.3 multimap Associative Container 881
22.6.4 map Associative Container 883
Container Adapters 885
22.7.1 stack Adapter 885
22.7.2 queue Adapter 887
22.7.3 priority_queue Adapter 888
Algorithms 890
22.8.1 fi11, fi1ll_n, generate and generate_n 890
22.8.2 equal, mismatch and lexicographical_compare 892
22.8.3 remove, remove_if, remove_copy and remove_copy_if 895
22.8.4 replace, replace_if, replace_copy and replace_copy_if
879
22.8.5 Mathematical Algorithms 900
22.8.6 Basic Searching and Sorting Algorithms 903
22.8.7 swap, iter_swap and swap_ranges 905
22.8.8 copy_backward, merge, unique and reverse 906
22.8.9 dinplace_merge, unique_copy and reverse_copy 909
22.8.10 Set Operations 910
22.8.11 lower_bound, upper_bound and equal_range 913
22.8.12 Heapsort 915
22.8.13 min and max 918
22.8.14 STL Algorithms Not Covered in This Chapter 919
22.9 Class bitset 920
22.10 Function Objects 924
927
23 Boost Libraries, Technical Report | and C++0x 936
Introduction 937

23.1

Contents XVii

23.2 Deitel Online C++ and Related Resource Centers 937
23.3 Boost Libraries 937
23.4 Boost Libraries Overview 938
23.5 Regular Expressions with the regex Library 941

23.5.1 Regular Expression Example 942

23.5.2 Validating User Input with Regular Expressions 944

23.5.3 Replacing and Splitting Strings 947
23.6 Smart Pointers 950

23.6.1 Reference Counted shared_ptr 950

23.6.2 weak_ptr: shared_ptr Observer 954
23.7 Technical Report 1 960
23.8 C++0x 961
23.9 Core Language Changes 962
23.10 Wrap-Up 967
24 Other Topics 974
24.1 Introduction 975
24.2 const_cast Operator 975
24.3 mutable Class Members 977
24.4 namespaces 979
24.5 Operator Keywords 982
24.6 Pointers to Class Members (.* and ->%) 984
24.7 Multiple Inheritance 986
24.8 Multiple Inheritance and virtual Base Classes 991
249 Wrap-Up 996
Chapters on the Web 1001
A Operator Precedence and Associativity 1002
B ASCII Character Set 1004
C Fundamental Types 1005
D Number Systems 1007

D.1 Introduction 1008

xviii Contents

D.2 Abbreviating Binary Numbers as Octal and Hexadecimal Numbers 1011
D.3 Converting Octal and Hexadecimal Numbers to Binary Numbers 1012

D.4 Converting from Binary, Octal or Hexadecimal to Decimal 1012
D.5 Converting from Decimal to Binary, Octal or Hexadecimal 1013
D.6 Negative Binary Numbers: Two’s Complement Notation 1015
E Preprocessor 1020
E.1 Introduction 1021
E.2 #include Preprocessor Directive 1021
E.3 #define Preprocessor Directive: Symbolic Constants 1022
E.4 #define Preprocessor Directive: Macros 1022
E.5 Conditional Compilation 1024
E.6 #error and #pragma Preprocessor Directives 1025
E.7 Operators # and ## 1026
E.8 Predefined Symbolic Constants 1026
E.9 Assertions 1027
E.10 Wrap-Up 1027
Appendices on the Web 1033
Index 1035

Chapters 25-26 and Appendices F-I are PDF documents posted online at the book’s
Companion Website, which is accessible from www.pearsonhighered.com/deitel.

25 ATM Case Study, Part I:

Object-Oriented Design with the UML 25-1
25.1 Introduction 25-2
25.2 Introduction to Object-Oriented Analysis and Design 25-2
25.3 Examining the ATM Requirements Document 25-3
25.4 Identifying the Classes in the ATM Requirements Document 25-10
25.5 Identifying Class Attributes 25-17
25.6 Identifying Objects’ States and Activities 25-21
25.7 ldentifying Class Operations 25-25
25.8 Indicating Collaboration Among Objects 25-32

25.9 Wrap-Up 25-39

www.pearsonhighered.com/deitel

Contents xXix

26 ATM Case Study, Part 2:

Implementing an Object-Oriented Design 26-1
26.1 Introduction 26-2
26.2 Starting to Program the Classes of the ATM System 26-2
26.3 Incorporating Inheritance into the ATM System 26-8
26.4 ATM Case Study Implementation 26-15
26.4.1 Class ATM 26-16
26.4.2 Class Screen 26-23
26.4.3 Class Keypad 26-25
26.4.4 Class CashDispenser 26-26
26.4.5 Class DepositSlot 26-28
26.4.6 Class Account 26-29
26.4.7 Class BankDatabase 26-31
26.4.8 Class Transaction 26-35
26.4.9 Class BalanceInquiry 26-37
26.4.10 Class Withdrawal 26-39
26.4.11 Class Deposit 26-44
26.4.12 Test Program ATMCaseStudy . cpp 26-47
26.5 Wrap-Up 26-47
F ClLegacy Code Topics F-1
F.1 Introduction F-2
F.2 Redirecting Input/Output on UNIX/Linux/Mac OS X
and Windows Systems E-2
F.3 Variable-Length Argument Lists F-3
F.4 Using Command-Line Arguments E-5
E.5 Notes on Compiling Multiple-Source-File Programs E-7
F.6 Program Termination with exit and atexit E-9
E.7 Type Qualifier volatile F-10
F.8 Suffixes for Integer and Floating-Point Constants F-10
E.9 Signal Handling F-11
F.10 Dynamic Memory Allocation with calloc and realloc F-13
F.11 Unconditional Branch: goto F-14
F.12 Unions F-15
F.13 Linkage Specifications F-18
F.14 Wrap-Up F-19
G UML 2: Additional Diagram Types G-1
G.1 Introduction G-1

G.2 Additional Diagram Types G-2

XX

H.1
H.2
H.3
H.4

H.5
H.o6

I.1
1.2
1.3
1.4

L5
I.6

Contents

Using the Visual Studio Debugger

Introduction

Breakpoints and the Continue Command

Locals and Watch Windows

Controlling Execution Using the Step Into, Step Over, Step Out
and Continue Commands

Autos Window

Wrap-Up

Using the GNU C++ Debugger

Introduction

Breakpoints and the run, stop, continue and print Commands
print and set Commands

Controlling Execution Using the step, finish and

next Commands

watch Command

Wrap-Up

H-11
H-13
H-14

I-1
-2
-2
I-8

[-10
I-13
I-15

“The chief merit of language is clearness ...”
—Galen

For the Student

Welcome to the C++ computer programming language and C++ How to Program, Eighth
Edition! This book presents leading-edge computing technologies, and is particularly ap-
propriate for inroductory course sequences based on the curriculum recommendations of
two key professional organizations—the ACM and the IEEE.

The new Chapter 1 presents intriguing facts and figures. Our goal is to get you excited
about studying computers and programming. The chapter includes a table of some of the
research made possible by computers; current technology trends and hardware discussions;
the data hierarchy; social networking; a table of business and technology publications and
websites that will help you stay up-to-date with the latest technology news, trends and
career opportunities; additional Making a Difference exercises and more.

We focus on software engineering best practices. At the heart of the book is our sig-
nature “live-code approach”—programming concepts are presented in the context of com-
plete working programs, rather than in code snippets. Each C++ code example is
accompanied by live sample executions, so you can see exactly what each program does
when it’s run on a computer. All the source code is available at www.deitel.com/books/
cpphtp8/ and www.pearsonhighered.com/deitel/.

Much of this Preface is addressed to instructors. Please be sure to read the sections enti-
tled Pedagogic Features; Teaching Approach; Software Used in C++ How ro Program, 8/e;
C++ IDE Resource Kit and CourseSmart Web Books.

We believe that this book and its support materials will give you an informative, inter-
esting, challenging and entertaining C++ educational experience. As you read the book, if
you have questions, send an e-mail to deitel@deitel.com—we’ll respond promptly. For
updates on this book, visit www.deitel.com/books/cpphtp8/, follow us on Facebook
(www.deitel.com/deitelfan) and Twitter (@deitel), and subscribe to the Deite/® Buzz
Online newsletter (www.deitel.com/newsletter/subscribe.html). Good luck!

New and Updated Features

Here are the updates we've made for C++ How to Program, 8/e:

Impending New C++ Standard

* Optional sections. We cover various features of the new standard (sometimes called
C++0x and due late in 2011 or early in 2012) in optional modular sections and in
Chapter 23. These are easy to include or omit. Popular compilers such as Microsoft
Visual C++ 2010 and GNU C++ 4.5 already implement many of these features. To

www.deitel.com/books/cpphtp8/
www.deitel.com/books/cpphtp8/
www.pearsonhighered.com/deitel/
www.deitel.com/books/cpphtp8/
www.deitel.com/deitelfan
www.deitel.com/newsletter/subscribe.html

Preface

enable the new standard features in GNU C++, use the -std=C++0x flag when you
compile the corresponding programs.

Boost C++ Libraries, Technical Report 1 (TRI) and C++0x. In Chapter 23, we
introduce the Boost C++ Libraries, Technical Report 1 (TR1) and C++0x. The
free Boost open source libraries are created by members of the C++ community.
Technical Report 1 describes the proposed changes to the C++ Standard Library,
many of which are based on current Boost libraries. The C++ Standards Com-
mittee is revising the C++ Standard—the main goals are to make C++ easier to
learn, improve library building capabilities, and increase compatibility with the
C programming language. The new standard will include many of the libraries in
TR1 and changes to the core language. We overview the Boost libraries and pro-
vide code examples for the “regular expression” and “smart pointer” libraries.
Regular expressions are used to match specific character patterns in text. They can
be used, for example, to validate data to ensure that it’s in a particular format, to
replace parts of one string with another, or to split a string. Many common bugs
in C and C++ code are related to pointers, a powerful programming capability
you'll study in Chapter 8. Smart pointers help you avoid errors by providing ad-
ditional functionality to standard pointers.

unique_ptr vs. auto_ptr. We replaced our auto_ptr example with the impend-
ing standard’s class unique_ptr, which fixes various problems that were associat-
ed with class auto_ptr. Use of auto_ptr is deprecated and unique_ptr is already
implemented in many popular compilers, including Visual C++ 2010 and GNU
C++4.5.

Initializer lists for user-defined types. These enable objects of your own types to
be initialized using the same syntax as built-in arrays.

Range-based for statement. A version of the for statement that iterates over all
the elements of an array or container (such as an object of the vector class).

Lambda expressions. These enable you to create anonymous functions that can
be passed to other functions as arguments.

auto storage class specifier. The keyword auto can no longer be used as a storage
class specifier.

auto. This keyword now deduces the type of a variable from its initializer.
nullptr.This keyword is a replacement for assigning zero to a null pointer.

static_assert. This capability allows you to test certain aspects of the program
at compile time.

New 1ong Tong and unsigned 1ong Tong types. These new types were introduced
for use with 64-bit machines.

Pedagogic Features

Enbanced Making a Difference exercises set. We encourage you to use computers
and the Internet to research and solve significant social problems. These exercises
are meant to increase awareness and discussion of important issues the world is
facing. We hope you'll approach them with your own values, politics and beliefs.

New and Updated Features xxiii

Check out our new Making a Difference Resource Center at www. deitel.com/
MakingADi fference for additional ideas you may want to investigate further.

Page numbers for key terms in chapter summaries. For key terms that appear in
the chapter summaries, we include the page number of each term’s defining oc-
currence in the chapter.

VideoNotes. The Companion Website includes 15+ hours of VideoNotes in
which co-author Paul Deitel explains in detail most of the programs in the core
chapters. Instructors have told us that their students find the VideoNotes valu-
able for preparing for and reviewing lectures.

Modular presentation. We've grouped the chapters into teaching modules. The
Chapter Dependency Chart (later in this Preface) reflects the modularization.

Object Technology

Object-oriented programming and design. We introduce the basic concepts and
terminology of object technology in Chapter 1. Students develop their first cus-
tomized classes and objects in Chapter 3. Presenting objects and classes early gets
students “thinking about objects” immediately and mastering these concepts
more thoroughly. [For courses that require a late-objects approach, consider C++
How to Program, Late Objects Version, Seventh Edition, which begins with six
chapters on programming fundamentals (including two on control statements)
and continues with seven chapters that gradually introduce object-oriented pro-
gramming concepts.]

Integrated case studlies. We provide several case studies that span multiple sections
and chapters. These include development of the GradeBook class in Chapters 3—7,
the Time class in Chapters 9-10, the EmpTloyee class in Chapters 1213, and the op-
tional OOD/UML ATM case study in Chapters 25-26.

Integrated GradeBook case study. The GradeBook case study uses classes and ob-
jects in Chapters 3—7 to incrementally build a GradeBook class that represents an
instructor’s grade book and performs various calculations based on a set of stu-
dent grades, such as calculating the average grade, finding the maximum and
minimum, and printing a bar chart.

Exception handling. We integrate basic exception handling early in the book. In-
structors can easily pull more detailed material forward from Chapter 16, Excep-
tion Handling: A Deeper Look.

Prefer vectors to C arrays. C++ offers two types of arrays—vector class objects
(which we start using in Chapter 7) and C-style, pointer-based arrays. As appro-
priate, we use class template vector instead of C arrays throughout the book.
However, we begin by discussing C arrays in Chapter 7 to prepare you for work-
ing with legacy code and to use as a basis for building your own customized Array
class in Chapter 11.

Prefer string objects to C strings. Similarly, C++ offers two types of strings—
string class objects (which we use starting in Chapter 3) and C-style, pointer-
based strings. We continue to include some early discussions of C strings to give

www.deitel.com/MakingADifference
www.deitel.com/MakingADifference

xXXiv

Preface

you practice with pointer manipulations, to illustrate dynamic memory alloca-
tion with new and delete and to prepare you for working with C strings in the
legacy code that you'll encounter in industry. In new development, you should
favor string class objects. We've replaced most occurrences of C strings with in-
stances of C++ class string to make programs more robust and eliminate many
of the security problems that can be caused by using C strings.

Optional case study: Using the UML to develop an object-oriented design and C++
implementation of an ATM. The UML™ (Unified Modeling Language™) is the
industry-standard graphical language for modeling object-oriented systems.
Chapters 25-26 include an optional online case study on object-oriented design us-
ing the UML. We design and implement the software for a simple automated teller
machine (ATM). We analyze a typical requirements document that specifies the
system to be built. We determine the classes needed to implement that system, the
attributes the classes need to have, the behaviors the classes need to exhibit and spec-
ify how the classes must interact with one another to meet the system requirements.
From the design we produce a complete C++ implementation. Students often re-
port having a “light-bulb moment™—the case study helps them “tie it all together”
and really understand object orientation.

Standard Template Library (STL). This might be one of the most important top-
ics in the book in terms of your appreciation of software reuse. The STL defines
powerful, template-based, reusable components that implement many common
data structures and algorithms used to process those data structures. Chapter 22
introduces the STL and discusses its three key components—containers, iterators
and algorithms. The STL components provide tremendous expressive power, of-
ten reducing many lines of code to a single statement.

Other Features

Printed book contains core content; additional chapters are online. Several online
chapters are included for more advanced courses and for professionals. These are
available in searchable PDF format on the book’s password-protected Compan-
ion Website—see the access card in the front of this book.

Reorganized Chapter 11, Operator Overloading; Class string. We reorganized
this chapter to begin with standard library class string so readers can see an elegant
use of operator ovetloading before they implement their own. We also moved the
section on proxy classes to the end of Chapter 10, where it’s a more natural fit.

Enbanced use of const. We increased the use of const book-wide to encourage
better software engineering.

Software engineering concepts. Chapter 1 briefly introduces very current software
engineering terminology, including agile software development, Web 2.0, Ajax,
Saa$ (Software as a Service), Paa$S (Platform as a Service), cloud computing, web
services, open source software, design patterns, refactoring, LAMP and more.

Compilation and linking process for multiple-source-file programs. Chapter 3 in-
cludes a detailed diagram and discussion of the compilation and linking process
that produces an executable program.

Our Text + Digital Approach to Content XXV

Function Call Stack Explanation. In Chapter 6, we provide a detailed discussion
with illustrations of the function call stack and activation records to explain how
C++ is able to keep track of which function is currently executing, how automatic
variables of functions are maintained in memory and how a function knows
where to return after it completes execution.

Tuned Treatment of Inheritance and Polymorphism. Chapters 12—13 have been
carefully tuned using a concise Employee class hierarchy. We use this same treat-
ment in our C++, Java, C# and Visual Basic books—one of our reviewers called
it the best he had seen in 25 years as a trainer and consultant.

Discussion and illustration of how polymorphism works “under the hood.”
Chapter 13 contains a detailed diagram and explanation of how C++ can imple-
ment polymorphism, virtual functions and dynamic binding internally. This
gives students a solid understanding of how these capabilities work.

ISO/IEC C++ standard compliance. We've audited our presentation against the
ISO/IEC C++ standard document.

Debugger appendices. We provide two Using the Debugger appendices on the
book’s Companion Website—Appendix H, Using the Visual Studio Debugger,
and Appendix I, Using the GNU C++ Debugger.

Code tested on multiple platforms. We tested the code examples on various pop-
ular C++ platforms including GNU C++ on Linux and Microsoft Windows, and
Visual C++ on Windows. For the most part, the book’s examples port to popular
standard-compliant compilers.

Game Programming. Because of limited interest, we've removed from the book
Chapter 27, Game Programming with Ogre (which covers only Linux). For in-
structors who would like to continue using this material with C++ How o Pro-
gram, 8/e, we've included the version from C++ How to Program, 7/e on the
book’s Companion Website.

Our Text + Digital Approach to Content

We surveyed hundreds of instructors teaching C++ courses and learned that most want a
book with content focused on their introductory courses. With that in mind, we moved
various advanced chapters to the web. Having this content in digital format makes it easily
searchable, and gives us the ability to fix errata and add new content as appropriate. The
book’s Companion Website, which is accessible at

www . pearsonhighered.com/deitel/

(see the access card at the front of the book) contains the following chapters in searchable
PDF format:

Chapter 25, ATM Case Study, Part 1: Object-Oriented Design with the UML
Chapter 26, ATM Case Study, Part 2: Implementing an Object-Oriented Design
Game Programming with Ogre (from C++ How to Program, 7/e)

Appendix F, C Legacy Code Topics

www.pearsonhighered.com/deitel/

XXVi Preface

* Appendix G, UML 2: Additional Diagram Types
* Appendix H, Using the Visual Studio Debugger
e Appendix I, Using the GNU C++ Debugger

The Companion Website also includes:

e Extensive VideoNotes—watch and listen as co-author Paul Deitel discusses the
key features of the code examples in Chapters 2—13 and portions of Chapters 16
and 17.

* Two true/false questions per section with answers for self-review.
e Solutions to approximately half of the solved exercises in the book.

The following materials are posted at the Companion Website and at www.deitel.com/
books/cpphtp8/:

* An array of function pointers example and additional function pointer exercises
(from Chapter 8).

e String Class Operator Overloading Case Study (from Chapter 11).

e Building Your Own Compiler exercise descriptions (from Chapter 20).

Dependency Chart

The chart on the next page shows the dependencies among the chapters to help instructors
plan their syllabi. C++ How to Program, 8/e is appropriate for CS1 and CS2 courses.

Teaching Approach

C++ How to Program, 8/e, contains a rich collection of examples. We stress program clarity
and concentrate on building well-engineered software.

Live-code approach. The book is loaded with “live-code” examples—most new concepts are
presented in the context of complete working C++ applications, followed by one or more exe-
cutions showing program inputs and outputs. In the few cases where we use a code snippet,
we tested it in a complete working program, then copied and pasted it into the book.

Syntax coloring. For readability, we syntax color all the C++ code, similar to the way most
C++ integrated-development environments and code editors syntax color code. Our col-
oring conventions are as follows:

comments appear Tike this
keywords appear 1ike this

all other code appears in black

Code highlighting. We place light blue shaded rectangles around each program’s key code

SCngIltS.

Using fonts for emphasis. We place the key terms and the index’s page reference for each
defining occurrence in bold blue text for easy reference. We emphasize on-screen compo-
nents in the bold Helvetica font (e.g., the File menu) and C++ program text in the Lucida
font (for example, int x = 5;).

www.deitel.com/books/cpphtp8/
www.deitel.com/books/cpphtp8/

Chapter
Dependency
Chart

[Note: Arrows pointing into a
chapter indicate that chapter’s
dependencies.]

Legacy C Topics

21 Bits, Characters \

-

Teaching Approach xxvii

Introduction

| Introduction to
Computers and C++

Intro to Programmina
Classes and Objects

2 Intro to C++ Programming

3 Intro to Classes and Objecty

!
ﬂ:ontrol Statements\

Methods and Arrays

4 Control Statements: Part |

5 Control Statements: Part 2

'

6 Functions and an
Intro to Recursion

Y

7 Arrays and Vectors

Y

8 Pointers

C-Strings and structsj

Object-Oriented
Design with the UML
25 (Optional) Object-Oriented

Design with the UML
26 (Optional) Implementing an
Object-Oriented Design

|
Object-Oriented \
Programming

9 Classes: A Deeper
Look, Part |

10 Classes: A Deeper
Look, Part 2

/ Data Structures \

> 6.19-6.21 Recursion

I'I Operator Overloading

12 OOP: Inheritance *
/St Fil d » |9 Searching and
reams, Tiles an 13 OOP: Polymorphism Sorting
Strings *
|5 Stream = 14 Templates » 20 Custom Templatized
Input/Output! Data Structures
16 Exception Handling: ‘
A Deeper Look j QZ Standard Template Library
17 File 18 Class
Processin stringand .
s J Other Topics and

String Stream
k Processingj

I.Most of Chapter 15 is readable after Chapter 7. A
small portion requires Chapters 12 and 14.

the Future of C++

23 Boost Libraries,
Technical Report |
and C++0x

24 Other
Topics

XXVi Preface

Objectives. The opening quotes are followed by a list of chapter objectives.

Hllustrations/ figures. Abundant tables, line drawings, UML diagrams, programs and pro-
gram outputs are included.

Programming tips. We include programming tips to help you focus on important aspects
of program development. These tips and practices represent the best we've gleaned from a
combined seven decades of programming and teaching experience.

Good Programming Practices
The Good Programming Practices call attention to techniques that will help you pro-
duce programs that are clearer, more understandable and more maintainable.

Common Programming Errors
Pointing out these Common Programming Errors reduces the likelibood that you'll
make them.

Error-Prevention Tips
These tips contain suggestions for exposing and removing bugs from your programs; many
describe aspects of C++ that prevent bugs from getting into programs in the first place.

<3~ Performance Tips
—T}?ﬁ These tips highlight opportunities for making your programs run faster or minimizing the
= amount of memory that they occupy.

Portability Tips
\g+ 7he Portability Tips help you write code that will run on a variety of platforms.

, Software Engineering Observations
The Software Engineering Observations highlight architectural and design issues that
affect the construction of software systems, especially large-scale systems.

Summary bullets. We present a section-by-section bullet-list summary of the chapter with
the page references to the defining occurrence for many of the key terms in each section.

Self-review exercises and answers. Extensive self-review exercises and answers are included
for self study. All of the exercises in the optional ATM case study are fully solved.

Exercises. Each chapter concludes with a substantial set of exercises including:
e simple recall of important terminology and concepts
e What's wrong with this code?
* What does this code do?
e writing individual statements and small portions of functions and classes
* writing complete functions, classes and programs
* major projects.

Please do not write to us requesting access to the Pearson Instructor’s Resource Center
which contains the book’s instructor supplements, including the exercise solutions. Ac-

Software Used in C++ How to Program, 8/e xXix

cess is limited strictly to college instructors teaching from the book. Instructors may ob-
tain access only through their Pearson representatives. Solutions are 7ot provided for
“project” exercises. Check out our Programming Projects Resource Center for lots of ad-
ditional exercise and project possibilities (www.deitel.com/ProgrammingProjects/).

Index. We've included an extensive index. Defining occurrences of key terms are high-
lighted with a bold blue page number.

Software Used in C++ How to Program, 8/e

We wrote C++ How to Program, 8/e using Microsoft’s free Visual C++ Express Edition
(which is available free for download at www.microsoft.com/express/downloads/) and
the free GNU C++ (gcc.gnu.org/install/binaries.html), which is already installed on
most Linux systems and can be installed on Mac OS X and Windows systems. Apple in-
cludes GNU C++ in their Xcode development tools, which Mac OS X users can download
from developer.apple.com/technologies/tools/xcode.html.

C++ IDE Resource Kit
Your instructor may have ordered through your college bookstore a Value Pack edition of

C++ How to Program, 8/e that comes bundled with the C++ IDE Resource Kit. This kit
contains CD or DVD versions of:

e Microsoft® Visual Studio 2010 Express Edition (ww.microsoft.com/express/)
¢ Dev C++ (www.bloodshed.net/downTload.html)

e NetBeans (netbeans.org/downloads/index.htm1)

e Eclipse (ecTipse.org/downloads/)

¢ CodeLite (codelite.org/LiteEditor/Download)

You can download these software packages from the websites specified above. The C++ IDE
Resource Kit also includes access to a Companion Website containing step-by-step written
instructions and VideoNotes to help you get started with each development environment. If
your book did not come with the C++ IDE Resource Kit, you can purchase access to the Re-
source Kit’s Companion Website from www. pearsonhighered. com/cppidekit/.

CourseSmart Web Books

Today’s students and instructors have increasing demands on their time and money. Pear-
son has responded to that need by offering digital texts and course materials online
through CourseSmart. CourseSmart allows faculty to review course materials online, sav-
ing time and costs. It offers students a high-quality digital version of the text for less than
the cost of a print copy of the text. Students receive the same content offered in the print
textbook enhanced by search, note-taking, and printing tools. For more information, visit
www. coursesmart.com.

Instructor Supplements

The following supplements are available to qualified instructors only through Pearson
Education’s Instructor Resource Center (www.pearsonhighered.com/irc):

www.deitel.com/ProgrammingProjects/
www.microsoft.com/express/downloads/
www.microsoft.com/express/
www.bloodshed.net/download.html
www.pearsonhighered.com/cppidekit/
www.coursesmart.com
www.pearsonhighered.com/irc

XXX Preface

* Solutions Manual with solutions to the vast majority of the end-of-chapter exer-
cises and Lab Manual exercises. We've added dozens of Making a Difference ex-
ercises, most with solutions.

o Test Item File of multiple-choice questions (approximately two per book section)

e Customizable PowerPoint® slides containing all the code and figures in the text,
plus bulleted items that summarize the key points in the text

If you're not already a registered faculty member, contact your Pearson representative or
visit www. pearsonhighered.com/educator/replocator/.

Acknowledgments2

We'd like to thank Abbey Deitel and Barbara Deitel of Deitel & Associates, Inc. for long
hours devoted to this project. We're fortunate to have worked with the dedicated team of
publishing professionals at Pearson. We appreciate the guidance, savvy and energy of Mi-
chael Hirsch, Editor-in-Chief of Computer Science. Carole Snyder recruited the book’s
reviewers and managed the review process. Bob Engelhardt managed the book’s produc-
tion.

Reviewers
We wish to acknowledge the efforts of our seventh and eighth edition reviewers. They
scrutinized the text and the programs and provided countless suggestions for improving
the presentation: Virginia Bailey (Jackson StateUniversity), Thomas J. Borrelli (Rochester
Institute of Technology), Chris Cox (Adobe Systems), Gregory Dai (eBay), Peter J. De-
Pasquale (The College of New Jersey), John Dibling (SpryWare), Susan Gauch (Univer-
sity of Arkansas), Doug Gregor (Apple, Inc.), Jack Hagemeister (Washington State
University), Williams M. Higdon (University of Indiana), Wing-Ning Li (University of
Arkansas), Dean Mathias (Utah State University), Robert A. McLain (Tidewater Commu-
nity College), April Reagan (Microsoft), José Antonio Gonzdlez Seco (Parliament of An-
dalusia, Spain), Dave Topham (Ohlone College) and Anthony Williams (author and C++
Standards Committee member).

Well, there you have it! As you read the book, we would sincerely appreciate your
comments, criticisms, corrections and suggestions for improving the text. Please address
all correspondence to:

deitel@deitel.com

We'll respond promptly. We hope you enjoy working with C++ How to Program, Eighth
Edition as much as we enjoyed writing it!

Paul and Harvey Deirel

About the Authors

Paul J. Deitel, CEO and Chief Technical Officer of Deitel & Associates, Inc., is a graduate
of MIT, where he studied Information Technology. Through Deitel & Associates, Inc.,
he has delivered hundreds of C++, Java, C#, Visual Basic, C and Internet programming
courses to industry clients, including Cisco, IBM, Siemens, Sun Microsystems, Dell, Lu-

www.pearsonhighered.com/educator/replocator/

About Deitel & Associates, Inc. xXXXi

cent Technologies, Fidelity, NASA at the Kennedy Space Center, the National Severe
Storm Laboratory, White Sands Missile Range, Rogue Wave Software, Boeing, SunGard
Higher Education, Stratus, Cambridge Technology Partners, One Wave, Hyperion Soft-
ware, Adra Systems, Entergy, CableData Systems, Nortel Networks, Puma, iRobot, In-
vensys and many more. He and his co-author, Dr. Harvey M. Deitel, are the world’s best-
selling programming-language textbook authors.

