CRACKING
CODING INTERVIEW

189 PROGRAMMING QUESTIONS & SOLUTIONS

GAYLE LAAKMANN MCDOWELL

Author of Cracking the PM Interview and Cracking the Tech Career EDITION

CRACKING

the

CODING INTERVIEW

6TH EDITION

ALso BY GAYLE LAAKMANN McDoweLL

CRACKING THE PM INTERVIEW

How 1o LAND A ProDUCT MIANAGER JOB IN TECHNOLOGY

CRrRACKING THE TEcH CAREER

INSIDER ADVICE ON LANDING A JoB AT GOOGLE, MICROSOFT, APPLE, OR ANY TopP TEcH COmPANY

CRACKING

the

CODING INTERVIEW

6th Edition
189 Programming Questions and Solutions

GAYLE LAAKMANN MCDOWELL

Founder and CEO, CareerCup.com

CareerCup, LLC
Palo Alto, CA

CRACKING THE CODING INTERVIEW, SIXTH EDITION
Copyright © 2015 by CareerCup.

All rights reserved. No part of this book may be reproduced in any form by any electronic or me-
chanical means, including information storage and retrieval systems, without permission in writing
from the author or publisher, except by a reviewer who may quote brief passages in a review.

Published by CareerCup, LLC, Palo Alto, CA. Compiled Feb 10, 2016.

For more information, contact support@careercup.com.

978-0-9847828-5-7 (ISBN 13)

For Davis and Tobin,
and all the things that bring us joy in life.

Introduction

Introduction.cciiiiiiinnn ©065006000000060060000%00000000¢ 2
I ThelntervieWwProcess oo v ittt iittnteneeeeeeneeasenseeeeennsas 4
W oo ® o oflom ™ o 0 ol 8 o0 oo o Mo oM AL o oo o oo ondih s ORI CWa, S TRNEC B Il 4
How QuestionsareSelected 6
It'sTAllRElatives IR BN Iy, lewis By s . A Mmoo Pl B, 7
Frequently Asked Questions 7
Il. BehindtheScenes.ttt eeeeneennennennennsns 9ocooa 8
The Microsoft INtErVIEW o o e e et e e 9
The Amazon Interview e e 10
The GoOogle INtErVIEW o it et e e e e e e e e 10
The Apple Interview e e e e e 11
The FacebookInterview L e 12
The Palantir INterview oottt et e e e e e 3
ll. Special Situations.ttt i ittt teeeoeeoeoeocoscococososososososs 15
Experienced Candidates. e 15
IS S SIDIEB 4% > ofeio 0 o 6 8loo 090 aB oo dio oo dolo B0 oboboabsdodosabssas s as 1S
Product (and Program) Managementottt i e e 16
Devbiead and Managers. ot i it e e 17
StantupSEs L85 . sk . N N ol i P, . R s A . o AR Y. L A 18
Acquisitions and Acquihires 19
Forinterviewers e 21
IV. Beforethelnterviewttt tiiiiieeeienneeeeennnnccnnnas 26
Getting the Right EXperience. e e e e 26
Writing @ Great RESUMIE oot e e e e e e e e 27
Preparation Map.o i e e e e e e e e e e e e e e 30
V. BehavioralQuestions 50 0G00006A00 03000 © 0000000000000 32
InterviewPreparation Grid L 32
Know YourTechnical Projects.ot e e e 33
Responding to Behavioral Questions. 34
So, tellme aboutyourself.... 36
b)@ 500000000 608606000606000000/G006006066060660606000a006000000600603 0 38
AvAnalogyes s, - . ¢ Srlwr PRt SN o e e - e e e - 38
TimeCompleXity.o e 38
Seare® CEMBUEATS o0 0 0.0 0660 685 05 30 0k 60 0ly 0w b 8be 000000 ablsodososssosd 40
Drop the CoNstants. o it e e 41
Drop the Non-DominantTerms et e e e e e 42
VI Cracking the Coding Interview, 6th Edition

Introduction

VII.

VIiil.

Multi-Part Algorithms: Add vs. Multiply 42
AMOGEIZEAMTIME . el subh o metene o 4ol el IR by e o Gl memeliens) in] SRR TR = aia & 43
LogiNiRuntimes;.. ... 0 80 SESENES SR M L e S S S L K 44
REIE D U 5% 0 6 6 0 506 BI8 6 0 0 00 0 B 0 o B 6 8 3o o' < 009600 0k kow0o ag ofb 3 44
Examplesand EXercises it e e e 45
TechnicallQUESIONS, o« o i = sxers oo ohonel = o 1= o oksie s ionsrsye susns srs sFel el e T MILITh o o o6 60
HOWADRIEPATS! 20 5 . FH e mem B2) o o Py, Pl e nlgymn il ol 5, 60
WhatYou Need TOKNOW. oottt e e e et e et e e 60
Walking Througha Problem e 62
Optimize & Solve Technique #1:LookforBUD it i 67
Optimize & Solve Technique #2:DIY (Do ItYourself) 69
Optimize & Solve Technique #3: Simplifyand Generalize 71
Optimize & Solve Technique #4:BaseCaseandBuild. 71
Optimize & SolveTechnique #5: Data Structure Brainstorm. 72
Best Conceivable Runtime (BCR). 72
Handling Incorrect ANSWEIS i i ittt e et e e e e et e e e 76
When You've Heard aQuestionBefore. e 76
The“Perfect”Language forinterviews e 76
What Good Coding Looks Like o it e e e e e e e e 77
Don'tGive Up! e e e e e 81
TheOfferandBeyondttt ittt et et et e e e 82
Handling Offers and Rejection it it et e et e e 82
Evaluatingithel@ifarl T o s hen Tl i Rl e ol AR~ RN e P frniel . - 83
NEgotBiENi w3 . swws wl e Sow Rt P akn- - O 6L - Lb - Car R PSR . . 5. 84
OnjthreJelopn £. .0 e S L e B P S e P 85
InterviewQuestions vttt ittt ittt ittt 87
PEESANET{ES 6 0060003600005 00000690609600000000060C06000606060 5930000 88
Chaplerals|[ATIaYSIANAISEIRGS, < i n e o eme o e et el R e T R - b e e e 88

TN IEIEES, oo B 0 d o 516 &.5.0 oM o o ABIoB o, BIBISG 66 0.8 dlo dBG Bic 0 0.0 20 0 0.0 0 o o HIEFANINE 88

ArrayList & Resizable Arrays. 89

StringBuilder s rxn gy ot e prece vt daer PR Er R e e v e ey, . . 89
Chiapten2)illinke AMNStS gl s 5o 6 el Wy . ok o P RN A R A R L R R O 92

(GEaiilife) @il ENUE o o o ol a a5 cabannasanansa8oaacaasoesdoamancaseasocsaoaa 92

Deleting a Node from a Singly Linked List. 93

The“Runner”Technique it e e e e e et e e e e 93

(I REIEETNS o 0 o 0 000 ae a6 aoaasanosoasanoaasnaeaadaaosasasascadodns 93

CrackingTheCodinglnterview.com | 6th Edition Vil

Introduction

Chapter 3| Stacks and QUEUES.o ottt e e e 96
(el T 71e) @ STz exa o 0 b o 6 6 0o a8 a6 con 000000000080 000080606000000000m00 0008 96
Implementing @Queue.t e e e e 97

Chapter 4 |Treesand Graphs. e 100
TypesofTreeso iiiienianeenn. RORE RN - %t b B e 100
BinagyAlreellraversal s St S e S R S PR 103
Binary Heaps (Min-Heaps and Max-Heaps) 103
Ttiies (RICHXeTIeas) ... N Jrh.R. LY. Sl oy . . 5 oo . TR o S e s 0. 105
GrADhS ey o xew: m s e E e aehaE El e e T I S e e 105
GraphiSeanehic. 1. . w1, AP =l S i el 11 I 107

ConceptsandAlgorithms i ittt enanans 112

EneorS eI 2UIETTED & o aid olot o 0 o 014 a6 G 6o a0 60 06 o006 oakaos adobod ok 112
BitiManipulationI By i an i R PSP B S SR b B A 112
(e [ReG S @IS 0 010 0.0 6 6 0ld 0in 0240 0.6 46 © 6 4.6 0 0B 0900 a0 0 50ea0 aoe ok aoaaoals 112
Two's Complement and Negative Numbers. 113
Arithmetic vs. Logical Right Shift. uuoo... N S P . 113
Common Bit Tasks: Gettingand Settingottt e et 114

Chapter6 |Mathand LogicPuzzles. it e e et e 117
PrimelNImbersy . oo oo prabons - Frenhonr o S sennnr R Ry T . 117
Rrobabilitysr g o W _in Rt AR A e - L - ek KR i b N e 119
Y02l o] <[r]e EISRE——————— i R R SRS e o T o oL 121
DeveloplRuleSland POt s IR i v R n e e o= - R 121
WolSHEGSelShiltin gL PRt o Pt B e T T S N DA 122
AlgorithmiApDIOGERESE: I e o e] cheheite Shehe one ohomopeieione |2 = 2 ar ot opeersanel SRR 122

Chapter 7 | Object-Oriented DeSign o oo vttt e e e e e e e e 125
HoWito APPIOdCH P =r A T e iy B . | gy e e e e 125
Design Battemsty o o mrc e EEa e CRCIENeTs.] - AR L T Saerare BRSPS 126

Chapter 8 | Recursion and Dynamic Programmingo vt vt 130
HOoWto Approach. o e e e 130
Recursive vs. Iterative Solutions 11331
DynamicProgramming & Memoization. it 131

Chapter9 | System Design and Scalability. 137
Handling the QUESTIONS ot e e e e e e et e e e e e 137
(DT BT H S A5 (/) M 6 6 6 0 0 0 38088 00 o ofa 9k o b ooobooootonoc000cdo00 ke x0080e 138
Algorithms that Scale:Step-By-Step oottt it 189
KeylConeeptsr,. . B . . . FREEY P PR & F . N SR R SRS D . . 140

Vil Cracking the Coding Interview, 6th Edition

Introduction

ConsiderationSha. st -1 shenes-hene ks el Em R Ger o comersfens e S D e . 142
Thereis N0 “Perfect SyStemM.. v v v vttt e e e et e e 143
ExamplelProblemia = 1t o Dhaer i R el R CEN GG - Ee e L e S 143
Chapter10|SortingandSearching. i 146
(QoA SXoL T AL AL T IR opd 080 6 0 0 M0 6.0 60 8 380 0 0 0 B8 006 e 808 oo g o o0 ddoo ol 146
SEaItE) AT LS00 0 6% 08,0 60 60 0% 6 606000 0AD A 003 Ao o0 c oo b onao oo o goadld 149
(@ o= I | UE0EE o 8% 0 0 o 078 d%6™8 o c o 000 6060630k o00anatolooososnioodood 152
What the Interviewer Is LoOKiNg FOr ittt it 152
TestingaReal World Object e et et e 153
Testingl@RieCelOf SOMtWAIE! = - o - o - ou 2 ol oo el el s ohe et e ehehal o] el + oot st SR vl 154
A1 111e)@ (VeI 50 6 0 0 a6 8o daocacoohlandaBaa60asodtoadaendsoooeacasssos 155
Troubleshooting QUESLIONSottt 156
KnowledgeBased. b 60 610 08B0 6510000000000 0000 000 Ay 158
ey 12| CAarme] GHr 6 8 d 8% o 686 Bbio k8 50 86 2 6586016 2148 o 0o 860000006 0c00so sk 158
/a5 sesianalhenitanGe RN S Rar Bk L TN he 10 - i Rl Voo ho) oMo T 158
Constructors and DeStIUCEOrS.o vttt et e 159
VA (UG 0 5 00 0 0 00 6 0ko 00 318 06 0B 0 5 356 6l006B 0 dots ooBao a0 000000000 ad 159
Viiivtel| DESIUEIE]T o o 0 a0 6 006008 o0 e™ ot oo aeaa00oabo s 6ods 00000008009 0000a 160
(D3 T Z55 5 650 6o 0 06 080 ot 06000 30 aKEs 0500000003000 a808 0000000t e odd 161
Opelatan@VerloadiNgRT s cle Fo s n Tl dos - Fhe oo e EWRTe o o o Hone) P e PN el 161
PointersandReferenceso u ittt 162
Templates: v ¢ rxpe e e E eyl B Ea e A - 9 2 i P R s 163
(S US| JE R 88 88 6o oo B oh o8 ol ol B 0 Jo NG RENAN L BIAL I NN B0 o o cjo o olo'6 o ol 165
HOW tOAPPIoach.o o e e e e 165
OVerloadinglvs OVeridimgR st -2 Sn: DR o o) oheh bk R R S e 165
(Gl A Tel) ([TealiE A2 T% 3o o oo o ooaaoooaaoawoabeostosoaaocsdoancoandaonaana 166
Chapteridi|iDatabases i it L Bl B cna s IR ERE G e celeier i B ot 169
SQLSyntax and Variations.t e 169
Denormalized vs. Normalized Databases.c.ou i, 169
S@BStalementsE - re Ry X ERELE - 0 X 1. fof Sem B A e A W - G e e 169
SmallDatabase Design. e 171
laigelDatabaselDesignigs A Nt e r T L B EE R R e R S e ey - 172
Chapter15|ThreadsandLocks 174
ThreadsinJava e 174
Synchronization and LOCKS vt e e e 176
Deadlocks and Deadlock Prevention. uiui i, 179

CrackingTheCodinginterview.com | 6th Edition 1X

Introduction

Additional ReviewProblems i i i i i e 181
Chapteml6)|IMaderatel s e i B e B . R PO PSR . o 181
ChaplterliZ|ibads. . . B o e T T s 7, S T e P P R Py v 186
2 n) 5 0 80 6 0l o5 S A0 6 0 B oJd 6 00w 0 O G)5 0 o & B0 0w <00 S oaanc o 0,096 6.0 o bloRIL
DatalStructuresy. e, - - Sertmena Aol s NN . PO P P . L L 192
Conceptsand Algorithms L oL 276
KnowledgelBased®: - o D0 i i L e S S R 422
Additional Review Problems 462
XI. AdvancedTopics. vt v v ittt veeencnnnsas bl ol s R T 5 ol s 628
WSEfUMAtHN o jcmemen emeneme et e T e e - v e TP U L P 1 . 629
llopelogicaliSont{y. . .- . prrregaw S Sl P g Ve i - Cea . - SRR | . . 632
TSGR ASIe IS 5 6 o8 8 o o o oo/a 060 6% 06 6l 8 ok 88805000 0 a0 oo o o oo 0806 633
ashilablei€ollisionReSeUtio I =ik R R R Bl =) = ohenn oo e T TR D 636
Rabin-Karp SubstringSearch. L e 636
P50 8 B TRl s o T (i BN, WS FERPRRS . 0 0 o o.0b o o0 hiolo oM BRI 637
Red:Blackilfees vy .« i . imwiwa g . mn. e grvepenagoe b e o o 0 e e e L L 639
MapRedUCE. . . . i e e e e e e e e 642
/G o101 ST M) 6 05 0 0o 0 c 06 9 300 0000406 06008 andoono08do800000500a00880 644
AL (e =187 5 656 b 0o 06 660 00 06 600 60086 00000 0 GELAG 600 3G 66 0000030 0D 645
A AR LISKR1E, (B0 5 6 6 60 6 00 06 06 300 0 5o b o8 8E B 0g80Ecot 1000 ao000loo0.000 00005 646
TreeNode (BinarySearchTree)ot e e e e et e 647
LinkedListNode (Linked List)o e 649
(St T[0T [SO S Sepperenppppe————— L0 S 649
>] T S D e B Mot o0 5o 078 kol 0 08 o BoIZRS o r S RERRRRRESRURRRRT IS = o o o iy ol RN 652
HintsiforData STRIGIUIES. e sl o eie o o e oo oo RIS 0 R s 653
Hints for Concepts and Algorithms 662
Hints for Knowledge-Based Questions. 676
Hints for Additional Review Problems 679
XIV. AbeutithelAUthorice. foregene s o e Shonoleons] s7enen Wiy R IR lls 0 Ty R s . . . 696

Join us at www.CrackingTheCodinginterview.com to download the complete solutions,
contribute or view solutions in other programming languages, discuss problems from this book
with other readers, ask questions, report issues, view this book’s errata, and seek additional advice.

X Cracking the Coding Interview, 6th Edition

Foreword

Dear Reader,
Let’s get the introductions out of the way.

l am not a recruiter. | am a software engineer. And as such, | know what it's like to be asked to whip up bril-
liant algorithms on the spot and then write flawless code on a whiteboard. | know because I've been asked
to do the same thing—in interviews at Google, Microsoft, Apple, and Amazon, among other companies.

| also know because 've been on the other side of the table, asking candidates to do this. I've combed
through stacks of resumes to find the engineers who | thought might be able to actually pass these inter-
views. I've evaluated them as they solved—or tried to solve—challenging questions. And I've debated in
Google’s Hiring Committee whether a candidate did well enough to merit an offer. | understand the full
hiring circle because I've been throughiit all, repeatedly.

And you, reader, are probably preparing for an interview, perhaps tomorrow, next week, or next year. | am
here to help you solidify your understanding of computer science fundamentals and then learn how to
apply those fundamentals to crack the coding interview.

The 6th edition of Cracking the Coding Interview updates the 5th edition with 70% more content:additional
questions, revised solutions, new chapter introductions, more algorithm strategies, hints for all problems,
and other content. Be sure to check out our website, CrackingTheCodinglInterview.com, to connect with
other candidates and discover new resources.

I'm excited for you and for the skills you are going to develop. Thorough preparation will give you a wide
range of technical and communication skills. It will be well worth it, no matter where the effort takes you!

| encourage you to read these introductory chapters carefully. They contain important insight that just
might make the difference between a“hire”and a“no hire”

And remember—interviews are hard! In my years of interviewing at Google, | saw some interviewers
ask “easy” questions while others ask harder questions. But you know what? Getting the easy questions
doesn’t make it any easier to get the offer. Receiving an offer is not about solving questions flawlessly (very
few candidates do!). Rather, it is about answering questions better than other candidates. So don't stress out
when you get a tricky question—everyone else probably thought it was hard too. It's okay to not be flaw-
less.

Study hard, practice—and good luck!
Gayle L. McDowell

Founder/CEQ, CareerCup.com
Author of Cracking the PM Interview and Cracking the Tech Career

CrackingTheCodinglInterview.com | 6th Edition 1

Introduction

Something’s Wrong

We walked out of the hiring meeting frustrated—again. Of the ten candidates we reviewed that day, none
would receive offers. Were we being too harsh, we wondered?

|, in particular, was disappointed. We had rejected one of my candidates. A former student. One | had
referred. He had a 3.73 GPA from the University of Washington, one of the best computer science schools
in the world, and had done extensive work on open-source projects. He was energetic. He was creative. He
was sharp. He worked hard. He was a true geek in all the best ways.

But | had to agree with the rest of the committee: the data wasn't there. Even if my emphatic recommenda-
tion could sway them to reconsider, he would surely get rejected in the later stages of the hiring process.
There were just too many red flags.

Although he was quite intelligent, he struggled to solve the interview problems. Most successful candi-
dates could fly through the first question, which was a twist on a well-known problem, but he had trouble
developing an algorithm. When he came up with one, he failed to consider solutions that optimized for
other scenarios. Finally, when he began coding, he flew through the code with an initial solution, but it
was riddled with mistakes that he failed to catch. Though he wasn't the worst candidate we'd seen by any
measure, he was far from meeting the “bar.” Rejected.

When he asked for feedback over the phone a couple of weeks later, | struggled with what to tell him. Be
smarter? No, | knew he was brilliant. Be a better coder? No, his skills were on par with some of the best I'd
seen.

Like many motivated candidates, he had prepared extensively. He had read K&R's classic C book, and he'd
reviewed CLRS' famous algorithms textbook. He could describe in detail the myriad of ways of balancing a
tree, and he could do things in C that no sane programmer should ever want to do.

I had to tell him the unfortunate truth: those books arent enough. Academic books prepare you for fancy
research, and they will probably make you a better software engineer, but they're not sufficient for inter-
views. Why? ['ll give you a hint: Your interviewers haven't seen red-black trees since they were in school
either.

To crack the coding interview, you need to prepare with real interview questions. You must practice on
real problems and learn their patterns. It's about developing a fresh algorithm, not memorizing existing
problems.

Cracking the Coding Interview is the result of my first-hand experience interviewing at top companies and
later coaching candidates through these interviews. It is the result of hundreds of conversations with candi-
dates. Itis the result of the thousands of questions contributed by candidates and interviewers. And it's the
result of seeing so many interview questions from so many firms. Enclosed in this book are 189 of the best
interview questions, selected from thousands of potential problems.

My Approach

The focus of Cracking the Coding Interview is algorithm, coding, and design questions. Why? Because
while you can and will be asked behavioral questions, the answers will be as varied as your resume. Like-
wise, while many firms will ask so-called “trivia” questions (e.g., “What is a virtual function?”), the skills devel-
oped through practicing these questions are limited to very specific bits of knowledge. The book will briefly
touch on some of these questions to show you what they're like, but | have chosen to allocate space to areas
where there’s more to learn.

2 Cracking the Coding Interview, 6th Edition

Introduction

My Passion

Teaching is my passion. I love helping people understand new concepts and giving them tools to help them
excel in their passions.

My first official experience teaching was in college at the University of Pennsylvania, when | became a
teaching assistant for an undergraduate computer science course during my second year. | went on to TA
for several other courses, and | eventually launched my own computer science course there, focused on
hands-on skills.

As an engineer at Google, training and mentoring new engineers were some of the things | enjoyed most. |
even used my “20% time”to teach two computer science courses at the University of Washington.

Now, years later, | continue to teach computer science concepts, but this time with the goal of preparing
engineers at startups for their acquisition interviews. I've seen their mistakes and struggles, and I've devel-
oped techniques and strategies to help them combat those very issues.

Cracking the Coding Interview, Cracking the PM Interview, Cracking the Tech Career, and CareerCup
reflect my passion for teaching. Even now, you can often find me “hanging out” at CareerCup.com, helping
users who stop by for assistance.

Join us.

Gayle L. McDowell

CrackingTheCodinglInterview.com | 6th Edition 3

The Interview Process

At most of the top tech companies (and many other companies), algorithm and coding problems form the
largest component of the interview process. Think of these as problem-solving questions. The interviewer
is looking to evaluate your ability to solve algorithmic problems you haven’t seen before.

Very often, you might get through only one question in an interview. Forty-five minutes is not a long time,
and it's difficult to get through several different questions in that time frame.

You should do your best to talk out loud throughout the problem and explain your thought process. Your
interviewer might jump in sometimes to help you; let them. It's normal and doesn't really mean that you're
doing poorly. (That said, of course not needing hints is even better.)

At the end of the interview, the interviewer will walk away with a gut feel for how you did. A numeric score
might be assigned to your performance, but it's not actually a quantitative assessment. There's no chart that
says how many points you get for different things. It just doesn’t work like that.

Rather, your interviewer will make an assessment of your performance, usually based on the following:

- Analytical skills: Did you need much help solving the problem? How optimal was your solution? How
long did it take you to arrive at a solution? If you had to design/architect a new solution, did you struc-
ture the problem well and think through the tradeoffs of different decisions?

» Coding skills: Were you able to successfully translate your algorithm to reasonable code? Was it clean
and well-organized? Did you think about potential errors? Did you use good style?

+ Technical knowledge / Computer Science fundamentals: Do you have a strong foundation in computer
science and the relevant technologies?

- Experience: Have you made good technical decisions in the past? Have you built interesting, challenging
projects? Have you shown drive, initiative, and other important factors?

= Culture fit / Communication skills: Do your personality and values fit with the company and team? Did
you communicate well with your interviewer?

The weighting of these areas will vary based on the question, interviewer, role, team, and company. In a
standard algorithm question, it might be almost entirely the first three of those.

» Why?

This is one of the most common questions candidates have as they get started with this process. Why do
things this way? After all,

1. Lots of great candidates don't do well in these sorts of interviews.

4 Cracking the Coding Interview, 6th Edition

I| The Interview Process

2. You could look up the answer if it did ever come up.

3. You rarely have to use data structures such as binary search trees in the real world. If you did need to,
you could surely learn it.

4. Whiteboard coding is an artificial environment. You would never code on the whiteboard in the real
world, obviously.

These complaints aren’t without merit. In fact, | agree with all of them, at least in part.

At the same time, there is reason to do things this way for some—not all—positions. It’s not important that
you agree with this logic, but it is a good idea to understand why these questions are being asked. it helps
offer a little insight into the interviewer’s mindset.

False negatives are acceptable.
This is sad (and frustrating for candidates), but true.

From the company’s perspective, it’s actually acceptable that some good candidates are rejected. The
company is out to build a great set of employees. They can accept that they miss out on some good people.
Theyd prefer not to, of course, as it raises their recruiting costs. It is an acceptable tradeoff, though, provided
they can still hire enough good people.

They're far more concerned with false positives: people who do well in an interview but are not in fact very
good.

Problem-solving skills are valuable.

If you're able to work through several hard problems (with some help, perhaps), you're probably pretty
good at developing optimal algorithms. You're smart.

Smart people tend to do good things, and that’s valuable at a company. it's not the only thing that matters,
of course, but it is a really good thing.

Basic data structure and algorithm knowledge is useful.

Many interviewers would argue that basic computer science knowledge is, in fact, useful. Understanding
trees, graphs, lists, sorting, and other knowledge does come up periodically. When it does, it’s really valu-
able.

Could you learn it as needed? Sure. But it's very difficult to know that you should use a binary search tree if
you don't know of its existence. And if you do know of its existence, then you pretty much know the basics.

Other interviewers justify the reliance on data structures and algorithms by arguing that it's a good “proxy.”’
Even if the skills wouldn’t be that hard to learn on their own, they say it's reasonably well-correlated with
being a good developer. It means that you‘ve either gone through a computer science program (in which
case you've learned and retained a reasonably broad set of technical knowledge) or learned this stuff on
your own. Either way, it's a good sign.

There’s another reason why data structure and algorithm knowledge comes up: because it's hard to ask
problem-solving questions that don't involve them. It turns out that the vast majority of problem-solving
questions involve some of these basics. When enough candidates know these basics, it'’s easy to get into a
pattern of asking questions with them.

CrackingTheCodinglnterview.com | 6th Edition 5

1| The Interview Process

Whiteboards let you focus on what matters.

It's absolutely true that you'd struggle with writing perfect code on a whiteboard. Fortunately, your inter-
viewer doesn’t expect that. Virtually everyone has some bugs or minor syntactical errors.

The nice thing about a whiteboard is that, in some ways, you can focus on the big picture. You don't have a
compiler, so you don't need to make your code compile. You don’t need to write the entire class definition
and boilerplate code. You get to focus on the interesting, “meaty” parts of the code: the function that the
question is really all about.

That's not to say that you should just write pseudocode or that correctness doesn't matter. Most inter-
viewers aren’t okay with pseudocode, and fewer errors are better.

Whiteboards also tend to encourage candidates to speak more and explain their thought process. When a
candidate is given a computer, their communication drops substantially.

But it’s not for everyone or every company or every situation.
The above sections are intended to help you understand the thought process of the company.

My personal thoughts? For the right situation, when done well, it's a reasonable judge of someone’s
problem-solving skills, in that people who do well tend to be fairly smart.

However, it's often not done very well. You have bad interviewers or people who just ask bad questions.

It's also not appropriate for all companies. Some companies should value someone’s prior experience more
or need skills with particular technologies. These sorts of questions don’t put much weight on that.

It also won't measure someone’s work ethic or ability to focus. Then again, almost no interview process can
really evaluate this.

This is not a perfect process by any means, but what is? All interview processes have their downsides.

Il leave you with this: it is what it is, so let’s do the best we can with it.

» How Questions are Selected

Candidates frequently ask what the “recent” interview questions are at a specific company. Just asking this
question reveals a fundamental misunderstanding of where questions come from.

At the vast majority of companies, there are no lists of what interviewers should ask. Rather, each inter-
viewer selects their own questions.

Since it's somewhat of a “free for all” as far as questions, there’s nothing that makes a question a “recent
Google interview question” other than the fact that some interviewer who happens to work at Google just
so happened to ask that question recently.

The questions asked this year at Google do not really differ from those asked three years ago. In fact, the
questions asked at Google generally don't differ from those asked at similar companies (Amazon, Facebook,
etc.).

There are some broaddifferences across companies. Some companiesfocus on algorithms (often with some
system design worked in), and others really like knowledge-based questions. But within a given category
of question, there is little that makes it “belong” to one company instead of another. A Google algorithm
question is essentially the same as a Facebook algorithm question.

6 Cracking the Coding Interview, 6th Edition

I| The Interview Process

P It's All Relative

If there’s no grading system, how are you evaluated? How does an interviewer know what to expect of you?
Good question. The answer actually makes a lot of sense once you understand it.

Interviewers assess you relative to other candidates on that same question by the same interviewer. It's a
relative comparison.

For example, suppose you came up with some cool new brainteaser or math problem. You ask your friend
Alex the question, and it takes him 30 minutes to solve it. You ask Bella and she takes 50 minutes. Chris is
never able to solve it. Dexter takes 15 minutes, but you had to give him some major hints and he probably
would have taken far longer without them. Ellie takes 10—and comes up with an alternate approach you
weren't even aware of. Fred takes 35 minutes.

You'll walk away saying, “Wow, Ellie did really well. Il bet she’s pretty good at math.” (Of course, she could
have just gotten lucky. And maybe Chris got unlucky. You might ask a few more questions just to really
make sure that it wasn’t good or bad luck.)

Interview questions are much the same way. Your interviewer develops a feel for your performance by
comparing you to other people. it's not about the candidates she’s interviewing that week. It's about all the
candidates that she’s ever asked this question to.

For this reason, getting a hard question isn't a bad thing. When it’s harder for you, it's harder for everyone. It
doesn’t make it any less likely that you'll do well.

» Frequently Asked Questions

1 didn’t hear back immediately after my interview. Am | rejected?

No. There are a number of reasons why a company’s decision might be delayed. A very simple explanation
is that one of your interviewers hasn't provided their feedback yet. Very, very few companies have a policy
of not responding to candidates they reject.

