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Preface

[A book] is a node within a network.

Michel Foucault (1926–1984), The Archaeology of Knowledge

Intended Audience

As the title of this book suggests, a modern book on financial engineering has to
cover investment theory, financial mathematics, and computer science evenly. This
interdisciplinary emphasis is tuned more to the capital markets wherever quantita-
tive analysis is being practiced. After all, even economics has moved away from a
time when “the bulk of [Alfred Marshall’s] potential readers were both unable and
unwilling to read economics in mathematical form” according to Viner (1892–1970)
[860] toward the new standard of which Markowitz wrote in 1987, “more than half
my students cannot write down the formal definition of [the limit of a sequence]”
[642].

This text is written mainly for students of engineering and the natural sciences
who want to study quantitative finance for academic or professional reasons. No
background in finance is assumed. Years of teaching students of business adminis-
tration convince me that technically oriented MBA students will benefit from the
book’s emphasis on computation. With a sizable bibliography, the book can serve as
a reference for researchers.

This text is also written for practitioners. System analysts will find many compact
and useful algorithms. Portfolio managers and traders can obtain the quantitative
underpinnings for their daily activities. This work also serves financial engineers in
their design of financial instruments by expounding the underlying principles and
the computational means to pricing them.

The marketplace has already offered several excellent books on derivatives (e.g.,
[236, 470, 514, 746, 878]), financial engineering (e.g., [369, 646, 647]), financial theory
(e.g., [290, 492]), econometrics (e.g., [147]), numerical techniques (e.g., [62, 215]),
and financial mathematics (e.g., [59, 575, 692, 725]). There are, however, few books
that come near to integrating the wide-ranging disciplines. I hope this text succeeds
at least partially in that direction and, as a result, one no longer has to buy four or
five books to get good coverage of the topics.
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xiv Preface

Presentation

This book is self-contained. Technically sophisticated undergraduates and graduates
should be able to read it on their own. Mathematical materials are added where they
are needed. In many instances, they provide the coupling between earlier chapters
and upcoming themes. Applications to finance are generally added to set the stage.
Numerical techniques are presented algorithmically and clearly; programming them
should therefore be straightforward. The underlying financial theory is adequately
covered, as understanding the theoryunderlying the calculations is critical tofinancial
innovations.

The large number of exercises is an integral part of the text. Exercises are placed
right after the relevant materials. Hints are provided for the more challenging ones.
There are also numerous programming assignments. Those readers who aspire to be-
come software developers can learn a lot by implementing the programming assign-
ments. Thoroughly test your programs. The famous adage of Hamming (1916–1998),
“The purpose of computing is insight, not numbers,” does not apply to erroneous
codes. Answers to all nontrivial exercises and some programming assignments can
be found near the end of the book.

Most of the graphics were produced withMathematica [882]. The programs that
generate the data for the plots have been written in various languages, including C,
C++, Java, JavaScript, Basic, and Visual Basic. It is a remarkable fact that most – if
not all – of the programming works could have been done with spreadsheet software
[221, 708]. Some computing platforms admit the integration of the spreadsheet’s
familiar graphical user interface and programs written in more efficient high-level
programming languages [265]. Although such a level of integration requires certain
sophistication, it is a common industry practice. Freehand graphics were createdwith
Canvas and Visio.

The manuscript was typeset in LATEX [580], which is ideal for a work of this size
and complexity. I thank Knuth and Lamport for their gifts to technical writers.

Software

Many algorithms in the book have been programmed. However, instead of being
bundledwith the book in disk,my software isWeb-centric and platform-independent
[412]. Anymachine running aWorldWideWeb browser can serve as a host for those
programs on The Capitals page at

www.csie.ntu.edu.tw/∼lyuu/capitals.html
There is no more need for the (rare) author to mail the upgraded software to the
readerbecause theoneon theWebpage is alwaysup todate.This newwayof software
development and distribution, made possible by the Web, has turned software into
an Internet service.

Organization

Here is a grand tour of the book:

Chapter 1 sets the stage and surveys the evolution of computer technology.



Preface xv

Chapter 2 introduces algorithm analysis and measures of complexity. My con-
vention for expressing algorithms is outlined here.

Chapter 3 contains a relatively complete treatment of standard financial mathe-
matics, starting from the time value of money.

Chapter 4 covers the important concepts of duration and convexity.

Chapter 5 goes over the static term structure of interest rates. The coverage of
classic, static finance theory ends here.

Chapter 6 marks the transition to stochastic models with coverage of statistical
inference.

Chapters 7--12 are about options and derivatives. Chapter 7 presents options and
basic strategieswithoptions.Chapter 8 introduces thearbitrageargument andderives
general pricing relations.Chapter 9 is a key chapter. It covers option pricing under the
discrete-time binomial option pricingmodel. The celebratedBlack–Scholes formulas
are derived here, and algorithms for pricing basic options are presented. Chapter 10
presents sensitivity measures for options. Chapter 11 covers the diverse applications
and kinds of options. Additional derivative securities such as forwards and futures
are treated in Chap. 12.

Chapters 13--15 introduce the essential ideas in continuous-time financial math-
ematics. Chapter 13 covers martingale pricing and Brownian motion, and Chap. 14
moves on to stochastic integration and the Ito process. Together they give a fairly
complete treatment of the subjects at an accessible level. From time to time, we go
back to discrete-time models and establish the linkage. Chapter 15 focuses on the
partial differential equations that derivative securities obey.

Chapter 16 covers hedging by use of derivatives.

Chapters 17--20 probe deeper into various technical issues. Chapter 17 investi-
gates binomial and trinomial trees. One of themotives here is to demonstrate the use
of combinatorics in designing highly efficient algorithms. Chapter 18 covers numer-
ical methods for partial differential equations, Monte Carlo simulation, and quasi–
Monte Carlo methods. Chapter 19 treats computational linear algebra, least-squares
problems, and splines. Factor models are presented as an application. Chapter 20
introduces financial time series analysis as well as popular time-series models.

Chapters 21--27 are related to interest-rate-sensitive securities. Chapter 21 sur-
veys the wide varieties of interest rate derivatives. Chapter 22 discusses yield curve
fitting. Chapter 23 introduces interest rate modeling and derivative pricing with the
elementary, yet important, binomial interest rate tree. Chapter 24 lays themathemat-
ical foundations for interest rate models, and Chaps. 25 and 26 sample models from
the literature. Finally, Chap. 27 covers fixed-income securities, particularly those with
embedded options.

Chapters 28--30 are concerned with mortgage-backed securities. Chapter 28 in-
troduces the basic ideas, institutions, and challenging issues. Chapter 29 investigates
the difficult problem of prepayment and pricing. Chapter 30 surveys collateralized
mortgage obligations.



xvi Preface

Chapter 31 discusses the theory and practice of portfoliomanagement. In partic-
ular, it presents modern portfolio theory, the Capital Asset Pricing Model, the Arbi-
trage Pricing Theory, and value at risk.

Chapter 32 documents the Web software developed for this book.

Chapter 33 contains answers or pointers to all nontrivial exercises.

This book ends with an extensive index. There are two guiding principles behind
its structure. First, related concepts should be grouped together. Second, the index
should facilitate search. An entry containing parentheses indicates that the term
within should be consulted instead, first at the current level and, if not found, at the
outermost level.
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CHAPTER
ONE

Introduction

But the age of chivalry is gone. That of sophisters, oeconomists, and
calculators, has succeeded; and the glory of Europe is extinguished
for ever.

Edmund Burke (1729–1797), Reflections on the Revolution
in France

1.1 Modern Finance: A Brief History

Modern finance began in the 1950s [659, 666]. The breakthroughs of Markowitz,
Treynor, Sharpe, Lintner (1916–1984), and Mossin led to the Capital Asset Pric-
ing Model in the 1960s, which became the quantitative model for measuring risk.
Another important influence of research on investment practice in the 1960s was
the Samuelson–Fama efficient markets hypothesis, which roughly says that security
prices reflect information fully and immediately. Themost important development in
terms of practical impact, however, was the Black–Scholes model for option pricing
in the 1970s. This theoretical framework was instantly adopted by practitioners. Op-
tion pricing theory is one of the pillars of finance and has wide-ranging applications
[622, 658]. The theory of option pricing can be traced toLouisBachelier’s Ph.D. thesis
in 1900, “Mathematical Theory of Speculation.” Bachelier (1870–1946) developed
much of themathematics underlyingmodern economic theories on efficientmarkets,
random-walk models, Brownian motion [ahead of Einstein (1879–1955) by 5 years],
and martingales [277, 342, 658, 776].1

1.2 Financial Engineering and Computation

Today, the wide varieties of financial instruments dazzle even the knowledgeable.
Individuals and corporations can trade, in addition to stocks and bonds, options,
futures, stock index options, and countless others. When it comes to diversifica-
tion, one has thousands of mutual funds and exchange-traded funds to choose from.
Corporations and local governments increasingly use complex derivative securities
to manage their financial risks or even to speculate. Derivative securities are finan-
cial instruments whose values depend on those of other assets. All are the fruits of
financial engineering, which means structuring financial instruments to target in-
vestor preferences or to take advantage of arbitrage opportunities [646].

1



2 Introduction

The innovations in the financial markets are paralleled by equally explosive
progress in computer technology. In fact, one cannot think of modern financial
systems without computers: automated trading, efficient bookkeeping, timely clear-
ing and settlements, real-time data feed, online trading, day trading, large-scale
databases, and tracking and monitoring of market conditions [647, 866]. These
applications deal with information. Structural changes and increasing volatility in
financial markets since the 1970s as well as the trend toward greater complexity
in financial product design call for quantitative techniques. Today, most investment
houses use sophisticated models and software on which their traders depend. Here,
computers are used to model the behavior of financial securities and key indicators,
price financial instruments, and find combinations of financial assets to achieve
results consistent with risk exposures. The confidence in such models in turn leads
to more financial innovations and deeper markets [659, 661]. These topics are the
focus of financial computation.

Onemust keep inmind that every computation is based on input and assumptions
made by the model. However, input might not be accurate enough or complete,
and the assumptions are, at best, approximations.2 Computer programs are also
subject to errors (“bugs”). These factors easily defeat any computation. Despite
these difficulties, the computer’s capability of calculating with fine details and trying
out vast numbers of scenarios is a tremendous advantage. Harnessing this power and
a good understanding of the model’s limitations should steer us clear of blind trust
in numbers.

1.3 Financial Markets

A society improves its welfare through investments. Business owners need out-
side capital for investments because even projects of moderate sizes are beyond
the reach of most wealthy individuals. Governments also need funds for public in-
vestments. Much of that money is channeled through the financial markets from
savers to borrowers. In so doing, the financial markets provide a link between sav-
ing and investment,3 and between the present and the future. As a consequence,
savers can earn higher returns from their savings instead of hoarding them, borrow-
ers can execute their investment plans to earn future profits, and both are better off.
The economy also benefits by acquiring better productive capabilities as a result.
Financial markets therefore facilitate real investments by acting as the sources of
information.

Afinancialmarket typically takes its name from theborrower’s sideof themarket:
the government bond market, the municipal bond market, the mortgage market,
the corporate bond market, the stock market, the commodity market, the foreign
exchange (forex) market,4 the futures market, and so on [95, 750]. Within financial
markets, there are two basic types of financial instruments: debt and equity. Debt
instruments are loans with a promise to repay the funds with interest, whereas equity
securities are shares of stock in a company. As an example, Fig. 1.1 traces the U.S.
marketsofdebt securities between1985and1999.Financialmarkets areoftendivided
intomoney markets, which concentrate on short-term debt instruments, and capital
markets, which trade in long-term debt (bonds) and equity instruments (stocks)
[767, 799, 828].



1.3 Financial Markets 3

Outstanding U.S. Debt Market Securities (U.S. $ billions)

Agency U.S. Fed Money Asset-
Year Municipal Treasury MBSs corporate agencies market backed Total

1985 859.5 1,360.2 372.1 719.8 293.9 847.0 2.4 4,454.9
1986 920.4 1,564.3 534.4 952.6 307.4 877.0 3.3 5,159.4
1987 1,010.4 1,724.7 672.1 1,061.9 341.4 979.8 5.1 5,795.4
1988 1,082.3 1,821.3 749.9 1,181.2 381.5 1,108.5 6.8 6,331.5
1989 1,135.2 1,945.4 876.3 1,277.1 411.8 1,192.3 59.5 6,897.6
1990 1,184.4 2,195.8 1,024.4 1,333.7 434.7 1,156.8 102.2 7,432.0
1991 1,272.2 2,471.6 1,160.5 1,440.0 442.8 1,054.3 133.6 7,975.0
1992 1,302.8 2,754.1 1,273.5 1,542.7 484.0 994.2 156.9 8,508.2
1993 1,377.5 2,989.5 1,349.6 1,662.1 570.7 971.8 179.0 9,100.2
1994 1,341.7 3,126.0 1,441.9 1,746.6 738.9 1,034.7 205.0 9,634.8
1995 1,293.5 3,307.2 1,570.4 1,912.6 844.6 1,177.2 297.9 10,403.5
1996 1,296.0 3,459.0 1,715.0 2,055.9 925.8 1,393.8 390.5 11,235.0
1997 1,367.5 3,456.8 1,825.8 2,213.6 1,022.6 1,692.8 518.1 12,097.2
1998 1,464.3 3,355.5 2,018.4 2,462.0 1,296.5 1,978.0 632.7 13,207.4
1999 1,532.5 3,281.0 2,292.0 3,022.9 1,616.5 2,338.2 746.3 14,829.4

Figure 1.1: U.S. debt markets 1985–1999. The Bond Market Association estimates. Sources: Federal Home Loan
Mortgage Corporation, Federal National Mortgage Association, Federal Reserve System, Government National
Mortgage Association, Securities Data Company, and U.S. Treasury. MBS, mortgage-backed security.

Borrowers and savers can trade directly with each other through the financial
markets or direct loans. However, minimum-size requirements, transactions costs,
and costly evaluation of the assets in question often prohibit direct trades. Such
impediments are remedied by financial intermediaries. These are financial institu-
tions that act as middlemen to transfer funds from lenders to borrowers; unlike most
firms, they hold only financial assets [660]. Banks, savings banks, savings and loan
associations, credit unions, pension funds, insurance companies, mutual funds, and
money market funds are prominent examples. Financial intermediaries can lower
the minimum investment as well as other costs for savers.

Financial markets can be divided further into primary markets and secondary
markets. The primary market is often merely a fictional, not a physical, location.
Governments andcorporations initially sell securities –debtor equity – in theprimary
market. Such sales can be done by means of public offerings or private placements.
A syndicate of investment banks underwrites the debt and the equity by buying
them from the issuing entities and then reselling them to the public. Sometimes the
investment bankers work on a best-effort basis to avoid the risk of not being able to
sell all the securities. Subsequently people trade those instruments in the secondary
markets, such as the New York Stock Exchange. Existing securities are exchanged
in the secondary market.

The existence of the secondary market makes securities more attractive to in-
vestors by making them tradable after their purchases. It is the very idea that created
the secondary market in mortgages in 1970 by asset securitization [54]. Securitiza-
tion converts assets into traded securities with the assets pledged as collaterals, and
these assets can often be removed from the balance sheet of the bank. In so doing,
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financial intermediaries transform illiquid assets into liquid liabilities [843]. By mak-
ing mortgages more attractive to investors, the secondary market also makes them
more affordable to home buyers. In addition to mortgages, auto loans, credit card
receivables, senior bank loans, and leases have all been securitized [330]. Securitiza-
tion has fundamentally changed the credit market by making the capital market a
major supplier of credit, a role traditionally held exclusively by the banking system.

1.4 Computer Technology

Computer hardware has been progressing at an exponential rate. Measured by the
widely accepted integer Standard Performance Evaluation Corporation (SPEC)
benchmarks, the workstations improved their performance by 49% per year be-
tween 1987 and 1997. The memory technology is equally impressive. The dynamic
random-access memory (DRAM) has quadrupled its capacity every 3 years since
1977. Relative performance per unit cost of technologies from vacuum tube to tran-
sistor to integrated circuit to very-large-scale-integrated (VLSI) circuit is a factor of
2,400,000 between 1951 and 1995 [717].

Some milestones in the industry include the IBM/360 mainframe, followed by
Digital’s minicomputers. (Digital was acquired by Compaq in 1998.) The year 1963
saw the first supercomputer, built by Cray (1926–1996) at the Control Data Corpo-
ration. Apple II of 1977 is generally considered to be the first personal computer.
It was overtaken by the IBM Personal Computer in 1981, powered by Intel mi-
croprocessors and Microsoft’s disk operating system (DOS) [638, 717]. The 1980s
also witnessed the emergence of the so-calledmassively parallel computers, some of
which had more than 65,000 processors [487]. Parallel computers have also been ap-
plied to database applications [247, 263] and pricing complex financial instruments
[528, 794, 891]. Because commodity components offer the best performance/cost
ratio, personal computers connected by fast networks have been uprooting niche
parallel machines from most of their traditional markets [24, 200].

On the software side, high-level programming languages dominate [726]. Al-
though they are easier to program with than low-level languages, it remains difficult
to design and maintain complex software systems. In fact, in the 1960s, the software
cost of the IBM/360 system already dominated its hardware cost [872]. The current
trend has been to use the object-oriented principles to encapsulate as much infor-
mation as possible into the so-called objects [101, 466]. This makes software easier
to maintain and develop. Object-oriented software development systems are widely
available [178].

The revolution fostered by the graphical user interface (GUI) brought comput-
ers to the masses. The omnipotence of personal computers armed with easy-to-use
interfaces enabled employees to have access to information and to bypass several
layers of management [140]. It also paved the way for the client/server concept [736].

Client/server systems consist of components that are logically distributed rather
than centralized (see Fig. 1.2). Separate components therefore can be optimized
based on their functions, boosting the overall performance/cost ratio. For instance,
the three-tier client/server architecture contains three parts: user interface, com-
puting (application) server, and data server [310]. Because the user interface de-
mands fewer resources, it can run on lightly configured computers. Best of all, it can
potentially be made platform independent, thus offering maximum availability of the
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Figure 1.2: Client/server architecture. In a typical three-tier
client/server architecture, client machines are connected to
the computing server, which in turn is connected to the data
server. As the bulk of the computation is with the computing
server and the bulk of the data access is with the data server,
the client computer can be lightly equipped.

server applications, thanks to Internet-induced developments in the mid-1990s. The
servermachines, on the other hand, can be powerfulmultiprocessors for the comput-
ing servers and machines with high disk throughputs for the data servers. The typical
World Wide Web (WWW) architecture, for instance, is a three-tier client/server sys-
tem consisting of the browser,Web server, and database server. The object-oriented
methodology and client/server architecture can be profitably combined for financial
computation [626, 867].
Database management systems are the backbone of information systems

[497, 871]. With products from Computer Associates, IBM, Informix, Microsoft,
Oracle, and Sybase, the database scenery is dominated by the relational database
model invented by Codd at IBM in 1970 [216]. In a relational database, data are
organized as two-dimensional tables. Consider the following table for storing daily
interest rate data.

Attribute Null? Type

maturity NOT NULL CHAR(10)
ratedate NOT NULL DATE
rate — DECIMAL(15,8)

Name the table yieldcurve. The structured query language (SQL)5 statement below
can be used to retrieve the two-year U.S. Treasury yield as of December 1, 1994,

SELECT rate FROM yieldcurve
WHERE maturity = ’2YR’ AND ratedate = ’1994-12-01’

SQL can also be embedded into general-purpose programming languages. The ad-
vancement in the capability of low-cost personal computers and the release of truly
multitasking operating systems for them (IBM’s OS/2, Microsoft’sWindows NT, and
Linux) brought client/server database systems to the masses [1, 182, 688, 888]. How-
ever, by 1996, the relational database market started to be affected by the Internet
momentum [311].
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Prototyped in 1991 by Berners-Lee, the WWW is a global information system
that provides easy access to Internet resources [63]. It quickly sparked a revolution
in the use of the Internet for communications, information, and businesses [655]. A
personal computer with access to theWWW – typically through a graphical browser
from Microsoft or Netscape (part of America Online) – opens up a window to a
world that can be described only as awesome: shopping, stock and bond quotes,
online stock trading, up-to-date and historical financial data, financial analysis soft-
ware, online versions ofmajor newspapers andmagazines, academic research results,
journal archives and preprints, to mention just a few. The WWW can also form the
information network within corporations, or intranet [733]. The surge of the WWW
was one of the major reasons behind the Internet’s growing from fewer than 500,000
hosts to more than 10 million between 1990 and 1996 [63, 655] (that number stood at
93 million as of July 2000). In 1998, 100 million people were using the Internet [852].
Even software development strategies were fundamentally changed [488]. These
amazing developments are currently reshaping the business and the financial worlds
[13, 338, 498, 831].

NOTES

1. Bachelier remained obscure until approximately 1960 when his major work was translated into
English. His career problem seems to stem from some technical errors and the topic of his
dissertation [637]. “The topic is somewhat remote from those our candidates are in the habit
of treating,” wrote his advisor, Poincaré (1854–1912) [277]. This is not the first time that ideas
in economics have influenced other sciences [426, 660], the most celebrated being Malthus’s
simultaneous influence on Darwin and Wallace in 1838 [648].

2. Two Nobel laureates in economics, Merton and Scholes, helped found the hedge fund company,
Long-TermCapitalManagement (LTCM). The firm’s tools were “computers and powerfulmath-
ematics, not intuition nor inside information” [869]. The company underwent a U.S.$3.6 billion
forced bailout by 14 commercial and investment banks in September 1998.

3. Distinction is often made between real and financial investments. What economists mean by
investment is the sort that produces real capital formation such as plants, land, and machinery
[778]. Investments in this bookwill be of the financial kind as opposed to the real kindmentioned
above. They involve only papers such as stocks and bonds [797].

4. The forex market is the world’s largest financial market, in which an estimated U.S.$1.5 trillion
was traded in April 1998 [51]. Players are the major commercial and investment banks, with their
traders connected by computers, telephones, and other telecommunication equipment [767].

5. The most widely used database language, SQL [315] is derived from SEQUEL (for Structured
English QUEry Language), which was designed and implemented at IBM.



CHAPTER
TWO

Analysis of Algorithms

In computer science there is no history of critical experiments that
decide between the validity of various theories, as there are in phy-
sical sciences.

Juris Hartmanis [421]

Algorithms are precise procedures that can be turned into computer programs. A
classical example is Euclid’s algorithm, which specifies the exact steps toward com-
puting the greatest common divisor. Problems such as the greatest common divisor
are therefore said to be computable, whereas those that do not admit algorithms are
uncomputable. A computable problem may have complexity so high that no effi-
cient algorithms exist. In this case, it is said to be intractable. The difficulty of pricing
certain financial instruments may be linked to their intrinsic complexity [169].

The hardest part of software implementation is developing the algorithm [264].
Algorithms in this book are expressed in an informal style called a pseudocode. A
pseudocode conveys the algorithmic ideas without getting tied up in syntax. Pseu-
docode programs are specified in sufficient detail as to make their coding in a pro-
gramming language straightforward. This chapter outlines the conventions used in
pseudocode programs.

2.1 Complexity

Precisely predicting the performance of a program is difficult. It depends on such
diverse factors as the machine it runs on, the programming language it is written in,
the compiler used to generate the binary code, the workload of the computer, and
so on. Although the actual running time is the only valid criterion for performance
[717], we need measures of complexity that are machine independent in order to
have a grip on the expected performance.

We start with a set of basic operations that are assumed to take one unit of
time. Logical comparisons (≤, =, ≥, and so on) and arithmetic operations of finite
precision (+, −, ×, /, exponentiation, logarithm, and so on) are among them. The
total number of these operations is then used as the total work done by an algorithm,
called its computational complexity. Similarly, the space complexity is the amount
of memory space used by an algorithm. The purpose here is to concentrate on the
abstract complexity of an algorithm instead of its implementation, which involves
so many details that we can never fully take them into account. Complexity serves

7



8 Analysis of Algorithms

Algorithm for searching an element:

input: x, n, Ai (1≤ i ≤ n);
integer k;
for (k= 1 to n)

if [ x = Ak ] return k;
return not-found;

Figure 2.1: Sequential search algorithm.

as a good guide to an algorithm’s actual running time. Because space complexity
is seldom an issue in this book, the term complexity is used to refer exclusively to
computational complexity.

The complexity of an algorithm is expressed as a function of the size of its input.
Consider the search algorithm in Fig. 2.1. It looks for a given element by comparing
it sequentially with every element in an array of length n. Apparently the worst-case
complexity is n comparisons, which occurs when the matching element is the last
element of the array orwhen there is nomatch. There are other operations to be sure.
The for loop, for example, uses a loop variable k that has to be incremented for each
execution of the loop and compared against the loop bound n. We do not need to
count them because we care about the asymptotic growth rate, not the exact number
of operations; the derivation of the latter can be quite involved, and its effects on
real-world performance cannot be pinpointed anyway [37, 227]. The complexity from
maintaining the loop is therefore subsumedby the complexity of the body of the loop.

2.2 Analysis of Algorithms

We are interested in worst-case measures. It is true that worst cases may not occur
in practice. But an average-case analysis must assume a distribution on the input,
whose validity is hard to certify. To further suppress unnecessary details, we are
concerned with the rate of growth of the complexity only as the input gets larger,
ignoring constant factors and small inputs. The focus is on the asymptotic growth
rate, as mentioned in Section 2.1.

Let R denote the set of real numbers, R+ the set of positive real numbers, and
N= { 0, 1, 2, . . . , }. The followingdefinition lays out thenotationneeded to formulate
complexity.

DEFINITION 2.2.1 We say that g = O( f ) if g(n)≤ c f (n) for some nonnegative c and
sufficiently large n, where f, g : N→ R+.

EXAMPLE 2.2.2 The base of a logarithm is not important for asymptotic analysis
because

loga x =
loge x
loge a

= O(loge x),

where e = 2.71828 . . . . We abbreviate loge x as ln x.

EXAMPLE 2.2.3 Let f (n)= n3 and g(n)= 3.5×n2+ lnn+ sinn. Clearly, g = O( f ) be-
cause g(n) is less than n3 for sufficiently large n. On the other hand, f �= O(g).

Denote the input size by N. An algorithm runs in logarithmic time if its complex-
ity is O(log N). An algorithm runs in linear time if its complexity is O(N). The
sequential search algorithm in Fig. 2.1, for example, has a complexity of O(N)
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because it has N= n+ 2 inputs and carries out O(n) operations. A complexity
of O(N log N) typifies sorting and various divide-and-conquer types of algorithms.
An algorithm runs in quadratic time if its complexity is O(N2). Many elementary
matrix computations such as matrix–vector multiplication have this complexity. An
algorithm runs in cubic time if its complexity is O(N3). Typical examples are matrix–
matrix multiplication and solving simultaneous linear equations. An algorithm runs
in exponential time if its complexity is O(2N). Problems that require exponential time
are clearly intractable. It is possible for an exponential-time algorithm to perform
well on “typical” inputs, however. The foundations for computational complexity
were laid in the 1960s [710].

➤ Exercise 2.2.1 Show that f + g = O( f ) if g = O( f ).

➤ Exercise 2.2.2 Prove the following relations: (1)
∑n
i=1 i = O(n2), (2)

∑n
i=1 i

2 =
O(n3), (3)

∑log2 n
i=0 2i = O(n), (4)

∑α log2 n
i=0 2i = O(nα), (5) n

∑n
i=0 i

−1 = O(n lnn).

2.3 Description of Algorithms

Universally accepted mathematical symbols are respected. Therefore +, −, ×, /, <,
>, ≤, ≥, and = mean addition, subtraction, and so on. The symbol := denotes as-
signment. For example, a := b assigns the value of b to the variable a. The statement
return a says that a is returned by the algorithm.

The construct

for (i = a to b) { · · · }
means that the statements enclosed in braces ({ and }) are executed b− a+ 1 times,
with i equal to a, a+ 1, . . . ,b, in that order. The construct

for (i = a down to b) { · · · }
means the statements enclosed in braces are executed a−b+ 1 times, with i equal
to a, a− 1, . . . ,b, in that order. The construct

while [ S ] { · · · }
executes the statements enclosed in braces until the condition S is violated. For
example, while [ a = b ] { · · · } runs until a is not equal to b. The construct

if [ S ] { T1 } else { T2 }
executes T1 if the expression S is true and T2 if the expression S is false. The
statement break causes the current for loop to exit. The enclosing brackets can be
dropped if there is only a single statement within.

The construct a[n ] allocates an array of n elements a[ 0 ], . . . , a[n− 1 ]. The
construct a[n ][m ] allocates the following n×m array (note that the indices start
from zero, not one):

a[ 0 ][ 0 ] · · · a[ 0 ][m− 1 ]
...

. . .
...

a[n− 1 ][ 0 ] · · · a[n− 1 ][m− 1 ]

.

Although the zero-based indexing scheme is more convenient in many cases, the
one-based indexing scheme may be preferred in others. So we use a[ 1..n ][ 1..m ]
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to denote an array with the following n×m elements,

a[ 1 ][ 1 ], a[ 1 ][ 2 ], . . . , a[n ][m− 1 ], a[n ][m ].

Symbols such as a[ ] and a[ ][ ] are used to reference the entire array. Anything
following // is treated as comment.

2.4 Software Implementation

Implementation turns an algorithm into a computer program on specific computer
platforms. Design, coding, debugging, and module testing are all integral parts of
implementation.1 A key to a productive software project is the reuse of code,
either from previous projects or commercial products [650]. The current trend to-
ward object-oriented programming and standardization promises to promote soft-
ware reuse.

The choice of algorithms in software projects has to be viewed within the context
of a larger system. The overall system design might limit the choices to only a few
alternatives [791]. This constraint usually arises from the requirements of other parts
of the system and very often reflects the fact that most pieces of code are written for
an existing system [714].

I now correct a common misconception about the importance of performance.
People tend to think that a reduction of the running time from, say, 10 s to 5 s is not
as significant as that from 10 min to 5 min. This view rests on the observation that a
5-s difference is not as critical as a 5-min difference. This is wrong. A 5-s difference
can be easily turned into a 5-min difference if there are 60 such tasks to perform. A
significant reduction in the running time for an important problem is always desirable.

Finally, a word of caution on the term recursion. Computer science usually re-
serves the word for the way of attacking a problem by solving smaller instances of the
same problem. Take sorting a list of numbers as an example. One recursive strategy
is to sort the first half of the list and the second half of the list separately before
merging them. Note that the two sorting subproblems are indeed smaller in size than
the original problem. Consistent with most books in finance, however, in this book
the term “recursion” is used loosely to mean “iteration.” Adhering to the strict com-
puter science usage will usually result in problem formulations that lead to highly
inefficient pricing algorithms.

NOTE

1. Software errors can be costly. For example, they were responsible for the crash of the maiden
flight of the Ariane 5 that was launched on June 4, 1996, at a cost of half a billion U.S. dollars
[606].

Probably only a person with some mathematical
knowledge would think of beginning with 0 instead of
with 1.

Bertrand Russell (1872–1970), Introduction to
Mathematical Philosophy



CHAPTER
THREE

Basic Financial Mathematics

In the fifteenth century mathematics was mainly concerned with
questionsof commercial arithmetic and theproblemsof thearchitect.

Joseph Alois Schumpeter (1883–1950), Capitalism, Socialism
and Democracy

To put a value on any financial instrument, the first step is to look at its cash flow.
As we are most interested in the present value of expected cash flows, three features
stand out: magnitudes and directions of the cash flows, times when the cash flows
occur, and an appropriate factor to discount the cash flows. This chapter deals with
elementaryfinancialmathematics. The following convenient time linewill be adopted
throughout the chapter:

✲

Time 0 Time 1 Time 2 Time 3 Time 4

Period 1 Period 2 Period 3 Period 4

3.1 Time Value of Money

Interest is the cost of borrowing money [785, 787]. Let r be the annual interest rate.
If the interest is compounded once per year, the future value (FV) of P dollars after
n years is FV= P(1+ r)n. To look at it from another perspective, FV dollars n years
from now is worth P = FV× (1+ r)−n today, its present value (PV).1 The process
of obtaining the present value is called discounting.

In general, if interest is compounded m times per annum, the future value is

FV= P
(
1+ r
m

)nm
. (3.1)

Hence, [ 1+ (r/m) ]m− 1 is the equivalent annual rate compounded once per annum
or simply the effective annual interest rate. In particular, we have annual compound-
ing with m= 1, semiannual compounding with m= 2, quarterly compounding with
m= 4, monthly compounding with m= 12, weekly compounding with m= 52, and
daily compounding with m= 365. Two widely used yields are the bond-equivalent
yield (BEY) (the annualized yieldwith semiannual compounding) and themortgage-
equivalent yield (MEY) (the annualized yield with monthly compounding).

11



12 Basic Financial Mathematics

An interest rate of r compounded m times a year is equivalent to an interest
rate of r/m per 1/m year by definition. If a loan asks for a return of 1% per month,
for example, the annual interest rate will be 12% with monthly compounding.

EXAMPLE 3.1.1 With an annual interest rate of 10% compounded twice per annum,
each dollar will grow to be [ 1+ (0.1/2) ]2 = 1.1025 1 year from now. The rate is
therefore equivalent to an interest rate of 10.25% compounded once per annum.

EXAMPLE 3.1.2 An insurance company has to pay $20 million 4 years from now to
pensioners. Suppose that it can invest money at an annual rate of 7% compounded
semiannually. Because the effective annual rate is [ 1+ (0.07/2) ]2− 1= 7.1225%, it
should invest 20,000,000× (1.071225)−4 = 15,188,231 dollars today.

As m approaches infinity and [ 1+ (r/m) ]m→ er , we obtain continuous com-
pounding:

FV= Pern,
where e = 2.71828. We call scheme (3.1) periodic compounding to differentiate it
from continuous compounding. Continuous compounding is easier to work with. For
instance, if the annual interest rate is r1 for n1 years and r2 for the following n2
years, the future value of $1 will be er1n1+r2n2 .

➤ Exercise 3.1.1 Verify that, given an annual rate, the effective annual rate is higher
the higher the frequency of compounding.

➤ Exercise 3.1.2 Below is a typical credit card statement:

NOMINAL ANNUAL PERCENTAGE RATE (%) 18.70
MONTHLY PERIODIC RATE (%) 1.5583

Figure out the frequency of compounding.

➤ Exercise 3.1.3 (1) It wasmentioned in Section 1.4 thatworkstations improved their
performanceby54%peryearbetween1987and1992and that theDRAMtechnology
has quadrupled its capacity every 3 years since 1977.What are their respective annual
growth rates with continuous compounding? (2) The number of requests received by
the National Center for Supercomputing Applications (NCSA)WWW servers grew
from ∼300,000 per day in May 1994 to ∼500,000 per day in September 1994. What
is the growth rate per month (compounded monthly) during this period?

3.1.1 Efficient Algorithms for Present and Future Values

The PV of the cash flow C1,C2, . . . ,Cn at times 1, 2, . . . ,n is

C1

1+ y +
C2

(1+ y)2 + · · ·+
Cn

(1+ y)n .

It can be computed by the algorithm in Fig. 3.1 in time O(n), as the bulk of the
computation lies in the four arithmetic operations during each execution of the loop
that is executed n times. We can save one arithmetic operation within the loop
by creating a new variable, say z, and assigning 1+ y to it before the loop. The
statement d := d× (1+ y) can then be replaced with d := d× z. Such optimization
is often performed by modern compilers automatically behind the scene. This lends
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Algorithm for evaluating present value:

input: y,n,Ct (1≤ t ≤ n);
real x,d;
x := 0;
d := 1+ y;
for (i = 1 to n) {

x := x+ (Ci/d);
d := d× (1+ y);

}
return x;

Figure 3.1: Algorithm for PV. C t are the cash flows,
y is the interest rate, and n is the term of the
investment. We can easily verify that the variable d
is equal to (1+ y)i at the beginning of the for loop.
As a result, the variable x becomes the partial sum∑i

t=1 C t (1+ y)−t at the end of each loop. This
proves the correctness of the algorithm.

support to the earlier argument for asymptotic analysis: In a complex environment
in which many manipulations are being done without our knowing them, the best we
can do is often the asymptotics.

One further simplification is to replace the loop with the following statement:

for (i = n down to 1) { x := (x+Ci )/d; }.
The above loop computes the PV by means of{

· · ·
[(

Cn
1+ y +Cn−1

)
1

1+ y +Cn−2
]

1
1+ y + · · ·

}
1

1+ y .

This idea, which is due to Horner (1786–1837) in 1819 [582], is the most efficient
possible in terms of the absolute number of arithmetic operations [103].

Computing the FV is almost identical to the algorithm in Fig. 3.1. The following
changes to that algorithm are needed: (1) d is initialized to 1 instead of 1+ y,
(2) i should start from n and run down to 1, and (3) x := x+ (Ci/d) is replacedwith
x := x+ (Ci ×d).
➤ Exercise 3.1.4 Prove the correctness of the FV algorithm mentioned in the text.

3.1.2 Conversion between Compounding Methods

We can compare interest rates with different compounding methods by convert-
ing one into the other. Suppose that r1 is the annual rate with continuous com-
pounding and r2 is the equivalent rate compounded m times per annum. Then
[ 1+ (r2/m) ]m = er1 . Therefore

r1 = m ln
(
1+ r2
m

)
, (3.2)

r2 = m
(
er1/m− 1

)
. (3.3)

EXAMPLE 3.1.3 Consider an interest rate of 10% with quarterly compounding. The
equivalent rate with continuous compounding is

4× ln
(
1+ 0.1

4

)
= 0.09877, or 9.877%,

derived from Eq. (3.2) with m= 4 and r2 = 0.1.
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For n compounding methods, there is a total of n(n− 1) possible pairwise con-
versions. Such potentially huge numbers of cases invite programming errors. Tomake
that numbermanageable, we can fix a ground case, say continuous compounding, and
then convert rates to their continuously compounded equivalents before any com-
parison. This cuts the number of possible conversions down to the more desirable
2(n− 1).

3.1.3 Simple Compounding

Besides periodic compounding and continuous compounding (hence compound in-
terest), there is a different scheme for computing interest called simple compounding
(hence simple interest). Under this scheme, interest is computed on the original prin-
cipal. Suppose that P dollars is borrowed at an annual rate of r . The simple interest
each year is Pr .

3.2 Annuities

An ordinary annuity pays out the same C dollars at the end of each year for n years.
With a rate of r , the FV at the end of the nth year is

n−1∑
i=0
C(1+ r)i = C (1+ r)n− 1

r
. (3.4)

For the annuity due, cash flows are received at the beginning of each year. The FV is

n∑
i=1
C(1+ r)i = C (1+ r)n− 1

r
(1+ r). (3.5)

If m payments of C dollars each are received per year (the general annuity), then
Eqs. (3.4) and (3.5) become

C

(
1+ r

m

)nm− 1
r
m

, C

(
1+ r

m

)nm− 1
r
m

(
1+ r
m

)
,

respectively. Unless stated otherwise, an ordinary annuity is assumed from now on.
The PV of a general annuity is

PV=
nm∑
i=1
C
(
1+ r
m

)−i
= C 1− (1+ r

m

)−nm
r
m

. (3.6)

EXAMPLE 3.2.1 The PV of an annuity of $100 per annum for 5 years at an annual
interest rate of 6.25% is

100× 1− (1.0625)−5

0.0625
= 418.387

based on Eq. (3.6) with m= 1.
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EXAMPLE 3.2.2 Suppose that an annuity pays $5,000 per month for 9 years with an
interest rate of 7.125% compounded monthly. Its PV, $397,783, can be derived from
Eq. (3.6) with C = 5000, r = 0.07125, n= 9, and m= 12.

An annuity that lasts forever is called a perpetual annuity. We can derive its PV
from Eq. (3.6) by letting n go to infinity:

PV= mC
r
. (3.7)

This formula is useful for valuing perpetual fixed-coupon debts [646]. For example,
consider a financial instrument promising to pay $100 once a year forever. If the
interest rate is 10%, its PV is 100/0.1= 1000 dollars.

➤ Exercise 3.2.1 Derive the PV formula for the general annuity due.

3.3 Amortization

Amortization is a method of repaying a loan through regular payments of interest
and principal. The size of the loan – the original balance – is reduced by the principal
part of the payment. The interest part of the payment pays the interest incurred on
the remaining principal balance. As the principal gets paid down over the term of
the loan,2 the interest part of the payment diminishes.

Home mortgages are typically amortized. When the principal is paid down con-
sistently, the risk to the lender is lowered. When the borrower sells the house, the
remaining principal is due the lender. The rest of this section considers mainly the
equal-payment case, i.e., fixed-rate level-payment fully amortized mortgages, com-
monly known as traditional mortgages.

EXAMPLE 3.3.1 A home buyer takes out a 15-year $250,000 loan at an 8.0% interest
rate. Solving Eq. (3.6) with PV= 250000, n= 15, m= 12, and r = 0.08 gives a
monthly payment of C = 2389.13. The amortization schedule is shown in Fig. 3.2.
We can verify that in every month (1) the principal and the interest parts of the
payment add up to $2,389.13, (2) the remaining principal is reduced by the amount
indicated under the Principal heading, and (3) we compute the interest by multiply-
ing the remaining balance of the previous month by 0.08/12.

Remaining
Month Payment Interest Principal principal

250,000.000
1 2,389.13 1,666.667 722.464 249,277.536
2 2,389.13 1,661.850 727.280 248,550.256
3 2,389.13 1,657.002 732.129 247,818.128

· · ·
178 2,389.13 47.153 2,341.980 4,730.899
179 2,389.13 31.539 2,357.591 2,373.308
180 2,389.13 15.822 2,373.308 0.000

Total 430,043.438 180,043.438 250,000.000

Figure 3.2: An amortization schedule. See Example 3.3.1.
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Suppose that the amortization schedule lets the lender receive m payments a
year for n years. The amount of each payment is C dollars, and the annual interest
rate is r . Right after the kth payment, the remaining principal is the PV of the future
nm−k cash flows:

nm−k∑
i=1
C
(
1+ r
m

)−i
= C 1− (1+ r

m

)−nm+k
r
m

. (3.8)

For example, Eq. (3.8) generates the same remaining principal as that in the amor-
tization schedule of Example 3.3.1 for the third month with C = 2389.13, n= 15,
m= 12, r = 0.08, and k= 3.

A popular mortgage is the adjustable-rate mortgage (ARM). The interest rate
now is no longer fixedbut is tied to somepublicly available index such as the constant-
maturity Treasury (CMT) rate or the Cost of Funds Index (COFI). For instance, a
mortgage that calls for the interest rate to be reset every month requires that the
monthly payment be recalculated every month based on the prevailing interest rate
and the remaining principal at the beginning of the month. The attractiveness of
ARMs arises from the typically lower initial rate, thus qualifying the home buyer for
a bigger mortgage, and the fact that the interest rate adjustments are capped.

A common method of paying off a long-term loan is for the borrower to pay
interest on the loan and to pay into a sinking fund so that the debt can be retired
with proceeds from the fund. The sum of the interest payment and the sinking-fund
deposit is called the periodic expense of the debt. In practice, sinking-fund provisions
vary. Some start several years after the issuance of the debt, others allow a balloon
payment at maturity, and still others use the fund to periodically purchase bonds in
the market [767].

EXAMPLE 3.3.2 A company borrows $100,000 at a semiannual interest rate of 10%. If
the company pays into a sinking fund earning 8% to retire the debt in 7 years, the
semiannual payment can be calculated by Eq. (3.6) as follows:

100000× 0.08/2

1− (1+ 0.08/2)−14
= 9466.9.

Interest on the loan is 100000× (0.1/2)= 5000 semiannually. The periodic expense
is thus 5000+ 9466.9= 14466.9 dollars.

➤ Exercise 3.3.1 Explain why

PV
(
1+ r
m

)k
−

k∑
i=1
C
(
1+ r
m

)i−1
where the PV from Eq. (3.6) equals that of Eq. (3.8).

➤ Exercise 3.3.2 Start with the cash flow of a level-paymentmortgage with the lower
monthly fixed interest rate r − x. From the monthly payment D, construct a cash
flow that grows at a rate of x per month: D,Dex,De2x,De3x, . . . . Both x and r
are continuously compounded. Verify that this new cash flow, discounted at r , has
the same PV as that of the original mortgage. (This identity forms the basis of the
graduated-payment mortgages (GPMs) [330].)
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➢ ProgrammingAssignment 3.3.3 Write aprogramthatprints out themonthly amorti-
zation schedule. The inputs are the annual interest rate and the number of payments.

3.4 Yields

The term yield denotes the return of investment and has many variants [284]. The
nominal yield is the coupon rate of the bond. In theWall Street Journal of August 26,
1997, for instance, a corporate bond issued by AT&T is quoted as follows:

Company Cur Yld. Vol. Close Net chg.

ATT85/831 8.1 162 1061/2 −3/8

This bond matures in the year 2031 and has a nominal yield of 85
8%, which is

part of the identification of the bond. In the same paper, we can find other AT&T
bonds: ATT43/498, ATT6s00, ATT51/801, and ATT63/404. The current yield is the
annual coupon interest divided by the market price. In the preceding case, the an-
nual interest is 8 5

8 × 1000/100= 86.25, assuming a par value of $1,000. The closing
price is 106 1

2 × 1000/100= 1065 dollars. (Corporate bonds are quoted as a percent-
age of par.) Therefore 86.25/1065≈ 8.1% is the current yield at market closing.
The preceding two yield measures are of little use in comparing returns. For exam-
ple, the nominal yield completely ignores the market condition, whereas the current
yield fails to take the future into account, even though it does depend on the current
market price.

Securities such as U.S. Treasury bills (T-bills) pay interest based on the discount
method rather than on the more common add-on method [95]. With the discount
method, interest is subtracted from the par value of a security to derive the purchase
price, and the investor receives the par value at maturity. Such a security is said to
be issued on a discount basis and is called a discount security. The discount yield or
discount rate is defined as

par value− purchase price
par value

× 360 days
number of days to maturity

. (3.9)

This yield is also called the yield on a bank discount basis. When the discount yield
is calculated for short-term securities, a year is assumed to have 360 days [698, 827].

EXAMPLE 3.4.1 T-bills are a short-term debt instrument with maturities of 3, 6, or
12 months. They are issued in U.S.$10,000 denominations. If an investor buys a
U.S.$10,000, 6-month T-bill for U.S.$9,521.45 with 182 days remaining to maturity,
the discount yield is

10000− 9521.45
10000

× 360
182
= 0.0947,

or 9.47%. It is this annualized yield that is quoted. The equivalent effective yield with
continuous compounding is

365
182
× ln

(
10000
9521.45

)
= 0.09835,

or 9.835%.
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The CD-equivalent yield (also called the money-market-equivalent yield) is a
simple annualized interest rate defined by

par value− purchase price
purchase price

× 360
number of days tomaturity

.

To make the discount yield more comparable with yield quotes of other money
market instruments, we can calculate its CD-equivalent yield as

360× discount yield
360− (number of days to maturity× discount yield)

,

which we can derive by plugging in discount yield formula (3.9) and simplifying. To
make the discount yield more comparable with the BEY, we compute

par value− purchase price
purchase price

× 365
number of days to maturity

.

For example, the discount yield in Example 3.4.1 (9.47%) now becomes

478.55
9521.45

× 365
182
= 0.1008, or 10.08%. (3.10)

The T-bill’s ask yield is computed in precisely this way [510].

3.4.1 Internal Rate of Return

For the rest of this section, the yield we are concerned with, unless stated otherwise,
is the internal rate of return (IRR). The IRR is the interest rate that equates an
investment’s PV with its price P:

P = C1

(1+ y) +
C2

(1+ y)2 +
C3

(1+ y)3 + · · ·+
Cn

(1+ y)n . (3.11)

The right-hand side of Eq. (3.11) is the PVof the cash flow C1,C2, . . . ,Cn discounted
at the IRR y. Equation (3.11) and its various generalizations form the foundation
upon which pricing methodologies are built.

EXAMPLE 3.4.2 A bank lent a borrower $260,000 for 15 years to purchase a house.
This 15-year mortgage has a monthly payment of $2,000. The annual yield is 4.583%
because

∑12×15
i=1 2000× [ 1+ (0.04583/12) ]−i ≈ 260000.

EXAMPLE 3.4.3 A financial instrument promises to pay $1,000 for the next 3 years and
sells for $2,500. Its yield is 9.7%, which can be verified as follows. With 0.097 as the
discounting rate, the PVs of the three cash flows are 1000/(1+ 0.097)t for t = 1, 2, 3.
The numbers – 911.577, 830.973, and 757.5 – sum to $2,500.

Example 3.4.3 shows that it is easy to verify if a number is the IRR. Finding it,
however, generally requires numerical techniques because closed-form formulas in
general do not exist. This issue will be picked up in Subsection 3.4.3.

EXAMPLE 3.4.4 A financial instrument can be bought for $1,000, and the investor will
end up with $2,000 5 years from now. The yield is the y that equates 1000 with
2000× (1+ y)−5, the present value of $2,000. It is (1000/2000)−1/5− 1≈ 14.87%.
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Given the cash flow C1,C2, . . . ,Cn, its FV is

FV=
n∑
t=1
Ct(1+ y)n−t . (3.12)

By Eq. (3.11), the yield y makes the preceding FV equal to P(1+ y)n. Hence, in
principle, multiple cash flows can be reduced to a single cash flow P(1+ y)n at
maturity. In Example 3.4.4 the investor ends up with $2,000 at the end of the fifth
year one way or another. This brings us to an important point. Look at Eqs. (3.11)
and (3.12) again. They mean the same thing because both implicitly assume that all
cash flows are reinvested at the same rate as the IRR y.

Example 3.4.4 suggests a general yield measure: Calculate the FV and then
find the yield that equates it with the PV. This is the holding period return (HPR)
methodology.3 With the HPR, it is no longer mandatory that all cash flows be rein-
vested at the same rate. Instead, explicit assumptions about the reinvestment rates
must be made for the cash flows. Suppose that the reinvestment rate has been deter-
mined to be re. Then the FV is

FV=
n∑
t=1
Ct(1+ re)n−t .

We then solve for the holding period yield y such that FV= P(1+ y)n. Of course,
if the reinvestment assumptions turn out to be wrong, the yield will not be realized.
This is the reinvestment risk. Financial instruments without intermediate cash flows
evidently do not have reinvestment risks.

EXAMPLE 3.4.5 A financial instrument promises to pay $1,000 for the next 3 years
and sells for $2,500. If each cash flow can be put into a bank account that pays an
effective rate of 5%, the FV of the security is

∑3
t=1 1000× (1+ 0.05)3−t = 3152.5,

and the holding period yield is (3152.5/2500)1/3− 1= 0.08037, or 8.037%. This yield
is considerably lower than the 9.7% in Example 3.4.3.

➤ Exercise 3.4.1 A security selling for $3,000 promises to pay $1,000 for the next
2 years and $1,500 for the third year. Verify that its annual yield is 7.55%.

➤ Exercise 3.4.2 A financial instrument pays C dollars per year for n years. The
investor interested in the instrument expects the cash flows to be reinvested at an
annual rate of r and is asking for a yield of y. What should this instrument be selling
for in order to be attractive to this investor?

3.4.2 Net Present Value

Consider an investment that has the cash flow C1,C2, . . . ,Cn and is selling for P.
For an investor who believes that this security should have a return rate of y∗, the
net present value (NPV) is

n∑
t=1

Ct
(1+ y∗)t − P.

The IRR is thus the return rate that nullifies the NPV. In general, the NPV is the
difference between the PVs of cash inflow and cash outflow. Businesses are often
assumed to maximize their assets’ NPV.
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EXAMPLE 3.4.6 The management is presented with the following proposals:

Net Cash Flow at end of

Proposal Investment Now Year 1 Year 2 Year 3

A 9,500 4,500 2,000 6,000
B 6,000 2,500 1,000 5,000

It believes that the company can earn 15% effective on projects of this kind. The
NPV for Proposal A is

4500
1.15

+ 2000
(1.15)2

+ 6000
(1.15)3

− 9500=−129.57

and that for Proposal B is

2500
1.15

+ 1000
(1.15)2

+ 5000
(1.15)3

− 6000= 217.64.

Proposal A is therefore dropped in favor of Proposal B.

➤ Exercise 3.4.3 Repeat the calculation for Example 3.4.6 for an expected return of
4%.

3.4.3 Numerical Methods for Finding Yields

Computing the yield amounts to solving f (y)= 0 for y≥−1, where

f (y)≡
n∑
t=1

Ct
(1+ y)t − P (3.13)

and P is themarket price. (The symbol≡ introduces definitions.) The function f (y)
is monotonic in y if the Cts are all positive. In this case, a simple geometric argument
shows that a unique solution exists (see Fig. 3.3). Even in the general case in which

Figure 3.3: Computing yields. The current market price is represented by
the horizontal line, and the PV of the future cash flow is represented by the
downward-sloping curve. The desired yield is the value on the x axis at which
the two curves intersect.
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The bisection method for solving equations:

input: ε, a, and b (b> a and f (a) f (b)< 0);
real length, c;
length := b− a;
while [ length > ε ] {

c := (b+ a)/2;
if [ f (c)= 0 ] return c;
else if [ f (a) f (c)< 0 ] b := c;
else a := c;

}
return c;

Figure 3.4: Bisection method. The number ε is an upper bound on the absolute error of the returned value c :
|ξ − c | ≤ ε. The initial bracket [ a , b ] guarantees the existence of a root with the f (a) f (b)< 0 condition.
“if [ f (c)= 0 ]” may be replaced with testing if |f (c)| is a very small number.

all the Cts do not have the same sign, usually only one value makes economic sense
[547]. We now turn to the algorithmic problem of finding the solution to y.

The Bisection Method
One of the simplest and failure-free methods to solve equations such as Eq. (3.13)
for any well-behaved function is the bisectionmethod. Start with two numbers, a and
b, where a < b and f (a) f (b)< 0. Then f (ξ) must be zero for some ξ between a
and b, written as ξ ∈ [ a,b ].4 If we evaluate f at the midpoint c ≡ (a+b)/2, then
(1) f (c)= 0, (2) f (a) f (c)< 0, or (3) f (c) f (b)< 0. In the first case we are done,
in the second case we continue the process with the new bracket [ a, c ], and in the
third case we continue with [ c,b ]. Note that the bracket is halved in the latter two
cases. After n steps, we will have confined ξ within a bracket of length (b− a)/2n.
Figure 3.4 implements the above idea.

The complexity of the bisection algorithm can be analyzed as follows. Thewhile
loop is executed, at most, 1+ log2[ (b− a)/ε ] times. Within the loop, the number of
arithmeticoperations is dominatedby theevaluationof f .Denote thisnumberby C f .
The running time is O(C f log2[ (b− a)/ε ]). In particular, in computing the IRR,
the running time is O(n log2[ (b− a)/ε ]) because C f = O(n) by the algorithm in
Fig. 3.1.

The Newton–Raphson Method
The iterativeNewton–Raphson method converges faster than the bisection method.
In iterative methods, we start with a first approximation x0 to a root of f (x)= 0.
Successive approximations are then computed by

x0, F(x0), F(F(x0)), . . .

for some function F . In other words, if we let xk denote the kth approximation,
then xk = F (k)(x0), where

F (k)(x)≡
k︷ ︸︸ ︷

F(F( · · · (F(x)) · · · )).
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Figure 3.5: Newton–Raphson method.

In practice, we should put an upper bound on the number of iterations k. The neces-
sary condition for the convergence of such a procedure to a root ξ is

|F ′(ξ)| ≤ 1, (3.14)

where F ′ denotes the derivative of F [447].
The Newton–Raphson method picks F(x)≡ x− f (x)/ f ′(x); in other words,

xk+1 ≡ xk− f (xk)f ′(xk)
. (3.15)

This is the method of choice when f ′ can be evaluated efficiently and is nonzero near
the root [727]. See Fig. 3.5 for an illustration and Fig. 3.6 for the algorithm. When
yields are being computed,

f ′(x)=−
n∑
t=1

tCt
(1+ x)t+1 .

Assume that we start with an initial guess x0 near a root ξ . It can be shown that

ξ − xk+1 ≈−(ξ − xk)2 f
′′(ξ)

2 f ′(ξ)
.

This means that the method converges quadratically: Near the root, each iteration
roughly doubles the number of significant digits. To achieve |xk+1− xk| ≤ ε required
by the algorithm, O(log log(1/ε)) iterations suffice. The running time is thus

O((C f + C f ′) log log(1/ε)).

The Newton–Raphson method for solving equations:

input: ε, xinitial;
real xnew, xold;
xold := xinitial;
xnew :=∞;
while [ |xnew− xold|> ε ]

xnew = xold− f (xold)/ f ′(xold);
return xnew;

Figure 3.6: Algorithm for the Newton–Raphson method. A good initial guess is important [727].
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In particular, the running time is O(n log log(1/ε)) for yields calculations. This
bound compares favorably with the O(n log[ (b− a)/ε ]) bound of the bisection
method.

A variant of the Newton–Raphson method that does not require differentiation
is the secant method [35]. This method starts with two approximations, x0 and x1,
and computes the (k+ 1)th approximation by

xk+1 = xk− f (xk)(xk− xk−1)f (xk)− f (xk−1) .

The secant method may be preferred when the calculation of f ′ is to be avoided. Its
convergence rate, 1.618, is slightly worse than that of the Newton–Raphson method,
2, but better than that of the bisection method, 1.

Unlike the bisection method, neither the Newton–Raphson method nor the se-
cant method guarantees that the root remains bracketed; as a result, they may not
converge at all. The Ridders method, in contrast, always brackets the root. It starts
with x0 and x1 that bracket a root and sets x2 = (x0+ x1)/2. In general,

xk+1 = xk+ sign[ f (xk−2)− f (xk−1) ] f (xk)(xk− xk−2)√
f (xk)2− f (xk−2) f (xk−1)

.

The Ridders method has a convergence rate of
√
2 [727].

➤ Exercise 3.4.4 Let f (x)≡ x3− x2 and startwith the guess x0 = 2.0 to the equation
f (x)= 0. Iterate the Newton–Raphson method five times.

➤ Exercise 3.4.5 Suppose that f ′(ξ) �= 0 and f ′′(ξ) is bounded.Verify that condition
(3.14) holds for the Newton–Raphson method.

➤ Exercise 3.4.6 Let ξ be a root of f and J be an interval containing ξ . Suppose
that f ′(x) �= 0 and f ′′(x)≥ 0 or f ′′(x)≤ 0 for x ∈ J . Explain why the Newton–
Raphson method converges monotonically to ξ from any point x0 ∈ J such that
f (x0) f ′′(x0)≥ 0.

3.4.4 Solving Systems of Nonlinear Equations

The Newton–Raphson method can be extended to higher dimensions. Consider the
two-dimensional case. Let (xk, yk) be the k th approximation to the solution of the
two simultaneous equations

f (x, y) = 0,

g(x, y) = 0.

The (k+ 1)th approximation (xk+1, yk+1) satisfies the following linear equations:[
∂ f (xk, yk)/∂x ∂ f (xk, yk)/ ∂y

∂g(xk, yk)/∂x ∂g(xk, yk)/ ∂y

][
�xk+1
�yk+1

]
=−

[
f (xk, yk)

g(xk, yk)

]
, (3.16)

where �xk+1 ≡ xk+1− xk and �yk+1 ≡ yk+1− yk. Equations (3.16) have a unique
solution for (�xk+1,�yk+1) when the matrix is invertible. Note that the (k+ 1)th
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approximation is (xk+�xk+1, yk+�yk+1). Solving nonlinear equations has thus
been reduced to solving a set of linear equations. Generalization to n dimensions is
straightforward.

➤ Exercise 3.4.7 Write the analogous n-dimensional formula for Eqs. (3.16).

➤ Exercise 3.4.8 Describe a bisectionmethod for solving systems of nonlinear equa-
tions in the two-dimensional case. (The bisection method may be applied in cases in
which the Newton–Raphson method fails.)

3.5 Bonds

A bond is a contract between the issuer (borrower) and the bondholder (lender).
The issuer promises to pay the bondholder interest, if any, and principal on the re-
maining balance. Bonds usually refer to long-term debts. A bond has a par value.5

The redemption date or maturity date specifies the date on which the loan will
be repaid. A bond pays interest at the coupon rate on its par value at regular
time intervals until the maturity date. The payment is usually made semiannually in
the United States. The redemption value is the amount to be paid at a redemption
date. A bond is redeemed at par if the redemption value is the same as the par value.
Redemption date and maturity date may differ.

There are severalways to redeemor retire abond.Abond is redeemedatmaturity
if the principal is repaid at maturity. Most corporate bonds are callable, meaning that
the issuer can retire some or all of the bonds before the stated maturity, usually at a
price above the par value.6

Because this provision gives the issuer the advantage of calling a bond when
the prevailing interest rate is much lower than the coupon rate, the bondholders
usually demand a premium. A callable bond may also have call protection so that
it is not callable for the first few years. Refunding involves using the proceeds from
the issuance of new bonds to retire old ones. A corporation may deposit money into
a sinking fund and use the funds to buy back some or all of the bonds. Convertible
bonds can be converted into the issuer’s common stock. A consol is a bond that pays
interest forever. It can therefore be analyzed as a perpetual annuity whose value and
yield satisfy the simple relation

P = c/r, (3.17)

where c denotes the interest payout per annum.
The U.S. bond market is the largest in the world. It consists of U.S. Treasury

securities, U.S. agency securities, corporate bonds, Yankee bonds, municipal secu-
rities, mortgages, and MBSs. Agency securities are those issued by either the U.S.
Federal government agencies or U.S. Federal government-sponsored organizations.
The mortgage market is usually the largest (U.S.$6,388 billion as of 1999), followed
by the U.S. Treasury securities market (U.S.$3,281 billion as of 1999).

Treasury securities with maturities of 1 year or less are discount securities: the
T-bills. Treasury securities with original maturities between 2 and 10 years are called
Treasury notes (T-notes). Those with maturities greater than ten years are called
Treasury bonds (T-bonds). Both T-notes and T-bonds are coupon securities, paying
interest every 6 months.
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Bonds are usually quoted as a percentage of par value. A quote of 95 therefore
means 95% of par value. For T-notes and T-bonds, a quote of 100.05 means 1005/32%
of par value, not 100.05%. It is typically written as 100-05.

➤ Exercise 3.5.1 A consol paying out continuously at a rate of c dollars per annum
has value

∫∞
0 ce

−r t dt , where r is the continuously compounded annual yield. Justify
the preceding formula. (Consistent with Eq. (3.17), this integral evaluates to c/r .)

3.5.1 Valuation

Let us begin with pure discount bonds, also known as zero-coupon bonds or simply
zeros. They promise a single payment in the future and are sold at a discount from
the par value. The price of a zero-coupon bond that pays F dollars in n periods is
F/(1+ r)n, where r is the interest rate per period. Zero-coupon bonds can be bought
to meet future obligations without reinvestment risk. They are also an important
theoretical tool in the analysis of coupon bonds, which can be thought of as a package
of zero-coupon bonds. Although the U.S. Treasury does not issue such bonds with
maturities over 1 year, there were companies that specialized in coupon stripping
to create stripped Treasury securities. This financial innovation became redundant
when the U.S. Treasury facilitated the creation of zeros by means of the Separate
Trading of Registered Interest and Principal Securities program (STRIPS) in 1985
[799]. Prices and yields of stripped Treasury securities have been published daily in
theWall Street Journal since 1989.

EXAMPLE 3.5.1 Suppose that the interest rate is 8% compounded semiannually. A
zero-coupon bond that pays the par value 20 years from now will be priced at
1/(1.04)40, or 20.83%, of its par value and will be quoted as 20.83. If the interest
rate is 9% instead, the same bond will be priced at only 17.19. If the bond matures
in 10 years instead of 20, its price would be 45.64 with an 8% interest rate. Clearly
both the maturity and the market interest rate have a profound impact on price.

A level-coupon bond pays interest based on the coupon rate and the par value,
which is paid at maturity. If F denotes the par value and C denotes the coupon,
then the cash flow is as shown in Fig. 3.7. Its price is therefore

PV=
n∑
i=1

C(
1+ r

m

)i + F(
1+ r

m

)n = C 1− (1+ r
m

)−n
r
m

+ F(
1+ r

m

)n , (3.18)

where n is the number of cash flows, m is the number of payments per year, and r
is the annual interest rate compounded m times per annum. Note that C = Fc/m
when c is the annual coupon rate.

✲✻ ✻ ✻
✻

1 2 3 n

C C C

· · ·

C+ F

Figure 3.7: Cash flow of level-coupon bond.
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EXAMPLE 3.5.2 Consider a 20-year 9% bond with the coupon paid semiannually. This
means that a payment of 1000× 0.09/2= 45 dollars will be made every 6 months
until maturity, and $1,000 will be paid at maturity. Its price can be computed from
Eq. (3.18) with n= 2× 20, r = 0.08, m= 2, F = 1, and C = 0.09/2. The result is
1.09896, or 109.896% of par value. When the coupon rate is higher than the interest
rate, as is the case here, a level-coupon bond will be selling above its par value.

The yield to maturity of a level-coupon bond is its IRR when the bond is held
to maturity. In other words, it is the r that satisfies Eq. (3.18) with the PV being
the bond price. For example, for an investor with a 15% BEY to maturity, a 10-year
bond with a coupon rate of 10% paid semiannually should sell for

5× 1− [ 1+ (0.15/2) ]−2×10

0.15/2
+ 100

[ 1+ (0.15/2) ]2×10
= 74.5138

percent of par.
For a callable bond, the yield to stated maturity measures its yield to matu-

rity as if it were not callable. The yield to call is the yield to maturity satisfied by
Eq. (3.18), with n denoting the number of remaining coupon payments until the first
call date and F replacedwith the call price, the price at which the bondwill be called.
The related yield to par call assumes the call price is the par value. The yield to effec-
tive maturity replaces n with the effective maturity date, the redemption date when
the bond is called. Of course, this date has to be estimated. The yield to worst is the
minimum of the yields to call under all possible call dates.

➤ Exercise 3.5.2 A company issues a 10-year bond with a coupon rate of 10%, paid
semiannually. The bond is callable at par after 5 years. Find the price that guarantees
a return of 12% compounded semiannually for the investor.

➤ Exercise 3.5.3 How should pricing formula (3.18) be modified if the interest is
taxed at a rate of T and capital gains are taxed at a rate of TG?

➤ Exercise 3.5.4 (1) Derive ∂P/∂n and ∂P/∂r for zero-coupon bonds. (2) For
r = 0.04 and n= 40 as in Example 3.5.1, verify that the price will go down by ap-
proximately d× 8.011% of par value for every d% increase in the period interest
rate r for small d.

3.5.2 Price Behaviors

The price of a bond goes in the opposite direction from that of interest rate move-
ments: Bond prices fall when interest rates rise, and vice versa. This is because the
PV decreases as interest rates increase.7 A good example is the loss of U.S.$1 trillion
worldwide that was due to interest rate hikes in 1994 [312].

Equation (3.18) can be used to show that a level-coupon bond will be selling at
a premium (above its par value) when its coupon rate is above the market interest
rate, at par (at its par value) when its coupon rate is equal to the market interest
rate, and at a discount (below its par value) when its coupon rate is below the market
interest rate. The table in Fig. 3.8 shows the relation between the price of a bond and
the required yield. Bonds selling at par are called par bonds.

The price/yield relation has a convex shape, as shown in Fig. 3.9. Convexity is
attractive for bondholders because the price decrease per percent rate increase is
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Price
Yield (%) (% of par)

7.5 113.37
8.0 108.65
8.5 104.19
9.0 100.00
9.5 96.04

10.0 92.31
10.5 88.79

Figure 3.8: Price/yield relations. A 15-year 9%
coupon bond is assumed.

smaller than the price increase per percent rate decrease. This observation, how-
ever, may not hold for bonds with embedded options such as callable bonds. The
convexity property has far-reaching implications for bonds and will be explored in
Section 4.3.

As thematurity date draws near, a bond selling at a discountwill see its pricemove
up toward par, a bond selling at par will see its price remain at par, and a bond selling
at a premium will see its price move down toward par. These phenomena are shown
in Fig. 3.10. Besides the two reasons cited for causing bond prices to change (interest
rate movements and a nonpar bond moving toward maturity), other reasons include
changes in the yield spread to T-bonds for non-T-bonds, changes in the perceived
credit quality of the issuer, and changes in the value of the embedded option.

➤ Exercise 3.5.5 Prove that a level-coupon bond will be sold at par if its coupon rate
is the same as the market interest rate.

3.5.3 Day Count Conventions

Teach us to number our days aright,
that we may gain a heart of wisdom.

—Psalms 90:12

Figure 3.9: Price vs. yield. Plotted is a bond that pays 8% interest on a par value
of $1,000, compounded annually. The term is 10 years.
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Figure 3.10: Relations between price and time to maturity. Plotted are three
curves for bonds, from top to bottom, selling at a premium, at par, and at a
discount, with coupon rates of 12%, 6%, and 2%, respectively. The coupons are
paid semiannually. The par value is $1,000, and the required yield is 6%. The
term is 10 years (the x axis is measured in half-years).

Handling the issue of dating correctly is critical to any financial software. In the
so-called actual/actual day count convention, the first “actual” refers to the actual
number of days in a month, and the second refers to the actual number of days in a
coupon period. For example, for coupon-bearing Treasury securities, the number of
days between June 17, 1992, and October 1, 1992, is 106: 13 days in June, 31 days in
July, 31 days in August, 30 days in September, and 1 day in October.

A convention popular with corporate and municipal bonds and agency securities
is 30/360. Here each month is assumed to have 30 days and each year 360 days.
The number of days between June 17, 1992, and October 1, 1992, is now 104: 13 days
in June, 30 days in July, 30 days inAugust, 30 days in September, and 1 day inOctober.
In general, the number of days from date D1 ≡ (y1,m1,d1) to date D2 ≡ (y1,m1,d1)
under the 30/360 convention can be computed by

360× (y2− y1)+ 30× (m2−m1)+ (d2−d1),

where yi denote the years, mi the months, and di the days. If d1 or d2 is 31, we
need to change it to 30 before applying the above formula.

3.5.4 Accrued Interest

Up to now, we have assumed that the next coupon payment date is exactly one period
(6months for bonds, for instance) fromnow. In reality, the settlement datemay fall on
any day between two coupon payment dates and yield measures have to be adjusted
accordingly. Let

ω ≡ number of days between the settlement and the next coupon payment date

number of days in the coupon period
;

(3.19)
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the day count is based on the convention applicable to the security in question. The
price is now calculated by

PV=
n−1∑
i=0

C(
1+ r

m

)ω+i + F(
1+ r

m

)ω+n−1 , (3.20)

where n is the number of remaining coupon payments [328]. This price is called the
full price, dirty price, or invoice price. Equation (3.20) reduces to Eq. (3.18) when
ω = 1.

As the issuer of the bond will not send the next coupon to the seller after the
transaction, the buyer has to pay the seller part of the coupon during the time the
bond was owned by the seller. The convention is that the buyer pays the quoted price
plus the accrued interest calculated by

C× number of days from the last coupon payment to the settlement date

number of days in the coupon period
= C× (1−ω).

The yield to maturity is the r satisfying Eq. (3.20) when the PV is the invoice price,
the sum of the quoted price and the accrued interest. As the quoted price in the
United States does not include the accrued interest, it is also called the clean price
or flat price.

EXAMPLE 3.5.3 Consider a bond with a 10% coupon rate and paying interest semi-
annually. The maturity date is March 1, 1995, and the settlement date is July 1,
1993. The day count is 30/360. Because there are 60 days between July 1, 1993, and
the next coupon date, September 1, 1993, the accrued interest is (10/2)× [ (180−
60)/180 ]= 3.3333 per $100 of par value. At the clean price of 111.2891, the yield
to maturity is 3%. This can be verified by Eq. (3.20) with ω = 60/180, m= 2, C = 5,
PV= 111.2891+ 3.3333, and r = 0.03.

➤ Exercise 3.5.6 It has beenmentioned that a bond selling at par will continue to sell
at par as long as the yield tomaturity is equal to the coupon rate. This conclusion rests
on the assumption that the settlement date is on a coupon payment date. Suppose
that the settlement date for a bond selling at par (i.e., the quoted price is equal to the
par value) falls between two coupon payment dates. Prove that its yield to maturity
is less than the coupon rate.

➤ Exercise 3.5.7 Consider a bond with a 10% coupon rate and paying interest semi-
annually. The maturity date is March 1, 1995, and the settlement date is July 1, 1993.
The day count used is actual/actual. Verify that there are 62 days between July 1,
1993, and the next coupon date, September 1, 1993, and that the accrued interest is
3.31522% of par value. Also verify that the yield to maturity is 3% when the bond is
selling for 111.3.

➢ Programming Assignment 3.5.8 Write a program that computes (1) the accrued
interest as a percentage of par and (2) the BEY of coupon bonds. The inputs are
the coupon rate as a percentage of par, the next coupon payment date, the coupon
payment frequency per annum, the remaining number of coupon payments after the
next coupon, and the day count convention.
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3.5.5 Yield for a Portfolio of Bonds

Calculation for the yield to maturity for a portfolio of bonds is no different from that
for a single bond. First, the cash flows of the individual bonds are combined. Then the
yield is calculated based on the combined cash flow as if it were from a single bond.

EXAMPLE 3.5.4 A bond portfolio consists of two zero-coupon bonds. The bonds are
selling at 50 and 20, respectively. The term is exactly 3 years from now. To calculate
the yield, we solve

50+ 20= 100+ 100
(1+ y)6

for y. Because y= 0.19121, the annualized yield is 38.242%. The yields to maturity
for the individual bonds are 24.4924% and 61.5321%. Neither a simple average
(43.01225%) nor a weighted average (35.0752%) matches 38.242%.

3.5.6 Components of Return

Recall that a bond has a price

P = Fc 1− (1+ y)−n
y

+ F
(1+ y)n ,

where c is the period coupon rate and y is the period interest rate. Its totalmonetary
return is P(1+ y)n− P, which is equal to

Fc
(1+ y)n− 1

y
+ F − P

= Fc (1+ y)
n− 1
y

+ F − Fc 1− (1+ y)−n
y

− F
(1+ y)n .

This return can be broken down into three components: capital gain/loss F − P,
coupon interest nFc, and interest on interest equal to

[ P(1+ y)n− P ]− (F − P)−nFc = P(1+ y)n− F −nFc

= Fc (1+ y)
n− 1
y

−nFc.

The interest on interest’s percentage of the total monetary return can be shown
to increase as c increases. This means that the higher the coupon rate, the more
dependent is the total monetary return on the interest on interest. So bonds selling
at a premium are more dependent on the interest-on-interest component, given the
same maturity and yield to maturity. It can be verified that when the bond is selling
at par (c = y), the longer the maturity n, the higher the proportion of the interest
on interest among the total monetary return. The same claim also holds for bonds
selling at a premium (y< c) or at a discount (y> c).

The above observations reveal the impact of reinvestment risk. Coupon bonds
that obtain a higher percentage of their monetary return from the reinvestment of
coupon interests are more vulnerable to changes in reinvestment opportunities. The
yield to maturity, which assumes that all coupon payments can be reinvested at the
yield to maturity, is problematic because this assumption is seldom realized in a
changing environment.
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Recall that theHPRmeasures the return by holding the security until the horizon
date. This period of time is called the holding period or the investment horizon. The
HPR is composed of (1) capital gain/loss on the horizon date, (2) cash flow income
such as coupon and mortgage payments, and (3) reinvestment income from rein-
vesting the cash flows received between the settlement date and the horizon date.
Apparently, one has tomake explicit assumptions about the reinvestment rate during
the holding period and the security’smarket price on the horizon date called the hori-
zon price. Computing the HPR for each assumption is called scenario analysis. The
scenarios may be analyzed to find the optimal solution [891]. The value at risk (VaR)
methodology is a refinement of scenario analysis. It constructs a confidence interval
for the dollar return at horizon based on some stochastic models (see Section 31.4).

EXAMPLE 3.5.5 Consider a 5-year bond paying semiannual interest at a coupon rate of
10%.Assume that the bond is bought for 90 and held tomaturity with a reinvestment
rate of 5%. The coupon interest plus the interest on interest amounts to

2×5∑
i=1

10
2
×
(
1+ 0.05

2

)i−1
= 56.017 dollars.

The capital gain is 100− 90= 10. TheHPR is therefore 56.017+ 10= 66.017 dollars.
The holding period yield is y= 12.767% because(

1+ y
2

)2×5
= 100+ 56.017

90
.

As a comparison, its BEY to maturity is 12.767%. Clearly, different HPRs obtain
under different reinvestment rate assumptions. If the security is to be sold before it
matures, its horizon price needs to be figured out as well.

➤ Exercise 3.5.9 Prove that the holding period yield of a level-couponbond is exactly
y when the horizon is one period from now.

Additional Reading

Yield, day count, and accrued interest interact in complex ways [827]. See [244,
323, 325, 328, 895] for more information about the materials in the chapter. Consult
[35, 224, 381, 417, 447, 727] for the numerical techniques on solving equations.

NOTES

1. The idea of PV is due to Irving Fisher (1867–1947) in 1896 [646].
2. There are arrangements whereby the remaining principal actually increases and then decreases

over the term of the loan. The same principle applies (see Exercise 3.3.2).
3. Terms with identical connotation include total return, horizon return, horizon total return, and
investment horizon return [646].

4. [ a,b ] denotes the interval a ≤ x ≤ b, [ a,b) denotes the interval a ≤ x < b, (a,b ] denotes the
interval a < x ≤ b, and (a,b) denotes the interval a < x < b.

5. Also called denomination, face value, maturity value, or principal value.
6. See [767] for the reasons why companies issue callable bonds. Callable bonds were not issued by

the U.S. Treasury after February 1985 [325].
7. Reversing this basic relation is common. For example, it is written in [703] that “If Japanese

banks are hit by a liquidity problem, they may have to sell U.S. Treasury bonds. A strong sell-off
could have the effect of pushing down bond yields and rattling Wall Street.”



CHAPTER
FOUR

Bond Price Volatility

Can anyone measure the ocean by handfuls or measure the sky with
his hands?

Isaiah 40:12

Understanding how interest rates affect bond prices is key to risk management of
interest-rate-sensitive securities. This chapter focuses on bond price volatility or the
extent of price movements when interest rates move. Two classic notions, duration
and convexity, are introduced for this purpose with a few applications in risk man-
agement. Coupon bonds mean level-coupon bonds for the rest of the book.

4.1 Price Volatility

The sensitivity of the percentage price change to changes in interest rates measures
price volatility. We define price volatility by −(∂P/P)/∂y. The price volatility of a
coupon bond is

− ∂P/P
∂y

=− (C/y)n− (C/y2)((1+ y)n+1− (1+ y))−nF
(C/y) [ (1+ y)n+1− (1+ y) ]+ F(1+ y) , (4.1)

where n is the number of periods before maturity, y is the period yield, F is the
par value, and C is the coupon payment per period. For bonds without embedded
options, −(∂P/P)/∂y> 0 for obvious reasons.

Price volatility increases as the coupon rate decreases, other things being equal
(see Exercise 4.1.2). Consequently zero-coupon bonds are the most volatile, and
bonds selling at a deep discount are more volatile than those selling near or above
par. Price volatility also increases as the required yield decreases, other things being
equal (see Exercise 4.1.3). So bonds traded with higher yields are less volatile.

For bonds selling above or at par, price volatility increases, but at a decreasing
rate, as the term to maturity lengthens (see Fig. 4.1). Bonds with a longer maturity
are therefore more volatile. This is consistent with the preference for liquidity and
with the empirical fact that long-term bond prices are more volatile than short-term
ones. (The yields of long-term bonds, however, are less volatile than those of short-
term bonds [217].) For bonds selling below par, price volatility first increases, then
decreases, as shown in Fig. 4.2 [425]. Longer maturity here can no longer be equated
with higher price volatility.

32
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Figure 4.1: Volatility with respect to terms to maturity: par
bonds. Plotted is the percentage bond price change per per-
centage change in the required yield at various terms to matu-
rity. The annual coupon rate is 10% with semiannual coupons.
The yield to maturity is identical to the coupon rate.

➤ Exercise 4.1.1 Verify Eq. (4.1).

➤ Exercise 4.1.2 Show that price volatility never decreases as the coupon rate de-
creases when yields are positive.

➤ Exercise 4.1.3 (1) Prove that price volatility always decreases as the yield increases
when the yield equals the coupon rate. (2) Prove that price volatility always decreases
as the yield increases, generalizing (1).

Figure 4.2: Volatility with respect to terms to maturity: dis-
count bonds. The annual coupon rate is 10% with semiannual
coupons, and the yield to maturity is 40% (a deep discount
bond). The terms to maturity are measured in half-years. The
rest follows Fig. 4.1.
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4.2 Duration

TheMacaulay duration (MD), first proposed in 1938 by Macaulay, is defined as the
weighted average of the times to an asset’s cash flows [627]. The weights are the cash
flows’ PVs divided by the asset’s price. Formally,

MD≡ 1
P

n∑
i=1

iCi
(1+ y)i ,

where n is the number of periods before maturity, y is the required yield, Ci is the
cash flow at time i , and P is the price. Clearly, the MD, in periods, is equal to

MD=−(1+ y) ∂P/P
∂y

. (4.2)

This simple relation was discovered by Hicks (1904–1989) in 1939 [231, 496]. In
particular, the MD of a coupon bond is

MD= 1
P

[
n∑
i=1

iC
(1+ y)i +

nF
(1+ y)n

]
. (4.3)

The above equation can be simplified to

MD= c(1+ y) [ (1+ y)
n− 1 ]+ny(y− c)

cy [ (1+ y)n− 1 ]+ y2 ,

where c is the period coupon rate. The MD of a zero-coupon bond (corresponding
to c = 0) is n, its term to maturity. In general, the Macaulay duration of a coupon
bond is less than its maturity. The MD of a coupon bond approaches (1+ y)/y as
the maturity increases, independent of the coupon rate.

Equations (4.2) and (4.3) hold only if the coupon C, the par value F , and the
maturity n are all independent of the yield y, in other words, if the cash flow is inde-
pendent of yields.When the cash flow is sensitive to interest ratemovements, theMD
is no longer inappropriate. To see this point, suppose that the market yield declines.
TheMDwill be lengthened byExercise 4.1.3, Part (2). However, for securities whose
maturity actually decreases as a result, the MD may decrease.

Although theMDhas its origin inmeasuring the length of time a bond investment
is outstanding, it should be seenmainly asmeasuring the sensitivity of price tomarket
yield changes, that is, as price volatility [348]. As a matter of fact, many, if not most,
duration-related terminologies cannot be comprehended otherwise.

To convert the MD to be year based, modify (4.3) as follows:

1
P

[
n∑
i=1

i
k

C(
1+ y

k

)i + nk F(
1+ y

k

)n
]
,

where y is the annual yield and k is the compounding frequency per annum.
Equation (4.2) also becomes

MD=−
(
1+ y
k

)
∂P/P
∂y

.
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Figure 4.3: Modified duration with respect to coupon rate and yield. Bonds are assumed to pay semiannual
coupon payments with a maturity date of September 15, 2000. The settlement date is September 15, 1995.

Note from the definition that

MD (in years)= MD (in periods)
k

.

A related measure is the modified duration, defined as

modified duration≡−∂P/P
∂y

= MD
(1+ y) . (4.4)

The modified duration of a coupon bond is Eq. (4.1), for example (see Fig. 4.3). By
Taylor expansion,

percentage price change≈−modified duration× yield change.

Themodified duration of a portfolio equals
∑
i ωi Di , where Di is themodified dura-

tion of the ith asset and ωi is themarket value of that asset expressed as a percentage
of the market value of the portfolio. Modified duration equals MD (in periods)/
(1+ y) or MD (in years)/(1+ y/k) if the cash flow is independent of changes in
interest rates.

EXAMPLE 4.2.1 Consider a bond whose modified duration is 11.54 with a yield of 10%.
This means if the yield increases instantaneously from 10% to 10.1%, the approxi-
mate percentage price change would be −11.54× 0.001=−0.01154, or −1.154%.

A general numerical formula for volatility is the effective duration, defined as

P− − P+
P0(y+ − y−) , (4.5)
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where P− is the price if the yield is decreased by �y, P+ is the price if the yield is
increasedby �y, P0 is the initial price, y is the initial yield, y+ ≡ y+�y, y− ≡ y−�y,
and �y is sufficiently small. Inprinciple,we can compute theeffectivedurationof just
about any financial instrument. A less accurate, albeit computationally economical
formula for effective duration is to use forward difference,

P0− P+
P0�y

(4.6)

instead of the central difference in (4.5).
Effective duration ismost useful in cases inwhich yield changes alter the cash flow

or securities whose cash flow is so complex that simple formulas are unavailable. This
measure strengthens the contention that duration should be looked on as a measure
of volatility and not average term to maturity. In fact, it is possible for the duration
of a security to be longer than its maturity or even to go negative [321]! Neither can
be understood under the maturity interpretation.

For the rest of the book, duration means the mathematical expression
−(∂P/P)/∂y or its approximation, effective duration. As a consequence,

percentage price change≈−duration× yield change.

The principal applications of duration are in hedging and asset/liability management
[55].

➤ Exercise 4.2.1 Assume that 9% is the annual yield to maturity compounded semi-
annually. Calculate theMDof a 3-year bond paying semiannual coupons at an annual
coupon rate of 10%.

➤ Exercise 4.2.2 Duration is usually expressed in percentage terms for quickmental
calculation: Given duration D%, the percentage price change expressed in percent-
age terms is approximated by −D%×�r when the yield increases instantaneously
by �r%. For instance, the price will drop by 20% if D% = 10 and �r = 2 because
10× 2= 20. Show that D% equals modified duration.

➤ Exercise 4.2.3 Consider a coupon bond and a traditional mortgage with the same
maturity and payment frequency. Show that the mortgage has a smaller MD than
the bond when both provide the same yield to maturity.1 For simplicity, assume that
both instruments have the same market price.

➤ Exercise 4.2.4 Verify that the MD of a traditional mortgage is (1+ y)/y−
n/((1+ y)n− 1).

4.2.1 Continuous Compounding

Under continuous compounding, the formula for duration is slightly changed. The
price of a bond is now P =∑i Ci e

−yti , and

duration (continuous compounding)≡
∑
i tiCi e

−yti

P
=−∂P/P

∂y
. (4.7)

Unlike the MD in Eq. (4.2), the extra 1+ y term disappears.

➤ Exercise 4.2.5 Show that the duration of an n-period zero-coupon bond is n.
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Figure 4.4: Bond value under three rate scenarios. Plotted is the value of an 8%
15-year bond from now to maturity if the interest rate is unchanged at 8% (solid
curve), increased to 10% (dashed curve), and decreased to 6% (dotted curve). At
the MD m = 17.9837 (half-years), the curves roughly meet [98].

4.2.2 Immunization

Buying coupon bonds tomeet a future liability incurs some risks. Assume that we are
at the horizon date when the liability is due. If interest rates rise subsequent to the
bondpurchase, the interest on interest from the reinvestmentof the couponpayments
will increase, and a capital loss will occur for the sale of the bonds. The reverse is true
if interest rates fall. The results are uncertainties in meeting the liability.

A portfolio is said to immunize a liability if its value at the horizon date covers
the liability for small rate changes now. How do we find such a bond portfolio?
Amazingly, the answer is as elegant as it is simple: We construct a bond portfolio
whose MD is equal to the horizon and whose PV is equal to the PV of the single
future liability [350]. Then, at the horizon date, losses from the interest on interest
will be compensated for by gains in the sale price when interest rates fall, and losses
from the sale price will be compensated for by the gains in the interest on interest
when interest rates rise (see Fig. 4.4). For example, a $100,000 liability 12 years from
now should be matched by a portfolio with an MD of 12 years and a future value of
$100,000.

The proof is straightforward. Assume that the liability is a certain L at time m
and the current interest rate is y. We are looking for a portfolio such that

(1) its FV is L at the horizon m,
(2) ∂FV/∂y= 0,
(3) FV is convex around y.

Condition (1) says the obligation is met. Conditions (2) and (3) together mean that
L is the portfolio’s minimum FV at the horizon for small rate changes.

Let FV≡ (1+ y)mP, where P is the PV of the portfolio. Now,

∂FV
∂y
=m(1+ y)m−1P+ (1+ y)m∂P

∂y
. (4.8)
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Imposing Condition (2) leads to

m=−(1+ y) ∂P/P
∂y

. (4.9)

This identity is what we were after: the MD is equal to the horizon m.
Suppose that we use a coupon bond for immunization. Because

FV=
n∑
i=1

C

(1+ y)i−m +
F

(1+ y)n−m ,

it follows that

∂2FV
∂y2

=
n∑
i=1

(m− i)(m− i − 1)C

(1+ y)i−m+2
+ (m−n)(m−n− 1)F

(1+ y)n−m+2 > 0 (4.10)

for y>−1 because (m− i)(m− i + 1) is either zero or positive. Because the FV is
convex for y>−1, the minimum value of the FV is indeed L (see Fig. 4.5).

If there is no single bond whose MD matches the horizon, a portfolio of two
bonds, A and B, can be assembled by the solution of

1 = ωA+ωB,

D= ωADA+ωBDB
(4.11)

for ωA and ωB. Here, Di is the MD of bond i and ωi is the weight of bond i in
the portfolio. Make sure that D falls between DA and DB to guarantee ωA > 0,
ωB > 0, and positive portfolio convexity.

Although we have been dealing with immunizing a single liability, the extension
to multiple liabilities can be carried out along the same line. Let there be a liability
of size Li at time i and a cash inflow Ai at time i . The NPV of these cash flows at

Figure 4.5: Horizon price. Plotted is the future value of a bond at the horizon. The
yield at which the graph is minimized equates the bond’s MD with the horizon.
In this example, the bond pays semiannual coupons at an annual rate of 10% for
30 years and the horizon is 10 years from now. The FV is minimized at y = 9.91%,
and the MD at y is exactly 10 years. The bond’s FV at the horizon will increase if
the rate moves.
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the horizon is

FV=
∑
i

(Ai − Li )(1+ y)m−i .

Conditions (1)–(3) require that FV= 0, ∂FV/∂y= 0, and ∂2FV/∂y2 > 0 around the
current rate y. Together, they guarantee that the cash inflows suffice to cover the
liabilities for small instantaneous rate movements now. In this more general setting,
the distribution of individual assets’ durations must have a wider range than that of
the liabilities to achieve immunization (see Exercise 4.2.11).

Of course, a stream of liabilities can always be immunizedwith amatching stream
of zero-coupon bonds. This is called cash matching, and the bond portfolio is called a
dedicated portfolio [799]. Two problems with this approach are that (1) zero-coupon
bonds may be missing for certain maturities and (2) they typically carry lower yields.

Immunization is a dynamic process. It has to be rebalanced constantly to ensure
that the MD remains matched to the horizon for the following reasons. The MD
decreases as time passes, and, except for zero-coupon bonds, the decrement is not
identical to the decrement in the time to maturity [217]. This phenomenon is called
duration drift [246]. This point can be easily confirmed by a coupon bond whoseMD
matches the horizon. Because the bond’s maturity date lies beyond the horizon date,
its duration will remain positive at the horizon instead of zero. Therefore immuniza-
tion needs to be reestablished even if interest rates never change. Interest rates will
fluctuate during the holding period, but it was assumed that interest rates change
instantaneously after immunization has been established and then stay there. Finally,
the durations of assets and liabilities may not change at the same rate [689].

When liabilities and assets are mismatched in terms of duration, adverse interest
rate movements can quickly wipe out the equity. A bank that finances long-term
mortgage investments with short-term credit from the savings accounts or certifi-
cates of deposit (CDs) runs such a risk. Other institutions that worry about duration
matching are pension funds and life insurance companies [767].

➤ Exercise 4.2.6 In setting up the two-bond immunization in Eqs. (4.11), we did not
bother to check the convexity condition. Justify this omission.

➤ Exercise 4.2.7 Show that, in the absence of interest rate changes, it suffices to
match the PVs of the liability and the asset.

➤ Exercise 4.2.8 Start with a bond whose PV is equal to the PV of a future liability
and whose MD exceeds the horizon. Show that, at the horizon, the bond will fall
short of the liability if interest rates rise and more than meet the goal if interest rates
fall. The reverse is true if the MD falls short of the horizon.

➤ Exercise 4.2.9 Consider a liability currently immunized by a coupon bond. Sup-
pose that the interest rate changes instantaneously. Prove that profits will be gener-
ated when rebalancing is performed at time �t from now (but before the maturity).

➤ Exercise 4.2.10 The liability has an MD of 3 years, but the money manager has
access to only two kinds of bonds with MDs of 1 year and 4 years. What is the right
proportion of each bond in the portfolio in order to match the liability’s MD?

➤ Exercise 4.2.11 (1) To achieve full immunization, we set up cash inflows at more
points in time than liabilities as follows. Consider a single-liability cash outflow Lt at
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time t . Assemble a portfolio with a cash inflow A1 at time t − a1 and a cash inflow
A2 at time t + a2 with a1, a2 > 0 and a1 ≤ t . Conditions (1) and (2) demand that

P(y)= A1ea1y+ A2e−a2y− Lt = 0,

dP(y)
dy

= A1a1ea1y− A2a2e−a2y = 0

under continuous compounding. Solve the two equations for any two unknows of
your choice, say A1 and A2, and prove that it achieves immunization for any changes
in y. (2) Generalize the result to more than two cash inflows.

4.2.3 Macaulay Duration of Floating-Rate Instruments

A floating-rate instrument makes interest rate payments based on some publicized
index such as the prime rate, the London Interbank Offered Rate (LIBOR), the U.S.
T-bill rate, the CMT rate, or the COFI [348]. Instead of being locked into a number,
the coupon rate is reset periodically to reflect the prevailing interest rate.

Assume that the coupon rate c equals the market yield y and that the bond is
priced at par. The first reset date is j periods from now, and resets will be performed
thereafter. Let the principal be $1 for simplicity. The cash flow of the floating-rate
instrument is thus

j︷ ︸︸ ︷
c, c, . . . , c,

n− j︷ ︸︸ ︷
y, . . . , y, y+ 1,

where c is a constant and y= c. So the coupon payment at time j + 1 starts to
reflect the market yield. For example, when j = 0, every coupon payment reflects
the prevailing market yield, and when j = 1, which is more typical, interest rate
movements during the first period will not affect the first coupon payment. The
MD is

−(1+ y) ∂P/P
∂y

∣∣∣∣
c=y

=
j∑
i=1
i

y
(1+ y)i +

n∑
i= j+1

[
i

y
(1+ y)i −

1
(1+ y)i−1

]
+n 1

(1+ y)n

=MD−
n∑

i= j+1

1
(1+ y)i−1 =

(1+ y)[ 1− (1+ y)− j ]
y

, (4.12)

where MD denotes the MD of an otherwise identical fixed-rate bond. Interestingly,
the MD is independent of the maturity of the bond, n. Formulas for nonpar bonds
are more complex but do not involve any new ideas [306, 348].

The attractiveness of floating-rate instruments is not hard to explain. Floating-
rate instruments are typically less sensitive to interest rate changes than are fixed-
rate instruments. In fact, the less distant the first reset date, the less volatile the
instrument. And when every coupon is adjusted to reflect the market yield, there is
no more interest rate risk. Indeed, the MD is zero when j = 0. In the typical case
of j = 1, the MD is one period. By contrast, a bond that pays 5% per period for
30 periods has an MD of 16.14 periods.
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➤ Exercise 4.2.12 Show that the MD of a floating-rate instrument cannot exceed the
first reset date.

4.2.4 Hedging

Hedging aims at offsetting the price fluctuations of the position to be hedged by the
hedging instrument in the opposite direction, leaving the total wealth unchanged
[222]. Define dollar duration as

dollar duration≡modified duration× price (% of par)=−∂P
∂y
,

where P is the price as a percentage of par. It is the tangent on the price/yield curve
such as the one in Fig. 3.9. The approximate dollar price change per $100 of par
value is

price change≈−dollar duration× yield change.

The related price value of a basis point, or simply basis-point value (BPV), defined as
the dollar duration divided by 10,000,measures the price change for a one basis-point
change in the interest rate. One basis point equals 0.01%.

Because securities may react to interest rate changes differently, we define yield
beta as

yield beta≡ change in yield for the hedged security
change in yield for the hedging security

,

which measures relative yield changes. If we let the hedge ratio be

h≡ dollar duration of the hedged security
dollar duration of the hedging security

× yield beta, (4.13)

then hedging is accomplished when the value of the hedging security is h times that
of the hedged security because

dollar price change of the hedged security

=−h× dollar price change of the hedging security.

EXAMPLE 4.2.2 Suppose we want to hedge bond A with a duration of seven by using
bond B with a duration of eight. Under the assumption that the yield beta is one and
both bonds are selling at par, the hedge ratio is 7/8. This means that an investor who
is long $1 million of bond A should short $7/8 million of bond B.

4.3 Convexity

The important notion of convexity is defined as

convexity (in periods)≡ ∂
2P
∂y2

1
P
. (4.14)
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It measures the curvature of the price/yield relation. The convexity of a coupon
bond is

1
P

[
n∑
i=1
i(i + 1)

C

(1+ y)i+2
+n(n+ 1)

F
(1+ y)n+2

]

= 1
P

{
2C
y3

[
1− 1

(1+ y)n
]
− 2Cn
y2(1+ y)n+1 +

n(n+ 1) [F − (C/y)]
(1+ y)n+2

}
,

(4.15)

which is positive. For a bond with positive convexity, the price rises more for a rate
decline than it falls for a rate increase of equal magnitude. Hence between two
bonds with the same duration, the one with a higher convexity is more valuable,
other things being equal. Convexity measured in periods and convexity measured in
years are related by

convexity (in years)= convexity (in periods)
k2

when there are k periods per annum. It can be shown that the convexity of a coupon
bond increases as its coupon rate decreases (see Exercise 4.3.4). Furthermore, for a
given yield and duration, the convexity decreases as the coupon decreases [325]. In
analogy with Eq. (4.7), the convexity under continuous compounding is

convexity (continuous compounding)≡
∑
i t

2
i Ci e

−yti

P
= ∂

2P/P
∂y2

.

The approximation �P/P ≈−duration× yield change we saw in Section 4.2
works for small yield changes. To improve on it for larger yield changes, second-
order terms are helpful:

�P
P
≈ ∂P
∂y

1
P
�y+ 1

2
∂2P
∂y2

1
P

(�y)2

=−duration×�y+ 1
2
× convexity× (�y)2.

See Fig. 4.6 for illustration.
A more general notion of convexity is the effective convexity defined as

P+ + P− − 2× P0
P0 [ 0.5× (y+ − y−) ]2

, (4.16)

where P− is the price if the yield is decreased by �y, P+ is the price if the yield is
increasedby �y, P0 is the initial price, y is the initial yield, y+ ≡ y+�y, y− ≡ y−�y,
and �y is sufficiently small. Note that �y= (y+ − y−)/2. Effective convexity is most
relevant when a bond’s cash flow is interest rate sensitive.

The two-bond immunization scheme in Subsection 4.2.2 shows that countless
two-bond portfolios with varying duration pairs (DA,DB) can be assembled to sat-
isfy Eqs. (4.11). However, which one is to be preferred? As convexity is a desir-
able feature, we phrase this question as one of maximizing the portfolio convexity
among all the portfolios with identical duration. Let there be n kinds of bonds, with
bond i having duration Di and convexity Ci , where D1 < D2 < · · ·< Dn. Typically,
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Figure 4.6: Linear and quadratic approximations to bond price changes. The
dotted curve is the result of a duration-based approximation, whereas the dashed
curve, which fits better, utilizes the convexity information. The bond in question
has 30 periods to maturity with a period coupon rate of 5%. The current yield is
4% per period.

D1 = 0.25 (3-month discount instruments) and Dn = 30 (30-year zeros). We then
solve the following constrained optimization problem:

maximize ω1C1+ω2C2+ · · ·+ωnCn,
subject to 1= ω1+ω2+ · · ·+ωn,

D= ω1D1+ω2D2+ · · ·+ωnDn,
0≤ ωi ≤ 1.

The function to be optimized, ω1C1+ω2C2+ · · ·+ωnCn, is called the objective func-
tion. The equalities or inequalities make up the constraints. The preceding optimiza-
tion problem is a linear programming problem because all the functions are linear.
The solution usually implies a barbell portfolio, so called because the portfolio con-
tains bonds at the two extreme ends of the duration spectrum (see Exercise 4.3.6).

➤ Exercise 4.3.1 In practice, convexity should be expressed in percentage terms,
call it C%, for quick mental calculation. The percentage price change in percentage
terms is then approximated by −D%×�r +C%× (�r)2/2 when the yield increases
instantaneously by �r%. For example, if D% = 10, C% = 1.5, and �r = 2, the price
will drop by 17% because

−D%×�r + 1
2
×C%× (�r)2 =−10× 2+ 1

2
× 1.5× 22 =−17.

Show that C% equals convexity divided by 100.

➤ Exercise 4.3.2 Prove that ∂(duration)/∂y= (duration)2− convexity.

➤ Exercise 4.3.3 Show that the convexity of a zero-couponbond is n(n+ 1)/(1+ y)2.
➤ Exercise 4.3.4 Verify that convexity (4.15) increases as the coupon rate decreases.

➤ Exercise 4.3.5 Prove that the barbell portfolio has the highest convexity for n= 3.
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➤ Exercise 4.3.6 Generalize Exercise 4.3.5: Prove that a barbell portfolio achieves
immunization with maximum convexity given n> 3 kinds of zero-coupon bonds.

Additional Reading

Duration and convexity measure only the risk of changes in interest rate levels.
Other types of risks, such as the frequency of large movements in interest rates, are
ignored [618]. They furthermore assume parallel shifts in the yield curve, whereas
yield changes are not always parallel in reality (more is said about yield curves in
Chap. 5). Closed-form formulas for duration and convexity can be found in [89, 209].
See [496] for a penetrating review.Additional immunization techniques can be found
in [206, 325, 547]. The idea of immunization is due toRedington in 1952 [732]. Consult
[213, 281, 545] for more information on linear programming. Many fundamental
problems in finance and economics are best cast as optimization problems [247, 278,
281, 891].

NOTE

1. The bond was the standard design for mortgages, called balloon mortgages, before the Federal
Housing Administration introduced fully amortized mortgages [330]. Balloon mortgages are
more prone to default because the borrower may not have the funds for the balloon payment
due. This exercise shows that fully amortized mortgages are less volatile than balloon mortgages
if prepayments are nonexisting.



CHAPTER
FIVE

Term Structure of Interest Rates

He pays least [ . . . ] who pays latest.

Charles de Montesquieu (1689–1755), The Spirit of Laws

The term structure of interest rates is concerned with how the interest rates change
with maturity and how they may evolve in time. It is fundamental to the valuation of
fixed-income securities. This subject is important also because the term structure is
the starting point of any stochastic theory of interest ratemovements. Interest rates in
this chapter are period based unless stated otherwise. This simplifies the presentation
by eliminating references to the compounding frequency per annum.

5.1 Introduction

The set of yields to maturity for bonds of equal quality and differing solely in their
terms to maturity1 forms the term structure. This term often refers exclusively
to the yields of zero-coupon bonds. Term to maturity is the time period during
which the issuer has promised to meet the conditions of the obligation. A yield
curve plots yields to maturity against maturity and represents the prevailing interest
rates for various terms. See Fig. 5.1 for a sample Treasury yield curve. A par yield
curve is constructed from bonds trading near their par value.

At least four yield-curve shapes can be identified. A normal yield curve is upward
sloping, an inverted yield curve is downward sloping, a flat yield curve is flat (see
Fig. 5.2), and a humped yield curve is upward sloping at first but then turns downward
sloping.Wewill survey the theories advanced to explain the shapes of the yield curve
in Section 5.1.

The U.S. Treasury yield curve is the most widely followed yield curve for the
following reasons. First, it spans a full range of maturities, from 3 months to 30 years.
Second, the prices are representative because theTreasuries are extremely liquid and
their market deep. Finally, as the Treasuries are backed by the full faith and credit
of the U.S. government, they are perceived as having no credit risk [95]. The most
recent Treasury issues for each maturity are known as the on-the-run or current
coupon issues in the secondary market (see Fig. 5.3). Issues auctioned before the
current coupon issues are referred to as off-the-run issues. On-the-run and off-the-
run yield curves are based on their respective issues [325, 489].

45
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Figure 5.1: Treasury yield curve. The Treasury yield
curve as of May 3, 1996, published by the U.S.
Treasury and based on bid quotations on the most
actively traded Treasury securities as of 3:30 PM

with information from the Federal Reserve Bank of
New York.

The yield on a non-Treasury securitymust exceed the base interest rate offered by
an on-the-run Treasury security of comparable maturity by a positive spread called
the yield spread [326]. This spread reflects the risk premium of holding securities not
issued by the government. The base interest rate is also known as the benchmark
interest rate.

5.2 Spot Rates

The i-period spot rate S(i) is the yield tomaturity of an i-period zero-coupon bond.
The PV of $1 i periods from now is therefore [ 1+ S(i) ]−i . The one-period spot
rate – the short rate – will play an important role in modeling interest rate dynamics
later in the book. A spot rate curve is a plot of spot rates against maturity. Its other
names include spot yield curve and zero-coupon yield curve.

In the familiar bond price formula,

n∑
i=1

C
(1+ y)i +

F
(1+ y)n ,

every cash flow is discounted at the same yield to maturity, y. To see the inconsis-
tency, consider two riskless bonds with different yields to maturity because of their
different cash flow streams. The yield-to-maturity methodology discounts their con-
temporaneous cash flows with different rates, but common sense dictates that cash
flows occurring at the same time should be discounted at the same rate. The spot-rate
methodology does exactly that.

A fixed-rate bond with cash flow C1,C2, . . . ,Cn is equivalent to a package of
zero-coupon bonds, with the ith bond paying Ci dollars at time i . For example, a

Figure 5.2: Three types of yield curves. Depicted
from top to bottom are inverted, flat, and normal
yield curves.
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Curr Securities Prev Close 9:28

3 − 11/13/97 5.10 5.24 5.11 5.25
6 − 2/12/98 5.13 5.34 5.12 5.33
1 − 8/20/98 5.20 5.49 5.19 5.48
2 5.875 7/31/99 100-03+ 5.81 100-04+ 5.80
3 6.000 8/15/00 100-03+ 5.96 100-04+ 5.95
5 6.000 7/31/02 99-23+ 6.06 99-24 6.06

10 6.125 8/15/07 99-07 6.23 99-09 6.22
30 6.375 8/15/27 97-25+ 6.54 97-27+ 6.54

Figure 5.3: On-the-run U.S. Treasury yield curve (Aug. 18, 1997, 9:28 AM EDT). Source: Bloomberg.

level-coupon bond has the price

P =
n∑
i=1

C
[ 1+ S(i) ]i +

F
[ 1+ S(n) ]n . (5.1)

This pricingmethod incorporates information from the term structure by discounting
each cash flow at the corresponding spot rate. In general, any riskless security having
a predetermined cash flow C1,C2, . . . ,Cn should have a market price of

P =
n∑
i=1
Cid(i),

where

d(i)≡ [ 1+ S(i) ]−i , i = 1, 2, . . . ,n,

are called thediscount factors. Thediscount factor d(i) denotes thePVof $1 i periods
from now, in other words, the price of the zero-coupon bondmaturing i periods from
now. If the market price is less than P, it is said to be undervalued or cheap. It is
said to be overvalued or rich otherwise. The discount factors are often interpolated
to form a continuous function called the discount function. It is the discount factors,
not the spot rates, that are directly observable in the market.

➤ Exercise 5.2.1 Prove that the yield to maturity y is approximately∑
i [ ∂Ci (y)/∂y ] S(i)

∂P/∂y

to the first order, where Ci (y)≡ Ci/(1+ y)i denotes the ith cash flow discounted at
the rate y. Note that ∂Ci (y)/∂y is the dollar duration of the i-period zero-coupon
bond. (The yield to maturity is thus roughly a weighted sum of the spot rates, with
each weight proportional to the dollar duration of the cash flow.)

5.3 Extracting Spot Rates from Yield Curves

Spot rates can be extracted from the yields of coupon bonds. Start with the
short rate S(1), which is available because short-term Treasuries are zero-coupon
bonds. Now S(2) can be computed from the two-period coupon bond price P by
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use of Eq. (5.1),

P = C
1+ S(1) +

C+ 100
[ 1+ S(2) ]2 .

EXAMPLE 5.3.1 Suppose the 1-year T-bill has a yield of 8%. Because this security is a
zero-coupon bond, the 1-year spot rate is 8%.When the 2-year 10%T-note is trading
at 90, the 2-year spot rate satisfies

90= 10
1.08

+ 110
[ 1+ S(2) ]2 .

Therefore S(2)= 0.1672, or 16.72%.

In general, S(n) can be computed from Eq. (5.1), given the market price of the
n-period coupon bond and S(1), S(2), . . . , S(n− 1). The complete algorithm is given
in Fig. 5.4. The correctness of the algorithm is easy to see. The initialization steps and
step 3 ensure that

p=
i−1∑
j=1

1
[1+ S( j)] j

at the beginning of each loop. Step 1 solves for x such that

Pi =
i−1∑
j=1

Ci
[1+ S( j)] j +

Ci + 100
(1+ x)i ,

where Ci is the level-coupon payment of bond i and Pi is its price.
Each execution of step 1 requires O(1) arithmetic operations because x =

[ (Ci + 100)/(Pi −Ci p) ]1/ i − 1 and expressions like yz can be computed by
exp[ z ln y ] (note that exp[ x ]≡ ex). Similarly, step 3 runs in O(1) time. The total
running time is hence O(n).

Algorithm for extracting spot rates from coupon bonds:

input: n,C[ 1..n ], P[ 1..n ];
real S[ 1..n ], p, x;
S[ 1 ] := (100/P[ 1 ])− 1;
p := P[ 1 ]/100;
for (i = 2 ton) {

1. Solve P[ i ]= C[ i ]× p+ (C[ i ]+ 100)/(1+ x)i for x;
2. S[ i ] := x;
3. p := p+ (1+ x)−i ;

}
return S[ ];

Figure 5.4: Algorithm for extracting spot rates from a yield curve. P [ i ] is the price (as a percentage of par)
of the coupon bond maturing i periods from now, C [ i ] is the coupon of the i -period bond expressed as a
percentage of par, and n is the term of the longest maturity bond. The first bond is a zero-coupon bond. The
i -period spot rate is computed and stored in S [ i ].
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In reality, computing the spot rates is not as clean-cut as the above bootstrap-
ping procedure. Treasuries of the same maturity might be selling at different yields
(the multiple cash flow problem), some maturities might be missing from the data
points (the incompleteness problem), Treasuries might not be of the same qual-
ity, and so on. Interpolation and fitting techniques are needed in practice to create a
smooth spot rate curve (seeChap. 22). Such schemes, however, usually lack economic
justifications.

➤ Exercise 5.3.1 Suppose that S(i)= 0.10 for 1≤ i < 20 and a 20-period coupon
bond is selling at par, with a coupon rate of 8% paid semiannually. Calculate S(20).

➢ Programming Assignment 5.3.2 Implement the algorithm in Fig. 5.4 plus an option
to return the annualized spot rates by using the user-supplied annual compounding
frequency.

5.4 Static Spread

Consider a risky bond with the cash flow C1,C2, . . . ,Cn and selling for P. Were this
bond riskless, it would fetch

P∗ =
n∑
t=1

Ct
[ 1+ S(t) ]t .

Because riskiness must be compensated for, P < P∗. The static spread is the amount
s by which the spot rate curve has to shift in parallel in order to price the bond
correctly:

P =
n∑
t=1

Ct
[ 1+ s+ S(t) ]t .

It measures the spread that a risky bond would realize over the entire Treasury
spot rate curve if the bond is held to maturity. Unlike the yield spread, which is the
difference between the yield to maturity of the risky bond and that of a Treasury
security with comparable maturity, the static spread incorporates information from
the term structure. The static spread can be computed by the Newton–Raphson
method.

➢ Programming Assignment 5.4.1 Write a program to compute the static spread. The
inputs are the payment frequency per annum, the annual coupon rate as a percentage
of par, the market price as a percentage of par, the number of remaining coupon
payments, and the discount factors. Some numerical examples are tabulated below:

Price (% of par) 98 98.5 99 99.5 100 100.5 101

Static spread (%) 0.435 0.375 0.316 0.258 0.200 0.142 0.085

(A 5% 15-year bond paying semiannual interest under a flat 7.8% spot rate curve is
assumed.)
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5.5 Spot Rate Curve and Yield Curve

Many interesting relations hold between spot rate and yield to maturity. Let yk de-
note the yield to maturity for the k-period coupon bond. The spot rate dominates
the yield to maturity if the yield curve is normal; in other words, S(k)≥ yk if y1 <
y2 < · · · (see Exercise 5.5.1, statement (1)). Analogously, the spot rate is dominated
by the yield to maturity if the yield curve is inverted. Moreover, the spot rate domi-
nates the yield to maturity if the spot rate curve is normal (S(1)< S(2)< · · ·) and is
dominated when the spot rate curve is inverted (see Exercise 5.5.1, statement (2)).
Of course, if the yield curve is flat, the spot rate curve coincides with the yield curve.

These results illustrate the coupon effect on the yield to maturity [848]. For in-
stance, under a normal spot rate curve, a coupon bond has a lower yield than a
zero-coupon bond of equal maturity. Picking a zero-coupon bond over a coupon
bond based purely on the zero’s higher yield to maturity is therefore flawed.

The spot rate curve often has the same shape as the yield curve. That is, if the spot
rate curve is inverted (normal, respectively), then the yield curve is inverted (normal,
respectively). However, this is only a trend, not a mathematical truth. Consider
a three-period coupon bond that pays $1 per period and repays the principal of
$100 at the end of the third period. With the spot rates S(1)= 0.1, S(2)= 0.9, and
S(3)= 0.901, the yields to maturity can be calculated as y1 = 0.1, y2 = 0.8873, and
y3 = 0.8851, clearly not strictly increasing.However,when thefinal principal payment
is relatively insignificant, the spot rate curve and the yield curve do share the same
shape. Such is the case with bonds of high coupon rates and long maturities (see
Exercise 5.5.3). When we refer to the typical agreement in shape later, the above
proviso will be implicit.

➤ Exercise 5.5.1 Prove the following statements: (1) The spot rate dominates the
yield to maturity when the yield curve is normal, and (2) the spot rate dominates the
yield to maturity if the spot rate curve is normal, and it is smaller than the yield to
maturity if the spot rate curve is inverted.

➤ Exercise 5.5.2 Contrive an example of a normal yield curve that implies a spot
rate curve that is not normal.

➤ Exercise 5.5.3 Suppose that the bonds making up the yield curve are ordinary
annuities instead of coupon bonds. (1) Prove that a yield curve is normal if the spot
rate curve is normal. (2) Still, a normal yield curve does not guarantee a normal
spot rate curve. Verify this claim with this normal yield curve: y1 = 0.1, y2 = 0.43,
y3 = 0.456.

5.6 Forward Rates

The yield curve contains not only the prevailing interest rates but also information
regarding future interest rates currently “expected” by themarket, the forward rates.
By definition, investing $1 for j periods will end up with [ 1+ S( j) ] j dollars at time
j . Call it the maturity strategy. Alternatively, suppose we invest $1 in bonds for i
periods and at time i invest the proceeds in bonds for another j − i periods, where
j > i . Clearlywewill have [ 1+ S(i) ]i [ 1+ S(i, j) ] j−i dollars at time j , where S(i, j)
denotes the ( j − i)-period spot rate i periods from now, which is unknown today.
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✲

f (0, 1) f (1, 2) f (2, 3) f (3, 4)

Time 0

✲
S(1)

✲
S(2)

✲
S(3)

✲
S(4)

Figure 5.5: Time line for spot and forward rates.

Call it the rollover strategy. When S(i, j) equals

f (i, j)≡
{

[ 1+ S( j) ] j
[ 1+ S(i) ]i

}1/( j−i)
− 1, (5.2)

we will end up with [ 1+ S( j) ] j dollars again. (By definition, f (0, j)= S( j).) The
rates computed by Eq. (5.2) are called the (implied) forward rates or, more precisely,
the ( j − i)-period forward rate i periods from now. Figure 5.5 illustrates the time
lines for spot rates and forward rates.

In the above argument, we were not assuming any a priori relation between the
implied forward rate f (i, j) and the future spot rate S(i, j). This is the subject of
the term structure theories to which we will turn shortly. Rather, we were merely
looking for the future spot rate that, if realized, would equate the two investment
strategies. Forward rates with a duration of a single period are called instantaneous
forward rates or one-period forward rates.

When the spot rate curve is normal, the forward rate dominates the spot rates:

f (i, j)> S( j)> · · ·> S(i). (5.3)

This claim canbe easily extracted fromEq. (5.2).When the spot rate curve is inverted,
the forward rate is in turn dominated by the spot rates:

f (i, j)< S( j)< · · ·< S(i). (5.4)

See Fig. 5.6 for illustration.

Figure 5.6: Yield curve, spot rate curve, and forward rate curve. When the yield curve is
normal, it is dominated by the spot rate curve, which in turn is dominated by the forward
rate curve (if the spot rate curve is also normal). When the yield curve is inverted, on the
other hand, it dominates the spot rate curve, which in turn dominates the forward rate curve
(if the spot rate curve is also inverted). The forward rate curve here is a plot of one-period
forward rates.
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Forward rates, spot rates, and the yield curve2 can be derived from each other.
For example, the future value of $1 at time n can be derived in two ways. We
can buy n-period zero-coupon bonds and receive [ 1+ S(n) ]n or we can buy one-
period zero-coupon bonds today and then a series of such bonds at the forward
rates as they mature. The future value of this approach is [ 1+ S(1) ][ 1+ f (1, 2) ] · · ·
[ 1+ f (n− 1,n) ]. Because they are identical,

S(n)= { [ 1+ S(1) ][ 1+ f (1, 2) ] · · · [ 1+ f (n− 1,n) ] }1/n− 1. (5.5)

Hence, the forward rates, specifically the one-period forward rates f (s, s+ 1),
determine the spot rate curve.