Dr. Harvey M. Deitel, Chairman and Chief Strategy Officer of Deitel & Associates,
Inc., has 50 years of experience in the computer field. Dr. Deitel earned B.S. and M.S.
degrees from MIT in Electrical Engineering and a Ph.D. in Mathematics from Boston
University—at both he studied computing before separate computer science degree pro-
grams were created. He has extensive college teaching experience, including earning tenure
and serving as the Chairman of the Computer Science Department at Boston College
before founding Deitel & Associates, Inc., with his son, Paul J. Deitel. He and Paul are
the co-authors of dozens of books and LiveLessons multimedia packages. With transla-
tions published in Japanese, German, Russian, Chinese, Spanish, Korean, French, Polish,
Italian, Portuguese, Greek, Urdu and Turkish, the Deitels’ texts have earned international
recognition. Dr. Deitel has delivered hundreds of professional programming language
seminars to major corporations, academic institutions, government organizations and the
military.

About Deitel & Associates, Inc.

Deitel & Associates, Inc., is an internationally recognized corporate training and author-
ing organization specializing in computer programming languages, Internet and web soft-
ware technology, object-technology and Android™ and iPhone® education and
applications development. The company provides instructor-led courses delivered at client
sites worldwide on major programming languages and platforms, such as C++, Visual
C++®, C, Java™, Visual C#®, Visual Basic®, XML®, Python®, object technology, Inter-
net and web programming, Android and iPhone app development, and a growing list of
additional programming and software-development courses. The founders of Deitel & As-
sociates, Inc., are Paul J. Deitel and Dr. Harvey M. Deitel. The company’s clients include
many of the world’s largest corporations, government agencies, branches of the military,
and academic institutions. Through its 35-year publishing partnership with Prentice Hall/
Pearson Higher Education, Deitel & Associates, Inc., publishes leading-edge
programming textbooks, professional books, interactive multimedia Cyber Classrooms, and
LiveLessons DVD-based and web-based video courses. Deitel & Associates, Inc., and the
authors can be reached via e-mail at:

deitel@deitel.com

To learn more about Deitel & Associates, Inc., its publications and its Dive Into® Series
Corporate Training curriculum delivered at client locations worldwide, visit:

www.deitel.com/training/
subscribe to the free Deite/® Buzz Online e-mail newsletter at:
www.deitel.com/newsletter/subscribe.html

and follow the authors on Facebook (www.deitel.com/deitelfan) and Twitter (@deitel).

www.deitel.com/deitelfan
www.deitel.com/training/
www.deitel.com/newsletter/subscribe.html

XXX Preface

Individuals wishing to purchase Deitel books, and LiveLessons DVD and web-based
training courses can do so through www.deitel.com. Bulk orders by corporations, the gov-
ernment, the military and academic institutions should be placed directly with Pearson.
For more information, visit

www . pearsonhighered.com

www.deitel.com
www.pearsonhighered.com

Introduction to Computers
and C++

Man is still the most
extraordinary computer of all.
—TJohn F. Kennedy

Good design is good business.
—Thomas J. Watson, Founder of IBM

How wonderful it is that
nobody need wait a single
moment before starting to
improve the world.

—Anne Frank

Objectives
In this chapter you'll learn:

m Exciting recent developments
in the computer field.

m Computer hardware, soft-
ware and networking basics.

= The data hierarchy.

= The different types of
programming languages.

m Basic object-technology
concepts.

m The importance of the
Internet and the web.

m A typical C++ program-
development environment.

m To test-drive a C++
application.

m Some key recent software
technologies.

= How computers can help you
make a difference.

2 Chapter | Introduction to Computers and C++

1.1 Introduction 1.10 Test-Driving a C++ Application

1.2 Computers: Hardware and Software I.11 Web 2.0: Going Social

1.3 Data Hierarchy 1.12 Software Technologies

1.4 Computer Organization 1.13 Future of C++: TRI, the New C++

1.5 Machine Languages, Assembly Standard and the Open Source Boost
Languages and High-Level Languages Libraries

1.6 Introduction to Object Technology 1.14 Keeping Up-to-Date with

1.7 Operating Systems Information Technologies

1.8 Programming Languages I.15 Wrap-Up

1.9 C++and a Typical C++ Development

Environment

Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference |
Making a Difference Resources

1.1 Introduction

Welcome to C++—a powerful computer programming language that’s appropriate for
technically oriented people with little or no programming experience, and for experienced
programmers to use in building substantial information systems. You’re already familiar
with the powerful tasks computers perform. Using this textbook, you’ll write instructions
commanding computers to perform those kinds of tasks. Soffware (i.e., the instructions
you write) controls hardware (i.e., computers).

You'll learn object-oriented programming—rtoday’s key programming methodology.
You'll create and work with many soffware objects in this text.

C++ is one of today’s most popular software development languages. This text pro-
vides an introduction to programming in the version of C++ standardized in the United
States through the American National Standards Institute (ANSI) and worldwide
through the efforts of the International Organization for Standardization (ISO).

In use today are more than a billion general-purpose computers and billions more cell
phones, smartphones and handheld devices (such as tablet computers). According to a
study by eMarketer, the number of mobile Internet users will reach approximately 134
million by 2013.! Other studies have projected smartphone sales to surpass personal com-
puter sales in 20112 and tablet sales to account for over 20% of all personal computer sales
by 2015.3 By 2014, the smartphone applications market is expected to exceed $40 bil-
lion,* which is creating significant opportunities for programming mobile applications.

Computing in Industry and Research
These are exciting times in the computer field. Many of the most influential and successful
businesses of the last two decades are technology companies, including Apple, IBM, Hew-

www.circleid.com/posts/mobile_internet_users_to_reach_134_million_by_2013/.
www.pcworld.com/article/171380/more_smartphones_than_desktop_pcs_by_2011.html.
www. forrester.com/ER/Press/Release/0,1769,1340,00.htm1.

Inc., December 2010/January 2011, pages 116-123.

N

www.circleid.com/posts/mobile_internet_users_to_reach_134_million_by_2013/
www.pcworld.com/article/171380/more_smartphones_than_desktop_pcs_by_2011.html
www.forrester.com/ER/Press/Release/0,1769,1340,00.html

I.1 Introduction 3

lett Packard, Dell, Intel, Motorola, Cisco, Microsoft, Google, Amazon, Facebook, Twit-
ter, Groupon, Foursquare, Yahoo!, eBay and many more—these are major employers of
people who study computer science, information systems or related disciplines. At the
time of this writing, Apple was the second most valuable company in the world and zbe
most valuable technology company.> Computers are also used extensively in academic and
industrial research. Figure 1.1 provides just a few examples of exciting ways in which com-
puters are used in research and industry.

Description

Internet The Internet—a global network of computers—was made possible by the
convergence of computing and communications. It has its roots in the 1960s,
when research funding was supplied by the U.S. Department of Defense.
Originally designed to connect the main computer systems of about a dozen
universities and research organizations, the Internet today is accessible by bil-
lions of computers and computer-controlled devices worldwide. Computers
break lengthy transmissions into packets at the sending end, route the packets
to their intended receivers and ensure that those packets are received in
sequence and without error at the receiving end. According to a study by For-
rester Research, the average U.S. online consumer now spends as much time
online as watching television (forrester.com/rb/Research/understanding_
changing_needs_of _us_online_consumer,/q/i d/57861/t/2).

Human The Human Genome Project was founded to identify and analyze the
Genome 20,000+ genes in human DNA . The project used computer programs to
Project analyze complex genetic data, determine the sequences of the billions of

chemical base pairs that make up human DNA and store the information in
databases which have been made available to researchers in many fields. This
research has led to tremendous innovation and growth in the biotechnology

industry.
World World Community Grid (www.worTdcommunitygrid.org) is a non-profit
Community computing grid. People worldwide donate their unused computer processing
Grid power by installing a free secure software program that allows the World

Community Grid to harness the excess power when the computers are idle.
The computing power is used in place of supercomputers to conduct scien-
tific research projects that are making a difference, including developing
affordable solar energy, providing clean water to the developing world, fight-
ing cancer, curing muscular dystrophy, finding influenza antiviral drugs,
growing more nutritious rice for regions fighting hunger and more.

Medical X-ray computed tomography (CT) scans, also called CAT (computerized

imaging axial tomography) scans, take X-rays of the body from hundreds of different
angles. Computers are used to adjust the intensity of the X-ray, optimizing
the scan for each type of tissue, then to combine all of the information to cre-
ate a 3D image.

Fig. 1.1 | A few uses for computers. (Part | of 3.)

5. www.zdnet.com/blog/apple/apple-becomes-worlds-second-most-valuable-company/9047.

www.zdnet.com/blog/apple/apple-becomes-worlds-second-most-valuable-company/9047
www.worldcommunitygrid.org

4 Chapter I Introduction to Computers and C++

Name Description

GPS Global Positioning System (GPS) devices use a network of satellites to retrieve
location-based information. Multiple satellites send time-stamped signals to the
device GPS device, which calculates the distance to each satellite based on the
time the signal left the satellite and the time the signal was received. The loca-
tion of each satellite and the distance to each are used to determine the exact
location of the device. Based on your location, GPS devices can provide step-
by-step directions, help you easily find nearby businesses (restaurants, gas sta-
tions, etc.) and points of interest, or help you find your friends.

Microsoft’s Many Ford cars now feature Microsoft's SYNC technology, providing speech-

SYNC® synthesis (for reading text messages to you) and speech-recognition capabili-
ties that allow you to use voice commands to browse music, request traffic
alerts and more.

AMBER™ The AMBER (America’s Missing: Broadcast Emergency Response) Alert Sys-

Alert tem is used to find abducted children. Law enforcement notifies TV and
radio broadcasters and state transportation officials, who then broadcast alerts
on TV, radio, computerized highway signs, the Internet and wireless devices.
AMBER Alert recently partnered with Facebook. Facebook users can “Like”
AMBER Alert pages by location to receive alerts in their news feeds.

Robots Robots are computerized machines that can perform tasks (including physical
tasks), respond to stimuli and more. They can be used for day-to-day tasks
(e.g., iRobot’s Roomba vacuum), entertainment (such as robotic pets), mili-
tary combat, space and deep sea exploration, manufacturing and more. In
2004, NASA’s remote-controlled Mars rover—which used Java technology—
explored the surface to learn about the history of water on the planet.

One Laptop One Laptop Per Child (OLPC) is providing low-power, inexpensive, Inter-

Per Child net-enabled laptops to poor children worldwide—enabling learning and

(OLPC) reducing the digital divide (one.Tlaptop.org). By providing these educational
resources, OLPC is increasing the opportunities for poor children to learn
and make a difference in their communities.

Game The computer game business is larger than the first-run movie business. The

programming most sophisticated video games can cost as much as $100 million to develop.
Activision’s Call of Duty 2: Modern Warfare, released in November 2009,
carned $310 million in just one day in North America and the U.K.
(news .cnet.com/8301-13772_3-10396593-52. htm1?tag=mncol;txt)! Online
social gaming, which enables users worldwide to compete with one another, is
growing rapidly. Zynga—-creator of popular online games such as Farmuville
and Mafia Wars—was founded in 2007 and already has over 215 million
monthly users. To accommodate the growth in traffic, Zynga is adding nearly
1,000 servers each week (techcrunch.com/2010/09/22/zynga-moves-1-peta-
byte-of-data-daily-adds-1000-servers-a-week/)! Video game consoles are
also becoming increasingly sophisticated. The Wii Remote uses an accelerom-
eter (to detect tilt and acceleration) and a sensor that determines where the
device is pointing, allowing the device to respond to motion. By gesturing
with the Wii Remote in hand, you can control the video game on the screen.

Fig. 1.1 | A few uses for computers. (Part 2 of 3.)

1.2 Computers: Hardware and Software 5

Description

(cont.) With Microsoft’s Kinect for Xbox 360, you—the player—become the con-
troller. Kinect uses a camera, depth sensor and sophisticated software to fol-
low your body movement, allowing you to control the game
(en.wikipedia.org/wiki/Kinect). Kinect games include dancing, exercising,
playing sports, training virtual animals and more.

Internet TV Internet TV set-top boxes (such as Apple TV and Google TV) give you access
to content—such as games, news, movies, television shows and more—allow-
ing you to access an enormous amount of content on demand; you no longer
need to rely on cable or satellite television providers to get content.

Fig. 1.1 | A few uses for computers. (Part 3 of 3.)

1.2 Computers: Hardware and Software

A computer is a device that can perform computations and make logical decisions phe-
nomenally faster than human beings can. Many of today’s personal computers can per-
form billions of calculations in one second—more than a human can perform in a lifetime.
Supercomputers are already performing thousands of trillions (quadrillions) of instructions
per second! To put that in perspective, a quadrillion-instruction-per-second computer can
perform in one second more than 100,000 calculations for every person on the planet!
And—these “upper limits” are growing quickly!

Computers process data under the control of sets of instructions called computer pro-
grams. These programs guide the computer through orderly sets of actions specified by
people called computer programmers. The programs that run on a computer are referred
to as software. In this book, you’ll learn today’s key programming methodology that’s
enhancing programmer productivity, thereby reducing software-development costs—
object-oriented programming.

A computer consists of various devices referred to as hardware (e.g., the keyboard,
screen, mouse, hard disks, memory, DVDs and processing units). Computing costs are
dropping dramatically, owing to rapid developments in hardware and software technolo-
gies. Computers that might have filled large rooms and cost millions of dollars decades ago
are now inscribed on silicon chips smaller than a fingernail, costing perhaps a few dollars
each. Ironically, silicon is one of the most abundant materials—it’s an ingredient in
common sand. Silicon-chip technology has made computing so economical that more
than a billion general-purpose computers are in use worldwide, and this is expected to
double in the next few years.

Computer chips (microprocessors) control countless devices. These embedded systems
include anti-lock brakes in cars, navigation systems, smart home appliances, home security
systems, cell phones and smartphones, robots, intelligent traffic intersections, collision
avoidance systems, video game controllers and more. The vast majority of the microproces-
sors produced each year are embedded in devices other than general-purpose computers.®

6. www.eetimes.com/electronics-blogs/industrial-control-designline-blog/4027479/
Real-men-program-in-C?pageNumber=1.

www.eetimes.com/electronics-blogs/industrial-control-designline-blog/4027479/Real-men-program-in-C?pageNumber=1
www.eetimes.com/electronics-blogs/industrial-control-designline-blog/4027479/Real-men-program-in-C?pageNumber=1

6 Chapter | Introduction to Computers and C++

Moore’s Law

Every year, you probably expect to pay at least a little more for most products and services.
The opposite has been the case in the computer and communications fields, especially
with regard to the costs of hardware supporting these technologies. For many decades,
hardware costs have fallen rapidly. Every year or two, the capacities of computers have ap-
proximately doubled without any increase in price. This remarkable observation often is
called Moore’s Law, named for the person who identified the trend, Gordon Moore, co-
founder of Intel—a leading manufacturer of the processors in today’s computers and em-
bedded systems. Moore’s Law and related observations are especially true in relation to the
amount of memory that computers have for programs, the amount of secondary storage
(such as disk storage) they have to hold programs and data over longer periods of time, and
their processor speeds—the speeds at which computers execute their programs (i.e., do
their work). Similar growth has occurred in the communications field, in which costs have
plummeted as enormous demand for communications bandwidth (i.e., information-car-
rying capacity) has attracted intense competition. We know of no other fields in which
technology improves so quickly and costs fall so rapidly. Such phenomenal improvement
is truly fostering the Information Revolution.

1.3 Data Hierarchy

Data items processed by computers form a data hierarchy that becomes larger and more
complex in structure as we progress from bits to characters to fields, and so on. Figure 1.2
illustrates a portion of the data hierarchy. Figure 1.3 summarizes the data hierarchy’s levels.

Sally Black

Tom Blue
Judy Green File
Iris Orange
Randy Red
Judy Green Record

*

Judy Field

4
01001010 Byte (ASCII character |)
A
|
1 Bit

Fig. 1.2 | Data hierarchy.

.4 Computer Organization 7

Level Description

Bits The smallest data item in a computer can assume the value 0 or the value 1.
Such a data item is called a bit (short for “binary digit"—a digit that can
assume one of two values). It’s remarkable that the impressive functions per-
formed by computers involve only the simplest manipulations of Os and 1s—

examining a bits value, setting a bits value and reversing a bits value (from 1 to 0
or from 0 to 1).

Characters It tedious for people to work with data in the low-level form of bits. Instead,
they prefer to work with decimal digits (0-9), letters (A—Z and a—z), and special
symbols (e.g., $, @, %, &, *, (,), — +, ", :, 2 and /). Digits, letters and special
symbols are known as characters. The computer’s character set is the set of all
the characters used to write programs and represent data items. Computers pro-
cess only 1s and Os, so a computer’s character set represents every character as a
pattern of 1s and 0s. C++ uses the ASCII (American Standard Code for Infor-
mation Interchange) character set (Appendix B).

Fields Just as characters are composed of bits, fields are composed of characters or
bytes. A field is a group of characters or bytes that conveys meaning. For exam-
ple, a field consisting of uppercase and lowercase letters can be used to represent
a person’s name, and a field consisting of decimal digits could represent a per-
son’s age.

Records Several related fields can be used to compose a record (implemented as a class in
Java). In a payroll system, for example, the record for an employee might consist
of the following fields (possible types for these fields are shown in parentheses):

* Employee identification number (a whole number)

* Name (a string of characters)

* Address (a string of characters)

* Hourly pay rate (a number with a decimal point)

* Year-to-date carnings (a number with a decimal point)

* Amount of taxes withheld (a number with a decimal point)

Thus, a record is a group of related fields. In the preceding example, all the
fields belong to the same employee. A company might have many employees
and a payroll record for each one.

Files A file is a group of related records. [/Noze: More generally, a file contains arbitrary
data in arbitrary formats. In some operating systems, a file is viewed simply as a
sequence of bytes—any organization of the bytes in a file, such as organizing the
data into records, is a view created by the application programmer.] It’s not
unusual for an organization to have many files, some containing billions, or even
trillions, of characters of information.

Fig. 1.3 | Levels of the data hierarchy.

1.4 Computer Organization

Regardless of differences in physical appearance, computers can be envisioned as divided
into various logical units or sections (Fig. 1.4).

8 Chapter |

Logical unit

Introduction to Computers and C++

Description

Input unit

Output unit

Memory unit

Arithmetic
and logic unit

(ALU)

Central
processing

unit (CPU)

Secondary

storage unit

This “receiving” section obtains information (data and computer programs)
from input devices and places it at the disposal of the other units for processing.
Most information is entered into computers through keyboards, touch screens
and mouse devices. Other forms of input include speaking to your computer,
scanning images and barcodes, reading from secondary storage devices (like
hard drives, DVD drives, Blu-ray Disc™ drives and USB flash drives—also
called “thumb drives” or “memory sticks”), receiving video from a webcam and
having your computer receive information from the Internet (such as when you
download videos from YouTube™ or e-books from Amazon). Newer forms of
input include reading position data from a GPS device, and motion and orien-
tation information from an accelerometer in a smartphone or game controller.

This “shipping” section takes information that the computer has processed
and places it on various output devices to make it available for use outside the
computer. Most information that’s output from computers today is displayed
on screens, printed on paper, played as audio or video on portable media
players (such as Apple’s popular iPods) and giant screens in sports stadiums,
transmitted over the Internet or used to control other devices, such as robots
and “intelligent” appliances.

This rapid-access, relatively low-capacity “warehouse” section retains
information that has been entered through the input unit, making it
immediately available for processing when needed. The memory unit also
retains processed information until it can be placed on output devices by the
output unit. Information in the memory unit is volatile—it’s typically lost
when the computer’s power is turned off. The memory unit is often called
either memory or primary memory. Typical main memories on desktop and
notebook computers contain between 1 GB and 8 GB (GB stands for
gigabytes; a gigabyte is approximately one billion bytes).

This “manufacturing” section performs calculations, such as addition, subtrac-
tion, multiplication and division. It also contains the decision mechanisms
that allow the computer, for example, to compare two items from the mem-
ory unit to determine whether they’re equal. In today’s systems, the ALU is
usually implemented as part of the next logical unit, the CPU.

This “administrative” section coordinates and supervises the operation of the
other sections. The CPU tells the input unit when information should be read
into the memory unit, tells the ALU when information from the memory unit
should be used in calculations and tells the output unit when to send
information from the memory unit to certain output devices. Many of today’s
computers have multiple CPUs and, hence, can perform many operations
simultaneously. A multi-core processor implements multiple processors on a
single integrated-circuit chip—a dual-core processor has two CPUs and a quad-
core processor has four CPUs. Today’s desktop computers have processors that
can execute billions of instructions per second.

This is the long-term, high-capacity “warehousing” section. Programs or data
not actively being used by the other units normally are placed on secondary

Fig. 1.4 | Logical units of a computer. (Part | of 2.)

.5 Machine Languages, Assembly Languages and High-Level Languages 9

Logical unit Description

Secondary storage devices (e.g., your hard drive) until they’re again needed, possibly
storage unit hours, days, months or even years later. Information on secondary storage
(cont.) devices is persistent—it’s preserved even when the computer’s power is turned

off. Secondary storage information takes much longer to access than informa-
tion in primary memory, but the cost per unit of secondary storage is much
less than that of primary memory. Examples of secondary storage devices
include CD drives, DVD drives and flash drives, some of which can hold up
to 128 GB. Typical hard drives on desktop and notebook computers can hold
up to 2 TB (TB stands for terabytes; a terabyte is approximately one trillion

bytes).

Fig. 1.4 | Logical units of a computer. (Part 2 of 2.)

1.5 Machine Languages, Assembly Languages and High-
Level Languages

Programmers write instructions in various programming languages, some directly under-
standable by computers and others requiring intermediate #ranslation steps. Hundreds of
such languages are in use today. These may be divided into three general types:

1. Machine languages
2. Assembly languages
3. High-level languages

Any computer can directly understand only its own machine language, defined by its
hardware design. Machine languages generally consist of strings of numbers (ultimately
reduced to 1s and Os) that instruct computers to perform their most elementary operations
one at a time. Machine languages are machine dependent (a particular machine language
can be used on only one type of computer). Such languages are cumbersome for humans.
For example, here’s a section of an early machine-language program that adds overtime
pay to base pay and stores the result in gross pay:

+1300042774
+1400593419
+1200274027

Programming in machine language was simply too slow and tedious for most pro-
grammers. Instead of using the strings of numbers that computers could directly under-
stand, programmers began using English-like abbreviations to represent elementary
operations. These abbreviations formed the basis of assembly languages. Translator pro-
grams called assemblers were developed to convert early assembly-language programs to
machine language at computer speeds. The following section of an assembly-language pro-
gram also adds overtime pay to base pay and stores the result in gross pay:

Toad basepay
add overpay
store grosspay

10 Chapter | Introduction to Computers and C++

Although such code is clearer to humans, it’s incomprehensible to computers until trans-
lated to machine language.

Computer usage increased rapidly with the advent of assembly languages, but pro-
grammers still had to use many instructions to accomplish even the simplest tasks. To
speed the programming process, high-level languages were developed in which single
statements could be written to accomplish substantial tasks. Translator programs called
compilers convert high-level language programs into machine language. High-level lan-
guages allow you to write instructions that look almost like everyday English and contain
commonly used mathematical notations. A payroll program written in a high-level lan-
guage might contain a single statement such as

grossPay = basePay + overTimePay

From the programmer’s standpoint, high-level languages are preferable to machine and
assembly languages. C++, C, Microsoft’s .NET languages (e.g., Visual Basic, Visual C++ and
Visual C#) and Java are among the most widely used high-level programming languages.

Compiling a large high-level language program into machine language can take a con-
siderable amount of computer time. Interpreter programs were developed to execute high-
level language programs directly (without the delay of compilation), although slower than
compiled programs run.

1.6 Introduction to Object Technology

Building software quickly, correctly and economically remains an elusive goal at a time
when demands for new and more powerful software are soaring. Objects, or more precise-
ly—as we’ll see in Chapter 3—the classes objects come from, are essentially reusable soft-
ware components. There are date objects, time objects, audio objects, video objects,
automobile objects, people objects, etc. Almost any roun can be reasonably represented as
a software object in terms of attributes (e.g., name, color and size) and bebaviors (e.g., cal-
culating, moving and communicating). Software developers are discovering that using a
modular, object-oriented design and implementation approach can make software-devel-
opment groups much more productive than was possible with earlier popular techniques
like “structured programming”—object-oriented programs are often easier to understand,
correct and modify.

The Automobile as an Object
To help you understand objects and their contents, let’s begin with a simple analogy. Sup-
pose you want to drive a car and make it go faster by pressing its accelerator pedal. What must
happen before you can do this? Well, before you can drive a car, someone has to design it.
A car typically begins as engineering drawings, similar to the blueprints that describe the
design of a house. These drawings include the design for an accelerator pedal. The pedal
hides from the driver the complex mechanisms that actually make the car go faster, just as
the brake pedal hides the mechanisms that slow the car, and the steering wheel “hides” the
mechanisms that turn the car. This enables people with little or no knowledge of how en-
gines, braking and steering mechanisms work to drive a car easily.

Just as you cannot cook meals in the kitchen of a blueprint, you cannot drive a car’s
engineering drawings. Before you can drive a car, it must be built from the engineering
drawings that describe it. A completed car has an actual accelerator pedal to make the car

[.6 Introduction to Object Technology 11

go faster, but even that’s not enough—the car won’t accelerate on its own (hopefully!), so
the driver must press the pedal to accelerate the car.

Member Functions and Classes

Let’s use our car example to introduce some key object-oriented programming concepts. Per-
forming a task in a program requires a member function, which houses the program state-
ments that actually perform its task. The member function hides these statements from its
uset, just as the accelerator pedal of a car hides from the driver the mechanisms of making
the car go faster. In C++, we create a program unit called a class to house the set of member
functions that perform the class’s tasks. For example, a class that represents a bank account
might contain one member function to deposir money to an account, another to withdraw
money from an account and a third to Znguire what the account’s current balance is. A class
is similar in concept to a car’s engineering drawings, which house the design of an accelerator
pedal, steering wheel, and so on.

Instantiation

Just as someone has to build a car from its engineering drawings before you can actually
drive a car, you must build an object of a class before a program can perform the tasks that
the class’s member functions define. The process of doing this is called instantiation. An
object is then referred to as an instance of its class.

Reuse

Just as a car’s engineering drawings can be reused many times to build many cars, you can
reuse a class many times to build many objects. Reuse of existing classes when building new
classes and programs saves time and effort. Reuse also helps you build more reliable and
effective systems, because existing classes and components often have gone through exten-
sive resting, debugging and performance tuning. Just as the notion of interchangeable pars
was crucial to the Industrial Revolution, reusable classes are crucial to the software revolu-
tion that has been spurred by object technology.

rm Software Engineering Observation 1.1

@ Use 2 building-block approach to creating your programs. Avoid reinventing the wheel—
use existing pieces wherever possible. This software reuse is a key benefit of object-oriented
programming.

Messages and Member Function Calls

When you drive a car, pressing its gas pedal sends a message to the car to perform a task—
that is, to go faster. Similatly, you send messages to an object. Each message is implemented
as a member function call that tells a member function of the object to perform its task.
For example, a program might call a particular bank account object’s deposiz member func-
tion to increase the account’s balance.

Attributes and Data Members

A car, besides having capabilities to accomplish tasks, also has azzributes, such as its color,
its number of doors, the amount of gas in its tank, its current speed and its record of total
miles driven (i.e., its odometer reading). Like its capabilities, the car’s attributes are repre-
sented as part of its design in its engineering diagrams (which, for example, include an

12 Chapter | Introduction to Computers and C++

odometer and a fuel gauge). As you drive an actual car, these attributes are carried along
with the car. Every car maintains its own attributes. For example, each car knows how
much gas is in its own gas tank, but zor how much is in the tanks of ozher cars.

An object, similatly, has actributes that it carries along as it’s used in a program. These
attributes are specified as part of the object’s class. For example, a bank account object has
a balance attribute that represents the amount of money in the account. Each bank account
object knows the balance in the account it represents, but 7oz the balances of the other
accounts in the bank. Attributes are specified by the class’s data members.

Encapsulation

Classes encapsulate (i.e., wrap) attributes and member functions into objects—an object’s
attributes and member functions are intimately related. Objects may communicate with
one another, but they’re normally not allowed to know how other objects are implement-
ed—implementation details are hidden within the objects themselves. This information
hiding, as we’ll see, is crucial to good software engineering.

Inbheritance

A new class of objects can be created quickly and conveniently by inheritance—the new
class absorbs the characteristics of an existing class, possibly customizing them and adding
unique characteristics of its own. In our car analogy, an object of class “convertible” cer-
tainly 45 an object of the more general class “automobile,” but more specifically, the roof can
be raised or lowered.

Object-Oriented Analysis and Design (OOAD)

Soon you’ll be writing programs in C++. How will you create the code (i.e., the program
instructions) for your programs? Perhaps, like many programmers, you'll simply turn on
your computer and start typing. This approach may work for small programs (like the ones
we present in the early chapters of the book), but what if you were asked to create a soft-
ware system to control thousands of automated teller machines for a major bank? Or sup-
pose you were asked to work on a team of 1,000 software developers building the next U.S.
air traffic control system? For projects so large and complex, you should not simply sit
down and start writing programs.

To create the best solutions, you should follow a detailed analysis process for deter-
mining your project’s requirements (i.e., defining what the system is supposed to do) and
developing a design that satisfies them (i.e., deciding how the system should do it). Ideally,
you'd go through this process and carefully review the design (and have your design
reviewed by other software professionals) before writing any code. If this process involves
analyzing and designing your system from an object-oriented point of view, it¢’s called an
object-oriented analysis and design (OOAD) process. Languages like C++ are object ori-
ented. Programming in such a language, called object-oriented programming (OOP),
allows you to implement an object-oriented design as a working system.