If you haven't heard back from a company within 3 - 5 business days after your interview, check in (politely)
with your recruiter.
Can I re-apply to a company after getting rejected?

Almost always, but you typically have to wait a bit (6 months to a 1 year). Your first bad interview usually
won't affect you too much when you re-interview. Lots of people get rejected from Google or Microsoft and
later get offers from them.

CrackingTheCodinginterview.com | 6th Edition 7

Behind the Scenes

Most companies conduct their interviews in very similar ways. We will offer an overview of how companies
interview and what they’re looking for. This information should guide your interview preparation and your
reactions during and after the interview.

Once you are selected for an interview, you usually go through a screening interview. This is typically
conducted overthe phone. College candidates who attend top schools may have these interviews in-person.

Don'’t let the name fool you; the “screening” interview often involves coding and algorithms questions, and
the bar can be just as high as it is for in-person interviews. If you're unsure whether or not the interview will
be technical, ask your recruiting coordinator what position your interviewer holds (or what the interview
might cover). An engineer will usually perform a technical interview.

Many companies have taken advantage of online synchronized document editors, but others will expect
you to write code on paper and read it back over the phone. Some interviewers may even give you “home-
work” to solve after you hang up the phone or just ask you to email them the code you wrote.

You typically do one or two screening interviewers before being brought on-site.

In an on-site interview round, you usually have 3 to 6 in-person interviews. One of these is often over lunch.
The lunch interview is usually not technical, and the interviewer may not even submit feedback. This is a
good person to discuss your interests with and to ask about the company culture. Your other interviews will
be mostly technical and will involve a combination of coding, algorithm, design/architecture, and behav-
ioral/experience questions.

The distribution of questions between the above topics varies between companies and even teams due to
company priorities, size, and just pure randomness. Interviewers are often given a good deal of freedom in
their interview questions.

After your interview, your interviewers will provide feedback in some form. In some companies, your inter-
viewers meet together to discuss your performance and come to a decision. In other companies, inter-
viewers submit a recommendation to a hiring manager or hiring committee to make a final decision. In
some companies, interviewers don’t even make the decision; their feedback goes to a hiring committee to
make a decision.

Most companies get back after about a week with next steps (offer, rejection, further interviews, or just an
update on the process). Some companies respond much sooner (sometimes same day!) and others take
much longer.

If you have waited more than a week, you should follow up with your recruiter. If your recruiter does not
respond, this does not mean that you are rejected (at least not at any major tech company, and almost any

8 Cracking the Coding Interview, 6th Edition

Il | Behind the Scenes

other company). Let me repeat that again: not responding indicates nothing about your status. The inten-
tion is that all recruiters should tell candidates once a final decision is made.

Delays can and do happen. Follow up with your recruiter if you expect a delay, but be respectful when you
do. Recruiters are just like you. They get busy and forgetful too.

» The Microsoft Interview

Microsoft wants smart people. Geeks. People who are passionate about technology. You probably won't be
tested on the ins and outs of C++ APIs, but you will be expected to write code on the board.

In a typical interview, you'll show up at Microsoft at some time in the morning and fill out initial paper work.
You'll have a short interview with a recruiter who will give you a sample question. Your recruiter is usually
there to prep you, not to grill you on technical questions. If you get asked some basic technical questions,
it may be because your recruiter wants to ease you into the interview so that you're less nervous when the
“real”interview starts.

Be nice to your recruiter. Your recruiter can be your biggest advocate, even pushing to re-interview you if
you stumbled on your first interview. They can fight for you to be hired—or not!

During the day, you'll do four or five interviews, often with two different teams. Unlike many companies,
where you meet your interviewers in a conference room, you'll meet with your Microsoft interviewers in
their office. This is a great time to look around and get a feel for the team culture.

Depending on the team, interviewers may or may not share their feedback on you with the rest of the
interview loop.

When you complete your interviews with a team, you might speak with a hiring manager (often called the
“as app”, short for “as appropriate”). If so, that's a great sign! It likely means that you passed the interviews
with a particular team. It's now down to the hiring manager's decision.

You might get a decision that day, or it might be a week. After one week of no word from HR, send a friendly
email asking for a status update.

If your recruiter isn't very responsive, it's because she’s busy, not because you're being silently rejected.

Definitely Prepare:
“Why do you want to work for Microsoft?”

In this question, Microsoft wants to see that you're passionate about technology. A great answer might be,
“I've been using Microsoft software as long as | can remember, and I'm really impressed at how Microsoft
manages to create a product that is universally excellent. For example, I've been using Visual Studio recently
to learn game programming, and its APIs are excellent.”Note how this shows a passion for technology!

What’s Unique:

You'll only reach the hiring manager if you've done well, so if you do, that’s a great sign!

Additionally, Microsoft tends to give teams more individual control, and the product set is diverse. Experi-
ences can vary substantially across Microsoft since different teams look for different things.

CrackingTheCodinginterview.com | 6th Edition 9

11| Behind the Scenes

» The Amazon Interview

Amazon’s recruiting process typically begins with a phone screen in which a candidate interviews with a
specific team. A small portion of the time, a candidate may have two or more interviews, which can indicate
either that one of their interviewers wasn’t convinced or that they are being considered for a different team
or profile. In more unusual cases, such as when a candidate is local or has recently interviewed for a different
position, a candidate may only do one phone screen.

The engineer who interviews you will usually ask you to write simple code via a shared document editor.
They will also often ask a broad set of questions to explore what areas of technology you're familiar with.

Next, you fly to Seattle (or whichever office you're interviewing for) for four or five interviews with one or
two teams that have selected you based on your resume and phone interviews. You will have to code on a
whiteboard, and some interviewers will stress other skills. Interviewers are each assigned a specific area to
probe and may seem very different from each other. They cannot see the other feedback until they have
submitted their own, and they are discouraged from discussing it until the hiring meeting.

The”bar raiser” interviewer is charged with keeping the interview bar high. They attend special training and
willinterview candidates outside their group in order to balance out the group itself. If one interview seems
significantly harder and different, that's most likely the bar raiser. This person has both significant experi-
ence with interviews and veto power in the hiring decision. Remember, though: just because you seem to
be struggling more in this interview doesn’t mean you're actually doing worse. Your performance is judged
relative to other candidates; it's not evaluated on a simple “percent correct” basis.

Once your interviewers have entered their feedback, they will meet to discuss it. They will be the people
making the hiring decision.

While Amazon'’s recruiters are usually excellent at following up with candidates, occasionally there are
delays. If you haven't heard from Amazon within a week, we recommend a friendly email.

Definitely Prepare:

Amazon cares a lot about scale. Make sure you prepare for scalability questions. You don't need a back-
ground in distributed systems to answer these questions. See our recommendations in the System Design
and Scalability chapter.

Additionally, Amazon tends to ask a lot of questions about object-oriented design. Check out the Object-
Oriented Design chapter for sample questions and suggestions.

What's Unique:

The Bar Raiser is brought in from a different team to keep the bar high. You need to impress both this person
and the hiring manager.

Amazon tends to experiment more with its hiring process than other companies do. The process described
here is the typical experience, but due to Amazon's experimentation, it's not necessarily universal.
» The Google Interview

There are many scary rumors floating around about Google interviews, but they're mostly just that: rumors.
The interview is not terribly different from Microsoft’s or Amazon'’s.

10 Cracking the Coding Interview, 6th Edition

Il| Behind the Scenes

A Google engineer performs the first phone screen, so expect tough technical questions. These questions
may involve coding, sometimes via a shared document. Candidates are typically held to the same standard
and are asked similar questions on phone screens as in on-site interviews.

On your on-site interview, you'll interview with four to six people, one of whom will be a lunch interviewer.
Interviewer feedback is kept confidential from the other interviewers, so you can be assured that you enter
each interview with blank slate. Your lunch interviewer doesn’t submit feedback, so this is a great opportu-
nity to ask honest questions.

Interviewers are typically not given specific focuses, and there is no “structure” or “system” as to what you're
asked when. Each interviewer can conduct the interview however she would like.

Written feedback is submitted to a hiring committee (HC) of engineers and managers to make a hire /
no-hire recommendation. Feedback is typically broken down into four categories (Analytical Ability, Coding,
Experience, and Communication) and you are given an overall score from 1.0 to 4.0. The HC usually does not
include any of your interviewers. If it does, it was purely by random chance.

To extend an offer, the HC wants to see at least one interviewer who is an “enthusiastic endorser” In other
words, a packet with scores of 3.6, 3.1, 3.1 and 2.6 is better than all 3.1s.

You do not necessarily need to excel in every interview, and your phone screen performance is usually not
a strong factor in the final decision.

If the hiring committee recommends an offer, your packet will go to a compensation committee and then
to the executive management committee. Returning a decision can take several weeks because there are
so many stages and committees.

Definitely Prepare:

As a web-based company, Google cares about how to design a scalable system. So, make sure you prepare
for questions from System Design and Scalability.

Google puts a strong focus on analytical (algorithm) skills, regardless of experience. You should be very well
prepared for these questions, even if you think your prior experience should count for more.

What's Different:

Your interviewers do not make the hiring decision. Rather, they enter feedback which is passed to a hiring
committee. The hiring committee recommends a decision which can be—though rarely is—rejected by
Google executives.

» The Apple Interview

Much like the company itself, Apple’s interview process has minimal bureaucracy. The interviewers will be
looking for excellenttechnical skills, but a passion for the position and the company is also very important.
While it’s not a prerequisite to be a Mac user, you should at least be familiar with the system.

The interview process usually begins with a recruiter phone screen to get a basic sense of your skills,
followed up by a series of technical phone screens with team members.

Once you're invited on campus, you'll typically be greeted by the recruiter who provides an overview of the
process. You will then have 6-8 interviews with members of the team with which you're interviewing, as well
as key people with whom your team works.

CrackingTheCodinginterview.com | 6th Edition 11

[| Behind the Scenes

You can expect a mix of one-on-one and two-on-one interviews. Be ready to code on a whiteboard and
make sure all of your thoughts are clearly communicated. Lunch is with your potential future manager and
appears more casual, but it is still an interview. Each interviewer usually focuses on a different area and
is discouraged from sharing feedback with other interviewers unless there’s something they want subse-
quent interviewers to drill into.

Towards the end of the day, your interviewers will compare notes. If everyone still feels you're a viable candi-
date, you will have an interview with the director and the VP of the organization to which you're applying.
While this decision is rather informal, it's a very good sign if you make it. This decision also happens behind
the scenes, and if you don't pass, you'll simply be escorted out of the building without ever having been
the wiser (until now).

If you made it to the director and VP interviews, all of your interviewers will gather in a conference room
to give an official thumbs up or thumbs down. The VP typically won't be present but can still veto the hire
if they weren't impressed. Your recruiter will usually follow up a few days later, but feel free to ping him or
her for updates.

Definitely Prepare:

If you know what team you're interviewing with, make sure you read up on that product. What do you like
about it? What would you improve? Offering specific recommendations can show your passion for the job.

What'’s Unique:

Apple does two-on-one interviews often, but don’t get stressed out about them-it's the same as a one-on-
one interview!

Also, Apple employees are huge Apple fans. You should show this same passion in your interview.

» The Facebook Interview

Once selected for an interview, candidates will generally do one or two phone screens. Phone screens will
be technical and will involve coding, usually an online document editor.

After the phone interview(s), you might be asked to do a homework assignment that will include a mix of
coding and algorithms. Pay attention to your coding style here. If you've never worked in an environment
which had thorough code reviews, it may be a good idea to get someone who has to review your code.

During your on-site interview, you will interview primarily with other software engineers, but hiring
managers are also involved whenever they are available. All interviewers have gone through comprehen-
sive interview training, and who you interview with has no bearing on your odds of getting an offer.

Each interviewer is given a“role” during the on-site interviews, which helps ensure that there are no repeti-
tive questions and that they get a holistic picture of a candidate. These roles are:

« Behavioral (“Jedi”): This interview assesses your ability to be successful in Facebook’s environment.
Would you fit well with the culture and values? What are you excited about? How do you tackle chal-
lenges? Be prepared to talk about your interest in Facebook as well. Facebook wants passionate people.
You might also be asked some coding questions in this interview.

= Coding and Algorithms (“Ninja”): These are your standard coding and algorithms questions, much like
what you'll find in this book. These questions are designed to be challenging. You can use any program-
ming language you want.

12 Cracking the Coding Interview, 6th Edition

Il | Behind the Scenes

. Design/Architecture (“Pirate”): For a backend software engineer, you might be asked system design
questions. Front-end or other specialties will be asked design questions related to that discipline. You
should openly discuss different solutions and their tradeoffs.

You can typically expect two “ninja” interviews and one “jedi” interview. Experienced candidates will also
usually get a“pirate” interview.

After your interview, interviewers submit written feedback, prior to discussing your performance with each
other. This ensures that your performance in one interview will not bias another interviewer’s feedback.

Once everyone’s feedback is submitted, your interviewing team and a hiring manager get together to
collaborate on a final decision. They come to a consensus decision and submit a final hire recommendation
to the hiring committee.

Definitely Prepare:

The youngest of the “elite” tech companies, Facebook wants developers with an entrepreneurial spirit. [n
your interviews, you should show that you love to build stuff fast.

They want to know you can hack together an elegant and scalable solution using any language of choice.
Knowing PHP is not especially important, particularly given that Facebook also does a lot of backend work
in C++, Python, Erlang, and other languages.

What'’s Unique:

Facebook interviews developers for the company “in general,” not for a specific team. If you are hired, you
will go through a six-week “bootcamp” which will help ramp you up in the massive code base. You'll get
mentorship from senior devs, learn best practices, and, ultimately, get a greater flexibility in choosing a
project than if you were assigned to a project in your interview.

» The Palantir Interview

Unlike some companies which do “pooled” interviews (where you interview with the company as a whole,
not with a specific team), Palantir interviews for a specific team. Occasionally, your application might be
re-routed to another team where there is a better fit.

The Palantirinterview process typically starts with two phone interviews. These interviews are about 30 to
45 minutes and will be primarily technical. Expect to cover a bit about your prior experience, with a heavy
focus on algorithm questions.

You might also be sent a HackerRank coding assessment, which will evaluate your ability to write optimal
algorithms and correct code. Less experienced candidates, such as those in college, are particularly likely
to get such a test.

After this, successful candidates are invited to campus and will interview with up to five people. Onsite
interviews cover your prior experience, relevant domain knowledge, data structures and algorithms, and
design.

You may also likely get a demo of Palantir’s products. Ask good questions and demonstrate your passion
for the company.

After the interview, the interviewers meet to discuss your feedback with the hiring manager.

CrackingTheCodinginterview.com | 6th Edition 13

Il | Behind the Scenes

Definitely Prepare:

Palantir values hiring brilliant engineers. Many candidates report that Palantir's questions were harder than
those they saw at Google and other top companies. This doesn’t necessarily mean it’s harder to get an offer
(although it certainly can); it just means interviewers prefer more challenging questions. If you're inter-
viewing with Palantir, you should learn your core data structures and algorithms inside and out. Then, focus
on preparing with the hardest algorithm questions.

Brush up on system design too if you're interviewing for a backend role. This is an important part of the
process.

What's Unique:

A coding challenge is a common part of Palantir's process. Although you'll be at your computer and can
look up material as needed, don’t walk into this unprepared. The questions can be extremely challenging
and the efficiency of your algorithm will be evaluated. Thorough interview preparation will help you here.
You can also practice coding challenges online at HackerRank.com.

14 Cracking the Coding Interview, 6th Edition

Special Situations

There are many paths that lead someone to this book. Perhaps you have more experience but have never
done this sort of interview. Perhaps you're a tester or a PM. Or perhaps you're actually using this book to
teach yourself how to interview better. Here’s a little something for all these “special situations.”

» Experienced Candidates

Some people assume that the algorithm-style questions you see in this book are only for recent grads.
That’s not entirely true.

More experienced engineers might see slightly less focus on algorithm questions—but only slightly

If a company asks algorithm questions to inexperienced candidates, they tend to ask them to experienced
candidates too. Rightly or wrongly, they feel that the skills demonstrated in these questions are important
for all developers.

Some interviewers might hold experience candidates to a somewhat lower standard. After all, it's been
years since these candidates took an algorithms class. They're out of practice.

Others though hold experienced candidates to a higher standard, reasoning that the more years of experi-
ence allow a candidate to have seen many more types of problems.

On average, it balances out.

The exception to this rule is system design and architecture questions, as well as questions about your
resume. Typically, students don't study much system architecture, so experience with such challenges
would only come professionally. Your performance in such interview questions would be evaluated with
respect to your experience level. However, students and recent graduates are still asked these questions
and should be prepared to solve them as well as they can.

Additionally, experienced candidates will be expected to give a more in-depth, impressive response to
questions like, “What was the hardest bug you've faced?”You have more experience, and yourresponse to
these questions should show it.

» Testers and SDETs

SDETs (software design engineers in test) write code, but to test features instead of build features. As such,
they have to be great coders and great testers. Double the prep work!

If you're applying for an SDET role, take the following approach:

CrackingTheCodinginterview.com | 6th Edition 15

lll| Special Situations

« Preparethe Core Testing Problems: For example, how would you test a light bulb? A pen? A cash register?
Microsoft Word? The Testing chapter will give you more background on these problems.

 Practice the Coding Questions: The number one thing that SDETs get rejected for is coding skills. Although
coding standards are typically lowerfor an SDET than for a traditional developer, SDETs are still expected
to be very strong in coding and algorithms. Make sure that you practice solving all the same coding and
algorithm questions that a regular developer would get.

« Practice Testing the Coding Questions: A very popular format for SDET questions is “Write code to do X,"
followed up by, “Okay, now test it” Even when the question doesn’t specifically require this, you should
ask yourself, "How would I test this?” Remember: any problem can be an SDET problem!

Strong communication skills can also be very important for testers, since your job requires you to work with
so many different people. Do not neglect the Behavioral Questions section.

Career Advice

Finally, a word of career advice: If, like many candidates, you are hoping to apply to an SDET position as the
“easy” way into a company, be aware that many candidates find it very difficult to move from an SDET posi-
tion to a dev position. Make sure to keep your coding and algorithms skills very sharp if you hope to make
this move, and try to switch within one to two years. Otherwise, you might find it very difficult to be taken
seriously in a dev interview.

Never let your coding skills atrophy.

» Product (and Program) Management

These “PM“roles vary wildly across companies and even within a company. At Microsoft, for instance, some
PMs may be essentially customer evangelists, working in a customer-facing role that borders on marketing.
Across campus though, other PMs may spend much of their day coding. The latter type of PMs would likely
be tested on coding, since this is an important part of their job function.

Generally speaking, interviewers for PM positions are looking for candidates to demonstrate skills in the
following areas:

+ Handling Ambiguity: This is typically not the most critical area for an interview, but you should be aware
that interviewers do look for skill here. Interviewers want to see that, when faced with an ambiguous
situation, you don't get overwhelmed and stall. They want to see you tackle the problem head on:
seeking new information, prioritizing the most important parts, and solving the problem in a structured
way. This typically will not be tested directly (though it can be), but it may be one of many things the
interviewer is looking for in a problem.

= Customer Focus (Attitude): Interviewers want to see that your attitude is customer-focused. Do you
assume that everyone will use the product just like you do? Or are you the type of person who puts
himself in the customer’s shoes and tries to understand how they want to use the product? Questions
like “Design an alarm clock for the blind” are ripe for examining this aspect. When you hear a question
like this, be sure to ask a lot of questions to understand who the customer is and how they are using the
product. The skills covered in the Testing section are closely related to this.

= Customer Focus (Technical Skills): Some teams with more complex products need to ensure that their PMs
walk in with a strong understanding of the product, as it would be difficult to acquire this knowledge on
the job. Deep technical knowledge of mobile phones is probably not necessary to work on the Android
or Windows Phone teams (although it might still be nice to have), whereas an understanding of security
might be necessary to work on Windows Security. Hopefully, you wouldn't interview with a team that

16 Cracking the Coding Interview, 6th Edition

lll| Special Situations

required specific technical skills unless you at least claim to possess the requisite skills.

Multi-Level Communication: PMs need to be able to communicate with people at all levels in the
company, across many positions and ranges of technical skills. Your interviewer will want to see that you
possess this flexibility in your communication. This is often examined directly, through a question such
as, “Explain TCP/IP to your grandmother.” Your communication skills may also be assessed by how you
discuss your prior projects.

Passion for Technology: Happy employees are productive employees, so a company wants to make sure
that you'll enjoy the job and be excited about your work. A passion for technology—and, ideally, the
company or team—should come across in your answers. You may be asked a question directly like, “Why
are you interested in Microsoft?” Additionally, your interviewers will look for enthusiasm in how you
discuss your prior experience and how you discuss the team’s challenges. They want to see that you will
be eager to face the job’s challenges.

Teamwork / Leadership: This may be the most important aspect of the interview, and—not surpris-
ingly—the job itself. All interviewers will be looking for your ability to work well with other people. Most
commonly, this is assessed with questions like, “Tell me about a time when a teammate wasn't pulling
his / her own weight.” Your interviewer is looking to see that you handle conflicts well, that you take
initiative, that you understand people, and that people like working with you. Your work preparing for
behavioral questions will be extremely important here.

All of the above areas are important skills for PMs to master and are therefore key focus areas of the inter-
view. The weighting of each of these areas will roughly match the importance that the area holds in the
actual job.

» Dev Lead and Managers

Strong coding skills are almost always required for dev lead positions and often for management positions
as well. If you'll be coding on the job, make sure to be very strong with coding and algorithms—just like a
dev would be. Google, in particular, holds managers to high standards when it comes to coding.

In addition, prepare to be examined for skills in the following areas:

Teamwork / Leadership: Anyone in a management-like role needs to be able to both lead and work with
people. You will be examined implicitly and explicitly in these areas. Explicit evaluation will come in the
form of asking you how you handled prior situations, such as when you disagreed with a manager. The
implicit evaluation comes in the form of your interviewers watching how you interact with them. If you
come off as too arrogant or too passive, your interviewer may feel you aren’t great as a manager.

Prioritization: Managers are often faced with tricky issues, such as how to make sure a team meets a
tough deadline. Your interviewers will want to see that you can prioritize a project appropriately, cutting
the less important aspects. Prioritization means asking the right questions to understand what is critical
and what you can reasonably expect to accomplish.

Communication: Managers need to communicate with people both above and below them, and poten-
tially with customers and other much less technical people. Interviewers will look to see that you can
communicate at many levels and that you can do so in a way that is friendly and engaging. This is, in
some ways, an evaluation of your personality.

“Getting Things Done”: Perhaps the most important thing that a manager can do is be a person who“gets
things done!” This means striking the right balance between preparing for a project and actually imple-
menting it. You need to understand how to structure a project and how to motivate people so you can
accomplish the team’s goals.

CrackingTheCodinglInterview.com | 6th Edition 17

| Special Situations

Ultimately, most of these areas come back to your prior experience and your personality. Be sure to prepare
very, very thoroughly using the interview preparation grid.

> Startups

The application and interview process for startups is highly variable. We can’t go through every startup,
but we can offer some general pointers. Understand, however, that the process at a specific startup might
deviate from this.

The Application Process

Many startups might post job listings, but for the hottest startups, often the best way in is through a personal
referral. This reference doesn’t necessarily need to be a close friend or a coworker. Often just by reaching
out and expressing your interest, you can get someone to pick up your resume to see if you're a good fit.

Visas and Work Authorization

Unfortunately, many smaller startups in the U.S. are not able to sponsor work visas. They hate the system
as much you do, but you won't be able to convince them to hire you anyway. If you require a visa and wish
to work at a startup, your best bet is to reach out to a professional recruiter who works with many startups
(and may have a better idea of which startups will work with visa issues), or to focus your search on bigger
startups.

Resume Selection Factors

Startups tend to want engineers who are not only smart and who can code, but also people who would
work well in an entrepreneurial environment. Your resume should ideally show initiative. What sort of proj-
ects have you started?

Being able to “hit the ground running” is also very important; they want people who already know the
language of the company.

The Interview Process

In contrast to big companies, which tend to look mostly at your general aptitude with respect to software
development, startups often look closely at your personality fit, skill set, and prior experience.

» Personality Fit: Personality fit is typically assessed by how you interact with your interviewer. Establishing
a friendly, engaging conversation with your interviewers is your ticket to many job offers.

= Skill Set: Because startups need people who can hit the ground running, they are likely to assess your
skills with specific programming languages. If you know a language that the startup works with, make
sure to brush up on the details.

-+ Experience: Startups are likely to ask you a lot of questions about your experience. Pay special attention
to the Behavioral Questions section.

In addition to the above areas, the coding and algorithms questions that you see in this book are also very
common.

18 Cracking the Coding Interview, 6th Edition

lll| Special Situations

» Acquisitions and Acquihires

During the technical due diligence process for many acquisitions, the acquirer will often interview most or
all of a startup’s employees. Google, Yahoo, Facebook, and many other companies have this as a standard
part of many acquisitions.

Which startups go through this? And why?

Part of the reasoning for this is that their employees had to go through this process to get hired. They don't
want acquisitions to be an “easy way” into the company. And, since the team is a core motivator for the
acquisition, they figure it makes sense to assess the skills of the team.

Not all acquisitions are like this, of course. The famous multi-billion dcllar acquisitions generally did not
have to go through this process. Those acquisitions, after all, are usually about the user base and commu-
nity, less so about the employees or even the technology. Assessing the team’s skills is less essential.

However, it is not as simple as “acquihires get interviewed, traditional acquisitions do not"There is a big gray
area between acquihires (i.e., talent acquisitions) and product acquisitions. Many startups are acquired for
the team and ideas behind the technology. The acquirer might discontinue the product, but have the team
work on something very similar.

if your startup is going through this process, you can typically expect your team to have interviews very
similar to what a normal candidate would experience (and, therefore, very similar to what you'll see in this
book).

How important are these interviews?

These interviews can carry enormous importance. They have three different roles:

- They can make or break acquisitions. They are often the reason a company does not get acquired.

- They determine which employees receive offers to join the acquirer.

« They can affect the acquisition price (in part as a consequence of the number of employees who join).

These interviews are much more than a mere “screen.”

Which employees go through the interviews?

For tech startups, usually all of the engineers go through the interview process, as they are one of the core
motivators for the acquisition.

In addition, sales, customer support, product managers, and essentially any other role might have to go
through it.

The CEO is often slotted into a product manager interview or a dev manager interview, as this is often the
closest match for the CEO’s current responsibilities. This is not an absolute rule, though. It depends on what
the CEO’s role presently is and what the CEO is interested in. With some of my clients, the CEO has even
opted to not interview and to leave the company upon the acquisition.

What happens to employees who don’t perform well in the interview?

Employees who underperform will often not receive offers to join the acquirer. (If many employees don't
perform well, then the acquisition will likely not go through.)

CrackingTheCodinginterview.com | 6th Edition 19

lll| Special Situations

In some cases, employees who performed poorly in interviews will get contract positions for the purpose of
“knowledge transfer.” These are temporary positions with the expectation that the employee leaves at the
termination of the contract (often six months), although sometimes the employee ends up being retained.

In other cases, the poor performance was a result of the employee being mis-slotted. This occurs in two
common situations:

- Sometimes a startup labels someone who is not a“traditional” software engineer as a software engineer.
This often happens with data scientists or database engineers. These people may underperform during
the software engineer interviews, as their actual role involves other skills.

- Inother cases, a CEO “sells” a junior software engineer as more senior than he actually is. He underper-
forms for the senior bar because he’s being held to an unfairly high standard.

In either case, sometimes the employee will be re-interviewed for a more appropriate position. (Other times
though, the employee is just out of luck.)

In rare cases, a CEQO is able to override the decision for a particularly strong employee whose interview
performance didn't reflect this.

Your “best” (and worst) employees might surprise you.

The problem-solving/algorithm interviews conducted at the top tech companies evaluate particular skills,
which might not perfectly match what their manager evaluates in their employees.

I've worked with many companies that are surprised at who their strongest and weakest performers are in
interviews. That junior engineer who still has a lot to learn about professional development might turn out
to be a great problem-solver in these interviews.

Don’t count anyone out—or in—until you've evaluated them the same way their interviewers will.

Are employees held to the same standards as typical candidates?
Essentially yes, although there is a bit more leeway.

The big companies tend to take a risk-averse approach to hiring. If someone is on the fence, they often lean
towards a no-hire.

In the case of an acquisition, the “on the fence” employees can be pulled through by strong performance
from the rest of the team.

How do employees tend to react to the news of an acquisition/acquihire?

This is a big concern for many startup CEOs and founders. Will the employees be upset about this process?
Or, what if we get their hopes up but it doesn’t happen?

What I've seen with my clients is that the leadership is worried about this more than is necessary.

Certainly, some employees are upset about the process. They might not be excited about joining one of the
big companies for any number of reasons.

Most employees, though, are cautiously optimistic about the process. They hope it goes through, but they
know that the existence of these interviews means that it might not.

20 Cracking the Coding Interview, 6th Edition

I | Special Situations

What happens to the team after an acquisition?

Every situation is different. However, most of my clients have been kept together as a team, or possibly
integrated into an existing team.

How should you prepare your team for acquisition interviews?

Interview prep for acquisition interviews is fairly similar to typical interviews at the acquirer. The difference
is that your company is doing this as a team and that each employee wasn't individually selected for the
interview on their own merits.

You're all in this together.

Some startups I've worked with put their “real” work on hold and have their teams spend the next two or
three weeks on interview prep.

Obviously, that's not a choice all companies can make, but—from the perspective of wanting the acquisi-
tion to go through—that does increase your results substantially.

Your team should study individually, in teams of two or three, or by doing mock interviews with each other.
If possible, use all three of these approaches.

Some people may be less prepared than others.

Many developers at startups might have only vaguely heard of big O time, binary search tree, breadth-first
search, and other important concepts. They'll need some extra time to prepare.

People without computer science degrees (or who earned their degrees a long time ago) should focus
first on learning the core concepts discussed in this book, especially big O time (which is one of the most
important). A good first exercise is to implement all the core data structures and algorithms from scratch.