EXAMPLE 5.6.1 Suppose that the following 10 spot rates are extracted from the yield
curve:

Period 1 2 3 4 5 6 7 8 9 10

Rate (%) 4.00 4.20 4.30 4.50 4.70 4.85 5.00 5.25 5.40 5.50

The following are the 9 one-period forward rates, starting one period from now.

Period 1 2 3 4 5 6 7 8 9

Rate (%) 4.40 4.50 5.10 5.50 5.60 5.91 7.02 6.61 6.40

If $1 is invested in a 10-period zero-coupon bond, it will grow to be (1+ 0.055)10 =
1.708. An alternative strategy is to invest $1 in one-period zero-coupon bonds at 4%
and reinvest at the one-period forward rates. The final result,

1.04× 1.044× 1.045× 1.051× 1.055× 1.056
× 1.0591× 1.0702× 1.0661× 1.064= 1.708,

is exactly the same as expected.

➤ Exercise 5.6.1 Assume that all coupon bonds are par bonds. Extract the spot rates
and the forward rates from the following yields to maturity: y1 = 0.03, y2 = 0.04, and
y3 = 0.045.

➤ Exercise 5.6.2 Argue that [ 1+ f (a, a+b+ c) ]b+c = [ 1+ f (a, a+b) ]b[ 1+ f (a+
b, a+b+ c) ]c.
➤ Exercise 5.6.3 Show that f (T,T+ 1)= d(T)/d(T+ 1)− 1 (to be generalized in
Eq. (24.2)).

➤ Exercise 5.6.4 Let theprice of a 10-year zero-couponbondbequoted at 60 and that
of a 9.5-year zero-coupon bond be quoted at 62. Calculate the percentage changes in
the 10-year spot rate and the 9.5-year forward rate if the 10-year bond price moves
up by 1%. (All rates are bond equivalent.)

➤ Exercise 5.6.5 Prove that the forward rate curve lies above the spot rate curve
when the spot rate curve is normal, below it when the spot rate curve is inverted, and
that they cross where the spot rate curve is instantaneously flat (see Fig. 5.7).
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Figure 5.7: Spot rate curve and forward rate curve. The forward rate curve is built
by one-period forward rates.

5.6.1 Locking in the Forward Rate

Although forward rates may or may not be realized in the future, we can lock in any
forward rate f (n,m) today by buying one n-period zero-coupon bond for 1/[ 1+
S(n) ]n and selling [ 1+ S(m) ]m/[ 1+ S(n) ]n m-year zero-coupon bonds. Here is
the analysis. There is no net initial investment because the cash inflow and the cash
outflow, both at 1/[ 1+ S(n) ]n dollars, cancel out. At time n there will be a cash
inflow of $1, and at time m there will be a cash outflow of [ 1+ S(m) ]m/[ 1+ S(n) ]n
dollars. This cash flow stream implies the rate f (n,m) between times n and m (see
Fig. 5.8).

The above transactions generate the cash flow of an important kind of financial
instrument called a forward contract. In our particular case, this forward contract,
agreed on today, enables us to borrow money at time n in the future and repay the
loan at time m> n with an interest rate equal to the forward rate f (n,m).

Now that forward rates can be locked in, clearly they should not be negative.
However, forward rates derived by Eq. (5.2) may be negative if the spot rate curve
is steeply downward sloping. It must be concluded that the spot rate curve cannot be
arbitrarily specified.

➤ Exercise 5.6.6 (1) The fact that the forward rate can be locked in todaymeans that
future spot rates must equal today’s forward rates, or S(a,b)= f (a,b), in a certain
economy. Why? How about an uncertain economy? (2) Verify that forward rates
covering the same time period will not change over time in a certain economy.

➤ Exercise 5.6.7 (1) Confirm that a 50-year bond selling at par ($1,000) with a semi-
annual coupon rate of 2.55% is equivalent to a 50-year bond selling for $1,000 with
a semiannual coupon rate of 2.7% and a par value of $329.1686. (2) Argue that a

Figure 5.8: Locking in the forward rate. By trading zero-
coupon bonds of maturities n and m in the right pro-
portion, the forward rate f (n ,m) can be locked in today.

✲✻

❄

n m

1

(1+ S(m))m/(1+ S(n))n
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100-year bond selling at par with a semiannual coupon rate of 2.7% is equivalent
to a portfolio of the above-mentioned 50-year bond and a contract to buy 50 years
from now a 50-year bond at a price of $329.1686 with a semiannual coupon rate of
2.7%. (3) Verify that the bond to be bought 50 years hence has a semiannual yield
of 8.209%. (Therefore we should not underestimate the importance of later forward
rates on long-term coupon bonds’ prices as even a small increase in yields between
two long-term coupon bonds could imply an unreasonably high forward rate.)

5.6.2 Term Structure of Credit Spreads

Static spread can be interpreted as the constant credit spread to the Treasury spot
rate curve that reflects the risk premium of a corporate bond. However, an identical
credit spread at allmaturities runs counter to the common sense that the credit spread
should rise with maturity; a corporation is more likely to fail in, say, 10 years rather
than in 1.

One theory of term structure of credit spreads postulates that the price of a corpo-
rate bond equals that of the Treasury times the probability of solvency. Furthermore,
once default occurs, a corporation remains in that state and pays zero dollar. Because
the probability of default is one minus the probability of solvency,

1− probability of default (1 period)= price of 1-period corporate zero
price of 1-period Treasury zero

.

After using the above equation to compute the probability of default for corporate
bondswithoneperiod tomaturity,we can calculate the forwardprobability of default,
the conditional probability of default in the second period given that default has not
occurred in the first period. This forward probability of default clearly satisfies

[ 1−probability of default (1 period) ]

× [ 1− forward probability of default (period 2) ]

= price of 2-period corporate zero
price of 2-period Treasury zero

.

In general, the equation satisfied by the forward probability is

[ 1−probability of default (i−1 periods) ]

× [ 1− forward probability of default (period i) ]
= probability the corporate bond survives past time i

= price of i-period corporate zero
price of i-period Treasury zero

. (5.6)

The algorithm for computing the forward probabilities of default is shown in Fig. 5.9.

➤ Exercise 5.6.8 Consider the following four zero-coupon bonds:

Type Maturity Price Yield Type Maturity Price Yield

Treasury 1 year 94 6.28% Treasury 2 year 87 7.09%
Corporate 1 year 92 8.51% Corporate 2 year 84 8.91%

Compute the probabilities of default and the forward probabilities of default.



5.6 Forward Rates 55

Algorithm for forward probabilities of default:

input: n, P[ 1..n ],Q[ 1..n ];
real f [ 1..n ], p[ 1..n ];
p[ 1 ] := 1− (Q[ 1 ]/P[ 1 ]);
f [ 1 ] := p[ 1 ];
for (i = 2 ton) {

f [ i ] := 1− (1− p[ i − 1 ])−1× (Q[ i ]/P[ i ]);
p[ i ] := p[ i − 1 ]× f [ i ];

}
return f [ ];

Figure 5.9: Algorithm for forward probabilities of default. P [ i ] is the price of the riskless i -period zero,
Q [ i ] is the price of the risky i -period zero, p[ i ] stores the probability of default during period one to i ,
and the forward probability of default for the i th period is calculated in f [ i ].

➤ Exercise 5.6.9 (1) Prove Eq. (5.6). (2) Define the forward spread for period i ,
s(i), as the difference between the instantaneous period-i forward rate f (i − 1, i)
obtained by riskless bonds and the instantaneous period-i forward rate fc(i − 1, i)
obtained by corporate bonds. Prove that s(i) roughly equals the forward probability
of default for period i .

5.6.3 Spot and Forward Rates under Continuous Compounding

Under continuous compounding, the pricing formula becomes

P =
n∑
i=1
Ce−i S(i)+ Fe−nS(n).

In particular, the market discount function is

d(n)= e−nS(n). (5.7)

A bootstrapping procedure similar to the one in Fig. 5.4 can be used to calculate
the spot rates under continuous compounding. The spot rate is now an arithmetic
average of forward rates:

S(n)= f (0, 1)+ f (1, 2)+ · · ·+ f (n− 1,n)
n

. (5.8)

The formula for the forward rate is also very simple:

f (i, j)= j S( j)− i S(i)
j − i . (5.9)

In particular, the one-period forward rate equals

f ( j, j + 1)= ( j + 1) S( j + 1)− j S( j)=−ln d( j + 1)
d( j)

(5.10)

(compare it with Exercise 5.6.3).
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Rewrite Eq. (5.9) as

f (i, j)= S( j)+ [ S( j)− S(i) ] i
j − i .

Then under continuous time instead of discrete time, Eq. (5.10) becomes

f (T,T+�T)= S(T+�T)+ [ S(T+�T)− S(T) ] T
�T

,

and the instantaneous forward rate at time T equals

f (T)≡ lim
�T→0

f (T,T+�T)= S(T)+T ∂S
∂T
. (5.11)

Note that f (T)> S(T) if and only if ∂S/∂T > 0.

➤ Exercise 5.6.10 Derive Eqs. (5.8) and (5.9).

➤ Exercise 5.6.11 Compute the one-period forward rates from this spot rate curve:
S(1)= 2.0%, S(2)= 2.5%, S(3)= 3.0%, S(4)= 3.5%, and S(5)= 4.0%.

➤ Exercise 5.6.12 (1) Figure out a case in which a change in the spot rate curve leaves
all forward rates unaffected. (2) Derive the duration −(∂P/∂y)/P under the shape
change in (1), where y is the short rate S(1).

5.6.4 Spot and Forward Rates under Simple Compounding

This is just a brief subsection because the basic principles are similar. The pricing
formula becomes

P =
n∑
i=1

C
1+ i S(i) +

F
1+nS(n) .

The market discount function is

d(n)= [ 1+nS(n) ]−1, (5.12)

and the (i − j)-period forward rate j periods from now is

f (i, j)= [ 1+ j S( j) ][ 1+ i S(i) ]−1− 1
j − i . (5.13)

To annualize the rates, multiply them by the number of periods per annum.

➤ Exercise 5.6.13 Derive Eq. (5.13).

5.7 Term Structure Theories

Term structure theories attempt to explain the relations among interest rates of
variousmaturities. As the spot rate curve is most critical for the purpose of valuation,
the term structure theories discussed below will be about the spot rate curve.
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5.7.1 Expectations Theory

Unbiased Expectations Theory
According to the unbiased expectations theory attributed to Irving Fisher, forward
rate equals the average future spot rate:

f (a,b)= E[ S(a,b) ], (5.14)

where E[ · ] denotes mathematical expectation [653, 799]. Note that this theory does
not imply that the forward rate is an accurate predictor for the future spot rate. It
merely asserts that it does not deviate from the future spot rate systematically. The
theory also implies that the maturity strategy and the rollover strategy produce the
same result at the horizon on the average (see Exercise 5.7.2). A normal spot rate
curve, according to the theory, is due to the fact that themarket expects the future spot
rate to rise. Formally, because f ( j, j + 1)> S( j + 1) if and only if S( j + 1)> S( j)
from Eq. (5.2), it follows that

E[ S( j, j + 1) ]> S( j + 1) if and only if S( j + 1)> S( j)

when the theory holds. Conversely, the theory implies that the spot rate is expected
to fall if and only if the spot rate curve is inverted [750].

The unbiased expectations theory, however, has been rejected by most empirical
studies dating back at least to Macaulay [627, 633, 767], with the possible exception
of the period before the founding of the Federal Reserve System in 1915 [639, 751].
Because the term structure has been upward sloping∼80% of the time, the unbiased
expectations theory would imply that investors have expected interest rates to rise
80% of the time. This does not seem plausible. It also implies that riskless bonds,
regardless of their different maturities, earn the same return on the average (see
Exercise 5.7.1) [489, 568]. This is not credible either, because that would mean in-
vestors are indifferent to risk.

➤ Exercise 5.7.1 Prove that an n-period zero-coupon bond sold at time k< n has a
holding period return of exactly S(k) if the forward rates are realized.

➤ Exercise 5.7.2 Show that

[ 1+ S(n) ]n = E[ 1+ S(1) ] E[ 1+ S(1, 2) ] · · · E[ 1+ S(n− 1,n) ]

under the unbiased expectations theory.

Other Versions of the Expectations Theory
At least four other versions of the expectations theory have been proposed, but they
are inconsistent with each other for subtle reasons [232]. Expectation also plays a
critical role in other theories, which differ by how risks are treated [492].

Consider a theory that says the expected returns on all possible riskless bond
strategies are equal for all holding periods. In particular,

[ 1+ S(2) ]2 = [ 1+ S(1) ] E[ 1+ S(1, 2) ] (5.15)

because of the equivalency between buying a two-period bond and rolling over
one-period bonds. After rearrangement, E[ 1+ S(1, 2) ]= [ 1+ S(2) ]2/[ 1+ S(1) ].
Now consider the following two one-period strategies. The first strategy buys a
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two-period bond and sells it after one period. The expected return is E[ { 1+
S(1, 2) }−1 ][ 1+ S(2) ]2. The second strategy buys a one-period bond with a return of
1+ S(1). The theory says they are equal: E[ { 1+ S(1, 2) }−1 ] [ 1+ S(2) ]2 = 1+ S(1),
which implies that

[ 1+ S(2) ]2
1+ S(1) = 1

E [ { 1+ S(1, 2) }−1 ] .

Combining this equation with Eq. (5.15), we conclude that

E
[

1
1+ S(1, 2)

]
= 1
E[ 1+ S(1, 2) ] .

However, this is impossible, save for a certain economy. The reason is Jensen’s in-
equality, which states that E[ g(X) ]> g(E[ X ]) for any nondegenerate random
variable X and strictly convex function g (i.e., g′′(x)> 0). Use g(x)≡ (1+ x)−1 to
prove our point. So this version of the expectations theory is untenable.

Another version of the expectations theory is the local expectations theory [232,
385]. It postulates that the expected rate of return of any bond over a single period
equals the prevailing one-period spot rate:

E
[ { 1+ S(1,n) }−(n−1) ]

[ 1+ S(n) ]−n = 1+ S(1) for all n> 1. (5.16)

This theory will form the basis of many stochastic interest rate models later. We call

E
[ {1+ S(1,n) }−(n−1) ]

[ 1+ S(n) ]−n − [ 1+ S(1) ]

the holding premium, which is zero under the local expectations theory.
Each version of the expectations theory postulates that a certain expected dif-

ference, called the liquidity premium or the term premium, is zero. For instance, the
liquidity premium is f (a,b)− E[ S(a,b) ] under the unbiased expectations theory
and it is the holding premium under the local expectations theory [694]. The in-
compatibility between versions of the expectations theory alluded to earlier would
disappear, had they postulated nonzero liquidity premiums [143]. For example, the
biased expectations theory says that

f (a,b)− E[ S(a,b) ]= p(a,b),
where the liquidity premium p is not zero [39, 653]. A nonzero liquidity premium is
reasonably supported by evidence. There is also evidence that p is neither constant
nor time-independent [43, 335].

➤ Exercise 5.7.3 (1) Prove that

E
[

1
{ 1+ S(1) }{ 1+ S(1, 2) } · · · { 1+ S(n− 1,n) }

]
= 1

[ 1+ S(n) ]n

under the local expectations theory. (2) Show that the local expectations theory is
inconsistent with the unbiased expectations theory.

➤ Exercise 5.7.4 The return-to-maturity expectations theory postulates that the
maturity strategy earns the same return as the rollover strategy with one-period
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bonds, i.e.,

[ 1+ S(n) ]n = E[ { 1+ S(1) } { 1+ S(1, 2) } · · · { 1+ S(n− 1,n) } ], n> 1.

Show that it is inconsistent with the local expectations theory.

5.7.2 Liquidity Preference Theory

The liquidity preference theory holds that investors demand a risk premium for
holding long-term bonds [492]. The liquidity preference theory is attributed to Hicks
[445]. Consider an investor with a holding period of two. If the investor chooses the
maturity strategy and is forced to sell the two-period bonds because of an unexpected
need for cash, he would face the interest rate risk and the ensuing price risk because
bond prices depend on the prevailing interest rates at the time of the sale. This risk is
absent from the rollover strategy. As a consequence, the investor demands a higher
return for longer-term bonds. This implies that f (a,b)> E[ S(a,b) ]. When the spot
rate curve is inverted,

[ 1+ S(i) ]1/(i+1){ 1+ E[ S(1, i + 1) ] }i/(i+1)
< [ 1+ S(1) ]1/(i+1){ 1+ E[ S(1, i + 1) ] }i/(i+1)
< 1+ S(i + 1)

< 1+ S(i).
Thus E[ S(1, i + 1) ]< S(i). The market therefore has to expect the interest rate to
decline in order for an inverted spot rate curve to be observed.

The liquidity preference theory seems to be consistent with the typically upward-
sloping yield curve. Even if people expect the interest rate to decline and rise equally
frequently, the theory asserts that the curve is upward sloping more often. This is be-
cause a rising expected interest rate is associated with only a normal spot rate curve,
and a declining expected interest rate can sometimes be associated with a normal
spot rate curve. Only when the interest rate is expected to fall below a threshold does
the spot rate curve become inverted. The unbiased expectations theory, we recall, is
not consistent with this case.

➤ Exercise 5.7.5 Show that the market has to expect the interest rate to decline in
order for a flat spot rate curve to occur under the liquidity preference theory.

5.7.3 Market Segmentation Theory

Themarket segmentation theoryholds that investors are restricted tobondsof certain
maturities either by law, preferences, or customs. For instance, life insurance compa-
nies generally prefer long-term bonds, whereas commercial banks favor shorter-term
ones. The spot rates are determinedwithin eachmaturity sector separately [653, 799].

The market segmentation theory is closely related to the preferred habitats
theory of Culbertson, Modigliani, and Sutch [674]. This theory holds that the in-
vestor’s horizon determines the riskiness of bonds. A horizon of 5 years will prefer a
5-year zero-coupon bond, demanding higher returns from both 2- and 7-year bonds,
for example, because the former choice has reinvestment risk and the latter has price
risk. Hence, in contrast to the liquidity preference theory, f (a,b)< E[ S(a,b) ] can
happen if the market is dominated by long-term investors.
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5.8 Duration and Immunization Revisited

Rate changes considered before for duration were parallel shifts under flat spot
rate curves. We now study duration and immunization under more general spot rate
curves and movements.

5.8.1 Duration Measures

Let S(1), S(2), . . . , be the spot rate curve and P(y)≡∑i Ci/[ 1+ S(i)+ y ]i be the
price associated with the cash flow C1,C2 . . . . Define duration as

−∂P(y)/P(0)
∂y

∣∣∣∣
y=0
=
∑
i

iCi
[ 1+S(i) ]i+1∑
i

Ci
[ 1+S(i) ]i

.

Note that the curve is shifted in parallel to S(1)+�y, S(2)+�y, . . . , before letting
�y go to zero. As before, the percentage price change roughly equals duration
multiplied by the size of the parallel shift in the spot rate curve. But the simple linear
relation between duration and MD (4.4) breaks down. One way to regain it is to
resort to a different kind of shift, the proportional shift, defined as

�[ 1+ S(i) ]
1+ S(i) = �[ 1+ S(1) ]

1+ S(1)
for all i [317]. Here,�x denotes the change in x when the short-term rate is shifted
by �y. Duration now becomes

1
1+ S(1)

{ ∑
i

iCi
[ 1+S(i) ]i∑
i

Ci
[ 1+S(i) ]i

}
. (5.17)

If we define Macaulay’s second duration to be the number within the braces in
Eq. (5.17):

duration= Macaulay′s second duration
[ 1+ S(1) ] .

This measure is also called Bierwag’s duration [71, 496].
Parallel shift does not reflect market reality. For example, long-term rates do

not correlate perfectly with short-term rates; in fact, the two rates often move in
opposite directions. Short-term rates are also historically more volatile. Practitioners
sometimes break the spot rate curve into segments andmeasure the duration in each
segment [470].

Duration can also be defined under custom changes of the yield curve. For ex-
ample, we may define the short-end duration as the effective duration under the fol-
lowing shifts. The 1-year yield is changed by±50 basis points (±0.5%). The amounts
of yield changes for maturities 1≤ i ≤ 10 are ±50× (11− i)/10 basis points. Yields
of maturities longer than 10 remain intact. If the yield curve is normal, the +50
basis-point change corresponds to flattening of the yield curve, whereas the −50
basis-point change corresponds to steepening of the yield curve. Long-end duration
can be specified similarly. Two custom shifts are behind nonproportional shifts (see
Exercise 5.8.3) and Ho’s key rate durations (see Section 27.5).

Although durations have many variants, the one feature that all share is that the
term structure can shift in only a fixed pattern. Despite its theoretical limitations,
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duration seems to provide as good an estimate for price volatility as more so-
phisticated measures [348]. Furthermore, immunization with the MD, still widely
used [91], is as effective as alternative duration measures [424]. One explanation
is that, although long-term rates and short-term rates do not in general move
by the same amount or even in the same direction, roughly parallel shifts in the
spot rate curve are responsible for more than 80% of the movements in interest
rates [607].

➤ Exercise 5.8.1 Assume continuous compounding. Show that if the yields to matu-
rity of all fixed-rate bonds change by the same amount, then (1) the spot rate curve
must be flat and (2) the spot rate curve shift must be parallel. (Hint: The yields of
zero-coupon bonds of various maturities change by the same amount.)

➤ Exercise 5.8.2 Verify duration (5.17).

➤ Exercise 5.8.3 Empirically, long-term rates change less than short-term ones. To
incorporate this fact into duration, we may postulate nonproportional shifts as

�[ 1+ S(i) ]
1+ S(i) = Ki−1�[ 1+ S(1) ]

1+ S(1) for some K < 1.

Show that a t-period zero-coupon bond’s price sensitivity satisfies

�P
P
=−tKt−1�[ 1+ S(1) ]

1+ S(1)
under nonproportional shifts.

5.8.2 Immunization

The Case of NO Rate Changes
Recall that in the absence of interest rate changes and assuming a flat spot rate
curve, it suffices to match the PVs of the future liability and the asset to achieve
immunization (see Exercise 4.2.7). This conclusion continues to hold even if the spot
rate curve is not flat, as long as the future spot rates equal the forward rates. Here is
the analysis. Let L be the liability at time m. Then

P =
n∑
i=1

C
[ 1+ S(i) ]i +

F
[ 1+ S(n) ]n =

L
[ 1+ S(m) ]m .

The PV of the liability at any time k≤m is hence

L
[ 1+ S(k,m) ]m−k = P[ 1+ S(k) ]

k

by Eq. (5.2) and the premise that f (a,b)= S(a,b). The PV of the bond plus the
reinvestments of the coupon payments at the same time is

k∑
i=1
C[ 1+ S(i,k) ]k−i +

n−k∑
i=1

C
[ 1+ S(k, i +k) ]i +

F
[ 1+ S(k,n) ]n−k

=
k∑
i=1

C[ 1+ S(k) ]k
[ 1+ S(i) ]i +

n−k∑
i=1

C[ 1+ S(k) ]k
[ 1+ S(i +k) ]i+k +

F[ 1+ S(k) ]k
[ 1+ S(n) ]n

= P[ 1+ S(k) ]k,
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which matches the liability precisely. Therefore, in the absence of unpredictable
interest rate changes, duration matching and rebalancing are not needed for immu-
nization.

The Case of Certain Rate Movements
Recall that a future liability can be immunized by a portfolio of bonds with the same
PV and MD under flat spot rate curves (see Subsection 4.2.2). If only parallel shifts
are allowed, this conclusion can be extended to general spot rate curves. Here is
the analysis. We are working with continuous compounding. The liability L is T
periods from now. Without loss of generality, assume that the portfolio consists of
only zero-coupon bonds maturing at t1 and t2 with t1 < T < t2. Let there be ni
bonds maturing at time ti , i = 1, 2. Assume that L= 1 for simplicity. The portfolio’s
PV is

V ≡ n1e−S(t1) t1 +n2e−S(t2) t2 = e−S(T)T,
and its MD is

n1t1e−S(t1) t1 +n2t2e−S(t2) t2
V

= T.

These two equations imply that

n1e−S(t1) t1 = V(t2−T)t2− t1 , n2e−S(t2) t2 = V(t1−T)t1− t2 .

Now shift the spot rate curve uniformly by δ �= 0. The portfolio’s PV becomes

n1e−[ S(t1)+δ ] t1 +n2e−[ S(t2)+δ ] t2 = e−δt1 V(t2−T)t2− t1 + e−δt2 V(t1−T)
t1− t2

= V
t2− t1 [e−δt1 (t2−T)+ e−δt2 (T− t1)],

whereas the liability’s PV after the parallel shift is e−[ S(T)+δ ]T = e−δTV. As

V
t2− t1 [e−δt1 (t2−T)+ e−δt2 (T− t1)]> e−δTV,

immunization is established. See Fig. 5.10 for illustration.
Intriguingly, we just demonstrated that (1) a duration-matched position under

parallel shifts in the spot rate curve implies a free lunch as any interest rate change
generates profits and (2) no investors would hold the T-period bond because a
portfolio of t1- and t2-period bonds has a higher return for any interest rate shock
(in fact, they would own bonds of only the shortest and the longest maturities).
Implausible as the assertions may be, the reasoning seems impeccable. The way
to resolve the conundrum lies in observing that rate changes were assumed to be
instantaneous. The problem disappears when price changes occur after rate changes
[207, 848].3

A barbell portfolio often arises from maximizing the portfolio convexity, as
argued in Section 4.3. Higher convexity may be undesirable, however, when it comes
to immunization. Recall that convexity assumes parallel shifts in the term structure.
The moment this condition is compromised, as is often the case in reality, the more



Additional Reading 63

Figure 5.10: Asset/liability ratios under parallel shifts in the spot rate curve. Each
curve is the result of a pair of zero-coupon bonds with maturities (t1, t2) to
immunize a liability 10 periods away. All curves have a minimum value of one
when there are no shifts. Interest rate changes move the portfolio value ahead of
the liability, and the effects are more pronounced the more t1 and t2 are away
from 10.

dispersed the cash flows, the more exposed the portfolio is to the shape risk (or the
twist risk) [206, 246].

➤ Exercise 5.8.4 Repeat the above two-bond argument to prove that the claims in
Exercise 4.2.8 remain valid under the more general setting here.

Additional Reading

Consult [325, 514, 583, 629] for more information on the term structure of credit
spread. Pointers to empirical studies of the expectations theory can be found in
[144, 147]. Also called the Fisher–Weil duration [424], Macaulay’s second duration is
proposed in [350]. See [239, 245, 267, 318] for alternative approaches to immunization
and [367] for immunization under stochastic interest rates.

NOTES

1. “Maturity” and “term” are usually used in place of “term to maturity.”
2. The coupon rates of the coupon bonds making up the yield curve need to be specified.
3. We return to this issue in Exercises 14.4.4 and 24.6.8.



CHAPTER
SIX

Fundamental Statistical
Concepts

There are three kinds of lies: lies, damn lies, and statistics.

Benjamin Disraeli (1804–1881)

Statistics is vital to any scientific discipline that is confronted with the task of sum-
marizing data and making inferences from them. This elementary chapter presents
notations and results in probability and statistics that will be useful or extended
later.

6.1 Basics

Several definitions are related to expressing the variability of a random variable. The
variance σ 2

X of a random variable X is defined as

Var[ X ]≡ E[ (X− E[ X ])2 ].

The standard deviation σX is the square root of the variance,
√
Var[ X ] . The skew-

ness of X with mean µ is E[ (X−µ)3/σ 3 ], and the kurtosis is E[ (X−µ)4/σ 4 ].
The sample mean of a random sample X1, X2, . . . , Xn is

X ≡ 1
n

n∑
i=1
Xi .

A measure of a random sample’s variability is its sample variance, defined as

σ 2 ≡ 1
n− 1

n∑
i=1

(Xi −X )2. (6.1)

The sample standard deviation σ is the square root of the sample variance:

σ ≡
√
σ 2 =

√√√√ 1
n− 1

n∑
i=1

(Xi − X )2 . (6.2)

An estimator for a parameter θ is said to be unbiased if its expected value equals
θ . Sample variance (6.1) is an unbiased estimator of σ 2

X when each random sample
Xi has the samedistribution as X. Although the sample standard deviation is a biased
estimator of the standard deviation, it converges to the unbiased one.

64
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The covariance between two random variables X and Y is defined by

Cov[ X,Y ]≡ E [ (X−µX)(Y−µY) ] ,
where µX and µY are the means of XandY, respectively. If X and Y tend to move
in the same direction, their covariance will be positive, whereas if they tend to move
in opposite directions, their covariance will be negative. Call X and Y uncorrelated
random variables if Cov[ X,Y ]= 0. A computational shortcut for covariance is

Cov[ X,Y ]= E[ XY ]−µXµY. (6.3)

The correlation (or correlation coefficient) between X and Y is

ρX,Y ≡ Cov[ X,Y ]
σXσY

, (6.4)

provided that both have nonzero standard deviations. The variance of a weighted
sum of random variables satisfies

Var

[
n∑
i=1
ai Xi

]
=

n∑
i=1

n∑
j=1
aia j Cov[ Xi , Xj ]. (6.5)

The above becomes
∑n
i=1
∑n
j=1 a

2
i Var[ Xi ] when Xi are uncorrelated.

Let X | I denote X conditional on the information set I. The information set can
be another random variable’s value or the past values of X, for example. The condi-
tional expectation E[X | I ] is the expected value of X conditional on I. Note that it
is a random variable. The extremely useful law of iterated conditional expectations
says that

E[ X ]= E[ E[ X | I ] ].
More generally, if I2 contains at least as much information as I1, then

E[ X | I1 ]= E[ E[ X | I2 ] |I1 ]. (6.6)

A typical example is for I1 to contain price information up to time t1 and for I2 to
contain price information up to a later time t2.

➤ Exercise 6.1.1 Prove Eq. (6.3) by using the well-known identity E[
∑
i aiXi ]=∑

i ai E[ Xi ].

➤ Exercise 6.1.2 Prove that if E[ X |Y= y ]= E[ X ] for all realizations y, then X
and Y are uncorrelated. (Hint: Use the law of iterated conditional expectations.)

6.1.1 Generalization to Higher Dimensions

It is straightforward to generalize the above concepts to higher dimensions. Let
X≡ [ X1, X2, . . . , Xn ]T be a vector random variable (AT means the transpose of A).
Its mean vector and the n×n covariance matrix are defined, respectively, as

E[ X ]≡ [ E[ X1 ], E[ X2 ], . . . , E[ Xn ] ]
T
,

Cov[ X ]≡ [ Cov[ Xi , Xj ] ]1≤i, j≤n.
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In analogy with Eq. (6.3), Cov[ X ]= E[ XX T ]− E[ X ] E[ X ]T. The correlation
matrix is defined as [ ρXi ,Xj ]1≤i, j≤n. Let X1, X2, . . . , XN be N observations on X.
The sample mean vector and the sample covariance matrix are defined, respec-
tively, as

X ≡ 1
N

N∑
i=1

Xi ,
1
N− 1

N∑
i=1

(Xi − X )(Xi − X )T.

The sample covariance matrix is an unbiased estimator of the covariance matrix.

➤ Exercise 6.1.3 Prove that E[ AX ]= AE[ X ] and that Cov[ AX ]= ACov[ X ] AT.

6.1.2 The Normal Distribution

A random variable X is said to have normal distribution with mean µ and variance
σ 2 if its probability density function is e−(x−µ)

2/(2σ 2)/(σ
√
2π) . This fact is expressed

by X∼ N(µ, σ 2) where ∼ means equality in distribution. The standard normal
distribution has zero mean, unit variance, and the distribution function

N(z)≡ 1√
2π

∫ z
−∞
e−x

2/2 dx.

(The distribution function of a randomvariable X is defined as F(z)≡ Prob[ X≤ z ]
for any real number z.) The normal distribution is due to de Moivre (1667–1754).

There are fast and accurate approximations to N(z) [5, 423]. An example is

N(z)≈ 1− 1√
2π
e−z

2/2(a1x+ a2x2+ a3x3+ a4x4+ a5x5)

for z≥ 0, where x ≡ 1/(1+ 0.2316419z) and

a1 = 0.319381530, a3 = 1.781477937, a5 = 1.330274429,
a2 =−0.356563782, a4 =−1.821255978.

As for z< 0, use N(z)= 1− N(−z).
The central moments of the normal random variable X are

E [ (X−µ)2n ]= (2n)!
2nn!

σ 2n, E [ (X−µ)2n+1 ]= 0, (6.7)

where n= 0, 1, 2 . . . . For example, the skewness and the kurtosis of the standard
normal distribution are zero and three, respectively. The moment generating func-
tion of a random variable X is defined as θX(t)≡ E[ etX ]. The moment generating
function of X∼ N(µ, σ 2) is known to be

θX(t)= exp
[
µt + σ

2t2

2

]
. (6.8)

If Xi ∼ N(µi , σ 2
i ) are independent (or, equivalently for normal distributions,

uncorrelated), then
∑
i Xi has a normal distribution with mean

∑
i µi and

variance
∑
i σ

2
i . In general, let Xi ∼ N(µi , σ 2

i ) , which may not be indepen-
dent. Then

∑n
i=1 ti Xi is normally distributed with mean

∑n
i=1 tiµi and variance∑n

i=1
∑n
j=1 ti t j Cov[ Xi , Xj ] [343]. The joint distribution of X1, X2, . . . , Xn has this
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joint moment generating function:

E

[
exp

[
n∑
i

ti Xi

]]
= exp

[
n∑
i=1
tiµi + 1

2

n∑
i=1

n∑
j=1
ti t j Cov[ Xi , Xj ]

]
.

These Xi are said to have a multivariate normal distribution. We use X∼ N(µ,C)
to denote that X≡ [ X1, X2, . . . , Xn ]T has a multivariate normal distribution with
mean µ≡ [µ1, µ2, . . . , µn ]T and covariancematrix C ≡ [ Cov[ Xi , Xj ] ]1≤i, j≤n.With
M≡ C−1 and the (i, j)th entry of the matrix M being Mi, j , the X’s probability
density function is

1√
(2π)n det(C)

exp

[
−1

2

n∑
i=1

n∑
j=1

(Xi −µi )Mij (Xj −µ j )
]
,

where det(C) denotes the determinant of C [23].
In particular, if X1 and X2 have a bivariate normal distribution with correlation

ρ, their joint probability density function is

1

2πσ1σ2
√
1− ρ2

exp

−( X1−µ1
σ1

)2− 2ρ
( X1−µ1

σ1

)( X2−µ2
σ2

)+ ( X2−µ2
σ2

)2
2(1− ρ2)

 .
The sum ω1X1+ω2X2 is normally distributed with mean ω1µ1+ω2µ2 and variance

ω2
1σ

2
1 + 2ω1ω2ρσ1σ2+ω2

2σ
2
2 . (6.9)

Fast and accurate approximations to the bivariate normal random variable’s distri-
bution function are available [470].

If Xi ∼ N(µi , σ 2) are independent, then Y≡∑n
i=1 X

2
i /σ

2 has a noncentral chi-
square distribution with n degrees of freedom and noncentrality parameter θ ≡
(
∑n
i=1 µ

2
i )/σ

2 > 0, denoted by Y∼ χ(n, θ). The mean and the variance are n+ θ
and 2n+ 4θ , respectively [463]. When µi are zero, Y has the central chi-square
distribution.

The central limit theorem, which is due to Laplace (1749–1827), is a cornerstone
for probability and statistics. It says that, if Xi are independent with mean µ and
variance σ 2, then∑n

i=1 Xi −nµ
σ
√
n

→ N(0, 1).

Conditions for the theorem’s applicability are rather mild [343].

➤ Exercise 6.1.4 Prove that central moments (6.7) are equivalent to

E [ (X−µ)n ]=
{
0, if n≥ 1 is odd
1 · 3 · 5 · · · (n− 1) σ n, if n≥ 2 is even

,

where n= 1, 2, . . . .

6.1.3 Generation of Univariate and Bivariate Normal Distributions

Let X be uniformly distributed over (0, 1 ] so that Prob[ X≤ x ]= x for 0< x ≤ 1.
Repeatedlydraw twosamples x1 and x2 fromXuntilω ≡ (2x1− 1)2+ (2x2− 1)2 < 1.
Then c(2x1− 1) and c(2x2− 1) are independent standard normal variables, where
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Figure 6.1: Normal and lognormal distributions: the standard normal distribution X
and the lognormal distribution eX.

c ≡√−2(lnω)/ω . This is called the polar rejection method [727]. Pairs of normally
distributed variables with correlation ρ can be generated as follows. Let X1 and X2

be independent standard normal variables. Then

U ≡ aX1,

V ≡ ρU+
√
1− ρ2 aX2

are the desired randomvariables because Var[U ]=Var[V ]= a2 and Cov[U,V ]=
ρa2.

6.1.4 The Lognormal Distribution

A random variable Y is said to have a lognormal distribution if lnY has a normal
distribution (see Fig. 6.1). This distribution is due to Bachelier [147].

If X is normally distributed with mean µ and variance σ 2, then the density
function of the lognormally distributed random variable Y≡ eX is

f (y)≡


1
σ y
√
2π
e−(ln y−µ)

2/(2σ 2), if y> 0
.

0, if y≤ 0
(6.10)

The mean and the variance of Y are

µY = eµ+σ 2/2, σ 2
Y = e2µ+σ

2(
eσ

2 − 1
)
, (6.11)

respectively. Furthermore,

Prob[Y≤ y ]= Prob[ X≤ ln y ]= N
(
ln y−µ
σ

)
. (6.12)

The nthmoment about the origin, defined as
∫∞
−∞ x

n f (x)dx for a randomvariable x
with density function f (x), is enµ+n

2σ 2/2 for Y. A version of the central limit theorem
states that the product of n independent positive random variables approaches a
lognormal distribution as n goes to infinity.

➤ Exercise 6.1.5 Let Y be lognormally distributed with mean µ and variance σ 2.
Show that lnY has mean ln[µ/

√
1+ (σ/µ)2 ] and variance ln[ 1+ (σ/µ)2 ].

➤ Exercise 6.1.6 Let X be a lognormal random variable such that ln X has mean µ
and variance σ 2. Prove the identity

∫∞
a x f (x)dx = eµ+σ

2/2 N(µ−ln a
σ
+ σ ).
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Figure 6.2: Linear regression. The linear function Y = 10.1402 + 2.0238X
is fit to the data under the least-squares criterion.

6.2 Regression

Supposewearepresentedwith thedata (x1, y1), (x2, y2), . . . , (xn, yn).Thedata canbe
plotted on a rectangular coordinate system, resulting in the so-called scatter diagram,
such as the dots in Fig. 6.2. If the scatter diagram suggests a linear relation between
the variables, we can fit a simple straight-line model y= β0+β1x to the data. The
problem of finding such a fit is called linear regression.1 To estimate the model
parameters β0 and β1 with the least-squares principle, we find β̂0 and β̂1 that
minimize

n∑
i=1

[ yi − (β̂0+ β̂1x) ]
2. (6.13)

This line is called the linear regression of y on x [632]. It is well known that

β̂1 =
∑
i (xi − x)(yi − y)∑

i (xi − x)2
= n

∑
i xi yi −

(∑
i xi
)(∑

i yi
)

n
∑
i x

2
i −

(∑
i xi
)2 , (6.14)

β̂0 =
∑
i yi − β̂1

∑
i xi

n
= y− β̂1x. (6.15)

The resulting line y= β̂0+ β̂1x is called the estimated regression line or the least-
squares line. The ithfittedvalue is ŷi ≡ β̂0+ β̂1xi .Note that (x, y) is on theestimated
regression line by virtue of Eq. (6.15).

A few statistics are commonly used. The error sum of squares (SSE) is the sum
of the squared deviation about the estimated regression line:

SSE≡
∑
i

(yi − ŷi )2 =
∑
i

(yi − β̂0− β̂1xi )
2.

Because the SSE measures how much variation in y is not explained by the linear
regression model, it is also called the residual sum of squares or the unexplained
variation. The total sum of squares (SST) is defined as SST≡∑i (yi − y)2, which
measures the total amount of variation in observed y values. This value is also
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known as the total variation. By the least-squares criterion, SSE≤ SST. The ratio
SSE/SST is the proportion of the total variation that is left unexplained by the linear
regression model. The coefficient of determination is defined as

R2 ≡ 1− SSE
SST

; (6.16)

it is the proportion of the total variation that can be explained by the linear regression
model. A high R2 is typically a sign of success of the linear regression model in
explaining the y variation. Finally, the regression sum of squares (SSR) is defined
as SSR≡∑n

i=1( ŷ i − y)2. It is well known that

SSR= SST−SSE= β̂1

n∑
i=1

(xi − x)(yi − y). (6.17)

Thus R2 = SSR/SST. Because the SSR is large when the estimated regression line
fits the data closely (as SSE is small), it is interpreted as the amount of total variation
that is explained by the linear regressionmodel. For this reason it is sometimes called
the explained variation.

The more general linear regression, also known as multiple regression, fits

y= β0+β1x1+β2x2+ · · ·+βkxk

to the data. Equation (6.17) holds for multiple regression as well [422, 523]. Non-
linear regression uses nonlinear regression functions. In polynomial regression, for
example, the problem is to fit

y= β0+β1x+β2x2+ · · ·+βkxk

to the data. See Fig. 6.3 for the k= 2 case.

➤ Exercise 6.2.1 Prove that SSE=∑i y
2
i − β̂0

∑
i yi − β̂1

∑
i xi yi .

Figure 6.3: Nonlinear regression. The quadratic function Y =−1.28204+
2.52945X + 0.945518X 2 is fit to the data under the least-squares criterion.
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6.3 Correlation

Given n pairs of observations (x1, y1), (x2, y2), . . . , (xn, yn) on (X,Y), their sample
correlation coefficient or Pearson’s r is definedas

r ≡
∑
i (xi − x)(yi − y)√∑

i (xi − x)2
√∑

i (yi − y)2
. (6.18)

The sample correlation coefficient is a point estimator for ρX,Y and is traditionally
used to summarize the strength of correlation. It can be shown that −1≤ r ≤ 1. In
particular, r = 1 when the data lie on a straight line with positive slope and r =−1
when the data lie on a straight line with negative slope. In some sense r measures
the linear relation between the variables.

In regression, one variable is considered dependent and the others independent;
the purpose is to predict. Correlation analysis, in contrast, studies how strongly two
or more variables are related, and the variables are treated symmetrically; it does
not matter which of the two variables is called x and which y.

We used the symbol r deliberately: Squaring r gives exactly the coefficient of
determination R2. Indeed, from Eqs. (6.14) and (6.17),

r2 = β̂2
1

∑
i (xi − x)2∑
i (yi − y)2

= β̂1

∑
i (xi − x)(yi − y)∑

i (yi − y)2
= SSR

SST
= R2. (6.19)

Interestingly, Eq. (6.16) implies that SSE= SST× (1− r2).
EXAMPLE 6.3.1 Figure 6.4 plots the stock prices of Intel, Silicon Graphics, Inc. (SGI),
VLSI Technology, andWal-Mart fromAugust 30, 1993, to August 30, 1995. The sam-
ple correlation coefficient between VLSI Technology and Intel is extremely high at
0.950376. The sample correlation coefficient between Intel and SGI is also high at
0.883291. Technology stocks seem to move together. In contrast, the sample correla-
tion coefficient between Intel and Wal-Mart is low at 0.14917. From these numbers
and Eq. (6.19), we can deduce, for example, that 90.3215% of the total variations
between Intel’s and VLSI Technology’s stock prices can be explained by a linear
regression model.

Figure 6.4: Correlation among stock prices. See Example 6.3.1.
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➤ Exercise 6.3.1 Find the estimated regression line for { (1, 1.0), (2, 1.5), (3, 1.7),
(4, 2.0) }. Check that the coefficient of determination indeed equals the sample cor-
relation coefficient.

6.4 Parameter Estimation

After a family of stochastic models has been chosen to capture the reality, the values
of their parameters must be found to completely specify the distribution. Inferring
those parameters constitutes the major goal of financial econometrics [147]. Three
estimation techniques are mentioned below.

6.4.1 The Least-Squares Method

This method is due to Legendre (1752–1833) in 1806 and Gauss (1777–1855) in 1809
[582].2 It works by minimizing the sum of squares of the deviations, in other words,
the SSE. For example, the least-squares estimate of X , given the measurements xi
on it, is the number X̂ that minimizes

f (X̂ )≡
n∑
i=1

(xi − X̂ )2. (6.20)

This method was also used in the derivation of the estimated regression line in
Section 6.2 by the minimization of (6.13). Recall that no stochastic models were
assumed there.

Suppose that the following linear regression model is postulated between x
and y:

y= β0+β1x+ ε,
where ε is a random variable with zero mean and finite variance. In other words,
added to each observation of y is some uncorrelated noise ε. Then the estimated
parameters of the estimated regression line, which are now random variables, have
the smallest variancesamongall unbiased linearestimators.This is theGauss–Markov
theorem, which is due to Gauss in 1821 andMarkov (1856–1922) in 1912 [75, 632]. It
is interesting to observe that the least-squares estimate of β1 – the β̂1 in Eq. (6.14) –
can be interpreted as the sample covariance between x and y divided by the sample
variance of x (see also Exercise 6.4.1).

EXAMPLE 6.4.1 Two nice properties of the bivariate normal distribution are

E[ X2 | X1 ]= µ2+ ρ σ2
σ1

(X1−µ1), Var[ X2 | X1 ]= (1− ρ2)σ 2
2 .

Hence the regressions are linear functions, and linear regression is justified. In
fact, the fitted (predicted) value for X2 , given X1 = x for any two random variables
X1 and X2 , is exactly E[ X2 | X1 = x ] under the least-squares principle (see
Exercise 6.4.3) [846].

➤ Exercise 6.4.1 Let X1 and X2 be random variables. The random variable

Y≡ (X2− E[ X2 ])−{α+β(X1− E[ X1 ]) }
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is the prediction error of the linear prediction α+β(X1− E[ X1 ]) of X2 based on
X1. Show that (1) Var[Y ]= E[Y 2 ] is minimized at α≡ 0 and β ≡ (Cov[ X1, X2 ])/
(Var[ X1 ]), which is called beta, and (2) X1 and Y are uncorrelated if the optimal
linear prediction is used.

➤ Exercise 6.4.2 Verify that the f in Eq. (6.20) is minimized at X̂ = (1/n)
∑n
i=1 xi .

➤ Exercise 6.4.3 (1) Prove that a minimizes the mean-square error E[ (X− a)2 ]
when a = E[ X ]. (2) Show that the best predictor a of Xk based on X1, X2, . . . , Xk−1
in the mean-square-error sense, that is, with minimum E[ (Xk− a)2 | X1, X2, . . . ,

Xk−1 ], is the conditional least-squares estimator E[ Xk | X1, X2, . . . , Xk−1 ].

6.4.2 The Maximum Likelihood Estimator

Suppose that the sample has the probability density function p(z | θ). If Z is ob-
served, p(Z | θ) is called the likelihood of θ .3 The maximum likelihood (ML)
method estimates θ by the number θ̂ that maximizes the likelihood. Formally
the likelihood function as the joint probability of the event X1 = x1, X2 = x2, . . . ,
Xn = xn is

L(θ)≡ Prob[ X1 = x1, X2 = x2, . . . , Xn = xn |θ ],

whereθ ≡ (θ1, θ2, . . . , θk) is the vector of parameters to be estimated. The likelihood
function product equals

∏n
i=1 pXi (xi |θ), where pXi (xi |θ) is the probability density

function of Xi = xi when the samples are drawn independently. The ML method
estimates θ with θ̂ ≡ (̂θ1, θ̂2, . . . , θ̂m) such that L(̂θ)≥ L(θ) for all θ. It may be
biased, however.

An estimator is consistent if it converges in probability to the true parameter as
the sample size increases. TheMLmethod, among consistent estimators, enjoys such
optimality properties as minimum asymptotic variance and asymptotic normality
under certain regularity conditions. These properties carry over to samples from
a stochastic process [413, 422]. Unlike the least-squares method, which uses only
the first two moments of the observations, the ML method utilizes the complete
distribution of the observations.

Under certain regularity conditions, the ML estimate of θ is the solution to the
simultaneous equations ∂L(θ)/∂θi = 0. Often it is the logarithm of L(θ), called the
log-likelihood function, that is more convenient to work with. Numerical techniques
are needed when a closed-form solution for θ is not available.

EXAMPLE 6.4.2 Based on n independent observations x1, x2, . . . , xn from N(µ, σ 2),
the log-likelihood function is

ln L(µ, σ 2)=−n
2

ln(2π)− n
2
ln σ 2− 1

2σ 2

n∑
i=1

(xi −µ)2.

After setting ∂ ln L/∂µ and ∂ ln L/∂σ 2 to zero, we obtain µ̂= (1/n)
∑
i xi , the sam-

plemean, and σ̂ 2 = (1/n)
∑
i (yi − µ̂).TheMLestimatorof variance is biasedbecause

it differs from Eq. (6.1). It is consistent, however.
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6.4.3 The Method of Moments

The method of moments estimates the parameters of a distribution by equating
the population moments with their sample moments. Let X1, X2, . . . , Xn be random
samples fromadistribution characterizedby k parameters θ1, θ2, . . . , θk. Themethod
of moments estimates these parameters by solving k of the following equations:

M1 = 1
n

n∑
i=1
Xi , M2 = 1

n

n∑
i=1
X2
i , M3 = 1

n

n∑
i=1
X3
i , . . . ,

where the moments Mi ≡ E[ Xi ] are functions of the parameters.
The name method of moments comes from the notion that parameters should be

estimated by usingmoments. Also called the analogmethod, themethod ofmoments
requires no knowledge of the likelihood function. Although only certain moments
of the observations instead of the full probability density function are used, this
method is convenient and usually leads to simple calculations as well as to consis-
tent estimators. Furthermore, it is the only approach of wide applicability in some
situations.

Additional Reading

This chapter draws on [12, 23, 195, 273, 343, 463, 802, 816, 846] for probability theory,
statistics, and statistical inferences. A very accurate approximation to the normal
distribution appears in [678]. Regression analysis is covered by many books [317,
422, 632, 799]. See [273, 522, 584, 846] for more information about the lognormal
distribution. The method of moments was introduced by Pearson (1857–1936) in
1894 [415].

NOTES

1. The idea of regression is due to Galton (1822–1911) [65].
2. Gauss claimed to have made the discovery in 1795 [75, 339].
3. The idea of likelihood is due to Ronald Fisher (1890–1962) [671].



CHAPTER
SEVEN

Option Basics

The shift toward options as the center of gravity of finance [ . . . ]

Merton H. Miller (1923–2000) [666]

Options grant their holder the right to buy or sell some underlying asset. Options
are therefore contingent claims or derivative securities because their value depends
on that of the underlying asset. Besides being one of the most important classes of
financial instruments, options have wide-ranging applications in finance and beyond.
As far as explaining empirical data goes, the option pricing theory ranks as the most
successful theory in finance and economics [766].

7.1 Introduction

There are two basic types of options: calls and puts. More complex instruments can
often be decomposed into a package of calls and puts. A call option gives its holder
the right to buy a specified number of the underlying asset by paying a specified
exercise price or strike price. A put option gives its holder the right to sell a specified
number of the underlying asset by paying a specified strike price. Theunderlying asset
may be stocks, stock indices, options, foreign currencies, futures contracts, interest
rates, fixed-income securities, mortgages, winter temperatures, and countless others
[54, 346, 698]. When an option is embedded, it has to be traded along with the
underlying asset.

The one who issues an option is called a writer. To acquire the option, the holder
pays the writer a premium. When a call is exercised, the holder pays the writer the
strike price in exchange for the stock, and the option ceases to exist. When a put is
exercised, the holder receives from the writer the strike price in exchange for the
stock, and the option ceases to exist.Anoption can be exercised before the expiration
date, which is called early exercise. It can also be sold at any trading date before the
expiration date.
American andEuropean options differ in when they can be exercised. American

options can be exercised at any time up to the expiration date, whereas European
options can be exercised only at expiration.1 AnAmerican option is worth at least as
muchasanotherwise identicalEuropeanoptionbecauseof theearly exercise feature.

Many strategies and analysis in the book depend on taking a short position. In
stocks, short sales involve borrowing stock certificates and buying them back later; in
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short, selling what one does not own precedes buying. The short seller is apparently
betting that the stock price will decline. Note that borrowed shares have to be paid
back with shares, not cash. The short seller does not receive cash dividends; in fact,
the short seller must make matching dividend payments to the person to whom the
shares were sold. Every dividend payout hence reduces a short seller’s return.

It is easier to take a short position in derivatives. All one has to do is to find an
investor who is willing to buy them, that is, to be long the derivatives. For derivatives
that do not deliver the underlying asset or those that are mostly settled by taking
offset positions, their outstanding contracts may cover many times the underlying
asset [60].

For the rest of this chapter,C denotes the call value, P the put value, X the strike
price, S the stock price, and D the dividend. Subscripts are used to differentiate or
emphasize times to expiration, stock prices, or strike prices. The notation PV(x)
indicates the PV of x dollars at expiration.

7.2 Basics

An option does not oblige its holder to exercise the right. An option will hence be
exercised only when it is in the best interest of its holder to do so. Clearly a call will
be exercised only if the stock price is higher than the strike price. Similarly, a put will
be exercised only if the stock price is less than the strike price. The value or payoff
of a call at expiration is therefore C =max(0, S− X), and that of a put at expiration
is P =max(0, X− S) (see Fig. 7.1). Payoff, unlike profit, does not account for the
initial cost. For example, the payoff of a long position in stock is S, and the payoff of a
short position in stock is −S (see Fig. 7.2). At any time t before the expiration date,

Figure 7.1: Option payoffs: the option payoffs at expiration with a strike price of 50.
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Figure 7.2: Payoff of stock: the payoffs of long and short positions in stock.

we call max(0, St − X) the intrinsic value of a call and max(0, X− St) the intrinsic
value of a put. The part of an option’s value above its intrinsic value is called its time
value and represents the possibility of becoming more valuable before the option
expires. The option premium thus consists of the intrinsic value and the time value.
A call is said to be in themoney if S> X, at themoney if S= X, and out of themoney
if S> X. Similarly, a put is said to be in the money if S< X, at the money if S= X,
and out of themoney if S> X. Options that are in themoney at expiration should be
exercised. Surprisingly, more than 10% of option holders let in-the-money options
expire worthless [340]. Although an option’s terminal payoff is obvious, finding its
value at any time before expiration is a major intellectual breakthrough. Figure 7.3
plots the values of put and call before expiration.

7.3 Exchange-Traded Options

Puts and calls first appeared in 1790. (Aristotle described a kind of call inPolitics [29,
Book 2,Chapter 11].)However, before 1973, optionswere traded inover-the-counter
markets in which financial institutions and corporations traded directly with one
another. Themain distinction of over-the-counter options is that they are customized.
Today, over-the-counter options are most popular in the area of foreign currencies
and interest rates.

Figure 7.3: Values of call and put before expiration. Plotted are the general shapes of call and put values as
functions of the stock price before expiration. Dashed lines denote the option values at expiration.
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The Chicago Board Options Exchange (CBOE) started the options trading
on April 26, 1973. Since then options have been traded in many exchanges such
as the American Stock Exchange (AMEX) and the Philadelphia Stock Exchange
(PHLX). Exchange-traded options standardize the terms of option contracts, cre-
ate centralized trading and price dissemination facilities, and introduce the Op-
tions Clearing Corporation (OCC), all of which serve to promote an active sec-
ondary market. The term listed option is also used to refer to an exchange-traded
option.

Terms on the exchange-traded stock options govern the expiration dates and the
strike prices. The strike prices are centered on the current price of the underlying
stock with fixed increments that depend on the price of the stock. Typical increments
are $21/2 for a stock price less than $25 per share, $5 for a stock price between $25
and $200 per share, and $10 for a stock price over $200 per share. A stock typically
has options outstanding expiring at three expiration dates. The exchange also limits
the maximum number of options an individual can take on one side of the market.
Exchange-traded stock options are American.

Exchange-traded stock options are not cash dividend protected (or simply pro-
tected). This means that the option contract is not adjusted for cash dividends. As the
stock price typically falls by the amount roughly equal to the amount of the cash div-
idend as it goes ex-dividend, dividends are detrimental for calls. The converse is true
for puts. However, options are adjusted for stock splits. After an n-for-m stock split,
the strike price is only m/n times its previous value, and the number of shares cov-
ered by one contract becomes n/m times its previous value. Exchange-traded stock
options are also adjusted for stock dividends. Unless stated otherwise, options are
assumed to be unprotected. Figure 7.4 shows a small sample of listed stock options.

EXAMPLE 7.3.1 For an option to buy 100 shares of a company for $50 per share, a
2-for-1 split would change the term to a strike price of $25 per share for 200 shares.

A contract normally covers 100 shares of stock. Option prices are quoted per unit
of the underlying asset. For instance, the Merck July 35 call closed at 91/2 on March
20, 1995, by Fig. 7.4. The total cost of the call was $950.

For exchange-traded options, an option holder can close out or liquidate the
position by issuing an offsetting order to sell the same option. Similarly, an option
writer can close out the position by issuing an offsetting order to buy the same option.
This is called settled by offset, made possible by the OCC. The open interest is the
total number of contracts that have not been offset, exercised, or allowed to expire –
in short, the total number of long (equivalently, short) positions.

7.4 Basic Option Strategies

Option strategies involve taking positions in options, the underlying assets, and bor-
rowing or lending. For example, six positions were mentioned before: long stock,
short stock, long call, short call, long put, and short put. A strategy can be bullish,
bearish, or neutral in terms of market outlook, it can be aggressive, defensive, or
virtually riskless in terms of risk posture, and it can be designed to profit in volatile
or calm markets. For example, buying a stock is a bullish and aggressive strategy,
bullish because it profits when the stock price goes up and aggressive because
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—Call— —Put—
Option Strike Exp. Vol. Last Vol. Last

· · ·
Exxon 60 Apr 1053 51/2 1000 3/16

65 65 Apr 951 15/16 830 11/16

65 65 May 53 17/16 10 11/16

65 65 Oct 32 23/4 . . . . . .

65 70 Jul 2 1/4 40 51/4

· · ·
Merck 30 Jul 328 151/4 . . . . . .

441/2 35 Jul 150 91/2 10 1/16

441/2 40 Apr 887 43/4 136 1/16

441/2 40 Jul 220 51/2 297 1/4

441/2 40 Oct 58 6 10 1/2

441/2 45 Apr 3050 7/8 100 11/8

441/2 45 May 462 13/8 50 13/8

441/2 45 Jul 883 115/16 147 13/4

441/2 45 Oct 367 23/4 188 21/16

· · ·
Microsoft 55 Apr 65 163/4 52 1/8

711/8 60 Apr 556 113/4 39 1/8

711/8 65 Apr 302 7 137 3/8

711/8 65 Jul 93 9 15 11/2

711/8 65 Oct 34 105/8 9 21/4

711/8 70 Apr 1543 31/8 162 11/2

711/8 70 May 42 41/4 2 21/8

711/8 70 Jul 190 53/4 61 3
711/8 70 Oct 94 71/2 1 4

· · ·

Figure 7.4: Options quotations. In August 2000, the Wall Street Journal started quoting stocks traded
on the New York Stock Exchange, the Nasdaq National Market, and the AMEX in decimals. All three ex-
changes are expected to convert to the decimal system by April 2001. Source: Wall Street Journal, March 21,
1995.

the investor runs the risk of maximum loss, dollar for dollar, if the stock goes
down. More aggressive strategies include buying stocks on margin and buying op-
tions. For instance, the Exxon April 60 call allows the holder to control a $65
stock for a mere $5.5 (see Fig. 7.4). Selling stocks short, on the other hand, is
aggressive but bearish. In covered positions, some securities protect the returns
of others. There are three basic kinds of covered positions: hedge, spread, and
combination.

➤ Exercise 7.4.1 Howwouldyoucharacterizebuyinga call in termsofmarketoutlook
and risk posture?

7.4.1 Hedge

A hedge combines an option with its underlying stock in such a way that one protects
the other against loss. A hedge that combines a long position in stock with a long put
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Figure 7.5: Profits of protective put and covered call. The strike price and the current stock price are both $95.
The dashed lines represent the positions’ profits at expiration. A profit diagram does not take into account
the time value of the money used in setting up the position.

is called a protective put. A hedge that combines a long position in stock with a short
call is called a covered call (see Fig. 7.5). Covered calls may be the most common
option strategy used by institutional investors to generate extra income in a flat
market. Because both strategies break even only if the stock price rises, their market
outlook is bullish. They are also defensive: The investor owns the stock anyway in a
covered call, and the protective put guarantees a minimum value for the portfolio.
A reverse hedge is a hedge in the opposite direction such as a short position in stock
combined with a short put or a long call.

Writing a cash-secured putmeanswriting a putwhile putting aside enoughmoney
to cover the strike price if the put is exercised.Thepayoff is similar to that of a covered
call. Themaximumprofit is X− [ PV(X)− P ], and themaximum loss is P−PV(X),
which occurs when the stock becomes worthless. A ratio hedge combines two short
calls against each share of stock. It profits as long as the stock price does not move
far in either direction. See Fig. 7.6 for illustration.

➤ Exercise 7.4.2 Verify the maximum profit of the cash-secured put.

➤ Exercise 7.4.3 Both a protective put on a diversified portfolio and a fire insurance
policy provide insurance. What is the essential difference between them?

➤ Exercise 7.4.4 Start with $100 and put 100/(1+ r) in the money market earning
an annual yield of r . The rest of the money is used to purchase calls. (1) Figure out

Figure 7.6: Profit of ratio hedge. The solid line is the profit diagram of a ratio hedge
at expiration with a strike price of $95 and a current stock price of $95. The dashed
line represents the profit diagram of the stock, and the dotted line represents the
profit diagram of the option.
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Figure 7.7: Profit of bull call spread. Plotted is the profit diagrams of a bull call
spread at expiration (dashed line) and at 1 month before expiration (solid curve).
Both the strike price and the current stock price are $95.

the payoff of this strategy when the option expires 1 year from now. (2) What is the
r that makes the strategy a “90/10” one, meaning putting 90% in the money market
today and earning just enough to exercise the option at expiration? (This strategy is
called the 90/10 strategy.)

7.4.2 Spread

A spread consists of options of the same type and on the same underlying asset
but with different strike prices or expiration dates. They are of great interest to
options market makers. We use XL, XM, and XH to denote the strike prices with
XL< XM < XH.

A bull call spread consists of a long XL call and a short XH call with the
same expiration date. The initial investment is CL−CH. The maximum profit is
(XH− XL)− (CL−CH), and the maximum loss is CH−CL. The risk posture is de-
fensive. See Fig. 7.7 for illustration. This spread is also known as price spread,money
spread, or vertical spread (vertical, because it involves options on different rows

Figure 7.8: Profit of butterfly. Plotted is the profit diagram of a butterfly at expiration
(dashed line) and at 1 month before expiration when it is initially set up (solid curve).
The strike prices are $90, $95, and $100, and the current stock price is $95.
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Figure 7.9: Profit of horizontal spread. Plotted is the profit diagram of a horizontal
spread at expiration of the near call (dashed curve) and at the time when it is
initially set up (solid curve). Both the strike price and the current stock price are
$95. There is one month to the first expiration date and two months to the second
expiration date.

of the same vertical column as is obvious from Fig. 7.4). Writing an XH put and
buying an XL put with identical expiration dates will create the so-called bull put
spread. A bear spread amounts to selling a bull spread. It profits from declining stock
prices.

EXAMPLE 7.4.1 An investor bought a call. Afterwards, the market moved in her favor,
and she was able to write a call for the same premium but at a higher strike price.
She ended up with a bull spread and a terminal payoff that could never be negative.

Three calls or three puts with different strike prices and the same expiration date
create a butterfly spread. Specifically, the spread is long one XL call, long one XH
call, and short two XM calls. The first two calls form the wings. See Fig. 7.8 for
illustration. A butterfly spread pays off a positive amount at expiration only if the
asset price falls between XL and XH. A butterfly spread with a small XH− XL thus
approximates a state contingent claim, which pays $1 only when a particular price
results [346].2

Figure 7.10: Profit of straddle. Plotted is the profit diagram of a straddle at expiration
(dashed line) and at 1 month before expiration when it is initially set up (solid curve).
The strike price and the current stock price are both $95.



7.4 Basic Option Strategies 83

Figure 7.11: Profit of strangle. Plotted is the profit diagram of a strangle at expiration
(dashed line) and at 1 month before expiration when it is set up (solid curve). Here
the strike prices are $95 (for the put) and $100 (for the call), and the current stock
price is $95.

A horizontal spread (also called time spread or calendar spread) involves two
options with the same strike price but different expiration dates. A typical horizontal
spread consists of a long call with a far expiration date and a short call with a near
expiration date. Its profit pattern arises from the difference in the rate of time decay
between options expiring at different dates. See Fig. 7.9 for illustration. A diagonal
spread involves twooptionswith different strike prices anddifferent expiration dates.

➤ Exercise 7.4.5 Astate contingent claim has a payoff function f such that f (x)= 0
for all x �= X and

∫∞
−∞ f (x)dx = 1. Mathematically, f is called theDirac delta func-

tion. Argue that the value of a state contingent claim equals ∂2C/∂X2.

7.4.3 Combination

A combination consists of options of different types on the same underlying asset,
and they are either all bought or all written. A straddle is created by a long call
and a long put with the same strike price and expiration date. A straddle is neutral
on the direction of price movements and has limited risk. Because it profits from
high volatility, a person who buys a straddle is said to be long volatility [646].
See Fig. 7.10 for illustration. In contrast, selling a straddle benefits from low volatility
with a maximum profit of C+ P. A strangle is identical to a straddle except that the
call’s strike price is higher than the put’s. Figure 7.11 illustrates the profit pattern of
a strangle.

A strip consists of a long call and two long puts with the same strike price and
expiration date. A strap consists of a long put and two long calls with the same strike
price and expiration date. Their profit patterns are very much like that of a straddle
except that they are not symmetrical around the strike price. Hence, although strips
and straps also bet on volatile price movements, one direction is deemed more likely
than the other.

NOTES

1. Like the Holy Roman Empire, the terms American and European have nothing to do with
geography.

2. State contingent claims are also called Arrow securities in recognition of Arrow’s contribution
[836].



CHAPTER
EIGHT

Arbitrage in Option Pricing

All general laws are attended with inconveniences, when applied to
particular cases.

David Hume, “Of the Rise and Progress of the Arts and
Sciences”

The no-arbitrage principle says there should be no free lunch. Simple as it is,
this principle supplies the essential argument for option pricing. After the argu-
ment is presented in Section 8.1, several important option pricing relations will be
derived.

8.1 The Arbitrage Argument

A riskless arbitrage opportunity is one that, without any initial investment, gener-
ates nonnegative returns under all circumstances and positive returns under some
circumstances. In an efficient market, such opportunities should not exist. This no-
arbitrage principle is behind modern theories of option pricing if not a concept that
unifies all of finance [87, 303]. The related portfolio dominance principle says that
portfolio A should be more valuable than portfolio B if A’s payoff is at least as good
under all circumstances and better under some circumstances.

A simple corollary of the no-arbitrage principle is that a portfolio yielding a zero
return in every possible scenario must have a zero PV. Any other value would imply
arbitrage opportunities, which one can realize by shorting the portfolio if its value is
positive and buying it if its value is negative. The no-arbitrage principle also justifies
the PV formula P =∑n

i=1Cid(i) for a security with known cash flow C1,C2, . . . ,Cn
(recall that d(i) is the price of the i-period zero-couponbondwith $1 par value).Any
price other than P will lead to riskless gains by means of trading the security and
the zeros. Specifically, if the price P∗ is lower than P, we short the zeros that match
the security’s n cash flows in both maturity and amount and use P∗ of the proceeds
P to buy the security. Because the cash inflows of the security will offset exactly the
obligations of the zeros, a riskless profit of P− P∗ dollars has been realized now. See
Fig. 8.1. On the other hand, if the security is priced higher than P, one can realize a
riskless profit by reversing the trades.

Here are two more examples. First, an American option cannot be worth less
than the intrinsic value for, otherwise, one can buy the option, promptly exercise
it, and sell the stock with a profit. Second, a put or a call must have a nonnegative

84
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❄
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Figure 8.1: Price of fixed cash flow. Consider a security with cash flow C 1, C 2 , . . . ,C n and price
P ∗. Assemble a portfolio of zero-coupon bonds with matching principals C 1, C 2 , . . . ,C n and
maturities 1,2 , . . . ,n . Let its total price be P . Then P = P ∗ to preclude arbitrage opportunities.

value for, otherwise, one can buy it for a positive cash flow now and end up with a
nonnegative amount at expiration.

➤ Exercise 8.1.1 Give an arbitrage argument for d(1)≥ d(2)≥ · · · .
➤ Exercise 8.1.2 (Arbitrage Theorem). Consider a world with m states and n secu-
rities. Denote the payoff of security j in state i by Di j . Let D be the m×n matrix
whose (i, j)th entry is Di j . Formulate necessary conditions for arbitrage freedom.

8.2 Relative Option Prices

We derive arbitrage-free relations that option values must satisfy. These relations
hold regardless of the probabilistic model for stock prices. We only assume, among
other things, that there are no transactions costs or margin requirements, borrowing
and lending are available at the riskless interest rate, interest rates are nonnegative,
and there are no arbitrage opportunities. To simplify the presentation, let the current
time be time zero. PV(x) stands for the PVof x dollars at expiration; hence PV(x)=
xd(τ ) , where τ is the time to expiration.

The following lemma shows that American option values rise with the time to
expiration. This proposition is consistent with the quotations in Fig. 7.4; however, it
may not hold for European options.

LEMMA 8.2.1 An American call (put) with a longer time to expiration cannot be worth
less than an otherwise identical call (put) with a shorter time to expiration.

Proof: We prove the lemma for the call only. Suppose instead that Ct1 > Ct2 , where
t1 < t2. We buy Ct2 and sell Ct1 to generate a net cash flow of Ct1 −Ct2 at time zero.
Up to the moment when the time to t2 is τ and the short call either expires or is
exercised, the position isworth Cτ −max(Sτ − X, 0). If this value is positive, close out
the position with a profit by selling the remaining call. Otherwise, max(Sτ − X, 0)>
Cτ ≥ 0, and the short call is exercised. In this case, we exercise the remaining call and
have a net cash flow of zero. In both cases, the total payoff is positive without any
initial investment.

LEMMA 8.2.2 Acall (put) optionwith a higher (lower) strike price cannot beworthmore
than an otherwise identical call (put) with a lower (higher) strike price.

Proof: We prove the lemma for the call only. This proposition certainly holds at expi-
ration; hence it is valid for European calls. Let the two strike prices be X1 < X2. Sup-
pose that CX1 < CX2 instead. We buy the low-priced CX1 and write the high-priced
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CX2 , generating a positive return. If the holder of CX2 exercises it before expiration,
just exercise the long call to generate a positive cash flow of X2− X1.

LEMMA 8.2.3 The difference in the values of two otherwise identical options cannot be
greater than the difference in their strike prices.

Proof: We consider the calls only. Let the two strike prices be X1 < X2. Assume
that CX1 −CX2 > X2− X1 instead. We buy the lower-priced CX2 , write the higher-
priced CX1 , generating a positive return, and deposit X2− X1 in a riskless bank
account.

Suppose that the holder of CX1 exercises the option before expiration. There are
two cases. If CX2 > S− X1, then sell CX2 to realize a cash flow of CX2 − (S− X1)> 0.
Otherwise, exercise CX2 and realize a cash flow of X1− X2 < 0. In both cases, close
out the position with the money in the bank to realize a nonnegative net cash flow.

Suppose the holder of CX1 does not exercise the option early. At the expiration
date, our cash flow is 0, X1− S< 0, and X1− X2 < 0, respectively, if S≤ X1, X1 <

S< X2, and X2 ≤ S. The net cash flow remains nonnegative after the money in the
bank account is added, which is at least X2− X1.

LEMMA 8.2.4 A call is never worth more than the stock price, an American put is never
worth more than the strike price, and a European put is never worth more than the
present value of the strike price.

Proof: If the call value exceeded the stock price, a covered call position could earn
arbitrage profits. If the put value exceeded the strike price, writing a cash-secured
put would earn arbitrage profits. The tighter bound holds for European puts because
the cash can earn riskless interest until expiration.

➤ Exercise 8.2.1 Show that Lemma 8.2.3 can be strengthened for European calls as
follows: The difference in the values of two otherwise identical options cannot be
greater than the present value of the difference in their strike prices.

➤ Exercise 8.2.2 Derive a bound similar to that of Lemma 8.2.4 for European puts
under negative interest rates. (This case might be relevant when inflation makes the
real interest rate negative.)

8.3 Put–Call Parity and Its Consequences

Assume that either the stock pays no cash dividends or that the options are protected
so that the option values are insensitive to cash dividends. Note that analysis for
options on a non-dividend-paying stock holds for protected options on a dividend-
paying stock by definition. Results for protected options therefore are not listed
separately.

Consider the portfolio of one short European call, one long European put, one
share of stock, and a loan of PV(X). All options are assumed to carry the same strike
price and time to expiration τ . The initial cash flow is therefore C− P− S+PV(X).
At expiration, if the stock price Sτ is at most X, the put will be worth X− Sτ and
the call will expire worthless. On the other hand, if Sτ > X, the call will be worth
Sτ − X and the put will expire worthless. After the loan, now X, is repaid, the net
future cash flow is zero in either case. The no-arbitrage principle implies that the
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initial investment to set up the portfolio must be nil as well. We have proved the
following put–call parity for European options:

C = P+ S−PV(X). (8.1)

This identity seems to be due to Castelli in 1877 and thence has been rediscovered
many times [156].

The put–call parity implies that there is essentially only one kind of European
option because the other can be replicated from it in combinationwith the underlying
stock and riskless lending or borrowing. Combinations such as this create synthetic
securities. For example, rearranging Eq. (8.1) as S= C− P+PV(X), we see that
a stock is equivalent to a portfolio containing a long call, a short put, and lending
PV(X). Other uses of the put–call parity are also possible. Consider C− P = S−
PV(X), which implies that a long call and a short put amount to a long position in
stock and borrowing the PV of the strike price – in other words, buying the stock on
margin. This might be preferred to taking a levered long position in stock as buying
stock on margin is subject to strict margin requirements.

The put–call parity implies that C = (S− X)+ [ X−PV(X) ]+ P ≥ S− X. Be-
cause C ≥ 0, it follows that C ≥max(S− X, 0), the intrinsic value. An American
call also cannot be worth less than its intrinsic value. Hence we have the following
lemma.

LEMMA 8.3.1 An American call or a European call on a non-dividend-paying stock is
never worth less than its intrinsic value.

A European put may sell below its intrinsic value. In Fig. 7.3, for example, the
put value is less than its intrinsic value when the option is deep in the money. This
can be verified more formally, as follows. The put–call parity implies that

P = (X− S)+ [ PV(X)− X+C ].

As the put goes deeper in the money, the call value drops toward zero and
P ≈ (X− S)+PV(X)− X< X− S, its intrinsic value under positive interest rates.
By the put–call parity, the following lower bound holds for European puts.

LEMMA 8.3.2 For European puts, P ≥max(PV(X)− S, 0).
Suppose that the PV of the dividends whose ex-dividend dates occur before the

expiration date is D. Then the put–call parity becomes

C = P+ S−D−PV(X). (8.2)

➤ Exercise 8.3.1 (1) Suppose that the time to expiration is 4 months, the strike price
is $95, the call premium is $6, the put premium is $3, the current stock price is
$94, and the continuously compounded annual interest rate is 10%. How to earn a
riskless arbitrage profit? (2) An options market maker writes calls to a client, then
immediately buys puts and the underlying stock. Argue that this portfolio, called
conversion, should earn a riskless profit.

➤ Exercise 8.3.2 Strengthen Lemma 8.3.1 to C ≥max(S−PV(X), 0).
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➤ Exercise 8.3.3 In a certain world in which a non-dividend-paying stock’s price at
any time is known, a European call is worthless if its strike price is higher than the
known stock price at expiration. However, Exercise 8.3.2 says that C ≥ S−PV(X),
which is positive when S> PV(X). Try to resolve the contradiction when X> S>
PV(X).

➤ Exercise 8.3.4 Prove put–call parity (8.2) for a single dividend of size D∗ at some
time t1 before expiration: C = P+ S−PV(X)−D∗d(t1).
➤ Exercise 8.3.5 A European capped call option is like a European call option
except that the payoff is H− X instead of S− X when the terminal stock price S
exceeds H. Construct a portfolio of European options with an identical payoff.

➤ Exercise 8.3.6 Consider a European-style derivative whose payoff is a piecewise
linear function passing through the origin. A security with this payoff is called a
generalized option. Show that it can be replicated by a portfolio of European calls.

8.4 Early Exercise of American Options

Assume that interest rates are positive in this section. It turns out that it never pays
to exercise an American call before expiration if the underlying stock does not pay
dividends; selling is better than exercising. Here is the argument. By Exercise 8.3.2,
C ≥max(S−PV(X), 0). If the call is exercised, the value is the smaller S− X. The
disparity comes from two sources: (1) the loss of the insurance against subsequent
stock price once the call is exercised and (2) the time value of money as X is paid
on exercise. As a consequence, every pricing relation for European calls holds for
American calls when the underlying stock pays no dividends. This somewhat surpris-
ing result is due to Merton [660].

THEOREM 8.4.1 An American call on a non-dividend-paying stock should not be exer-
cised before expiration.

The above theorem does not mean American calls should be kept until maturity.
What it does imply is that when early exercise is being considered, a better alternative
is to sell it. Early exercise may become optimal for American calls on a dividend-
paying stock, however. The reason has to dowith the fact that the stock price declines
as the stock goes ex-dividend. Surprisingly, an American call should be exercised at
only a few dates.

THEOREM 8.4.2 An American call will be exercised only at expiration or just before an
ex-dividend date.

Proof: Wefirst show that C > S− X at any time other than the expiration date or just
before an ex-dividend date. Assume otherwise: C ≤ S− X. Now, buy the call, short
the stock, and lend Xd(τ ), where τ is time to the next dividend date. The initial
cash flow is positive because X> Xd(τ ). We subsequently close out the position just
before the next ex-dividend date by calling the loan, worth X, and selling the call,
worth at least max(Sτ − X, 0) by Lemma 8.3.1. The proceeds are sufficient to buy
the stock at Sτ . The initial cash flow thus represents an arbitrage profit. Now that
the value of a call exceeds its intrinsic value between ex-dividend dates, selling it is
better than exercising it.
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Unlike American calls on a non-dividend-paying stock, it might be optimal to
exercise an American put even if the underlying stock does not pay dividends. Part
of the reason lies in the fact that the time value of money now favors early exercise:
Exercising a put generates an immediate cash income X. One consequence is that
early exercise becomes more profitable as the interest rate increases, other things
being equal.

The existence of dividends tends to offset the benefits of early exercise in the case
of American puts. Consider a stock that is currently worthless, S= 0. If the holder of
a put exercises the option, X is tendered. If the holder sells the option, he receives
P ≤ X by Lemma 8.2.4 and keeps the stock. Doing nothing generates no income. If
the stock will remain worthless till expiration, exercising the put now is optimal. It is
therefore no longer true that we consider only a few points for early exercise of the
put. Consequently, concrete results regarding early exercise of American puts are
scarcer and weaker.

The put–call parity holds for European options only; for American options,

P ≥ C+PV(X)− S (8.3)

because an American call has the same value as a European call by Theorem 8.4.1
and an American put is at least as valuable as its European counterpart.

➤ Exercise 8.4.1 Consider an investor with an American call on a stock currently
trading at $45 per share. The option’s expiration date is exactly 2 months away,
the strike price is $40, and the continuously compounded rate of interest is 8%.
Suppose the stock is deemed overpriced and it pays no dividends. Should the option
be exercised?

➤ Exercise 8.4.2 Prove that if at all times before expiration the PV of the interest
from the strike price exceeds the PV of future dividends before the expiration date,
the call should not be exercised before expiration.

➤ Exercise 8.4.3 Why is it not optimal to exercise an American put immediately
before an ex-dividend date?

➤ Exercise 8.4.4 Argue that an American put should be exercised when X− S>
PV(X).

➤ Exercise 8.4.5 Assume that the underlying stock does not pay dividends. Supply
arbitrage arguments for the following claims. (1) The value of a call, be it European
or American, cannot exceed the price of the underlying stock. (2) The value of a
European put is PV(X) when S= 0. (3) The value of an American put is X when
S= 0.

➤ Exercise 8.4.6 Prove that American options on a non-dividend-paying stock sat-
isfy C− P ≥ S− X. (This and relation (8.3) imply that American options on a non-
dividend-paying stock satisfy C− S+ X≥ P ≥ C− S+PV(X).)

8.5 Convexity of Option Prices

The convexity of option price is stated and proved below.
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LEMMA 8.5.1 For three otherwise identical calls with strike prices X1 < X2 < X3,

CX2 ≤ ωCX1 + (1−ω)CX3 ,

PX2 ≤ ωPX1 + (1−ω) PX3 .

Here ω ≡ (X3− X2)/(X3− X1). (Equivalently, X2 = ωX1+ (1−ω) X3.)

Proof: We prove the lemma for the calls only. Suppose the lemma were wrong.Write
CX2 , buy ωCX1 , and buy (1−ω)CX3 to generate a positive cash flow now. If the short
call is not exercised before expiration, hold the calls until expiration. The cash flow
is described by

S ≤ X 1 X 1 < S ≤ X 2 X 2 < S < X 3 X 3 ≤ S

Call written at X 2 0 0 X 2− S X 2− S
ω calls bought at X 1 0 ω(S − X 1) ω(S − X 1) ω(S − X 1)
1−ω calls bought at X 3 0 0 0 (1−ω)(S − X 3)

Net cash flow 0 ω(S − X 1) ω(S − X 1)+ (X 2− S) 0

Because the net cash flows are either nonnegative or positive, there is an arbitrage
profit.

Suppose that the short call is exercised early when the stock price is S. If
ωCX1 + (1−ω)CX3 > S− X2, sell the long calls to generate a net cash flow of
ωCX1 + (1−ω)CX3 − (S− X2)> 0. Otherwise, exercise the long calls and deliver the
stock. The net cash flow is −ωX1− (1−ω) X3+ X2 = 0. Again, there is an arbitrage
profit.

By Lemma 8.2.3, we know the slope of the call (put) value, when plotted against
the strike price, is at most one (minus one, respectively). Lemma 8.5.1 adds that the
shape is convex.

EXAMPLE 8.5.2 The prices of the Merck July 30 call, July 35 call, and July 40 call are
$15.25, $9.5, and $5.5, respectively, from Fig. 7.4. These prices satisfy the convexity
property because 9.5× 2< 15.25+ 5.5. Look up the prices of theMicrosoft April 60
put, April 65 put, and April 70 put. The prices are $0.125, $0.375, and $1.5, respec-
tively, which again satisfy the convexity property.

8.6 The Option Portfolio Property

Stock index options are fundamentally options on a stock portfolio. The American
option on the Standard & Poor’s 100 (S&P 100) Composite Stock Price Index is cur-
rently the most actively traded option contract in the United States [150, 746, 865].
Options on the Standard & Poor’s 500 (S&P 500) Composite Stock Price Index are
also available. They are European, however. Options on the Dow Jones Industrial
Average (DJIA) were introduced in 1997. The underlying index, DJX, is DJIA di-
vided by 100. Other popular stock market indices include the Russell 2000 Index
for small company stocks and the broadest based Wilshire 5000 Index. Figure 8.2
tabulates some indices as of February 7, 2000.

As the following theorem shows, an option on a portfolio of stocks is cheaper
than a portfolio of options. Hence it is cheaper to hedge against market movements
as a whole with index options than with options on individual stocks.
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Net From
High Low Close Chg. Dec. 31 %Chg.

DJ Indus (DJX) . . . . 109.71 108.46 109.06 −0.58 −5.91 −5.1
S&P 100 (OEX) . . . . 778.01 768.45 774.19 −1.32 −18.64 −2.4
S&P 500 -A.M.(SPX) 1427.23 1413.33 1424.24 −0.13 −45.01 −3.1
Nasdaq 100 (NDX) 3933.75 3858.89 3933.34 +58.97 +225.51 +6.1
NYSE (NYA) . . . . . . 627.03 621.14 623.84 −3.06 −26.46 −4.1
Russell 2000 (RUT) 532.40 525.52 532.39 +6.87 +27.64 +5.5
Major Mkt (XMI) . 1110.00 1096.63 1098.09 −11.64 −67.89 −5.8
Value Line (VLE) . . 1011.29 1003.91 1006.99 −2.13 −18.81 −1.8

Figure 8.2: Stock index quotations. Source: Wall Street Journal, February 8, 2000.

THEOREM 8.6.1 Consider a portfolio of non-dividend-paying assets with weights ωi . Let
Ci denote the price of a European call on asset i with strike price Xi . Then the index
call on the portfolio with a strike price X≡∑i ωi Xi has a value of, at most,

∑
i ωiCi .

The same result holds for European puts as well. All options expire on the same date.

The theorem in the case of calls follows from the following inequality:

max

(
n∑
i=1
ωi (Si − Xi ), 0

)
≥

n∑
i=1

max(ωi (Si − Xi ), 0),

where Si denote the price of asset i . It is clear that a portfolio of options and an
option on a portfolio have the same payoff if the underlying stocks either all finish
in the money or out of the money. Their payoffs diverge only when the underlying
stocks are not perfectly correlated with each other. The degree of the divergence
tends to increase the more the underlying stocks are uncorrelated.

➤ Exercise 8.6.1 Consider the portfolio of puts and put on the portfolio in Theorem
8.6.1. Because both provide a floor of

∑
i ωi Xi , why do they not fetch the same price?

Concluding Remarks and Additional Reading

The no-arbitrage principle can be traced to Pascal (1623–1662), philosopher, the-
ologian, and founder of probability and decision theories [409, 410]. In the 1950s,
Miller and Modigliani made it a pillar of financial theory [64, 853]. Bounds in this
chapter aremodel free and should be satisfied by any proposedmodel [236, 346, 470].
Observe that they are all relative price bounds. The next chapter presents absolute
option prices based on plausible models of stock prices. Justifications for the index
options can be found in [236, Section 8.3].



CHAPTER
NINE

Option Pricing Models

Life can only be understoodbackwards; but itmust be lived forwards.

Søren Kierkegaard (1813–1855)

Although it is rather easy to price an option at expiration, pricing it at any prior mo-
ment is anything but. The no-arbitrage principle, albeit valuable in deriving various
bounds, is insufficient to pin down the exact option value without further assump-
tions on the probabilistic behavior of stock prices. The major task of this chapter is
to develop option pricing formulas and algorithms under reasonable models of stock
prices. The powerful binomial option pricing model is the focus of this chapter, and
the celebrated Black–Scholes formula is derived.

9.1 Introduction

The major obstacle toward an option pricing model is that it seems to depend on the
probability distribution of the underlying asset’s price and the risk-adjusted interest
rate used to discount the option’s payoff. Neither factor can be observed directly.
After many attempts, some of which were very close to solving the problem, the
breakthrough came in 1973 when Black (1938–1995) and Scholes, with help from
Merton, published their celebrated option pricing model now universally known as
the Black–Scholes option pricing model [87].1 One of the crown jewels of finance
theory, this research has far-reaching implications. It also contributed to the success
of the CBOE [660]. In 1997 the Nobel Prize in Economic Sciences was awarded to
Merton and Scholes for their work on “the valuation of stock options.”

Themathematics of the Black–Scholes model is formidable because the price can
move to any one of an infinite number of prices in any finite amount of time. The
alternative binomial option pricingmodel (BOPM) limits the pricemovement to two
choices in a period, simplifying the mathematics tremendously at some expense of
realism.All is not lost, however, because the binomialmodel converges to theBlack–
Scholes model as the period length goes to zero. More importantly, the binomial
model leads to efficient numerical algorithms for option pricing. The BOPM is the
main focus of this chapter.

Throughout this chapter, C denotes the call value, P the put value, X the strike
price, S the stock price, and D the dividend amount. Subscripts are used to empha-
size or differentiate different times to expiration, stock prices, or strike prices. The

92
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Figure 9.1: Binomial model for stock prices.

symbol PV(x) stands for the PVof x at expiration unless stated otherwise. Let r̂ > 0
denote the continuously compounded riskless rate per period and R≡ êr its gross
return.

9.2 The Binomial Option Pricing Model

In theBOPM, time is discrete andmeasured in periods. Themodel assumes that if the
current stock price is S, it can go to Su with probability q and Sd with probability
1−q, where 0< q < 1 and d < u (see Fig. 9.1). In fact, d < R< u must hold to rule
out arbitrage profits (see Exercise 9.2.1). It turns out that six pieces of information
suffice to determine the option value based on arbitrage considerations: S, u, d, X,
r̂ , and the number of periods to expiration.

➤ Exercise 9.2.1 Prove that d < R< u must hold to rule out arbitrage profits.

9.2.1 Options on a Non-Dividend-Paying Stock: Single Period

Suppose that the expiration date is only one period from now. Let Cu be the price at
time one if the stock price moves to Su and Cd be the price at time one if the stock
price moves to Sd. Clearly,

Cu =max(0, Su− X), Cd =max(0, Sd− X).

See Fig. 9.2 for illustration.
Now set up a portfolio of h shares of stock and B dollars in riskless bonds. This

costs hS+ B. We call h the hedge ratio or delta. The value of this portfolio at time
one is either hSu+ RB or hSd+ RB. The key step is to choose h and B such that
the portfolio replicates the payoff of the call:

hSu+ RB = Cu,
hSd+ RB = Cd.

Figure 9.2: Value of one-period call in BOPM.
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Solve the above equations to obtain

h = Cu−Cd
Su− Sd ≥ 0, (9.1)

B = uCd−dCu
(u−d) R . (9.2)

An equivalent portfolio that replicates the call synthetically has been created. An
equivalent portfolio is also called a replicating portfolio or a hedging portfolio. By
the no-arbitrage principle, the European call should cost the same as the equivalent
portfolio, or C = hS+ B. As it is easy to verify that

uCd−dCu =max(0, Sud− Xu)−max(0, Sud− Xd)< 0,

the equivalent portfolio is a levered long position in stocks.
For American calls, we have to consider immediate exercise. When hS+ B≥

S− X, the call should not be exercised immediately; so C = hS+ B. When hS+ B<
S− X, on the other hand, the option should be exercised immediately for we can
take the proceeds S− X to buy the equivalent portfolio plus some more bonds;
so C = S− X. We conclude that C =max(hS+ B, S− X). For non-dividend-paying
stocks, early exercise is not optimal byTheorem8.4.1 (see alsoExercise 9.2.6).Again,
C = hS+ B.

Puts can be similarly priced. The delta for the put is (Pu− Pd)/(Su− Sd)≤ 0,
where Pu =max(0, X− Su) and Pd =max(0, X− Sd). The European put is worth
hS+ B, and the American put is worth max(hS+ B, X− S), where B= { (uPd−
dPu)/[ (u−d) R ] }.

➤ Exercise 9.2.2 Consider two securities, A and B. In a period, security A’s price can
go from $100 to either (a) $160 or (b) $80, whereas security B’s price can move to
$50 in case (a) or $60 in case (b). Price security B when the interest rate per period
is 10%.

9.2.2 Risk-Neutral Valuation

Surprisingly, the option value is independent of q, the probability of an upward
movement in price, and hence the expected gross return of the stock, qSu+
(1−q) Sd, as well. It therefore does not directly depend on investors’ risk pref-
erences and will be priced the same regardless of how risk-averse an investor is. The
arbitrage argument assumes only that more deterministic wealth is preferred to less.
The option value does depend on the sizes of price changes, u and d, the magnitudes
of which the investors must agree on.

After substitution and rearrangement,

hS+ B=
( R−d
u−d

)
Cu+

( u−R
u−d

)
Cd

R
> 0. (9.3)

Rewrite Eq. (9.3) as

hS+ B= pCu+ (1− p)Cd
R

, (9.4)



9.2 The Binomial Option Pricing Model 95

where

p≡ R−d
u−d . (9.5)

As 0< p< 1, it may be interpreted as a probability. Under the binomial model, the
expected rate of return for the stock is equal to the riskless rate r̂ under q = p
because pSu+ (1− p) Sd = RS.

An investor is said to be risk-neutral if that person is indifferent between a certain
return and an uncertain return with the same expected value. Risk-neutral investors
care about only expected returns. The expected rates of return of all securities must
be the riskless rate when investors are risk-neutral. For this reason, p is called the
risk-neutral probability. Because risk preferences and q are not directly involved
in pricing options, any risk attitude, including risk neutrality, should give the same
result. The value of an option can therefore be interpreted as the expectation of
its discounted future payoff in a risk-neutral economy. So it turns out that the rate
used for discounting the FV is the riskless rate in a risk-neutral economy. Risk-
neutral valuation is perhaps the most important tool for the analysis of derivative
securities.

We will need the following definitions shortly. Denote the binomial distribution
with parameters n and p by

b( j ;n, p)≡
(
n
j

)
pj (1− p)n− j = n!

j! (n− j)! p
j (1− p)n− j .

Recall that n!= n× (n− 1) · · · 2× 1 with the convention 0!= 1. Hence b( j ;n, p)
is the probability of getting j heads when tossing a coin n times, where p is the
probability of getting heads. The probability of getting at least k heads when tossing
a coin n times is this complementary binomial distribution functionwith parameters
n and p:

�(k;n, p)≡
n∑
j=k
b( j ;n, p).

Because getting fewer than k heads is equivalent to getting at least n−k+ 1 tails,

1−�(k;n, p)=�(n−k+ 1;n, 1− p). (9.6)

➤ Exercise 9.2.3 Prove that the call’s expected gross return in a risk-neutral economy
is R.

➤ Exercise 9.2.4 Suppose that a call costs hS+ B+k for some k �= 0 instead of
hS+ B. How does one make an arbitrage profit of M dollars?

➤ Exercise 9.2.5 The standard arbitrage argumentwas used in deriving the call value.
Use the risk-neutral argument to reach the same value.

9.2.3 Options on a Non-Dividend-Paying Stock: Multiperiod

Consider a call with two periods remaining before expiration. Under the binomial
model, the stock can take on three possible prices at time two: Suu, Sud, and Sdd
(see Fig. 9.2.3). Note that, at any node, the next two stock prices depend on only the
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Figure 9.3: Stock prices in two periods. This graph is called a bino-
mial tree, although binomial lattice is a better term as real tree
branches do not merge.

current price, not on the prices of earlier times. This memoryless property is a key
feature of an efficient market.2

Let Cuu be the call’s value at time two if the stock price is Suu. Thus

Cuu =max(0, Suu− X).

Cud and Cdd can be calculated analogously:

Cud =max(0, Sud− X), Cdd =max(0, Sdd− X).

See Fig. 9.4 for illustration. We can obtain the call values at time one by applying the
same logic as that in Subsection 9.2.2 as follows:

Cu = pCuu+ (1− p)Cud
R

, Cd = pCud+ (1− p)Cdd
R

. (9.7)

Deltas can be derived from Eq. (9.1). For example, the delta at Cu is (Cuu−Cud)/
(Suu− Sud).

We now reach the current period. An equivalent portfolio of h shares of stock
and $B riskless bonds can be set up for the call that costs Cu (Cd) if the stock price
goes to Su (Sd, respectively). The values of h and B can be derived from Eqs. (9.1)
and (9.2).

Figure 9.4: Value of a two-period call before expiration.
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Because the call will not be exercised at time one even if it is American, Cu >
Su− X and Cd > Sd− X. Therefore,

hS+ B= pCu+ (1− p)Cd
R

>
(pu+ (1− p)d) S− X

R
= S− X

R
> S− X.

So the call again will not be exercised at present, and

C = hS+ B= pCu+ (1− p)Cd
R

.

The above expression calculates C from the two successor nodes Cu and Cd and
none beyond. The same computation happens at Cu and Cd, too, as demonstrated
in Eqs. (9.7). This recursive procedure is called backward induction because it works
backward in time [27, 66]. Now,

C = p
2Cuu+ 2p(1− p)Cud + (1− p)2Cdd

R2

= p
2×max (0,Su2−X)+ 2p(1−p)×max (0,Sud−X)+ (1−p)2×max (0,Sd2−X)

R2 .

The general case is straightforward: Simply carry out the same calculation at every
node while moving backward in time. In the n-period case,

C =
∑n
j=0
(n
j

)
pj (1− p)n− j ×max(0, Sujdn− j − X)

Rn
. (9.8)

It says that the value of a call on a non-dividend-paying stock is the expected dis-
counted value of the payoff at expiration in a risk-neutral economy. As this C is the
only option value consistent with no arbitrage opportunities, it is called an arbitrage
value. Note that the option value depends on S, X, r̂ , u, d, and n. Similarly, the value
of a European put is

P =
∑n
j=0
(n
j

)
pj (1− p)n− j ×max(0, X− Sujdn− j )

Rn
.

The findings are summarized below.

LEMMA 9.2.1 The value of a European option equals the expected discounted payoff at
expiration in a risk-neutral economy.

In fact, every derivative can be priced as if the economy were risk-neutral [420].
For a European-style derivative with the terminal payoff function D, its value is

e−̂rnEπ [D ],

where Eπ means that the expectation is taken under the risk-neutral probability.
Because the value of delta changes over time, the maintenance of an equivalent

portfolio is a dynamic process. The dynamic maintaining of an equivalent portfolio
does not depend on our correctly predicting future stock prices. By construction, the
portfolio’s value at the end of the current period, which can be either Cu or Cd, is
precisely the amount needed to set up the next portfolio. The trading strategy is hence
self-financing because there is neither injection nor withdrawal of funds throughout
and changes in value are due entirely to capital gains.
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Let a be the minimum number of upward price moves for the call to finish in the
money. Obviously a is the smallest nonnegative integer such that Suadn−a ≥ X, or

a =
⌈
ln(X/Sdn)
ln(u/d)

⌉
. (9.9)

Hence,

C =
∑n
j=a
(n
j

)
pj (1− p)n− j (Sujdn− j − X)

Rn

= S
n∑
j=a

(
n
j

)
(pu) j [ (1− p)d ]n− j

Rn
− X
Rn

n∑
j=a

(
n
j

)
pj (1− p)n− j

= S
n∑
j=a
b( j ;n, pue−̂r )− Xe−̂rn

n∑
j=a
b( j ;n, p) (9.10)

The findings are summarized below.

THEOREM 9.2.2 The value of a European call and the value of a European put are

C = S�(a;n, pue−̂r )− Xe−̂rn�(a;n, p),

P = Xe−̂r n�(n− a+ 1;n, 1− p)− S�(n− a+ 1;n, 1− pue−̂r ),
respectively, where p≡ (êr −d)/(u−d) and a is the minimum number of upward
price moves for the option to finish in the money.

The option value for the put above can be obtained with the help of the put–call
parity and Eq. (9.6). It can also be derived from the same logic as underlies the steps
for the call but with max(0, S− X) replaced with max(0, X− S) at expiration. It is
noteworthy that with the random variable S denoting the stock price at expiration,
the options’ values are

C = S×Prob1[ S≥ X ]− Xe−̂rn×Prob2[ S≥ X ], (9.11)

P = Xe−̂rn×Prob2[ S≤ X ]− S×Prob1[ S≤ X ], (9.11′)

where Prob1 uses pu/R and Prob2 uses p for the probability that the stock price
moves from S to Su. Prob2 expresses the probability that the optionwill be exercised
in a risk-neutral world. Exercise 13.2.12 will offer an interpretation for Prob1.

A market is complete if every derivative security is attainable [420]. There are
n+ 1 possible states of the world at expiration corresponding to the n+ 1 stock
prices Suidn−i , 0≤ i ≤ n. Consider n+ 1 state contingent claims, the ith of which
pays $1 at expiration if the stock price is Suidn−i and zero otherwise. These claims
make the market complete for European-style derivatives that expire at time n. The
reason is that a European-style derivative that pays pi dollars when the stock price
finishes at Suidn−i can be replicated by a portfolio consisting of pi units of the
ith state contingent claim for 0≤ i ≤ n. In the case of continuous trading in which
trading is allowed for each period, two securities suffice to replicate every possible
derivative and make the market complete (see Exercise 9.2.10) [289, 434].

Theexistenceof risk-neutral valuation is usually taken todefinearbitrage freedom
in a model in that no self-financing trading strategies can earn arbitrage profits. In
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fact, the existenceof risk-neutral valuationdoes imply arbitrage freedom for discrete-
time models such as the BOPM. The converse proposition, that arbitrage freedom
implies the existence of a risk-neutral probability, can be rigorously proved; besides,
this probabilitymeasure is unique for completemarkets. The “equivalence” between
arbitrage freedom in a model and the existence of a risk-neutral probability is called
the (first) fundamental theorem of asset pricing .

➤ Exercise 9.2.6 Prove that early exercise is not optimal for American calls.

➤ Exercise 9.2.7 Show that the call’s delta is always nonnegative.

➤ Exercise 9.2.8 InspectEq. (9.10) under u→ d, that is, zerovolatility in stockprices.

➤ Exercise 9.2.9 Prove the put–call parity for European options under the BOPM.

➤ Exercise 9.2.10 Assume the BOPM. (1) Show that a state contingent claim that
pays $1 when the stock price reaches Suidn−i and $0 otherwise at time n can be
replicated by a portfolio of calls. (2) Argue that continuous trading with bonds and
stocks can replicate any state contingent claim.

➤ Exercise 9.2.11 Consider a single-period binomial model with two risky assets S1
and S2 and a riskless bond. In the next step, there are only two states for the risky
assets, (S1u1, S2u2) and (S1d1, S2d2). Show that this model does not admit a risk-
neutral probability for certain u1, u2, d1, d2, and R. (Hence it is not arbitrage free.)

A Numerical Example
A non-dividend-paying stock is selling for $160 per share. From every price S, the
stock price can go to either S× 1.5 or S× 0.5. There also exists a riskless bondwith a
continuously compounded interest rate of 18.232%per period. Consider a European
call on this stock with a strike price of $150 and three periods to expiration. The price
movements for the stock price and the call value are shown in Fig. 9.5. The call value
is found to be $85.069 by backward induction. The same value can also be found as
the PV of the expected payoff at expiration:

(390× 0.343)+ (30× 0.441)
(1.2)3

= 85.069.

Observe that the delta value changes with the stock price and time.
Any mispricing leads to arbitrage profits. Suppose that the option is selling for

$90 instead.We sell the call for $90 and invest $85.069 in the replicating portfolio with
0.82031 sharesof stockas requiredbydelta.To set it up,weneed toborrow (0.82031×
160)− 85.069= 46.1806 dollars. The fund that remains, 90− 85.069= 4.931 dollars,
is the arbitrage profit, as we will see shortly.

Time 1. Suppose that the stock pricemoves to $240. The newdelta is 0.90625. Buy
0.90625− 0.82031= 0.08594more shares at the cost of 0.08594× 240= 20.6256
dollars financedbyborrowing.Ourdebtnowtotals 20.6256+ (46.1806× 1.2)=
76.04232 dollars.

Time 2. Suppose the stock price plunges to $120. The new delta is 0.25. Sell
0.90625− 0.25= 0.65625 shares for an incomeof 0.65625× 120= 78.75dollars.
Use this income to reduce the debt to (76.04232× 1.2)− 78.75= 12.5 dollars.
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Figure 9.5: Stock prices and European call prices. The parameters are S = 160, X = 150,
n = 3, u = 1.5, d = 0.5, R = e0.18232 = 1.2, p = (R − d )/(u − d )= 0.7, h = (C u − C d )/
(Su − Sd )= (C u − C d )/S , andC = [ pC u + (1− p) C d ]/R = (0.7× C u + 0.3× C d )/
1.2.

Time 3 (The case of rising price). The stock price moves to $180, and the call we
wrote finishes in the money. For a loss of 180− 150= 30 dollars, we close out
thepositionbyeither buyingback the call or buying a shareof stock for delivery.
Financing this loss with borrowing brings the total debt to (12.5× 1.2)+ 30=
45 dollars, whichwe repayby selling the 0.25 shares of stock for 0.25× 180= 45
dollars.

Time 4 (The case of declining price). The stock price moves to $60. The call
we wrote is worthless. Sell the 0.25 shares of stock for a total of 0.25× 60=
15 dollars to repay the debt of 12.5× 12= 15 dollars.

9.2.4 Numerical Algorithms for European Options

Binomial Tree Algorithms
An immediate consequence of the BOPM is the binomial tree algorithm that applies
backward induction. The algorithm in Fig. 9.6 prices calls on a non-dividend-paying
stock with the idea illustrated in Fig. 9.7. This algorithm is easy to analyze. The first
loop can be made to take O(n) steps, and the ensuing double loop takes O(n2)
steps. The total running time is therefore quadratic. The memory requirement is also
quadratic. To adapt the algorithm in Fig. 9.6 to price European puts, simply replace
max(0, Sun−i di − X) in Step 1 with max(0, X− Sun−i di ).

The binomial tree algorithm starts from the last period and works its way toward
the current period. This suggests that the memory requirement can be reduced if
the space is reused. Specifically, replace C[n+ 1 ][n+ 1 ] in Fig. 9.6 with a one-
dimensional array of size n+ 1, C[n+ 1 ]. Then replace step 1 with

C[ i ] :=max(0, Sun−i di − X);
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Binomial tree algorithm for pricing calls on a non-dividend-paying stock:

input: S,u,d, X,n, r̂ (u> êr > d, r̂ > 0);
real R, p,C[n+ 1 ][n+ 1 ];
integer i, j ;
R := êr ;
p := (R−d)/(u−d);
for (i = 0 to n)

1.C[n ][ i ] :=max(0, Sun−i di − X);
for ( j = n− 1 down to 0)

for (i = 0 to j)
2.1. C[ j ][ i ] := (p×C[ j + 1 ][ i ]+

(1− p)×C[ j + 1 ][ i + 1 ])/R;
return C[ 0 ][ 0 ];

Figure 9.6: Binomial tree algorithm for calls on a non-dividend-paying stock. C [ j ][ i ] represents the call
value at time j if the stock price makes i downward movements out of a total of j movements.

Step 2.1 should now be modified as follows:

C[ i ] := { p×C[ i ]+ (1− p)×C[ i + 1 ] }/R;

Finally, C[ 0 ] is returned instead of C[ 0 ][ 0 ]. The memory size is now linear. The
one-dimensional array captures the strip in Fig. 9.7 and will be used throughout the
book.

Wecanmake further improvements byobserving that if C[ j + 1 ][ i ] andC[ j + 1]
[ i + 1 ] are both zeros, then C[ j ][ i ] is zero, too. We need to let the i loop within
the double loop run only from zero to min(n− a, j) instead of j , where a is defined
in Eq. (9.9). This makes the algorithm run in O(n(n− a)) steps, which may be
substantially smaller than O(n2) when a is large. The space requirement can be
similarly reduced to O(n− a) with a smaller one-dimensional array C[n− a+ 1 ].
See Fig. 9.8, in which the one-dimensional array implements the strip in that figure.

Figure 9.7: Backward induction on binomial trees. Binomial
tree algorithms start with terminal values computed in step 1 of
the algorithm in Fig. 9.6. They then sweep a strip backward in
time to compute values at intermediate nodes until the root is
reached.



102 Option Pricing Models

Figure 9.8: Skipping zero-valued nodes to improve efficiency.
The stock expires worthless if it finishes below the horizontal
line. Zeros at the terminal nodes propagate through the tree
depicted here for a call. Such nodes can be skipped by binomial
tree algorithms. Note that nodes at the same horizontal level
have an identical stock price if ud = 1.

➢ Programming Assignment 9.2.12 Implement the binomial tree algorithms for calls
and puts.

An Optimal Algorithm
To reduce the running time to O(n− a) and the memory requirement to O(1), note
that

b( j ;n, p)= p(n− j + 1)
(1− p) j b( j − 1;n, p).

The following program computes b( j ;n, p) in b[ j ] for a ≤ j ≤ n:

b[ a ] :=
(
n
a

)
pa(1− p)n−a ;

for ( j = a+ 1 ton)

b[ j ] := b[ j − 1 ]× p× (n− j + 1)/[ (1− p)× j ];

It clearly runs in O(n− a) steps.With the b( j ;n, p) available, risk-neutral valuation
formula (9.10) is trivial to compute. The case of puts is similar. As for the memory
requirement, we need only a single variable instead of a whole array to store the
b( j ;n, p)s as they are being sequentially computed. The algorithm appears in Fig. 9.9.
This linear-timealgorithmcomputes thediscountedexpectedvalueof max(S− X, 0).
It can be adapted to price any European option. For example, if the payoff function
is max(

√
S− X , 0), we simply replace D− X with

√
D− X in the algorithm. The

above technique cannot be applied to American options because of the possibility of
early exercise. As a result, algorithms for American options usually run in quadratic
time instead of in linear time. The performance gap between pricing American and
European options seems inherent in general.

➤ Exercise 9.2.13 Modify the linear-time algorithm in Fig. 9.9 to price puts.
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Linear-time, constant-space algorithm for pricing calls on a non-dividend-paying stock:

input: S,u,d, X,n, r̂ (u> êr > d and r̂ > 0);
real R, p,b,D,C;
integer j, a;
a := �ln(X/Sdn)/ln(u/d)�;
p := (er̂ −d)/(u−d);
R := en̂r ;
b := pa(1− p)n−a ; // b(a;n, p) is computed.
D := S×uadn−a ;
C := b× (D− X)/R;
for ( j = a+ 1 to n) {

b := b× p× (n− j + 1)/((1− p)× j);
D := D×u/d;
C := C+b× (D− X)/R;

}
return C;

Figure 9.9: Optimal algorithm for European calls on a stock that does not pay dividends. Variable b stores
b( j ; n , p) for j = a , a + 1, . . . , n , in that order, and variable C accumulates the summands in Eq. (9.10)
by adding up b( j ; n , p)× (Su j dn− j − X )/enr̂ , j = a , a + 1, . . . , n .

➢ Programming Assignment 9.2.14 Implement the algorithm in Fig. 9.9 and bench-
mark its speed. Because variables such as b and D can take on extreme values, they
should be represented in logarithms to maintain precision.

The Monte Carlo Method
Now is a good time to introduce the Monte Carlo method. Equation (9.8) can be
interpreted as the expected value of the random variable Z defined by

Z=max(0, Sujdn− j − X)/Rn with probability b( j ;n, p), 0≤ j ≤ n.
To approximate the expectation, throw n coins, with p being the probability of
getting heads, and assign

max(0, Sujdn− j − X)/Rn

to the experiment if it generates j heads. Repeat the procedure m times and take
the average. This average clearly has the right expected value E[ Z ]. Furthermore,
its variance Var[ Z ]/m converges to zero as m increases.

Pricing European options may be too trivial a problem to which to apply the
Monte Carlo method. We will see in Section 18.2 that the Monte Carlo method is an
invaluable tool in pricing European-style derivative securities and MBSs.

➢ Programming Assignment 9.2.15 Implement the Monte Carlo method. Observe its
convergence rate as the sampling size m increases.

The Recursive Formulation and Its Algorithms
Most derivative pricing problems have a concise and natural recursive expression
familiar to programmers. Yet a brute-force implementation should be resisted. For
example, the recursive implementation of the binomial option pricing problem for
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the call is as follows:

Price(S,u,d, X,n, r̂) { // Pricing European calls recursively.
p := (êr −d)/(u−d);
if [n= 0 ] return max(S− X, 0);
else return [ p×Price(Su,u,d, X,n− 1, r̂)+ (1− p)

×Price(Sd,u,d, X,n− 1, r̂) ]/êr ;
}

If every possible stock price sequence of length n is traced, the algorithm’s running
time is O(n2n), which is not practical.

9.3 The Black–Scholes Formula

On the surface, the binomial model suffers from two unrealistic assumptions: (1) The
stock price takes on only two values in a period and (2) trading occurs at discrete
points in time. These shortcomings are more apparent than real. As the number
of periods increases, the stock price ranges over ever-larger numbers of possible
values, and trading takes place nearly continuously. What needs to be done is proper
calibration of the model parameters so that the model converges to the continuous-
time model in the limit.

9.3.1 Distribution of the Rate of Return

Let τ denote the time to expiration of the option measured in years and r be the
continuously compounded annual rate. With n periods during the option’s life, each
period therefore represents a time interval of τ/n. Our job is to adjust the period-
based u, d, and interest rate represented by r̂ to match the empirical results as n
goes to infinity. Clearly r̂ = rτ/n. As before, let R denote the period gross return êr .

We proceed to derive u and d. Under the binomial model, lnu and lnd denote
the stock’s two possible continuously compounded rates of return per period. The
rate of return in each period is characterized by the following Bernoulli random
variable:

B=
{
lnu, with probability q
lnd, with probability 1−q .

Let Sτ denote the stock price at expiration. The stock’s continuously compounded
rate of return, ln(Sτ /S), is the sum of n independent Bernoulli random variables
above, and

ln
Sτ
S
= ln

Sujdn− j

S
= j ln(u/d)+n lnd, (9.12)

where the stock price makes j upward movements in n periods. Because each
upward price movement occurs with probability q, the expected number of upward
price movements in n periods is E[ j ]= nq with variance

Var[ j ]= n[q(1−q)2+ (1−q)(0−q)2 ]= nq(1−q).
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We use

µ̂≡ 1
n
E
[
ln
Sτ
S

]
, σ̂ 2 ≡ 1

n
Var

[
ln
Sτ
S

]
to denote, respectively, the expected value and the variance of the period continu-
ously compounded rate of return. From the above,

µ̂= E[ j ]× ln(u/d)+n lnd
n

= q ln(u/d)+ lnd,

σ̂ 2 = Var[ j ]× ln2(u/d)
n

= q(1−q) ln2(u/d).

For the binomial model to converge to the expectation µτ and variance σ 2τ of
the stock’s true continuously compounded rate of return over τ years, the require-
ments are

nµ̂= n(q ln(u/d)+ lnd)→ µτ, (9.13)

nσ̂ 2 = nq(1−q) ln2(u/d)→ σ 2τ . (9.14)

We call σ the stock’s (annualized) volatility. Add ud = 1, which makes the nodes at
the same horizontal level of the tree have an identical price (review Fig. 9.8). Then
the above requirements can be satisfied by

u= eσ
√
τ/n, d = e−σ

√
τ/n, q = 1

2
+ 1

2
µ

σ

√
τ

n
. (9.15)

(See Exercises 9.3.1 and 9.3.8 for alternative choices of u, d, and q.)With Eqs. (9.15),

nµ̂= µτ,

nσ̂ 2 =
[
1−

(µ
σ

)2 τ
n

]
σ 2τ → σ 2τ.

We remark that the no-arbitrage inequalities u> R> d may not hold under
Eqs. (9.15), and the risk-neutral probability may lie outside [ 0, 1 ]. One solution
can be found in Exercise 9.3.1 and another in Subsection 12.4.3. In any case, the
problems disappear when n is suitably large.

What emerges as the limiting probabilistic distribution of the continuously com-
pounded rate of return ln(Sτ /S)? The central limit theorem says that, under certain
weak conditions, sums of independent random variables such as ln(Sτ /S) converge
to the normal distribution, i.e.,

Prob
[
ln(Sτ /S)−nµ̂√

n σ̂
≤ z

]
→ N(z).

A simple condition for the central limit theorem to hold is the Lyapunov condition
[100],

q | lnu− µ̂ |3+ (1−q)| lnd− µ̂ |3
nσ̂ 3

→ 0.
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After substitutions, the condition becomes

(1−q)2+q2
n
√
q(1−q) → 0,

which is true. So the continuously compounded rate of return approaches the normal
distribution with mean µτ and variance σ 2τ . As a result, ln Sτ approaches the
normal distribution with mean µτ + ln S and variance σ 2τ . Sτ thus has a lognormal
distribution in the limit. The significance of using the continuously compounded rate
is now clear: to make the rate of return normally distributed.

The lognormality of a stock price has several consequences. It implies that the
stock price stays positive if it starts positive. Furthermore, although there is no upper
bound on the stock price, large increases or decreases are unlikely. Finally, equal
movements in the rate of return about the mean are equally likely because of the
symmetry of the normal distribution: S1 and S2 are equally likely if S1/S= S/S2.
➤ Exercise 9.3.1 The price volatility of the binomial model should match that of the
actual stock in the limit. As q does not play a direct role in the BOPM, there is more
than one way to assign u and d. Suppose we require that q = 0.5 instead of ud = 1.
(1) Show that

u= exp
[
µτ

n
+ σ

√
τ

n

]
, d = exp

[
µτ

n
− σ

√
τ

n

]
satisfy requirements (9.13) and (9.14) as equalities. (2) Is it valid to use the probability
0.5 during backward induction under these new assignments?

Comment 9.3.1 Recall that theMonte Carlo method in Subsection 9.2.4 used a biased
coin. The scheme in Exercise 9.3.1, in contrast, used a fair coin, which may be easier
to program. The choice in Eqs. (9.15) nevertheless has the advantage that ud = 1,
which is often easier to work with algorithmically. Alternative choices of u and d
are expected to have only slight, if any, impacts on the convergence of binomial tree
algorithms [110].

➤ Exercise 9.3.2 Show that

E[ (S�t − S)/S ]
�t

→ µ+ σ
2

2
, (9.16)

where �t ≡ τ/n.
Comment 9.3.2 Note the distinction between Eq. (9.13) and convergence (9.16). The
former says that the annual continuously compounded rate of return over τ years,
ln(Sτ /S)/τ , hasmean µ, whereas the latter says that the instantaneous rate of return,
lim�t→0(S�t − S)/S)/�t , has a larger mean of µ+ σ 2/2.

9.3.2 Toward the Black–Scholes Formula

We now take the final steps toward the Black–Scholes formula as n→∞ and q
equals the risk-neutral probability p≡ (erτ/n−d)/(u−d).
LEMMA 9.3.3 The continuously compounded rate of return ln(Sτ /S) approaches the
normal distribution with mean (r − σ 2/2) τ and variance σ 2τ in a risk-neutral
economy.
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Proof: Applying ey = 1+ y+ (y2/2!)+ · · · to p, we obtain

p→ 1
2
+ 1

2
r − σ 2/2
σ

√
τ

n
. (9.17)

So the q in Eq. (9.15) implies that µ= r − σ 2/2 and

nµ̂=
(
r − σ

2

2

)
τ

n σ̂ 2 =
[
1−

(
r − σ 2/2
σ

)2
τ

n

]
σ 2τ → σ 2τ.