The UML (Unified Modeling Language)

Although many different OOAD processes exist, a single graphical language for commu-
nicating the results of a7y OOAD process has come into wide use. This language, known
as the Unified Modeling Language (UML), is now the most widely used graphical scheme
for modeling object-oriented systems. We present our first UML diagrams in Chapters 3
and 4, then use them in our deeper treatment of object-oriented programming through

1.7 Operating Systems 13

Chapter 13. In our optional ATM Software Engineering Case Study in Chapters 25-26 we
present a simple subset of the UMLs features as we guide you through an object-oriented
design experience.

1.7 Operating Systems

Operating systems are software systems that make using computers more convenient for us-
ers, application developers and system administrators. Operating systems provide services
that allow each application to execute safely, efficiently and concurrently (i.e., in parallel) with
other applications. The software that contains the core components of the operating system
is called the kernel. Popular desktop operating systems include Linux, Windows 7 and Mac
OS X. Popular mobile operating systems used in smartphones and tablets include Google’s
Android, BlackBerry OS and Apple’s iOS (for its iPhone, iPad and iPod Touch devices).

Windows—A Proprietary Operating System

In the mid-1980s, Microsoft developed the Windows operating system, consisting of a
graphical user interface built on top of DOS—an enormously popular personal-computer
operating system of the time that users interacted with by typing commands. Windows bor-
rowed from many concepts (such as icons, menus and windows) popularized by early Apple
Macintosh operating systems and originally developed by Xerox PARC. Windows 7 is Mi-
crosoft’s latest operating system—its features include enhancements to the user interface,
faster startup times, further refinement of security features, touch-screen and multi-touch
support, and more. Windows is a proprietary operating system—it’s controlled by one com-
pany exclusively. Windows is by far the world’s most widely used operating system.

Linux—An Open-Source Operating System

The Linux operating system is perhaps the greatest success of the open-source movement.
Open-source software is a software development style that departs from the proprietary de-
velopment that dominated software’s eatly years. With open-source development, individu-
als and companies contribute their efforts in developing, maintaining and evolving software
in exchange for the right to use that software for their own purposes, typically at no charge.
Open-source code is often scrutinized by a much larger audience than proprietary software,
so errors often get removed faster. Open source also encourages more innovation.

Some organizations in the open-source community are the Eclipse Foundation (the
Eclipse Integrated Development Environment helps C++ programmers conveniently
develop software), the Mozilla Foundation (creators of the Firefox web browser), the
Apache Software Foundation (creators of the Apache web server used to develop web-
based applications) and SourceForge (which provides the tools for managing open source
projects—it has over 260,000 of them under development). Rapid improvements to com-
puting and communications, decreasing costs and open-source software have made it
much easier and more economical to create a software-based business now than just a few
decades ago. A great example is Facebook, which was launched from a college dorm room
and built with open-source software.”

The Linux kernel is the core of the most popular open-source, freely distributed, full-
featured operating system. It’s developed by a loosely organized team of volunteers, and is

7. developers.facebook.com/opensource/.

14 Chapter | Introduction to Computers and C++

popular in servers, personal computers and embedded systems. Unlike that of proprietary
operating systems like Microsoft’s Windows and Apple’s Mac OS X, Linux source code
(the program code) is available to the public for examination and modification and is free
to download and install. As a result, users of the operating system benefit from a commu-
nity of developers actively debugging and improving the kernel, an absence of licensing
fees and restrictions, and the ability to completely customize the operating system to meet
specific needs.

In 1991, Linus Torvalds, a 21-year-old student at the University of Helsinki, Finland,
began developing the Linux kernel as a hobby. (The name Linux is derived from “Linus”
and “UNIX"—an operating system developed by Bell Labs in 1969.) Torvalds wished to
improve upon the design of Minix, an educational operating system created by Professor
Andrew Tanenbaum of the Vrije Universiteit in Amsterdam. The Minix source code was
publicly available to allow professors to demonstrate basic operating-system implementa-
tion concepts to their students.

Torvalds released the first version of Linux in 1991. The favorable response led to the
creation of a community that has continued to develop and support Linux. Developers
downloaded, tested, and modified the Linux code, submitting bug fixes and feedback to
Torvalds, who reviewed them and applied the improvements to the code.

The 1994 release of Linux included many features commonly found in a mature oper-
ating system, making Linux a viable alternative to UNIX. Enterprise systems companies
such as IBM and Oracle became increasingly interested in Linux as it continued to stabilize
and spread to new platforms.

A variety of issues—such as Microsoft’s market power, the small number of user-
friendly Linux applications and the diversity of Linux distributions, such as Red Hat
Linux, Ubuntu Linux and many others—have prevented widespread Linux use on
desktop computers. But Linux has become extremely popular on servers and in embedded
systems, such as Google’s Android-based smartphones.

Android

Android—the fastest growing mobile and smartphone operating system—is based on the
Linux kernel and Java. One benefit of developing Android apps is the openness of the plat-
form. The operating system is open source and free.

The Android operating system was developed by Android, Inc., which was acquired
by Google in 2005. In 2007, the Open Handset Alliance™-—a consortium of 34 compa-
nies initially and 79 by 2010—was formed to continue developing Android. As of
December 2010, more than 300,000 Android smartphones were being activated each
day!® Android smartphones are now outselling iPhones.” The Android operating system is
used in numerous smartphones (such as the Motorola Droid, HTC EVO™ 4G, Samsung
Vibrant™ and many more), e-reader devices (such as the Barnes and Noble Nook™),
tablet computers (such as the Dell Streak, the Samsung Galaxy Tab and more), in-store
touch-screen kiosks, cars, robots and multimedia players.

Android smartphones include the functionality of a mobile phone, Internet client (for
web browsing and Internet communication), MP3 player, gaming console, digital camera

8. www.pcmag.com/article2/0,2817,2374076,00.asp.
9. mashable.com/2010/08/02/android-outselling-iphone-2/.

www.pcmag.com/article2/0,2817,2374076,00.asp

1.8 Programming Languages 15

and more, wrapped into handheld devices with full-color multitouch screens—these allow
you to control the device with gestures involving one touch or multiple simultaneous
touches. You can download apps directly onto your Android device through Android
Market and other app marketplaces. As of December 2010, there were over 200,000 apps
in Google’s Android Market.

1.8 Programming Languages

In this section, we provide brief comments on several popular programming languages
(Fig. 1.5). In the next section we introduce C++.

Programming

language Description

Fortran Fortran (FORmula TRANislator) was developed by IBM Corpora-
tion in the mid-1950s to be used for scientific and engineering
applications that require complex mathematical computations. It’s
still widely used and its latest versions support object-oriented
programming.

COBOL COBOL (COmmon Business Oriented Language) was developed
in the late 1950s by computer manufacturers, the U.S. govern-
ment and industrial computer users based on a language devel-
oped by Grace Hopper, a career U.S. Navy officer and computer
scientist. COBOL is still widely used for commercial applications
that require precise and efficient manipulation of large amounts of
data. Its latest version supports object-oriented programming.

Pascal Research in the 1960s resulted in szructured programming—a disci-
plined approach to writing programs that are clearer, easier to test
and debug and easier to modify than large programs produced
with previous techniques. One of the more tangible results of this
research was the development of Pascal by Professor Niklaus
Wirth in 1971. It was designed for teaching structured program-
ming and was popular in college courses for several decades.

Ada Ada, based on Pascal, was developed under the sponsorship of the
U.S. Department of Defense (DOD) during the 1970s and early
1980s. The DOD wanted a single language that would fill most of
its needs. The Pascal-based language was named after Lady Ada
Lovelace, daughter of the poet Lord Byron. She’s credited with
writing the world’s first computer program in the early 1800s (for
the Analytical Engine mechanical computing device designed by
Charles Babbage). Its latest version supports object-oriented pro-
gramming.

Basic Basic was developed in the 1960s at Dartmouth College to famil-
iarize novices with programming techniques. Many of its latest
versions are object oriented.

Fig. 1.5 | Other programming languages. (Part | of 3.)

16

Chapter |

Programming

language

Objective-C

Java

Visual Basic

Visual C#

PHP

Perl

Python

Introduction to Computers and C++

Description

C was implemented in 1972 by Dennis Ritchie at Bell Laborato-
ries. It initially became widely known as the UNIX operating sys-
tem’s development language. Today, most of the code for general-
purpose operating systems is written in C or C++.

Objective-C is an object-oriented language based on C. It was
developed in the early 1980s and later acquired by Next, which in
turn was acquired by Apple. It has become the key programming
language for the Mac OS X operating system and all iOS-powered
devices (such as iPods, iPhones and iPads).

Sun Microsystems in 1991 funded an internal corporate research
project led by James Gosling, which resulted in the C++-based
object-oriented programming language called Java. A key goal of
Java is to be able to write programs that will run on a great variety
of computer systems and computer-control devices. This is some-
times called “write once, run anywhere.” Java is used to develop
large-scale enterprise applications, to enhance the functionality of
web servers (the computers that provide the content we see in our
web browsers), to provide applications for consumer devices (e.g.,
smartphones, television set-top boxes and more) and for many
other purposes.

Microsoft’s Visual Basic language was introduced in the early
1990s to simplify the development of Microsoft Windows appli-
cations. Its latest versions support object-oriented programming.

Microsoft’s three object-oriented primary programming languages
are Visual Basic (based on the original Basic), Visual C++ (based
on C++) and C# (based on C++ and Java, and developed for inte-
grating the Internet and the web into computer applications).

PHP is an object-oriented, “open-source” (see Section 1.7) “script-
ing” language supported by a community of users and developers
and is used by numerous websites including Wikipedia and Face-
book. PHP is platform independent—implementations exist for
all major UNIX, Linux, Mac and Windows operating systems.
PHP also supports many databases, including MySQL.

Perl (Practical Extraction and Report Language), one of the most
widely used object-oriented scripting languages for web program-
ming, was developed in 1987 by Larry Wall. It features rich text-
processing capabilities and flexibility.

Python, another object-oriented scripting language, was released
publicly in 1991. Developed by Guido van Rossum of the
National Research Institute for Mathematics and Computer Sci-
ence in Amsterdam (CWI), Python draws heavily from Modula-
3—a systems programming language. Python is “extensible”—it
can be extended through classes and programming interfaces.

Fig. 1.5 | Other programming languages. (Part 2 of 3.)

1.9 C++ and a Typical C++ Development Environment 17

Programming

language Description

JavaScript JavaScript is the most widely used scripting language. It’s primarily
used to add programmability to web pages—for example, anima-
tions and interactivity with the user. It’s provided with all major
web browsers.

Ruby on Rails ~ Ruby—created in the mid-1990s by Yukihiro Matsumoto—is an
open-source, object-oriented programming language with a simple
syntax that’s similar to Perl and Python. Ruby on Rails combines
the scripting language Ruby with the Rails web application frame-
work developed by 37Signals. Their book, Gerting Real (getting-
real.37signals.com/toc.php), is a must read for web developers.
Many Ruby on Rails developers have reported productivity gains
over other languages when developing database-intensive web
applications. Ruby on Rails was used to build Twitter’s user inter-
face.

Scala Scala (www.scala-Tang.org/node/273)—short for “scalable lan-
guage”—was designed by Martin Odersky, a professor at Ecole
Polytechnique Fédérale de Lausanne (EPFL) in Switzerland.
Released in 2003, Scala uses both the object-oriented program-
ming and functional programming paradigms and is designed to
integrate with Java. Programming in Scala can reduce the amount
of code in your applications significantly. Twitter and Foursquare
use Scala.

Fig. 1.5 | Other programming languages. (Part 3 of 3.)

1.9 C++ and a Typical C++ Development Environment

C++ evolved from C, which was developed by Dennis Ritchie at Bell Laboratories. C is
available for most computers and is hardware independent. With careful design, it’s pos-
sible to write C programs that are portable to most computers.

The widespread use of C with various kinds of computers (sometimes called hardware
platforms) unfortunately led to many variations. A standard version of C was needed. The
American National Standards Institute (ANSI) cooperated with the International Organi-
zation for Standardization (ISO) to standardize C worldwide; the joint standard docu-
ment was published in 1990 and is referred to as ANSI/ISO 9899: 1990.

C99 is the latest ANSI standard for the C programming language. It was developed
to evolve the C language to keep pace with increasingly powerful hardware and ever more
demanding user requirements. C99 also makes C more consistent with C++. For more
information on C and C99, see our book C How to Program, 6/e and our C Resource
Center (located at www.deitel.com/C).

C++, an extension of C, was developed by Bjarne Stroustrup in the early 1980s at Bell
Laboratories. C++ provides a number of features that “spruce up” the C language, but
more importantly, it provides capabilities for object-oriented programming.

www.deitel.com/C
www.scala-lang.org/node/273

18 Chapter | Introduction to Computers and C++

You’ll begin developing customized, reusable classes and objects in Chapter 3, Intro-
duction to Classes, Objects and Strings. The book is object oriented, where appropriate,
from the start and throughout the text.

We also provide an optional automated teller machine (ATM) case study in
Chapters 25-26, which contains a complete C++ implementation. The case study presents
a carefully paced introduction to object-oriented design using the UML—an industry
standard graphical modeling language for developing object-oriented systems. We guide
you through a friendly design experience intended for the novice.

C++ Standard Library

C++ programs consist of pieces called classes and functions. You can program each piece
yourself, but most C++ programmers take advantage of the rich collections of classes and
functions in the C++ Standard Library. Thus, there are really two parts to learning the
C++ “world.” The first is learning the C++ language itself; the second is learning how to
use the classes and functions in the C++ Standard Library. We discuss many of these classes
and functions. P. J. Plauger’s book, The Standard C Library (Upper Saddle River, NJ:
Prentice Hall PTR, 1992), is a must read for programmers who need a deep understanding
of the ANSI C library functions included in C++. Many special-purpose class libraries are
supplied by independent software vendors.

ki Software Engineering Observation 1.2

@ Use a “building-block” approach to create programs. Avoid reinventing the wheel. Use
existing pieces wherever possible. Called software reuse, this practice is central to object-
oriented programming.

, Software Engineering Observation 1.3

When programming in C++, you typically will use the following building blocks: classes
and functions from the C++ Standard Library, classes and functions you and your
colleagues create and classes and functions from various popular third-party libraries.

The advantage of creating your own functions and classes is that you’ll know exactly
how they work. You’ll be able to examine the C++ code. The disadvantage is the time-con-
suming and complex effort that goes into designing, developing and maintaining new
functions and classes that are correct and that operate efficiently.

% Performance Tip 1.1
s Using C++ Standard Library functions and classes instead of writing your own versions
= can improve program performance, because they re written carefully to perform efficiently.

This technique also shortens program development time.

1 Portability Tip I.1
&1 Using C++ Standard Library functions and classes instead of writing your own improves

= program portability, because they're included in every C++ implementation.

We now explain the commonly used steps in creating and executing a C++ application
using a C++ development environment (illustrated in Figs. 1.6-1.11). C++ systems gen-
erally consist of three parts: a program development environment, the language and the
C++ Standard Library. C++ programs typically go through six phases: edit, preprocess,

1.9 C++ and a Typical C++ Development Environment 19

compile, link, load and execute. The following discussion explains a typical C++ program
development environment.

Phase 1: Creating a Program

Phase 1 consists of editing a file with an editor program, normally known simply as an ediror
(Fig. 1.6). You type a C++ program (typically referred to as source code) using the editor,
make any necessary corrections and save the program on a secondary storage device, such as
your hard drive. C++ source code filenames often end with the . cpp, . cxx, .cc or .C exten-
sions (note that C is in uppercase) which indicate that a file contains C++ source code. See
the documentation for your C++ compiler for more information on file-name extensions.

Phase I:
Programmer creates program

in the editor and stores it on
disk

Editor

Fig. 1.6 | Typical C++ development environment—editing phase.

Two editors widely used on Linux systems are vi and emacs. C++ software packages
for Microsoft Windows such as Microsoft Visual C++ (microsoft.com/express) have
editors integrated into the programming environment. You can also use a simple text
editor, such as Notepad in Windows, to write your C++ code.

For organizations that develop substantial information systems, integrated develop-
ment environments (IDEs) are available from many major software suppliers. IDEs pro-
vide tools that support the software-development process, including editors for writing
and editing programs and debuggers for locating logic errors—errors that cause programs
to execute incorrectly. Popular IDEs include Microsoft® Visual Studio 2010 Express Edi-
tion, Dev C++, NetBeans, Eclipse and CodeLite.

Phase 2: Preprocessing a C++ Program

In Phase 2, you give the command to compile the program (Fig. 1.7). In a C++ system, a
preprocessor program executes automatically before the compiler’s translation phase be-
gins (so we call preprocessing Phase 2 and compiling Phase 3). The C++ preprocessor
obeys commands called preprocessor directives, which indicate that certain manipula-
tions are to be performed on the program before compilation. These manipulations usu-
ally include other text files to be compiled, and perform various text replacements. The
most common preprocessor directives are discussed in the early chapters; a detailed discus-
sion of preprocessor features appears in Appendix E, Preprocessor.

Phase 2:
Preprocessor program
processes the code

Preprocessor

Fig. 1.7 | Typical C++ development environment—preprocessor phase.

20 Chapter | Introduction to Computers and C++

Phase 3: Compiling a C++ Program
In Phase 3, the compiler translates the C++ program into machine-language code—also
referred to as object code (Fig. 1.8).

Phase 3:

Compiler creates
object code and stores
it on disk

-
Compiler Il
A
j
i

Fig. 1.8 | Typical C++ development environment—compilation phase.

Phase 4: Linking

Phase 4 is called linking. C++ programs typically contain references to functions and data
defined elsewhere, such as in the standard libraries or in the private libraries of groups of pro-
grammers working on a particular project (Fig. 1.9). The object code produced by the C++
compiler typically contains “holes” due to these missing parts. A linker links the object code
with the code for the missing functions to produce an executable program (with no missing
pieces). If the program compiles and links correctly, an executable image is produced.

Phase 4:

Linker links the object

code with the libraries,
creates an executable file and
stores it on disk

Linker

Fig. 1.9 | Typical C++ development environment—Ilinking phase.

Phase 5: Loading

Phase 5 is called loading. Before a program can be executed, it must first be placed in
memory (Fig. 1.10). This is done by the loader, which takes the executable image from
disk and transfers it to memory. Additional components from shared libraries that support
the program are also loaded.

Primary
Memory

Loader

Phase 5:
Loader puts program
in memory

Fig. 1.10 | Typical C++ development environment—Iloading phase.

.10 Test-Driving a C++ Application 21

Phase 6: Execution

Finally, the computer, under the control of its CPU, executes the program one instruction
at a time (Fig. 1.11). Some modern computer architectures can execute several instruc-
tions in parallel.

Primary
Memory

CPU
Phase 6:

CPU takes each
instruction and
executes it, possibly
storing new data
values as the program
executes

Fig. 1.11 | Typical C++ development environment—execution phase.

Problems That May Occur at Execution Time

Programs might not work on the first try. Each of the preceding phases can fail because of
various errors that we'll discuss throughout this book. For example, an executing program
might try to divide by zero (an illegal operation for whole-number arichmetic in C++).
This would cause the C++ program to display an error message. If this occurred, you'd
have to return to the edit phase, make the necessary corrections and proceed through the
remaining phases again to determine that the corrections fixed the problem(s). [Noze:
Most programs in C++ input or output data. Certain C++ functions take their input from
cin (the standard input stream; pronounced “see-in”), which is normally the keyboard,
but cin can be redirected to another device. Data is often output to cout (the standard
output stream; pronounced “see-out”), which is normally the computer screen, but cout
can be redirected to another device. When we say that a program prints a result, we nor-
mally mean that the result is displayed on a screen. Data may be output to other devices,
such as disks and hardcopy printers. There is also a standard error stream referred to as
cerr. The cerr stream (normally connected to the screen) is used for displaying error mes-
sages.

Common Programming Error 1.1
ﬁj Errors such as division by zero occur as a program runs, so they're called runtime errors

or execution-time errors. Fatal runtime errors cause programs to terminate immediately
without having successfully performed their jobs. Nonfatal runtime errors allow pro-
grams to run to completion, often producing incorrect results.

1.10 Test-Driving a C++ Application

In this section, you’ll run and interact with your first C++ application. You'll begin by run-
ning an entertaining guess-the-number game, which picks a number from 1 to 1000 and

22 Chapter | Introduction to Computers and C++

prompts you to guess it. If your guess is correct, the game ends. If your guess is not correct,
the application indicates whether your guess is higher or lower than the correct number.
There is no limit on the number of guesses you can make. [Noze: For this test drive only,
we’ve modified this application from the exercise you'll be asked to create in Chapter 6,
Functions and an Introduction to Recursion. Normally this application randomly selects
the correct answer as you execute the program. The modified application uses the same
correct answer every time the program executes (though this may vary by compiler), so you
can use the same guesses we use in this section and see the same results as we walk you
through interacting with your first C++ application.]

We'll demonstrate running a C++ application using the Windows Command Prompt
and a shell on Linux. The application runs similarly on both platforms. Many develop-
ment environments are available in which you can compile, build and run C++ applica-
tions, such as GNU C++, Dev C++, Microsoft Visual C++, CodeLite, NetBeans, Eclipse
etc. Consult your instructor for information on your specific development environment.

In the following steps, you'll run the application and enter various numbers to guess
the correct number. The elements and functionality that you see in this application are
typical of those you’ll learn to program in this book. We use fonts to distinguish between
features you see on the screen (e.g., the Command Prompt) and clements that are not
directly related to the screen. We emphasize screen features like titles and menus (e.g., the
File menu) in a semibold sans-serif Helvetica font and to emphasize filenames, text dis-
played by an application and values you should enter into an application (e.g., Guess-
Number or 500) in a sans-serif Lucida font. As you’ve noticed, the defining occurrence
of each term is set in blue, bold type. For the figures in this section, we point out signifi-
cant parts of the application. To make these features more visible, we've modified the
background color of the Command Prompt window (for the Windows test drive only). To
modify the Command Prompt colors on your system, open a Command Prompt by selecting
Start > All Programs > Accessories > Command Prompt, then right click the title bar and
select Properties. In the "Command Prompt" Properties dialog box that appears, click the
Colors tab, and select your preferred text and background colors.

Running a C++ Application from the Windows Command Prompt

1. Checking your setup. It's important to read the Before You Begin section at
www . deitel.com/books/cpphtp8/ to make sure that you've copied the book’s
examples to your hard drive correctly.

2. Locating the completed application. Open a Command Prompt window. To
change to the directory for the completed GuessNumber application, type
cd C:\examples\ch01\GuessNumber\Windows, then press Enzer (Fig. 1.12). The
command cd is used to change directories.

=)
\ecd C:\examples’ch01\GuessNumber‘\Windows i’
:\examples' ch01\GuessNumber\Windows> _I

Fig. 1.12 | Opening a Command Prompt window and changing the directory.

www.deitel.com/books/cpphtp8/

.10 Test-Driving a C++ Application 23

3. Running the GuessNumber application. Now that you are in the directory that
contains the GuessNumber application, type the command GuessNumber
(Fig. 1.13) and press Enter. [Note: GuessNumber . exe is the actual name of the ap-
plication; however, Windows assumes the . exe extension by default.]

:\examples'ch01\GuessNumber\Windows>GuessNumber
I have a number between 1 and 1000.

an you guess my number?
Please type your first guess.
?

Fig. 1.13 | Running the GuessNumber application.

4. Entering your first guess. The application displays "Please type your first
guess.", then displays a question mark (?) as a prompt on the next line
(Fig. 1.13). At the prompt, enter 500 (Fig. 1.14).

an you guess my number?
Please type your first guess.
? 500

oo high. Try again.

Fig. 1.14 | Entering your first guess.

5. Entering another guess. The application displays "Too high. Try again.", mean-
ing that the value you entered is greater than the number the application chose as
the correct guess. So, you should enter a lower number for your next guess. At the
prompt, enter 250 (Fig. 1.15). The application again displays "Too high. Try
again.", because the value you entered is still greater than the number that the
application chose as the correct guess.

an you guess my number?
Please type your first guess.
? 500

oo high. Try again.
250

oo high. Try again.

Fig. 1.15 | Entering a second guess and receiving feedback.

6. Entering additional guesses. Continue to play the game by entering values until
you guess the correct number. The application will display "Excellent! You
guessed the number!" (Fig. 1.10).

24 Chapter | Introduction to Computers and C++

. Try again.

. Try again.
. Try again.
. Try again.

. Try again.

Excellent! You guessed the number!
ould you Tike to play again (y or n)?

Fig. 1.16 | Entering additional guesses and guessing the correct number.

7. Playing the game again or exiting the application. After you guess correctly, the
application asks if you’d like to play another game (Fig. 1.16). At the "Would you
Tike to play again (y or n)?" prompt, entering the one character y causes the
application to choose a new number and displays the message “P1ease type your
first guess.” followed by a question mark prompt (Fig. 1.17) so you can make
your first guess in the new game. Entering the character n ends the application
and returns you to the application’s directory at the Command Prompt
(Fig. 1.18). Each time you execute this application from the beginning (i.c., Step
3), it will choose the same numbers for you to guess.

8. Close the Command Prompt window.

Excellent! You guessed the number!
ould you Tike to play again (y or n)? y

an you guess my number
Please type your first guess.
?

Excellent! You guessed the number!
ould you Tike to play again (y or n)? n

:\examples'ch01\GuessNumber\Windows:>

Fig. 1.18 | Exiting the game.

.10 Test-Driving a C++ Application 25

Running a C++ Application Using GNU C++ with Linux

For this test drive, we assume that you know how to copy the examples into your home
directory. Please see your instructor if you have any questions regarding copying the files
to your Linux system. Also, for the figures in this section, we use a bold highlight to point
out the user input required by each step. The prompt in the shell on our system uses the
tilde (~) character to represent the home directory, and each prompt ends with the dollar
sign ($) character. The prompt will vary among Linux systems.

1. Locating the completed application. From a Linux shell, change to the completed
GuessNumber application directory (Fig. 1.19) by typing

cd Examples/ch01/GuessNumber/GNU_L1inux

then pressing Enter. The command cd is used to change directories.

~$ cd examples/ch01/GuessNumber/GNU_L1inux
~/examples/ch01/GuessNumber/GNU_L1inux$

Fig. 1.19 | Changing to the GuessNumber application’s directory.

2. Compiling the GuessNumber application. To run an application on the GNU
C++ compiler, you must first compile it by typing

g++ GuessNumber.cpp -o GuessNumber

as in Fig. 1.20. This command compiles the application and produces an execut-
able file called GuessNumber-.

~/examples/ch01/GuessNumber/GNU_Linux$ g++ GuessNumber.cpp -o GuessNumber
~/examples/ch01/GuessNumber/GNU_L1inux$

Fig. 1.20 | Compiling the GuessNumber application using the g++ command.

3. Running the GuessNumber application. To run the executable file GuessNumber,
type . /GuessNumber at the next prompt, then press Enter (Fig. 1.21).

~/examples/ch01/GuessNumber/GNU_Linux$./GuessNumber
I have a number between 1 and 1000.

Can you guess my number?

Please type your first guess.

?

Fig. 1.21 | Running the GuessNumber application.

4. Entering your first guess. The application displays "Please type your first
guess.", then displays a question mark (?) as a prompt on the next line
(Fig. 1.21). At the prompt, enter 500 (Fig. 1.22). [/Nore: This is the same appli-
cation that we modified and test-drove for Windows, but the outputs could vary
based on the compiler being used.]

26 Chapter | Introduction to Computers and C++

5. Entering another guess. The application displays "Too high. Try again.", mean-
ing that the value you entered is greater than the number the application chose as
the correct guess (Fig. 1.22). At the next prompt, enter 250 (Fig. 1.23). This time
the application displays "Too Tow. Try again.", because the value you entered is
less than the correct guess.

6. Entering additional guesses. Continue to play the game (Fig. 1.24) by entering
values until you guess the correct number. When you guess correctly, the appli-
cation displays "Excellent! You guessed the number."

~/examples/ch01/GuessNumber/GNU_Linux$./GuessNumber
I have a number between 1 and 1000.

Can you guess my number?

Please type your first guess.

? 500

Too high. Try again.

?

Fig. 1.22 | Entering an initial guess.

~/examples/ch01/GuessNumber/GNU_Linux$./GuessNumber
I have a number between 1 and 1000.

Can you guess my number?

Please type your first guess.

? 500

Too high. Try again.
7 250

Too low. Try again.
?

Fig. 1.23 | Entering a second guess and receiving feedback.

Too low. Try again.

? 375

Too low. Try again.
? 437

Too high. Try again.
7 406

Too high. Try again.
? 391

Too high. Try again.
7 383

Too low. Try again.
7 387

Too high. Try again.
7 385

Too high. Try again.
7 384

Excellent! You guessed the number.
Would you Tike to play again (y or n)?

Fig. 1.24 | Entering additional guesses and guessing the correct number.

I.11' Web 2.0: Going Social 27

7. Playing the game again or exiting the application. After you guess the correct
number, the application asks if you'd like to play another game. At the "Would
you Tike to play again (y or n)?" prompt, entering the one character y causes
the application to choose a new number and displays the message "Please type
your first guess." followed by a question mark prompt (Fig. 1.25) so you can
make your first guess in the new game. Entering the character n ends the appli-
cation and returns you to the application’s directory in the shell (Fig. 1.26). Each
time you execute this application from the beginning (i.e., Step 3), it will choose
the same numbers for you to guess.