If the acquisition is important to your company, give these people the time they need to prepare. They'll
need it.

Don’t wait until the last minute.

As a startup, you might be used to taking things as they come without a ton of planning. Startups that do
this with acquisition interviews tend not to fare well.

Acquisition interviews often come up very suddenly. A company’s CEO is chatting with an acquirer (or
several acquirers) and conversations get increasingly serious. The acquirer mentions the possibility of inter-
views at some point in the future. Then, all of a sudden, there’s a “come in at the end of this week” message.

If you wait until there’s a firm date set for the interviews, you probably won't get much more than a couple
of days to prepare. That might not be enough time for your engineers to learn core computer science
concepts and practice interview questions.

» For Interviewers

Since writing the last edition, I've learned that a lot of interviewers are using Cracking the Coding Interview
to learn how to interview. That wasn't really the book’s intention, but | might as well offer some guidance
for interviews.

CrackingTheCodinglnterview.com | 6th Edition 21

| Special Situations

Don’t actually ask the exact questions in here.

First, these questions were selected because they're good for interview preparation. Some questions that
are good for interview preparation are not always good for interviewing. For example, there are some
brainteasers in this book because sometimes interviewers ask these sorts of questions. It's worthwhile for
candidates to practice those if they're interviewing at a company that likes them, even though | personally
find them to be bad questions.

Second, your candidates are reading this book, too. You don't want to ask questions that your candidates
have already solved.

You can ask questions similar to these, but don't just pluck questions out of here. Your goal is to test their
problem-solving skills, not their memorization skills.

Ask Medium and Hard Problems

The goal of these questions is to evaluate someone’s problem-solving skills. When you ask questions that
are too easy, performance gets clustered together. Minor issues can substantially drop someone’s perfor-
mance. It's not a reliable indicator.

Look for questions with multiple hurdles.

Some questions have “Ahal”moments. They rest on a particular insight. If the candidate doesn't get that one
bit, then they do poorly. If they get it, then suddenly they've outperformed many candidates.

Even if that insight is an indicator of skills, it's still only one indicator. Ideally, you want a question that has a
series of hurdles, insights, or optimizations. Multiple data points beat a single data point.

Here's a test: if you can give a hint or piece of guidance that makes a substantial difference in a candidate’s
performance, then it's probably not a good interview question.

Use hard questions, not hard knowledge.

Some interviewers, in an attempt to make a question hard, inadvertently make the knowledge hard. Sure
enough, fewer candidates do well so the statistics look right, but it's not for reasons that indicate much
about the candidates’skills.

The knowledge you are expecting candidates to have should be fairly straightforward data structure and
algorithm knowledge. It's reasonable to expect a computer science graduate to understand the basics of
big O and trees. Most won't remember Dijkstra’s algorithm or the specifics of how AVL trees works.

If your interview question expects obscure knowledge, ask yourself: is this truly an important skill? Is it so
important that | would like to either reduce the number of candidates | hire or reduce the amount to which
I focus on problem-solving or other skills?

Every new skill or attribute you evaluate shrinks the number of offers extended, unless you counter-balance
this by relaxing the requirements for a different skill. Sure, all else being equal, you might prefer someone
who could recite the finer points of a two-inch thick algorithms textbook. But all else isn’t equal.

Avoid “scary” questions.

Some questions intimidate candidates because it seems like they involve some specialized knowledge,
even if they really don't. This often includes questions that involve:

* Math or probability.

22 Cracking the Coding Interview, 6th Edition

1| Special Situations

- Low-level knowledge (memory allocation, etc.).

+ System design or scalability.

= Proprietary systems (Google Maps, etc.).

For example, one question | sometimes ask is to find all positive integer solutions under 1,000 to a* + b?
= ¢ + d?(page 68).

Many candidates will at first think they have to do some sort of fancy factorization of this or semi-advanced
math. They don’t. They need to understand the concept of exponents, sums, and equality, and that’s it.

When | ask this question, | explicitly say, “l know this sounds like a math problem. Don’t worry. It’s not. It's an
algorithm question.” If they start going down the path of factorization, | stop them and remind them that
it's not a math question.

Other questions might involve a bit of probability. It might be stuff that a candidate would surely know (e.g.,
to pick between five options, pick a random number between 1 and 5). But simply the fact that it involves
probability will intimidate candidates.

Be careful asking questions that sound intimidating. Remember that this is already a really intimidating
situation for candidates. Adding on a “scary” question might just fluster a candidate and cause him to
underperform.

If you're going to ask a question that sounds “scary,” make sure you really reassure candidates that it doesn’t
require the knowledge that they think it does.

Offer positive reinforcement.

Some interviewers put so much focus on the “right” question that they forget to think about their own
behavior.

Many candidates are intimidated by interviewing and try to read into the interviewers every word. They
can cling to each thing that might possibly sound positive or negative. They interpret that little comment of
“good luck” to mean something, even though you say it to everyone regardless of performance.

You want candidates to feel good about the experience, about you, and about their performance. You want
them to feel comfortable. A candidate who is nervous will perform poorly, and it doesn’t mean that they
aren’t good. Moreover, a good candidate who has a negative reaction to you or to the company is less likely
to accept an offer—and they might dissuade their friends from interviewing/accepting as well.

Try to be warm and friendly to candidates. This is easier for some people than others, but do your best.

Even if being warm and friendly doesn’t come naturally to you, you can still make a concerted effort to
sprinkle in positive remarks throughout the interview:

- “Right, exactly.”

- “Great point.”

+ “Good work.

+ "Okay, that’s a really interesting approach.”

+ "Perfect”

No matter how poorly a candidate is doing, there is always something they got right. Find a way to infuse
some positivity into the interview.

CrackingTheCodinginterview.com | 6th Edition 23

| Special Situations

Probe deeper on behavioral questions.
Many candidates are poor at articulating their specific accomplishments.

You ask them a question about a challenging situation, and they tell you about a difficult situation their
team faced. As far as you can tell, the candidate didn't really do much.

Not so fast, though. A candidate might not focus on themselves because they've been trained to celebrate
their team’s accomplishments and not boast about themselves. This is especially common for people in
leadership roles and female candidates.

Don't assume that a candidate didn't do much in a situation just because you have trouble understanding
what they did. Call out the situation (nicely!). Ask them specifically if they can tell you what their role was.

If it didn't really sound like resolving the situation was difficult, then, again, probe deeper. Ask them to go
into more detailsabout how they thought about the issue and the different steps they took. Ask them why
they took certain actions. Not describing the details of the actions they took makes them a flawed candi-
date, but not necessarily a flawed employee.

Being a good interview candidate is its own skill (after all, that's part of why this book exists), and it's prob-
ably not one you want to evaluate.

Coach your candidates.

Read through the sections on how candidates can develop good algorithms. Many of these tips are ones
you can offer to candidates who are struggling. You're not “teaching to the test” when you do this; you're
separating interview skills from job skills.

- Many candidates don't use an example to solve an interview question (or they don't use a good
example). This makes it substantially more difficult to develop a solution, but it doesn't necessarily mean
that they're not very good problem solvers. If candidates don’t write an example themselves, or if they
inadvertently write a special case, guide them.

« Some candidates take a long time to find the bug because they use an enormous example. This doesn't
make them a bad tester or developer. It just means that they didn't realize that it would be more efficient
to analyze their code conceptually first, or that a small example would work nearly as well. Guide them.

- Ifthey dive into code before they have an optimal solution, pull them back and focus them on the algo-
rithm (if that's what you want to see). It's unfair to say that a candidate never found or implemented the
optimal solution if they didnt really have the time to do so.

- If they get nervous and stuck and aren’t sure where to go, suggest to them that they walk through the
brute force solution and look for areas to optimize.

+ Ifthey haven't said anything and there is a fairly obvious brute force, remind them that they can start off
with a brute force. Their first solution doesn't have to be perfect.

Even if you think that a candidate’s ability in one of these areas is an important factor, it’s not the only factor.
You can always mark someone down for “failing” this hurdle while helping to guide them past it.

While this book is here to coach candidates through interviews, one of your goals as an interviewer is to
remove the effect of not preparing. After all, some candidates have studied for interviews and some candi-
dates haven't, and this probably doesn’t reveal much about their skills as an engineer.

Guide candidates using the tips in this book (within reason, of course—you don't want to coach candidates
through the problems so much that you're not evaluating their problem-solving skills anymore).

24 Cracking the Coding Interview, 6th Edition

1| Special Situations

Be careful here, though. If you're someone who comes off as intimidating to candidates, this coaching could
make things worse. It can come off as your telling candidates that they're constantly messing up by creating
bad examples, not prioritizing testing the right way, and so on.

If they want silence, give them silence.

One of the most common questions that candidates ask me is how to deal with an interviewer who insists
on talking when they just need a moment to thinkin silence.

If your candidate needs this, give your candidate this time to think. Learn to distinguish between “I'm stuck
and have no idea what to do,” and “I'm thinking in silence.”

It might help you to guide your candidate, and it might help many candidates, but it doesn’t necessarily
help all candidates. Some need a moment to think. Give them that time, and take into account when you're
evaluating them that they got a bit less guidance than others.

Know your mode: sanity check, quality, specialist, and proxy.
At a very, very high level, there are four modes of questions:

- Sanity Check: These are often easy problem-solving or design questions. They assess a minimum
degree of competence in problem-solving. They won't tell distinguish between “okay” versus “great’, so
don't evaluate them as such. You can use them early in the process (to filter out the worst candidates), or
when you only need a minimum degree of competency.

- Quality Check: These are the more challenging questions, often in problem-solving or design. They
are designed to be rigorous and really make a candidate think. Use these when algorithmic/problem-
solving skills are of high importance. The biggest mistake people make here is asking questions that are,
in fact, bad problem-solving questions.

- Specialist Questions: These questions test knowledge of specific topics, such as Java or machine
learning. They should be used when for skills a good engineer couldn’t quickly learn on the job. These
questions need to be appropriate for true specialists. Unfortunately, I've seen situations where a
company asks a candidate who just completed a 10-week coding bootcamp detailed questions about
Java. What does this show? If she has this knowledge, then she only learned it recently and, therefore, it's
likely to be easily acquirable. If it's easily acquirable, then there’s no reason to hire for it.

+ ProxyKnowledge: This is knowledge that is not quite at the specialist level (in fact, you might not even
need it), but that you would expect a candidate at their level to know. For example, it might not be very
important to you if a candidate knows CSS or HTML. But if a candidate has worked in depth with these
technologies and can't talk about why tables are or aren’t good, that suggests an issue. They're not
absorbing information core to their job.

When companies get into trouble is when they mix and match these:
» They askspecialist questions to people who aren’t specialists.
- They hire for specialist roles when they don’t need specialists.
- They need specialists but are only assessing pretty basic skills.

+ They are asking sanity check (easy) questions, but think they're asking quality check questions. They
therefore interpret a strong difference between “okay” and “great” performance, even though a very
minor detail might have separated these.

In fact, having worked with a number of small and large tech companies on their hiring process, | have
found that most companies are doing one of these things wrong.

CrackingTheCodinginterview.com | 6th Edition 25

IV

Before the Interview

Acing an interview starts well before the interview itself—years before, in fact. The following timeline
outlines what you should be thinking about when.

If you're starting late into this process, don't worry. Do as much “catching up”as you can, and then focus on
preparation. Good luck!

» Getting the Right Experience

Without a great resume, there’s no interview. And without great experience, there’s no great resume. There-
fore, the first step in landing an interview is getting great experience. The further in advance you can think
about this the better.

For current students, this may mean the following:

- Takethe Big Project Classes: Seek out the classes with big coding projects. This is a great way to get some-
what practical experience before you have any formal work experience. The more relevant the project is
to the real world, the better.

- Get an Internship: Do everything you can to land an internship early in school. It will pave the way for
even better internships before you graduate. Many of the top tech companies have internship programs
designed especially for freshman and sophomores. You can also look at startups, which might be more
flexible.

« Start Something: Build a project on your own time, participate in hackathons, or contribute to an open
source project. It doesn’t matter too much what it is. The important thing is that you're coding. Not only
will this develop your technical skills and practical experience, your initiative will impress companies.

Professionals, on the other hand, may already have the right experience to switch to their dream company.
For instance, a Google dev probably already has sufficient experience to switch to Facebook. However, if
you're trying to move from a lesser-known company to one of the “biggies,’” or from testing/IT into a dev
role, the following advice will be useful:

« Shift Work Responsibilities More Towards Coding: Without revealing to your manager that you are thinking
of leaving, you can discuss your eagerness to take on bigger coding challenges. As much as possible,
try to ensure that these projects are “meaty,” use relevant technologies, and lend themselves well to a
resume bullet or two. It is these coding projects that will, ideally, form the bulk of your resume.

- Use Your Nights and Weekends: If you have some free time, use it to build a mobile app, a web app, or a
piece of desktop software. Doing such projects is also a great way to get experience with new technolo-
gies, making you more relevant to today’s companies. This project work should definitely be listed on
your resume; few things are as impressive to an interviewer as a candidate who built something “just

26 Cracking the Coding Interview, 6th Edition

IV | Before the Interview

for fun.”

All of these boil down to the two big things that companies want to see: that you're smart and that you can
code. If you can prove that, you can land your interview.

In addition, you should think in advance about where you want your career to go. If you want to move into
management down the road, even though you're currently looking for a dev position, you should find ways
now of developing leadership experience.

» Writing a Great Resume

Resume screeners look for the same things that interviewers do. They want to know that you're smart and
that you can code.

That means you should prepare your resume to highlight those two things. Your love of tennis, traveling, or
magic cards won't do much to show that. Think twice before cutting more technical lines in order to allow
space for your non-technical hobbies.

Appropriate Resume Length

In the US, it is strongly advised to keep a resume to one page if you have less than ten years of experience.
More experienced candidates can often justify 1.5 - 2 pages otherwise.

Think twice about a long resume. Shorter resumes are often more impressive.

« Recruiters only spend a fixed amount of time (about 10 seconds) looking at your resume. If you limit
the content to the most impressive items, the recruiter is sure to see them. Adding additional items just
distracts the recruiter from what you'd really like them to see.

- Some people just flat-out refuse to read long resumes. Do you really want to risk having your resume
tossed for this reason?

If you are thinking right now that you have too much experience and can't fit it all on one or two pages,
trust me, you can. Long resumes are not a reflection of having tons of experience; they're a reflection of not
understanding how to prioritize content.

Employment History

Your resume does not—and should not—include a full history of every role you've ever had. Include only
the relevant positions—the ones that make you a more impressive candidate.

Writing Strong Bullets

For each role, try to discuss your accomplishments with the following approach: “Accomplished X by imple-
menting Y which led to Z" Here’s an example:

« “Reduced object rendering time by 75% by implementing distributed caching, leading to a 10% reduc-
tion in log-in time.”

Here’s another example with an alternate wording:

+ “Increased average match accuracy from 1.2 to 1.5 by implementing a new comparison algorithm based
on windiff.’

Not everything you did will fit into this approach, but the principle is the same: show what you did, how you
did it, and what the results were.Ideally, you should try to make the results”"measurable”somehow.

CrackingTheCodinglnterview.com | 6th Edition 27

IV | Before the Interview

Projects

Developing the projects section on your resume is often the best way to present yourself as more experi-
enced. This is especially true for college students or recent grads.

The projects should include your 2 - 4 most significant projects. State what the project was and which
languages or technologies it employed. You may also want to consider including details such as whether
the project was an individual or a team project, and whether it was completed for a course or indepen-
dently. These details are not required, so only include them if they make you look better. Independent
projects are generally preferred over course projects, as it shows initiative.

Do not add too many projects. Many candidates make the mistake of adding all 13 of their prior projects,
cluttering their resume with small, non-impressive projects.

So what should you build? Honestly, it doesn’t matter that much. Some employers really like open source
projects (it offers experience contributing to a large code base), while others preferindependent projects
(it's easier to understand your personal contributions). You could build a mobile app, a web app, or almost
anything. The most important thing is that you're building something.

Programming Languages and Software

Software

Be conservative about what software you list, and understand what's appropriate for the company. Soft-
ware like Microsoft Office can almost always be cut. Technical software like Visual Studio and Eclipse is
somewhat more relevant, but many of the top tech companies won't even care about that. After all, is it
really that hard to learn Visual Studio?

Of course, it won't hurt you to list all this software. It just takes up valuable space. You need to evaluate the
trade-off of that.
Languages

Should you list everything you've ever worked with, or shorten the list to just the ones that you're most
comfortable with?

Listing everything you've ever worked with is dangerous. Many interviewers consider anything on your
resume to be “fair game” as far as the interview.

One alternative is to list most of the languages you've used, but add your experience level. This approach
is shown below:

- Languages: Java (expert), C++ (proficient), JavaScript (prior experience).

" u.

Use whatever wording (“expert”, “fluent’, etc.) effectively communicates your skillset.

Some people list the number of years of experience they have with a particular language, but this can be
really confusing. If you first learned Java 10 years ago, and have used it occasionally throughout that time,
how many years of experience is this?

For this reason, the number of years of experience is a poor metric for resumes. It's better to just describe
what you mean in plain English.

Advice for Non-Native English Speakers and Internationals

Some companies will throw out your resume just because of a typo. Please get at least one native English
speaker to proofread your resume.

28 Cracking the Coding Interview, 6th Edition

IV | Before the Interview

Additionally, for US positions, do not include age, marital status, or nationality. This sort of personal informa-
tion is not appreciated by companies, as it creates a legal liability for them.

Beware of (Potential) Stigma

Certain languages have stigmas associated with them. Sometimes this is because of the language them-
selves, but often it's because of the places where this language is used. I'm not defending the stigma; I'm
just letting you know of it.

A few stigmas you should be aware of:

- Enterprise Languages: Certain languages have a stigma associated with them, and those are often the
ones that are used for enterprise development. Visual Basic is a good example of this. If you show your-
self to be an expert with VB, it can cause people to assume that you're less skilled. Many of these same
people will admit that, yes, VB.NET is actually perfectly capable of building sophisticated applications.
But still, the kinds of applications that people tend to build with it are not very sophisticated. You would
be unlikely to see a big name Silicon Valley using VB.

In fact, the same argument (although less strong) applies to the whole .NET platform. If your primary
focus is .NET and you're not applying for .NET roles, you'll have to do more to show that you're strong
technically than if you were coming in with a different background.

- Being Too Language Focused: When recruiters at some of the top tech companies see resumes that
list every flavor of Java on their resume, they make negative assumptions about the caliber of candi-
date. There is a belief in many circles that the best software engineers don't define themselves around
a particular language. Thus, when they see a candidate seems to flaunt which specific versions of a
language they know, recruiters will often bucket the candidate as “not our kind of person.”’

Note that this does not mean that you should necessarily take this “language flaunting” off your resume.
You need to understand what that company values. Some companies do value this.

- Certifications: Certifications for software engineers can be anything from a positive, to a neutral, to
a negative. This goes hand-in-hand with being too language focused; the companies that are biased
against candidates with a very lengthy list of technologies tend to also be biased against certifications.
This means that in some cases, you should actually remove this sort of experience from your resume.

+ Knowing Only One or Two Languages: The more time you've spent coding, the more things you've
built, the more languages you will have tended to work with. The assumption then, when they see a
resume with only one language, is that you haven't experienced very many problems. They also often
worry that candidates with only one or two languages will have trouble learning new technologies (why
hasn't the candidate learned more things?) or will just feel too tied with a specific technology (poten-
tially not using the best language for the task).

This advice is here not just to help you work on your resume, but also to help you develop the right experi-
ence. If your expertise is in C#.NET, try developing some projects in Python and JavaScript. If you only know
one or two languages, build some applications in a different language.

Where possible, try to truly diversify. The languages in the cluster of {Python, Ruby, and JavaScript} are
somewhat similar to each other. It's better if you can learn languages that are more different, like Python,
C++, and Java.

CrackingTheCodinglnterview.com | 6th Edition 29

IV | Before the Interview

» Preparation Map

The following map should give you an idea of how to tackle the interview preparation process. One of the
key takeaways here is that it's not just about interview questions. Do projects and write code, too!

Students: find intern-
ship and take classes
with large projects.

\/

Build projects outside
of school/work.

Learn multiple
programming
languages.

Professionals: focus
work on “meaty”
projects.

Read intro sections
of CtCl (Cracking the
Coding Interview).

Build website / port-
folio showcasing your
experience.

\/

Expand Network.

Continue to work on
projects. Try to add on
one more project.

\/

\/

Make target list of
preferred companies.

Create draft of resume
and send it out fora
resume review.

Learn and master
Big O.

Implement data struc-
tures and algorithms
from scratch.

Form mock interview
group with friends to
interview each other.

Do several mock inter-
views.

\/

Do mini-projects to
solidify understanding
of key concepts.

Continue to practice
interview questions.

Create list to track
mistakes you've made
solving problems.

Begin applying to
companies.

Review / update
resume.

Create interview prep
grid (pg 32).

\/

Cracking the Coding Interview, 6th Edition

IV | Before the Interview

Re-read intro to CtCj,
especially Tech &
Behavioral section.

Do another mock
interview.

Continue to practice
questions, writing
code on paper.

Do a final mock
interview.

Phone Interview:
Locate headset and/or
video camera.

\/

Rehearse stories
from the interview
prep grid (pg 32).

\/

Re-read Algorithm
Approaches (pg 67).

Rehearse each story
from interview prep
grid once.

\/

Continue to practice
questions & review
your list of mistakes.

Re-read Big O section
(pg 38).

\/

Continue to practice
interview questions.

Review Powers of 2
table (pg 61). Print
for a phone screen.

Remember to talk out
loud. Show how you
think.

Be Confident (Not
Cocky!)).

\/

\/

Wake up in plenty of
time to eat a good
breakfast & be on time.

Don’t forget: Stum-
bling and struggling is
normal!

Write Thank You note
to recruiter.

Get an offer? Celebrate!
Your hard work paid
off!

If no offer, ask when
you can re-apply. Don’t
give up hope!

\/

If you haven't heard
from recruiter, check in
after one week.

CrackingTheCodinginterview.com | 6th Edition

31

Behavioral Questions

Behavioral questions are asked to get to know your personality, to understand your resume more deeply,
and just to ease you into an interview. They are important questions and can be prepared for.

» Interview Preparation Grid

Go through each of the projects or components of your resume and ensure that you can talk about them in
detail. Filling out a grid like this may help:

- Proiﬁ‘ct3 .

Mistakes/Failures

Enjoyed

Leadership

Conflicts
What You'd Do Differently

Along the top, as columns, you should list all the major aspects of your resume, including each project, job,
or activity. Along the side, as rows, you should list the common behavioral questions.

Study this grid before your interview. Reducing each story to just a couple of keywords may make the grid
easier to study and recall. You can also more easily have this grid in front of you during an interview without
it being a distraction.

In addition, ensure that you have one to three projects that you can talk about in detail. You should be able
to discuss the technical components in depth. These should be projects where you played a central role.

What are your weaknesses?

When asked about your weaknesses, give a real weakness! Answers like “My greatest weakness is that |
work too hard” tell your interviewer that you're arrogant and/or won't admit to your faults. A good answer
conveys a real, legitimate weakness but emphasizes how you work to overcome it.

For example:
“Sometimes, | don't have a very good attention to detail. While that's good because it lets me

execute quickly, it also means that | sometimes make careless mistakes. Because of that, | make
sure to always have someone else double check my work.”

32 Cracking the Coding Interview, 6th Edition

v | Behavioral Questions

What questions should you ask the interviewer?

Most interviewers will give you a chance to ask them questions. The quality of your questions will be a
factor, whether subconsciously or consciously, in their decisions. Walk into the interview with some ques-
tions in mind.

You can think about three general types of questions.
Genuine Questions

These are the questions you actually want to know the answers to. Here are a few ideas of questions that
are valuable to many candidates:

1. "What is the ratio of testers to developers to program managers? What is the interaction like? How does
project planning happen on the team?”

2. "What brought you to this company? What has been most challenging for you?”

These questions will give you a good feel for what the day-to-day life is like at the company.
Insightful Questions

These questions demonstrate your knowledge or understanding of technology.

1. “I noticed that you use technology X. How do you handle problem Y?”

2. "Why did the product choose to use the X protocol over the Y protocol? | know it has benefits like A, B,
C, butmany companies choose not to use it because of issue D

Asking such questions will typically require advance research about the company.
Passion Questions

These questions are designed to demonstrate your passion for technology. They show that you're inter-
ested in learning and will be a strong contributor to the company.

1. “I'm very interested in scalability, and I'd love to learn more about it. What opportunities are there at this
company to learn about this?”

2. "I'm not familiar with technology X, but it sounds like a very interesting solution. Could you tell me a bit
more about how it works?”

» Know Your Technical Projects

As part of your preparation, you should focus on two or three technical projects that you should deeply
master. Select projects that ideally fit the following criteria:

« The project had challenging components (beyond just “learning a lot”).

-+ You played a central role (ideally on the challenging components).

« You can talk at technical depth.

For those projects, and all your projects, be able to talk about the challenges, mistakes, technical decisions,
choices of technologies (and tradeoffs of these), and the things you would do differently.

You can also think about follow-up questions, like how you would scale the application.

CrackingTheCodinglnterview.com | 6th Edition 33

V| Behavioral Questions

» Responding to Behavioral Questions

Behavioral questions allow your interviewer to get to know you and your prior experience better. Remember
the following advice when responding to questions.

Be Specific, Not Arrogant

Arrogance is a red flag, but you still want to make yourself sound impressive. So how do you make yourself
sound good without being arrogant? By being specific!

Specificity means giving just the facts and letting the interviewer derive an interpretation. For example,
rather than saying that you “did all the hard parts,” you can instead describe the specific bits you did that
were challenging.

Limit Details

When a candidate blabbers on about a problem, it’s hard for an interviewer who isn't well versed in the
subject or project to understand it.

Stay light on details and just state the key points. When possible, try to translate it or at least explain the
impact. You can always offer the interviewer the opportunity to drill in further.

I “By examining the most common user behavior and applying the Rabin-Karp algorithm, |
designed a new algorithm to reduce search from O(n) to 0(1log n) in 90% of cases. | can go
into more details if you'd like.”

This demonstrates the key points while letting your interviewer ask for more details if he wants to.

Focus on Yourself, Not Your Team

Interviews are fundamentally an individual assessment. Unfortunately, when you listen to many candidates

(especially those in leadership roles), their answers are about “we’, “us’, and “the team.” The interviewer

walks away having little idea what the candidate’s actual impact was and might conclude that the candi-
date did little.

Pay attention to your answers. Listen for how much you say “we” versus “I” Assume that every question is
about your role, and speak to that.

Give Structured Answers

There are two common ways to think about structuring responses to a behavioral question: nugget first
and S.A.R. These techniques can be used separately or together.

Nugget First

Nugget First means starting your response with a “nugget” that succinctly describes what your response
will be about.

For example:

- Interviewer: “Tell me about a time you had to persuade a group of people to make a big change.”

- Candidate:“Sure, let me tell you about the time when | convinced my school to let undergraduates teach
their own courses. Initially, my school had a rule where.."

34 Cracking the Coding Interview, 6th Edition

V| Behavioral Questions

This technique grabs your interviewer's attention and makes it very clear what your story will be about. It

also helps you be more focused in your communication, since you've made it very clear to yourself what
the gist of your response is.

S.A.R. (Situation, Action, Result)

The S.A.R. approach means that you start off outlining the situation, then explaining the actions you took,
and lastly, describing the result.

Example: “Tell me about a challenging interaction with a teammate.”

« Situation: On my operating systems project, | was assigned to work with three other people. While two
were great, the third team member didn’t contribute much. He stayed quiet during meetings, rarely
chipped in during email discussions, and struggled to complete his components. This was an issue not
only because it shifted more work onto us, but also because we didn’t know if we could count on him.

« Action: | didn’t want to write him off completely yet, so | tried to resolve the situation. | did three things.

First, | wanted to understand why he was acting like this. Was it laziness? Was he busy with something
else? | struck up a conversation with him and then asked him open-ended questions about how he felt it
was going. Interestingly, basically out of nowhere, he said that he wanted to take on the writeup, which
is one of the most time intensive parts. This showed me that it wasn't laziness; it was that he didn’t feel
like he was good enough to write code.

Second, now that | understand the cause, | tried to make it clear that he shouldn’t fear messing up. | told
him about some of the bigger mistakes that | made and admitted that | wasn’t clear about a lot of parts
of the project either.

Third and finally, I asked him to help me with breaking out some of the components of the project. We
sat down together and designed a thorough spec for one of the big component, in much more detail
than we had before. Once he could see all the pieces, it helped show him that the project wasn’t as scary
as he'd assumed.

- Result: With his confidence raised, he now offered to take on a bunch of the smaller coding work, and
then eventually some of the biggest parts. He finished all his work on time, and he contributed more in
discussions. We were happy to work with him on a future project.

The situation and the result should be succinct. Your interviewer generally does not need many details to
understand what happened and, in fact, may be confused by them.

By using the S.A.R. model with clear situations, actions and results, the interviewer will be able to easily
identify how you made an impact and why it mattered.

Consider putting your stories into the following grid:

Nugget Situation | Action(s) Result What It Says
Story 1 Y
PN o
S
Story 2
Explore the Action

In almost all cases, the “action” is the most important part of the story. Unfortunately, far too many people
talk on and on about the situation, but then just breeze through the action.

CrackingTheCodinglnterview.com | 6th Edition 35

V| Behavioral Questions

Instead, dive into the action. Where possible, break down the action into multiple parts. For example: “I did
three things. First, I..” This will encourage sufficient depth.

Think About What It Says
Re-read the story on page 35. What personality attributes has the candidate demonstrated?
+ Initiative/Leadership: The candidate tried to resolve the situation by addressing it head-on.

- Empathy: The candidate tried to understand what was happening to the person. The candidate also
showed empathy in knowing what would resolve the teammate’s insecurity.

- Compassion: Although the teammate was harming the team, the candidate wasn‘t angry at the team-
mate. His empathy led him to compassion.

« Humility: The candidate was able to admit to his own flaws (not only to the teammate, but also to the
interviewer).