Because

(1− p)2+ p2
n
√
p(1− p) → 0,

the Lyapunov condition is satisfied and the central limit theorem is applicable.

Lemma 9.3.3 and Eqs. (6.11) imply that the expected stock price at expiration in
a risk-neutral economy is Serτ . The stock’s expected annual rate of return is thus the
riskless rate r .

THEOREM 9.3.4 (The Black-Scholes Formula):

C = SN(x)− Xe−rτN(x− σ√τ ),
P = Xe−rτN(−x+ σ√τ )− SN(−x),

where

x ≡ ln(S/X)+ (r + σ 2/2
)
τ

σ
√
τ

.

Proof: As the put–call parity can be used to prove the formula for a European put
from that for a call, we prove the formula for the call only. The binomial option
pricing formula in Theorem 9.2.2 is similar to the Black–Scholes formula. Clearly,
we are done if

�(a;n, pue−̂r )→ N(x), �(a;n, p)→ N(x− σ√τ ). (9.18)

We prove only �(a;n, p)→ N(x− σ√τ ); the other part can be verified analogously.
Recall that �(a;n, p) is the probability of at least a successes in n indepen-

dent trials with success probability p for each trial. Let j denote the number of
successes (upward price movements) in n such trials. This random variable, a sum
of n Bernoulli variables, has mean np and variance np(1− p) and satisfies

1−�(a;n, p)= Prob[ j ≤ a− 1 ]= Prob

[
j −np√
np(1− p) ≤

a− 1−np√
np(1− p)

]
.

(9.19)

It is easy to verify that

j −np√
np(1− p) =

ln(Sτ /S)−nµ̂√
n σ̂

.
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Now,

a− 1= ln(X/Sdn)
ln(u/d)

− ε

for some 0< ε ≤ 1. Combine the preceding equality with the definitions for µ̂ and
σ̂ to obtain

a− 1−np√
np(1− p) =

ln(X/S)−nµ̂− ε ln(u/d)√
n σ̂

.

So Eq. (9.19) becomes

1−�(a;n, p)= Prob
[
ln(Sτ /S)−nµ̂√

n σ̂
≤ ln(X/S)−nµ̂− ε ln(u/d)√

n σ̂

]
.

Because ln(u/d)= 2σ
√
τ/n→ 0,

ln(X/S)−nµ̂− ε ln(u/d)√
n σ̂

→ z≡ ln(X/S)− τ (r − σ 2/2
)

σ
√
τ

.

Hence 1−�(a;n, p)→ N(z), which implies that

�(a;n, p)→ N(−z)= N
(
ln(S/X)+ rτ

σ
√
τ

− 1
2
σ
√
τ

)
= N(x− σ√τ ),

as desired.

We plot the call and put values as a function of the current stock price, time to
expiration, volatility, and interest rate in Fig. 9.10. Note particularly that the option
value for at-the-money options is essentially a linear function of volatility.

➤ Exercise 9.3.3 Verify the following with the Black–Scholes formula and give
heuristic arguments as to why they should hold without invoking the formula.
(1) C ≈ S− Xe−rτ if S� X. (2) C→ S as τ →∞. (3) C→ 0 as σ → 0 if S<
Xe−rτ . (4) C→ S− Xe−rτ as σ → 0 if S> Xe−rτ . (5) C→ S as r→∞.

➤ Exercise 9.3.4 Verify convergence (9.17).

➤ Exercise 9.3.5 A binary call pays off $1 if the underlying asset finishes above the
strike price and nothing otherwise.3 Show that its price equals e−rτN(x− σ√τ ).
➤ Exercise 9.3.6 Prove ∂2P/∂X2 = ∂2C/∂X2 (see Fig. 9.11 for illustration).

➤ Exercise 9.3.7 Derive Theorem 9.3.4 from Lemma 9.3.3 and Exercise 6.1.6.

Tabulating Option Values
Rewrite the Black–Scholes formula for the European call as follows:

C = Xe−rτ
[
S

Xe−rτ
N(x)− N(x− σ√τ )

]
,

where

x ≡ ln(S/(Xe−rτ ))
σ
√
τ

+ σ
√
τ

2
.



Figure 9.10: European option values as functions of parameters. The parameters are S = 50, X = 50, σ =
0.3, τ = 201 (days), and r = 8%. When three curves are plotted together, the dashed curve uses S = 40
(out-of-the-money call or in-the-money put), the solid curve uses S = 50 (at the money), and the dotted curve
uses S = 60 (in-the-money call or out-of-the-money put).
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Figure 9.11: Value of state contingent claim. Exercise 7.4.5 says that ∂2C /∂ X 2,
plotted here for the strike price of $95, is the value of a state contingent claim. The
fundamental identity in Exercise 9.3.6 has applications in asset pricing.

A table containing entries

S
Xe−rτ

N(x)− N(x− σ√τ )

indexed by S/(Xe−rτ ) and σ
√
τ allows a person to look up option values based on

S, X, r , τ , and σ . The call value is then a simple multiplication of the looked-up value
by Xe−rτ . A precomputed table of judiciously selected option values can actually be
used to price options by means of interpolation [529].

9.3.3 The Black–Scholes Model and the BOPM

The Black–Scholes formula needs five parameters: S, X, σ , τ , and r . However, bino-
mial tree algorithms take six inputs: S, X, u, d, r̂ , and n. The connections are

u= eσ
√
τ/n, d = e−σ

√
τ/n, r̂ = rτ/n.

The resulting binomial tree algorithms converge reasonably fast, but oscillations,
as displayed in Fig. 9.12, are inherent [704]. Oscillations can be eliminated by the
judicious choices of u and d (see Exercise 9.3.8).

Figure 9.12: Convergence of binomial tree algorithms. Plotted are the European call values as computed by the
binomial tree algorithm against the number of time partitions, n . The parameters used are S = 100, X = 100
(left) and 95 (right), r = 8%, σ = 0.2, and τ = 1. The analytical values, 12.1058 (left) and 15.1749 (right), are
displayed for reference.
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EXAMPLE 9.3.5 Consider a 3-month option when the interest rate is 8% per annum
and the volatility is 30% per annum. This means that τ = 0.25, r = 0.08, and σ = 0.3.
If the binomial tree algorithm uses n= 5, it should use u= e0.3

√
0.25/5 = 1.0694 and

d = e−0.3
√

0.25/5 = 0.9351.

➤ Exercise 9.3.8 Here is yet another way to assign u and d:

u= eσ
√
τ/n+(1/n) ln(X/S), d = e−σ

√
τ/n+(1/n) ln(X/S), q = e

rτ/n−d
u−d .

(1) Show that it works. (2) What is special about this choice?

9.4 Using the Black–Scholes Formula

9.4.1 Interest Rate

The riskless rate r should be the spot rate with a maturity near the option’s expi-
ration date (in practice, the specific rate depends on the investor [228]). The choice
can be justified as follows. Let ri denote the continuously compounded one-period
interest rate measured in periods for period i . The bond maturing at the option’s
expiration date is worth exp[−∑n

i=1 ri ] per dollar of face value. This implies that
rτ =∑n

i=1 ri . Hence a single discount bond price with maturity at time n (equiva-
lently, the n-period spot rate) encompasses all the information needed for interest
rates. In the limit,

∑n−1
i=0 ri →

∫ τ
0 r(t)dt , where r(t) is the short rate at time t . The

relevant annualized interest rate is thus r = (1/τ )
∫ τ
0 r(t)dt .

Interest rate uncertainty may not be very critical for options with lives under
1 year. Plots in Fig. 9.10 also suggest that small changes in interest rates, other things
being equal, do not move the option value significantly.

9.4.2 Estimating the Volatility from Historical Data

The volatility parameter σ is the sole parameter not directly observable and has to
be estimated. The Black–Scholes formula assumes that stock prices are lognormally
distributed. In other words, the n continuously compounded rates of return per
period,

ui ≡ ln
Si
Si−1

, i = 1, 2, . . . ,n,

are independent samples from a normal distribution with mean µτ/n and variance
σ 2τ/n, where Si denotes the stock price at time i . A good estimate of the standard
deviation of the per-period rate of return is

s ≡
√∑n

i=1(ui −u)2
n− 1

,

where u≡ (1/n)
∑n
i=1 ui = (1/n) ln(Sn/S0). The preceding estimator may be biased

in practice, however, notably because of the bid–ask spreads and the discreteness
of stock prices [48, 201]. Estimators that utilize high and low prices can be superior
theoretically in terms of lower variance [374]. We note that u and s2(n− 1)/n are
the ML estimators of µ and σ 2, respectively (see Section 20.1).
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The simple rate of return, (Si − Si−1)/Si−1, is sometimes used in place of ui to
avoid logarithms. This is not entirely correct because ln x ≈ x− 1 only when x is
small, and a small error here can mean huge differences in the option value [147].

If a period contains an ex-dividend date, its sample rate of return should be
modified to

ui = ln
Si +D
Si−1

,

where D is the amount of the dividend. If an n-for-m split occurs in a period, the
sample rate of return should be modified to

ui = ln
nSi
mSi−1

.

Because the standard deviation of the rate of return equals σ
√
τ/n , the estimate

for σ is s/
√
τ/n . This value is calledhistorical volatility. Empirical evidence suggests

that dayswhen stockswere not traded should be excluded from the calculation. Some
even count only trading days in the time to expiration τ [514].

Like interest rate, volatility is allowed to change over time as long as it is pre-
dictable. In the context of the binomial model, this means that u and d now depend
on time. The variance of ln(Sτ /S) is now

∫ τ
0 σ

2(t)dt rather than σ 2τ , and the volatil-
ity becomes [

∫ τ
0 σ

2(t)dt/τ ]1/2. Aword of caution here: There is evidence suggesting
that volatility is stochastic (see Section 15.5).

9.4.3 Implied Volatility

The Black–Scholes formula can be used to compute the market’s opinion of the
volatility. This is achieved by the solution of σ given the option price, S, X, τ , and
r with the numerical methods in Subsection 3.4.3. The volatility thus obtained is
called the implied volatility – the volatility implied by the market price of the option.
Volatility numbers are often stored in a table indexed by maturities and strike prices
[470, 482].

Implied volatility is often preferred to historical volatility in practice, but it is not
perfect. Options written on the same underlying asset usually do not produce the
same implied volatility. A typical pattern is a “smile” in relation to the strike price:
The implied volatility is lowest for at-the-money options and becomes higher the
further the option is in or out of the money [150]. This pattern is especially strong
for short-term options [44] and cannot be accounted for by the early exercise feature
of American options [97]. To address this issue, volatilities are often combined to
produce a composite implied volatility. This practice is not sound theoretically. In
fact, the existence of different implied volatilities for options on the same underlying
asset shows that the Black–Scholes option pricing model cannot be literally true.
Section 15.5 will survey approaches that try to explain the smile.

➤ Exercise 9.4.1 Calculating the implied volatility from the option price can be fa-
cilitated if the option price is a monotonic function of volatility. Show that this is true
of the Black–Scholes formula.

➤ Exercise 9.4.2 Solving for the implied volatility of American options as if they
were European overestimates the true volatility. Discuss.
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➤ Exercise 9.4.3 (Implied Binomial Tree). Suppose that we are given m different
European options prices, their identical maturity, their strike prices, their underlying
asset’s current price, the underlying asset’s σ , and the riskless rate. (1) What should
n be? (2) Assume that the path probabilities for all paths reaching the same node
are equal. How do we compute the (implied) branching probabilities at each node
of the binomial tree so that these options are all priced correctly?

➢ Programming Assignment 9.4.4 Write a program to compute the implied volatility
of American options.

9.5 American Puts on a Non-Dividend-Paying Stock

Early exercise has to be considered when pricingAmerican puts. Because the person
who exercises a put receives the strike price and earns the time value of money, there
is incentive for early exercise. On the other hand, early exercise may render the put
holder worse off if the stock subsequently increases in value.

The binomial tree algorithm starts with the terminal payoffs max(0, X−
Sujdn− j ) and applies backward induction. At each intermediate node, it checks for
early exercise by comparing the payoff if exercised with continuation. The complete
quadratic-time algorithm appears in Fig. 9.13. Figure 9.14 compares anAmerican put
with its European counterpart.

Let us go through a numerical example. Assume that S= 160, X= 130, n= 3,
u= 1.5, d = 0.5, and R= e0.18232 = 1.2.We can verify that p= (R−d)/(u−d)= 0.7,
h= (Pu− Pd)/S(u−d)= (Pu− Pd)/S, and P = [ pPu+ (1− p) Pd ]/R= (0.7× Pu+
0.3× Pd)/1.2. Consider node A in Fig. 9.15. The continuation value is

(0.7× 0)+ (0.3× 70)
1.2

= 17.5,

greater than the intrinsic value 130− 120= 10. Hence the option should not be
exercised even if it is in the money and the put value is 17.5. As for node B, the
continuation value is

(0.7× 70)+ (0.3× 110)
1.2

= 68.33,

lower than the intrinsic value 130− 40= 90. The option should be exercised, and the
put value is 90.

Binomial tree algorithm for pricing American puts on a non-dividend-paying stock:

input: S, u, d, X, n, r̂ (u> êr > d and r̂ > 0);
real R, p, P[n+ 1 ];
integer i, j ;
R := êr ;
p := (R−d)/(u−d);
for (i = 0 to n) { P[ i ] :=max(0, X− Sun−i di ); }
for ( j = n− 1 down to 0)

for (i = 0 to j)
P[ i ] :=max((p× P[ i ]+ (1− p)× P[ i + 1 ])/R, X− Suj−i di );

return P[ 0 ];

Figure 9.13: Binomial tree algorithm for American puts on a non-dividend-paying stock.
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Figure 9.14: American put vs. European put. Plotted is the
American put price at 1 month before expiration. The strike price
is $95, and the riskless rate is 8%. The volatility of the stock is as-
sumed to be 0.25. The corresponding European put is also plotted
(dotted curve) for comparison.

➢ Programming Assignment 9.5.1 Implement the algorithm in Fig. 9.13 for American
puts.

9.6 Options on a Stock that Pays Dividends

9.6.1 European Options on a Stock that Pays a Known Dividend Yield

TheBOPMremains valid if dividends are predictable.Aknowndividend yieldmeans
that the dividend income forms a constant percentage of the stock price. For a div-
idend yield of δ, the stock pays out Sδ on each ex-dividend date. Therefore the

Figure 9.15: Stock prices and American put prices.
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Figure 9.16: Binomialmodel for a stock thatpaysaknown
dividend yield. The ex-dividend date occurs in the second
period.

Suuu(1− δ)
↗

Suu(1− δ)
↗ ↘

Su Suud(1− δ)
↗ ↘ ↗
S Sud(1− δ)
↘ ↗ ↘
Sd Sudd(1− δ)
↘ ↗
Sdd(1− δ)

↘
Sddd(1− δ)

stock price goes from S to Su(1− δ) or Sd(1− δ) in a period that includes an ex-
dividend date. If a period does not contain an ex-dividend date, the binomial model
is unchanged. See Fig. 9.16 for illustration.

For European options, only the number of ex-dividend dates matters, not their
specific dates. This can be seen as follows. Let m denote the number of ex-
dividend dates before expiration. The stock price at expiration is then of the form
(1− δ)mSujdn− j , independent of the timing of the dividends. Consequently we can
use binomial tree algorithms for options on a non-dividend-paying stock but with
the current stock price S replaced with (1− δ)mS. Pricing can thus be achieved in
linear time and constant space.

➤ Exercise 9.6.1 Argue that the value of a European option under the case of known
dividend yields equals (1− δ)m European option on a non-dividend-paying stock
with the strike price (1− δ)−mX.

9.6.2 American Options on a Stock that Pays a Known Dividend Yield

The algorithm for American calls applies backward induction and pays attention to
each ex-dividend date (see Fig. 9.17). It can be easily modified to value American
puts. Early exercise might be optimal when the period contains an ex-dividend date.
Suppose that Sd(1− δ)> X. Then Cu = Su(1− δ)− X and Cd = Sd(1− δ)− X.
Therefore

pCu+ (1− p)Cd
R

= (1− δ) S− X
R
,

which is exceeded by S− X for sufficiently large S. This proves that early exercise
before expiration might be optimal.

➤ Exercise 9.6.2 Start with an American call on a stock that pays d dividends. Con-
sider a package of d+ 1 European calls with the same strike price as the American
call such that there is a European call expiring just before each ex-dividend date
and a European call expiring at the same date as the American call. In light
of Theorem 8.4.2, is the American call equivalent to this package of European
calls?
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Binomial tree algorithm for pricing American calls on a stock that pays a known dividend
yield:

input: S,u,d, X,n, δ (1> δ > 0),m, r̂ (u> êr > d and r̂ > 0);
real R, p,C[n+ 1 ];
integer i, j ;
R := êr ;
p := (R−d)/(u−d);
for (i = 0 to n) { C[ i ] :=max(0, Sun−i di (1− δ)m− X); }
for ( j = n− 1 down to 0)

for (i = 0 to j) {
if [ the period ( j, j + 1 ] contains an ex-dividend date ]m :=m− 1;
C[ i ] :=max((p×C[ i ]+ (1− p)×C[ i + 1 ])/R, Suj−i di (1− δ)m− X);

}
return C[ 0 ];

Figure 9.17: Binomial tree algorithm for American calls on a stock paying a dividend yield. Recall that m
initially stores the total number of ex-dividend dates at or before expiration.

➢ Programming Assignment 9.6.3 Implement binomial tree algorithms for American
options on a stock that pays a known dividend yield.

9.6.3 Options on a Stock that Pays Known Dividends

Although companies may try to maintain a constant dividend yield in the long run,
a constant dividend is satisfactory in the short run. Unlike constant dividend yields,
constant dividends introduce complications. Use D to denote the amount of the
dividend. Suppose an ex-dividend date falls in the first period. At the end of that
period, the possible stock prices are Su−D and Sd−D. Follow the stock price one
more period. It is clear that the number of possible stock prices is not three but four:
(Su−D)u, (Su−D)d, (Sd−D)u, and (Sd−D)d. In other words, the binomial
tree no longer combines (see Fig. 9.18). The fundamental reason is that timing of
the dividends now becomes important; for example, (Su−D)u is different from
Suu−D. It is not hard to see that m ex-dividend dates will give rise to at least 2m

terminal nodes. The known dividends case thus consumes tremendous computation
time and memory.

(Su−D)u
↗

Su−D
↗ ↘

(Su−D)d
S

(Sd−D)u
↘ ↗
Sd−D

↘
(Sd−D)d

Figure 9.18: Binomial model for a stock that pays known dividends.
The amount of the dividend is D, and the ex-dividend date occurs in the
first period.
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A Simplifying Assumption
One way to adjust for dividends is to use the Black–Scholes formula with the stock
price reduced by the present value of the anticipated dividends. This procedure is
valid if the stock price can be decomposed into a sum of two components, a riskless
one paying known dividends during the life of the option and a risky one. The riskless
component at any time is the PV of future dividends during the life of the option.
The Black–Scholes formula is then applicable with S equal to the risky component
of the stock price and σ equal to the volatility of the process followed by the risky
component. The stock price, between two adjacent ex-dividend dates, follows the
same lognormal distribution. This means that the Black–Scholes formula can be
used provided the stock price is reduced by the PV of future dividends during the
life of the option. We note that uncertainty about dividends is rarely important for
options lasting less than 1 year.

With the above assumption, we can start with the current stock price minus the
PV of future dividends before the expiration date and develop the binomial tree for
the new stock price as if there were no dividends. Then we add to each stock price
on the tree the PV of all future dividends before expiration. European option prices
can be computed as before on this tree of stock prices. As for American options, the
same procedure applies except for the need to test for early exercises at each node.

➢ Programming Assignment 9.6.4 Implement the ideas described in this subsection.

9.6.4 Options on a Stock that Pays a Continuous Dividend Yield

In the continuous-payout model, dividends are paid continuously. Such a model
approximates a broad-based stock market portfolio in which some company will pay
a dividend nearly every day. The payment of a continuous dividend yield at rate q
reduces the growth rate of the stock price by q. In other words, a stock that grows
from S to Sτ with a continuous dividend yield of q would grow from S to Sτ eqτ

without the dividends. Hence a European option on a stock with price S paying a
continuous dividend yield of q has the same value as a European option on a stock
with price Se−qτ that pays no dividends. The Black–Scholes formulas thus hold, with
S replaced with Se−qτ :

C = Se−qτN(x)− Xe−rτN(x− σ√τ ), (9.20)

P = Xe−rτN(−x+ σ√τ )− Se−qτN(−x), (9.20′)

where

x ≡ ln(S/X)+ (r −q+ σ 2/2
)
τ

σ
√
τ

.

Formulas (9.20) and (9.20′), which are due to Merton [660], remain valid even if
the dividend yield is not a constant as long as it is predictable, in which case q is
replaced with the average annualized dividend yield during the life of the option
[470, 746].

To run binomial tree algorithms, pick the risk-neutral probability as

e(r−q)�t −d
u−d , (9.21)



118 Option Pricing Models

where �t ≡ τ/n. The quick reason is that the stock price grows at an expected rate
of r −q in a risk-neutral economy. Note that the u and d in Eqs. (9.15) now stand
for stock price movements as if there were no dividends Other than the change in
probability (9.21), binomial tree algorithms are identical to the no-dividend case.

➤ Exercise 9.6.5 Prove that the put–call parity becomes C = P+ Se−qτ −PV(X)
under the continuous-payout model.

➤ Exercise 9.6.6 Derive probability (9.21) rigorously by an arbitrage argument.

➤ Exercise 9.6.7 (1) Someone argues that we should use [ (er�t −d)/(u−d) ] as the
risk-neutral probability thus: Because the option value is independent of the stock’s
expected return µ−q, it can be replacedwith r . Show him themistakes. (2) Suppose
that we are asked to use the original risk-neutral probability [ (er�t −d)/(u−d) ].
Describe the needed changes in the binomial tree algorithm.

➤ Exercise 9.6.8 Give an example whereby the use of risk-neutral probability (9.21)
makes early exercise for American calls optimal.

➢ Programming Assignment 9.6.9 Implement the binomial tree algorithms for
American options on a stock that pays a continuous dividend yield.

9.7 Traversing the Tree Diagonally

Can the standard quadratic-time backward-induction algorithm for American op-
tions be improved? Here an algorithm, which is due to Curran, is sketched that
usually skips many nodes, saving time in the process [242]. Although only American
puts are considered in what follows, the parity result in Exercise 9.7.1 can be used to
price American calls as well.

Figure 9.19 mentions two properties in connection with the propagation of early-
exercise nodes and non-early-exercise nodes during backward induction. The first
property says that a node is an early-exercise node if both its successor nodes are
exercised early. A terminal node that is in the money is considered an early-exercise
node for convenience. The second property says if a node is a non-early-exercise
node, then all the earlier nodes at the same horizontal level are also non-early-
exercise nodes. An early-exercise node, once identified, is trivial to evaluate; it is
just the difference of the strike price and the stock price. A non-early-exercise node,
however, must be evaluated by backward induction.

Curran’s algorithm adopts a nonconventional way of traversing the tree, as
shown in Fig. 9.20. Evaluation at each node is the same as backward induction

↙
exercise *

↙ ↙ ↖
exercise

no
exercise

no
exercise

↖ ↖ ↙
exercise *

Rule 1 Rule 2 ↖

Figure 9.19: Two exercise rules. Rule 2 requires that ud = 1.
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Figure 9.20: The diagonal method for binomial tree algorithms. In
contrast to the vertical sweeps across time in the standard backward-
inductionalgorithmsuchas Fig. 9.7, thenewmethod traces thediagonals
in the sequence shown.

before. Note that a node under evaluation always has both of its successors evaluated
earlier.

Nothing would be gained if the whole tree needs to be explored. Enter the stop-
ping rule. The process stops when a diagonal D consisting entirely of non-early-
exercise nodes has been encountered. By Rule 2 of Fig. 9.19, all early-exercise nodes
have been accounted for.When the algorithm finds an early-exercise node in travers-
ing a diagonal, it can stop immediately and move on to the next diagonal. This is be-
cause, by Rule 1 and the sequence by which the nodes on the diagonals are traversed,
the rest of the nodes on the current diagonal must all be early-exercise nodes, hence
computable on the fly when needed. Also by Rule 1, the traversal can start from the
zero-valued terminal node just above the strike price. Clearly Suadn−a is the stock
price at that node, where a is defined in Eq. (9.9). The upper triangle above the
strike price can be skipped because its nodes are all zero valued. See Fig. 9.21 for the
overall strategy. The diagonal method typically skips many nodes (see Fig. 9.22).

The option value equals the sum of the discounted option values of the nodes on
D, eachmultiplied by the probability that the stock price hits the diagonal for the first
time at that node. It is impossible to go from the root to a node at which the option
will be exercised without passing through D. For a node on D , which is the result of
i up moves and j down moves from the root, the above-mentioned probability is

Figure 9.21: Search for a diagonal of non-early-exercise
nodes. Only those nodes indicated will be visited. The
(optimal) exercise boundary specifies the stock price at
each time when it becomes optimal to exercise the option.
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Percent of nodes visited
by the diagonal method

Figure 9.22: Performance of the diagonal method. The ratio of the
number of nodes visited by the diagonal method to the total number
of nodes is plotted. The parameters are S = 50, X = 50, n = 100,
r = 5%, q = 1%, and τ = 1/3. The volatility σ is in percentage
terms.

(i+ j−1
i

)
pi (1− p) j . This is because a valid path must pass through the node that is the

result of i upmovesand j − 1 downmoves.Call theoptionvalueon thisnode Pi . The
desired option value then equals

∑a−1
i=0

(i+ j−1
i

)
pi (1− p) j Pi e−(i+ j) r�t . Because each

node on D has been evaluated by that time, this part of the computation consumes
O(n) time. The space requirement is also linear in n because only the diagonal has
to be allocated space. This idea can save computation time when D does not take
long to find. See Fig. 9.23 for the algorithm.

It has been assumed up to now that the stock pays no dividends. Suppose now
that the stock pays a continuous dividend yield q ≤ r (or r ≤ q for calls by parity).
Therefore

p= e
(r−q)�t −d
u−d .

Rule 1 of Fig. 9.19 continues to hold because, for a current stock price of Suid j ,

[ pPu+ (1− p) Pd ] e−r�t = [ p(X− Sui+1d j )+ (1− p)(X− Suid j+1) ]e−r�t

= Xe−r�t − Suid j [ pu+ (1− p)d ] e−r�t

= Xe−r�t − Suid j e−q�t
≤ Xe−r�t − Suid j e−r�t
≤ X− Suid j .

Rule 2 is true in general, with or without dividends.

➤ Exercise 9.7.1 Prove that an American call fetches the same price as an American
put after swapping the current stock price with the strike price and the riskless rate
with the continuous dividend yield.

➤ Exercise 9.7.2 Verify the validity of Rule 2 under the binomial model.

➢ Programming Assignment 9.7.3 Carefully implement the diagonal method and
benchmark its efficiency against the standard backward-induction algorithm.
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The diagonal method for American puts:

input: S,u,d, τ, X,n, r,q (r ≥ q > 0);
real p, P[n+ 1 ], cont,down;
integer i, j, a;
p := (e(r−q)(τ/n)−d)/(u−d);
a := �ln(X/Sdn)/ ln(u/d)�;
P[ a ] := 0; // Collect lower boundary of zero-valued nodes in one entry.
for (i = 0 to a− 1) P[ i ] :=−1; //Upper boundary of early-exercise nodes.
for ( j = n− a down to 0)

for (i = a− 1 down to 0) {
down := P[ i ]; // Down move (computed in previous scan).
if [ down< 0 ] down := X− Suid j+1;
cont := (p× P[ i + 1 ]+ (1− p)×down)/R;
if [ cont≥ X− Suid j and i > 0 ]

P[ i ] := cont; // No early exercise.
else if [ cont≥ X− Suid j and i = 0 ] { // FoundD.

P[ i ] := cont;
if [ j = 0 ] return P[ 0 ];
else return

∑a−1
k=0
(k+ j−1

k

)
pk(1− p) j × P[k ]× e−(k+ j) r(τ/n);

}
else break; // Early-exercise node; exit the current loop.

}
if [ P[ 0 ]< 0 ] P[ 0 ] := X− S;
return P[ 0 ];

Figure 9.23: The diagonal method for American puts. P [ i ] stores the put value when the stock price equals
Sui d j , where j is the loop variable. As an early-exercide node’s option value can be computed on the fly,
−1 is used to state the fact that a node is an early-exercise node.

Additional Reading

The basic Black–Scholes model makes several assumptions. For example, margin
requirements, taxes, and transactions costs are ignored, and only small changes in the
stock price are allowed for a short period of time. See [86] for an early empirical work.
Consult [236, 470] for various extensions to thebasicmodel and [154, 423, 531, 683] for
analytical results concerning American options. The Black–Scholes formula can be
derived in at least four otherways [289].Awealth of options formulas are available in
[344, 423, 894]. Reference [613] considers predictable returns. Consult [48, 201, 346]
for more information regarding estimating volatility from historical data. See [147,
Subsection 9.3.5] and [514, Subsection 8.7.2] for more discussions on the “smile.”
To tackle multiple implied volatilities such as the smile, a generalized tree called
the implied binomial tree may be used to price all options on the same underlying
asset exactly (see Exercise 9.4.3) [215, 269, 299, 502, 503, 685]. Implied binomial trees
are due to Rubinstein [770]. Wrong option pricing models and inaccurate volatility
forecasts create great risk exposures for option writers [400]. See [56, 378, 420, 681,
753] for more information on the fundamental theorems of asset pricing.

The BOPM is generally attributed to Sharpe in 1975 [768] and appeared in his
popular 1978 textbook, Investments. We followed the ideas put forth in [235, 738].
For American options, the BOPM offers a correct solution although its justification
is delicate [18, 243, 576]. Several numerical methods for valuing American options
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are benchmarked in [127, 531, 834]. Convergences of binomial models for European
and American options are investigated in [589, 590].

Many excellent textbooks cover options [236, 317, 346, 470, 878]. Read [494,
811] for intellectual developments that came before the breakthrough of Black and
Scholes. To learn more about Black as a scientist, financial practitioner, and person,
consult [345, 662].

NOTES

1. Their paper, “The Pricing of Options [and Corporate Liabilities],” was sent in 1970 to the Journal
of Political Economy and was rejected immediately by the editors [64, 65].

2. Specifically, the weak form of efficient markets hypothesis, which says that current prices fully
embody all information contained in historical prices [317]. This formofmarket efficiency implies
that technical analysts cannot make above-average returns by reading charts of historical stock
prices. It has stood up rather well [635].

3. A “clever” candidate once bought votes by issuing similar options, which paid off only when he
was elected. Here is his reasoning: The option holders would not only vote for him but would
also campaign hard for him, and in any case he kept the option premium if he lost the election,
which he did.



CHAPTER
TEN

Sensitivity Analysis of Options

Cleopatra’s nose, had it been shorter, the whole face of the world
would have been changed.

Blaise Pascal (1623–1662)

Understanding how the value of a security changes relative to changes in a given
parameter is key to hedging. Duration, for instance, measures the rate of change of
bond value with respect to interest rate changes. This chapter asks similar questions
of options.

10.1 Sensitivity Measures (“The Greeks”)

In the following, x ≡ [ ln(S/X)+ (r + σ 2/2) τ ]/(σ
√
τ ), as in the Black–Scholes for-

mula of Theorem 9.3.4, and N′(y)= (1/
√
2π) e−y

2/2 > 0 is the density function of the
standard normal distribution.

10.1.1 Delta

For a derivative such as option, delta is defined as �≡ ∂ f/∂S, where f is the price
of the derivative and S is the price of the underlying asset. The delta of a portfolio
of derivatives on the same underlying asset is the sum of the deltas of individual
derivatives. The delta used in the BOPM to replicate options is the discrete ana-
log of the delta here. The delta of a European call on a non-dividend-paying stock
equals

∂C
∂S
= N(x)> 0, (10.1)

and the delta of a European put equals ∂P/∂S= N(x)− 1< 0. See Fig. 10.1 for an
illustration. The delta of a long stock is of course one.

A position with a total delta equal to zero is said to be delta-neutral. Because
a delta-neutral portfolio is immune to small price changes in the underlying asset,
creating it can serve for hedging purposes. For example, a portfolio consisting of a
call and −� shares of stock is delta-neutral. So one can short � shares of stock to
hedge a long call. In general, one can hedge a long position in a derivative with a
delta of �1 by shorting �1/�2 units of another derivative with a delta of �2.

123
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Figure 10.1: Option delta. The default parameters are S = 50, X = 50, τ = 201 (days), σ = 0.3, and
r = 8%. The dotted curves use S = 60 (in-the-money call or out-of-the-money put), the solid curves use
S = 50 (at-the-moneyoption), and thedashedcurvesuse S = 40 (out-of-the-moneycall or in-the-moneyput).

➤ Exercise 10.1.1 Verify Eq. (10.1) and that the delta of a call on a stock paying a
continuous dividend yield of q is e−qτN(x).

➤ Exercise 10.1.2 Prove that ∂P/∂X= e−rτN(−x+ σ√τ ).
➤ Exercise 10.1.3 Show that at-the-money options have the maximum time value.

➤ Exercise 10.1.4 What is the charm, defined as ∂�/∂τ , of a European option?

10.1.2 Theta

Theta, or time decay, is defined as the rate of change of a security’s value with respect
to time, or �≡−∂�/∂τ , where � is the value of the security. For a European call
on a non-dividend-paying stock,

�=− SN
′(x) σ

2
√
τ
− r Xe−rτN(x− σ√τ )< 0.

The call hence loses value with the passage of time. For a European put,

�=− SN
′(x) σ

2
√
τ
+ r Xe−rτN(−x+ σ√τ ),

which may be negative or positive. See Fig. 10.2 for an illustration.
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Figure 10.2: Option theta. The default parameters are S = 50, X = 50, τ = 201 (days), σ = 0.3, and
r = 8%. The dotted curves uses S = 60 (in-the-money call or out-of-the-money put), the solid curves use
S = 50 (at-the-moneyoption), and thedashedcurvesuse S = 40 (out-of-the-moneycall or in-the-moneyput).

➤ Exercise 10.1.5 (1) At what stock price is the theta of a European call smallest?
(2) Show that the theta of an American put is always negative.

10.1.3 Gamma

The gamma of a security is the rate of change of its delta with respect to the price of
the underlying asset, or � ≡ ∂2�/∂S2. The gamma measures how sensitive the delta
is to changes in the price of the underlying asset.Aportfoliowith a high gammaneeds
in practice be rebalanced more often to maintain delta neutrality. The delta and the
gamma have obvious counterparts in bonds: duration and convexity. The gamma of
a European call or put on a non-dividend-paying stock is N′(x)/(Sσ

√
τ )> 0. See

Fig. 10.3 for an illustration.

10.1.4 Vega

Volatility often changes over time. The vega1(sometimes called lambda, kappa, or
sigma) of a derivative is the rate of change of its value with respect to the volatility
of the underlying asset, or �≡ ∂�/∂σ. A security with a high vega is very sensitive
to small changes in volatility. The vega of a European call or put on a non-dividend-
paying stock is S

√
τ N′(x)> 0, which incidentally solves Exercise 9.4.1. A positive
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Figure 10.3: Option gamma. The default parameters are S = 50, X = 50, τ = 201 (days), σ = 0.3, and
r = 8%. The dotted curve uses S = 60 (in-the-money call or out-of-the-money put), the solid curves use
S = 50 (at-the-money option), and the dashed curve uses S = 40 (out-of-the-money call or in-the-money
put).

vega is consistent with the intuition that higher volatility increases option value. See
Fig. 10.4 for an illustration.

➤ Exercise 10.1.6 Prove that the vega as a function of σ is unimodal for σ > 0. A
function is unimodal if it is first increasing and then decreasing, thus having a single
peak.

10.1.5 Rho

The rho of a derivative is the rate of change in its value with respect to interest
rates, or ρ ≡ ∂�/∂r . The rhos of a European call and a European put on a non-
dividend-paying stock are Xτe−rτN(x− σ√τ )> 0 and −Xτe−rτN(−x+ σ√τ )< 0,
respectively. See Fig. 10.5 for an illustration.

➤ Exercise 10.1.7 (1) What is the speed, defined as ∂�/∂S, of a European option?
(2) What is the color, defined as ∂�/∂τ , of a European option?

Figure 10.4: Optionvega. Thedefault parametersare S = 50, X = 50,τ = 201 (days),σ = 0.3, and r = 8%.
The dotted curve uses S = 60 (in-the-money call or out-of-the-money put), the solid curves use S = 50 (at-
the-money option), and the dashed curve uses S = 40 (out-of-the-money call or in-the-money put).
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Figure 10.5: Option rho. The default parameters are S = 50, X = 50, τ = 201 (days), σ = 0.3, and r = 8%.
The dotted curves use S = 60 (in-the-money call or out-of-the-money put), the solid curves use S = 50
(at-the-money option), and the dashed curves use S = 40 (out-of-the-money call or in-the-money put).

10.2 Numerical Techniques

Sensitivity measures of derivatives for which closed-form formulas do not exist have
to be computed numerically. Take delta as an example. It is defined as � f/�S,
where �S is a small change in the stock price and � f is the resulting change in
the derivative’s price. A standard method computes f (S−�S) and f (S+�S) and
settles for

f (S+�S)− f (S−�S)
2�S

.

The computation time for this numerical differentiation scheme roughly doubles that
for evaluating the derivative security itself.

A preferred approach is to take advantage of the intermediate results of the
binomial tree algorithm. When the algorithm reaches the end of the first period, fu
and fd are computed. Recall that these values correspond to derivative values at
stock prices Su and Sd, respectively. Delta is then approximated by

fu− fd
Su− Sd .
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Binomial tree algorithm for the delta of American puts on a non-dividend-paying stock:

input: S,u,d, X,n, r̂(u> êr > d and r̂ > 0);
real R, p, P [n+ 1 ];
integer i, j ;
R := êr ;
p := (R−d)/(u−d);
for (i = 0 to n) {P [ i ] :=max

(
0, X− Sun−i di) ; }

for ( j = n− 1 down to 1)
for (i = 0 to j)

P[ i ] :=max((p× P[ i ]+ (1− p)× P[ i + 1 ])/R, X− Suj−i di );
return (P[ 0 ]− P[ 1 ])/(Su− Sd);

Figure 10.6: Binomial tree algorithm for the delta of American puts on a non-dividend-paying stock. Adapted
from Fig. 9.13.

The extra computational effort beyond the original binomial tree algorithm is essen-
tially nil. See Fig. 10.6 for an algorithm.

Other sensitivity measures can be similarly derived. Take gamma. At the stock
price (Suu+ Sud)/2, delta is approximately ( fuu− fud)/(Suu− Sud), and at the stock
price (Sud+ Sdd)/2, delta is approximately ( fud− fdd)/(Sud− Sdd). Gamma is the
rate of change in deltas between (Suu+ Sud)/2 and (Sud+ Sdd)/2, that is,

fuu− fud
Suu−Sud − fud− fdd

Sud−Sdd
(Suu− Sdd)/2 . (10.2)

In contrast, numerical differentiation gives

f (S+�S)− 2 f (S)+ f (S−�S)
(�S)2

.

As we shall see shortly, numerical differentiation may give inaccurate results.
Strictly speaking, the delta and the gamma thus computed are the delta at the end

of the first period and the gamma at the end of the second period. In other words,
they are not the sensitivity measures at the present time but at times τ/n and 2(τ/n)
from now, respectively, where n denotes the number of periods into which the time to
expiration τ is partitioned. However, as n increases, such values should approximate
delta and gamma well. The theta, similarly, can be computed as

fud− f
2(τ/n)

.

As for vega and rho, there is no alternative but to run the binomial tree algorithm
twice. In Eq. (15.3), theta will be shown to be computable from delta and gamma.

10.2.1 Why Numerical Differentiation Fails

A careful inspection of Eq. (9.8) reveals why numerical differentiation fails for
European options. First, the option value is a continuous piecewise linear function
of the current stock price S. Kinks develop at prices Xu− j d−(n− j), j = 0, 1, . . . ,n. As
a result, if�S is suitably small, the delta computed by numerical differentiation will
be a ladderlike function of S, hence not differentiable at the kinks. This bodes ill for
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Figure 10.7: Numerical differentiation for delta and gamma.

numerical gamma. In fact, if �S is suitably small, gamma computed through nu-
merical differentiation will be zero most of the time because f ′(S−�S)= f ′(S)=
f ′(S+�S) unless S is near a kink. However, another problem arises when S is
near a kink. Assume that S is to the right of the kink at S′ and S−�S< S′ < S.
Hence f ′(S)= f ′(S+�S) and f ′(S)− f ′(S−�S)= δ for some constant δ > 0 (see
Fig. 10.2.1). Numerical gamma now equals

f (S+�S)− 2 f (S)+ f (S−�S)
(�S)2

= δ(S
′ − S+�S)
(�S)2

.

This number can becomehuge as�Sdecreases, and the commonpractice of reducing
the step size �S will not help.

➤ Exercise 10.2.1 Why does the numerical gamma in definition (10.2) not fail for
the same reason?

Figure 10.8: Extended binomial tree. The extended binomial tree is
constructed from the original binomial tree (bold lines) but with time
extended beyond the present by two periods.
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10.2.2 Extended Binomial Tree Algorithms

It is recommended that delta and gamma be computed on the binomial tree, not at
the current time, but one and two periods from now, respectively [718]. An improved
method starts the binomial tree two periods before now, as in Fig. 10.8. Delta is then
computed as

fu/d− fd/u
(Su/d)− (Sd/u)

,

and gamma is computed as
fu/d− f

(Su/d)−S −
f− fd/u
S−(Sd/u)

[ (Su/d)− (Sd/u) ]/2
.

➢ Programming Assignment 10.2.2 Implement the extended binomial tree algorithm
for numerical delta and gamma. Compare the results against numerical differentia-
tion and closed-form solutions.

NOTE

1. Vega is not Greek.



CHAPTER
ELEVEN

Extensions of Options Theory

As I never learnt mathematics, so I have had to think.

Joan Robinson (1903–1983)

This chapter samples various option instruments and presents important applica-
tions of the option pricing theory. Algorithms are described for a few nontrivial
options.

11.1 Corporate Securities

With the underlying asset interpretated as the total value of the firm, Black and
Scholes observed that the option pricing methodology can be applied to pricing
corporate securities [87, 236, 658]. In the following analysis, it is assumed that (1) a
firm can finance payouts by the sale of assets and (2) if a promised payment to an
obligation other than stock is missed, the claim holders take ownership of the firm
and the stockholders get nothing.

11.1.1 Risky Zero-Coupon Bonds and Stock

Consider a firm called XYZ.com. It has a simple capital structure: n shares of its
own common stock S and zero-coupon bonds with an aggregate par value of X. The
fundamental question is, what are the values of the bonds B and the stock?

On the bonds’ maturity date, if the total value of the firm V∗ is less than the
bondholders’ collective claim X, the firmdeclares bankruptcy and the stock becomes
worthless. On the other hand, if V∗ > X, then the bondholders obtain X and the
stockholders V∗ − X. The following table shows their respective payoffs:

V ∗ ≤ X V ∗ > X

Bonds V ∗ X
Stock 0 V ∗ − X

The stock is therefore a call on the total value of the firmwith a strike price of X and
an expiration date equal to the maturity date of the bonds. It is this call that provides
the limited liability for the stockholders. The bonds are a covered call on the total
value of the firm.
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Let C stand for this call and V stand for the total value of the firm. Then nS= C
and B= V−C. Knowing C thus amounts to knowing how the value of the firm is
distributed between the stockholders and the bondholders.Whatever the value of C,
the total value of the stock and bonds atmaturity remains V∗. Hence the relative size
of debt and equity is irrelevant to the firm’s current value V, which is the expected
PV of V∗.

From Theorem 9.3.4 and the put–call parity

nS= VN(x)− Xe−rτN(x− σ√τ ),
B= VN(−x)+ Xe−rτN(x− σ√τ ),

where

x ≡ ln(V/X)+ (r + σ 2/2)τ
σ
√
τ

.

The continuously compounded yield to maturity of the firm’s bond is hence
(1/τ ) ln(X/B). The default premium is defined as the yield difference between risky
and riskless bonds:

(1/τ ) ln(X/B)− r =−1
τ

ln
(
N(−z)+ 1

ω
N(z− σ√τ )

)
, (11.1)

where ω ≡ Xe−rτ /V and z≡ (lnω)/(σ
√
τ )+ (1/2) σ

√
τ =−x+ σ√τ . Note that ω

is the debt-to-total-value ratio. The volatility of the value of the firm, σ , can be looked
on as a measure of operating risk. The default premium depends on only the firm’s
capital structure, operating risk, and debt maturity. The concept of default premium
is a special case of static spread in Subsection 5.6.2.

➤ Exercise 11.1.1 Argue that a loan guarantee that makes up any shortfalls in pay-
ments to the bondholders is a put with a strike price of B. The tacit assumption here
is that the guarantor does not default.

➤ Exercise 11.1.2 Prove Eq. (11.1).

➤ Exercise 11.1.3 Verify the following claims and explain them in simple English:
(1) ∂B/∂V > 0, (2) ∂B/∂X> 0, and (3) ∂B/∂τ < 0.

Numerical Illustrations
Suppose thatXYZ.com’s assets consist of 1,000 shares ofMerck as ofMarch 20, 1995,
when Merck’s market value per share is $44.5 (see Fig. 11.1). XYZ.com’s securities
consist of 1,000 shares of common stock and 30 zero-coupon bonds maturing on
July 21, 1995. Each bond promises to pay $1,000 at maturity. Therefore n= 1000,
V = 44.5×n= 44500, and X= 30×n= 30000. The Merck option relevant to our
question is the July call with a strike price of X/n= 30 dollars. Such an option exists
and is selling for $15.25. So XYZ.com’s stock is worth 15.25×n= 15250 dollars,
and the entire bond issue is worth B= 44500− 15250= 29250 dollars, or $975 per
bond.

The XYZ.com bonds are equivalent to a default-free zero-coupon bond with $X
par value plus n written European puts on Merck at a strike price of $30 by the
put–call parity. The difference between B and the price of the default-free bond
is precisely the value of these puts. Figure 11.2 shows the total market values of
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—Call— —Put—
Option Strike Exp. Vol. Last Vol. Last
Merck 30 Jul 328 151/4 . . . . . .

441/2 35 Jul 150 91/2 10 1/16

441/2 40 Apr 887 43/4 136 1/16

441/2 40 Jul 220 51/2 297 1/4

441/2 40 Oct 58 6 10 1/2

441/2 45 Apr 3050 7/8 100 11/8

441/2 45 May 462 13/8 50 13/8

441/2 45 Jul 883 115/16 147 13/4

441/2 45 Oct 367 23/4 188 21/16

Figure 11.1: Merck option quotations. Source: Fig. 7.4.

the XYZ.com stock and bonds under various debt amounts X. For example, if the
promised payment to bondholders is $45,000, the relevant option is the July call with
a strike price of 45000/n= 45 dollars. Because that option is selling for $115/16, the
market value of the XYZ.com stock is (1+ 15/16)×n= 1937.5 dollars. The market
value of the stock decreases as the debt–equity ratio increases.

Conflicts between Stockholders and Bondholders
Options and corporate securities have one important difference: A firm can change
its capital structure, but an option’s terms cannot be changed after it is issued. This
means that parameters such volatility, dividend, and strike price are under partial
control of the stockholders.

Suppose XYZ.com issues 15 more bonds with the same terms in order to buy
back stock. The total debt is now X= 45,000 dollars. Figure 11.2 says that the total
market value of the bonds should be $42,562.5. The new bondholders therefore pay
42562.5× (15/45)= 14187.5 dollars, which is used by XYZ.com to buy back shares.
The remaining stock is worth $1,937.5. The stockholders therefore gain

(14187.5+ 1937.5)− 15250= 875

dollars. The original bondholders lose an equal amount:

29250−
(
30
45
× 42562.5

)
= 875. (11.2)

This simple calculation illustrates the inherent conflicts of interest between stock-
holders and bondholders.

Promised payment Current market Current market Current total
to bondholders value of bonds value of stock value of firm
X B nS V

30,000 29,250.0 15,250.0 44,500
35,000 35,000.0 9,500.0 44,500
40,000 39,000.0 5,500.0 44,500
45,000 42,562.5 1,937.5 44,500

Figure 11.2: Distribution of corporate value under alternative capital structures. Numbers are based on
Fig. 11.1.
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Asanother example, suppose the stockholders distribute $14,833.3 cashdividends
by selling (1/3)×n Merck shares. They now have $14,833.3 in cash plus a call on
(2/3)×n Merck shares. The strike price remains X= 30000. This is equivalent to
owning two-thirds of a call on n Merck shares with a total strike price of $45,000.
Because n such calls are worth $1,937.5 from Fig. 11.1, the total market value of
the XYZ.com stock is (2/3)× 1937.5= 1291.67 dollars. The market value of the
XYZ.com bonds is hence (2/3)×n× 44.5− 1291.67= 28375 dollars. As a result,
the stockholders gain

(14833.3+ 1291.67)− 15250≈ 875

dollars, and the bondholders watch their value drop from $29,250 to $28,375, a loss
of $875.

Bondholders usually loathe the stockholders’ taking unduly risky investments.
The option theory explains it by pointing out that higher volatility increases the
likelihood that the callwill be exercised, to thefinancial detrimentof thebondholders.

➤ Exercise 11.1.4 If the bondholders can lose money in Eq. (11.2), why do they not
demand lower bond prices?

➤ Exercise 11.1.5 Repeat the steps leading to Eq. (11.2) except that, this time, the
firm issues only five bonds instead of fifteen.

➤ Exercise 11.1.6 Suppose that a holding company’s securities consist of 1,000 shares
of Microsoft common stock and 55 zero-coupon bonds maturing on the same date
as the Microsoft April calls. Figure out the stockholders’ gains (hence the original
bondholders’ losses) if the firm issues 5, 10, and 15 more bonds, respectively. Consult
Fig. 7.4 for the market quotes.

➤ Exercise 11.1.7 Why are dividends bad for the bondholders?

Subordinated Debts
Suppose that XYZ.com adds a subordinated (or junior) debt with a face value Xj

to its capital structure. The original debt, with a face value of Xs, then becomes the
senior debt and takes priority over the subordinated debt in case of default. Let both
debts have the same maturity. The following table shows the payoffs of the various
securities:

V ∗ ≤ X s X s < V ∗ ≤ X s+ X j X s+ X j < V ∗

Senior debt V ∗ X s X s

Junior debt 0 V ∗ − X s X j

Stock 0 0 V ∗ − X s− X j

The subordinated debt has the same payoff as a portfolio of a long Xs call and a
short Xs+ Xj call – a bull call spread, in other words.

11.1.2 Warrants

Warrants represent the right to buy shares from the corporation. Unlike a call, a
corporation issues warrants against its own stock, and new shares are issued when
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a warrant is exercised. Most warrants have terms between 5 and 10 years, although
perpetual warrants exist. Warrants are typically protected against stock splits and
cash dividends.

Consider a corporation with n shares of stock and m European warrants. Each
warrant can be converted into one share on payment of the strike price X. The total
value of the corporation is therefore V = nS+mW, where W denotes the current
value of eachwarrant. At expiration, if it becomes profitable to exercise thewarrants,
the value of each warrant should be equal to

W∗ = 1
n+m (V∗ +mX)− X= 1

n+m (V∗ −nX),

where V∗ denotes the total value of the corporation just before the conversion. It
will be optimal to exercise the warrants if and only if V∗ > nX. A European warrant
is therefore a European call on one (n+m)th of the total value of the corporation
with a strike price of Xn/(n+m) – equivalently, n/(n+m) European call on one
nth of the total value of the corporation (or S+ (m/n)W) with a strike price of X.
Hence

W = n
n+mC(W), (11.3)

where C(W) is the Black–Scholes formula for the European call but with the
stock price replaced with S+ (m/n)W. The value of W can be solved numerically
given S.

➢ Programming Assignment 11.1.8 (1) Write a program to solve Eq. (11.3). (2) Write
a binomial tree algorithm to price American warrants.

11.1.3 Callable Bonds

Corporations issue callable bonds so that the debts can be refinanced under better
terms if future interest rates fall or the corporation’s financial situation improves.
Consider a corporation with two classes of obligations: n shares of common stock
and a single issue of callable bonds. The bonds have an aggregate face value of X, and
the stockholders have the right to call the bonds at any time for a total price of Xc.
Whenever the bonds are called before they mature, the payoff to the stockholders is
V− Xc. The stock is therefore equivalent to an American call on the total value of
the firm with a strike price of Xc before expiration and X at expiration.

11.1.4 Convertible Bonds

A convertible bond (CB) is like an ordinary bond except that it can be converted into
newshares at thediscretionof its owner.Consider anon-dividend-paying corporation
with two classes of obligations: n shares of common stock and m zero-coupon CBs.
Each CB can be converted into k newly issued shares at maturity (k is called the
conversion ratio). If the bonds are not converted, their holders will receive X in
aggregate at maturity.

The bondholders will own a fraction λ≡ (mk)/(n+mk) of the firm if conversion
is chosen (λ is called the dilution factor). It makes sense to convert only if the
part of the total market value of the corporation that is due the bondholders after
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conversion, or λV∗, exceeds X, i.e., V∗ > X/λ. The payoff of the bond at maturity
is (1) V∗ if V∗ ≤ X, (2) X if X< V∗ ≤ X/λ because it will not be converted, or
(3) λV∗ if X/λ < V∗.

It is in the interest of stockholders to pursue risky projects because higher volatil-
ity increases the stock price. The corporation may also withhold positive inside in-
formation from the bondholders; once the favorable information is released, the
corporation calls the bonds. CBs solve both problems by giving the bondholders the
option to take equity positions [837].

➤ Exercise 11.1.9 Replicate the zero-coupon CB with the total value of the corpora-
tion and European calls on that value.

➤ Exercise 11.1.10 (1) Replicate the zero-coupon CB with zero-coupon bonds and
European calls on a fraction of the total value of the corporation. (2) Replicate the
zero-coupon CB with zero-coupon bonds and warrants. (3) Show that early conver-
sion is not optimal.

Convertible Bonds with Call Provisions
Many CBs contain call provisions. When the CBs are called, their holders can either
convert the CB or redeem it at the call price. The call strategy is intended tominimize
the value of the CBs. In the following analysis, assume that the CBs can be called
any time before their maturity and that the corporation’s value follows a continuous
path without jumps.

Consider the same corporation again. In particular, the aggregate face value of
the CBs is X, the aggregate call price is P, and P ≥ X. The bondholders will own
a fraction λ of the firm on conversion. We first argue that it is not optimal to call
the CBs when λV < P. As the following table shows, not calling the CBs leaves the
bondholders at maturity with a value of V∗, X, or λV∗ if the holders choose not to
convert them earlier.

V ∗ ≤ X X < V ∗ ≤ X /λ X /λ < V ∗

Immediate call (PV) P P P

No call throughout (FV at maturity) V ∗ X λV ∗

No call throughout (PV) V PV(X ) λV

The PVs in all three cases are either less than or equal to P. Calling the CBs imme-
diately is hence not optimal.

We now argue that it is not optimal to call the CBs after λV = P happens. Calling
the CBs when λV = P leaves the bondholders with λV∗ at maturity. The bondhold-
ers’ terminal wealth if the CBs are not called is tabulated in the following table.

V ∗ < X X ≤ V ∗ < X /λ X /λ≤ V ∗

No call throughout V ∗ X λV ∗

Call sometime in the future λV ∗ λV ∗ λV ∗

Not calling the CBs hence may result in a higher terminal value for the bondholders
than calling them. In summary, the optimal call strategy is to call the CBs the first
time λV = P happens. More general settings will be covered in Subsection 15.3.7.
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➤ Exercise 11.1.11 Complete the proof by showing that it is not optimal to call the
CBs when λV > P.

11.2 Barrier Options

Options whose payoff depends on whether the underlying asset’s price reaches a cer-
tain price level H are called barrier options. For example, a knock-out option is like
an ordinary European option except that it ceases to exist if the barrier H is reached
by the price of its underlying asset. A call knock-out option is sometimes called a
down-and-out option if H< X. A put knock-out option is sometimes called an up-
and-out optionwhen H> X. A knock-in option, in contrast, comes into existence if a
certain barrier is reached. A down-and-in option is a call knock-in option that comes
into existence only when the barrier is reached and H< X. An up-and-in option is a
put knock-in option that comes into existence only when the barrier is reached and
H> X. Barrier options have been traded in the United States since 1967 and are
probably the most popular among the over-the-counter options [370, 740, 894].

The value of a European down-and-in call on a stock paying a dividend yield of
q is

Se−qτ
(
H
S

)2λ

N(x)− Xe−rτ
(
H
S

)2λ−2
N(x− σ√τ ), S≥ H, (11.4)

where

x ≡ ln(H2/(SX))+ (r −q+ σ 2/2) τ
σ
√
τ

and λ≡ (r −q+ σ 2/2)/σ 2 (see Fig. 11.3). A European down-and-out call can be
priced by means of the in–out parity (see Comment 11.2.1). The value of a European

Figure 11.3: Value of down-and-in option. Plotted is the down-and-in
option value as a function of the stock price with barrier H = 80. The
other parameters are identical to those for the call in Fig. 7.3: X =
95, σ = 0.25, τ = 1/12, and r = 0.08. Note the dramatic difference
between the two plots.
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up-and-in put is

Xe−rτ
(
H
S

)2λ−2
N(−x+ σ√τ )− Se−qτ

(
H
S

)2λ

N(−x),

where S≤ H. A European up-and-out call can be priced by means of the in–out
parity (see Exercise 11.2.1, part(2)). The formulas are due toMerton [660]. See [660]
or Exercise 17.1.6 for proofs.

Backward induction can be used to price barrier options on a binomial tree.
As the binomial tree algorithm works backward in time, it checks if the barrier
price is reached by the underlying asset and, if so, replaces the option value with an
appropriate value (see Fig. 11.4). In practice, the barrier is oftenmonitored discretely,
say at the end of the trading day, and the algorithm should reflect that.

➤ Exercise 11.2.1 (1) Prove that a European call is equivalent to a portfolio of a
European down-and-out option and a European down-and-in option with an identi-
cal barrier. (2) Prove that a European put is equivalent to a portfolio of a European
up-and-out option and a European up-and-in option with an identical barrier.

Comment 11.2.1 The equivalence results in Exercise 11.2.1 are called the in–out parity
[271]. Note that these results do not depend on the barrier’s being a constant.

➤ Exercise 11.2.2 Does the in–out parity apply to American-style options?

➤ Exercise 11.2.3 Check that the formulas for theup-and-in anddown-and-inoptions
become the Black–Scholes formulas for standard European options when S= H.

Binomial tree algorithm for pricing down-and-out calls on a non-dividend-paying stock:

input: S,u,d, X,H (H< X,H< S),n, r̂ ;
real R, p,C[n+ 1 ];
integer i, j, h;
R := êr ; p := (R−d)/(u−d);
h := �ln(H/S)/ lnu�; H := Suh;
for (i = 0 ton) {C[ i ] :=max(0, Sun−i di − X); }
if [ n− h is even and 0≤ (n− h)/2≤ n ]

C[ (n− h)/2 ] := 0; //A hit.
for ( j = n− 1 down to 0) {

for (i = 0 to j)
C[ i ] := (p×C[ i ]+ (1− p)×C[ i + 1 ])/R;

if [ j − h is even and 0≤ ( j − h)/2≤ j ]
C[ ( j − h)/2 ] := 0; //A hit.

}
return C[ 0 ];

Figure 11.4: Binomial tree algorithm for down-and-out calls on a non-dividend-paying stock. Because H may
not correspond to a legal stock price, we lower it to Suh , the highest stock price not exceeding H . The new
barrier corresponds to C [ ( j − h)/2 ] at times j = n , n− 1, . . . , h . If the option provides a rebate K when
the barrier is hit, simply change the assignment of zero to that of K .



11.2 Barrier Options 139

Figure 11.5: Convergence of binomial model for down-and-in calls. Plotted are the option values against the
number of time periods. The option’s parameters are S = 95, X = 100, H = 90, r = 10% (continuously
compounded), σ = 0.25, and τ = 1 (year). The analytical value 5.6605 is also plotted for reference.

➤ Exercise 11.2.4 A reset option is like an ordinary option except that the strike price
is set to H when the stock price hits H. Assume that H< X. Create a synthetic reset
option with a portfolio of barrier options.

➢ Programming Assignment 11.2.5 (1) Implement binomial tree algorithms for
European knock-in and knock-out options with rebates. Pay special attention to
convergence (see Fig. 11.5). Here is a solved problem: A down-and-in European
call without rebates has a value of $5.6605 given S= 95, X= 100, H= 90, r = 10%
(continuously compounded), σ = 0.25, and τ = 1 (year). (2) Extend the algorithms
to handle American barrier options.

11.2.1 Bonds with Safety Covenants

Bonds with safety covenants can be evaluated with the help of knock-out options.
Suppose that a firm is required to pass its ownership to the bondholders if its value
falls below a specified barrier H, which may be a function of time. The bondholders
therefore receive V the first time the firm’s value falls below H. At maturity, the
bondholders receive X if V > X and V if V < X, where X is the aggregate par
value. The value of the bonds therefore equals that of the firmminus a down-and-out
option with a strike price X and barrier H.

11.2.2 Nonconstant Barrier

Consider the generalized barrier option with the barrier H(t)= He−ρτ , where ρ ≥
0 and H≤ X. The standard barrier option corresponds to ρ = 0. The value of a
European down-and-in call is

S
[
H(t)
S

]2λ
N(x)− Xe−rτ

[
H(t)
S

]2λ−2
N(x− σ√τ ),
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where

x ≡ ln(H(t)2/(SX))+ (r + σ 2/2) τ
σ
√
τ

,

λ≡ (r − ρ+ σ 2/2)/σ 2, and S≥ H(t). This result is due to Merton [660]. American
options can be viewed as barrier options whose barrier is the exercise boundary that,
instead of being given in advance, must be calculated.

11.2.3 Other Types of Barrier Options

Barrier options have many variations [158]. If the barrier is active during only an
initial period, the option is called a partial-barrier option, and if the barrier is active
during only the latter part of the option’s life, it is called a forward-starting-barrier
option. If the barrier must be breached for a particular length of time, we have
a Parisian option. Double-barrier options have two barriers. In rolling options, a
sequence of barriers is specified. For calls (puts), the strike price is lowered (raised,
respectively) each time a barrier is hit, and the option is knocked out at the last
barrier.

➤ Exercise 11.2.6 A rolling call comes with barriers H1 > H2 > · · ·> Hn (all below
the initial stock price) and strike prices X0 > X1 > · · ·> Xn−1. This option starts as
a European call with a strike price of X0. When the first barrier H1 is hit, the strike
price is rolled down to X1. In general, on hitting each barrier Hi , the strike is rolled
down to Xi . The option knocks out when the last barrier Hn is hit. Replicate this
option with a portfolio of down-and-out options.

11.3 Interest Rate Caps and Floors

In floating-rate debts, the borrower is concerned with rate rises and the lender is
concerned with rate declines. They can seek protection in interest rate caps and
floors, respectively. The writer of a cap pays the purchaser each time the contract’s
reference rate is above the contract’s cap rate (or ceiling rate) on each settlement
date. The writer of a floor pays the holder each time the contract’s reference rate is
below the contract’s floor rate on each settlement date. The net effect is that a cap
places a ceiling on the interest rate cost of a floating-rate debt, and a floor places a
floor on the interest rate income of a floating-rate asset. The predetermined interest
rate level such as the cap rate and the floor rate is called the strike rate [325]. One
can also buy an interest rate cap and simultaneously sell an interest rate floor to
create an interest rate collar. With a collar, the interest cost is bounded between the
floor rate and the cap rate: When the reference rate rises above the cap rate, one is
compensated by the cap seller, and when the reference rate dips below the floor rate,
one pays the floor purchaser.

More formally, at each settlement date of a cap, the cap holder receives

max(reference rate− cap rate, 0)× notional principal× t, (11.5)

where t is the length of the payment period. Similarly, the payoff of the floor is

max(floor rate− reference rate, 0)× notional principal× t.
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One Three Six One
month months months year

$ LIBOR FT London
Interbank Fixing 61/16 61/8 61/8 63/16

Figure 11.6: Sample LIBOR rate quotations. Source: Financial Times, May 19, 1995.

Payoff (11.5) denotes a European call on the interest rate with a strike price equal to
the cap rate. Hence a cap can be seen as a package of European calls (or caplets) on
the underlying interest rate. Similarly, a floor can be seen as a package of European
puts (or floorlets) on the underlying interest rate.

For example, if the reference rate is the 6-month LIBOR, t is typically either
181/360 or 184/360 as LIBOR uses the actual/360 day count convention. LIBOR refers
to the lending rates on U.S. dollar deposits (Eurodollars) between large banks in
London. Many short-term debts and floating-rate loans are priced off LIBOR in that
the interest rate is quoted at a fixed margin above LIBOR. Differences between the
LIBOR rate and the domestic rate are due to risk, government regulations, and taxes
[767]. Non-U.S.-dollar LIBORs such as theGermanmark LIBOR are also quoted [646].
See Fig. 11.6 for sample quotations on LIBOR rates.

Unlike stockoptions, caps andfloors are settled in cash. Thepremium is expressed
as a percentage of the notional principal on which the cap or floor is written. For ex-
ample, for a notional principal of $10 million, a premium of 20 basis points translates
into 10× 20/10000= 0.02 million. The full premium is usually paid up front.

As a concrete example, suppose a firm issues a floating-rate note, paying the
6-month LIBOR plus 90 basis points. The firm’s financial situation cannot allow paying
an annual rate beyond 11%. It can purchase an interest rate cap with a cap rate of
10.1%. Thereafter, every time the rate moves above 10.1% and the firm pays more
than 11%, the excess will be compensated for exactly by the dealer who sells the cap.

11.4 Stock Index Options

A stock index is a mathematical expression of the value of a portfolio of stocks.
The New York Stock Exchange (NYSE) Composite Index (ticker symbol NYA),
for example, is a weighted average of the prices of all the stocks traded on the
NYSE; the weights are proportional to the total market values of their outstanding
shares. Buying the index is thus equivalent to buying a portfolio of all the common
stocks traded on the NYSE. This kind of average is called capitalization weighted, in
which heavily capitalized companies carry more weights. The DJIA, S&P 100 Index
(ticker symbol OEX), S&P 500 Index (ticker symbol SPX), andMajorMarket Index
(ticker symbol XMI) are four more examples of stock indices. The SPX and OEX
are capitalization-weighted averages, whereas theDJIAandXMI are price-weighted
averages. A price-weighted index is calculated as

∑
i Pi/α, where Pi is the price of

stock i in the index and α is an adjustment factor that takes care of stock splits, stock
dividends, bankruptcies, mergers, etc., so that the index is comparable over time. For
example, α = 0.19740463 for the DJIA as of October 26, 1999. A third weighting
method is geometric weighting, in which every stock has the same influence on the
index. The Value Line Index (ticker symbol VLE) for example is a geometrically
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RANGES FOR UNDERLYING INDEXES
Monday, March 20, 1995

Net From
High Low Close Chg. Dec. 31 %Chg.

S&P 100 (OEX) . . . . 465.88 464.31 465.42 +0.57 +36.79 +8.6
S&P 500 -A.M.(SPX) . 496.61 495.27 496.14 +0.62 +36.87 +8.0

· · ·
Nasdaq 100 (NDX) . 447.67 442.83 446.61 +2.67 +42.34 +10.5

· · ·
Russell 2000 (RUT) 257.87 257.28 257.83 +0.51 +7.47 +3.0

· · ·
Major Mkt (XMI) . . 435.14 432.82 434.90 +1.93 +34.95 +8.7

· · ·
NYSE (NYA) . . . . . . 268.36 267.68 268.05 +0.21 +17.11 +6.8
Wilshire S-C (WSX) 332.50 331.69 332.11 +0.16 +11.05 +3.4

· · ·
Value Line (VLE) . . 474.41 473.46 474.12 +0.58 +21.59 +4.8

· · ·

Figure 11.7: Index quotations. The stock market’s spectacular rise between 1995 and early 2000 is evident if
we compare this table with the one in Fig. 8.2. Source: Wall Street Journal, March 21, 1995.

weighted index [646]. A geometrically weighted index is calculated as

I(t)=
n∏
i=1

[
Pi (t)
Pi (t − 1)

]1/n
I(t − 1),

where n is the number of stocks in the index, I(t) is the index value on day t , and
Pi (t) is the price of stock i on day t . Stock indices are usually not adjusted for cash
dividends [317]. See Fig. 11.7. Additional stock indices can be found in [95, 346, 470].

Stock indices differ also in their stock composition. For instance, the DJIA is an
index of 30 blue-chip stocks,1 whereas the S&P 500 is an index of 500 listed stocks
from three exchanges. Nevertheless, their returns are usually highly correlated.

An indexoption is anoptiononan indexvalue.Optionson stockmarketportfolios
were first offered by insurance companies in 1977. Exchange-traded index options
started in March 1983 with the trading of the OEX option on the CBOE [346]. See
Fig. 11.8 for sample quotations. Stock index options are settled in cash: Only the cash
difference between the index’s currentmarket value and the strike price is exchanged
when the option is exercised. Options on the SPX, XMI, and DJIA are European,
whereas those on the OEX and NYA are American.

The cash settlement feature poses some risks to American option holders and
writers. Because the exact amount to be paid when an option is exercised is deter-
mined by the closing price, there is an uncertainty called the exercise risk. Consider
an investor who is short an OEX call and long the appropriate amounts of common
stocks that comprise the index. If the call is exercised today, the writer will be notified
the next business day and pay cash based on today’s closing price. Because the index
may open at a price different from today’s closing price, the stocks may not fetch
the same value as today’s closing index value. Were the option settled in stocks, the
writer would simply deliver the stocks the following business day without worrying
about the change in the index value.



11.5 Foreign Exchange Options 143

Net Open Net Open
Strike Vol. Last Chg. Int. Strike Vol. Last Chg. Int.

CHICAGO Apr 490c 470 11 +3/8 23,903
· · · Apr 490p 1,142 3 −3/8 14,476

S&P 100 INDEX(OEX) May 490c 103 137/8 −5/8 3,086
May 380p 8 5/16 . . . 897 May 490p 136 53/8 . . . 13,869
Apr 385p 50 1/8 . . . 1,672 Jun 490c 2,560 167/8 +3/4 9,464
Apr 390p 335 1/8 . . . 4,406 Jun 490p 333 67/8 −3/8 8,288

· · · · · ·
Apr 410c 12 57 +12 37 Jun 550p 10 493/4 −1 575

· · · Call vol. . . . . . . . . 34,079 Open Int. . . . . . . 656,653
Jun 490c 42 13/4 −1/4 719 Put vol. . . . . . . . . 59,582 Open Int. . . . . . . 806,961
Call vol. . . . . . . 75,513 Open Int. . . . . 415,627 · · ·
Put vol. . . . . . . 104,773 Open Int. . . . . 447,094 AMERICAN

S&P 500 INDEX-AM(SPX) MAJOR MARKET(XMI)
Jun 350p 15 1/8 −1/8 2,027 Jun 325p 20 1/16 −3/16 45
Jun 375p 8 1/4 −1/8 5,307 Apr 350p 300 1/16 . . . 400
Apr 400p 50 1/16 . . . 5,949 · · ·

· · · Call vol. . . . . . . . . . 1,913 Open Int. . . . . . . . . 6,011
Apr 405c 2 913/4 . . . . . . Put vol. . . . . . . . . . 4,071 Open Int. . . . . . . . 27,791

· · · · · ·

Figure 11.8: Index options quotations. Source: Wall Street Journal, March 21, 1995.

The size of a stock index option contract is the dollar amount equal to $100 times
the index. A May OEX put with a strike price of $380 costs 100× (5/16)= 31.25
dollars from the data in Fig. 11.8. This particular put is out of the money.

The valuation of stock index options usually relies on the Black–Scholes option
pricing model with continuous dividend yields. Hence European stock index options
can be priced by Eq. (9.20). This model actually approximates a broad-based stock
market index better than it approximates individual stocks.2

One of the primary uses of stock index options is hedging large diversified port-
folios. NYA puts, for example, can be used to protect a portfolio composed pri-
marily of NYSE-listed securities against market declines. The alternative approach
of buying puts for individual stocks would be cumbersome and more expensive by
Theorem 8.6.1. Stock index options can also be used to create a long position in
a portfolio of stocks by the put–call parity. It is easier to implement this synthetic
security than it is to buy individual stocks.

➤ Exercise 11.4.1 Verify the following claims: (1) A 1% price change in a lower-
priced stock causes a smaller movement in the price-weighted index than that in a
higher-priced stock. (2) A 1% price change in a lower capitalization issue has less
of an impact on the capitalization-weighted index than that in a larger capitalization
issue. (3) A 1% price change in a lower-priced stock has the same impact on the
geometrically weighted index as that in a higher-priced stock.

11.5 Foreign Exchange Options

In the spot (or cash)market in which prices are for immediate payment and delivery,
exchange rates between the U.S. dollar and foreign currencies are generally quoted
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EXCHANGE RATES
Thursday, January 7, 1999

Currency
U.S. $ equiv. per U.S. $

Country Thu. Wed. Thu. Wed.
· · ·

Britain (Pound). . . . . 1.6508 1.6548 .6058 .6043
1-month Forward . 1.6493 1.6533 .6063 .6049
3-months Forward 1.6473 1.6344 .6071 .6119
6-months Forward 1.6461 1.6489 .6075 .6065

. . .
Germany (Mark). . . . . .5989 .5944 1.6698 1.6823

1-month Forward . .5998 .5962 1.6673 1.6771
3-months Forward .6016 .5972 1.6623 1.6746
6-months Forward .6044 .6000 1.6544 1.6666

· · ·
Japan (Yen) . . . . . . . . .009007 .008853 111.03 112.95

1-month Forward .009007 .008889 111.03 112.50
3-months Forward .009008 .008958 111.02 111.63
6-months Forward .009009 .009062 111.00 110.34

· · ·
SDR . . . . . . . . . . . . . . 1.4106 1.4137 0.7089 0.7074
Euro . . . . . . . . . . . . . 1.1713 1.1626 0.8538 0.8601

Figure 11.9: Exchange rate quotations. Source: Wall Street Journal, January 8, 1999.

with the European terms. This method measures the amount of foreign currency
needed to buy one U.S. dollar, i.e., foreign currency units per dollar. The reciprocal
of European terms, on the other hand, measures the U.S. dollar value of one foreign
currency unit. For example, if the European-terms quote is .63 British pounds per
$1 (£.63/$1), then the reciprocal-of-European-terms quote is $1.587 per British pound
($1/£.63 or $1.587/£1). The reciprocal of European terms is also called the American
terms.

Figure 11.9 shows the spot exchange rates as of January 7, 1999. The spot exchange
rate is the rate at which one currency can be exchanged for another, typically for settlement
in 2 days. Note that the German mark is a premium currency because the 3-month forward
exchange rate, $.6016/DEM1, exceeds the spot exchange rate, $.5989/DEM1; the mark is
more valuable in the forward market than in the spot market. In contrast, the British pound
is a discount currency. The forward exchange rate is the exchange rate for deferred
delivery of a currency.

Foreign exchange (forex) options are settled by delivery of the underlying currency. A
primary use of forex options is to hedge currency risk. Consider a U.S. company expecting
to receive 100 million Japanese yen in March 2000. Because this company wants U.S.
dollars, not Japanese yen, those 100 million Japanese yen will be exchanged for U.S.
dollars. Although 100 million Japanese yen are worth 0.9007 million U.S. dollars as of
January 7, 1999, they may be worth less or more in March 2000. The company decides to
use options to hedge against the depreciation of the yen against the dollar. From Fig. 11.10,
because the contract size for the Japanese yen option is JPY6,250,000, the company decides
to purchase 100,000,000/6,250,000= 16 puts on the Japanese yen with a strike price of
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—Call— —Put— —Call— —Put—
Vol. Last Vol. Last Vol. Last Vol. Last

· · · · · ·
German Mark 59.31 Japanese Yen 88.46
62,500 German Marks-European Style. 6,250,000 J. Yen-100ths of a cent per unit.
581/2 Jan . . . 0.01 27 0.06 661/2 Mar . . . 0.01 1 2.53
59 Jan . . . 0.01 210 0.13 73 Mar . . . . . . 10 0.04
61 Jan 27 0.07 . . . 0.01 75 Mar . . . 0.01 137 0.06
611/2 Jan 210 0.02 . . . 0.01 76 Mar . . . . . . 9 0.09

77 Mar . . . . . . 17 0.09
78 Mar . . . . . . 185 0.18
79 Mar . . . . . . 10 0.16
80 Mar . . . . . . 77 0.40
81 Mar . . . . . . 60 0.36
86 Jan . . . 0.01 5 0.14
88 Mar . . . . . . 10 2.14
89 Mar . . . . . . 10 2.51
90 Feb . . . 0.01 12 2.30
91 Feb . . . 0.01 5 2.50
100 Mar 2 0.86 . . . 0.01

· · ·

Figure 11.10: Forex option quotations. Source: Wall Street Journal, January 8, 1999.

$.0088 and an exercise month in March 2000. This gives the company the right to sell
100,000,000 Japanese yen for 100,000,000× .0088= 880,000 U.S. dollars. The options
command 100,000,000× 0.000214= 21,400 U.S. dollars in premium. The net proceeds
per Japanese yen are hence .88− .0214= 0.8586 cent at the minimum.

A call to buy a currency is an insurance against the relative appreciation of that currency,
whereas a put on a currency is an insurance against the relative depreciation of that currency.
Put and call on a currency are therefore identical: A put to sell XA units of currency A for
XB units of currency B is the same as a call to buy XB units of currency B for XA units
of currency A. The above-mentioned option, for example, can be seen as the right to buy
6,250,000× 0.0088= 55,000 U.S. dollars for 6,250,000 Japanese yen, or equivalently a
call on 55000 U.S. dollars with a strike price of 1/0.0088≈ 113.6 yen per dollar.

It is important to note that a DEM/$ call (an option to buy German marks for U.S. dollars)
and a $/£ call do not a DEM/£ call make. This point is illustrated by an example. Consider a
call on DEM1 for $.71, a call on $.71 for £.452, and a call on DEM1 for £.452. Suppose that
the U.S. dollar falls to DEM1/$.72 and £1/$1.60. The first option nets a profit of $.01, but
the second option expires worthless. Because 0.72/1.6= 0.45, we know that DEM1/£.45.
The DEM/£ option therefore also expires worthless. Hence the portfolio of DEM/$ and $/£
calls is worth more than the DEM/£ call. This conclusion can be shown to hold in general
(see Exercise 15.3.16). Options such as DEM/£ calls are called cross-currency options
from the dollar’s point of view.

Many forex options are over-the-counter options. One possible reason is that the homo-
geneity and liquidity of the underlying asset make it easy to structure custom-made deals.
Exchange-traded forex options are available on the PHLX and the Chicago Mercantile
Exchange (CME) as well as on many other exchanges [346]. Most exchange-traded forex
options are denominated in the U.S. dollar.
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➤ Exercise 11.5.1 A range forward contract has the following payoff at expiration:

0 if the exchange rate S lies within [ XL, XH ],
S− XH if S> XH,
S− XL if S< XL.

It guarantees that the effective future exchange rate will lie within XL and XH.
Replicate this contract with standard options.

➤ Exercise 11.5.2 In a conditional forward contract, the premium p is paid at ex-
piration and only if the exchange rate is below a specified level X. The payoff at
expiration is thus

S− X− p if the exchange rate S exceeds X,
−p if S≤ X.

It guarantees that the effective future exchange ratewill be, atmost, X+ p. Replicate
this contract with standard options.

➤ Exercise 11.5.3 A participating forward contract pays off at expiration

S− X if the exchange rate S exceeds X,
α(S− X) if S≤ X.

The purchaser is guaranteed an upper bound on the exchange rate at X and pays a
proportion α of the decrease below X. Replicate this contract with standard options.

11.5.1 The Black–Scholes Model for Forex Options

Let S denote the spot exchange rate in domestic/foreign terms, σ the volatility of the
exchange rate, r the domestic interest rate, and r̂ the foreign interest rate. A foreign
currency is analogous to a stock’s paying a known dividend yield because the owner of
foreign currencies receives a continuous dividend yield equal to r̂ in the foreign currency.
The formulas derived for stock index options in Eq. (9.20) hence apply with the dividend
yield equal to r̂ :

C = Se−̂rτN(x)− Xe−rτN(x− σ√τ ), (11.6)

P = Xe−rτN(−x+ σ√τ )− Se−̂rτN(−x), (11.6′)

where

x ≡ ln(S/X)+ (r − r̂ + σ 2/2) τ
σ
√
τ .

The deltas of calls and puts are e−̂rτN(x)≥ 0 and −e−̂rτN(−x)≤ 0, respectively. The
Black–Scholes model produces acceptable results for major currencies such as the
German mark, the Japanese yen, and the British pound [346].

➤ Exercise 11.5.4 Assume the BOPM. (1) Verify that the risk-neutral probability for
forex options is [ e(r−̂r)�t −d ]/(u−d), where u and d denote the up and the down
moves, respectively, of the domestic/foreign exchange rate in �t time. (2) Let S be
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the domestic/foreign exchange rate. Show that the delta of the forex call equals

h≡ e−̂r�t Cu−Cd
Su− Sd

if we use the foreign riskless asset (riskless in terms of foreign currency) and the
domestic riskless asset to replicate the option. Above, h is the price of the foreign
riskless asset held in terms of the foreign currency. (Hint: Review Eq. (9.1).)

➤ Exercise 11.5.5 Prove that the European forex call and put are worth the same if
S= X and r = r̂ under the Black–Scholes model.

11.5.2 Some Pricing Relations

Many of the relations in Section 8.2 continue to hold for forex options after the modifications
required by the existence of the continuous dividend yield (equal to the foreign interest rate).
To show that a European call satisfies

C ≥max(Se−̂rτ − Xe−rτ , 0), (11.7)

consider the following strategies:

Value at expiration

Initial investment Sτ > X Sτ ≤ X

Buy a call C Sτ − X 0
Buy domestic bonds (face value $X ) X e−r τ X X
Total C + X e−r τ Sτ X

Buy foreign bonds Se−̂r τ Sτ Sτ
(face value 1 in foreign currency)

Hence the first portfolio is worth at least as much as the second in every scenario and
therefore cannot cost less. Bound (11.7) incidentally generalizes Exercise 8.3.2.

A European call’s price may approach the lower bound in bound (11.7) as closely as
may be desired (see Exercise 11.5.6). As the intrinsic value S− X of an American call can
exceed the lower bound in bound (11.7), early exercise may be optimal. Thus we have the
following theorem.

THEOREM 11.5.1 American forex calls may be exercised before expiration.

➤ Exercise 11.5.6 Show how bound (11.7) may be approximated by the C in
Eq. (11.6).

➤ Exercise 11.5.7 (Put–Call Parity). Prove that (1) C = P+ Se−̂rτ − Xe−rτ for Eu-
ropean options and (2) P ≥max(Xe−rτ − Se−̂rτ , 0) for European puts.

11.6 Compound Options

Compoundoptions are options on options. There are four basic types of compound options:
a call on a call, a call on a put, a put on a call, and a put on a put. Formulas for compound
options can be found in [470].
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If stock is considered a call on the total value of the firm as in Subsection 11.1.1, a
stock option becomes a compound option. Renewable term life insurance offers another
example: Paying a premium confers the right to renew the contract for the next term. Thus
the decision to pay a premium is an option on an option [646]. A split-fee option provides
a window on the market at the end of which the buyer can decide whether to extend it
up to the notification date or to let it expire worthless [54, 346]. If the split-free option is
extended up to the notification date; the second option can either expire or be exercised.
The name comes from the fact that the user has to pay two fees to exercise the underlying
asset [746].

Compound options are appropriate for situations in which a bid, denominated in foreign
currency, is submitted for the sale of equipment. There are two levels of uncertainty at work
here: the winning of the bid and the currency risk (even if the bid is won, a depreciated foreign
currency may make the deal unattractive). What is needed is an arrangement whereby the
company can secure a foreign currency option against foreign currency depreciation if the
bid is won. This is an example of contingent foreign exchange option. A compound put
option that grants the holder the right to purchase a put option in the future at prices that
are agreed on today solves the problem. Forex options are not ideal because they turn the
bidder into a speculator if the bid is lost.

➤ Exercise 11.6.1 Recall our firm XYZ.com in Subsection 11.1.1. It had only two
kinds of securities outstanding, shares of its own common stock and bonds. Argue
that the stock becomes a compound option if the bonds pay interests beforematurity.

➤ Exercise 11.6.2 Why is a contingent forex put cheaper than a standard put?

➤ Exercise 11.6.3 A chooser option (or an as-you-like-it option) gives its holder the
right to buy for X1 at time τ1 either a call or a put with strike price X2 at time τ2.
Describe the binomial tree algorithm for this option.

➢ Programming Assignment 11.6.4 Implement binomial tree algorithms for the four
compound options.

11.7 Path-Dependent Derivatives

Let S0, S1, . . . , Sn denote the prices of the underlying asset over the life of the option. S0
is the known price at time zero and Sn is the price at expiration. The standard European
call has a terminal value that depends on only the last price, max(Sn− X, 0). Its value thus
depends on only the underlying asset’s terminal price regardless of how it gets there; it is
path independent. In contrast, some derivatives are path dependent in that their terminal
payoffs depend critically on the paths. The (arithmetic) average-rate call has a terminal
value given by

max

(
1
n+ 1

n∑
i=0
Si − X, 0

)
,

and the average-rate put’s terminal value is given by

max

(
X− 1

n+ 1

n∑
i=0
Si , 0

)
.
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Figure 11.11: Binomial tree for average-rate call. The pricing tree on the right grows
exponentially. Here a period spans one year.

Both are path dependent. At initiation, average-rate options cannot be more expensive
than standard European options under the Black–Scholes option pricing model [379, 548].
Average-rate options also satisfy certain put–call parity identities [105, 598]. Average-rate
options, also called Asian options, are useful hedging tools for firms that will make a
stream of purchases over a time period because the costs are likely to be linked to the
average price. They are mostly European for the same reason.

Average-rate options are notoriously hard to price. Take the terminal price S0u2d.
Different paths to it such as (S0, S0u, S0u2, S0u2d) and (S0, S0d, S0du, S0du2) may lead
to different averages and hence payoffs: max((S0+ S0u+ S0u2+ S0u2d)/4− X, 0) and
max((S0+ S0d+ S0du+ S0du2)/4− X, 0), respectively (see Fig. 11.11). The binomial
tree for the averages therefore does not combine. A straightforward algorithm is to enumerate
the 2n price paths for an n-period binomial tree and then average the payoffs. However,
the exponential complexity makes this naive algorithm impractical. As a result, the Monte
Carlo method and approximation algorithms are the few alternatives left.

Not all path-dependent derivatives are hard to price, however. Barrier options, for ex-
ample, are easy to price. When averaging is done geometrically, the option payoffs are

max
(
(S0S1 · · · Sn)1/(n+1)− X, 0

)
, max

(
X− (S0S1 · · · Sn)1/(n+1), 0

)
.

For European geometric average-rate options, the limiting analytical solutions are the Black–
Scholes formulas with the volatility set to σa ≡ σ/

√
3 and the dividend yield set to qa ≡

(r +q+ σ 2/6)/2, that is,

C = Se−qaτN(x)− Xe−rτN(x− σa√τ ), (11.8)

P = Xe−rτN(−x+ σa√τ )− Se−qaτN(−x), (11.8′)

where

x ≡ ln(S/X)+ (r −qa+ σ 2
a

/
2
)
τ

σa
√
τ

.

In practice, average-rate options almost exclusively utilize arithmetic averages [894].
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Another class of options, (floating-strike) lookback options, let the stock prices de-
termine the strike price [225, 388, 833]. A lookback call option on the minimum has a
terminal payoff of Sn−min0≤i≤n Si , and a lookback put option on the maximum has a
terminal payoff of max0≤i≤n Si − Sn. The related fixed-strike lookback option provides
a payoff of max(max0≤i≤n Si − X, 0) for the call and max(X−min0≤i≤n Si , 0) for the
put. A perpetual American lookback option is called a Russian option [575]. One can
also define lookback call and put options on the average. Such options are also called
average-strike options [470].

An approximation algorithm for pricing arithmetic average-rate options, which is due
to Hull and White [478], is described below. This algorithm is based on the binomial tree.
Consider a node at time j with the underlying asset price equal to S0uj−i di . Name such a
node N( j, i). The running sum

∑ j
m=0 Sm at this node has a maximum value of

S0(1+
j︷ ︸︸ ︷

u+u2+ · · ·+uj−i +uj−i d+ · · ·+uj−i di )= S0 1−uj−i+1
1−u + S0uj−i d 1−di

1−d .

Divide this value by j + 1 and call it Amax( j, i). Similarly, the running sum has a minimum
value of

S0(1+
j︷ ︸︸ ︷

d+d2+ · · ·+di +diu+ · · ·+diu j−i )= S0 1−di+1
1−d + S0d

iu
1−uj−i
1−u .

Divide this value by j + 1 and call it Amin( j, i). Both Amin and Amax are running averages
(see Fig. 11.12).

Although the possible running averages at N( j, i) are far too many
( ( j
i

)
of them

)
, all

lie between Amin( j, i) and Amax( j, i). Pick k+ 1 equally spaced values in this range and
treat them as the true and only running averages, which are

Am( j, i)≡
(
k−m
k

)
Amin( j, i)+

(m
k

)
Amax( j, i), m= 0, 1, . . . ,k.

Such “bucketing” introduces errors, but it works well in practice [366]. An alternative is to
pick values whose logarithms are equally spaced [478, 555].

Figure 11.12: Paths with maximum and minimum running av-
erages. Plotted are the paths with the maximum and minimum
running averages from the root to node N .
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During backward induction, we calculate the option values at each node for the k+ 1
running averages as follows. Suppose that the current node is N( j, i) and the running
average is a. Assume that the next node is N( j + 1, i), the result of an up move. Because
the asset price there is S0uj+1−i di , we seek the option value corresponding to the running
average:

Au ≡ ( j + 1) a+ S0uj+1−i di
j + 2

.

To be sure, Au is not likely to be one of the k+ 1 running averages at N( j + 1, i). Hence
we find the running averages that bracket it, that is,

A�( j + 1, i)≤ Au ≤ A�+1( j + 1, i).

Express Au as a linearly interpolated value of the two running averages:

Au = xA�( j + 1, i)+ (1− x) A�+1( j + 1, i), 0≤ x ≤ 1.

(An alternative is the quadratic interpolation [276, 555]; see Exercise 11.7.7.) Now, obtain
the approximate option value given the running average Au by means of

Cu ≡ xC�( j + 1, i)+ (1− x)C�+1( j + 1, i),

where C�(t, s) denotes the option value at node N(t, s) with running average Al(t, s).
This interpolation introduces the second source of error. The same steps are repeated for
the down node N( j + 1, i + 1) to obtain another approximate option value Cd. We finally
obtain the option value as [ pCu+ (1− p)Cd ] e−r�t . See Fig. 11.13 for the idea and
Fig. 11.14 for the O(kn2)-time algorithm.

➤ Exercise 11.7.1 Achieve “selling at the high and buying at the low” with lookback
options.

➤ Exercise 11.7.2 Verify that the number of geometric averages at time n is n(n+
1)/2.

➤ Exercise 11.7.3 Explain why average-rate options are harder to manipulate. (They
were first written on stocks traded on Asian exchanges, hence the name “Asian
options,” presumably because of their lighter trading volumes.)

Figure 11.13: Backward induction for arithmetic average-
rate options. The k + 1 possible option values at N ( j ,
i ) are stored in an array indexed by 0, 1, . . . , k , each
corresponding to a specific arithmetic average. Each of the
k + 1 option values depends on two option values at node
N ( j + 1, i ) and two option values at node N ( j + 1,
i + 1).
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Algorithm for pricing American arithmetic average-rate calls on a non-dividend-paying stock:

input: S,u,d, X,n, r̂ (u> êr > d, r̂ > 0),k;
real p, a, Au, x, Ad,Cu,Cd,C[n+ 1 ][k+ 1 ],D[k+ 1 ]; // C[ · ][m ] storesm th average.
integer i, j,m, �;
p := (êr −d)/(u−d);
for (i = 0 to n) // Terminal price is Sun−i di .

for (m= 0 to k)
C[ i ][m ] :=max(0, Am(n, i)− X);

for ( j = n− 1 down to 0) // Backward induction.
for (i = 0 to j) {//Price is Suj−i di .

for (m= 0 to k) {
a := Am( j, i); // “Average.”
Au := (( j + 1) a+ Suj+1−i di )/( j + 2);
Let �be such that A�( j + 1, i)≤ Au ≤ A�+1( j + 1, i);
Let x be such that Au = xA�( j + 1, i)+ (1− x) A�+1( j + 1, i);
Cu := xC[ i ][ � ]+ (1− x)C[ i ][ �+ 1 ]; // Linear interpolation.
Ad := (( j + 1) a+ Suj−i di+1)/( j + 2);
Let �be such that A�( j + 1, i + 1)≤ Ad ≤ A�+1( j + 1, i + 1);
Let x be such that Ad = xA�( j + 1, i + 1)+ (1− x) A�+1( j + 1, i + 1);
Cd := xC[ i + 1 ][ � ]+ (1− x)C[ i + 1 ][ �+ 1 ]; // Linear interpolation.
D[m ] :=max(a− X, (pCu+ (1− p)Cd) e−̂r );

}
CopyD[ 0..k ] toC[ i ][ 0..k ];

}
return C[ 0 ][ 0 ];

Figure 11.14: Approximation algorithm for American arithmetic average-rate calls on a non-dividend-paying
stock. The ideas in Exercise 11.7.5 can reduce computation time. For a fixed k , this algorithm may not converge as
n increases [249, 251]; in fact, k may have to scale with n [555]. Note that C [ 0 ][ 0 ], C [ 0 ][ 1 ], . . . , C [ 0 ][ k ]
are identical in value absent the rounding errors.

➤ Exercise 11.7.4 Arithmetic average-rate options were assumed to be newly issued,
and there was no historical average to deal with. Argue that no generality was lost
in doing so.

➤ Exercise 11.7.5 Let r̂ �= 0 denote the continuously compounded riskless rate per
period. (1) The future value of the average-rate call,

E

[
max

(
1
n+ 1

n∑
i=0
Si − X, 0

)]
,

is probably hard to evaluate. But show that

E

[
1
n+ 1

n∑
i=0
Si

]
= S0
n+ 1

1− êr(n+1)
1− êr .

(2) If a path S0, S1, . . . , Sk has a running sum
∑k−1
i=0 Si equal to (n+ 1) X+ a, a ≥

0, show that the expected terminal value of the average-rate call given this initial
path is

a
n+ 1

+ Sk
n+ 1

1− êr(n−k+1)
1− êr .
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(So the tree growing out of node Sk can be pruned when pricing calls, leading to
better efficiency.)

➤ Exercise 11.7.6 Assume that ud = 1. Prove that the difference between the max-
imum running sum and the minimum running sum at a node with an asset price of
S0uidn−i is an increasing function of i for i < n/2 and a decreasing function of i
for i > n/2.

➤ Exercise 11.7.7 Derive the quadratic polynomial y= a+bx+ cx2 that passes
through three points (x0, y0), (x1, y1), and (x2, y2).

➤ Exercise 11.7.8 Two sources of error were mentioned for the approximation algo-
rithm. Argue that they disappear if all the asset prices on the tree are integers.

➤ Exercise 11.7.9 Suppose that there is an algorithm that generates an upper bound
on the true option value and an algorithm that generates a lower bound on the
true option value. How do we design an approximate option pricing scheme with
information on the pricing error?

➢ Programming Assignment 11.7.10 Implement O(n4)-time binomial tree algorithms
for European and American geometric average-rate options.

➢ Programming Assignment 11.7.11 Implement the algorithm in Fig. 11.14.

➢ Programming Assignment 11.7.12 (1) Implement binomial tree algorithms for
European and American lookback options. The time complexity should be, at most,
cubic. (2) Improve the running time to quadratic time for newly issued floating-strike
lookback options, which of course have no price history.

Additional Reading

Consult [565] for alternative models for warrants and [370] for an analytical approach to
pricing American barrier options. See [346, Chap. 7] and [514, Chap. 11] for additional
forex options and [886] for the term structure of exchange rate volatility. An O(kn2)-time
approximation algorithm with ideas similar to those in Fig. 11.14 can be found in [215,
470, 478]. More path-dependent derivatives are discussed in [377, 449, 470, 485, 746, 812].
There is a vast literature on average-rate option pricing [25, 105, 168, 169, 170, 241, 366,
379, 478, 530, 548, 555, 700, 755] as well as analytical approximations for such options
[423, 596, 597, 664, 748, 851]. The O(kn2)-time approximation algorithm for average-rate
options in [10] is similar to, but slightly simpler than, the algorithm in Fig. 11.14. More
important is its guarantee not to deviate from the naive O(2n)-time binomial tree algorithm
by more than O(Xn/k) in the case of European average-rate options. The number k here
is a parameter that can be varied for trade-off between running time and accuracy. The error
bound can be further reduced to O(X

√
n/k) [250]. An efficient convergent approximation

algorithm that is due to Dai and Lyuu is based on the insight of Exercise 11.7.8 [251].
See [459] for a general treatment of approximation algorithms. The option pricing theory
has applications in capital investment decisions [279, 672].

NOTES

1. As of February 2001, the 30 stocks wereAllied Signal, Alcoa, American Express, AT&T, Boeing,
Caterpillar, Citigroup, Coca-Cola, DuPont, Eastman Kodak, Exxon, General Electric, General
Motors, Hewlett-Packard, Home Depot, Intel, IBM, International Paper, J.P. Morgan Chase,
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Johnson & Johnson, McDonald’s, Merck, Microsoft, MinnesotaMining &Manufacturing, Philip
Morris, Procter & Gamble, SBC Communications, United Technologies, Wal-Mart Stores, and
Walt Disney.

2. Strictly speaking, it is inconsistent to assume that both the stock index and its individual stock
prices satisfy the Black–Scholes option pricing model because the sum of lognormal random
variables is not lognormally distributed.



CHAPTER
TWELVE

Forwards, Futures, Futures
Options, Swaps

It does not matter if I speak; the future has already been determined.

Sophocles (496 B.C.–406 B.C.),Oedipus Tyrannus

This chapter continues the coverage of derivatives, financial contracts whose value
depends on the value of someunderlying assets or indices.Derivatives are essential to
riskmanagement, speculation, efficient portfolio adjustment, and arbitrage. Interest-
rate-sensitive derivative securities require a separate chapter, Chap. 21.

12.1 Introduction

Many financial institutions take large positions in derivatives. For example, Chase
ManhattanheldU.S.$7.6 trillion (notional amount) inderivatives asof early 1998 [57].
Trading derivatives can be risky, however. The loss of U.S.$1.6 billion in the case of
OrangeCounty, California, led to its bankruptcy inDecember 1994 and the securities
firms involved paying U.S.$739 million in subsequent settlements [527]; the value of
an interest rate swap held by Sears in 1997 was a minus U.S.$382 million based on a
notional principal of U.S.$996 million [884]; J.P. Morgan in 1997 hadU.S.$659 million
in nonperforming assets, 90% of which were defaults from Asian counterparties;1

Union Bank of Switzerland (UBS) wrote off U.S.$699 million because of investment
in the hedge fund, Long-Term Capital Management (LTCM).

Four types of derivatives stand out: futures contracts, forward contracts, options,
and swaps. Futures contracts and forward contracts are contracts for future delivery
of the underlying asset. The underlying asset can be a physical commodity (corn, oil,
live cattle, pork bellies, precious metals, and so on) or financial instrument (bonds,
currencies, stock indices, mortgage securities, other derivatives, and so on) [95, 470].
Futures contracts are essentially standardized forward contracts that trade on futures
exchanges such as the Chicago Board of Trade (CBT) and the CME.2 Futures and
forward contracts can be used for speculation, hedging, or arbitrage between the
spot and the deferred-delivery markets.

Futures and forward contracts are obligations on both the buyer and the seller.
Options, we recall, are binding on only the seller. The buyer has the right, but not the
obligation, to take a position in the underlying asset. Such a right naturally commands
a premium. Options can be used to hedge downside risk, speculation, or arbitrage
markets.

155
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A swap is a contractbetween twoparties toexchangecashflows in the futurebased
on a formula. Typically, one party pays a fixed price to the other party in exchange
for a market-determined floating price. Swaps can be used to reduce financing costs
or to hedge. In reality, interest rate swaps and forex forward contracts make up
banks’ major derivatives holdings [60]. Like the forward contracts, swaps are traded
by financial institutions and their corporate clients outside of organized exchanges.

The relevant riskless interest rate for many arbitragers operating in the futures
market is the repo rate. A repo (sale and repurchase agreement or RP) is an agree-
ment in which the owner of securities (“seller”) agrees to sell them to a counterparty
(“buyer”) and buy them back at a slightly higher price later. The counterparty hence
provides a loan. However, this loan has little risk as the lender keeps the securities if
the seller fails to buy them back. (The lender essentially runs a pawnshop.) From the
lender’s perspective, this agreement is called a reverse repo. Overnight repo rates
are lower than the federal funds rate. A loan of more than 1 day is called a term repo.
The dollar interest is determined by

dollar principal× repo rate× repo term
360

.

The Bank of England was the first central bank to introduce repos in 1830. The
Federal Reserve uses the the repo market to influence short-term interest rates.
When the Federal Reserve is doing repo, it is actually lending money, not borrowing
it [827].

Throughout this chapter, r denotes the riskless interest rate. Other notations
include, unless statedotherwise, the current time t , thematurity date of thederivative
T, the remaining time to maturity τ ≡ T− t (all measured in years), the spot price
S, the spot price at maturity ST , the delivery price X, the forward or futures price F
for a newly written contract, and the value of the contract f . A price with a subscript
t usually refers to the price at time t . Continuous compounding will be assumed
throughout this chapter.

12.2 Forward Contracts

Forward contracts are for delivery of the underlying asset for a certain delivery price
on a specific time in the future. They are ideal for hedging purposes. Consider a corn
farmer who enters into a forward contract with a food processor to deliver 100,000
bushels of corn for $2.5 per bushel on September 27, 1995. Assume that the cost
of growing corn is $2.0 per bushel. Such a contract benefits both sides: the farmer,
because he is assured of a buyer at an acceptable price, and the processor, because
knowing the cost of corn in advance helps reduce uncertainty in planning. If the spot
price of corn rises on the delivery date, the farmer will miss the opportunity of extra
profits.On theother hand, if the price declines, the processorwill be payingmore than
it would. A forward agreement hence limits both the risk and the potential rewards.

Problemsmay arise if one of the participants fails to perform. The food processor
may go bankrupt, the farmer can go bust, the farmer might not be able to harvest
100,000 bushels of corn because of bad weather, or the cost of growing corn may
skyrocket. More importantly, whichever way the corn price moves, either the food
processor or the farmer has an incentive to default. Even corporate giants default on
their forward contracts [767].



12.2 Forward Contracts 157

EXCHANGE RATES
Monday, March 20, 1995

Currency
U.S.$ equiv. per U.S.$

Country Mon. Fri. Mon. Fri.

Germany (Mark) .7126 .7215 1.4033 1.3860
30-Day Forward .7133 .7226 1.4019 1.3839
90-Day Forward .7147 .7242 1.3991 1.3808
180-Day Forward .7171 .7265 1.3945 1.3765

Figure 12.1: German mark exchange rate quotations. The forward German marks are at a premium to the
spot mark: The forward exchange rates in terms of $/DEM exceed the spot exchange rate, perhaps because of
lower inflation in Germany. Source: Wall Street Journal, March 21, 1995.

12.2.1 Forward Exchange Rate

Along with forex options, forward contracts provide an avenue to hedging currency
risk. Figure 12.1 shows the spot exchange rate and forward exchange rates for the
German mark. Consider a U.S. company that is expecting to receive DEM10 million
in 3 months’ time. By using a forward sale at the 3-month forward exchange rate of
$.7147/DEM1, the firm will receive exactly U.S.$7,147,000 in 3 months’ time. Com-
paredwith hedging by use of forex options, the forward hedge insulates the firm from
any movements in exchange rates whether they are favorable or not.

➤ Exercise 12.2.1 Selling forwardDEM10million as in the text denies the hedger the
profits if the German mark appreciates. Consider the “60:40” strategy, whereby only
60% of the German marks are sold forward with the remaining unhedged. Derive
the payoff function in terms of the $/DEM exchange rate 3 months from now.

Spot and Forward Exchange Rates
Let S denote the spot exchange rate and F the forward exchange rate 1 year from
now (both in domestic/foreign terms). Use rf and rl to denote the annual interest
rates of the foreign currency and the local currency, respectively. First formulated by
Keynes3 in 1923 [303], arbitrage opportunities will arise unless these four numbers
satisfy a definite relation known as the interest rate parity:

F
S
= e

r�

erf
= er�−rf . (12.1)

Here is the argument. A holder of the local currency can either (1) lend the money
in the domestic market to receive er� one year from now or (2) convert the local
currency in the spot market for the foreign currency, lend for 1 year in the foreign
market, and convert the foreign currency into the local currency at the fixed forward
exchange rate in the future, F , by selling forward the foreign currency now. As usual,
nomoney changeshand in entering into a forward contract.Oneunit of local currency
will hence become Ferf/S 1 year from now in this case. If Ferf/S> er� , an arbitrage
profit can result from borrowing money in the domestic market and lending it in
the foreign market. Conversely, if Ferf/S< er� , an arbitrage profit can result from
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borrowing money in the foreign market and lending it in the domestic market. We
conclude that Ferf/S= er� . It is straightforward to check that

F
S
= 1+ r�

1+ rf (12.2)

under periodic compounding.
The interest rate parity says that if the domestic interest rate is higher than the

foreign rate, the foreign country’s currencywill be selling at a premium in the forward
market. Conversely, if the domestic interest rate is lower, the foreign currency will
be selling at a discount in the forward market.

➤ Exercise 12.2.2 (1) What does the table in Fig. 12.1 say about the relative interest
rates between the United States and Germany? (2) Estimate German interest rates
from Fig. 12.1 and Eq. (12.2) if the annualized U.S. rates for 30-day, 90-day, and
180-day T-bills are 5.66%, 5.9%, and 6.15%, respectively.

➤ Exercise 12.2.3 Show that Eq. (11.6) can be simplified to

C = Fe−rτN(x)− Xe−rτN(x− σ√τ ),
P = Xe−rτN(−x+ σ√τ )− Fe−rτN(−x)

without the explicit appearance of the exchange rate, where

x ≡ ln(F/X)+ (σ 2/2) τ
σ
√
τ

.

Note that S, F , and X above are in domestic/foreign terms.

12.2.2 Forward Price

The payoff from holding a forward contract at maturity is ST − X (see Fig. 12.2).
Contrast this with the European call’s max(ST − X, 0). Forward contracts do not
involve any initial cash flow. The forward price is the delivery price that makes
the forward contract zero valued; in other words, f = 0 when F = X. The delivery
price cannot change because it is written in the contract, but the forward price may
change after the contract comes into existence. In other words, the value of a forward
contract, f , is zero at the outset, and it will fluctuate with the spot price thereafter.
Apparently this value is enhanced when the spot price climbs and depressed when
the spot price declines. The forward price also varieswith thematurity of the contract,
which can be verified by the data in Fig. 12.1.

For example, a repo is a forward contract on a Treasury security. It has a zero
value initially because the Treasury security is exchanged for its fair value in cash
and the repurchase price is set to the forward price [510].

The Underlying Asset Pays No Income

LEMMA 12.2.1 For a forward contract on an underlying asset providing no income,

F = Serτ. (12.3)

Proof: If F > Serτ , an investor can borrow S dollars for τ years, buy the underlying
asset, and short the forward contract with delivery price F . At maturity, the asset
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Figure 12.2: Payoff of forward contract. Shown is the payoff of a long forward
contract with a delivery price of $45 at maturity.

is sold for F and Serτ is used to repay the loan, leaving an arbitrage profit of
F − Serτ > 0.

If F < Serτ instead, an investor can short theunderlyingasset, invest theproceeds
for τ years, and take a long position in the forward contract with delivery price F .
At maturity, the asset is bought for F to close out the short position, leaving a profit
of Serτ − F .

EXAMPLE 12.2.1 A new 3-month forward contract on a 6-month zero-coupon bond
should command a delivery price of Ser/4, where r is the annualized 3-month riskless
interest rate and S is the spot price of the bond. For instance, if r = 6% and S=
970.87, then the delivery price is 970.87× e0.06/4 = 985.54.

The forward price, as previously mentioned, may not maintain equality to the
delivery price as time passes. In fact, the value of a forward contract providing no
income at any time before maturity should be

f = S− Xe−rτ .

We can verify this by considering a portfolio of one long forward contract, cash
amount Xe−rτ , and one short position in the underlying asset. The cash will grow to
X at maturity, which can be used to take delivery of the forward contract. The deliv-
ered asset will then close out the short position. Because the value of the portfolio is
zero at maturity, its PV must be zero. Lemma 12.2.1 can be proved alternatively by
the preceding identity because X must equal Serτ in order for f = 0.

➤ Exercise 12.2.4 (1) Prove that a newly written forward contract is equivalent to
a portfolio of one long European call and one short European put on the same
underlying asset and expiration date with a common strike price equal to the for-
ward price. (An option is said to be at the money forward if X= F .) (2) Prove the
alternative put–call parity that says C = P for the call and put in (1). (3) Derive
Lemma 12.2.1 from the put–call parity. (4) Verify that, by substituting the for-
ward price in Eq. (12.3) for the strike price X in the Black–Scholes formula of
Theorem 9.3.4, we obtain C = P.
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The Underlying Asset Pays Predictable Income

LEMMA 12.2.3 For a forward contract on an underlying asset providing a predictable
income with a present value of I,

F = (S− I) erτ . (12.4)

Proof: If F > (S− I) erτ , an investor can borrow S dollars for τ years, buy the
underlying asset, and short the forward contract with delivery price F . At maturity,
the asset is sold for F , and (S− I) erτ is used to repay the loan, leaving an arbitrage
profit of F − (S− I) erτ > 0. If F < (S− I) erτ , an investor can short the underlying
asset, invest the proceeds for τ years, and take a long position in the forward contract
with delivery price F . At maturity, the asset is bought for F to close out the short
position, and a profit of (S− I) erτ − F > 0 is realized.

EXAMPLE 12.2.4 The above results can be extended to nonflat yield curves.A 10-month
forward contract on a $50 stock that pays a dividend of $1 every 3 months has(

50− e−r3/4− e−r6/2− e−3×r9/4) er10×(10/12)
as the forward price, where ri is the annualized i-month interest rate.

The value of a forward contract providing a predictable income with a PV of I is

f = (S− I)− Xe−rτ .
We can confirm this by considering a portfolio of one long forward contract, cash
amount Xe−rτ + I, and one short position in the underlying asset. The cash will grow
to X at maturity after paying the dividends to the original stockholder. There is a
sufficient fund to take delivery of the forward contract, which then offsets the short
position. Because the value of the portfolio is zero at maturity, its value must be zero
at present, or f − (S− I)+ Xe−rτ = 0.

The Underlying Asset Pays a Continuous Dividend Yield
A continuous dividend yield means that dividends are paid out continuously at an
annual rate of q. The value of a forward contract at any time before maturity must
equal

f = Se−qτ − Xe−rτ . (12.5)

We can verify this by considering a portfolio of one long forward contract, cash
amount Xe−rτ , and a short position in e−qτ units of the underlying asset. All div-
idends are paid for by shorting additional units of the underlying asset. Hence the
cash will grow to X at maturity, and the short position will grow to exactly one unit
of the underlying asset. There is a sufficient fund to take delivery of the forward
contract, which then offsets the short position. Because the value of the portfolio
is zero at maturity, its PV must be zero. One consequence of Eq. (12.5) is that the
forward price is

F = Se(r−q) τ . (12.6)
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➤ Exercise 12.2.5 All the above cases satisfy the following relation:

f = (F − X) e−rτ . (12.7)

Prove the preceding identity by an arbitrage argument.

12.3 Futures Contracts

Futures contracts are different from forward contracts in several ways. First, they
are traded on a central exchange rather than on over-the-counter markets, leading
to a more efficient and accurate price determination. Second, the establishment of a
clearinghousemeans that sellers and buyers do not face each other. As in the options
market, the clearinghouse acts as a seller to all buyers and a buyer to all sellers. Credit
risk inherent in forward contracts is hence minimized. Third, futures contracts are
standardized instruments. They specify the delivery of a specific quantity of a specific
commodity that meets quality standards at predetermined places and dates. This is
in sharp contrast with forward contracts for which the only requirement is mutual
agreement. Finally, gains and losses of futures contracts aremarked to market daily.
Hence the account is adjusted at the end of each trading day based on the settlement
price to reflect the investor’s gain or loss. The settlement price is the average of the
prices at which the contract is traded immediately before the bell signaling the end
of trading for the day.

EXAMPLE 12.3.1 The CBT July wheat contract specifies, among other things, that the
wheat delivered be 5,000 bushels of no. 2 soft red wheat, no. 2 hard red winter wheat,
no. 2 dark northern spring wheat, or no. 1 northern spring wheat on a date in the
month of July chosen by the seller [95, 799].

The contract size, or simply the size, of a futures contract is the amount of the
underlying asset to be delivered under the contract. For instance, it is 5,000 bushels
for the corn futures contracts on theCBTand 1millionU.S. dollars for theEurodollar
futures contracts on the CME. A position can be closed out or offset by entering into
a reversing trade to the original one.An investorwho is long oneNovember soybeans
futures contract can close out the position by shorting one November contract, for
example. A clearinghouse simply cancels offsetting positions from its book. Most
futures contracts are closed out in this way rather than have the underlying asset
delivered. In contrast, forward contracts are meant for delivery.

EXAMPLE 12.3.2 A farmer sold short corn futures, and the cost of growing corn rises
now. He can offset his short futures position to reduce the losses. Consider another
farmer who faces the problem that the crop is going to be different from the 100,000-
bushel projection. Because corn futures trade in 5,000-bushel pieces, 20 contracts
were sold to cover the anticipated 100,000-bushel crop. If the crop now appears to
be only 80,000 bushels, the farmer can offset four of those contracts. Such flexibility
is not available to forward contracts.

Because price changes in the futures contract are settled daily, the difference
between them has been paid for in installments throughout the life of the contract.
Hence the spot price rather than the initial futures price is paid on the delivery date.
Marking to market nullifies any financial incentive for not making delivery. Suppose
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that a farmer enters into a forward contract to sell a food processor 100,000 bushels of
corn at $2.00 per bushel in November. If the price of corn rises to $2.5 by November,
the farmer has incentive to sell his harvest in the spot market at $2.5 rather than to
the processor at $2.00. With marking to market, however, the farmer has transferred
$0.5 per bushel from his futures account to that of the food processor by November.
When the farmermakes delivery, he is paid the spot price, $2.5 per bushel. The farmer
thus has little incentive to default. Note that the net price remains $2.00 per bushel,
the original delivery price.

The prospect of delivery ties the futures price to the spot price (or cash price),
which makes hedging possible. On the delivery date, the settlement price of the
futures contract is determined by the spot price. Before the delivery date, however,
the futures price could be above or below the spot price.
Financial futures are futures contracts based on a financial instrument or index.

Since the first financial futures were launched in 1972, the trading of financial fu-
tures has surpassed that of agricultural futures. The most popular equity financial
futures today, the S&P 500 Index futures, were created in 1982 [865]. Like options
on stock index, some financial futures are settled in cash rather than by delivery of
the underlying asset. The S&P 500 Index futures contract, for instance, is settled in
cash rather than by delivering 500 stocks. Each S&P 500 contract is on $500 times
the index (see Fig. 12.3). As another example, one futures contract on the Nikkei
225 Stock Average is on US$5 times the index. This amounts to fixing the dollar–yen
exchange rate. The index is price weighted and on a portfolio of 225 of the largest
stocks traded on the Tokyo Stock Exchange.

The difference between the spot price and the futures price, S− F , is called the
basis. For example, if the soybeans cost $7.80 a bushel, and the November soy-
bean futures contract is $7.90 on the same day, the basis would be 10 cents under
(−10 cents) the November contract. As another example, if the cash market price
of a T-bond is 88-16 and the June adjusted futures price is 90-22, then the basis
is 2-06 under the June contract. Note that T-bond futures are quoted in 32nds, and
prices like 8816/32 are written as 88-16. Basis can be positive or negative, but it should
converge eventually to zero. If the basis moves toward zero, it is said to be narrowing,
whereas it is said to be widening if it moves away from zero. Although basis cannot
be predicted precisely, it is generally less volatile than either the futures price or the
spot price.

EXAMPLE 12.3.3 Suppose that the spot price of wheat is $4.225 per bushel and the July
futures price of wheat is $3.59 per bushel with a contract size of 5,000 bushels. The
basis is 4.225− 3.59= 0.635 per bushel. Imagine that the basis widens by $.1 to $.735
caused by, say, the futures price’s falling to $3.54 and the spot price’s rising to $4.275.
A person with a short position in one futures contract and a long position in 5,000
bushels of wheat will make 5000× 0.1= 500 dollars in profit. If the basis narrows
by $.1 to $0.535, the same investor will have a loss of an equal amount.