Excellent! You guessed the number.
Would you 1like to play again (y or n)? vy

I have a number between 1 and 1000.
Can you guess my number?

Please type your first guess.

?

Fig. 1.25 | Playing the game again.

Excellent! You guessed the number.
Would you Tike to play again (y or n)? n

~/examples/ch01/GuessNumber/GNU_L1inux$

Fig. 1.26 | Exiting the game.

1.11 Web 2.0: Going Social

The web literally exploded in the mid-to-late 1990s, but the “dot com” economic bust
brought hard times in the early 2000s. The resurgence that began in 2004 or so has been
named Web 2.0. Google is widely regarded as the signature company of Web 2.0. Some
other companies with “Web 2.0 characteristics” are YouTube (video sharing), FaceBook
(social networking), Twitter (microblogging), Groupon (social commerce), Foursquare
(mobile check-in), Salesforce (business software offered as online services), Craigslist (free
classified listings), Flickr (photo sharing), Second Life (a virtual world), Skype (Internet
telephony) and Wikipedia (a free online encyclopedia).

Google
In 1996, Stanford computer science Ph.D. candidates Larry Page and Sergey Brin began
collaborating on a new search engine. In 1997, they changed the name to Google—a play
on the mathematical term googo/, a quantity represented by the number “one” followed by
100 “zeros” (or 10190)—a staggeringly large number. Google’s ability to return extremely
accurate search results quickly helped it become the most widely used search engine and
one of the most popular websites in the world.

Google continues to be an innovator in search technologies. For example, Google
Goggles is a fascinating mobile app (available on Android and iPhone) that allows you to

28 Chapter | Introduction to Computers and C++

perform a Google search using a photo rather than entering text. You simply take pictures
of a landmarks, books (covers or barcodes), logos, art or wine bottle labels, and Google
Goggles scans the photo and returns search results. You can also take a picture of text (for
example, a restaurant menu or a sign) and Google Goggles will translate it for you.

Ajax

A{ax is one of the premier Web 2.0 software technologies. Ajax helps Internet-based ap-
plications perform like desktop applications—a difficult task, given that such applications
suffer transmission delays as data is shuttled back and forth between your computer and
server computers on the Internet. Using Ajax, applications like Google Maps have
achieved excellent performance and approach the look-and-feel of desktop applications.

Social Applications

Opver the last several years, there’s been a tremendous increase in the number of social ap-
plications on the web. Even though the computer industry is mature, these sites were still
able to become phenomenally successful in a relatively short period of time. Figure 1.27
discusses a few of the social applications that are making an impact.

Company Description

Facebook Facebook was launched from a Harvard dorm room in 2004 by classmates
Mark Zuckerberg, Chris Hughes, Dustin Moskovitz and Eduardo Saverin and
is already worth an estimated $70 billion. By January 2011, Facebook was the
most active site on the Internet with more than 600 million users—nearly 9%
of the Earth’s population—who spend 700 billion minutes on Facebook per
month (www. time.com/time/specials/packages/article/
0,28804,2036683_2037183,00.htm1). At its current rate of growth (about 5%
per month), Facebook will reach one billion users in 2012, out of the two bil-
lion people on the Internet! The activity on the site makes it extremely attrac-
tive for application developers. Each day, over 20 million applications are
installed by Facebook users (www. facebook . com/press/info.php?statistics).

Twitter Twitter was founded in 2006 by Jack Dorsey, Evan Williams and Isaac “Biz”
Stone—all from the podcast company, Odeo. Twitter has revolutionized
microblogging. Users post tweets—messages of up to 140 characters in length.
Approximately 95 million tweets are posted per day (twitter.com/about). You
can follow the tweets of friends, celebrities, businesses, government representa-
tives (including the U.S. President, who has 6.3 million followers), etc., or you
can follow tweets by subject to track news, trends and more. At the time of this
writing, Lady Gaga had the most followers (over 7.7 million). Twitter has
become the point of origin for many breaking news stories worldwide.

Groupon Groupon, a social commerce site, was launched by Andrew Mason in 2008. By
January 2011, the company was valued around $15 billion, making it the fast-
est growing company ever! It’s now available in hundreds of markets world-
wide. Groupon offers one daily deal in each market for restaurants, retailers,
services, attractions and more. Deals are activated only after a minimum num-
ber of people sign up to buy the product or service. If you sign up for a deal

Fig. 1.27 | Social applications. (Part | of 2.)

www.time.com/time/specials/packages/article/0,28804,2036683_2037183,00.html
www.time.com/time/specials/packages/article/0,28804,2036683_2037183,00.html
www.facebook.com/press/info.php?statistics

.12 Software Technologies 29

Company Description

Groupon and it has yet to meet the minimum, you might be inclined to tell others about

(cont.) the deal by email, Facebook, Twitter, etc. If the deal does not meet the mini-
munm sales, it’s cancelled. One of the most successful national Groupon deals to
date was a certificate for $50 worth of merchandise from a major apparel com-
pany for $25. Over 440,000 vouchers were sold in one day.

Foursquare ~ Foursquare—launched in 2009 by Dennis Crowley and Naveen Selvadurai—is
a mobile check-in application that allows you to notify your friends of your
whereabouts. You can download the app to your smartphone and link it to
your Facebook and Twitter accounts so your friends can follow you from mul-
tiple platforms. If you do not have a smartphone, you can check in by text
message. Foursquare uses GPS to determine your exact location. Businesses use
Foursquare to send offers to users in the area. Launched in March 2009, Four-
square already has over 5 million users worldwide.

Skype Skype is a software product that allows you to make mostly free voice and
video calls over the Internet using a technology called VoIP (Voice over IP; IP
stands for “Internet Protocol”). Skype was founded in 2003 by Niklas
Zennstrom and Dane Janus Friis. Just two years later, the company was sold to
eBay for $2.6 billion.

YouTube YouTube is a video-sharing site that was founded in 2005. Within one year, the
company was purchased by Google for $1.65 billion. YouTube now accounts
for 10% of all Internet traffic (www.webpronews . com/topnews/2010/04/16/
facebook-and-youtube-get-the-most-business-internet-traffic). Within
one week of the release of Apple’s iPhone 3GS—the first iPhone model to offer
video—mobile uploads to YouTube grew 400% (www.hypebot.com/hypebot/
2009/06/youtube-reports-1700-jump-in-mobile-video.htm1).

Fig. 1.27 | Social applications. (Part 2 of 2.)

1.12 Software Technologies

Figure 1.28 lists a number of buzzwords that you'll hear in the software development com-
munity. We've created Resource Centers on most of these topics, with more on the way.

Technology Description

Agile software Agile software development is a set of methodologies that try to get soft-

development ware implemented faster and using fewer resources than previous method-
ologies. Check out the Agile Alliance (www.agilealliance.org) and the
Agile Manifesto (www.agilemanifesto.org).

Refactoring Refactoring involves reworking programs to make them clearer and easier
to maintain while preserving their correctness and functionality. It’s widely
employed with agile development methodologies. Many IDEs include
refactoring tools to do major portions of the reworking automatically.

Fig. 1.28 | Software technologies. (Part | of 2.)

www.webpronews.com/topnews/2010/04/16/facebook-and-youtube-get-the-most-business-internet-traffic
www.webpronews.com/topnews/2010/04/16/facebook-and-youtube-get-the-most-business-internet-traffic
www.hypebot.com/hypebot/2009/06/youtube-reports-1700-jump-in-mobile-video.html
www.hypebot.com/hypebot/2009/06/youtube-reports-1700-jump-in-mobile-video.html
www.agilealliance.org
www.agilemanifesto.org

30 Chapter | Introduction to Computers and C++

Technology Description

Design Design patterns are proven architectures for constructing flexible and

patterns maintainable object-oriented software. The field of design patterns tries to
enumerate those recurring patterns, encouraging software designers to
reuse them to develop better-quality software using less time, money and
effort.

LAMP MySQL is an open-source database management system. PHP is the most
popular open-source server-side Internet “scripting” language for develop-
ing Internet-based applications. LAMP is an acronym for the set of open-
source technologies that many developers use to build web applications—
it stands for Linux, Apache, MySQL and PHP (or Perl or Python—two
other languages used for similar purposes).

Software as a Software has generally been viewed as a product; most software still is

Service (SaaS) offered this way. If you want to run an application, you buy a software
package from a software vendor—often a CD, DVD or web download.
You then install that software on your computer and run it as needed. As
new versions of the software appear, you upgrade your software, often
requiring significant time and at considerable expense. This process can
become cumbersome for organizations with tens of thousands of systems
that must be maintained on a diverse array of computer equipment. With
Software as a Service (SaaS), the software runs on servers elsewhere on the
Internet. When that server is updated, all clients worldwide see the new
capabilities—no local installation is needed. You access the service
through a browser. Browsers are quite portable, so you can run the same
applications on a wide variety of computers from anywhere in the world.
Salesforce.com, Google, and Microsoft’s Office Live and Windows Live all

offer SaaS.
Platform as a Platform as a Service (PaaS) provides a computing platform for develop-
Service (PaaS) ing and running applications as a service over the web, rather than install-

ing the tools on your computer. Paa$ providers include Google App
Engine, Amazon EC2, Bungee Labs and more.

Cloud Saa$ and PaaS$ are examples of cloud computing in which software, plat-

computing forms and infrastructure (e.g., processing power and storage) are hosted on
demand over the Internet. This provides users with flexibility, scalability and
cost savings. For example, consider a company’s data storage needs which
can fluctuate significantly over the course of a year. Rather than investing in
large-scale storage hardware—which can be costly to purchase, maintain
and secure, and would most likely not be used to capacity at all times—the
company could purchase cloud-based services (such as Amazon S3, Google
Storage, Microsoft Windows Azure™, Nirvanix™ and others) dynamically

as needed.
Software Software Development Kits (SDKs) include the tools and documentation
Development developers use to program applications.

Kit (SDK)

Fig. 1.28 | Software technologies. (Part 2 of 2.)

.13 TRI, the New C++ Standard and the Open Source Boost Libraries 31

Figure 1.29 describes software product release categories.

Version Description

Alpha An alpha version of software is the earliest release of a software product that’s
still under active development. Alpha versions are often buggy, incomplete
and unstable and are released to a relatively small number of developers for
testing new features, getting early feedback, etc.

Beta Beta versions are released to a larger number of developers later in the devel-
opment process after most major bugs have been fixed and new features are
nearly complete. Beta software is more stable, but still subject to change.

Release Release candidates are generally feature complete and (supposedly) bug free and

candidates ready for use by the community, which provides a diverse testing environ-
ment—the software is used on different systems, with varying constraints and
for a variety of purposes. Any bugs that appear are corrected and eventually
the final product is released to the general public. Software companies often
distribute incremental updates over the Internet.

Continuous Software that’s developed using this approach generally does not have version

beta numbers (for example, Google search or Gmail). The software, which is
hosted in the cloud (not installed on your computer), is constantly evolving
so that users always have the latest version.

Fig. 1.29 | Software product release terminology.

1.13 Future of C++: TRI, the New C++ Standard and the
Open Source Boost Libraries

Bjarne Stroustrup, the creator of C++, has expressed his vision for the future of C++. The
main goals for the new standard are to make C++ easier to learn, improve library building
capabilities, and increase compatibility with the C programming language.

Throughout the book, we discuss in optional sections various key features of the new
C++ standard. In addition, Chapter 23 introduces the Boost C++ Libraries, Technical
Report 1 (TR1) and more new C++ features.

Technical Report 1 describes the proposed changes to the C++ Standard Library.
These libraries add useful functionality to C++. The C++ Standards Committee is cur-
rently finishing the revision of the C++ Standard. The last standard was published in 1998.
Work on the new standard began in 2003. At that time, it was referred to as C++0x
because the standard was scheduled to be released before the end of the decade. The new
standard includes most of the libraries in TR1 and changes to the core language.

The Boost C++ Libraries are free, open-source libraries created by members of the
C++ community. Boost has grown to over 100 libraries, with more being added regularly.
Today there are thousands of programmers in the Boost open source community. Boost
provides C++ programmers with useful libraries that work well with the existing C++ Stan-
dard Library. The Boost libraries can be used by C++ programmers working on a wide
variety of platforms with many different compilers. Several of the Boost libraries are
included in TR1 and will be part of the new standard. We overview the libraries included

32 Chapter | Introduction to Computers and C++

in TR1 and provide code examples for the “regular expression” and “smart pointer”
libraries.

Regular expressions are used to match specific character patterns in text. They can be
used to validate data to ensure that it’s in a particular format, to replace parts of one string
with another, or to split a string.

Many common bugs in C and C++ code are related to pointers, a powerful program-
ming capability C++ absorbed from C. Smart pointers help you avoid errors by providing
additional functionality, typically strengthens the process of memory allocation and deal-
location.

1.14 Keeping Up-to-Date with Information Technologies

Figure 1.30 lists key technical and business publications that will help you stay up-to-date
with the latest news and trends and technology. You can also find a growing list of
Internet- and web-related Resource Centers at waw. deitel. com/resourcecenters.html.

Publication URL

Bloomberg BusinessWeek www . businessweek.com

CNET news.cnet.com

Computer World www . computerworld.com
Engadget www . engadget . com

eWeek www . eweek . com

Fast Company www . fastcompany . com/
Fortune money.cnn.com/magazines/fortune/
InfoWorld www . infoworld.com
Mashable mashable.com

PCWorld www . pcworld. com

SD Times www .. sdtimes . com

Slashdot slashdot.org/

Smarter Technology www . smartertechnology . com
Technology Review technologyreview.com
Techcrunch techcrunch. com

Wired www.wired.com

Fig. 1.30 | Technical and business publications (many are free).

1.15 Wrap-Up

In this chapter we discussed computer hardware, software, programming languages and
operating systems. We introduced the basics of object technology. You learned about some
of the exciting recent developments in the computer field. We overviewed a typical C++
program development environment and you test-drove a C++ application. We also dis-
cussed some key software development terminology.

www.deitel.com/resourcecenters.html
www.businessweek.com
www.computerworld.com
www.engadget.com
www.eweek.com
www.fastcompany.com/
www.infoworld.com
www.pcworld.com
www.sdtimes.com
www.smartertechnology.com
www.wired.com

Self-Review Exercises 33

In Chapter 2, you'll create your first C++ applications. You'll see how programs dis-
play messages on the screen and obtain information from the user at the keyboard for pro-
cessing. You'll see several examples that demonstrate how programs display messages on
the screen and obtain information from the user at the keyboard for processing.

Self-Review Exercises

1.1 Fill in the blanks in each of the following statements:

a)
b)

)
d)

e)
f)

g)
h)

i)

The company that popularized personal computing was

The computer that made personal computing legitimate in busmess and industry was

the .

Computers process data under the control of sets of instructions called

The key logical units of the computer are the
and

The three types of languages discussed in the chapter are 5 and

The programs that translate high-level language programs into machine language are
called .
is a smartphone operating system based on the Linux kernel and Java.
software is generally feature complete and (supposedly) bug free and ready for
use by the community.
The Wii Remote, as well as many smartphones, uses a(n) which allows the de-
vice to respond to motion.

1.2 Fill in the blanks in each of the following sentences about the C++ environment.

a)
b)

)
d)

C++ programs are normally typed into a computer using a(n) program.

In a C++ system, a(n) program executes before the compiler’s translation
phase begins.

The program combines the output of the compiler with various library func-
tions to produce an executable program.

The program transfers the executable program from disk to memory.

1.3 Fill in the blanks in each of the following statements (based on Section 1.6):

a)

b)

<)
d)
e)
f)

Objects have the property of ___ —although objects may know how to commu-
nicate with one another across well-defined interfaces, they normally are not allowed to
know how other objects are implemented.
C++ programmers concentrate on creating , which contain data members and
the member functions that manipulate those data members and provide services to cli-
ents.
The process of analyzing and designing a system from an object-oriented point of view
is called
With , new classes of objects are derived by absorbing characteristics of existing
classes, then adding unique characteristics of their own.

is a graphical language that allows people who design software systems to use
an industry-standard notation to represent them.
The size, shape, color and weight of an object are considered of the object’s class.

Answers to Self-Review Exercises

1.1 a) Apple. b) IBM Personal Computer. ¢) programs. d) input unit, output unit, memory
unit, central processing unit, arithmetic and logic unit, secondary storage unit. e) machine lan-

34

Chapter | Introduction to Computers and C++

guages, assembly languages, high-level languages. f) compilers. g) Android. h) Release candidate.
i) accelerometer.

1.2
1.3

a) editor. b) preprocessor. c) linker. d) loader.

a)

information hiding. b) classes. ¢) object-oriented analysis and design (OOAD).

d) inheritance.) The Unified Modeling Language (UML). f) attributes.

Exercises

1.4

1.7

Fill in the blanks in each of the following statements:

a)

b)
<)

d)

The logical unit of the computer that receives information from outside the computer
for use by the computer is the
The process of instructing the computer to solve a problem is called

is a type of computer language that uses English-like abbreviations for ma-
chine-language instructions.

is a logical unit of the computer that sends information which has already
been processed by the computer to various devices so that it may be used outside the
computer.

and are logical units of the computer that retain information.

is a logical unit of the computer that performs calculations.

is a logical unit of the computer that makes logical decisions.

languages are most convenient to the programmer for writing programs
quickly and easily.
The only language a computer can directly understand is that computer’s

is a logical unit of the computer that coordinates the activities of all the other
logical units.

Fill in the blanks in each of the following statements:

a)

b)

o)
d)

is used to develop large-scale enterprise applications, to enhance the function-
ality of web servers, to provide applications for consumer devices and for many other
purposes.

initially became widely known as the development language of the Unix op-
erating system.
The Web 2.0 company is the fastest growing company ever.
The ____ programming language was developed by Bjarne Stroustrup in the early
1980s at Bell Laboratories.

Fill in the blanks in each of the following statements:

a)

b)

<)

d) A

e)
f)

C++ programs normally go through six phases—,
and .

A(n) provides many tools that support the software development process,

such as editors for writing and editing programs, debuggers for locating logic errors in

programs, and many other features.

The command java invokes the , which executes Java programs.

(n) is a software application that simulates a computer, but hides the under-

lying operating system and hardware from the programs that interact with it.

The takes the .class files containing the program’s bytecodes and transfers

them to primary memory.

The examines bytecodes to ensure that they’re valid.

You're probably wearing on your wrist one of the world’s most common types of objects—
a watch. Discuss how each of the following terms and concepts applies to the notion of a watch:

Making a Difference 35

object, attributes, behaviors, class, inheritance (consider, for example, an alarm clock), abstraction,
modeling, messages, encapsulation, interface and information hiding.

Making a Difference

Throughout the book we've included Making a Difference exercises in which you'll be asked to
work on problems that really matter to individuals, communities, countries and the world. For
more information about worldwide organizations working to make a difference, and for related
programming project ideas, visit our Making a Difference Resource Center at www.deitel.com/
makingadifference.

1.8 (1est Drive: Carbon Footprint Calculator) Some scientists believe that carbon emissions,
especially from the burning of fossil fuels, contribute significantly to global warming and that this
can be combatted if individuals take steps to limit their use of carbon-based fuels. Organizations and
individuals are increasingly concerned about their “carbon footprints.” Websites such as TerraPass

www . terrapass.com/carbon-footprint-calculator/

and Carbon Footprint

www . carbonfootprint.com/calculator.aspx

provide carbon footprint calculators. Test drive these calculators to determine your carbon foot-
print. Exercises in later chapters will ask you to program your own carbon footprint calculator. To
prepare for this, research the formulas for calculating carbon footprints.

1.9 (Tést Drive: Body Mass Index Calculator) By recent estimates, two-thirds of the people in
the United States are overweight and about half of those are obese. This causes significant increases
in illnesses such as diabetes and heart disease. To determine whether a person is overweight or obese,
you can use a measure called the body mass index (BMI). The United States Department of Health
and Human Services provides a BMI calculator at www.nh1bisupport. com/bmi/. Use it to calculate
your own BMI. An exercise in Chapter 2 will ask you to program your own BMI calculator. To pre-
pare for this, research the formulas for calculating BMI.

1.10 (A#tributes of Hybrid Vehicles) In this chapter you learned the basics of classes. Now you’ll
begin “fleshing out” aspects of a class called “Hybrid Vehicle.” Hybrid vehicles are becoming increas-
ingly popular, because they often get much better mileage than purely gasoline-powered vehicles.
Browse the web and study the features of four or five of today’s popular hybrid cars, then list as many
of their hybrid-related attributes as you can. For example, common attributes include city-miles-per-
gallon and highway-miles-per-gallon. Also list the attributes of the batteries (type, weight, etc.).

1.1l (Gender Neutrality) Many people want to eliminate sexism in all forms of communication.
You’ve been asked to create a program that can process a paragraph of text and replace gender-spe-
cific words with gender-neutral ones. Assuming that you've been given a list of gender-specific
words and their gender-neutral replacements (e.g., replace “wife” by “spouse,” “man” by “person,”
“daughter” by “child” and so on), explain the procedure you’d use to read through a paragraph of
text and manually perform these replacements. How might your procedure generate a strange term
like “woperchild,” which is actually listed in the Urban Dictionary (www.urbandictionary.com)? In
Chapter 4, you'll learn that a more formal term for “procedure” is “algorithm,” and that an algo-
rithm specifies the steps to be performed and the order in which to perform them.

1.12 (Privacy) Some online email services save all email correspondence for some period of time.
Suppose a disgruntled employee of one of these online email services were to post all of the email
correspondences for millions of people, including yours, on the Internet. Discuss the issues.

1.13 (Programmer Responsibility and Liability) As a programmer in industry, you may develop
software that could affect people’s health or even their lives. Suppose a software bug in one of your

www.deitel.com/makingadifference
www.deitel.com/makingadifference
www.terrapass.com/carbon-footprint-calculator/
www.carbonfootprint.com/calculator.aspx
www.nhlbisupport.com/bmi/
www.urbandictionary.com

36 Chapter | Introduction to Computers and C++

programs were to cause a cancer patient to receive an excessive dose during radiation therapy and
that the person is either severely injured or dies. Discuss the issues.

1.14 (2010 “Flash Crash”) An example of the consequences of our excessive dependency on com-
puters was the so-called “flash crash” which occurred on May 6, 2010, when the U.S. stock market fell
precipitously in a matter of minutes, wiping out trillions of dollars of investments, and then recovered
within minutes. Use the Internet to investigate the causes of this crash and discuss the issues it raises.

Making a Difference Resources

The Microsoft Image Cup is a global competition in which students use technology to try to solve
some of the world’s most difficult problems, such as environmental sustainability, ending hunger,
emergency response, literacy, combating HIV/AIDS and more. For more information about the com-
petition and to learn about the projects developed by previous winners, visit www. imaginecup.com/
about. You can also find several project ideas submitted by worldwide charitable organizations at
www. imaginecup.com/students/imagine-cup-solve-this. For additional ideas for programming
projects that can make a difference, search the web for “making a difference” and visit the following
websites:

www.un.org/millenniumgoals

The United Nations Millennium Project seeks solutions to major worldwide issues such as environ-
mental sustainability, gender equality, child and maternal health, universal education and more.
www . ibm.com/smarterplanet/

The IBM® Smarter Planet website discusses how IBM is using technology to solve issues related to
business, cloud computing, education, sustainability and more.
www.gatesfoundation.org/Pages/home.aspx

The Bill and Melinda Gates Foundation provides grants to organizations that work to alleviate hun-
ger, poverty and disease in developing countries. In the U.S., the foundation focusses on improving
public education, particularly for people with few resources.

www.nethope.org/

NetHope is a collaboration of humanitarian organizations worldwide working to solve technology
problems such as connectivity, emergency response and more.

www. rainforestfoundation.org/home

The Rainforest Foundation works to preserve rainforests and to protect the rights of the indigenous
people who call the rainforests home. The site includes a list of things you can do to help.
www.undp.org/

The United Nations Development Programme (UNDP) seeks solutions to global challenges such
as crisis prevention and recovery, energy and the environment, democratic governance and more.
www.unido.org

The United Nations Industrial Development Organization (UNIDO) seeks to reduce poverty, give
developing countries the opportunity to participate in global trade, and promote energy efficiency
and sustainability.

www.usaid.gov/

USAID promotes global democracy, health, economic growth, conflict prevention, humanitarian
aid and more.

www . toyota.com/ideas-for-good/

Toyota’s Ideas for Good website describes several Toyota technologies that are making a difference—
including their Advanced Parking Guidance System, Hybrid Synergy Drive®, Solar Powered Venti-
lation System, T.H.U.M.S. (Total Human Model for Safety) and Touch Tracer Display. You can par-
ticipate in the Ideas for Good challenge by submitting a short essay or video describing how these
technologies can be used for other good purposes.

www.imaginecup.com/
www.imaginecup.com/students/imagine-cup-solve-this
www.un.org/millenniumgoals
www.ibm.com/smarterplanet/
www.gatesfoundation.org/Pages/home.aspx
www.nethope.org/
www.rainforestfoundation.org/home
www.undp.org/
www.unido.org
www.usaid.gov/
www.toyota.com/ideas-for-good/

Introduction to C++
Programming

What's in a name? that
which we call a rose
By any other name
would smell as sweet.
—William Shakespeare

When faced with a decision, 1
always ask, “What would be the
most fun?”

—Peggy Walker

High thoughts must have high
language.
—Aristophanes

One person can make a
difference and every person
should try.

—TJohn F. Kennedy

Objectives
In this chapter you'll learn:

= To write simple computer
programs in C++.

= To write simple input and
output statements.

= To use fundamental types.

= Basic computer memory
concepts.

= To use arithmetic operators.

m The precedence of arithmetic
operators.

m To write simple decision-
making statements.

” QOutline

38 Chapter 2 Introduction to C++ Programming

2.1 Introduction 2.5 Memory Concepts
2.2 First Program in C++: Printing a Line of 2.6 Arithmetic

Text 2.7 Decision Making: Equality and
2.3 Modifying Our First C++ Program Relational Operators

2.4 Another C++ Program: Adding Integers 2.8 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

2.1 Introduction

We now introduce C++ programming, which facilitates a disciplined approach to program
design. Most of the C++ programs you’ll study in this book process information and dis-
play results. In this chapter, we present five examples that demonstrate how your programs
can display messages and obtain information from the user for processing. The first three
examples simply display messages on the screen. The next obtains two numbers from a
user, calculates their sum and displays the result. The accompanying discussion shows you
how to perform arithmetic calculations and save their results for later use. The fifth exam-
ple demonstrates decision-making by showing you how to compare two numbers, then
display messages based on the comparison results. We analyze each program one line at a
time to help you ease your way into C++ programming.

2.2 First Program in C++: Printing a Line of Text

C++ uses notations that may appear strange to nonprogrammers. We now consider a sim-
ple program that prints a line of text (Fig. 2.1). This program illustrates several important
features of the C++ language.

1 // Fig. 2.1: fig02_01.cpp

2 // Text-printing program.

3 #include <iostream> // allows program to output data to the screen
4

5 // function main begins program execution

6 dint mainQ

7 {

8 std::cout << ; // display message
9

0 return 0; // indicate that program ended successfully
1

} // end function main

Welcome to C++!

Fig. 2.1 | Text-printing program.

Comments
Lines 1 and 2

// Fig. 2.1: fig02_01.cpp
// Text-printing program.

2.2 First Program in C++: Printing a Line of Text 39

cach begin with //, indicating that the remainder of each line is a comment. You insert
comments to document your programs and to help other people read and understand
them. Comments do not cause the computer to perform any action when the program is
run—they’re ignored by the C++ compiler and do not cause any machine-language object
code to be generated. The comment Text-printing program describes the purpose of the
program. A comment beginning with // is called a single-line comment because it termi-
nates at the end of the current line. [Noe: You also may use C’s style in which a com-
ment—possibly containing many lines—begins with /* and ends with */.]

Every program should begin with a comment that describes the purpose of the program.

—g gl - Good Programming Practice 2.1

#include Preprocessor Directive
Line 3

#include <iostream> // allows program to output data to the screen

is a preprocessor directive, which is a message to the C++ preprocessor (introduced in
Section 1.9). Lines that begin with # are processed by the preprocessor before the program
is compiled. This line notifies the preprocessor to include in the program the contents of
the input/output stream header <iostream>. This header must be included for any pro-
gram that outputs data to the screen or inputs data from the keyboard using C++’s stream
input/output. The program in Fig. 2.1 outputs data to the screen, as we’ll soon see. We
discuss headers in more detail in Chapter 6 and explain the contents of <iostream> in
Chapter 15.

Yo Common Programming Error 2.1
ﬁ Forgetting to include the <iostream> header in a program that inputs data from the key-
board or outputs data ro the screen causes the compiler to issue an error message.
Blank Lines and White Space
Line 4 is simply a blank line. You use blank lines, space characters and tab characters (i.e.,
“tabs”) to make programs easier to read. Together, these characters are known as white
space. White-space characters are normally ignored by the compiler.

The main Function
Line 5

// function main begins program execution

is another single-line comment indicating that program execution begins at the next line.
Line 6

int main(Q

is a part of every C++ program. The parentheses after main indicate that main is a program
building block called a function. C++ programs typically consist of one or more functions
and classes (as you'll learn in Chapter 3). Exactly one function in every program must be
named main. Figure 2.1 contains only one function. C++ programs begin executing at
function main, even if main is not the first function in the program. The keyword int to

40 Chapter 2 Introduction to C++ Programming

the left of main indicates that main “returns” an integer (whole number) value. A keyword
is a word in code that is reserved by C++ for a specific use. The complete list of C++ key-
words can be found in Fig. 4.3. We'll explain what it means for a function to “return a
value” when we demonstrate how to create your own functions in Section 3.3. For now,
simply include the keyword int to the left of main in each of your programs.