- Teamwork/Helpfulness: The candidate worked with the teammate to break down the project into
manageable chunks.

You should think about your stories from this perspective. Analyze the actions you took and how you
reacted. What personality attributes does your reaction demonstrate?

In many cases, the answer is “none.”That usually means you need to rework how you communicate the story
to make the attribute clearer. You don’t want to explicitly say, “ did X because | have empathy,” but you can
go one step away from that. For example:

« Less Clear Attribute: “l called up the client and told him what happened.”

+ More Clear Attribute (Empathy and Courage): “I made sure to call the client myself, because | knew
that he would appreciate hearing it directly from me.”

If you still can't make the personality attributes clear, then you might need to come up with a new story
entirely.

» So, tell me aboutyourself...

Many interviewers kick off the session by asking you to tell them a bit about yourself, or asking you to walk
through your resume.This is essentially a “pitch”. It's your interviewer’s first impression of you, so you want
to be sure to nail this.

Structure

A typical structure that works well for many people is essentially chronological, with the opening sentence
describing their current job and the conclusion discussing their relevant and interesting hobbies outside
of work (if any).

1. Current Role [Headline Onlyl: “I'm a software engineer at Microworks, where I've been leading the
Android team for the last five years.”

2. College: My background is in computer science. | did my undergrad at Berkeley and spent a few
summers working at startups, including one where | attempted to launch my own business.

3. Post College & Onwards: After college, | wanted to get some exposure to larger corporations so | joined
Amazon as a developer. It was a great experience. | learned a ton about large system design and | got to
really drive the launch of a key part of AWS. That actually showed me that | really wanted to be in amore

36 Cracking the Coding Interview, 6th Edition

V[Behavioral Questions

entrepreneurial environment.

4. Current Role [Details]: One of my old managers from Amazon recruited me out to join her startup,
which was what brought me to Microworks. Here, | did the initial system architecture, which has scaled
pretty well with our rapid growth. | then took an opportunity to lead the Android team. | do manage a
team of three, but my role is primarily with technical leadership: architecture, coding, etc.

5. Outside of Work: Outside of work, I've been participating in some hackathons—mostly doing iOS
development there as a way to learn it more deeply. I'm also active as a moderator on online forums
around Android development.

6. Wrap Up: I'm looking now for something new, and your company caught my eye. I've always loved the
connection with the user, and | really want to get back to a smaller environment too.

This structure works well for about 95% of candidates. For candidate with more experience, you might
condense part of it. Ten years from now, the candidate’s initial statements might become just: “After my
CS degree from Berkeley, | spent a few years at Amazon and then joined a startup where | led the Android
team.”

Hobbies
Think carefully about your hobbies. You may or may not want to discuss them.

Often they're just fluff. If your hobby is just generic activities like skiing or playing with your dog, you can
probably skip it.

Sometimes though, hobbies can be useful. This often happens when:

» The hobby is extremely unique (e.g., fire breathing). It may strike up a bit of a conversation and kick off
the interview on a more amiable note.

- The hobby is technical. This not only boosts your actual skillset, but it also shows passion for technology.

» The hobby demonstrates a positive personality attribute. A hobby like “remodeling your house yourself”
shows a drive to learn new things, take some risks, and get your hands dirty (literally and figuratively).

It would rarely hurt to mention hobbies, so when in doubt, you might as well.

Think about how to best frame your hobby though. Do you have any successes or specific work to show
from it (e.g., landing a partin a play)? Is there a personality attribute this hobby demonstrates?

Sprinkle in Shows of Successes

In the above pitch, the candidate has casually dropped in some highlights of his background.

= He specifically mentioned that he was recruited out of Microworks by his old manager, which shows that
he was successful at Amazon.

» He also mentions wanting to be in a smaller environment, which shows some element of culture fit
(assuming this is a startup he’s applying for).

» He mentions some successes he’s had, such as launching a key part of AWS and architecting a scalable
system.

» He mentions his hobbies, both of which show a drive to learn.

When you think about your pitch, think about what different aspects of your background say about you.
Can you can drop in shows of successes (awards, promotions, being recruited out by someone you worked
with, launches, etc.)? What do you want to communicate about yourself?

CrackingTheCodinglnterview.com | 6th Edition 37

BigO

This is such an important concept that we are dedicating an entire (long!) chapter to it.

Big O time is the language and metric we use to describe the efficiency of algorithms. Not understanding
it thoroughly can really hurt you in developing an algorithm. Not only might you be judged harshly for
not really understanding big O, but you will also struggle to judge when your algorithm is getting faster or
slower.

Master this concept.

» An Analogy

Imagine the following scenario: You've got a file on a hard drive and you need to send it to your friend who
lives across the country. You need to get the file to your friend as fast as possible. How should you send it?

Most people’sfirst thought would be email, FTP, or some other means of electronic transfer. That thought is
reasonable, but only half correct.

If it's a small file, you're certainly right. It would take 5 - 10 hours to get to an airport, hop on a flight, and
then deliver it to your friend.

But what if the file were really, really large? Is it possible that it's faster to physically deliver it via plane?

Yes, actually it is. A one-terabyte (1 TB) file could take more than a day to transfer electronically. It would be
much faster to just fly it across the country. If your file is that urgent (and cost isn't an issue), you might just
want to do that.

What if there were no flights, and instead you had to drive across the country? Even then, for a really huge
file, it would be faster to drive.

» Time Complexity

This is what the concept of asymptotic runtime, or big O time, means. We could describe the data transfer
“algorithm” runtime as:

- Electronic Transfer: 0(s), where s is the size of the file. This means that the time to transfer the file
increases linearly with the size of the file. (Yes, this is a bit of a simplification, but that's okay for these
purposes.)

+ Airplane Transfer: 0(1) with respect to the size of the file. As the size of the file increases, it won't take
any longer to get the file to your friend. The time is constant.

38 Cracking the Coding Interview, 6th Edition

VI| Big O

No matter how big the constant is and how slow the linear increase is, linear will at some point surpass
constant.

There are many more runtimes than this. Some of the most common ones are 0(1log N),O(N log N),
O(N), O(N?) and O(2"). There's no fixed list of possible runtimes, though.

You can also have multiple variables in your runtime. For example, the time to paint a fence that's w meters
wide and h meters high could be described as O(wh). If you needed p layers of paint, then you could say
that the time is O(whp).

Big O, Big Theta, and Big Omega

If you've never covered big O in an academic setting, you can probably skip this subsection. It might
confuse you more than it helps. This “FYI”is mostly here to clear up ambiguity in wording for people who
have learned big O before, so that they don't say, “But | thought big O meant..."

Academics use big O, big © (theta), and big Q (omega) to describe runtimes.

« O (big 0): In academia, big O describes an upper bound on the time. An algorithm that prints all the
values in an array could be described as O(N), but it could also be described as O(N?), 0(N?), or O(2")
(or many other big O times). The algorithm is at least as fast as each of these; therefore they are upper
bounds on the runtime. This is similar to a less-than-or-equal-to relationship. If Bob is X years old (I'll
assume no one lives past age 130), then you could say X < 138. It would also be correct to say that
X £ 1,0000rX < 1,000,000. Its technically true (although not terribly useful). Likewise, a simple
algorithm to print the values in an array is O(N) as well as O(N?) or any runtime bigger than O(N).

= 0 (big omega): In academia, Q is the equivalent concept but for lower bound. Printing the values in
an array is Q(N) as well as Q(1log N) and Q(1). After all, you know that it won't be faster than those
runtimes.

- O (big theta): In academia, © means both O and Q. That is, an algorithm is ©(N) if it is both O(N) and
Q(N). O gives a tight bound on runtime.

In industry (and therefore in interviews), people seem to have merged @ and O together. Industry’s meaning
of big O is closer to what academics mean by 0, in that it would be seen as incorrect to describe printing an
array as O(N?). Industry would just say thisis O(N).

For this book, we will use big O in the way that industry tends to use it: By always trying to offer the tightest
description of the runtime.
Best Case, Worst Case, and Expected Case

We can actually describe our runtime for an algorithm in three different ways.

CrackingTheCodinginterview.com | 6th Edition 39

V1| Big O

Let's look at this from the perspective of quick sort. Quick sort picks a random element as a“pivot”and then
swaps values in the array such that the elements less than pivot appear before elements greater than pivot.
This gives a“partial sort"Then it recursively sorts the left and right sides using a similar process.

- Best Case: If all elements are equal, then quick sort will, on average, just traverse through the array once.
ThisisO(N). (This actually depends slightly on the implementation of quick sort. There are implementa-
tions, though, that will run very quickly on a sorted array.)

- Worst Case: What if we get really unlucky and the pivot is repeatedly the biggest element in the array?
(Actually, this can easily happen. If the pivot is chosen to be the first element in the subarray and the
array is sorted in reverse order, we'll have this situation.) In this case, our recursion doesn’t divide the
array in half and recurse on each half. It just shrinks the subarray by one element. This will degenerate
toan O(N?) runtime.

+ Expected Case: Usually, though, these wonderful or terrible situations won’t happen. Sure, sometimes
the pivot will be very low or very high, but it won't happen over and over again. We can expect a runtime
of O(N log N).

We rarely ever discuss best case time complexity, because it's not a very useful concept. After all, we could
take essentially any algorithm, special case some input, and then get an0(1) time in the best case.

For many—probably most—algorithms, the worst case and the expected case are the same. Sometimes
they're different, though, and we need to describe both of the runtimes.

What is the relationship between best/worst/expected case and big O/theta/omega?

4

It's easy for candidates to muddle these concepts (probably because both have some concepts of“higher’,
“lower” and “exactly right”), but there is no particular relationship between the concepts.

Best, worst, and expected cases describe the big O (or big theta) time for particular inputs or scenarios.

Big O, big omega, and big theta describe the upper, lower, and tight bounds for the runtime.

» Space Complexity

Time is not the only thing that matters in an algorithm. We might also care about the amount of memory—
or space—required by an algorithm.

Space complexity is a parallel concept to time complexity. If we need to create an array of size n, this will
require O(n) space. If we need a two-dimensional array of size nxn, this will require O(n?) space.

Stack space in recursive calls counts, too. For example, code like this would take O(n) time and O(n) space.

1 int sum(int n) { /* Ex 1.*/
2 if (n <=0) {

3 return 0;

4 }

5 return n + sum(n-1);
& }

Each call adds a level to the stack.
1 sum(4)

2 -> sum(3)

B -> sum(2)

4 -> sum(1)

5 -> sum(0)

Each of these calls is added to the call stack and takes up actual memory.

40 Cracking the Coding Interview, 6th Edition

Vi| BigO

However, just because you have n calls total doesn’t mean it takes O(n) space. Consider the below func-
tion, which adds adjacent elements between 0 and n:

1 int pairSumSequence(int n) { /* Ex 2.*/
2 int sum = ©;

3 for (int 1 = 0; i < n; i++) {
4 sum += pairSum(i, i + 1);
5 }

6 return sum;

"L

8

9 int pairSum(int a, int b) {

18 return a + b;

T

There will be roughly O(n) calls to pairSum. However, those calls do not exist simultaneously on the call
stack, so you only need 0(1) space.

> Drop the Constants

It is very possible for O(N) code to run faster than 0(1) code for specific inputs. Big O just describes the
rate of increase.

For this reason, we drop the constants in runtime. An algorithm that one might have described as O(2N)
is actually O(N).

Many people resist doing this. They will see code that has two (non-nested) for loops and continue this
O(2N). They think they’re being more “precise.’ They're not.

Consider the below code:

Min and Max 1 Min and Max 2
1 int min = Integer.MAX VALUE; 1 int min = Integer.MAX_VALUE;
2 int max = Integer.MIN_VALUE; 2 int max = Integer.MIN_VALUE;
3 for (int x : array) { 3 for (int x : array) {
4 if (x < min) min = x; a if (x < min) min = Xx;
5] if (x > max) max = x; 5 }
6 } 6 for (int x : array) {
7 if (x > max) max = X;

8 }

Which one is faster? The first one does one for loop and the other one does two for loops. But then, the first
solution has two lines of code per for loop rather than one.

If you're going to count the number of instructions, then you'd have to go to the assembly level and take
into account that multiplication requires more instructions than addition, how the compiler would opti-
mize something, and all sorts of other details.

This would be horrendously complicated, so don't even start going down this road. Big O allows us to

express how the runtimescales. We justneed to acceptthat itdoesn’tmean that O (N) is alwaysbetterthan
O(N?).

CrackingTheCodinginterview.com | 6th Edition 41

V1| BigO

» Drop the Non-Dominant Terms

What do you do about an expression such as O(N*> + N)? That second N isn't exactly a constant. But it’s
not especially important.

We already said that we drop constants. Therefore, O(N*> + N?) would be O(N?). If we don't care about that
latter N? term, why would we care about N? We don't.

You should drop the non-dominant terms.
- O(N? + N) becomes O(N?).

- O(N + log N) becomesO(N).

- 0(5*2" + 10006N*?°) becomesO(2").

We might still have a sum in a runtime. For example, the expression 0(B? + A) cannot be reduced (without
some special knowledge of A and B).

The following graph depicts the rate of increase for some of the common big O times.

3

o
O(29

O(log x)

As you can see, 0(x?) is much worse than O(x), but it's not nearly as bad as 0(2*) orO(x !).There are lots
of runtimes worse than0(x!) too, such as O(x*) orO(2x * x!).

» Multi-Part Algorithms: Add vs. Multiply

Suppose you have an algorithm that has two steps. When do you multiply the runtimes and when do you
add them?

This is a common source of confusion for candidates.

42 Cracking the Coding Interview, 6th Edition

VI| BigO

Add the Runtimes: 0(A + B) Multiply the Runtimes: O (A*B)
1 for (int a : arrA) { i for (int a : arrA) {

2 print(a); 2 for (int b : arrB) {

3l 3 print(a + “,” + b);
4 4 }

5 for (int b : arrB) { S

6 print(b);

7

In the example on the left, we do A chunks of work then B chunks of work. Therefore, the total amount of
workis O(A + B).

In the example on the right, we do B chunks of work for each element in A. Therefore, the total amount of
workisO(A * B).

In other words:
« Ifyour algorithm s in the form “do this, then, when you're all done, do that” then you add the runtimes.
- If your algorithm is in the form “do this for each time you do that” then you multiply the runtimes.

It's very easy to mess this up in an interview, so be careful.

» Amortized Time

An ArraylList, or a dynamically resizing array, allows you to have the benefits of an array while offering
flexibility in size. You won't run out of space in the ArrayList since its capacity will grow as you insert
elements.

An ArrayList is implemented with an array. When the array hits capacity, the ArrayList class will create a
new array with double the capacity and copy all the elements over to the new array.

How do you describe the runtime of insertion? This is a tricky question.

The array could be full. if the array contains N elements, then inserting a new element will take O(N) time.

You will have to create a new array of size 2N and then copy N elements over. This insertion will take O(N)
time.

However, we also know that this doesn't happen very often. The vast majority of the time insertion will be
in0(1) time.

We need a conceptthat takes both into account. This is what amortized time does. It allows us to describe
that, yes, this worst case happens every once in a while. But once it happens, it won't happen again for so
long that the cost is“amortized.”

In this case, what is the amortized time?

As we insert elements, we double the capacity when the size of the array is a power of 2. So after X elements,
we double the capacity at array sizes 1, 2, 4, 8, 16, ..., X. That doubling takes, respectively, 1, 2, 4, 8, 16, 32,
64, ..., X copies.

What is the sum of 1 +2 +4 + 8 + 16 + ... + X? If you read this sum left to right, it starts with 1 and doubles
until it gets to X. If you read right to left, it starts with X and halves until it gets to 1.

What then is the sum of X + % + % 4 % + ...+ 1?This is roughly 2X.

Therefore, X insertions take O(2X) time. The amortized time for each insertion is 0(1).

CrackingTheCodinglnterview.com | 6th Editionj 43

VI| Big O

» Log N Runtimes

We commonly see 0(1log N) in runtimes. Where does this come from?

Let’s look at binary search as an example. In binary search, we are looking for an example x in an N-element
sorted array. We first compare X to the midpoint of the array. If x == middle, then we return. If x <
middle, then we search on the left side of the array. If x > middle, then we search on the right side of
the array.
search 9 within {1, 5, 8, 9, 11, 13, 15, 19, 21}
compare 9 to 11 -> smaller.
search 9 within {1, 5, 8, 9, 11}
compare 9 to 8 -> bigger
search 9 within {9, 11}
compare 9 to 9
return
We start off with an N-element array to search. Then, after a single step, we're down to % elements. One
more step, and we're down to Y4 elements. We stop when we either find the value or we're down to just
one element.

The total runtime is then a matter of how many steps (dividing N by 2 each time) we can take until N
becomes 1.

N = 16

N =38 /* divide by 2 */
N =4 /* divide by 2 */
N=2 /* divide by 2 */
N= 1 /* divide by 2 */

We could look at this in reverse (going from 1 to 16 instead of 16 to 1). How many times we can multiply 1
by 2 until we get N?

N=1

N = 2 /* multiply by 2 */
N =4 /* multiply by 2 */
N =8 /* multiply by 2 */
N = 16 /* multiply by 2 */

What is k in the expression 2¢ = N? This is exactly what 1og expresses.
2* =16 -> log,16 = 4
logN =k -> 2k =N

This is a good takeaway for you to have. When you see a problem where the number of elements in the
problem space gets halved each time, that will likely be aO(log N) runtime.

This is the same reason why finding an element in a balanced binary search tree is 0(log N). With each
comparison, we go either left or right. Half the nodes are on each side, so we cut the problem space in half
each time.

é What's the base of the log? That’s an excellent question! The short answer is that it doesn't matter
for the purposes of big 0. The longer explanation can be found at “Bases of Logs” on page 630.

» Recursive Runtimes

Here's a tricky one. What's the runtime of this code?
1 int f(int n) {

44 Cracking the Coding Interview, 6th Edition

V1| BigO

if (n <= 1) {
return 1;

}
return f(n - 1) + f(n - 1);

OB W

¥
A lot of people will, for some reason, see the two calls to f and jump to O(N?). This is completely incorrect.

Rather than making assumptions, let’s derive the runtime by walking through the code. Suppose we call
£(4).This calls f (3) twice. Each of those calls to £(3) calls £(2), until we get downto £ (1).

f£(4)
2l e @ e
f(1) f(1) (1) (1) (1) (1) (1) (1)

How many calls are in this tree? (Don’t count!)

The tree will have depth N. Each node (i.e., function call) has two children. Therefore, each level will have
twice as many calls as the one above it. The number of nodes on each level is:

0 22
1 2 * previous level = 2 2!
2 4 2 * previous level =2 * 2! = 22 22
3 2 * previous level =2 * 22 = 23 25
4 16 2 * previous level =2 * 23 = 24 2%

Therefore, there willbe 20 +21 + 22 + 23 + 2* + ... + 2%(whichis2%! - 1) nodes. (See“Sum of
Powers of 2" on page 630.)

Try to remember this pattern. When you have a recursive function that makes multiple calls, the runtime will
often (but not always) look like O (branches®rt"), where branches is the number of times each recursive
call branches. In this case, this gives us 0(2").

§ As you may recall, the base of a log doesn’t matter for big O since logs of different bases are
only different by a constant factor. However, this does not apply to exponents. The base of an
exponent does matter. Compare 2" and 8". If you expand 8", you get (23)", which equals 23",
which equals 2>" * 2". Asyou can see, 8" and 2" are different by a factor of 22". That is very much

not a constant factor!

The space complexity of this algorithm will be O(N). Although we have 0(2") nodes in the tree total, only
O(N) exist at any given time. Therefore, we would only need to have O(N) memory available.

» Examples and Exercises

Big O time is a difficult concept at first. However, once it “clicks,” it gets fairly easy. The same patterns come
up again and again, and the rest you can derive.

We'll start off easy and get progressively more difficult.

CrackingTheCodinginterview.com | 6th Edition 45

V1| Big O

Example 1

What is the runtime of the below code?

1 void foo(int[] array) {

2 int sum = 9;

B int product = 1;

4 for (int i = @; i < array.length; i++) {
) sum += array[i];

& }

7 for (int i = @; i < array.length; i++) {
g product *= array[i];

9 }

10 System.out.println(sum + “, *” + product);
11}

This will take O(N) time. The fact that we iterate through the array twice doesn’t matter.

Example 2

What is the runtime of the below code?

1 void printPairs(int[] array) {

2 for (int i = ©; i < array.length; i++) {

3 for (int j = @; j < array.length; j++) {

4 System.out.println(array[i] + “,” + array[j]);
5)

6 }

7 1}

The inner for loop has O(N) iterations and it is called N times. Therefore, the runtime is O(N?).

Another way we can see this is by inspecting what the “meaning” of the code is. It is printing all pairs (two-
element sequences). There are O(N?) pairs; therefore, the runtime is O(N?).

Example 3

This is very similar code to the above example, but now the inner for loop startsati + 1.

1 void printUnorderedPairs(int[] array) {

2 for (int i = @; i < array.length; i++) {

2 for (int j = i + 1; j < array.length; j++) {

4 System.out.println(array[i] + “,” + array[j]);
5 }

6 ¥

7 %

We can derive the runtime several ways.

! This pattern of for loop is very common. It's important that you know the runtime and that you
deeply understand it. You can't rely on just memorizing common runtimes. Deep comprehen-
sion is important.

Counting the iterations
The first time through j runs for N-1 steps. The second time, it's N-2 steps. Then N- 3 steps. And so on.

Therefore, the number of steps total is:
(N-1) + (N-2) + (N-3) + ... +2 +1

46 Cracking the Coding Interview, 6th Edition

V1| Big O

1+2+ 3+ ...+ N-1

sum of 1 through N-1

The sum of 1 through N-1 is N(Nz_l) (see “Sum of Integers 1 through N” on page 630), so the runtime will

be O(N?).

What It Means

Alternatively, we can figure out the runtime by thinking about what the code “means.” It iterates through
each pair of values for (1, j) where j is bigger than 1.

There are N? total pairs. Roughly half of those willhave i < j and the remaining half will have i > j.This
code goes through roughly NA pairs so it does O(N?) work.

Visualizing What It Does

The code iterates through the following (i, j) pairswhenN = 8:
(6, 1) (8, 2) (8, 3) (0, 4) (0, 5) (0, 6) (0, 7)
(1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7)
(2, 3) (2, 4) (2, 5) (2, 6) (2, 7)
(3, 4) (3, 5) (3, 6) (3, 7)
(4%'5) “(4,-6) W(45007)
(5, 6) (5, 7)
(6, 7)
This looks like half of an NXN matrix, which has size (roughly) N% .Therefore, it takes O(N?) time.

Average Work

We know that the outer loop runs N times. How much work does the inner loop do? It varies across itera-
tions, but we can think about the average iteration.

What is the average valueof 1, 2, 3, 4, 5, 6, 7, 8, 9, 10?The average value will be in the
middle, so it will be roughly 5. (We could give a more precise answer, of course, but we don’t need to for
big O.)

What aboutforl, 2, 3, ..., N?Theaverage value in this sequenceis N/2.

Therefore, since the inner loop does % work on average and it is run N times, the total work is ”% which
isO(N?).

Example 4

This is similar to the above, but now we have two different arrays.

1 void printUnorderedPairs(int[] arrayA, int[] arrayB) {

7 for (int i = @; i < arrayA.length; i++) {

3 for (int j = @; j < arrayB.length; j++) {

4 if (arrayA[i] < arrayB[j]) {

5 System.out.println(arrayA[i] + “,” + arrayB[j]);
. Jy

7 b

8 }

9 }

We can break up this analysis. The if-statement within j’s for loop is 0(1) time since it’s just a sequence of
constant-time statements.

We now have this:
1 void printUnorderedPairs(int[] arrayA, int[] arrayB) {

CrackingTheCodinglnterview.com | 6th Edition 47

YEJ[ﬁg(J

2 for (int i = @; i < arrayA.length; i++) {

8 for (int j = @; j < arrayB.length; j++) {
4 /* 0(1) work */

5 }

6 i

7}

For each element of arrayA, the inner for loop goes through b iterations, whereb = arrayB.length.
Ifa = arrayA.length, thenthe runtimeisO(ab).

If you said O (N?), then remember your mistake for the future. It's not O(N?) because there are two different
inputs. Both matter. This is an extremely common mistake.

Example 5

What about this strange bit of code?

1 void printUnorderedPairs(int[] arrayA, int[] arrayB) {

2 for (int i = @; i < arrayA.length; i++) {

3 for (int j = ©; j < arrayB.length; j++) {

4 for (int k = 9; k < 100000; k++) {

5) System.out.println(arrayA[i] + “,” + arrayB[j]);
6 }

7 }

8 }

9 1}

Nothing has really changed here. 100,000 units of work is still constant, so the runtime is 0(ab).

Example 6

The following code reverses an array. What is its runtime?

1 void reverse(int[] array) {

2 for (int 1 = @; i < array.length / 2; i++) {
g int other = array.length - i - 1;

4 int temp = array[i];

5 array[i] = array[other];

6 array[other] = temp;

7 }

8 }

This algorithm runs in O(N) time. The fact that it only goes through half of the array (in terms of iterations)
does not impact the big O time.

Example 7
Which of the following are equivalent to O(N)? Why?
- O(N + P),whereP < VA

. 0(2N)

- O(N + log N)

- O(N + M)

Let’s go through these.

- IfP < Y5, then we know that N is the dominant term so we can drop the O(P).
« 0(2N) isO(N) since we drop constants.

48 I Cracking the Coding Interview, 6th Edition

V1| Big O

+ O(N) dominatesO(log N), so we candrop theO(log N).

- Thereis no established relationship between N and M, so we have to keep both variables in there.
Therefore, all but the last one are equivalent to O(N).

Example 8

Suppose we had an algorithm that took in an array of strings, sorted each string, and then sorted the full
array. What would the runtime be?

Many candidates will reason the following: sorting each stringis O(N 1log N) and we have to do this for
each string, so that's O(N*N log N).We also have to sort this array, so that’s an additional O(N log N)
work. Therefore, the total runtimeisO(N*> log N + N log N), whichisjustO(N?> log N).

This is completely incorrect. Did you catch the error?

The problem is that we used N in two different ways. In one case, it's the length of the string (which string?).
And in another case, it's the length of the array.

In your interviews, you can prevent this error by either not using the variable “N” at all, or by only using it
when there is no ambiguity as to what N could represent.

In fact, | wouldn't even use a and b here, or m and n. It's too easy to forget which is which and mix them up.
An 0(a?) runtime is completely different from an O(a*b) runtime.

Let's define new terms—and use names that are logical.

+ Let s be the length of the longest string.

» Let a be the length of the array.

Now we can work through this in parts:

« Sorting each stringisO(s log s).

« We have to do this for every string (and there are a strings), sothat'sO(a*s log s).

- Now we have to sort all the strings. There are a strings, so you'll may be inclined to say that this takes O (a
log a) time. This is what most candidates would say. You should also take into account that you need
to compare the strings. Each string comparison takes O(s) time. There areO(a log a) comparisons,
therefore this will take O(a*s log a) time.

If you add up these two parts, you getO(a*s(log a + log s)).

This is it. There is no way to reduce it further.

Example 9

The following simple code sums the values of all the nodes in a balanced binary search tree. What is its
runtime?

1 int sum(Node node) {

2 if (node == null) {

3 return 0;

4 1

E return sum(node.left) + node.value + sum(node.right);
6

}

Just because it’s a binary search tree doesn’t mean that there is a log in it!

We can look at this two ways.

CrackingTheCodinginterview.com | 6th Edition 49

Vi| Big O

What It Means

The most straightforward way is to think about what this means. This code touches each node in the tree
once and does a constant time amount of work with each “touch” (excluding the recursive calls).

Therefore, the runtime will be linear in terms of the number of nodes. If there are N nodes, then the runtime
isO(N).

Recursive Pattern

On page 44, we discussed a pattern for the runtime of recursive functions that have multiple branches.
Let’s try that approach here.

We said that the runtime of a recursive function with multiple branches is typically O(branchesdrth),
There are two branches at each call, so we're looking at 0(29¢Pt").

At this point many people might assume that something went wrong since we have an exponential algo-
rithm—that something in our logic is flawed or that we‘ve inadvertently created an exponential time algo-
rithm (yikes!).

The second statement is correct. We do have an exponential time algorithm, but it's not as bad as one might
think. Consider what variable it's exponential with respect to.
What is depth? The tree is a balanced binary search tree. Therefore, if there are N total nodes, then depth
is roughly 1og N.
By the equation above, we get 0(21% V).
Recall what 1og, means:
2*=Q ->1logQ ="
What is 218 "? There is a relationship between 2 and log, so we should be able to simplify this.

LetP = 2% N By the definition of 1og,, we can write this as 1log,P = log N.This meansthatP = N.

Let p = 2l
-> log,P = logN
->P =N
-> 2N = N

Therefore, the runtime of this code is O(N), where N is the number of nodes.

Example 10

The following method checks if a number is prime by checking for divisibility on numbers less thanit. It only
needs to go up to the square root of n because if n is divisible by a number greater than its square root then
it's divisible by something smaller than it.

For example, while 33 is divisible by 11 (which is greater than the square root of 33), the “counterpart”to 11
is 3 (3 * 11 =33). 33 will have already been eliminated as a prime number by 3.

What is the time complexity of this function?

1 boolean isPrime(int n) {

2 for (int x = 2; x * x <= n; x++) {
3 if (n % x == 0) {

4 return false;

5 }

& b

7 return true;

50 Cracking the Coding Interview, 6th Edition

V1| BigO

8 7

Many people get this question wrong. If you're careful about your logic, it's fairly easy.

The work inside the for loop is constant. Therefore, we just need to know how many iterations the for loop
goes through in the worst case.

The for loop will start when x = 2 and end when x*x = n.Or, in other words, it stops when x = Vn (when
x equals the square root of n).

This for loop is really something like this:

boolean isPrime(int n) {
for (int x = 2; x <= sgrt(n); x++) {
if (n % x == 0) {
return false;
i
}

return true;

O N WU H WN P

}
This runs in 0(vn) time.