EXAMPLE 12.3.4 A firm to be paid £1 million in 60 days is worried that the pound will
weaken. Suppose that a pound futures contract on the International Monetary Market (IMM)
of the CME has a settlement date in 71 days. Because each contract controls 62,500 pounds,
1,000,000/62,500= 16 contracts are sold.
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Monday, March 20, 1995
FUTURES PRICES

Lifetime Open
Open High Low Settle Change High Low Interest

GRAINS AND OILSEEDS
CORN (CBT) 5,000 bu.; cents per bu.
Mar 2401/4 241 2391/2 2393/4 −1 2821/2 2201/2 2,432
May 2463/4 248 2461/4 2461/2 −3/4 285 228 113,058

· · ·
INTEREST RATE

TREASURY BONDS (CBT)—$100,000; pts. 32nds of 100%
Mar 104-31 105-05 104-18 104-20 −11 116-20 95-13 28,210
June 104-12 104-19 104-00 104-02 −11 113-15 94-27 328,566

· · ·
LIBOR-1MO. (CME)—$3,000,000; points of 100%
Apr 93.84 93.84 93.82 93.83 . . . 6.17 . . . 27,961

· · ·
EURODOLLAR (CME)—$1 million; pts of 100%
June 93.52 93.54 93.51 93.52 . . . 6.48 . . . 515,578
Sept 93.31 93.32 93.28 93.30 . . . 6.70 . . . 322,889

· · ·
CURRENCY

JAPAN YEN (CME)—12.5 million yen; $ per yen (.00)
June 1.1363 1.1390 1.1240 1.1301 −.0030 1.1390 .9915 56,525
Sept 1.1490 1.1491 1.1385 1.1430 −.0029 1.1491 1.0175 2,282

· · ·
DEUTSCHEMARK (CME)—125,000 marks; $ per mark
June .7249 .7255 .7124 .7147 −.0087 .7448 .5980 56,053
Sept .7182 .7215 .7153 .7171 −.0087 .7415 .6290 1,776

· · ·
BRITISH POUND (CME)—62,500 pds; $ per pound
June 1.5910 1.5936 1.5680 1.5734 −.0102 1.6530 1.5330 21,050
Sept 1.5770 1.5830 1.5680 1.5704 −.0102 1.6480 1.5410 149

· · ·
INDEX

S&P 500 INDEX (CME)—$500 times index
June 499.75 500.75 498.90 500.15 +.40 501.00 449.50 186,725

· · ·

Figure 12.3: Futures quotations. Source: Wall Street Journal, March 21, 1995.

12.3.1 Daily Cash Flows

Consider a futures contract with n days to maturity. Let Fi denote the futures price
at the end of day i for 0≤ i ≤ n. The contract’s cash flow on day i is Fi − Fi−1
because of daily settlement. Hence, the net cash flow over the life of the contract is

(F1− F0)+ (F2− F1)+ · · ·+ (Fn− Fn−1)= Fn− F0 = ST − F0. (12.8)

Recall that Fn equals the spot price at maturity, ST . Although a futures contract has
the same accumulated payoff ST − F0 as a forward contract, the actual payoff may
differ because of the reinvestment of daily cash flows and how ST − F0 is distributed
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over the n-day period. In contrast, no cash flows occur until settlement for forward
contracts.

➤ Exercise 12.3.1 Suppose that the interest rate is such that $1 grows to $R over a
1-day period and that this rate applies to both borrowing and lending. Derive the
payoff for a futures contract if the cash flow is reinvested through lending when it is
positive and financed through borrowing when it is negative.

12.3.2 Forward and Futures Prices

Somewhat surprisingly, Cox et al. proved that the futures price equals the forward
price if interest rates are nonstochastic [233]. This result often justifies treating a
futures contract as if it were a forward contract, ignoring its marking-to-market
feature.

Consider forward and futures contracts on the same underlying asset with n days
to maturity. Suppose that the interest rate for day i is ri and that $1 at the beginning
of day i grows to Ri ≡ eri by day’s end. Let Fi be the futures price at the end of
day i . Note that $1 invested in the n-day discount bond at the end of day zero will
be worth R≡∏nj=1 Rj by the end of day n.

Starting from day one, we maintain
∏i
j=1 Rj long futures positions at the end of

day i − 1 and invest the cashflowat theendofday i in riskless bondsmaturingonday
n, the delivery date. The cash flow from the position on day i is (Fi − Fi−1)

∏i
j=1 Rj

because day i starts with
∏i
j=1Rj contracts. This amount will be compounded until

the end of day n to become

(Fi − Fi−1)
i∏
j=1
Rj

n∏
j=i+1

Rj = (Fi − Fi−1)
n∏
j=1
Rj = (Fi − Fi−1) R.

The value at the end of day n is therefore
n∑
i=1

(Fi − Fi−1) R= (Fn− F0) R= (ST − F0) R.

Observe that no investment is required for the strategy.
Suppose that the forward price f0 exceeds the futures price F0. We can short R

forward contracts, borrow f0− F0, and carry out the above strategy. The initial cash
flow is f0− F0 > 0. At the end of day n, the debt grows to ( f0− F0) R, and the net
value is

f0R− STR− ( f0− F0) R+ (ST − F0) R= 0.

Therefore f0− F0 > 0 is a pure arbitrage profit. The case of f0 < F0 is symmetrical.
This completes the proof.

With stochastic interest rates, forward and futures prices are no longer theoreti-
cally identical. In fact, this is the major reason for the price differences in the forex
forward and futures markets [176, 275]. For short-term contracts, however, the dif-
ferences tend to be small. In fact, the differences are significant only for longer-term
contracts on interest-rate-sensitive assets. We shall assume that forward and futures
prices are identical.

➤ Exercise 12.3.2 Complete the proof by considering the f0 < F0 case.
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➤ Exercise 12.3.3 Suppose that interest rates are uncertain and that futures prices
move in the same direction as interest rates. Argue that futures prices will exceed
forward prices. Similarly, argue that if futures prices move in a direction opposite
from that of interest rates, then futures prices will be exceeded by forward prices.

12.3.3 Stock Index Futures

Stock index futures originated in 1982 when the Kansas City Board of Trade
introduced the Value Line Stock Index futures. There are now stock index futures
based on the S&P 500 Index, the Nikkei 225 Stock Average futures, the NYSE Com-
posite Index futures (traded on the New York Futures Exchange for $500 times the
index), the Major Market Index (traded on the CBT for $500 times the index), the
DJIA Index (traded on the CBT for $10 times the index; ticker symbol DJ), and
so on.

Indices can be viewed as dividend-paying securities, the security being the basket
of stocks comprising the index and the dividends being those paid by the stocks. If
the index is broadly based, dividends can be assumed to be paid continuously. With
q denoting the average annualized dividend yield during the life of the contract, the
futures price is then

F = Se(r−q) τ . (12.9)

EXAMPLE 12.3.5 The S&P 500 Index futures contract is based on the S&P 500 Index.
The minimum fluctuation (tick size) is 0.05 point. Because the value of a contract is
$500 times the Index, a change of 0.05 represents a $500× 0.05= $25 tick. Consider a
3-month futures contract on the S&P 500 Index. Suppose that the stocks underlying
the index provide a dividend yield of 3% per annum, the current value of the index is
480, and the interest rate is 8%. The theoretical futures price is then 480× e0.05×0.25 =
486.038.

When Eq. (12.9) fails to hold, one can create arbitrage profits by trading the
stocks underlying the index and the index futures. For example, when F > Se(r−q) τ ,
one can make profits by buying the stocks underlying the index and shorting futures
contracts. One should do the reverse if F < Se(r−q) τ . These strategies are known
as index arbitrage and are executed by computers, an activity known as program
trading. Equation (12.9) is not applicable to the Nikkei 225 futures, however. Recall
that one such contract is on the dollar amount equal to five times the index, which
is measured in yen. But no securities whose value is $5 times the index exist; hence
the arbitrage argument breaks down.

For indices that all stocks tend to pay dividends on the same date, we can estimate
thedividends’ dollar amount and timing.Then the indexbecomes a security providing
known income, and Eq. (12.4) says the futures price is

F = (S− I) erτ . (12.10)

➤ Exercise 12.3.4 Do Eqs. (12.9) and (12.10) assume that the stock index involved is
not adjusted for cash dividends?
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12.3.4 Forward and Futures Contracts on Currencies

Let S denote the domestic/foreign exchange rate and let X denote the delivery price
of the forward contract.Use rf to refer to the foreign riskless interest rate.Aportfolio
consisting of one long forward contract, cash amount Xe−rτ in domestic currency,
and one short position in the amount of e−rfτ in foreign currency is clearly worth
zero at time T. Hence its current value must be zero, that is, f + Xe−rτ − Se−rfτ = 0.
The value X that makes f = 0 is the forward price (i.e., the forward exchange rate)
F = Se(r−rf) τ , which is exactly the interest rate parity.

12.3.5 Futures on Commodities and the Cost of Carry

Some commodities are held solely for investment (such as gold and silver), whereas
others areheldprimarily for consumption.Arbitrage arguments canbeused toobtain
futures prices in the former case, but they give only upper bounds in the latter.

For a commodity held for investment purposes and with zero storage cost, the
futures price is F = Serτ according to Eq. (12.3). In general, if U stands for the
PV of the storage costs incurred during the life of a futures contract, then Eq. (12.4)
implies that F = (S+U) erτ as storage costs are negative income. Alternatively, if u
denotes the storage cost per annum as a proportion of the spot price, then Eq. (12.6)
implies that F = Se(r+u) τ as storage costs provide a negative dividend yield. For
commodities held primarily for consumption, however, we can say only that

F ≤ (S+U) erτ , F ≤ Se(r+u) τ ,
respectively, because of the benefits of holding the physicals. These benefits are
measured by the so-called convenience yield defined as the y such that

Feyτ = (S+U) erτ , Feyτ = Se(r+u) τ , (12.11)

respectively.
We can frame the relation between the futures and spot prices in terms of the

cost of carry, which is the storage cost plus the interest cost paid to carry the asset
but less the income earned on the asset. For a stock paying no dividends, the cost
of carry is r because it neither incurs storage costs nor generates any income; for
a stock index, it is r −q as income is earned at rate q; for a currency, it is r − rf;
for a commodity with storage costs, it is r +u. Suppose the cost of carry is c and
the convenience yield is y. For an investment asset F = Secτ , and for a consumption
asset F = Se(c−y) τ .

The cost of carry is often cast in monetary terms, called the carrying charge or
the carrying cost. It measures the dollar cost of carrying the asset over a period and
consists of interest expense I, storage costs U, minus cash flows generated by the
asset D :

C ≡ I +U−D. (12.12)

The cost of carrywill be indollar terms fromnowonunless statedotherwise. Similarly,
the convenience yield can also be expressed in dollar terms:

convenience yield≡ S+C− F.
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As a consequence, the basis S− F is simply the convenience yield minus the cost of
carry:

basis= convenience yield−C. (12.13)

Recall that the convenience yield is negligible for financial instruments and com-
modities held primarily for investment purposes. For such assets, changes in basis
are due entirely to changes in the cost of carry.

Look up the futures prices of corn in Fig. 12.3. Because the prices for the near
months are lower than the distant months, this market is said to be normal. The
premium that the distant months command over near months is due to the greater
carrying costs. In an inverted or discount market, the distant months sell at lower
prices than the near months. A strong demand for cash grains or the willingness
of elevator owners to store grains at less than the full storage costs can create an
inverted market.

When the forward price equals the sum of the spot price and the carrying charge
(in other words, zero convenience yield), the forward price is said to be at full carry.
Forward and futures prices should be set at full carry for assets that have zero storage
cost and can be sold short or in ample supply (see Exercises 12.3.7 and 12.3.8). As
previously mentioned, commodities held for investment purposes should also reflect
full carry. If the total cost of storing corn is, say, four cents per bushel a month and
if futures prices reflect the full carrying cost, the prices for the different delivery
months might look like the following table:

December March May July September

$2.00 $2.12 $2.20 $2.28 $2.36

➤ Exercise 12.3.5 For futures, the cost of carry may be called cash and carry, which
is the strategy of buying the cash asset with borrowed funds. (1) Illustrate this point
with futures contracts when the underlying asset pays no income. (2) Show that the
cost of carry can be used to find the futures price in (1) set at full carry.

➤ Exercise 12.3.6 A manufacturer needs to acquire gold in 3 months. The following
options are open to her: (1) Buy the gold now or (2) go long one 3-month gold futures
contract and take delivery in 3 months. If she buys the gold now, the money that has
been tied up could be invested in money market instruments. This is the opportunity
cost of buying physical gold. What is the cost of carry for owning 100 ounces of gold
at $350 per ounce for a year if the T-bills are yielding an annually compounded rate
of 6%?

➤ Exercise 12.3.7 Prove that F ≤ S+C, where C is the net carrying cost per unit
of the commodity to the delivery date.

➤ Exercise 12.3.8 For a commodity that can be sold short, such as a financial asset,
prove that F ≥ S+C−U, where U is the net storage cost for carrying one unit of
the commodity to the delivery date.
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12.4 Futures Options and Forward Options

The underlying asset of a futures option is a futures contract. On exercise, the op-
tion holder takes a position in the futures contract with a futures price equal to the
option’s strike price. In particular, a futures call (put) option holder acquires a long
(short, respectively) futures position. The option writer does the opposite: A futures
call (put, respectively) option writer acquires a short (long, respectively) futures
position. The futures contract is then marked to market immediately, and the
futures position of the two parties will be at the prevailing futures price. The op-
tion holder can withdraw in cash the difference between the prevailing futures price
and the strikeprice.Of course, theoption’s expirationdate shouldprecede the futures
contract’s delivery date.

Thewhole process works as if the option writer delivered a futures contract to the
option holder and paid the holder the prevailing futures price minus the strike price
in the case of calls. In the case of puts, it works as if the option writer took delivery
a futures contract from the option holder and paid the holder the strike price minus
the prevailing futures price. Note that the amount of money that changes hands on
exercise is only the difference between the strike price and the prevailing futures
price. See Fig. 12.4 for sample quotations.

EXAMPLE 12.4.1 An investor holds a July futures call on 5,000 bushels of soybeans
with a strike price of 600 cents per bushel. Suppose that the current futures price

Monday, March 20, 1995
· · ·

INTEREST RATE LIBOR — 1 Mo. (CME)
T-BONDS (CBT) $3 million; pts. of 100%

$100,000; points and 64ths of 100% Strike Calls — Settle Puts — Settle
Strike Calls — Settle Puts — Settle Price Apr May Jun Apr May Jun
Price Apr May Jun Apr May Jun 9325 0.58 0.51 0.45 0.00 0.01 0.03
102 2-06 2-26 2-47 0-03 0-23 0-43 9350 0.34 0.29 0.24 0.01 0.04 0.07
103 1-12 1-44 . . . 0-08 0-40 . . . 9375 0.11 0.10 0.09 0.03 . . . 0.17
104 0-30 1-05 1-29 0-26 1-01 1-25 9400 0.01 . . . 0.03 . . . . . . . . .

105 0-07 0-39 . . . 1-03 1-34 . . . 9425 . . . . . . . . . . . . . . . . . .

106 0-01 0-21 0-40 1-61 . . . 2-35 9450 0.00 0.00 . . . . . . . . . . . .

107 0-01 0-10 . . . . . . . . . . . . · · ·
· · · INDEX

T-NOTES (CBT) S&P 500 STOCK INDEX (CME)
$100,000; points and 64ths of 100% $500 times premium

Strike Calls — Settle Puts — Settle Strike Calls — Settle Puts — Settle
Price Apr May Jun Apr May Jun Price Apr May Jun Apr May Jun
102 2-26 . . . 2-45 0-01 . . . 0-20 490 12.55 14.80 16.75 2.45 4.75 6.75
103 1-28 . . . 1-60 0-02 0-19 0-35 495 8.75 11.25 13.35 3.65 6.15 8.25
104 0-36 . . . 1-19 0-11 . . . 0-57 500 5.70 8.10 10.20 5.55 7.95 10.05
105 0-07 0-32 0-51 0-45 1-06 1-25 505 3.45 5.55 7.50 8.25 10.35 12.30
106 0-01 . . . 0-28 1-39 . . . 2-01 510 1.85 3.55 5.30 11.65 . . . 15.00
107 0-01 0-05 0-14 . . . . . . 2-51 515 0.85 2.15 3.55 . . . . . . . . .

· · · · · ·

Figure 12.4: Futures options quotations. Months refer to the expiration month of the underlying futures
contract. Source: Wall Street Journal, March 21, 1995.
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of soybeans for delivery in July is 610 cents. The investor can exercise the option
to receive $500 (5,000× 10 cents) plus a long position in a futures contract to buy
5,000 bushels of soybeans in July. Similarly, consider an investor with a July futures
put on 5,000 bushels of soybeans with a strike price of 620 cents per bushel. Suppose
the current futures price of soybeans for delivery in July is 610 cents. The investor
can exercise the option to receive $500 (5,000× 10 cents) plus a short position in a
futures contract to buy 5,000 bushels of soybeans in July.

EXAMPLE 12.4.2 Suppose that the holder of a futures call with a strike price of $35
exercises it when the futures price is $45. The call holder is given a long position
in the futures contract at $35, and the call writer is assigned the matching short
position at $35. The futures positions of both are immediately marked to market by
the exchange. Because the prevailing futures price is $45, the long futures position
(the position of the call holder) realizes a gain of $10, and the short futures position
(the position of the call writer) realizes a loss of $10. The call writer pays the exchange
$10 and the call holder receives from the exchange $10. The call holder, who now has
a long futures position at $45, can either liquidate the futures position at $45 without
costs or maintain it.

Futures options were created in 1982 when the CBT began trading options on
T-bond futures. Futures options are preferred to options on the cash instrument in
some markets on the following grounds. In contrast to the cash markets, which are
often fragmented and over the counter, futures trading takes place in competitive,
centralized markets. Futures options have fewer liquidity problems associated with
shortages of the cash assets – selling a commodity short may be significantly more
difficult than selling a futures contract. Futures options are also useful in implement-
ing certain strategies. Finally, futures options are popular because of their limited
capital requirements [746].

Forward options are similar to futures options except that what is delivered is a
forward contract with a delivery price equal to the option’s strike price. In particular,
exercising a call (put) forward option results in a long (short, respectively) position in
a forward contract. Note that exercising a forward option incurs no immediate cash
flows.Unlike futures options, forward options are traded not on organized exchanges
but in over-the-counter markets.

EXAMPLE 12.4.3 Consider a call with strike $100 and an expiration date in September.
The underlying asset is a forward contract with a delivery date inDecember. Suppose
that the forward price in July is $110. On exercise, the call holder receives a forward
contract with a delivery price of $100. If an offsetting position is then taken in the
forward market, a $10 profit in September will be ensured. Were the contract a call
on the futures, the $10 profit would be realized in July.

➤ Exercise 12.4.1 With a conversion, the trader buys a put, sells a call, and buys
a futures contract. The put and the call have the same strike price and expiration
month. The futures contract has the same expiration month as the options, and its
price is equal to the options’ strike price. Argue that any initial positive cash flow of
conversion is guaranteed profit.
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12.4.1 Pricing Relations

Assume a constant, positive interest rate. This is acceptable for short-term contracts.
Even under this assumption, which equates forward price with futures price, a for-
ward option does not have the same value as a futures option. Let delivery take place
at time T, the current time be zero, and the option on the futures or forward contract
have expiration date t (t ≤ T). Note that the futures contract can be marked to mar-
ket when the option is exercised. Example 12.4.3 established the following identities
for the futures options and forward options when they are exercised at time t :

value of futures option=max(Ft − X, 0) (12.14)

value of forward option=max(Ft − X, 0) e−r(T−t) (12.15)

Furthermore, a European futures option is worth the same as the corresponding
European option on the underlying asset if the futures contract has the samematurity
as the option. The reason is that the futures price equals the spot price at maturity.
This conclusion is independent of the model for the spot price.

The put–call parity is slightly different from the one in Eq. (8.1). Whereas the
undiscounted stock price was used in the case of stock options, it is the discounted
futures/forward prices that should be used here (see also Exercise 12.2.4).

THEOREM 12.4.4 (Put–Call Parity). For European options on futures contracts, C =
P− (X− F) e−r t . For European options on forward contracts, C = P− (X− F) e−rT.
Proof: Consider a portfolio of one short call, one long put, one long futures contract,
and a loan of (X− F) e−r t . We have the following cash flow at time t .

F t ≤ X F t > X

A short call 0 X − F t

A long put X − F t 0
A long futures F t − F F t − F
A loan of (X − F ) e−r t F − X F − X

Total 0 0

Because the net future cash flow is zero in both cases, the portfolio must have zero
value today. This proves the theorem for futures option.

The proof for forward options is identical except that the loan amount is
(X− F) e−rT instead. The reason is that the forward contract can be settled only
at time T.

An American forward option should be worth the same as its European counter-
part. In other words, the early exercise feature is not valuable.

THEOREM 12.4.5 American forward options should not be exercised before expiration
as long as the probability of their ending up out of the money is positive.

Proof: Consider a portfolio of one long forward call, one short forward contract with
delivery price F , and a loan of (F − X) e−rT . If Ft < X at t , the wealth at t is

0+ (F − Ft) e−r(T−t)− (F − X) e−r(T−t) = (X− Ft) e−r(T−t) > 0.

If Ft ≥ X at t , the wealth at t is

(Ft − X) e−r(T−t)+ (F − Ft) e−r(T−t)− (F − X) e−r(T−t) = 0.
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So the value of the forward call C satisfies C− (F − X) e−rT > 0. On the other hand,
if the call is exercised immediately, the PV at time zero is only max(F − X, 0) e−rT .
The case of forward puts is proved in Exercise 12.4.3.

Early exercisemay be optimal forAmerican futures options. Hence anAmerican
futures option is worth more than the European counterpart even if the underlying
asset generates no payouts [125].

THEOREM 12.4.6 American futures options may be exercised optimally before expira-
tion.

➤ Exercise 12.4.2 Prove Theorem 12.4.5 for American forward puts. (Hint: Show
that P− (X− F) e−rT > 0 first.)

➤ Exercise 12.4.3 Prove that Fe−r t − X≤ C− P ≤ F − Xe−r t for American futures
options.

12.4.2 The Black Model

Black developed the following formulas for European futures options in 1976:

C = Fe−r t N(x)− Xe−r t N(x− σ√t), (12.16)

P = Xe−r t N(−x+ σ√t)− Fe−r t N(−x),
where [81]

x ≡ ln(F/X)+ (σ 2/2) t

σ
√
t

.

Formulas (12.16) are related to those for options on a stock paying a continuous div-
idend yield. In fact, they are exactly Eq. (9.20) with the dividend yield q set to the
interest rate r and the stock price S replaced with the futures price F . This obser-
vation also proves Theorem 12.4.6 based on the discussions in Subsection 9.6.2. For
European forward options, just multiply the above formulas by e−r(T−t) as forward
options differ from futures options by a factor of e−r(T−t) based on Eqs. (12.14) and
(12.15).

Black’s formulas can be expressed in terms of S instead of F by means of
the substitution F = Se(r−q)T . (The original formulas have the advantage of not
containing q or T. The delta for the call is then ∂C/∂F = e−r t N(x) and that for the
put is ∂P/∂F = e−r t [ N(x)− 1 ]. The delta for the call can also be cast with respect
to the spot price:

∂C
∂S
= ∂C
∂F

∂F
∂S
= e−r t N(x) e(r−q)T = e−r(t−T)−qTN(x).

Other sensitivity measures can be easily derived [746, p. 345].
Besides index options and index futures, a third type of stock index derivative is

the index futures option. European index futures options can be priced by Black’s
formulas. The S&P 500 Index and the DJIA span all three types of derivatives. The
NYAhas options and futures options. Although the SPX and theDJIA index options
are European, their index futures options are American. The NYA index option and
futures option are both American.
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Binomial tree algorithm for pricing American futures calls:

input: F, σ, t, X, r, n;
real R, p, u, d, C[n+ 1 ];
integer i, j ;
R := er(t/n);
u := eσ√t/n; d := e−σ√t/n;
p := (1−d)/(u−d); // Risk-neutral probability.
for (i = 0 to n) {C[ i ] :=max(0, Fun−i di − X); }
for ( j = n− 1 down to 0)

for (i = 0 to j)
C[ i ] :=max((p×C[ i ]+ (1− p)×C[ i + 1 ])/R, Fuj−i di − X);

return C[ 0 ];

Figure 12.5: Binomial tree algorithm for American futures calls.

➤ Exercise 12.4.4 (1) Verify that, under the Black–Scholes model, a European fu-
tures option is worth the same as the corresponding European option on the cash
asset if the options and the futures contract have the same maturity. The cash asset
may pay a continuous dividend yield. (2) Then argue that, in fact, (1)must hold under
any model.

12.4.3 Binomial Model for Forward and Futures Options

The futures price behaves like a stock paying a continuous dividend yield of r .
Under the binomial model, the risk-neutral probability for the futures price is pf ≡
(1−d)/(u−d) by formula (9.21). Here, the futures price moves from F to Fu with
probability pf and to Fd withprobability 1− pf. Figure 12.5 contains a binomial tree
algorithm forpricing futuresoptions.Thebinomial tree algorithm for forwardoptions
is identical except that (12.15) is used for the payoff when the option is exercised. So
we replace Fun−i di with Fun−i di e−r(T−t) and Fuj−i di with Fuj−i di e−r(T−t( j/n)) in
Fig. 12.5.

Recall that the futures price is related to the spot price by F = SerT if the underly-
ing asset does not pay dividends. The preceding binomialmodel for futures prices im-
plies that the stock price moves from S= Fe−rT to Su ≡ Fue−r(T−�t) = Suer�t with
probability pf and to Sd ≡ Sder�t with probability 1− pf in a period of length �t .

Options can be replicated by a portfolio of futures contracts and bonds. This
avenue may be preferred to using stocks because the restrictions on shorting futures
are looser than those on stocks. To set up an equivalent portfolio of hf futures
contracts and $B in riskless bonds to replicate a call that costs Cu if the stock price
moves to Su and Cd if the stock price moves to Sd, we set up

hf(Fu− F)+ er�t B= Cu, hf(Fd− F)+ er�t B= Cd.
Solve the preceding equations to obtain

hf = Cu−Cd
(u−d) F ≥ 0,

B = (u− 1)Cd− (d− 1)Cu
(u−d) er�t .
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Compared with the delta in Eq. (9.1), repeated below,

h= Cu−Cd
Su− Sd =

Cu−Cd
(Su− Sd) er�t ,

we conclude that

hf = Cu−Cd
(u−d) SerT = he

−r(T−�t) < h.

Hence the delta with futures never exceeds that with stocks.
As 0< pf < 1, we have 0< 1− pf < 1 as well. This suggests the following

method to solve the problem of negative risk-neutral probabilities mentioned in
Subsection 9.3.1: Build the binomial tree for the futures price F of the futures con-
tract expiring at the same time as the option; then calculate S from F at each
node by means of S= Fe−(r−q)(T−t) if the stock pays a continuous dividend yield
of q [470].

➤ Exercise 12.4.6 Start with the standard tree for the underlying non-dividend-
paying stock (i.e., a stock price S can move to Su or Sd with (er�t −d)/(u−d)
as the probability for an up move). (1) Construct the binomial model for the fu-
tures prices based on that tree. (2) What if the stock pays a continuous dividend
yield of q?

➢ Programming Assignment 12.4.7 Write binomial tree programs to price futures
options and forward options.

➢ Programming Assignment 12.4.8 Write binomial tree programs to implement the
idea of avoiding negative risk-neutral probabilities enunciated above.

12.5 Swaps

Swaps are agreements between two counterparties to exchange cash flows in the
future according to a predetermined formula. There are two basic types of swaps:
interest rate and currency. An interest rate swap occurs when two parties exchange
interest payments periodically. Currency swaps are agreements to deliver one cur-
rency against another [767]. Currency swaps made their debut in 1979, and interest
rate swaps followed suit in 1981. In the following decade the growth of their notional
volumewas so spectacular as to dwarf that of any othermarket. For instance, interest
rate swaps alone stood at over U.S.$2 trillion in 1993. Swaps also spurred the growth
of related instruments such as multiperiod options (interest rate caps and floors, etc.)
and forward-rate agreements.

Currency and interest rate swaps are collectively called rate swaps. Swaps on com-
modities are also available. For example, a company that consumes 200,000 barrels
of oil per annummay pay $2million per year for the next 5 years and in return receive
200,000× S, where S is the prevailingmarket price of oil per barrel. This transaction
locks in the price for its oil at $10 per barrel. We concentrate on currency swaps here.

12.5.1 Currency Swaps

A currency swap involves two parties to exchange cash flows in different currencies.
As an example, consider the following fixed rates available to party A and party B
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in U.S. dollars and Japanese yen:

Dollars Yen

A D A% YA%
B D B% YB%

Suppose A wants to take out a fixed-rate loan in yen, and B wants to take out a
fixed-rate loan in dollars. A straightforward scenario is for A to borrow yen at YA%
and for B to borrow dollars at DB%.

Assume further that A is relatively more competitive in the dollar market than
the yen market, and vice versa for B – in other words, YB−YA < DB−DA. Now
consider this alternative arrangement: A borrows dollars, B borrows yen, and they
enter into a currency swap, perhaps with a bank as the financial intermediary. With
a swap, the counterparties exchange principal at the beginning and the end of the
life of the swap. This act transforms A’s loan into a yen loan and B’s yen loan into a
dollar loan. The total gain to all parties is [ (DB−DA)− (YB−YA) ]% because the
total interest rate is originally (YA+DB)% and the new arrangement has a smaller
total rate of (DA+YB)%. Of course, this arrangement will happen only if the total
gain is distributed in such a way that the cost to each party is less than that of the
original scenario.

EXAMPLE 12.5.1 Two parties, A and B, face the following borrowing rates:

Dollars Yen

A 9% 10%
B 12% 11%

Assume that A wants to borrow yen and B wants to borrow dollars. A can borrow
yen directly at 10%, andB can borrowdollars directly at 12%.As the rate differential
in dollars (3%) is different from that in yen (1%), a currency swap with a total saving
of 3− 1= 2% is possible. Note that A is relatively more competitive in the dollar
market, and B in the yenmarket. Figure 12.6 shows an arrangement that is beneficial
to all parties involved, in which A effectively borrows yen at 9.5% and B borrows
dollars at 11.5%. The gain is 0.5% for A, 0.5% for B, and, if we treat dollars and yen
identically, 1% for the bank.

With the arrangement in Fig. 12.6 and principal amounts of U.S.$1 million and
100 million yen, the bank makes an annual gain of $0.025 million and an annual loss
of 1.5 million yen. The bank thus bears some currency risk, but neitherAnorBbears
any currency risk. Currency risk clearly can be redistributed but not eliminated.

➤ Exercise 12.5.1 Use the numbers in Example 12.5.1 to construct the same effective
borrowing rates without the bank as the financial intermediary.

Figure 12.6: Currency swap: It turns a dollar liability into a yen liability and vice versa.
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➤ Exercise 12.5.2 Redesign the swap with the rates in Example 12.5.1 so that the
gains are 1% for A, 0.5% for B, and 0.5% for the bank.

12.5.2 Valuation of Currency Swaps

As a Package of Cash Market Instruments
In theabsenceofdefault risk, thevaluationof currency swap is rather straightforward.
Take B in Fig. 12.6 as an example. The swap is equivalent to a long position in a yen
bond paying 11% annual interest and a short position in a dollar bond paying 11.5%
annual interest. The general pricing formula is thus SPY− PD, where PD is the
dollar bond’s value in dollars, PY is the yen bond’s value in yen, and S is the $/yen
spot exchange rate. The value of a currency swap therefore depends on the term
structures of interest rates in the currencies involved and the spot exchange rate. The
swap has zero value when SPY = PD.

EXAMPLE 12.5.2 Takea 2-year swap inFig. 12.6with principal amounts ofU.S.$1million
and 100 million yen. The payments are made once a year. Assume that the spot
exchange rate is 90 yen/$ and the term structures are flat in both nations – 8% in the
U.S. and 9% in Japan. The value of the swap is

1
90
× (11× e−0.09+ 11× e−0.09×2+ 111× e−0.09×3)
− (0.115× e−0.08+ 0.115× e−0.08×2+ 1.115× e−0.08×3)= 0.074

million dollars for B.

As a Package of Forward Contracts
Swaps can also be viewed as a package of forward contracts. From Eq. (12.5), the
forward contract maturing i years from now has a dollar value of

fi ≡ (SYi ) e−qi −Die−ri , (12.17)

where Yi is the yen inflow at year i , S is the $/yen spot exchange rate, q is the yen
interest rate, Di is the dollar outflow at year i , and r is the dollar interest rate. This
formulationmay be preferred to the cashmarket approach in cases involving costs of
carry and convenience yields because forward prices already incorporate them [514].
For simplicity, flat term structures are assumed, but generalization is straightforward.

Take the swap in Example 12.5.2. Every year, B receives 11 million yen and pays
$0.115 million. In addition, at the end of the third year, B receives 100 million yen
and pays $1 million. Each of these transactions represents a forward contract. In
particular, Y1 = Y2 = 11, Y3 = 111, S= 1/90, D1 = D2 = 0.115, D3 = 1.115, q = 0.09,
and r = 0.08. Plug in these numbers to get f1+ f2+ f3 = 0.074 million dollars, as in
Example 12.5.2.

Equation (12.17) can be equivalently cast in terms of forward exchange rates as

fi ≡ (FiYi −Di ) e−ri ,
where Fi is the i-year forward exchange rate. Even though the swap may have zero
value (equivalently,

∑
i fi = 0), it does not imply that each of the forward contracts,

fi , has zero value.

➤ Exercise 12.5.3 Derive Eq. (12.17) with a forward exchange rate argument.
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Additional Reading

Consult [88, 95, 346, 369, 470, 514, 646, 698, 746, 878, 879] for more information on
derivative securities. The introduction of derivatives makes the price of the underly-
ing asset more informative [151]. Black’s model is very popular [94]. See [423, 894]
for more “exotic” options and [521] for option pricing with default risk. Pointers to
empirical studies on the relation between futures and forward prices can be found
in [514].

NOTES

1. J.P. Morgan was acquired by Chase Manhattan in 2000, which became J.P. Morgan Chase.
2. The CBT developed futures contracts in 1865. Futures contracts were traded on the Amsterdam

exchange in the seventeenth century.
3. Keynes (1883–1946) was one of the greatest economists in history [805, 806, 807].



CHAPTER
THIRTEEN

Stochastic Processes and
Brownian Motion

Of all the intellectual hurdles which the human mind has confronted
and has overcome in the last fifteen hundred years, the one which
seems to me to have been the most amazing in character and the
most stupendous in the scope of its consequences is the one relating
to the problem of motion.

Herbert Butterfield (1900–1979), The Origins of Modern
Science

This chapter introduces basic ideas in stochastic processes andBrownianmotion. The
Brownian motion underlies the continuous-time models in this book.1 We will often
return to earlier discrete-time binomial models to mark the transition to continuous
time.

13.1 Stochastic Processes

A stochastic process X= { X(t) } is a time series of random variables. In other words,
X(t) is a random variable for each time t and is usually called the state of the process
at time t . For clarity, X(t) is often written as Xt . A realization of X is called a sample
path. Note that a sample path defines an ordinary function of t . If the times t form
a countable set, X is called a discrete-time stochastic process or a time series. In
this case, subscripts rather than parentheses are usually used, as in X= { Xn }. If the
times form a continuum, X is called a continuous-time stochastic process.

A continuous-time stochastic process { X(t) } is said to have independent incre-
ments if for all t0 < t1 < · · ·< tn the random variables

X(t1)− X(t0), X(t2)− X(t1), . . . , X(tn)− X(tn−1)
are independent. It is said to possess stationary increments if X(t + s)− X(t) has the
same distribution for all t . That is, the distribution depends on only s.

The covariance function of a stochastic process X= { X(t) } is defined as

KX(s, t)≡ Cov[ X(s), X(t) ].

Note that KX (s, t)= KX (t, s). The mean function is defined as mX (t)≡ E [ X(t) ].
A stochastic process { X(t) } is strictly stationary if for any n time points
t1 < t2 < · · ·< tn and h, the random-variable sets { X(t1), X(t2), . . . , X(tn) } and
{ X(t1+ h), X(t2+ h), . . . , X(tn+ h) } have the same joint probability distribution.

177
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From this definition,

mX (t)= E[ X(t) ]= E[ X(t + h) ]=mX (t + h)
for any h; in other words, the mean function is a constant. Furthermore,

KX(s, s+ t) = E[ { X(s)−mX }{ X(s+ t)−mX } ]
= E[ { X(0)−mX }{ X(t)−mX } ];

in other words, the covariance function KX(s, t) depends on only the lag |s− t |. A
process { X(t) } is said to be stationary if E[ X(t)2 ]<∞, the mean function is a
constant, and the covariance function depends on only the lag.

AMarkov process is a stochastic process forwhich everything thatwe knowabout
its future is summarized by its current value. Formally, a continuous-time stochastic
process X= { X(t), t ≥ 0 } is Markovian if

Prob[ X(t)≤ x | X(u), 0≤ u≤ s ]= Prob[ X(t)≤ x | X(s) ]
for s < t .
Randomwalks of various kinds are the foundations of discrete-time probabilistic

models of asset prices [334]. In fact, the binomial model of stock prices is a random
walk in disguise. The following examples introduce two important random walks.

EXAMPLE 13.1.1 Consider a particle on the integer line, 0,±1,±2, . . . . In each time
step, this particle can make one move to the right with probability p or one move
to the left with probability 1− p (see Fig. 13.1). Let Pi, j represent the probability
that the particle makes a transition at point j when currently in point i . Then
Pi,i+1 = p= 1− Pi,i−1 for i = 0,±1,±2, . . . . This random walk is symmetric when
p= 1/2. The connection with the BOPM should be clear: The particle’s position
denotes the cumulative number of up moves minus that of down moves.

EXAMPLE 13.1.2 The random walk with drift is the following discrete-time process:

Xn = µ+ Xn−1+ ξn, (13.1)

where ξn are independent and identically distributed with zero mean. The drift
µ is the expected change per period. This random walk is a Markov process. An

Figure 13.1: Random walk. The particle in each step can move up or down.
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alternative characterization is { Sn ≡
∑n
i=1 Xi ,n≥ 1 }, where Xi are independent,

identically distributed random variables with E[ Xi ]= µ.
➤ Exercise 13.1.1 Prove that

E[ X(t)− X(0) ]= t × E[ X(1)− X(0) ],
Var[ X(t) ]−Var[ X(0) ]= t ×{Var[ X(1) ]−Var[ X(0) ] }

when { X(t), t ≥ 0 } is a process with stationary independent increments.

➤ Exercise 13.1.2 Let Y1,Y2, . . . , be mutually independent random variables and
X0 an arbitrary random variable. Define Xn ≡ X0+

∑n
i=1 Yi for n> 0. Show that

{ Xn,n≥ 0 } is a stochastic process with independent increments.

➤ Exercise 13.1.3 Let X1, X2, . . . , be a sequence of uncorrelated random variables
with zero mean and unit variance. Prove that { Xn } is stationary.
➤ Exercise 13.1.4 (1) Use Eq. (13.1) to characterize the random walk in Example
13.1.1. (2) Show that the variance of the symmetric random walk’s position after n
moves is n.

➤ Exercise 13.1.5 Construct two symmetric random walks with correlation ρ.

13.2 Martingales (“Fair Games”)

A stochastic process { X(t), t ≥ 0 } is a martingale if E[ |X(t)| ]<∞ for t ≥ 0 and

E[ X(t) | X(u), 0≤ u≤ s ]= X(s). (13.2)

In the discrete-time setting, a martingale means that

E[ Xn+1 | X1, X2, . . . , Xn ]= Xn. (13.3)

If Xn is interpreted as a gambler’s fortune after the nth gamble, identity (13.3) says
the expected fortune after the (n+ 1)th gamble equals the fortune after the nth
gamble regardless of what may have occurred before. A martingale is therefore a
notion of fair games. Apply the law of iterated conditional expectations to both sides
of Eq. (13.3) to yield

E[ Xn ]= E[ X1 ] (13.4)

for all n. Similarly, E[ X(t) ]= E[ X(0) ] in the continuous-time case.

EXAMPLE 13.2.1 Consider the stochastic process { Zn ≡
∑n
i=1 Xi ,n≥ 1 }, where Xi are

independent random variables with zero mean. This process is a martingale because

E[ Zn+1 | Z1, Z2, . . . , Zn ] = E[ Zn+ Xn+1 | Z1, Z2, . . . , Zn ]
= E[ Zn | Z1, Z2, . . . , Zn ]+E[ Xn+1 | Z1, Z2, . . . , Zn ]
= Zn+ E[ Xn+1 ]= Zn.

Note that { Zn } subsumes the random walk in Example 13.1.2.

A martingale is defined with respect to a probability measure under which the
conditional expectation is taken.Aprobabilitymeasure assigns probabilities to states
of the world. A martingale is also defined with respect to an information set [692].
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In characterizations (13.2) and (13.3), the information set contains the current and
the past values of X by default. However, it need not be so. In general, a stochastic
process { X(t), t ≥ 0 } is called a martingale with respect to information sets { It } if,
for all t ≥ 0, E[ |X(t)| ]<∞ and

E[ X(u) | It ]= X(t)
for all u> t . In the discrete-time setting, the definition becomes, for all n> 0,

E[ Xn+1 | In ]= Xn,
given the information sets { In }. Theprecedingdefinition implies that E[ Xn+m | In ]=
Xn for any m> 0 by Eq. (6.6). A typical In in asset pricing is the price information
up to time n. Then the definition says that the future values of X will not deviate
systematically from today’s value given the price history; in fact, today’s value is their
best predictor (see Exercise 13.2.2).

EXAMPLE 13.2.2 Consider the stochastic process { Zn−nµ,n≥ 1 }, where Zn ≡∑n
i=1 Xi and X1, X2, . . . , are independent random variables with mean µ. As

E[ Zn+1− (n+ 1)µ | X1, X2, . . . , Xn ] = E[ Zn+1 | X1, X2, . . . , Xn ]− (n+ 1)µ

= Zn+µ− (n+ 1)µ

= Zn−nµ,
{ Zn−nµ,n≥ 1 } is a martingale with respect to { In },where In ≡ { X1, X2, . . . , Xn }.
➤ Exercise 13.2.1 Let { X(t), t ≥ 0 } be a stochastic process with independent incre-
ments. Show that { X(t), t ≥ 0 } is amartingale if E[ X(t)− X(s) ]= 0 for any s, t ≥ 0
and Prob[ X(0)= 0 ]= 1.

➤ Exercise 13.2.2 If the asset return follows a martingale, then the best forecast of
tomorrow’s return is today’s return as measured by the minimal mean-square error.
Why? (Hint: see Exercise 6.4.3, part (2).)

➤ Exercise 13.2.3 Define Zn ≡
∏n
i=1 Xi ,n≥ 1, where X1, X2, . . . , are independent

random variables with E[ Xi ]= 1. Prove that { Zn } is a martingale.

➤ Exercise 13.2.4 Consider a martingale { Zn,n≥ 1 } and let Xi ≡ Zi − Zi−1 with
Z0 = 0. Prove Var[ Zn ]=

∑n
i=1 Var[ Xi ].

➤ Exercise 13.2.5 Let { Sn ≡
∑n
i=1 Xi ,n≥ 1 } be a random walk, where Xi are in-

dependent random variables with E[ Xi ]= 0 and Var[ Xi ]= σ 2. Show that { S2n −
nσ 2,n≥ 1 } is a martingale.

➤ Exercise 13.2.6 Let { Xn } be a martingale and letCn denote the stake on the nth
game. Cn may depend on X1, X2, . . . , Xn−1 and is bounded. C1 is a constant. In-
terpret Cn(Xn− Xn−1) as the gains on the nth game. The total gains up to game n
are Yn ≡

∑n
i=1Ci (Xi − Xi−1) with Y0 = 0. Prove that {Yn } is a martingale with re-

spect to { In }, where In ≡ { X1, X2, . . . , Xn }.

13.2.1 Martingale Pricing and Risk-Neutral Valuation

We learned in Lemma 9.2.1 that the price of a European option is the expected
discounted future payoff at expiration in a risk-neutral economy. This important
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principle can be generalized by use of the concept of martingale. Recall the recursive
valuation of a European option by means of C = [ pCu+ (1− p)Cd ]/R, where p is
the risk-neutral probability and $1 grows to $R in a period. Let C(i) denote the value
of the option at time i and consider the discount process {C(i)/Ri, i = 0, 1, . . . ,n }.
Then,

E
[
C(i + 1)
Ri+1

∣∣∣∣ C(i)= C ]= pCu+ (1− p)Cd
Ri+1

= C
Ri
.

The above result can be easily generalized to

E
[
C(k)
Rk

∣∣∣∣ C(i)= C ]= CRi , i ≤ k. (13.5)

Hence the discount process is a martingale as

C(i)
Ri
= Eπi

[
C(k)
Rk

]
, i ≤ k, (13.6)

where Eπi means that the expectation is taken under the risk-neutral probabil-
ity conditional on the price information up to time i .2 This risk-neutral proba-
bility is also called the equivalent martingale probability measure [514]. Two
probability measures are said to be equivalent if they assign nonzero probabilities to
the same set of states.

Under general discrete-time models, Eq. (13.6) holds for all assets, not just op-
tions. In the general case in which interest rates are stochastic, the equation becomes
[725]

C(i)
M(i)

= Eπi
[
C(k)
M(k)

]
, i ≤ k, (13.7)

where M( j) denotes the balance in the money market account at time j by use
of the rollover strategy with an initial investment of $1. For this reason, it is called
the bank account process. If interest rates are stochastic, then M( j) is a random
variable. However, note that M(0)= 1 and M( j) is known at time j − 1. Identity
(13.7) is the general formulation of risk-neutral valuation, which says the discount
process is a martingale under π . We thus have the following fundamental theorem
of asset pricing.

THEOREM 13.2.3 A discrete-time model is arbitrage free if and only if there exists a
probability measure such that the discount process is a martingale. This probability
measure is called the risk-neutral probability measure.

➤ Exercise 13.2.7 Verify Eq. (13.5).

➤ Exercise 13.2.8 Assume that one unit of domestic (foreign) currency grows to R
(Rf, respectively) units in a period, and u and d are the up and the down moves of
the domestic/foreign exchange rate, respectively. Apply identity (13.7) to derive the
risk-neutral probability [ (R/Rf)−d ]/(u−d) for forex options under the BOPM in
Exercise 11.5.4, part (1).

➤ Exercise 13.2.9 Prove that the discounted stockprice S(i)/Ri follows amartingale
under the risk-neutral probability; in particular, S(0)= Eπ [ S(i)/Ri ].
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13.2.2 Futures Price under the Binomial Model

Futures prices form a martingale under the risk-neutral probability because the ex-
pected futures price in the next period is

pfFu+ (1− pf) Fd = F
(
1−d
u−d u+

u− 1
u−d d

)
= F

(review Subsection 12.4.3). The above claim can be generalized to

Fi = Eπi [ Fk ], i ≤ k, (13.8)

where Fi is the futures price at time i . This identity holds under stochastic interest
rates as well (see Exercise 13.2.11).

➤ Exercise 13.2.10 Prove that F = Eπ [ Sn ], where Sn denotes the price of the under-
lying non-dividend-paying stock at the delivery date of the futures contract, time n.
(The futures price is thus an unbiased estimator of the expected spot price in a
risk-neutral economy.)

➤ Exercise 13.2.11 Show that identity (13.8) holds under stochastic interest rates.

13.2.3 Martingale Pricing and the Choice of Numeraire

Martingale pricing formula (13.7) uses the money market account as numeraire in
that it expresses the price of any asset relative to the money market account.3 The
money market account is not the only choice for numeraire, however. If asset S ,
whose value is positive at all times, is chosen as numeraire, martingale pricing says
there exists a risk-neutral probability π under which the relative price of any asset
C is a martingale:

C(i)
S(i)

= Eπi
[
C(k)
S(k)

]
, i ≤ k, (13.9)

where S( j) denotes the price of S at time j ; the discount process remains a mar-
tingale.

Take the binomial model with two assets as an example. In a period, asset one’s
price can go from S to S1 or S2, whereas asset two’s price can go from P to P1
or P2. Assume that (S1/P1)< (S/P)< (S2/P2) for market completeness and to rule
out arbitrage opportunities. For any derivative security, let C1 be its price at time
one if asset one’s price moves to S1 and let C2 be its price at time one if asset one’s
price moves to S2. Replicate the derivative by solving

αS1+βP1 = C1,

αS2+βP2 = C2

by using α units of asset one and β units of asset two. This yields

α = P2C1− P1C2

P2S1− P1S2 , β = S2C1− S1C2

S2P1− S1P2
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and the derivative costs

C = αS+βP = P2S− PS2
P2S1− P1S2 C1+ PS1− P1S

P2S1− P1S2 C2.

It is easy to verify that

C
P
= p C1

P1
+ (1− p) C2

P2
, where p≡ (S/P)− (S2/P2)

(S1/P1)− (S2/P2)
. (13.10)

The derivative’s price with asset two as numeraire is thus a martingale under the
risk-neutral probability p. Interestingly, the expected returns of the two assets are
irrelevant.

EXAMPLE 13.2.4 For the BOPM in Section 9.2, the two assets are the money market
account and the stock. Because the money market account is the numeraire, we
substitute P = 1, P1 = P2 = R, S1 = Su, and S2 = Sd into Eq. (13.10). The result,

p= S− (Sd/R)
(Su/R)− (Sd/R)

= R−d
u−d ,

affirms the familiar risk-neutral probability. The risk-neutral probability changes if
the stock is chosen as numeraire, however (see Exercise 13.2.12).

The risk-neutral probability measure therefore depends on the choice of nu-
meraire, and switching numeraire changes the risk-neutral probabilitymeasure. Pick-
ing the “right” numeraire can simplify the task of pricing, especially for interest-
rate-sensitive securities [25, 731, 783]. For the rest of the book, the money market
account will continue to serve as numeraire unless stated otherwise.

➤ Exercise 13.2.12 (1) Prove that [ (1/d)− (1/R) ] [ (ud)/(u−d) ] is the up-move
probability for the stock price that makes the relative bond price a martingale un-
der the binomial option pricing model in which the stock is chosen as numeraire.
(2) Reinterpret Eq. (9.11).

➤ Exercise 13.2.13 Show that for any k> 0 there exists a risk-neutral probability
measure π under which the price of any asset C equals its discounted expected
future price at time k, that is, C(i)= d(k− i) Eπi [C(k) ], where i ≤ k. Recall that
d( · ) denotes the discount function at time i . This π is called the forward-neutral
probability measure.

13.3 Brownian Motion

Brownianmotion is a stochastic process { X(t), t ≥ 0 } with the following properties:

(1) X(0)= 0, unless stated otherwise;
(2) for any 0≤ t0 < t1 < · · ·< tn, the random variables X(tk)− X(tk−1) for 1≤ k≤ n

are independent (so X(t)− X(s) is independent of X(r) for r ≤ s < t);
(3) for 0≤ s < t , X(t)− X(s) is normally distributed with mean µ(t − s) and vari-

ance σ 2(t − s), where µ and σ �= 0 are real numbers.

Such a process is called a (µ, σ ) Brownian motion with drift µ and variance σ 2.
Figure 13.2 plots a realization of a Brownian motion process. The existence and
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Figure 13.2: Drift and variance of Brownian motion. Shown is a sample path of a (0.15, 0.3)
Brownian motion. The stochastic process has volatility, as evinced by the bumpiness of the path.
The envelope is for one standard deviation, or 0.3

√
t , around the mean function, which is the

deterministic process with the randomness removed.

the uniqueness of such a process are guaranteed by Wiener’s theorem [73]. Al-
though Brownian motion is a continuous function of t with probability one, it is
almost nowhere differentiable. The (0, 1) Brownianmotion is also called normalized
Brownian motion or theWiener process.

Any continuous-time process with stationary independent increments can be
proved to be a Brownian motion process [419]. This fact explains the significance
of Brownian motion in stochastic modeling. Brownian motion also demonstrates
statistical self-similarity in that X(rx)/

√
r remains a Wiener process if X is such.

This means that if we sample the process 100 times faster and then shrink the result
10 times, the path will look statistically the same as the original one. This property
naturally links Brownian motion to fractals [240, 784]. Finally, Brownian motion is
Markovian.

Brownian motion, named after Robert Brown (1773–1858), was first discussed
mathematically by Bachelier and received rigorous treatments by Wiener (1894–
1964), who came up with the above concise definition. Therefore it is sometimes
called the generalized Wiener process or theWiener–Bachelier process [343, 543].

EXAMPLE 13.3.1 Suppose that the total value of a company, measured in millions of
dollars, follows a (20, 30) Brownian motion (i.e., with a drift of 20 per annum and a
variance of 900 per annum). The starting total value is 50. At the end of 1 year, the
total value will have a normal distribution with amean of 70 and a standard deviation
of 30. At the end of 6 months, as another example, it will have a normal distribution
with a mean of 60 and a standard deviation of

√
450≈ 21.21.

From the definition, if { X(t), t ≥ 0 } is the Wiener process, then X(t)− X(s)∼
N(0, t − s). A (µ, σ ) Brownian motion Y= {Y(t), t ≥ 0 } can be expressed in terms
of the Wiener process by

Y(t)= µt + σX(t). (13.11)

As Y(t + s)−Y(t)∼ N(µs, σ 2s), our uncertainty about the future value of Y as
measured by the standard deviation grows as the square root of how far we look into
the future.
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➤ Exercise 13.3.1 Prove that { (X(t)−µt)/σ, t ≥ 0 } is a Wiener process if { X(t),
t ≥ 0 } is a (µ, σ ) Brownian motion.

➤ Exercise 13.3.2 Verify that KX(t, s)= σ 2×min(s, t) if { X(t), t ≥ 0 } is a (µ, σ )
Brownian motion.

➤ Exercise 13.3.3 Let { X(t), t ≥ 0 } represent theWiener process. Show that the re-
lated process { X(t)− X(0), t ≥ 0 } is a martingale. (X(0) can be a random variable.)

➤ Exercise 13.3.4 Let p(x, y; t) denote the transition probability density function
of a (µ, σ ) Brownian motion starting at x; p(x, y; t)= (1/

√
2π t σ ) exp[−(y− x−

µt)2/(2σ 2t) ]. Show that p satisfies Kolmogorov’s backward equation ∂p/∂t =
(σ 2/2)(∂2p/∂x2)+µ(∂p/∂x), and Kolmogorov’s forward equation (also called the
Fokker–Planck equation) ∂p/∂t = (σ 2/2)(∂2p/∂y2)−µ(∂p/∂y).
➤ Exercise 13.3.5 Let { X(t), t ≥ 0 } be a (0, σ ) Brownian motion. Prove that
the following three processes are martingales: (1) X(t), (2) X(t)2− σ 2t , and
(3) exp[ αX(t)−α2σ 2t/2 ] for α ∈ R, calledWald’s martingale.

13.3.1 Brownian Motion as the Limit of a Random Walk

A (µ, σ ) Brownian motion is the limiting case of a random walk. Suppose that a
particle moves �x either to the left with probability 1− p or to the right with
probability p after �t time. For simplicity assume that n≡ t/�t is an integer. Its
position at time t is

Y(t)≡�x (X1+ X2+ · · ·+ Xn) ,
where

Xi ≡
{+1, if the ith move is to the right

,
−1, if the ith move is to the left

and Xi are independent with Prob[ Xi = 1 ]= p= 1−Prob[ Xi =−1 ]. Note that
E[ Xi ]= 2p− 1 and that Var[ Xi ]= 1− (2p− 1)2. Therefore

E[Y(t) ]= n(�x)(2p− 1) and Var[Y(t) ]= n(�x)2[ 1− (2p− 1)2 ].

Letting �x ≡ σ√�t and p≡ (1+ (µ/σ )
√
�t)/2, we conclude that

E[Y(t) ]= nσ
√
�t (µ/σ )

√
�t = µt,

Var[Y(t) ]= nσ 2�t
(
1− (µ/σ )2�t

)→ σ 2t

as �t→ 0. Thus {Y(t), t ≥ 0 } converges to a (µ, σ ) Brownianmotion by the central
limit theorem. In particular, Brownian motion with zero drift is the limiting case of
symmetric random walk when µ= 0 is chosen. Note also that

Var[Y(t +�t)−Y(t) ]=Var[�x Xn+1 ]= (�x)2×Var[ Xn+1 ]→ σ 2�t.

The similarity to the BOPM is striking: The p above is identical to the probability
in Eq. (9.15) and �x = lnu. This is no coincidence (see Subsection 14.4.3).

➤ Exercise 13.3.6 Let dQ represent the probability that the random walk that con-
verges to a (µ, 1) Brownian motion takes the moves X1, X2, . . . . Let dP denote the
probability that the symmetric random walk that converges to the Wiener process
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Figure 13.3: Sample path of geometric Brownian motion. The process is Y (t )= eX (t ), where
X is a (0.5, 1) Brownian motion. The envelope is for one standard deviation,

√
(et − 1)e2t ,

around the mean. Can you tell the qualitative difference between this plot and the stock price
charts in Fig. 6.4?

makes identical moves. Derive dQ/dP. (The process dQ/dP in fact converges to
Wald’s martingale exp[ µW(t)−µ2t/2 ], where W(t) is the Wiener process.)

13.3.2 Geometric Brownian Motion

If X≡ { X(t), t ≥ 0 } is a Brownian motion process, the process {Y(t)≡ eX(t), t ≥ 0 }
is called geometric Brownian motion. Its other names are exponential Brownian
motion and lognormal diffusion. See Fig. 13.3 for illustration. When X is a (µ, σ )
Brownian motion, we have X(t)∼ N(µt, σ 2t) and the moment generating function

E
[
esX(t)

]= E [Y(t)s ]= eµts+(σ 2ts2/2)

from Eq. (6.8). Thus

E[Y(t) ]= eµt+(σ 2t/2), (13.12)

Var[Y(t) ]= E[Y(t)2 ]− E[Y(t) ]2 = e2µt+σ 2t(eσ 2t − 1
)
. (13.12′)

Geometric Brownian motion models situations in which percentage changes are
independent and identically distributed. To see this point, let Yn denote the stock
price at time n and Y0 = 1. Assume that relative returns Xi ≡ Yi/Yi−1 are inde-
pendent and identically distributed. Then lnYn =

∑n
i=1 ln Xi is a sum of indepen-

dent, identically distributed random variables, and { lnYn,n≥ 0 } is approximately
Brownian motion. Thus {Yn,n≥ 0 } is approximately geometric Brownian motion.

➤ Exercise 13.3.7 Let Y(t)≡ eX(t), where { X(t), t ≥ 0 } is a (µ, σ )Brownianmotion.
Show that E[Y(t) |Y(s) ]= Y(s) e(t−s)(µ+σ 2/2) for s < t .

➤ Exercise 13.3.8 Assume that the stock price follows the geometric Brownian mo-
tion process S(t)≡ eX(t), where { X(t), t ≥ 0 } is a (µ, σ ) Brownianmotion. (1) Show
that the stock price is growing at a rate of µ+ σ 2/2 (not µ !) on the average if by this
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rate wemean R1 ≡ (t2− t1)−1 ln E[ S(t2)/S(t1) ] for the time period [ t1, t2 ]. (2) Show
that the alternativemeasure for the rate of return, R2 ≡ (t2− t1)−1E[ ln(S(t2)/S(t1)) ],
gives rise to µ. (3) Argue that R2 < R1 independent of any assumptions about the
process { X(t) }.

13.3.3 Stationarity

The Wiener process { X(t), t ≥ 0 } is not stationary (see Exercise 13.3.2). However,
it can be transformed into a stationary process by

Y(t)≡ e−t X(e2t). (13.13)

This claim can be verified as follows. Because Y(t)∼ N(0, 1), the mean function is
zero, a constant. Furthermore,

E[Y(t)2 ]= E[ e−2t X(e2t)2 ]= e−2t e2t = 1<∞.
Finally, the covariance function KY(s, t), s < t , is

E[ e−t X(e2t)e−s X(e2s) ]= e−s−t E[ X(e2t)X(e2s ) ]= e−s−t e2s = es−t ,
where the next to last equality is due to Exercise 13.3.2. Therefore {Y(t), t ≥ 0 } is
stationary. The process Y is called theOrnstein–Uhlenbeck process [230, 261, 541].

13.3.4 Variations

Many formulas in standard calculus do not carry over to Brownian motion. Take the
quadratic variation of any function f : [ 0,∞)→ R defined by4

2n−1∑
k=0

[
f
(
(k+ 1) t

2n

)
− f

(
kt
2n

)]2
.

It is not hard to see that the quadratic variation vanishes as n→∞ if f is differen-
tiable. This conclusion no longer holds if f is Brownian motion. In fact,

lim
n→∞

2n−1∑
k=0

[
X
(
(k+ 1) t

2n

)
− X

(
kt
2n

)]2
= σ 2t (13.14)

with probability one, where { X(t), t ≥ 0 } is a (µ, σ ) Brownian motion [543]. This
result informally says that

∫ t
0 [dX(s) ]

2 = σ 2t , which is frequently written as

(dX)2 = σ 2 dt. (13.15)

It can furthermore be shown that

(dX)n = 0 for n> 2 (13.16)

and dX dt = 0.
FromEq. (13.14), the total variationof aBrownianpath is infinitewith probability

one:

lim
n→∞

2n−1∑
k=0

∣∣∣∣ X( (k+ 1) t
2n

)
− X

(
kt
2n

)∣∣∣∣=∞. (13.17)

Brownian motion is thus continuous but with highly irregular sample paths.
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➤ Exercise 13.3.9 To see the plausibility of Eq. (13.14), take the expectation of its
left-hand side and drop limn→∞ to obtain

2n−1∑
k=0
E
[
X
(
(k+ 1) t

2n

)
− X

(
kt
2n

)]2
.

Show that the preceding expression has the value µ2t22−n+ σ 2t , which approaches
σ 2t as n→∞.

➤ Exercise 13.3.10 We can prove Eq. (13.17) without using Eq. (13.14). Let

fn(X)≡
2n−1∑
k=0

∣∣∣∣ X( (k+ 1) t
2n

)
− X

(
kt
2n

)∣∣∣∣ .
(1) Prove that |X( (k+ 1) t/2n )− X(kt/2n)| has mean 2−n/2

√
2/π and variance

2−n(1− 2/π). ( fn(X) thus has mean 2n/2
√
2/π and variance 1− 2/π .) (2) Show

that fn(X)→∞ with probability one. (Hint: Prob[ |X− E[ X ]| ≥ k ]≤Var[ X ]/k2

by Chebyshev’s inequality.)

13.4 Brownian Bridge

ABrownian bridge process { B(t), 0≤ t ≤ 1 } is tied-downBrownianmotion [544]. It
is defined as theWiener process plus the constraint B(0)= B(1)= 0. An alternative
formulation is {W(t)− tW(1), 0≤ t < 1 }, where {W(t), 0≤ t } is the Wiener pro-
cess. For a general time period [ 0,T ], a Brownian bridge process can be written as

B(t)≡W(t)− t
T
W(T), 0≤ t ≤ T,

where W(0)= 0 and W(T) is known at time zero [193]. Observe that B(t) is pinned
to zero at both end points, times zero and T.

➤ Exercise 13.4.1 Prove the following identities: (1) E[ B(t) ]= 0, (2) E[ B(t)2 ]=
t − (t2/T), and (3) E[ B(s) B(t) ]=min(s, t)− (st/T).

➤ Exercise 13.4.2 Write the Brownian bridge process with B(0)= x and B(T)= y.

Additional Reading

The idea of martingale is due to Lévy (1886–1974) and received thorough devel-
opment by Doob [205, 280, 541, 877]. See [817] for a complete treatment of random
walks. Consult [631] for a history of Brownian motion from the physicist’s point of
view and [277] for adding Bachelier’s contribution. Reference [104] collects results
and formulas in connectionwithBrownianmotion.Advancedmaterials can be found
in [210, 230, 364, 543]. The backward and Fokker–Planck equations mentioned in
Exercise 13.3.4 describe a large class of stochastic processes with continuous sample
paths [373]. The heuristic arguments in Subsection 13.3.1 showing Brownian motion
as the limiting case of random walk can be made rigorous by Donsker’s theorem
[73, 289, 541, 573]. The geometric Brownian motion model for stock prices is due to
Osborne [709]. Models of stock returns are surveyed in [561].
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NOTES

1. Merton pioneered the alternative jump process in pricing [80].
2. For standard European options, price information at time i suffices because they are path inde-

pendent.
3. Regarded by Schumpeter as the greatest economist in his monumental History of Economic
Analysis [786],Walras (1834–1910) introduced numeraire in his equilibrium analysis, recognizing
that only relative prices matter [31].

4. For technical reasons, the partition of [ 0, t ] is dyadic, i.e., at points k(t/2n) for 0< k< 2n.



CHAPTER
FOURTEEN

Continuous-Time Financial
Mathematics

The pursuit of mathematics is a divine madness of the human spirit.

Alfred North Whitehead (1861–1947), Science and the Modern
World

This chapter introduces the mathematics behind continuous-time models. This ap-
proach to finance was initiated by Merton [290]. Formidable as the mathematics
seems to be, it can be made accessible at some expense of rigor and generality. The
theory will be applied to a few fundamental problems in finance.

14.1 Stochastic Integrals

From now on, we use W ≡ {W(t), t ≥ 0 } to denote the Wiener process. The goal
here is to develop stochastic integrals of X from a class of stochastic processes with
respect to the Wiener process:

It(X)≡
∫ t
0
X dW, t ≥ 0.

We saw in Subsection 13.3.4 that classical calculus cannot be applied to Brownian
motion. One reason is that its sample path, regarded as a function, has unbounded
total variation. It(X) is a random variable called the stochastic integral of X with
respect to W. The stochastic process { It(X), t ≥ 0 } is denoted here by

∫
X dW. Typ-

ical requirements for X in financial applications are (1) Prob[
∫ t
0 X

2(s)ds <∞ ]= 1
for all t ≥ 0 or the stronger

∫ t
0 E[ X

2(s) ]ds <∞ and (2) that the information set
at time t includes the history of X and W up to that point in time but nothing
about the evolution of X or W after t (nonanticipating, so to speak). The fu-
ture therefore cannot influence the present, and { X(s), 0≤ s ≤ t } is independent of
{W(t +u)−W(t),u> 0 }.

The Ito integral is a theory of stochastic integration.Aswith calculus, it starts with
step functions. A stochastic process {X(t) } is simple if there exist 0= t0 < t1 < · · ·
such that

X(t)= X(tk−1) for t ∈ [ tk−1, tk), k= 1, 2, . . .

190
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Figure 14.1: Simple stochastic process.

for any realization (see Fig. 14.1). The Ito integral of a simple process is defined as

It(X)≡
n−1∑
k=0
X(tk)[W(tk+1)−W(tk) ], (14.1)

where tn = t . Note that the integrand X is evaluated at tk, not tk+1.
The natural step to follow is to define the Ito integral ofmore general processes as

a limiting random variable of the Ito integral of simple stochastic processes. Indeed,
for a general stochastic process X= { X(t), t ≥ 0 }, there exists a random variable
It(X), unique almost certainly, such that It(Xn) converges in probability to It(X)
for each sequence of simple stochastic processes X1, X2, . . . , such that Xn converges
in probability to X. In particular, if X is continuous with probability one, then It(Xn)
converges in probability to It(X) as δn ≡max1≤k≤n(tk− tk−1) goes to zero, written
as ∫ t

0
X dW = st-limδn→0

n−1∑
k=0
X(tk)[W(tk+1)−W(tk) ]. (14.2)

It is a fundamental fact that
∫
XdW is continuous almost surely [419, 566]. The

following theorem says the Ito integral is a martingale (see Exercise 13.2.6 for its
discrete analog), and a corollary is the mean-value formula E[

∫ b
a XdW ]= 0.

THEOREM 14.1.1 The Ito integral
∫
X dW is a martingale.

Let us inspect Eq. (14.2) more closely. It says the following simple stochastic process
{ X̂ (t) } can be used in place of X to approximate the stochastic integral

∫ t
0 X dW:

X̂ (s)≡ X(tk−1) for s ∈ [ tk−1, tk), k= 1, 2, . . . ,n.

The key here is the nonanticipating feature of X̂ ; that is, the information up to time s,

{ X̂ (t),W(t), 0≤ t ≤ s },
cannot determine the future evolution of either X or W. Had we defined the
stochastic integral as

∑n−1
k=0 X(tk+1)[W(tk+1)−W(tk) ], we would have been using

the following different simple stochastic process in the approximation,

Ŷ(s)≡ X(tk) for s ∈ [ tk−1, tk), k= 1, 2, . . . ,n,

which clearly anticipates the future evolution of X. See Fig. 14.2 for illustration.
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Figure 14.2: Stochastic integration. The simple process X̂ in (a) does not anticipate X , whereas the
simple process X̂ in (b) does.

For example,
∫
WdW can be approximated as follows:

n−1∑
k=0
W(tk)[W(tk+1)−W(tk) ]

=
n−1∑
k=0

W(tk+1)2−W(tk)2

2
−
n−1∑
k=0

[W(tk+1)−W(tk) ]2

2

= W(t)2

2
−
n−1∑
k=0

[W(tk+1)−W(tk) ]2

2
.

Because the second term above converges to t/2 by Eq. (13.14),∫ t
0
WdW = W(t)2

2
− t

2
. (14.3)

One might have expected
∫ t
0 WdW =W(t)2/2 from calculus. Hence the extra t/2

termmaycomeas a surprise. It canbe traced to the infinite total variationofBrownian
motion. Another way to see the mistake of

∫ t
0 WdW =W(t)2/2 is through Theorem

14.1.1: W(t)2/2 is not a martingale (see Exercise 14.1.3), but [W(t)2− t ]/2 is (see
Exercise 13.3.5).

➤ Exercise 14.1.1 Prove Theorem 14.1.1 for simple stochastic processes.

➤ Exercise 14.1.2 Verify that using the following simple stochastic process,

Y(s)≡W(tk) for s ∈ [ tk−1, tk), k= 1, 2, . . . ,n,

to approximate W results in
∫ t
0 WdW = (W(t)2+ t)/2.

Comment 14.1.2 The different results in Exercise 14.1.2 and Eq. (14.3) show the im-
portance of picking the intermediate point for stochastic integrals (here, right end
point vs. left end point). The simple stochastic process in Exercise 14.1.2 anticipates
the future evolution of W. In general, the following simple stochastic process,

Z(s)≡W((1− a) tk−1+ atk) for s ∈ [ tk−1, tk), k= 1, 2, . . . ,n,

gives rise to
∫ t
0 WdW =W(t)2/2+ (a− 1/2) t . The Ito integral corresponds to the

choice a = 0. Standard calculus rules apply when a = 1/2, which gives rise to the
Stratonovich stochastic integral.
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➤ Exercise 14.1.3 Verify that W(t)2/2 is not a martingale.

➤ Exercise 14.1.4 Prove that E[
∫ t
0 WdW ]= 0.

➤ Exercise 14.1.5 Prove that stochastic integration reduces to the usual Riemann–
Stieltjes form for constant processes.

14.2 Ito Processes

The stochastic process X= { Xt , t ≥ 0 } that solves

Xt = X0+
∫ t
0
a(Xs, s)ds+

∫ t
0
b(Xs, s)dWs, t ≥ 0

is called an Ito process. Here, X0 is a scalar starting point and { a(Xt , t) : t ≥ 0 } and
{b(Xt , t) : t ≥ 0 } are stochastic processes satisfying certain regularity conditions. The
terms a(Xt , t) and b(Xt , t) are the drift and the diffusion, respectively. A shorthand
that is due to Langevin’s work in 1904 is the following stochastic differential equation
for the Ito differential dXt ,

dXt = a(Xt , t)dt +b(Xt , t)dWt , (14.4)

or simply dXt = at dt +bt dWt [30, 386]. This is Brownian motion with an instanta-
neous drift of at and an instantaneous variance of b2t . In particular, X is amartingale
if the drift at is zero by Theorem 14.1.1. Recall that dW is normally distributed with
mean zero and variance dt . A form equivalent to Eq. (14.4) is the so-calledLangevin
equation:

dXt = at dt +bt
√
dt ξ, (14.5)

where ξ ∼ N(0, 1). This formulation makes it easy to deriveMonte Carlo simulation
algorithms. Although dt √dt , the deterministic term at still matters because the
randomvariable ξ makes sure the fluctuation term bt over successive intervals tends
to cancel each other out.

There are regularity conditions that guarantee the existence and theuniqueness of
solution for stochastic differential equations [30, 373, 566].The solution toa stochastic
differential equation is also called a diffusion process.

14.2.1 Discrete Approximations

The following finite-difference approximation follows naturally from Eq. (14.5):

X̂ (tn+1)= X̂ (tn)+ a(X̂ (tn), tn)�t +b(X̂ (tn), tn)�W(tn), (14.6)

where tn ≡ n�t . This method is called the Euler method or the Euler–Maruyama
method [556]. Under mild conditions, X̂ (tn) indeed converges to X(tn) [572]. Note
that �W(tn) should be interpreted as W(tn+1)−W(tn) instead of W(tn)−W(tn−1)
because a and b are required to be nonanticipating. With the drift a and the dif-
fusion b determined at time tn, X̂ is expected to be X̂ (tn)+ a(X̂ (tn), tn)�t at time
tn+1. However, the new information �W(tn), which is unpredictable given the in-
formation available at time tn, dislodges X̂ from its expected position by adding
b(X̂ (tn), tn)�W(tn). This procedure then repeats itself at X̂ (tn+1). See Fig. 14.3 for
an illustration.
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✟✯

✯

❥

X̂ (t0)
✇

X̂ (t1)

X̂ (t0)+ a0

✇


✻

❄

|b0|

X̂ (t2)

X̂ (t1)+ a1

✇

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆


✻

❄

|b1|

X̂ (t3)

X̂ (t2)+ a2

✇✡
✡

✡
✡

✡
✡

✡✡✣

✯

✻

❄

|b2|

X̂ (t4)

X̂ (t3)+ a3

✇

✻

❄

|b3|

t0 t1 t2 t3 t4

Figure 14.3: Dynamics of Ito process. The filled circles track the process,
whereas the unfilled circles are the expected positions. In the plot, ai ≡
a ( X̂ (ti ), ti )�t , the expected changes, and bi ≡ b( X̂ (ti ), ti )�W (ti ), the
random disturbances. Note that X̂ (ti+1) = X̂ (ti )+ ai + bi .

The more advanced Mil’shtein scheme adds the bb′[(�W)2−�t]/2 term to
Euler’smethod to provide better approximations [668, 669]. For geometricBrownian
motion, for example, Euler’s scheme yields

X̂ (tn+1)= X̂ (tn)+µX̂ (tn)�t + σX̂ (tn)�W(tn),

whereas Mil’shtein’s scheme adds σ 2X̂ (tn){ [�W(tn) ]2−�t }/2 to the above.
Under fairly loose regularity conditions, approximation (14.6) can be replaced

with

X̂ (tn+1)= X̂ (tn)+ a(X̂ (tn), tn)�t +b(X̂ (tn), tn)
√
�t Y(tn),

where Y(t0),Y(t1), . . . , are independent and identically distributed with zero mean
and unit variance. This general result is guaranteed by Donsker’s theorem [17]. The
simpler discrete approximation scheme uses Bernoulli random variables instead:

X̂ (tn+1)= X̂ (tn)+ a[ X̂ (tn), tn ]�t +b[ X̂ (tn), tn ]
√
�t ξ, (14.7)

where Prob[ ξ = 1 ]= Prob[ ξ =−1 ]= 1/2. Note that E[ ξ ]= 0 and Var[ ξ ]= 1.
This clearly defines a binomial model. As �t goes to zero, X̂ converges to X [294,
434].

14.2.2 Trading and the Ito Integral

Consider an Ito process dSt = µt dt + σt dWt , where St is the vector of security prices
at time t . Let φt be a trading strategy denoting the quantity of each type of security
held at time t . Clearly the stochastic process φtSt is the value of the portfolio φt
at time t . Then φt dSt ≡ φt(µt dt + σt dWt) represents the change in the value from
security price changes occurring at time t . The equivalent Ito integral,

GT(φ)≡
∫ T
0

φt dSt =
∫ T
0

φtµt dt +
∫ T
0

φtσt dWt ,
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measures the gains realized by the trading strategy over the period [ 0,T ]. A strategy
is self-financing if

φtSt = φ0S0+Gt(φ) (14.8)

for all 0≤ t < T. In other words, the investment at any time equals the initial invest-
ment plus the total capital gains up to that time.

Discrete-time models can clarify the above concepts. Let t0 < t1 < · · ·< tn de-
note the trading points. As before, Sk is the price vector at time tk, and the vector φk
denotes the quantity of each security held during [ tk, tk+1). Thus φkSk stands for the
valueofportfolio φk right after its establishment at time tk, and φkSk+1 stands for the
value of φk at time tk+1 before any transactions aremade to set up the next portfolio
φk+1. The nonanticipation requirement of the Ito integral means that φk must be
established before Sk+1 is known. The quantity φk�Sk ≡ φk(Sk+1− Sk) represents
the capital gains between times tk and tk+1, and the summation G(n)≡∑n−1

k=0 φk�Sk
is the total capital gains through time tn. Note the similarity of this summation to the
Ito integral of simple processes (14.1).A trading strategy is self-financing if the invest-
ment at any time is financed completely by the investment in the previous period, i.e.,

φkSk = φk−1Sk

for all 0< k≤ n. The preceding condition and condition (14.8) are equivalent (see
Exercise 14.2.1).

When an Ito process dXt = at dt +bt dWt is Markovian, the future evolution of
X depends solely on its current value. The nonanticipating requirement further says
that at and bt cannot embody future values of dW. The Ito process is hence ideal
for modeling asset price dynamics under the weak form of efficient markets.

➤ Exercise 14.2.1 Prove that the self-financing definition φkSk = φk−1Sk implies the
alternative condition φkSk = φ0S0+Gk for 0< k≤ n, and vice versa.

14.2.3 Ito’s Lemma

The central tool in stochastic differential equations is Ito’s lemma, which basically
says that a smooth function of an Ito process is itself an Ito process.

THEOREM 14.2.1 Suppose that f : R→ R is twice continuously differentiable1 and that
dX= at dt +bt dW. Then f (X) is the Ito process

f (Xt)= f (X0)+
∫ t
0
f ′(Xs) as ds+

∫ t
0
f ′(Xs)bs dW+ 1

2

∫ t
0
f ′′(Xs)b2s ds

for t ≥ 0.

In differential form, Ito’s lemma becomes

df (X)= f ′(X) a dt + f ′(X)bdW+ 1
2
f ′′(X)b2 dt. (14.9)

Compared with calculus, the interesting part of Eq. (14.9) is the third term on
the right-hand side. This can be traced to the positive quadratic variation of
Brownian paths, making (dW)2 nonnegligible. A convenient formulation of Ito’s
lemma suitable for generalization to higher dimensions is

df (X)= f ′(X)dX+ 1
2
f ′′(X)(dX)2. (14.10)
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Here, we are supposed to multiply out (dX)2 = (a dt +bdW)2 symbolically accord-
ing to the following multiplication table:

× dW dt

dW dt 0
dt 0 0

Note that the (dW)2 = dt entry is justified by Eq. (13.15). This form is easy to
remember because of its similarity to Taylor expansion.

THEOREM 14.2.2 (Higher-Dimensional Ito’s Lemma) Let W1,W2, . . . ,Wn be indepen-
dent Wiener processes and let X≡ (X1, X2, . . . , Xm) be a vector process. Suppose
that f : Rm→ R is twice continuously differentiable and Xi is an Ito process with
dXi = ai dt +

∑n
j=1 bi j dWj . Then df (X) is an Ito process with the differential

d f (X)=
m∑
i=1
fi (X)dXi + 1

2

m∑
i=1

m∑
k=1
fik(X)dXi dXk,

where fi ≡ ∂ f/∂xi and fik ≡ ∂2 f/∂xi∂xk.
The multiplication table for Theorem 14.2.2 is

× dWi dt

dWk δi k d t 0
dt 0 0

in which

δik =
{
1, if i = k
0, otherwise

.

In applying the higher-dimensional Ito’s lemma, usually one of the variables, say
X1, is the time variable t and dX1 = dt . In this case, b1 j = 0 for all j and a1 = 1.
An alternative formulation of Ito’s lemma incorporates the interdependence of the
variables X1, X2, . . . , Xm into that between the Wiener processes.

THEOREM 14.2.3 Let W1,W2, . . . ,Wm be Wiener processes and let X≡ (X1, X2, . . . ,

Xm) be a vector process. Suppose that f : Rm→ R is twice continuously differentiable
and Xi is an Ito process with dXi = ai dt +bi dWi . Then df (X) is the following Ito
process,

d f (X)=
m∑
i=1
fi (X)dXi + 1

2

m∑
i=1

m∑
k=1
fik(X)dXi dXk,

with the following multiplication table:

× dWi dt

dWk ρi k d t 0
dt 0 0

Here, ρik denotes the correlation between dWi and dWk.

In Theorem 14.2.3 the correlation between dWi =
√
dt ξi and dWk =

√
dt ξk

refers to that between the normally distributed random variables ξi and ξk.
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➤ Exercise 14.2.2 Prove Eq. (14.3) by using Ito’s formula.

14.3 Applications

This section presents applications of the Ito process, some of which will be useful
later.

EXAMPLE 14.3.1 A (µ, σ ) Brownian motion is µdt + σ dW by Ito’s lemma and
Eq. (13.11).

EXAMPLE 14.3.2 Consider the Ito process dX= µ(t)dt + σ (t)dW. It is identical to
Brownian motion except that the drift µ(t) and diffusion σ (t) are no longer con-
stants. Again,

X(t)∼ N
(
X(0)+

∫ t
0
µ(s)ds,

∫ t
0
σ 2(s)ds

)
is normally distributed.

EXAMPLE 14.3.3 Consider the geometric Brownianmotion process Y(t)≡ eX(t), where
X(t) is a (µ, σ ) Brownian motion. Ito’s formula (14.9) implies that

dY
Y
= (µ+ σ 2/2

)
dt + σ dW.

The instantaneous rate of return is µ+ σ 2/2 , not µ.

EXAMPLE 14.3.4 Consider the Ito process U ≡ YZ with dY= a dt +bdW and dZ=
f dt + g dW. Processes Y and Z share theWiener process W. Ito’s lemma (Theorem
14.2.2) can be used to show that dU = Z dY+Y dZ+dYdZ, which equals

Z dY+Y dZ+ (a dt +bdW)( f dt + g dW)= Z dY+Y dZ+bg dt.
If either b≡ 0 or g ≡ 0, then integration by parts holds.

EXAMPLE 14.3.5 Consider the Ito process U ≡ YZ, where dY/Y= a dt +bdWy and
dZ/Z= f dt + g dWz. The correlation between Wy and Wz is ρ. Apply Ito’s lemma
(Theorem 14.2.3):

dU = Z dY+Y dZ+dYdZ
= ZY(a dt +bdWy)+YZ( f dt + g dWz)
+YZ(a dt +bdWy)( f dt + g dWz)

= U(a+ f +bgρ)dt +UbdWy+Ug dWz.
Note that dU/U has volatility

√
b2+ 2bgρ+ g2 by formula (6.9). The product of two

(or more) correlated geometric Brownian motion processes thus remains geometric
Brownian motion. This result has applications in correlation options, whose value
depends on multiple assets. As

Y= exp[ (a−b2/2)dt +bdWy],
Z= exp[ ( f − g2/2)dt + g dWz],
U = exp[{ a+ f − (b2+ g2)/2}dt +bdWy+ g dWz ],
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lnU is Brownianmotionwith amean equal to the sum of themeans of lnY and ln Z.
This holds even if Y and Z are correlated. Finally, lnY and ln Z have correlation ρ.

EXAMPLE 14.3.6 Suppose that S follows dS/S= µdt + σ dW. Then F(S, t)≡ Sey(T−t)
follows

dF
F
= (µ− y)dt + σ dW

by Ito’s lemma. This result has applications in forward and futures contracts.

➤ Exercise 14.3.1 Assume that dX/X= µdt + σ dW. (1) Prove that ln X follows
d(ln X)= (µ− σ 2/2)dt + σ dW. (2) Derive the probability distribution of ln(X(t)/
X(0)).

➤ Exercise 14.3.2 Let X follow the geometric Brownian motion process dX/X=
µdt + σ dW. Show that R≡ ln X+ σ 2t/2 follows dR= µdt + σ dW.

➤ Exercise 14.3.3 (1)What is the stochastic differential equation for the process Wn?
(2) Show that∫ t

s
Wn dW = W(t)n+1−W(s)n+1

n+ 1
− n

2

∫ t
s
Wn−1 dt.

(Hint: Use Eqs. (13.15) and (13.16) or apply Ito’s lemma.)

➤ Exercise 14.3.4 Consider the Ito process U ≡ (Y+ Z)/2, where dY/Y= a dt +
bdW and dZ/Z= f dt + g dW. Processes Y and Z share the Wiener process W.
Derive the stochastic differential equation for dU/U.

➤ Exercise 14.3.5 Redo Example 14.3.4 except that dY= a dt +b dWy and dZ=
f dt + g dWz, where dWy and dWz have correlation ρ.

➤ Exercise 14.3.6 Verify that U ≡ Y/Z follows dU/U = (a− f −bgρ)dt +bdWy−
g dWz, where Y and Z are drawn from Example 14.3.5.

➤ Exercise 14.3.7 Given dY/Y= µdt + σ dW and dX/X= r dt , derive the stochas-
tic differential equation for F ≡ X/Y.

14.3.1 The Ornstein–Uhlenbeck Process

The Ornstein–Uhlenbeck process has the stochastic differential equation

dX=−κX dt + σ dW, (14.11)

where κ, σ ≥ 0 (see Fig. 14.4). It is known that

E[ X(t) ]= e−κ(t−t0) E[ x0 ],
Var[ X(t) ]= σ

2

2κ

[
1− e−2κ(t−t0)]+ e−2κ(t−t0) Var[ x0 ],

Cov[ X(s), X(t) ]= σ
2

2κ
e−κ(t−s)

[
1− e−2κ(s−t0)]+ e−κ(t+s−2t0) Var[ x0 ]

for t0 ≤ s ≤ t and X(t0)= x0. In fact, X(t) is normally distributed if x0 is a constant
or normally distributed [30]; X is said to be a normal process. Of course, E[ x0 ]= x0
and Var[ x0 ]= 0 if x0 is a constant. When x0 ∼ N

(
0, σ

2

2κ

)
, it is easy to see that X is
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Figure 14.4: Sample path of Ornstein–Uhlenbeck process. Shown is a sample path of the
Ornstein–Uhlenbeck process dY =−0.15 Y dt + 0.15 dW , starting at Y (0)= 2. The envelope
is for one standard deviation

√
[ (0.15)2/0.3](1− e−0.3t ) around the mean 2e−0.15 t . In contrast

to Brownian motion, which diverges to infinite values (see Fig. 13.2), the Ornstein–Uhlenbeck
process converges to a stationary distribution.

stationary. The Ornstein–Uhlenbeck process describes the velocity of a tiny particle
through a fluid in thermal equilibrium – in short, Brownian motion in nature [386].

The Ornstein–Uhlenbeck process has the following mean-reversion property.
When X> 0, the dX term tends to be negative, pulling X toward zero, whereas
if X< 0, the dX term tends to be positive, pulling X toward zero again.

EXAMPLE 14.3.7 Suppose that X is an Ornstein–Uhlenbeck process. Ito’s lemma says
that V ≡ X2 has the differential

dV = 2X dX+ (dX)2 = 2
√
V (−κ

√
V dt + σ dW)+ σ 2 dt

= (−2κV+ σ 2)dt + 2σ
√
V dW,

a square-root process.

Consider the following process, also called the Ornstein–Uhlenbeck process:

dX= κ(µ− X)dt + σ dW, (14.12)

where σ ≥ 0. Given X(t0)= x0, a constant, it is known that

E[ X(t) ]= µ+ (x0−µ) e−κ(t−t0) (14.13)

Var[ X(t) ]= σ
2

2κ

[
1− e−2κ(t−t0)] (14.14)

for t0 ≤ t [855]. Because the mean and the standard deviation are roughly µ and
σ/
√
2κ , respectively, for large t , the probability of X ’s being negative is extremely

unlikely in any finite time interval when µ > 0 is large relative to σ/
√
2κ (say µ >

4σ/
√
2κ). Process (14.12) has the salient mean-reverting feature that X tends to

move toward µ, making it useful for modeling term structure [855], stock price
volatility [823], and stock price return [613].
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➤ Exercise 14.3.8 Let X(t) be theOrnstein–Uhlenbeck process in Eq. (14.11). Show
that the differential for Y(t)≡ X(t) eκt is dY= σeκt dW. (This implies that Y(t),
hence X(t) as well, is normally distributed.)

➤ Exercise 14.3.9 Justify the claim inEq. (13.13) by showing that Y(t)≡ e−t W(e2t) is
theOrnstein–Uhlenbeck process dY=−Ydt +√2dW. (Hint: Consider Y(t +dt)−
Y(t).)

➤ Exercise 14.3.10 Consider the following processes:

dS = µSdt + σ SdW1,

dσ = β(σ − σ )dt + γ dW2,

where dW1 and dW2 are Wiener processes with correlation ρ. Let H(S, σ, τ ) be
a function of S, σ , and τ . Derive its stochastic differential equation. (This process
models stock price with a correlated stochastic volatility, which follows a mean-
reverting process.)

➤ Exercise 14.3.11 Show that the transition probability density function p of dX=
−(1/2) Xdt +dW satisfies the backward equation

∂p
∂s
=−1

2
∂2p
∂x2
+ 1

2
x
∂p
∂x
.

(Hint: X(t)∼ N(xe−(t−s)/2, 1− e−(t−s)) when X(s)= x.)

14.3.2 The Square-Root Process

The square-root process has the stochastic differential equation

dX= κ(µ− X)dt + σ
√
XdW,

where κ, σ ≥ 0 and the initial value of X is a nonnegative constant. See Fig. 14.5
for an illustration. Like the Ornstein–Uhlenbeck process, the square-root process

Figure 14.5: Sample path of square-root process. Shown is a sample path of the square-root pro-
cess dY = 0.2(0.1− Y ) dt + 0.15

√
Y dW with the initial condition Y (0)= 0.01. The envelope

is for one standard deviation around the mean, which is 0.01 e−0.2 t + 0.1 (1− e−0.2 t ).
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possesses mean reversion in that X tends to move toward µ, but the volatility
is proportional to

√
X instead of a constant. When X hits zero and µ≥ 0, the

probability is one that it will not move below zero; in other words, zero is a reflecting
boundary. Hence, the square-root process is a good candidate for modeling interest
ratemovements [234]. TheOrnstein–Uhlenbeck process, in contrast, allows negative
interest rates. The two processes are related (see Example 14.3.7).

Feller (1906–1970) showed that the random variable 2cX(t) follows the non-
central chi-square distribution

χ

(
4κµ
σ 2

, 2cX(0) e−κt
)
,

where c ≡ (2κ/σ 2)(1− e−κt)−1 [234, 341]. Given X(0)= x0, a constant, it can be
proved that

E[ X(t) ]= x0e−κt +µ(1− e−κt),
Var[ X(t) ]= x0 σ

2

κ
(e−κt − e−2κt)+µ σ

2

2κ
(1− e−κt)2

for t ≥ 0.

14.4 Financial Applications

14.4.1 Transactions Costs

Transactions costs are a fact of life, never zero however negligible. Under the propor-
tional transactions costmodel, it is impossible to trade continuously. Intuitively, this is
because the transactions cost per trade is proportional to |dW|, and ∫ T0 |dW| =∞ al-
most surely byEq. (13.17).As a consequence, a continuous traderwould be bankrupt
withprobability one [660].Even stronger claims canbemade. For instance, the cheap-
est trading strategy to dominate the value of European call at maturity is the covered
call [814].

➤ Exercise 14.4.1 Argue that an investorwho has information about the entire future
value of the Brownian motion’s driving the stock price will have infinite wealth at
any given horizon date. In other words, market fluctuations can be exploited.

14.4.2 Stochastic Interest Rate Models

Merton originated the followingmethodology to term structuremodeling [493]. Sup-
pose that the short rate r follows aMarkov process dr = µ(r, t)dt + σ (r, t)dW. Let
P(r, t,T) denote the price at time t of a zero-coupon bond that pays $1 at time T.
Its stochastic process must also be Markovian. Write its dynamics as

dP
P
= µp dt + σp dW

so that the expected instantaneous rate of return on a (T− t)-year zero-coupon bond
is µp and the instantaneous variance is σ 2

p. Surely P(r,T,T)= 1 for any T. By Ito’s
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lemma (Theorem 14.2.2),

dP = ∂P
∂T
dT+ ∂P

∂r
dr + 1

2
∂2P
∂r2

(dr)2

= −∂P
∂T
dt + ∂P

∂r
[µ(r, t)dt + σ (r, t)dW ]

+ 1
2
∂2P
∂r2

[µ(r, t)dt + σ (r, t)dW ]2

=
[
−∂P
∂T
+µ(r, t) ∂P

∂r
+ σ (r, t)

2

2
∂2P
∂r2

]
dt + σ (r, t) ∂P

∂r
dW,

where dt =−dT in the second equality. Hence

− ∂P
∂T
+µ(r, t) ∂P

∂r
+ σ (r, t)

2

2
∂2P
∂r2
= Pµp, σ (r, t)

∂P
∂r
= Pσp. (14.15)

Models with the short rate as the only explanatory variable are called short rate
models.

The Merton Model
Suppose we assume the local expectations theory, which means that µp equals the
prevailing short rate r(t) for all T, and we assume that µ and σ are constants. Then
the partial differential equations (14.15) yield the following solution:

P(r, t,T)= exp
[
−r(T− t)− µ(T− t)

2

2
+ σ

2(T− t)3
6

]
. (14.16)

Thismodel is due toMerton [660].Wemakea fewobservations.First,σp =−σ (T− t),
which says sensibly that bonds with longer maturity are more volatile. The dynamics
of P is dP/P = r dt − σ (T− t)dW. Now, P has no upper limits as T becomes large,
which does not square with the reality. This happens because of negative rates in the
model.

➤ Exercise 14.4.2 Negative interest rates imply arbitrage profits for riskless bonds.
Why?

Duration under Parallel Shifts
Consider duration with respect to parallel shifts in the spot rate curve. For con-
venience, assume that t = 0. Parallel shift means S(r +�r,T)= S(r,T)+�r for
any �r ; so ∂S(r,T)/∂r = 1. This implies S(r,T)= r + g(T) for some function g
with g(0)= 0 because S(r, 0)= r . Consequently, P(r,T)= e−[r+g(T)]T . Substitute
this identity into the left-hand part of Eqs. (14.15) and assume the local expectations
theory to obtain

g′(T)+ g(T)
T
= µ(r)− σ (r)

2

2
T.

As the left-hand side is independent of r , so must the right-hand side be. Because
this must hold for all T, both µ(r) and σ (r) must be constants, i.e., the Merton
model. Asmentioned before, this model is flawed, so must duration be, as such [496].
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➤ Exercise 14.4.3 Suppose that the current spot rate curve is flat. Under the assump-
tion that only parallel shifts are allowed, what can we say about the parameters µ
and σ governing the short rate process?

Immunization under Parallel Shifts Revisited
A duration-matched portfolio under parallel shifts in the spot rate curve begets ar-
bitrage opportunities in that the portfolio value exceeds the liability for any instan-
taneous rate changes. This was shown in Subsection 5.8.2. However, this seeming
inconsistency with equilibrium disappears if changes in portfolio value through time
are taken into account. Indeed, for certain interest ratemodels, a liability immunized
by a duration-matched portfolio exceeds the minimum portfolio value at any given
time in the future. Thus the claimed arbitrage profit evaporates because the portfolio
value does not always cover the liability.

We illustrate this point with the Merton model dr = µdt + σ dW, which results
from parallel shifts in the spot rate curve and the local expectations theory. To im-
munize a $1 liability that is due at time s, a two-bond portfolio is constructed now
with maturity dates t1 and t2, where t1 < s < t2. Each bond is a zero-coupon bond
with $1 par value. The portfolio matches the present value of the liability today, and
its value relative to the PV of the liability is minimum among all such portfolios
(review Subsection 4.2.2). Consider any future time t such that t < t1. With A(t)
denoting the portfolio value and L(t) the liability value at time t , it can be shown
that the asset/liability ratio A(t)/L(t) is a convex function of the prevailing interest
rate and A(t)< L(t) (see Exercise 14.4.4). This conclusion holds for other interest
rate models [52].

➤ Exercise 14.4.4 (1) Prove that A(t)/L(t) is a convex function of the prevailing
interest rate. (2) Then verify A(t)< L(t).

14.4.3 Modeling Stock Prices

The most popular stochastic model for stock prices has been geometric Brownian
motion dS/S= µdt + σ dW. This model best describes an equilibrium in which ex-
pectations about future returns have settled down [660].

From the discrete-time analog �S/S= µ�t + σ√�t ξ , where ξ ∼ N(0, 1), we
know that �S/S∼ N(µ�t, σ 2�t). Thepercentage return for thenext �t timehence
has mean µ�t and variance σ 2�t . In other words, the percentage return per unit
time has mean µ and variance σ 2. For this reason, µ is called the expected instanta-
neous rate of return and σ 2 the instantaneous variance of the rate of return. If there
is no uncertainty about the stock price, i.e., σ = 0, then S(t)= S(0) eµt .
Comment 14.4.1 It may seem strange that the rate of return is µ instead of µ− σ 2/2.
Example 14.3.3 says that S(t)/S(0)= eX(t), where X(t) is a (µ− σ 2/2, σ ) Brownian
motion and the continuously compounded rate of return over the time period [ 0,T ]
is

ln[ S(T)/S(0) ]
T

= X(T)− X(0)
T

∼ N
(
µ− σ

2

2
, σ 2

)
. (14.17)

The expected continuously compounded rate of return is then µ− σ 2/2 ! Well, they
refer to alternative definitions of rates of return. Unless stated otherwise, it is the
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former (instantaneous rate of return µ) that we have in mind from now on. It should
be pointed out that the µ used in the BOPM in Eq. (9.13) referred to the latter rate
of return. In summary,

E[ { S(�t)− S(0) }/S(0) ]
�t

→ µ,

ln E[ S(T)/S(0) ]
T

= µ,

E[ ln(S(T)/S(0))]
T

= µ− σ
2

2
.

(See Comment 9.3.2, Lemma 9.3.1, Example 14.3.3, and Exercises 13.3.8 and 14.4.5.)

➤ Exercise 14.4.5 Prove that E[ S(T) ]= S(0) eµT .
➤ Exercise 14.4.6 Suppose the stock price follows the geometric Brownian motion
process dS/S= σ dW. Example 14.3.3 says that S(t)/S(0)= eX(t), where X(t) is a
(−σ 2/2, σ ) Brownianmotion. In otherwords, the stock is expected to have a negative
growth rate. Explain why the growth rate is not zero.

➤ Exercise 14.4.7 Show that the simple rate of return [ S(t)/S(0) ]− 1 has mean
eµt − 1 and variance e2µt(eσ

2t − 1).

➤ Exercise 14.4.8 Assume that the volatility σ is stochastic but driven by an in-
dependent Wiener process. Suppose that the average variance over the time period
[ 0,T ] as defined by σ̂ 2 ≡ 1

T

∫ T
0 σ

2(t)dt is given. Argue that

ln
S(T)
S(0)

∼ N(µT− ( σ̂ 2 T/2), σ̂ 2 T).

(Thus S(T) seen from time zero remains lognormally distributed.)

➤ Exercise 14.4.9 Justify using �S/(S
√
�t) to estimate volatility.

➤ Exercise 14.4.10 What are the shortcomings of modeling the stock price dynamics
by dS= µdt + σ dW with constant µ and σ?

Continuous-Time Limit of the Binomial Model
What is the Ito process for the stock’s rate of return in a risk-neutral economy to
which the binomial model in Section 9.2 converges? The continuously compounded
rate of return of the stock price over a period of length τ is a sum of the following
n independent identically distributed random variables:

Xi =
{
lnu with probability p ,
lnd with probability 1− p

where u≡ eσ
√
τ/n , d ≡ e−σ

√
τ/n , and p≡ (erτ/n−d)/(u−d). The rate of return is

hence the random walk
∑n
i=1Xi . It is straightforward to verify that

E

[
n∑
i=1
Xi

]
→
(
r − σ

2

2

)
τ, Var

[
n∑
i=1
Xi

]
→ σ 2τ. (14.18)

The continuously compounded rate of return thus converges to a (r − σ 2/2, σ )
Brownian motion, and the stock price follows dS/S= r dt + σ dW in a risk-neutral
economy. Indeed, the discount process { Z(t)≡ e−r t S(t), t ≥ 0 } is amartingale under
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this risk-neutral probability measure as dZ/Z= σ dW is a driftless Ito process by
Exercise 14.3.6.

➤ Exercise 14.4.11 Verify Eqs. (14.18). (Hint: ex ≈ 1+ x+ x2/2.)
➤ Exercise 14.4.12 From the above discussions, E[ Xi ]→ (r − σ 2/2)�t and√
Var[ Xi ]→ σ

√
�t .Now Xi+1 = ln(Si+1/Si ),where Si ≡ S0eX1+X2+···+Xi is the stock

price at time i . Hence

Xi+1 = ln
(
1+ Si+1− Si

Si

)
≈ Si+1− Si

Si
≡ �Si
Si
.

The above finding suggests that dS/S= (r − σ 2/2)dt + σ dW, contradicting the
above! Find the hole in the argument and correct it.

➤ Exercise 14.4.13 The continuously compounded rate of return X≡ ln S follows
dX= (r − σ 2/2)dt + σ dW in a risk-neutral economy. Use this fact to show that

u= exp[ (r − σ 2/2) �t + σ
√
�t ], d = exp[ (r − σ 2/2) �t − σ

√
�t ]

under the alternative binomial model in which an up move occurs with probability
1/2.

Additional Reading

We followed [541, 543, 763, 764] in the exposition of stochastic processes and
[30, 289, 419, 544] in the discussions of stochastic integrals. The Ito integral is due
to Ito (1915–) [500]. Ito’s lemma is also due to Ito under the strong influence of
Bachelier’s thesis [501, 512]. Rigorous proofs of Ito’s lemma can be found in [30, 419],
and informal ones can be found in [470, 492, 660].Mathematica programs for carry-
ing out some of the manipulations are listed in [854]. Consult [556, 557, 558, 774] for
numerical solutions of stochastic differential equations. See [613] for the multivari-
ate Ornstein–Uhlenbeck process. Other useful references include [822] (diffusion),
[549] (Ito integral), [280, 761] (stochastic processes), [211, 364, 776] (stochastic dif-
ferential equations), [261] (stochastic convergence), [542] (stochastic optimization
in trading), [70] (nonprobabilistic treatment of continuous-time treading), [102, 181]
(distribution-free competitive trading), and [112, 115, 262, 274, 681] (transactions
costs).

NOTE

1. This means that all first- and second-order partial derivatives exist and are continuous.

A proof is that which convinces a reasonable man; a
rigorous proof is that which convinces an unreasonable
man.

Mark Kac (1914–1984)



CHAPTER
FIFTEEN

Continuous-Time Derivatives
Pricing

This problem of time in the art of music is of capital importance.

Igor Stravinsky (1882–1971), Poetics of Music

After a short introduction to partial differential equations, this chapter presents
the partial differential equation that the option value should satisfy in continuous
time. The general methodology is then applied to derivatives, including options on
a stock that pays continuous dividends, futures, futures options, correlation options,
exchange options, path-dependent options, currency-related options, barrier options,
convertible bonds, and options under stochastic volatility. This chapter also discusses
the correspondence between the partial differential equation and the martingale
approach to pricing.

15.1 Partial Differential Equations

Atwo-dimensional second-order partial differential equation has the following form:

p
∂2θ

∂x2
+q ∂2θ

∂x ∂y
+ r ∂

2θ

∂y2
+ s ∂θ

∂x
+ t ∂θ

∂y
+uθ + v = 0,

where p,q, r, s, t,u, and v may be functions of the two independent variables x and
y aswell as the dependent variable θ and its derivatives. It is called elliptic,parabolic,
or hyperbolic according to whether q2 < 4pr , q2 = 4pr , or q2 > 4pr , respectively,
over the domain of interest. For this reason, q2− 4pr is called the discriminant. Note
that the solution to a partial differential equation is a function.

Partial differential equations canalsobeclassified into initial-valueandboundary-
value problems. An initial-value problem propagates the solution forward in time
from the values given at the initial time. In contrast, a boundary-value problem has
known values that must be satisfied at both ends of the relevant intervals [391].
If the conditions for some independent variables are given in the form of initial
values and those for others as boundary conditions,wehave an initial-value boundary
problem.

A standard elliptic equation is the two-dimensional Poisson equation:

∂2θ

∂x2
+ ∂

2θ

∂y2
=−ρ(x, y).

206
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The wave equation,

∂2θ

∂t2
− 1
v2
∂2θ

∂x2
= 0,

is hyperbolic. Themost important parabolic equation is thediffusion (heat) equation,

1
2
D
∂2θ

∂x2
− ∂θ
∂t
= 0,

which is a special case of the Fokker–Planck equation. Given the initial condition
θ(x, 0)= f (x) for −∞< x <∞, its unique bounded solution for any t > 0 is

1√
2πDt

∫ ∞
−∞
f (z) e−(x−z)

2/(2Dt) dz (15.1)

when f (x) is bounded and piecewise continuous for all real x. The solution clearly
depends on the entire initial condition. Any two-dimensional second-order partial
differential equation canbe reduced to generalized formsof thePoisson equation, the
diffusion equation, or the wave equation according to whether it is elliptic, parabolic,
or hyperbolic.

➤ Exercise 15.1.1 Verify that the diffusion equation is indeed satisfied by inte-
gral (15.1).

15.2 The Black–Scholes Differential Equation

The price of any derivative on a non-dividend-paying stock must satisfy a partial
differential equation.Thekey step is recognizing that the same randomprocess drives
both securities; it is systematic, in other words. Given that their prices are perfectly
correlated, we can figure out the amount of stock such that the gain from it offsets
exactly the loss from the derivative, and vice versa. This removes the uncertainty
from the value of the portfolio of the stock and the derivative at the end of a short
period of time and forces its return to be the riskless rate in order to avoid arbitrage
opportunities.

Several assumptions aremade: (1) the stockprice follows the geometricBrownian
motion dS= µSdt + σ SdW with constant µ and σ , (2) there are no dividends
during the life of the derivative, (3) trading is continuous , (4) short selling is allowed,
(5) there are no transactions costs or taxes, (6) all securities are infinitely divisible,
(7) there are no riskless arbitrage opportunities, (8) the term structure of riskless
rates is flat at r , and (9) there is unlimited riskless borrowing and lending. Some of
these assumptions can be relaxed. For instance, µ, σ , and r can be deterministic
functions of time instead of constants. In what follows, t denotes the current time (in
years), T denotes the expiration time, and τ ≡ T− t .

15.2.1 Merton’s Derivation

Let C be the price of a derivative on S. From Ito’s lemma (Theorem 14.2.2),

dC =
(
µS

∂C
∂S
+ ∂C
∂t
+ 1

2
σ 2S2

∂2C
∂S2

)
dt + σ S ∂C

∂S
dW.
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Figure 15.1: Stock price and delta (hedge ratio). Recall that delta is defined as
∂C /∂S . The strike price here is $95.

Note that the same W drives both C and S. We now show that this random source
can be eliminated by being short one derivative and long ∂C/∂S shares of stock
(see Fig. 15.1). Define � as the value of the portfolio. By construction, �=−C+
S(∂C/∂S), and the change in the value of the portfolio at time dt is

d�=−dC+ ∂C
∂S
dS.

Substitute the formulas for dC and dS into the preceding equation to yield

d�=
(
−∂C
∂t
− 1

2
σ 2S2

∂2C
∂S2

)
dt.

Because this equation does not involve dW, the portfolio is riskless during dt time
and hence earns the instantaneous return rate r ; that is, d�= r�dt , so(

∂C
∂t
+ 1

2
σ 2S2

∂2C
∂S2

)
dt = r

(
C− S ∂C

∂S

)
dt.

Equate the terms to obtain finally

∂C
∂t
+ r S ∂C

∂S
+ 1

2
σ 2S2

∂2C
∂S2
= rC. (15.2)

This is the celebrated Black–Scholes differential equation [87].
The Black–Scholes differential equation can be expressed in terms of sensitivity

numbers:

�+ r S�+ 1
2
σ 2S2� = rC. (15.3)

(Review Section 10.1 for the definitions of sensitivity measures.) Identity (15.3) leads
to an alternative way of computing � numerically from � and �. In particular, if a
portfolio is delta-neutral, then the above equation becomes

�+ 1
2
σ 2S2� = rC.

A definite relation thus exists between � and �.
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➤ Exercise 15.2.1 (1) Verify that the Black–Scholes formula for European calls in
Theorem 9.3.4 indeed satisfies Black–Scholes differential equation (15.2). (2) Verify
that the value of a forward contract on a non-dividend-paying stock satisfies Black–
Scholes differential equation (15.2).

➤ Exercise 15.2.2 It seems reasonable to expect the predictability of stock returns,
as manifested in the drift of the Ito process, to have an impact on option prices.
(One possibility is for the log price R≡ ln S to follow a trendy Ornstein–Uhlenbeck
process instead of Brownian motion.) The analysis in the text, however, implies that
the drift of the process is irrelevant; the same Black–Scholes formula stands. Try to
resolve the issue.

➤ Exercise 15.2.3 Outline an argument for the claim that the Black–Scholes differ-
ential equation results from the BOPM by taking limits.

Continuous Adjustments
The portfolio � is riskless for only an infinitesimally short period of time. If the delta
∂C/∂S changes with S and t , the portfolio must be continuously adjusted to ensure
that it remains riskless.

Number of Random Sources
There is no stopping at the single-factor random source. In the presence of two
random sources, three securities suffice to eliminate the uncertainty: Use two to
eliminate the first source and the third to eliminate the second source. To make this
work, the factors must be traded. A traded security is an asset that is held solely
for investment by a significant number of individuals. Generally speaking, a market
is complete only if the number of traded securities exceeds the number of random
sources [76].

Risk-Neutral Valuation
Like the BOPM, the Black–Scholes differential equation does not depend directly
on the risk preferences of investors. All the variables in the equation are independent
of risk preferences, and the one that does depend on them, the expected return of
the stock, does not appear in the equation. As a consequence, any risk preference
can be used in pricing, including the risk-neutral one.

In a risk-neutral economy, the expected rate of return on all securities is the
riskless rate r. Prices are then obtained by discounting the expected value at r .
Lemma 9.2.1 says the same thing of the BOPM. The risk-neutral assumption greatly
simplifies the analysis of derivatives. It is emphasized that it is the instantaneous
return rate of the stock that is equal to r (see Comment 14.4.1 for the subtleties).

➤ Exercise 15.2.4 Explain why the formula

e−rτ
∫ ∞
X

(y− X) 1

σ y
√
2πτ

exp
[
−{ ln(y/S)− (r − σ 2/2)τ }2

2σ 2τ

]
dy,

is equivalent to the Black–Scholes formula for European calls. (Hint: Review
Eq. (6.10).)
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15.2.2 Solving the Black–Scholes Equation for European Calls

TheBlack–Scholes differential equation can be solved directly for European options.
After Eq. (15.2) is transformed with the change of variable C(S, τ )≡ B(S, τ ) e−rτX,
the partial differential equation becomes

−∂B
∂τ
+ r S ∂B

∂S
+ 1

2
σ 2S2

∂2B
∂S2
= 0,

where B(0, τ )= 0 for τ > 0 and B(S, 0)=max(S/X− 1, 0) for S> 0. With trans-
formations D(x, τ )≡ B(S, τ ) and x ≡ (S/X) erτ , we end up with the diffusion
equation:

−∂D
∂τ
+ 1

2
(σ x)2

∂2D
∂x2

= 0,

where D(0, τ )= 0 for τ > 0 and D(x, 0)=max(x− 1, 0) for x > 0. After onemore
transformation u≡ σ 2τ , the function H(x,u)≡ D(x, τ ) satisfies

−∂H
∂u
+ 1

2
x2
∂2H
∂x2

= 0,

where H(0,u)= 0 for u> 0 and H(x, 0)=max(x− 1, 0) for x > 0. The final trans-
formation �(z,u) x ≡ H(x,u) where z≡ (u/2)+ ln x , lands us at

−∂�
∂u
+ 1

2
∂2�

∂z2
= 0.

The boundary conditions are |�(z,u)| ≤ 1 for u> 0 and �(z, 0)=max(1− e−z, 0).
The above diffusion equation has the solution

�(z,u) = 1√
2πu

∫ ∞
0

(1− e−y) e−(z−y)2/(2u) dy

= 1√
2πu

∫ ∞
0
e−(z−y)

2/(2u) dy− 1√
2πu

∫ ∞
0
e−ye−(z−y)

2/(2u) dy

= 1√
2π

∫ ∞
−z/√u

e−ω
2
1/2 dω1− 1√

2π x

∫ ∞
−(z−u)/√u

e−ω
2
2/2 dω2

= N
(
z√
u

)
− 1
x
N
(
z−u√
u

)
by formula (15.1) with the change of variables ω1 ≡ (y− z)/√u and ω2 ≡ (y− z +
u)/
√
u . Hence

H(x,u)=�(ln x+ (u/2),u) x = xN
(
ln x+ (u/2)√

u

)
− N

(
ln x− (u/2)√

u

)
.

Retrace the steps to obtain

C(S, τ ) = H
(
S
X
erτ , σ 2τ

)
e−rτX

= SN
(
ln(S/X)+ rτ + σ 2τ/2√

σ 2τ

)
− e−rτXN

(
ln(S/X)+ rτ − σ 2τ/2√

σ 2τ

)
,

which is precisely the Black–Scholes formula for the European call.
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➤ Exercise 15.2.5 Solve the Black–Scholes differential equation for European puts.

15.2.3 Initial and Boundary Conditions

Solving theBlack–Scholes differential equationdepends on the initial and thebound-
ary conditions defining the particular derivative. These conditions spell out the values
of the derivative at various values of S and t . For European calls (puts), the key
terminal condition is max(S(T)− X, 0) (max(X− S(T), 0), respectively) at time T.
There are also useful boundary conditions. The call value is zero when S(t)= 0, and
the put is Xe−r(T−t) when S(t)= 0 (see Exercise 8.4.5). Furthermore, as S goes
to infinity, the call value is S and the put value zero. The accuracy is even better if
S− Xe−r(T−t) is used in place of S for the European call as S→∞. Although these
boundary conditions are not mathematically necessary, they improve the accuracy
of numerical methods [879].

TheAmerican put ismore complicated because of early exercise whose boundary
S(t) is unknownapriori.Recall that the exercise boundary specifies the stock price at
each instant of timewhen it becomes optimal to exercise the option. The formulation
that guarantees a unique solution is

∂P
∂t
+ r S ∂P

∂S
+ 1

2
σ 2S2

∂2P
∂S2

= r P and P > X− S for S < S<∞
P = X− S for 0≤ S< S

∂P
∂S
=−1 and P = X− S for S= S

P = 0 for S→∞
plus the obvious terminal condition [154]. The region 0≤ S< S is where early exer-
cise is optimal. The exercise boundary is a continuous decreasing function of τ for
American puts and a continuous increasing function of τ for American calls [575].

➤ Exercise 15.2.6 Verify that the Black–Scholes differential equation is violated
where it is optimal to exercise the American put early; i.e., X− S does not satisfy
the equation.

15.3 Applications

15.3.1 Continuous Dividend Yields

The price for a stock that continuously pays out dividends at an annualized rate of
q follows

dS
S
= (µ−q)dt + σ dW,

where µ is the stock’s rate of return. This process was postulated in Subsection 9.6.4
for the stock index and the exchange rate. In a risk-neutral economy, µ= r .

Consider a derivative security whose value f depends on a stock that pays a
continuous dividend yield. From Ito’s lemma (Theorem 14.2.2),

df =
(
(µ−q) S ∂ f

∂S
+ ∂ f
∂t
+ 1

2
σ 2S2

∂2 f
∂S2

)
dt + σ S ∂ f

∂S
dW.
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Set up a portfolio that is short one derivative security and long ∂ f/∂S shares. Its
value is �=− f + (∂ f/∂S) S, and the change in the value of the portfolio at time dt
is given by d�=−df + (∂ f/∂S)dS. Substitute the formulas for df and dS to yield

d�=
(
−∂ f
∂t
− 1

2
σ 2S2

∂2 f
∂S2

)
dt.

The total wealth change is simply the above amount plus the dividends, d�+
qS(∂ f/∂S)dt . As this value is not stochastic, the portfolio must be instantaneously
riskless:(

−∂ f
∂t
− 1

2
σ 2S2

∂2 f
∂S2

)
dt +qS ∂ f

∂S
dt = r�dt.

Simplify to obtain

∂ f
∂t
+ (r −q) S ∂ f

∂S
+ 1

2
σ 2S2

∂2 f
∂S2
= r f.

ForEuropean calls, the boundary conditions are identical to those of the standard
option except that its value should be Se−q(T−t) as S goes to infinity. The solution
appeared in Eq. (9.20). For American calls, the formulation that guarantees a unique
solution is

∂C
∂t
+ (r −q) S ∂C

∂S
+ 1

2
σ 2S2

∂2C
∂S2
= rC and C > S− X for 0≤ S< S ,

C = S− X for S < S<∞,
∂C
∂S
= 1 and C = S− X for S= S ,

C = 0 for S= 0,

plus the terminal condition C =max(S− X, 0), of course [879].

15.3.2 Futures and Futures Options

The futures price is related to the spot price by F = Se(r−q)(T−t). By Example 14.3.6,
dF/F = σ dW. The futures price can therefore be treated as a stock paying a contin-
uous dividend yield equal to r . This is the rationale behind the Black model.

➤ Exercise 15.3.1 Derive the partial differential equation for futures options.

15.3.3 Average-Rate and Average-Strike Options

To simplify the notation, assume that the option is initiated at time zero. The arith-
metic average-rate call and put have terminal values given by

max
(

1
T

∫ T
0
S(u)du− X, 0

)
, max

(
X− 1

T

∫ T
0
S(u)du, 0

)
,

respectively. Arithmetic average-rate options are notoriously hard to price. In prac-
tice, the prices are usually sampled at discrete points in time [598].
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If the averaging is done geometrically, the payoffs become

max

(
exp

[ ∫ T
0 ln S(u)du

T

]
− X, 0

)
, max

(
X− exp

[ ∫ T
0 ln S(u)du

T

]
, 0

)
,

respectively. The geometric average exp[ 1
T

∫ T
0 ln S(u)du ] is lognormally distributed

when the underlying asset’s price is lognormally distributed (see Example 14.3.5).
Lookback calls and puts on the average have terminal payoffs max(S(T)−
1
T

∫ T
0 S(u)du, 0) and max( 1

T

∫ T
0 S(u)du− S(T), 0), respectively.