The left brace, {, (line 7) must begin the body of every function. A corresponding
right brace, }, (line 11) must end each function’s body.

An Output Statement
Line 8

std::cout << ; // display message

instructs the computer to perform an action—namely, to print the string of characters
contained between the double quotation marks. A string is sometimes called a character
string or a string literal. We refer to characters between double quotation marks simply as
strings. White-space characters in strings are not ignored by the compiler.

The entire line 8, including std::cout, the << operator, the string "Welcome to
C++!\n" and the semicolon (), is called a statement. Every C++ statement must end with
a semicolon (also known as the statement terminator). Preprocessor directives (like
#include) do not end with a semicolon. Output and input in C++ are accomplished with
streams of characters. Thus, when the preceding statement is executed, it sends the stream
of characters Welcome to C++!\n to the standard output stream object—std: :cout—
which is normally “connected” to the screen.

Y Common Programming Error 2.2
£ Omitting the semicolon at the end of a C++ statement is a syntax error. The syntax of a
programming language specifies the rules for creating proper programs in that language.
A syntax error occurs when the compiler encounters code that violates C++’s language
rules (i.e., its syntax). The compiler normally issues an error message to help you locate and
fix the incorrect code. Syntax errors are also called compiler errors, compile-time errors
or compilation errors, because the compiler detects them during the compilation phase.
You cannot execute your program until you correct all the syntax errors in it. As you'll see,
some compilation errors are not syntax errors.

* Indent the body of each function one level within the braces that delimit the function’s
body. This makes a program’s functional structure stand out and makes the program easier
to read.

H;i gl , Good Programming Practice 2.2

Set a convention for the size of indent you prefer, then apply it uniformly. The tab key
may be used to create indents, but tab stops may vary. We prefer three spaces per level of
indent.

H% ? . Good Programming Practice 2.3

The std Namespace
The std:: before cout is required when we use names that we’ve brought into the pro-
gram by the preprocessor directive #include <iostream>. The notation std: : cout spec-

2.2 First Program in C++: Printing a Line of Text 41

ifies that we are using a name, in this case cout, that belongs to “namespace” std. The
names cin (the standard input stream) and cerr (the standard error stream)—introduced
in Chapter 1—also belong to namespace std. Namespaces are an advanced C++ feature
that we discuss in depth in Chapter 24, Other Topics. For now, you should simply re-
member to include std: : before each mention of cout, cin and cerr in a program. This
can be cumbersome—in Fig. 2.13, we introduce the using directive, which will enable
you to omit std: : before each use of a name in the std namespace.

The Stream Insertion Operator and Es’cape Sequences

The << operator is referred to as the stream insertion operator. When this program exe-
cutes, the value to the operator’s right, the right operand, is inserted in the output stream.
Notice that the operator points in the direction of where the data goes. The right operand’s
characters normally print exactly as they appear between the double quotes. However, the
characters \n are not printed on the screen (Fig. 2.1). The backslash (\) is called an escape
character. It indicates that a “special” character is to be output. When a backslash is en-
countered in a string of characters, the next character is combined with the backslash to
form an escape sequence. The escape sequence \n means newline. It causes the cursor (i.e.,
the current screen-position indicator) to move to the beginning of the next line on the
screen. Some common escape sequences are listed in Fig. 2.2.

Escape

sequence Description

\n Newline. Position the screen cursor to the beginning of the next line.

\t Horizontal tab. Move the screen cursor to the next tab stop.

\r Carriage return. Position the screen cursor to the beginning of the
current line; do not advance to the next line.

\a Alert. Sound the system bell.

AR Backslash. Used to print a backslash character.

\' Single quote. Use to print a single quote character.

\" Double quote. Used to print a double quote character.

Fig. 2.2 | Escape sequences.

The return Statement
Line 10

return 0; // indicate that program ended successfully

is one of several means we'll use to exit a function. When the return statement is used at
the end of main, as shown here, the value 0 indicates that the program has rerminated suc-
cessfully. The right brace, }, (line 11) indicates the end of function main. According to the
C++ standard, if program execution reaches the end of main without encountering a re-
turn statement, it’s assumed that the program terminated successfully—exactly as when
the last statement in main is a return statement with the value 0. For that reason, we omit
the return statement at the end of main in subsequent programs.

42 Chapter 2 Introduction to C++ Programming

2.3 Modifying Our First C++ Program

We now present two examples that modify the program of Fig. 2.1 to print text on one line
by using multiple statements and to print text on several lines by using a single statement.

Printing a Single Line of Text with Multiple Statements

Welcome to C++! can be printed several ways. For example, Fig. 2.3 performs stream inser-
tion in multiple statements (lines 8-9), yet produces the same output as the program of
Fig. 2.1. [Note: From this point forward, we use a yellow background to highlight the key
features each program introduces.] Each stream insertion resumes printing where the pre-
vious one stopped. The first stream insertion (line 8) prints Welcome followed by a space,
and because this string did not end with \n, the second stream insertion (line 9) begins
printing on the same line immediately following the space.

// Fig. 2.3: fig02_03.cpp
// Printing a line of text with multiple statements.
#include <iostream> // allows program to output data to the screen

// function main begins program execution
int mainQ)
{
std::cout << ;
std::cout << ;
} // end function main

CVWOAO~NONUDBDWN=

Welcome to C++!

Fig. 2.3 | Printing a line of text with multiple statements.

Printing Multiple Lines of Text with a Single Statement

A single statement can print multiple lines by using newline characters, as in line 8 of
Fig. 2.4. Each time the \n (newline) escape sequence is encountered in the output stream,
the screen cursor is positioned to the beginning of the next line. To get a blank line in your
output, place two newline characters back to back, as in line 8.

1 // Fig. 2.4: fig02_04.cpp

2 // Printing multiple Tines of text with a single statement.
3 #include <iostream> // allows program to output data to the screen
4

5 // function main begins program execution

6 dint mainQ

7 {

8 std::cout << ;

9 1} // end function main

Welcome

to

CH+!

Fig. 2.4 | Printing multiple lines of text with a single statement.

2.4 Another C++ Program: Adding Integers 43

2.4 Another C++ Program: Adding Integers

Our next program uses the input stream object std::cin and the stream extraction
operator, >>, to obtain two integers typed by a user at the keyboard, computes the sum of
these values and outputs the result using std: : cout. Figure 2.5 shows the program and
sample inputs and outputs. In the sample execution, we highlight the user’s input in bold.

1 // Fig. 2.5: fig02_05.cpp

2 // Addition program that displays the sum of two integers.

3 #include <iostream> // allows program to perform input and output

4

5 // function main begins program execution

6 1int main(Q

7 {

8 // variable declarations

9 int numberl; // first integer to add

10 int number2; // second integer to add

11 int sum; // sum of numberl and number?2

12

13 std::cout << "Enter first integer: "; // prompt user for data

14 std::cin >> numberl; // read first integer from user into numberl
15

16 std::cout << "Enter second integer: "; // prompt user for data

17 std::cin >> number2; // read second integer from user into number?2
18

19 sum = numberl + number2; // add the numbers; store result in sum
20
21 std::cout << "Sum is " << sum << std::endl; // display sum; end line

22 } // end function main

Enter first integer: 45
Enter second integer: 72
Sum is 117

Fig. 2.5 | Addition program that displays the sum of two integers entered at the keyboard.

The comments in lines 1 and 2 state the name of the file and the purpose of the pro-
gram. The C++ preprocessor directive in line 3 includes the contents of the <iostream>
header. The program begins execution with function main (line 6). The left brace (line 7)
begins main’s body and the corresponding right brace (line 22) ends it.

Variable Declarations
Lines 9-11

int numberl; // first integer to add
int number2; // second integer to add
int sum; // sum of numberl and number?2

are declarations. The identifiers numberl, number2 and sum are the names of variables. A
variable is a location in the computer’s memory where a value can be stored for use by a
program. These declarations specify that the variables numberl, number2 and sum are data
of type int, meaning that these variables will hold integer values, i.e., whole numbers such

44 Chapter 2 Introduction to C++ Programming

as 7, —11, 0 and 31914. All variables must be declared with a name and a data type before
they can be used in a program. Several variables of the same type may be declared in one
declaration or in multple declarations. We could have declared all three variables in one
declaration by using a comma-separated list as follows:

int numberl, number2, sum;

This makes the program less readable and prevents us from providing comments that de-
scribe each variable’s purpose.

" Placea space after each comma (,) to make programs more readable.

—g ? . Good Programming Practice 2.4

Fundamental Types

We'll soon discuss the type double for specifying real numbers, and the type char for spec-
ifying character data. Real numbers are numbers with decimal points, such as 3.4, 0.0 and
—11.19. A char variable may hold only a single lowercase letter, a single uppercase letter, a
single digit or a single special character (e.g., $ or *). Types such as int, double and char
are called fundamental types. Fundamental-type names are keywords and therefore must ap-
pear in all lowercase letters. Appendix C contains the complete list of fundamental types.

Identifiers

A variable name (such as number1) is any valid identifier that is not a keyword. An iden-
tifier is a series of characters consisting of letters, digits and underscores (_) that does not
begin with a digit. C++ is case sensitive—uppercase and lowercase letters are different, so
al and A1 are different identifiers.

Portability Tip 2.1
+ C++ allows identifiers of any length, but your C++ implementation may restrict identifier
lengths. Use identifiers of 31 characters or fewer to ensure portability.

. Good Programming Practice 2.5
Choosing meaningful identifiers makes a program self-documenting—a person can under-
stand the program simply by reading it rather than having to refer to manuals or comments.

, Good Programming Practice 2.6
Avoid using abbreviations in identifiers. This improves program readability.

. Good Programming Practice 2.7
Do not use identifiers that begin with underscores and double underscores, because C++
compilers may use names like that for their own purposes internally. This will prevent the
names you choose from being confused with names the compilers choose.

Placement of Variable Declarations

Declarations of variables can be placed almost anywhere in a program, but they must ap-
pear before their corresponding variables are used in the program. For example, in the pro-
gram of Fig. 2.5, the declaration in line 9

2.4 Another C++ Program: Adding Integers 45

int numberl; // first integer to add

could have been placed immediately before line 14

std::cin >> numberl; // read first integer from user into numberl
the declaration in line 10

int number2; // second integer to add
could have been placed immediately before line 17

std::cin >> number2; // read second integer from user into number?2
and the declaration in line 11

int sum; // sum of numberl and number2
could have been placed immediately before line 19

sum = numberl + number2; // add the numbers; store result in sum

" Ablways place a blank line between a declaration and adjacent executable statements. This
makes the declarations stand out and contributes to program clarity.

H;i g . Good Programming Practice 2.8

Obtaining the First Value from the User
Line 13

std::cout << ; // prompt user for data

displays Enter first integer: followed by a space. This message is called a prompt be-
cause it directs the user to take a specific action. We like to pronounce the preceding state-
ment as “std: : cout gets the character string "Enter first integer: ".” Line 14

std::cin >> numberl; // read first integer from user into numberl

uses the standard input stream object cin (of namespace std) and the stream extraction
operator, >>, to obtain a value from the keyboard. Using the stream extraction operator
with std: :cin takes character input from the standard input stream, which is usually the
keyboard. We like to pronounce the preceding statement as, “std: :cin gives a value to
numberl” or simply “std::cin gives numberl.”

When the computer executes the preceding statement, it waits for the user to enter a
value for variable numberl. The user responds by typing an integer (as characters), then
pressing the Enter key (sometimes called the Rezurn key) to send the characters to the com-
puter. The computer converts the character representation of the number to an integer
and assigns (i.c., copies) this number (or value) to the variable numberl. Any subsequent
references to numberl in this program will use this same value.

The std::cout and std::cin stream objects facilitate interaction between the user
and the computer. Because this interaction resembles a dialog, it’s often called interactive
computing.

Obtaining the Second Value from the User
Line 16

std::cout << ; // prompt user for data

46 Chapter 2 Introduction to C++ Programming

prints Enter second integer: on the screen, prompting the user to take action. Line 17
std::cin >> number2; // read second integer from user into number?2

obtains a value for variable number2 from the user.

Calculating the Sum of the Values Input by the User

The assignment statement in line 19
sum = numberl + number2; // add the numbers; store result in sum

adds the values of variables numberl and number2 and assigns the result to variable sum us-
ing the assignment operator =. The statement is read as, “sum gets the value of numberl +
number2.” Most calculations are performed in assignment statements. The = operator and
the + operator are called binary operators because each has two operands. In the case of
the + operator, the two operands are numberl and number2. In the case of the preceding =
operator, the two operands are sum and the value of the expression numberl + number2.

" Place spaces on either side of a binary operator. This makes the operator stand out and
makes the program more readable.

—g ?, Good Programming Practice 2.9

Displaying the Result
Line 21

std::cout << << sum << std::endl; // display sum; end Tine

displays the character string Sum is followed by the numerical value of variable sum fol-
lowed by std: :end1—a so-called stream manipulator. The name end1 is an abbreviation
for “end line” and belongs to namespace std. The std: :end1 stream manipulator outputs
a newline, then “flushes the output buffer.” This simply means that, on some systems
where outputs accumulate in the machine until there are enough to “make it worthwhile”
to display them on the screen, std: :end1 forces any accumulated outputs to be displayed
at that moment. This can be important when the outputs are prompting the user for an
action, such as entering data.

The preceding statement outputs multiple values of different types. The stream inser-
tion operator “knows” how to output each type of data. Using multiple stream insertion
operators (<<) in a single statement is referred to as concatenating, chaining or cascading
stream insertion operations. It's unnecessary to have multiple statements to output mul-
tiple pieces of data.

Calculations can also be performed in output statements. We could have combined
the statements in lines 19 and 21 into the statement

std::cout << << numberl + number2 << std::endl;

thus eliminating the need for the variable sum.

A powerful feature of C++ is that you can create your own data types called classes (we
introduce this capability in Chapter 3 and explore it in depth in Chapters 9 and 10). You
can then “teach” C++ how to input and output values of these new data types using the
>> and << operators (this is called operator overloading—a topic we explore in

Chapter 11).

2.5 Memory Concepts 47

2.5 Memory Concepts

Variable names such as numberl, number2 and sum actually correspond to locations in the
computer’s memory. Every variable has a name, a type, a size and a value.
In the addition program of Fig. 2.5, when the statement in line 14

std::cin >> numberl; // read first integer from user into numberl

is executed, the integer typed by the user is placed into a memory location to which the
name numberl has been assigned by the compiler. Suppose the user enters 45 as the value
for numberl. The computer will place 45 into the location numberl, as shown in Fig. 2.6.
When a value is placed in a memory location, the value overwrites the previous value in
that location; thus, placing a new value into a memory location is said to be destructive.
Returning to our addition program, suppose the user enters 72 when the statement

std::cin >> number2; // read second integer from user into number2

is executed. This value is placed into the location number2, and memory appears as in
Fig. 2.7. The variables’ locations are not necessarily adjacent in memory.

Once the program has obtained values for numberl and number2, it adds these values
and places the total into the variable sum. The statement

sum = numberl + number2; // add the numbers; store result in sum

replaces whatever value was stored in sum. The calculated sum of numberl and number2 is
placed into variable sum without regard to what value may already be in sum—that value
is lost). After sum is calculated, memory appears as in Fig. 2.8. The values of numberl and
number2 appear exactly as they did before the calculation. These values were used, but 7oz
destroyed, as the computer performed the calculation. Thus, when a value is read out of a
memory location, the process is nondestructive.

numberl 45

Fig. 2.6 | Memory location showing the name and value of variable number1.

numberl 45

number2 72

Fig. 2.7 | Memory locations after storing values the variables for numberl and number?2.

numberl 45
number2 72
sum 117

Fig. 2.8 | Memory locations after calculating and storing the sum of numberl and number?2.

48 Chapter 2 Introduction to C++ Programming

2.6 Arithmetic

Most programs perform arithmetic calculations. Figure 2.9 summarizes the C++ arithme-
tic operators. Note the use of various special symbols not used in algebra. The asterisk (*)
indicates multiplication and the percent sign (%) is the modulus operator that will be dis-
cussed shortly. The arithmetic operators in Fig. 2.9 are all binary operators, i.e., operators
that take two operands. For example, the expression numberl + number2 contains the bi-
nary operator + and the two operands numberl and number2.

Integer division (i.e., where both the numerator and the denominator are integers)
yields an integer quotient; for example, the expression 7 / 4 evaluates to 1 and the expres-
sion 17 / 5 evaluates to 3. Any fractional part in integer division is discarded (i.e., trun-
cated)—no rounding occurs.

C++ arithmetic Algebraic C++

C++ operation operator expression expression

Addition + f+7 f+7
Subtraction = p—c p-c
Multiplication * bmorb - m b *m
Division / x/_yor%orx+_y X / Yy
Modulus % 7 mod s r%s

Fig. 2.9 | Arithmetic operators.

C++ provides the modulus operator, %, that yields the remainder after integer divi-
sion. The modulus operator can be used only with integer operands. The expression x % y
yields the remainder after x is divided by y. Thus, 7 % 4 yields 3 and 17 % 5 yields 2. In later
chapters, we discuss many interesting applications of the modulus operator, such as
determining whether one number is a multiple of another (a special case of this is deter-
mining whether a number is odd or even).

Arithmetic Expressions in Straight-Line Form
Arithmetic expressions in C++ must be entered into the computer in straight-line form.
Thus, expressions such as “a divided by b” must be written as a / b, so that all constants,
variables and operators appear in a straight line. The algebraic notation

a

b

is generally 7o acceptable to compilers, although some special-purpose software packages
do support more natural notation for complex mathematical expressions.

Parentheses for Grouping Subexpressions
Parentheses are used in C++ expressions in the same manner as in algebraic expressions.
For example, to multiply a times the quantity b + ¢ we writea * (b + ¢).

Rules of Operator Precedence
C++ applies the operators in arithmetic expressions in a precise order determined by these
rules of operator precedence, which are generally the same as those in algebra:

2.6 Arithmetic 49

1. Operators in expressions contained within pairs of parentheses are evaluated first.
Parentheses are said to be at the “highest level of precedence.” In cases of nested,
or embedded, parentheses, such as

Ca*(b+c))
the operators in the innermost pair of parentheses are applied first.

2. Multiplication, division and modulus operations are applied next. If an ex-
pression contains several multiplication, division and modulus operations, oper-
ators are applied from /eff to right. Multplication, division and modulus are said
to be on the same level of precedence.

3. Addition and subtraction operations are applied last. If an expression contains
several addition and subtraction operations, operators are applied from /left ro
right. Addition and subtraction also have the same level of precedence.

The set of rules of operator precedence defines the order in which C++ applies oper-
ators. When we say that certain operators are applied from left to right, we are referring to
the associativity of the operators. For example, the addition operators (+) in the expression

a+b+c

associate from left to right, so a + b is calculated first, then ¢ is added to that sum to determine
the whole expression’s value. We'll see that some operators associate from right to lefi.
Figure 2.10 summarizes these rules of operator precedence. We expand this table as we in-
troduce additional C++ operators. A complete precedence chart is included in Appendix A.

Operator(s) Operation(s) Order of evaluation (precedence)

(@) Parentheses Evaluated first. If the parentheses are nested, the expression in
the innermost pair is evaluated first. [Caution: If you have an
expression such as (a +b) * (c - d) in which two sets of
parentheses are not nested, but appear “on the same level,”
the C++ Standard does 7ot specify the order in which these

parenthesized subexpressions will be evaluated.]

* /% Multiplication, Evaluated second. If there are several, they’re evaluated left
Division, to right.
Modulus
Addition Evaluated last. If there are several, they’re evaluated left to
- Subtraction right.

Fig. 2.10 | Precedence of arithmetic operators.

Sample Algebraic and C++ Expressions

Now consider several expressions in light of the rules of operator precedence. Each exam-
ple lists an algebraic expression and its C++ equivalent. The following is an example of an
arithmetic mean (average) of five terms:

a+b+c+d+e

5

Cr+: m=(Ca+b+c+d+e)/5;

Algebra: m =

50 Chapter 2 Introduction to C++ Programming

The parentheses are required because division has higher precedence than addition. The
entire quantity (a+b + c+d+e) is to be divided by 5. If the parentheses are erroneously
omitted, we obtain a + b+ ¢ + d + e / 5, which evaluates incorrectly as

ﬂ+b+€+d+§

The following is an example of the equation of a straight line:

Algebra: y = mx+b

C++: y=m=*x + b;
No parentheses are required. The multiplication is applied first because multiplication has
a higher precedence than addition.

The following example contains modulus (%), multiplication, division, addition, sub-
traction and assignment operations:

Algebra: z=prd%g + whx—y
C++: z = p *r % qg+ w / x -y;
6 1 2 4 3 5

The circled numbers under the statement indicate the order in which C++ applies the op-
erators. The multiplication, modulus and division are evaluated firsz in left-to-right order
(i.e., they associate from left to right) because they have higher precedence than addition and
subtraction. The addition and subtraction are applied next. These are also applied left to
right. The assignment operator is applied /ast because its precedence is lower than that of
any of the arithmetic operators.

Evaluation of a Second-Degree Polynomial
To develop a better understanding of the rules of operator precedence, consider the eval-
uation of a second-degree polynomial y = ax? + bx + ¢:

* *

y = a * X X + b * x + c;

The circled numbers under the statement indicate the order in which C++ applies the op-
erators. There is no arithmetic operator for exponentiation in C++, so we've represented x?2
as x * x. We'll soon discuss the standard library function pow (“power”) that performs ex-
ponentiation. Because of some subtle issues related to the data types required by pow, we
defer a detailed explanation of pow until Chapter 6.

Suppose variables a, b, c and x in the preceding second-degree polynomial are initial-
ized as follows: a=2, b =3, c =7 and x = 5. Figure 2.11 illustrates the order in which the
operators are applied and the final value of the expression.

As in algebra, it’s acceptable to place unnecessary parentheses in an expression to make
the expression clearer. These are called redundant parentheses. For example, the pre-
ceding assignment statement could be parenthesized as follows:

*

y =(Ca X *x)+ (b*x)+c;

2.7 Decision Making: Equality and Relational Operators 51

Step . y=2%*5%*54+3%*54+7; (Leftmost multiplication)
2 *54s 10

|

Step 2. y =10 *5+ 3 %5 + 7; (Leftmost multiplication)
10 * 5 is 50

[
o
+
w
3
V]
+
~N

; (Multiplication before addition)
3 %5 1ds 15

Step 3. y =

H (Leftmost addition)
50 + 15 is 65

Step 4.

<
Il
%
o
+
=
9]
+
~

Step 5. y = 65 + 7; (Last addition)
65 + 7 is 72
Step 6. y =72 (Last operation—place 72 in'y)

Fig. 2.11 | Order in which a second-degree polynomial is evaluated.

2.7 Decision Making: Equality and Relational Operators

We now introduce a simple version of C++’s if statement that allows a program to take
alternative action based on whether a condition is true or false. If the condition is true, the
statement in the body of the i f statement is executed. If the condition is false, the body
statement is not executed. We’'ll see an example shortly.

Conditions in if statements can be formed by using the equality operators and rela-
tional operators summarized in Fig. 2.12. The relational operators all have the same level of
precedence and associate left to right. The equality operators both have the same level of pre-
cedence, which is lower than that of the relational operators, and associate left to right.

Reversing the order of the pair of symbols in the operators =, >= and <= (by writing them as
=1, => and =<, respectively) is normally a syntax error. In some cases, writing != as =! will
not be a syntax error, but almost certainly will be a logic error that has an effect at execution
time. You ll understand why when you learn about logical operators in Chapter 5. A faral
logic error causes a program to fail and terminate prematurely. A nonfatal logic error al-
lows a program to continue executing, but usually produces incorrect results.

E a ? Common Programming Error 2.3

Confusing the equality operator == with the assignment operator = results in logic errors.
Read the equality operator should be read “is equal to” or “double equals,” and the assign-
ment operator should be read “gets” or “gets the value of” or “Is assigned the value of.” As
we discuss in Section 5.9, confusing these operators may not necessarily cause an easy-ro-
recognize syntax error, but may cause extremely subtle logic errors.

E a ? Common Programming Error 2.4

52

Chapter 2 Introduction to C++ Programming

Standard algebraic C++ equality ~ Sample

equality or relational or relational C++ Meaning of

operator operator condition C++ condition

Relational operators

> > X >y X is greater than y

< < X <y X is less than y

> >= X >= X is greater than or equal to y
< = X <= X is less than or equal to y
Equality operators

_ == X ==Yy X is equal to y

1= x =y X is not equal to y

Fig. 2.12 | Equality and relational operators.

Using the if Statement

The following example (Fig. 2.13) uses six if statements to compare two numbers input
by the user. If the condition in any of these 1 f statements is satisfied, the output statement
associated with that if statement is executed.

VOO ~NGONUNDE WN -

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

// Fig. 2.13: fig02_13.cpp

// Comparing integers using if statements, relational operators
// and equality operators.

#include <iostream> // allows program to perform input and output

using std::cout; // program uses cout
using std::cin; // program uses cin
using std::endl; // program uses end]

// function main begins program execution
int mainQ)
{
int numberl; // first integer to compare
int number2; // second integer to compare
cout << "Enter two integers to compare: "; // prompt user for data
cin >> numberl >> number2; // read two integers from user

if (numberl == number2)
cout << numberl << " =

= << number2 << endl;

if (numberl != number2)
cout << numberl << " !=

<< number2 << endl;

if (numberl < number2)

cout << numberl << < << number2 << endl;

Fig. 2.13 | Comparing integers using if statements, relational operators and equality operators.
(Part | of 2.)

2.7 Decision Making: Equality and Relational Operators 53

27

28 if (numberl > number2)

29 cout << numberl << << number2 << endl;
30

31 if (numberl <= number2)

32 cout << numberl << << number2 << endl;
33

34 if (numberl >= number2)

35 cout << numberl << << number2 << endl;

36 } // end function main

Enter two integers to compare: 3 7

3 1=7
3 <7
3 <=7

Enter two integers to compare: 22 12
22 1= 12
22 > 12
22 >= 12

Enter two integers to compare: 7 7
7 =
7
7

A

@

\
N NN

Fig. 2.13 | Comparing integers using if statements, relational operators and equality operators.
(Part 2 of 2.)

using Directives
Lines 6-8

using std::cout; // program uses cout
using std::cin; // program uses cin
using std::endl; // program uses endl
are using directives that eliminate the need to repeat the std:: prefix as we did in earlier
programs. We can now write cout instead of std::cout, cin instead of std::cin and
end1 instead of std: :endT, respectively, in the remainder of the program.
In place of lines 6-8, many programmers prefer to use the directive

using namespace std;

which enables a program to use #// the names in any standard C++ header (such as
<jostreams) thata program might include. From this point forward in the book, we’ll use
the preceding directive in our programs.

Variable Declarations and Reading the Inputs from the User
Lines 13-14

int numberl; // first integer to compare
int number2; // second integer to compare

declare the variables used in the program.

54 Chapter 2 Introduction to C++ Programming

The program uses cascaded stream extraction operations (line 17) to input two inte-
gers. Remember that we're allowed to write cin (instead of std: :cin) because of line 7.
First a value is read into variable numberi, then a value is read into variable number?2.

Comparing Numbers
The i f statement in lines 19-20

if (numberl == number2)
cout << numberl << << number2 << endT;

compares the values of variables numberl and number2 to test for equality. If the values are
equal, the statement in line 20 displays a line of text indicating that the numbers are equal.
If the conditions are true in one or more of the if statements starting in lines 22, 25, 28,
31 and 34, the corresponding body statement displays an appropriate line of text.

Each if statement in Fig. 2.13 has a single statement in its body and each body state-
ment is indented. In Chapter 4 we show how to specify i f statements with multiple-state-
ment bodies (by enclosing the body statements in a pair of braces, { 3, creating what’s
called a compound statement or a block).

--§ % Good Programming Practice 2.10

" Indent the statement(s) in the body of an if statement to enhance readabiliy.

Common Programming Error 2.5

Placing a semicolon immediately after the right parenthesis after the condition in an if
statement is often a logic error (although not a syntax error). The semicolon causes the body

of the if statement to be empty, so the if statement performs no action, regardless of
whether or not its condition is true. Worse yet, the original body statement of the 1 f state-

ment now becomes a statement in sequence with the if statement and always executes,

often causing the program to produce incorrect results.

White Space

Note the use of white space in Fig. 2.13. Recall that white-space characters, such as tabs,
newlines and spaces, are normally ignored by the compiler. So, statements may be split
over several lines and may be spaced according to your preferences. It’s a syntax error to
split identifiers, strings (such as "hel1l0") and constants (such as the number 1000) over
several lines.

A lengthy statement may be spread over several lines. If a single statement must be split
across lines, choose meaningful breaking points, such as after a comma in a comma-sepa-
rated list, or after an operator in a lengthy expression. If a statement is split across two or
more lines, indent all subsequent lines and lefi-align the group of indented lines.