Example 11

The following code computes n! (n factorial). What is its time complexity?
1 int factorial(int n) {

2 if (n < 0) {

3 return -1;

4 } else if (n == 0) {

5 return 1;

6 } else {

7 return n * factorial(n - 1);
8

9

}
}

This is just a straight recursion from n ton-1 ton-2 down to 1. It will take O(n) time.

Example 12

This code counts all permutations of a string.

1 void permutation(String str) {

2 permutation(str, “”);

3}

4

5 void permutation(String str, String prefix) {

6 if (str.length() == 0) {

7 System.out.println(prefix);

8 } else {

9 for (int 1 = @; i < str.length(); i++) {

18 String rem = str.substring(®, i) + str.substring(i + 1);
Il permutation(rem, prefix + str.charAt(i));
12 }

13 }

ANy

This is a (very!) tricky one. We can think about this by looking at how many times permutation gets called
and how long each call takes. We'll aim for getting as tight of an upper bound as possible.

CrackingTheCodinglnterview.com | 6th Edition 51

VI| Big O

How many times does permutation get called in its base case?

If we were to generate a permutation, then we would need to pick characters for each “slot.” Suppose we
had 7 characters in the string. In the first slot, we have 7 choices. Once we pick the letter there, we have 6
choices for the next slot. (Note that this is 6 choices for each of the 7 choices earlier.) Then 5 choices for the
next slot, and so on. -

Therefore, the total number of optionsis 7 *6 * 5 * 4 * 3 * 2 * 1, which is also expressed as 7! (7 factorial).

This tells us that there are n! permutations. Therefore, permutation is called n! times in its base case
(when prefixis the full permutation).

How many times does permutation get called before its base case?

But, of course, we also need to consider how many times lines 9 through 12 are hit. Picture a large call tree
representing all the calls. There are n! leaves, as shown above. Each leaf is attached to a path of length n.
Therefore, we know there will be no morethann * n! nodes (function calls) in this tree.

How long does each function call take?
Executing line 7 takes O(n) time since each character needs to be printed.

Line 10 and line 11 will also take O(n) time combined, due to the string concatenation. Observe that the
sum of the lengths of rem, prefix, and str.charAt (i) will always be n.

Each node in our call tree therefore corresponds to O(n) work.

What is the total runtime?

Since we are callingpermutationO(n * n!) times (asan upper bound), and each one takes O(n) time,
the total runtime will not exceed O(n? * n!).

Through more complex mathematics, we can derive a tighter runtime equation (though not necessarily a
nice closed-form expression). This would almost certainly be beyond the scope of any normal interview.

Example 13

The following code computes the Nth Fibonacci number.
1 int fib(int n) {

2 if (n <= @) return ©;

3 else if (n == 1) return 1;

4 return fib(n - 1) + fib(n - 2);

I

We can use the earlier pattern we'd established for recursive calls: O(branchesderth) .

There are 2 branches per call, and we go as deep as N, therefore the runtime is 0(2").

Through some very complicated math, we can actually get a tighter runtime. The time is indeed
exponential, but it's actually closer to O(1.6"). The reason that it's not exactly 0(2") is that, at
the bottom of the call stack, there is sometimes only one call. It turns out that a lot of the nodes
are at the bottom (as is true in most trees), so this single versus double call actually makes a big
difference. Saying 0(2") would suffice for the scope of an interview, though (and is still techni-
cally correct, if you read the note about big theta on page 39). You might get “bonus points” if
you can recognize thatit’ll actually be less than that.

52 Cracking the Coding Interview, 6th Edition
.

Vi| Big O

Generally speaking, when you see an algorithm with multiple recursive calls, you're looking at exponential
runtime.

Example 14

The following code prints all Fibonacci numbers from 0 to n. What is its time complexity?

void allFib(int n) {
for (int i = 0; 1 < n; i++) {
System.out.println(i + “: ” + fib(i));
}
}

int fib(int n) {

if (n <= @) return 0;

else if (n == 1) return 1;
18 return fib(n - 1) + fib(n - 2);
11}

Many people will rush to concluding that since fib(n) takes 0(2") time and it's called n times, then it's
0(n2").

Woe NG WU WwWN =

Not so fast. Can you find the error in the logic?
The error is that the n is changing. Yes, fib(n) takes 0(2") time, but it matters what that value of n is.

Instead, let’s walk through each call.
fib(1) -> 2! steps
fib(2) -> 22 steps
fib(3) -> 23 steps
fib(4) -> 2* steps

%it.)(n) -> 2" steps
Therefore, the total amount of work is:

2V N 22 28 AR), e D0
As we showed on page 44, this is 2™*. Therefore, the runtime to compute the first n Fibonacci numbers
(using this terrible algorithm) is still O(2").

Example 15

The following code prints all Fibonacci numbers from 0 to n. However, this time, it stores (i.e., caches) previ-
ously computed values in an integer array. If it has already been computed, it just returns the cache. What
is its runtime?
1 void allFib(int n) {
int[] memo = new int[n + 1];
for (int 1 = 0; i < n; i++) {

System.out.println(i + “: ” + fib(i, memo));

}

int fib(int n, int[] memo) {

if (n <= @) return ©;

ig else if (n == 1) return 1;

11 else if (memo[n] > @) return memo[n];

2
3
4
5
6 1}
7
8
9

13 memo[n] = fib(n - 1, memo) + fib(n - 2, memo);

CrackingTheCodinglnterview.com | 6th Edition 53

VI| BigO

14 return memo[n];
15 &

Let’s walk through what this algorithm does.

fib(1) -> return 1

£ib(2)
fib(1) -> return 1
fib(@) -> return ©
store 1 at memo[2]

fib(3)
fib(2) -> lookup memo[2] -> return 1
fib(1) -> return 1
store 2 at memo[3]

fib(4)
fib(3) -> lookup memo[3] -> return 2
fib(2) -> lookup memo[2] -> return 1
store 3 at memo[4]

fib(5)
fib(4) -> lookup memo[4] -> return 3
fib(3) -> lookup memo[3] -> return 2
store 5 at memo[5]

At each call to fib (i), we have already computed and stored the values for fib(i-1) and fib(i-2).
We just look up those values, sum them, store the new result, and return. This takes a constant amount of
time.

We're doing a constant amount of work N times, so thisisO(n) time.

This technique, called memoization, is a very common one to optimize exponential time recursive algo-
rithms.

Example 16

The following function prints the powers of 2 from 1 through n (inclusive). For example, if n is 4, it would
print 1,2, and 4. What is its runtime?

1 int powersOf2(int n) {
2 if (n < 1) {
3 return 9;
4 } else if (n == 1) {

5 System.out.println(1);

5 return 1;

7 } else {

8 int prev = powersOf2(n / 2);
9 int curr = prev * 2;

18 System.out.println(curr);

11 return curr;

12 ik

13 }

There are several ways we could compute this runtime.
What it Does

Let’s walk through a call like powers0f2(50).

powers0f2(50)
-> powers0f2(25)

54 Cracking the Coding Interview, 6th Edition

Vi| Big O

-> powers0f2(12)
-> powers0f2(6)
-> powers0f2(3)
-> powersOf2(1)
-> print & return 1
print & return 2
print & return 4
print & return 8
print & return 16
print & return 32
The runtime, then, is the number of times we can divide 50 (or n) by 2 until we get down to the base case (1).
As we discussed on page 44, the number of times we can halve n until we get 1is0(log n).

What It Means

We can also approach the runtime by thinking about what the code is supposed to be doing. It's supposed
to be computing the powers of 2 from 1 through n.

Each callto powers0Of2 results in exactly one number being printed and returned (excluding what happens
in the recursive calls). So if the algorithm prints 13 values at the end, then powers0f2 was called 13 times.

In this case, we are told that it prints all the powers of 2 between 1 and n. Therefore, the number of times
the function is called (which will be its runtime) must equal the number of powers of 2 between 1 and n.

There are 1og N powers of 2 between 1 and n. Therefore, the runtime isO(log n).

Rate of Increase

A final way to approach the runtime is to think about how the runtime changes as n gets bigger. After all,
this is exactly what big O time means.

If N goes from P to P+1, the number of calls to powersOfTwo might not change at all. When will the
number of calls to powersOfTwoincrease? It will increase by 1 each time n doubles in size.

So, each time n doubles, the number of calls to powersOfTwo increases by 1. Therefore, the number of
calls to powersOfTwo is the number of times you can double 1 until you get n. Itis X in the equation 2*
= n.

What is x? The value of x is Llog n.This is exactly what meantby x = log n.

Therefore, the runtime isO(log n).

Additional Problems

VI.1 The following code computes the product of 2 and b. What is its runtime?
int product(int a, int b) {
int sum = 9;
for (int 1 = 0; i < b; i++) {
sum += a;
}

return sum;
}
VI.2 Thefollowing code computes a°. What is its runtime?
int power(int a, int b) {
if (b < 0) {

CrackingTheCodinglnterview.com | 6th Edition 55

Vi| BigO

return @; // error
} else if (b == 0) {
return 1;
} else {
return a * power(a, b - 1);
i
}
VL3 The following code computesa 7% b.Whatis its runtime?
int mod(int a, int b) {
if (b <= @) {
return -1;
¥
int div = a / b;
return a - div * b;
}
Vi.4 The following code performs integer division. What is its runtime (assume a and b are both
positive)?
int div(int a, int b) {
int count = ©;
int sum = b;
while (sum <= a) {
sum += b;
count++;
}
return count;
j
VI.5 The following code computes the [integer] square root of a number. If the number is not a
perfect square (there is no integer square root), then it returns -1. It does this by successive
guessing. If n is 100, it first guesses 50. Too high? Try something lower - halfway between 1
and 50. What is its runtime?
int sqrt(int n) {
return sqrt_helper(n, 1, n);

i

int sqgrt_helper(int n, int min, int max) {
if (max < min) return -1; // no square root

int guess = (min + max) / 2;
if (guess * guess == n) { // found it!
return guess;
} else if (guess * guess < n) { // too low
return sqrt_helper(n, guess + 1, max); // try higher
} else { // too high
return sqrt_helper(n, min, guess - 1); // try lower
}
}

V.6 The following code computes the [integer] square root of a number. If the number is not
a perfect square (there is no integer square root), then it returns -1. It does this by trying
increasingly large numbers until it finds the right value (or is too high). What is its runtime?

int sqrt(int n) {
for (int guess = 1; guess * guess <= n; guess++) {
if (guess * guess == n) {
return guess;

56 Cracking the Coding Interview, 6th Edition

V1| Big O

}
}
return -1;
}
VI.7 If a binary search tree is not balanced, how long might it take (worst case) to find an element
init?

VI.8 You are looking for a specific value in a binary tree, but the tree is not a binary search tree.
What is the time complexity of this?

V.9 The appendToNew method appends a value to an array by creating a new, longer array and
returning this longer array. You've used the appendToNew method to create a copyArray
function that repeatedly calls appendToNew. How long does copying an array take?

int[] copyArray(int[] array) {
int[] copy = new int[@];
for (int value : array) {

copy = appendToNew(copy, value);
}

return copy;

}

int[] appendToNew(int[] array, int value) {
// copy all elements over to new array
int[] bigger = new int[array.length + 1];
for (int 1 = @; i < array.length; i++) {
bigger[i] = array[i];
}

// add new element
bigger[bigger.length - 1] = value;
return bigger;
}
VL10 The following code sums the digits in a number. What is its big O time?
int sumDigits(int n) {
int sum = 0;
while (n > @) {
sum += n % 10;
n /= 10;
}

return sum;
}

VI1.11 The following code prints all strings of length k where the characters are in sorted order. It
does this by generating all strings of length k and then checking if each is sorted. What is its
runtime?

int numChars = 26;

void printSortedStrings(int remaining) {
printSortedStrings(remaining, “);

}

void printSortedStrings(int remaining, String prefix) {
if (remaining == 0) {
if (isInOrder(prefix)) {
System.out.println(prefix);
i

CrackingTheCodinglnterview.com | 6th Edition 57«

VI| BigO

} else {
for (int 1 = ©; i < numChars; i++) {
char c = ithLetter(i);
printSortedStrings(remaining - 1, prefix + c);

}

boolean isInOrder(String s) {

for (int i = 1; 1 < s.length(); i++) {
int prev = ithLetter(s.charAt(i - 1));
int curr = ithLetter(s.charAt(i));
if (prev > curr) {

return false;

}

}

return true;

}

char ithLetter(int i) {
return (char) (((int) ‘a’) + i);
}

VI.12 The following code computes the intersection (the number of elements in common) of two
arrays. It assumes that neither array has duplicates. It computes the intersection by sorting
one array (array b) and then iterating through array a checking (via binary search) if each
value is in b. What is its runtime?

int intersection(int[] a, int[] b) {
mergesort(b);
int intersect = 0;

for (int x : a) {
if (binarySearch(b, x) >= 0) {
intersect++;
}
}

return intersect;

Solutions

1. O(b).The for loop just iterates through b.
. O(b).The recursive code iterates through b calls, since it subtracts one at each level.

. 0(1).It does a constant amount of work.

A W N

. 0(2). The variable count will eventually equal 24 . The while loop iterates count times. Therefore, it
iterates % times.

5. 0(log n).This algorithm is essentially doing a binary search to find the square root. Therefore, the
runtimeisO(log n).

6. O(sqgrt(n)). This is just a straightforward loop that stops when guess*guess > n (or, in other
words, when guess > sqrt(n)).

58 Cracking the Coding Interview, 6th Edition

Vi| Big O

7. 0(n), where nis the number of nodes in the tree. The max time to find an element is the depth tree. The
tree could be a straight list downwards and have depth n.

8. 0(n).Without any ordering property on the nodes, we might have to search through allthe nodes.

9. 0(n’), where n is the number of elements in the array. The first call to appendToNew takes 1 copy. The
second call takes 2 copies. The third call takes 3 copies. And so on. The total time will be the sum of 1
through n, which isO(n?).

10.0(1log n). The runtime will be the number of digits in the number. A number with d digits can have a
valueupto10.ifn = 10%thend = log n.Therefore, the runtimeisO(log n).

11.0(kcX), where k is the length of the string and c is the number of characters in the alphabet. It takes
0(c®) time to generate each string. Then, we need to check that each of these is sorted, which takes
0(k) time.

12.0(b log b + a log b).First, we have to sort array b, which takesO(b log b) time.Then, foreach
elementin a, we do binary searchinO(log b) time.The second part takesO(a log b) time.

CrackingTheCodinglInterview.com | 6th Edition 59

Vil

Technical Questions

Technical questions form the basis for how many of the top tech companies interview. Many candidates are
intimidated by the difficulty of these questions, but there are logical ways to approach them.

» How to Prepare

Many candidates just read through problems and solutions. That'’s like trying to learn calculus by reading a
problem and its answer. You need to practice solving problems. Memorizing solutions won't help you much.

For each problem in this book (and any other problem you might encounter), do the following:

1. Try to solve the problem on your own. Hints are provided at the back of this book, but push yourself to
develop a solution with as little help as possible. Many questions are designed to be tough—that’s okay!
When you're solving a problem, make sure to think about the space and time efficiency.

2. Write the code on paper. Coding on a computer offers luxuries such as syntax highlighting, code comple-
tion, and quick debugging. Coding on paper does not. Get used to this—and to how slow it is to write
and edit code—by coding on paper.

3. Test your code—on paper. This means testing the general cases, base cases, error cases, and so on. You'll
need to do this during your interview, so it's best to practice this in advance.

4. Type your paper code as-is into a computer. You will probably make a bunch of mistakes. Start a list of all
the errors you make so that you can keep these in mind during the actual interview.

In addition, try to do as many mock interviews as possible. You and a friend can take turns giving each other
mock interviews. Though your friend may not be an expert interviewer, he or she may still be able to walk
you through a coding or algorithm problem. You'll also learn a lot by experiencing what it's like to be an
interviewer.

» What You Need To Know

The sorts of data structure and algorithm questions that many companies focus on are not knowledge
tests. However, they do assume a baseline of knowledge.

Core Data Structures, Algorithms, and Concepts

Most interviewers won't ask about specific algorithms for binary tree balancing or other complex algo-
rithms. Frankly, being several years out of school, they probably don‘t remember these algorithms either.

You're usually only expected to know the basics. Here’s a list of the absolute, must-have knowledge:

60 Cracking the Coding Interview, 6th Edition

VIi | Technical Questions

t . Igorithms Concepts _
Linked Lists Breadth-First Search Bit Manipulation
Trees, Tries, & Graphs Depth-First Search Memory (Stack vs. Heap)

Stacks & Queues Binary Search Recursion
Heaps Merge Sort Dynamic Programming
Vectors / ArrayLists Quick Sort Big O Time & Space
Hash Tables

For each of these topics, make sure you understand how to use and implement them and, where applicable,
the space and time complexity.

Practicing implementing the data structures and algorithm (on paper, and then on a computer) is also a
great exercise. It will help you learn how the internals of the data structures work, which is important for
many interviews.

i Did you miss that paragraph above? It's important. If you don't feel very, very comfortable with
each of the data structures and algorithms listed, practice implementing them from scratch.

In particular, hash tables are an extremely important topic. Make sure you are very comfortable with this
data structure.

Powers of 2 Table

The table below is useful for many questions involving scalability or any sort of memory limitation. Memo-
rizing this table isn't strictly required, but it can be useful. You should at least be comfortable deriving it.

7 128

8 256 .
10 1024 1 thousand 1 KB
16 65,536 64 KB
20 1,048,576 1 million 1 MB
30 1,073,741,824 1 billion 1GB
32 4,294,967,296 4GB
40 1,099,511,627,776 1 trillion 1TB

For example, you could use this table to quickly compute that a bit vector mapping every 32-bit integer to
a boolean value could fitin memory on a typical machine.There are 232 such integers. Because each integer
takes one bit in this bit vector, we need 232 bits (or 2?° bytes) to store this mapping. That’s about half a giga-
byte of memory, which can be easily held in memory on a typical machine.

If you are doing a phone screen with a web-based company, it may be useful to have this table in front of
you.

CrackingTheCodinglnterview.com | 6th Edition 61

Vil | Technical Questions

» Walking Through a Problem

The below map/flowchart walks you through how to solve a problem. Use this in your practice. You can
download this handout and more at CrackingTheCodinglnterview.com.

A Problem-Solving Flowchart

listen ~=--=-=--» Example e B

12

Pay very close attention to any Most examples are too small or are special
information in the problem description. cases. Debug your exampie. Is there any |
‘You probably need it all for an optimal way it's a special case? Is it big enough? :
algorithm, :

Brute Force <« ---

Get a brute-force solution as soon as
possible. Don’t worry about developing
an efficient algorithm yet. State a naive
algorithm and its runtime, then optimize
from there. Don't code yet though!

Optimize

Testin this order:
Walk through your brute force with BUD

1. Conceptual test. Walk through your code optimization or try some of these ideas:

like you would for a detailed code review.

» Look for any unused info. You usuait
2. Unusual or non-siandard code. y. B o Y
need all the infarmation in a probler,

3. Hot spots, like arithmetic and null nodes. -
» Solve it manuaily on anexample, then

4. Small test cases. It’s much faster than a big reverse engineer your theught process.
test case and just as effective, How did you solve it? ‘
5. Special cases and edge cases. » Solve it “incorrectly”and then think about
And when you find bugs, fix them carefuliy! why the algorithm fails. Can you fix those
issues?

Im pl ement » Make a time vs. space tradeoff, Hash

tabies are especially usefull

Walk Through <+ -

Now that you have an optimal solution, watk
through your approach in detail. Make sure
you understand each detail before you start
coding.

Your goal is to write beautiful code.
Modularize your code from the <& = — —

beginning and refactor to clean up
anything that isn't beautiful.

62 Cracking the Coding Interview, 6th Edition

VIl | Technical Questions

We'll go through this flowchart in more detail.

What to Expect

Interviews are supposed to be difficult. If you don’t get every—or any—answer immediately, that's okay!
That’s the normal experience, and it’s not bad.

Listen for guidance from the interviewer. The interviewer might take a more active or less active role in your
problem solving. The level of interviewer participation depends on your performance, the difficulty of the
question, what the interviewer is looking for, and the interviewer’s own personality.

When you're given a problem (or when you're practicing), work your way through it using the approach
below.

1. Listen Carefully

You've likely heard this advice before, but I'm saying something a bit more than the standard “make sure
you hear the problem correctly” advice.

Yes, you do want to listen to the problem and make sure you heard it correctly. You do want to ask questions
about anything you're unsure about.

But I'm saying something more than that.

Listen carefully to the problem, and be sure that you've mentally recorded any unique information in the
problem.

For example, suppose a question starts with one of the following lines. It’s reasonable to assume that the
information is there for a reason.

- “Given two arrays that are sorted, find ..."

You probably need to know that the data is sorted. The optimal algorithm for the sorted situation is
probably different than the optimal algorithm for the unsorted situation.

= “Design an algorithm to be run repeatedly on a server that ..."

The server/to-be-run-repeatedly situation is different from the run-once situation. Perhaps this means
that you cache data? Or perhaps it justifies some reasonable precomputation on the initial dataset?

It's unlikely (although not impossible) that your interviewer would give you this information if it didn't affect
the algorithm.

Many candidates will hear the problem correctly. But ten minutes into developing an algorithm, some of
the key details of the problem have been forgotten. Now they are in a situation where they actually can't
solve the problem optimally.

Your first algorithm doesn’t need to use the information. But if you find yourself stuck, or you're still working
to develop something more optimal, ask yourself if you've used all the information in the problem.

You might even find it useful to write the pertinent information on the whiteboard.

2.Draw an Example

An example can dramatically improve your ability to solve an interview question, and yet so many candi-
dates just try to solve the question in their heads.

CrackingTheCodinglnterview.com | 6th Edition 63

VIl | Technical Questions

When you hear a question, get out of your chair, go to the whiteboard, and draw an example.
There’s an art to drawing an example though. You want a good example.

Very typically, a candidate might draw something like this for an example of a binary search tree:

This is a bad example for several reasons. First, it’s too small. You will have trouble finding a pattern in such
a small example. Second, it's not specific. A binary search tree has values. What if the numbers tell you
something about how to approach the problem? Third, it's actually a special case. It's not just a balanced
tree, but it's also a beautiful, perfect tree where every node other than the leaves has two children. Special
cases can be very deceiving.

Instead, you want to create an example that is:
- Specific. It should use real numbers or strings (if applicable to the problem).
- Sufficiently large. Most examples are too small, by about 50%.

- Not a special case. Be careful. It's very easy to inadvertently draw a special case. If there’s any way your
example is a special case (even if you think it probably won't be a big deal), you should fix it.

Try to make the best example you can. If it later turns out your example isn't quite right, you can and should
fix it.

3. State a Brute Force

Once you have an example done (actually, you can switch the order of steps 2 and 3 in some problems),
state a brute force. It's okay and expected that your initial algorithm won't be very optimal.

Some candidates don't state the brute force because they thinkit’s both obvious and terrible. But here’s the
thing: Even if it's obvious for you, it's not necessarily obvious for all candidates. You don’t want your inter-
viewer to think that you're struggling to see even the easy solution.

It's okay that this initial solution is terrible. Explain what the space and time complexity is, and then dive
into improvements.

Despite being possibly slow, a brute force algorithm is valuable to discuss. It's a starting point for optimiza-
tions, and it helps you wrap your head around the problem.

4. Optimize

Once you have a brute force algorithm, you should work on optimizing it. A few techniques that work well
are:

1. Look for any unused information. Did your interviewer tell you that the array was sorted? How can you
leverage that information?

2. Use a fresh example. Sometimes, just seeing a different example will unclog your mind or help you see
a pattern in the problem.

3. Solveit“incorrectly.” Just like having an inefficient solution can help you find an efficient solution, having
an incorrect solution might help you find a correct solution. For example, if you're asked to generate a

64 Cracking the Coding Interview, 6th Edition

VIl | Technical Questions

random value from a set such that all values are equally likely, an incorrect solution might be one that
returns a semi-random value: Any value could be returned, but some are more likely than others. You
can then think about why that solution isn’t perfectly random. Can you rebalance the probabilities?

4. Make time vs. space tradeoff. Sometimes storing extra state about the problem can help you optimize
the runtime.

5. Precompute information. Is there a way that you can reorganize the data (sorting, etc.) or compute some
values upfront that will help save time in the long run?

6. Use a hash table. Hash tables are widely used in interview questions and should be at the top of your
mind.

7. Think about the best conceivable runtime (discussed on page 72).

Walk through the brute force with theseideasin mind and lookfor BUD (page 67).

5.Walk Through

After you've nailed down an optimal algorithm, don't just dive into coding. Take a moment to solidify your
understanding of the algorithm.

Whiteboard coding is slow—very slow. So is testing your code and fixing it. As a result, you need to make
sure that you get it as close to “perfect”in the beginning as possible.

Walk through your algorithm and get a feel for the structure of the code. Know what the variables are and
when they change.

i What about pseudocode? You can write pseudocode if you'd like. Be careful about what you
write. Basic steps (“(1) Search array. (2) Find biggest. (3) Insert in heap!’) or brief logic (“if p <
g, move p. else move q“) can be valuable. But when your pseudocode starts having for loops
that are written in plain English, then you're essentially just writing sloppy code. It'd probably be
faster to just write the code.

If you don’t understand exactly what you're about to write, you'll struggle to code it. It will take you longer
to finish the code, and you're more likely to make major errors.

6. Implement

Now that you have an optimal algorithm and you know exactly what you're going to write, go ahead and
implement it.

Start coding in the far top left corner of the whiteboard (you'll need the space). Avoid “line creep” (where
each line of code is written an awkward slant). It makes your code look messy and can be very confusing
when working in a whitespace-sensitive language, like Python.

Remember that you only have a short amount of code to demonstrate that you're a great developer. Every-
thing counts. Write beautiful code.

Beautiful code means:

* Modularized code. This shows good coding style. It also makes things easier for you. If your algorithm
uses a matrix initialized to {{1, 2, 3}, {4, 5, 6}, ...} don'twaste your time writing this
initialization code. Just pretend you have a function initIncrementalMatrix(int size).Fillin
the details later if you need to.

CrackingTheCodinglnterview.com | 6th Edition 65

Vil | Technical Questions

- Error checks. Some interviewers care a lot about this, while others don't. A good compromise here is to
add a todo and then just explain out loud what you'd like to test.

+ Use other classes/structs where appropriate. If you need to return a list of start and end points from
a function, you could do this as a two-dimensional array. It's better though to do this as a list of
StartEndPair (or possibly Range) objects. You don't necessarily have to fill in the details for the class.
Just pretend it exists and deal with the details later if you have time.

» Good variable names. Code that uses single-letter variables everywhere is difficult to read. That’s not to
say that there’s anything wrong with using i and j, where appropriate (such as in a basic for-loop iter-
ating through an array). However, be careful about where you do this. If you write something like int
i = startOfChild(array), there might be a better name for this variable, such as startChild.

Long variable names can also be slow to write though. A good compromise that most interviewers will
be okay with is to abbreviate it after the first usage. You can use startChild the first time, and then
explain to your interviewer that you will abbreviate this as sc after this.

The specifics of what makes good code vary between interviewers and candidates, and the problem itself.
Focus on writing beautiful code, whatever that means to you.

If you see something you can refactor later on, then explain this to your interviewer and decide whether or
not it's worth the time to do so. Usually it is, but not always.

If you get confused (which is common), go back to your example and walk through it again.

7.Test

You wouldn’t check in code in the real world without testing it, and you shouldn't“submit” code in an inter-
view without testing it either.

There are smart and not-so-smart ways to test your code though.

What many candidates do is take their earlier example and test it against their code. That might discover
bugs, but it'll take a really long time to do so. Hand testing is very slow. If you really did use a nice, big
example to develop your algorithm, then itll take you a very long time to find that little off-by-one error at
the end of your code.

Instead, try this approach:

1. Start with a“conceptual”test. A conceptual test means just reading and analyzing what each line of code
does. Think about it like you're explaining the lines of code for a code reviewer. Does the code do what
you think it should do?

2. Weird looking code. Double check that line of code that says x = length - 2.Investigate that for
loop that startsat1 = 1.While you undoubtedly did this for a reason, it's really easy to get it just slightly
wrong.

3. Hot spots. You've coded long enough to know what things are likely to cause problems. Base cases
in recursive code. Integer division. Null nodes in binary trees. The start and end of iteration through a
linked list. Double check that stuff.

4. Small test cases. This is the first time we use an actual, specific test case to test the code. Don't use that
nice, big 8-element array from the algorithm part. Instead, use a 3 or 4 element array. It'll likely discover
the same bugs, but it will be much faster to do so.

5. Special cases. Test your code against null or single element values, the extreme cases, and other special
cases.

66 Cracking the Coding Interview, 6th Edition

VII | Technical Questions

When you find bugs (and you probably will), you should of course fix them. But don't just make the first
correction you think of. Instead, carefully analyze why the bug occurred and ensure that your fix is the best
one.

» Optimize & Solve Technique #1: Look for BUD

This is perhaps the most useful approach I've found for optimizing problems. “BUD”is a silly acronym for:

- Bottlenecks
- Unnecessary work
« Duplicated work

These are three of the most common things that an algorithm can“waste”time doing. You can walk through
your brute force looking for these things. When you find one of them, you can then focus on getting rid of it.

Ifit’s still not optimal, you can repeat this approach on your current best algorithm.

Bottlenecks

A bottleneck is a part of your algorithm that slows down the overall runtime. There are two common ways
this occurs:

- You have one-time work that slows down your algorithm. For example, suppose you have a two-step
algorithm where you first sort the array and then you find elements with a particular property. The first
stepisO(N log N) and the second stepisO(N). Perhaps you could reduce the second step to 0(log
N) or 0(1), but would it matter? Not too much. It’s certainly not a priority, as the O(N log N) is the
bottleneck. Until you optimize the first step, your overall algorithm willbe O(N log N).

You have a chunk of work that’s done repeatedly, like searching. Perhaps you can reduce that fromO(N)
toO(log N) oreven 0(1).That will greatly speed up your overall runtime.

Optimizing a bottleneck can make a big difference in your overall runtime.