Thepartial differential equation satisfiedby thevalue V of aEuropeanarithmetic
average-rate option can be derived as follows. Introduce the new variable A(t)≡∫ t
0 S(u)du. It is not hard to verify that dA= Sdt . Ito’s lemma (Theorem 14.2.2)

applied to V yields

dV =
(
µS

∂V
∂S
+ ∂V
∂t
+ 1

2
σ 2S2

∂2V
∂S2
+ S ∂V

∂A

)
dt + σ S ∂V

∂S
dW.

Consider the portfolio of short one derivative and long ∂V/∂S shares of stock. This
portfolio must earn riskless returns because of lack of randomness. Therefore

∂V
∂t
+ r S ∂V

∂S
+ 1

2
σ 2S2

∂2V
∂S2
+ S ∂V

∂A
= rV.

➤ Exercise 15.3.2 Show that geometric average-rate options satisfy

∂V
∂t
+ r S ∂V

∂S
+ 1

2
σ 2S2

∂2V
∂S2
+ (ln S)

∂V
∂A
= rV,

where A(t)≡ ∫ t0 ln S(u)du.

15.3.4 Options on More than One Asset: Correlation Options

For a correlation option whose value depends on the prices of two assets S1 and S2,
both of which follow geometric Brownian motion, the partial differential equation is

∂C
∂t
+

2∑
i=1
r Si

∂C
∂Si
+

2∑
i=1

σ 2
i S

2
i

2
∂2C

∂S2i
+ ρσ1σ2S1S2 ∂2C

∂S1∂S2
= rC. (15.4)

➤ Exercise 15.3.3 (1) Justify Eq. (15.4). (2) Generalize it to n assets.

15.3.5 Exchange Options

An exchange option is a correlation option that gives the holder the right to exchange
one asset for another. Its value at expiration is thus

max(S2(T)− S1(T), 0),
where S1(T) and S2(T) denote the prices of the two assets at expiration. The payoff
implies two ways of looking at the option: as a call on asset 2 with a strike price equal
to the future price of asset 1 or as a put on asset 1 with a strike price equal to the
future value of asset 2.
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Assume that the two underlying assets do not pay dividends and that their prices
follow

dS1
S1
= µ1 dt + σ1 dW1,

dS2
S2
= µ2 dt + σ2 dW2,

where ρ is the correlation between dW1 and dW2. The option value at time t is

V(S1, S2, t)= S2N(x)− S1N(x− σ
√
T− t),

where

x ≡ ln(S2/S1)+ (σ 2/2)(T− t)
σ
√
T− t ,

σ 2 ≡ σ 2
1 − 2ρσ1σ2+ σ 2

2 . (15.5)

This is calledMargrabe’s formula [640].
Margrabe’s formula can be derived as follows. Observe first that V(x, y, t) is

homogeneous of degree one in x and y, meaning that V(λS1, λS2, t)= λV(S1, S2, t).
An exchange option based on λ times the prices of the two assets is thus equal in
value to λ original exchange options. Intuitively, this is true because of

max(λS2(T)− λS1(T), 0)= λ×max(S2(T)− S1(T), 0)
and the perfect market assumption [660]. The price of asset 2 relative to asset 1 is
S≡ S2/S1. Hence the option sells for V(S1, S2, t)/S1 = V(1, S2/S1, t) with asset 1 as
numeraire. The interest rate on a riskless loan denominated in asset 1 is zero in a
perfect market because a lender of one unit of asset 1 demands one unit of asset 1
back as repayment of principal. Because the option to exchange asset 1 for asset 2 is
a call on asset 2 with a strike price equal to unity and the interest rate equal to zero,
the Black–Scholes formula applies:

V(S1, S2, t)
S1

= V(1, S, t)= SN(x)− 1× e−0×(T−t)N(x− σ√T− t),

where

x ≡ ln(S/1)+ (0+ σ 2/2)(T− t)
σ
√
T− t = ln(S2/S1)+ (σ 2/2)(T− t)

σ
√
T− t .

Suppose theoptionholder sells V1 ≡ ∂V/∂S1 units of asset 1 short andbuys−V2 ≡
−∂V/∂S2 units of asset 2. Because V( · ) is homogeneous of degree one in S1 and S2,
the position has zero value because V−V1S1−V2S2 = 0 byEuler’s theorem (seeEx-
ercise 15.3.6). Hence dV−V1 dS1−V2 dS2 = 0. From Ito’s lemma (Theorem 14.2.2),

dV = V1 dS1+V2 dS2+ ∂V
∂t
dt + V11σ

2
1 S

2
1 + 2V12σ1σ2ρS1S2+V22σ 2

2 S
2
2

2
dt,

where Vi j ≡ ∂2V/(∂Si∂Sj ). Hence

∂V
∂t
+ V11σ

2
1 S

2
1 + 2V12σ1σ2ρS1S2+V22σ 2

2 S
2
2

2
= 0 (15.6)

with the following initial and boundary conditions:

V(S1, S2,T)=max(0, S2− S1),
0≤ V(S1, S2, t)≤ S2 if S1, S2 ≥ 0 .
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Margrabe’s formula is notmuchmore complicated if Si paysout a continuousdiv-
idend yield of qi , i = 1, 2. We simply replace each occurrence of Si with Sie−qi (T−t)

to obtain

V(S1, S2, t)= S2e−q2(T−t)N(x)− S1e−q1(T−t)N(x− σ
√
T− t),

x ≡ ln(S2/S1)+ (q1−q2+ σ 2/2)(T− t)
σ
√
T− t ,

σ 2 ≡ σ 2
1 − 2ρσ1σ2+ σ 2

2 . (15.7)

➤ Exercise 15.3.4 A call on the maximum of two assets pays max(S1(T), S2(T)) at
expiration. Replicate it by a position in one of the assets plus an exchange option.

➤ Exercise 15.3.5 Consider a call on theminimum of two assets with strike price X.
Its terminal value is max(min(S1(T), S2(T))− X, 0). Show that this option can be
replicated by a long position in two ordinary calls and a short position in one call on
the maximum of two assets at the same strike price X, which has a terminal payoff
of max(max(S1(T), S2(T))− X, 0).
➤ Exercise 15.3.6 (Euler’s Theorem). Prove that

n∑
i=1
xi
∂ f (x1, x2, . . . , xn)

∂xi
= f (x1, x2, . . . , xn)

if f (x1, x2, . . . , xn) is homogeneous of degree one in x1, x2, . . . , xn.

➤ Exercise 15.3.7 (1) Derive Margrabe’s formula from the alternative view that a
European exchange option is a put on asset 1 with a strike price equal to the future
value of asset 2. (2) Derive the Black–Scholes formula from Margrabe’s formula.

➤ Exercise 15.3.8 Verify variance (15.5) for Margrabe’s formula.

➤ Exercise 15.3.9 (Put–Call Parity) Prove that V(S2, S1, t)−V(S1, S2, t)+ S2 = S1.
➤ Exercise 15.3.10 Derive Eq. (15.6) from Eq. (15.4).

15.3.6 Options on Foreign Currencies and Assets

Correlation options involving foreign currencies and assets were first covered in
Section 11.5. Analysis of such options can take place in either the domestic market
or the foreign market before being converted back into the domestic currency [734].

Inwhat follows, S(t) denotes the spot exchange rate in termsof thedomestic value
of one unit of foreign currency.Weknow fromSubsection 11.5.1 that foreign currency
is analogous to a stock paying a continuous dividend yield equal to the foreign riskless
interest rate rf in foreign currency. Therefore S(t) follows the geometric Brownian
motion process,

dS
S
= (r − rf)dt + σs dWs(t),

in a risk-neutral economy. The foreign asset is assumed to pay a continuous dividend
yield of qf, and its price follows

dGf

Gf
= (µf−qf)dt + σf dWf(t)
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in foreign currency. The correlation between the rate of return of the exchange rate
and that of the foreign asset is ρ; in other words, ρ is the correlation between dWs

and dWf.

Foreign Equity Options
FromEq. (9.20), European options on the foreign asset Gf with the terminal payoffs
S(T)×max(Gf(T)− Xf, 0) and S(T)×max(Xf−Gf(T), 0) are worth

Cf = Gfe−qfτN(x)− Xfe−rfτN(x− σf
√
τ ),

Pf = Xfe−rfτN(−x+ σf
√
τ )−Gfe−qfτN(−x),

in foreign currency, where

x ≡ ln(Gf/Xf)+
(
rf−qf+ σ 2

f

/
2
)
τ

σf
√
τ

and Xf is the strike price in foreign currency. They will fetch SCf and SPf, respec-
tively, in domestic currency. These options are called foreign equity options struck
in foreign currency.

➤ Exercise 15.3.11 The formulas of Cf and Pf suggest that a foreign equity option
is equivalent to S domestic options on a stock paying a continuous dividend yield of
qf and a strike price of Xfe(r−rf) τ . Verify that this observation is indeed valid.

➤ Exercise 15.3.12 The dynamics of the foreign asset value in domestic currency,
SGf, depends on the correlation between the asset price and the exchange rate (see
Example 14.3.5). (1) Why is ρ missing from the option formulas? (2) Justify the
equivalence in Exercise 15.3.11 with (1).

Foreign Domestic Options
Foreign equity options fundamentally involve values in the foreign currency. How-
ever, consider this: Although a foreign equity call may allow the holder to participate
in a foreign market rally, the profits can be wiped out if the foreign currency depreci-
ates against the domestic currency.What is really needed is a call indomestic currency
with a payoff of max(S(T)Gf(T)− X, 0). This is called a foreign domestic option.

To foreign investors, this call is an option to exchange X units of domestic cur-
rency (foreign currency to them) for one share of foreign asset (domestic asset to
them) – an exchange option, in short. By formula (15.7), its price in foreign currency
equals

Gfe−qfτN(x)− XS e
−rτN(x− σ√τ ),

where

x ≡ ln(GfS/X)+ (r −qf+ σ 2/2) τ
σ
√
τ

and σ 2 ≡ σ 2
s + 2ρσsσf+ σ 2

f . The domestic price is therefore

C = SGfe−qfτN(x)− Xe−rτN(x− σ
√
τ ).
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Similarly, a put has a price of

P = Xe−rτN(−x+ σ√τ )− SGfe−qfτN(−x).

➤ Exercise 15.3.13 Suppose that the domestic and the foreign bond prices in their
respective currencies with a par value of one and expiring at T also follow geometric
Brownian motion processes. Their current prices are B and Bf, respectively. Derive
thepriceof a forexoption tobuyoneunit of foreign currencywith X units of domestic
currency at time T. (This result generalizes Eq. (11.6), which assumes deterministic
interest rates.)

Cross-Currency Options
A cross-currency option, we recall, is an option in which the currency of the strike
price is different from the currency in which the underlying asset is denominated
[775]. An option to buy 100 yen at a strike price of 1.18 Canadian dollars provides
one example. Usually, a third currency, the U.S. dollar, is involved because of the
lack of relevant exchange-traded options for the two currencies in question (yen and
Canadian dollars in the above example) in order to calculate the needed volatility.
For this reason, the notations below will be slightly different.

Let SA denote thepriceof the foreignasset and SC thepriceof currencyCthat the
strike price X is based on. Both SA and SC are inU.S. dollars, say. If S is the price of
the foreign asset asmeasured in currencyC, thenwehave the triangular arbitrage S=
SA/SC.1 Assume that SA and SC follow the geometric Brownian motion processes
dSA/SA = µA dt + σA dWA and dSC/SC = µC dt + σC dWC, respectively. Parameters
σA, σC, and ρ can be inferred from exchange-traded options. By Exercise 14.3.6,

dS
S
= (µA−µC− ρσAσC)dt + σA dWA− σC dWC,

where ρ is the correlation between dWA and dWC. The volatility of dS/S is hence
(σ 2

A− 2ρσAσC+ σ 2
C)

1/2.

➤ Exercise 15.3.14 Verify that the triangular arbitragemust hold to prevent arbitrage
opportunities among three currencies.

➤ Exercise 15.3.15 Show that both forex options and foreign domestic options are
special cases of cross-currency options.

➤ Exercise 15.3.16 Consider a portfolio consisting of a long call on the foreign asset
and X long puts on currency C. The strike prices in U.S. dollars of the call (XA)
and put (XC) are such that X= XA/XC. Prove the portfolio is worth more than the
cross-currency call when all options concerned are European. (A cross-currency call
has a terminal payoff of SC×max(S− X, 0) in U.S. dollars.)

Quanto Options
Consider a call with a terminal payoff Ŝ ×max(Gf(T)− Xf, 0) in domestic cur-
rency, where Ŝ is a constant. This amounts to fixing the exchange rate to Ŝ . For
instance, a call on the Nikkei 225 futures, if it existed, fits this framework with
Ŝ = 5 and Gf denoting the futures price. A guaranteed exchange rate option is
called a quanto option or simply a quanto. The process U ≡ ŜGf in a risk-neutral
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economy follows

dU
U
= (rf−qf− ρσsσf)dt + σf dW (15.8)

in domestic currency [470, 878].Hence it can be treated as a stock paying a continuous
dividend yield of q ≡ r − rf+qf+ ρσsσf. Apply Eq. (9.20) to obtain

C = Ŝ [Gf e−qτN(x)− Xfe−rτN(x− σf
√
τ ) ],

P = Ŝ [ Xf e−rτN(−x+ σf
√
τ )−Gfe−qτN(−x) ],

where

x ≡ ln(Gf/Xf)+
(
r −q+ σ 2

f

/
2
)
τ

σf
√
τ

.

Note that the values do not depend on the exchange rate.
In general, a quanto derivative has nominal payments in the foreign currency that

are converted into the domestic currency at a fixed exchange rate. A cross-rate swap,
for example, is like a currency swap except that the foreign currency payments are
converted into the domestic currency at a fixed exchange rate. Quanto derivatives
form a rapidly growing segment of international financial markets [17].

➤ Exercise 15.3.17 Justify Eq. (15.8).

15.3.7 Convertible Bonds with Call Provisions

When a CB with call provisions is called, its holder has the right either to convert
the bond (forced conversion) or to redeem it at the call price. Assume that the firm
and the investor pursue an optimal strategy whereby (1) the investor maximizes the
value of the CB at each instant in time through conversion and (2) the firmminimizes
the value of the CB at each instant in time through call.

Let the market value V(t) of the firm’s securities be determined exogenously
and independent of the call and conversion strategies, which can be justified by the
Modigliani–Miller irrelevance theorem. Minimizing the value of the CB therefore
maximizes the stockholder value. The market value follows dV/V = µdt + σ dW.
Assume that the firm in question has only two classes of obligations: n shares of
common stock and m CBswith a conversion ratio of k. The stockmay pay dividends,
and the bond may pay coupon interests. The conversion value per bond is

C(V, t)= zV(t),
where z≡ k/(n+mk). Each bondhas $1,000 par value, and T stands for thematurity
date.

Let W(V, t) denote the market value at time t of one convertible bond. From
assumption (1), the bond never sells below the conversion value as

W(V, t)≥ C(V, t). (15.9)

In fact, the bond can never sell at the conversion value except immediately before a
dividend date. This is because otherwise its rate of return up to the next dividend date
would not fall below the stock’s; actually, it would be higher because of the higher
priority of bondholders. Therefore the bond sells above the conversion value, and the
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investor does not convert it. As a result, relation (15.9) holds with strict inequality
between dividend dates, and conversion needs to be considered only at dividend or
call dates.

We now consider the implications of the call strategy. When the bond is called,
the investor has the option either to redeem at the call price P(t) or convert it for
C(V, t). The value of the bond if called is hence given by

Vc(V, t)≡max(P(t),C(V, t)).

There are two cases to consider.

1. C(V, t)> P(t) when the bond is callable: The bond will be called immediately
because, by a previous argument, the bond sells for at least the conversion value
C(V, t), which is the value if called. Hence,

W(V, t)= C(V, t). (15.10)

2. C(V, t)≤ P(t) when the bond is callable: Note that the call price equals the
value if called, Vc. The bond should be called when its value if not called equals
its value if called. This holds because, in accordance with assumption (2), the firm
will call the bond when the value if not called exceeds Vc(V, t) and will not call
it otherwise. Hence

W(V, t)≤ Vc(V, t)= P(t), (15.11)

and the bond will be called when its value if not called equals the call price.

Finally, the Black–Scholes differential equation implies that

∂W
∂t
+ rV ∂W

∂V
+ 1

2
σ 2V2 ∂

2W
∂V2

= rW.

The boundary conditions for the above differential equation are summarized below.

� They include relation (15.9), Eq. (15.10), and relation (15.11) (the latter twowhen
the bond is callable and under their respective conditions), and thematurity value

W(V,T)=

zV(T), if zV(T)≥ 1000
1000, 1000×m≤ V(T)≤ 1000/z.
V(T)/m, V(T)≤ 1000×m

These three conditions above correspond to the cases when the firm’s total value
(1) is greater than the total conversion value, (2) is greater than the total par value
but less than the total conversion value, and (3) is less than the total par value.

� 0≤mW(V, t)≤ V(t) because the bond value cannot exceed the firm value.
� W(0, t)= 0.
� W(V, t)≤ B(V, t)+ zV(t) because a CB is dominated by a portfolio of an other-

wise identical fixed-rate bond B(V, t) and stock with a total value equal to the
conversion value. B(V, t) is easy to calculate under constant interest rates.

� When the bond is not callable and V(t) is high enough to make negligible the
possibility of default, it behaves like an option to buy a fraction z of the firm.
Hence limV→∞ ∂W(V, t)/∂V = z.
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� On a dividend date, W(V, t−)=max(W(V−D, t+), zV(t)), where t− denotes
the instant before the event and t+ the instant after. This condition takes into
account conversion just before the dividend date.

� W(V, t−)=W(V−mc, t+)+ c on a coupon date and when the bond is not
callable, where c is the amount of the coupon.

� W(V, t−)=min(W(V−mc, t+)+ c,Vc(V, t)) on a coupon date and when the
bond is callable.

The partial differential equation has to be solved numerically by the techniques in
Section 18.1.

➤ Exercise 15.3.18 Suppose that the CB is continuously callable once it becomes
callable, meaning that it is callable at any instant after a certain time t∗. Argue that
the C(V, t)> P(t) case needs to be considered only at t = t∗ and not thenceforth for
the call provision. (HenceW(V, t−)=min(W(V−mc, t+)+ c, P(t)) on any coupon
date t > t∗.)

15.4 General Derivatives Pricing

In general, the underlying asset S may not be traded. Interest rate, for instance, is
not a traded security, whereas stocks and bonds are. Let S follow the Ito process
dS/S= µdt +σ dW, where µ and σ may depend only on S and t . Let f1(S, t)
and f2(S, t) be the prices of two derivatives with dynamics dfi/ fi = µi dt + σi dW,
i = 1, 2. Note that they share the same Wiener process as S.

A portfolio consisting of σ2 f2 units of the first derivative and −σ1 f1 units of the
second derivative is instantaneously riskless because

σ2 f2 df1− σ1 f1 df2 = σ2 f2 f1(µ1 dt + σ1 dW)− σ1 f1 f2(µ2 dt + σ2 dW)

= (σ2 f2 f1µ1− σ1 f1 f2µ2)dt,

which is devoid of volatility. Therefore

(σ2 f2 f1µ1− σ1 f1 f2µ2)dt = r(σ2 f2 f1− σ1 f1 f2)dt,
or σ2µ1− σ1µ2 = r(σ2− σ1). After rearranging the terms, we conclude that

µ1− r
σ1

= µ2− r
σ2

≡ λ for some λ.

Anyderivativewhose value depends on only S and t and that follows the Ito process
df/ f = µdt + σ dW must thus satisfy

µ− r
σ
= λ or, alternatively, µ= r + λσ. (15.12)

We call λ the market price of risk, which is independent of the specifics of the
derivative. Equation (15.12) links the excess expected return and risk. The term λσ

measures the extent to which the required return is affected by the dependence
on S.

Ito’s lemma can be used to derive the formulas for µ and σ :

µ= 1
f

(
∂ f
∂t
+µS

∂ f
∂S
+ 1

2
σ2S2

∂2 f
∂S2

)
, σ = σS

f
∂ f
∂S
.
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Substitute the preceding equations into Eq. (15.12) to obtain

∂ f
∂t
+ (µ− λσ) S

∂ f
∂S
+ 1

2
σ2S2

∂2 f
∂S2
= r f. (15.13)

The presence of µ shows that the investor’s risk preference is relevant, and the
derivative may be dependent on the underlying asset’s growth rate and the market
price of risk. Only when the underlying variable is the price of a traded security can
we assume that µ= r in pricing.

Provided certain conditions are met, such as the underlying processes’ being
Markovian, the approach to derivatives pricing by solving partial differential equa-
tions is equivalent to the martingale approach of taking expectation under a risk-
neutral probability measure [290, 692]. The fundamental theorem of asset pricing,
Theorem 13.2.3, as well as other results in Subsection 13.2.1, also continues to hold
in continuous time. This suggests the following risk-neutral valuation scheme for
Eq. (15.13): Discount the expected payoff of f at the riskless interest rate under the
revised process dS/S= (µ− λσ)dt +σ dW. Although the same symbol W is used,
a convention adopted throughout the book for convenience, it is important to point
out that W is no longer the original Wiener process. In fact, a change of probability
measure has taken place, and W is a Wiener process with respect to the risk-neutral
probability measure.

Assume a constant interest rate r . Then any European-style derivative security
with payoff fT at time T has value e−r(T−t)Eπt [ fT ], where Eπt takes the expected
value under a risk-neutral probability measure given the information up to time t .
As a specific application, consider the futures price F . With a delivery price of X, a
futures contract has value f = e−r(T−t)Eπt [ ST − X ]. Because F is the X that makes
f zero, it holds that 0= Eπt [ ST − F ]= Eπt [ ST ]− F , i.e., F = Eπt [ ST ]. This extends
the result for the binomial model in Exercise 13.2.10 to the continuous-time case.

➤ Exercise 15.4.1 Suppose that S1, S2, . . . , Sn pay no dividends and follow dSi/Si =
µi dt +σi dWi . Let ρ jk denote the correlation between dWj and dWk. Show that

∂ f
∂t
+
∑
i

(µi − λiσi ) Si
∂ f
∂Si
+ 1

2

∑
i

∑
k

ρikσiσkSi Sk
∂2 f
∂Si∂Sk

= r f (15.14)

when the derivative f depends on more than one state variable S1, S2, . . . , Sn.

➤ Exercise 15.4.2 A forward-start option is like a standard option except that it
becomes effective only at time τ ∗ from now and with the strike price set at the stock
price then (the option thus starts at the money). Let C(S) denote the value of an
at-the-money European forward-start call, given the stock price S. (1) Show that
C(S) is a linear function in S under the Black–Scholes model. (2) Argue that the
value of a forward-start option is e−rτ

∗
C(Eπ [ S(τ ∗) ])= e−rτ ∗C(Se(r−q) τ ∗), where q

is the dividend yield.

15.5 Stochastic Volatility

The Black–Scholes formula displays bias in practice. Besides the smile pattern men-
tioned in Subsection 9.4.3, (1) volatility changes frommonth to month, (2) it is mean
reverting in that extreme volatilities tend to return to the average over time, (3) it
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seems to fall as the price of the underlying asset rises [346, 823], and (4) out-of-the-
money options and options on low-volatility assets are underpriced. These findings
led to the study of stochastic volatility.

Stochastic volatility injects an extra source of randomness if this uncertainty is
not perfectly correlated with the one driving the stock price. In this case, another
traded security besides stock and bond is needed in the replicating portfolio. In fact,
if volatility were the price of a traded security, there would exist a self-financing
strategy that replicates the option by using stocks, bonds, and the volatility security.

Hull and White considered the following model:

dS
S
= µdt + σ dW1,

dV
V
= µv dt + σv dW2,

where V ≡ σ 2 is the instantaneous variance [471]. Assume that µ depends on S, σ ,
and t , that µv depends on σ and t (but not S), that dW1 and dW2 have correlation
ρ, and that the riskless rate r is constant. From Eq. (15.14),

∂ f
∂t
+ (µ− λσ ) S ∂ f

∂S
+ (µv− λvσv)V ∂ f

∂V

+1
2

(
σ 2S2

∂2 f
∂S2
+ 2ρσσvSV

∂2 f
∂S∂V

+ σ 2
vV

2 ∂
2 f
∂V2

)
= r f.

Because stock is a traded security (but volatility is not), the preceding equation
becomes

∂ f
∂t
+ r S ∂ f

∂S
+ (µv− λvσv)V ∂ f

∂V

+ 1
2

(
σ 2S2

∂2 f
∂S2
+ 2ρσσvSV

∂2 f
∂S∂V

+ σ 2
vV

2 ∂
2 f
∂V2

)
= r f.

After two additional assumptions, ρ = 0 (volatility is uncorrelated with the stock
price) and λvσv = 0 (volatility has zero systematic risk), the equation becomes

∂ f
∂t
+ r S ∂ f

∂S
+µvV

∂ f
∂V
+ 1

2

(
σ 2S2

∂2 f
∂S2
+ σ 2

vV
2 ∂

2 f
∂V2

)
= r f.

A series solution is available for the model.
The volatility risk was assumed not to be priced [579]. To assume otherwise, we

need tomodel risk premiumon the varianceprocess [440].When the volatility follows
an uncorrelated Ornstein–Uhlenbeck process, closed-form solutions exist [823].

Additional Reading

A rigorous derivation of the Black–Scholes differential equation can be found in
[681]. See [212, 408, 446, 861, 883] for partial differential equations, [531] for the
approximation of the early exercise boundary, [769] for the derivation ofMargrabe’s
formula based on the binomial model, [575, 744, 746, 894] for currency-related op-
tions, [122, 221, 491, 697] for pricing CBs, and [424, 470, 615] for the bias of the
Black–Scholes option pricing model. We followed [120] in Subsection 15.3.7. Mar-
tingale pricing in continuous time relies on changing the probabilitymeasurewith the
Girsanov theorem [289]. That using stochastic volatility models can result in some
pricing improvement has been empirically documented [44]. In cases in which the
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Black–Scholes model has been reasonably supported by empirical research, gains
from complicated models may be limited, however [526]. Intriguingly, the Black–
Scholes formula continues to hold as long as all traders believe that the stock prices
are lognormally distributed, even if that belief is objectively wrong [194].

NOTE

1. Triangular arbitrage had been known for centuries. See Montesquieu’s The Spirit of Laws [676,
p. 179].



CHAPTER
SIXTEEN

Hedging

Does an instantaneous cube exist?

H.G. Wells, The Time Machine

Hedging strategies appear throughout this book. This is to be expected because one
of the principal uses of derivatives is in the management of risks. In this chapter, we
focus on the use of non-interest-rate derivatives in hedging. Interest rate derivatives
will be picked up in Chap. 21.

16.1 Introduction

One common thread throughout this book has been the management of risks. Risk
management means selecting and maintaining portfolios with defined exposure to
risks. Deciding which risks one is to be exposed to and which risks one is to be
protected against is also an integral part of risk management. Evidence suggests that
firms engaged in risk management not only are less risky but also perform better
[813].

A hedge is a position that offsets the price risk of another position. A hedge
reduces risk exposures or even eliminates them if it provides cash flows equal in
magnitude but opposite in directions to those of the existing exposure. For hedging
to be possible, the return of the derivative should be correlated with that of the
hedged position. In fact, the more correlated their returns are, the more effective the
hedge will be.

Three types of traders play in the markets. Hedgers set up positions to offset
risky positions in the spot market. Speculators bet on price movements and hope
to make a profit. Arbitragers lock in riskless profits by simultaneously entering into
transactions in two or more markets, which is called arbitrage.

16.2 Hedging and Futures

Themost straightforwardwayof hedging involves forward contracts.Becauseof daily
settlements, futures contracts are harder to analyze than forward contracts. Luckily,
the forward price and the futures price are generally close to each other; therefore
results obtained for forwards will be assumed to be true of futures here.

224
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16.2.1 Futures and Spot Prices

Two forces prevent the prevailing prices in the spot market and the futures market
from diverging too much at any given time. One is the delivery mechanism, and
the other is hedging. Hedging relates the futures price and the spot price through
arbitrage. In fact, the futures price should equal the spot price by the carrying charges.
Carrying charges, we recall, are the costs of holding physical inventories between
now and the maturity of the futures contract. In practice, the futures price does
not necessarily exceed the spot price by exactly the carrying charges for inventories
that have what Kaldor (1908–1986) termed the convenience yield derived from their
availability when buyers need them [468].

16.2.2 Hedgers, Speculators, and Arbitragers

Acompany that is due to sell an asset in the future can hedge by taking a short futures
position. This is known as a selling or short hedge. The purpose is to lock in a selling
price or, with fixed-income securities, a yield. If the price of the asset goes down,
the company does not fare well on the sale of the asset, but it makes a gain on the
short futures position. If the price of the asset goes up, the reverse is true. Clearly, a
selling hedge is a substitute for a later cash market sale of the asset. A company that
is due to buy an asset in the future can hedge by taking a long futures position. This is
known as a buying or long hedge. Clearly, a buying hedge is used when one plans to
buy the cash asset at a later date. The purpose is to establish a fixed purchase price.
These strategies work because spot and futures prices are correlated.

A person who gains or loses from the difference between the spot and the futures
prices is said to speculate on the basis. Simultaneous purchase and sale of futures
contracts on two different yet related assets is referred to as a spread. A person who
speculates by using spreads is called a spreader [95, 799]. A hedger is someone whose
net position in the spot market is offset by positions in the futures market. A short
hedger is long in the spot market and short in the futures market. A long hedger does
the opposite. Thosewhoare net long or net short are speculators. Speculatorswill buy
(sell) futures contracts only if they expect prices to increase (decrease, respectively).
Hedgers, in comparison, are willing to pay a premium to unload unwanted risk onto
speculators. Speculators provide the market with liquidity, enabling hedgers to trade
large numbers of contracts without adversely disrupting prices.

If hedgers in aggregate are short, speculators are net long and the futures price
is set below the expected future spot price. On the other hand, if hedgers are net
long, speculators are net short and the futures price is set above the expected future
spot price. There seems to be evidence that short hedging exceeds long hedging in
most of the markets most of the time. If hedgers are net short in futures, speculators
must be net long. It has been theorized that speculators will be net long only if the
futures price is expected to rise until it equals the spot price at maturity; speculators
therefore extract a risk premium from hedgers. This is Keynes’s theory of normal
backwardation, which implies that the futures price underestimates the future spot
price [295, 468, 470].

➤ Exercise 16.2.1 If the futures price equals the expected future spot price, then
hedging may in some sense be considered a free lunch. Give your reasons.
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16.2.3 Perfect and Imperfect Hedging

Consider an investor who plans on selling an asset t years from now. To eliminate
some of the price uncertainties, the investor sells futures contracts on the same asset
with a delivery date in T years. After t years, the investor liquidates the futures
position and sells the asset as planned. The cash flow at that time is

St − (Ft − F)= F + (St − Ft)= F + basis,

where St is the spot price at time t , Ft is the futures price at time t , and F is the
original futures price. The investor has replaced the price uncertaintywith the smaller
basis uncertainty; as a consequence, risk has been reduced. The hedge is perfect if
t = T, that is, when there is a futures contract with a matching delivery date.

When the cost of carry and the convenience yield are known, the cash flow can
be anticipated with complete confidence according to Eq. (12.13). This holds even
when there is a maturity mismatch t �= T as long as (1) the interest rate r is known
and (2) the cost of carry c and the convenience yield y are constants. In this case,
Ft = Ste(r+c−y)(T−t) by Eqs. (12.11). Let h be the number of futures contracts sold
initially. The cash flow at time t , after the futures position is liquidated and the asset
is sold, is

St − h(Ft − F)= St − h
[
Ste(r+c−y)(T−t)− F

]
.

Pick h= e−(r+c−y)(T−t) to make the cash flow a constant hF and eliminate any uncer-
tainty. The number h is the hedge ratio. Note that h= 1 may not be the best choice
when t �= T.

A number of factors make hedging with futures contracts less than perfect. The
asset whose price is to be hedged may not be identical to the underlying asset of the
futures contract; the date when the asset is to be transacted may be uncertain; the
hedge may require that the futures contract be closed out before its expiration date.
These problems give rise to basis risk. As shown above, basis risk does not exist in
situations in which the spot price relative to the futures price moves in predictable
manners.

Cross Hedge
A hedge that is established with a maturity mismatch, an asset mismatch, or both
is referred to as a cross hedge [746]. Cross hedges are common practices. When
firms want to hedge against price movements in a commodity for which there are no
futures contracts, they can turn to futures contracts on related commodities whose
price movements closely correlate with the price to be hedged.

EXAMPLE 16.2.1 We can hedge a future purchase price of 10,000,000 Dutch guilders as
follows. Suppose the current exchange rate is U.S.$0.48 per guilder. At this rate, the
dollar cost is U.S.$4,800,000. A regression analysis of the daily changes in the guilder
rate and the nearby German mark futures reveals that the estimated slope is 0.95
with an R2 of 0.92. Now that the guilder is highly correlated with the German mark,
German mark futures are picked. The current exchange rate is U.S.$0.55/DEM1;
hence the commitment of 10,000,000 guilders translates to 4,800,000/0.55=
8,727,273 German marks. Because each futures contract controls 125,000 marks,
we trade 0.95× (8,727,273/125,000)≈ 66 contracts.
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EXAMPLE 16.2.2 A British firm expecting to pay DEM2,000,000 for purchases in
3 months would like to lock in the price in pounds. Besides the standard way of us-
ing mark futures contracts that trade in pounds, the firm can trade mark and pound
futures contracts that trade in U.S. dollars as follows. Each mark futures contract
controls 125,000 marks, and each pound futures contract controls 62,500 pounds.
Suppose the payment date coincides with the last trading date of the currency fu-
tures contract at the CME. Currently the 3-month mark futures price is $0.7147 and
the pound futures price is $1.5734. The firm buys 2,000,000/125,000= 16 mark fu-
tures contracts, locking in a purchase price of $1,429,400. To further lock in the price
in pounds at the exchange rate of $1.5734/£1, the firm shorts 1,429,400/(1.5734×
62,500)≈ 15 pound futures contracts. The end result is a purchase price of 2,000,000×
(0.7147/1.5734)= 908,478 pounds with a cross rate of £0.45424/DEM1.

Hedge Ratio (Delta)
In general, the futures contract may not track the cash asset perfectly. Let ρ denote
the correlation between St and Ft , δS the standard deviation of St , and δF the
standard deviation of Ft . For a short hedge, the cash flow at time t is St − h(Ft − F),
whereas for a long hedge it is −St + h(Ft − F). The variance is V ≡ δ2S+ h2δ2F −
2hρδSδF in both cases. To minimize risk, the hedger seeks the hedge ratio h that
minimizes the variance of the cash flow of the hedged position, V. Because ∂V/∂h=
2hδ2F − 2ρδSδF ,

h= ρ δS
δF
= Cov[ St , Ft ]

Var[ Ft ]
, (16.1)

which was called beta in Exercise 6.4.1.

EXAMPLE 16.2.3 Suppose that the standard deviation of the change in the price per
bushel of corn over a 3-month period is 0.4 and that the standard deviation of the
change in the soybeans futures price over a 3-monthperiod is 0.3.Assume further that
the correlationbetween the 3-month change in the cornprice and the 3-month change
in the soybeans futures price is 0.9. The optimal hedge ratio is 0.9× (0.4/0.3)= 1.2.
Because the size of one soybeans futures contract is 5,000 bushels, a company
expecting to buy 1,000,000 bushels of corn in 3 months can hedge by buying
1.2× (1,000,000/5,000)= 240 futures contracts on soybeans.

The hedge ratio can be estimated as follows. Suppose that S1, S2, . . . , St and
F1, F2, . . . , Ft are the daily closing spot and futures prices, respectively. Define�Si ≡
Si+1− Si and �Fi ≡ Fi+1− Fi . Now estimate ρ, δS, and δF withEqs. (6.2) and (6.18).

➤ Exercise 16.2.2 Show that if the linear regression of s on f based on the data

(�S1,�F1), (�S2,�F1), . . . , (�St−1,�Ft−1)

is s = β0+β1 f , then β1 is an estimator of the hedge ratio in Eq. (16.1).

16.2.4 Hedging with Stock Index Futures

Stock index futures can be used to hedge a well-diversified portfolio of stocks. Ac-
cording to the Capital Asset PricingModel (CAPM), the relation between the return
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on a portfolio of stocks and the return on themarket can be described by a parameter
β, called beta. Approximately,

�1 = α+β ×�2,

where �1 (�2) is the change in the value of $1 during the holding period if it is
invested in the portfolio (the market index, respectively) and α is some constant.
The change in the portfolio value during the period is therefore S×α+ S×β ×�2,
where S denotes the current value of the portfolio. The change in the value of
one futures contract that expires at the end of the holding period is approximately
F ×�2, where F is the current value of one futures contract. Recall that the value
of one futures contract is equal to the futures price multiplied by the contract size.
For example, if the futures price of the S&P 500 is 1,000, the value of one futures
contract is 1,000× 500= 500,000.

The uncertain component of the change in the portfolio value, S×β ×�2, is
approximately βS/F times the change in the value of one futures contract, F ×�2.
The number of futures contracts to short in hedging the portfolio is thus βS/F . This
strategy is called portfolio immunization. The same idea can be applied to change
the beta of a portfolio. To change the beta from β1 to β2, we short

(β1−β2) SF (16.2)

contracts. A perfectly hedged portfolio has zero beta and corresponds to choosing
β2 = 0.

EXAMPLE 16.2.4 Hedging a well-diversified stock portfolio with the S&P 500 Index
futures works as follows. Suppose the portfolio in question is worth $2,400,000 with
a beta of 1.25 against the returns on the S&P 500 Index. So, for every 1% advance
in the index, the expected advance in the portfolio is 1.25%. With a current futures
price of 1200, 1.25× [2,400,000/(1,200× 500)]= 5 futures contracts are sold short.

➤ Exercise 16.2.3 Redo Example 16.2.4 if the goal is to change the beta to 2.0.

16.3 Hedging and Options

16.3.1 Delta Hedge

The delta (hedge ratio) of a derivative is defined as �≡ ∂ f/∂S. Thus � f ≈�×�S
for relatively small changes in the stock price,�S. A delta-neutral portfolio is hedged
in the sense that it is immunized against small changes in the stock price. A trading
strategy that dynamically maintains a delta-neutral portfolio is called delta hedge.

Because delta changes with the stock price, a delta hedge needs to be rebal-
anced periodically in order to maintain delta neutrality. In the limit in which the
portfolio is adjusted continuously, perfect hedge is achieved and the strategy be-
comes self-financing [294]. This was the gist of the Black–Scholes–Merton argument
in Subsection 15.2.1.

For a non-dividend-paying stock, the delta-neutral portfolio hedges N short
derivatives with N×� shares of the underlying stock plus B borrowed dollars such
that

−N× f + N×�× S− B= 0.
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This is called the self-financing condition because the combined value of derivatives,
stock, and bonds is zero. At each rebalancing point when the delta is �′, buy N×
(�′ −�) shares to maintain N×�′ shares with a total borrowing of B′ = N×�′ ×
S′ − N× f ′, where f ′ is the derivative’s prevailing price. A delta hedge is a discrete-
time analog of the continuous-time limit and will rarely be self-financing, if ever.

➤ Exercise 16.3.1 (1) A delta hedge under the BOPM results in perfect replication
(see Chap. 9). However, this is impossible in the current context. Why? (2) How
should the value of the derivative behave with respect to that of the underlying asset
for perfect replication to be possible?

A Numerical Example
Let us illustrate the procedure with a hedger who is short European calls. Because
the delta is positive and increases as the stock price rises, the hedger keeps a long
position in stock and buys (sells) stock if the stock price rises (falls, respectively) in
order to maintain delta neutrality. The calls are replicated well if the cumulative cost
of trading stock is close to the call premium’s FV at expiration.

Consider a trader who is short 10,000 calls. This call’s expiration is 4 weeks away,
its strike price is $50, and each call has a current value of f = 1.76791. Because
an option covers 100 shares of stock, N= 1,000,000. The underlying stock has 30%
annual volatility, and the annual riskless rate is 6%. The trader adjusts the portfolio
weekly. As �= 0.538560, N×�= 538,560 shares are purchased for a total cost of
538,560× 50= 26,928,000 dollars to make the portfolio delta-neutral. The trader
finances the purchase by borrowing

B= N×�× S− N× f = 26,928,000− 1,767,910= 25,160,090

dollars net. The portfolio has zero net value now.
At 3 weeks to expiration, the stock price rises to $51. Because the new call value

is f ′ = 2.10580, the portfolio is worth

−N× f ′ + 538,560× 51− Be0.06/52 = 171,622 (16.3)

before rebalancing. That this number is not zero confirms that a delta hedge does
not replicate the calls perfectly; it is not self-financing as $171,622 can be withdrawn.
The magnitude of the tracking error – the variation in the net portfolio value – can
be mitigated if adjustments are made more frequently, say daily instead of weekly.
In fact, the tracking error is positive ∼68% of the time even though its expected
value is essentially zero. It is furthermore proportional to vega [109, 537]. In practice
tracking errors will cease to decrease to beyond a certain rebalancing frequency
[45].

With a higher delta�′ = 0.640355, the trader buys N× (�′ −�)= 101,795 shares
for $5,191,545, increasing the number of shares to N×�′ = 640,355. The cumulative
cost is

26,928,000× e0.06/52+ 5,191,545= 32,150,634,

and the net borrowed amount is1

B′ = 640,355× 51− N× f ′ = 30,552,305.

Theportfolio is againdelta-neutralwith zerovalue.Figure16.1 tabulates thenumbers.
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Stock Option Change in No. shares Cost of Cumulative
price value Delta Gamma delta bought shares cost
S f � � (3)−(3′′) N×(5) (1)×(6) FV(8”)+(7)

Weeks to
expiration (1) (2) (3) (4) (5) (6) (7) (8)

4 50 1.76791 0.538560 0.0957074 — 538,560 26,928,000 26,928,000
3 51 2.10580 0.640355 0.1020470 0.101795 101,795 5,191,545 32,150,634
2 53 3.35087 0.855780 0.0730278 0.215425 215,425 11,417,525 43,605,277
1 52 2.24272 0.839825 0.1128601 −0.015955 −15,955 −829,660 42,825,960
0 54 4.00000 1.000000 0.0000000 0.160175 160,175 8,649,450 51,524,853

Figure 16.1: Delta hedge. The cumulative cost reflects the cost of trading stocks to maintain delta neutrality.
The total number of shares is 1,000,000 at expiration (trading takes place at expiration, too). A doubly primed
number refers to the entry from the previous row of the said column.

At expiration, the trader has 1,000,000 shares, which are exercised against by the
in-the-money calls for $50,000,000. The trader is left with an obligation of

51,524,853− 50,000,000= 1,524,853,

which represents the replication cost. Compared with the FV of the call premium,

1,767,910× e0.06×4/52 = 1,776,088,

the net gain is 1,776,088− 1,524,853= 251,235. The amount of money to start with
for perfect replication should converge to the call premium $1,767,910 as the position
is rebalanced more frequently.

➤ Exercise 16.3.2 (1) Repeat the calculations in Fig. 16.1 but this time record the
weekly tracking errors instead of the cumulative costs. Verify that the following
numbers result:

Weeks to Net Tracking
expiration borrowing (B ) error

4 25,160,090 —
3 30,552,305 171,622
2 42,005,470 367
1 41,428,180 203,874
0 50,000,000 −125,459

(This alternative view looks at how well the call is hedged.) (2) Verify that the FVs
at expiration of the tracking errors sum to $251,235.

➤ Exercise 16.3.3 Abroker claimed theoptionpremiumis anarbitrageprofitbecause
he could write a call, pocket the premium, then set up a replicating portfolio to hedge
the short call. What did he overlook?

➢ Programming Assignment 16.3.4 Implement the delta hedge for options.
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Stock price Option value Delta Gamma
Weeks to expiration S f2 �2 �2

4 50 1.99113 0.543095 0.085503
3 51 2.35342 0.631360 0.089114
2 53 3.57143 0.814526 0.070197
1 52 2.53605 0.769410 0.099665
0 54 4.08225 0.971505 0.029099

Figure 16.2: Hedging option used in delta–gamma hedge. This option is the same as the one in Fig. 16.1
except that the expiration date is 1 week later.

16.3.2 Delta–Gamma and Vega-Related Hedges

A delta hedge is based on the first-order approximation to changes in the derivative
price� f , which is due to small changes in the stock price�S. When �S is not small,
the second-order term, gamma � ≡ ∂2 f/∂S2, can help. A delta–gamma hedge is like
delta hedge except that zero portfolio gamma, or gamma neutrality, is maintained.
To meet this extra condition, in addition to self-financing and delta neutrality, one
more security needs to be brought in.

The hedging procedure will be illustrated for the scenario in Fig. 16.1. A hedging
call is brought in, and its properties along the same scenario are in Fig. 16.2. With
the stock price at $50, each call has a value of f = 1.76791, delta �= 0.538560,
and gamma � = 0.0957074, whereas each hedging call has value f2 = 1.99113,�2 =
0.543095, and �2 = 0.085503. Note that the gamma of the stock is zero. To set up a
delta–gamma hedge, we solve

−N× f +n1× 50+n2× f2− B= 0 (self-financing),

−N×�+n1+n2×�2− 0= 0 (delta neutrality),

−N×�+ 0+n2×�2− 0= 0 (gamma neutrality).

The solutions are n1 =−69,351, n2 = 1,119,346, and B=−3,006,695. We short
69,351 shares of stock, buy 1,119,346 hedging calls, and lend 3,006,695 dollars. The
cost of shorting stock and buying calls is n1× 50+n2× f2 =−1,238,787 dollars.

Oneweek later, the stockprice climbs to$51.Thenewcall values are f ′ = 2.10580
and f ′2 = 2.35342 for the hedged and the hedging calls, respectively, and the portfolio
is worth

−N× f ′ +n1× 51+n2× f ′2− Be0.06/52 = 1,757

before rebalancing. As this number is not zero, a delta–gamma hedge is not self-
financing. Nevertheless, it is substantially smaller than delta hedge’s 171,622 in
Eq. (16.3). Now we solve

−N× f ′ +n′1× 51+n′2× f ′2− B′ = 0,

−N×�′ +n′1+n′2×�′2− 0= 0,

−N×�′ + 0+n′2×�′2− 0= 0.

The solutions are n′1 =−82,633, n′2 = 1,145,129, and B′ = −3,625,138. The trader
therefore purchases n′1−n1 =−82,633+ 69,351=−13,282 shares of stock and
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Stock No. shares Cost of No. options Cost of Net Cumulative
price bought shares bought options borrowing cost
S n ′1− n1 (1)×(2) n ′2− n2 (4)× f2 B FV(7′′)+(3)+(5)

Weeks to
expiration (1) (2) (3) (4) (5) (6) (7)

4 50 −69,351 −3,467,550 1,119,346 2,228,763 −3,006,695 −1,238,787
3 51 −13,282 −677,382 25,783 60,678 −3,625,138 −1,856,921
2 53 91,040 4,825,120 −104,802 −374,293 810,155 2,591,762
1 52 −39,858 −2,072,616 92,068 233,489 −1,006,346 755,627
0 54 1,031,451 55,698,354 −1,132,395 −4,622,720 50,000,000 51,832,134

Figure 16.3: Delta–gamma hedge. The cumulative cost reflects the cost of trading stock and the hedging call
to maintain delta–gamma neutrality. At expiration, the number of shares is 1,000,000 , whereas the number
of hedging calls is zero.

n′2−n2 = 1,145,129− 1,119,346= 25,783 hedging calls for −13,282× 51+ 25,783×
f ′2 =−616,704 dollars. The cumulative cost is

−1,238,787× e0.06/52− 616,704=−1,856,921.
The portfolio is again delta-neutral and gamma-neutral with zero value. The remain-
ing steps are tabulated in Fig. 16.3.

At expiration, the trader owns 1,000,000 shares, which are exercised against by
the in-the-money calls for $50,000,000. The trader is then left with an obligation of

51,832,134− 50,000,000= 1,832,134.

With the FVof the call premium at $1,776,088, the net loss is $56,046, which is smaller
than the $251,235 with the delta hedge.

If volatility changes, a delta-gamma hedge may not work well. An enhancement
is the delta–gamma–vega hedge, which maintains also vega neutrality, meaning zero
portfolio vega. As before, to accomplish this, one more security has to be brought
into the process. Because this strategy does not involve new insights, it is left to the
reader. In practice, the delta–vega hedge, which may not maintain gamma neutrality,
performs better than the delta hedge [44].

➤ Exercise 16.3.5 Verify that any delta-neutral gamma-neutral self-financing port-
folio is automatically theta-neutral.

➢ Programming Assignment 16.3.6 Implement the delta–gamma hedge for options.

➢ Programming Assignment 16.3.7 Implement the delta–gamma–vega hedge for
options.

16.3.3 Static Hedging

Dynamic strategies incur huge transactions costs. A static strategy that trades only
when certain rare events occur addresses this problem. This goal has been realized
for hedging European barrier options and look back options with standard options
[157, 158, 159, 270].

➤ Exercise 16.3.8 Explain why shorting a bull call spread can in practice hedge a
binary option statically.
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Additional Reading

The literature onhedging is vast [470, 514, 569, 746].Reference [809] adopts a broader
view and considers instruments beyond derivatives. See [891] for mathematical pro-
gramming techniques in risk management. They are essential in the presence of
trading constraints or market imperfections. Consult [365, 369, 376, 646, 647] for
more information on financial engineering and risk management.

NOTE

1. Alternatively, the number could be arrived at by Be0.06/52+ 5,191,545+ 171,622= 30,552,305.



CHAPTER
SEVENTEEN

Trees

I love a tree more than a man.

Ludwig van Beethoven (1770–1827)

This chapter starts with combinatorial methods to speed upEuropean option pricing.
The influential and versatile trinomial model is also introduced. These tree are re-
garded as more “accurate” than binomial trees. Then an important maxim is brought
up: The comparison of algorithms should be based on the actual running time. This
chapter ends with multinomial trees for pricing multivariate derivatives.

17.1 Pricing Barrier Options with Combinatorial Methods

We first review the binomial approximation to the geometric Brownian motion
S= eX, where X is a (µ− σ 2/2, σ ) Brownian motion. (Equivalently, dS/S= µdt +
σ dW.) For economy of expression, we use S in place of S(0) for the current time-
zero price. Consider the stock price at time �t ≡ τ/n, where τ is the time tomaturity.
From Eq. (13.12),

E[ S(�t) ]= Seµ�t , Var[ S(�t) ]= S2e2µ�t(eσ 2�t − 1
)→ S2σ 2�t.

Under the binomial model, the stock price increases to Su with probability q or
decreases to Sd with probability 1−q at time �t . The expected stock price at
time �t is qSu+ (1−q) Sd. Our first requirement is that it converge to Seµ�t . The
variance of the stock price at time �t is given by q(Su)2+ (1−q)(Sd)2− (Seµ�t)2.
Our second requirement is that it converge to S2σ 2�t . With ud = 1 imposed, the
choice below works:

u= eσ
√
�t , d = e−σ

√
�t , q = e

µ�t −d
u−d . (17.1)

In a risk-neutral economy, µ= r and q approaches

p≡ 1
2
+ 1

2
r − σ 2/2
σ

√
�t

by convergence (9.17). We set µ′ ≡ r − σ 2/2 throughout.
The combinatorial method is as elementary as it is elegant. It can often cut the

running time by an order of magnitude. The basic paradigm is to count the number

234
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of admissible paths that lead from the root to any terminal node. We first used this
method in the linear-time algorithm for standard European option pricing in Fig. 9.9,
and now we apply it to barrier option pricing. The reflection principle provides the
necessary tool.

17.1.1 The Reflection Principle

Imagine a particle at position (0,−a) on the integral lattice that is to reach (n,−b).
Without loss of generality, assume that a,b≥ 0. This particle is constrained to move
to (i + 1, j + 1) or (i + 1, j − 1) from (i, j), as shown below:

(i, j) ✟✟✟✯ (i + 1, j + 1) associated with the up move S→ Su
❍❍❍❥ (i + 1, j − 1) associated with the down move S→ Sd

.

How many paths touch the x axis?
For a path from (0,−a) to (n,−b) that touches the x axis, let J denote the first

point at which this happens. When the portion of the path from (0,−a) to J is
reflected, a path from (0,a) to (n,−b) is constructed, which also hits the x axis at
J for the first time (see Fig. 17.1). The one-to-onemapping shows that the number of
paths from (0,−a) to (n,−b) that touch the x axis equals the number of paths from
(0,a) to (n,−b). This is the celebrated reflection principle of André (1840–1917)
published in 1887 [604, 686]. Because a path of this kind has (n+b+a)/2 down
moves and (n−b−a)/2 up moves, there are(

n
n+a+b

2

)
for even n+a+b (17.2)

such paths. The convention here is
(n
k

)= 0 for k< 0 or k> n.

➤ Exercise 17.1.1 What is the probability that the stock’s maximum price is at least
Suk?

Figure 17.1: The reflection principle for binomial random walks. Two paths of equal length will
be separated by a distance of 2k on the binomial tree if their respective accumulative numbers
of up moves differ by k (see Eq. (17.4)).
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17.1.2 Combinatorial Formulas for Barrier Options

We focus on the down-and-in call with barrier H< X. Assume that H< S without
loss of generality for, otherwise, the option is identical to a standard call. Define

a ≡
⌈
ln(X/ (Sdn))

ln(u/d)

⌉
=
⌈
ln(X/S)

2σ
√
�t
+ n

2

⌉
,

(17.3)

h≡
⌊
ln(H/ (Sdn))

ln(u/d)

⌋
=
⌊
ln(H/S)

2σ
√
�t
+ n

2

⌋
.

Both a and h have straightforward interpretations. First, h is such that H̃≡
Suhdn−h is the terminal price that is closest to, but does not exceed, H. The true
barrier is replaced with the effective barrier H̃ in the binomial model. Similarly, a
is such that X̃≡ Suadn−a is the terminal price that is closest to, but not exceeded by,
X. A process with n moves hence ends up in the money if and only if the number of
up moves is at least a.

The price Sukdn−k is at a distance of 2k from the lowest possible price Sdn on
the binomial tree because

Sukdn−k = Sd−kdn−k = Sdn−2k. (17.4)

Given this observation, Fig. 17.2 plots the relative distances of various prices on the
tree.

The number of paths from S to the terminal price Sujdn− j is
(n
j

)
, each with

probability pj (1− p)n− j . With reference to Fig. 17.2, we can apply the reflection
principle with a= n− 2h and b= 2 j − 2h in formula (17.2) by treating the S line
as the x axis. Therefore(

n
n+(n−2h)+(2 j−2h)

2

)
=
(

n
n− 2h+ j

)
paths hit H̃ in the process for h≤ n/2. We conclude that the terminal price Sujdn− j

is reached by a path that hits the effective barrier with probability(
n

n− 2h+ j
)
pj (1− p)n− j , (17.5)

Figure 17.2: Down-and-in call and binomial tree. The effective barrier is the H̃ line,
and the process starts on the S line.
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Linear-time, constant-space algorithm for pricing down-and-in calls on a
non-dividend-paying stock:

input: S, σ, X,H (H< X,H< S),n, τ, r ;
real p,u,d,b,D,C;
integer j, a, h;
u := eσ√τ/n;d := e−σ√τ/n;
a := �ln(X/Sdn)/ ln(u/d)�; h := �ln(H/Sdn)/ ln(u/d)�;
p := (erτ/n−d)/(u−d); // Risk-neutral probability.
b := p2h(1− p)n−2h; // b2h is computed.
D := S×u2hdn−2h;C := b× (D− X);
for ( j = 2h− 1 down to a) {

b := b× p× (n− 2h+ j + 1)/((1− p)× (2h− j));
D := D×u/d;
C := C+b× (D− X);

}
return C/erτ ;

Figure 17.3: Optimal algorithm for European down-and-in calls on a stock that does not pay dividends.
Variable b stores b j ≡

( n
n−2h+ j

)
p j (1− p)n− j for j = 2h , 2h − 1, . . . , a , in that order, and variable

C accumulates the summands in option value (17.6) for j = 2h , 2h − 1, . . . , a . Note that b j =
b j+1 [ (1− p)(n− 2h + j + 1) ]/[ p(2h − j ) ] . The structure is similar to the one in Fig. 9.9.

and the option value equals

R−n
2h∑
j=a

(
n

n− 2h+ j
)
pj (1− p)n− j (Sujdn− j − X) , (17.6)

where R≡ erτ/n is the riskless return per period. Formula (17.6) is an alternative
characterization of the binomial tree algorithm [624]. It also implies a linear-time
algorithm (see Fig. 17.3). In fact, the running time is proportional to 2h− a, which
is close to n/2:

2h− a ≈ n
2
+ ln(H2/(SX))

2σ
√
τ/n

= n
2
+O(

√
n).

The preceding methodology has applications to exotic options whose terminal
payoff is “nonstandard” and closed-form solutions are hard to come by. Discrete-
timemodelsmay also bemore realistic than continuous-timeones for contracts based
on discrete sampling of the price process at regular time intervals [147, 597].

EXAMPLE 17.1.1 Abinary call pays off $1 if the underlying asset finishes above the strike
price and nothing otherwise. The price of a binary down-and-in call is formula (17.6)
with Sujdn− j − X replaced with 1.

EXAMPLE 17.1.2 A power option pays off max( [ S(τ )− X ]p, 0 ) (sometimes
max(S(τ )p− X, 0)) at expiration [894]. To price a down-and-in power option,
replace Sujdn− j − X in formula (17.6) with (Sujdn− j − X)p ((Sujdn− j )p− X,
respectively).
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➤ Exercise 17.1.2 Derive pricing formulas similar to formula (17.6) for the other three
barrier options: down-and-out, up-and-in, and up-and-out options.

➤ Exercise 17.1.3 Use the reflection principle to derive a combinatorial pricing for-
mula for the European lookback call on the minimum.

➤ Exercise 17.1.4 Consider the exploding call spread, which has the same payoff as
the bull call spread except that it is exercised promptly the moment the stock price
touches the trigger price K [377]. (1)Write a combinatorial formula for the value of
this path-dependent option. (2) Verify that the valuation of the option runs in linear
time.

➤ Exercise 17.1.5 Derive a combinatorial pricing formula for the reset call option.

➤ Exercise 17.1.6 Prove that option value (17.6) converges to value (11.4) with q = 0.

➤ Exercise 17.1.7 Derive a pricing formula for the European power option
max(S(τ )2− X, 0).
➢ Programming Assignment 17.1.8 Design fast algorithms for European barrier
options.

➢ Programming Assignment 17.1.9 Implement O(n3)-time algorithms for European
geometric average-rate optionswith combinatorics, improvingProgrammingAssign-
ment 11.7.6.

➢ Programming Assignment 17.1.10 (1) Implement O(n2)-time algorithms for
European lookback options, improving Programming Assignment 11.7.11, part (1).
(2) Improve the running time to O(n).

17.1.3 Convergence of Binomial Tree Algorithms

Option value (17.6) results in the sawtoothlike convergence shown in Fig. 11.5. In-
creasing n therefore does not necessarily lead to more accurate results. The reasons
are not hard to see. The true barrier most likely does not equal the effective barrier.
The same holds for the strike price and the effective strike price. Both introduce
specification errors [271]. The issue of the strike price is less critical as evinced by
the fast convergence of binomial tree algorithms for standard European options. The
issue of the barrier is not negligible, however, because the barrier exerts its influence
throughout the price dynamics.

Figure 17.4 suggests that convergence is actually good if we limit n to certain
values – 191 in the figure, for example. These values make the true barrier coincide
with or occur just above one of the stock price levels, that is, H≈ Sd j = Se− jσ

√
τ/n

for some integer j [111, 196]. The preferred n’s are thus

n=
⌊

τ

[ ln(S/H)/( jσ ) ]2

⌋
, j = 1, 2, 3, . . .

There is only one minor technicality left. We picked the effective barrier to be one of
the n+ 1 possible terminal stock prices. However, the effective barrier above, Sd j ,
corresponds to a terminal stock price only when n− j is even by Eq. (17.4).∗ To
close this gap, we decrement n by one, if necessary, to make n− j an even number.
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Figure 17.4: Convergence of binomial model for down-and-in calls. A detailed look
of Fig. 11.5. Note that the approximation is quite close (5.63542 vs. the analytical
value 5.6605) at n = 191.

The preferred n’s are now

n=
{
�, if �− j is even
�− 1, otherwise

, �≡
⌊

τ

[ ln(S/H)/( jσ ) ]2

⌋
(17.7)

j = 1, 2, 3, . . . . In summary, evaluate pricing formula (17.6) only with the n’s above.
The result is shown in Fig. 17.5.

Now that barrier options can be efficiently priced, we can afford to pick very large
n’s. This has profound consequences. For example, pricing seems prohibitively time
consuming when S≈ H because n, being proportional to 1/ ln2(S/H), is large. This
observation is indeed true of standard quadratic-time binomial tree algorithms like
the one in Fig. 11.4. However, it no longer applies to the linear-time algorithm [624].

Figure 17.5: Convergence of binomial model for down-and-in calls
at well-chosen n ’s. Formula (17.6) is evaluated at n = 21 (1), 84 (2),
191 (3), 342 (4), 533 (5), 768 (6), 1047 (7), 1368 (8), 1731 (9), 2138 (10),
2587 (11), 3078 (12), and 3613 (13), with the corresponding j in
parentheses.
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➤ Exercise 17.1.11 How do we efficiently price a portfolio of barrier options with
identical underlying assets but different barriers under the binomial model?

➤ Exercise 17.1.12 Explain why Fig. 11.5 shows that the calculated values underesti-
mate the analytical value.

➤ Exercise 17.1.13 In formula (17.6), the barrier H is replaced with the effective
barrier H̃, which is one of the n+ 1 terminal prices. If the effective barrier is allowed
to be one of all possible 2n+ 1 prices Sun, Sun−1, . . . , Su−n, what changes should be
made to formulas (17.6) and (17.7)?

➢ Programming Assignment 17.1.4 Try �≡ � τ
[ ln(S/H)/( jσ ) ]2 � instead.

17.1.4 Double-Barrier Options

Double-barrier options contain two barriers, L and H, with L<H. Depending
on how the barriers affect the security, various barrier options can be defined. We
consider options that come into existence if and only if either barrier is hit.

A particle starts at position (0,−a) on the integral lattice and is destined for
(n,−b). Without loss of generality, assume that a,b≥ 0. The number of paths in
which a hit of the H line, x = 0, appears before a hit of the L line x =−s is(

n
n+a−b+2s

2

)
for even n+a−b. (17.8)

In the preceding expression, we assume that s > b and a< s to make both barriers
effective.

The preceding expression can be generalized. Let Ai denote the set of paths

that hit the barriers with a hit sequence containing

i︷ ︸︸ ︷
H+L+H+ · · · , i ≥ 2, where L+

denotes a sequence of Ls and H+ denotes a sequence of Hs. Similarly, let Bi denote

the set of paths that hit the barriers with a sequence containing

i︷ ︸︸ ︷
L+H+L+ · · · , i ≥ 2.

For instance, a path with the hit pattern LLHLLHH belongs to A2, A3, B2, B3,
and B4. Note that Ai ∩ Bi may not be empty. The number of paths that hit either
barrier is

N(a,b, s)=
n∑
i=1

(−1)i−1(|Ai | + |Bi |). (17.9)

The calculation of summation (17.9) can stop at the first i when |Ai | + |Bi | = 0.
The value of the double-barrier call is now within reach. Let us take care of the

degenerate cases first. If S≤ L, the double-barrier call is reduced to a standard call.
If S≥ H, it is reduced to a knock-in call with a single barrier H. So we assume that
L< S< H from now on. Under this assumption, it is easy to check that the double-
barrier option is reduced to simpler options unless L< X< H. So we assume that
L< X< H from now on. Define

h ≡
⌈
ln(H/ (Sdn))

ln(u/d)

⌉
=
⌈
ln(H/S)

2σ
√
�t
+ n

2

⌉
,

l ≡
⌊
ln(L/ (Sdn))

ln(u/d)

⌋
=
⌊
ln(L/S)

2σ
√
�t
+ n

2

⌋
.
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Figure 17.6: Double-barrier call under binomial model. The effective barriers are the
H̃ line and the L̃ line, and the process starts on the S line.

The barriers will be replaced with the effective barriers H̃≡ Suhdn−h and L̃≡
Suldn−l . Note that in Eq. (17.9), only terminal nodes between L̃ and H̃ (inclusive)
are considered. These terminal nodes together contribute

A≡ R−n
h∑
j=a

N(2h−n, 2h− 2 j, 2(h− l)) pj (1− p)n− j (Sujdn− j − X)
(17.10)

to the option value, where a is defined in Eqs. (17.3). See Fig. 17.6 for the relative
positions of of the various parameters. As for the terminal nodes outside the above-
mentioned range, they constitute a standard call with a strike price of H̃u2. Let
its value be D. The double-barrier call thus has value A+D. The convergence is
sawtoothlike [179].

➤ Exercise 17.1.15 Prove formula (17.8).

➤ Exercise 17.1.16 Apply the reflection principle repetitively to verify that

|Ai | =


(

n
n+a+b+(i−1) s

2

)
for odd i(

n
n+a−b+is

2

)
for even i

, |Bi | =


(

n
n−a−b+(i+1) s

2

)
for odd i(

n
n−a+b+is

2

)
for even i

.

Assume that n+a−b is even for |Ai | and n−a+b is even for |Bi |.
➤ Exercise 17.1.17 Prove Eq. (17.9).

➤ Exercise 17.1.18 (1) Formulate the in–out parity for double-barrier options.
(2) Replicate the double-barrier option by using knock-in options, knock-out op-
tions, and double-barrier options that come into existence if and only if both barriers
are hit. (3) Modify Eq. (17.9) to price the double-barrier option in (2).

➤ Exercise 17.1.19 Consider a generalized double-barrier option with the two bar-
riers defined by functions f� and fh, where f�(t)< fh(t) for t ≥ 0. Transform it
into a double-barrier option with constant barriers by changing the underlying price
process.
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Figure 17.7: Trinomial model. There are three branches from
each node.

➢ Programming Assignment 17.1.20 Implement a linear-time algorithm for double-
barrier options.

17.2 Trinomial Tree Algorithms

We now set up the trinomial approximation to the geometric Brownian motion
dS/S= r dt + σ dW [107]. The three stock prices at time �t are S, Su, and Sd,
where ud = 1 (see Fig. 17.7). Impose the matching of mean and that of variance to
obtain

1 = pu+ pm+ pd,
SM ≡ [ puu+ pm+ (pd/u) ] S,

S2V ≡ pu(Su− SM)2+ pm(S− SM)2+ pd(Sd− SM)2,

where M≡ er�t and V ≡ M2(eσ
2�t − 1) by Eqs. (6.11). It is easy to verify that

pu = u(V+M
2−M)− (M− 1)

(u− 1)(u2− 1)
,

pd = u
2(V+M2−M)−u3(M− 1)

(u− 1)(u2− 1)
.

Weneed tomake sure that theprobabilities lie betweenzeroandone.Use u= eλσ
√
�t ,

where λ≥ 1 is a parameter that can be tuned. Then

pu→ 1
2λ2
+ (r + σ 2)

√
�t

2λσ
, pd→ 1

2λ2
− (r − 2σ 2)

√
�t

2λσ
.

A nice choice for λ is
√
π/2 [824].

➤ Exercise 17.2.1 Verify the following: (1) ln(S(�t)/S) has mean µ′�t , (2) the vari-
ance of ln(S(�t)/S) converges to σ 2�t , and (3) S(�t)’s mean converges to Ser�t .

➤ Exercise 17.2.2 The trinomial model no longer supports perfect replication of op-
tions with stocks and bonds as in the binomial model. Replicating an option with
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h shares of stock and $B in bonds involves two unknowns h and B, but the three
branches imply three conditions. Give an example for which resulting systemof three
equations in two knowns is inconsistent.

➢ Programming Assignment 17.2.3 Recall the diagonal method in Section 9.7. Write
a program to perform backward induction on the trinomial tree with the diagonal
method.

17.2.1 Pricing Barrier Options

Binomial tree algorithms introduce a specification error by replacing the barrier with
a nonidentical effective barrier. The trinomial tree algorithm that is due to Ritchken
solves the problem by adjusting λ so that the barrier is hit exactly [745]. Here is the
idea. It takes

h= ln(S/H)

λσ
√
�t

consecutive downmoves to go from S to H if h is an integer,which is easy to achieve
by adjusting λ. Typically, we find the smallest λ≥ 1 such that h is an integer, that
is,

λ= min
j=1,2,3,...

ln(S/H)

jσ
√
�t
.

This done, one of the layers of the trinomial tree coincides with the barrier. We note
that such a λ may not exist for very small n’s. The following probabilities may be
used:

pu = 1
2λ2
+ µ

′√�t
2λσ

, pm = 1− 1
λ2
, pd = 1

2λ2
− µ

′√�t
2λσ

.

Note that this particular trinomial model reduces to the binomial model when λ= 1.
See Fig. 17.8 for the algorithm. Figure 17.9 shows the trinomial model’s convergence
behavior. If the stock pays a continuous dividend yield of q, then we let µ′ ≡ r −q−
σ 2/2.

➤ Exercise 17.2.4 It was shown in Subsection 10.2.2 that binomial trees can be ex-
tended backward in time for two periods to compute delta and gamma. Argue that
trinomial trees need to be extended backward in time for only one period to compute
the same hedge parameters.

➤ Exercise 17.2.5 Derive combinatorial formulas for European down-and-in, down-
and-out, up-and-in, and up-and-out options.

➢ Programming Assignment 17.2.6 Implement trinomial tree algorithms for barrier
options. Add rebates for the knock-out type.

17.2.2 Remarks on Algorithm Comparison

Algorithms are often compared based on the n value at which they converge, and
the one with the smallest n wins. This is a fallacy as it implies that giraffes are faster
than cheetahs simply because they take fewer strides to travel the same distance,
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Trinomial tree algorithm for down-and-out calls on a non-dividend-paying stock:

input: S, σ, X,H (H< X,H< S),n, τ, r ;
real u,d, pu, pm, pd, λ,�t,C[ 2n+ 1 ];
integer i, j, h;
�t := τ/n;
h=: �ln(S/H)/(σ

√
�t)�;

if [ h< 1 or h> n ] return failure;
λ := ln(S/H)/(hσ

√
�t);

pu := 1/(2λ2)+ (r − σ 2/2)
√
�t/(2λσ );

pd := 1/(2λ2)− (r − σ 2/2)
√
�t/(2λσ );

pm := 1− pu− pd;
u := eλσ

√
�t ;

for (i = 0 to 2n) { C[ i ] :=max(0, Sun−i − X); }
C[n+ h ] := 0; // A hit.
for ( j = n− 1 down to 0) {

for (i = 0 to 2 j)
C[ i ] := puC[ i ]+ pmC[ i + 1 ]+ pdC[ i + 2 ];

if [ j + h≤ 2 j ] C[ j + h ] := 0; // A hit.
}
return C[ 0 ]/erτ ;

Figure 17.8: Trinomial tree algorithm for down-and-out calls on a non-dividend-paying stock. The barrier
H = Su−h corresponds to C [ h + j ] at times j = n , n− 1, . . . , h . It is not hard to show that h must be
at least σ 2τ/ ln2(S/H ) to make λ≥ 1. This algorithm should be compared with the ones in Figs. 11.4 and
33.2.

forgetting that how fast the legs move is equally critical. like any race, an algorithm’s
performance must be based on its actual running time [717]. As a concrete exam-
ple, Figs. 11.5 and 17.9 show that the trinomial model converges at a smaller n
than the binomial model. It is in this sense when people say that trinomial models

Figure 17.9: Convergence of trinomial model for down-and-in calls.
Plotted are the down-and-in call values as computed by the trinomial
tree algorithm against the number of time periods. The parameters
are identical to those used in Fig. 11.5. The analytical value 5.6605 is
plotted for reference.
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converge faster thanbinomial ones.However, the linear-timebinomial tree algorithm
for European barrier options actually performs better than the trinomial counterpart
[610, 624].

17.3 Pricing Multivariate Contingent Claims

Multivariate derivatives such as correlation options are contingent claims that de-
pend on two or more underlying assets. Consider the basket option on m assets. The
basket call has the terminal payoff max(

∑m
i=1 αi Si (τ )− X, 0), whereas the basket

put has the terminal payoff max(X−∑m
i=1 αi Si (τ ), 0), where αi is the percentage

of asset i [663]. Basket options are essentially options on a portfolio of stocks or
index options on a capitalization- or a price-weighted index. Consider the option on
the best of two risky assets and cash as another example. It has a terminal payoff of
max(S1(τ ), S2(τ ), X), which guarantees a cash flow of X and the better of two assets,
say a stock fund and a bond fund [833]. Because the terminal payoff can be written
as X + max(max(S1(τ ), S2(τ ))− X, 0), the option is worth Xe−rτ +C, where C is
the price of a call option on the maximum of two assets with strike price X. This sec-
tion presents binomial and trinomial models for multiple underlying assets to price
multivariate derivatives [107, 110]. The aim is to construct a multivariate discrete-
time probability distribution with the desired means and variance–covariance
values.

17.3.1 Construction of a Correlated Trinomial Model

Suppose that two risky assets S1 and S2 follow dSi/Si = r dt + σi dWi in a risk-
neutral economy, i = 1, 2. Define Mi ≡ er�t and Vi ≡ M2

i (e
σ 2
i �t − 1), where SiMi is

the mean and S 2
i Vi is the variance of Si at time �t from now. The value of S1S2

at time �t has a joint lognormal distribution with mean S1S2M1M2eρσ1σ2�t , where
ρ is the correlation between dW1 and dW2. We proceed to match the first and the
secondmoments of the approximatingdiscrete distribution to thoseof the continuous
counterpart. At time �t from now, there are five distinct outcomes. The five-point
probability distribution of the asset prices is (as usual, we impose uidi = 1)

Probability Asset 1 Asset 2

p1 S1u1 S2u2

p2 S1u1 S2d2

p3 S1d1 S2d2

p4 S1d1 S2u2

p5 S1 S2

The probabilities must sum to one, and the means must be matched, leading to

1 = p1+ p2+ p3+ p4+ p5,
S1M1 = (p1+ p2) S1u1+ p5S1+ (p3+ p4) S1d1,
S2M2 = (p1+ p4) S2u2+ p5S2+ (p2+ p3) S2d2.
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The following equations match the variances and the covariance:

S 2
1V1 = (p1+ p2)[ (S1u1)2− (S1M1)2 ]+ p5[ S21 − (S1M1)2 ]

+ (p3+ p4)[ (S1d1)2− (S1M1)2 ],

S 2
2V2 = (p1+ p4)[ (S2u2)2− (S2M2)2 ]+ p5[ S22 − (S2M2)2 ]

+ (p2+ p3)[ (S2d2)2− (S2M2)2 ],

S1S2R = (p1u1u2+ p2u1d2+ p3d1d2+ p4d1u2+ p5) S1S2,
where R≡ M1M2eρσ1σ2�t . The solutions are

p1 =
u1u2(R− 1)− f1

(
u21− 1

)− f2(u22− 1
)+ ( f2+ g2)(u1u2− 1)(

u21− 1
) (
u22− 1

) ,

p2 =
−u1u2(R− 1)+ f1

(
u21− 1

)
u22+ f2

(
u22− 1

)− ( f2+ g2)(u1u2− 1)(
u21− 1

) (
u22− 1

) ,

p3 =
u1u2(R− 1)− f1

(
u21− 1

)
u22+ g2

(
u22− 1

)
u21+ ( f2+ g2)

(
u1u2−u22

)(
u21− 1

) (
u22− 1

) ,

p4 =
−u1u2(R− 1)+ f1

(
u21− 1

)+ f2(u22− 1
)
u21− ( f2+ g2)(u1u2− 1)(

u21− 1
) (
u22− 1

) ,

where

f1 = p1+ p2 =
u1
(
V1+M2

1 −M1
)− (M1− 1)

(u1− 1)
(
u21− 1

) ,

f2 = p1+ p4 =
u2
(
V2+M2

2 −M2
)− (M2− 1)

(u2− 1)
(
u22− 1

) ,

g1 = p3+ p4 =
u21
(
V1+M2

1 −M1
)−u31(M1− 1)

(u1− 1)
(
u21− 1

) ,

g2 = p2+ p3 =
u22
(
V2+M2

2 −M2
)−u32(M2− 1)

(u2− 1)
(
u22− 1

) .

Because f1+ g1 = f2+ g2, we can solve for u2 given u1 = eλσ1
√
�t for an appropriate

λ > 0.
Once the tree is in place, a multivariate derivative can be valued by backward

induction. The expected terminal value should be discounted at the riskless rate.

➤ Exercise 17.3.1 Show that there are 1+ 2n(n+ 1) pairs of possible asset prices
after n periods.

17.3.2 The Binomial Alternative

In the binomial model for m assets, asset i ’s price Si can in one period go up
to Siui or down to Sidi . There are thus 2m distinct states after one step. (This
illustrates the curse of dimensionality because the complexity grows exponentially
in the dimension m.) We fix ui = eσi

√
�t and uidi = 1. As working with the log price

ln Si turns out to be easier, we let Ri ≡ ln Si (�t)/Si . From Subsection 14.4.3, we
know that Ri ∼ N(µ′i�t, σ 2

i �t), where µ′i ≡ r − σ 2
i /2.
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We solve the m= 2 case first. Because (R1, R2) has a bivariate distribution, its
moment generating function is

E
[
et1R1+t2R2

] = exp
[
(t1µ′1+ t2µ′2)�t +

(
t21σ

2
1 + t22σ 2

2 + 2t1t2σ1σ2ρ
) �t

2

]
≈ 1+ (t1µ′1+ t2µ′2)�t +

(
t21σ

2
1 + t22σ 2

2 + 2t1t2σ1σ2ρ
) �t

2
.

Define the probabilities for up and down moves in the following table:

Probability Asset 1 Asset 2

p1 up up
p2 up down
p3 down up
p4 down down

Under the binomial model, (R1, R2)’s moment generating function is

E
[
et1R1+t2R2

] = p1e(t1σ1+t2σ2)√�t + p2e(t1σ1−t2σ2)√�t
+ p3e(−t1σ1+t2σ2)

√
�t + p4e(−t1σ1−t2σ2)

√
�t

≈ (p1+ p2+ p3+ p4)+ t1σ1(p1+ p2− p3− p4)
√
�t

+ t2σ2(p1− p2+ p3− p4)
√
�t

+ [ t21σ 2
1 + t22σ 2

2 + 2t1t2σ1σ2(p1− p2− p3+ p4)
] �t

2

Match the preceding two equations to obtain

p1 = 1
4

[
1+ ρ+

√
�t
(
µ′1
σ1
+ µ

′
2

σ2

)]
, p2 = 1

4

[
1− ρ+

√
�t
(
µ′1
σ1
− µ

′
2

σ2

)]
,

p3 = 1
4

[
1− ρ+

√
�t
(
−µ

′
1

σ1
+ µ

′
2

σ2

)]
, p4 = 1

4

[
1+ ρ+

√
�t
(
−µ

′
1

σ1
− µ

′
2

σ2

)]
.

Note its similarity to univariate case (9.17).
For the general case, we simply present the result as the methodology is identical.

Let δi ( j)= 1 if Si in state j makes an up move and −1 otherwise. Let δik( j)= 1
if Si and Sk in state j make a move in the same direction and −1 otherwise. Then
the probability that state j is reached is

pj = 1
2m

m∑
i,k=1
i < k

δik( j) ρik+ 1
2m
√
�t

m∑
i=1
δi ( j)

µ′i
σi
, j = 1, 2, . . . , 2m,

where ρik denotes the correlation between dWi and dWk.

➤ Exercise 17.3.2 It is easy to check that ρ = 2(p1+ p4)− 1. Show that this identity
holds for any correlated binomial random walk defined by R1(i + 1)− R1(i)= µ1±
σ1 and R2(i + 1)− R2(i)= µ2± σ2, where ρ denotes the correlation between R1
and R2 and “±” means “+” or “−” each with a probability of one half.

➤ Exercise 17.3.3 With m assets, howmanynodes does the treehave after n periods?
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➤ Exercise 17.3.4 (1) Write the combinatorial formula for a European call with ter-
minal payoff max(S1S2− X, 0). (2) How fast can it be priced?

➤ Exercise 17.3.5 (Optimal Hedge Ratio) Derive the optimal number of futures to
short in terms of minimum variance to hedge a long stock when the two assets are
not perfectly correlated. Assume the horizon is �t from now.

➢ Programming Assignment 17.3.6 Implement the binomial model for the option on
the best of two risky assets and cash.

Additional Reading

The combinatorial methods are emphasized in [342, 838]. Major ideas in lattice
combinatorics can be found in [396, 675, 686]. See [434, 696, 835] for a more de-
tailed analysis of the BOPM. An alternative approach to the convergence problem
of binomial barrier option pricing is interpolation [271]. One more idea for tack-
ling the difficulties in pricing various kinds of barrier options is to apply trinomial
trees with varying densities [9]. More research on barrier options is discussed in
[131, 158, 271, 370, 443, 444, 740, 752, 824, 841, 874]. See [68, 380, 423, 756] for nu-
merical solutions of double-barrier options. The trinomial model is due to Parkinson
[713]. The trinomial models presented here are improved in [202]. Consult [423, 519]
and [114] for exact and approximation formulas for options on themaximum and the
minimumof two assets, respectively. Further information onmultivariate derivatives
pricing can be found in [450, 451, 452, 539, 628, 876].

NOTE

1. We could have adopted the finer choice of the form Sd j (−n≤ j ≤ n) for the effective barrier as
the algorithm in Fig. 11.4 (see Exercise 17.1.13). This was not done in order to maintain similarity
to binomial option pricing formula (9.10).



CHAPTER
EIGHTEEN

Numerical Methods

All science is dominated by the idea of approximation.

Bertrand Russell

Stochastic differential equations are closely related to second-order elliptic and
parabolic partial differential equations [572]. Besides the binomial tree algorithms
already covered, two more prominent approaches are numerical methods for par-
tial differential equations and Monte Carlo simulation. Both are investigated in this
chapter. Techniques that reduce the variance of the Monte Carlo simulation are also
explored. A deterministic version of the Monte Carlo simulation, called the quasi-
Monte Carlo method, replaces probabilistic error bounds with deterministic bounds.
It is covered in some detail.

18.1 Finite-Difference Methods

The finite-difference method places a grid of points on the space over which the
desired function takes value and then approximates the function value at each of
thesepoints. SeeFig. 18.1 for illustration.Themethod solves theequationnumerically
by introducing difference equations to approximate derivatives.

Take the Poisson equation ∂2θ/∂x2+ ∂2θ/∂y2 =−ρ(x, y) as an example. By re-
placing the second derivatives with finite differences through central difference and
introducing evenly spaced grid points with distance of �x along the x axis and �y
along the y axis, the finite-difference form is

θ(xi+1, yj )− 2θ(xi , yj )+ θ(xi−1, yj )
(�x)2

+ θ(xi , yj+1)− 2θ(xi , yj )+ θ(xi , yj−1)
(�y)2

=−ρ(xi , yj ).

In the preceding equation, �x ≡ xi − xi−1 and �y≡ yj − yj−1 for i, j = 1, 2, . . . .
When the grid points are evenly spaced in both axes so that �x =�y= h, the dif-
ference equation becomes

θ(xi+1, yj )+ θ(xi−1, yj )+ θ(xi , yj+1)+ θ(xi , yj−1)− 4θ(xi , yj )

=−h2ρ(xi , yj ).

249
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Figure 18.1: Finite-difference method. Grids are shown over the rectangle
[ 0, 0.25 ]× [ 80, 115 ]. The analytical solution to the Black–Scholes differential equa-
tion for a European call is illustrated here with darker gray denoting smaller value.
The strike price is $95, the expiration date is x = 0.25 (year), and the x axis de-
notes time. The finite-difference method finds values at the discrete grid points that
match or approximate the analytical values.

Given the boundary values of θ(x, y) at x =±L and y=±L, we can solve for
the xi s and the yj s within the square [±L,±L]. From now on, θi, j denotes the
finite-difference approximation to the exact θ(xi , yj ) for clarity.

18.1.1 Explicit Methods

Consider another example, the diffusion equation D(∂2θ/∂x2)− (∂θ/∂t)= 0. Again,
we use evenly spaced grid points (xi , t j ) with distances �x and �t , where �x ≡
xi+1− xi and �t ≡ t j+1− t j . We use the central difference for the second derivative
and the forward difference for the time derivative to obtain

∂θ(x, t)
∂t

∣∣∣∣
t=t j
= θ(x, t j+1)− θ(x, t j )

�t
+O(�t), (18.1)

∂2θ(x, t)
∂x2

∣∣∣∣
x=xi
= θ(xi+1, t)− 2θ(xi , t)+ θ(xi−1, t)

(�x)2
+O[ (�x)2 ]. (18.2)

To assemble Eqs. (18.1) and (18.2) into a single equation at (xi , t j ), we need to
decide how to evaluate x in the first equation and t in the second. Because the
central difference around xi is used in Eq. (18.2), we might as well use xi for x in
Eq. (18.1). Two choices are possible for t in Eq. (18.2). The first choice uses t = t j
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Figure 18.2: Explicit and implicit methods. Stencils of grid points for
(a) explicit and (b) implicit finite-difference methods in solving a partial
differential equation that is first order in t and second order in x .

to yield the following finite-difference equation:

θi, j+1− θi, j
�t

= D θi+1, j − 2θi, j + θi−1, j
(�x)2

. (18.3)

The stencil of grid points involves four values, θi, j+1, θi, j , θi+1, j , and θi−1, j . We can
therefore calculate θi, j+1 from the other three, θi, j , θi+1, j , θi−1, j , at the previous time
t j (see Fig. 18.2(a)). Starting from the initial conditions at t0, that is, θi,0 = θ(xi , t0),
i = 1, 2, . . . , we calculate θi,1, i = 1, 2, . . . , and then θi,2, i = 1, 2, . . . , and so on. This
approach is called the explicit method [883].

The explicit method is numerically unstable unless �t ≤ (�x)2/(2D). A numeri-
cal method is said to be unstable if the solution is highly sensitive to changes in initial
conditions [391]. The stability condition may lead to high running times and mem-
ory requirements. For instance, doubling (�x)−1 would imply quadrupling (�t)−1,
resulting in a running time eight times as much. This undesirable feature can be
remedied by use of the implicit method, to be introduced shortly.

An interesting connection exists between the explicit method and the trinomial
model. Rearrange Eq. (18.3) as

θi, j+1 = D�t
(�x)2

θi+1, j +
[
1− 2D�t

(�x)2

]
θi, j + D�t(�x)2

θi−1, j .

When the stability condition is satisfied, the three coefficients for θi+1, j , θi, j , and
θi−1, j all lie between zero and one and sum to one. They can therefore be interpreted
as probabilities. Consequently the finite-difference equation becomes identical to
backward induction on trinomial trees [473, 575].

➤ Exercise 18.1.1 Sketch the finite-difference version of the Poisson equation in ma-
trix form.

18.1.2 Implicit Methods

If we use t = t j+1 in Eq. (18.2) instead, the finite-difference equation becomes

θi, j+1− θi, j
�t

= D θi+1, j+1− 2θi, j+1+ θi−1, j+1
(�x)2

. (18.4)



252 Numerical Methods

The stencil involves θi, j , θi, j+1, θi+1, j+1, and θi−1, j+1. This method is implicit because
the value of any one of the three quantities at t j+1 cannot be calculated unless the
other two are known (see Fig. 18.2(b)). It is also called the fully implicit backward-
difference scheme. Equation (18.4) can be rearranged as

θi−1, j+1− (2+ γ ) θi, j+1+ θi+1, j+1 =−γ θi, j ,
where γ ≡ (�x)2/(D�t). This equation is unconditionally stable [28, 464]. Suppose
the boundary conditions are given at x = x0 and x = xN+1. After θi, j has been
calculated for i = 1, 2, . . . , N, the values of θi, j+1 at time t j+1 can be computed as
the solution to the following tridiagonal linear system:

a 1 0 · · · · · · · · · 0
1 a 1 0 · · · · · · 0
0 1 a 1 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
0 · · · · · · 0 1 a 1
0 · · · · · · · · · 0 1 a





θ1, j+1
θ2, j+1
θ3, j+1

...

...

...
θN, j+1


=



−γ θ1, j − θ0, j+1
−γ θ2, j
−γ θ3, j

...

...
−γ θN−1, j

−γ θN, j − θN+1, j+1


,

where a ≡−2− γ . Tridiagonal systems can be solved in O(N) time and O(N) space
[35]. The preceding matrix is nonsingular when γ ≥ 0. Recall that a square matrix is
nonsingular if its inverse exists.

Taking the average of explicit method (18.3) and implicit method (18.4) results
in

θi, j+1− θi, j
�t

= 1
2

[
D
θi+1, j − 2θi, j + θi−1, j

(�x)2
+D θi+1, j+1− 2θi, j+1+ θi−1, j+1

(�x)2

]
.

After rearrangement, the Crank–Nicolson method emerges:

γ θi, j+1− θi+1, j+1− 2θi, j+1+ θi−1, j+1
2

= γ θi, j + θi+1, j − 2θi, j + θi−1, j
2

.

This is an unconditionally stable implicit method with excellent rates of convergence
[810].

18.1.3 Numerically Solving the Black–Scholes Differential Equation

We focus onAmerican puts; the technique, however, can be applied to any derivative
satisfying theBlack–Scholes differential equation as only the initial and the boundary
conditions need to be changed.

The Black–Scholes differential equation for American puts is

1
2
σ 2S2

∂2P
∂S2
+ (r −q) S ∂P

∂S
− r P+ ∂P

∂t
= 0

with P(S,T)=max(X− S, 0) and P(S, t)=max(P (S, t), X− S) for t < T. P de-
notes the option value at time t if it is not exercised for the next instant of time.
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After the change of variable V ≡ ln S, the option value becomes U(V, t)≡ P(eV, t)
and

∂P
∂t
= ∂U
∂t
,
∂P
∂S
= 1
S
∂U
∂V
,
∂2P
∂2S

= 1
S2
∂2U
∂V2

− 1
S2
∂U
∂V
.

The Black–Scholes differential equation is now transformed into

1
2
σ 2 ∂

2U
∂V2

+
(
r −q− σ

2

2

)
∂U
∂V
− rU+ ∂U

∂t
= 0

subject to U(V,T)=max(X− eV, 0) and U(V, t)=max(U (V, t), X− eV), t < T.
Along the V axis, the grid will span from Vmin to Vmin+ N×�V at �V apart for
some suitably small Vmin; hence boundary conditions at the lower (V = Vmin) and
upper (V = Vmin+ N×�V) boundaries will have to be specified. Finally, S0 as usual
denotes the current stock price.

The Explicit Scheme
The explicit scheme for the Black–Scholes differential equation is

1
2
σ 2 Ui+1, j − 2Ui, j +Ui−1, j

(�V)2
+
(
r −q− σ

2

2

)
Ui+1, j −Ui−1, j

2�V

− rUi, j + Ui, j −Ui, j−1
�t

= 0

for 1≤ i ≤ N− 1. Note that the computation moves backward in time. There are
N− 1 difference equations. Regroup the terms to obtain

Ui, j−1 = aUi−1, j +bUi, j + cUi+1, j ,
where

a ≡
[(

σ

�V

)2

− r −q− σ
2/2

�V

]
�t
2
, b≡ 1− r�t −

(
σ

�V

)2

�t,

c ≡
[(

σ

�V

)2

+ r −q− σ
2/2

�V

]
�t
2
.

These N− 1 equations express option values at time step j − 1 in terms of those
at time step j . For American puts, we assume for U’s lower boundary that the first
derivative at grid point (0, j) for every time step j equals −eVmin . This essentially
makes the put value X− S= X− eV , so U0, j−1 =U1, j−1+ (eVmin+�V − eVmin ). For the
upper boundary, we set UN, j−1 = 0. The put’s value at any grid point at time step
j − 1 is therefore an explicit function of its values at time step j . Finally Ui, j is set
to the greater of the value derived above and X− eVmin+i×�V for early-exercise con-
siderations. Repeating this process as we move backward in time, we will eventually
arrive at the solution at time zero,Uk,0, where k is the integer so that Vmin+k×�V
is closest to ln S0. As implied by the stability condition, given �V, the value of
�t must be small enough for the method to converge (see Fig. 18.3). The formal
conditions to satisfy are a > 0, b> 0, and c > 0.
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Figure 18.3: Convergence of the explicit method. Here �V =
0.031073 and �t = 5/(6n). With n ≥ 137, the numerical solution
converges to the analytical European put value 6.777986.

The explicit method evaluates all the grid points in a rectangle. In practice, we
are interested in only the single grid point at time zero, (0,k), that corresponds to
the current stock price. The grid points that may influence the desired value form a
triangular subset of the rectangle. This triangle could be truncated further by the two
boundary conditions (see Fig. 18.4). Only those points within the truncated triangle
need be evaluated.

➤ Exercise 18.1.2 What are the terminal conditions?

➤ Exercise 18.1.3 Repeat the steps for American calls.

➤ Exercise 18.1.4 Derive the stability conditions for the explicit approach to solve
the Black–Scholes differential equation. Assume q = 0 for simplicity.

➢ Programming Assignment 18.1.5 Implement the explicit method forAmerican puts.

Figure 18.4: Implementation of the explicit method. Only the truncated triangle
within the rectangle needs to have its grid points evaluated.
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The Implicit Scheme
The partial differential equation now becomes the following N− 1 difference
equations,

1
2
σ 2 Ui+1, j − 2Ui, j +Ui−1, j

(�V)2
+
(
r −q− σ

2

2

)
Ui+1, j −Ui−1, j

2�V

− rUi, j + Ui, j+1−Ui, j
�t

= 0

for 1≤ i ≤ N− 1. Regroup the terms to obtain

aUi−1, j +bUi, j + cUi+1, j =Ui, j+1,
where

a ≡
[
−
(
σ

�V

)2

+ r −q− σ
2/2

�V

]
�t
2
, b≡ 1+ r�t +

(
σ

�V

)2

�t,

c ≡−
[(

σ

�V

)2

+ r −q− σ
2/2

�V

]
�t
2

The system of equations can be written in matrix form:

b∗ c 0 · · · · · · · · · 0
a b c 0 · · · · · · 0
0 a b c 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
0 · · · · · · 0 a b c
0 · · · · · · · · · 0 a b





U1, j

U2, j

U3, j
...
...
...

UN−1, j


=



U1, j+1−K
U2, j+1
U3, j+1

...

...
UN−2, j+1
UN−1, j+1


,

where b∗ ≡ a+b and K ≡ a(eVmin+�V − eVmin ). We can obtain the values of
U1, j ,U2, j , . . . ,UN−1, j by inverting the tridiagonal matrix. As before, at every time
step and before going to the next, we should set the option value obtained to the
intrinsic value of the option if the latter is larger.

➢ Programming Assignment 18.1.6 Implement the implicitmethod forAmerican puts.

18.2 Monte Carlo Simulation

MonteCarlo simulation is a sampling scheme. Inmany important applications within
finance and without, Monte Carlo simulation is one of the few feasible tools. It is also
one of the most important elements of studying econometrics [550]. When the time
evolution of a stochastic process is not easy to describe analytically, Monte Carlo
simulation may very well be the only strategy that succeeds consistently [386].

Assume that X1, X2, . . . , Xn have a joint distribution and θ ≡ E[ g(X1, X2, . . . ,

Xn) ] for some function g is desired. We generate(
x(i)1 , x

(i)
2 , . . . , x

(i)
n

)
, 1≤ i ≤ N,
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independently with the same joint distribution as (X1, X2, . . . , Xn) and set

Yi ≡ g
(
x(i)1 , x

(i)
2 , . . . , x

(i)
n

)
.

Now Y1,Y2, . . . ,YN are independent and identically distributed random variables,
and each Yi has the same distribution as that of Y≡ g(X1, X2, . . . , Xn). Because
the average of these N random variables, Y, satisfies E[Y ]= θ , it can be used to
estimate θ . In fact, the strong lawof large numbers says that this procedure converges
almost surely [699]. The number of replications (or independent trials), N, is called
the sample size.

EXAMPLE 18.2.1 To evaluate the definite integral
∫ b
a g(x)dx numerically, consider the

random variable Y≡ (b− a) g(X), where X is uniformly distributed over [ a,b ].
Note that Prob[ X≤ x ]= (x− a)/(b− a) for a ≤ x ≤ b. Because

E[Y ]= (b− a)E[ g(X) ]= (b− a)
∫ b
a

g(x)
b− a dx =

∫ b
a
g(x)dx,

any unbiased estimator of E[Y ] can be used to evaluate the integral.

The Monte Carlo estimate and the true value may differ owing to two reasons:
sampling variation and the discreteness of the sample paths. The former can be
controlled by the number of replications, as we shall see in the following paragraph,
and the latter can be controlled by the number of observations along the sample path
[147].

The statistical error of the sample mean Y of the random variable Y grows as
1/
√
N because Var[Y ]=Var[Y ]/N. In fact, this convergence rate is asymptotically

optimal by theBerry–Esseen theorem [413].As a result, the variance of the estimator
Y can be reduced by a factor of 1/N by doing N times as much work [721]. This
property is amazing because the same order of convergence holds independently of
the dimension n. In contrast, classic numerical integration schemes have an error
bound of O(N−c/n) for some constant c > 0. The required number of evaluations
thus grows exponentially in n to achieve a given level of accuracy. This is a case of
the curse of dimensionality. The Monte Carlo method, for example, is more efficient
than alternative procedures for securities depending on more than one asset, the
multivariate derivatives [530].

The statistical efficiency of Monte Carlo simulation can be measured by the
variance of its output. If this variance can be lowered without changing the ex-
pected value, fewer replications are needed. Methods that improve efficiency in this
manner are called variance-reduction techniques. Such techniques, covered in
Subsection 18.2.3, become practical when the added costs are outweighed by the
reduction in sampling.

18.2.1 Monte Carlo Option Pricing

For the pricing of European options on a dividend-paying stock, we may proceed as
follows. From Eq. (14.17), stock prices S1, S2, S3, . . . , at times �t, 2�t, 3�t, . . . , can
be generated by

Si+1 = Sie(µ−σ 2/2)�t+σ√�t ξ , ξ ∼ N(0, 1)
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Monte Carlo method for pricing average-rate calls on a non-dividend-paying stock:

input: S, X,n, r, σ, τ,m;
real P,C,M;
real ξ( ); // ξ( )∼ N(0, 1).
integer i, j ;
C := 0; // Accumulated terminal option value.
for (i = 1 to m) { // Perform m replications.

P := S;M := S;
for ( j = 1 to n) {

P := P× e(r−σ 2/2)(τ/n)+σ√τ/n ξ( );
M := M+ P;

}
C := C+max(M/(n+ 1)− X, 0);

}
return Ce−rτ /m;

Figure 18.5: Monte Carlo method for average-rate calls.m is the number of replications, and n is the number
of periods.

when dS/S= µdt + σ dW. We can generate non-dividend-paying stock prices in a
risk-neutral economy by setting µ= r . Figure 18.5 contains a pricing algorithm for
arithmetic average-rate calls.

The sample standard deviation of the estimation scheme in Fig. 18.5 is propor-
tional to 1/

√
m , where m is the number of replications. To narrow down the con-

fidence interval by a factor of f , f 2 times as many replications need to be carried
out. Although we do not know how small �t ≡ τ/n should be to yield acceptable
approximations, it is not hard to figure out m. Because the estimate is composed
of a simple average across replications, the central limit theorem says that the error
of the estimate is distributed as N(0, s2/m) , with s2 denoting the variance of each
replication. Hence the confidence interval can be used to derive the desired m.

The discreteness of sample paths and the variance in prices do not necessarily
makeMonte Carlo results inferior to closed-form solutions. The judgment ultimately
depends on the security being priced. In reality, for instance, a case may be made
that, as prices do not move continuously, discrete-timemodels are more appropriate.

Monte Carlo simulation is a general methodology. It can be used to value vir-
tually any European-style derivative security [147]. A standard Monte Carlo simu-
lation, however, is inappropriate for American options because of early exercise: It
is difficult to determine the early-exercise point based on one single path. Intrigu-
ingly, Tilley showed that Monte Carlo simulation can be modified to price American
options [842]; the estimate is biased, however [108].

➤ Exercise 18.2.1 How do we price European barrier options by Monte Carlo
simulation?

➤ Exercise 18.2.2 Consider the Monte Carlo method that estimates the price of the
American call by taking the maximum discounted intrinsic value per simulated path
and then averaging them: E[maxi=0,1,...,n e−ri�t max(Si − X, 0) ]. Show that it is biased
high.
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Monte Carlo simulation of Ito process:

input: x0,T,�t ;
real X [ 0..�T/�t� ];
real ξ( ); // ξ( )∼ N(0, 1).
integer i ;
X[ 0 ] := x0; // Initial state.
for (i = 1 to �T/�t�)

X [ i ] := X [ i − 1 ]+ a(X [ i − 1 ])�t +b(X [ i − 1 ])
√
�t ξ( );

return X [ ];

Figure 18.6: Monte Carlo simulation of Ito process. The Ito process is d X t = a(X t ) dt + b(X t ) dWt . A run of
the algorithm generates an approximate sample path for the process.

➢ Programming Assignment 18.2.3 Implement the Monte Carlo method for arith-
metic average-rate calls and puts.

18.2.2 Ito Processes

Consider the stochastic differential equation dXt = a(Xt)dt +b(Xt)dWt . Although
it is often difficult to give an analytic solution to this equation, the simulation of the
process on a computer is relatively easy [585]. Recall that Euler’s method picks a
small number �t and then approximates the Ito process by

X̂(tn+1)= X̂(tn)+ a(X̂(tn))�t +b(X̂(tn))
√
�t ξ,

where ξ ∼ N(0, 1). See Fig. 18.6 for the algorithm. This simulation is exact for any
�t if both the drift a and the diffusion b are constants as in Brownian motion
because the sum of independent normal distributions remains normal.

➤ Exercise 18.2.4 The Monte Carlo method for Ito processes in Fig. 18.6 may not
be the most ideal theoretically. Consider the geometric Brownian motion dX/X=
µdt + σ dW. Assume that you have access to a perfect random-number generator for
normal distribution. Find a theoretically better algorithm to generate sample paths
for X.

➢ Programming Assignment 18.2.5 Simulate dXt = (0.06− Xt)dt + 0.3dWt by using
�t ≡ 0.01. Explain its dynamics.

Discrete Approximations to Ito Processes with Brownian Bridge
Besides the Euler method and the related approximation methods in Subsection
14.2.1, a Brownian bridge is one more alternative. Let the time interval [ 0,T ] be
partitioned at time points t0 = 0, t1, t2, . . . . Instead of using

W(tn)=W(tn−1)+
√
tn− tn−1 ξ, ξ ∼ N(0, 1)
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to generate the discrete-time Wiener process, the new method uses

W(tn)= tn+1− tn
tn+1− tn−1 W(tn−1)+ tn− tn−1

tn+1− tn−1 W(tn+1)+
√

(tn+1− tn)(tn− tn−1)
tn+1− tn−1 ξ,

given a past value W(tn−1) and a future value W(tn+1). In general, the method
determines a sample path W( i(T/2m) ), i = 0, 1, . . . , 2m, over [ 0,T ] as follows.
First, set W(0)= 0 and W(T)=√T ξ . Then set the midpoint W(T/2) according
to the preceding equation. From here, we find the midpoints for [W(0),W(T/2) ]
and [W(T/2),W(T) ], that is,W(T/4) and W(3T/4), respectively. Iterate for m− 2
more times. This scheme increases the accuracy of quasi-Monte Carlo simulation to
be introduced shortly by reducing its effective dimension [6, 142, 679, 876].

➢ Programming Assignment 18.2.6 Implement the Brownian bridge approach to gen-
erate the sample path of geometric Brownian motion.

18.2.3 Variance-Reduction Techniques

The success of variance-reduction schemes depends critically on the particular prob-
lem of interest. Because it is usually impossible to know beforehand how great a
reduction in variance may be realized, if at all, preliminary runs should be made to
compare the results of a variance-reduction scheme with those from standardMonte
Carlo simulation.

Antithetic Variates
Suppose we are interested in estimating E[ g(X1, X2, . . . , Xn) ], where X1, X2, . . . ,

Xn are independent random variables. Let Y1 and Y2 be random variables with the
same distribution as g(X1, X2, . . . , Xn). Then

Var
[
Y1+Y2

2

]
= Var[Y1 ]

2
+ Cov[Y1,Y2 ]

2
.

Note that Var[Y1 ]/2 is the variance of the Monte Carlo method with two (indepen-
dent) replications. The variance Var[ (Y1+Y2)/2 ] is smaller than Var[Y1 ]/2 when
Y1 and Y2 are negatively correlated instead of being independent.

The antithetic-variates technique is based on the above observation. First, sim-
ulate X1, X2, . . . , Xn by means of the inverse-transform technique. That is, Xi is
generated by F−1i (Ui ), where Ui is a random number uniformly distributed over
(0, 1) and Fi is the distribution function of Xi . Set

Y1 ≡ g
(
F−11 (U1), . . . , F−1n (Un)

)
.

Because 1−U is also uniform over (0, 1) whenever U is, it follows that

Y2 ≡ g
(
F−11 (1−U1), . . . , F−1n (1−Un)

)
has the same distribution as Y1. When g is a monotone function, Y1 and Y2 are
indeed negatively correlated and the antithetic-variates estimate,

g
(
F−11 (U1), . . . , F−1n (Un)

)+ g(F−11 (1−U1), . . . , F−1n (1−Un)
)

2
,
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has a lower variance than the Monte Carlo method with two replications [764].
Computation time is also saved because only n rather than 2n random numbers
need to be generated, with each number used twice.

In general, for each simulated sample path X, we obtain a second one by reusing
the randomnumbers onwhich thefirst path is based, yielding a second samplepath Y.
Two estimates are then obtained, one based on X and the other on Y. If a total of N
independent sample paths are generated, the antithetic-variates estimator averages
over 2N estimates.

EXAMPLE 18.2.2 Consider the Ito process dX= at dt +bt
√
dt ξ . Let g be a func-

tion of n samples X1, X2, . . . , Xn on the sample path. We are interested in
E[ g(X1, X2, . . . , Xn) ]. Suppose that one simulation run has realizations ξ1, ξ2, . . . , ξn
for the normally distributed fluctuation term ξ , generating samples x1, x2, . . . , xn.
The estimate is then g(x), where x ≡ (x1, x2 . . . , xn). Instead of sampling n more
numbers from ξ for the second estimate, the antithetic-variates method computes
g(x′) from the sample path x′ ≡ (x′1, x

′
2 . . . , x

′
n) generated by −ξ1,−ξ2, . . . ,−ξn and

outputs [ g(x)+ g(x′) ]/2. Figure 18.7 implements the antithetic-variates method for
average-rate options.

➤ Exercise 18.2.7 Justify and extend the procedure in Example 18.2.2.

➢ Programming Assignment 18.2.8 Implement the antithetic-variates method for
arithmetic average-rate calls and puts. Compare it with the Monte Carlo method
in Programming Assignment 18.2.3.

Antithetic variates for pricing average-rate calls on a non-dividend-paying stock:

input: S, X,n, r, σ, τ,m;
real P1, P2,C,M1,M2, a;
real ξ( ); // ξ( )∼ N(0, 1).
integer i, j ;
C := 0;
for (i = 1 to m) {

P1 := S; P2 := S;M1 := S;M2 := S;
for ( j = 1 to n) {

a := ξ( );
P1 := P1e(r−σ 2/2)(τ/n)+σ√τ/n a ;
P2 := P2e(r−σ 2/2)(τ/n)−σ√τ/n a ;
M1 := M1+ P1;
M2 := M2+ P2;

}
C := C+max(M1/(n+ 1)− X, 0);
C := C+max(M2/(n+ 1)− X, 0);

}
return Ce−rτ /(2m);

Figure 18.7: Antithetic-variates method for average-rate calls. P1 keeps track of the first sample path, P2

keeps track of the second sample path, m is the number of replications, and n is the number of periods.
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Conditioning
Let X be a random variable whose expectation is to be estimated. There is an-
other random variable Z such that the conditional expectation E[ X |Z= z ] can
be efficiently and precisely computed. We have E[ X ]= E[ E[ X | Z ] ] by the law
of iterated conditional expectations. Hence the random variable E[ X | Z ] is also
an unbiased estimator of µ. As Var[ E[ X | Z ] ]≤Var[ X ], E[ X | Z ] indeed has a
smaller variance than we obtain by observing X directly [764]. The computing pro-
cedure is to first obtain a random observation z on Z, then calculate E[ X | Z= z ]
as our estimate. There is no need to resort to simulation in computing E[ X | Z= z ].
The procedure can be repeated a few times to reduce the variance.

➢ Programming Assignment 18.2.9 Apply conditioning to price European options
when the stock price volatility is stochastic. The stock price and its volatility may be
correlated.

Control Variates
The idea of control variates is to use the analytic solution of a similar yet simpler
problem to improve the solution. Suppose we want to estimate E[ X ] and there
exists a random variable Y with a knownmean µ≡ E[Y ]. Then W ≡ X+β(Y−µ)
can serve as a “controlled” estimator of E[ X ] for any constant β that scales the
deviation Y−µ to arrive at an adjustment for X. However β is chosen,W remains
an unbiased estimator of E[ X ]. As

Var[W ]=Var[ X ]+β2 Var[Y ]+ 2β Cov[ X,Y ], (18.5)

W is less variable than X if and only if

β2 Var[Y ]+ 2β Cov[ X,Y ]< 0. (18.6)

The success of the scheme clearly depends on both β and the choice of Y. For
example, arithmetic average-rate options can be priced if Y is chosen to be the
otherwise identical geometric average-rate option’s price and β =−1 [548]. This
approach is much more effective than the antithetic-variates method (see Fig. 18.8)
[108].

Equation (18.5) is minimized when β equals β∗ ≡ −Cov[ X,Y ]/Var[Y ], which
was called beta earlier in Exercise 6.4.1. For this specific β,

Var[W ]=Var[ X ]− Cov[ X,Y ]2

Var[Y ]
= (1− ρ2

X,Y

)
Var[ X ],

where ρX,Y is the correlation between X and Y. The stronger X and Y are corre-
lated, the greater the reduction in variance. For example, if this correlation is nearly

Antithetic variates Control variates

1.11039 1.11452 1.11815 1.11864
1.10952 1.10892 1.11788 1.11853
1.10476 1.10574 1.11856 1.11789
1.13225 1.10509 1.11852 1.11868

(0.009032505) (0.000331789)

Figure 18.8: Variance-reduction techniques for
average-rate puts. An arithmetic average-rate put is
priced with antithetic variates and control variates
(β =−1). The parameters used for each set of data
are S = 50, σ = 0.2, r = 0.05, τ = 1/3, X = 50,
n = 50, and m = 10000. Sample standard deviations
of the computed values are in parentheses.
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perfect (±1), we could control X almost exactly, eliminating practically all of its vari-
ance. Typically, neither Var[Y ] nor Cov[ X,Y ] is known, unfortunately. Therefore
we usually cannot obtain the maximum reduction in variance. One approach in prac-
tice is to guess at these values and hope that the resulting W does indeed have a
smaller variance than X. A second possibility is to use the simulated data to estimate
these quantities.

Observe that −β∗ has the same sign as the correlation between X and Y. Hence,
if X and Y arepositively correlated, β∗ < 0; then X is adjusteddownwardwhenever
Y> µ and upward otherwise. The opposite is true when X and Y are negatively
correlated, in which case β∗ > 0.

➤ Exercise 18.2.10 Pick β =±1. The success of the scheme now depends solely on
the choice of Y. Derive the conditions under which the variance is reduced.

➤ Exercise 18.2.11 Why is it a mistake to use independent random numbers in gen-
erating X and Y?

➢ Programming Assignment 18.2.12 Implement the control-variates method for arith-
metic average-rate calls and puts.

Other Schemes
Two more schemes are briefly mentioned before this section closes. In stratified
sampling, the support of the random variable being simulated is partitioned into a
finite number of disjoint regions and a standardMonteCarlo simulation is performed
in each region. When there is less variance within regions than across the regions,
the sampling variance of the estimate will be reduced. Importance sampling samples
more frequently in regions of the support where there is more variation.

➤ Exercise 18.2.13 Suppose you are searching in set A for any element from set
B⊆ A. TheMonte Carlo approach selects N elements randomly from A and checks
if any one belongs to B. An alternative partitions the set A into m disjoint subsets
A1, A2, . . . , Am of equal size, picks N/m elements from each subset randomly, and
checks if there is a hit. Prove that the second approach’s probability of failure can
never exceed that of the Monte Carlo approach.

18.3 Quasi-Monte Carlo Methods

The basic Monte Carlo method evaluates integration at randomly chosen points.
There are several deficiencies with this paradigm. To start with, the error bound is
probabilistic, not a concrete guarantee about the accuracy. The probabilistic error
bound of

√
N furthermore does not benefit from any additional regularity of the

integrand function. Another fundamental difficulty stems from the requirement that
the points be independent random samples. Random samples are wasteful because
of clustering (see Fig. 18.9); indeed, Monte Carlo simulations with very small sample
sizes cannot be trusted.Worse, truly random numbers do not exist on digital comput-
ers; in reality, pseudorandom numbers generated by completely deterministicmeans
are used instead. Monte Carlo simulation exhibits a great sensitivity on the seed of
the pseudorandom-number generator. The low-discrepancy sequences, also known
as quasi-random sequences,1 address the above-mentioned problems.
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Figure 18.9: Random points (left) and Halton points (right) compared. The points are over the [ 0,1 ]× [ 0,1 ]
rectangle [868]. Note the clustering of points on the left.

Proposed in the 1950s, the quasi-Monte Carlo method leaves nothing to chance
[699]. In fact, it can be viewed as the deterministic version of theMonteCarlomethod
in that random samples are replaced with deterministic quasi-random points. If a
smaller number of samples suffices as a result, efficiency has been gained. The main
aim hence is to select deterministic points for which the deterministic error bound is
smaller than Monte Carlo’s probabilistic error bound.

The quasi-MonteCarlomethod is not without limitations. Their theories are valid
for integration problems, but may not be directly applicable to simulations because
of the correlations between points in a quasi-random sequence. This problem can be
overcome in many cases if the desired result is written as an integral. However, the
resulting integral often has a very high dimension (e.g., 360 for a 30-year mortgage);
in fact, the improved accuracy is generally lost for problems of high dimension or
problems in which the integrand is not smooth. There is furthermore no theoretical
basis for empirical estimates of their accuracy, a role played by the central limit
theorem in the Monte Carlo method [142].

Although the results are somewhat mixed, the application of such methods in
finance seems promising [108, 147]. A speed-up as high as 1,000 over the Monte
Carlo method, for example, is reported in [711]. The success of the quasi-Monte
Carlo method when compared with traditional variance-reduction techniques de-
pends on the problem in question [715, 716]. For example, the antithetic-variates
method outperforms the quasi-Monte Carlo method in bond pricing [679, 868].

18.3.1 The Halton Sequence

Every integer k≥ 1 can be represented uniquely as

k= a0+ a1m+ a2m2+ · · ·+ armr ,

where ai ∈ [ 0,m− 1 ] are integers and r is chosen such that mr ≤ k<mr+1. The
radical inverse function in base m is defined by

φm(k)≡ a0m−1+ a1m−2+ a2m−3+ · · ·+ arm−(r+1).
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In other words, a rational number in the interval [ 0, 1) is generated by reflecting k
in base m about the decimal point. For example, because 6= 0× 20+ 1× 2+ 1× 22,

φ2(6)= 0
2
+ 1

4
+ 1

8
= 3

8
.

The d-dimensionalHalton points are defined as

zk ≡ (φp1 (k), φp2 (k), . . . , φpd(k) ), k≥ 1,

where p1, p2, . . . , pd are the first d prime numbers.
Take m= 2 and d = 1. The Halton sequence in base two is

(0.1, 0.01, 0.11, 0.001, 0.101, 0.011, 0.111, 0.0001,
0.1001, 0.0101, 0.1101, 0.0011, 0.1011, 0.0111, 0.1111, . . . ),

which corresponds to(
1
2
,
1
4
,
3
4
,
1
8
,
5
8
,
3
8
,
7
8
,
1
16
,
9
16
,
5
16
,
13
16
,
3
16
,
11
16
,
7
16
,
15
16
, . . .

)
.

Although of no concern to numerical integration, the sequence above does not look
useful for certain simulations. Write the numbers in decimal as 0.5, 0.25, 0.75, 0.125,
0.625, 0.375, 0.875, . . . . Were we to use them in simulating a symmetric random
walk, it would alternate between right and left moves because the sequence consists
eventually of pairs of monotonically increasing numbers: 0.5, 0.25< 0.75, 0.125<
0.625, 0.375< 0.875, . . . . This phenomenon holds in general as a Halton sequence
consists eventually of size-m subsequences of monotonically increasing numbers.
For these reasons, the scrambled Halton sequence that permutes the ai s in φm(k)
may be needed. Many quasi-Monte Carlo simulations cannot work without such
manipulation [868]. Typically, the first 10 to 200 Halton points are discarded [368].

➤ Exercise 18.3.1 Compute the first 10 one-dimensional Halton points in base 3.

➢ Programming Assignment 18.3.2 Implement the two-dimensionalHalton sequence,
apply it to numerically evaluating

∫ 1
0 x

2 dx, and compare it with Monte Carlo
integration.

18.3.2 The Sobol’ Sequence

Assume that d = 1 initially. A one-dimensional Sobol’ sequence of length N is
generated from ω ≡ �log2 N� direction numbers 0< v1, v2, . . . , vω < 1 through the
bitwise exclusive-OR operation ⊕.2 Each point has the form

b1v1⊕b2v2⊕ · · ·⊕bωvω,
where bi are zeroor one.Eachpoint is therefore the result of exclusive-Oring a subset
of the direction numbers, those vi whose corresponding bi is one. The sequence of
(b1,b2, . . . ,bω) can either be 1, 2, . . . , N in binary form or the Gray code [727].