-§ % Good Programming Practice 2.1 1

Operator Precedence

Figure 2.14 shows the precedence and associativity of the operators introduced in this
chapter. The operators are shown top to bottom in decreasing order of precedence. All
these operators, with the exception of the assignment operator =, associate from left to
right. Addition is left-associative, so an expression like x + y + z is evaluated as if it had
been written (x +y) + z. The assignment operator = associates from right to left, so an ex-

2.8 Wrap-Up 55

pression such as x = y = 0 is evaluated as if it had been written x = (y = 0), which, as we’ll
soon see, first assigns 0 to y, then assigns the resul of that assignment—0—to x.

Operators Associativity Type

O [See caution in Fig. 2.10] grouping parentheses

* / % left to right multiplicative

+ - left to right additive

<< >> left to right stream insertion/extraction
< <= > >= left to right relational

== = left to right equality

= right to left assignment

Fig. 2.14 | Precedence and associativity of the operators discussed so far.

Refer to the operator precedence and associativity chart (Appendix A) when writing ex-
pressions containing many operators. Confirm that the operators in the expression are per-
formed in the order you expect. If you're uncertain about the order of evaluation in a
complex expression, break the expression into smaller statements or use parentheses to force
the order of evaluation, exactly as you'd do in an algebraic expression. Be sure to observe
that some operators such as assignment (=) associate right to left rather than left to right.

(%) Good Programming Practice 2.12

2.8 Wrap-Up

You learned many important basic features of C++ in this chapter, including displaying
data on the screen, inputting data from the keyboard and declaring variables of fundamen-
tal types. In particular, you learned to use the output stream object cout and the input
stream object cin to build simple interactive programs. We explained how variables are
stored in and retrieved from memory. You also learned how to use arithmetic operators to
perform calculations. We discussed the order in which C++ applies operators (i.e., the
rules of operator precedence), as well as the associativity of the operators. You also learned
how C++’s if statement allows a program to make decisions. Finally, we introduced the
equality and relational operators, which you use to form conditions in i f statements.

The non-object-oriented applications presented here introduced you to basic program-
ming concepts. As you'll see in Chapter 3, C++ applications typically contain just a few lines
of code in function main—these statements normally create the objects that perform the
work of the application, then the objects “take over from there.” In Chapter 3, you'll learn
how to implement your own classes and use objects of those classes in applications.

Summary
Section 2.2 First Program in C++: Printing a Line of Text

* Single-line comments (p. 39) begin with //. You insert comments to document your programs
and improve their readability.

56 Chapter 2 Introduction to C++ Programming

Comments do not cause the computer to perform any action (p. 40) when the program is run—
they’re ignored by the compiler and do not cause any machine-language object code to be gen-
erated.

A preprocessor directive (p. 39) begins with # and is a message to the C++ preprocessor. Prepro-
cessor directives are processed before the program is compiled and don’t end with a semicolon.

The line #include <iostream> (p. 39) tells the C++ preprocessor to include the contents of the
input/output stream header, which contains information necessary to compile programs that use
std::cin (p. 43) and std: :cout (p. 40) and the stream insertion (<<, p. 40) and stream extrac-
tion (>>, p. 43) operators.

White space (i.e., blank lines, space characters and tab characters, p. 39) makes programs easier
to read. White-space characters outside of literals are ignored by the compiler.

C++ programs begin executing at main (p. 39), even if main does not appear first in the program.
The keyword int to the left of main indicates that main “returns” an integer value.
The body (p. 40) of every function must be contained in braces ({ and }).

A string (p. 40) in double quotes is sometimes referred to as a character string, message or string
literal. White-space characters in strings are 7ot ignored by the compiler.

Every statement (p. 40) must end with a semicolon (also known as the statement terminator).
Output and input in C++ are accomplished with streams (p. 40) of characters.

The output stream object std: : cout—normally connected to the screen—is used to output data.
Multiple data items can be output by concatenating stream insertion (<<) operators.

The input stream object std: : cin—normally connected to the keyboard—is used to input data.
Multiple data items can be input by concatenating stream extraction (>>) operators.

The notation std: : cout specifies that we are using cout from “namespace” std.

When a backslash (i.e., an escape character) is encountered in a string of characters, the next char-
acter is combined with the backslash to form an escape sequence (p. 41).

The newline escape sequence \n (p. 41) moves the cursor to the beginning of the next line on the
screen.

A message that directs the user to take a specific action is known as a prompt (p. 45).

C++ keyword return (p. 41) is one of several means to exit a function.

Section 2.4 Another C++ Program: Adding Integers

All variables (p. 43) in a C++ program must be declared before they can be used.

A variable name is any valid identifier (p. 44) that is not a keyword. An identifier is a series of
characters consisting of letters, digits and underscores (_). Identifiers cannot start with a digit.
Identifiers can be any length, but some systems or C++ implementations may impose length re-
strictions.

C++ is case sensitive (p. 44).
Most calculations are performed in assignment statements (p. 46).
A variable is a location in memory (p. 47) where a value can be stored for use by a program.

Variables of type int (p. 44) hold integer values, i.e., whole numbers such as 7, =11, 0, 31914.

Section 2.5 Memory Concepts

Every variable stored in the computer’s memory has a name, a value, a type and a size.

Whenever a new value is placed in a memory location, the process is destructive (p. 47); i.e., the
new value replaces the previous value in that location. The previous value is lost.

Self-Review Exercises 57

e When a value is read from memory, the process is nondestructive (p. 47); i.e., a copy of the value
is read, leaving the original value undisturbed in the memory location.

* The std: :end1 stream manipulator (p. 46) outputs a newline, then “flushes the output buffer.”

Section 2.6 Arithmetic
e C++ evaluates arithmetic expressions (p. 48) in a precise sequence determined by the rules of op-
erator precedence (p. 48) and associativity (p. 49).

e Parentheses may be used to group expressions.

* Integer division (p. 48) yields an integer quotient. Any fractional part in integer division is trun-
cated.

* The modulus operator, % (p. 48), yields the remainder after integer division.

Section 2.7 Decision Making: Equality and Relational Operators
 The if statement (p. 51) allows a program to take alternative action based on whether a condi-
tion is met. The format for an if statement is

if (condition)
statement;

If the condition is true, the statement in the body of the if is executed. If the condition is not
met, i.e., the condition is false, the body statement is skipped.

* Conditions in if statements are commonly formed by using equality and relational operators
(p. 51). The result of using these operators is always the value true or false.

* The using directive (p. 53)
using std::cout;

informs the compiler where to find cout (namespace std) and eliminates the need to repeat the
std: : prefix. The directive

using namespace std;

enables the program to use all the names in any included C++ standard library header.

Self-Review Exercises

2.1 Fill in the blanks in each of the following.
a) Every C++ program begins execution at the function

b) A(n) begins the body of every function and a(n) ends the body.

c) Every C++ statement ends with a(n) .

d) The escape sequence \n represents the character, which causes the cursor to
position to the beginning of the next line on the screen.

e) The statement is used to make decisions.

2.2 State whether each of the following is true or false. If false, explain why. Assume the state-
ment using std: :cout; is used.
a) Comments cause the computer to print the text after the // on the screen when the pro-
gram is executed.
b) The escape sequence \n, when output with cout and the stream insertion operator,
causes the cursor to position to the beginning of the next line on the screen.
¢) All variables must be declared before they’re used.
d) All variables must be given a type when they’re declared.
e) C++ considers the variables number and NuMbEr to be identical.
f) Declarations can appear almost anywhere in the body of a C++ function.
g) The modulus operator (%) can be used only with integer operands.

58 Chapter 2 Introduction to C++ Programming

h) The arithmetic operators *, /, %, + and — all have the same level of precedence.
i) A C++ program that prints three lines of output must contain three statements using
cout and the stream insertion operator.

2.3 Write a single C++ statement to accomplish each of the following (assume that using direc-
tives have not been used):

a) Declare the variables c, thisIsAvariable, q76354 and number to be of type int.

b) Prompt the user to enter an integer. End your prompting message with a colon (:) fol-

lowed by a space and leave the cursor positioned after the space.

¢) Read an integer from the user at the keyboard and store it in integer variable age.

d) If the variable number is not equal to 7, print "The variable number is not equal to 7".

e) Print the message "This is a C++ program" on one line.

f) Print the message "This is a C++ program” on two lines. End the first line with C++.

g) Print the message "This is a C++ program" with each word on a separate line.

h) Print the message "This is a C++ program". Separate each word from the next by a tab.

2.4 Werite a statement (or comment) to accomplish each of the following (assume that using
directives have been used for cin, cout and end1):

a) State that a program calculates the product of three integers.

b) Declare the variables x, y, z and result to be of type int (in separate statements).

¢) Prompt the user to enter three integers.

d) Read three integers from the keyboard and store them in the variables x, y and z.

¢) Compute the product of the three integers contained in variables x, y and z, and assign

the result to the variable result.
f) Print "The product is " followed by the value of the variable result.
g) Return a value from main indicating that the program terminated successfully.

2.5 Using the statements you wrote in Exercise 2.4, write a complete program that calculates
and displays the product of three integers. Add comments to the code where appropriate. [Note:
You’ll need to write the necessary using directives.]

2.6 Identify and correct the errors in each of the following statements (assume that the state-
ment using std: :cout; is used):
a) if (c<7);
cout << o
b) if (c=7)

cout << H

Answers to Self-Review Exercises
2.1 a) main. b) left brace ({), right brace (}). c¢) semicolon. d) newline. e) if.

2.2 a) False. Comments do not cause any action to be performed when the program is exe-

cuted. They’re used to document programs and improve their readability.

b) True.

c) True.

d) True.

e) False. C++ is case sensitive, so these variables are unique.

f) True.

g) True.

h) False. The operators *, / and % have the same precedence, and the operators + and - have
a lower precedence.

i) False. One statement with cout and multiple \n escape sequences can print several lines.

2.3 a) int c, thisIsAVariable, 76354, number;

Exercises

b) std::cout << ;
c) std::cin >> age;
d) if (number != 7)
std::cout << o
e) std::cout << :
f) std::cout << g
g) std::cout << :
h) std::cout << ;

2.4 a) // Calculate the product of three integers
b) dint x;
int y;
int z;
int result;
c) cout << 5
d) cin >> x >> y >> z;

e) result = x *y * z;

59

f) cout << << result << endl;
g) return 0;
2.5 (See program below.)
1 // Calculate the product of three integers
2 #include <iostream> // allows program to perform input and output
3 using namespace std; // program uses names from the std namespace
4
5 // function main begins program execution
6 1int mainQ)
7 {
8 int x; // first integer to multiply
9 int y; // second integer to multiply
10 int z; // third integer to multiply
11 int result; // the product of the three integers
12
13 cout << ; // prompt user for data
14 cin >> x >> y >> z; // read three integers from user
15 result = x * y * z; // multiply the three integers; store result
16 cout << << result << endl; // print result; end Tine
17 } // end function main
2.6 a) Error: Semicolon after the right parenthesis of the condition in the if statement.
Correction: Remove the semicolon after the right parenthesis. [/Voze: The result of this
error is that the output statement executes whether or not the condition in the if state-
ment is true.] The semicolon after the right parenthesis is a null (or empty) statement
that does nothing. We’ll learn more about the null statement in Chapter 4.
b) Error: The relational operator =>.
Correction: Change => to >=, and you may want to change “equal to or greater than” to
“greater than or equal to” as well.
Exercises

2.7 Discuss the meaning of each of the following objects:
a) std::cin
b) std::cout

60

2.8

29

2.11

2.12

Chapter 2 Introduction to C++ Programming

Fill in the blanks in each of the following:

a) are used to document a program and improve its readability.
b) The object used to print information on the screen is

c) A C++ statement that makes a decision is .

d) Most calculations are normally performed by statements.

¢) The object inputs values from the keyboard.

Write a single C++ statement or line that accomplishes each of the following:

a) Print the message "Enter two numbers".

b) Assign the product of variables b and ¢ to variable a.

¢) State that a program performs a payroll calculation (i.e., use text that helps to document
a program).

d) Input three integer values from the keyboard into integer variables a, b and c.

State which of the following are #rue and which are false. If false, explain your answers.

a) C++ operators are evaluated from left to right.

b) The following are all valid variable names: _under_bar_, m928134, t5, j7, her_sales,
his_account_total, a, b, ¢, z, z2.

¢) The statement cout << "a = 5;"; is a typical example of an assignment statement.

d) A valid C++ arithmetic expression with no parentheses is evaluated from left to right.

e) The following are all invalid variable names: 3g, 87, 67h2, h22, 2h.

Fill in the blanks in each of the following:
a) What arithmetic operations are on the same level of precedence as multiplication?

b) When parentheses are nested, which set of parentheses is evaluated first in an arithmetic
expression? .

¢) Alocation in the computer’s memory that may contain different values at various times
throughout the execution of a program is called a(n)

What, if anything, prints when each of the following C++ statements is performed? If noth-

ing prints, then answer “nothing.” Assume x = 2 andy = 3.

2.13

2.14

a) cout << X;

b) cout << x + x;

C) cout << g

d) cout << << X;

€) cout << X + y << <Y + X;
) z=x+y;

g) cin >> x >> y;

h) // cout << "x +y = " << X + y;
1) cout << 2

Which of the following C++ statements contain variables whose values are replaced?
a) cin>> b >> c>>d>> e > f;

b) p=i+3j+k+7;

c) cout << ;

d) cout << H

Given the algebraic equation y = ax3 + 7, which of the following, if any, are correct C++

statements for this equation?

a) Yo a R d ;

b) y=a*x*x* (x+7);
 y=Ca*x)*x*(x+7);
d) y=(@@*x)*x*x+7;

Exercises 61

=

e y=a* (x*x*x)+7;

) y=a*x*(x*x+7);
2.15 (Order of Evalution) State the order of evaluation of the operators in each of the following
C++ statements and show the value of x after each statement is performed.

a) x +3%6/2-1;

b) x %2 +2*2-2/2;

 x=(3%9*(3+(9%3/(3))));

2.16 (Arithmetic) Write a program that asks the user to enter two numbers, obtains the two
numbers from the user and prints the sum, product, difference, and quotient of the two numbers.

2.17 (Printing) Write a program that prints the numbers 1 to 4 on the same line with each pair
of adjacent numbers separated by one space. Do this several ways:

a) Using one statement with one stream insertion operator.

b) Using one statement with four stream insertion operators.

¢) Using four statements.

2.18 (Comparing Integers) Write a program that asks the user to enter two integers, obtains the
numbers from the user, then prints the larger number followed by the words "is 1arger." If the
numbers are equal, print the message "These numbers are equal."

2.19 (Arithmetic, Smallest and Largest) Write a program that inputs three integers from the key-
board and prints the sum, average, product, smallest and largest of these numbers. The screen dialog
should appear as follows:

Input three different integers: 13 27 14
Sum is 54

Average is 18

Product is 4914

Smallest is 13

Largest is 27

2.20 (Diameter, Circumference and Area of a Circle) Write a program that reads in the radius of
a circle as an integer and prints the circle’s diameter, circumference and area. Use the constant value
3.14159 for 1. Do all calculations in output statements. [Noze: In this chapter, we’ve discussed only
integer constants and variables. In Chapter 4 we discuss floating-point numbers, i.e., values that can
have decimal points.]

2.21 (Displaying Shapes with Asterisks) Write a program that prints a box, an oval, an arrow and
a diamond as follows:

* 3
*

R
E

%ok
E
EOE)

2.22 What does the following code print?

cout << << endl;

2.23 (Largest and Smallest Integers) Write a program that reads in five integers and determines
and prints the largest and the smallest integers in the group. Use only the programming techniques
you learned in this chapter.

62 Chapter 2 Introduction to C++ Programming

2.24 (Odd or Even) Write a program that reads an integer and determines and prints whether
i’s odd or even. [Hint: Use the modulus operator. An even number is a multiple of two. Any mul-
tiple of two leaves a remainder of zero when divided by 2.]

2.25 (Multiples) Write a program that reads in two integers and determines and prints if the first
is a multiple of the second. [Hinz: Use the modulus operator.]

2.26 (Checkerboard Pattern) Display the following checkerboard pattern with eight output
statements, then display the same pattern using as few statements as possible.

2.27 (Integer Equivalent of a Character) Here is a peck ahead. In this chapter you learned about
integers and the type int. C++ can also represent uppercase letters, lowercase letters and a consider-
able variety of special symbols. C++ uses small integers internally to represent each different charac-
ter. The set of characters a computer uses and the corresponding integer representations for those
characters are called that computer’s character set. You can print a character by enclosing that char-
acter in single quotes, as with

cout << ; // print an uppercase A
You can print the integer equivalent of a character using static_cast as follows:

cout << static_cast< int >(); // print 'A' as an integer
This is called a cast operation (we formally introduce casts in Chapter 4). When the preceding
statement executes, it prints the value 65 (on systems that use the ASCII character set). Write a
program that prints the integer equivalent of a character typed at the keyboard. Store the inputin a

variable of type char. Test your program several times using uppercase letters, lowercase letters, dig-
its and special characters (like $).

2.28 (Digits of an Integer) Write a program that inputs a five-digit integer, separates the integer
into its digits and prints them separated by three spaces each. [Hinz: Use the integer division and
modulus operators.] For example, if the user types in 42339, the program should print:

2.29 (Table) Using the techniques of this chapter, write a program that calculates the squares and
cubes of the integers from 0 to 10. Use tabs to print the following neatly formatted table of values:

integer square cube

0 0 0

1 1 1

2 4 8

3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000

Making a Difference 63

Making a Difference
2.30 (Body Mass Index Calculator) We introduced the body mass index (BMI) calculator in
Exercise 1.9. The formulas for calculating BMI are
BMI = weightInPoundsx 703
~ heightInlnchesx heightInlnches

or

BMI = weightInKilograms
heightInMeters x heightInMeters

Create a BMI calculator application that reads the user’s weight in pounds and height in inches
(or, if you prefer, the user’s weight in kilograms and height in meters), then calculates and displays
the user’s body mass index. Also, the application should display the following information from
the Department of Health and Human Services/National Institutes of Health so the user can eval-
uate his/her BMI:

BMI VALUES

Underweight: less than 18.5
Normal: between 18.5 and 24.9
Overweight: between 25 and 29.9
Obese: 30 or greater

[Note: In this chapter, you learned to use the int type to represent whole numbers. The BMI calcu-
lations when done with int values will both produce whole-number results. In Chapter 4 you’ll
learn to use the doubTe type to represent numbers with decimal points. When the BMI calculations
are performed with doubles, they’ll both produce numbers with decimal points—these are called
“floating-point” numbers.]

2.31 (Car-Pool Savings Calculator) Research several car-pooling websites. Create an application
that calculates your daily driving cost, so that you can estimate how much money could be saved by
car pooling, which also has other advantages such as reducing carbon emissions and reducing traffic
congestion. The application should input the following information and display the user’s cost per
day of driving to work:

a) Total miles driven per day.

b) Cost per gallon of gasoline.

¢) Average miles per gallon.

d) Parking fees per day.

e) Tolls per day.

Nothing can have value without
being an object of utiliry.
—Karl Marx

Your public servants serve you
right.

—Adlai E. Stevenson

Knowing how to answer
one who speaks,

1o reply to one who
sends a message.

—Amenemopel

Objectives
In this chapter you'll learn:

= How to define a class and use
it to create an object.

How to implement a class’s
behaviors as member
functions.

How to implement a class’s
attributes as data members.

How to call a member
function of an object to
perform a task.

The differences between data
members of a class and local
variables of a function.

How to use a constructor to
initialize an object’s data
when the object is created.

How to engineer a class to
separate its interface from its
implementation and
encourage reuse.

How to use objects of class
string.

Introduction to Classes,
Objects and Strings

7 Outline

3.1 Introduction 65

3.1 Introduction 3.6 Placing a Class in a Separate File for
3.2 Defining a Class with a Member Reusability

Function 3.7 Separating Interface from
3.3 Defining a Member Function with a Implementation

Parameter 3.8 Validating Data with set Functions
3.4 Data Members, set Functions and get 3.9 Wrap-Up

Functions
3.5 Initializing Objects with

Constructors

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

3.1 Introduction

In Chapter 2, you created simple programs that displayed messages to the user, obtained
information from the user, performed calculations and made decisions. In this chapter,
you'll begin writing programs that employ the basic concepts of object-oriented program-
ming that we introduced in Section 1.6. One common feature of every program in
Chapter 2 was that all the statements that performed tasks were located in function main.
Typically, the programs you develop in this book will consist of function main and one or
more classes, each containing data members and member functions. If you become part of a
development team in industry, you might work on software systems that contain hun-
dreds, or even thousands, of classes. In this chapter, we develop a simple, well-engineered
framework for organizing object-oriented programs in C++.

We present a carefully paced sequence of complete working programs to demonstrate
creating and using your own classes. These examples begin our integrated case study on
developing a grade-book class that instructors can use to maintain student test scores. We
also introduce the C++ standard library class string.

3.2 Defining a Class with a Member Function

We begin with an example (Fig. 3.1) that consists of class GradeBook (lines 8—16)—which,
when it’s fully developed in Chapter 7, will represent a grade book that an instructor can
use to maintain student test scores—and a main function (lines 19-23) that creates a
GradeBook object. Function main uses this object and its member function to display a
message on the screen welcoming the instructor to the grade-book program.

// Fig. 3.1: fig03_01.cpp

// Define class GradeBook with a member function displayMessage,

// create a GradeBook object, and call its displayMessage function.
#include <iostream>

using namespace std;

Nh WN -

Fig. 3.1 | Define class GradeBook with a member function displayMessage, create a

GradeBook object and call its displayMessage function. (Part | of 2.)

66 Chapter 3 Introduction to Classes, Objects and Strings

6

7 // GradeBook class definition

8 class GradeBook

9

10 public:

11 // function that displays a welcome message to the GradeBook user
12 void displayMessage()

13 {

14 cout << << endl;
15 } // end function displayMessage

16 }; // end class GradeBook

17

18 // function main begins program execution
19 1int mainQ)

20 {
21 GradeBook myGradeBook; // create a GradeBook object named myGradeBook
22 myGradeBook.displayMessage(); // call object's displayMessage function

23 } // end main

Welcome to the Grade Book!

Fig. 3.1 | Define class GradeBook with a member function displayMessage, create a
GradeBook object and call its displayMessage function. (Part 2 of 2.)

Class GradeBook

Before function main (lines 19-23) can create a GradeBook object, we must tell the com-
piler what member functions and data members belong to the class. The GradeBook class
definition (lines 8—16) contains a member function called displayMessage (lines 12—15)
that displays a message on the screen (line 14). We need to make an object of class Grade-
Book (line 21) and call its dispTlayMessage member function (line 22) to get line 14 to
execute and display the welcome message. We'll soon explain lines 21-22 in detail.

The class definition begins in line 8 with the keyword class followed by the class
name GradeBook. By convention, the name of a user-defined class begins with a capital
letter, and for readability, each subsequent word in the class name begins with a capital
letter. This capitalization style is often referred to as Pascal case, because the pattern of
uppercase and lowercase letters resembles the silhouette of a camel.

Every class’s body is enclosed in a pair of left and right braces ({ and 3), as in lines 9
and 16. The class definition terminates with a semicolon (line 16).

Common Programming Error 3.1
lﬁ. Forgetting the semicolon at the end of a class definition is a syntax error.

Recall that the function main is always called automatically when you execute a pro-
gram. Most functions do 7oz get called automatically. As you’ll soon see, you must call
member function displayMessage explicitly to tell it to perform its task.

Line 10 contains the keyword public, which is an access specifier. Lines 12—15 define
member function displayMessage. This member function appears after access specifier
pubTic: to indicate that the function is “available to the public’—that is, it can be called
by other functions in the program (such as main), and by member functions of other

3.2 Defining a Class with a Member Function 67

classes (if there are any). Access specifiers are always followed by a colon (:). For the
remainder of the text, when we refer to the access specifier pub1ic, we'll omit the colon as
we did in this sentence. Section 3.4 introduces the access specifier, private. Later in the
book we’ll study the access specifier protected.

Each function in a program performs a task and may rezurn a value when it completes
its task—for example, a function might perform a calculation, then return the result of
that calculation. When you define a function, you must specify a return type to indicate
the type of the value returned by the function when it completes its task. In line 12, key-
word void to the left of the function name displayMessage is the function’s return type.
Return type void indicates that displayMessage will 7o return any data to its calling
function (in this example, line 22 of main, as we’ll see in a moment) when it completes its
task. In Fig. 3.5, you’ll see an example of a function that does return a value.

The name of the member function, displayMessage, follows the return type (line
12). By convention, function names begin with a lowercase first letter and all subsequent
words in the name begin with a capital letter. This capitalization style is often refered to
as camel case and is also used for variable names. The parentheses after the member func-
tion name indicate that this is a function. An empty set of parentheses, as shown in line
12, indicates that this member function does 7oz require additional data to perform its
task. You'll see an example of a member function that does require additional data in
Section 3.3. Line 12 is commonly referred to as a function header. Every function’s body
is delimited by left and right braces ({ and }), as in lines 13 and 15.

The body of a function contains statements that perform the function’s task. In this
case, member function displayMessage contains one statement (line 14) that displays the
message "Welcome to the Grade Book!". After this statement executes, the function has
completed its task.

Testing Class GradeBook
Next, we'd like to use class GradeBook in a program. As you saw in Chapter 2, the function
main (lines 19-23) begins the execution of every program.

In this program, we’d like to call class GradeBook’s displayMessage member function
to display the welcome message. Typically, you cannot call a member function of a class
until you create an object of that class. (As you'll learn in Section 10.6, static member
functions are an exception.) Line 21 creates an object of class GradeBook called myGrade-
Book. The variable’s type is GradeBook—the class we defined in lines 8—16. When we
declare variables of type int, as we did in Chapter 2, the compiler knows what int is—it’s
a fundamental type that’s “built into” C++. In line 21, however, the compiler does 70z auto-
matically know what type GradeBook is—it’s a user-defined type. We tell the compiler
what GradeBook is by including the class definition (lines 8-16). If we omitted these lines,
the compiler would issue an error message. Each class you create becomes a new #ype that
can be used to create objects. You can define new class types as needed; this is one reason
why C++ is known as an extensible language.

Line 22 calls the member function displayMessage using variable myGradeBook fol-
lowed by the dot operator (.), the function name displayMessage and an empty set of
parentheses. This call causes the displayMessage function to perform its task. At the
beginning of line 22, “myGradeBook.” indicates that main should use the GradeBook object
that was created in line 21. The empty parentheses in line 12 indicate that member func-

68 Chapter 3 Introduction to Classes, Objects and Strings

tion displayMessage does 70t require additional data to perform its task, which is why we
called this function with empty parentheses in line 22. (In Section 3.3, you’ll see how to
pass data to a function.) When displayMessage completes its task, the program reaches
the end of main (line 23) and terminates.

UML Class Diagram for Class GradeBook

Recall from Section 1.6 that the UML is a standardized graphical language used by soft-
ware developers to represent their object-oriented systems. In the UML, each class is mod-
eled in a UML class diagram as a rectangle with three compartments. Figure 3.2 presents
a class diagram for class GradeBook (Fig. 3.1). The top compartment contains the class’s
name centered horizontally and in boldface type. The middle compartment contains the
class’s attributes, which correspond to data members in C++. This compartment is cur-
rently empty, because class GradeBook does not have any attributes. (Section 3.4 presents
a version of class GradeBook with an attribute.) The bottom compartment contains the
class’s operations, which correspond to member functions in C++. The UML models op-
erations by listing the operation name followed by a set of parentheses. Class GradeBook
has only one member function, displayMessage, so the bottom compartment of Fig. 3.2
lists one operation with this name. Member function displayMessage does 7oz require ad-
ditional information to perform its tasks, so the parentheses following displayMessage in
the class diagram are empry, just as they are in the member function’s header in line 12 of
Fig. 3.1. The plus sign (+) in front of the operation name indicates that displayMessage
is a public operation in the UML (i.e., a pubTic member function in C++).

Fig. 3.2 | UML class diagram indicating that class GradeBook has a public displayMessage
operation.

3.3 Defining a Member Function with a Parameter

In our car analogy from Section 1.6, we mentioned that pressing a car’s gas pedal sends a
message to the car to perform a task—make the car go faster. But how fast should the car
accelerate? As you know, the farther down you press the pedal, the faster the car acceler-
ates. So the message to the car includes both the task to perform and additional information
that helps the car perform the task. This additional information is known as a parameter—
the value of the parameter helps the car determine how fast to accelerate. Similarly, a mem-
ber function can require one or more parameters that represent additional data it needs to
perform its task. A function call supplies values—called arguments—for each of the func-
tion’s parameters. For example, to make a deposit into a bank account, suppose a deposit
member function of an Account class specifies a parameter that represents the deposit
amount. When the deposit member function is called, an argument value representing
the deposit amount is copied to the member function’s parameter. The member function
then adds that amount to the account balance.

3.3 Defining a Member Function with a Parameter 69

Defining and Testing Class GradeBook

Our next example (Fig. 3.3) redefines class GradeBook (lines 9-18) with a display-
Message member function (lines 13—17) that displays the course name as part of the wel-
come message. The new version of displayMessage requires a parameter (courseName in
line 13) that represents the course name to output.

1 // Fig. 3.3: fig03_03.cpp

2 // Define class GradeBook with a member function that takes a parameter,
3 // create a GradeBook object and call 1its displayMessage function.