I Example: Given an array of distinct integer values, count the number of pairs of integers that
have difference k. For example, given the array {1, 7, 5, 9, 2, 12, 3} and the difference
k = 2, there are four pairs with difference 2: (1, 3), (3, 5), (5, 7), (7, 9).

A brute force algorithm is to go through the array, starting from the first element, and then search through
the remaining elements (which will form the other side of the pair). For each pair, compute the difference.
If the difference equals k, increment a counter of the difference.

The bottleneck here is the repeated search for the “other side” of the pair. It's therefore the main thing to
focus on optimizing.

How can we more quickly find the right “other side”? Well, we actually know the other side of (x, ?).It's
X + korx - k.If we sorted the array, we could find the other side for each of the N elements in O(log
N) time by doing a binary search.

We now have a two-step algorithm, where both steps take O(N log N) time. Now, sorting is the new
bottleneck. Optimizing the second step won't help because the first step is slowing us down anyway.

We just have to get rid of the first step entirely and operate on an unsorted array. How can we find things
quickly in an unsorted array? With a hash table.

CrackingTheCodinglnterview.com | 6th Edition 67

VIl | Technical Questions

Throw everything in the array into the hash table. Then, tolook up if x + korx - kexistin the array, we
just look it up in the hash table. We can do this in O(N) time.

Unnecessary Work

Example: Print all positive integer solutions to the equationa®> + b* = ¢ + d®*wherea, b, c,
and d are integers between 1 and 1000.

A brute force solution will just have four nested for loops. Something like:

n = 1000
for a from 1 to n
for b from 1 to n
for ¢ from 1 to n
for d from 1 to n
if a® + b® == ¢ + d?
PFALE &Yy 0y €, @

NV B AW N e

This algorithm iterates through all possible values of a, b, ¢, and d and checks if that combination happens
to work.

It'sunnecessary to continuechecking for other possiblevalues of d. Only one could work. We should at least
break after we find a valid solution.

1 n = 1000
2 for a from 1 to n

2 for b from 1 to n

4 for ¢ from 1 to n

5 for d from 1 to n

6 if a® + b® == c + &

7 print a, b, ¢, d

8 break // break out of d’s loop

This won’'t make a meaningful change to the runtime—our algorithm is still O(N*)—but it's still a good,
quick fix to make.

Is there anything else that is unnecessary? Yes. If there’s only one valid d value for each (a, b, c), then we can
just compute it. This is just simple math: d = 3\; a’+b’-c’.

1 n = 1000

2 for a from 1 to n

3 for b from 1 to n

4 for ¢ from 1 to n

5 d = pow(a® + b* - ¢, 1/3) // Will round to int

6 if a® + b® == ¢ + d® // vali date that the value works
7 print a, b, ¢, d

The if statement on line 6 is important. Line 5 will always find a value for d, but we need to check that it’s
the right integer value.

This will reduce our runtime from O(N*) to O(N?).

Duplicated Work
Using the same problem and brute force algorithm as above, let’s look for duplicated work this time.

The algorithm operates by essentially iterating through all (a, b) pairs and then searching all (c, d)
pairs to find if there are any matches to that (a, b) pair.

68 Cracking the Coding Interview, 6th Edition

VIl | Technical Questions

Why do we keep on computing all (c, d) pairsforeach (a, b) pair? We should just create the list of (c,
d) pairs once. Then, when we have an (a, b) pair, find the matches within the (c, d) list. We can quickly
locate the matches by inserting each (¢, d) pairinto a hash table that maps from the sum to the pair (or,
rather, the list of pairs that have that sum).

n = 1000
for ¢ from 1 to n
for d from 1 to n
result = ¢ + d
append (c, d) to list at value map[result]
for a from 1 to n
for b from 1 to n
result = a® + b?
list = map.get(result)
for each pair in list
11 print a, b, pair

W00 N DU B W N

s
D

Actually, once we have the map of all the (c, d) pairs, we can just use that directly. We don’t need to
generate the (a, b) pairs.Each (a, b) will already be in the map.

n = 1000
for ¢ from 1 to n
for d from 1 to n
result = ¢ + d*
append (c, d) to list at value map[result]

for each result, list in map
for each pairl in list
for each pair2 in list
10 print pairl, pair2

This will take our runtime to O(N?).

W 00 W O W b W N

» Optimize & Solve Technique #2: DIY (Do It Yourself)

The first time you heard about how to find an element in a sorted array (before being taught binary search),
you probably didn’t jump to, “Ah ha! We'll compare the target element to the midpoint and then recurse on
the appropriate half”

And yet, you could give someone who has no knowledge of computer science an alphabetized pile of
student papers and they'll likely implement something like binary search to locate a student’s paper.
They'll probably say, “Gosh, Peter Smith? He'll be somewhere in the bottom of the stack” They’ll pick a
random paper in the middle(ish), compare the name to “Peter Smith’, and then continue this process on the
remainder of the papers. Although they have no knowledge of binary search, they intuitively “get it

Our brains are funny like this. Throw the phrase “Design an algorithm” in there and people often get all
jumbled up. But give people an actual example—whether just of the data (e.g., an array) or of the real-life
parallel (e.g., a pile of papers)—and their intuition gives them a very nice algorithm.

I've seen this come up countless times with candidates. Their computer algorithm is extraordinarily slow,
but when asked to solve the same problem manually, they immediately do something quite fast. (And it’s

not too surprisingly, in some sense. Things that are slow for a computer are often slow by hand. Why would
you put yourself through extra work?)

Therefore, when you get a question, try just working it through intuitively on a real example. Often a bigger
example will be easier.

CrackingTheCodinglInterview.com | 6th Edition 69

VIl | Technical Questions

i Example: Given a smaller string s and a bigger string b, design an algorithm to find all permuta-
tions of the shorter string within the longer one. Print the location of each permutation.

Think for a moment about how you'd solve this problem. Note permutations are rearrangements of the
string, so the characters in s can appear in any order in b. They must be contiguous though (not split by
other characters).

If you're like most candidates, you probably thought of something like: Generate all permutations of s and
then look for each in b. Since there are S! permutations, this willtake O(S! * B) time, where S is the length
of s and B is the length of b.

Thisworks, but it’s an extraordinarily slow algorithm. It’s actually worse than an exponential algorithm. if s
has 14 characters, that's over 87 billion permutations. Add one more character into s and we have 15 times
more permutations. Ouch!

Approached a different way, you could develop a decent algorithm fairly easily. Give yourself a big example,
like this one:

s: abbc
b: cbabadcbbabbcbabaabccbabc

Where are the permutations of s within b? Don’t worry about how you're doing it. Just find them. Even a 12
year old could do this!

(No, really, go find them. I'll wait!)

I've underlined below each permutation.

s: abbc
b: cbabadcbbabbcbabaabccbabc

Did you find these? How?

Few people—even those who earlier came up with the 0(S! * B) algorithm—actually generate all the
permutations of abbc to locate those permutations in b. Almost everyone takes one of two (very similar)
approaches:

1. Walk through b and look at sliding windows of 4 characters (since s has length 4). Check if each window
is a permutation of s.

2. Walk through b. Every time you see a character in s, check if the next four (the length of s) characters
are a permutation of s.

Depending on the exact implementation of the “is this a permutation” part, you'll probably get a runtime of
eitherO(B * S),0(B * S log S),orO(B * S?).None of these are the most optimal algorithm (there
isan O(B) algorithm), but it’s a lot better than what we had before.

Try this approach when you're solving questions. Use a nice, big example and intuitively—manually, that
is—solve it for the specific example. Then, afterwards, think hard about how you solved it. Reverse engineer
your own approach.

Be particularly aware of any “optimizations” you intuitively or automatically made. For example, when you
were doing this problem, you might have just skipped right over the sliding window with “d™ in it, since
"d" isn't in abbc. That's an optimization your brain made, and it’s something you should at least be aware
of in your algorithm.

70 Cracking the Coding Interview, 6th Edition

VIl | Technical Questions

» Optimize & Solve Technique #3: Simplify and Generalize

With Simplify and Generalize, we implement a multi-step approach. First, we simplify or tweak some
constraint, such as the data type. Then, we solve this new simplified version of the problem. Finally, once we
have an algorithm for the simplified problem, we try to adapt it for the more complex version.

i Example: A ransom note can be formed by cutting words out of a magazine to form a new
sentence. How would you figure out if a ransom note (represented as a string) can be formed
from a given magazine (string)?

To simplify the problem, we can modify it so that we are cutting characters out of a magazine instead of
whole words.

We can solve the simplified ransom note problem with characters by simply creating an array and counting
the characters. Each spot in the array corresponds to one letter. First, we count the number of times each
character in the ransom note appears, and then we go through the magazine to see if we have all of those
characters.

When we generalize the algorithm, we do a very similar thing. This time, rather than creating an array with
character counts, we create a hash table that maps from a word to its frequency.

P Optimize & Solve Technique #4: Base Case and Build

With Base Case and Build, we solve the problem first for a base case (e.g.,n = 1) and then try to build up
from there. When we get to more complex/interesting cases (often n = 3 or n = 4), we try to build those
using the prior solutions.

I Example: Design an algorithm to print all permutations of a string. For simplicity, assume all cha -
acters are unique.

Consider a test string abcdefg.

Case “a” --> {“a»}

case ﬂ'ab)l == {((abu, «ban}

Case “abc” --> ?
This is the first “interesting” case. If we had the answer to P (“ab”), how could we generate P(“abc”)?
Well, the additional letter is “c,” so we can just stick c in at every possible point. That is:

P(“abc”) insert “c” into all locations of all strings in P(“ab”)

P(“abc”) = insert “c” into all locations of all strings in {“ab”,“ba”}

P(“abc”) = merge({“cab”, “acb”, “abc”}, {“cba”, “bca”, bac”})

P(“abc”) = {ffcab))) ffacb)J) fl’abc)), “Cba”, (l’bca)J, bac)J}

n

Now that we understand the pattern, we can develop a general recursive algorithm. We generate all permu-
tations of a string s, . . . s_ by “chopping off” the last character and generating all permutations of s, . . .
S,.- Once we have the list of all permutations of s, . . . s, we iterate through this list. For each string in it,
we insert s_into every location of the string.

Base Case and Build algorithms often lead to natural recursive algorithms.

CrackingTheCodinglnterview.com | 6th Edition n

VIl | Technical Questions

» Optimize & Solve Technique #5: Data Structure Brainstorm

This approach is certainly hacky, but it often works. We can simply run through a list of data structures and
try to apply each one. This approach is useful because solving a problem may be trivial once it occurs to us
to use, say, a tree.

é Example: Numbers are randomly generated and stored into an (expanding) array. How would
you keep track of the median?

Our data structure brainstorm might look like the following:
- Linked list? Probably not. Linked lists tend not to do very well with accessing and sorting numbers.

- Array? Maybe, but you already have an array. Could you somehow keep the elements sorted? That'’s
probably expensive. Let’s hold off on this and return to it if it's needed.

- Binary tree? This is possible, since binary trees do fairly well with ordering. In fact, if the binary search
tree is perfectly balanced, the top might be the median. But, be careful—if there’s an even number of
elements, the median is actually the average of the middle two elements. The middle two elements can’t
both be at the top. This is probably a workable algorithm, but let's come back to it.

- Heap? A heap is really good at basic ordering and keeping track of max and mins. This is actually
interesting—if you had two heaps, you could keep track of the bigger half and the smaller half of the
elements. The bigger half is kept in a min heap, such that the smallest element in the bigger half is at
the root. The smaller half is kept in a max heap, such that the biggest element of the smaller half is at the
root. Now, with these data structures, you have the potential median elements at the roots. If the heaps
are no longer the same size, you can quickly “rebalance” the heaps by popping an element off the one
heap and pushing it onto the other.

Note that the more problems you do, the more developed your instinct on which data structure to apply
will be. You will also develop a more finely tuned instinct as to which of these approaches is the most useful.

» Best Conceivable Runtime (BCR)

Considering the best conceivable runtime can offer a useful hint for some problem.

The best conceivable runtime is, literally, the best runtime you could conceive of a solution to a problem
having. You can easily prove that there is no way you could beat the BCR.

For example, suppose you want to compute the number of elements that two arrays (of length A and B)
have in common. You immediately know that you can'tdo thatin betterthanO(A + B) time because you
have to “touch”each element in each array. O(A + B) isthe BCR.

Or, suppose you want to print all pairs of values within an array. You know you can't do that in better than
O(N?) time because there are N pairs to print.

Be careful though! Suppose your interviewer asks you to find all pairs with sum k within an array (assuming
all distinct elements). Some candidates who have not fully mastered the concept of BCR will say that the
BCR is O(N?) because you have to look at N? pairs.

That's not true. Just because you want all pairs with a particular sum doesn’t mean you have to look at al/
pairs. In fact, you don't.

n Cracking the Coding Interview, 6th Edition

Vil | Technical Questions

What's the relationship between the Best Conceivable Runtime and Best Case Runtime? Nothing

% at all! The Best Conceivable Runtime is for a problem and is largely a function of the inputs and
outputs. It has no particular connection to a specific algorithm. In fact, if you compute the
Best Conceivable Runtime by thinking about what your algorithm does, you're probably doing
something wrong. The Best Case Runtime is for a specific algorithm (and is a mostly useless
value).

Note that the best conceivable runtime is not necessarily achievable. It says only that you can't do better
than it.

An Example of How to Use BCR

Question: Given two sorted arrays, find the number of elements in common. The arrays are the same length
and each has all distinct elements.

Let’s start with a good example. We'll underline the elements in common.
A: 13 27 35 40 49 55 59
B: 17 35 39 40 55 58 60

A brute force algorithm for this problem is to start with each element in A and search for it in B. This takes
O(N?) time since for each of N elements in A, we need to do an O(N) search in B.

TheBCRisO(N), because we know we will have to look at each element at least once and there are 2N total
elements. (If we skipped an element, then the value of that element could change the result. For example,
if we never looked at the last value in B, then that 60 could be a 59.)

Let’s think about where we are right now. We have an O(N?) algorithm and we want to do better than
that—potentially, but not necessarily, as fast as O(N).

Brute Force: O(N?)
Optimal Algorithm: ?
BCR: O(N)

What is between O(N?) and O(N)? Lots of things. Infinite things actually. We could theoretically have an
algorithm that's O(N log(log(log(log(N))))). However, both in interviews and in real life, that
runtime doesn’t come up a whole lot.

E Try to remember this for your interview because it throws a lot of people off. Runtime is not a
multiple choice question. Yes, it's very common to have a runtime that's 0(1og N),O(N),O(N
log N),0(N?) or0O(2").But you shouldn’t assume that something has a particular runtime by
sheer process of elimination. In fact, those times when you're confused about the runtime and
so you want to take a guess—those are the times when you're most likely to have a non-obvious
and less common runtime. Maybe the runtime is O(N’K), where N is the size of the array and K is
the number of pairs. Derive, don’t guess.

Most likely, we're driving towards an O(N) algorithmoranO(N log N) algorithm. What does that tell us?

If we imagine our currentalgorithm’sruntimeasO(N x N), then gettingto O(N) orO(N x log N) might
mean reducing that second O(N) in the equation to 0(1) orO(log N).

This is one way that BCR can be useful. We can use the runtimes to get a “hint” for what we need
to reduce.

CrackingTheCodinglnterview.com | 6th Edition 73

VIl | Technical Questions

That second O(N) comes from searching. The array is sorted. Can we search in a sorted array in faster than
O(N) time?

Why, yes. We can use binary search to find an element in a sorted array in O(Llog N) time.

We now have an improved algorithm: O(N log N).

Brute Force: O(N2)
Improved Algorithm: O(N log N)
Optimal Algorithm: °?

BCR: O(N)

Can we do even better? Doing better likely means reducing that 0(log N) toO(1).

In general, we cannot search an array—even a sorted array—in better than 0(log N) time. This is not the
general case though. We're doing this search over and over again.

The BCR s telling us that we will never, ever have an algorithm that'’s faster than O(N). Therefore, any work
we doin O(N) time is a “freebie”—it won't impact our runtime.

Re-read the list of optimization tips on page 64. Is there anything that can help us?

One of the tips there suggests precomputing or doing upfront work. Any upfront work we do in O(N) time
is a freebie. It won't impact our runtime.

g This is another place where BCR can be useful. Any work you do that’s less than or equal to the
BCRis “free,” in the sense that it won't impact your runtime. You might want to eliminate it even-
tually, but it's not a top priority just yet.

Our focus is still on reducing search from 0(log N) to O(1). Any precomputation that's O(N) or less is
“free!”

In this case, we can just throw everything in B into a hash table. This will take O(N) time. Then, we just go
through A and look up each element in the hash table. This look up (or search) is 0(1), so our runtime is
O(N).

Suppose our interviewer hits us with a question that makes us cringe: Can we do better?

No, not in terms of runtime. We have achieved the fastest possible runtime, therefore we cannot optimize
the big O time. We could potentially optimize the space complexity.

g This is another place where BCR is useful. It tells us that we're “done” in terms of optimizing the
runtime, and we should therefore turn our efforts to the space complexity.

In fact, even without the interviewer prompting us, we should have a question mark with respect to our
algorithm. We would have achieved the exact same runtime if the data wasn't sorted. So why did the inter-
viewer give us sorted arrays? That's not unheard of, but it is a bit strange.

Let’s turn back to our example.

A: 13 27 35 490 49 55 59
B: 17 35 39 40 55 58 60

We're now looking for an algorithm that:
« Operatesin 0(1) space {probably). We already have an O(N) space algorithm with optimal runtime. If

we want to use less additional space, that probably means no additional space. Therefore, we need to
drop the hash table.

74 Cracking the Coding Interview, 6th Edition

VIl | Technical Questions

- Operatesin O(N) time (probably). We'll probably want to at least match the current best runtime, and
we know we can't beat it.

« Uses the fact that the arrays are sorted.

Our best algorithm that doesn't use extra space was the binary search one. Let’s think about optimizing
that. We can try walking through the algorithm.

13. Not found.
27. Not found.
Do a binary search in B forA[2] = 35.FoundatB[1].

1. Do a binary search in B for A[9]

il

Do a binary search in B for A[1]

Do a binary search in B for A[3]

40.FoundatB[5].

Do a binary search inBforA[4] = 49.Not found.

o noA W N

Think about BUD. The bottleneck is the searching. Is there anythingunnecessary or duplicated?

It's unnecessary that A[3] = 40 searched over all of B. We know that we just found 35 at B[1], so 40
certainly won't be before 35.

Each binary search should start where the last one left off.

In fact, we don't need to do a binary search at all now. We can just do a linear search. As long as the linear
search in B is just picking up where the last one left off, we know that we're going to be operating in linear
time.

1. Doallinear searchinBforA[©]

13.StartatB[0]

17.Notfound.

17.Stop atB[0@]

2. Do alinearsearchinBforA[1] = 27.StartatB[@] = 17.StopatB[1] = 35.Notfound.
3. Do a linear searchinB forA[2] = 35.StartatB[1] = 35.StopatB[1] = 35.Found.

4. DoalinearsearchinBforA[3] = 40.StartatB[2] = 39.StopatB[3] = 40.Found.

5. DoallinearsearchinBforA[4] = 49.StartatB[3] = 40.StopatB[4] = 55.Found.

6. .

This algorithm is very similar to merging two sorted arrays. it operates in O(N) time and 0(1) space.

We have now reached the BCR and have minimal space. We know that we cannot do better.

E This is another way we can use BCR. If you ever reach the BCR and have 0(1) additional space,
then you know that you can't optimize the big O time or space.

Best Conceivable Runtime is not a “real” algorithm concept, in that you won't find it in algorithm textbooks.

But | have found it personally very useful, when solving problems myself, as well as while coaching people
through problems.

if you're struggling to grasp it, make sure you understand big O time first (page 38). You need to master
it. Once you do, figuring out the BCR of a problem should take literally seconds.

CrackingTheCodinginterview.com | 6th Edition 75

VIl | Technical Questions

» Handling Incorrect Answers

One of the most pervasive—and dangerous—rumors is that candidates need to get every question right.
That's not quite true.

First, responses to interview questions shouldn't be thought of as “correct” or “incorrect” When | evaluate
how someone performed in an interview, | never think, “How many questions did they get right?”It's not a
binary evaluation. Rather, it's about how optimal their final solution was, how longiit took them to get there,
how much help they needed, and how clean was their code. There is a range of factors.

Second, your performance is evaluated in comparison to other candidates. For example, if you solve a ques-
tion optimally in 15 minutes, and someone else solves an easier question in five minutes, did that person do
better than you? Maybe, but maybe not. If you are asked really easy questions, then you might be expected
to get optimal solutions really quickly. Butif the questions are hard, then anumber of mistakes are expected.

Third, many—possibly most—questions are too difficult to expect even a strong candidate to immediately
spit out the optimal algorithm. The questions | tend to ask would take strong candidates typically 20 to 30
minutes to solve.

In evaluating thousands of hiring packets at Google, | have only once seen a candidate have a“flawless” set
of interviews. Everyone else, including the hundreds who got offers, made mistakes.

» When You’ve Heard a Question Before

If you've heard a question before, admit this to your interviewer. Your interviewer is asking you these ques-
tions in order to evaluate your problem-solving skills. If you already know the question, then you aren't
giving them the opportunity to evaluate you.

Additionally, your interviewer may find it highly dishonest if you don't reveal that you know the question.
(And, conversely, you'll get big honesty points if you do reveal this.)

» The “Perfect” Language for Interviews

At many of the top companies, interviewers aren’t picky about languages. They're more interested in how
well you solve the problems than whether you know a specific language.

Other companies though are more tied to a language and are interested in seeing how well you can code
in a particular language.

If you're given a choice of languages, then you should probably pick whatever language you're most
comfortable with.

That said, if you have several good languages, you should keep in mind the following.
Prevalence

It's not required, but it is ideal for your interviewer to know the language you're coding in. A more widely
known language can be better for this reason.

Language Readability

Even if your interviewer doesn‘t know your programming language, they should hopefully be able to basi-
cally understand it. Some languages are more naturally readable than others, due to their similarity to other
languages.

76 Cracking the Coding Interview, 6th Edition

VIl | Technical Questions

For example, Java is fairly easy for people to understand, even if they haven't worked in it. Most people have
worked in something with Java-like syntax, such as C and C++.

However, languages such as Scala or Objective C have fairly different syntax.

Potential Problems

Some languages just open you up to potential issues. For example, using C++ means that, in addition to all
the usual bugs you can have in your code, you can have memory management and pointer issues.

Verbosity

Some languages are more verbose than others. Java for example is a fairly verbose language as compared
with Python. Just compare the following code snippets.

Python:

1 dict = {“left”: 1, “right”: 2, “top”: 3, “bottom”: 4};

Java:

1 HashMap<String, Integer> dict = new HashMap<String, Integer>().
2 dict.put(“left”, 1);

3 dict.put(“right”, 2);

4 dict.put(“top”, 3);

5 dict.put(“bottom”, 4);

However, some of the verbosity of Java can be reduced by abbreviating code. | could imagine a candidate
on a whiteboard writing something like this:

1 HMS, I> dict = new HM<S, I>().
2 dict.put(“left”, 1);

g s “right”, 2

& = “eper, 2

5 e “bottom”, 4

The candidate would need to explain the abbreviations, but most interviewers wouldn’t mind.
Ease of Use

Some operations are easier in some languages than others. For example, in Python, you can very easily
return multiple values from a function. In Java, the same action would require a new class. This can be
handy for certain problems.

Similar to the above though, this can be mitigated by just abbreviating code or presuming methods that
you don’t actually have. For example, if one language provides a function to transpose a matrix and another
language doesn't, this doesn't necessarily make the first language much better to code in (for a problem
that needs such a function). You could just assume that the other language has a similar method.

» What Good Coding Looks Like

You probably know by now that employers want to see that you write “good, clean” code. But what does this
really mean, and how is this demonstrated in an interview?

Broadly speaking, good code has the following properties:
+ Correct: The code should operate correctly on all expected and unexpected inputs.

- Efficient: The code should operate as efficiently as possible in terms of both time and space. This “effi-
ciency” includes both the asymptotic (big O) efficiency and the practical, real-life efficiency. That is, a

CrackingTheCodinglnterview.com | 6th Edition 77

VIl | Technical Questions

constant factor might get dropped when you compute the big O time, but in real life, it can very much
matter.

- Simple: If you can do something in 10 lines instead of 100, you should. Code should be as quick as
possible for a developer to write.

- Readable: A different developer should be able to read your code and understand what it does and
how it does it. Readable code has comments where necessary, but it implements things in an easily
understandable way. That means that your fancy code that does a bunch of complex bit shifting is not
necessarily good code.

- Maintainable: Code should be reasonably adaptable to changes during the life cycle of a product and
should be easy to maintain by other developers, as well as the initial developer.

Striving for these aspects requires a balancing act. For example, it's often advisable to sacrifice some degree
of efficiency to make code more maintainable, and vice versa.

You should think about these elements as you code during an interview. The following aspects of code are
more specific ways to demonstrate the earlier list.

Use Data Structures Generously

Suppose you were asked to write a function to add two simple mathematical expressions which are of
the form Ax® + Bx® + ... (where the coefficients and exponents can be any positive or negative real
number). That is, the expression is a sequence of terms, where each term is simply a constant times an
exponent. The interviewer also adds that she doesn’t want you to have to do string parsing, so you can use
whatever data structure you'd like to hold the expressions.

There are a number of different ways you can implement this.

Bad Implementation

A bad implementation would be to store the expression as a single array of doubles, where the kth element
corresponds to the coefficient of the x* term in the expression. This structure is problematic because it
could not support expressions with negative or non-integer exponents. It would also require an array of
1000 elements to store just the expression x1%,

1 int[] sum(double[] exprl, double[] expr2) {

W N

}

Less Bad Implementation

A slightly less bad implementation would be to store the expression as a set of two arrays, coefficients
and exponents. Under this approach, the terms of the expression are stored in any order, but “matched”
such that the ith term of the expression is represented by coefficients[i] * xexponentsil

Under this implementation, if coefficients[p] = kand exponents[p] = m,then the pth term is
kx™. Although this doesn’t have the same limitations as the earlier solution, it’s still very messy. You need
to keep track of two arrays for just one expression. Expressions could have “undefined” values if the arrays
were of different lengths. And returning an expression is annoying because you need to return two arrays.
1 ??? sum(double[] coeffsl, double[] exponl, double[] coeffs2, double[] expon2) {

2 ves

37

78] Cracking the Coding Interview, 6th Edition

VIl | Technical Questions

Good Implementation

A good implementation for this problem is to design your own data structure for the expression.

1 class ExprTerm {

2 double coefficient;

3 double exponent;

4 }

5

6 ExprTerm[] sum(ExprTerm[] exprl, ExprTerm[] expr2) {
7

8 }

Some might (and have) argued that this is “over-optimizing.” Perhaps so, perhaps not. Regardless of whether
you think it's over-optimizing, the above code demonstrates that you think about how to design your code
and don't just slop something together in the fastest way possible.

Appropriate Code Reuse

Suppose you were asked to write a function to check if the value of a binary number (passed as a string)
equals the hexadecimal representation of a string.

An elegantimplementation of this problem leverages code reuse.

1 boolean compareBinToHex(String binary, String hex) {
2 int n1 = convertFromBase(binary, 2);

3 int n2 = convertFromBase(hex, 16);

4 if (n1 <o || n2 <o) {

5 return false;

6 Y

7 return nl == n2;

8 }

)

ig¢ 1int convertFromBase(String number, int base) {

11 if (base < 2 || (base > 10 && base != 16)) return -1;
12 int value = 9;

i3 for (int i = number.length() - 1; i >= 0; i--) {

14 int digit = digitTovalue(number.charAt(i));
15 if (digit < @ || digit >= base) {

16 return -1;

17 }

18 int exp = number.length() - 1 - i;
18 value += digit * Math.pow(base, exp);
28 }

21 return value;

22

23

24 int digitTovalue(char c) { ... }

We could have implemented separate code to convert a binary number and a hexadecimal code, but
this just makes our code harder to write and harder to maintain. Instead, we reuse code by writing one
convertFromBase method and one digitToValue method.

Modular

Writing modular code means separating isolated chunks of code out into their own methods. This helps
keep the code more maintainable, readable, and testable.

CrackingTheCodinginterview.com | 6th Edition 79

VIl | Technical Questions

Imagine you are writing code to swap the minimum and maximum element in an integer array. You could
implement it all in one method like this:

1 void swapMinMax(int[] array) {

2 int minIndex = ©;

3 for (int i = 1; i < array.length; i++) {
4 if (array[i] < array[minIndex]) {

5 minIndex = i;

5 }

7 }

8

g int maxIndex = O;

18 for (int i = 1; i < array.length; i++) {
11 if (array[i] > array[maxIndex]) {

i2 maxIndex = i;

13 I

14 }

15

16 int temp = array[minIndex];

17 array[minIndex] = array[maxIndex];

18 array[maxIndex] = temp;

i9 }

Or, you could implement in a more modular way by separating the relatively isolated chunks of code into
their own methods.

void swapMinMaxBetter (int[] array) {
int minIndex = getMinIndex(array);
int maxIndex = getMaxIndex(array);
swap(array, minIndex, maxIndex);

B WO e

}

int getMinIndex(int[] array) { ... }
int getMaxIndex(int[] array) { ... }
void swap(int[] array, int m, int n) { ... }

W OO

While the non-modular code isn’t particularly awful, the nice thing about the modular code is that it's easily
testable because each component can be verified separately. As code gets more complex, it becomes
increasingly important to write it in a modular way. This will make it easier to read and maintain. Your inter-
viewer wants to see you demonstrate these skills in your interview.

Flexible and Robust

Just because your interviewer only asks you to write code to check if a normal tic-tac-toe board has a
winner, doesn’t mean you must assume that it's a 3x3 board. Why not write the code in a more general way
that implements it for an NxN board?

Writing flexible, general-purpose code may also mean using variables instead of hard-coded values or
using templates / generics to solve a problem. If we can write our code to solve a more general problem,
we should.

Of course, there is a limit. If the solution is much more complex for the general case, and it seems unneces-
sary at this point in time, it may be better just to implement the simple, expected case.