The sequence of direction numbers is generated by a primitive polynomial with
coefficients in the field Z2 (whose elements are 0 and 1, and all operations are
modulo 2). Primitive polynomials are, roughly speaking, polynomials that cannot be
factored. Consider a primitive polynomial P(x)≡ xn+ a1xn−1+ · · ·+ an−1x+ 1 of
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degree n. The direction numbers are obtained from this recurrence formula:

vi = a1vi−1⊕ a2vi−2⊕ · · ·⊕ an−1vi−n+1⊕ vi−n⊕ (vi−n/2n), i > n.

To jump-start the recurrence, we need to specify v1, v2, . . . , vn. We do this by setting
vi =mi/2i for n arbitrary odd integers 0<mi < 2i (1≤ i ≤ n). Finally, the Sobol’
sequence z0, z2, . . . , zN−1 is obtained recursively by{

z0 = 0
zk+1 = zk⊕ vc ,

where c is the position of the rightmost zero bit in the binary representation of k.

EXAMPLE 18.3.1 Consider the primitive polynomial x6+ x4+ x3+ x+ 1. For i > 7, the
equation for the direction numbers is

vi = 0 · vi−1⊕ 1 · vi−2⊕ 1 · vi−3⊕ 0 · vi−4⊕ 1 · vi−5⊕ vi−6⊕ (vi−6/26)

= vi−2⊕ vi−3⊕ vi−5⊕ vi−6⊕ (vi−6/26).

Given the direction numbers, the Sobol’ sequence can be easily generated. For in-
stance, z26 = z25⊕ v2 because 25= 11001 (base two),whose rightmost 0 is at position
two from the right.

The extension to a higher dimension is straightforward. Let P1, P2, . . . , Pd be
primitive polynomials. Denote by zik the sequence of one-dimensional Sobol’ points
generated by Pi . The sequence of d-dimensional Sobol’ points is defined by

zk ≡
(
z1k, z

2
k, . . . , z

d
k

)
, k= 0, 1, . . . .

➢ Programming Assignment 18.3.3 Implement the Sobol’ sequence.

18.3.3 The Faure Sequence

The one-dimensional Faure sequence of quasi-random numbers coincides with the
one-dimensional Halton sequence. To generate the d-dimensional Faure sequence,
we proceed as follows. Let p≥ 2 be the smallest prime greater than or equal to
d. The Faure sequence uses the same base p for each dimension. Denote the kth
point by zk ≡ (c1, c2, . . . , cd). The first component c1 is simply the one-dimensional
Halton sequence φp(1), φp(2), . . . . Inductively, if

cm−1 = a0p−1+ a1p−2+ · · ·+ ar p−(r+1),
then

cm = b0p−1+b1p−2+ · · ·+br p−(r+1),
where

bj ≡
r∑
i≥ j

(
i
j

)
ai mod p.

Note that x mod p denotes the remainder of x divided by p. For instance,
24 mod 7= 3.The convention is

(i
0

)= 1. Inpractice, the sequencemay start at k= p4
instead of k= 1.



266 Numerical Methods

EXAMPLE 18.3.2 Take d = 3 and p= 3. Because the first component c1 is merely the
one-dimensional Halton sequence, it runs like

(0.1, 0.2, 0.01, 0.11, 0.21, 0.02, 0.12, 0.22, 0.001, . . .)

=
(
1
3
,
2
3
,
1
9
,
4
9
,
7
9
,
2
9
,
5
9
,
8
9
,
1
27
, . . .

)
.

The second component c2 is(
1
3
,
2
3
,
4
9
,
7
9
,
1
9
,
8
9
,
2
9
,
5
9
,
16
27
, . . .

)
.

Take the fourth entry, 7/9, which is the c2 in z4, as an example. Because the corre-
sponding number in the first component is 0.11, we have a0 = 1, a1 = 1, and r = 2.
The number is thus calculated by

b0 =
(
0
0

)
a0+

(
1
0

)
a1 = 1+ 1= 2 mod 3,

b1 =
(
1
1

)
a1 = 1 mod 3,

c2 = b03−1+b13−2 = 2
3
+ 1

9
= 7

9
.

The sequence for the third component is ( 1
3 ,

2
3 ,

7
9 ,

1
9 ,

4
9 ,

5
9 ,

8
9 ,

2
9 ,

13
27 , . . .). The combined

three-dimensional sequence is therefore ( 1
3 ,

1
3 ,

1
3 ), (

2
3 ,

2
3 ,

2
3 ), (

1
9 ,

4
9 ,

7
9 ), . . . .

➤ Exercise 18.3.4 Verify the sequence for the third component in Example 18.3.2.

➢ Programming Assignment 18.3.5 Implement the Faure sequence. Pay attention to
evaluating

(i
j

)
mod p efficiently.

➢ Programming Assignment 18.3.6 Price European options with quasi-random se-
quences. The computational framework is identical to the Monte Carlo method
except that random numbers are replaced with quasi-random numbers with n-
dimensional sequences for problems with n time periods.

Additional Reading

Subsection 18.1.3 followed [229]. Finite-difference methods for the Black–Scholes
differential equation for multivariate derivatives can be found in [215]. Consult [15,
381, 391, 810, 883] for more information on solving partial differential equations,
[706, 707] for algorithms on parallel computers, and [861] forMathematica programs.
The implicit method, the explicit method, and the standard binomial tree algorithm
are compared in [229, 383, 472, 897].

The term “Monte Carlo simulation” was invented by von Neumann (1903–1957)
and Ulam (1909–1984) when they worked on the Manhattan Project [570]. The first
paper on the subject was byMetropolis andUlam in 1949 [699]. Complete treatments
ofMonteCarlo simulations canbe found in [353, 773].Consult [560, 584, 621, 721, 727]
for pseudorandom-number generators. On the topic of Monte Carlo option pricing,
see [313] for fast Monte Carlo path-dependent derivatives pricing, [53, 108, 129,
130, 160, 730] for the Monte Carlo pricing of American options, [106, 472] for the
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control-variates approach, [214, 520, 579, 876] for handling stochastic volatility, [241]
forpricingaverage-rateoptionsbyuseof conditioning, [366] for comparingnumerical
integrations, analytical approximations, and control variates in average-rate option
pricing, and [20, 108, 128] for general treatments of Monte Carlo simulations in
computing sensitivities. Consult [6, 108] for surveys on option pricing by use ofMonte
Carlo simulation, quasi-Monte Carlo methods, and variance reductions. Subsection
18.2.3 drew on [147, 584, 727, 764]. One suggestion for speeding up Monte Carlo
simulation is by limiting the sample space to a finite size and then conducting an
exhaustive sampling [509]. In estimating sensitivities such as delta by E[ P(S+ ε)−
P(S− ε) ]/(2ε), P(S+ ε) and P(S− ε) should use common random numbers to
lower the variance.

See [142, 197, 530, 532, 711, 715, 716] for case studies on quasi-Monte Carlometh-
ods, [368, 530, 711, 715, 716, 876] for evaluations of various quasi-random sequences,
and [108, 337, 699] for their mathematical foundations. Biology-inspired approaches
such as artificial neural networks [486, 612, 887] and genetic algorithms are other
interesting approaches.

NOTES

1. This term is, strictly speaking, misleading as there is nothing random about such sequences.
2. The exclusive-OR operation takes two input bits. It returns 1 if the bits are different and 0 if they

are identical. The operation when applied to two bit streams of the same length computes the
exclusive-OR of bits at the same position. For example, 10110⊕ 01100= 11010



CHAPTER
NINETEEN

Matrix Computation

To set up a philosophy against physics is rash; philosophers who have
done so have always ended in disaster.

Bertrand Russell

Matrix computation pervades many discussions on numerical and statistical tech-
niques. Twomajor concerns here aremultivariate statistical analysis and curve fitting
with splines. Both have extensive applications in statistical inference. Factor analysis
is presented as an interesting application.

19.1 Fundamental Definitions and Results

Let A≡ [ ai j ]1≤i≤m,1≤ j≤n, or simply A∈ Rm×n, denote an m×n matrix. It can also be
represented as [ a1, a2, . . . , an ], where ai ∈ Rm are vectors. Vectors are column vec-
tors unless stated otherwise. It is a square matrix when m= n. The rank of a matrix
is the largest number of linearly independent columns. An m×n matrix is rank defi-
cient if its rank is less than min(m,n); otherwise, it has full rank. It has full columnrank
if its rank equals n: All of its columns are linearly independent. A squarematrix A is
said to be symmetric if AT = A.A real n×n matrix A≡ [ ai j ]i, j is diagonally domi-
nant if |aii |>

∑
j �=i |ai j | for 1≤ i ≤ n. Suchmatrices are nonsingular [224].A leading

principal submatrix of an n×n matrix is a submatrix consisting of the first k rows
and the first k columns for some 1≤ k≤ n. The expression ‖x‖≡

√
x21 + x22 + · · ·+ x2n

denotes the lengthof vector x ≡ [ x1, x2, . . . , xn ]T. It is also called theEuclideannorm.
A diagonal m×n matrix D≡ [di j ]i, j may be denoted by diag[D1,D2, . . . ,Dq ],
where q ≡min(m,n) and Di = dii for 1≤ i ≤ q (see Fig. 19.1). The identity matrix
is the square matrix I ≡ diag[ 1, 1, . . . , 1 ].

A vector set { x1, x2, . . . , xp } is orthogonal if all its vectors are nonzero and the
inner products xT

i x j equal zero for i �= j . It is orthonormal if , furthermore,

xT
i x j =

{
1, if i = j
0, otherwise

.

A real square matrix Q is said to be orthogonal1 if QTQ= I. For such matrices,
Q−1 = QT and QQT = I. A real symmetric matrix A is positive definite (positive
semidefinite) if xTAx =∑i, j ai j xi x j > 0 (xTAx ≥ 0, respectively) for any nonzero
vector x. It is known that a matrix A is positive semidefinite if and only if there

268
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× 0 0 0 0
0 × 0 0 0
0 0 × 0 0

 × 0 0
0 × 0
0 0 ×



× 0 0
0 × 0
0 0 ×
0 0 0
0 0 0


Figure 19.1: Diagonal matrices. Three basic forms of m× n diagonal
matrices corresponding to (left to right) m < n , m = n , and m > n .

exists a matrix W such that A=WTW; A is positive definite if and only if this W
has full column rank.

19.1.1 Gaussian Elimination

Gaussian elimination is a standardmethod for solving a linear system Ax = b, where
A∈ Rn×n. It is due to Gauss in 1809 [825]. After O(n3) operations, the system is
transformed into an equivalent system A′x = b′, where A′ is an upper triangular
n×n matrix. This is the forward-reduction phase. Backward substitution is then ap-
plied to compute x after O(n2) more operations. The total running time is therefore
cubic. See Fig. 19.2 for the algorithm.

Efficiency can often be improved if A has special structures. A case in point is
when A is banded, that is, if all the nonzero elements are placed near the diagonal of
the matrix. We say that A= [ ai j ]i, j has upper bandwidth u if ai j = 0 for j − i > u
and lower bandwidth l if ai j = 0 for i − j > l. A tridiagonal matrix, for instance, has
upper bandwidth one and lower bandwidth one (see Fig. 19.3). For banded matrices,
Gaussian elimination can be easily modified to run in O(nul) time by skipping

Gaussian elimination algorithm:

input: A[ 1..n ][ 1..n ],b[ 1..n ];
real x[ 1..n ];
integer i, j,k;
// Forward reduction.
for (k= 1 to n− 1)

for (i = k+ 1 to n) {
c := A[ i ][k ]/A[k ][k ];
for ( j = k+ 1 to n)

A[ i ][ j ] := A[ i ][ j ]− c× A[k ][ j ];
b[ i ] := b[ i ]− c×b[k ];

}
// Backward substitution.
for (k= n down to 1)

x[k ] := (b[k ]−∑n
j=k+1 A[k ][ j ]× x[ j ])/A[k ][k ];

return x[ ];

Figure 19.2: Gaussian elimination algorithm. This algorithm solves Ax = b for x . It assumes that the diagonal
elements A [ k ][ k ] are nonzero throughout. This can be guaranteed if all of A ’s leading principal submatrices
are nonsingular.
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Figure 19.3: Banded matrix. Shown here is a tridiagonal matrix.

elements that are zero. This bound is substantially smaller than n3 when u or l is
small.

Gaussian elimination can be used to factor any square matrix whose leading
principal submatrices are nonsingular into a product of a lower triangular matrix L
and an upper triangular matrix U: A= LU. This is called the LU decomposition.
The conditions are satisfied by positive definite matrices and diagonally dominant
matrices. Positive definite matrices can in fact be factored as A= LLT, called the
Cholesky decomposition. See Fig. 19.4 for a cubic-time algorithm.

19.1.2 Eigenvalues and Eigenvectors

An eigenvalue of a square matrix A is a complex number λ such that Ax = λx for
some nonzero vector x, called an eigenvector. For example, because[

1 2
2 1

]
=
[
0.707107 −0.707107
0.707107 0.707107

] [
3 0
0 −1

] [
0.707107 0.707107
−0.707107 0.707107

]
,

the two eigenvalues are 3 and −1, and [ 0.707107,−0.707107 ]T and [ 0.707107,
0.707107 ]T are the corresponding eigenvectors. The eigenvalues for a real symmet-
ric matrix are real numbers; in particular, the Schur decomposition theorem (also
called the principal-axes theorem or the spectral theorem) says that there exists a
real orthogonal matrix Q such that QTAQ= diag[ λ1, λ2, . . . , λn ]. Note that Q’s

Cholesky decomposition algorithm:

input: A[ 1..n ][ 1..n ];
real L[ 1..n ][ 1..n ];
integer i, j,k;
for ( j = 1 to n) {

L[ j ][ j ] := (A[ j ][ j ]−∑ j−1
k=1 L[ j ][ k ]2)1/2;

for (i = j + 1 to n) {
L[ i ][ j ] := L[ j ][ j ]−1× (A[ i ][ j ]−∑ j−1

k=1 L[ i ][k ]× L[ j ][k ]);
L[ j ][ i ] := 0;

}
}
return L[ ][ ];

Figure 19.4: Cholesky decomposition. The algorithm solves A = L L T for positive definite A .
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ith column is the eigenvector corresponding to λi , and the eigenvectors form an or-
thonormal set. The eigenvalues of positive definitematrices are furthermore positive.

Principal Components
Let x ≡ [ x1, x2, . . . , xn ]T be a vector random variable with the covariance matrix

C ≡ [ Cov[ xi , xj ] ]1≤i, j≤n = E[ xxT ] �≡ 0,
where E[ x ]= 0 and 0 denotes the zero vector. Covariance matrices are positive
definite provided that individual variances Var[ xi ] are all positive, which will be
assumed throughout [343].C’s eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn > 0 are therefore real.

We are interested in knowing which normalized linear combinations of the xi s
give rise to the maximum variance, thus explaining most of the total variability of
the system.Mathematically, we seek a vector b≡ [b1,b2, . . . ,bn ]T with ‖b‖= 1 that
maximizes

Var[bTx ]≡ E[ (bTx)2 ]= E[ (b1x1+b2x2+ · · ·+bnxn)2 ].
The answer turns out to be simple: The maximum variance equals C’s largest eigen-
value λ1, and its corresponding eigenvector u1 is the b we are after. Among the
normalized linear combinations of the xi ’s uncorrelated with uT

1x, which gives rise
to the maximum variance? The answer is similar: The maximum variance is λ2, and
its corresponding eigenvector u2 produces the desired linear combination uT

2x. This
process can be repeated for a total of n steps, with the jth time leading to a normal-
ized linear combination uncorrelated with all the previous j − 1 combinations that
has the maximum variance λ j [23].

Theproof goes like this.By theSchur decomposition theorem, the real orthogonal
matrix B whose columns are the orthonormal eigenvectors satisfies

 ≡ diag[ λ1, λ2, . . . , λn ]= BTCB, (19.1)

with λ1 ≥ λ2 ≥ · · · ≥ λn. The vector of principal components of x,

P ≡ [ p1, p2, . . . , pn ]T = BTx, (19.2)

has the covariance matrix

E [ PPT ]= E [ BTxxTB ]= BTCB= .
Each principal component pj is a normalized linear combination of the xi s and
corresponds to the jth combination mentioned previously (see Exercise 19.1.2).
This identity also confirms that any two distinct components of P are uncorrelated
and pj has variance λ j .

Principal components canbeused tofind linear combinationswith largevariances.
Specifically, the pj s in Eq. (19.2) can be considered uncorrelated new variables, and
those variables pj whose corresponding eigenvalue λ j is small are thrown away.
The resulting variables can be much smaller in number than the original variables
x1, x2, . . . , xn.

➤ Exercise 19.1.1 Let C ≡ [ ci j ] denote the covariance matrix of x ≡ [ x1, x2, . . . ,
xn ]T. Show that C and x’s correlation matrix P are related by C = P , where
 ≡ diag[

√
c11,
√
c22, . . . ,

√
cnn ]. (Hence, C is positive definite if and only if P is.)
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➤ Exercise 19.1.2 Prove that the jth principal component pj has themaximum vari-
ance among all the normalized linear combinations of the xi s that are uncorrelated
with p1, p2, . . . , pj−1.

Generation of the Multivariate Normal Distribution
Let x ≡ [ x1, x2, . . . , xn ]T be a vector random variable with a positive definite covari-
ancematrix C.As usual, assume that E[ x ]= 0. This distribution canbe generatedby
Py, where C = PPT is the Cholesky decomposition of C and y≡ [ y1, y2, . . . , yn ]T

is a vector random variable with a covariance matrix equal to the identity matrix.
This holds because Cov[ Py ]= PCov[ y ] PT = PPT = C (see Exercise 6.1.3).

Suppose we want to generate the multivariate normal distribution with a co-
variance matrix C = PPT. We start with independent standard normal distributions
y1, y2, . . . , yn. Then P[ y1, y2, . . . , yn ]T has the desired distribution. Generating the
multivariate normal distribution is essential for the Monte Carlo pricing of multi-
variate derivatives.

➤ Exercise 19.1.3 Verify the correctness of the procedure for generating the bivariate
normal distribution in Subsection 6.1.2.

➤ Exercise 19.1.4 Prove that WX∼ N(Wµ,WCWT) if X∼ N(µ,C).

19.1.3 The Singular Value Decomposition

The following theorem is the basis for the singular value decomposition (SVD).

THEOREM 19.1.1 (SVD). For a real m×n matrix A,
 ≡UTAV = diag[ σ1, σ2, . . . , σp ] ∈ Rm×n

for some orthogonal matrices U ≡ [u1,u2, . . . ,um ] ∈ Rm×m and V ≡ [ v1, v2, . . . ,
vn ] ∈ Rn×n, where p≡min(m,n) and σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0. In fact, σ1 ≥ · · · ≥ σr >
σr+1 = · · · = σp = 0 with rank(A)= r . The σi s are called the singular values.

For example,1 2
1 4
1 6

 =
−0.282970 0.867906
−0.538373 0.208536
−0.793777 −0.450834

[7.654435 0.
0. 0.640018

]

×
[−0.211005 −0.977485

0.977485 −0.211005
]

= U VT. (19.3)

Because U and V are orthogonal, the two singular values are 7.654435 and 0.640018.
(The third column of U and the third row of  , which is a zero vector, were not
shown.)

The SVD can be computed in cubic time and quadratic space in terms of m
and n [392, 586]. It is implemented in every decent mathematical software library.
Theorem 19.1.1 implies that

A=U VT =
p∑
i=1
σi ui vT

i . (19.4)
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➤ Exercise 19.1.5 (1) Prove Eq. (19.4). (2) Show that A and AT share the same
singular values.

19.2 Least-Squares Problems

The least-squares (LS) problem is concerned with minx∈Rn ‖Ax−b‖, where A ∈
Rm×n, b∈ Rm, m ≥ n. The LS problem is called regression analysis in statistics and
is equivalent to minimizing the mean-square error. Often stated as Ax = b, the LS
problem is overdetermined when there are more equations than unknowns (m> n).

EXAMPLE 19.2.1 In polynomial regression, β0+β1x+ · · ·+βnxn is used to fit the data
{ (x1,b1), (x2,b2), . . . , (xm,bm) }. This leads to the LS problem Ax = b, where

A≡


1 x1 x21 · · · xn1
1 x2 x22 · · · xn2...

...
...

. . .
...

1 xm x2m · · · xnm

 , x ≡

β0
β1
...
βn

 , b≡


b1
b2
...
bm

 . (19.5)

Linear regression corresponds to n= 1.

The LS problem can be solved by a geometric argument. Because Ax is a linear
combination of A’s columns with coefficients x1, x2, . . . , xn, the LS problem finds the
minimum distance between b and A’s column space. A solution xL S must identify
a point AxL S that is at least as close to b as any other point in the column space.
Therefore the error vector AxL S−b must be perpendicular to that space, that is,

(Ay)T(AxL S−b)= yT(ATAxL S− ATb)= 0

for all y. We conclude that any solution x must satisfy the normal equations

ATAx = ATb. (19.6)

➤ Exercise 19.2.1 What are the normal equations for linear regression (6.13)?

➤ Exercise 19.2.2 (1) Phrase multiple regression as an LS problem. (2) Write the
normal equations.

➤ Exercise 19.2.3 Let �(x)≡ (1/2) ‖Ax−b‖2. Prove that its gradient vector,

%�(x)≡
[
∂�(x)
∂x1

,
∂�(x)
∂x2

, . . . ,
∂�(x)
∂xn

]T

,

equals AT(Ax−b), where x ≡ [ x1, x2, . . . , xn ]T. (Normal equations are %�(x)= 0).
➤ Exercise 19.2.4 Define the bandwidth of a banded matrix A as l +u+ 1, where l
is the lower bandwidth and u is the upper bandwidth. Prove that ATA’s bandwidth
is at most ω− 1 if A has bandwidth ω.

Comment 19.2.2 The result in Exercise 19.2.4 holds under a more generous definition
of banded matrices. In that definition, a matrix is banded with bandwidth ω if the
nonzero elements of every row lie within a band with width ω [75]. This result can
save some computational efforts.
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19.2.1 The Full-Rank Case

The LS problem is called the full-rank LS problem when A has full column rank.
Because ATA is then nonsingular, the unique solution for normal equations is xL S =
(ATA)−1ATb, which is called the ordinary least-squares (OLS) estimator. As ATA is
positive definite, the normal equations can be solved by theCholesky decomposition.
This approach is usually not recommended because its numerical stability is lower
than the alternative SVD approach (see Theorem 19.2.3 below) [35, 586, 870].

Suppose the following linear regression model is postulated between x and b:

b= Ax+ ε, (19.7)

where ε is a vector random variable with zero mean and finite variance. The Gauss–
Markov theorem says that theOLS estimator xL S, now a random variable, is unbiased
and has the smallest variance among all unbiased linear estimators if ε’s components
have identical, known variance σ 2 and are uncorrelated (the covariance matrix of
ε is hence σ 2 I) [802]. Under these assumptions,

Cov[ xL S ]= σ 2(ATA)−1. (19.8)

Hence (ATA)−1, properly scaled, is an unbiased estimator of the covariancematrix of
xL S. If ε is moreover normally distributed, then xL S has the smallest variance among
all unbiased estimators, linear or otherwise [422].

➤ Exercise 19.2.5 Show that the sample residuals of the OLS estimate, AxL S−b, are
orthogonal to the columns of A.

➤ Exercise 19.2.6 Suppose that σ 2C is the covariance matrix of ε for a positive
definite C in linear regression model (19.7). How do we solve the LS problem
Ax = b by using the Gauss–Markov theorem?

➤ Exercise 19.2.7 Verify Eq. (19.8).

19.2.2 The (Possibly) Rank-Deficient Case

When A is rankdeficient, there are an infinite number of solutions to theLSproblem.
In this case, we are interested in the x with the minimum length such that ‖Ax−b‖
is minimized. This x is unique because { x ∈ Rm : ‖Ax−b‖ is minimized } is convex.
The linkage between the SVD and the general LS problem when A may be rank
deficient is established in the following theorem.

THEOREM 19.2.3 Let U ≡ [u1,u2, . . . ,um ] ∈ Rm×m and V ≡ [ v1, v2, . . . , vn ] ∈ Rn×n

such that UTAV is the SVD of A∈ Rm×n and r is A’s rank. Then

xL S =
r∑
i=1

(
uTi b
σi

)
vi

is the solution to the LS problem and ‖AxL S−b‖2 =
∑m
i=r+1(u

T
i b)

2.

Let A=U VT, where  ≡ diag[ σ1, σ2, . . . , σn ], be the SVD of A∈ Rm×n.
Define

 + ≡ diag
[
σ−11 , σ−12 , . . . , σ−1r , 0, 0, . . . , 0

] ∈ Rn×m.
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Then xL S = V +UTb. The matrix

A+ ≡ V +UT (19.9)

is called the pseudoinverse of A. Note that ‖AxL S−b‖=‖(I − AA+)b‖ and  + is
the pseudoinverse of  . For example, it is not hard to verify numerically that the
pseudoinverse of matrix A in Eq. (19.3) is[

4/3 1/3 −2/3
−1/4 0 1/4

]
.

➤ Exercise 19.2.8 Prove that if the A in Theorem 19.2.3 has full column rank, then
A+ = (ATA)−1AT. (This implies, in particular, that A+ = A−1 when A is square.)

➤ Exercise 19.2.9 Prove that the pseudoinverse of the pseudoinverse is itself, i.e.,
(A+)+ = A.
➤ Exercise 19.2.10 (Underdetermined Linear Equations) Suppose as before that
A∈ Rm×n and b∈ Rm, but m≤ n. Assume further that m= rank(A). Let U VT be
the SVD of A.Argue that all solutions to Ax = b are of the form

x̂ = V +UTb+V
[
0
y

] }m
}n−m = A

+b+V2y (19.10)

for arbitrary y ∈ Rn−m, where V ≡ [ V1︸︷︷︸
m

, V2︸︷︷︸
n−m

] }n.

19.2.3 The Weighted Least-Squares Problem

The weighted LS problem is concerned with

min
x∈Rn
‖WAx−Wb‖, (19.11)

where W ∈ Rm×m is nonsingular. Clearly all the above-mentioned results regarding
the LS problem apply after we replace their A with WA and their b with Wb. In
particular, the solution x satisfies the weighted normal equations:

(WA)TWAx = (WA)TWb.

With H≡W TW (hence positive definite), the above equations can be restated as

ATHAx = ATHb. (19.12)

In particular, if A has full column rank, then the unique solution for x is

(ATHA)−1 ATHb. (19.13)

Classic regression analysis assumes that the rows of Ax−b have zeromean and a
covariance matrix C. The regression model is hence b= Ax+ ε, where ε is a vector
random variable with zero mean and Cov[ ε ]= C. The optimal solution for x then
satisfies

ATC−1Ax = ATC−1b. (19.14)
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(The H−1 in Eq. (19.12) thus plays the role of the covariance matrix.) When A
has full column rank, the unique optimal solution (ATC−1A)−1ATC−1b is called the
generalized least-squares (GLS) estimator, which is unbiased with covariancematrix
(ATC−1A)−1.

➤ Exercise 19.2.11 Prove Eq. (19.14). (Hint: Exercise 19.2.6.)

19.2.4 The Least-Squares Problem with Side Constraints

The constrained LS problem is an LS problem over a proper subset of Rn. We are
mainly interested in problems with linear equality constraints:

min
x∈Rn, Bx=d

‖Ax−b‖, B∈ Rp×n , d ∈ Rp.

Assume that p is the rank of B. When the solution is not unique, we seek the
unique x with minimum length. The solution is unique if and only if the (m+ p)×n
augmented matrix[

B
A

]
has rank n [586]. Algorithms for the problem generally adopt the paradigm of trans-
forming it into an unconstrained LS problem from whose solution the desired x is
constructed.

➤ Exercise 19.2.12 Design an algorithm for the constrained LS problem by using the
SVD.

➤ Exercise 19.2.13 (Lawson–Hanson Algorithm) It is known that any A∈ Rm×n can
be decomposed as A= QTR such that Q∈ Rm×m is orthogonal and R∈ Rm×n

is zero below the main diagonal. This is called the QR decomposition. Solve the
LS problem with linear constraints by using the QR decomposition instead of the
SVD.

19.2.5 Factor Analysis

Factor analysis postulates that the multitude of influences that affect our concern,
which will be interest rate changes here, can be summarized by a few variables called
factors [91, 390, 804]. Factors are said to explain changes in interest rates, and the
quantitative relations between interest rate changes and factors are called factor
loadings.

Fundamentals
At each time t , where t = 1, 2, . . . ,T, a p-dimensional vector yt is observed, such
as the interest rates of various maturities. The orthogonal factor model assumes that
these observations are linearly related to m underlying, unobserved factors ft by
means of

yt −µ = L × ft + εt ,

p× 1 p×m m× 1 p× 1
(19.15)
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where m< p, E[ yt ]= µ, E[ ft ]= E[ εt ]= 0, Cov[ ft ]= E[ ft f Tt ]= I, and
! ≡ Cov[ εt ]= diag[!1, !2, . . . , !p ] ∈ Rp×p.

Moreover, ft and εt are independent. In Eq. (19.15) L contains the factor loadings,
εt is the vector of specific factors or individual residual errors, and ! is the vector
of specific variances. Each factor has zero mean and unit standard deviation and is
uncorrelated with others. Note that L, ft , and εt are unknown and the model is
linear in the factors.

Equation (19.15) implies that

C ≡ E [ (yt −µ)(yt −µ)T ]= LLT+!,
in which ft and εt drop out. This makes it possible to compute L and ! as follows.
Start with the estimated covariance matrix C ∈ Rp×p. By the Schur decomposition
theorem, C = B×diag[ λ1, λ2, . . . , λn ]× BT with λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. Let L be
the first m columns of B×diag[

√
λ1,
√
λ2, . . . ,

√
λn ] and let ! be constructed

by zeroing the off-diagonal elements of C− LLT. Of course, if some off-diagonal
elements of the residualmatrix C− LLT are “large,” theremaybe additional omitted
factors, which calls for a larger m.2

The solution to L is not unique when m> 1: If A is an orthogonal matrix, then
L̃≡ LA is also a solution as

L̃L̃T+! = LAATLT+! = LLT+! = C.
When L is replaced with L̃, the factors become f̃ t ≡ AT ft because

L̃ f̃ t = LAAT ft = Lft .
Orthogonal transformation of the factor loadings L, however, has no effects on !
and thediagonal elements of LLT. This suggestswe look for an A that gives the factor
loadings L̃ intuitive economic interpretations. For instance, wemight desire loadings
that let rate changes at all maturities have approximately equal loading on the first
factor, signifying a parallel shift. For this purpose, under the case of three factors
(m= 3), each of the following orthogonal matrices called Givens transformations
rotates through an angle θ , leaving one dimension unchanged:

A1 ≡
 cos θ1 sin θ1 0
−sin θ1 cos θ1 0

0 0 1

, A2 ≡
 cos θ2 0 sin θ2

0 1 0
−sin θ2 0 cos θ2

 ,
A3 ≡

 1 0 0
0 cos θ3 sin θ3
0 −sin θ3 cos θ3

.
Note that A≡ A1A2A3 is an orthogonal matrix with parameters θ1, θ2, and θ3. Now
find θ1, θ2, θ3 ∈ [−π, π ] that minimize the variance of the first column of L̃.

Not all positive definite matrices can be factored as C = [Ci j ]= LLT+! for the
given m< p. Even those that can be so factored may give statistically meaningless
numbers such as a negative !i . Because Cov[ yt , ft ]= [ Li j ] (see Exercise 19.2.15),
[ Li jC

−1/2
i j ]i, j is the correlation matrix of yt and ft , but there is no guarantee that

Li jC
−1/2
i j will liewithin the [−1, 1 ] range. These are someof the problems associated

with factor analysis.
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➤ Exercise 19.2.14 Once the appropriate estimated factor loadings have been ob-
tained, verify that the factors themselves can be estimated by ft = (LT!−1L)−1

LT!−1(yt −µ).
➤ Exercise 19.2.15 Prove Cov[ yt , ft ]= L.

Factors Affecting Interest Rate Movements
Because the U.S. Treasury spot rate curve varies more at shorter maturities than at
longer maturities, more data are typically used for spot rates at shorter maturities.
For instance, one may use the 11 rates at 3 months, 6 months, 1 year, 2 years, 3 years,
5 years, 7 years, 10 years, 15 years, 20 years, and 30 years (so p= 11). Research
has shown that three factors can explain more than 90% of the variation in interest
rate changes (so m= 3) [607]. These factors can be interpreted as level, slope, and
curvature. The first factor has approximately equal effects on all maturities in that a
change in it produces roughly parallel movements in interest rates of all maturities.
The second factor affects the slope of the term structure but not the average level
of interest rates. It produces movements in the long and the short ends of the term
structure in opposite directions, twisting the curve, so to speak, with relatively smaller
changes at intermediate maturities. For the third factor, the loadings are zero or
negative at the shortest maturity, positive for intermediate maturities, and then they
decline to become negative for the longest maturities. Thus a positive change in this
factor tends to increase intermediate rates and decrease long rates or even short
rates, altering the curvature of the term structure [91, 390, 804]. The factor analysis
of interest rates is not without its problems, however [591].

➤ Exercise 19.2.16 How would you define slope duration and curvature duration?

19.3 Curve Fitting with Splines

The purpose of curve fitting is to approximate the data with a “smooth” curve. Linear
regression or its generalization, polynomial regression, is not ideal because it tries
to fit a single polynomial over the entire data. The spline approach is different. It
divides the domain interval into several subintervals and uses a different polynomial
for each subinterval.

Suppose we want to fit a curve f (x) over n+ 1 data points,

(x0, y0), (x1, y1), . . . , (xn, yn),

with x0 < x1 < · · ·< xn such that the curve agrees with the data at each breakpoint
(or knot) xi . Divide [ x0, xn ] into n subintervals: [ x0, x1 ], [ x1, x2 ], . . . , [ xn−1, xn ]. If
polynomials of degree zero are used for each subinterval, the curve is a step function.
Its major disadvantage is the curve’s discontinuity at the breakpoints. If polynomials
of degree one or two are used instead, the discontinuity problem remains – it now
applies, respectively, to the first and the second derivatives of the curve. The curves
are therefore not “smooth” enough. If we require that the curve be a polynomial of
degree three in each subinterval and that its first and secondderivatives be continuous
on [ x0, xn ], then a (cubic) spline results. See Fig. 19.5 for illustration.
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Figure 19.5: Splines of varying degrees. Plotted are splines of degrees two,
three, and four. A higher degree leads to greater oscillation.

19.3.1 Cubic Splines

By considering the continuity of f (x) and f ′(x), we find that the spline f (x) over
x ∈ [ xi−1, xi ] is

f (x) = f ′i−1
(xi − x)2(x− xi−1)

h2i
− f ′i

(x− xi−1)2(xi − x)
h2i

+ yi−1 (xi − x)2[ 2(x− xi−1)+ hi ]
h3i

+ yi (x− xi−1)
2[ 2(xi − x)+ hi ]
h3i

,

where hi ≡ xi − xi−1 with n+ 1 unknown values f ′i ≡ f ′(xi ), i = 0, 1, . . . ,n, to be
determined. Now,

f ′′(xi−)= 2
hi

( f ′i−1+ 2 f ′i )− 6
yi − yi−1
h2i

, (19.16)

f ′′(xi+)=− 2
hi+1

(2 f ′i + f ′i+1)+ 6
yi+1− yi
h2i+1

. (19.16′)

If the second derivative of the spline is also continuous at each interior break-
point, that is, f ′′(xi−)= f ′′(xi+) for i = 1, 2, . . . ,n− 1, then we have the following
equations:

1
hi
f ′i−1+ 2

(
1
hi
+ 1
hi+1

)
f ′i +

1
hi+1

f ′i+1 = 3
yi − yi−1
h2i

+ 3
yi+1− yi
h2i+1

, (19.17)

i = 1, 2, . . . ,n− 1. See Fig. 19.3.1 for illustration. The equations form a diago-
nally dominant, tridiagonal system, which admits linear-time and stable numerical
procedures.

We need n+ 1− (n− 1)= 2 more auxiliary conditions relating f ′0, f
′
1, . . . , f

′
n in

order to solve them. Typical conditions specify the values of (1) f ′′(x0) and f ′′(xn)
or (2) f ′(x0) and f ′(xn). For example, letting f ′′(x0)= f ′′(xn)= 0 leads to the so-
called natural splines. With Eq. (19.16), these two conditions eliminate variables f ′0
and f ′n from Eq. (19.17) because f ′0 can be replaced with a linear function of f ′1 and
f ′n can be replaced with a linear function of f ′n−1. Choice (2) forces the slope at each
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Figure 19.6: Construction of splines.

end to assume specified values, thus immediately eliminating variables f ′0 and f ′n.
Other alternatives exist [381]. The natural-spline approximation is the “smoothest”
among all interpolating functions [391].

Splines with uniform spacing are splines with equally spaced breakpoints, hi ≡
xi − xi−1 = h. We can now simplify Eq. (19.17) to

f ′i−1+ 4 f ′i + f ′i+1 = 3
yi+1− yi−1

h
, i = 1, . . . ,n− 1.

➤ Exercise 19.3.1 Verify Eq. (19.16).

➤ Exercise 19.3.2 Write the tridiagonal system for the natural spline.

An Alternative Formulation
The continuity of f (x) and f ′′(x) results in

f (x) = yi−1 xi − xhi + yi x− xi−1hi
− h

2
i

6
f ′′i−1

[
xi − x
hi
−
(
xi − x
hi

)3
]

− h
2
i

6
f ′′i

[
x− xi−1
hi

−
(
x− xi−1
hi

)3
]
, x ∈ [ xi−1, xi ],

with n+ 1 values f ′′i ≡ f ′′(xi ) to be determined. Imposing continuity of f ′(x) at
each interior breakpoint results in

hi f ′′i−1+ 2(hi + hi+1) f ′′i + hi+1 f ′′i+1 = 6
(
yi+1− yi
hi+1

− yi − yi−1
hi

)
, (19.18)

i = 1, 2, . . . ,n− 1. The preceding linear equations form a diagonally dominant, tridi-
agonal system. As in Eq. (19.17), two more conditions are needed to solve it. This
formulation is convenient for natural splines because, in this case, f ′′0 = f ′′n = 0 [417].

EXAMPLE 19.3.1 For the data set { (0, 0), (1, 2), (2, 1), (3, 5), (4, 4) }, we have n= 4,
h1 = h2 = h3 = h4 = 1, xi = i (1≤ i ≤ 4), y0 = 0, y1 = 2, y2 = 1, y3 = 5, y4 = 4. The
spline is

pi (x) ≡ yi−1 (xi − x)+ yi (x− xi−1)

−1
6
f ′′i−1[ (xi − x)− (xi − x)3 ]− 1

6
f ′′i [ (x− xi−1)− (x− xi−1)3 ]

for x ∈ [ xi−1, xi ]. To fit the data with a natural spline, we solve4 1 0
1 4 1
0 1 4

 f ′′1f ′′2
f ′′3

=
−1830
−30

 .
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The solutions are f ′′1 =−7.5, f ′′2 = 12, and f ′′3 =−10.5. We finally obtain the spline
by adding f ′′0 = f ′′4 = 0. Its four cubic polynomials are

p1(x) = 2x+ 7.5
6

(x− x3),

p2(x) = 2(2− x)+ (x− 1)+ 7.5
6

[ (2− x)− (2− x)3 ]

− 12
6
[ (x− 1)− (x− 1)3 ],

p3(x) = (3− x)+ 5(x− 2)− 12
6
[ (3− x)− (3− x)3 ]

+ 10.5
6

[ (x− 2)− (x− 2)3 ],

p4(x) = 5(4− x)+ 4(x− 3)+ 10.5
6

[ (4− x)− (4− x)3 ].

See the solid curve in Fig. 19.7. If y2 is perturbed slightly to 1.3, the whole spline
changes, to the dotted curve in Fig. 19.7.

➤ Exercise 19.3.3 Verify Eq. (19.18).

➤ Exercise 19.3.4 Construct the spline in Example 19.3.1 when y2 = 1.3.

19.3.2 Cubic Splines and the Constrained Least-Squares Problem

In applications that have more data points than breakpoints, we find a spline that
minimizes thedistance to thedata.Let the cubicpolynomial for the interval [ xi−1, xi ]
be written as

pi (x)≡ ai +bi x+ ci x2+di x3, i = 1, 2, . . . ,n.

Figure 19.7: Curve fitting with cubic splines. The whole spline is changed, to the
dotted curve, if just a data point is perturbed. See Example 19.3.1 for the details.
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Because cubic splines are by definition twice continuously differentiable,

pi (xi )= pi+1(xi ), p′i (xi )= p′i+1(xi ), p′′i (xi )= p′′i+1(xi ), i = 1, 2, . . . ,n− 1,

where x0, x1, . . . , xn are the breakpoints. The preceding equations imply that

ai +bi xi + ci x2i +di x3i = ai+1+bi+1xi + ci+1x2i +di+1x3i ,
bi + 2ci xi + 3di x2i = bi+1+ 2ci+1xi + 3di+1x2i ,

2ci + 6di xi = 2ci+1+ 6di+1xi .

Let x ≡ [ a1,b1, c1,d1, . . . , an,bn, cn,dn ]T ∈ R4n. Then theprecedingequations canbe
written as Bx = d for some B∈ R3(n−1)×4n and d ∈ R3(n−1). Assume that 3(n− 1) is
the rank of B. Consider the data set { (x̃1, ỹ1), (x̃2, ỹ2), . . . , (x̃m, ỹm) }. Suppose x̃ j
falls within [ xi−1, xi ]. Then the LS formulation is

pi (x̃ j )≡ ai +bi x̃ j + ci x̃2j +di x̃3j = ỹ j .
These m equations canbeput into the form Ax = b for some A∈ Rm×4n and b∈ Rm.
Thus we have the constrained LS problem minx∈R4n, Bx=d ‖Ax−b‖. Note that A is
banded (see Comment 19.2.2).

➤ Exercise 19.3.5 Write the matrices for A, B, b, and d.

19.3.3 B-Splines and the Least-Squares Problem

A B-spline (basic spline function) Bi is a fixed cubic spline determined by five
breakpoints xi , xi+1, . . . , xi+4. It has zero value outside of [ xi , xi+4 ]. Every cubic
spline with breakpoints x0, x1, . . . , xn can be represented as

s(t)≡
n−1∑
i=−3

αi Bi (x), x0 ≤ x ≤ xn

for unique αi s. (See [35] for the form of Bi (x) and [391] for the simpler case of
equally spaced breakpoints.) Let { (x̃1, ỹ1), (x̃2, ỹ2), . . . , (x̃m, ỹm) } be the data. We
seek α ≡ [α−3, α−2, . . . , αn−1 ]T that minimizes

m∑
j=1

(s(x̃ j )− ỹ j )2 =‖Aα− ỹ‖2 (19.19)

for some matrix A∈ Rm×(n+3), where ỹ≡ [ ỹ1, ỹ2, . . . , ỹm ]T. Because the only B-
splines with nonzero values for x ∈ [ xi−1, xi ] are Bi−3, Bi−2, Bi−1, and Bi , matrix A
is banded with a bandwidth of four. The B-spline approach, in contrast to the cubic-
spline approach to the same problem, does not lead to a constrained LS problem.

➤ Exercise 19.3.6 Write the matrix A in Eq. (19.19).

Additional Reading

The literature on matrix computation is vast [391, 392, 417, 447, 465, 701, 830, 870].
See [825] for the history of the SVD and [392, 465] for applications. Comprehensive
treatments of the LS problem can be found in [75, 586], and statistical properties of
the LS estimator are covered in [422]. Reference [523] has a good coverage of factor
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analysis. Consult [417] for smoothing techniques. Splines in their present form are
due to Schoenberg (1903–1990) in the 1940s [35, 447, 863].

NOTES

1. This term has become firmly entrenched even though “orthonormal” might be more consistent.
2. An alternative is to assume that the residuals have a multivariate normal distribution and then

estimate the model parameters by using maximum likelihood [523, 632].



CHAPTER
TWENTY

Time Series Analysis

The historian is a prophet in reverse.

Friedrich von Schlegel (1772–1829)

A sequence of observations indexed by the time of each observation is called a
time series. Time series analysis is the art of specifying the most likely stochastic
model that could have generated the observed series. The aim is to understand the
relations among the variables in order to make better predictions and decisions. One
particularly important application of time series analysis in financial econometrics
is the study of how volatilities change over time because financial assets demand
returns commensurate with their volatility levels.

20.1 Introduction

A time series of prices is called a financial time series: The prices can be those of
stocks, bonds, currencies, futures, commodities, and countless others. Other time
series of financial interest include those of prepayment speeds of MBSs and various
economic indicators.

Models for the time series can be conjectured from studying the data or can be
suggested by economic theory. Most models specify a stochastic process. Models
should be consistent with past data and amenable to testing for specification error.
They should also be simple, containing as few parameters as possible. Model pa-
rameters are to be estimated from the time series. However, because an observed
series is merely a sample path of the proposed stochastic process, this is possi-
ble only if the process possesses a property called ergodicity. Ergodicity roughly
means that samplemoments converge to the populationmoments as the sample path
lengthens.

The basic steps are illustrated with the maximum likelihood (ML) estimation
of stock price volatility. Suppose that after the historical time series of prices
S1, S2, . . . , Sn+1, observed at �t apart, is studied, the geometric Brownian motion
process

dS
S
= µdt + σ dW (20.1)

284
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is proposed. Transform the data to simplify the analysis. As the return process
r ≡ ln S follows dr = α dt + σ dW, where α ≡ µ− σ 2/2, we take the logarithmic
transformation of the series and perform the difference transformation:

Ri ≡ ln Si+1− ln Si = ln(Si+1/Si ).

Clearly R1, R2, . . . , Rn are independent, identically distributed, normal randomvari-
ables distributed according to N(α �t, σ 2�t). The log-likelihood function is

−n
2

ln(2πσ 2�t)− 1
2σ 2�t

n∑
i=1

(Ri −α�t)2.

Differentiate it with respect to α and σ 2 to obtain the ML estimators:

α̂ ≡
∑n
i=1Ri
n�t

= ln(Sn+1/S1)
n�t

, (20.2)

σ̂ 2 ≡
∑n
i=1(Ri − α̂�t)2
n�t

. (20.3)

We note that the simple rate of return, (Si+1− Si )/Si , and the continuously com-
pounded rate of return, ln(Si+1/Si ), should lead to similar conclusions because

ln(Si+1/Si )= ln(1+ (Si+1− Si )/Si )≈ (Si+1− Si )/Si .

EXAMPLE 20.1.1 Consider a time series generated by

Si+1 = Si × exp[ (µ− σ 2/2)�t + σ
√
�t ξ ], ξ ∼ N(0, 1),

with S1 = 1.0, �t = 0.01, µ= 0.15, and σ = 0.30. Note that α = µ− σ 2/2= 0.105.
For the sample time series with n= 5999 in Fig. 20.1, the ML estimates of the pa-
rameters α and σ 2 are α̂ = 0.118348 and σ̂ 2 = (0.299906)2. Because the variance
of σ̂ 2 is asymptotically 2σ 4/n, increasing n definitely helps. However, because the
variance for the estimator of α (hence µ) is asymptotically σ 2/(n�t), increasing
n by sampling ever more frequently over the same time interval does not narrow

Figure 20.1: A simulated time series. The process is d S =
0.15× S dt + 0.3× S dW , starting at S(0)= 1.
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the variance because the length of the sampling period, n�t , remains unchanged
[147, 611]. The variance can be reduced by sampling over a longer sampling period.
For example, with �t = 2 and n= 999 (the realized time series is not shown), α̂ be-
comes 0.108039, a substantial improvement over the previous estimate even though
the process is sampled less frequently (with a larger �t).

As another illustration, consider the Ogden model for the short rate r,

dr = β(µ− r)dt + σr dW, (20.4)

where β > 0, µ, and σ are the parameters [702]. Because approximately

�r −β(µ− r)�t ∼ N(0, σ 2r2�t),

conditional on r1 the likelihood function for the n observations �r1,�r2, . . . ,
�rn is

n∏
i=1

(
2πσ 2r2i �t

)−1/2
exp

[
−{�ri −β(µ− ri )�t }

2

2σ 2r2i �t

]
,

where �ri ≡ ri+1− ri . The log-likelihood function after the removal of the constant
terms and simplification is

−n ln σ − 1
2σ 2�t

n∑
i=1

[�ri −β(µ− ri )�t ]2r−2i .

Differentiating the log-likelihood function with respect to β, µ, and σ and equating
them to zero gives rise to three equations in three unknowns:

0 =
∑
i

[�ri −β(µ− ri )�t ](µ− ri ) r−2i , (20.5)

0 =
∑
i

[�ri −β(µ− ri )�t ] r−2i , (20.6)

σ 2 = 1
n�t

∑
i

[�ri −β(µ− ri )�t ]2r−2i . (20.7)

The ML estimators are not hard to obtain (see Exercise 20.1.3).

EXAMPLE 20.1.2 Consider the time series generated by ri+1 = ri +β(µ− ri )�t +
σri
√
�t ξ , ξ ∼ N(0, 1), with r1 = 0.08, �t = 0.1, β = 1.85, σ = 0.30, µ= 0.08, and

n= 999. For the time series in Fig. 20.2, the ML estimates are µ̂= 0.0799202,
β̂ = 1.86253, and σ̂ = 0.300989.

➤ Exercise 20.1.1 Derive the ML estimators for µ and σ 2 based on simple
rates of returns, �Si ≡ Si+1− Si , i = 1, 2, . . . ,n.

➤ Exercise 20.1.2 Assume that the stock price follows Eq. (20.1). The simple rate
of return is defined as [ S(t)− S(0) ]/S(0). Suppose that the volatility of the stock
is that of simple rates of return, σs, instead of the instantaneous rates of return, σ.
Express σ in terms of σs, the horizon t , and the expected simple rate of return at
the horizon, µs.
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Figure 20.2: A simulated time series of the Ogden model. The
process is dr = 1.85× (0.08− r ) dt + 0.3× r dW, start-
ing at r (0)= 0.08.

➤ Exercise 20.1.3 Derive the formulas for β and µ.

➤ Exercise 20.1.4 Use the process for ln r to obtain theMLestimators for theOgden
model.

➤ Exercise 20.1.5 The constant elasticity variance (CEV) process follows dS/S=
µdt + λSθ dW, where λ > 0. Derive the ML estimators with µ= 0.

➢ Programming Assignment 20.1.6 Write the simulator in Fig. 18.5 to generate stock
prices. Then experiment with the ML estimators for goodness of fit.

20.1.1 Basic Definitions and Models

Althoughprocesses in this chapter arediscrete-timebydefault,mostof thedefinitions
have continuous-time counterparts in Chap. 13. To simplify the presentation, we rely
on context instead of notation to distinguish between random variables and their
realizations.

Consider a discrete-time stochastic process X1, X2, . . . , Xn. The autocovariance
of Xt at lag τ is defined as Cov[ Xt , Xt−τ ], and the autocorrelation of Xt at lag
τ is defined as Cov[ Xt , Xt−τ ]/

√
Var[ Xt ]×Var[ Xt−τ ], which clearly lies between

−1 and 1. In general, autocovariances and autocorrelations depend on the time
t as well as on the lag τ . The process is stationary if it has an identical mean µ

and the autocovariances depend on only the lag; in particular, the variance is a
constant. Because stationary processes are easier to analyze, transformation should
be applied to the series to ensure stationarity whenever possible. The process is
said to be strictly stationary if { Xs, Xs+1, . . . , Xs+τ−1 } and { Xt , Xt+1, . . . , Xt+τ−1 }
have the same distribution for any s, t , and τ > 0. This implies that the Xts have
identical distributions. A strictly stationary process is automatically stationary. A
general process is said to be (serially) uncorrelated if all the autocovariances with a
nonzero lag are zero; otherwise, it is correlated.

A stationary, uncorrelated process is calledwhite noise. A strictly stationary pro-
cess { Xt }, where the Xt are independent, is called strict white noise. A stationary
process is called Gaussian if the joint distribution of Xt+1, Xt+2, . . . , Xt+k is mul-
tivariate normal for every possible integer k. A Gaussian process is automatically
strictly stationary; in particular, Gaussian white noise is strict white noise.

Denote the autocovariance at lag τ of a stationary process by λτ . The autoco-
variance λ0 is then the same variance shared by all Xt . The autocorrelations at lag
τ of a stationary process are denoted by ρτ ≡ λτ/λ0.
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➤ Exercise 20.1.7 Prove that λτ = λ−τ for stationary processes.

➤ Exercise 20.1.8 Show that, for a stationary process with known mean, the optimal
predictor in the mean-square-error sense is the mean µ.

➤ Exercise 20.1.9 Consider a stationary process { Xt } with known mean and auto-
covariances. Derive the optimal linear prediction a0+ a1Xt + a2Xt−1+ · · ·+ at X1 in
the mean-square-error sense for Xt+1. (Hint: Exercise 6.4.1.)

➤ Exercise 20.1.10 Show that if price changes are uncorrelated, then the variance of
prices must increase with time.

➤ Exercise 20.1.11 Verify that if { Xt } is strict white noise, then so are { |Xt | } and
{ X2
t }.

20.1.2 The Efficient Markets Hypothesis

The random-walk hypothesis posits that price changes are random and prices there-
fore behave unpredictably. For example, Bachelier in his 1900 thesis assumed that
price changeshave independent and identical normaldistributions.Themoremodern
version asserts that the return process has constant mean and is uncorrelated. One
consequence of the hypothesis is that expected returns cannot be improved by use
of past prices.

The random walk hypothesis is a purely statistical statement. By the late 1960s,
however, the hypothesis could no longer withstand the mounting evidence against
it. It was the work of Fama and others that shifted the focus from the time series of
returns to that of cost- and risk-adjusted returns: Excess returns should account for
transactions costs, risks, and information available to the trading strategy. Thereafter,
the efficient-markets debate became a matter of economics instead of a matter of
pure statistics [666].

The economic theory to explain the randomness of security prices is called the
efficient markets hypothesis. It holds that the market may be viewed as a great
information processor and prices come to reflect available information immediately.
A market is efficient with respect to a particular information set if it is impossible to
make abnormal profits by using this set of information in making trading decisions
[799]. If the set of information refers to past prices of securities, we have the weak
form of market efficiency; if the set of information refers to all publicly available
information, we have the semistrong form; finally, if the set of information refers to
all public and private information, we have the strong form. These terms are due to
Roberts in 1967 [147]. The evidence suggests that major U.S. markets are at least
weak-form efficient [767].

➤ Exercise 20.1.12 Why are near-zero autocorrelations important for returns to be
unpredictable?

20.1.3 Three Classic Models

Let εt denote a zero-mean white-noise process with constant variance σ 2 through-
out the section. The first model is the autoregressive (AR) process, whose simplest
version is

Xt −b= a(Xt−1−b)+ εt .
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This process is stationary if |a|< 1, in which case E[ Xt ]= b, λ0 = σ 2/(1− a2) and
λτ = aτ λ0. The autocorrelations decay exponentially to zero because λτ/λ0 = aτ .1
The general AR(p) process follows

Xt −b= εt +
p∑
i=1
ai (Xt−i −b).

The next model is the moving average (MA) process,

Xt −b= εt + cεt−1,

which has mean b and variance λ0 = (1+ c2) σ 2. The autocovariance λτ equals 0 if
τ > 1 and cσ 2 if τ = 1.Theprocess is clearly stationary.Note that theautocorrelation
function drops to zero beyond τ = 1. The general MA(q) process is defined by

Xt −b= εt +
q∑
j=1
c jεt− j .

It is not hard to show that observations more than q periods apart are uncorrelated.
Repeated substitutions for the MA(1) process with |c|< 1 yield

Xt −b=−
∞∑
i=1

(−c)i (Xt−i −b)+ εt .

This can be seen as an AR(∞) process in which the effect of past observations
decrease with age. An MA process is said to be invertible if it can be represented as
an AR(∞) process.

The third model, the autoregressive moving average (ARMA) process, combines
the AR(1) and MA(1) processes; thus

Xt −b= a(Xt−1−b)+ εt + cεt−1.

Assume that |a|< 1 so that the ARMA process is stationary. Then the mean is b
and

λ0 = σ 2 1+ 2ac+ c2
1− a2 ,

λ1 = σ 2 (1+ ac)(a+ c)
1− a2 ,

λτ = aλτ−1 for τ ≥ 2.

Wedefine themore generalARMA(p,q) process by combiningAR(p) andMA(q):

Xt −b=
p∑
i=1
ai (Xt−i −b)+

q∑
j=0
c jεt− j ,

where c0 = 1, ap �= 0, and cq �= 0.
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Repeated substitutions for the stationary AR(1) process, with |a|< 1, yield

Xt −b=
∞∑
j=0
a jεt− j ,

an MA(∞) process. This is a special case ofWold’s decomposition, which says that
any stationary process { Xt }, after the linearly deterministic component has been
removed, can be represented as an MA(∞) process:

Xt −b=
∞∑
j=0
c jεt− j , (20.8)

where c0 = 1 and
∑∞
j=1 c

2
j <∞. Both stationary AR and ARMA processes admit

such a representation.
Stationary processes have nice asymptotic properties. Suppose that a stationary

process { Xt } is represented as Eq. (20.8), where
∑∞
j=1 |c j |<∞ and εt are zero-

mean, independent, identically distributed random variables with E[ ε2t ]<∞. A
useful central limit theorem says that the sample mean is asymptotically normal in
the sense that

√
n

(
1
n

n∑
i=1
Xi −b

)
→ N

(
0,

∞∑
j=−∞

λ j

)
as n→∞.

We note that
∑∞
j=1 |c j |<∞ implies that

∑∞
j=1 c

2
j <∞ but not vice versa, and it

guarantees ergodicity for MA(∞) processes [415].

➤ Exercise 20.1.13 Let { Xt } be a sequence of independent, identically distributed
random variables with zero mean and unit variance. Prove that the process
{Yt ≡

∑l
k=0 akXt−k } with constant ak is stationary.

➤ Exercise 20.1.14 GivenWold’s decomposition (20.8), show that λτ , the autocovari-
ance at lag τ , equals σ 2∑∞

j=0 c j c j+τ .

Conditional Estimation of Gaussian AR Processes
For Gaussian AR processes, the ML estimation reduces to OLS problems. Write the
AR(p) process as

Xt = c+
p∑
i=1
ai Xt−i + εt ,

where εt is a zero-mean Gaussian white noise with constant variance σ 2. The pa-
rameters to be estimated from the observations X1, X2, . . . , Xn are a1, a2, . . . , ap, c,
and σ 2. Conditional on the first p observations, the log-likelihood function can be
easily seen to be

−n− p
2

ln(2π)− n− p
2

ln(σ 2)− 1
2σ 2

n∑
t=p+1

(
Xt − c−

p∑
i=1
ai Xt−i

)2

.
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The values of a1, a2, . . . , ap, and c that maximize the preceding function must
minimize

n∑
t=p+1

(
Xt − c−

p∑
i=1
ai Xt−i

)2

, (20.9)

an LS problem (see Exercise 20.1.15). This methodology is called the conditionalML
estimation. The estimate will be consistent for any stationary ergodic AR process
even if it is not Gaussian. The estimator of σ 2 is

1
n− p

n∑
t=p+1

(
Xt − ĉ−

p∑
i=1
âi Xt−i

)2

,

which can be found by differentiation of the log-likelihood function with respect to
σ 2.

➤ Exercise 20.1.15 Write the equivalent LS problem for function (20.9).

20.2 Conditional Variance Models for Price Volatility

Although a stationary model has constant variance, its conditional variance may
vary. Take for example a stationary AR(1) process Xt = aXt−1+ εt . Its conditional
variance,

Var[ Xt | Xt−1, Xt−2, . . . ],
equals σ 2, which is smaller than the unconditional variance Var[ Xt ]= σ 2/(1− a2).
Note that the conditional variance is independent of past information; this property
holds for ARMA processes in general. Past information thus has no effect on the
variance of prediction. To address this drawback, consider models for returns Xt
consistent with a changing conditional variance in the form of

Xt −µ= VtUt .
It is assumed that (1)Ut has zero mean and unit variance for all t , (2) E[ Xt ]= µ for
all t , and (3) Var[ Xt |Vt = vt ]= v2t . The process {V2

t } thus models the conditional
variance.

Suppose that {Ut } and {Vt } are independent of each other, which means that
{U1,U2, . . . ,Un } and {V1,V2, . . . ,Vn } are independent for all n. Then { Xt } is
uncorrelated because

Cov[ Xt , Xt+τ ]= E[VtUtVt+τUt+τ ]= E[VtUtVt+τ ] E[Ut+τ ]= 0 (20.10)

for τ > 0. Furthermore, if {Vt } is stationary, then { Xt } has constant variance
because

E[ (Xt −µ)2 ]= E
[
V2
t U

2
t

]= E [V2
t

]
E
[
U2
t

]= E [V2
t

]
, (20.11)

making { Xt } stationary.
EXAMPLE 20.2.1 Here is a lognormal model. Let the processes {Ut } and {Vt } be
independent of each other, {Ut } is Gaussian white noise, and lnVt ∼ N(a,b2). One
simple way to achieve this as well as to make both { |Xt −µ| }’s and { (Xt −µ)2 }’s
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autocorrelations positive is to posit the following AR(1) model for { lnVt }:

ln(Vt)−α = θ(ln(Vt−1)−α)+ ξt , θ > 0.

In the preceding equation, { ξt } is zero-mean, Gaussian white noise independent of
{Ut }. To ensure the above-mentioned variance for lnVt , let Var[ ξt ]= b2(1− θ2).
The four parameters in this model – a, b, θ , and α – can be estimated by the method
of moments [839].

➤ Exercise 20.2.1 Assume that the processes {Vt } and {Ut } are stationary and
independent of each other. Show that the kurtosis of Xt exceeds that of Ut provided
that both are finite.

➤ Exercise 20.2.2 For the lognormal model, show that (1) the kurtosis of Xt is 3e4b
2
,

(2) Var[Vt ]= e2a+b2 (eb2 − 1), (3) Var[ |Xt −µ| ]= e2a+b2 (eb2 − 2/π), (4) Var[V2
t ]=

e4a+4b
2
(e4b

2 − 1), and (5) Var[ (Xt −µ)2 ]= e4a+4b2 (3e4b2 − 1).

20.2.1 ARCH and GARCH Models

One trouble with the lognormal model is that the conditional variance evolves in-
dependently of past returns. Suppose we assume that conditional variances are de-
terministic functions of past returns: Vt = f (Xt−1, Xt−2, . . .) for some function f .
Then Vt can be computed given It−1 ≡ { Xt−1, Xt−2, . . . }, the information set of past
returns. An influential model in this direction is the autoregressive conditional het-
eroskedastic (ARCH) model.

Assume that Ut is independent of Vt ,Ut−1,Vt−1,Ut−2, . . ., for all t . Consequently
{ Xt } is uncorrelated by Eq. (20.10). Assume furthermore that {Ut } is a Gaussian
white-noiseprocess.Hence Xt | It−1 ∼ N(µ,V2

t ).TheARCH(p) process is definedby

Xt −µ=
[
a0+

p∑
i=1
ai (Xt−i −µ)2

]1/2

Ut ,

where a0, a1, . . . , ap are nonnegative and a0 > 0 is usually assumed. The vari-
ance V2

t thus equals a0+
∑p
i=1 ai (Xt−i −µ)2. This suggests that Vt depends on

Ut−1,Ut−2, . . . ,Ut−p, which is indeed the case; {Ut } and {Vt } are hence not indepen-
dent of each other. In practical terms, themodel says that the volatility at time t as es-
timatedat time t − 1 dependson the p most recentobservationson squared returns.2

The ARCH(1) process Xt −µ= [ a0+ a1(Xt−1−µ)2 ]1/2Ut is the simplest for
which

Var[ Xt | Xt−1 = xt−1 ]= a0+ a1(xt−1−µ)2. (20.12)

The process { Xt } is stationary with finite variance if and only if a1 < 1, in which case
Var[ Xt ]= a0/(1− a1). The kurtosis is a finite 3(1− a21)/(1− 3a22) when 3a21 < 1 and
exceeds three when a1 > 0. Let St ≡ (Xt −µ)2. Then

E[ St | St−1 ]= a0+ a1St−1
by Eq. (20.12). This resembles an AR process. Indeed, { St } has autocorrelations aτ1
when the variance of St exists, i.e., 3a21 < 1. Because Xt | It−1 ∼ N(µ, a0+ a1St−1),
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the log-likelihood function equals

−n− 1
2

ln(2π)− 1
2

n∑
i=2

ln(a0+ a1(Xi−1−µ)2)− 1
2

n∑
i=2

(Xi −µ)2
a0+ a1(Xi−1−µ)2 .

We can estimate the parameters by maximizing the above function. The results for
the more general ARCH(p) model are similar.

A popular extension of theARCHmodel is the generalized autoregressive condi-
tional heteroskedastic (GARCH) process. The simplest GARCH(1, 1) process adds
a2V2

t−1 to the ARCH(1) model:

V2
t = a0+ a1(Xt−1−µ)2+ a2V2

t−1.

The volatility at time t as estimated at time t − 1 thus depends on the squared return
and the estimated volatility at time t − 1. By repeated substitutions, the estimate of
volatility can be seen to average past squared returns by giving heavier weights to
recent squared returns (see Exercise 20.2.3, part (1)). For technical reasons, it is
usually assumed that a1+ a2 < 1 and a0 > 0, in which case the unconditional long-
run variance is given by a0/(1− a1− a2). The model also exhibits mean reversion
(see Exercise 20.2.3, part (2)).

➤ Exercise 20.2.3 Assume the GARCH(1, 1) model. Show that (1) V2
t =

a0
∑k−1
i=0 a

i
2+

∑k
i=1 a1a

i−1
2 (Xt−i −µ)2+ ak2V2

t−k, where k> 0 and (2) Var[ Xt+k |Vt ]=
V+ (a1+ a2)k(V2

t −V), where V ≡ a0/(1− a1− a2).

Additional Reading

Many books cover time-series analysis and the important subject of model test-
ing skipped here [22, 415, 422, 667, 839]. A version of the efficient markets hy-
pothesis that is due to Samuelson in 1965 says asset returns are martingales (see
Exercise 13.2.2) [594]. However, constant expected returns that a martingale en-
tails have been rejected by the empirical evidence if markets are efficient [333]. See
[148, 333, 424, 587, 594, 767] formore informationon the efficientmarkets hypothesis.
Wold’s decomposition is due to Wold in 1938 [881]. The instability of the variance of
returns has consequences for long-term investors [69]. Stochastic volatility has been
extensively studied [49, 293, 440, 444, 450, 471, 520, 579, 790, 823, 839, 840]. Besides
the Ito process approach to stochastic volatility in Section 15.5, jump processes have
been proposed for the volatility process [177]. Consult [255] for problems with such
approaches to volatility. One more approach to the smile problem is the implied bi-
nomial tree [502, 503]. The ARCH model is proposed by Engle [319]. The GARCH
model is proposed by Bollerslev [99] and Taylor [839]. It has found widespread em-
pirical support [464, 552, 578]. See [286, 287, 288, 442] for option pricingmodels based
on the GARCH process and [749] for algorithms. Consult [517] for a survey on the
estimation of Ito processes of the form dXt = µ(Xt)dt + σ (Xt)dWt . As illustrated in
Example 20.1.1, direct estimation of the drift µ is difficult in general from discretely
observed data over a short time interval, however frequently sampled; the diffusion
σ can be precisely estimated.

The generalized method of moments (GMM) is an estimation method that ex-
tends the method of moments in Subsection 6.4.3. Like the method of moments,
the GMM formulates the moment conditions in which the parameters are implicitly
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defined. However, instead of solving equations, the GMM finds the parameters that
jointly minimize the weighted “distance” between the sample and the population
moments. The typical conditions for the GMM estimate to be consistent include sta-
tionarity, ergodicity, and the existence of relevance expectations. The GMMmethod
of moments is due to Hansen [418] and is widely used in the analysis of time series
[173, 248, 384, 526, 754, 819].

NOTES

1. The stationarity condition rules out the random walk with drift in Example 13.1.2 as a stationary
AR process. Brownian motion, the limit of such a random walk, is also not stationary (review
Subsection 13.3.3).

2. In practice µ is often assumed to be zero. This is reasonable when �t is small, say 1 day, because
the expected return is then insignificant compared with the standard deviation of returns.

Someone who tried to use modern observations from
London and Paris to judge mortality rates of the Fathers
before the flood would enormously deviate from the truth.

Gottfried Wilhelm von Leibniz (1646–1716)



CHAPTER
TWENTY-ONE

Interest Rate
Derivative Securities

I never gamble.

J.P. Morgan, Sr. (1837–1913)

Interest-rate-sensitive securities are securities whose payoff depends on the levels
and/or evolution of interest rates. The interest rate derivatives market is enormous.
The global notional principal of over-the-counter derivative contracts was an esti-
mated U.S.$72 trillion as of the end of June 1998, of which 67% were interest rate
instruments and 31% were forex instruments [51]. The use of such derivatives in
portfolio risk management has made possible economical and efficient alteration of
interest rate sensitivities [325]. Throughout this book, interest rate derivative secu-
rities exclude fixed-income securities with embedded options.

21.1 Interest Rate Futures and Forwards

An interest rate futures contract is a futures contract whose underlying asset depends
solely on the level of interest rates. Figure 21.1 gives an idea of the diversity of interest
rate futures.

21.1.1 Treasury Bill Futures

The first financial futures contract was based on a fixed-income instrument, the
Government National Mortgage Association (GNMA or “Ginnie Mac”) mortgage-
backed certificates whose trading began in 1972 at the CBT. The IMM of the CME
followed 3 months later with futures contracts based on the 13-week T-bill [95].

The T-bill futures contract traded on the IMM is based on the 13-week (3-month)
T-bill with a face value of $1 million. The seller of a T-bill futures contract agrees to
deliver to the buyer at the delivery date a T-bill with 13 weeks remaining to maturity
and a face value of $1 million. The T-bill delivered can be newly issued or seasoned.
The futures price is the price atwhich theT-bill will be sold by the short andpurchased
by the buyer. The contract allows for the delivery of 89-, 90-, or 91-day T-bills after
price adjustments.

T-bills are quoted in the spot market in terms of the annualized discount rate of
formula (3.9). In contrast, the futures contract is quoted, not directly in terms of

295
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Monday, March 20, 1995
FUTURES PRICES

· · ·
Lifetime Open

Open High Low Settle Change High Low Interest
· · ·

INTEREST RATE
TREASURY BONDS (CBT) — $100,000; pts. 32nds of 100%
Mar 104-31 105-05 104-18 104-20 −11 116-20 95-13 28,210
June 104-12 104-19 104-00 104-02 −11 113-15 94-27 328,566
Sept 104-06 104-06 103-19 103-21 −11 112-15 94-10 14,833
Dec 103-23 103-23 103-04 103-07 −12 111-23 93-27 1,372
Mr96 102-26 103-00 102-26 102-26 −13 103-17 93-13 232
June 102-15 102-15 102-13 102-13 −13 104-28 93-06 46

· · ·
TREASURY NOTES (CBT) — $100,000; pts. 32nds of 100%
Mar 105-00 105-02 104-27 104-28 −3 111-07 98-11 24,870
June 104-16 104-20 104-11 104-13 −3 105-22 97-27 225,265

· · ·
5 YR TREAS NOTES (CBT) — $100,000; pts. 32nds of 100%
Mar 103-31 03-315 103-27 03-275 −2.5 104-11 99-15 19,230
June 103-18 103-21 03-155 03-165 −2.0 104-01 99-06 179,928

· · ·
2 YR TREAS NOTES (CBT) — $200,000; pts. 32nds of 100%
Mar 02-085 02-085 102-07 102-07 −1/4 02-105 99-252 5,776
June 103-30 01-302 01-282 101-29 +1/4 02-015 99-24 26,904

· · ·
30-DAY FEDERAL FUNDS (CBT) — $5 million; pts. of 100%
Mar 94.05 94.05 94.05 94.05 −.01 94.44 93.28 2,905
Apr 93.97 93.97 93.96 93.97 . . . 93.98 93.05 4,331

· · ·
TREASURY BILLS (CME) — $1 mil.; pts. of 100%

Discount Open
Open High Low Settle Chg Settle Chg Interest

June 94.04 94.06 94.04 94.05 +.02 5.95 −.02 16,964
Sept 93.83 93.83 93.80 93.82 +.01 6.18 −.01 10,146
Dec 93.64 93.66 93.64 93.66 −.01 6.34 +.01 9,082

· · ·
LIBOR-1MO. (CME) — $3,000,000; points of 100%
Apr 93.84 93.84 93.82 93.83 . . . 6.17 . . . 27,961

· · ·
EURODOLLAR (CME) — $1 million; pts of 100%

Yield Open
Open High Low Settle Chg Settle Chg Interest

June 93.52 93.54 93.51 93.52 . . . 6.48 . . . 515,578
Sept 93.31 93.32 93.28 93.30 . . . 6.70 . . . 322,889

· · ·
Mr04 91.65 91.65 91.65 91.65 −.01 8.35 +.01 1,910

· · ·

Figure 21.1: Interest rate futures quotations. Expanded from Fig. 12.3.
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yield, but instead on an index basis that is related to the discount rate as

index price = 100− (annualized discount yield× 100).

The price is therefore merely a different way of quoting the interest rate. For exam-
ple, if the yield is 8%, the index price is 100− (0.08× 100)= 92. Alternatively, the
discount yield for the futures contract can be derived from the price of the futures
contract:

annualized discount yield= 100− index price
100

.

The invoice price that a buyer of $1 million face-value of 13-week T-bills must
pay at the delivery date is found by first computing the dollar discount:

dollar discount= annualized discount yield× $1,000,000× (T/360),

where T is the number of days to maturity. The invoice price is

invoice price= $1,000,000− dollar discount.

Combining the two preceding equations, we arrive at

invoice price= $1,000,000× [ 1− annualized discount yield× (T/360) ] ,

where T = 89, 90, or 91. For example, suppose that the index price for a T-
bill futures contract is 92.52. The discount yield for this T-bill futures contract is
(100− 92.52)/100= 7.48%, and the dollar discount for the T-bill to be delivered with
91 days to maturity is

0.0748× $1,000,000× 91
360
= $18,907.78.

The invoice price is thus 1,000,000− 18,907.78= 981,092.22 dollars.
The “tick” for the T-bill futures contract is 0.01. A change of 0.01 translates into

a one-basis-point change in the discount yield. The dollar price change of a tick is
therefore 0.0001× $1,000,000× (90/360)= $25 for a 90-day contract. The contract
is quoted and traded in half-tick increments.

Suppose that the futures contract matures in t years and its underlying T-bill ma-
tures in t∗ > t years, the difference between them being 90 days. Let S(t) and S(t∗)
denote the continuously compounded riskless spot rates for terms t and t∗, respec-
tively. Because no income is paid on the bill, the futures price equals F = eS(t) t−S(t∗) t∗
byLemma12.2.1.This incidentally shows thedurationof theT-bill futures tobe t∗ − t
if the yield curve is flat. Let r ≡ (t∗ − t)−1 ln(1/F)= [ S(t∗) t∗ − S(t) t ]/(t∗ − t) be the
continuously compounded forward rate for the time period between t and t∗. The
futures price is therefore the price the bill will have if the 90-day interest rate at the
delivery date proves to be r . Rearrange the terms to obtain

S(t)= S(t
∗) t∗ − r(t∗ − t)

t
.

The rate derived by the right-hand-side formula above is called the implied repo rate.
As argued above, arbitrage opportunities exist if the implied repo rate differs from
the actual T-bill rate S(t).
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EXAMPLE 21.1.1 Suppose that the price of a T-bill maturing in 138 days (0.3781 year) is
95 and the futures price for a 90-day (0.2466-year) T-bill futures contract maturing
in 48 days is 96.50. The implied repo rate is

138× (1/0.3781) ln(1/0.95)− 90× (1/0.2466) ln(1/0.965)
48

= 0.1191,

or 11.91%.

➤ Exercise 21.1.1 Derive the formula for the change in theT-bill futures’ invoice price
per tick with 91 days to maturity.

Duration-Based Hedging
Under continuous compounding, the duration of a T-bill is its term to maturity.
Suppose that one anticipates a cash inflow of L dollars at time t and plans to invest
it in 6-month T-bills. To address the concern that the interest rate may drop at time
t by using Treasury bill futures, one should buy the following number of contracts:

L× 0.5
T-bill futures contract price× 0.25

by Eq. (4.13). The general formula is

L× duration of the liability
interest rate futures contract price× duration of the futures

under the assumption of parallel shifts.

EXAMPLE 21.1.2 A firm holds 6-month T-bills with a total par value of $10 million.
The term structure is flat at 8%. The current T-bill value is hence $10,000,000×
e−0.08/2 = $9,607,894, and the current T-bill futures price is $1,000,000× e−0.08/4 =
$980,199. The firm hedges by selling (9,607,894× 0.5)/(980,199× 0.25) = 19.6
futures contracts.

21.1.2 The Eurodollar Market

Money deposited outside its nation of origin is called Eurocurrency. Eurocurrency
trading involves the borrowing and the lending of time deposits. The most important
Eurocurrency is the Eurodollar, and the interest rate banks pay on Eurodollar time
deposits is LIBOR. The 1-month LIBOR is the rate offered on 1-month deposits, the
3-month LIBOR is the rate offered on 3-month deposits, and so on. LIBOR plays the
role in international financial markets that prime rates do in domestic ones.

LIBOR is quoted actual over 360; therefore the interest rate is stated as if the year
had 360 days even though interest is paid daily. Consider a $1 million loan with
an annualized interest rate of the 6-month LIBOR plus 0.5%. The life of this loan is
divided into 6-month periods. For each period, the rate of interest is set 0.5% above
the 6-month LIBOR at the beginning of the period. For example, if the current LIBOR

is 8% and the period has 182 days, the interest due at the end of the period is

$1,000,000× 0.085× 182
360
= $42,972.22.

TheLIBOR rateunderestimates the effective rate. For example, the effective annual
rate corresponding to a 6-month LIBOR quote of 7% is the slightly higher 7.2231%
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because(
1+ 0.07× 182

360

)(
1+ 0.07× 183

360

)
− 1≈ 0.072231.

Because the LIBOR yields are quoted in terms of an add-on interest rate, they are
directly comparable with those on domestic CDs.

21.1.3 Eurodollar Futures

Eurodollar futures started trading in 1981 and are now traded on both the IMM and
the London International Financial Futures and Options Exchange (LIFFE). This
contract is one of themost heavily traded futures contracts in theworld. The 3-month
Eurodollar is the underlying instrument for the Eurodollar futures contract, which
has a delivery date ranging from 3 months to 10 years.

As with the T-bill futures, this contract is for $1 million of face value and is
traded on an index price basis with a tick of 0.01. The quoted futures price is equal
to 100 minus the annualized yield, which is also called the implied LIBOR rate. The
contractmonth specifies themonth and year inwhich the futures contract expires. For
example, the June contract in Fig. 21.1 is quoted as 93.52. This implies a Eurodollar
interest rate quote of 6.48% for the 3-month period beginning June and a contract
price of

$1,000,000× [ 1− (0.0648/4) ]= $983,800.

Unlike the T-bill futures, the Eurodollar futures contract is a cash-settlement
contract. The parties settle in cash for the value of a Eurodollar time deposit based
on the LIBOR at the delivery date. The final marking to market sets the contract price
to

$1,000,000× [ 1− (LIBOR/4) ].

The LIBOR above is the actual 90-day rate on Eurodollar deposits with quarterly
compounding. So the futures price converges to 100× (1− LIBOR) by design. Equiv-
alently, the implied LIBOR rate converges to the spot LIBOR rate.

The T-bill futures is a contract on a price unlike that of the Eurodollar futures,
which is a contract on an interest rate. Eurodollar futures prices move linearly with
the bank discount yield; a 1% change in yield always causes a

$1,000,000× 1
100
× 90

360
= $2,500

change in price, which implies a tick value of $25. This is in sharp contrast to T-bill
futures, whose prices move linearly with T-bill prices.

EXAMPLE 21.1.3 Consider a floating-rate liability of $10 million with an interest rate at
1% above the prevailing 3-month LIBOR on the interest payment date in September.
There happen to be Eurodollar futures expiring on the payment date with a futures
price of 93.33. Selling 10 such contracts locks in a LIBOR rate of 6.67% for the 4-
monthperiodbeginningSeptember.Because theborrowing cost is 1%over LIBOR, the
locked-in borrowing rate is 7.67%. The interest payment is 10× 0.0767/4= 0.19175
million dollars at this rate (see Fig. 21.2).
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LIBOR 5% 6% 7% 8% 9%

Futures price 95 94 93 92 91
Interest expense 150,000 175,000 200,000 225,000 250,000
Loss on futures 41,750 16,750 −8,250 −33,250 −58,250
Net borrowing cost 191,750 191,750 191,750 191,750 191,750

Figure 21.2: Locking in the borrowing cost with Eurodollar futures. The interest expense is $10,000,000×
(1%+ LIBOR)/4, and the loss on futures is 10× $1,000,000× (futures price− 93.33)/(4× 100). See Example
21.1.3 for explanations.

The preceding single-period example readily extends to multiperiod situations.
The way to transform a floating-rate liability into a fixed-rate liability is by selling
a strip of futures whose expiration dates coincide with interest payment dates. The
locked-in borrowing rates are the implied LIBOR rates plus the applicable spread.
Here the interest generated by the marking-to-market feature is ignored.

A LIBOR term structure can be established from the implied 3-month LIBOR rates.
Suppose now that June 1995 is the expiration date of the June 1995Eurodollar futures
contract. The Eurodollar futures prices are in Fig. 21.3. The actual 3-month LIBOR

from June to September is 6.48%. Because the maturity is 92 days away, the return
is 6.48%× (92/360)= 1.656%. The 6-month rate could be established by the June
and the September Eurodollar futures contracts as follows. The implied rate from
September to December is 6.70%× (91/360)= 1.694%. The implied rate over the
6-month period is thus (1.01656× 1.01694)− 1= 3.378%, which gives an annualized
rate of 3.378%× (360/183)= 6.645%. This is also the borrowing rate that can be

Futures Implied Days Futures Implied Days
Price LIBOR Settle Price LIBOR Settle

June 93.52 6.48 92 Dec 92.37 7.63 91
Sept 93.30 6.70 91 Mar00 92.38 7.62 92
Dec 93.11 6.89 91 June 92.31 7.69 92
Mar96 93.10 6.90 92 Sept 92.25 7.75 91
June 93.02 6.98 92 Dec 92.17 7.83 90
Sept 92.97 7.03 91 Mar01 92.18 7.82 92
Dec 92.87 7.13 90 June 92.11 7.89 92
Mar97 92.88 7.12 92 Sept 92.05 7.95 91
June 92.82 7.18 92 Dec 91.97 8.03 90
Sept 92.78 7.22 91 Mar02 92.01 7.99 92
Dec 92.70 7.30 90 June 91.96 8.04 92
Mar98 92.71 7.29 92 Sept 91.90 8.10 91
June 92.65 7.35 92 Dec 91.82 8.18 90
Sept 92.61 7.39 91 Mar03 91.83 8.17 92
Dec 92.53 7.47 90 June 91.76 8.24 92
Mar99 92.54 7.46 92 Sept 91.70 8.30 91
June 92.49 7.51 92 Dec 91.61 8.39 91
Sept 92.45 7.55 91 Mr04 91.65 8.35 92

Figure 21.3: Eurodollar futures prices. The yields are the hypothetical implied 3-month LIBOR rates as of
June 1995.
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locked in for the 6-month period. The procedure can be repeated to yield a LIBOR

term structure.

EXAMPLE 21.1.4 What about the 12-month implied LIBOR rate beginning June 1996?
It is determined by the June, September, December, and March Eurodollar futures
contracts and is given by the value f satisfying

1+ f × 365
360
=
(
1+ 6.98%× 92

360

)(
1+ 7.03%× 91

360

)

×
(
1+ 7.13%× 90

360

)(
1+ 7.12%× 92

360

)
.

Solving this expression yields 7.257%.

➤ Exercise 21.1.2 Calculate the annualized implied 9-month LIBOR rate between June
1995 and March 1996 from the data in Fig. 21.3.

21.1.4 Treasury Bond Futures

The CBT trades 2-year, 5-year, and 10-year T-note futures and T-bond futures. All
require delivery of the underlying securities, but a number of eligible securities can
be delivered against the contract.

Initiated in 1977, the T-bond futures contract calls for $100,000 face value in
deliverable-grade U.S. T-bonds. The bond delivered must have at least 15 years to
maturity or to the first call date if callable. The short position can choose any business
day in the delivery month to deliver, although contracts are rarely settled by actual
delivery. The underlying instrument for the T-bond futures contract is $100,000 par
value of a hypothetical 20-year 8% coupon bond. For example, if theMarch contract
settles at 104-20, the buyer is entitled to receive this coupon bond for a price of
10420/32% of $100,000, or $104,625. The minimum price fluctuation for the T-bond
futures contract is 1/32 of 1%. The dollar value of that is $100, 000× (1/32)%=
$31.25; hence the minimum price fluctuation is thus $31.25.

Although prices and yields of the T-bond futures are quoted in terms of this
hypothetical bond, the seller of the futures contract has the choice of several actual
Treasury bonds that are acceptable for delivery.Awell-definedmechanism computes
from the quoted price the effective futures price for all the bonds that satisfy delivery
requirements. The invoice amount is determined by

invoice price = (settlement price× contract size× conversion factor)
+ accrued interest. (21.1)

The conversion factor is the price of a $1 (face value) coupon bond with a maturity –
measured from the first day in the delivery month – equal to the delivered bond if it
were priced to yield 8%, compounded semiannually. Maturities are rounded down
to the nearest quarter. For example, 24-years-and-5-months becomes 24-years-and-
3-months. Let ω be the percentage of the coupon that due the holder as defined in
Eq. (3.19). The bond is worth

c
(1.04)ω

+ c
(1.04)ω+1

+ c
(1.04)ω+2

+ · · ·+ 1+ c
(1.04)ω+n−1

− c(1−ω),
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where c is the semiannual coupon rate and n is the number of remaining coupon
payments. The last term is the accrued interest. As coupon payments are made at
6-month intervals, ω is either 1/2 or 1. For example, if the first coupon payment
occurs 3 months hence, then ω = 1/2.1

Consider a 13% coupon bond with 19 years and 2months tomaturity. In calculat-
ing the conversion factor, the bond is assumed to have exactly 19 years to maturity,
and the nearest coupon payment will be made 6 months from now. On the assump-
tion that the discount rate is 8% per annumwith semiannual compounding, the bond
has the value

38∑
i=1

6.5
(1.04)i

+ 100
(1.04)38

= 148.42.

The conversion factor is therefore 1.4842. Consider an otherwise identical bond with
19 years and 4 months to maturity. For the purpose of calculating the conversion
factor, the bond is assumed to have exactly 19 years and 3 months to maturity. There
are 39 coupon payments, starting 3 months from now. The value of the bond is

38∑
i=0

6.5
(1.04)i+0.5

+ 100
(1.04)38.5

− 3.25= 148.66.

The conversion factor is therefore 1.4866.

EXAMPLE 21.1.5 Suppose the T-bond futures contract settles at 96 and the short elects
to deliver a T-bond with a conversion factor of 1.15. The price is $100,000× 0.96×
1.15= $110,400. The buyer of the contract must also pay the seller accrued interest
on the bond delivered as dictated by Eq. (21.1).

The party with the short position can choose from among the deliverable bonds
the “cheapest” one to deliver. Because the party with the short position receives the
invoice price equal to

(quoted futures price× conversion factor)+ accrued interest

and the cost of purchasing a bond is

quoted cash price+ accrued interest,

the cheapest-to-deliver bond is the one for which

quoted cash price− (quoted futures price× conversion factor)

is least. One can find this by examining all deliverable bonds. The cheapest-to-deliver
bond may change from day to day.

In addition to the option to deliver any acceptable Treasury issue (sometimes
referred to as the quality or swap option), the short position has two more options.
First, it decides when in the delivery month delivery actually takes place. This is
called the timing option. (The futures contract stops trading 7 business days before
the end of the delivery month.) The other option is the right to give notice of intent
to deliver up to 8 P.M. Chicago time on the date when the futures settlement price has
been fixed. This option is referred to as the wild card option. These three options,
in sum referred to as the delivery option, mean that the long position can never be
sure which T-bondwill be delivered andwhen [325, 470]. Such complexity has helped
provide liquidity.
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➤ Exercise 21.1.3 A deliverable 8% coupon bond must have a conversion factor of
one regardless of its maturity as long as the accrued interest is zero. Why?

➤ Exercise 21.1.4 Calculate the conversion factor for a 13% coupon bond with
19 years and 11 months to maturity at the delivery date.

Valuation
Thedelivery option creates value for the short position. It alsomakes pricing difficult.
If both the cheapest-to-deliver bond and the delivery date are known, however,
the T-bond futures contract becomes a futures contract on a security with known
income. Lemma 12.2.3 says the futures price F is related to the cash bond price S
by F = (S− I) erτ , where I is the PV of the coupons during the life of the futures
contract and r is the riskless interest rate for the period.2

EXAMPLE 21.1.6 Consider a cheapest-to-deliver bondwith 9%couponanda conversion
factor of 1.0982. Its next coupon date is 120 days from now, and delivery will take
place in 270 days’ time followed by the next coupon date after 33 days. The term
structure is flat at 8%, continuously compounded. Assume that the current quoted
bond price is 108. We first figure out the accrued interest, say 1.533. The cash bond
price is therefore 109.533. The futures price if the contract were written on the 9%
bond would be[

109.533− 4.5× e0.08×(120/365) ]× e0.08×(270/365) = 111.309.

At delivery, there are 150 days of accrued interest (270− 120= 150). The quoted
futures price if the contract were written on the 9% bond would therefore be

111.309−
(
4.5× 150

150+ 33

)
= 107.620.

Because the contract is in fact written on a standard 8% bond and 1.0982 standard
bonds are considered equivalent to each 9% bond, 107.620/1.0982= 97.997 should
be the quoted futures price.

Hedging
Recall that a basis-point value (BPV) is the price change of a debt instrument given
a one-basis-point (0.01%) change in its yield. For example, if the yield on a bond
changes from 8% to 8.01% and the resulting price changes by $70, its BPV is $70.
The greater the BPV, the greater the interest rate exposure. The BPV of a futures
contract is the BPV of the cheapest-to-deliver instrument divided by its conversion
factor. A conversion factor of α means that the price sensitivity of the bond is
approximately α times that of the futures, and α futures contracts need to be sold
to immunize the price change of every $100,000 face value of the underlying bond.
The BPV of the T-bond futures contract increases as interest rates decline. This is in
sharp contrast to Eurodollar futures for which each 0.01% change in rates changes
the price by precisely $25.

In order to use futures to alter a portfolio’s duration, it is necessary to calculate
both the sensitivity of the bond portfolio to yield changes and the sensitivity of the
futures prices to yield changes. For the futures contract to succeed as a hedge, its
price movements should track those of the underlying bond closely. This is indeed
the case [95, 746].
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EXAMPLE 21.1.7 An investor holds a bond portfolio with a Macaulay duration (MD)
of 5.0 and a market value of $100 million. Let the bond equivalent yield (BEY) be
10%. The number of futures contracts to buy in order to increase the MD to 9.0 can
be determined as follows. Assume that the BPV of the futures is $85. The BPV of
the portfolio equals

5.0
1+ (0.10/2)

× $100,000,000× 0.0001= $47,619.

The desired BPV can be derived from the targeted MD by

9.0
1+ (0.10/2)

× $100,000,000× 0.0001= $85,714.

As the BPV needs to be increased by $38,095, the number of futures contracts to buy
is 38095/85≈ 448.

Bond futures and stock index futures can be combined to synthetically change
the allocation of assets. A manager would like to achieve the equivalent of selling
$100 million in bonds and buying $100 million in stock by using futures. First, follow
the steps in Example 21.1.7 to figure out the BPV of $100 million worth of bonds
and then the number of bond futures to sell with the same BPV. The number of
stock index futures to buy is determined by $100,000,000 divided by the value of the
contract, which equals $500 times the value of the S&P 500 Index for the S&P 500
Index futures contract, for example.

21.1.5 Treasury Note Futures

The T-note futures contract is modeled after the T-bond futures contract. For in-
stance, the underlying instrument for the 10-year T-note futures contract is $100,000
par value of a hypothetical 10-year 8% T-note. Again, there are several acceptable
Treasury issues that may be delivered. For the 10-year futures, for example, an issue
is acceptable if thematurity is not less than 6.5 years and notmore than 10 years from
the first day of the delivery month. The delivery options granted to the short position
and the minimum price fluctuation are the same as those of the T-bond futures [325].
An exception is the 2-year T-note futures, whose face value is $200,000 and whose
prices are quoted in terms of one quarter of 1/32 of a dollar.

➤ Exercise 21.1.5 A pension fund manager wants to take advantage of the high yield
offered on T-notes, but unusually high policy payouts prohibit such investments. It
is, however, expected that cash flow will return to normal in September. What can
be done?

21.1.6 Forward Rate Agreements

First used in 1982, forward rate agreements (FRAs) are cash-settled forward con-
tracts between two parties with a payoff linked to the future level of a reference rate
[647]. The interest is based on a hypothetical deposit and paid at a predetermined
future date. The buyer of an FRA pays the difference between interest on this hy-
pothetical loan at a fixed rate and interest on the same loan at the prevailing rate.
The market is primarily an interbank market and represents the over-the-counter
equivalent of the exchange-traded futures contracts on short-term rates.
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Formally, suppose that X represents the annualized fixed rate and y represents
the actual annualized reference rate prevailing at the settlement date T. The net
cash payment to the buyer of an FRA at the end of the contract period, T+m, is

(y− X)×N × m
360

. (21.2)

Here m represents the “deposit” period in days, and N is the hypothetical loan
amount (the notional principal). Generally, the net payment due is discounted back
to the settlement date with the reference rate as the discount rate. The cash payment
is thus

(y− X)×N × m
360
× 1

1+ y(m/360)

at the settlement date T.
The quote convention identifies the points in time when the contract begins and

ends. Thus FRAs covering the period starting in 1 month and ending in 4 months are
referred to as 1× 4 (one-by-four) contracts. They are on the 3-month LIBOR (see the
following diagram):

✲

Month 0 Month 1 Month 2 Month 3 Month 4

✲✛ 1× 4

Similarly, FRAs on the 6-month LIBOR for settlement 1 month forward are 1× 7
contracts. On any given day, forward rates are available for both 3- and 6-month
LIBOR 1 month, 2 months, 3 months, 4 months, 5 months, and 6 months forward. On
each subsequent day, new contracts are offered again.

EXAMPLE 21.1.8 A bank will, in 3 months, lend $1 million to a client for 6 months. To
hedge the rate commitment the client demands, it uses FRAs to lock in the funding
cost. The bank asks for a quote on 3× 9 LIBOR and gets 5.5%. It then offers a fixed
rate of 6% to the client. Suppose that the 6-month LIBOR becomes 6.2% 3 months
from now. The loss 9 months from now on the actual lending is (0.062− 0.06)×
$1,000,000× (182/360)= $1,011.11, whereas the gain from the FRA is (0.062−
0.055)× $1,000,000× (182/360)= $3,538.89.

Pricing FRAs amounts to deriving the fair fixed forward rate assuming there is
no default risk on the part of the FRA writer. The forward rate for the time period
[T,T+m ] equals

fL(T,T+m)≡
[
dL(T)

dL(T+m) − 1
]/

�t.

Here �t ≡m/360, and dL(t) denotes the PV of a Eurodollar deposit that pays $1 t
days from now (see Exercise 5.6.3). Hence fL(T,T+m) is the desired fixed contract
rate X that makes the FRA zero valued now. In general, the PV of the FRA in
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Eq. (21.2) equals

[ fL(T,T+m)− X ]×�t ×dL(T+m)= dL(T)− (1+ X�t)dL(T+m)
(21.3)

per Eurodollar of notional principal.

➤ Exercise 21.1.6 (1) Prove Exercise 5.6.3 with an arbitrage argument. (2) Verify
Eq. (21.3).

21.2 Fixed-Income Options and Interest Rate Options

This section covers options on fixed-income securities and interest rates. We use
“fixed-income options” for the former and “interest rate options” for the latter.
The over-the-counter market for fixed-income options began in the mid-1970s with
essentially put options on mortgages [724]. Almost all exchange-traded interest rate
options are European.

With fixed-income options, one buys puts to hedge against rate rises and calls
to hedge against rate falls. With yield-based interest rate options, the situation is
reversed: A call buyer anticipates that interest rates will go up, whereas a put buyer
anticipates that the rates will go down. Many of the trading strategies in Chap. 7
remain applicable here.

21.2.1 Options on Treasuries

Consider a European option that expires at date T and is written on a T-bill with
a maturity of m days when the option expires. The strike price of the option, x (in
percentage), is a discount rate whose corresponding number in percentage of par is

X=
(
1− x

100
× m

360

)
× 100

under the 360-day year. The payoff to a call at expiration is max(d(m)− X, 0), where
d(m) is the date-T value of a $1 face-value zero-coupon bond maturing at date
T+m. The payoff to a put at expiration is max(X−d(m), 0).

Treasury options are not very liquid. A thin market exists for exchange-traded
options on specific T-bonds. Prices are quoted in points and 1/32 of a point, with each
point representing 1% of the principal value, or $1,000. The amount paid on exercise
is equal to the strike price times the underlying principal plus accrued interest. For
example, the settlement price of an option with strike 90 is $100,000× (90/100)=
$90,000 plus accrued interest.

21.2.2 Interest Rate Options on Treasury Yields

TheCBOE trades European-style, cash-settled interest rate options on the following
Treasury yields: (1) the short-term rate based on the annualized discount rate on the
most recently auctioned 13-weekT-bill (ticker symbol IRX), (2) the 5-year rate based
on the yield to maturity of the most recently auctioned 5-year T-note, (3) the 10-year
rate based on the yield to maturity of the most recently auctioned 10-year T-note,
and (4) the 30-year rate based on the yield tomaturity of themost recently auctioned
30-year Treasury bond (ticker symbol TYX). See Fig. 21.4.
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Friday, August 28, 1998

OPTIONS ON SHORT-TERM INTEREST RATES (IRX)
Strike Calls-Last Puts-Last
Price Sep Oct Dec Sep Oct Nov
50 . . . . . . . . . 17/16 . . . . . .

55 . . . . . . 5/16 . . . . . . . . .

· · ·
5 YEAR TREASURY YIELD OPTION (FVX)
Strike Calls-Last Puts-Last
Price Sep Oct Nov Sep Oct Nov
521/2 . . . . . . 7/8 . . . . . . . . .

· · ·
10 YEAR TREASURY YIELD OPTION (TNX)
Strike Calls-Last Puts-Last
Price Sep Oct Mar Sep Oct Nov
55 . . . . . . 7/8 . . . . . . . . .

· · ·
30 YEAR TREASURY YIELD OPTION (TYX)
Strike Calls-Last Puts-Last
Price Sep Oct Dec Sep Oct Nov
50 . . . . . . 41/8 3/16 . . . . . .

521/2 . . . . . . . . . 5/8 . . . . . .

55 7/16 . . . . . . 115/16 . . . . . .

571/2 . . . 5/16 . . . . . . . . . . . .

· · ·

Figure 21.4: Treasury yield quotations. Source: Wall Street Journal, August 31, 1998.

The underlying values for these options are 10 times the underlying rates. As
a result, an annualized discount rate of 3.25% on the 13-week T-bill would place
the underlying value of the IRX at 32.50, and a yield to maturity of 6.5% on the
30-year T-bond would place the underlying value of the TYX at 65.00. Clearly, every
one-percentage-point change in interest rates makes the underlying value change
by 10 points in the same direction. Like equity options, these options use the $100
multiplier for the contract size. The final settlement value is determined from quotes
on the last trading day as reported by the Federal Reserve Bank of New York at
2:30 P.M. Central Time. The payoff, if exercised, is equal to $100 times the difference
between the settlement value and the strike price. For example, an investor holding
an expiring TYX July 66 call with a settlement value of 69 at expiration will exercise
the call and receive $300.

➤ Exercise 21.2.1 An investor owns T-bills and expects rising short-term rates and
falling intermediate-term rates. To profit from this reshaping of the yield curve, he
sells T-bills, deposits the cash in the bank, and purchases puts on the l0-year Treasury
yield. Analyze this strategy.

21.2.3 Interest Rate Caps and Floors

A cap or a floor is a series of interest rate options. The underlying asset could be an
interest rate or the price of a fixed-income instrument. Options on a cap are called
captions, and options on a floor are called flotions [325, 346]. Captions and flotions
are compound options.
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Simple interest rates are often used in the specification of interest rate derivatives.
The payoff to the cap at expiration is

max
(

r − x
1+ r(m/360) , 0

)
× m

360
×N ,

where x is the cap rate expressed in terms of simple interest rate and r is the m-day
interest rate (both are annualized). Similarly, the payoff to a floor with a floor rate
x written on the m-day interest rate is

max
(

x− r
1+ r(m/360) , 0

)
× m

360
×N .

The payoffs max(r − x, 0)× (m/360)×N and max(x− r, 0)× (m/360)×N are dis-
counted because they are received at thematurity of the underlying, which is m days
from the cap’s or the floor’s expiration date.

EXAMPLE 21.2.1 Take a 6-month European call on the 6-month LIBOR with a 7% strike
rate. The face value is $10 million, and the expiration date is 6 months (183 days)
fromnow. This call gives the buyer the right to receive max(r − 7%, 0)× (182/360)×
$10,000,000, where r is the 6-month LIBOR rate prevailing in 6 months’ time. The
payoff is received at the maturity date of the underlying interest rate, which is 183+
182= 365 days from now. The PV of the above payoff at the expiration of the cap is
therefore the above equation divided by 1+ r(182/360).

EXAMPLE 21.2.2 Consider the cap in Fig. 21.5. Although a total of 10 6-month periods
are involved, the cap contains only 9 options whose payoffs are determined on reset
dates. The underlying interest rate for the first period is the interest rate today, which
is known; hence no option is involved here. See the following time line:

Now Reset 1 Reset 2 Reset 3 · · · Reset 9

Caplet 1 Caplet 2 · · · Caplet 9

The cash flow is depicted in Fig. 21.6. The mechanics of floors are similar. Besides
the 6-month LIBOR, other candidates for the underlying interest rate are the prime
rate, the T-bill rate, the CD rate, and the commercial paper rate.

➤ Exercise 21.2.2 Verify that an FRA to borrow at a rate of r can be replicated as
a portfolio of one long caplet and one short floorlet with identical strike rate x and
expiration date equal to the settlement date of the FRA.

Reference rate six-month LIBOR

Strike rate 8%
Length of agreement five years
Frequency of settlement every six months
Notional principal amount $100 million

Figure 21.5: An interest rate cap.
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Year LIBOR Loan cash flow Cap payoff Net cash flow

0.0 8% +100.0000 +100.0000
0.5 9% −4.0556 0.0000 −4.0556
1.0 9% −4.5625 0.5069 −4.0556
1.5 9% −4.5625 0.5069 −4.0556
2.0 9% −4.5625 0.5069 −4.0556
2.5 9% −4.5625 0.5069 −4.0556
3.0 9% −4.5625 0.5069 −4.0556
3.5 9% −4.5625 0.5069 −4.0556
4.0 9% −4.5625 0.5069 −4.0556
4.5 9% −4.5625 0.5069 −4.0556
5.0 −104.5625 0.5069 −104.0556

Figure 21.6: Cash flow of a capped loan. Assume that the LIBOR starts at 8% and then moves to 9% half a year
from now and stays there. The loan cash flow and the interest rate option’s cash flow are calculated based on
the prevailing LIBOR rate at the beginning of each half-year period. For instance, at year one the loan’s interest
is 100× 9%× (182.5/360)= 4.5625 million dollars. A half-year is assumed to have exactly 182.5 days for
simplicity.

21.2.4 Caps/Floors and Fixed-Income Options

Consider a caplet on the m-day LIBOR with strike rate x. Let the notional principal
amount be $1 for simplicity. At expiration, if the actual interest rate is r , the caplet
pays

max
(
r(m/360)− x(m/360)

1+ r(m/360) , 0
)
.

Interestingly, this caplet is equivalent to α ≡ 1+ x(m/360) puts on the m-day zero-
coupon bondwith a strike price of 1/α and the identical expiration date as the payoff
of the puts is

α×max
(

1
1+ x(m/360) −

1
1+ r(m/360) , 0

)
=max

(
r(m/360)− x(m/360)

1+ r(m/360) , 0
)
.

Similarly, a floorlet is equivalent to α calls with the same strike price. A cap is
therefore a package of puts on zeros, and a floor is a package of calls on zeros. An
interest rate collar, then, is equivalent to buying a package of puts and selling a
package of calls.

The Black model is widely used in practice to price caps and floors. For caps,
it applies Eqs. (12.16) with F denoting the implied forward rate for the period
between the cap’s expiration date T and date T+m. This amounts to assuming
that the forward rate is lognormally distributed during the period [T,T+m ]. The
resulting formula is then multiplied by the notional principal and finally multiplied
by (m/360)/[ 1+ F(m/360) ].
➤ Exercise 21.2.3 Prove the equivalency for the floorlet.
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21.2.5 Yield Curve Options

A yield curve option is a European option written on the difference between two
reference rates. A call based on the difference between the yields on the 20-year
T-bond and the 12-month T-bill, for example, has a payoff at expiration given by
max((y20y− y12m)− X, 0), where X is the strike spread between the two reference
yields [149, 616].

21.3 Options on Interest Rate Futures

Themost popular exchange-traded interest rate options are those on T-bond futures,
T-note futures (traded on the CBT), and Eurodollar futures (traded on the IMM).
These futures options are all American style. The prices are quoted as a percentage
of the principal amount of the underlying debt security. For options on Eurodollar
futures, the price is quoted to two decimal places, and one contract is for the delivery
of futures contracts with a face value of $1 million. For options on T-bond and
T-note futures (except the 2-year note), the price is quoted to the nearest 1/64
of 1%, and one contract is for the delivery of futures contracts with a face value of
$100,000. Figure 21.7 shows sample quotations. For example, an investor holding a
December call with a strike price of 98, having paid 1-08 for it, will make a net profit
of

$100,000× 101.00− 98.00− 1.125
100

= $1875

if the T-bond futures price rises to 101-00. Futures options on fixed-income securities
have largely replaced options on the same securities as the vehicle of choice for
institutional investors [325].

The option on T-bond futures is an option on the futures price itself, that is, the
futures price of the fictitious 20-year 8% Treasury bond. The size of the contract is
$100,000. For example, with futures prices at 95, a call struck at 94 has an intrinsic
value of $1,000 and a put strike at 100 has an intrinsic value of $5,000. Prices are
quoted in multiples of 1/64 of 1% of a $100,000 T-bond futures contract. Each 1/64
point (tick size) is worth $15.625 [375]. Options cease trading in the month before
the delivery month of the underlying futures contract.

A 10-year T-note futures contract has a face value at maturity of $100,000. The
tick size is 1/64 of a point ($15.625/contract). Options cease trading in the month
before the delivery month of the underlying futures contract. The 5-year T-note
futures option is identical. The 2-year T-note futures option is identical except that
the face value is $200,000 and the tick size is 1/128 of a point ($15.625/contract).

Options on Eurodollar futures are based on the quoted Eurodollar futures price.
Like the underlying futures, the size of the contract is $1 million, and each 0.01
change in price carries a value of $25. The option premium is quoted in terms of
basis points. For example, a premium quoted as 20 implies an option price of 20×
$25= $500. Take a 3-month put on the June Eurodollar futures contract at a strike
price of 93. The expiration date of the put is in June, and the underlying asset is
June Eurodollar futures. The terminal payoff is [max(93− F, 0)/100 ]× (90/360)×
$1,000,000, where F is the futures price in June.
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Monday, March 20, 1995
· · ·

INTEREST RATE · · ·
T-BONDS (CBT) EURODOLLAR (CME)

$100,000; points and 64ths of 100% $ million; pts. of 100%
Strike Calls — Settle Puts — Settle Strike Calls — Settle Puts — Settle
Price Apr May Jun Apr May Jun Price Jun Sep Dec Jun Sep Dec
102 2-06 2-26 2-47 0-03 0-23 0-43 9300 0.56 0.49 0.52 0.04 0.20 0.41
103 1-12 1-44 . . . 0-08 0-40 . . . 9325 0.34 0.34 0.39 0.07 0.29 0.52
104 0-30 1-05 1-29 0-26 1-01 1-25 9350 0.17 0.22 0.29 0.15 0.41 0.67
105 0-07 0-39 . . . 1-03 1-34 . . . 9375 0.05 0.11 0.19 0.28 0.55 . . .

106 0-01 0-21 0-40 1-61 . . . 2-35 9400 0.01 0.06 0.12 0.49 0.75 0.98
107 0-01 0-10 . . . . . . . . . . . . 9425 0.00 0.03 0.07 0.73 0.96 1.18

· · · · · ·
T-NOTES (CBT) LIBOR — 1 Mo. (CME)

$100,000; points and 64ths of 100% $3 million; pts. of 100%
Strike Calls — Settle Puts — Settle Strike Calls — Settle Puts — Settle
Price Apr May Jun Apr May Jun Price Apr May Jun Apr May Jun
102 2-26 . . . 2-45 0-01 . . . 0-20 9325 0.58 0.51 0.45 0.00 0.01 0.03
103 1-28 . . . 1-60 0-02 0-19 0-35 9350 0.34 0.29 0.24 0.01 0.04 0.07
104 0-36 . . . 1-19 0-11 . . . 0-57 9375 0.11 0.10 0.09 0.03 . . . 0.17
105 0-07 0-32 0-51 0-45 1-06 1-25 9400 0.01 . . . 0.03 . . . . . . . . .

106 0-01 . . . 0-28 1-39 . . . 2-01 9425 . . . . . . . . . . . . . . . . . .

107 0-01 0-05 0-14 . . . . . . 2-51 9450 0.00 0.00 . . . . . . . . . . . .

· · · · · ·
5 YR TREAS NOTES (CBT)

$100,000; points and 64ths of 100%
Strike Calls — Settle Puts — Settle
Price Apr May Jun Apr May Jun
10200 1-33 . . . 1-47 0-01 0-07 0-15
10250 1-02 . . . 1-23 0-01 0-12 0-22
10300 0-36 . . . 1-01 0-03 0-21 0-32
10350 0-13 . . . 0-46 0-12 0-33 0-45
10400 0-03 0-20 0-31 0-34 . . . 0-62
10450 0-01 0-11 0-21 . . . . . . . . .

Figure 21.7: Interest rate futures option quotations. The months refer to the expiration month of the underlying
futures contract. Source: Wall Street Journal, March 21, 1995.

21.3.1 Hedging Floating-Rate Liabilities

Exposure to fluctuations in short-term rates can be hedged with Eurodollar
futures options. Let us redo the calculations behind the table in Fig. 21.2 (see
Example 21.1.3), this time using Eurodollar futures options instead. The liability,
we recall, is a floating-rate debt of $10 million with an interest rate at 1% above
the prevailing 3-month LIBOR on the payment date. There happen to be Eurodollar
futures options expiring on the payment date. Purchasing 10 futures put options at
the strike price of 93 caps the borrowing cost at $200,000 when the liability is due
(consult Fig. 21.8). Of course, there is a cost in the cap represented by the option
premium.
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LIBOR 5% 6% 7% 8% 9%

Futures price 95 94 93 92 91
Interest expense 150,000 175,000 200,000 225,000 250,000
Put payout 0 0 0 25,000 50,000
Net borrowing cost 150,000 175,000 200,000 200,000 200,000

Figure 21.8: Capping the borrowing cost with Eurodollar futures options. The interest expense is 10,000,000×
(1%+ LIBOR)/4, and the put payout is 10× 1,000,000× (93− futures price)/(4× 100).

21.4 Interest Rate Swaps

Two parties enter into an interest rate swap to exchange periodic interest payments.
The dollar amount each counterparty pays to the other is the agreed periodic interest
rate times the notional principal. The benchmarks popular for the floating rate are
those on various money market instruments [226].

21.4.1 “Plain Vanilla” Interest Rate Swaps

In a “plain vanilla” interest rate swap, one party periodically pays a cash flow de-
termined by a fixed interest rate (the fixed leg) and receives a cash flow determined
by a floating interest rate (the floating leg). The other party does the opposite. In
other words, two parties swap floating-rate debt and fixed-rate debt. Unlike currency
swaps, no principal is exchanged. The fixed rate that makes a swap’s value zero is
called the swap rate.

A swap has four major components: notional principal amount, interest rates for
the parties, frequency of cash exchanges, and duration of the swap. A “$40 million,
2-year, pay fixed, receive variable, semi” swap, for example, means that the notional
principal is $40 million, one party makes a fixed-rate payment every 6 months based
on $40 million, and the counterparty makes a floating-rate payment every 6 months
based on $40 million, for a period of 2 years.

The floating-rate payment is linked to some short-term interest rate such as the
6-month LIBOR. The fixed rate for a plain vanilla swap is usually quoted as some
spread over benchmark U.S. Treasuries. For example, a quote of “30 over” for a
5-year swap says that the fixed rate will be set at the 5-year Treasury yield plus 30
basis points. Although the net cash flow is established at the beginning of the period,
it is usually paid out at the end of the period (in arrears) instead of at the beginning
of the period (in advance).

Consider a 2-year swap with a notional principal of $10 million and semian-
nual payments. The fixed rate is 20 basis points above the 2-year Treasury rate, and
the floating rate is the 6-month LIBOR. Suppose the Treasury rate is currently 5%.
The fixed rate is therefore 5.2%. The fixed-rate payer will be paid according to the
6-month LIBOR rates determined at dates 0, 0.5 year, 1 year, and 1.5 years. If the LIBOR

rates at the above four dates are 5.5%, 6%, 5.9%, and 5%, the fixed-rate payer has
the following cash flow:

Payment date 0.5 year 1 year 1.5 years 2 years

Received amount 275,000 300,000 295,000 250,000
Paid amount 260,000 260,000 260,000 260,000
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Note that the applicable rates aredividedby twobecauseonlyone-half-year’s interest
is being paid. In reality, only the losing party pays the difference.

Treasury rates are quoted differently from LIBOR rates. Consider a fixed rate
quoted as a BEY under the actual/365 day count convention. To compare this yield
with a LIBOR rate, which differs in the number of days on which they are quoted,
either the 6-month LIBOR rate must be multiplied by 365/360 or the BEY must be
multiplied by 360/365. Hence, if a 0.4% spread over the LIBOR is on the basis of a
365-day year with semiannual compounding, the rate becomes

LIBOR+ 0.4× (360/365)= LIBOR+ 0.3945%

under the 360-day year. There are other complications. For instance, the timing of
the cash flows for the fixed-rate payer and that of the floating-rate payer are rarely
identical; thefixed-ratepayermaymakepayments annually,whereas thefloating-rate
payer may make payments semiannually, say. The way in which interest accrues on
each leg of the transactionmay also differ because of different day count conventions.

Suppose A wants to take out a floating-rate loan linked to the 6-month
LIBOR and B wants to take out a fixed-rate loan. They face the following borrowing
rates:

Fixed Floating

A F A% 6-month LIBOR+ SA%
B F B% 6-month LIBOR+ SB%

Clearly A can borrow directly at LIBOR plus SA% and B can borrow at FB%. The
total interest rate is the LIBOR plus (SA+ FB)%. Suppose that SB− SA < FB− FA.
In other words, A is relatively more competitive in the fixed-rate market than in
the floating-rate market, and vice versa for B. Consider the alternative whereby A
borrows in the fixed-rate market at FA%, B borrows in the floating-rate market at
LIBOR plus SB%, and they enter into a swap, perhaps with a bank as the financial
intermediary. These transactions transform A’s loan into a floating-rate loan and B’s
loan into a fixed-rate loan, as desired. The new arrangement pays a total of the LIBOR

plus (SB+ FA)%, a saving of (SA+ FB− SB− FA)%. Naturally these transactions
will be executed only if the total gain is distributed in such a way that every party
benefits; that is, A pays less than the LIBOR plus SA%, B pays less than FB%, and the
bank enjoys a positive spread.

EXAMPLE 21.4.1 Consider the following borrowing rates that A and B face:

Fixed Floating

A 8% 6-month LIBOR + 1%
B 11% 6-month LIBOR + 2%

Party A desires a floating-rate loan, and B wants a fixed-rate loan. Clearly A can
borrow directly at the LIBOR plus 1%, and B can borrow at 11%. As the rate differen-
tial in fixed-rate loans (3%) is different from that in floating-rate loans (1%), a swap
with a total saving of 3− 1= 2% is possible. PartyA is relativelymore competitive in
the fixed-rate market, whereas B is relatively more competitive in the floating-rate
market. So they borrow in the respective markets in which they are competitive.
Then each enters into a swap with the bank. There are hence two separate swap
agreements, as shown in Fig. 21.9. The outcome: A effectively borrows at the LIBOR



314 Interest Rate Derivative Securities

Figure 21.9: Plain vanilla interest rate swaps.

plus 0.5% and B borrows at 10%. The distribution of the gain is 0.5% for A, 1%
for B, and 0.5% for the bank. From the bank’s point of view, the swap with A is like
paying 7.5% and receiving LIBOR “flat” (i.e., no spread to the LIBOR), and the swap
with B is like receiving 8% and paying LIBOR flat. Suppose the swap’s duration is 10
years and the 10-year Treasury yield is 7%. The bank would quote such a swap as
50–100, meaning it is willing to enter into a swap (1) to receive the LIBOR and pay a
fixed rate equal to the 10-year Treasury rate plus 50 basis points and (2) to pay the
LIBOR and receive a fixed rate equal to the 10-year Treasury rate plus 100 basis points.
The difference between the Treasury rate paid and received (50 basis points here) is
the bid–ask spread.