4 #include <iostream>

5 #include <string> // program uses C++ standard string class

6 using namespace std;

7

8 // GradeBook class definition

9 class GradeBook

10 {

Il public:

12 // function that displays a welcome message to the GradeBook user
13 void displayMessage(string courseName)

14 {

15 cout << "Welcome to the grade book for\n" << courseName << "!"
16 << endl;

17 } // end function displayMessage

18 }; // end class GradeBook

19

20 // function main begins program execution
21 int mainQ

22 {

23 string nameOfCourse; // string of characters to store the course name
24 GradeBook myGradeBook; // create a GradeBook object named myGradeBook
25

26 // prompt for and input course name

27 cout << "Please enter the course name:" << endl;

28 getline(cin, nameOfCourse); // read a course name with blanks

29 cout << endl; // output a blank Tine

30

31 // call myGradeBook's displayMessage function

32 // and pass nameOfCourse as an argument

33 myGradeBook.displayMessage(nameOfCourse);

34 1} // end main

Please enter the course name:
CS101 Introduction to C++ Programming

Welcome to the grade book for
CS101 Introduction to C++ Programming!

Fig. 3.3 | Define class GradeBook with a member function that takes a parameter, create a
GradeBook object and call its displayMessage function.

Before discussing the new features of class GradeBook, let’s see how the new class is
used in main (lines 21-34). Line 23 creates a variable of type string called nameOfCourse

70 Chapter 3 Introduction to Classes, Objects and Strings

that will be used to store the course name entered by the user. A variable of type string
represents a string of characters such as “CS101 Introduction to C++ Programming”. A
string is actually an object of the C++ Standard Library class string. This class is defined
in header <string>, and the name string, like cout, belongs to namespace std. To enable
lines 13 and 23 to compile, line 5 includes the <string> header. The using directive in
line 6 allows us to simply write string in line 23 rather than std::string. For now, you
can think of string variables like variables of other types such as int. You’ll learn addi-
tional string capabilities in Section 3.8 and in Chapter 18.

Line 24 creates an object of class GradeBook named myGradeBook. Line 27 prompts
the user to enter a course name. Line 28 reads the name from the user and assigns it to the
nameOfCourse variable, using the library function getline to perform the input. Before
we explain this line of code, let’s explain why we cannot simply write

cin >> nameOfCourse;

to obtain the course name. In our sample program execution, we use the course name
“CS101 Introduction to C++ Programming,” which contains multiple words separated by
blanks. (Recall that we highlight user-supplied input in bold.) When cin is used with the
stream extraction operator, it reads characters until the first white-space character is reached.
Thus, only “cS101” would be read by the preceding statement. The rest of the course name
would have to be read by subsequent input operations.

In this example, we’d like the user to type the complete course name and press Enter
to submit it to the program, and we’d like to store the entire course name in the string
variable nameOfCourse. The function call getline(cin, nameOfCourse) in line 28 reads
characters (including the space characters that separate the words in the input) from the
standard input stream object cin (i.e., the keyboard) until the newline character is encoun-
tered, places the characters in the string variable nameOfCourse and discards the newline
character. When you press Enter while typing program input, a newline is inserted in the
input stream. The <string> header must be included in the program to use function get-
Tine, which belongs to namespace std.

Line 33 calls myGradeBook’s displayMessage member function. The nameOfCourse
variable in parentheses is the argument that’s passed to member function displayMessage so
that it can perform its task. The value of variable nameOfCourse in main is copied to member
function displayMessage’s parameter courseName in line 13. When you execute this pro-
gram, member function displayMessage outputs as part of the welcome message the course
name you type (in our sample execution, CS101 Introduction to C++ Programming).

More on Arguments and Parameters

To specify in a function definition that the function requires data to perform its task, you
place additional information in the function’s parameter list, which is located in the pa-
rentheses following the function name. The parameter list may contain any number of pa-
rameters, including none at all (represented by empty parentheses as in Fig. 3.1, line 12)
to indicate that a function does 70z require any parameters. Member function displayMe-
ssage’s parameter list (Fig. 3.3, line 13) declares that the function requires one parameter.
Each parameter specifies a #ype and an identifier. The type string and the identifier
courseName indicate that member function displayMessage requires a string to perform
its task. The member function body uses the parameter courseName to access the value
that’s passed to the function in the function call (line 33 in main). Lines 15-16 display

3.4 Data Members, set Functions and get Functions 71

parameter courseName’s value as part of the welcome message. The parameter variable’s
name (courseName in line 13) can be the same as or different from the argument variable’s
name (nameOfCourse in line 33)—you’ll learn why in Chapter 6.

A function can specify multiple parameters by separating each from the next with a
comma. The number and order of arguments in a function call must match the number
and order of parameters in the parameter list of the called member function’s header. Also,
the argument types in the function call must be consistent with the types of the corre-
sponding parameters in the function header. (As you'll learn in subsequent chapters, an
argument’s type and its corresponding parameter’s type need not always be identical, but
they must be “consistent.”) In our example, the one string argument in the function call
(i.c., nameOfCourse) exactly matches the one string parameter in the member-function
definition (i.e., courseName).

Updated UML Class Diagram for Class GradeBook

The UML class diagram of Fig. 3.4 models class GradeBook of Fig. 3.3. Like the class Grade-
Book defined in Fig. 3.1, this GradeBook class contains public member function dis-
playMessage. However, this version of displayMessage has a parameter. The UML models
a parameter by listing the parameter name, followed by a colon and the parameter type in
the parentheses following the operation name. The UML has its own data types similar to
those of C++. The UML is language independent—it’s used with many different program-
ming languages—so its terminology does not exactly match that of C++. For example, the
UML type String corresponds to the C++ type string. Member function displayMessage
of class GradeBook (Fig. 3.3, lines 13—17) has a string parameter named courseName, so
Fig. 3.4 lists courseName : String between the parentheses following the operation name
displayMessage. This version of the GradeBook class still does 707 have any data members.

Fig. 3.4 | UML class diagram indicating that class GradeBook has a public displayMessage
operation with a courseName parameter of UML type String.

3.4 Data Members, set Functions and get Functions

In Chapter 2, we declared all of a program’s variables in its main function. Variables de-
clared in a function definition’s body are known as local variables and can be used only
from the line of their declaration in the function to closing right brace (3) of the block in
which they’re declared. A local variable must be declared before it can be used in a function.
A local variable cannot be accessed outside the function in which it’s declared. When a
Jfunction terminates, the values of its local variables are lost. (You'll see an exception to this in
Chapter 6 when we discuss static local variables.)

A class normally consists of one or more member functions that manipulate the atcri-
butes that belong to a particular object of the class. Attributes are represented as variables
in a class definition. Such variables are called data members and are declared 7nside a class

72 Chapter 3 Introduction to Classes, Objects and Strings

definition but ousside the bodies of the class’s member-function definitions. Each object
of a class maintains its own copy of its attributes in memory. These attributes exist
throughout the life of the object. The example in this section demonstrates a GradeBook
class that contains a courseName data member to represent a particular GradeBook object’s
course name.

GradeBook Class with a Data Member, a set Function and a get Function

In our next example, class GradeBook (Fig. 3.5) maintains the course name as a data mem-
ber so that it can be used or modified at any time during a program’s execution. The class
contains member functions setCourseName, getCourseName and displayMessage. Mem-
ber function setCourseName stores a course name in a GradeBook data member. Member
function getCourseName obtains the course name from that data member. Member func-
tion displayMessage—which now specifies no parameters—still displays a welcome mes-
sage that includes the course name. However, as you'll see, the function now obtains the
course name by calling another function in the same class—getCourseName.

1 // Fig. 3.5: fig03_05.cpp

2 // Define class GradeBook that contains a courseName data member
3 // and member functions to set and get its value;

4 // Create and manipulate a GradeBook object with these functions.
5 #include <iostream>

6 #include <string> // program uses C++ standard string class

7 using namespace std;

8

9 // GradeBook class definition

10 class GradeBook

11 {

12 public:

13 // function that sets the course name

14 void setCourseName(string name)

15 {

16 courseName = name; // store the course name in the object
17 } // end function setCourseName

18

19 // function that gets the course name
20 string getCourseName()
21 {
22 return courseName; // return the object's courseName
23 } // end function getCourseName
24
25 // function that displays a welcome message
26 void displayMessage()
27 {
28 // this statement calls getCourseName to get the
29 // name of the course this GradeBook represents
30 cout << "Welcome to the grade book for\n" << getCourseName() << "!"
31 << endl;
32 } // end function displayMessage

Fig. 3.5 | Defining and testing class GradeBook with a data member and set and get functions.
(Part | of 2.)

3.4 Data Members, set Functions and get Functions 73

33 private:

34 string courseName; // course name for this GradeBook
35 }; // end class GradeBook
36

37 // function main begins program execution
38 1int main(Q)

39 {

40 string nameOfCourse; // string of characters to store the course name
41 GradeBook myGradeBook; // create a GradeBook object named myGradeBook
42

43 // display initial value of courseName

44 cout << << myGradeBook.getCourseName()

45 << endl;

46

47 // prompt for, input and set course name

48 cout << << endl;

49 getline(cin, nameOfCourse); // read a course name with blanks

50 myGradeBook.setCourseName(nameOfCourse); // set the course name

51

52 cout << endl; // outputs a blank Tine

53 myGradeBook.displayMessage(); // display message with new course name

54 1} // end main

Initial course name is:

Please enter the course name:
CS101 Introduction to C++ Programming

Welcome to the grade book for
CS101 Introduction to C++ Programming!

Fig. 3.5 | Defining and testing class GradeBook with a data member and set and get functions.
(Part 2 of 2.)

A typical instructor teaches multiple courses, each with its own course name. Line 34
declares that courseName is a variable of type string. Because the variable is declared in
the class definition (lines 10-35) but outside the bodies of the class’s member-function
definitions (lines 14-17, 20-23 and 26-32), the variable is a data member. Every instance
(i.e., object) of class GradeBook contains one copy of each of the class’s data members—if
there are two GradeBook objects, each has its own copy of courseName (one per object), as
you'll see in the example of Fig. 3.7. A benefit of making courseName a data member is
that all the member functions of the class can manipulate any data members that appear
in the class definition (in this case, courseName).

Access Specifiers public and private

Most data-member declarations appear after the private access specifier. Variables or func-
tions declared after access specifier private (and before the next access specifier if there is
one) are accessible only to member functions of the class for which they’re declared (or to
“friends” of the class, as you’ll see in Chapter 10, Classes: A Deeper Look, Part 2). Thus, data
member courseName can be used only in member functions setCourseName, getCourse-
Name and displayMessage of class GradeBook (or to “friends” of the class, if there were any).

74 Chapter 3 Introduction to Classes, Objects and Strings

Software Engineering Observation 3.1
Generally, data members should be declared private and member functions should be
declared pubTic.

Make the data members of a class private and the member functions of the class pubTic.
This facilitates debugging because problems with data manipulations are localized to ei-
ther the class’s member functions or the friends of the class.

% Error-Prevention Tip 3.1

Common Programming Error 3.2
An attempt by a function, which is not a member of a particular class (or a friend of that
class) to access a private member of that class is a compilation error.

The default access for class members is private so all members after the class header
and before the first access specifier (if there are any) are private. The access specifiers
public and private may be repeated, but this is unnecessary and can be confusing.

Declaring data members with access specifier private is known as data hiding. When
a program creates a GradeBook object, data member courseName is encapsulated (hidden)
in the object and can be accessed only by member functions of the object’s class. In class
GradeBook, member functions setCourseName and getCourseName manipulate the data
member courseName directly.

Member Functions setCourseName and getCourseName

Member function setCourseName (lines 14—17) does not return any data when it com-
pletes its task, so its return type is void. The member function receives one parameter—
name—which represents the course name that will be passed to it as an argument (as we’ll
see in line 50 of main). Line 16 assigns name to data member courseName. In this example,
setCourseName does not validate the course name—i.e., the function does 7ot check that
the course name adheres to any particular format or follows any other rules regarding what
a “valid” course name looks like. Suppose, for instance, that a university can print student
transcripts containing course names of only 25 characters or fewer. In this case, we might
want class GradeBook to ensure that its data member courseName never contains more
than 25 characters. We discuss validation in Section 3.8.

Member function getCourseName (lines 20-23) returns a particular GradeBook
object’s courseName. The member function has an empty parameter list, so it does noz
require additional data to perform its task. The function specifies that it returns a string.
When a function that specifies a return type other than void is called and completes its
task, the function uses a return statement (as in line 22) to return a result to its calling
function. For example, when you go to an automated teller machine (ATM) and request
your account balance, you expect the ATM to give you back a value that represents your
balance. Similarly, when a statement calls member function getCourseName on a Grade-
Book object, the statement expects to receive the GradeBook’s course name (in this case, a
string, as specified by the function’s return type).

If you have a function square that returns the square of its argument, the statement

result = square(2);

3.4 Data Members, set Functions and get Functions 75

returns 4 from function square and assigns to variable result the value 4. If you have a
function maximum that returns the largest of three integer arguments, the statement

biggest = maximum(27, 0);

returns 114 from function maximum and assigns to variable biggest the value 114.

The statements in lines 16 and 22 each use variable courseName (line 34) even though
it was 7ot declared in any of the member functions. We can do this because courseName
is a data member of the class.

Member Function displayMessage

Member function displayMessage (lines 26-32) does 7ot return any data when it com-
pletes its task, so its return type is void. The function does 7ot receive parameters, so its
parameter list is empty. Lines 30-31 output a welcome message that includes the value of
data member courseName. Line 30 calls member function getCourseName to obtain the
value of courseName. Member function displayMessage could also access data member
courseName directly, just as member functions setCourseName and getCourseName do.
We explain shortly why it’s preferable to call member function getCourseName to obtain
the value of courseName.

Testing Class GradeBook

The main function (lines 38—54) creates one object of class GradeBook and uses each of its
member functions. Line 41 creates a GradeBook object named myGradeBook. Lines 44-45
display the initial course name by calling the object’s getCourseName member function. The
first line of the output does not show a course name, because the object’s courseName data
member (i.e., a string) is initially empty—Dby default, the initial value of a string is the
so-called empty string, i.e., a string that does not contain any characters. Nothing appears
on the screen when an empty string is displayed.

Line 48 prompts the user to enter a course name. Local string variable name0OfCourse
(declared in line 40) is set to the course name entered by the user, which is obtained by the
call to the getline function (line 49). Line 50 calls object myGradeBook’s setCourseName
member function and supplies nameOfCourse as the function’s argument. When the func-
tion is called, the argument’s value is copied to parameter name (line 14) of member func-
tion setCourseName. Then the parameter’s value is assigned to data member courseName
(line 16). Line 52 skips a line; then line 53 calls object myGradeBook’s displayMessage
member function to display the welcome message containing the course name.

Software Engineering with Set and Get Functions

A class’s private data members can be manipulated only by member functions of that
class (and by “friends” of the class). So a client of an object—that is, any statement that
calls the object’s member functions from outside the object—calls the class’s pub1ic mem-
ber functions to request the class’s services for particular objects of the class. This is why
the statements in function main call member functions setCourseName, getCourseName
and displayMessage on a GradeBook object. Classes often provide pub1ic member func-
tions to allow clients of the class to sez (i.e., assign values to) or gez (i.e., obtain the values
of) private data members. These member function names need not begin with set or get,
but this naming convention is common. In this example, the member function that sezs
the courseName data member is called setCourseName, and the member function that gets
the value of the courseName data member is called getCourseName. Sez functions are some-

76 Chapter 3 Introduction to Classes, Objects and Strings

times called mutators (because they mutate, or change, values), and ger functions are also
called accessors (because they access values).

Recall that declaring data members with access specifier private enforces data hiding.
Providing pubTic sez and ger functions allows clients of a class to access the hidden data,
but only indirectly. The client knows that it’s attempting to modify or obtain an object’s
data, but the client does 7oz know how the object performs these operations. In some cases,
a class may internally represent a piece of data one way, but expose that data to clients in
a different way. For example, suppose a Clock class represents the time of day as a private
int data member time that stores the number of seconds since midnight. However, when
a client calls a Clock object’s getTime member function, the object could return the time
with hours, minutes and seconds in a string in the format "HH:MM: SS". Similatly, suppose
the Clock class provides a ser function named setTime that takes a string parameter in
the "HH:MM:SS" format. Using string capabilities presented in Chapter 18, the setTime
function could convert this string to a number of seconds, which the function stores in
its private data member. The sez function could also check that the value it receives rep-
resents a valid time (e.g., "12:30:45" is valid but "42:85:70" is not). The ser and ge func-
tions allow a client to interact with an object, but the object’s private data remains safely
encapsulated (i.c., hidden) in the object itself.

The set and ger functions of a class also should be used by other member functions
within the class to manipulate the class’s private data, although these member functions
can access the private data directly. In Fig. 3.5, member functions setCourseName and
getCourseName are public member functions, so they’re accessible to clients of the class,
as well as to the class itself. Member function displayMessage calls member function get-
CourseName to obtain the value of data member courseName for display purposes, even
though displayMessage can access courseName directly—accessing a data member via its
get function creates a better, more robust class (i.e., a class that’s easier to maintain and less
likely to malfunction). If we decide to change the data member courseName in some way,
the displayMessage definition will 7or require modification—only the bodies of the gez
and ser functions that directly manipulate the data member will need to change. For
example, suppose we want to represent the course name as two separate data members—
courseNumber (e.g., "CS101") and courseTitle (e.g., "Introduction to C++ Program-
ming"). Member function displayMessage can still issue a single call to member function
getCourseName to obtain the full course name to display as part of the welcome message.
In this case, getCourseName would need to build and return a string containing the
courseNumber followed by the courseTitle. Member function displayMessage could
continue to display the complete course title “CS101 Introduction to C++ Programming.”
The benefits of calling a sez function from another member function of the same class will
become clear when we discuss validation in Section 3.8.

Always try ro localize the effects of changes to a class’s data members by accessing and ma-
nipulating the data members through their get and set functions.

-§ g] Good Programming Practice 3.1

Software Engineering Observation 3.2
Write programs that are clear and easy to maintain. Change is the rule rather than the
exception. You should anticipate that your code will be modified.

3.5 Initializing Objects with Constructors 77

GradeBook’s UML Class Diagram with a Data Member and set and get Functions
Figure 3.6 contains an updated UML class diagram for the version of class GradeBook in
Fig. 3.5. This diagram models GradeBook’s data member courseName as an attribute in the
middle compartment. The UML represents data members as attributes by listing the at-
tribute name, followed by a colon and the attribute type. The UML type of attribute
courseName is String, which corresponds to string in C++. Data member courseName is
private in C++, so the class diagram lists a minus sign (-) in front of the corresponding
actribute’s name. The minus sign in the UML is equivalent to the private access specifier
in C++. Class GradeBook contains three public member functions, so the class diagram
lists three operations in the third compartment. Operation setCourseName has a String
parameter called name. The UML indicates the return type of an operation by placing a
colon and the return type after the parentheses following the operation name. Member
function getCourseName of class GradeBook has a string return type in C++, so the class
diagram shows a String return type in the UML. Operations setCourseName and dis-
playMessage do not return values (i.e., they return void in C++), so the UML class dia-
gram does not specify a return type after the parentheses of these operations.

Fig. 3.6 | UML class diagram for class GradeBook with a private courseName attribute and
public operations setCourseName, getCourseName and displayMessage.

3.5 Initializing Objects with Constructors

As mentioned in Section 3.4, when an object of class GradeBook (Fig. 3.5) is created, its
data member courseName is initialized to the empty string by default. What if you want
to provide a course name when you create a GradeBook object? Each class you declare can
provide a constructor that can be used to initialize an object of the class when the object
is created. A constructor is a special member function that must be defined with the same
name as the class, so that the compiler can distinguish it from the class’s other member
functions. An important difference between constructors and other functions is that con-
structors cannot return values, so they cannot specify a return type (not even void). Normal-
ly, constructors are declared pubTic.

C++ requires a constructor call for each object that’s created, which helps ensure that
each object is initialized properly before it’s used in a program. The constructor call occurs
implicitly when the object is created. If a class does not explicitly include a constructor, the
compiler provides a default constructor—that is, a constructor with 7o parameters. For
example, when line 41 of Fig. 3.5 creates a GradeBook object, the default constructor is
called. The default constructor provided by the compiler creates a GradeBook object
without giving any initial values to the object’s fundamental type data members. [Note:
For data members that are objects of other classes, the default constructor implicitly calls
each data member’s default constructor to ensure that the data member is initialized prop-

78 Chapter 3 Introduction to Classes, Objects and Strings

etly. This is why the string data member courseName (in Fig. 3.5) was initialized to the
empty string—the default constructor for class string sets the string’s value to the empty
string. You’ll learn more about initializing data members that are objects of other classes
in Section 10.3.]

In the example of Fig. 3.7, we specify a course name for a GradeBook object when the
object is created (e.g., line 46). In this case, the argument "CS101 Introduction to C++
Programming" is passed to the GradeBook object’s constructor (lines 14—17) and used to
initialize the courseName. Figure 3.7 defines a modified GradeBook class containing a con-
structor with a string parameter that receives the initial course name.

1 // Fig. 3.7: fig03_07.cpp

2 // Instantiating multiple objects of the GradeBook class and using
3 // the GradeBook constructor to specify the course name

4 // when each GradeBook object is created.

5 #include <iostream>

6 #include <string> // program uses C++ standard string class

7 using namespace std;

8

9 // GradeBook class definition

10 class GradeBook

11 {

12 public:

13 // constructor initializes courseName with string supplied as argument
14 GradeBook(string name)

15 {

16 setCourseName(name); // call set function to initialize courseName
17 } // end GradeBook constructor

18

19 // function to set the course name
20 void setCourseName(string name)
21 {
22 courseName = name; // store the course name in the object
23 } // end function setCourseName
24
25 // function to get the course name
26 string getCourseName()
27 {
28 return courseName; // return object's courseName
29 } // end function getCourseName
30
31 // display a welcome message to the GradeBook user
32 void displayMessage()
33
34 // call getCourseName to get the courseName
35 cout << "Welcome to the grade book for\n" << getCourseName()
36 << "I << endl;
37 } // end function displayMessage
38 private:
39 string courseName; // course name for this GradeBook

40 }; // end class GradeBook

Fig. 3.7 | Instantiating multiple objects of the GradeBook class and using the GradeBook
constructor to specify the course name when each GradeBook object is created. (Part | of 2.)

3.5 Initializing Objects with Constructors 79

41
42 // function main begins program execution
43 1int main(Q)

4 {

45 // create two GradeBook objects

46 GradeBook gradeBook1();

47 GradeBook gradeBook?2 ();

48

49 // display initial value of courseName for each GradeBook

50 cout << << gradeBookl.getCourseName()
51 << << gradeBook?2.getCourseName()
52 << endl;

53 } // end main

gradeBookl created for course: CS101 Introduction to C++ Programming
gradeBook2 created for course: CS102 Data Structures in C++

Fig. 3.7 | Instantiating multiple objects of the GradeBook class and using the GradeBook
constructor to specify the course name when each GradeBook object is created. (Part 2 of 2.)

Defining a Constructor

Lines 1417 of Fig. 3.7 define a constructor for class GradeBook. Notice that the construc-
tor has the same name as its class, GradeBook. A constructor specifies in its parameter list
the data it requires to perform its task. When you create a new object, you place this data
in the parentheses that follow the object name (as we did in lines 46—47). Line 14 indicates
that class GradeBook’s constructor has a string parameter called name. Line 14 does not
specify a return type, because constructors cannot return values (or even void).

Line 16 in the constructor’s body passes the constructor’s parameter name to member
function setCourseName (lines 20-23), which simply assigns the value of its parameter to
data member courseName. You might be wondering why we make the call to setCourseName
in line 16—the constructor certainly could perform the assignment courseName = name. In
Section 3.8, we modify setCourseName to perform validation (ensuring that, in this case, the
courseName is 25 or fewer characters in length). At that point the benefits of calling set-
CourseName from the constructor will become clear. Both the constructor (line 14) and the
setCourseName function (line 20) use a parameter called name. You can use the same param-
eter names in different functions because the parameters are Jocal to each function; they do
not interfere with one another.

Testing Class GradeBook

Lines 43-53 of Fig. 3.7 define the main function that tests class GradeBook and demon-
strates initializing GradeBook objects using a constructor. Line 46 creates and initializes
GradeBook object gradeBookl. When this line executes, the GradeBook constructor (lines
14-17) is called (implicitly by C++) with the argument "CS101 Introduction to C++ Pro-
gramming" to initialize gradeBook1’s course name. Line 47 repeats this process for Grade-
Book object gradeBook2, this time passing the argument "CS102 Data Structures in C++"
to initialize gradeBook2’s course name. Lines 50-51 use each object’s getCourseName
member function to obtain the course names and show that they were indeed initialized
when the objects were created. The output confirms that each GradeBook object maintains
its own copy of data member courseName.

80 Chapter 3 Introduction to Classes, Objects and Strings

Two Ways to Provide a Default Constructor for a Class
Any constructor that takes no arguments is called a default constructor. A class can get a
default constructor in one of two ways:

1. The compiler implicitly creates a default constructor in a class that does not de-
fine a constructor. Such a constructor does 7o# initialize the class’s data members,
but does call the default constructor for each data member that’s an object of an-
other class. An uninitialized variable typically contains a “garbage” value.

2. You explicitly define a constructor that takes no arguments. Such a default con-
structor will call the default constructor for each data member that’s an object of
another class and will perform additional initialization specified by you.

If you define a constructor with arguments, C++ will not implicitly create a default constructor
Jor that class. For each version of class GradeBook in Fig. 3.1, Fig. 3.3 and Fig. 3.5 the com-
piler implicitly defined a default constructor.

w7z, Error-Prevention Tip 3.2

% Unless no initialization of your class’s data members is necessary (almost never), provide
a constructor to ensure that your class’s data members are initialized with meaningful val-
ues when each new object of your class is created.

Software Engineering Observation 3.3

Data members can be initialized in a constructor, or their values may be set later after
the object is created. However, it’s a good soffware engineering practice to ensure that an
object is fully initialized before the client code invokes the object’s member functions. You
should not rely on the client code to ensure that an object gets initialized properly.

Adding the Constructor to Class GradeBook’s UML Class Diagram

The UML class diagram of Fig. 3.8 models the GradeBook class of Fig. 3.7, which has a
constructor with a name parameter of type string (represented by type String in the
UML). Like operations, the UML models constructors in the third compartment of a class
in a class diagram. To distinguish a constructor from a class’s operations, the UML places
the word “constructor” between guillemets (« and ») before the constructor’s name. By
convention, you list the class’s constructor before other operations in the third compart-
ment.

Fig. 3.8 | UML class diagram indicating that class GradeBook has a constructor with a name
parameter of UML type String.

3.6 Placing a Class in a Separate File for Reusability 8l

3.6 Placing a Class in a Separate File for Reusability

One of the benefits of creating class definitions is that, when packaged propetly, your
classes can be reused by other programmers. For example, you can reuse C++ Standard Li-
brary type string in any C++ program by including the header <string> (and, as you’ll
see, by being able to link to the library’s object code).

Programmers who wish to use our GradeBook class cannot simply include the file from
Fig. 3.7 in another program. As you learned in Chapter 2, function main begins the execu-
tion of every program, and every program must have exactly one main function. If other pro-
grammers include the code from Fig. 3.7, they get extra “baggage”—our main function—
and their programs will then have two main functions. Attempting to compile a program
with two main functions produces an error when the compiler tries to compile the second
main function it encounters. So, placing main in the same file with a class definition prevents
that class from being reused by other programs. In this section, we demonstrate how to make
class GradeBook reusable by separating it into another file from the main function.

Headers

Each of the previous examples in the chapter consists of a single . cpp file, also known as a
source-code file, that contains a GradeBook class definition and a main function. When
building an object-oriented C++ program, it’s customary to define reusable source code
(such as a class) in a file that by convention has a . h filename extension—known as a head-
er. Programs use #include preprocessor directives to include headers and take advantage
of reusable software components, such as type string provided in the C++ Standard Li-
brary and user-defined types like class GradeBook.

Our next example separates the code from Fig. 3.7 into two files—GradeBook.h
(Fig. 3.9) and fig03_10.cpp (Fig. 3.10). As you look at the header in Fig. 3.9, notice that
it contains only the GradeBook class definition (lines 8—38), the appropriate headers and a
using directive. The main function that uses class GradeBook is defined in the source-code
file f1903_10.cpp (Fig. 3.10) in lines 8-18. To help you prepare for the larger programs
you’ll encounter later in this book and in industry, we often use a separate source-code file
containing function main to test our classes (this is called a driver program). You’ll soon
learn how a source-code file with main can use the class definition found in a header to
create objects of a class.

1 // Fig. 3.9: GradeBook.h

2 // GradeBook class definition in a separate file from main.

3 #include <iostream>

4 #include <string> // class GradeBook uses C++ standard string class
5 using namespace std;

6

7 // GradeBook class definition

8 class GradeBook

9 {

10 public:

11 // constructor initializes courseName with string supplied as argument
12 GradeBook(string name)

13 {

Fig. 3.9 | GradeBook class definition in a separate file from main. (Part | of 2.)

82 Chapter 3 Introduction to Classes, Objects and Strings
14 setCourseName(name); // call set function to initialize courseName
15 } // end GradeBook constructor
16
17 // function to set the course name
18 void setCourseName(string name)
19 {
20 courseName = name; // store the course name in the object
21 } // end function setCourseName
22
23 // function to get the course name
24 string getCourseName()
25 {
26 return courseName; // return object's courseName
27 } // end function getCourseName
28
29 // display a welcome message to the GradeBook user
30 void displayMessage()
31
32 // call getCourseName to get the courseName
33 cout << "Welcome to the grade hook for\n" << getCourseName()
34 << """ << endl;
35 } // end function displayMessage
36 private:
37 string courseName; // course name for this GradeBook
38 }; // end class GradeBook

Fig. 3.9 | GradeBook class definition in a separate file from main. (Part 2 of 2.)