Error Checking

One sign of a careful coder is that she doesn’t make assumptions about the input. Instead, she validates that
the inputis what it should be, either through ASSERT statements or if-statements.

80 Cracking the Coding Interview, 6th Edition

VIl | Technical Questions

For example, recall the earlier code to convert a number from its base i (e.g., base 2 or base 16) representa-
tiontoan int.

1 int convertToBase(String number, int base) {

2 if (base < 2 || (base > 10 && base ! =16)) return -1;
2 int value = 9;

4 for (int i = number.length() - 1; i >=0; i--) {
5 int digit = digitToValue(number.charAt(i));

e if (digit < @ || digit >= base) {

7 return -1;

8 ¥

9 int exp = number.length() - 1 - i;

10 value += digit * Math.pow(base, exp);

11 }

12 return value;

3}

In line 2, we check to see that base is valid (we assume that bases greater than 10, other than base 16, have
no standard representation in string form). In line 6, we do another error check: making sure that each digit
falls within the allowable range.

Checks like these are critical in production code and, therefore, in interview code as well.

Of course, writing these error checks can be tedious and can waste precious time in an interview. The
important thing is to point out that you would write the checks. If the error checks are much more than a
quick if-statement, it may be best to leave some space where the error checks would go and indicate to your
interviewer that you'll fill them in when you're finished with the rest of the code.

» Don’t Give Up!

| know interview questions can be overwhelming, but that's part of what the interviewer is testing. Do you
rise to a challenge, or do you shrink back in fear? It's important that you step up and eagerly meet a tricky
problem head-on. After all, remember that interviews are supposed to be hard. It shouldn't be a surprise
when you get a really tough problem.

For extra “points,” show excitement about solving hard problems.

CrackingTheCodingInterview.com | 6th Edition 81

VIII

The Offer and Beyond

Just when you thought you could sit back and relax after your interviews, now you're faced with the post-
interview stress: Should you accept the offer? Is it the right one? How do you decline an offer? What about
deadlines? We'll handle a few of these issues here and go into more details about how to evaluate an offer,
and how to negotiate it.

» Handling Offers and Rejection

Whether you're accepting an offer, declining an offer, or responding to a rejection, it matters what you do.

Offer Deadlines and Extensions

When companies extend an offer, there’s almost always a deadline attached to it. Usually these deadlines
are one to four weeks out. If you're still waiting to hear back from other companies, you can ask for an exten-
sion. Companies will usually try to accommodate this, if possible.

Declining an Offer

Even if you aren’tinterested in working for this company right now, you might be interested in working for it
in a few years. (Or, your contacts might one day move to a more exciting company.) It's in yourbest interest
to decline the offer on good terms and keep a line of communication open.

When you decline an offer, provide a reason that is non-offensive and inarguable. For example, if you were
declining a big company for a startup, you could explain that you feel a startup is the right choice for you
at this time. The big company can’t suddenly “become”a startup, so they can’t argue about your reasoning.

Handling Rejection

Getting rejected is unfortunate, but it doesn’t mean that you're not a great engineer. Lots of great engineers
do poorly, either because they don’t “test well” on these sort of interviewers, or they just had an “off” day.

Fortunately, most companies understand that these interviews aren’t perfect and many good engineers get
rejected. For this reason, companies are often eager to re-interview previously rejected candidate. Some
companies will even reach out to old candidates or expedite their application because of their prior perfor-
mance.

When you do get the unfortunate call, use this as an opportunity to build a bridge to re-apply. Thank your
recruiter for his time, explain that you're disappointed but that you understand their position, and ask when
you can reapply to the company.

82 Cracking the Coding Interview, 6th Edition

Vil | The Offer and Beyond

You can also ask for feedback from the recruiter. In most cases, the big tech companies won't offer feed-
back, but there are some companies that will. It doesn’t hurt to ask a question like, “Is there anything you'd
suggest | work on for next time?”

» Evaluating the Offer

Congratulations! You got an offer! And—if you're lucky—you may have even gotten multiple offers. Your
recruiter’s job is now to do everything he can to encourage you to accept it. How do you know if the
company is the right fit for you? We'll go through a few things you should consider in evaluating an offer.

The Financial Package

Perhaps the biggest mistake that candidates make in evaluating an offer is looking too much at their salary.
Candidates often look so much at this one number that they wind up accepting the offer that is worse finan-
cially. Salary is just one part of your financial compensation. You should also look at:

- Signing Bonus, Relocation, and Other One Time Perks: Many companies offer a signing bonus and/or relo-
cation. When comparing offers, it's wise to amortize this cash over three years (or however long you
expect to stay).

« Cost of Living Difference: Taxes and other cost of living differences can make a big difference in your take-
home pay. Silicon Valley, for example, is 30+% more expensive than Seattle.

- Annual Bonus: Annual bonuses at tech companies can range from anywhere from 3% to 30%. Your
recruiter might reveal the average annual bonus, but if not, check with friends at the company.

-« Stock Options and Grants: EQuity compensation can form another big part of your annual compensation.
Like signing bonuses, stock compensation between companies can be compared by amortizing it over
three years and then lumping that value into salary.

Remember, though, that what you learn and how a company advances your career often makes far more of
a difference to your long term finances than the salary. Think very carefully about how much emphasis you
really want to put on money right now.

Career Development

As thrilled as you may be to receive this offer, odds are, in a few years, you'll start thinking about inter-
viewing again. Therefore, it's important that you think right now about how this offer would impact your
career path. This means considering the following questions:

= How good does the company’s name look on my resume?

= How much will | learn? Will | learn relevant things?

= What is the promotion plan? How do the careers of developers progress?

+ If I want to move into management, does this company offer a realistic plan?
« Is the company or team growing?

* [fl do want to leave the company, is it situated near other companies I'm interested in, or will I need to
move?

The final point is extremely important and usually overlooked. If you only have a few other companies to
pick from in your city, your career options will be more restricted. Fewer options means that you're less likely
to discover really great opportunities.

CrackingTheCodingInterview.com | 6th Edition 83

VIl | The Offer and Beyond

Company Stability
All else being equal, of course stability is a good thing. No one wants to be fired or laid off.
However, all else isn't actually equal. The more stable companies are also often growing more slowly.

How much emphasis you should put on company stability really depends on you and your values. For some
candidates, stability should not be a large factor. Can you fairly quickly find a new job? If so, it might be
better to take the rapidly growing company, even if it's unstable? If you have work visa restrictions or just
aren't confident in your ability to find something new, stability might be more important.

The Happiness Factor

Last but not least, you should of course consider how happy you will be. Any of the following factors may
impact that:

- The Product: Many people look heavily at what product they are building, and of course this matters a bit.
However, for most engineers, there are more important factor, such as who you work with.

= Manager and Teammates: When people say that they love, or hate, their job, it's often because of their
teammates and their manager. Have you met them? Did you enjoy talking with them?

- Company Culture: Culture is tied to everything from how decisions get made, to the social atmosphere,
to how the company is organized. Ask your future teammates how they would describe the culture.

« Hours: Ask future teammates about how long they typically work, and figure out if that meshes with your
lifestyle. Remember, though, that hours before major deadlines are typically much longer.

Additionally, note that if you are given the opportunity to switch teams easily (like you are at Google and
Facebook), you'll have an opportunity to find a team and product that matches you well.

» Negotiation

Years ago, | signed up for a negotiations class. On the first day, the instructor asked us to imagine a scenario
where we wanted to buy a car. Dealership A sells the car for a fixed $20,000—no negotiating. Dealership B
allows us to negotiate. How much would the car have to be (after negotiating) for us to go to Dealership B?
(Quick! Answer this for yourself!)

On average, the class said that the car would have to be $750 cheaper. In other words, students were willing
to pay $750 just to avoid having to negotiate for an hour or so. Not surprisingly, in a class poli, most of these
students also said they didn't negotiate their job offer. They just accepted whatever the company gave
them.

Many of us can probably sympathize with this position. Negotiation isn't fun for most of us. But still, the
financial benefits of negotiation are usually worth it.

Do yourself a favor. Negotiate. Here are some tips to get you started.

1. JustDolt. Yes, | know it’s scary; (almost) no one likes negotiating. But it's so, so worth it. Recruiters will not
revoke an offer because you negotiated, so you have little to lose. This is especially true if the offer is from
a larger company. You probably won't be negotiating with your future teammates.

2. Have a Viable Alternative. Fundamentally, recruiters negotiate with you because they’re concerned you
may not join the company otherwise. If you have alternative options, that will make their concern much
more real.

3. Have a Specific "Ask”: It's more effective to ask for an additional $7000 in salary than to just ask for “more.”

84 Cracking the Coding Interview, 6th Edition

VIl | The Offer and Beyond

After all, if you just ask for more, the recruiter could throw in another $1000 and technically have satis-
fied your wishes.

4. Overshoot: In negotiations, people usually don’t agree to whatever you demand. It's a back and forth
conversation. Ask for a bit more than you're really hoping to get, since the company will probably meet
you in the middle.

5. Think Beyond Salary: Companies are often more willing to negotiate on non-salary components, since
boosting your salary too much could mean that they’re paying you more than your peers. Consider
asking for more equity or a bigger signing bonus. Alternatively, you may be able to ask for your reloca-
tion benefits in cash, instead of having the company pay directly for the moving fees. This is a great
avenue for many college students, whose actual moving expenses are fairly cheap.

6. Use Your Best Medium: Many people will advise you to only negotiate over the phone. To a certain extent,
they're right; it is better to negotiate over the phone. However, if you don’t feel comfortable on a phone
negotiation, do it via email. It's more important that you attempt to negotiate than that you do it via a
specific medium.

Additionally, if you're negotiating with a big company, you should know that they often have “levels” for
employees, where all employees at a particular level are paid around the same amount. Microsoft has a
particularly well-defined system for this. You can negotiate within the salary range for your level, but going
beyond that requires bumping up a level. If you're looking for a big bump, you'll need to convince the
recruiter and your future team that your experience matches this higher level—a difficult, but feasible,
thing to do.

» On thelJob

Navigating your career path doesn’t end at the interview. In fact, it’s just getting started. Once you actually
join a company, you need to start thinking about your career path. Where will you go from here, and how
will you get there?

Set a Timeline

It’s a common story: you join a company, and you're psyched. Everything is great. Five years later, you're still
there. And it's then that you realize that these last three years didn’t add much to your skill set or to your
resume. Why didn’t you just leave after two years?

When you're enjoying your job, it’s very easy to get wrapped up in it and not realize that your career is not
advancing. This is why you should outline your career path before starting a new job. Where do you want
to be in ten years? And what are the steps necessary to get there? In addition, each year, think about what
the next year of experience will bring you and how your career or your skill set advanced in the last year.

By outlining your path in advance and checking in on it regularly, you can avoid falling into this compla-
cency trap.

Build Strong Relationships

When you want to move on to something new, your network will be critical. After all, applying online is
tricky; a personal referral is much better, and your ability to do so hinges on your network.

At work, establish strong relationships with your manager and teammates. When employees leave, keep in
touch with them. Just a friendly note a few weeks after their departure will help to bridge that connection
from a work acquaintance to a personal acquaintance.

CrackingTheCodinglInterview.com | 6th Edition 85

VIl | The Offer and Beyond

This same approach applies to your personal life. Your friends, and your friends of friends, are valuable
connections. Be open to helping others, and they’ll be more likely to help you.

Ask for What You Want

While some managers may really try to grow your career, others will take a more hands-off approach. it’s up
to you to pursue the challenges that are right for your career.

Be (reasonably) frank about your goals with your manager. If you want to take on more back-end coding
projects, say so. If you'd like to explore more leadership opportunities, discuss how you might be able to
do so.

You need to be your best advocate, so that you can achieve goals according to your timeline.

Keep Interviewing

Set a goal of interviewing at least once a year, even if you aren’t actively looking for a new job. This will keep
your interview skills fresh, and also keep you in tune with what sorts of opportunities (and salaries) are out
there.

If you get an offer, you don't have to take it. It will still build a connection with that company in case you
want to join at a later date.

86 Cracking the Coding Interview, 6th Edition

| Interview Questions

{
’ IX

{

} Join us at www.CrackingTheCodinglnterview.com to download the complete solutions, contribute or view
! solutions in other programming languages, discuss problems from this book with other readers, ask questions,
15 report issues, view this book’s errata, and seek additional advice.

:

!

[

’

:

‘

!

Arrays and Strings

opefully, all readers of this book are familiar with arrays and strings, so we won't bore you with such
details. Instead, we'll focus on some of the more common techniques and issues with these data struc-
tures.

Please note that array questions and string questions are ofteninterchangeable. That is, a question that this
book states using an array may be asked instead as a string question, and vice versa.

» Hash Tables

A hash table is a data structure that maps keys to values for highly efficient lookup. There are a number of
ways of implementing this. Here, we will describe a simple but common implementation.

In this simple implementation, we use an array of linked lists and a hash code function. To insert a key
(which might be a string or essentially any other data type) and value, we do the following:

1. First, compute the key's hash code, which will usually be an int or 1ong. Note that two different keys
could have the same hash code, as there may be an infinite number of keys and a finite number of ints.

2. Then, map the hash code to an index in the array. This could be done with something like hash (key)
% array_length. Two different hash codes could, of course, map to the same index.

3. At this index, there is a linked list of keys and values. Store the key and value in this index. We must use a
linked list because of collisions: you could have two different keys with the same hash code, or two different
hash codes that map to the same index.

To retrieve the value pair by its key, you repeat this process. Compute the hash code from the key, and then
compute the index from the hash code. Then, search through the linked list for the value with this key.

If the number of collisions is very high, the worst case runtime is O(N), where N is the number of keys.
However, we generally assume a good implementation that keeps collisions to a minimum, in which case
the lookup time is O(1).

“hi”>—p1 0320 ———p 0 A F AL b
(rabc»_>980____——-> RO 1 s abc
1
“aa”—»897
“qs”—’397:; 2 - aa = gs
“pl”—’63 —| 3 > Dl

4

88 Cracking the Coding Interview, 6th Edition

Chapter 1 | Arrays and Strings

Alternatively, we can implement the hash table with a balanced binary search tree. This givesus anO(1og N)
lookup time. The advantage of this is potentially using less space, since we no longer allocate a large array. We
can also iterate through the keys in order, which can be useful sometimes.

» ArraylList & Resizable Arrays

In some languages, arrays (often called lists in this case) are automatically resizable. The array or list will
grow as you append items, In other languages, like Java, arrays are fixed length. The size is defined when
you create the array.

When you need an array-like data structure that offers dynamic resizing, you would usually use an ArrayList.
An ArrayList is an array that resizes itself as needed while still providing 0 (1) access. A typical implementa-
tion is that when the array is full, the array doubles in size. Each doubling takes O(n) time, but happens so
rarely that its amortized insertion time is stillO(1).
ArraylList<String> merge(String[] words, String[] more) {

ArrayList<String> sentence = new ArrayList<String>();

for (String w : words) sentence.add(w);

for (String w : more) sentence.add(w);

return sentence;

[+ AV 5 N PR SO S

}

This is an essential data structure for interviews. Be sure you are comfortable with dynamically resizable
arrays/lists in whatever language you will be working with. Note that the name of the data structure as well
as the “resizing factor” (which is 2 in Java) can vary.

Why is the amortized insertion runtime O(1)?

Suppose you have an array of size N. We can work backwards to compute how many elements we copied
at each capacity increase. Observe that when we increase the array to K elements, the array was previously
half that size. Therefore, we needed to copy %/ elements.

final capacity increase : n/2 elements to copy

previous capacity increase: n/4 elements to copy

previous capacity increase: n/8 elements to copy

previous capacity increase: n/16 elements to copy

second capacity increase : 2 elements to copy
first capacity increase : 1 element to copy

Therefore, the total number of copies to insert N elements is roughly B e i s W g e
1, which is just less than N.

§ If the sum of this series isn't obvious to you, imagine this: Suppose you have a kilometer-long
walk to the store. You walk 0.5 kilometers, and then 0.25 kilometers, and then 0.125 kilometers,
and so on. You will never exceed one kilometer (although you'll get very close to it).

Therefore, inserting N elements takes O(N) work total. Each insertion is 0(1) on average, even though
some insertions take O(N) time in the worst case.

» StringBuilder

Imagine you were concatenating a list of strings, as shown below. What would the running time of this code
be? For simplicity, assume that the strings are all the same length (call this X) and that there are n strings.

CrackingTheCodinglInterview.com | 6th Edition 89

Chapter 1 | Arrays and Strings

1 String joinwords(Stringf] words) {
2 String sentence = “7;

3 for (String w : words) {

4 sentence = sentence + w;

5 i

6 return sentence;

7}

On each concatenation, a new copy of the string is created, and the two strings are copied over, character
by character. The first iteration requires us to copy X characters. The second iteration requires copying 2X
characters. The third iteration requires 3%, and so on. The total time therefore isO(x + 2X + ... + nx).
This reduces to O(xn?).

5 Why isit O(xn?)? Becausel + 2 + ... + nequalsn(n+1)/2,or0O(n?).

StringBuilder can help you avoid this problem. StringBuilder simply creates a resizable array of all
the strings, copying them back to a string only when necessary.

1 String joinWords(String[] words) {

2 StringBuilder sentence = new StringBuilder();
3 for (String w : words) {

4 sentence.append(w);

5 }

6 return sentence.toString();

~

}

A good exercise to practice strings, arrays, and general data structures is to implement your own version of
StringBuilder,HashTable and ArrayList.

Additional Reading: Hash Table Collision Resolution (pg 636), Rabin-Karp Substring Search (pg 636).

Interview Questions

1.1 Is Unique: implement an algorithm to determine if a string has all unique characters. What if you
cannot use additional data structures?

Hints: #44, #117, #132

1.2 Check Permutation: Given two strings, write a method to decide if one is a permutation of the
other.
Hints: #1, #84, #122, #131
oy 18R
1.3 URLify: Write a method to replace all spaces in a string with ‘%20’ You may assume that the string
has sufficient space at the end to hold the additional characters, and that you are given the “true”

length of the string. (Note: If implementing in Java, please use a character array so that you can
perform this operation in place.)

EXAMPLE
Input: “Mr John Smith »”, 13

Output: “Mr%203ohn%20Smith”
Hints: #53, #118

90 Cracking the Coding Interview, 6th Edition

Chapter 1 | Arrays and Strings

1.4

1.5

1.6

1.7

1.8

1.9

Palindrome Permutation: Given a string, write a function to check if it is a permutation of a palin-
drome. A palindrome is a word or phrase that is the same forwards and backwards. A permutation
is a rearrangement of letters. The palindrome does not need to be limited to just dictionary words.

EXAMPLE

Input: Tact Coa

Output: True (permutations: “taco cat”, “atco cta”, etc.)
Hints: #106, #121, #134, #136

One Away: There are three types of edits that can be performed on strings: insert a character,
remove a character, or replace a character. Given two strings, write a function to check if they are
one edit (or zero edits) away.

EXAMPLE

pale, ple -> true
pales, pale -> true
pale, bale -> true
pale, bake -> false
Hints: #23, #97, #130

o 199

String Compression: Implement a method to perform basic string compression using the counts
of repeated characters. For example, the string aabcccccaaa would become a2b1c5a3. If the
“compressed” string would not become smaller than the original string, your method should return
the original string. You can assume the string has only uppercase and lowercase letters (a - z).
Hints: #92, #110

{1 L0
= S L

Rotate Matrix: Given an image represented by an NxN matrix, where each pixel in the image is 4
bytes, write a method to rotate the image by 90 degrees. Can you do this in place?

Hints: #51, #100

o 203

Zero Matrix: Write an algorithm such that if an element in an MxN matrix is 0, its entire row and
column are set to 0.

Hints: #17, #74, #102

String Rotation: Assume you have amethod i sSubstring which checks if one word is a substring
of another. Given two strings, s1 and s 2, write code to check if s 2 is a rotation of s1 using only one
callto isSubstring (eg. “waterbottle”is a rotation of “erbottlewat”).

Hints: #34, #88, #104

Additional Questions: Object-Oriented Design (#7.12), Recursion (#8.3), Sorting and Searching (#10.9), C++
(#12.11), Moderate Problems (#16.8, #16.17, #16.22), Hard Problems (#17.4, #17.7, #17.13, #17.22, #17.26).

Hints start on page 653.

CrackingTheCodinginterview.com | 6th Edition 91

Linked Lists

linked list is a data structure that represents a sequence of nodes. In a singly linked list, each node
points to the next node in the linked list. A doubly linked list gives each node pointers to both the next
node and the previous node.

The following diagram depicts a doubly linked list:

\
Y
\ 4

[
B>

1 < S S) 13 |e 7 e 3

Unlike an array, a linked list does not provide constant time access to a particular “index” within the list.
This means that if you'd like to find the Kth element in the list, you will need to iterate through K elements.

The benefit of a linked list is that you can add and remove items from the beginning of the list in constant
time. For specific applications, this can be useful.

» Creating a Linked List

The code below implements a very basic singly linked list.

1 class Node {

2 Node next = null;

3 int data;

a

5 public Node(int d) {

5 data = d;

7 }

8

g void appendToTail(int d) {
19 Node end = new Node(d);

il Node n = this;

12 while (n.next != null) {
13 n = n.next;

14 }

15 n.next = end;

16 }

i7 }

In this implementation, we don't have a LinkedList data structure. We access the linked list through a
reference to the head Node of the linked list, When you implement the linked list this way, you need to be
a bit careful. What if multiple objects need a reference to the linked list, and then the head of the linked list
changes? Some objects might still be pointing to the old head.

92 Cracking the Coding Interview, 6th Edition

Chapter 2 | Linked Lists

We could, if we chose, implement a LinkedList class that wraps the Node class. This would essentially
just have a single member variable: the head Node. This would largely resolve the earlier issue.

Remember that when you're discussing a linked list in an interview, you must understand whether it is a
singly linked list or a doubly linked list.

» Deleting a Node from a Singly Linked List

Deleting a node from a linked list is fairly straightforward. Given a node n, we find the previous node prev
and set prev.next equal to n.next. If the list is doubly linked, we must also update n.next to set
n.next.prev equal to n.prev. The important things to remember are (1) to check for the null pointer
and (2) to update the head or tail pointer as necessary.

Additionally, if you implement this code in C, C++ or another language that requires the developer to do
memory management, you should consider if the removed node should be deallocated.

1 Node deleteNode(Node head, int d) {

2 Node n = head;

3

4 if (n.data == d) {

5 return head.next; / *moved head */
6 }

7

8 while (n.next != null) {

9 if (n.next.data == d) {

18 n.next = n.next.next;

11 return head; / *head didn’t change */
12 }

13 n = n.next;

14 }

15 return head;

16 }

» The “Runner” Technique

The “runner” (or second pointer) technique is used in many linked list problems. The runner technique
means that you iterate through the linked list with two pointers simultaneously, with one ahead of the
other. The “fast” node might be ahead by a fixed amount, or it might be hopping multiple nodes for each
one node that the "slow” node iterates through.

For example, suppose you had a linked list a,->a,->...->a ->b ->b,->...->b_ and you wanted to
rearrangeitinto a,->b ->a,->b,->...->a ->b_.You do not know the length of the linked list (but you
do know that the length is an even number).

You could have one pointer p1 (the fast pointer) move every two elements for every one move that p2
makes. When p1 hits the end of the linked list, p2 will be at the midpoint. Then, move p1 back to the front
and begin “weaving” the elements. On each iteration, p2 selects an element and inserts it after p1.

» Recursive Problems
A number of linked list problems rely on recursion. If you're having trouble solving a linked list problem,

you should explore if a recursive approach will work. We won't go into depth on recursion here, since a later
chapter is devoted to it.

CrackingTheCodinginterview.com | 6th Edition 93

Chapter 2 | Linked Lists

However, you should remember that recursive algorithms take at least O(n) space, where n is the depth
of the recursive call. All recursive algorithms can be implemented iteratively, although they may be much
more complex.

Interview Questions

21

Remaove Dups: Write code to remove duplicates from an unsorted linked list.
FOLLOW UP

How would you solve this problem if a temporary buffer is not allowed?
Hints: #9, #40

2.2 Return Kth to Last: Implement an algorithm to find the kth to last element of a singly linked list.
Hints: #8, #25, #41, #67, #126
... s Bt
2.3 Delete Middle Node: Implement an algorithm to delete a node in the middle (i.e., any node but
the first and last node, not necessarily the exact middle) of a singly linked list, given only access to
that node.
EXAMPLE
Input: the node c from the linked lista->b->c->d->e->f
Result: nothing is returned, but the new linked list looks like a->b->d->e->f
Hints: #72
2.4 Partition: Write code to partition a linked list around a value X, such that all nodes less than x come
before all nodes greater than or equal to x. If x is contained within the list, the values of x only need
to be after the elements less than x (see below). The partition element x can appear anywhere in the
“right partition”; it does not need to appear between the left and right partitions.
EXAMPLE
Input: 3->5->8->5->10 -> 2 -> 1 [partition=75]
Output: 2 o>l =5 21 0=50lE) o5 5 =D 5 o
Hints: #3, #24
..... P 22
94 Cracking the Coding Interview, 6th Edition

Chapter 2 | Linked Lists

25

2.6

2.7

28

Sum Lists: You have two numbers represented by a linked list, where each node contains a single
digit. The digits are stored in reverse order, such that the 1's digit is at the head of the list. Write a
function that adds the two numbers and returns the sum as a linked list.

EXAMPLE

Input: (7-> 1 -> 6) + (5 -> 9 -> 2).Thatis,617 + 295.
Output:2 -> 1 -> 9.Thatis, 912.

FOLLOW UP

Suppose the digits are stored in forward order. Repeat the above problem.
EXAMPLE

Input: (6 -> 1 -> 7) + (2 -> 9 -> 5).Thatis, 617 + 295.
Output:9 -> 1 -> 2.Thatis, 912.

Hints: #7, #30, #71, #95, #109

pa2ia

Palindrome: Implement a function to check if a linked list is a palindrome.

Hints: #5, #13, #29, #61, #101

Intersection: Given two (singly) linked lists, determine if the two lists intersect. Return the inter-
secting node. Note that the intersection is defined based on reference, not value. That is, if the kth
node of the first linked list is the exact same node (by reference) as the jth node of the second
linked list, then they are intersecting.

Hints: #20, #45, #55, #65, #76, #93, #111, #120, #129

Loop Detection: Given a circular linked list, implement an algorithm that returns the node at the
beginning of the loop.

DEFINITION

Circular linked list: A (corrupt) linked list in which a node’s next pointer points to an earlier node, so
as to make a loop in the linked list.

EXAMPLE
Input: A ->B ->C ->D -> E -> C[thesameC as earlier]
Output: C

Hints: #50, #69, #83, #90

Additional Questions: Trees and Graphs (#4.3), Object-Oriented Design (#7.12), System Design and Scal-
ability (#9.5), Moderate Problems (#16.25), Hard Problems (#17.12).

Hints start on page 653.

CrackingTheCodinglnterview.com | 6th Edition 95

Stacks and Queues

uestions on stacks and queues will be much easier to handle if you are comfortable with the ins and
outs of the data structure. The problems can be quite tricky, though. While some problems may be
slight modifications on the original data structure, others have much more complex challenges.

» Implementing a Stack
The stack data structure is precisely what it sounds like: a stack of data. In certain types of problems, it can

be favorable to store data in a stack rather than in an array.

A stack uses LIFO (last-in first-out) ordering. That is, as in a stack of dinner plates, the most recent item
added to the stack is the first item to be removed.

It uses the following operations:

- pop (): Remove the top item from the stack.

» push(item):Add anitem to the top of the stack.

- peek(): Return the top of the stack.

-+ isEmpty(): Return true if and only if the stack is empty.

Unlike an array, a stack does not offer constant-time access to the ith item. However, it does allow constant-
time adds and removes, as it doesn’t require shifting elements around.

We have provided simple sample code to implement a stack. Note that a stack can also be implemented
using a linked list, if items were added and removed from the same side.

1 public class MyStack<T> {

2 private static class StackNode<T> {

3 private T data;

4 private StackNode<T> next;

5

& public StackNode(T data) {

& this.data = data;

8 }

9 }

18

11 private StackNode<T> top;

17

13 public T pop() {

14 if (top == null) throw new EmptyStackException();
it T item = top.data;

96 Cracking the Coding Interview, 6th Edition

Chapter 3 | Stacks and Queues

i6 top = top.next;

17 return item;

18 }

18

29 public void push(T item) {

21 StackNode<T> t = new StackNode<T>(item);
22 t.next = top;

23 top = t;

24 }

25

26 public T peek() {

2 if (top == null) throw new EmptyStackException();
28 return top.data;

29 }

3¢

31 public boolean isEmpty() {

32 return top == null;

3 }

34 }

One case where stacks are often useful is in certain recursive algorithms. Sometimes you need to push
temporary data onto a stack as you recurse, but then remove them as you backtrack (for example, because
the recursive check failed). A stack offers an intuitive way to do this.

A stack can also be used to implement a recursive algorithm iteratively. (This is a good exercise! Take a
simple recursive algorithm and implement it iteratively.)

» Implementing a Queue

A queue implements FIFO (first-in first-out) ordering. As in a line or queue at a ticket stand, items are
removed from the data structure in the same order that they are added.

It uses the operations:

« add(item):Add anitem to the end of the list.

« remove(): Remove the first item in the list.

« peek(): Return the top of the queue.

- isEmpty(): Return true if and only if the queue is empty.

A queue can also be implemented with a linked list. In fact, they are essentially the same thing, as long as
items are added and removed from opposite sides.

1 public class MyQueue<T> {

2 private static class QueueNode<T> {
& private T data;

4 private QueueNode<T> next;
5

6 public QueueNode(T data) {
7 this.data = data;

8 }

9 ¥

10

11 private QueueNode<T> first;
i1%4 private QueueNode<T> last;
i3

14 public void add(T item) {

CrackingTheCodinginterview.com | 6th Edition 97

Chapter 3 | Stacks and Queues

15
16
17
18
19
20
21
22
23
24
25,
26
27
28
29
30
31
32
33
34
35
26
37
38
33
49
41
42
43 }

QueueNode<T> t = new QueueNode<T>(item);
if (last !=null) {
last.next = t;
}
last = t;
if (first == null) {
first = last;
}
Ii

public T remove() {
if (first == null) throw new NoSuchElementException();
T data = first.data;
first = first.next;
if (first == null) {
last = null;
}
return data;

i

public T peek() {
if (first == null) throw new NoSuchElementException();
return first.data;

}

public boolean isEmpty() {
return first == null;
I

It is especially easy to mess up the updating of the first and last nodes in a queue. Be sure to double check

this.