As in the preceding example, counterparties are seldom involved directly in
swaps. Instead, swaps are usually executed between counterparties andmarket mak-
ers or between market makers. The market maker faces the risk of having to locate
another counterparty or holding an unmatched position if one leg of the swap de-
faults. It does not, however, risk the loss of principal as there is no exchange of
principal to begin with.

A par swap curve can be constructed from zero-valued swaps of various maturi-
ties. The bootstrapping algorithm in Fig. 5.4 may be applied to give the theoretical
zero-coupon swap curve, which can be used to price any swap.

➤ Exercise 21.4.1 Party A wants to take out a floating-rate loan, and B wants to take
out a fixed-rate loan. They face the borrowing rates below:

Fixed Floating

A F A% LIBOR+SA%
B F B% LIBOR+SB%

Party A agrees to pay the bank a floating rate of (LIBOR −S′A)% in exchange for a
fixed rate of (FA+ F ′A)%, and B agrees to pay the bank a fixed rate of (FB+ F ′B)%
in exchange for a floating rate of (LIBOR−S′B)%. Prove that

0< SA+ F ′A+ S′A < SA+ FB− FA+ F ′B+ S′B < SA+ FB− SB− FA
must hold for both A and B to enter into a swap with the bank in which A effectively
takes out a floating-rate loan and B a fixed-rate loan.

Applications to Asset/Liability Management
By changing the cash flow characteristics of assets, a swap can provide a better match
between assets and liabilities. Consider a commercial bank with short-term deposits
that are repriced every 6 months at the 6-month LIBOR minus 20 basis points. It faces
a portfolio mismatch problem because its customers borrow long term. To tackle
this maturity mismatch, the bank enters into a swap agreement whereby it pays a
fixed rate of 10% semiannually and receives the 6-month LIBOR. This arrangement
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Figure 21.10: Interest rate swaps for asset/liability management.

transforms the floating-rate liability into a fixed-rate liability of 9.8%, as shown in
Fig. 21.10.

As another application, suppose that a bank has a $100 million 10-year-term
commercial loan paying a fixed rate of 10%. Interest is paid semiannually, and the
principal is paid at the end of the 10-year period. The bank issues 6-month CDs to
fund the loan. The interest rate that the bank plans to pay on such CDs is a 6-month
LIBOR plus 50 basis points. Clearly, if the 6-month LIBOR rises above 9.5%, the bank
loses money. A life insurance company faces a different problem. It has committed
itself to paying 9% on a guaranteed investment contract (GIC) it issued for the next
10 years. The amount of the GIC is also $100 million. The insurance company invests
this money on a floating-rate instrument that earns a rate equal to the 6-month LIBOR

plus 150 basis points. The rate is reset semiannually. Clearly, if the 6-month LIBOR

falls below 7.5%, the insurance company loses money.
Interest rate swapsmay allowbothparties to lock in a spread. Suppose there exists

a 10-year interest rate swap with a notional principal of $100 million. The terms are
for the bank to pay 8.5% annual rate and receive LIBOR every 6 months and for the
insurance company to pay LIBOR and receive 8.4% every 6 months. The bank’s and
the insurance company’s cash flows every 6 months now appear in Fig. 21.11. Hence,
the bank locks in a spread of 100 basis points, however the 6-month LIBOR turns out.
Similarly, the insurance company locks in a spread of 90 basis points.

Like currency swaps, an interest rate swap can be interpreted as either a package
of cash flows from buying and selling cash market instruments or as a package of
forward contracts. We conduct the following analysis in the absence of default risk.

Valuation of Swaps as a Package of Cash Market Instruments
Assume for the purpose of analysis that the counterparties exchange the notional
principal of N dollars at the end of the swap’s life. It is then easy to see that a
fixed-rate payer is long a floating-rate bond and short a fixed-rate bond. The value
of the swap is therefore P2− P1 from the fixed-rate payer’s perspective, where P1
(P2, respectively) is the value of the fixed-rate (floating-rate, respectively) bond un-
derlying the swap. The value of the swap is P1− P2 for the floating-rate payer. As
shown in Subsection 4.2.3, the floating leg should be priced at par immediately after
a payment date, i.e., P2 =N , if the rate used for discounting the future cash flow is

The bank The insurance company

Loan Swap Total Investment/GIC Swap Total

Inflow 10% LIBOR 10%+ LIBOR LIBOR+ 1.5% 8.4% 9.9%+ LIBOR

Outflow LIBOR+ 0.5% 8.5% 9%+ LIBOR 9% LIBOR 9%+ LIBOR

Spread 1% 0.9%

Figure 21.11: Locking in the spread with interest rate swaps.
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the floating rate underlying the swap. For example, it was the LIBOR plus 1% for the
swap in Fig. 21.9. Because the swap when first entered into has zero value, P1 =N .

Let the fixed-rate payments (C dollars each) and the floating-rate payments be
made at times t1, t2, . . . , tn from now. By the above analysis, P1 =

∑n
i=1Ce

−ri ti +
N e−rntn , where ri is the spot rate for time ti . As for the floating-rate bond, P2 =
(N +C∗) e−r1t1 , where C∗ is the known floating-rate payment to be made at the next
payment time t1.

EXAMPLE 21.4.2 A party agrees to pay the 6-month LIBOR plus 1% every 6 months and
receive 9% annual interest rate paid every 6 months on a notional principal of $10
million. All rates are compounded semiannually. Assume that the 6-month LIBOR

rate at the last payment date was 9%. There are two more payment dates, at 0.3 and
0.8 years from now, and the relevant continuously compounded rates for discounting
them are 10.1% and 10.3%, respectively. From these data,

P1 = 0.45× e−0.101×0.3+ 10.45× e−0.103×0.8 = 10.0600 (million),

P2 = (10+ 0.5) e−0.101×0.3 = 10.1866 (million).

The swap’s value is hence P2− P1 = 0.1266 (million) for the fixed-rate payer.

The duration of an interest rate swap from the perspective of the fixed-rate payer
is

duration of floating-rate bond− duration of fixed-rate bond.

Most of the interest rate sensitivity of a swap results from the duration of the fixed-
rate bond because the duration of the floating-rate bond is less than the time to the
next reset date (see Subsection 4.2.3).

A party who is long a floating-rate bond and short a fixed-rate bond loses the
principal and must continue servicing its fixed-rate debt if the floating-rate note
issuer defaults. In contrast, the fixed-rate payer in a swap does not need to continue
payment if the counterparty defaults.Hence the observation that a swap is equivalent
to a portfolio of floating-rate and fixed-rate bonds holds only in the absence of a
default risk.

➤ Exercise 21.4.2 A firm buys a $100 million par of a 3-year floating-rate bond that
pays the 6-month LIBOR plus 0.5% every 6 months. It is financed by borrowing $100
million for 3 years on terms requiring 10% annual interest rate paid every 6 months.
Show that these transactions create a synthetic interest rate swap.

Valuation of Swaps as a Package of Forward Rate Agreements
Consider a swap with a notional principal of N dollars. Let the fixed-rate pay-
ments (C dollars each) and the floating-rate payments (based on future annual rates
f1, f2, . . . , fn) be made at times t1, t2, . . . , tn from now. The rate fi is determined
at ti−1. At time ti , C dollars is exchanged for ( fi/k)×N , where k≡ 1/(ti − ti−1)
is the payment frequency per annum and fi is compounded k times annually (e.g.,
k= 2 for semiannual payments). For the fixed-rate payer, this swap is essentially a
forward contract on the floating rate, say the 6-month LIBOR, whereby it agrees to pay
C dollars in exchange for delivery of the 6-month LIBOR. Similarly, the floating-rate
payer is essentially short a forward contract on the 6-month LIBOR. Hence an interest
rate swap is equivalent to a package of FRAs.
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From Eq. (12.7), the value of the forward contract to take delivery of the floating
rate equals [ ( fi/k)N −C ] e−ri ti , with ri denoting the time-ti spot rate and fi the
forward rate. The first exchange at time t1 has PV of (C∗ −C) e−r1t1 , where C∗ is
based on a floating rate currently known. The value of the swap is hence

(C∗ −C) e−r1t1 +
n∑
i=2

(
fi
k
N −C

)
e−ri ti (21.4)

for the fixed-rate payer. For the floating-rate payer, simply reverse the sign.

EXAMPLE 21.4.3 Consider the swap between B and a bank in Fig. 21.9. Party B re-
ceives the 6-month LIBOR plus 1% and pays 9%. All rates are compounded semi-
annually. Payments occur every 6 months on a notional principal of $10 million.
Assume the 6-month LIBOR rate at the last payment date was 9%. There are two
more payment dates, at 0.3 and 0.8 years from now, and the relevant continu-
ously compounded rates for discounting them – 6-month LIBOR plus 1% – are
10.1% and 10.3%. The annualized continuously compounded 6-month forward rate
0.3 year from now is (0.8× 0.103− 0.3× 0.101)/(0.8− 0.3)= 0.1042. It becomes
2× (e0.1042/2− 1)= 0.106962 under semiannual compounding. The swap value,

(0.5− 0.45) e−0.101×0.3+
(
0.106962

2
× 10− 0.45

)
e−0.103×0.8 = 0.1266 (million)

by formula (21.4), is in complete agreement with Example 21.4.2.

Because formula (21.4) defines the value of a swap, it can also serve as its re-
placement value for the fixed-rate payer. In other words, if the floating-rate payer
terminates the swap, this is the amount the fixed-rate payer would request for com-
pensation so that the floating side could be replaced without increasing the fixed
rate. Let V stand for the replacement value. Clearly if V < 0, then the counterparty
would choose not to default on this agreement because it can be sold at a profit. The
risk exposure is hence max(0,V).

As with other synthetic securities, interest rate swaps are not redundant even
though it can be replicated by forward contracts. Several reasons have been cited
[325]. First, they offer longer maturities than forward contracts. Second, interest
rate swaps incur less transactions costs than a package of forward contracts that
involvemultiple transactions. Third, interest rate swaps aremore liquid than forward
contracts, particularly long-term forward contracts.

➤ Exercise 21.4.3 Use Example 21.4.3’s data to calculate the fixed rate that makes
the swap value zero.

➤ Exercise 21.4.4 Verify the equivalence of the two views on interest rate swaps.

➤ Exercise 21.4.5 Consider a swap with zero value. How much up-front premium
should the fixed-rate payer pay in order to lower the fixed-rate payment from C to
Ĉ?

➤ Exercise 21.4.6 Replicate swaps with interest rate caps and floors.
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21.4.2 More Interest Rate Swaps

The number of different types of swaps is almost limitless. A callable swap allows
the fixed-rate payer to terminate the swap at no penalty and prevents losses during
declining rates. The premiummay be amortized over the term of the swap. A putable
swap allows the floating-rate payer to terminate the swap early. An investor can sell
swaps short (reverse swap) in order to pay floating rates and receive fixed rates.
This strategy gains under declining-rate environments and loses under rising-rate
environments. A basis swap is a swap in which the two legs of the swap are tied
to two different floating rates. A basis swap becomes a yield-curve swap if the two
legs are based on short- and long-term interest rates, say the 6-month LIBOR and the
10-year Treasury yield. Such a swap can be used to control the exposure to changes
in the yield-curve shape. In deferred swaps (or forward swaps), parties do not begin
to exchange interest payments until some future date. In an extendible swap, one
party has the option to extend the life of the swap beyond the specified period. A
swap can be an agreement to exchange a fixed interest rate in one currency for a
floating interest rate in another currency, in other words, a combination of a plain
vanilla interest rate swap and a currency swap. In an amortizing swap, the principal
is reduced in a way that corresponds to, say, the amortization schedule on a loan. In
an accreting swap, the principal increases according to a schedule.

➤ Exercise 21.4.7 Afirmholds long-duration corporate bonds. It uses swaps to create
synthetic floating-rate assets at attractive spreads to LIBOR and to shorten the duration
much as A does in Fig. 21.9. Why should the fact that most corporate bonds are
callable trouble the firm? How may callable swaps help?

Swaptions
A swaption is an option to enter into an interest rate swap. It is almost always
European. The swap rate and the duration of the interest rate swap asmeasured from
the option expiration date are specified in the contract. The market generally quotes
on the fixed-rate part of the swap. So swaptions can be either receiver swaptions (the
right to receive fixed and pay floating rates, or floating-for-fixed) or payer swaptions
(the right to pay fixed and receive floating rates, or fixed-for-floating). The buyer of
a receiver swaption benefits as interest rates fall, and the buyer of a payer swaption
benefits as interest rates rise.

EXAMPLE 21.4.4 A firm plans to issue a 5-year floating-rate loan in 1 year and then
convert it into a fixed-rate loan using interest rate swaps. To establish a floor for the
swap rate, it purchases a 1-year swaption for the right to swap a fixed rate, say 8%per
year, for a floating rate for a period of 5 years starting 1 year from now. If the fixed
rate on a 5-year swap in 1 year’s time turns out to be less than 8%, the company will
enter into a swap agreement in the usual way. However, if it turns out to be greater
than 8%, the company will exercise the swaption.

A fixed-for-floating interest rate swap can be regarded as an agreement to ex-
change a fixed-rate bond for a floating-rate bond. At the start of a swap, the value
of the floating-rate bond equals the principal of the swap. A payer swaption can
therefore be regarded as an option to exchange a fixed-rate bond for the principal
of the swap, in other words, a put on the fixed-rate bond with the principal as the
strike price. Similarly, a receiver swaption is a call on the fixed-rate bond with the
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principal as the strike price. When the Black model is used in pricing swaptions, the
underlying asset is the forward rate for the interest rate swap [844].

➤ Exercise 21.4.8 Prove that a cap is more valuable than an otherwise identical
swaption.

Index-Amortizing Swaps
Amortizing swaps whose principal declines (amortizes) when interest rates decline
are called index-amortizing swaps (IASs). The principal is reduced by an amortizing
schedule based on the spot interest rate. The amortizing schedulemay not apply until
after a lockout period.Asmortgage prepayments usually pick upwith declining rates,
these instruments can partially hedge the prepayment risk of MBSs [848].

Formally, let T be the maturity of the swap with initial principal N . The contract
receives a fixed rate c and pays a floating rate r(t). Let the lockout period be T∗

years during which the principal is fixed at N . For t > T∗, the remaining principal
at time t changes according to

Nt =Nt−1(1− at),

where NT∗ =N and at is the amortizing amount. Hence Nt is Nt−1 reduced by
the amortizing schedule amount at . An amortizing schedule may look like

at =



0 if r(t)> k0
b0 if k0 ≥ r(t)> k1
b1 if k1 ≥ r(t)> k2
b2 if k2 ≥ r(t)> k3
b3 if k3 ≥ r(t)> k4
b4 if k4 ≥ r(t)> k5
1 if k5 ≥ r(t)

,

where k0 > k1 > · · ·> k5 and b0 < b1 < · · ·< b4 < 1 are positive constants. The pre-
ceding amortizing schedule depends on the interest rate r(t). If the rate is larger
than k0, no reduction in principal occurs and at = 0; if it lies between k0 and k1, a
reduction of b0 occurs; if it lies between k1 and k2, a reduction of b1 occurs, and
so on.

The time-t cash flow to the IAS can be written as [ c− r(t − 1) ]Nt−1, which is
determined at time t − 1. Clearly the principal N j depends on the whole interest
rate path before time j , making the IAS a path-dependent derivative. An efficient
algorithm will be presented in Programming Assignment 29.1.3.

Differential Swaps
A differential swap is an interest rate swap in which the interest rates for the two legs
are linked to different currencies and the actual interest payments are denominated
in the same currency by fixed exchange rates. For example, consider a swap with a
dollar-based interest rate x and a DEM-based interest rate y. Both payments are
to be denominated in U.S. dollars. Let the $/DEM exchange rate be fixed at ŝ. Then
the settlement amount is (ŷs− x)N dollars. Clearly, differential swaps are a type of
quanto derivative, thus the alternative name quanto swaps.
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Additional Reading

For more information on interest rate derivatives, consult [95, 155, 325, 470, 746,
827, 837] for interest rate futures, [397, 538] for interest rate options, [54, 369, 474,
514, 608, 746, 821] for interest rate swaps, [449, 510, 792] for IASs, and [873] for
differential swaps. The duration of T-bond futures is discussed in [554, 737]. See [95,
p. 267] for the origin of Eurodollars. Finally, see [175] for the pricing of equity swaps.

NOTES

1. The conversion factor is independent of the prevailing interest rates. The theoretically
sounder conversion ratio should be the price of the delivered bond divided by the price
of the 20-year 8% coupon bond, both discounted at the prevailing interest rates. View
www.cbot.com/ourproducts/financial/convbond.html for the CBT’s regularly updated
table of conversion factors.

2. Bond futures prices are in general lower than bond forward prices (see Exercise 12.3.3).



CHAPTER
TWENTY-TWO

Term Structure Fitting

That’s an old besetting sin; they think calculating is inventing.

Johann Wolfgang Goethe (1749–1832), Der Pantheist

Fixed-income analysis starts with the yield curve. This chapter reviews term structure
fitting, which means generating a curve to represent the yield curve, the spot rate
curve, the forward rate curve, or the discount function. The constructed curve should
fit the data reasonably well and be sufficiently smooth. The data are either bond
prices or yields, and may be raw or synthetic as prepared by reputable firms such as
Salomon Brothers (now part of Citigroup).

22.1 Introduction

The yield curve consists of hundreds of dots. Because bonds may have distinct quali-
ties in terms of tax treatment, callability, and so on,more than one yield can appear at
the samematurity. Certain maturities may also lack data points. These two problems
were referred to in Section 5.3 as themultiple cash flow problem and the incomplete-
ness problem. As a result, both regression (for the first problem) and interpolation
(for the second problem) are needed for constructing a continuous curve from the
data.

A functional form is first postulated, and its parameters are then estimated based
on bond data. Two examples are the exponential function for the discount function
andpolynomials for the spot rate curve [7, 317].The resulting curve is further required
to be continuous or even differentiable as the relation between yield and maturity is
expected to be fairly smooth. Although functional formswithmore parameters often
describe the data better, they are alsomore likely tooverfit the data.An economically
sensible curve that fits the data relatively well should be preferred to an economically
unreasonable curve that fits the data extremely well.

Whether we fit the discount function d(t), the spot rate function s(t), or the
forward rate curve f (t) makes no difference theoretically. They carry the same
information because

d(t) = e−ts(t) = e−
∫ t
0 f (s)ds,

f (t) = s(t)+ ts ′(t)

321
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under continuous compounding. Knowing any one of the three therefore suffices to
infer the other two. The reality is more complicated, however. Empirically speaking,
after the fitting, the smoothest curve is the discount function, followed by the spot
rate curve, followed by the forward rate curve [848].

Using stripped Treasury security yields for spot rate curve fitting, albeit sensible,
can be misleading. The major potential problem is taxation. The accrued compound
interest of a stripped security is taxed annually, rendering its yield after-tax spot rate
unless tax-exempt investors dominate the market. The liquidity of these securities is
also not as great as that of coupon Treasuries. Finally, stripped Treasuries of certain
maturities may attract investors willing to trade yield for a desirable feature asso-
ciated with that particular maturity sector [326, 653]. This may happen because of
dedicated portfolios set up for immunization.

Tax is a general problem, not just for stripped securities. Suppose capital gains
are taxed more favorably than coupon income. Then a bond selling at a discount,
generating capital gains at maturity, should have a lower yield to maturity than a
similar par bond in order to produce comparable after-tax returns [568]. As a result,
these two bonds will have distinct yields to maturity. This is the coupon effect at play.

➤ Exercise 22.1.1 Verify the relation between s(t) and d(t) given above.

22.2 Linear Interpolation

A simple fitting method to handle the incompleteness problem is linear yield inter-
polation [335]. This technique starts with a list of bonds, preferably those selling near
par and whose prices are both available and accurate. Usually only the on-the-run
issues satisfy the criteria.1 The scheme constructs a yield curve by connecting the
yields with straight lines (see Figs. 22.1 and 22.2). The yield curve alone does not
contain enough information to derive spot rates or, for that matter, discount factors
and forward rates. This problem disappears for the par yield curve as the yield of a
par bond equals its coupon rate.

The spot rate curve implied by the linearly interpolated yield curve is usually
unsatisfactory in terms of shape. It may contain convex segments, for instance. The
forward rate curve also behaves badly: It is extremely bumpy, with each bump cor-
responding to a specific bond in the data set and may be convex where it should
be concave [848]. Despite these reservations, this scheme enjoys better statistical
properties than many others [90].

Figure 22.1: Linear interpolationof yield curveand forward rate curve. Thepar yield curve, linearly interpolated,
is on the left, and the corresponding forward rate curve is on the right.
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Figure 22.2: Discount function and spot rate curve. Plotted are the discount function and the spot rate curve
as implied by the linearly interpolated par yield curve of Fig. 22.1.

A related scheme starts with the observation that the discount function is ex-
ponential in nature. It interpolates between known discount factors to obtain the
discount function as follows. Let t1 < t < t2 and suppose that both d(t1) and d(t2)
are available. The intermediate discount factor d(t) is then interpolated by

d(t)= d(t1)
t(t2−t)
t1(t2−t1) d(t2)

t(t−t1)
t2(t2−t1) . (22.1)

➤ Exercise 22.2.1 Show that exponential interpolation scheme (22.1) for the discount
function is equivalent to the linear interpolation scheme for the spot rate curve when
spot rates are continuously compounded.

22.3 Ordinary Least Squares

Absent arbitrage opportunities, coupon bond prices and discount factorsmust satisfy

P1 = (C1+ 1)d(1),

P2 = C2d(1)+ (C2+ 1)d(2),

P3 = C3d(1)+C3d(2)+ (C3+ 1)d(3),
...

Pn = Cnd(1)+Cnd(2)+ · · ·+ (Cn+ 1)d(n).

In the preceding equations, the ith coupon bond has a coupon of Ci , a maturity of i
periods, and a price of Pi . Once the discount factors d(i) are solved for, the i-period
spot rate S(i) is simply S(i)= d(i)−1/ i − 1. This formulation makes clear what can
derail in practice the bootstrapping procedure to extract spot rates fromcouponbond
prices in Section 5.2. A first case in point is when there are more data points Pi than
variables d(i). This scenario results in anoverdetermined linear system– themultiple
cash flow problem. A second case in point is when bonds of certain maturities are
missing. Then we have an underdetermined linear system, which corresponds to the
incompleteness problem.

The above formulation suggests that solutions be based on the principle of least
squares. Suppose there are m bonds and the ith coupon bond has ni periods to
maturity, where n1 ≤ n2 ≤ · · · ≤ nm = n. Then we have the following system of m
equations:

Pi = Cid(1)+Cid(2)+ · · ·+ (Ci + 1)d(ni ), 1≤ i ≤m. (22.2)
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If m≥ n, an overdetermined system results. This system can be solved for the n
unknowns d(1),d(2), . . . ,d(n) by use of the LS algorithm in Section 19.2 with min-
imizing the mean-square error as the objective. Certain equations may also be given
more weights. For instance, each equation may be weighted proportional to the in-
verse of thebid–ask spreador the inverse of theduration [90, 147]. The computational
problem is then equivalent to the weighted LS problem. If a few special bonds affect
the result too much, the least absolute deviation can be adopted as the objective
function. Finally, we can impose the conditions d(1)≥ d(2)≥ · · · ≥ d(n)> 0 (see
Exercise 8.1.1), and the computational problem becomes that of optimizing a
quadratic objective function under linear constraints – a quadratic programming
problem [153].

We can handle the tax issue as follows. For each coupon bond, deduct the tax rate
from the coupon rate. For each discount bond, reduce the principal repayment by the
capital gains tax. For each premium bond, assume the loss will be amortized linearly
over the life of the bond. For each zero-couponbond, treat the income tax on imputed
interest in each period as a negative cash flow. Finally, apply the methodology to the
tax-adjusted cash flows to obtain the after-tax discount function [652].

Multiple-regression scheme (22.2) is called the McCulloch scheme. Other func-
tional forms and target curves are clearly possible [653]. The Bradley–Crane scheme
for example takes the form ln(1+ S(n))= a+b1n+b2 lnn+ εn with three parame-
ters, a, b1, and b2. The ε terms as usual represent errors. The Elliott–Echols scheme,
as another example, adopts the form ln(1+ S(ni ))= a+b1/ni +b2ni + c3Ci + εi ,
where ni is the term to maturity of the ith coupon bond. The explicit incorpo-
ration of the coupon rates is intended to take care of the coupon effect on yields
due to tax considerations. Both schemes target the spot rate curve. See Fig. 22.3 for
illustration.

Term structure fitting can also be model driven. Suppose we accept the Merton
model for interest rate dynamics. It follows that the spot rate curve is a degree-two
polynomial of the form r + (µ/2) t − (σ 2/6) t2 (see Fig. 22.4). This paradigm derives
the model parameters – µ and σ in the Merton model – from regression [256, 511].

➤ Exercise 22.3.1 Show how to fit a quadratic function d(t)= a0+ a1t + a2t2 to the
discount factors by using multiple regression.

➤ Exercise 22.3.2 Suppose we want to fit an exponential curve y= aebx to the data,
but we have only a linear-regression solver. How do we proceed?

Figure 22.3: The Bradley–Crane and Elliott–Echols schemes. The Bradley–Crane scheme is on the left, and
the Elliott–Echols scheme with the C i set to zero is on the right.
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Figure 22.4: Polynomial regression.

22.4 Splines

The LS scheme of McCulloch, unlike those of Bradley–Crane and Elliott–Echols,
cannot handle the incompleteness problem without imposing further restrictions.
One proposal is to regard d(i) as a linear combination of certain prespecified
functions:

d(i)= 1+
�∑
j=1
a j f j (i), 1≤ i ≤m, (22.3)

where f j (i), 1≤ j ≤ �, are known functions of maturity i and a1, a2, . . . , a� are the
parameters to be estimated [652]. Because P(0)= 1, f j (0) equals zero for every j .
Substitute Eq. (22.3) into Eq. (22.2) to obtain the following overdetermined system:

Pi − 1−Cini =
�∑
k=1
ak

[
fk(ni )+Ci

ni∑
j=1
fk( j)

]
, 1≤ i ≤m. (22.4)

There are now only � unknown coefficients rather than n.
A lot of choices are open for the basis functions f j ( · ). For instance, letting

f j (x)= x j makes the discount function a sum of polynomials. In this case, the
problem is reduced to polynomial regression and is solved in the least-squares con-
text (see Example 19.2.1). McCulloch suggested that the discount function be a cubic
spline [652]. He also recommended picking the breakpoints that make each subinter-
val contain an equal number of maturity dates. This is probably the most well-known
method.

➤ Exercise 22.4.1 Verify Eq. (22.4).

➤ Exercise 22.4.2 Assume continuous compounding. Justify the following claims.
(1) If the forward rate curve should be a continuous function, a quadratic spline is
the lowest-order spline that can fit the discount function. (2) If the forward rate curve
should be continuously differentiable, a spline of at least cubic order is needed for
the same purpose.
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22.5 The Nelson–Siegel Scheme

A functional form that can be described by only a few parameters has obvious ad-
vantages. The Bradley–Crane, Elliott–Echols, and polynomial schemes fall into this
category. The cubic-spline scheme does not, however. Its further problem, shared by
others as well, is that the function tends to bend sharply toward the end of the matu-
rity range. This does not seem to be representative of a true yield curve and suggests
that predictions outside the sample maturity range are suspect [800, 801]. Finally, the
spline scheme has difficulties producing well-behaved forward rates [352].

A good forward rate curve is important because many important interest rate
models are based on forward rates. Nelson and Siegel proposed a parsimonious
scheme for the forward rate curve [695]. This scheme is the most well known among
families of smooth forward rate curves [77, 133]. Let the instantaneous forward rate
curve be described by

f (τ )= β0+β1e−τ/α +β2 τ
α
e−τ/α,

where α is a constant (all rates are continuously compounded). The intent is to be
able to measure the strengths of the short-, medium-, and long-term components of
the forward rate curve. Specifically, the contribution of the long-term component is
β0, that of the short-term component is β1, and that of the medium-term component
is β2. We can then find the quadruple (β0, β1, β2, α) that minimizes themean-square
error between f and the data (see Fig. 22.5). The spot rate curve is

S(τ )=
∫ τ
0 f (s)ds
τ

= β0+ (β1+β2)
(
1− e−τ/α) α

τ
−β2e−τ/α,

which is linear in the coefficients, given α. Both the forward rate curve and the
spot rate curve converge to a constant, which has some appeal. All other functional
forms seen so far have unbounded magnitude in the long end of the yield curve. The
Nelson–Siegel scheme does not rule out negative forward rates.

Figure 22.5: The Nelson–Siegel scheme. The forward rate curve in Fig. 22.1
(repeated here) is fitted by the Nelson–Siegel scheme.
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Additional Reading

In reality we have bid and asked quotes. Sometimes the asked quotes are used to
construct the curve, whereas the mean prices may be preferred in other times. Some
schemes treat the fitting error as zero as long as the fitted value lies within the bid–ask
spread [90]. See [551] for term structure modeling in Japan. Splines, being piecewise
polynomials, seem ill-suited for the the discount function, which is exponential in
nature. To tackle themismatch, Fong andVasicek proposed exponential splines [856],
but the results seem little different from those of polynomial splines [801]. In [171]
polynomials are proposed to fit each spot rate with the degrees of the polynomials
chosen heuristically. Consult [39, 219, 352, 609, 801] for more fitting ideas and [135]
for a linear programming approach to fitting the spot rate curve.Manyfitting schemes
are compared in [90].

NOTE

1. However, on-the-run bonds may be overvalued for a variety of reasons [890].
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TWENTY-THREE

Introduction to Term
Structure Modeling

Howmuch of the structure of our theories really tells us about things
in nature, and how much do we contribute ourselves?

Arthur Eddington (1882–1944)

The high interest rate volatility, especially since October 6, 1979 [401], calls for
stochastic interest rate models. Models are also needed in managing interest rate
risks of securities with interest-rate-sensitive cash flows. This chapter investigates
stochastic term structure modeling with the binomial interest rate tree [779]. Simple
as the model is, it illustrates most of the basic ideas underlying the models to come.
The applications are also generic in that the pricing and hedging methodologies can
be easily adapted to other models. Although the idea is similar to the one previ-
ously used in option pricing, the current task is complicated by two facts. First, the
evolution of an entire term structure, not just a single stock price, is to be modeled.
Second, interest rates of various maturities cannot evolve arbitrarily or arbitrage
profits may result. The multitude of interest rate models is in sharp contrast to the
single dominating model of Black and Scholes in option pricing.

23.1 Introduction

A stochastic interest rate model performs two tasks. First, it provides a stochastic
process that defines future term structures. The ensuing dynamics must also disallow
arbitrage profits. Second, the model should be “consistent” with the observed term
structure [457]. Merton’s work in 1970 marked the starting point of the continuous-
time methodology to term structure modeling [493, 660]. This stochastic approach
complements traditional term structure theories in that the unbiased expectations
theory, the liquidity preference theory, and the market segmentation theory can all
be made consistent with the model by the introduction of assumptions about the
stochastic process [653].

Modern interest rate modeling is often traced to 1977 when Vasicek and Cox,
Ingersoll, andRoss developed simultaneously their influentialmodels [183, 234, 855].
Early models have fitting problems because the resulting processes may not price
today’s benchmark bonds correctly. An alternative approach pioneered by Ho and
Lee in 1986 makes fitting the market yield curve mandatory [458]. Models based on
such a paradigm are usually called arbitrage-free or no-arbitrage models [482]. The
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alternatives are equilibrium models and Black–Scholes models, which are covered
in separate chapters.

➤ Exercise 23.1.1 Ariskless securitywith cash flow C1,C2, . . . ,Cn has amarket price
of
∑n
i=1Cid(i). The discount factor d(i) denotes the PV of $1 at time i from now.

Is the formula still valid if the cash flow depends on interest rates?

➤ Exercise 23.1.2 Let it denote the period interest rate for the period from time
t − 1 to t . Assume that 1+ it follows a lognormal distribution, ln(1+ it)∼ N(µ, σ 2).
(1) What is the value of $1 after n periods? (2) What are its distribution, mean, and
variance?

23.2 The Binomial Interest Rate Tree

Our goal here is to construct a no-arbitrage interest rate tree consistent with the
observed termstructure, specifically the yields and/or yield volatilities of zero-coupon
bonds of all maturities. This procedure is called calibration. We pick a binomial tree
model in which the logarithm of the future short rate obeys the binomial distribution.
The limiting distribution of the short rate at any future time is hence lognormal. In
the binomial interest rate process, a binomial tree of future short rates is constructed.
Every short rate is followed by two short rates for the following period. In Fig. 23.1,
node A coincides with the start of period j during which the short rate r is in effect.
At the conclusion of period j , a new short rate goes into effect for period j + 1.
This may take one of two possible values: r�, the “low” short-rate outcome at node
B, and rh, the “high” short-rate outcome at node C. Each branch has a 50% chance
of occurring in a risk-neutral economy.

We require that the paths combine as the binomial process unfolds. Suppose that
the short rate r can go to rh and r� with equal risk-neutral probability 1/2 in a
period of length �t .1 The volatility of ln r after �t time is

σ = 1
2

1√
�t

ln
(
rh
r�

)
(see Exercise 23.2.3, part (1)). Above, σ is annualized, whereas r� and rh are period
based. As

rh
r�
= e2σ

√
�t , (23.1)

greater volatility, henceuncertainty, leads to larger rh/r� andwider rangesofpossible
short rates. The ratio rh/r� may change across time if the volatility is a function
of time. Note that rh/r� has nothing to do with the current short rate r if σ is
independent of r . The volatility of the short rate one-period forward is approximately
rσ (see Exercise 23.2.3, part (2)).

r ✟✟✟✟✟
r�❧0.5

❍❍❍❍❍ rh❧0.5

❧A

B

C
period j − 1 period j period j + 1

Figure 23.1: Binomial interest rate process. From node
A there are two equally likely scenarios for the short rate:
r � and r h. Rate r is applicable to node A in period j .
Rate r � is applicable to node B and rate r h is applicable
to node C, both in period j + 1.
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Figure 23.2: Binomial interest rate tree. The sequence at each
time point shows that the short rate will converge to the lognor-
mal distribution.

In general there are j possible rates in period j :

r j , r jv j , r jv2j , . . . , r jv
j−1
j ,

where

vj ≡ e2σ j
√
�t (23.2)

is the multiplicative ratio for the rates in period j (see Fig. 23.2). We call r j the
baseline rates. The subscript j in σ j is meant to emphasize that the short rate
volatility may be time dependent. In the limit, the short rate follows the following
process:

r(t)= µ(t) eσ (t)W(t), (23.3)

in which the (percent) short-rate volatility σ (t) is a deterministic function of time.
As the expected value of r(t) equals µ(t) eσ (t)

2t/2, a declining short rate volatility is
usually imposed to preclude the short rate from assuming implausibly high values.
Incidentally, this is how the binomial interest rate tree achieves mean reversion.

One salient feature of the tree is path independence: The term structure at any
node is independent of the path taken to reach it. A nice implication is that only the
baseline rates ri and themultiplicative ratios vi need to be stored in computermem-
ory in order to encode the whole tree. This takes up only O(n) space. (Throughout
this chapter, n denotes the depth of the tree, i.e., the number of discrete time peri-
ods.) The naive approach of storing the whole tree would take up O(n2) space. This
can be prohibitive for large trees. For instance, modeling daily interest rate move-
ments for 30 years amounts to keeping an array of roughly (30× 365)2/2≈ 6× 107

double-precision floating-point numbers. If each number takes up 8 bytes, the array
would consume nearly half a gigabyte!

With the abstract process in place, the concrete numbers that set it in motion are
the annualized rates of return associatedwith the various riskless bonds thatmake up
the benchmark yield curve and their volatilities. In theUnitedStates, for example, the
on-the-run yield curve obtained by the most recently issued Treasury securities may
be used as the benchmark curve. The term structure of (yield) volatilities or simply
the volatility (term) structure can be estimated from either historical data (historical
volatility) or interest rate option prices such as cap prices (implied volatility) [149,
880]. The binomial tree should be consistentwith both term structures. In this chapter
we focus on the term structure of interest rates, deferring the handling of the volatility
structure to Section 26.3.
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For economy of expression, all numbers in algorithms aremeasured by the period
instead of being annualized whenever applicable and unless otherwise stated. The
relation is straightforward in the case of volatility: σ (period)= σ (annual)×√�t .
As for the interest rates, consult Section 3.1.

An alternative process that also satisfies the path-independence property is the
following arithmetic sequence of short rates for period j :

r j , r j + vj , r j + 2vj , . . . , r j + ( j − 1) vj .

Ho and Lee proposed this binomial interest rate model [458]. If the j possible rates
for period j are postulated to be

ru j−1, ru j−2d, . . . , rd j−1

for some common u and d, the parameters are u and d and possibly the transition
probability. This parsimonious model is due to Rendleman and Bartter [739].

➤ Exercise 23.2.1 Verify that the variance of ln r in period k equals σ 2
k (k− 1)�t .

(Consistent with Eq. (23.3), the variance of ln r(t) equals σ (t)2t in the continuous-
time limit.)

➤ Exercise 23.2.2 Consider a short rate model such that the two equally probable
short rates from the current rate r are reµ+σ

√
�t and reµ−σ

√
�t , where µ maydepend

on time. Verify that this model can result from the binomial interest rate tree when
the volatilities σ j are all equal to some constant σ . (The µ is varied to fit the term
structure.)

➤ Exercise 23.2.3 Suppose the probability of moving from r to r� is 1−q and that
of moving to rh is q. Also assume that a period has length �t . (1) Show that the
variance of ln r after a period is q(1−q)(ln rh− ln r�)2. (2) Hence, if we define σ 2

to be the above divided by �t , then

rh
r�
= exp

[
σ

√
�t

q(1−q)

]
should replace Eq. (23.1). Now prove the variance of r after a time period of �t is
approximately r2σ 2�t .

23.2.1 Term Structure and Its Dynamics

With the binomial interest rate tree in place, the model price of a security can be
computed by backward induction. Refer back to Fig. 23.1. Given that the values at
nodes B and C are PB and PC, respectively, the value at node A is then

PB+ PC
2(1+ r) + cash flow at node A.

To save computer memory, we compute the values column by column without ex-
plicitly expanding the binomial interest rate tree (see Fig. 23.3 for illustration).
Figure 23.4 contains the quadratic-time, linear-space algorithm for securities with
a fixed cash flow. The same idea can be applied to any tree model.

We can compute an n-period zero-coupon bond’s price by assigning $1 to every
node at period n and then applying backward induction. Repeating this step for
n= 1, 2, . . . , we obtain the market discount function implied by the tree. The tree
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Figure 23.3: Sweep a line across time backward to com-
pute model price.

therefore determines a term structure. Moreover, it encompasses term structure
evolutionordynamicsbecause taking any node in the tree as the current state induces
a (smaller) binomial interest rate tree and, again, a term structure. The tree thus
defines how the whole term structure evolves through time.

Comment 23.2.1 Suppose we want to know the m-period spot rate at time n in order
to price a security whose payoff is linked to that spot rate. The tree has to be built
all the way to time n+m in order to obtain the said spot rate at time n, with dire
performance implications. Later in Subsection 25.2.1 we will see cases in which the
tree has to be built over the life of only the derivative (n periods) instead of over the
life of the underlying asset (n+m periods).

We shall construct interest rate trees consistent with the sample term structure
in Fig. 23.5. For numerical demonstrations, we assume that the short rate volatility is
such that v ≡ rh/r� = 1.5, independent of time.

Algorithm for model price from binomial interest rate tree:

input: m,n, r [ 1..n ],C[ 0..n ], v[ 1..n ]; //m≤ n.
real P[ 1..m+ 1 ];
integer i, j ;
for (i = 1 to m+ 1) P[ i ] := C[m ]; // Initialization.
for (i =m down to 1) // Backward induction.

for ( j = 1 to i)
P[ j ] := C[ i − 1 ]+ 0.5× (P[ j ]+ P[ j + 1 ])/(1+ r [ i ]× v[ i ] j−1);

return P[ 1 ];

Figure 23.4: Algorithm for model price. C [ i ] is the cash flow occurring at time i (the end of the i th period),
r [ i ] is the baseline rate for period i , v [ i ] is the multiplicative ratio for the rates in period i , and n denotes
the number of periods. Array P stores the PV at each node. All numbers are measured by the period.
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Period 1 2 3

Spot rate (%) 4 4.2 4.3
One-period forward rate (%) 4 4.4 4.5
Discount factor 0.96154 0.92101 0.88135

Figure 23.5: Sample term structure.

An Approximate Calibration Scheme
A scheme that easily comes to mind starts with the implied one-period forward rates
and then equates the expected short rate with the forward rate. This certainly works
in a deterministic economy (see Exercise 5.6.6). For the first period, the forward
rate is today’s one-period spot rate. In general, let f j denote the forward rate in
period j . This forward rate can be derived from the market discount function by
f j = [d( j)/d( j + 1) ]− 1 (see Exercise 5.6.3). Because the ith short rate, 1≤ i ≤ j ,
occurs with probability 2−( j−1)

( j−1
i−1
)
, this means that

∑ j
i=1 2

−( j−1) ( j−1
i−1
)
r jvi−1j = f j ,

and thus

r j =
(

2
1+ vj

) j−1
f j . (23.4)

The binomial interest rate tree is hence trivial to set up.
The ensuing tree for the sample term structure is shown in Fig. 23.6. For example,

the price of the zero-coupon bond paying $1 at the end of the third period is

1
4
× 1

1.04
×
[

1
1.0352

×
(

1
1.0288

+ 1
1.0432

)
+ 1

1.0528
×
(

1
1.0432

+ 1
1.0648

)]
= 0.88155, (23.5)

which is very close to, but overestimates, the discount factor 0.88135. The tree is thus
not calibrated. Indeed, this bias is inherent.

Figure 23.6: A binomial interest rate tree based on the
unbiased expectations theory.
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THEOREM 23.2.2 The binomial interest rate tree constructed with Eq. (23.4) overesti-
mates the prices of the benchmark securities in the presence of volatilities. This con-
clusion is independent of whether the volatility structure is matched.

Theorem 23.2.2 implies that, under the binomial interest rate tree, the expected
future spot rate exceeds the forward rate. As always, we took the money market
account implicitly as numeraire. But it was argued in Subsection 13.2.1 that switching
the numeraire changes the risk-neutral probability measure. Indeed, there exists a
numeraire under which the forward rate equals the expected future spot rate (see
Exercise 23.2.5, part (1)).

➤ Exercise 23.2.4 (1) Prove Theorem 23.2.2 for two-period zero-coupon bonds.
(2) Prove Theorem 23.2.2 in its full generality.

➤ Exercise 23.2.5 Fix a period. (1) Show that the forward rate for that period equals
the expected future spot rate under some risk-neutral probability measure. (2) Show
further that the said forward rate is a martingale. (Hint: Exercise 13.2.13.)

23.2.2 Calibration of Binomial Interest Rate Trees

It is of paramount importance that the model prices generated by the binomial
interest rate tree match the observed market prices. This may well be the most
crucial aspect of model building. To achieve it, we can treat the backward-induction
algorithm for the model price of the m-period zero-coupon bond in Fig. 23.4 as
computing some functionof theunknownbaseline rate rm called f (rm).Agood root-
finding method is then applied to solve f (rm)= P for rm given the zero’s market
price P and r1, r2, . . . , rm−1. This procedure is carried out for m= 1, 2, . . . ,n. The
overall algorithm runs in cubic time, thus hopelessly slow [508].

Calibration canbe accomplished in quadratic timeby theuse of forward induction
[508]. The scheme records how much $1 at a node contributes to the model price.
This number is called the state price as it stands for the price of a state contingent
claim that pays $1 at that particular node (state) and zero elsewhere. The column of
state prices will be established by moving forward from time 1 to time n.

Let us be more precise. Suppose we are at time j and there are j + 1 nodes.
Let the baseline rate for period j be r ≡ r j , the multiplicative ratio be v ≡ vj ,
and P1, P2, . . . , Pj be the state prices a period prior, corresponding to rates
r, rv, . . . , rv j−1. By definition,

∑ j
i=1 Pi is the price of the ( j − 1)-period zero-coupon

bond. One dollar at time j has a known market value of 1/[ 1+ S( j) ] j , where S( j)
is the j-period spot rate. Alternatively, this dollar has a PV of

g(r)≡ P1
(1+ r) +

P2
(1+ rv) +

P3
(1+ rv2) + · · ·+

Pj
(1+ rv j−1) .

So we solve

g(r)= 1
[ 1+ S( j) ] j (23.6)
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Figure 23.7: Sweep a line forward to compute binomial state price tree. (a) The state price at a
node is a weighted sum of the state prices of its two predecessors. (b) The binomial state price tree
calculated from the sample term structure and the resulting calibrated binomial interest rate tree. It
prices the benchmark bonds correctly.

for r . Given a decreasing market discount function, a unique positive solution for r
is guaranteed.2 The state prices at time j can now be calculated as

P1
2(1+ r) ,

P1
2(1+ r) +

P2
2(1+ rv) , . . . ,

Pj−1
2 (1+ rv j−2)

+ Pj
2 (1+ rv j−1) ,

Pj
2 (1+ rv j−1)

(see Fig. 23.7(a)). We call a tree with these state prices a binomial state price tree.
Figure 23.7(b) shows one such tree. The calibrated tree is shown in Fig. 23.8.

TheNewton–Raphsonmethod can be used to solve for the r inEq. (23.6) as g′(r)
is easy to evaluate. The monotonicity and the convexity of g(r) also facilitate root
finding.Agood initial approximation to the rootmaybeprovidedbyEq. (23.4),which

Figure 23.8: Calibrated binomial interest rate tree. This
tree is from Fig. 23.7(b).
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Algorithm for building calibrated binomial interest rate tree:

input: n, S[ 1..n ], σ [ 1..n ];
real P[ 0..n ], r [ 1..n ], r, v;
integer i, j ;
P[ 0 ] := 0; // Dummy variable; remains zero throughout.
P[ 1 ] := 1;
r [ 1 ] := S[ 1 ];
for (i = 2 to n) {

v := exp [ 2× σ [ i ] ] ;
P[ i ] := 0;
for ( j = i down to 1) // State prices at time i − 1.

P[ j ] := P[ j−1 ]
2×(1+r [ i−1 ] v j−2) + P[ j ]

2×(1+r [ i−1 ] v j−1) ;

Solve
∑i
j=1

P[ j ]

(1+rv j−1) = (1+ S[ i ])−i for r ;
r [ i ] := r ;

}
return r [ ];

Figure 23.9: Algorithm for building calibrated binomial interest rate tree. S [ i ] is the i -period spot rate,
σ [ i ] is the percent volatility of the rates for period i , and n is the number of periods. All numbers are
measured by the period. The period-i baseline rate is computed and stored in r [ i ].

is guaranteed to underestimate the root (see Theorem 23.2.2). Using the previous
baseline rate as the initial approximation to the current baseline rate also works well.

The preceding idea is straightforward to implement (see Fig. 23.9). The total
running time is O(Cn2), where C is the maximum number of times the root-finding
routine iterates, each consuming O(n) work. With a good initial guess, the Newton–
Raphson method converges in only a few steps [190, 625].

Let us follow up with some numerical calculations. One dollar at the end of the
second period should have a PV of 0.92101 according to the sample term structure.
The baseline rate for the second period, r2, satisfies

0.480769
1+ r2 + 0.480769

1+ 1.5× r2 = 0.92101.

The result is r2 = 3.526%. This is used to derive the next column of state prices
shown in Fig. 23.7(b) as 0.232197, 0.460505, and 0.228308, whose sum gives the
correct market discount factor 0.92101. The baseline rate for the third period, r3,
satisfies

0.232197
1+ r3 + 0.460505

1+ 1.5× r3 +
0.228308

1+ (1.5)2× r3 = 0.88135.

The result is r3 = 2.895%. Now, redo Eq. (23.5) using the new rates:

1
4
× 1

1.04
×
[

1
1.03526

×
(

1
1.02895

+ 1
1.04343

)
+ 1

1.05289

×
(

1
1.04343

+ 1
1.06514

)]
= 0.88135,
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[ 0.971865 ]
↗[

0.965941
0.932250

]
↗ ↘ 0.96154

0.92101
0.88135

 [ 0.958378 ]

↘ ↗[
0.949767
0.900959

]
↘

[ 0.938844 ]

Figure 23.10: Term structure dynamics. Each node lists
the market discount function in increasing maturities.

an exact match. The tree in Fig. 23.8 therefore prices without bias the benchmark
securities. The term structure dynamics of the calibrated tree is shown in Fig. 23.10.

➤ Exercise 23.2.6 (1) Based on the sample term structure and its associated binomial
interest rate tree in Fig. 23.8, what is the next baseline rate if the four-period spot
rate is 4.4%? (2) Confirm Theorem 23.2.2 by demonstrating that the baseline rate
produced by Eq. (23.4) is smaller than the one derived in (1).

➤ Exercise 23.2.7 (1) Suppose we are given a binomial state price tree and wish to
price a security with the payoff function c at time j by using the risk-neutral pricing
formula d( j) E[ c ]. What is the probability of each state’s occurring at time j?
(2) Take the binomial state price tree in Fig. 23.7(b). What are the probabilities of
the C nodes in this risk-neutral economy?

➤ Exercise 23.2.8 Compute the n discount factors implied by the tree in O(n2)
time.

➤ Exercise 23.2.9 Start with a binomial interest rate tree but without the branch-
ing probabilities, such as Fig. 23.2. (1) Suppose the state price tree is also given.
(2) Suppose only the state prices at the terminal nodes are given and assume that
the path probabilities for all paths reaching the same node are equal. How do we
calculate the branching probabilities at each node in either case? (The result was
called the implied binomial tree in Exercise 9.4.3.)

➢ Programming Assignment 23.2.10 Program the algorithm in Fig. 23.9 with the
Newton–Raphson method.

➢ Programming Assignment 23.2.11 Calibrate the tree with the secant method.

23.3 Applications in Pricing and Hedging

23.3.1 Spread of Nonbenchmark Option-Free Bonds

Model prices calculated by the calibrated tree as a rule do notmatchmarket prices of
nonbenchmark bonds. To gauge the incremental return, or spread, over the bench-
mark bonds, we look for the spread that, when added uniformly over the short rates
in the tree, makes the model price equal the market price. Obviously the spread of a
benchmark security is zero. We apply the spread concept to option-free bonds first
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Figure 23.11: Spread over short rates of binomial interest
rate tree. This tree is constructed from the calibrated bi-
nomial interest rate tree in Fig. 23.8 by the addition of a
constant spread s to each short rate in the tree.

and return to bonds that incorporate embedded options in Subsection 27.4.3. The
techniques are identical save for the possibility of early exercise.

It is best to illustrate the idea with an example. Start with the tree in Fig. 23.11.
Consider a security with cash flow Ci at time i for i = 1, 2, 3. Its model price is

p(s) ≡ 1
1.04+ s ×

{
C1+ 1

2
× 1

1.03526+ s

×
[
C2+ 1

2

(
C3

1.02895+ s +
C3

1.04343+ s
)]

+ 1
2
× 1

1.05289+ s ×
[
C2+ 1

2

(
C3

1.04343+ s +
C3

1.06514+ s
)]}

.

Given a market price of P, the spread is the s that solves P = p(s).
In general, if we add a constant amount s to every rate in the binomial interest

rate tree, the model price will be a monotonically decreasing, convex function of s.
Call this function p(s). For a market price P, we use the Newton–Raphson root-
finding method to solve p(s)− P = 0 for s. However, a quick look at the preceding
equation reveals that evaluating p′(s) directly is infeasible. Fortunately the tree can
be used to evaluate both p(s) and p′(s) during backward induction. Here is the
idea. Consider an arbitrary nodeA in the tree associated with the short rate r . In the
process of computing the model price p(s), a price pA(s) is computed at A. Prices
computed at A’s two successor nodes, B and C, are discounted by r + s to obtain
pA(s):

pA(s)= c+ pB(s)+ pC(s)
2(1+ r + s) ,
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Figure 23.12: The differential tree method. (a) The original binomial interest rate tree with the
short rates replaced with the discount factors, (b) the derivatives of the numbers on the tree,
and (c) the simultaneous evaluation of a function and its derivative on the tree by use of the
numbers from (a) and (b).

where c denotes the cash flow at A. To compute p′A(s) as well, node A calculates

p′A(s)= p
′
B(s)+ p′C(s)
2(1+ r + s) −

pB(s)+ pC(s)
2(1+ r + s)2 , (23.7)

which is easy if p′B(s) and p′C(s) are also computed at nodes B and C. Applying
the preceding procedure inductively will eventually lead to p(s) and p′(s) at the
root. See Fig. 23.12 for illustration. This technique, which is due to Lyuu, is called the
differential treemethod andhaswide applications [625]. It is also related to automatic
differentiation in numerical analysis [602, 687].

Let us analyze the differential tree algorithm in Fig. 23.13. Given a spread,
step 1 computes the PV, step 2 computes the derivative of the PV according to
Eq. (23.7), and step 3 implements the Newton–Raphson method for the next ap-
proximation. If C represents the number of times the tree is traversed, which takes
O(n2) time, the total running time is O(Cn2). In practice, C is a small constant. The
memory requirement is O(n).

Now we go through a numerical example. Consider a 3-year 5% bond with a
market price of 100.569. For simplicity, assume that the bond pays annual interest.
The spread can be shown to be 50 basis points over the tree (see Fig. 23.14). For com-
parison, let us compute the yield spread and the static spread of the nonbenchmark
bond over an otherwise identical benchmark bond. Recall that the static spread is
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Algorithm for computing spread based on differential tree method:

input: n, P, r [ 1..n ],C[ 0..n ], v[ 1..n ], ε;
real P[ 1..n+ 1 ], P′[ 1..n+ 1 ], sold, snew;
integer i, j ;
snew := 0; // Initial guess.
P[ 1 ] :=∞;
while [ | P[ 1 ]− P |> ε ] {

for (i = 1 ton+ 1) { P[ i ] := C[n ]; P′[ i ] := 0; }
sold := snew;
for (i = n down to 1) // Sweep the column backward in time.
for ( j = 1 to i) {

1. P[ j ] := C[ i − 1 ]+ (P[ j ]+ P[ j + 1 ])/(2× (1+ r [ i ]× v[ i ] j−1+ sold));
2. P′[ j ] := (P′[ j ]+ P′[ j + 1 ])/(2× (1+ r [ i ]× v[ i ] j−1+ sold))−

(P[ j ]+ P[ j + 1 ])/(2× (1+ r [ i ]× v[ i ] j−1+ sold))2;
}

3. snew := sold− (P[ 1 ]− P)/P′[ 1 ]; // Newton-Raphson.
}
return snew;

Figure 23.13: Algorithm for computing spread based on differential tree method. P is the market price, r [ i ]
is the baseline rate for period i , C [ i ] contains the cash flow at time i , v [ i ] is the multiplicative ratio for the
rates in period j , and n is the number of periods. All numbers are measured by the period. The prices and
their derivatives are stored in P [ ] and P ’[ ], respectively.

the incremental return over the spot rate curve, whereas the spread based on the
binomial interest rate tree is one over the future short rates. The yield to maturity of
the nonbenchmark bond can be calculated to be 4.792%. The 3-year Treasury has a
market price of

5
1.04

+ 5
(1.042)2

+ 105
(1.043)3

= 101.954 (23.8)

and a yield tomaturity of 4.292%.The yield spread is thus 4.792%− 4.292%= 0.5%.
The static spread can also be found to be 0.5%. So all three spreads turn out to be
0.5% up to round-off errors.

➤ Exercise 23.3.1 Does the ideaof spreadassumeparallel shifts in the termstructure?

Figure 23.14: Price tree with spread. Based on the tree in
Fig. 23.11, the price tree is computed for a 3-year bond paying
5% annual interest. Each node of the tree signifies, besides
the short rate, the discounted value of its future cash flows
plus the cash flow at that node, if any. The model price is
100.569.
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Figure 23.15: Futures price. The price tree is computed for
a 2-year futures contract on a 1-year T-bill. C nodes store,
besides the short rate, the discounted values of the 1-year
T-bill under the model. A and B nodes calculate the expected
values. The futures price is 95.687.

➢ Programming Assignment 23.3.2 Implement the algorithm in Fig. 23.13.

➢ Programming Assignment 23.3.3 Implement a differential tree method for the im-
plied volatility of American options under the BOPM [172, 625].

23.3.2 Futures Price

The futures price is a martingale under the risk-neutral probability (see Exercise
13.2.11). To compute it, we first use the tree to calculate the underlying security’s
prices at the futures contract’s delivery date to which the futures price converges.
Then we find the expected value. In Fig. 23.15, for example, we are concerned with
a 2-year futures contract on a 1 year T-bill. The futures price is found to be 95.687.
The futures price can be computed in O(n) time.

If the contract specification for a futures contract does not call for a quote that
equals the result of our computation, steps have to be taken to convert the theoretical
value into one consistent with the specification. The theoretical value above, for
instance, corresponds to the invoice price of the T-bill futures traded on the CBT,
but it is the index price that gets quoted.

➤ Exercise 23.3.4 (1) How do we compute the forward price for a forward contract
on a bond? (2) Calculate the forward price for a 2-year forward contract on a 1-year
T-bill.

23.3.3 Fixed-Income Options

Determining the values of fixed-income options with a binomial interest rate tree
follows the same logic as that of the binomial tree algorithm for stock options in
Chap. 9. Hence only numerical examples are attempted here. Consider a 2-year 99
European call on the 3-year 5% Treasury. Assume that the Treasury pays annual
interest. From Fig. 23.16 the 3-year Treasury’s price minus the $5 interest could be
$102.046, $100.630, or $98.579 2 years from now. Because these prices do not include
the accrued interest, we should compare the strike price against them. The call is
therefore in the money in the first two scenarios, with values of $3.046 and $1.630,
and out of themoney in the third scenario. The option value is calculated to be $1.458
in Fig. 23.16(a). European interest rate puts can be valued similarly. Consider a 2-
year 99 European put on the same security. At expiration, the put is in the money
only if the Treasury is worth $98.579 without the accrued interest. The option value
is computed to be $0.096 in Fig. 23.16(b).
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Figure 23.16: European options on Treasuries. The above price trees are computed for the
2-year 99 European (a) call and (b) put on the 3-year 5% Treasury. Each node of the tree
signifies the short rate, the Treasury price without the $5 interest (except the D nodes), and the
option value. The price $101.955 is slightly off compared with Eq. (23.8) because of round-off
errors.

If the option is American and the underlying bond generates payments before
the option’s expiration date, early exercise needs to be considered. The criterion is
to compare the intrinsic value against the option value at each node. The details are
left to the reader.

The PV of the strike price is PV(X)= 99× 0.92101= 91.18. The Treasury is
worth B= 101.955. The PV of the interest payments during the life of the options is

PV(I)= 5× 0.96154+ 5× 0.92101= 9.41275.

The call and the put are worth C = 1.458 and P = 0.096, respectively. Hence

C = P+ B−PV(I)−PV(X).

The put–call parity is preserved.

➤ Exercise 23.3.5 Prove that an American option on a zero-coupon bond will not be
exercised early.

➤ Exercise 23.3.6 Derive the put–call parity for options on coupon bonds.

➢ Programming Assignment 23.3.7 Write a program to price European options on
the Treasuries.

23.3.4 Delta (Hedge Ratio)

It is important to know how much the option price changes in response to changes
in the price of the underlying bond. This relation is called the delta (or hedge ratio),
defined as

Oh−O�
Ph− P� .

Ph and P� denote the bond prices if the short rate moves up and down, respectively.
Similarly, Oh and O� denote the option values if the short rate moves up and down,
respectively. Because delta measures the sensitivity of the option value to changes in
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Short rate Horizon price Probability

2.895% 0.971865 0.25
4.343% 0.958378 0.50
6.514% 0.938844 0.25

Figure 23.17: HPRs. The horizon is two periods
from now.

the underlying bond price, it shows how to hedge one with the other [84]. Take the
call and put in Fig. 23.16 as examples. Their deltas are

0.774− 2.258
99.350− 102.716

= 0.441,
0.200− 0.000

99.350− 102.716
=−0.059,

respectively.

23.3.5 Holding Period Returns

Analyzing the holding period return (HPR) with the binomial interest rate tree is
straightforward.As an example, consider a two-period horizon for three-period zero-
coupon bonds. Based on the price dynamics in Fig. 23.10, the HPRs are obtained
in Fig. 23.17. If the bonds are coupon bearing, the interim cash flows should be
reinvested at the prevailing short rate and added to the horizon price. The probability
distribution of the scenario analysis is provided by the model, not exogenously.

23.4 Volatility Term Structures

The binomial interest rate tree can be used to calculate the yield volatility of zero-
couponbonds.Consider an n-period zero-couponbond.First find its yield tomaturity
yh (y�, respectively) at the end of the initial period if the rate rises (declines, respec-
tively). The yield volatility for our model is defined as (1/2) ln(yh/y�). For example,
based on the tree in Fig. 23.8, the 2-year zero’s yield at the end of the first period is
5.289% if the rate rises and 3.526% if the rate declines. Its yield volatility is therefore

1
2

ln
(
0.05289
0.03526

)
= 20.273%.

Now consider the 3-year zero-coupon bond. If the rate rises, the price of the zero
1 year from now will be

1
2
× 1

1.05289
×
(

1
1.04343

+ 1
1.06514

)
= 0.90096.

Thus its yield is√
1

0.90096
− 1= 0.053531.

If the rate declines, the price of the zero 1 year from now will be

1
2
× 1

1.03526
×
(

1
1.02895

+ 1
1.04343

)
= 0.93225.
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Thus its yield is√
1

0.93225
− 1= 0.0357.

The yield volatility is hence

1
2

ln
(
0.053531
0.0357

)
= 20.256%,

slightly less than the 1-year yield volatility. Interestingly, this is consistent with the
reality that longer-term bonds typically have lower yield volatilities than shorter-
term bonds. The procedure can be repeated for longer-term zeros to obtain their
yield volatilities.

We started with vi and then derived the volatility term structure. In practice, the
steps are reversed. The volatility term structure is supplied by the user along with
the term structure. The vi s – hence the short rate volatilities by Eq. (23.2) – and the
ri s are then simultaneously determined. The result is the Black–Derman–Toymodel,
which is covered in Section 26.3.

Suppose the user supplies the volatility term structure that results in
(v1, v2, v3, . . . ) for the tree. The volatility term structure one period from now will
be determined by (v2, v3, v4, . . . ) , not (v1, v2, v3, . . . ). The volatility term structure
supplied by the user is hence not maintained through time.

➤ Exercise 23.4.1 Suppose we add a binomial process for the stock price to our
binomial interest rate model. In other words, stock price S can in one period move
to Su or Sd. What are the constraints on u and d?

➢ Programming Assignment 23.4.2 Add the annualized term structure of yield volatil-
ities to the output of the program of Programming Assignment 23.2.10.

NOTES

1. By designating the risk-neutral probabilities as 1/2, we are obliged to adjust the state variable,
the short rate, in order to match the desired distribution. This was done in Exercise 9.3.1, for
example, in the case of the BOPM. An alternative is to prescribe the state variable’s values on
the tree and then to find the probabilities. This was the approach of the finite-difference method
in Section 18.1.

2. This is because g(r) is strictly decreasing with g(0)=∑ j
i=1 Pi > 1/[ 1+ S( j) ] j and g(∞)= 0.



CHAPTER
TWENTY-FOUR

Foundations of Term
Structure Modeling

[The] foundations are themost controversial parts of many, if not all,
sciences.

Leonard J. Savage (1917–1971), The Foundations of Statistics

This chapter introduces basic definitions and results in term structure modeling. It
lays the theoretical foundations for interest rate models. A few simple models are
presented at the end of the chapter.

24.1 Terminology

A period denotes a unit of elapsed time throughout this chapter. Hence, viewed at
time t , the next time instant refers to time t +dt in the continuous-time model and
time t + 1 in the discrete-time case. If the discrete-time model results from dividing
the time interval [ s, t ] into n periods, then each period takes (t − s)/n time. Here
bonds are assumed to have a par value of one unless stated otherwise. We use the
same notation for discrete-time and continuous-time models as the context is always
clear. The time unit for continuous-time models is usually measured by the year. We
standardize the following notation:

t: a point in time.
r(t): the one-period riskless rate prevailing at time t for repayment one period

later (the instantaneous spot rate, or short rate, at time t).
P(t, T ): the PV at time t of $1 at time T.
r(t,T ): the (T− t)-period interest rate prevailing at time t stated on a per-

period basis and compounded once per period – in other words, the (T−
t)-period spot rate at time t . (This definition dictates that continuous-time
models use continuous compounding and discrete-time models use periodic
compounding.) The long rate is defined as r(t,∞), that is, the continuously
compounded yield on a consol bond that pays out $1 per unit time forever and
never repays principal.

F(t,T,M): the forward price at time t of a forward contract that delivers at time
T a zero-coupon bond maturing at time M≥ T.

f(t,T,L): the L-period forward rate at time T implied at time t stated on a per-
period basis and compounded once per period.

345
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f(t,T): the one-period or instantaneous forward rate at time T as seen at time t
stated on a per-period basis and compounded once per period. It is f (t,T, 1)
in the discrete-time model and f (t,T,dt) in the continuous-time model. Note
that f (t, t) equals the short rate r(t).

24.2 Basic Relations

The price of a zero-coupon bond is

P(t,T)=
{
[ 1+ r(t,T) ]−(T−t) in discrete time

.

e−r(t,T)(T−t) in continuous time

Recall that r(t,T) as a function of T defines the spot rate curve at time t . By
definition,

f (t, t)=
{
r(t, t + 1) in discrete time

.

r(t, t) in continuous time

Forward prices and zero-coupon bond prices are related by

F(t,T,M)= P(t,M)
P(t,T)

, T ≤ M, (24.1)

which says that the forward price equals the FV at time T of the underlying asset.
Equation (24.1) can be verifiedwith an arbitrage argument similar to the “locking in”
of forward rates in Subsection 5.6.1 (see Exercise 24.2.1, part (1)). Equation (24.1)
holds whether the model is discrete-time or continuous-time, and it implies that

F(t,T,M)= F(t,T, S) F(t, S,M), T ≤ S≤ M.
Forward rates and forward prices are related definitionally by

f (t,T, L)=
[

1
F(t,T,T+ L)

]1/L
− 1=

[
P(t,T)
P(t,T+ L)

]1/L
− 1 (24.2)

in discrete time (hence periodic compounding). In particular, 1+ f (t,T, 1)=
1/F(t,T,T+ 1)= P(t,T)/P(t,T+ 1). In continuous time (hence continuous com-
pounding),

f (t,T, L)=− ln F(t,T,T+ L)
L

= ln(P(t,T)/P(t,T+ L))
L

(24.3)

by Eq. (24.1). Furthermore, because

f (t,T,�t)= ln(P(t,T)/P(t,T+�t))
�t

→−∂ ln P(t,T)
∂T

=−∂P(t,T)/∂T
P(t,T)

,

we conclude that

f (t,T)≡ lim
�t→0

f (t,T,�t)=−∂P(t,T)/∂T
P(t,T)

, t ≤ T. (24.4)

Because Eq. (24.4) is equivalent to

P(t,T)= e−
∫ T
t f (t,s)ds, (24.5)
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the spot rate curve is r(t,T)= [ 1/(T− t) ] ∫ Tt f (t, s)ds. The discrete analog to
Eq. (24.5) is

P(t,T)= 1
[ 1+ r(t) ][ 1+ f (t, t + 1) ] · · · [ 1+ f (t,T− 1) ]

. (24.6)

The liquidity premium is the difference between the forward rate and the expected
spot rate, f (t,T)− Et [ r(T) | r(t) ]. Finally, the short rate and the market discount
function are related by

r(t)=− ∂P(t,T)
∂T

∣∣∣∣
T=t
.

This can be verified with Eq. (24.4) and the observation that P(t, t)= 1 and r(t)=
f (t, t).

➤ Exercise 24.2.1 (1) Supply the arbitrage argument for Eq. (24.1). (2) Generalize
(1) by describing a strategy that replicates the forward contract on a coupon bond
that may make payments before the delivery date.

➤ Exercise 24.2.2 Suppose we sell one T-time zero-coupon bond and buy
P(t,T)/P(t,M) units of M-time zero-coupon bonds at time t . Proceed from here
to justify Eq. (24.1).

➤ Exercise 24.2.3 Prove Eq. (24.4) from Eq. (5.11).

➤ Exercise 24.2.4 Prove Eq. (24.6) from Eq. (24.2).

➤ Exercise 24.2.5 Show that the τ -period spot rate equals (1/τ )
∑τ−1
i=0 f (t, t + i)

(average of forward rates) if all the rates are continuously compounded.

➤ Exercise 24.2.6 Verify that

f (t,T, L)= 1
L

[
P(t,T)
P(t,T+ L) − 1

]
is the analog to Eq. (24.2) under simple compounding.

➤ Exercise 24.2.7 Prove the following continuous-time analog to Eq. (5.9):

f (t,T,M− t)= (M− t) r(t,M)− (T− t) r(t,T)
M−T .

(Hint: Eq. (24.3).)

➤ Exercise 24.2.8 Derive the liquidity premium and the forward rate for theMerton
model. Verify that the forward rate goes to minus infinity as the maturity goes to
infinity.

➤ Exercise 24.2.9 Show that

P(t,T)
M(t)

= 1
M(T)

in a certain economy, where M(t)≡ e
∫ t
0 r(s)ds is the money market account. (Hint:

Exercise 5.6.6.)
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24.2.1 Compounding Frequency

A rate can be expressed in different, yet equivalent, ways, depending on the desired
compounding frequency (review Section 3.1). The convention in this chapter is to
standardize on continuous compounding for continuous-time models and periodic
compounding for discrete-time models unless stated otherwise.

The choice between continuous compounding and periodic compounding does
have serious implications for interest rate models. Let re be the effective annual in-
terest rate and let rc ≡ ln(1+ re) be the equivalent continuously compounded rate.
Both, we note, are instantaneous rates. When the continuously compounded inter-
est rate is lognormally distributed, Eurodollar futures have negative infinite values
[875]. However, this problem goes away if it is the effective rate that is lognormally
distributed [781, 782].

➤ Exercise 24.2.10 Suppose that the effective annual interest rate follows

dre
re
= µ(t)dt + σ (t)dW.

Prove that

drc(t)
1− e−rc(t) =

{
µ(t)− 1

2

[
1− e−rc(t) ]σ (t)2 }dt + σ (t)dW.

(The continuously compounded rate is approximately lognormally distributed when
rc(t)= o(dt) as 1− e−rc(t) ≈ rc(t)+o(dt2) and converges to a normal distribution
when rc(t)→∞.)

24.3 Risk-Neutral Pricing

The local expectations theory postulates that the expected rate of return of any
riskless bond over a single period equals the prevailing one-period spot rate, i.e., for
all t + 1< T,

Et [ P(t + 1,T) ]
P(t,T)

= 1+ r(t). (24.7)

Relation (24.7) in fact follows from the risk-neutral valuation principle, Theorem
13.2.3, which is assumed to hold for continuous-time models. The local expectations
theory is thus a consequence of the existence of a risk-neutral probability π , and we
may use Eπt [ · ] in place of Et [ · ]. Rewrite Eq. (24.7) as

Eπt [ P(t + 1,T) ]
1+ r(t) = P(t,T),

which says that the current spot rate curve equals the expected spot rate curve one pe-
riod from now discounted by the short rate. Apply the preceding equality iteratively
to obtain

P(t,T) = Eπt
[
P(t + 1,T)
1+ r(t)

]
= Eπt

[
Eπt+1[ P(t + 2,T) ]

{ 1+ r(t) }{ 1+ r(t + 1) }
]

· · · = Eπt
[

1
{ 1+ r(t) }{ 1+ r(t + 1) } · · · { 1+ r(T− 1) }

]
. (24.8)
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Because Eq. (24.7) can also be expressed as

Et [ P(t + 1,T) ]= F(t, t + 1,T),

the forward price for the next period is an unbiased estimator of the expected bond
price.

In continuous time, the local expectations theory implies that

P(t,T)= Et
[
e−

∫ T
t r(s)ds

]
, t < T. (24.9)

In other words, the actual probability and the risk-neutral probability are identical.
Note that e

∫ T
t r(s)ds is the bank account process, which denotes the rolled-overmoney

market account. We knew that bond prices relative to the money market account
are constant in a certain economy (see Exercise 24.2.9). Equation (24.9) extends
that proposition to stochastic economies. When the local expectations theory holds,
riskless arbitrage opportunities are impossible [232]. The local expectations theory,
however, is not the only version of expectations theory consistent with equilibrium
[351].

The risk-neutral methodology can be used to price interest rate swaps. Con-
sider an interest rate swap made at time t with payments to be exchanged at times
t1, t2, . . . , tn. The fixed rate is c per annum. The floating-rate payments are based on
the future annual rates f0, f1, . . . , fn−1 at times t0, t1, . . . , tn−1. For simplicity, assume
that ti+1− ti is a fixed constant �t for all i , and that the notional principal is $1. If
t < t0, we have a forward interest rate swap because the first payment is not based on
the rate that exists when the agreement is reached. The ordinary swap corresponds
to t = t0.

The amount to be paid out at time ti+1 is ( fi − c)�t for the floating-rate payer.
Note that simple rates are adopted here; hence fi satisfies

P(ti , ti+1)= 1
1+ fi�t .

The value of the swap at time t is thus

n∑
i=1
Eπt
[
e−

∫ ti
t r(s)ds( fi−1− c)�t

]
=

n∑
i=1
Eπt

[
e−

∫ ti
t r(s)ds

{
1

P(ti−1, ti )
− (1+ c�t)

}]

=
n∑
i=1

[ P(t, ti−1)− (1+ c�t)× P(t, ti ) ]

= P(t, t0)− P(t, tn)− c�t
n∑
i=1
P(t, ti ).

So a swap can be replicated as a portfolio of bonds. In fact, it can be priced by simple
PV calculations. The swap rate, which gives the swap zero value, equals

P(t, t0)− P(t, tn)∑n
i=1 P(t, ti )�t

.
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The swap rate is the fixed rate that equates the PVs of the fixed payments and the
floating payments. For an ordinary swap, P(t, t0)= 1.

➤ Exercise 24.3.1 Assume that the local expectations theory holds. Prove that the
(T− t)-time spot rate at time t is less than or equal to Et [

∫ T
t r(s)ds ]/(T− t), the

expected average interest rate between t and T, with equality only if there is no
uncertainty about r(s).

➤ Exercise 24.3.2 Under the local expectations theory, prove that the forward rate
f (t,T) is less than the expected spot rate Et [ r(T) ] provided that interest rates
tend to move together in that Et [ r(T) |

∫ T
t r(s)ds ] is increasing in

∫ T
t r(s)ds. (The

unbiased expectations theory is hence inconsistentwith the local expectations theory.
See also Exercise 5.7.3, part (2).)

➤ Exercise 24.3.3 Show that the calibrated binomial interest rate tree generated
by the ideas enumerated in Subsection 23.2.2 (hence the slightly more general tree
of Exercise 23.2.3 as well) satisfies the local expectations theory. How about the
uncalibrated tree in Fig. 23.6?

➤ Exercise 24.3.4 Show that, under the unbiased expectations theory,

P(t,T)= 1
[ 1+ r(t) ]{ 1+ Et [ r(t + 1) ] } · · · { 1+ Et [ r(T− 1) ] }

in discrete time and P(t,T)= e−
∫ T
t Et [ r(s) ]ds in continuous time. (The preceding

equation differs from Eq. (24.8), which holds under the local expectations theory.)

➤ Exercise 24.3.5 The price of a consol that pays dividends continuously at the rate
of $1 per annum satisfies the following expected discounted-value formula:

P(t)= Eπt
[ ∫ ∞
t
e−

∫ T
t r(s)ds dT

]
.

Compare this equation with Eq. (24.9) and explain the difference.

➤ Exercise 24.3.6 Consider an amortizing swap in which the notional principal de-
creases by 1/n dollar at each of the n reset points. The initial principal is $1. Write
a formula for the swap rate.

➤ Exercise 24.3.7 Argue that a forward interest rate swap is equivalent to a portfolio
of one long payer swaption and one short receiver swaption. (The situation is similar
to Exercise 12.2.4, which said that a forward contract is equivalent to a portfolio of
European options.)

➤ Exercise 24.3.8 Use the risk-neutral methodology to price interest rate caps,
caplets, floors, and floorlets as fixed-income options.

24.4 The Term Structure Equation

In arbitrage pricing, we start exogenously with the bank account process and a pri-
mary set of traded securities plus their prices and stochastic processes. We then price
a security not in the set by constructing a replicating portfolio consisting of only
the primary assets. For fixed-income securities, the primary set of traded securities
comprises the zero-coupon bonds and the money market account.
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Let the zero-coupon bond price P(r, t,T) follow

dP
P
= µp dt + σp dW.

Suppose that an investor at time t shorts one unit of a bond maturing at time s1 and
at the same time buys α units of a bond maturing at time s2. The net wealth change
follows

−dP(r, t, s1)+α dP(r, t, s2)
= [−P(r, t, s1)µp(r, t, s1)+αP(r, t, s2)µp(r, t, s2) ]dt
+ [−P(r, t, s1) σp(r, t, s1)+αP(r, t, s2) σp(r, t, s2) ]dW.

Hence, if we pick

α ≡ P(r, t, s1) σp(r, t, s1)
P(r, t, s2) σp(r, t, s2)

,

then the net wealth has no volatility and must earn the riskless return, that is,

−P(r, t, s1)µp(r, t, s1)+αP(r, t, s2)µp(r, t, s2)
−P(r, t, s1)+αP(r, t, s2) = r.

Simplify this equation to obtain

σp(r, t, s1)µp(r, t, s2)− σp(r, t, s2)µp(r, t, s1)
σp(r, t, s1)− σp(r, t, s2) = r,

which becomes

µp(r, t, s2)− r
σp(r, t, s2)

= µp(r, t, s1)− r
σp(r, t, s1)

after rearrangement. Because this equality holds for any s1 and s2, we conclude that

µp(r, t, s)− r
σp(r, t, s)

≡ λ(r, t) (24.10)

for some λ independent of the bond maturity s. As µp = r + λσp, all assets are
expected to appreciate at a rate equal to the sum of the short rate and a constant
times the asset’s volatility.

The term λ(r, t) is called the market price of risk because it is the increase
in the expected instantaneous rate of return on a bond per unit of risk. The term
µp(r, t, s)− r denotes the risk premium. Again it is emphasized that the market
price of risk must be the same for all bonds to preclude arbitrage opportunities [76].

Assume a Markovian short rate model, dr = µ(r, t)dt + σ (r, t)dW. Then the
bond price process is also Markovian. By Eqs. (14.15),

µp =
[
−∂P
∂T
+µ(r, t) ∂P

∂r
+ σ (r, t)

2

2
∂2P
∂r2

]/
P, σp =

[
σ (r, t)

∂P
∂r

]/
P

(24.11)

subject to P( · ,T,T)= 1. Note that both µp and σp depend on P. Substitute µp
and σp above into Eq. (24.10) to obtain the following parabolic partial differential
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equation:

− ∂P
∂T
+ [µ(r, t)− λ(r, t) σ (r, t) ] ∂P

∂r
+ 1

2
σ (r, t)2

∂2P
∂r2
= r P. (24.12)

This is the term structure equation [660, 855]. Numerical procedures for solving
partial differential equations were covered in Section 18.1. Once P is available, the
spot rate curve emerges by means of

r(t,T)=− ln P(t,T)
T− t .

The term structure equation actually applies to all interest rate derivatives, the
difference being the terminal and the boundary conditions. The equation can also
be expressed in terms of duration D≡ (∂P/∂r) P−1, convexity C ≡ (∂2P/∂r2) P−1,
and time value �≡ (∂P/∂t) P−1 as follows:

�− [µ(r, t)− λ(r, t) σ (r, t) ]D+ 1
2
σ (r, t)2C = r. (24.13)

In sharp contrast to the Black–Scholes model, the specification of the short-rate
process plus the assumption that the bondmarket is arbitrage free doesnot determine
bond prices uniquely. The reasons are twofold: Interest rate is not a traded security
and the market price of risk is not determined within the model.

The local expectations theory is usually imposed for convenience. In fact, a prob-
ability measure exists such that bonds can be priced as if the theory were true to
preclude arbitrage opportunities [492, 493, 746]. In the world in which the local ex-
pectations theory holds, µp(r, t, s)= r and the market price of risk is zero (no risk
adjustment is needed), and vice versa. The term structure equation becomes

− ∂P
∂T
+µ(r, t) ∂P

∂r
+ 1

2
σ (r, t)2

∂2P
∂r2
= r P, (24.14)

and bond price dynamics (24.11) is simplified to

dP = r P dt + σ (r, t) ∂P
∂r
dW.

The market price of risk is usually assumed to be zero unless stated otherwise. We
can also derive the bond pricing formula under local expectations theory (24.9) by
assuming that the short rate follows the risk-neutral process:

dr = [µ(r, t)− λ(r, t) σ (r, t) ]dt + σ (r, t)dW.

➤ Exercise 24.4.1 Suppose a liability has been durationmatched by a portfolio.What
can we say about the relations among their respective time values and convexities?

➤ Exercise 24.4.2 Argue that European options on zero-coupon bonds satisfy the
term structure equation subject to appropriate boundary conditions.

➤ Exercise 24.4.3 Describe an implicit method for term structure equation (24.14).
You may simplify the short rate process to dr = µ(r)dt + σ (r)dW. Assume that
µ(r)≥ 0 and σ (0)= 0 to avoid negative short rates.
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➤ Exercise 24.4.4 Consider a futures contract on a zero-coupon bond with maturity
date T1. The futures contract expires at time T. Let F(r, t) denote the futures price
that follows dF/F = µf dt + σf dW. Prove that F satisfies

−∂F
∂T
+ [µ(r, t)− λ(r, t) σ (r, t) ] ∂F

∂r
+ 1

2
σ (r, t)2

∂2F
∂r2
= 0

subject to F( · ,T)= P( · ,T,T1), where λ≡ µf/σf.

24.5 Forward-Rate Process

Assume that the zero-coupon bond price follows dP(t,T)/P(t,T)= µp(t,T)dt +
σp(t,T)dW as before. Then the process followed by the instantaneous forward rate
is [76, 477]

df (t,T)=
[
σp(t,T)

∂σp(t,T)
∂T

− ∂µp(t,T)
∂T

]
dt − ∂σp(t,T)

∂T
dW.

In a risk-neutral economy, the forward-rate process follows

df (t,T)=
[
σ (t,T)

∫ T
t
σ (t, s)ds

]
dt − σ (t,T)dW, (24.15)

where

σ (t,T)≡ ∂σp(t,T)
∂T

,

because µp(t,T)= r(t) and

σp(t,T)=
∫ T
t

∂σp(t, s)
∂s

ds.

➤ Exercise 24.5.1 Justify Eq. (24.15) directly.

➤ Exercise 24.5.2 What should σp(t,T, P) be like for df (t,T)’s diffusion term to
have the functional form ψ(t) f (t,T)? The dependence of σp on P(t,T) is made
explicit here.

24.6 The Binomial Model with Applications

The analytical framework can be nicely illustrated with the binomial model. Suppose
the bond price P can move with probability q to Pu and probability 1−q to Pd,
where u> d:

P ✟✟✟✯ Pd
1−q

❍❍❍❥ Puq

.

Over the period, the bond’s expected rate of return is

µ̂≡ qPu+ (1−q) Pd
P

− 1= qu+ (1−q)d− 1, (24.16)
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and the variance of that return rate is

σ̂ 2 ≡ q(1−q)(u−d)2. (24.17)

Among the bonds, the one whose maturity is only one period away will move from
a price of 1/(1+ r) to its par value $1. This is the money market account modeled
by the short rate. The market price of risk is defined as λ≡ (µ̂− r)/σ̂ , analogous to
Eq. (24.10). The same arbitrage argument as in the continuous-time case can be used
to show that λ is independent of the maturity of the bond (see Exercise 24.6.2).

Now change the probability from q to

p≡ q− λ
√
q(1−q)= (1+ r)−d

u−d , (24.18)

which is independent of bond maturity and q. The bond’s expected rate of return
becomes

pPu+ (1− p) Pd
P

− 1= pu+ (1− p)d− 1= r.

The local expectations theory hence holds under the new probability measure p.1

➤ Exercise 24.6.1 Verify Eq. (24.18).

➤ Exercise 24.6.2 Prove that the market price of risk is independent of bond matu-
rity. (Hint: Assemble two bonds in such a way that the portfolio is instantaneously
riskless.)

➤ Exercise 24.6.3 Assume in a period that the bond price can go from $1 to Pu or
Pd and that the value of a derivative can go from $1 to Vu or Vd. (1) Show that a
portfolio of $1 worth of bonds and (Pd− Pu)/(Vu−Vd) units of the derivative is
riskless. (2) Prove that these many derivatives are worth

(R− Pd)Vu+ (Pu− R)Vd
(Pu− Pd) R

in total, where R≡ 1+ r is the gross riskless return.

➤ Exercise 24.6.4 Consider the symmetric random walk for modeling the short rate,
r(t + 1)= α+ ρr(t)± σ . Let V denote the current valueof an interest ratederivative,
Vu its value at the next period if rates rise, and Vd its value at the next period if rates
fall. Define u≡ eα+ρr(t)+σ /P(t, t + 2) and d ≡ eα+ρr(t)−σ /P(t, t + 2), so they are the
gross one-period returns on the two-period zero-coupon bond when rates go up and
down, respectively. (1) Show that a portfolio consisting of $B worth of one-period
bonds and two-period zero-coupon bonds with face value $� to match the value of
the derivative requires

�= Vu−Vd
(u−d) P(t, t + 2)

, B= uVd−dVu
(u−d) er(t) .

(2) Prove that

V = pVu+ (1− p)Vd
er(t)

,

where p≡ (er(t)−d)/(u−d).



24.6 The Binomial Model with Applications 355

90.703 ✟✟✟✯ 92.593 (= 100/1.08)

❍❍❍❥ 98.039 (= 100/1.02)
96.154 ✟✟✟✯ 100

❍❍❍❥ 100

Figure 24.1: Bond price processes. The price process of the 2-year zero-coupon
bond is on the left and that of the 1-year zero-coupon bond is on the right.

➤ Exercise 24.6.5 To use the objective probability q in pricing, we should discount
by the risk-adjusted discount factor, 1+ r + λσ̂ = 1+ µ̂. Prove this claim.

24.6.1 Numerical Examples

The following numerical examples involve the pricing of fixed-incomeoptions,MBSs,
and derivative MBSs under this spot rate curve:

Year 1 2

spot rate 4% 5%

Assume that the 1-year rate (short rate) can move up to 8% or down to 2% after a
year:

4%✟✟✟✯ 8%

❍❍❍❥ 2%

.

No real-world probabilities are specified. The prices of 1- and 2-year zero-coupon
bonds are, respectively, 100/1.04= 96.154 and 100/(1.05)2 = 90.703. Furthermore,
they follow the binomial processes in Fig. 24.1.

The pricing of derivatives can be simplified if we assume that investors are risk-
neutral. If all securities have the same expected one-period rate of return, the riskless
rate, then

(1− p)× 92.593
90.703

+ p× 98.039
90.703

− 1= 4%,

where p denotes the risk-neutral probability of an up move in rates. Solving this
equation leads to p= 0.319. Interest rate contingent claims can be priced under this
probability.

➤ Exercise 24.6.6 We could not have obtained the unique risk-neutral probability
had we not imposed a prevailing term structure that must be matched. Explain.

➤ Exercise 24.6.7 Verify the risk-neutral probability p= 0.319 with Eq. (24.18)
instead.

24.6.2 Fixed-Income Options

A 1-year European call on the 2-year zero with a $95 strike price has the payoffs

C ✟✟✟✯ 0.000

❍❍❍❥ 3.039

.
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To solve for the option value C, we replicate the call by a portfolio of x 1-year and
y 2-year zeros. This leads to the simultaneous equations,

x× 100+ y× 92.593 = 0.000,

x× 100+ y× 98.039 = 3.039,

which give x =−0.5167 and y= 0.5580. Consequently,

C = x× 96.154+ y× 90.703≈ 0.93

to prevent arbitrage. Note that this price is derived without assuming any version of
an expectations theory; instead, we derive the arbitrage-free price by replicating the
claim with a money market instrument and the claim’s underlying asset. The price
of an interest rate contingent claim does not depend directly on the probabilities. In
fact, the dependence holds only indirectly by means of the current bond prices (see
Exercise 24.6.6).

An equivalent method is to utilize risk-neutral pricing. The preceding call option
is worth

C = (1− p)× 0+ p× 3.039
1.04

≈ 0.93,

the same as before. This is not surprising, as arbitrage freedom and the existence of
a risk-neutral economy are equivalent.

➤ Exercise 24.6.8 (Dynamic Immunization) Explainwhy the replication idea solves
the problem of arbitrage opportunities in immunization against parallel shifts raised
in Subsection 5.8.2.

24.6.3 Futures and Forward Prices

A 1-year futures contract on the 1-year rate has a payoff of 100− r , where r is the
1-year rate at maturity, as shown below:

F ✟✟✟✯ 92 (= 100− 8)

❍❍❍❥ 98 (= 100− 2)

.

As the futures price F is the expected future payoff (see Exercise 13.2.11), F =
(1− p)× 92+ p× 98= 93.914. On the other hand, the forward price for a 1-year
forward contract on a 1-year zero-coupon bond equals 90.703/96.154= 94.331%.
The forward price exceeds the futures price, as Exercise 12.3.3 predicted.

24.6.4 Mortgage-Backed Securities

Consider a 5%-coupon, 2-yearMBSwithout amortization, prepayments, and default
risk. Its cash flow and price process are illustrated in Fig. 24.2, and its fair price is

M= (1− p)× 102.222+ p× 107.941
1.04

= 100.045.

Identical results could have been obtained by no-arbitrage considerations.
In reality mortgages can be prepaid. Assume that the security in question can be

prepaid at par and such decisions are rational in that it will be prepaid only when
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105
↗

5
↗ ↘ 102.222 (= 5+ (105/1.08))

105 ↗
0 M

105 ↘
↘ ↗ 107.941 (= 5+ (105/1.02))

5
↘

105

Figure 24.2: MBS’s cash flow and price process. The left
diagram depicts the cash flow, and the right diagram illus-
trates the price process.

its price is higher than par. Prepayment will hence occur only in the “down” state
when the security is worth 102.941 (excluding coupon). The price therefore follows
the process

M ✟✟✟✯ 102.222

❍❍❍❥ 105

,

and the security is worth

M= (1− p)× 102.222+ p× 105
1.04

= 99.142.

Wego on to price strippedmortgage-backed securities (SMBSs) derived from the
above prepayable mortgage. The cash flow of the principal-only (PO) strip comes
from the mortgage’s principal cash flow, whereas that of the interest-only (IO) strip
comes from the interest cash flow (see Fig. 24.3(a)). Their prices hence follow the
processes in Fig. 24.3(b). The fair prices are

PO = (1− p)× 92.593+ p× 100
1.04

= 91.304,

IO = (1− p)× 9.630+ p× 5
1.04

= 7.839.

Of course, PO+ IO= M.2

The above formulas reveal that IO andPO strips react to changes in p differently.
The value of the PO strip rises with increasing p, whereas that of the IO strip declines
with increasing p. Suppose the market price of risk is positive so that the real-world
probability q exceeds the risk-neutral probability p. Then the market value of the
PO strip, like that of the zero-coupon bond, is lower than its discounted expected
value under q, which compensates the investors for its riskiness by earning more
than the riskless return on average. The market value of the IO strip, however, is
higher than its discounted expected value under q, making the security earn less than
the riskless rate even though it is a risky security. The reason is that the IO’s price
correlates negatively with the zero-coupon bond’s.

Suppose the mortgage is split into half floater and half inverse floater. Let the
floater (FLT) receive the 1-year rate. Then the inverse floater (INV) must have a
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PO: 100 IO: 5
↗ ↗

0 5
↗ ↘ ↗ ↘

100 5
0 0

0 0
↘ ↗ ↘ ↗

100 5
↘ ↘

0 0
(a)

92.593 9.630
↗ ↗

PO IO

↘ ↘
100 5

(b)

Figure 24.3: Cash flows and price processes of PO
and IO strips. The price 9.630 is derived from 5+
(5/1.08).

coupon rate of 10%− 1-year rate to make the overall coupon rate 5%. Their cash
flows as percentages of par and values are shown in Fig. 24.4. The current prices are

FLT = 1
2
× 104

1.04
= 50,

INV = 1
2
× (1− p)× 100.444+ p× 106

1.04
= 49.142.

➤ Exercise 24.6.9 Explain why all the securities covered up to now have the same
1-year return of 4% in a risk-neutral economy.

FLT: 108 INV: 102
↗ ↗

4 6
↗ ↘ ↗ ↘

108 102
0 0

0 0
↘ ↗ ↘ ↗

104 106
↘ ↘

0 0
(a)

104 100.444
↗ ↗

FLT INV

↘ ↘
104 106

(b)

Figure 24.4: Cash flows and price processes of floater and
inverse floater. The floater’s price in the up node, 104, is
derived from 4+ (108/1.08), and the inverse floater’s price,
100.444, is derived from 6+ (102/1.08).
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➤ Exercise 24.6.10 Verify that the value of a European put, like that of the IO, de-
clines with increasing p.

24.7 Black–Scholes Models

A few interest rate models are based on the Black–Scholes option pricing model or
the related Blackmodel. They differ mainly in whether it is the price or the yield that
is being modeled. As simple as these models are and despite some difficulties, they
usually provide adequate results for options with short maturities [305, 456].

24.7.1 Price Models

Suppose the long-term bond price follows geometric Brownian motion much like
the stock price. As with stock options, options on the bond can be replicated by
continuous trading of these bonds and borrowing at the prevailing short rate. Hence
Black–Scholes formulas (12.16) apply.

This pricing model has several problems. It is inconsistent to assume that the
short-term rate is a constant – as dictated by the Black–Scholes option pricing model
– but the long bond price is uncertain. Another objection is about the volatility of
bond prices. Although this volatility must first increase with the passage of time, it
should eventually decrease toward zero because the bond converges to its par value
at maturity. In other words, the price uncertainty is small in the immediate future
and near bond maturity but large between these two extreme points (see Fig. 24.5).
This unique property is not captured by the preceding model, which assumes that
the variance of the bond price grows linearly in time.

The lognormal assumption for the zero-coupon bond pricemeans that the contin-
uously compounded interest rate is normally distributed. Three problems are associ-
atedwith this distribution: the possibility of negative interest rates, the independence
of interest rate volatility from the interest rate level, and the possibility of the bond
price’s rising above its sum of cash flows.

Figure 24.5: Pull toward par of bond prices. The bond price volatility changes over
time.
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➤ Exercise 24.7.1 Assume that interest rates cannot be negative. (1) Why should a
call on a zero-coupon bondwith a strike price of $102 be worth zero given a par value
of $100? (2) The Black–Scholes formula gives a positive call value. Why?

➤ Exercise 24.7.2 Consider a call on a zero-coupon bondwith an expiration date that
coincides with the bond’s maturity. Does the call premium depend on the interest
rate movements between now and the expiration date?

24.7.2 Yield Models

Consider the alternative model that models the yield to maturity, not the bond price,
as geometric Brownian motion. It solves a few problems that were poisoning the
preceding model. To start with, because yield to maturity now has the lognormal
distribution, negative interest rates are ruled out. Furthermore, as the bond price at
any time is derived from the yield’s probability distribution, it will reflect both the
decrease in price volatility and the pull toward par as the bond matures.

This model has its own difficulties. In the binomial setting, it is known that the
one-period riskless rate must be between the one-period bond returns of up and
down yield shifts to avoid arbitrage (see Exercise 9.2.1). However, if the riskless rate
is a constant, preventing such opportunities may be difficult, especially in light of the
fact that both the up and the down returns must eventually approach one because of
the pull toward par. Another problem is that the yield volatility is constant over the
life of the bond; in reality, however, it decreases as the maturity increases.

24.7.3 Models Based on the Brownian Bridge

Because zero-coupon bondsmove toward par atmaturity, a Brownian bridge process
seems ideal for modeling their price dynamics [50]. Recall that a Brownian bridge
process {B(t), 0≤ t ≤ T } can be defined as

B(t)=W(t)− t
T
W(T).

Note that B(0)= B(T)= 0. The bond pricemodel P(t,T)= er(t−T)+σB(t) clearly has
the desirable pull-to-par property because P(T,T)= 1. However, certain models
based on Brownian bridge are not arbitrage free, thus not sound [193].

Additional Reading

Consult [38, 76, 290, 510, 691, 725, 731] for the theory behind the term structure
models. We followed [34] in Subsection 24.6.1.

NOTES

1. Note that Eq. (24.18) is identical to risk-neutral probability (9.5) of the BOPM.
2. You can order either whole milk or skim milk plus the right amount of cream. They cost the

same!



CHAPTER
TWENTY-FIVE

Equilibrium Term
Structure Models

8. What’s your problem? Any moron can understand bond pricing
models.

Top Ten Lies Finance Professors Tell Their Students1

Many interest rate models have been proposed in the literature and used in practice.
This chapter surveys equilibrium models, and the next chapter covers no-arbitrage
models. Because the spot rates satisfy

r(t,T)=− ln P(t,T)
T− t ,

the discount function P(t,T) suffices to establish the spot rate curve. Most models
to follow are short rate models, in which the short rate is the sole source of uncer-
tainty. Unless stated otherwise, the market price of risk λ is assumed to be zero; the
processes are hence risk-neutral to start with.

25.1 The Vasicek Model

Vasicek proposed the model in which the short rate follows [855]

dr = β(µ− r)dt + σ dW.
The short rate is thus pulled to the long-term mean level µ at rate β. Superimposed
on this “pull” is a normally distributed stochastic term σ dW. The idea of mean
reversion for interest rates dates back to Keynes [232]. This model seems relevant to
interest rates in Germany and the United Kingdom [248].

Because the process is an Ornstein–Uhlenbeck process,

E[ r(T) | r(t)= r ]= µ+ (r −µ) e−β(T−t)

from Eq. (14.13). The term structure equation under the Vasicek model is

−∂P
∂T
+β(µ− r) ∂P

∂r
+ 1

2
σ 2 ∂

2P
∂r2
= r P.

The price of a zero-coupon bond paying one dollar at maturity can be shown to be

P(t,T)= A(t,T) e−B(t,T) r(t), (25.1)

361
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Figure 25.1: Term structure shapes. The parameters (β ,µ, σ , r )
are (5.9, 0.2, 0.3, 0.1), (3.9, 0.1, 0.3, 0.2), and (0.1, 0.4, 0.11, 0.1)
for normal, inverted, and humped term structures, respectively.

where

A(t,T)=


exp

[
{ B(t,T)−T+t }(β2µ−σ 2/2)

β2 − σ 2B(t,T)2

4β

]
, if β �= 0

exp
[
σ 2(T−t)3

6

]
, if β = 0

,

B(t,T)=
{

1−e−β(T−t)
β

, if β �= 0
T− t, if β = 0

.

This model has some unpleasant properties; for example, if β = 0, then P goes
to infinity as T→∞ , like the Merton model. However, sensibly, P goes to zero as
T→∞ if β �= 0.Even so, P mayexceedone for afinite T. SeeFig. 25.1 for the shapes
of the spot rate curve. The spot rate volatility structure is the curve [ ∂r(t,T)/∂r ] σ =
σB(t,T)/(T− t). When β > 0, the curve tends to decline with maturity. The speed
of mean reversion, β, controls the shape of the curve; indeed, higher β leads to
greater attenuation of volatility with maturity. It is not hard to verify that duration
− ∂P(t,T)/∂rP(t,T) equals B(t,T). Duration decreases toward 1/β as the term lengthens if
there is mean reversion (β > 0). On the other hand, duration equals the term to
maturity T− t if there is no mean reversion (β = 0), much like the static world.
Interestingly, duration is independent of the interest rate volatility σ.

➤ Exercise 25.1.1 Connect the Vasicek model with the AR(1) process.

➤ Exercise 25.1.2 (1) Show that the long rate is µ− σ 2/(2β2), independent of the
current short rate. (2) Derive the liquidity premium for the β �= 0 case.

➤ Exercise 25.1.3 Show that Eq. (25.1) satisfies the term structure equation.

➤ Exercise 25.1.4 Verify that dP/P = r dt − B(t,T) σ dW is the bond price process
for the Vasicek model.

➤ Exercise 25.1.5 Show that the Ito process for the instantaneous forward rate
f (t,T) under the Vasicek model with β �= 0 is

df = σ
2

β
e−β(T−t)

[
1− e−β(T−t) ]dt + σe−β(T−t) dW.

(Hint: Section 24.5 and Exercise 25.1.4.)
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25.1.1 Options on Zero-Coupon Bonds

Consider a European call with strike price X expiring at time T on a zero-coupon
bond with par value $1 andmaturing at time s > T. Its price is given by the following
Black–Scholes-like formula [506]:

P(t, s) N(x)− XP(t,T) N(x− σv),
where

x ≡ 1
σv

ln
(
P(t, s)
P(t,T) X

)
+ σv

2
,

σv ≡ v(t,T) B(T, s),

v(t,T)2 ≡
{
σ 2[ 1−e−2β(T−t) ]

2β , if β �= 0

σ 2(T− t), if β = 0
.

Note that v(t,T)2 is the variance of r(t,T) by Eq. (14.14). The put–call parity says
that

call= put+ P(t, s)− P(t,T) X.
The price of a European put is thus XP(t,T) N(−x+ σv)− P(t, s) N(−x).
➤ Exercise 25.1.6 Verify that the variance of ln P(t,T) is σ 2

v .

25.1.2 Binomial Approximation

We consider a binomial model for the short rate in the time interval [ 0,T ] divided
into n identical pieces. Let �t ≡ T/n and

p(r)≡ 1
2
+ β(µ− r)

√
�t

2σ
.

The following binomial model converges in distribution to the Vasicek model [696]:

r(k+ 1)= r(k)+ σ
√
�t ξ(k), 0≤ k< n,

where ξ(k)=±1 , with

Prob[ ξ(k)= 1 ]=


p[ r(k) ], if 0≤ p(r(k))≤ 1

0, if p(r(k))< 0

1, if 1< p(r(k))

.

Observe that the probability of an upmove, p, is a decreasing function of the interest
rate r . This is consistent with mean reversion.

The rate is the samewhether it is the result of anupmove followedbyadownmove
or a downmove followed by an upmove; in other words, the binomial tree combines.
The key feature of the model that makes it happen is its constant volatility, σ . For a
general process Y with nonconstant volatility, the resulting binomial tree may not
combine. Fortunately, if Y can be transformed into one with constant volatility, say
X, then we can first construct a combining tree for X and then apply the inverse
transformation on each node to obtain a combining tree for Y. This idea will be
explored in Subsection 25.2.2.
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➤ Exercise 25.1.7 Prove that

E[ r(k+ 1)− r(k) ]
�t

=


β[µ− r(k) ], if 0≤ p(r(k))≤ 1

σ/
√
�t, if p(r(k))< 0

−σ/√�t, if 1< p(r(k))

and Var[ r(k+ 1)− r(k) ]→ σ 2�t .

➤ Exercise 25.1.8 Show that discretizing the Vasicek model directly by (14.7) does
not result in a combining binomial tree.

➢ Programming Assignment 25.1.8 Write a program to implement the binomial tree
for the Vasicek model. Price zero-coupon bonds and compare the results against
Eq. (25.1).

25.2 The Cox-Ingersoll-Ross Model

Cox, Ingersoll, andRoss (CIR) proposed the following square-root short-rate model
[234]:

dr = β(µ− r)dt + σ√r dW. (25.2)

Although the randomly moving interest rate is elastically pulled toward the long-
term value µ, as in the Vasicek model, the diffusion differs by a multiplicative factor√
r . The parameter β determines the speed of adjustment. The short rate can reach

zero only if 2βµ < σ 2.
The price of a zero-coupon bond paying $1 at maturity is [470]

P(t,T)= A(t,T) e−B(t,T) r(t), (25.3)

where

A(t,T) =
{

2γ e(β+γ )(T−t)/2

(β + γ ) [ eγ (T−t)− 1
]+ 2γ

}2βµ/σ 2

,

B(t,T) = 2
[
eγ (T−t)− 1

]
(β + γ ) [ eγ (T−t)− 1

]+ 2γ
,

γ =
√
β2+ 2σ 2.

A formula for consols is also available [266]. Figure 25.2 illustrates the shapes of
the spot rate curve. In general, the curve is normal if the current short rate r(t) is
below the long rate r(t,∞), becomes inverted if r(t)> µ, and is slightly humped if
r(t,∞)< r(t)< µ [493]. Figure 25.3 illustrates the long rate and duration of zero-
coupon bonds. To incorporate the market price of risk into bond prices, replace each
occurrence of β in A(t,T) (except the exponent 2βµ/σ 2), B(t,T), and γ with
β + λ. Consult Subsection 14.3.2 for additional properties of the square-root process.

Two implications of the CIRmodel are at odds with empirical evidence: constant
long rate and perfect correlation in yield changes along the term structure. The
CIR model has been subject to many empirical studies (e.g., [11, 135, 138, 173, 257,
384, 835]). The model seemed to fit the term structure of real interest rates in the
UnitedKingdomwell until the end of 1992 [137]. (Real rates have been generally less
volatile than nominal rates.) It also seems relevant to Denmark and Sweden [248].
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Figure 25.2: Term structure shapes. The values for the parame-
ters (β ,µ, σ , r ) are (0.02, 0.7, 0.02, 0.1), (0.7, 0.1, 0.3, 0.2), and
(0.06, 0.09, 0.5, 0.02) for normal, inverted, and humped term
structures, respectively. The long rates are 0.512436, 0.0921941,
and 0.0140324, respectively.

➤ Exercise 25.2.1 Show that the long rate is 2βµ/(β + γ ), independent of the short
rate.

➤ Exercise 25.2.2 Show that Eq. (25.3) satisfies the term structure equation.

➤ Exercise 25.2.3 Verify that dP/P = r dt − B(t,T) σ√r dW is the bond price pro-
cess for the CIR model.

➤ Exercise 25.2.4 (AffineModels) Forany short ratemodel dr = µ(r, t)dt + σ (r, t)
dW that produces zero-coupon bond prices of the form P(t,T)= A(t,T) e−B(t,T) r(t),
show that the spot rate volatility structure is the curve σ (r, t) B(t,T)/(T− t).
➤ Exercise 25.2.5 (1) Write the bond price formula in terms of φ1 ≡ γ , φ2 ≡ (β +
γ )/2, and φ3 ≡ 2βµ/σ 2. (2) How do we estimate σ , given estimates for φ1, φ2, and
φ3?

➤ Exercise 25.2.6 Consider a yield curve option with payoff max(0, r(T,T1)−
r(T,T2)) at expiration T, where T < T1 and T < T2. The security is based on
the yield spread of two different maturities, T1−T and T2−T. Assume either the
Vasicek or theCIRmodel. Show that this option is equivalent to a portfolio of caplets
on the (T2−T)-year spot rate.

Figure 25.3: Long rates and duration under the CIR model. The parameters (β ,µ, σ ) are (0.02, 0.7, 0.02).
The long-rate plot uses 0.8, 0.6, 0.4, and 0.1 as the initial rates. The duration of zero-coupon bonds uses r = 0.1,
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Figure 25.4: Binomial tree for the CIR model.

➢ Programming Assignment 25.2.7 Implement the implicit method in Exercise 24.4.3
for zero-coupon bonds under the CIR model.

25.2.1 Binomial Approximation

Suppose we want to approximate the short rate process in the time interval [ 0,T ]
divided into n periods of duration �t ≡ T/n. Assume that µ, β ≥ 0. A direct dis-
cretization of the process is problematic because the resulting binomial tree will not
combine (see Exercise 25.2.14, part (1)). Instead, consider the transformed process
x(r)≡ 2

√
r/σ . It follows

dx =m(x)dt +dW,
where m(x)≡ 2βµ/(σ 2x)− (βx/2)− 1/(2x).Because thisnewprocesshasa constant
volatility, its associated binomial tree combines.

The combining tree for r can be constructed as follows. First, construct a tree
for x. Then transform each node of the tree into one for r by means of the inverse
transformation r = f (x)≡ x2σ 2/4 (see Fig. 25.4). The probability of an up move at
each node r is

p(r)≡ β(µ− r)�t + r − r
−

r+ − r− , (25.4)

where r+ ≡ f (x+√�t) denotes the result of an up move from r and r− ≡ f (x−√
�t) the result of a down move [268, 696, 746]. Finally, set the probability p(r)

to one as r goes to zero to make the probability stay between zero and one. See
Fig. 25.6 for the algorithm.

For a concrete example, consider the process

0.2 (0.04− r)dt + 0.1
√
r dW

for the time interval [ 0, 1 ] given the initial rate r(0)= 0.04.We use �t = 0.2 (year)
for the binomial approximation. Figure 25.5(a) shows the resulting binomial short
rate tree with the up-move probabilities in parentheses. To give an idea how these
numbers come into being, consider the node that is the result of an upmove from the
root. Because the root has x = 2

√
r(0)/σ = 4, this particular node’s x value equals

4+√�t = 4.4472135955. Now use the inverse transformation to obtain the short
rate x2× (0.1)2/4≈ 0.0494442719102. Other short rates can be similarly obtained.
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Figure 25.5: Short rate and bond price trees for the CIR model.

Once the short rates are in place, computing the probabilities is easy. Note that
the up-move probability decreases as interest rates increase and decreases as interest
rates decline. This phenomenon agrees with mean reversion.

➤ Exercise 25.2.8 Derive E[ r(k+ 1)− r(k) ] and Var[ r(k+ 1)− r(k) ].
➤ Exercise 25.2.9 Show that p(r)= (1/2)+ (1/2)m(x(r))

√
�t .

➢ Programming Assignment 25.2.10 Write a program to implement the binomial short
rate tree and the bond price tree for the CIR model. Compare the results against
Eq. (25.3).

Term Structure Dynamics
The tree of short rates can be used to calculate the one-period bond prices (the
underlined numbers in Fig. 25.5(b)). For example, the rate after two up moves,
0.05988854382, gives rise to

e−0.05988854382×0.2 = 0.988093738447.
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Binomial CIR model for zero-coupon bonds:

input: τ, r, β, µ, σ,n;
real r+, r−, r ′, x, x′, p,�t,�x, P[n+ 1 ];
integer i, j ;
�t := τ/n;
x := 2

√
r/σ ;

�x :=√�t ;
for (i = 0 to n) P[ i ] := 1;
for ( j = n− 1 down to 0)

for (i = 0 to j) {
x′ := x+ ( j − 2i)�x;
r ′ := x′2σ 2/4;
r+ := (x′ +�x)2σ 2/4;
r− := (x′ −�x)2σ 2/4;
if [ r ′ = 0 ] p := 1;
else p := (β(µ− r ′)�t + r ′ − r−)/(r+ − r−);
if [ p< 0 ] p := 0;
if [ p> 0 ] p := 1;
P[ i ] := (p× P[ i ]+ (1− p)× P[ i + 1 ])/er

′�t ;
}

return P[ 0 ];

Figure 25.6: Binomial CIR model for zero-coupon bonds.

The one-period bond prices and the local expectations theory then completely de-
termine the evolution of the term structure in Fig. 25.5(b) as follows. Suppose we are
interested in the m-period zero-coupon bond price at a node A given that (m− 1)-
period zero-coupon bond prices have been available in the two successive nodes Pu
(up move) and Pd (down move). Let the probability of an up move be p. Then the
desired price equals

PA(pPu+ (1− p) Pd),

where PA is the one-period bond price at A. For instance, the five-period
zero-coupon bond price at time zero, 0.960831229521, can be derived
with PA = 0.992031914837, p= 0.472049150276, Pu = 0.961665706744, and Pd =
0.974702907786. Once the discount factors are in place, they can be used to ob-
tain the spot rates. For instance, the spot rates at time zero are (0.04, 0.039996,
0.0399871, 0.0399738, 0.0399565) based on Fig. 25.5(b).

➤ Exercise 25.2.11 Suppose we want to calculate the price of some interest-rate-
sensitive security by using the binomial tree for the CIR or the Vasicek model.
Assume further that we opt for the Monte Carlo method with antithetic variates.
One difficulty with the standard paradigm covered in Subsection 18.2.3 is that, here,
the probability at each node varies, and all paths are hence not equally probable.
How do we handle this difficulty?

➤ Exercise 25.2.12 (1) The binomial short rate tree as described requires �(n2)
memory space. How do we perform backward induction on the tree with only O(n)
space? (2) Describe a scheme that needs only O(n2) space for the bond price tree.
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Convergence
The binomial approximation converges fast. For example, analytical formula (25.3)
gives the following market discount factors at times zero and �t after an up move.

Discount factor
Year (Now) (Time∆t ; up state)

0.2 0.992032 0.990197
0.4 0.984131 0.980566
0.6 0.976299 0.971102
0.8 0.968536 0.961804
1.0 0.960845

The numbers derived by the binomial model in Fig. 25.5(b) can be seen to stand up
quite well even at �t = 0.2. In fact, we could have started from the short rate tree
and generated zero-coupon bond prices at the terminal nodes by Eq. (25.3). This
nice feature, made possible by the availability of closed-form formulas, can speed up
derivatives pricing.We need to build the tree up to only thematurity of the derivative
instead of that of its underlying bond, which could be much longer (see Comment
23.2.1 for more on this point).

25.2.2 A General Method for Constructing Binomial Models

The binomial approximations for the Vasicek and the CIR models follow this gen-
eral guideline. Given a continuous-time process dy= α(y, t)dt + σ (y, t)dW, we
first make sure the binomial model’s drift and diffusion converge to those of the
continuous-time process by setting the probability of an up move to

α(y, t)�t + y− yu
yu− yd ,

where yu+≡ y+ σ (y, t)
√
�t and yd ≡ y− σ (y, t)

√
�t represent the two rates that

follow the current rate y. Note that the displacements are identical at σ (y, t)
√
�t .

As it stands, the binomial treemay not combine: An upmove followed by a down
move may not reach the same value as a down move followed by an up move as in
general

σ (y, t)
√
�t − σ (yu, t)

√
�t �= −σ (y, t)

√
�t + σ (yd, t)

√
�t .

When σ (y, t) is a constant independent of y, equality holds and the tree combines.
To achieve this, define the transformation x(y, t)≡ ∫ y σ (z, t)−1 dz. Then x follows
dx =m(y, t)dt +dW for some function m(y, t) (see Exercise 25.2.13). The key is
that the diffusion term is now a constant, and the binomial tree for x combines. The
probability of an up move remains

α(y(x, t), t)�t + y(x, t)− yd(x, t)
yu(x, t)− yd(x, t) ,

where y(x, t) is the inverse transformation of x(y, t) from x back to y. Note that
yu(x, t)≡ y(x+

√
�t, t +�t) and yd(x, t)≡ y(x−

√
�t, t +�t) [696].

For example, the transformation is
∫ r (σ√z)−1 dz= 2

√
r/σ for the CIR model.

As another example, the transformation is
∫ S(σz)−1 dz= (1/σ ) ln S for the Black–

Scholes model. The familiar BOPM in fact discretizes ln S , not S.
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➤ Exercise 25.2.13 Verify that the transformation x(y, t)≡ ∫ y σ (z, t)−1 dz turns the
process dy= α(y, t)dt + σ (y, t)dW into one for x whose diffusion term is one.

➤ Exercise 25.2.14 (1) Show that the binomial tree for the untransformedCIRmodel
doesnot combine. (2)Show that thebinomial tree for thegeometricBrownianmotion
dr = rµdt + rσ dW does combine even though its volatility is not a constant.

25.2.3 Multifactor CIR Models

One-factor models such as the Vasicek and the CIR models are driven by a single
source of uncertainty such as the short rate. To address the weaknesses of these
models, reviewed in Section 25.5, multifactor models have been proposed. In one
two-factor CIR model, the short rate is the sum of two factors r1 and r2: r ≡ r1+ r2
[474]. The risk-neutral processes for r1 and r2 are

dr1 = β1(µ1− r1)dt + σ1√r1 dW1,

dr2 = β2(µ2− r2)dt + σ2√r2 dW2,

and ρ is the correlation between dW1 and dW2. The partial differential equation
for the zero-coupon bond is

− ∂P
∂T
+β1(µ1− r1) ∂P

∂r1
+β2(µ2− r2) ∂P

∂r2
+ σ

2
1 r1
2

∂2P

∂r21
+ σ

2
2 r2
2

∂2P

∂r22

+ ρσ1σ2√r1r2 ∂2P
∂r1∂r2

= r P.

Because both factors have an impact on yields from the very short end of the term
structure, this model behaves like a one-factor model [149].

25.3 Miscellaneous Models

Ogden proposed the following short rate process:

dr = β(µ− r)dt + σr dW,
where β ≥ 0 denotes the speed of adjustment and µ is the steady-state interest rate
[702]. The predictable part of the change in rates, β(µ− r)dt , incorporates the mean
reversion toward the long-termmean.Clearly the size of the change in rates is greater
the further the current rate deviates from its mean. The unpredictable part says that
the interest rate is more volatile, in absolute terms, when it is high than when it is
low. Dothan’s model is lognormal [282]:

dr
r
= α dt + σ dW.

Because interest rates do not grow without bounds, the dr = σr dW version may be
preferred.

Constantinides developed a family ofmodels to address someof the shortcomings
of the CIRmodel while maintaining positive interest rates and closed-form formulas
for various prices of interest rate derivatives [223]. The simplest of the models is

dr = 2a
(
1− σ

2

a

) (
σ 2− 2axy

)
dt + 4a

(
1− σ

2

a

)
yσ dW1,
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where a, σ, andα are constants satisfying certain inequalities, y≡ x−α+ α
2(1−σ 2/a) ,

and x is the Ornstein–Uhlenbeck process dx =−ax dt + σ dW2. The two Wiener
processes W1 and W2 are uncorrelated. This model is able to produce inverted-
humped yield curves, which are not possible with the CIR model.