VooOo~NGONUNDR WN -

10
11
12
13
14
15
16
17
18

// Fig. 3.10: fig03_10.cpp

// Including class GradeBook from file GradeBook.h for use in main.
#include <iostream>

#include "GradeBook.h" // include definition of class GradeBook
using namespace std;

// function main begins program execution
int main()

{

// create two GradeBook objects
GradeBook gradeBookl("CS101 Introduction to C++ Programming”);
GradeBook gradeBook2("CS102 Data Structures in C++");

// display initial value of courseName for each GradeBook

cout << "gradeBookl created for course: " << gradeBookl.getCourseName()
<< "\ngradeBook2 created for course: << gradeBook?2.getCourseName()
<< endl;

} // end main

gradeBookl created for course: CS101 Introduction to C++ Programming
gradeBook2 created for course: CS102 Data Structures in C++

Fig. 3.10 | Including class GradeBook from file GradeBook . h for use in main.

3.6 Placing a Class in a Separate File for Reusability 83

Including a Header That Contains a User-Defined Class

A header such as GradeBook.h (Fig. 3.9) cannot be used as a complete program, because
it does not contain a main function. If you try to compile and link GradeBook.h by itself
to create an executable application, Microsoft Visual C++ 2010 produces the linker error
message:

error LNK2001l: unresolved external symbol _mainCRTStartup

To compile and link with GNU C++ on Linux, you must first include the header ina . cpp
source-code file, then GNU C++ produces a linker error message containing:

undefined reference to 'main'

This error indicates that the linker could not locate the program’s main function. To test
class GradeBook (defined in Fig. 3.9), you must write a separate source-code file containing
amain function (such as Fig. 3.10) that instantiates and uses objects of the class.

The compiler doesn’t know what a GradeBook is because it’s a user-defined type. In
fact, the compiler doesn’t even know the classes in the C++ Standard Library. To help it
understand how to use a class, we must explicitly provide the compiler with the class’s def-
inition—that’s why, for example, to use type string, a program must include the
<string> header. This enables the compiler to determine the amount of memory that it
must reserve for each string object and ensure that a program calls a string’s member
functions correctly.

To create GradeBook objects gradeBook1 and gradeBook? in lines 11-12 of Fig. 3.10,
the compiler must know the size of a GradeBook object. While objects conceptually con-
tain data members and member functions, C++ objects actually contain only data. The
compiler creates only on¢ copy of the class’s member functions and shares that copy among
all the class’s objects. Each object, of course, needs its own copy of the class’s data mem-
bers, because their contents can vary among objects (such as two different BankAccount
objects having two different balances). The member-function code, however, is 7ot modi-
fiable, so it can be shared among all objects of the class. Therefore, the size of an object
depends on the amount of memory required to store the class’s data members. By
including GradeBook.h in line 4, we give the compiler access to the information it needs
(Fig. 3.9, line 37) to determine the size of a GradeBook object and to determine whether
objects of the class are used correctly (in lines 11-12 and 15-16 of Fig. 3.10).

Line 4 instructs the C++ preprocessor to replace the directive with a copy of the con-
tents of GradeBook. h (i.c., the GradeBook class definition) before the program is compiled.
When the source-code file fig03_10. cpp is compiled, it now contains the GradeBook class
definition (because of the #include), and the compiler is able to determine how to create
GradeBook objects and see that their member functions are called correctly. Now that the
class definition is in a header (without a main function), we can include that header in any
program that needs to reuse our GradeBook class.

How Headers Are Located

Notice that the name of the GradeBook . h header in line 4 of Fig. 3.10 is enclosed in quotes
(" ") rather than angle brackets (< >). Normally, a program’s source-code files and user-
defined headers are placed in the same directory. When the preprocessor encounters a
header name in quotes, it attempts to locate the header in the same directory as the file in
which the #include directive appears. If the preprocessor cannot find the header in that

84 Chapter 3 Introduction to Classes, Objects and Strings

directory, it searches for it in the same location(s) as the C++ Standard Library headers.
When the preprocessor encounters a header name in angle brackets (e.g., <iostreams), it
assumes that the header is part of the C++ Standard Library and does 7ot look in the di-
rectory of the program that’s being preprocessed.

w~»_Error-Prevention Tip 3.3

% To ensure that the preprocessor can locate headers correctly, #include preprocessor direc-
tives should place user-defined headers names in quotes (e.g., "GradeBook.h") and place
C++ Standard Library headers names in angle brackets (e.g., <iostreams).

Additional Software Engineering Issues

Now that class GradeBook is defined in a header, the class is reusable. Unfortunately, plac-
ing a class definition in a header as in Fig. 3.9 still reveals the entire implementation of the
class to the classs clients—GradeBook . h is simply a text file that anyone can open and read.
Conventional software engineering wisdom says that to use an object of a class, the client
code needs to know only what member functions to call, what arguments to provide to
each member function and what return type to expect from each member function. 7he
client code does not need to know how those functions are implemented.

If client code does know how a class is implemented, the programmer might write
client code based on the class’s implementation details. Ideally, if that implementation
changes, the class’s clients should not have to change. Hiding the classs implementation
details makes it easier to change the classs implementation while minimizing, and hopefully
eliminating, changes to client code.

In Section 3.7, we show how to break up the GradeBook class into two files so that

1. the class is reusable,

2. the clients of the class know what member functions the class provides, how to
call them and what return types to expect, and

3. the clients do 7ot know how the class’s member functions are implemented.

3.7 Separating Interface from Implementation

In the preceding section, we showed how to promote software reusability by separating a
class definition from the client code (e.g., function main) that uses the class. We now in-
troduce another fundamental principle of good software engineering—separating inter-
face from implementation.

Interface of a Class

Interfaces define and standardize the ways in which things such as people and systems in-
teract with one another. For example, a radio’s controls serve as an interface between the
radio’s users and its internal components. The controls allow users to perform a limited
set of operations (such as changing the station, adjusting the volume, and choosing be-
tween AM and FM stations). Various radios may implement these operations different-
ly—some provide push buttons, some provide dials and some support voice commands.
The interface specifies what operations a radio permits users to perform but does not spec-
ify how the operations are implemented inside the radio.

3.7 Separating Interface from Implementation 85

Similarly, the interface of a class describes whar services a class’s clients can use and
how to request those services, but not how the class carries out the services. A class’s pubTic
interface consists of the class’s pub1ic member functions (also known as the class’s pub1ic
services). For example, class GradeBook’s interface (Fig. 3.9) contains a constructor and
member functions setCourseName, getCourseName and displayMessage. GradeBook’s
clients (e.g., main in Fig. 3.10) use these functions to request the class’s services. As you’ll
soon see, you can specify a class’s interface by writing a class definition that lists only the
member-function names, return types and parameter types.

Separating the Interface from the Implementation

In our prior examples, each class definition contained the complete definitions of the
class’s pub1ic member functions and the declarations of its private data members. How-
ever, it’s better software engineering to define member functions ousside the class defini-
tion, so that their implementation details can be hidden from the client code. This practice
ensures that you do not write client code that depends on the class’s implementation de-
tails. If you were to do so, the client code would be more likely to “break” if the class’s
implementation changed. Given that one class could have many clients, such a change
could cause wide-ranging problems in a software system.

The program of Figs. 3.11-3.13 separates class GradeBook’s interface from its imple-
mentation by splitting the class definition of Fig. 3.9 into two files—the header Grade-
Book.h (Fig.3.11) in which class GradeBook is defined, and the source-code file
GradeBook. cpp (Fig. 3.12) in which GradeBook’s member functions are defined. By con-
vention, member-function definitions are placed in a source-code file of the same base
name (e.g., GradeBook) as the class’s header but with a .cpp filename extension. The
source-code file fig03_13.cpp (Fig. 3.13) defines function main (the client code). The
code and output of Fig. 3.13 are identical to that of Fig. 3.10. Figure 3.14 shows how this
three-file program is compiled from the perspectives of the GradeBook class programmer
and the client-code programmer—we’ll explain this figure in detail.

GradeBook. h: Defining a Class’s Interface with Function Prototypes

Header GradeBook.h (Fig. 3.11) contains another version of GradeBook’s class definition
(lines 9-18). This version is similar to the one in Fig. 3.9, but the function definitions in
Fig. 3.9 are replaced here with function prototypes (lines 12-15) that describe the classs
public interface without revealing the classs member-function implementations. A function
prototype is a declaration of a function that tells the compiler the function’s name, its re-
turn type and the types of its parameters. Also, the header still specifies the class’s private
data member (line 17) as well. Again, the compiler must know the data members of the
class to determine how much memory to reserve for each object of the class. Including the
header GradeBook. h in the client code (line 5 of Fig. 3.13) provides the compiler with the
information it needs to ensure that the client code calls the member functions of class
GradeBook correctly.

The function prototype in line 12 (Fig. 3.11) indicates that the constructor requires
one string parameter. Recall that constructors don’t have return types, so no return type
appears in the function prototype. Member function setCourseName’s function prototype
indicates that setCourseName requires a string parameter and does not return a value
(i.e., its return type is void). Member function getCourseName’s function prototype indi-
cates that the function does not require parameters and returns a string. Finally, member

86 Chapter 3 Introduction to Classes, Objects and Strings

1 // Fig. 3.11: GradeBook.h

2 // GradeBook class definition. This file presents GradeBook's public

3 // interface without revealing the implementations of GradeBook's member
4 // functions, which are defined in GradeBook.cpp.

5 #include <string> // class GradeBook uses C++ standard string class

6 using namespace std;

7

8 // GradeBook class definition

9 class GradeBook

10 {

11 public:

12 GradeBook(string); // constructor that initializes courseName

13 void setCourseName(string); // function that sets the course name
14 string getCourseName(); // function that gets the course name

15 void displayMessage(); // function that displays a welcome message
16 private:

17 string courseName; // course name for this GradeBook

18 }; // end class GradeBook

Fig. 3.11 | GradeBook class definition containing function prototypes that specify the interface
of the class.

function displayMessage’s function prototype (line 15) specifies that displayMessage
does not require parameters and does not return a value. These function prototypes are the
same as the corresponding function headers in Fig. 3.9, except that the parameter names
(which are optional in prototypes) are not included and each function prototype must end
with a semicolon.

. Good Programming Practice 3.2
% Although parameter names in function prototypes are optional (they're ignored by the
compiler), many programmers use these names for documentation purposes.

Parameter names in a function prototype (which, again, are ignored by the compiler) can
be misleading if the names used do not match those used in the function definition. For
this reason, many programmers create function prototypes by copying the first line of the
corresponding function definitions (when the source code for the functions is available),
then appending a semicolon to the end of each prototype.

» % _ Error-Prevention Tip 3.4

GradeBook . cpp: Defining Member Functions in a Separate Source-Code File
Source-code file GradeBook. cpp (Fig. 3.12) defines class GradeBook’s member functions,
which were declared in lines 12—15 of Fig. 3.11. The definitions appear in lines 9-32 and
are nearly identical to the member-function definitions in lines 12-35 of Fig. 3.9.

Fach member-function name in the function headers (lines 9, 15, 21 and 27) is pre-
ceded by the class name and : :, which is known as the binary scope resolution operator.
This “ties” each member function to the (now separate) GradeBook class definition
(Fig. 3.11), which declares the class’s member functions and data members. Without
“GradeBook: :” preceding each function name, these functions would 7ot be recognized by
the compiler as member functions of class GradeBook—the compiler would consider them

3.7 Separating Interface from Implementation 87

1 // Fig. 3.12: GradeBook.cpp

2 // GradeBook member-function definitions. This file contains

3 // implementations of the member functions prototyped in GradeBook.h.
4 #include <iostream>

5 #include "GradeBook.h" // include definition of class GradeBook

6 using namespace std;

7

8 // constructor initializes courseName with string supplied as argument
9 GradeBook: :GradeBook(string name)

10 {

11 setCourseName(name); // call set function to initialize courseName
12 } // end GradeBook constructor

13

14 // function to set the course name
15 void GradeBook::setCourseName(string name)

16 {

17 courseName = name; // store the course name in the object
18 } // end function setCourseName

19

20 // function to get the course name
21 string GradeBook: :getCourseName()

22 {

23 return courseName; // return object's courseName
24 } // end function getCourseName

25

26 // display a welcome message to the GradeBook user
27 void GradeBook: :displayMessage()

28 {

29 // call getCourseName to get the courseName

30 cout << "Welcome to the grade bhook for\n" << getCourseName()
31 << "1 << endl;

32 } // end function displayMessage

Fig. 3.12 | GradeBook member-function definitions represent the implementation of class
GradeBook.

“free” or “loose” functions, like main. These are also called global finctions. Such functions
cannot access GradeBook’s private data or call the class’s member functions, without spec-
ifying an object. So, the compiler would 70z be able to compile these functions. For example,
lines 17 and 23 that access variable courseName would cause compilation errors because
courseName is not declared as a local variable in each function—the compiler would not
know that courseName is already declared as a data member of class GradeBook.

- Common Programming Error 3.3
When defining a class’'s member functions outside that class, omitting the class name and
binary scope resolution operator (: :) preceding the function names causes errors.

To indicate that the member functions in GradeBook . cpp are part of class GradeBook,
we must first include the GradeBook. h header (line 5 of Fig. 3.12). This allows us to access
the class name GradeBook in the GradeBook.cpp file. When compiling GradeBook. cpp,
the compiler uses the information in GradeBook. h to ensure that

88 Chapter 3 Introduction to Classes, Objects and Strings

1. the first line of each member function (lines 9, 15, 21 and 27) matches its proto-
type in the GradeBook. h file—for example, the compiler ensures that getCourse-
Name accepts no parameters and returns a string, and that

2. each member function knows about the class’s data members and other member
functions—for example, lines 17 and 23 can access variable courseName because
it’s declared in GradeBook.h as a data member of class GradeBook, and lines 11
and 30 can call functions setCourseName and getCourseName, respectively, be-
cause each is declared as a member function of the class in GradeBook.h (and be-
cause these calls conform with the corresponding prototypes).

Testing Class GradeBook

Figure 3.13 performs the same GradeBook object manipulations as Fig. 3.10. Separating
GradeBook’s interface from the implementation of its member functions does 7o affect the
way that this client code uses the class. It affects only how the program is compiled and
linked, which we discuss in detail shortly.

1 // Fig. 3.13: fig03_13.cpp

2 // GradeBook class demonstration after separating

3 // its interface from its implementation.

4 #include <iostream>

5 #include // include definition of class GradeBook

6 using namespace std;

7

8 // function main begins program execution

9 dint main(Q

10 {

11 // create two GradeBook objects

12 GradeBook gradeBookl()

13 GradeBook gradeBook2 ()

14

15 // display initial value of courseName for each GradeBook

16 cout << << gradeBookl.getCourseName()
17 << << gradeBook?2.getCourseName()
18 << endl;

19 } // end main

gradeBookl created for course: CS101 Introduction to C++ Programming
gradeBook2 created for course: CS102 Data Structures in C++

Fig. 3.13 | GradeBook class demonstration after separating its interface from its
implementation.

As in Fig. 3.10, line 5 of Fig. 3.13 includes the GradeBook. h header so that the com-
piler can ensure that GradeBook objects are created and manipulated correctly in the client
code. Before executing this program, the source-code files in Fig. 3.12 and Fig. 3.13 must
both be compiled, then linked together—that is, the member-function calls in the client
code need to be tied to the implementations of the class’s member functions—a job per-
formed by the linker.

3.7 Separating Interface from Implementation 89

The Compilation and Linking Process
The diagram in Fig. 3.14 shows the compilation and linking process that results in an ex-
ecutable GradeBook application that can be used by instructors. Often a class’s interface
and implementation will be created and compiled by one programmer and used by a sep-
arate programmer who implements the client code that uses the class. So, the diagram
shows what’s required by both the class-implementation programmer and the client-code
programmer. The dashed lines in the diagram show the pieces required by the class-imple-
mentation programmer, the client-code programmer and the GradeBook application user,
respectively. [Noze: Figure 3.14 is not a UML diagram.]

A class-implementation programmer responsible for creating a reusable GradeBook
class creates the header GradeBook.h and the source-code file GradeBook.cpp that

implementation file class definition/interface (client source code)

L, L, N N

\

I

I

I

I

I

I

I

I

. I .
Class Implementation \ Client Code
Programmer : Programmer

I

! .

! main function
I

I

I

I

U

: l

GradeBook class's
N object code

C++ Standard Library
object code

main function's
object code

1
1
1
1
1
1
1
1
1
1
1
1
:
GradeBook. cpp : GradeBook. h
1
1
1
1
)
1
1
1
1
1
1
1
1
1
1
1

. e e e e e e e

GradeBook I
executable application |

\ GradeBook /
N Application User

Fig. 3.14 | Compilation and linking process that produces an executable application.

90 Chapter 3 Introduction to Classes, Objects and Strings

#includes the header, then compiles the source-code file to create GradeBook’s object
code. To hide the class’s member-function implementation details, the class-implementa-
tion programmer would provide the client-code programmer with the header Grade-
Book.h (which specifies the class’s interface and data members) and the GradeBook object
code (i.e., the machine-language instructions that represent GradeBook’s member func-
tions). The client-code programmer is 7oz given GradeBook.cpp, so the client remains
unaware of how GradeBook’s member functions are implemented.

The client code needs to know only GradeBook’s interface to use the class and must
be able to link its object code. Since the interface of the class is part of the class definition
in the GradeBook.h header, the client-code programmer must have access to this file and
must #include it in the client’s source-code file. When the client code is compiled, the
compiler uses the class definition in GradeBook. h to ensure that the main function creates
and manipulates objects of class GradeBook correctly.

To create the executable GradeBook application, the last step is to link

1. the object code for the main function (i.e., the client code),
2. the object code for class GradeBook’s member-function implementations and

3. the C++ Standard Library object code for the C++ classes (e.g., string) used by
the class-implementation programmer and the client-code programmer.

The linker’s output is the executable GradeBook application that instructors can use to
manage their students’ grades. Compilers and IDEs typically invoke the linker for you af-
ter compiling your code.

For further information on compiling multiple-source-file programs, see your com-
piler’s documentation. We provide links to various C++ compilers in our C++ Resource
Center at www.deitel.com/cplusplus/.

3.8 Validating Data with set Functions

In Section 3.4, we introduced sez functions for allowing clients of a class to modify the val-
ue of a private data member. In Fig. 3.5, class GradeBook defines member function set-
CourseName to simply assign a value received in its parameter name to data member
courseName. This member function does not ensure that the course name adheres to any
particular format or follows any other rules regarding what a “valid” course name looks
like. As we stated earlier, suppose that a university can print student transcripts containing
course names of only 25 characters or less. If the university uses a system containing
GradeBook objects to generate the transcripts, we might want class GradeBook to ensure
that its data member courseName never contains more than 25 characters. The program
of Figs. 3.15-3.17 enhances class GradeBook’s member function setCourseName to per-
form this validation (also known as validity checking).

GradeBook Class Definition

Notice that GradeBook’s class definition (Fig. 3.15)—and hence, its interface—is identical
to that of Fig. 3.11. Since the interface remains unchanged, clients of this class need not
be changed when the definition of member function setCourseName is modified. This en-
ables clients to take advantage of the improved GradeBook class simply by linking the client
code to the updated GradeBook’s object code.

www.deitel.com/cplusplus/

3.8 Validating Data with set Functions 91

1 // Fig. 3.15: GradeBook.h

2 // GradeBook class definition presents the public interface of

3 // the class. Member-function definitions appear in GradeBook.cpp.

4 #include <string> // program uses C++ standard string class

5 using namespace std;

6

7 // GradeBook class definition

8 class GradeBook

9 {

10 public:

11 GradeBook(string); // constructor that initializes a GradeBook object
12 void setCourseName(string); // function that sets the course name
13 string getCourseName(); // function that gets the course name

14 void displayMessage(); // function that displays a welcome message
15 private:

16 string courseName; // course name for this GradeBook

17 }; // end class GradeBook

Fig. 3.15 | GradeBook class definition.

Validating the Course Name with GradeBook Member Function setCourseName
The enhancement to class GradeBook is in the definition of setCourseName (Fig. 3.16,
lines 16-29). The if statement in lines 18-19 determines whether parameter name con-
tains a valid course name (i.e., a string of 25 or fewer characters). If the course name is
valid, line 19 stores it in data member courseName. Note the expression name.length()
in line 18. This is a member-function call just like myGradeBook .displayMessage). The
C++ Standard Library’s string class defines a member function Tength that returns the
number of characters in a string object. Parameter name is a string object, so the call
name.length() returns the number of characters in name. If this value is less than or equal
to 25, name is valid and line 19 executes.

1 // Fig. 3.16: GradeBook.cpp

2 // Implementations of the GradeBook member-function definitions.
3 // The setCourseName function performs validation.

4 #include <iostream>

5 #include "GradeBook.h" // include definition of class GradeBook
6 using namespace std;

7

8 // constructor initializes courseName with string supplied as argument
9 GradeBook: :GradeBook(string name)

10 {

11 setCourseName(name); // validate and store courseName

12 } // end GradeBook constructor

13

14 // function that sets the course name;

15 // ensures that the course name has at most 25 characters
16 void GradeBook::setCourseName(string name)

17 {

Fig. 3.16 | Member-function definitions for class GradeBook with a set function that validates
the length of data member courseName. (Part | of 2.)

92 Chapter 3 Introduction to Classes, Objects and Strings

18 if (name.length() <=) // if name has 25 or fewer characters
19 courseName = name; // store the course name in the object

20

21 if (name.length() >) // if name has more than 25 characters
22 {

23 // set courseName to first 25 characters of parameter name

24 courseName = name.substr(0,); // start at 0, length of 25
25

26 cout << << hame <<

27 << << endl;
28 } // end if

29 1} // end function setCourseName

30

31 // function to get the course name
32 string GradeBook: :getCourseName()

33 {

34 return courseName; // return object's courseName
35 1} // end function getCourseName

36

37 // display a welcome message to the GradeBook user
38 void GradeBook: :displayMessage()

39 {

40 // call getCourseName to get the courseName

41 cout << << getCourseName()
42 << << endl;

43 } // end function displayMessage

Fig. 3.16 | Member-function definitions for class GradeBook with a set function that validates
the length of data member courseName. (Part 2 of 2.)

The 7 f statement in lines 21-28 handles the case in which setCourseName receives an
invalid course name (i.e., a name that is more than 25 characters long). Even if parameter
name is too long, we still want to leave the GradeBook object in a consistent state—that s,
a state in which the object’s data member courseName contains a valid value (i.e., a string
of 25 characters or less). Thus, we truncate the specified course name and assign the first
25 characters of name to the courseName data member (unfortunately, this could truncate
the course name awkwardly). Standard class string provides member function substr
(short for “substring”) that returns a new string object created by copying part of an
existing string object. The call in line 24 (i.e., name . substr(0, 25)) passes two integers
(0 and 25) to name’s member function substr. These arguments indicate the portion of
the string name that substr should return. The first argument specifies the starting posi-
tion in the original string from which characters are copied—the first character in every
string is considered to be at position 0. The second argument specifies the number of char-
acters to copy. Therefore, the call in line 24 returns a 25-character substring of name
starting at position 0 (i.e., the first 25 characters in name). For example, if name holds the
value "CS101 Introduction to Programming in C++", substr returns "CS101 Introduc-
tion to Pro". After the call to substr, line 24 assigns the substring returned by substr to
data member courseName. In this way, setCourseName ensures that courseName is always
assigned a string containing 25 or fewer characters. If the member function has to truncate
the course name to make it valid, lines 26-27 display a warning message.

3.8 Validating Data with set Functions 93

The if statement in lines 21-28 contains two body statements—one to set the
courseName to the first 25 characters of parameter name and one to print an accompanying
message to the user. Both statements should execute when name is too long, so we place
them in a pair of braces, { }. Recall from Chapter 2 that this creates a block. You’ll learn
more about placing multiple statements in a control statement’s body in Chapter 4.

The statement in lines 26-27 could also appear without a stream insertion operator
at the start of the second line of the statement, as in:

cout << << hame <<
<< endl;

The C++ compiler combines adjacent string literals, even if they appear on separate lines of a

program. Thus, in the statement above, the C++ compiler would combine the string literals
"\" exceeds maximum lTength (25).\n" and "Limiti ng courseName to first 25 charac-
ters.\n" into a single string literal that produces output identical to that of lines 26-27
in Fig. 3.16. This behavior allows you to print lengthy strings by breaking them across
lines in your program without including additional stream insertion operations.

Testing Class GradeBook
Figure 3.17 demonstrates the modified version of class GradeBook (Figs. 3.15-3.16) fea-
turing validation. Line 12 creates a GradeBook object named gradeBookl. Recall that the
GradeBook constructor calls setCourseName to initialize data member courseName. In pre-
vious versions of the class, the benefit of calling setCourseName in the constructor was not
evident. Now, however, the constructor takes advantage of the validation provided by set-
CourseName. The constructor simply calls setCourseName, rather than duplicating its vali-
dation code. When line 12 of Fig. 3.17 passes an initial course name of "CS101
Introduction to Programming in C++" to the GradeBook constructor, the constructor
passes this value to setCourseName, where the actual initialization occurs. Because this
course name contains more than 25 characters, the body of the second 1f statement exe-
cutes, causing courseName to be initialized to the truncated 25-character course name
"CS101 Introduction to Pro" (the truncated part is highlighted in red in line 12). The
output in Fig. 3.17 contains the warning message output by lines 26-27 of Fig. 3.16 in
member function setCourseName. Line 13 creates another GradeBook object called
gradeBook2—the valid course name passed to the constructor is exactly 25 characters.
Lines 16-19 of Fig. 3.17 display the truncated course name for gradeBook1 (we high-
light this in blue in the program output) and the course name for gradeBook2. Line 22
calls gradeBook1’s setCourseName member function directly, to change the course name
in the GradeBook object to a shorter name that does not need to be truncated. Then, lines
25-28 output the course names for the GradeBook objects again.

// Fig. 3.17: fig03_17.cpp

// Create and manipulate a GradeBook object; illustrate validation.
#include <iostream>

#include // include definition of class GradeBook
using namespace std;

Ndh WN -

Fig. 3.17 | Creating and manipulating a GradeBook object in which the course name is limited

to 25 characters in length. (Part | of 2.)

94 Chapter 3 Introduction to Classes, Objects and Strings

6
7 // function main begins program execution
8 int mainQ

9 {

10 // create two GradeBook objects;

11 // initial course name of gradeBookl is too Tlong

12 GradeBook gradeBook1(gramming in C++");
13 GradeBook gradeBook?2(s

14

15 // display each GradeBook's courseName

16 cout <<

17 << gradeBookl.getCourseName()

18 <<

19 << gradeBook2.getCourseName() << endl;

20

21 // modify myGradeBook's courseName (with a valid-length string)
22 gradeBookl.setCourseName();

23

24 // display each GradeBook's courseName

25 cout <<

26 << gradeBookl.getCourseName()

27 <<

28 << gradeBook2.getCourseName() << endl;

29 1} // end main

Name "CS101 Introduction to Programming in C++" exceeds maximum Tlength (25).
Limiting courseName to first 25 characters.

gradeBookl's initial course name is: CS101 Introduction to Pro
gradeBook2's initial course name is: CS102 C++ Data Structures

gradeBookl's course name is: CS101 C++ Programming
gradeBook2's course name is: CS102 C++ Data Structures

Fig. 3.17 | Creating and manipulating a GradeBook object in which the course name is limited
to 25 characters in length. (Part 2 of 2.)

Additional Notes on Set Functions

A public set function such as setCourseName should carefully scrutinize any attempt to
modify the value of a data member (e.g., courseName) to ensure that the new value is ap-
propriate for that data item. For example, an attempt to set the day of the month to 37
should be rejected, an attempt to sez a person’s weight to zero or a negative value should
be rejected, an attempt to sez a grade on an exam to 185 (when the proper range is zero to
100) should be rejected, and so on

wp Software Engineering Observation 3.4
Making data members private and controlling access, especially write access, to those
data members through public member functions helps ensure data integrity.

The benefits of data integrity are not automatic simply because data members are made
private—you must provide appropriate validity checking and report the errors.

, % _ Error-Prevention Tip 3.5

3.9 Wrap-Up 95

A class’s ser functions can return values to the class’s clients indicating that attempts
were made to assign invalid data to objects of the class. A client can test the return value
of a ser function to determine whether the attempt to modify the object was successful and
to take appropriate action. In C++, clients of objects can be notified of invalid values via
the exception-handling mechanism, which we begin discussing in Chapter 7 and present in-
depth in Chapter 16. To keep the program of Figs. 3.15-3.17 simple at this early point in
the book, setCourseName in Fig. 3.16 just prints an appropriate message.

3.9 Wrap-Up

In this chapter, you created user-defined classes, and created and used objects of those
classes. We declared data members of a class to maintain data for each object of the class.
We also defined member functions that operate on that data. You learned how to call an
object’s member functions to request the services the object provides and how to pass data
to those member functions as arguments. We discussed the difference between a local vari-
able of a member function and a data member of a class. We also showed how to use a
constructor to specify initial values for an object’s data members. You learned how to sep-
arate the interface of a class from its implementation to promote good software engineer-
ing. We presented a diagram that shows the files that class-implementation programmers
and client-code programmers need to compile the code they write. We demonstrated how
ser functions can be used to validate an object’s data and ensure that objects are maintained
in a consistent state. UML class diagrams were used to model classes and their construc-
tors, member funct