One place where queues are often used is in breadth-first search or in implementing a cache.

In breadth-first search, for example, we used a queue to store a list of the nodes that we need to process.
Each time we process a node, we add its adjacent nodes to the back of the queue. This allows us to process

nodes in the order in which they are viewed.

Interview Questions

3.1

Three in One: Describe how you could use a single array to implement three stacks.
Hints: #2, #12, #38, #58

3.2 Stack Min: How would you design a stack which, in addition to push and pop, has a functionmin
which returns the minimum element? Push, pop and min should all operate in 0(1) time.
Hints: #27, #59, #78
98 Cracking the Coding Interview, 6th Edition

Chapter 3 | Stacks and Queues

3.3 Stack of Plates: Imagine a (literal) stack of plates. If the stack gets too high, it might topple.
Therefore, in real life, we would likely start a new stack when the previous stack exceeds some
threshold. Implement a data structure SetOfStacks that mimics this. SetOfStacks should be
composed of several stacks and should create a new stack once the previous one exceeds capacity.
SetOfStacks.push() and SetOfStacks.pop() should behave identically to a single stack
(that is, pop () should return the same values as it would if there were just a single stack).

FOLLOW UP
Implementa function popAt (int index) which performsa pop operation on a specific sub-stack.
Hints: #64, #81
PG 233
3.4 Queue via Stacks: Implement a MyQueue class which implements a queue using two stacks.

Hints: #98, #114

—— = e e Lne. & e PG 236

3.5 Sort Stack: Write a program to sort a stack such that the smallest items are on the top. You can use
an additional temporary stack, but you may not copy the elements into any other data structure
(such as an array). The stack supports the following operations: push, pop, peek, and i sEmpty.
Hints: #15, #32, #43
.. - : e e I+ ¢ 2= 7

3.6 AnimalShelter: An animal shelter, which holds only dogs and cats, operates on a strictly “first in, first
out” basis. People must adopt either the “oldest” (based on arrival time) of all animals at the shelter,
or they can select whether they would prefer a dog or a cat (and will receive the oldest animal of
that type). They cannot select which specific animal they would like. Create the data structures to
maintain this system and implement operations such as enqueue, dequeueAny, dequeueDog,
and dequeueCa't. You may use the built-in LinkedList data structure.

Hints: #22, #56, #63

... . . e e Sy [R LN
Additional Questions: Linked Lists (#2.6), Moderate Problems (#16.26), Hard Problems (#17.9).

Hints start on page 653.

CrackingTheCodinginterview.com | 6th Edition 99

Trees and Graphs

any interviewees find tree and graph problems to be some of the trickiest. Searching a tree is more
M complicated than searching in a linearly organized data structure such as an array or linked list. Addi-
tionally, the worst case and average case time may vary wildly, and we must evaluate both aspects of any
algorithm. Fluency in implementing a tree or graph from scratch will prove essential.

Because most people are more familiar with trees than graphs (and they're a bit simpler), we'll discuss trees
first. This is a bit out of order though, as a tree is actually a type of graph.

! Note: Some of the terms in this chapter can vary slightly across different textbooks and other
sources. If you're used to a different definition, that’s fine. Make sure to clear up any ambiguity
with your interviewer.

» Types of Trees
A nice way to understand a tree is with a recursive explanation. A tree is a data structure composed of
nodes.

- Each tree has a root node. (Actually, this isn't strictly necessary in graph theory, but it’s usually how we
use trees in programming, and especially programming interviews.)

» The root node has zero or more child nodes.
- Each child node has zero or more child nodes, and so on.

The tree cannot contain cycles. The nodes may or may not be in a particular order, they could have any data
type as values, and they may or may not have links back to their parent nodes.

A very simple class definition for Node is:
1 class Node {

2 public String name;
3 public Node[] children;
4}

You might also have a Tree class to wrap this node. For the purposes of interview questions, we typically
do not use a Tree class. You can if you feel it makes your code simpler or better, but it rarely does.

1 class Tree {

2 public Node root;

3 1}

100 Cracking the Coding Interview, 6th Edition

Chapter 4 | Trees and Graphs

Tree and graph questions are rife with ambiguous details and incorrect assumptions. Be sure to watch out
for the following issues and seek clarification when necessary.

Trees vs. Binary Trees

A binary tree is a tree in which each node has up to two children. Not all trees are binary trees. For example,
this tree is not a binary tree. You could call it a ternary tree.

There are occasions when you might have a tree that is not a binary tree. For example, suppose you were
using a tree to represent a bunch of phone numbers. In this case, you might use a 10-ary tree, with each
node having up to 10 children (one for each digit).

A node is called a”leaf” node if it has no children.

Binary Tree vs. Binary Search Tree

A binary search tree is a binary tree in which every node fits a specific ordering property: all left
descendents <= n < all right descendents. This must be true for each node n.

é The definition of a binary search tree can vary slightly with respect to equality. Under some defi-
nitions, the tree cannot have duplicate values. In others, the duplicate values will be on the right
or can be on either side. All are valid definitions, but you should clarify this with your interviewer.

Note that this inequality must be true for all of a node’s descendents, not just its immediate children. The
following tree on the left below is a binary search tree. The tree on the right is not, since 12 is to the left of 8.

A binary search tree. Not a binary search tree.

When given a tree question, many candidates assume the interviewer means a binary search tree. Be sure
to ask. A binary search tree imposes the condition that, for each node, its left descendents are less than or
equal to the current node, which is less than the right descendents.

Balanced vs. Unbalanced

While many trees are balanced, not all are. Ask your interviewer for clarification here. Note that balancing a
tree does not mean the left and right subtrees are exactly the same size (like you see under“perfect binary
trees” in the following diagram).

CrackingTheCodinginterview.com | 6th Edition 101

Chapter 4 | Trees and Graphs

One way to think about it is that a “balanced” tree really means something more like “not terribly imbal-
anced! It's balanced enough to ensure 0(1og n) times for insert and find, but it’s not necessarily as
balanced as it could be.

Two common types of balanced trees are red-black trees (pg 639) and AVL trees (pg 637). These are
discussed in more detail in the Advanced Topics section.
Complete Binary Trees

A complete binary tree is a binary tree in which every level of the tree is fully filled, except for perhaps the
last level. To the extent that the last level is filled, it is filled left to right.

not a complete binary tree a complete binary tree

Full Binary Trees

A full binary tree is a binary tree in which every node has either zero or two children. That is, no nodes have
only one child.

not a full binary tree afull binary tree

Perfect Binary Trees

A perfect binary tree is one that is both full and complete. All leaf nodes will be at the same level, and this
level has the maximum number of nodes.

Note that perfect trees are rare in interviews and in real life, as a perfect tree must have exactly 2X - 1 nodes
(where k is the number of levels). In an interview, do not assume a binary tree is perfect.

102 Cracking the Coding Interview, 6th Edition

Chapter 4 | Trees and Graphs

» Binary Tree Traversal

Prior to your interview, you should be comfortable implementing in-order, post-order, and pre-order
traversal. The most common of these is in-order traversal.

In-Order Traversal

In-order traversal means to “visit” (often, print) the left branch, then the current node, and finally, the right
branch.

1 void inOrderTraversal(TreeNode node) {
2 if (node !'= null) {

3 inOrderTraversal(node.left);

4 visit(node);

5 inOrderTraversal(node.right);

6

7

¥
K

When performed on a binary search tree, it visits the nodes in ascending order (hence the name “in-order”).

Pre-Order Traversal

Pre-order traversal visits the current node before its child nodes (hence the name “pre-order”).

1 void preOrderTraversal(TreeNode node) {
2 if (node != null) {

3 visit(node);

4 preOrderTraversal(node.left);

5 preOrderTraversal(node.right);

6 }

7}

In a pre-order traversal, the root is always the first node visited.

Post-Order Traversal

Post-order traversal visits the current node after its child nodes (hence the name “post-order”).

1 void postOrderTraversal(TreeNode node) {
2 if (node != null) {

3 postOrderTraversal(node.left);

a4 postOrderTraversal(node.right);

5 visit(node);

6 }

7}

In a post-order traversal, the root is always the last node visited.

» Binary Heaps (Min-Heaps and Max-Heaps)

We'll just discuss min-heaps here. Max-heaps are essentially equivalent, but the elements are in descending
order rather than ascending order.

A min-heap is a complete binary tree (that is, totally filled other than the rightmost elements on the last
level) where each node is smaller than its children. The root, therefore, is the minimum element in the tree.

CrackingTheCodinginterview.com | 6th Edition 103

Chapter 4 | Trees and Graphs

) @&

We have two key operations on a min-heap: insert and extract_min.
Insert

When we insert into a min-heap, we always start by inserting the element at the bottom. We insert at the
rightmost spot so as to maintain the complete tree property.

Then, we “fix” the tree by swapping the new element with its parent, until we find an appropriate spot for
the element. We essentially bubble up the minimum element.

Step 1:Insert 2 Step 2: Swap 2 and 7 Step 3: Swap 2 and 4

FoPe Fos ¢

This takes O(log n) time, where n is the number of nodes in the heap.

6 @

Extract Minimum Element

Finding the minimum element of a min-heap is easy: it's always at the top. The trickier part is how to remove
it. (In fact, this isn't that tricky.)

First, we remove the minimum element and swap it with the last element in the heap (the bottommost,
rightmost element). Then, we bubble down this element, swapping it with one of its children until the min-
heap property is restored.

Do we swap it with the left child or the right child? That depends on their values. There’s no inherent
ordering between the left and right element, but you’ll need to take the smaller one in order to maintain
the min-heap ordering.

Step 1: Replace min with 80 Step 2: Swap 23 and 80 Step 3: Swap 32 and 80

This algorithm will also take 0(log n) time.

104 Cracking the Coding Interview, 6th Edition

Chapter 4 | Trees and Graphs

» Tries (Prefix Trees)

A trie (sometimes called a prefix tree) is a funny data structure. It comes up a lot in interview questions, but
algorithm textbooks don’t spend much time on this data structure.

A trie is a variant of an n-ary tree in which characters are stored at each node. Each path down the tree may
represent a word.

The * nodes (sometimes called “null nodes”) are often used to indicate complete words. For example, the
fact that there is a * node under MANY indicates that MANY is a complete word. The existence of the MA path
indicates there are words that start with MA.

The actual implementation of these * nodes might be a special type of child (such as a
TerminatingTrieNode, which inherits from TrieNode). Or, we could use just a boolean flag
terminates within the “parent” node.

A node in a trie could have anywhere from 1 through ALPHABET_SIZE + 1 children (or, O through
ALPHABET_SIZE if a boolean flag is used instead of a * node).

Very commonly, a trie is used to store the entire (English) language for quick prefix lookups. While a hash
table can quickly look up whether a string is a valid word, it cannot tell us if a string is a prefix of any valid
words. A trie can do this very quickly.

é How quickly? A trie can check if a string is a valid prefixin O(K) time, where K is the length of the

string. This is actually the same runtime as a hash table will take. Although we often refer to hash

table lookups as being 0(1) time, this isn’t entirely true. A hash table must read through all the
characters in the input, which takes O(K) time in the case of a word lookup.

Many problems involving lists of valid words leverage a trie as an optimization. In situations when we search
through the tree on related prefixes repeatedly (e.g., looking up M, then MA, then MAN, then MANY), we might
pass around a reference to the current node in the tree. This will allow us to just check if Y is a child of MAN,
rather than starting from the root each time.

» Graphs

Atreeis actually a type of graph, but not all graphs are trees. Simply put, a tree is a connected graph without
cycles.

A graph is simply a collection of nodes with edges between (some of) them.

- Graphs can be either directed (like the following graph) or undirected. While directed edges are like a

CrackingTheCodinginterview.com | 6th Edition 105

Chapter 4 | Trees and Graphs

one-way street, undirected edges are like a two-way street.

- The graph might consist of multiple isolated subgraphs. If there is a path between every pair of vertices,
itis called a“connected graph.”

- The graph can also have cycles (or not). An “acyclic graph”is one without cycles.

Visually, you could draw a graph like this:

In terms of programming, there are two common ways to represent a graph.

Adjacency List

This is the most common way to represent a graph. Every vertex (or node) stores a list of adjacent vertices.
In an undirected graph, an edge like (a, b) would be stored twice: once in a’s adjacent vertices and once
in b's adjacent vertices.

A simple class definition for a graph node could look essentially the same as a tree node.

1 class Graph {
public Node[] nodes;
}

class Node {
public String name;
public Node[] children;

D NN A WN

}

The Graph class is used because, unlike in a tree, you can't necessarily reach all the nodes from a single node.

You don't necessarily need any additional classes to represent a graph. An array (or a hash table) of lists
(arrays, arraylists, linked lists, etc.) can store the adjacency list. The graph above could be represented as:

0: 1
1: 2
2: 0, 3
3: 2
4: 6
5: 4
E3 5

This is a bit more compact, but it isn't quite as clean. We tend to use node classes unless there’s a compelling
reason not to.

Adjacency Matrices

An adjacency matrix is an NxN boolean matrix (where N is the number of nodes), where a true value at
matrix[i][j] indicates an edge from node i to node j.(You can also use an integer matrix with Os and
1)

In an undirected graph, an adjacency matrix will be symmetric. In a directed graph, it will not (necessarily)
be.

106 Cracking the Coding Interview, 6th Edition

Chapter 4 | Trees and Graphs

1 0| O
0 1 0
e e 0)j0}]oO
0 1 0

The same graph algorithms that are used on adjacency lists (breadth-first search, etc,) can be performed
with adjacency matrices, but they may be somewhat less efficient. In the adjacency list representation, you
can easily iterate through the neighbors of a node. In the adjacency matrix representation, you will need to
iteratethrough all the nodes to identify a node’s neighbors.

» Graph Search

The two most common ways to search a graph are depth-first search and breadth-first search.

In depth-first search (DFS), we start at the root (or another arbitrarily selected node) and explore each
branch completely before moving on to the next branch. That is, we go deep first (hence the name depth-
first search) before we go wide.

In breadth-first search (BFS), we start at the root (or another arbitrarily selected node) and explore each
neighbor before going on to any of their children. That is, we go wide (hence breadth-first search) before
we go deep.

See the below depiction of a graph and its depth-first and breadth-first search (assuming neighbors are
iterated in numerical order).

Graph Depth-First Search Breadth-First Search
1 Node © 1 Node ©
2 Node 1 2 Node 1
3 Node 3 3 Node 4
4 Node 2 4 Node 5
5 Node 4 5 Node 3
6 Node 5 6 Node 2

Breadth-first search and depth-first search tend to be used in different scenarios. DFS is often preferred if we
want to visit every node in the graph. Both will work just fine, but depth-first search is a bit simpler.

However, if we want to find the shortest path (or just any path) between two nodes, BFS is generally better.
Consider representing all the friendships in the entire world in a graph and trying to find a path of friend-
ships between Ash and Vanessa.

In depth-first search, we could take a path like Ash -> Brian -> Carleton -> Davis -> Eric
-> Farah -> Gayle -> Harry -> Isabella -> John -> Kari..and then find ourselves very
far away. We could go through most of the world without realizing that, in fact, Vanessa isAsh’sfriend. We
will still eventually find the path, but it may take a long time. It also won't find us the shortest path.

In breadth-first search, we would stay close to Ash for as long as possible. We might iterate through many
of Ash’s friends, but we wouldn’t go to his more distant connections until absolutely necessary. If Vanessa
is Ash’sfriend, or his friend-of-a-friend, we’'ll find this out relatively quickly.

CrackingTheCodinglinterview.com | 6th Edition 107

Chapter 4 | Trees and Graphs

Depth-First Search (DFS)

In DFS, we visit a node a and then iterate through each of a’s neighbors. When visiting a node b that is a
neighbor of a, we visit all of b’s neighbors before going on to a‘s other neighbors. That is, a exhaustively
searches b’s branch before any of its other neighbors.

Note that pre-order and other forms of tree traversal are a form of DFS. The key difference is that when
implementing this algorithm for a graph, we must check if the node has been visited. If we don't, we risk
getting stuck in an infinite loop.

The pseudocode below implements DFS.

1 void search(Node root) {

2 if (root == null) return;

3 visit(root);

4 root.visited = true;

5 for each (Node n in root.adjacent) {
6 if (n.visited == false) {

7 search(n);

8 }

9 }

10 }

Breadth-First Search (BFS)

BFS is a bit less intuitive, and many interviewees struggle with the implementation unless they are already
familiar with it. The main tripping point is the (false) assumption that BFS is recursive. It's not. Instead, it
uses a queue.

In BFS, node a visits each of a’s neighbors before visiting any of their neighbors. You can think of this as
searching level by level out from a. An iterative solution involving a queue usually works best.

1 void search(Node root) {

2 Queue queue = new Queue();

3 root.marked = true;

4 queue.enqueue(root); // Add to the end of queue
5i

6 while (!queue.isEmpty()) {

7 Node r = queue.dequeue(); // Remove from the front of the queue
8 visit(r);

9 foreach (Node n in r.adjacent) {

10 if (n.marked == false) {

11 n.marked = true;

12 queue.enqueue(n);

1%} }

14 }

15 }

16 }

If you are asked to implement BFS, the key thing to remember is the use of the queue. The rest of the algo-
rithm flows from this fact.

Bidirectional Search

Bidirectional search is used to find the shortest path between a source and destination node. It operates
by essentially running two simultaneous breadth-first searches, one from each node. When their searches
collide, we have found a path.

108 Cracking the Coding Interview, 6th Edition

Chapter 4 | Trees and Graphs

Breadth-First Search Bidirectional Search
Single search from s to t that Two searches (one from s and one from t) that
collides after four levels. collide after four levels total (two levels each).

To see why this is faster, consider a graph where every node has at most k adjacent nodes and the shortest
path from node s to node t has length d.

In traditional breadth-first search, we would search up to k nodes in the first “level” of the search. In the

second level, we would search up to k nodes for each of those first k nodes, so k? nodes total (thus far).
We would do this d times, so that’s 0(k?) nodes.

In bidirectional search, we have two searches that collide after approximately d//z levels (the midpoint

of the path). The search from s visits approximately k%2, as does the search from t. That's approximately
2 k%2, or 0(k%?), nodes total.

This might seem like a minor difference, but it's not. It's huge. Recall that (k%2)*(k%?) = k9. The bidirec-
tional search is actually faster by a factor of k%/2.

Put another way: if our system could only support searching “friend of friend” paths in breadth-first search,
it could now likely support “friend of friend of friend of friend” paths. We can support paths that are twice
as long.

Additional Reading: Topological Sort (pg 632), Dijkstra’s Algorithm (pg 633), AVL Trees (pg 637), Red-
Black Trees (pg 639).

Interview Questions

4.1

4.2

4.3

Route Between Nodes: Given a directed graph, design an algorithm to find out whether there is a
route between two nodes.

Hints: #127

oz 244
Minimal Tree: Given a sorted (increasing order) array with unique integer elements, write an algo-
rithm to create a binary search tree with minimal height.
Hints: #19, #73, #116
g 242

List of Depths: Given a binary tree, design an algorithm which creates a linked list of all the nodes
at each depth (e.g., if you have a tree with depth D, you'll have D linked lists).

Hints: #107, #123, #135

— — i R T = 4

CrackingTheCodinglnterview.com | 6th Edition 109

Chapter 4 | Trees and Graphs

4.4

4.5

4.6

4.7

4.8

4.9

Check Balanced: Implement a function to check if a binary tree is balanced. For the purposes of
this question, a balanced tree is defined to be a tree such that the heights of the two subtrees of any
node never differ by more than one.

Hints: #21, #33, #49, #105, #124

Validate BST: Implement a function to check if a binary tree is a binary search tree.
Hints: #35, #57, #86, #113, #128

Successor: Write an algorithm to find the “next” node (i.e., in-order successor) of a given node in a
binary search tree. You may assume that each node has a link to its parent.

Hints: #79, #91

s TR A
LAk L

Build Order: You are given a list of projects and a list of dependencies (which is a list of pairs of
projects, where the second project is dependent on the first project). All of a project’s dependencies
must be built before the project is. Find a build order that will allow the projects to be built. If there
is no valid build order, return an error.

EXAMPLE
Input:
projects: a, b, ¢, d, e, f
dependencies: (a, d), (f, b), (b, d), (f, a), (d, c)
Output: ¥, e, a, b, d, c
Hints: #26, #47, #60, #85, #125, #133

0 250

First Common Ancestor: Design an algorithm and write code to find the first common ancestor
of two nodes in a binary tree. Avoid storing additional nodes in a data structure. NOTE: This is not
necessarily a binary search tree.

Hints: #10, #16, #28, #36, #46, #70, #80, #96

BST Sequences: A binary search tree was created by traversing through an array from left to right
and inserting each element. Given a binary search tree with distinct elements, print all possible
arrays that could have led to this tree.

EXAMPLE

Input:

Output: {2, 1, 3},{2, 3, 1}
Hints: #39, #48, #66, #82
s

110

Cracking the Coding Interview, 6th Edition

Chapter 4 | Trees and Graphs

4.10

4.11

4.12

Check Subtree: T1 and T2 are two very large binary trees, with T1 much bigger than T2. Create an
algorithm to determine if T2 is a subtree of T1.

Atree T2 is a subtree of T1 if there exists a noden in T1 such that the subtree of n isidentical to T2.
That is, if you cut off the tree at node n, the two trees would be identical.

Hints: #4, #11, #18, #31, #37

Random Node: You are implementing a binary tree class from scratch which, in addition to
insert, find, and delete, has a method getRandomNode () which returns a random node
from the tree. All nodes should be equally likely to be chosen. Design and implement an algorithm
for getRandomNode, and explain how you would implement the rest of the methods.

Hints: #42, #54, #62, #75, #89, #99, #112, #119

S 268

Paths with Sum: You are given a binary tree in which each node contains an integer value (which
might be positive or negative). Design an algorithm to count the number of paths that sum to a
given value. The path does not need to start or end at the root or a leaf, but it must go downwards
(traveling only from parent nodes to child nodes).

Hints: #6, #14, #52, #68, #77, #87, #94, #103, #108, #115

Additional Questions: Recursion (#8.10), System Design and Scalability (#9.2, #9.3), Sorting and Searching
(#10.10), Hard Problems (#17.7, #17.12, #17.13, #17.14, #17.17, #17.20, #17.22, #17.25).

Hints start on page 653.

CrackingTheCodinglInterview.com | 6th Edition 111

Bit Manipulation

it manipulation is used in a variety of problems. Sometimes, the question explicitly calls for bit manipu-
lation. Other times, it’s simply a useful technique to optimize your code. You should be comfortable
doing bit manipulation by hand, as well as with code. Be careful; it's easy to make little mistakes.

» Bit Manipulation By Hand

If you're rusty on bit manipulation, try the following exercises by hand. The items in the third column can be
solved manually or with “tricks” (described below). For simplicity, assume that these are four-bit numbers.

If you get confused, work them through as a base 10 number. You can then apply the same process to a
binary number. Remember that ~ indicates an XOR, and ~ is a NOT (negation).

0110 + 0010 @011 * @101 0110 + 0110
9011 + 0010 0011 * 0011 9100 * 0011
0110 - 0011 1101 >> 2 1101 ~ (~1101)
1000 - 0110 1101 ~ 0101 1011 & (~0 << 2)

Solutions: line 1 (1000, 1111, 1100); line 2 (0101, 1001, 1100); line 3 (0011, 0011, 1111); line 4 (0010, 1000, 1000).

The tricks in Column 3 are as follows:
1. 9110 + 011@is equivalentto©110 * 2, which is equivalent to shifting 110 left by 1.
2. 0100 equals 4, and multiplying by 4 is just left shifting by 2. So we shift 8011 left by 2 to get 1100.

3. Thinkabout this operation bit by bit. If you XOR a bit with its own negated value, you will always get 1.
Therefore, the solution to a”~ (~a) will be a sequence of 1s.

4. ~@isasequence of 1s,50 ~@ << 2is 1s followed by two 0s. ANDing that with another value will clear
the last two bits of the value.

If you didn't see these tricks immediately, think about them logically.

» Bit Facts and Tricks

The following expressions are useful in bit manipulation. Don't just memorize them, though; think deeply
about why each of these is true. We use “1s” and “0s” to indicate a sequence of 1s or Os, respectively.

X ~ 0s = x x & @s = @ x | @s = x
X A 1s = ~x x & 1s = x x | 1s = 1s
X ~x=@ X & X = X x | x = x

112 Cracking the Coding Interview, 6th Edition

Chapter 5 | Bit Manipulation

To understand these expressions, recall that these operations occur bit-by-bit, with what's happening on
one bit never impacting the other bits. This means that if one of the above statements is true for a single bit,
then it’s true for a sequence of bits.

» Two’s Complement and Negative Numbers

Computers typically store integers in two's complement representation. A positive number is represented
as itself while a negative number is represented as the two's complement of its absolute value (with a 1 iniits
sign bit toindicatethat a negative value). The two’s complement of an N-bit number (whereN is the number
of bits used for the number, excluding the sign bit) is the complement of the number with respect to 2".

Let’s look at the 4-bit integer -3 as an example. If it's a 4-bit number, we have one bit for the sign and three
bits for the value. We want the complement with respect to 23, which is 8. The complement of 3 (the abso-
lute value of -3) with respect to 8 is 5. 5 in binary is 101. Therefore, -3 in binary as a 4-bit numberis 1101,
with the first bit being the sign bit.

In other words, the binary representation of -K (negative K) as a N-bit numberis concat (1, 2"* - K).

Another way to look at this is that we invert the bits in the positive representation and then add 1. 3 is 011
in binary. Flip the bits to get 100, add 1 to get 101, then prepend the sign bit (1) to get 1101.

In a four-bit integer, this would look like the following.

Positive Values

7 |e 111 e ok
6 |e 110 =2 It
s |e 101 -3 |2
4 |e 100 o
3 |e e11 L T
2 |e e1e -6 |1
1 |e ee1 =2 s
@ |o eo0

Observe that the absolute values of the integers on the left and right always sum to 22, and that the binary
values on the left and right sides are identical, other than the sign bit. Why is that?

» Arithmetic vs. Logical Right Shift

There are two types of right shift operators. The arithmetic right shift essentially divides by two. The logical
right shift does what we would visually see as shifting the bits. This is best seen on a negative number.

In a logical right shift, we shift the bits and put a @ in the most significant bit. It is indicated with a >>>
operator. On an 8-bit integer (where the sign bit is the most significant bit), this would look like the image
below. The sign bit is indicated with a gray background.

CrackingTheCodinginterview.com | 6th Edition 113

Chapter 5 | Bit Manipulation

In an arithmetic right shift, we shift values to the right but fill in the new bits with the value of the sign bit.
This has the effect of (roughly) dividing by two. It is indicated by a >> operator.

0Oj1|1]0j1]0]|1] =75
0 liliﬂili() =-38

What do you think these functions would do on parameters X = -93242 and count = 407

1 int repeatedArithmeticShift(int x, int count) {
2 for (int 1 = @; i < count; i++) {

3 x >>= 1; // Arithmetic shift by 1

4 }

5 return x;

6 }

7

8 int repeatedlLogicalShift(int x, int count) {
93 for (int i = ©; 1 < count; i++) {

1e X >>>= 1; // Logical shift by 1

i1 }

3122 return Xx;

13 3}

With the logical shift, we would get @ because we are shifting a zero into the most significant bit repeatedly.

With the arithmetic shift, we would get -1 because we are shifting a one into the most significant bit
repeatedly. A sequence of all 1s in a (signed) integer represents -1.

» Common Bit Tasks: Getting and Setting

The following operations are very important to know, but do not simply memorize them. Memorizing leads
to mistakes that are impossible to recover from. Rather, understand how to implement these methods, so
that you can implement these, and other, bit problems.

Get Bit

This method shifts 1 over by i bits, creating a value that looks like 20010000. By performing an AND with
num, we clear all bits other than the bit at bit i. Finally, we compare that to ©. If that new value is not zero,
then bit i must have a 1. Otherwise, bit 1 is a 0.

1 boolean getBit(int num, int i) {

2 return ((num & (1 << 1)) !=10);
3}
Set Bit

SetBit shifts 1 over by i bits, creating a value like 000100080. By performing an OR with num, only the
value at bit 1 will change. All other bits of the mask are zero and will not affect num.

1 int setBit(int num, int i) {

2 return num | (1 << i);

3}

114 Cracking the Coding Interview, 6th Edition

Chapter 5 | Bit Manipulation

Clear Bit

Thismethodoperatesin almost the reverse of setBi t. First, we create a number like 11101111 by creating
the reverse of it (00010000) and negating it. Then, we perform an AND with num. This will clear the ith bit
and leave the remainder unchanged.

1 int clearBit(int num, int i) {

2 int mask = ~(1 << 1);
3 return num & mask;
4 }

To clear all bits from the most significant bit through i (inclusive), we create a mask with a 1 at the ith bit (1
<< 1).Then, we subtract 1 from it, giving us a sequence of @s followed by i 1s. We then AND our number
with this mask to leave just the last i bits.

1 int clearBitsMSBthroughI(int num, int i) {

2 int mask = (1 << 1) - 1;
3 return num & mask;
4}

To clear all bits from i through 0 (inclusive), we take a sequence of all 1s (which is -1) and shift it left by i
+ 1 bits. This gives us a sequence of 1s (in the most significant bits) followed by i © bits.

1 int clearBitsIthrough@(int num, int i) {

2 int mask = (-1 << (i + 1));
3 return num & mask;

&)

Update Bit

To set the ith bit to a value v, we first clear the bit at position i by using a mask that looks like 11161111.
Then, we shift the intended value, v, left by i bits. This will create a number with bit i equal to v and all
other bits equal to 0. Finally, we OR these two numbers, updating