Chan, Karolyi, Longstaff, and Sanders (CKLS) proposed the following model
[173]:

dr = (α+βr)dt + σrγ dW.
It subsumes the Vasicek model, the CIR model, the Ogden model, and the Dothan
model, as well as many others. Using 1-month T-bills, they found that γ ≥ 1 captures
short rate dynamics better than γ < 1. They also reported positive relations between
interest rate volatility and the level of interest rate. Their finding of weak evidence of
mean reversion is not shared by the data from several European countries, however
[248]. Other researchers suggest that γ ≥ 1 overestimates the importance of rate
levels on interest rate volatility [93, 126, 563].

Brennan and Schwartz proposed the following two-factor model:

d ln r = β(ln �− ln r)dt + σ1 dW1,

d�
�
= a(r, �,b2)dt + σ2 dW2,

where ρ is the correlation between dW1 and dW2 [121, 123]. Unlike the two-factor
CIRmodel, the two factors here are at the two ends of the yield curve, i.e., short and
long rates. The short rate hasmean reversion to the long rate and follows a lognormal
process, whereas the long rate follows another lognormal process. This model seems
popular [38, 653]. See [462] for problems with this model.

Fong and Vasicek proposed the following model whose two stochastic factors are
the short rate and its instantaneous variance v:

dr = β(µr − r)dt +
√
v dW1,

dv = γ (µv − v)dt + ξ
√
v dW2,

where µr is the long-term mean of the short rate and µv is the long-term mean
of the variance of the short rate [362]. See [387, 793] for additional information. A
related three-factor model makes the long-term mean µr stochastic [46].

➤ Exercise 25.3.1 To construct a combining binomial tree for the CKLSmodel, what
function of r should be modeled?

25.4 Model Calibration

Two standard approaches to calibrating models are the time-series approach and the
cross-sectional approach. In the time-series approach, the time series of short rates
is used to estimate the parameters of the process. Although it may help in validating
the proposed interest rate process, this approach alone cannot be used to estimate
the risk premium parameter λ. The model prices based on the estimated parameters
may also deviate a lot from those in the market.

The cross-sectional approach uses a cross section of observed bond prices. The
parameters are to be such that the model prices closely match those in the market.
After this procedure, the calibrated model can be used to price interest rate
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derivatives. Unlike the time-series approach, the cross-sectional approach is unable
to separate out the interest rate risk premium from the model parameters. Fur-
thermore, empirical evidence indicates that these estimates may not be stable over
time [77, 746]. The common practice of repeated recalibration, albeit pragmatic, is
not theoretically sound. A joint cross-section/time-series estimation is also possible
[257].

If the model contains only a finite number of parameters, which is true of the
Vasicek and the CIR models, a complete match with the market data must be the
result of pure luck. This consideration calls formodels that have an infinite parameter
vector.Oneway toachieve this is to let someparameters inafinite-dimensionalmodel
be deterministic functions of time [234]. Many no-arbitrage models take this route.
It must be emphasized that making parameters time dependent does not render
a model multifactor. Each factor in a multifactor model must represent a distinct
source of uncertainty, which a time-dependent parameter does not do, even though
it does provide the model with greater flexibility [38].

Calibration cannot correct model specification error. The price of a derivative
is the cost of carrying out a self-financing replicating strategy based on its delta, we
recall. Delta hedges that fail to replicate the derivative will provide incorrect prices.
Hence a misspecified model does not price or hedge correctly even if it has been
calibrated [42, 149]. For instance, if the drift of the short rate is not linear, as some
evidence suggests [11], then all models that postulate a linear drift err. Of course,
it is possible for a wrong model to be useful as an interpolator of prices within a set
of claims similar to the ones used in calibration. There is no support, however, for
using such a model to price claims very different from the ones in the calibrating set.

➤ Exercise 25.4.1 Two methods were mentioned for calibrating the Black–Scholes
option pricing model: historical volatility and implied volatility. Which corresponds
to the time-series approach and which to the cross-sectional approach?

25.5 One-Factor Short Rate Models

One-model short rate models have several shortcomings. To begin with, they throw
away much information. By using only the short rate, they ignore other rates on the
yield curve. Such models also restrict the volatility to be a function of interest rate
levels only [126].

When changes in the term structure are driven by a single factor, the prices of all
bonds move in the same direction at the same time even though their magnitudes
may differ. The returns on all bonds thus become highly correlated. In reality, there
seems tobea certainamountof independencebetween short- and long-termrates [38,
304].2 One-factormodels therefore cannot accommodate nondegenerate correlation
structures across maturities. Not surprisingly, derivatives whose values depend on
the correlation structure across distinct sectors of the yield curve, such as yield curve
options, are mispriced by one-factor models [149].

In one-factor models, the shape of the term structure is typically limited to being
monotonically increasing, monotonically decreasing, and slightly humped. The cali-
brated models also may not generate term structures as concave as the data suggest
[41]. The term structure empirically changes in slope and curvature as well as makes
parallel moves (review Subsection 19.2.5). This is inconsistent with the restriction
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that the movements of all segments of the term structure be perfectly correlated.
One-factor models are therefore incomplete [607].

Generally speaking, one-factor models generate hedging errors for complex se-
curities [91], and their hedging accuracy is poor [42, 149]. They may nevertheless be
acceptable for applications such as managing portfolios of similar-maturity bonds or
valuation of securities with cash flows determined predominantly by the overall level
of interest rates [198].

Models in which bond prices depend on two or more sources of uncertainty lead
to families of yield curves that can take a greater variety of shapes and can better
represent reality [46, 793].Multifactormodels include theBrennan–Schwartzmodel,
the Richard model [741], the Langetieg model, the Longstaff–Schwartz model, and
the Chen–Scott model [183]. However, a multifactor model is much harder to think
about and work with. It also takes much more computer time – the curse of dimen-
sionality raises its head again. These practical concerns limit the use of multifactor
models to two-factor ones [38]. Working with different one-factor models before
moving on to multifactor ones may be a wise recommendation [84, 482].

The price of a European option on a coupon bond can be calculated from those
on zero-coupon bonds as follows. Consider a European call expiring at time T on
a bond with par value $1. Let X denote the strike price. The bond has cash flows
c1, c2, . . . , cn at times t1, t2, . . . , tn, where ti > T for all i . The payoff for the option
is clearly

max

(
n∑
i=1
ci P(r(T),T, ti )− X, 0

)
.

At time T, there is a unique value r∗ for r(T) that renders the coupon bond’s
price equal to the strikeprice X.We canobtain this r∗ by solving X=∑i ci P(r,T, ti )
numerically for r , which is straightforward if analytic formulas are known for zero-
coupon bond prices. The solution is also unique for one-factor models as the bond
price is a monotonically decreasing function of r . Let Xi ≡ P(r∗,T, ti ), the value at
time T of a zero-coupon bondwith par value $1 andmaturing at time ti if r(T)= r∗.
Note that P(r(T),T, ti )>= Xi if and only if r(T)<= r∗.As X=∑i Xi , the option’s
payoff equals

n∑
i=1
ci ×max(P(r(T),T, ti )− Xi , 0).

Thus the call is a package of n options on the underlying zero-coupon bond [506].

➤ Exercise 25.5.1 Suppose that the spot rate curve r(r, a,b, t,T)≡ r + a(T− t) +
b(T− t)2 is implied by a three-factor model. Which of the factors, r , a, and b, affects
slope, curvature, and parallel moves, respectively?

➤ Exercise 25.5.2 Repeat the preceding argument for European puts on coupon
bonds and show that the payoff equals

∑n
i=1 ci ×max(Xi − P(r(T),T, ti ), 0).

Concluding Remarks and Additional Reading

When a financial series is described by a stochastic differential equation like

dXt = µ(Xt)dt + σ (Xt)dWt ,
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the specific parametric forms chosen for µ and σ may be based more on analytic or
computational tractability than economic considerations. This arbitrariness presents
a potential problem for every parametric model: specification error from picking
the wrong functional form. In fact, one study claims that none of the existing para-
metric interest rate models fit historical data well [11] (this finding is contested in
[728]). Nonparametric models in contrast make no parametric assumptions about
the functional forms of the drift µ and/or the diffusion σ [819]. Instead, one or
both functions are to be estimated nonparametrically from the discretely observed
data. The requirement is that approximations to the true drift and diffusion converge
pointwise to µ and σ at a rate (�t)k, where �t is the time between successive ob-
servations and k> 0. As a result, the approximation errors should be small as long
as observations are made frequently enough. See [517, 611, 613] for the estimation
of Ito processes.

This chapter surveyed equilibrium models and pointed out some of their weak-
nesses. One way to address them is the adoption of no-arbitrage models, to which
we will turn in the next chapter. Another approach is the use of additional factors.
Nonparametric models are yet another option. Unlike equity derivatives, no single
dominant model emerges.

For the pricing of interest rate caps, consult [616] (the CIR case) and [617]
(the Vasicek case). See [184, 185, 186, 257, 630, 645, 803] for more information on
multifactor CIR models and parameter estimation techniques. Refer to [291, 477]
for more discussions on one-factor models. Finally, see [301, 302] for discussions on
long rates.

NOTES

1. www.cob.ohio-state.edu/ ˜fin/journal/lies.htm.
2. Real rates seem to be more correlated [135].



CHAPTER
TWENTY-SIX

No-Arbitrage Term
Structure Models

The fox often ran to the hole by which they had come in, to find out
if his body was still thin enough to slip through it.

The Complete Grimm’s Fairy Tales

This chapter samples no-arbitrage models pioneered by Ho and Lee. Some of the
salient features of such models were already covered, if implicit at that, in Chap. 23.

26.1 Introduction

Some of the difficulties facing equilibrium models were mentioned in Section 25.4.
For instance, theyusually require theestimationof themarket priceof risk andcannot
fit the market term structure. However, consistency with the market is often manda-
tory in practice [457]. No-arbitrage models, in contrast, utilize the full information
of the term structure. They accept the observed term structure as consistent with an
unobserved and unspecified equilibrium. From there, arbitrage-free movements of
interest rates or bond prices over time are modeled. By definition, the market price
of risk must be reflected in the current term structure; hence the resulting interest
rate process is risk-neutral.

No-arbitrage models can specify the dynamics of zero-coupon bond prices, for-
ward rates, or the short rate [477, 482]. Bond price and forward rate models are
usually non-Markovian (path dependent), whereas short rate models are generally
constructed to be explicitly Markovian (path independent). Markovian models are
easier to handle computationally than non-Markovian ones.

➤ Exercise 26.1.1 Is the equilibrium or no-arbitrage model more appropriate in de-
ciding which government bonds are overpriced?

26.2 The Ho–Lee Model

This path-breaking one-factor model enjoys popularity among practitioners [72].
Figure 26.1 captures the model’s short rate process. The short rates at any given
time are evenly spaced. Let p denote the risk-neutral probability that the short rate
makes an up move. We shall adopt continuous compounding.

375
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↗
r3

↗ ↘
r2

↗ ↘ ↗
r1 r3+ v3
↘ ↗ ↘
r2+ v2

↘ ↗
r3+ 2v3

↘

Figure 26.1: The Ho–Lee binomial interest rate tree. The distribution at any
time converges to the normal distribution; the Ho–Lee model is a normal
process in the limit. The v i s are related to short rate volatilities by Eq. (26.2).

Themodel startswith zero-couponbondprices P(t, t + 1), P(t, t + 2), . . . , at time
t identified with the root of the tree. Let the discount factors in the next period be

Pd(t + 1, t + 2), Pd(t + 1, t + 3), . . . , if the short rate makes a down move,

Pu(t + 1, t + 2), Pu(t + 1, t + 3), . . . , if the short rate makes an up move.

By backward induction, it is not hard to see that, for n≥ 2,

Pu(t + 1, t +n)= Pd(t + 1, t +n) e−(v2+···+vn) (26.1)

(see Exercise 26.2.1) and the n-period zero-coupon bond has yields

yd(n) ≡ − ln Pd(t + 1, t +n)
n− 1

,

yu(n) ≡ − ln Pu(t + 1, t +n)
n− 1

= yd(n)+ v2+ · · ·+ vnn− 1
,

respectively. The volatility of the yield to maturity for this bond is therefore

κn ≡
√
pyu(n)2+ (1− p) yd(n)2− [ pyu(n)+ (1− p) yd(n) ]2

=
√
p(1− p) [ yu(n)− yd(n) ]

=
√
p(1− p) v2+ · · ·+ vn

n− 1
.

In particular, we determine the short rate volatility by taking n= 2:

σ =
√
p(1− p) v2. (26.2)

The variance of the short rate therefore equals p(1− p)(ru− rd)2, where ru and rd
are the two successor rates.1

The volatility term structure is composed of κ2, κ3, . . . , independent of the ri s.
It is easy to compute the vi s from the volatility structure (see Exercise 26.2.2), and
vice versa. The ri s can be computed by forward induction. The volatility structure
in the original Ho–Lee model is flat because it assumes that vi are all equal to
some constant. For the general Ho–Lee model that incorporates a term structure of
volatilities, the volatility structure is supplied by the market.

➤ Exercise 26.2.1 Verify Eq. (26.1).

➤ Exercise 26.2.2 Show that vi = [ (i − 1) κi − (i − 2) κi−1) ]/
√
p(1− p) .
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26.2.1 Bond Price Process

In a risk-neutral economy, the initial discount factors satisfy

P(t, t +n)= [ pPu(t + 1, t +n)+ (1− p) Pd(t + 1, t +n) ] P(t, t + 1).

Combine the preceding equation with Eq. (26.1) and assume that p= 1/2 to obtain2

Pd(t + 1, t +n)= P(t, t +n)
P(t, t + 1)

2× exp[ v2+ · · ·+ vn ]
1+ exp[ v2+ · · ·+ vn ] , (26.3)

Pu(t + 1, t +n)= P(t, t +n)
P(t, t + 1)

2
1+ exp[ v2+ · · ·+ vn ] . (26.3′)

This defines the bond price process. The above system of equations establishes the
price relations thatmust hold to prevent riskless arbitrages [304, 504]. The bond price
tree combines (see Exercise 26.2.3).

In the original Ho–Lee model, vi all equal some constant v. Then

Pd(t + 1, t +n) = P(t, t +n)
P(t, t + 1)

2δn−1

1+ δn−1 ,

Pu(t + 1, t +n) = P(t, t +n)
P(t, t + 1)

2
1+ δn−1 ,

where δ ≡ ev > 0. The short rate volatility σ equals v/2 by Eq. (26.2). To annu-
alize the numbers, simply apply σ (period)= σ (annual)×√�t and v(period)=
v(annual)×�t . As a consequence,

δ(annual)= e2σ (annual)(�t)3/2 . (26.4)

The Ho–Lee model demonstrates clearly that no-arbitrage models price secu-
rities in a way consistent with the initial term structure. Furthermore, these models
postulate dynamics that disallows intertemporal arbitrage opportunities. Derivatives
are priced by taking expectations under the risk-neutral probability [359].

➤ Exercise 26.2.3 Show that a rate rise followed by a rate decline produces the same
term structure as that of a rate decline followed by a rate rise.

➤ Exercise 26.2.4 Prove that Eqs. (26.3) and (26.3′) become

Pd(t + 1, t +n) = P(t, t +n)
P(t, t + 1)

exp[ v2+ · · ·+ vn ]
p+ (1− p)× exp[ v2+ · · ·+ vn ] ,

Pu(t + 1, t +n) = P(t, t +n)
P(t, t + 1)

1
p+ (1− p)× exp[ v2+ · · ·+ vn ]

for general risk-neutral probability p.

➤ Exercise 26.2.5 Consider a portfolio of one zero-coupon bond with maturity T1
and β zero-coupon bonds with maturity T2. Find the β that makes the portfolio
instantaneously riskless under the Ho–Lee model.

➢ Programming Assignment 26.2.6 Write a linear-time program to calibrate the orig-
inal Ho–Lee model. The inputs are �t , the current market discount factors, and the
short rate volatility σ , all annualized.
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Yield Volatilities and Their Covariances
The one-period rate of return of an n-period zero-coupon bond is

r(t, t +n)≡ ln
(
P(t + 1, t +n)
P(t, t +n)

)
.

Because its value is either

ln
Pd(t + 1, t +n)
P(t, t +n)

or

ln
Pu(t + 1, t +n)
P(t, t +n) ,

the variance of the return is

Var[ r(t, t +n) ]= p(1− p)[ (n− 1) v ]2 = (n− 1)2σ 2.

The covariancebetween r(t, t +n) and r(t, t +m) is (n− 1)(m− 1) σ 2 (seeExercise
26.2.7). As a result, the correlation between any two one-period returns is unity.
Strong correlation between rates is inherent in all one-factor Markovian models.

➤ Exercise 26.2.7 Prove that under a general p, the variance of the one-period return
of n-period zero-coupon bonds equals (n− 1)2 σ 2 and the covariance between the
one-period returns of n- and m-period zero-coupon bonds equals (n− 1)(m− 1) σ 2.

26.2.2 Forward Rate Process

The forward rate at time t for money borrowed or lent from time t +n to t +n+ 1
is

f (t, t +n)=−ln
(
P(t, t +n+ 1)
P(t, t +n)

)
from Eq. (24.3). The current state considered as the result of a downward rate move
from time t − 1 leads to

f (t, t +n) = −ln
 P(t−1,t+n+1)

P(t−1,t)
2δn+1
1+δn+1

P(t−1,t+n)
P(t−1,t)

2δn
1+δn


= f (t − 1, t +n)− ln

(
1+ δn

1+ δn+1
)
− ln δ,

and the current state considered as the result of an upward rate move leads to

f (t, t +n)=−ln
 P(t−1,t+n+1)

P(t−1,t)
2

1+δn+1
P(t−1,t+n)
P(t−1,t)

2
1+δn

= f (t − 1, t +n)− ln
(

1+ δn
1+ δn+1

)
.

The preceding two equations can be combined to yield this forward rate process:

f (t, t +n)= f (t − 1, t +n)− ln
(

1+ δn
1+ δn+1

)
− 1

2
ln δ+ ξt−1, (26.5)
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where ξs (s ≥ 0) is the following zero-mean random variable:

ξs =
{−(1/2) ln δ, if down move occurs at time s

(1/2) ln δ, if up move occurs at time s
.

Because Var[ f (t, t +n)− f (t − 1, t +n) ]= σ 2 (see Exercise 26.2.8), the volatility
σ can be estimated from historical data without the need to estimate the risk-neutral
probability [436]. Equation (26.5) can be applied iteratively to obtain

f (t, t +n)= f (0, t +n)− ln
(

1+ δn
1+ δn+t

)
− t

2
ln δ+

t∑
s=1
ξs−1.

➤ Exercise 26.2.8 Verify that Var[ ξs ]= σ 2.

➤ Exercise 26.2.9 Prove that

−ln
(

1+ δn
1+ δn+1

)
− 1

2
ln δ→ σ 2(T− t)(�t)2

if we substitute t/�t for t and (T− t)/�t for n in Eq. (26.5) before applying
Eq. (26.4). T, t, �t , and σ above are annualized. (The forward rate process hence
converges to df (t,T)= σ 2(T− t)dt+ σ dW.)

26.2.3 Short Rate Process

Because the short rate r(t) equals f (t, t),

r(t)= f (0, t)− ln
(

2
1+ δt

)
− t

2
ln δ+

t∑
s=1
ξs−1.

This implies the following difference equation:

r(t)= r(t − 1)+ f (0, t)− f (0, t − 1)− ln
(
1+ δt−1
1+ δt

)
− 1

2
ln δ+ ξt−1. (26.6)

The continuous-time limit of the Ho–Lee model is dr = θ(t)dt + σ dW. This is es-
sentially Vasicek’s model with themean-reverting drift replacedwith a deterministic,
time-dependent drift. A nonflat term structure of volatilities can be achieved if the
short rate volatility is also made time varying, i.e., dr = θ(t)dt + σ (t)dW [508]. This
corresponds to the discrete-time model in which vi are not all identical.

➤ Exercise 26.2.10 Prove that

−ln
(
1+ δt−1
1+ δt

)
− 1

2
ln δ→ σ 2t (�t)2

if we substitute t/�t for t and apply Eq. (26.4). The t, �t , and σ above are annu-
alized. (Short rate process (26.6) thus converges to dr = { [ ∂ f (0, t)/∂t ]+ σ 2t }dt+
σ dW.)

26.2.4 Problems with the Ho–Lee Model

Nominal interest rates must be nonnegative because we can hold cash. However,
negative future interest rates are possible with the Ho–Lee model. This may not be
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a major concern for realistic volatilities and certain ranges of bond maturities [72].
More questionable is the fact that the short rate volatility is independent of the rate
level [83, 173, 359, 645]. Given that the Ho–Lee model subsumes the Merton model
and sharesmany of its unreasonable properties, how can it generate reasonable initial
term structures? The answer lies in the model’s unreasonable short rate dynamics.3

➤ Exercise 26.2.11 Assess the claim that the problem of negative interest rates can
be eliminated by making the short rate volatility time dependent.

Problems with No-Arbitrage Models in General
Interest rate movements should reflect shifts in the model’s state variables (factors),
not its parameters. This means that model parameters, such as the drift θ(t) in the
continuous-timeHo–Leemodel, shouldbe stableover time.However, in practice, no-
arbitrage models capture yield curve shifts through the recalibration of parameters.
A new model is thus born everyday. This in effect says that the model estimated at
some time does not describe the term structure of interest rates and their volatilities
at other times. Consequently, a model’s intertemporal behavior is suspect, and using
it for hedging and risk management may be unreliable.

26.3 The Black–Derman–Toy Model

Black, Derman, and Toy (BDT) proposed their model in 1990 [84]. This model is
extensively used by practitioners [72, 149, 215, 600, 731]. The BDT short rate process
is the lognormal binomial interest rate process described in Chap. 23 and repeated
in Fig. 26.2. The volatility structure is given by the market from which the short rate
volatilities (thus vi ) are determined together with ri . Our earlier binomial interest
rate tree, in comparison, assumes that vi are given a priori, and a related model
of Salomon Brothers takes vi to be constants [848]. Lognormal models preclude
negative short rates.

The volatility structure defines the yield volatilities of zero-coupon bonds of var-
ious maturities. Let the yield volatility of the i-period zero-coupon bond be denoted
by κi . Assume that Pu (Pd) is the price of the i-period zero-coupon bond one period
from now if the short rate makes an up (down, respectively) move. Corresponding

r4
↗

r3
↗ ↘

r2 r4v4
↗ ↘ ↗

r1 r3v3
↘ ↗ ↘
r2v2 r4v24

↘ ↗
r3v23

↘
r4v34

Figure 26.2: The BDT binomial interest rate tree. The distribution at any
time converges to the lognormal distribution.
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to these two prices are these yields to maturity:

yu ≡ P−1/(i−1)u − 1, yd ≡ P−1/(i−1)d − 1.

The yield volatility is defined as κi ≡ (1/2) ln(yu/yd).

26.3.1 Calibration

The inputs to the BDT model are riskless zero-coupon bond yields and their volatil-
ities. For economy of expression, all numbers are period based. Suppose inductively
that we have calculated r1, v1, r2, v2, . . . , ri−1, vi−1, which define the binomial tree up
to period i − 1. We now proceed to calculate ri and vi to extend the tree to period
i . Assume that the price of the i-period zero can move to Pu or Pd one period from
now. Let y denote the current i-period spot rate, which is known. In a risk-neutral
economy,

Pu+ Pd
2(1+ r1) =

1
(1+ y)i . (26.7)

Obviously, Pu and Pd are functions of the unknown ri and vi . Viewed from now,
the future (i − 1)-period spot rate at time one is uncertain. Let yu and yd represent
the spot rates at the up node and the down node, respectively, with κ2 denoting the
variance, or

κi = 1
2

ln

(
Pu−1/(i−1)− 1

Pd−1/(i−1)− 1

)
. (26.8)

We use forward induction to derive a quadratic-time calibration algorithm [190,
625]. Recall that forward induction inductively figures out, by moving forward in
time, how much $1 at a node contributes to the price (review Fig. 23.7(a)). This
number is called the state price and is the price of the claim that pays $1 at that node
and zero elsewhere.

Let the baseline rate for period i be ri = r , let the multiplicative ratio be vi =
v, and let the state prices at time i − 1 be P1, P2, . . . , Pi , corresponding to rates
r, rv, . . . , rvi−1, respectively. One dollar at time i has a PV of

f (r, v)≡ P1
1+ r +

P2
1+ rv +

P3
1+ rv2 + · · ·+

Pi
1+ rvi−1 ,

and the yield volatility is

g(r, v)≡ 1
2

ln


(
Pu,1
1+rv + Pu,2

1+rv2 + · · ·+ Pu,i−1
1+rvi−1

)−1/(i−1)
− 1(

Pd,1
1+r + Pd,2

1+rv + · · ·+ Pd,i−1
1+rvi−2

)−1/(i−1)
− 1

 .
In the preceding equation, Pu,1, Pu,2, . . . denote the state prices at time i − 1 of the
subtree rooted at the up node (like r2v2 in Fig. 26.2), and Pd,1, Pd,2, . . . denote the
state prices at time i − 1 of the subtree rooted at the down node (like r2 in Fig. 26.2).
Now solve

f (r, v)= 1
(1+ y)i , g(r, v)= κi
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Algorithm for calibrating the BDT model:

input: n, S[ 1..n ], κ[ 1..n ];
real P[ 0..n ], Pu[ 0..n− 1 ], Pd[ 0..n− 1 ], r [ 1..n ], v[ 1..n ], r, v;
integer i, j ;
P[ 0 ] := 0; Pu[ 0 ] := 0; Pd[ 0 ] := 0; // Dummies; remain zero throughout.
P[ 1 ] := 1; Pu[ 1 ] := 1; Pd[ 1 ] := 1;
r [ 1 ] := S[ 1 ]; v[ 1 ] := 0;
for (i = 2 ton) {

P[ i ] := 0;
for ( j = i down to 1) // State prices at time i − 1.

P[ j ] := P[ j−1 ]
2×(1+r [ i−1 ]×v[ i−1 ] j−2) + P[ j ]

2×(1+r [ i−1 ]×v[ i−1 ] j−1) ;
Solve for r and v from∑i

j=1
P[ j ]

(1+r×v j−1) = (1+ S[ i ])−i and
(
∑i−1
j=1

Pu[ j ]
(1+r×v j ) )

−1/(i−1)− 1= e2×κ[ i ]× ((
∑i−1
j=1

Pd[ j ]
(1+r×v j−1) )

−1/(i−1)− 1);
r [ i ] := r ; v[ i ] := v;
if [ i < n ] {

Pu[ i ] := 0; Pd[ i ] := 0;
for ( j = i down to 1) { // State prices at time i .

Pu[ j ] := Pu[ j−1 ]
2×(1+r [ i ]×v[ i ] j−1) +

Pu[ j ]
2×(1+r [ i ]×v[ i ] j ) ;

Pd[ j ] := Pd[ j−1 ]
2×(1+r [ i ]×v[ i ] j−2) + Pd[ j ]

2×(1+r [ i ]×v[ i ] j−1) ;
}

}
}
return r [ ] and v[ ];

Figure 26.3: Algorithm for calibrating the BDT model. S [ i ] is the i -period spot rate,κ [ i ] is the yield volatility
for period i , and n is the number of periods. All numbers are measured by the period. The period-i baseline
rate and multiplicative ratio are stored in r [ i ] and v [ i ], respectively. The two-dimensional Newton–Raphson
method of Eqs. (3.16) should be used to solve for r and v as the partial derivatives are straightforward to
calculate.

for r = ri and v = vi . This O(n2)-time algorithm is given inFig. 26.3. The continuous-
time limit of the BDT model is d ln r = { θ(t)+ [ σ ′(t)/σ (t) ] ln r }dt + σ (t)dW [76,
149, 508]. Obviously the short rate volatility should be a declining function of time
for the model to display mean reversion; in particular, constant volatility will not
attain mean reversion.

➤ Exercise 26.3.1 Describe the differential tree method with backward induction to
calibrate the BDT model.

➢ Programming Assignment 26.3.2 Implement the algorithm in Fig. 26.3.

➢ Programming Assignment 26.3.3 Calibrate the BDTmodel with the secant method
and evaluate its performance against the differential tree method.

26.3.2 The Black–Karasinski Model

The related Black–Karasinski model stipulates that the short rate follows

d ln r = κ(t)[ θ(t)− ln r ]dt + σ (t)dW.
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↗
ln rd(t2)

↗ ↘
ln r(t1) ln rdu(t3)= ln rud(t3)

↘ ↗
ln ru(t2)

↘

Figure 26.4: The Black–Karasinski tree. Time periods
may not be equal in length.

This explicitly mean-revertingmodel depends on time through κ( · ), θ( · ), and σ ( · ).
The Black–Karasinski model hence has one more degree of freedom than the BDT
model. The speed of mean reversion κ(t) and the short rate volatility σ (t) are
independent [85].

The discrete-time version of the Black–Karasinski model has the same represen-
tation as the BDT model. To maintain a combining binomial tree, however, requires
some manipulations. These ideas are illustrated by Fig. 26.4 in which t2 ≡ t1+�t1
and t3 ≡ t2+�t2. Note that

ln rd(t2) = ln r(t1)+ κ(t1)[ θ(t1)− ln r(t1) ]�t1− σ (t1)
√
�t1,

ln ru(t2) = ln r(t1)+ κ(t1)[ θ(t1)− ln r(t1) ]�t1+ σ (t1)
√
�t1.

To ensure that an up move followed by a down move coincides with a down move
followed by an up move, we impose

ln rd(t2)+ κ(t2)[ θ(t2)− ln rd(t2) ]�t2+ σ (t2)
√
�t2

= ln ru(t2)+ κ(t2)[ θ(t2)− ln ru(t2) ]�t2− σ (t2)
√
�t2 ,

which implies that

κ(t2)= 1− [ σ (t2)/σ (t1) ]
√
�t2/�t1

�t2
.

So from �t1, we can calculate the �t2 that satisfies the combining condition and
then iterate.

➤ Exercise 26.3.4 Show that the variance of r after �t is approximately
[ r(t) σ (t) ]2�t .

➢ Programming Assignment 26.3.5 Implement a forward-induction algorithm to cal-
ibrate the Black–Karasinski model given a constant κ .

26.3.3 Problems with Lognormal Models

Lognormalmodels such as theBDT,Black–Karasinski, andDothanmodels share the
problem that Eπ [M(t) ]=∞ for any finite t if it is the continuously compounded
rate that is modeled (review Subsection 24.2.1) [76]. Hence periodic compounding
should be used. Another issue is computational. Lognormal models usually do not
give analytical solutions to even basic fixed-income securities. As a result, to price
short-dated derivatives on longterm bonds, the tree has to be built over the life of
the underlying asset – which can be, say, 30 years – instead of the life of the claim –
possibly only 1–2 years (review Comment 23.2.1). This problem can be somewhat
mitigated if different time steps are adopted: Use a fine time step up to the maturity
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of the short-dated derivative and a coarse time step beyond the maturity [477]. A
down side of this procedure is that it has to be carried out for each derivative.

26.4 The Models According to Hull and White

Hull and White proposed models that extend the Vasicek model and the CIR model
[474]. They are called the extendedVasicekmodel and the extended CIRmodel. The
extended Vasicek model adds time dependence to the original Vasicek model:

dr = (θ(t)− a(t) r)dt + σ (t)dW.
Like the Ho–Lee model, this is a normal model, and the inclusion of θ( · ) allows for
an exact fit to the current spot rate curve. As for the other two functions, σ (t) defines
the short-rate volatility and a(t) determines the shape of the volatility structure.
Under this model, many European-style securities can be evaluated analytically, and
efficient numerical procedures can be developed for American-style securities. The
Hull–White model is the following special case:

dr = (θ(t)− ar)dt + σ dW.
When the current term structure is matched,

θ(t)= ∂ f (0, t)
∂t

+ a f (0, t)+ σ
2

2a
(1− e−2at)

[477]. In the extended CIR model the short rate follows

dr = [ θ(t)− a(t) r ]dt + σ (t)√r dW.
The functions θ( · ), a( · ), and σ ( · ) are implied from market observables. With
constant parameters, there exist analytical solutions to a small set of interest-rate-
sensitive securities such as coupon bonds and European options on bonds.

For the BDT and the Ho–Lee models, once the initial volatility structure is speci-
fied, the future short rate volatility is completely determined.Conversely, if the future
short rate volatility is specified, then the initial volatility structure is fully determined.
However, we may want to specify the volatility structure and the short rate volatility
separately because the future short rate volatility may have little impact on the yield
volatility, which is about the uncertainty over the spot rate’s value in the next period
[476]. The extended Vasicek model has enough degrees of freedom to accommodate
this request.

➤ Exercise 26.4.1 Between a normal and a lognormal model, which overprices out-
of-the-money calls on bonds and underprices out-of-the-money puts on bonds?

26.4.1 Calibration of the Hull–White Model with Trinomial Trees

Now a trinomial forward-induction scheme is described to calibrate the Hull–White
model given a and σ [477]. As with the Ho–Lee model, in this model the set of
achievable short rates is evenly spaced. Let r0 be the annualized, continuously com-
pounded short rate at timezero.Every short rateon the tree takesonavalue r0+ j�r
for some integer j . Time increments on the tree are also equally spaced at �t apart.
(Binomial trees should not be used to model mean-reverting interest rates when �t
is a constant [475].) Hence nodes are located at times i�t for i = 0, 1, 2, . . . . We
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(i, j) �
�

�
�

�✒
(i + 1, j + 2)

✟✟✟✟✟✯ (i + 1, j + 1)

✲ (i + 1, j) (i, j) ✟✟✟✟✟✯ (i + 1, j + 1)

✲ (i + 1, j)❍❍❍❍❍❥ (i + 1, j − 1)

(i, j) ✲ (i + 1, j)❍❍❍❍❍❥ (i + 1, j − 1)

❅
❅

❅
❅

❅❘
(i + 1, j − 2)

Figure 26.5: Three trinomial branching schemes in the Hull–White model. The choice is determined by the expected
short rate at time ti+1 as seen from time ti .

refer to the node on the tree with ti ≡ i�t and r j ≡ r0+ j�r as the (i, j) node. The
short rate at node (i, j), which equals r j , is effective for the time period [ ti , ti+1 ].
Use

µi, j ≡ θ(ti )− ar j (26.9)

to denote the drift rate, or the expected change, of the short rate as seen from node
(i, j). The three distinct possibilities for node (i, j) with three branches incident
from it are shown in Fig. 26.5. The interest rate movement described by the middle
branch may be an increase of �r , no change, or a decrease of �r . The upper and
the lower branches bracket the middle branch. Define

p1(i, j) ≡ the probability of following the upper branch from node (i, j),

p2(i, j) ≡ the probability of following the middle branch from node (i, j),

p3(i, j) ≡ the probability of following the lower branch from node (i, j).

The root of the tree is set to the current short rate r0. Inductively, the drift µi, j at
node (i, j) is a functionof θ(ti ).Once θ(ti ) is available, µi, j canbederivedbymeans
of Eq. (26.9). This in turn determines the branching scheme at every node (i, j) for
each j , as we will see shortly. The value of θ(ti ) must thus be made consistent with
the spot rate r(0, ti+2).

The branches emanating from node (i, j) with their accompanying probabilities,
p1(i, j), p2(i, j), and p3(i, j), must be chosen to be consistent with µi, j and σ . This
is accomplished by letting the middle node be as close as possible to the current
value of the short rate plus the drift. Let k be the number among { j − 1, j, j + 1 }
that makes the short rate reached by the middle branch, rk, closest to r j +µi, j�t .
Then the three nodes following node (i, j) are nodes (i + 1,k+ 1), (i + 1,k), and
(i + 1,k− 1). The resulting tree may have the geometry depicted in Fig. 26.6. The
resulting tree combines.

The probabilities for moving along these branches are functions of µi, j , σ , j , and
k:

p1(i, j)= σ
2�t + η2
2(�r)2

+ η

2�r
, (26.10)

p2(i, j)= 1− σ
2�t + η2
(�r)2

, (26.10′)

p3(i, j)= σ
2�t + η2
2(�r)2

− η

2�r
, (26.10′′)
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Figure 26.6: Trinomial tree for the Hull–White model. All the short
rates at the nodes are known before any computation begins. They are
simply r 0+ j�r for j = 0,±1,±2, . . . . It is the branching schemes
connecting the nodes that determine the term structure. Only the four
nodes at times t0 and t1 are labeled here. The remaining nodes can
be labeled similarly. The tree may not fully grow as some nodes are
not reachable from the root (0, 0) because of mean reversion.

where η ≡ µi, j�t + ( j −k)�r . As trinomial tree algorithms are but explicit methods
in disguise (see Subsection 18.1.1), certain relations must hold for �r and �t to
guarantee stability. It can be shown that their values must satisfy

σ
√
3�t
2

≤�r ≤ 2σ
√
�t

for the probabilities to lie between zero and one; for example, �r can be set to
σ
√
3�t [473]. It remains only to determine θ(ti ), to which we now turn.
At this point at time ti , r(0, t1), r(0, t2), . . . , r(0, ti+1) have already beenmatched.

By construction, the state prices Q(i,k) for all k are known by now, where Q(i,k)
denotes the value of the state contingent claim that pays $1 at node (i,k) and zero
otherwise. The value at time zero of a zero-coupon bond maturing at time ti+2 is
then

e−r(0,ti+2)(i+2)�t =
∑
j

Q(i, j) e−r j�t Eπ [ e−̂r(i+1)�t
∣∣ r̂(i)= r j ], (26.11)

where r̂(i) refers to the short-rate value at time ti . The right-hand side represents
the value of $1 obtained by holding a zero-coupon bond until time ti+1 and then
reinvesting the proceeds at that time at the prevailing short rate r̂(i + 1), which is
stochastic. The expectation above can be approximated by

Eπ
[
e−̂r(i+1)�t

∣∣ r̂(i)= r j ]≈ e−r j�t [1−µi, j (�t)2+ σ 2(�t)3

2

]
. (26.12)

Substitute approximation (26.12) into Eq. (26.11) and replace µi, j with θ(ti )− ar j
to obtain

θ(ti )≈
∑
j Q(i, j) e

−2r j�t [ 1+ ar j (�t)2+ σ 2(�t)3/2 ]− e−r(0,ti+2)(i+2)�t
(�t)2

∑
j Q(i, j) e

−2r j�t .
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For the Hull–White model, the expectation in approximation (26.12) is actually
known analytically:

Eπ
[
e−̂r(i+1)�t

∣∣ r̂(i)= r j ]= e−r j�t+[−θ(ti )+ar j+σ 2�t/2](�t)2 .

Therefore, alternatively,

θ(ti )= r(0, ti+2)(i + 2)
�t

+ σ
2�t
2
+ ln

∑
j Q(i, j) e

−2r j�t+ar j (�t)2

(�t)2
.

With θ(ti ) in hand, we can compute µi, j , the probabilities, and finally the new state
prices:

Q(i + 1, j) =
∑

(i, j∗) is connected to (i + 1, j) with probability pj∗

pj∗e−r j∗�t Q(i, j∗).

The total running time is quadratic. See Fig. 26.7 for an algorithm.
When using the Hull–White model, one can try different values of a and σ for

each option or have an a value common to all options but use a different σ value for
each option. Either approach can match all the option prices exactly. If the demand
is for a single set of parameters that replicate all option prices, theHull–White model
canbe calibrated to all the observedoptionprices by choosing a and σ thatminimize
the mean-square pricing error [482].

Algorithm for calibrating the Hull–White model:

input: σ, a,�t,n, S[ 1..n ];
real branch [n− 1 ][−n..n ],Q[−n..n ],q[−n..n ], θ, µ, r0,�r, p1, p2, p3;
integer i, j,k;
Q[ 0 ] := 1; r0 := S[ 1 ];
�r = σ√3�t ;
branch[ i ][ j ] :=∞ for 0≤ i < n− 1 and −n≤ j ≤ n; // Initial values �∈ {−1, 0, 1 }.
for (i = 0 to n− 2) {

θ := S[ i+2 ]×(i+2)
�t + σ 2�t

2 +
ln(
∑i
j=−i Q[ i ][ j ]×exp[−2(r0+ j�r)�t+a(r0+ j�r)(�t)2 ])

(�t)2
; // θ(ti ).

for ( j =−i to i) { q[ j ] := 0; }
for ( j =−i to i) { // Work on node (i, j)’s branching scheme.

µ := θ − a(r0+ j�r); // µi, j .
Let k∈ {−1, 0, 1 }minimize | (r0+ ( j +k)�r)− (r0+ j�r +µ�t) |;
branch [ i ][ j ] := k;
Use Eqs. (26.10) to calculate p1, p2, and p3 withk= j+ branch [ i ][ j ];
q[k+ 1 ] := p1×Q[ j ]× e−(r0+ j�r)�t +q[k+ 1 ]; // Add contribution toQ.
q[k ] := p2×Q[ j ]× e−(r0+ j�r)�t +q[k ];
q[k− 1 ] := p3×Q[ j ]× e−(r0+ j�r)�t +q[k− 1 ];

}
for ( j =−i to i) { Q[ j ] := q[ j ]; } // UpdateQ.

}
return branch [ ][ ];

Figure 26.7: Algorithm for calibrating the Hull–White model. S [ i ] is the annualized i -period spot rate, Q [ ]
stores the state prices with initial values of zero, branch[ i ][ j ] maintains the branching scheme for node
(i , j ), and n is the number of periods. Only the branching schemes are returned as they suffice to derive the
short rates.
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The algorithmic idea here is quite general and can bemodified to apply to cases in
which the diffusion term has the form σrβ [215]. A highly efficient algorithm exists
that fully exploits the fact that the Hull–White model has a constant diffusion term
[479].

➤ Exercise 26.4.2 Verify approximation (26.12).

➢ Programming Assignment 26.4.3 Implement the algorithm in Fig. 26.7.

➢ Programming Assignment 26.4.4 Calibration takes the spot rate curve to reverse
engineer the Hull–White model’s parameters. However, just because the curve is
matched by no means implies that the true model parameters and the estimated
parameters are matched. Call a model stable if the model parameters can be approx-
imated well by the estimated parameters. Verify that both theHull–Whitemodel and
the BDT model are stable [192, 885].

➢ Programming Assignment 26.4.5 Implement a trinomial tree model for the Black–
Karasinski model d ln r = (θ(t)− a ln r)dt + σ dW.

26.4.2 Problems with the Models

When σ (t) and a(t) vary with time, the volatility structure will be nonstationary.
Choosing σ (t) and a(t) to exactly fit the initial volatility structure then causes the
volatility structure to evolve in unpredictable ways and makes option prices ques-
tionable. This observation holds for all Markovian models [76, 164]. Because it is in
general dangerous to use time-varying parameters tomatch the initial volatility curve
exactly, it has been argued that there should be no more than one time-dependent
parameter in Markovian models and that it should be used to fit the initial spot rate
curve only [482]. This line of reasoning favors the Hull–White model. Another way
to maintain the volatility structure over time is to use the Heath–Jarrow–Morton
(HJM) model.

26.5 The Heath–Jarrow–Morton Model

We have seen several Markovian short rate models. TheMarkovian approach, albeit
computationally efficient, has the disadvantage that it is difficult to model the be-
havior of yields and bond prices of different maturities. The alternative yield curve
approach regards the whole term structure as the state of a process and directly
specifies how it evolves [725].

The influential model proposed by Heath, Jarrow, and Morton is a forward rate
model [437, 511]. It is also a popular model [17, 198]. The HJM model specifies the
initial forward rate curve and the forward rate volatility structure, which describes
the volatility of each forward rate for a given maturity date. Like the Black–Scholes
option pricing model, neither risk preference assumptions nor the drifts of forward
rates are needed [515].

26.5.1 Forward-Rate Process

Within a finite time horizon [ 0,U ], we take as given the time-zero forward rate
curve f (0, t) for t ∈ [ 0,U ]. Because this curve is used as the boundary value at
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t = 0, perfect fit to the observed term structure is automatic. The forward rates are
driven by n stochastic factors. Specifically the forward ratemovements are governed
by the stochastic process

df (t,T)= µ(t,T)dt +
n∑
i=1
σi (t,T)dWi ,

where µ and σi may depend on the past history of the Wiener processes.
Take the one-factor model

df (t,T)= µ(t,T)dt + σ (t,T)dWt . (26.13)

This is an infinite-dimensional system because there is an equation for each T. One-
factormodels seem to performbetter thanmultifactormodels empirically [19].When
is the bond market induced by forward rate model (26.13) arbitrage free in that
there exists an equivalent martingale measure? For this to happen, there must exist
a process λ(t) such that for all 0≤ t ≤ T, the drift equals

µ(t,T)= σ (t,T)
∫ T
t
σ (t, s)ds+ σ (t,T) λ(t). (26.14)

The process λ(t), which may depend on the past history of theWiener process, is the
market price of risk. Substitute this condition into Eq. (26.13) to yield the following
arbitrage-free forward rate dynamics:

df (t,T)=
[
σ (t,T)

∫ T
t
σ (t, s)ds+ σ (t,T) λ(t)

]
dt + σ (t,T)dWt . (26.15)

The market price of risk enters only into the drift. The short rate follows

dr(t)=
[
σ (t, t) λ(t)+ ∂ f (t,T)

∂T

∣∣∣∣
T=t

]
dt + σ (t, t)dWt . (26.16)

A unique equivalent martingale measure can be established under which the
prices of interest rate derivatives do not depend on the market prices of risk. This
fundamental result is summarized below.

THEOREM26.5.1 Assume that π is amartingalemeasure for thebondmarket and that the
forward rate dynamics under π is given by df (t,T)= µ(t,T)dt +∑n

i=1 σi (t,T)dWi .
The volatility functions σi (t,T) may depend on f (t,T). (1) For all 0< t ≤ T,

µ(t,T)=
n∑
i=1
σi (t,T)

∫ T
t
σi (t,u)du (26.17)

holds under π almost surely. (2) The bond price dynamics under π is given by

dP(t,T)
P(t,T)

= r(t)dt +
n∑
i=1
σp,i (t,T)dWi ,

where σp,i (t,T)≡−
∫ T
t σi (t,u)du. (Choosing the volatility function σ (t,T) of the

forward rate dynamics under π uniquely determines the drift parameters under π
and the prices of all claims.)
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To use the HJM model, we first pick σ (t,T). This is the modeling part. The drift
parameters are then determined byEq. (26.17). Now fetch today’s forward rate curve
{ f (0,T),T ≥ 0 } and integrate it to obtain the forward rates:

f (t,T)= f (0,T)+
∫ t
0
µ(s,T)ds+

∫ t
0
σ (s,T)dWs . (26.18)

Compute the future bond prices by P(t,T)= e−
∫ T
t f (t,s)ds if necessary. European-

style derivatives can be priced by simulating many paths and taking the average.
From Eqs. (26.17) and (26.18),

r(t) = f (t, t)= f (0, t)+
∫ t
0
df (s, t)

= f (0, t)+
∫ t
0
σp(s, t) σ (s, t)ds+

∫ t
0
σ (s, t)dWs,

where σp(s, t)≡
∫ t
s σ (s,u)du.Differentiatewith respect to t andnote that σp(t, t)=

0 to obtain

dr(t) = ∂ f (0, t)
∂t

dt +
{∫ t

0

[
σp(s, t)

∂σ (s, t)
∂t

+ σ (s, t)2
]
ds
}
dt

+
[∫ t

0

∂σ (s, t)
∂t

dWs

]
dt + σ (t, t)dWt . (26.19)

Because the second and the third terms on the right-hand side depend on the history
of σp and/or dW, they can make r non-Markovian. In the special case in which
σp(t,T)= σ (T− t) for a constant σ , the short rate process r becomes Markovian
and Eq. (26.19) reduces to

dr =
[
∂ f (0, t)
∂t

+ σ 2t
]
dt + σ dW.

Note that this is the continuous-time Ho–Lee model (review Exercise 26.2.10).

➤ Exercise 26.5.1 What would µ(t,T) be if σ (t,T)= σe−κ(T−t)?
➤ Exercise 26.5.2 Prove Eq. (26.16). (Hint: Use Eq. (26.15).)

➤ Exercise 26.5.3 Consider the forward rate dynamics in Eq. (26.13) and define
r(t, τ )≡ f (t, t + τ ). Verify that

dr(r, τ )=
[
∂r(t, τ )
∂τ

+µ(t, t + τ )
]
dt + σ (t, t + τ )dWt .

Note that τ denotes the time to maturity.

Fixed-Income Option Pricing
For one-factorHJMmodels under the risk-neutral probability, the bondprice process
is

dP(t,T)
P(t,T)

= r(t)dt + σp(t,T)dWt . (26.20)
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For a European option to buy at time s and at strike price X a zero-coupon bond
maturing at time T ≥ s, its value at time t is

Ct = P(t,T) N(dt)− XP(t, s) N(dt − σt), (26.21)

where

dt ≡ σ−1t ln
(
P(t,T)
XP(t, s)

)
+ σt

2

and σ 2
t ≡

∫ s
t [σσp(τ,T)− σp(τ, s)]2 dτ [164].

26.5.2 Markovian Short Rate Models

Markovian short rate models often simplify numerical procedures. First, the term
structure at any time t is determined by t , the maturity, and the short rate at t .
Second, the short rate dynamics can often bemodeled by a combining tree. TheHJM
model’s short rate process is usually non-Markovian. Under certain restrictions on
volatility, however, the short rate contains all information relevant for pricing.

EXAMPLE 26.5.2 Suppose the volatility function is σ (t,T)= σ . Then the drift under
π is µ(t,T)= σ ∫ Tt σ ds = σ 2(T− t) by Theorem 26.5.1. The forward rate process
is df (t,T)= σ 2(T− t)dt + σ dW, which is the Ho–Lee model (see Exercise 26.2.9).
Integrate the above for each T to yield

f (t,T) = f (0,T)+
∫ t
0
σ 2(T− s)ds+

∫ t
0
σ dWs

= f (0,T)+ σ 2t
(
T− t

2

)
+ σW(t).

In particular, the short rate r(t)≡ f (t, t) is r(t)= f (0, t)+ (σ 2t2/2)+ σW(t).
Because∫ T

t
f (t, s)ds =

∫ T
t
f (0, s)ds+ σ

2

2
tT(T− t)+ σ (T− t)W(t),

the bond price is

P(t,T)= P(0,T)
P(0, t)

e−(σ
2/2) tT(T−t)−σ (T−t)W(t).

Combining this with the short rate process above, we have

P(t,T)= P(0,T)
P(0, t)

e f (0,t)(T−t)−(σ
2/2) t(T−t)2−r(t)(T−t),

which expresses the bond price in terms of the short rate.

EXAMPLE 26.5.3 For the Hull–White model dr = (θ(t)− ar)dt + σ dW, where a, σ >
0, the HJM formulation is df (t,T)= µ(t,T)dt + σe−a(T−t) dW. The volatility struc-
ture of the forward rate, σ (t,T)= σe−a(T−t), is exponentially decaying. The entire
set of forward rates at any time t can be recovered from the short rate as follows:

f (t,T)= f (0,T)+ e−a(T−t)[ r(t)− f (0, t)+β(t,T)φ(t) ],
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where

β(t,T)≡ 1
a

[
1− e−a(T−t)], φ(t)≡ σ

2

2a
(1− e−2at).

The bond prices at time t and the state variable r(t) are also related:

P(t,T)= P(0,T)
P(0, t)

e−β(t,T)[ r(t)− f (0,t) ]−[β(t,T)
2φ(t)/2 ].

The duration of a zero-coupon bond at time t that matures at time T is β(t,T).
Finally,

dr(t)=
[
−a[ r(t)− f (0, t) ]+ ∂ f (0, t)

∂t
+φ(t)

]
dt + σ dWt

establishes the dynamics of the short rate.

EXAMPLE 26.5.4 When the σp in Eq. (26.20) is nonstochastic, r(t) is Markovian if and
only if σp(t,T) has the functional form x(t)[ y(T)− y(t) ]. The process for r then has
the general form of the extended Vasicek model dr = [ θ(t)− a(t) r ]dt + σ (t)dW
[477].

➤ Exercise 26.5.4 (1) Price calls on a zero-coupon bond under the Ho–Lee model.
(2) Price calls on a zero-coupon bond under the Hull–White model.

➤ Exercise 26.5.5 Derive the Hull–White model’s volatility structure.

➤ Exercise 26.5.6 Verify that the model in Example 26.5.3 converges to the Ho–Lee
model as a→ 0.

26.5.3 Binomial Approximation

Let �t denote the duration of a period. The initial forward rate curve is
{ f (0,T),T = 0,�t, 2�t, . . . }, and f (t,T) is the forward rate implied at time t for
the time period [T,T+�t ]. During the next time period �t , new information may
arrive and cause the term structure to move. Let f (t +�t,T) be the new forward
rate. The change f (t +�t,T)− f (t,T) depends on the forward rate, its maturity
date T, and a host of other factors. See Fig. 26.8 for illustration.

Consider the binomial process in the actual economy:

f (t +�t,T)=
{
f (t,T)+µ(t,T)�t + σ (t,T)√�t with probability q

f (t,T)+µ(t,T)�t − σ (t,T)√�t with probability 1−q ,

where q = 1/2+o(�t). The mean and the variance of the change in forward rates
are µ(t,T)�t +o(�t) and σ (t,T)2�t +o(�t), respectively. Convergence is guar-
anteed under mild conditions [434]. Tomake the process arbitrage free, a probability
measure p must exist under which all claims can be priced as if the local expectations
theory holds. Wemay assume that p= 1/2 for ease of computation. It can be shown
that

µ(t,T)�t = tanh(x) σ (t,T)
√
�t , (26.22)
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r(3)

↗
r(2)

f (2, 3)

↗ ↘
r(1) r(3)

f (1, 2)

f (1, 3) r(3)

↘ ↗
r(2)

↗ f (2, 3)

↘
r(0) r(3)

f (0, 1)

f (0, 2)

f (0, 3) r(3)

↗
↘ r(2)

f (2, 3)

↗ ↘
r(1) r(3)

f (1, 2)

f (1, 3) r(3)

↘ ↗
r(2)

f (2, 3)

↘
r(3)

Figure 26.8: Binomial HJM model. For brevity, we use f (i , j )
to denote the forward rate for the period [ j�t , ( j + 1)�t ]
as seen from time i�t . As always, r (i )≡ f (i , i ) is the short
rate. The binomial tree as a rule does not combine.

where

x ≡
√
�t
∫ T
t+�t

σ (t,u)du, tanh(x)≡ e
x − e−x
ex + e−x .

This makes the price of any interest rate claim arbitrage free [746].

EXAMPLE 26.5.5 Consider σ (t,T)= σr(t)γ e−κ(T−t) for the forward rate volatility.
Then

µ(t,T)�t = tanh
(
σr(t)γ

κ

[
e−κ�t − e−κ(T−t) ]√�t) σr(t)γ e−κ(T−t)√�t .

In particular, σ (t, t) is the short rate volatility. This volatility is constant as in the
Vasicek model when γ = 0. For γ = 0.5, the volatility is like that of the CIR model,
whereas for γ = 1, the volatility is proportional to the short rate’s level as in theBDT
model. Take a three-period model with �t = 1, γ = 1, κ = 0.01, and σ = 0.3. Then

µ(t,T)�t = tanh
(
30× r(t)[ e−0.01− e−0.01×(T−t) ])× 0.3× r(t) e−0.01×(T−t).

Given a flat initial term structure at 5%, selected forward rates are shown in Fig. 26.9.
The term structure at each node can be determined from the set of forward rates
there.

➤ Exercise 26.5.7 When pricing a derivative on bonds under the HJM model, does
the tree have to be built over the life of the longer-term underlying bond or just over
the life of the derivative?



394 No-Arbitrage Term Structure Models

r(3)= 10.9423%
↗

r(2)= 8.4182%
f (2, 3)= 8.4420%

↗ ↘
r(1)= 6.4851% r(3)= 5.9417%

f (1, 2)= 6.4920%
f (1, 3)= 6.4985% r(3)= 5.9841%

↗ ↘ ↗
r(2)= 4.5659%

f (2, 3)= 4.6280%
r(0)= 5% ↘

f (0, 1)= 5% r(3)= 3.2719%
f (0, 2)= 5% r(3)= 5.9964%
f (0, 3)= 5% ↗

r(2)= 4.5954%
f (2, 3)= 4.6315%

↘ ↗ ↘
r(1)= 3.5149% r(3)= 3.2666%

f (1, 2)= 3.5514%
f (1, 3)= 3.5871% r(3)= 3.3196%

↘ ↗
r(2)= 2.5431%

f (2, 3)= 2.5643%
↘
r(3)= 1.8089%

Figure 26.9: Sample binomial HJM tree. See Example 26.5.5 and Fig. 26.9.

A More Formal Setting
Assume that trades occur at times �t, 2�t, 3�t, . . . . As before, f (t,T) denotes
the forward interest rate contracted at time t for one period (of duration �t) of
borrowing or lending at time T. At each trading time t , the forward rates follow the
stochastic difference equation:

f (t +�t,T)− f (t,T)= µ(t,T)�t + σ (t,T) ξ(t +�t)
√
�t , (26.23)

where ξ( · ) are independent randomvariableswith zeromean andunit variance. The
value of ξ(t) is realized before the trading at time t but after time t −�t . The drift
µ and the diffusion σ can be functions of the current or past values of forward rates.
There is a single source of uncertainty (or factor), represented by ξ , that influences
forward rates of all maturities. To permit forward rates of different maturities to vary
independently, simply add additional sources of uncertainty to Eq. (26.23).

The price at time t of a discount bond of maturity at T is given by

P(t,T)= exp

[
−

(T/�t)−1∑
i=t/�t

f (t, i�t)�t

]
, t = 0,�t, 2�t, . . .

Substitute Eq. (26.23) into the preceding equation to yield

P(t,T) = exp

[
−

(T/�t)−1∑
i=t/�t

(
f (0, i�t)+

i−1∑
j=0
{µ( j�t, i�t)�t

+ σ ( j�t, i�t) ξ [( j + 1)�t]
√
�t }

)
�t

]
.
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Now use the money market account M(t) as numeraire and assume that it trades.
Thus

M(0) = 1,

M(t) = exp

[
(t/�t)−1∑
i=0

r(i�t)�t

]
= exp

[
(t/�t)−1∑
i=0

f (i�t, i�t)�t

]
.

To avoid arbitrage, there must exist a probability measure π under which
P(t,T)/M(t) is a martingale; in particular,

P(t,T)= Eπt [ P(t +�t,T) P(t, t +�t) ]. (26.24)

The continuous-time limit under π yields µ(t,T)= σ (t,T) ∫ Tt σ (t,u)du.
We can take ξ( · )=±1, each with a probability of one-half, and then adjust the

numbers on the nodes accordingly. This is what we did with the binomial interest rate
tree, the Ho–Leemodel, and the BDTmodel by fixing the risk-neutral probability to
be 0.5. Because the martingale condition holds only as �t→ 0, greater numerical
accuracy may result by requiring it to hold under the binomial framework [19]. This
leads to

�t
∫ T
t+�t

µ(t,u)du= ln
ex + e−x

2
, (26.25)

where x ≡√�t ∫ Tt+�t σ (t,u)du. In Eq. (26.25) the convention is that µ(t,u) is con-
stant for u between two adjacent trading times. The drifts µ( · , · ) can be computed
from Eq. (26.25) by solving them iteratively for T = t + i�t , i = 1, 2, . . . .

➤ Exercise 26.5.8 Verify Eq. (26.25).

➤ Exercise 26.5.9 Show that Eqs. (26.22) and (26.25) are equivalent in the limit.

26.6 The Ritchken–Sankarasubramanian Model

For the Ritchken–Sankarasubramanian (RS) model proposed by Ritchken and
Sankarasubramanian [747], the forward rate volatility σ (t,T) is related to the short
rate volatility σ (t, t) through an exogenously provided deterministic function κ(x)
by

σ (t,T)= σ (t, t) e−
∫ T
t κ(x)dx.

No particular restrictions are imposed on the short rate volatility σ (t, t). This model
precludes certain volatility structures. For instance, it does not permit volatilities of
different forward rates to fluctuate according to different spot rates [600].

The term structure dynamics can be made Markovian with respect to two state
variables. Bond prices – hence forward rates as well – at time t can be expressed in
terms of the price information at time zero, the short rate r(t), and a path-dependent
statistic that represents the accumulated variance for the forward rate up to time t :

φ(t)≡
∫ t
0
σ (u, t)2 du.

Note that φ(t) depends on the path the rate takes from time zero to t . In fact,

P(t,T)= P(0,T)
P(0, t)

e−β(t,T)[r(t)− f (0,t)]−β(t,T)
2φ(t)/2, (26.26)



396 No-Arbitrage Term Structure Models

where β(t,T)≡ ∫ Tt e− ∫ ut κ(x)dx du. The risk-neutral process follows

dr(t) = µ(r, φ, t)dt + σ (t, t)dW,
dφ(t) = [ σ (t, t)2− 2κ(t)φ(t) ]dt, (26.27)

where

µ(r, φ, t)≡ κ(t)[ f (0, t)− r(t) ]+ df (0, t)
dt

+φ(t). (26.28)

Because the short rate volatility could depend on both state variables r(t) and φ(t),
it may be expressed by σ (r(t), φ(t), t). Calibration is achieved by the appropriate
choice of κ( · ).

26.6.1 Binomial Approximation

Throughout this subsection, the forward rate volatility structure is given by

σ (t,T)= σr(t)γ e−κ(T−t).
(Note that the short rate volatility σ (t, t) equals σr(t)γ .) Distant forward rates are
therefore less volatile than near forward rates. For instance, with γ = 0, the extended
Vasicek model results, and bond pricing formula (26.26) reduces to that for the
extendedVasicekmodel (seeExercise 26.6.1). TheCIRmodel emerges with γ = 0.5.

The forward rate at time t is given by

f (t,T)= f (0,T)+ e−κ(T−t) [ r(t)− f (0, t)+β(t,T)φ(t) ] ,
where β(t,T)≡ [ 1− e−κ(T−t) ]/κ . When γ �= 0, the φ(t) variable is determined by
the path of rate values over the period [ 0, t ]. Although the knowledge of r(t)
alone is insufficient to characterize the term structure at time t , that of r(t) and
φ(t) suffices. At time t , the duration of a zero-coupon bond maturing at time T is
β(t,T) [746].

The binomial tree model can be developed much as we did with the CIR model.
First, take the following transformation to a form that has constant volatility:

Y(t)=
∫

1
σ (r(t), φ(t), t)

dr(t).

Let r(t)= h(Y(t)) be the inverse function. Then

dY(t)=m(Y, φ, t)dt +dWt ,
dφ(t)= [ σ (r(t), φ(t), t)2− 2κ(t)φ(t) ] dt,

where

m(Y, φ, t)≡ ∂Y(t)
∂t
+µ(r, φ, t) ∂Y(t)

∂r(t)
+ 1

2
σ (r(t), φ(t), t)2

∂2Y(t)
∂r(t)2

.

For example, for the proportional model with γ = 1, Y(t)= (1/σ ) ln r(t) and

σ (r(t), φ(t), t)2 = σ 2e2σY(t)

m(Y, φ, t)= 1
σ

{[
κ
(
f (0, t)− eσY(t))+φ(t)+ df (0, t)

dt

]
e−σY(t)− σ

2

2

}
.
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Now, partition the interval [ 0,T ] into n periods each of length �t ≡ T/n and set
up a combining binomial tree for Y. Initially, Y0 = Y(0) and φ0 = 0. During each
time increment, the approximating Yi can move to one of two values,

Yi ✟✟✟✯ Y+i+1 = Yi +
√
�t

❍❍❍❥ Y−i+1 = Yi −
√
�t

.

Let ri ≡ h(Yi ). Each node on the tree has two state variables. The tree evolves thus:

ri , φi ✟
✟✟✯ r+i+1 = h(Y+i+1), φi+1

❍❍❍❥ r−i+1 = h(Y−i+1), φi+1
,

where φi+1 = φi + (σ 2r2γi − 2κφi )�t by Eq. (26.27). The φ values are the same in
both the up and the down nodes and have to be derived by forward induction. The
probability of an up move to (r+i+1, φi+1) given (ri , φi ) is

p(ri , φi , i)≡
µ(ri , φi , i�t)�t + ri − r−i+1

r+i+1− r−i+1
,

where µ( · , · , · ) is the drift term in Eq. (26.28) with κ(x)= κ . Pricing can be carried
out with backward induction, and the term structure at each node can be computed
by Eq. (26.26).

EXAMPLE 26.6.1 For the proportional model, the transform is r(t)= h(Y(t))= eσY(t).
Let ri ≡ eσYi . The binomial tree evolves according to

ri , φi ✟
✟✟✯ ri eσ

√
�t , φi+1

❍❍❍❥ ri e−σ
√
�t , φi+1

,

where φi+1 = φi + (σ 2r2i − 2κφi )�t .

The size of the tree as described grows exponentially in n. In fact, the number
of φ values at a node equals the number of distinct paths leading to it from the
root because the φ value is path dependent. This observation should be clear from
the binomial process. One remedy is to keep only the maximum and the minimum
φ values at each node, interpolating m intermediate values linearly on demand
(see Subsection 11.7.1 for the same idea). The model is expected to converge for
sufficiently large n and m.

➤ Exercise 26.6.1 Show that φ(t)= σ 2(1− e−2κt)/(2κ) for the extended Vasicek
model.

Additional Reading

See [858] for a survey of interest rate models, [754] for a comparison of models,
[32, 78, 378, 670] for theoretical analysis, [47, 139, 677] for empirical studies of the
short rate and the HJM models, and [276, 507, 779, 780, 850] for more information
on derivatives pricing. References [40, 183, 470, 510, 681, 731] also cover interest rate
models. Consult [359] for an empirical study of the Ho–Lee model. See [74, 625] for
calibration of the BDT model and [479, 483, 735] for that of the Hull–White model.
A two-factor extended Vasicek model is proposed in [480]. For the HJM model, see
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[58, 116, 165, 166, 435, 437] for theoretical analysis, [163, 197, 477, 499, 515, 747] for
the conditions that make the short rateMarkovian, [682] for riskmanagement issues,
[510] for estimating volatilities by use of principal components, [436, 510] for discrete-
time models, and [160] for the Monte Carlo approach to pricing American-style
fixed-income options. For the RS model, see [600, 746, 747] for additional numerical
ideas and [92] for an empirical study. Reference [77] asks whether an interest rate
model generates term structures within the functionals (say, polynomials) used for
fitting the term structure; in particular, it shows that theHo–Leemodel and theHull–
White model are inconsistent with the Nelson–Siegel scheme. Volatility structures
are investigated in [136, 393, 722]. A universal trinomial tree algorithm for any Ito
process is proposed in [187].

NOTES

1. Contrast this with the lognormal model in Exercise 23.2.3.
2. The value of p can be chosen rather arbitrarily because, in the limit, only the volatility matters

[436].
3. Under the premise that the forward rate tends to a constant for large t , it follows fromEq. (26.6)

that r(t)− r(t − 1) is either essentially zero or |ln δ|> 0 [300].



CHAPTER
TWENTY-SEVEN

Fixed-Income Securities

Neither a borrower nor a lender be.

Shakespeare (1564–1616),Hamlet

Bonds are issued for the purpose of raising funds. This chapter concentrates on
bonds, particularly those with embedded options. It ends with a discussion of key
rate durations.

27.1 Introduction

A bond can be secured or unsecured. A secured issue is one for which the issuer
pledges specific assets that may be used to pay bondholders if the firm defaults on its
payments. Many bond issues are unsecured, however, with no specific assets acting
as collateral. Long-term unsecured issues are called debentures, whereas short-term
unsecured issues such as commercial paper are referred to as notes.

It is common for a bond issue to include in the indenture provisions that give
either the bondholder and/or the issuer an option to take certain actions against the
other party. The bond indenture is themaster loan agreement between the issuer and
the investor. A common type of embedded option in a bond is a call feature, which
grants the issuer the right to retire the debt, fully or partially, before the maturity
date. An issue with a put provision, as another example, grants the bondholder the
right to sell the issue back to the issuer. Here the advantage to the investor is that
if interest rates rise after the issue date, reducing the bond’s price, the investor can
force the issuer to redeem the bond at, say, par value. A convertible bond (CB) is an
issue giving the bondholder the right to exchange the bond for a specified number
of shares of common stock. Such a feature allows the bondholder to take advantage
of favorable movements in the price of the issuer’s stock. An exchangeable bond
allows the bondholder to exchange the issue for a specified number of common
stock shares of a corporation different from the issuer of the bond. Some bonds are
issued with warrants attached as part of the offer. A warrant grants the holder the
right to purchase a designated security at a specified price.

27.2 Treasury, Agency, and Municipal Bonds

Strictly speaking, only default-free bonds without options deserve the name “fixed-
income security.” In theU.S. market, almost all fixed-income securities in this narrow

399
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Outstanding U.S. Treasury securities (U.S. $ billions)

1980 616.4 1985 1,360.2 1990 2,195.8 1995 3,307.2
1981 683.2 1986 1,564.3 1991 2,471.6 1996 3,459.7
1982 824.4 1987 1,675.0 1992 2,754.1 1997 3,456.8
1983 1,024.4 1988 1,821.3 1993 2,989.5 1998 3,355.5
1984 1,176.6 1989 1,945.4 1994 3,126.0 1999 3,281.0

Figure 27.1: Outstanding U.S. Treasury securities 1980–1999. Prices are quoted in 1/32 of a percent. Source:
U.S. Treasury.

sense are issued by the Treasury. Nevertheless, in reality the term fixed-income se-
curity is used rather loosely and has come to describe even bonds with uncertain
payments. Figure 27.1 tabulates the U.S. Treasury securities in terms of outstanding
volume, and Figure 27.2 provides a view of the immense U.S. Treasuries market.

In early 1996 the Treasury announced plans to issue bonds whose nominal pay-
ments are indexed to inflation so that their payments are fixed in real terms [147].
The index formeasuring the inflation rate is the nonseasonally adjustedU.S. CityAv-
erage All Items Consumer Price Index for All Urban Consumers (CPI-U) published
monthly by the Bureau of Labor Statistics. When the bond matures, the principal
will be adjusted to reflect all the inflation there is during the life of the bond. (The
British government issued index-linked securities in 1981 [135].)On January 29, 1997,
U.S.$7 billion of 33/8% 10-year inflation-indexed Treasury notes were auctioned (see
Fig. 27.3) [759].1 The interest rate set at auctionwill remain fixed throughout the term
of the security. Semiannual interest payments will be based on the inflation-adjusted
principal at the time the interest is paid. At maturity, the securities will be redeemed
at the greater of their inflation-adjusted principal or their par amount at original
issue.

Federal agency debt can be issued by Federal agencies, which are direct arms of
the U.S. government, or various government-sponsored enterprises (GSEs), which
were created by Congress to fund loans to such borrowers as homeowners, farmers,
and students [395]. GSEs are privately owned, publicly chartered entities that raise
funds in themarketplace.Examples includeFederalHomeLoanBanks (FHLBanks),
the Federal National Mortgage Association (FNMA or “Fannie Mae”), the Federal
Home Loan Mortgage Corporation (FHLMC or “Freddie Mac”), and the Student
Loan Marketing Association (SLMA or “Sallie Mae”). Although there are no Fed-
eral guarantees on the securities issued by the GSEs, the perception that the govern-
ment would ultimately cover any defaults causes the yields on these securities to be
below those on most corporate securities. This may change in the future, however
[404].

Municipal bonds are fixed-income securities issuedby state, state authorities, or
local governments to finance capital improvements or support a government’s gen-
eral financing needs. There are two major categories of municipal bonds: revenue
bonds and general obligation bonds. Revenue bonds are issued to raise funds for a
particular project such as a toll road or a hospital that is projected to generate enough
income to pay principal and interest to bondholders. General obligation bonds are
backed by the taxing power of the issuer such as city, county, or state. They are often
considered less risky than revenue bonds. Investors are attracted to municipal bonds
because the interest is exempt from federal income taxes and, in some cases, state
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TREASURY BONDS, NOTES & BILLS
Monday, March 20, 1995

GOVT. BONDS & NOTES

Rate Maturity Mo/Yr Bid Asked Chg. Ask Yld.
37/8 Mar 95n 99:29 99:31 −1 5.05
83/8 Apr 95n 100:03 100:05 −1 5.79
37/8 Apr 95n 99:24 99:26 . . . . . 5.54
57/8 May 95n 99:31 100:01 . . . . . 5.55
81/2 May 95n 100:12 100:14 . . . . . 5.38
103/8 May 95 100:20 100:22 . . . . . 5.53

· · ·
71/8 Feb 23 95:26 95:28 −11 7.48
61/4 Aug 23 85:21 85:23 −12 7.47
71/2 Nov 24 100:14 100:16 −15 7.46
75/8 Feb 25 102:23 102:25 −10 7.39

U.S. TREASURY STRIPS

Mat. Type Bid Asked Chg. Ask Yld.
May 95 ci 99:04 99:04 +1 5.84
May 95 np 99:04 99:04 +1 5.95
Aug 95 ci 97:22 97:23 . . . . . 5.82
Aug 95 np 97:19 97:19 . . . . . 6.10

· · ·
Nov 24 ci 11:17 11:20 −4 7.39
Nov 24 bp 11:21 11:24 −4 7.35
Feb 25 ci 11:25 11:29 −3 7.25
Feb 25 bp 12:04 12:08 −3 7.15

TREASURY BILLS

Maturity Days to Mat. Bid Asked Chg. Ask Yld.
Mar 23 ’95 1 5.43 5.33 +0.42 5.40
Mar 30 ’95 8 4.96 4.86 −0.04 4.93
Apr 06 ’95 15 5.61 5.51 +0.04 5.60
Apr 13 ’95 22 5.50 5.40 +0.01 5.49

· · ·
Dec 14 ’95 267 5.93 5.91 −0.01 6.21
Jan 11 ’96 295 5.95 5.93 −0.01 6.25
Feb 08 ’96 323 5.96 5.94 −0.01 6.28
Mar 07 ’96 351 5.98 5.96 . . . . . 6.34

Figure 27.2: Treasuries quotations. Colons represent 32nds. The final column for T-bills shows the annualized
BEYs as computed by Eq. (3.10). T-bill quotes are in hundredths and are on a discount basis. All yields are
based on the asked quote. n, Treasury note; ci, stripped coupon interest; bp, T-bond, stripped principal;
tt, T-note, stripped principal. Source: Wall Street Journal, March 21, 1995.

and local taxes as well. Municipal bonds are quoted in percent of par and 1/32 of a
percent like T-bonds.

27.3 Corporate Bonds

Both stock and bond markets offer an efficient way for corporations to raise capital.
Bonds have the advantage of not diluting the stockholder’s equity. Compared with
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TREASURY BONDS, NOTES & BILLS
Thursday, January 7, 1999

· · ·
INFLATION-INDEXED TREASURY SECURITIES

Rate Mat. Bid/Asked Chg. *Yld. Accr. Prin.
3.625 07/02 99-15/16 −01 3.768 1024
3.375 01/07 96-23/24 −02 3.850 1035
3.625 01/08 98-11/12 −05 3.831 1015
3.625 04/28 98-03/04 +17 3.734 1014

*-Yld. to maturity on accrued principal.

Figure 27.3: Inflation-indexed Treasuries quotations. Source: Wall Street Journal, January 8, 1999.

bank loans, bonds often allow corporations to borrow at a lower interest rate than
the rates available from their banks. With bonds, a corporation also borrows money
at a fixed rate for a longer term than it could at a bank because most banks do not
make long-term fixed-rate loans.

Corporate bonds are quoted in points and eighths of a point. A bondwith $10,000
par value quoted at 956/8, for example, has a price of $9575. Because each bond must
be customized to reflect the concerns of both the issuer and the investors, corporate
bonds are not standardized. Bondholders, by making loans to the issuer, are legally
the issuer’s creditors, not owners like stockholders.

27.3.1 Callable and Putable Bonds

The holder of a callable bond sells the issuer an option to purchase the bond from
the time it is first callable until the maturity date. The position of the bondholder is
therefore

long a callable bond= long a noncallable bond+ sold a call option.

In terms of price, we have

callable bond price= noncallable bond price− call option price. (27.1)

The issuermay be entitled to call the bond at the first call date and any time thereafter
(continuously callable) or at the first call date and all subsequent coupon payment
dates (discretely callable). The call price may also vary over time. Typically, there
is an initial call protection period, after which the bond is callable with a call price
that declines to par over its remaining life [329]. Take for example a bond with
20 years to maturity and callable in 5 years at 106. The bondholder is essentially long
a hypothetical 20-year noncallable bond and short a call option granting the issuer
the right to call the bond 5 years from now for a price of 106.

The issuer will call a bond when the bond yield in the market for a new issue
net of the underwriting fees and tax is lower than the current issue’s coupon rate.
Whether to exercise the option hinges on the future bond payments if the bond is
not called. The price of the callable bond when it is callable will remain near its call
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Figure 27.4: Price compression of callable bonds. The five-year 10%
bond callable at par is priced by the CIR model.

price when interest rates are low, a phenomenon known as price compression. This
is because the bond is likely to be called (see Fig. 27.4).

The holder of a putable bond has the right to sell the bond to the issuer at a
designated price and time [238, 536]. The position of a putable bondholder can be
described as

long a putable bond= long a nonputable bond+ long a put option.

The price of a putable bond thus is

putable bond price= nonputable bond price+ put option price.

A bond may carry both call and put options. If these options are exercisable at par
on the same date, the bond is usually called an extendible bond [371].

27.3.2 Bonds with Sinking-Fund Provisions

The scheduled principal payments of a bond with sinking-fund provisions are spread
out over many years. Two methods can be used to retire the required principal
amount. Either the issuer can purchase the required amount in the open market and
deliver the bonds to the trustee or it can call the required amount at par by random
selection. Which method to execute depends on the prevailing interest rates. If rates
are high, the issuer will choose to satisfy its sinking-fund requirement by market
purchases. If rates are low, however, par calls will be chosen. When a sinking fund
and a call option are both included in a bond issue, there are situations in which it is
optimal to call only part of an issue. Almost all sinking-fund bond issues contain call
options [848].

➤ Exercise 27.3.1 Sketch a method to price a callable bond with sinking-fund
provisions.

27.3.3 Convertible Bonds

CBs grant the bondholder the right to acquire the stock of the issuing corporation
under specific conditions. The CB contract will state either a conversion ratio or a
conversion price. A conversion ratio, we recall, specifies the number of shares to be
obtained through conversion. The ratio is always adjusted proportionately for stock
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splits and stock dividends. Alternatively, the conversion ratio may be expressed in
terms of a conversion price defined as

conversion price≡ par value of CB
conversion ratio

.

This price represents the cost per share through conversion. The conversion privilege
may extend for all or only some portion of the bond’s life. There are typically other
embedded options in a CB, the most common being the right of the issuer to call or
put the issue [328]. Conditions are usually imposed on the exercise of the options;
for example, the stock price must be trading at a certain premium to the conversion
price for the CB to be called. The contract may contain a refix clause in that the
conversion price is set to the stock price if it is lower than the conversion price on
the refix day [221].

The conversion value, we recall, is the value of the CB if it is converted immedi-
ately,

conversion value=market price of stock× conversion ratio. (27.2)

It is also called the parity in themarket (but see Exercise 27.3.3). Themarket price of
a CBmust be at least its conversion value and straight value – the bond value without
the conversion option. The price that an investor effectively pays for the stock if the
CB is purchased and then converted is called the market conversion price:

market conversion price≡ market price of CB
conversion ratio

.

As the market conversion price cannot be lower than the market price of the stock,
the bondholder pays a premium per share in the amount of

market conversion price−market price of stock.

The premium is usually expressed as a percentage of the market price of stock.

EXAMPLE 27.3.1 ACBwith a par value of $10,000 and a conversion price of $80 would
imply a conversion ratio of 10000/80= 125. Given the CB’s quoted price, 103, the
purchase price is 1.03× 10000= 10300 dollars. At the current stock price of $78, the
premium per share is 10300/125− 78= 4.4 dollars.

CBs exhibit the characteristics of both bond and stock. If the stock price is so low
that the straight value is much higher than the conversion value, the CB behaves as
a fixed-rate bond. On the other hand, if the stock price is so high that the conversion
value is much higher than the straight value, the CB trades as an equity instrument.
Between these two extremes, the CB trades as a hybrid security. Both the straight
value and the parity act as a floor for the CB price, giving it a call-like behavior (see
Fig. 27.5 for illustration).

It is simpler to price a CB on a per-share basis, that is, the hypothetical CB that
can be converted for one share. The actual price, of course, equals the per-share price
times the conversion ratio. As a reasonable first approximation, assume constant
interest rates [847]. Then binomial tree algorithms for American options such as
the one in Fig. 9.17 can be used to price CBs after the payoff function is modified.
At maturity, the choice is between the conversion price plus coupon and the stock,
whereas, beforematurity, the choice is between theCBand the stock. See Fig. 27.6 for
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Figure 27.5: CBprice vs. stockprice.Both the straight valueand
the parity provide a floor. This particular CB has a conversion
ratio of two and a conversion price of $50. The plot is similar
to the one in Fig. 7.3 for calls on a stock.

an algorithm. Sensitivity measures can also be computed (review Chap. 10). Many of
equity options’ properties continue to hold for CBs. For example, higher stock price
volatilities increase the CB’s value.

➤ Exercise 27.3.2 Use an arbitrage argument to show that a CB must trade for at
least its conversion value.

➤ Exercise 27.3.3 Can you find one fault with formula (27.2)?

➤ Exercise 27.3.4 Prove that, much as with American calls, it never pays to convert
the bond when the stock does not pay cash dividends and the interest rate remains
constant.

Binomial tree algorithm for pricing convertible bonds on a stock that pays a known dividend
yield:

input: S, P, σ, t,n, δ (1> δ > 0),m, r, c;
real R, p,u,d,C[n+ 1 ], v;
integer i, j ;
R := er(t/n);
u := eσ√t/n ;d := e−σ√t/n ;
p := (R−d)/(u−d)=;
for (i = 0 to n) { C[ i ] :=max

(
Sun−i di (1− δ)m, P+ c) ; }

for ( j = n− 1 down to 0)
for (i = 0 to j) {

if [the period ( j, j + 1 ] contains an ex-dividend date]m :=m− 1;
v := (p×C[ i ]+ (1− p)×C[ i + 1 ])/R; // Backward induction.
if [the period [ j, j + 1 ) contains a coupon payment date] v := v+ c;
C[ i ] :=max

(
Suj−i di (1− δ)m, v) ;

}
return C[ 0 ]; // On a per-share basis.

Figure 27.6: Binomial tree algorithm for CBs on a stock paying a dividend yield. S is the current stock price,
m stores the total number of ex-dividend dates at or before expiration that occurs t years from now, δ is the
dividend yield for each cash dividend, P is the conversion price, and c is the coupon payment per share.
Note that the conversion price is already on a per-share basis. The partition should be fine enough that coupon
payment dates and ex-dividend dates are separated by at least one period.
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➤ Exercise 27.3.5 Argue that under the binomial CB pricing model of Fig. 27.6, the
CB price converges to the stock price as the stock price increases.

➤ Exercise 27.3.6 Likewarrants, CBs canbe converted into newly issued shares; they
are in fact equivalent under certain assumptions (see Exercise 11.1.10, part (2)). On
a per-share basis, the conversion price plus the final coupon payment acts very much
like the strike price. But unlike with warrants, exercising the conversion option does
not require paying the “strike price.” Derive the pricing relation between European
warrants and CBs with a European-style conversion option. Assume that the issuer
pays no dividends and ignore the dilution issue.

➢ Programming Assignment 27.3.7 Implement the algorithm in Fig. 27.6.

27.3.4 Notes

A floating-rate note has coupon payments pegged to the yield of a particular in-
terest rate such as LIBOR or the yield on a Treasury security. The interest rate that
the borrower pays is reset periodically. For example, the rate might be reset every
6 months to the current T-bill rate plus 100 basis points. Variations on floating-rate
notes include call features, issued by the firm, and conversion features that allow
the investor to transfer to a fixed-rate note. In addition, the coupon rate may have
a floor or a cap. Put features, whereby the holder can redeem the investment at par
at particular coupon payment dates or after some predetermined date, may also be
present. Of course, if there is no spread, a floating-rate note will sell at par on reset
dates.
Structured notes are securities in which the issuer sells a note and simultaneously

enters into a swap or derivative transaction to eliminate its exposure to the cus-
tomized terms of the note structure [237]. Each structured note is customized with
unique features that match the preferences of the investor. Consider an investor who
believes that the yield curvewill flatten.A security designed to reflect that view could
have its coupon payments linked to the shape of the yield curve. Thus the coupon
on the note might be reset semiannually to a rate that depends on the yield spread
between the 30-year and the 2-year Treasury yields.

27.4 Valuation Methodologies

Several valuation methodologies were mentioned for corporate bonds before: yield
to worst, yield to call, yield to par call, yield spread, and static spread. This section
covers additional methodologies.

27.4.1 The Static Cash Flow Yield Methodology

In the static cash flow yieldmethodology, the yield tomaturity of a bond is compared
with that of the on-the-run Treasury security with a similarmaturity. The difference is
the yield spread. Because the yield must make certain assumptions about the future
cash flow, it is also called the (static) cash flow yield. There are two obvious problems
with thismethodology. First, the yields fail to account for the termstructureof interest
rates. Second, interest rate volatility may alter the cash flow of bonds with embedded
options.
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➤ Exercise 27.4.1 Assume any stochastic discrete-time short rate model. Consider a
risky corporate zero that is not currently in default. When the firm defaults, it stays
in the default state until the maturity when the investor receives zero dollar. Let pi
denote the risk-neutral probability that the bond defaults at time i given that it has
not defaulted earlier; the pi s depend on only the time, not the short rate. Prove that

price of n-period corporate zero
price of n-period Treasury zero

=
n∏
i=1
pi .

(This result generalizes Eq. (5.6) in the static world. The algorithm in Fig. 5.9 can be
used to retrieve the pi s.)

27.4.2 The Option Pricing Methodology

The value of an embedded option is the price difference between the bond with
the option feature and an otherwise identical bond without the option. This insight
leads the option pricing methodology to decompose fixed-income securities with
option features into an option and an option-free component. The callable bond
is a quintessential example, as demonstrated in Eq. (27.1). For instance, consider a
coupon bond with a maturity date of June 2015 and callable in June 2012 at 102. Its
bondholder as of April 1, 2000, effectively owns a noncallable bond with 15 years
and 2 months to maturity and is short a call option, granting the issuer the right to
call away 3 years of cash flows beginning June 1, 2012, for a strike price of 102.

The option pricingmethodology applies the option pricing framework such as the
Black–Scholes model in Section 24.7 to estimate the option price. The binomial tree
algorithm for American options in Fig. 9.13 can be modified to price the embedded
call option. After the option is priced, the implied noncallable bond price is then
calculated as the sum of the callable bond price and the call option price. Finally, the
option-adjusted yield is calculated as the yield that makes the PV of the cash flow of
the hypothetical noncallable bond equal the implied price. The callable bond is said
to be priced fairly if its option-adjusted yield equals the yield for an “equivalent”
noncallable bond. It is said to be rich (overvalued) if the option-adjusted yield is
lower, and cheap (undervalued) if the option-adjusted yield is higher [325, 330].

This methodology suffers from several difficulties. The Black–Scholes model is
not satisfactory for pricing fixed-income securities as argued in Section 24.7. And
there may not exist a benchmark with which to compare the option-adjusted yield
to get the yield spread. Finally, this methodology does not incorporate the shape of
the yield curve, which affects the value of all interest-rate-sensitive securities [329].

➤ Exercise 27.4.2 Argue that when interest rates rise, the price of a callable bond
will not fall as much as the price of its noncallable component.

➤ Exercise 27.4.3 For bonds with embedded options, traditional duration measures
such as modified duration lose relevance because of cash flow uncertainties. The du-
ration of a callable bond after the call option is adjusted for is commonly referred
to as the option-adjusted duration (OAD) and is defined as OADc ≡− ∂pricec

∂y /pricec.
(The subscript “c” refers to callable measures.) The convexity of a callable bond
after the call option is adjusted for is commonly referred to as the option-
adjusted convexity (OAC) and is defined as OACc ≡− ∂

2pricec

∂y2 /pricec. (1) Prove that
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OADc = (pricenc/pricec)×durationnc× (1−�), where �≡ ∂(call price)/∂pricenc is
the delta of the embedded call option. (The subscript “nc” refers to noncallable
measures.) (2) Show that

OACc = pricenc

pricec
× [ convexitync× (1−�)− pricenc×�× (durationnc)2 ],

where � ≡ ∂2(call price)/(∂pricenc)2 is the gamma of the embedded call option.

27.4.3 The Option-Adjusted Spread Methodology

The final methodology is the option-adjusted spread (OAS) [34, 323]. This popular
approach takes into account the embedded option features of fixed-income securities
and tackles the difficulties faced by the previous methods. Unlike the previous meth-
ods,OASanalysis doesnot attempt topredict abond’s redemptiondate.Thebinomial
interest rate tree of Chap. 23 is used to illustrate the main ideas. Generalization to
other models is straightforward. Specifically, we use the calibrated binomial interest
rate tree in Fig. 23.8 and callable bonds as the basis for our numerical calculations.
Recall that a spread is defined as the incremental return applied to every short rate
on the tree. It measures the extent to which the bond’s rate of return exceeds riskless
returns. The OAS generalizes the spread concept to bonds with uncertain cash flows.

Given an OAS, the procedure to calculate the model price is essentially the same
as the one for option-free bonds except that, at eachnode, the exercise of the callmust
be considered. If the PV of future cash flows as determined by backward induction
at any node exceeds the call price, the call will be exercised and the lower call price
becomes the bond value. This usually happens when interest rates are low.

Consider a 3-year callable bond with a market price of 99.696 and an annual
coupon rate of 5%. The call provision is a discrete par call that may be exercised
on any coupon payment date. When the call provision is exercised, it eliminates all
coupon payments scheduled to take place after the call date, and the par value plus
the currently due coupon is paid at that time. We want to derive the OAS associated
with the 99.696 observed price of the bond. In Fig. 27.7, the OAS is verified to be
50 basis points over the short rates. The same bond without the call option would
have fetched 100.569 as shown in Fig. 23.14 under the same OAS. The call option
depresses the bond value, as expected.

An algorithm for finding the OAS of callable bonds is given in Fig. 27.8. Besides
callable bonds, OAS analysis can be extended to other corporate bond structures.
The general procedure is summarized below.

1. Estimate the spot rate curve.
2. Calibrate the interest rate model.
3. Develop rules for exercising the embedded options.
4. Add the OAS to the short rates on the tree.
5. Compute the model price.
6. Iterate 4 and 5 by varying the OAS until the model price matches the market price.

There aremany choices for the root-finding algorithms. The simple bisectionmethod
cannot fail. The Newton–Raphson method, albeit faster, may not apply at certain
OASs because of nondifferentiability. See [727] and Programming Assignments
27.4.9 and 27.4.10 for additional choices.
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Figure 27.7: Calculation of the OAS of callable bonds. The price trees are based on a 3-year callable bond
paying an annual coupon rate of 5%. The call provision is a discrete par (100) call that may be exercised on any
coupon payment date. The underlying binomial interest rate tree is produced from Fig. 23.8 by the addition
of a constant spread of 50 basis points to each short rate. The dotted lines signal early exercise. (a) PVs at C
nodes are computed. Prices over 100 are replaced with 100 because of the exercise of the option. (b) PVs at B
nodes are computed after the addition of 5 to prices at C nodes. Again, prices over 100 are replaced with 100.
(c) Repeat the steps in (b) for node A. The price at each node has the PV of the remaining cash flows. Because
the model price matches the market price, 99.696, 0.5% is the OAS. (d) Calculate the option value (this part is
incorrect; see text).

➤ Exercise 27.4.4 Argue that the OAS does not assume parallel shifts in the term
structure.

➤ Exercise 27.4.5 Explain why the OAS of a callable bond decreases as the interest
rate volatility increases, other things being equal.

➤ Exercise 27.4.6 For a putable bond, how does its OAS behave (1) when themarket
price decreases, other things being equal, and (2) when the coupon rate decreases,
other things being equal and with the market price at par?
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Algorithm for computing the OAS of callable bonds:

input: P,n, cp[n ], r [ 1..n ],C[ 0..n ], v[ 1..n ], ε;
real P[ 1..n+ 1 ], s;
integer i, j ;
s := 0; // Initial guess.
P[ 1 ] :=∞;
while [ | P[ 1 ]− P |> ε ] {

for (i = 1 to n+ 1) { P[ i ] := C[n ]; } // Initialization.
for (i = n down to 1) // Sweep the column backward in time.

for ( j = 1 to i) // Backward induction.

P[ j ] := C[ i − 1 ]+min
(
cp[ i − 1 ], P[ j ]+P[ j+1 ]

2×(1+r [ i ]×v[ i ] j−1+s)

)
;

Update s;
}
return s;

Figure 27.8: Algorithm for computing the OAS of callable bonds. P is the market price, cp[ i ] is the call price
i periods from now (cp[ i ]=∞ if the bond is not callable then), r [ i ] is the baseline rate for period i , C [ i ]
contains the cash flow occurring exactly i periods from now (equivalently, end of the (i − 1)th period), v [ i ]
is the multiplicative ratio for the rates in period j , and n is number of periods. All numbers are measured by
the period. Note that the coupon payment on a call date will be paid whether or not the bond is called. For
putable bonds, (1) replace min( ) with max( ), (2) replace the call prices in cp[ ] with the put prices, and (3)
make cp[ i ]=−∞ if the bond is not putable then.

➤ Exercise 27.4.7 Argue that using Monte Carlo simulation to price callable
(putable) bonds tends to underestimate (overestimate, respectively) their values.

➢ Programming Assignment 27.4.8 Implement the algorithm in Fig. 27.8 with the dif-
ferential tree method, which is based on the Newton–Raphson method.

➢ Programming Assignment 27.4.9 Implement the algorithm in Fig. 27.8 with the
secant method.

➢ Programming Assignment 27.4.10 Implement the algorithm in Fig. 27.8 with the
Ridders method.

Valuing the Embedded Option and Option-Adjusted Yield
In contrast with the explicit valuation of the embedded call option in the option
pricing methodology, option price is a by-product of OAS analysis. It is calculated
in the following way. First, the implied noncallable bond price is the PV of the bond
afte the OAS is added to the short rates on the tree. Then the value of the embedded
call option is determined by subtraction of the callable bond’s market price from the
implied noncallable bond price.

Refer to Fig. 27.7(d) for the calculation of the embedded option’s value below.
At C nodes the intrinsic value of the call option is the greater of zero and the price
of the underlying bond minus the call price. For instance, the top C node’s intrinsic
value is

max(0,101.552− 100)= 1.552.

Similarly, the thirdC node’s intrinsic value is zero because the option is not exercised.
At B nodes, we find the PV of the option values at C nodes and take as the option
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value the greater of the intrinsic value at B and the PV of the option value at the
successor C nodes. At the top B node, for instance, the intrinsic value is 0.936 as it is
exercised. The PV of the option values at the two successor C nodes is

1.552+ 0.150
2× 1.04026

= 0.818.

The option value is therefore 0.936. Similarly, the option value at the bottom B node
is

0.150
2× 1.05789

= 0.071.

The option value is finally

0.936+ 0.071
2× 1.045

= 0.482.

The implied price of the underlying fixed-rate bond is hence 99.696+ 0.482=
100.178. However, this cannot be right. Should not the price be 100.569, the price
of the same bond without the call option as calculated in Fig. 23.14 under the same
OAS of 50 basis points? And by Eq. (27.1), should not the embedded call’s value
be 100.569− 99.696= 0.873 instead of 0.482? Indeed, the way 0.482 was calculated
assumed an underlying bond that is callable. Hence 100.178 is the price of a bond
that is not option free as desired.

Recall that the option-adjusted yield is the interest rate that makes the PV of the
cash flows for the bond equal the implied price of the noncallable bond. Because the
hypothetical noncallable bondwith an impliedprice of 100.569has 3 years tomaturity
and pays a 5% annual coupon, the option-adjusted yield is 4.792% compounded
annually.

➤ Exercise 27.4.11 Correct Fig. 27.7(d).

Option-Adjusted Spread Duration and Convexity
OAS analysis can be used to assess how prices move as interest rates change. This is
done by first changing the short rate by a small amount �r , say, plus 10 basis points.
Next the interest rate tree is revised to reflect the new short rate (for example,�r is
added to every short rate on the Ho–Lee model’s interest rate tree). With the OAS
held constant, the newmodel price P+ is computed. Finally, themarket price P0 and
the new model price are used to estimate the effective duration (P0− P+)/(P0�r)
by Eqs. (4.6) [325, 848]. This duration is called the OAS duration [55, 330]. The
effective convexity is more computation intensive as it requires the model price P−
after the short rate is decremented by a small amount �r . It equals (P+ + P− −
2× P0)/(P0(�r)2) by Eq. (4.16). For multifactor interest rate models, the above
procedures must be repeated for each factor.

A popular alternative is to add �r to thewhole spot rate curve and then calibrate
the interest rate model with the same volatility. The rest of the computation is iden-
tical [36, 329, 429]. Specifying a term structure movement outside the interest rate
model is certainly not theoretically sound. However, this method is easy to apply;
besides, to do otherwise requires a lot of confidence in the model [731].
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Holding Period Returns
The HPR assesses the bond over a holding period. The FV at the horizon consists
of the projected principal and interest cash flows, the interest on the reinvestment
thereof, and the projected horizon price. The monthly total return is then(

total future amount
price of the bond

)1/number of months

− 1.

To calculate the above return, reinvestment rates and interest rate dynamics are all
needed. The OAS can be easily combined with the HPR analysis. First we create a
few static interest rate scenarios for the holding period. We then calculate the HPR
for each scenario by assuming that the OAS remains unchanged at the horizon. This
methodology is better than simply comparing the OASs of two securities.

➤ Exercise 27.4.12 Assume a flat prevailing spot rate curve and continuous com-
pounding. Prove that for an option-free nonbenchmark bond, any calibrated interest
rate tree will compute a spread that equals the yield spread. (The yield spread is the
difference between the yields to maturity of benchmark and nonbenchmark bonds.
The spread is the incremental return over the short rate on the tree in the sense of
Subsection 23.3.1.)

27.5 Key Rate Durations

Although duration is essential for identifying interest rate risk exposures, it hasmany
limitations. For example, the assumed yield curve shift is usually not realistic. Also,
when it becomes desirable to isolate a security’s sensitivity to rate changes in various
maturities, a vector of durations is needed instead of just a single number. Key rate
durations were proposed by Ho to address these concerns [453] and have proved to
be an effective and intuitive tool for risk management [260, 390, 455].

The idea is to break the effective duration into a vector of durations called key
rate durations. This decompositionmeasures sensitivities to different segments of the
yield curve so that when the key rate durations are added up, it gives approximately
the original effective duration. Securities with identical effective duration can have
very different key rate durations. By revealingwhat segments of the yield curve affect
the security value most, key rate durations isolate the risks.

To define key rate durations, we start with a set of 11 key rates: 3 months, and
1, 2, 3, 5, 7, 10, 15, 20, 25, and 30 years. Other choices are also possible. Let d(i)
denote the amount of change at the ith key rate. A key rate’s effect on other rates
decline linearly, reaching zero at the adjacent key rates and beyond. The first and
the last key rates need to be handled separately, of course. See Fig. 27.9, in which
t(i) denotes the ith key rate’s term. Each key rate change induces a custom spot
rate curve shift called the basic key rate shift. The corresponding key rate duration is
defined as (P0− P+)/[ P0d(i) ]. The price P+ is calculated as follows. Use the custom
shift defined by the basic key rate shift to derive the new spot rate curve, which is
used to calibrate the interest rate model. The security is then priced, with the same
OAS if necessary. The resulting 11 durations are the key rate durations.

EXAMPLE 27.5.1 Increase the 10-year key rate by 10 basis points. Because 5 years lie
between the 10-year key rate and the next key rate to the right, the 15-year key
rate, the effect of the change in the 10-year key rate falls off at a rate of 10/5= 2
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Figure 27.9: Term structure movements used by key rate durations. An increase of d (i ) basis points at
(a) the i th key rate, 2≤ i ≤ 10, (b) the first key rate, and (c) the last, eleventh key rate. Note that t (1)= 0.25
and t (11)= 30. Variations are possible. For example, we can break (b) into two segments such that the one
between 0 and t (1) is a mirror image of (c) and the one centered at t (1) is a triangle like (a) [848].

basis points per year. Hence the 11-year rate increases by 8 basis points, the 12-year
rate increases by 6 basis points, and so on. The 15-year rate and all the rates beyond
15 years are unchanged. The 10-year key ratemove also affects rates of term less than
10 years. Because 3 years lie between the 7-year key rate and the 10-year key rate, the
10-basis-point increase in the 10-year rate falls off by 10/3= 0.333 basis points per
year. Hence the 9-year rate increases by 10− 0.333= 9.667 basis points, the 8.5-year
rate increases by 10− 1.5× 0.333= 9.5 basis points, and so on. The 7-year rate and
all the rates below it are unchanged.

The sum of key rate durations can approximate the duration with respect to any
custom shift to the spot rate curve as follows. Describe a custom shift by the function
s(t), 0≤ t ≤ 30. Then s(t) is linearly approximated by the sum of the basic key rate
shifts defined by d(i)≡ s(t(i)), i = 1, 2, . . . , 11, at the 11 key rates (see Fig. 27.10 for
illustration). Hence the duration with respect to s(t) is expected to be roughly the
sum of key rate durations.

One problem with key rate durations is that the basic key rate shifts are inde-
pendent of the pricing model. Another is that the basic key rate shifts can introduce
negative forward rates.

Figure 27.10: Linear interpolation of the term structure shift. The new spot
rate curve is approximated when the 11 basic key rate shifts are added to the
original spot rate curve. Although the new curve and the approximated curve are
guaranteed to agree at only the key rates, they are quite close.
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Additional Reading

See [152] for the mispricing of U.S. Treasury callable bonds and [777] for more infor-
mation on inflation-indexed Treasury securities. U.S. Treasury security prices largely
react to the arrival of public information on the economy, particularly the employ-
ment, Producer Price Index, and federal funds target rate announcements [358]. Real
interest rate changes do not seem important in moving either bond or stock prices
[146]. See [328, 712, 837, 889] for more information on bonds with embedded options
and [372] for criticisms of the analytical frameworks for embedded options. Consult
[117] for hedging with interest rate options and [317, 328, 799] for bond swaps. An
empirical study of the call policy finds many inconsistencies with the theory [553].
Corporations issue CBs for various reasons [559]. CBs can serve as an alternative to
venture capital [599]. See [21, 562, 651, 762, 880] for more information on the OAS,
[218] for suggestions beyond the OAS, and [198] for various versions of OAS. The
OAS is criticized in [349].Consult [481, 513, 535, 583] for credit risk and [253, 254, 398]
for credit derivatives, which protect investors from defaults or rating downgrades.

Reasons for the accumulation of public debts extend far beyond “wars and rebel-
lions” [414]. Misgivings about national debts are common throughout history. Adam
Smith (1723–1790) believed such debts would “in the long run probably ruin all the
great nations of Europe.” He was also concerned about the “pretended payment”
that disguised public bankruptcy [808]. Montesquieu endorsed the use of a sinking
fund to “procure the public confidence” [676]. J.S. Mill (1806–1873) asserted that the
transfer of interest payment is a “serious evil” [665].

NOTE

1. Its CUSIP number is 9128272M3. All U.S. securities issued in book-entry or certificate form after
1970 are identified by a nine-digit CUSIP number. CUSIP stands for “Committee on Uniform
Securities IdentificationProcedures.”TheCUSIPnumbering system, developedby theAmerican
Bankers Association, was expanded in 1989 to include foreign securities, to be identified by the
nine-digit CUSIP International Numbering System [355].



CHAPTER
TWENTY-EIGHT

Introduction to
Mortgage-Backed Securities

Anyone stupid enough to promise to be responsible for a stranger’s
debts deserves to have his own property held to guarantee payment.

—Proverbs 27:13

A mortgage-backed security (MBS) is a bond backed by an undivided interest in a
pool of mortgages. MBSs traditionally enjoy high returns, wide ranges of products,
high credit quality, and liquidity [432]. The mortgage market has witnessed tremen-
dous innovations in product design [54]. The complexity of the products and the
prepayment optionmandate the deployment of advancedmodels and software tech-
niques. In fact, the mortgage market probably could not have operated efficiently
without them [659]. Although our focus will be mainly on residential mortgages, the
underlying principles are applicable to other types of assets as well.

28.1 Introduction

A mortgage is a loan secured by the collateral of real estate property. The lender –
the mortgagee – can foreclose the loan by seizing the property if the borrower –
themortgagor – defaults, that is, fails to make the contractual payments. An MBS is
issued with pools of mortgage loans as the collateral. The cash flows of themortgages
making up the pool naturally reflect upon those of the MBS. There are three basic
types of MBSs: mortgage pass-through security (MPTS), collateralized mortgage
obligation (CMO), and stripped mortgage-backed security (SMBS).

The mortgage sector is by far the largest in the debt market (see Fig. 28.1). The
mortgage market conceptually is divided between a primary market, also called the
originationmarket, and a secondarymarket inwhichmortgages trade. The secondary
market includes themarket for loans that are not securitized, calledwhole loans, and
the market for MBSs.

Individual mortgages are unattractive for many investors. To start with, often at
hundreds of thousands of U.S. dollars or more, they demand too much investment.
Most investors also lack the resources and knowledge to assess the credit risk in-
volved. Furthermore, a traditional mortgage is fixed rate, level payment, and fully
amortized with the percentage of principal and interest (P&I) varying from month
to month, creating accounting headaches. Finally, prepayment levels fluctuate with
a host of factors, making the size and the timing of the cash flows unpredictable.

415
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Mortgage debt outstanding (U.S.$ millions)

1994 1995 1996 1997 1998 1999

Total outstanding 4,392,794 4,603,981 4,877,536 5,211,286 5,736,638 6,387,651
By holder:
Commercial banks 1,012,711 1,090,189 1,145,389 1,245,315 1,337,217 1,495,717
Savings institutions 596,191 596,763 628,335 631,826 643,957 668,634
Life insurance cos 210,904 213,137 208,162 206,840 213,640 229,333
Federal/agency 315,580 308,757 295,192 286,167 292,636 320,105
Mortgage pools/trusts 1,730,004 1,863,210 2,040,848 2,239,350 2,589,764 2,954,836
Individuals/others 527,404 531,926 559,609 601,788 659,425 719,026

Figure 28.1: Mortgage debt outstanding 1994–1999. Source: Federal Reserve Bulletin.

A liquid market for individual mortgages did not appear until the mortgage in-
stitutions started securitizing their mortgage holdings in 1970. Individual, illiquid
mortgages were then turned into marketable securities that were easier to analyze
and trade. Today, financial intermediaries buy mortgages and place them in a pool.
Interests in the pools are then sold to investors. These undivided ownership interests
in the loans that collateralize the security are called participation certificates (PCs).
The intermediary receives the mortgage payments from homeowners or servicing
organizations and passes them to investors. The intermediary also guarantees that it
will pay investors all the P&I that are due in case of default. Several of the above-
mentioned problems are solved or alleviated by this arrangement. For instance, the
minimum investment is reduced. The credit risk of the homeowners is virtually elim-
inated because of the intermediary’s guarantees. As a result, the credit strength of
the PC as seen by the investor is shifted from the homeowner and the property to
the intermediary.

28.2 Mortgage Banking

The original lender is called the mortgage originator. It can be thrifts, commercial
banks, mortgage bankers, life insurance companies, or pension funds. There are three
revenues for the mortgage originator with regard to a new mortgage. It can hold the
mortgage for investment or sell the mortgage to an investor or conduit.Conduits are
either federally sponsored credit agencies or private companies that pool mortgages.
Finally, it can use the mortgage as collateral for the issuance of a security. In this
way, the mortgage becomes part of a pool of mortgages that are the collateral for a
security – it is securitized.

Mortgage insurance is often required for guarding against default. Besides pri-
vate mortgage insurers, three U.S. government agencies guarantee mortgages for
qualified borrowers: the Federal Housing Administration (FHA), the Department
of Veterans Affairs (VA), and the Rural Housing Service (RHS) [327]. Loans not
guaranteed or insured by the FHA, VA, or RHS are called conventional loans. On
the other hand, loans that comply with the underwriting standards for sale or con-
version to MBSs issued and guaranteed by two federally sponsored credit agencies
are called conforming mortgages. The two agencies are the Federal National Mort-
gage Association (FNMA or “Fannie Mae”) and the Federal Home Loan Mortgage
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Loan Information:
Balances:
Principal Balance on 10/03/97 $155,520.31
Escrow Balance on 10/03/97 $3,015.82
Payment Factors:
Interest Rate 7.12500%
Principal & Interest $1,702.96
Escrow Payment $700.32
Total Payment: $2,403.28
Year-to-Date:
Interest $8,514.63
Taxes $5,665.60
Principal $6,817.07

Figure 28.2: Typical monthly mortgage statement.

Corporation (FHLMCor“FreddieMac”).Both arenowpublic companies.Mortgage
bankers also originate FHA-insured and VA-guaranteed mortgage loans for sale in
the form of GinnieMae pass-throughs. GinnieMae stands for Government National
MortgageAssociation (GNMA).MBSs issuedbyFannieMaeorFreddieMac are pri-
marily sold by mortgage banking firms directly to securities dealers. FHA/VA/RHS
mortgage loans are packaged for sale as pass-through securities guaranteed by Gin-
nie Mae and sold also primarily to securities dealers. Conventional loans exceeding
the maximum amounts required for conformance are called jumbo loans.

A mortgage needs to be serviced. Principal, interest, and escrow funds for taxes
and insurance are collected from the borrowers. Taxes and premiums are paid, and
P&I are distributed to the investors of the loans. The issuer often has to advance P&I
payments due if uncollected, which is referred to asMBS servicing [298]. Accounting
and monthly reporting are also part of servicing. The servicing fee is a percentage of
the remaining principal of the loan at the beginning of each month. It is part of the
interest portion of the mortgage payment as far as the borrower is concerned. The
monthly cash flow from the mortgage hence consists of three parts: servicing fee,
interest payment net of the servicing fee, and the scheduled principal repayment.
There is a secondary market for servicing rights. The cash flow of servicing right is
uncertain becauseof theprepayment uncertainty. Figure 28.2 shows a typicalmonthly
mortgage statement.

28.3 Agencies and Securitization

The existence of a secondarymarket is key to the liquidity ofmortgages.Government
agencies were created by Congress to foster the growth of this market. The means of
providing such liquidity was the creation of securities backed by a pool of mortgages
and guaranteed by these agencies. With the increase in liquidity and the reduction in
credit risk comes the creation of products offering varieties of risk/return patterns.
These products in turn attract investors to participate in the mortgage market (see
Fig. 28.3).

Mortgage securitization commenced in February 1970 with the issuance of
GinnieMae Pool #1, a mortgage pass-through. Explosive growth of the market came
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Outstanding volume of agency MBSs (U.S.$ billions)

GNMA FNMA FHLMC Total GNMA FNMA FHLMC Total

1980 93.9 − 17.0 110.9 1990 403.6 299.8 321.0 1,024.4
1981 105.8 0.7 19.9 126.4 1991 425.3 372.0 363.2 1,160.5
1982 118.9 14.4 43.0 176.3 1992 419.3 445.0 409.2 1,273.5
1983 159.8 25.1 59.4 244.3 1993 414.0 495.5 440.1 1,349.6
1984 180.0 36.2 73.2 289.4 1994 450.9 530.3 460.7 1,441.9
1985 212.1 55.0 105.0 372.1 1995 472.3 583.0 515.1 1,570.4
1986 262.7 97.2 174.5 534.4 1996 506.2 650.7 554.3 1,711.2
1987 315.8 140.0 216.3 672.1 1997 536.8 709.6 579.4 1,825.8
1988 340.5 178.3 231.1 749.9 1998 537.4 834.5 646.5 2,018.4
1989 369.9 228.2 278.2 876.3 1999 582.0 960.9 749.1 2,292.0

Issuance of agency MBSs (U.S.$ billions)

GNMA FNMA FHLMC Total GNMA FNMA FHLMC Total

1980 20.6 − 2.5 23.1 1990 64.4 96.7 73.8 234.9
1981 14.3 0.7 3.5 18.5 1991 62.6 112.9 92.5 268.0
1982 16.0 14.0 24.2 54.2 1992 81.9 194.0 179.2 455.2
1983 50.7 13.3 21.4 85.4 1993 138.0 221.4 208.7 568.1
1984 28.1 13.5 20.5 62.1 1994 111.2 130.6 117.1 359.0
1985 46.0 23.6 41.5 111.1 1995 72.9 110.5 85.9 269.2
1986 101.4 60.6 102.4 264.4 1996 100.9 149.9 119.7 370.5
1987 94.9 63.2 75.0 233.1 1997 104.3 149.4 114.3 368.0
1988 55.2 54.9 39.8 149.9 1998 150.2 326.1 250.6 726.9
1989 57.1 69.8 73.5 200.4 1999 152.8 300.7 233.0 686.5

Figure 28.3: Agency MBSs 1980–1999. Source: Public Securities Association.

later in late 1981 when Fannie Mae and Freddie Mac started their mortgage swap
programs. These developments allow mortgage holders – primarily thrifts – to sell
their mortgages to agencies in return for agency-guaranteed pass-through securities
backed by the same mortgages. Developments such as these have profound social
implications. For example, they lower the cost of financing home ownership.

Among the three housing-related federal agencies, Ginnie Mae, Freddie Mac,
and Fannie Mae, only Ginnie Mae is a government corporation within the Depart-
ment of Housing and Urban Development (HUD).1 Its guarantee hence carries
the full faith and credit of the U.S. Treasury. MBSs with such a guarantee are per-
ceived to have zero default risk. Ginnie Mae guarantees only government-insured
or government-guaranteed loans in its programs, whereas Freddie Mac and Fannie
Mae are government-sponsored enterprises that mainly use conventional mortgages
in their programs. Securities offered by Ginnie Mae, Freddie Mac, and Fannie Mae
are commonly referred to as “Ginnie Maes,” “Freddie Macs,” and “Fannie Maes,”
respectively.

Agency guarantees come in two forms. One type guarantees the timely payment
of P&I. Under this guarantee, the P&I will be paid when due even if some of the
mortgagors do not pay the monthly mortgage on time, if at all. Pass-throughs car-
rying this form of guarantee are called fully modified pass-throughs. For instance,
Ginnie Mae either uses excess cash or borrows from the Treasury if the homeowner
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payments are late. All Ginnie Mae MBSs are fully modified pass-throughs. The
second type guarantees the timely payment of interest and the ultimate payment
of principal, say within a year. Pass-throughs carrying this form of guarantee are
referred to as modified pass-throughs. Guarantees turn defaults into prepayments
from the investor’s point of view.

Although Fannie Mae and Freddie Mac buy only conforming mortgages, private
conduits buy both conforming and nonconformingmortgages. Being nonconforming
does not imply greater credit risk.Without explicit or implicit government guarantees
on the underlying loans, the so-called private-label or conventional pass-throughs,
which made their debut in 1977, receive high credit ratings through credit enhance-
ments.

Traditional mortgages are fixed rate. Record-high fixed mortgage rates in the
early 1980s led to the development of adjustable-rate mortgages (ARMs), which
were first marketed in late 1983. ARMs are attractive for many reasons. First, the ini-
tial rate is typically several percentage points below that of fixed-rate mortgages. It is
hence called the “teaser” rate. Because the home buyer qualifies for the mortgage at
the initial loan rate, ARMs allow more people to qualify for a mortgage loan. By
the same token, the home buyer can qualify for a larger loan with ARM financing.
Second, the index used to adjust the rate is usually tied to a widely recognized and
available index. This makes pricing and hedging practical. Third, the interest rate ad-
justments permitted by ARMs are capped, which insulates the mortgagor from loan
payment shock during prolonged periods of rising interest rates. Fourth, ARMs rep-
resent an attractive investment for institutional investors such as thrifts and savings
and loans because ARMs match their variable-rate liabilities better (review Sub-
section 4.2.3 for this point). Naturally, ARMs are less competitive against fixed-rate
mortgages during the periods when the fixed mortgage rates are relatively low.

ARMs financing reduces the housing industry’s sensitivity to interest rate fluctu-
ations because borrowers can choose between fixed- and adjustable-rate mortgages
based on the prevailing interest rate levels. MPTSs backed by ARMs were created
by Fannie Mae in 1984.

28.4 Mortgage-Backed Securities

In the simplest kind of MBS, the MPTs, payments from the underlying mortgages
are passed from the mortgage holders through the servicing agency, after a fee is
subtracted, and distributed to the security holder on a pro rata basis (see Fig. 28.4).
This means that the holder of a $25,000 certificate from a $1 million pool is entitled
to 21/2% of the cash flow paid by the mortgagors. Because of higher marketability, a
pass-through is easier to sell than its individual loans.

A pass-through still exposes the investor to the total prepayment risk associated
with the underlying mortgages. Such risk is undesirable from an asset/liability per-
spective. To deal with prepayment uncertainty, CMOs were created in June 1983
by Freddie Mac with the help of the then First Boston. Unlike mortgage pass-
throughs, which have a single maturity and are backed by individual mortgages,
CMOs are multiple-maturity, multiclass debt instruments collateralized by pass-
throughs, SMBSs, and whole loans. The process of using pass-throughs and SMBSs
to create CMOs is called resecuritization. The total prepayment risk is now divided
among classes of bonds called classes or tranches.2 The principal, scheduled and
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Figure 28.4: Mortgage pass-throughs.

prepaid, is allocated on a prioritized basis so as to redistribute the prepayment risk
among the tranches in an unequal way.

In the sequential tranche paydown structure, for example, Class A receives prin-
cipal paydown and prepayments before Class B, which in turn does it before Class C,
and so on. Each tranche thus has a different effective maturity. Each tranche may
even have a different coupon rate. CMOs were the first successful attempt to alter
mortgage cash flows in a security form that attracts a wide range of investors (see
Fig. 28.5).

EXAMPLE 28.4.1 Consider a two-tranche sequential pay CMO backed by $1,000,000
of mortgages with a 12% coupon and 6 months to maturity. The cash flow pattern
for each tranche with zero prepayment and zero servicing fee is shown in Fig. 28.6.
The calculation can be carried out first for the Total columns, which make up the
amortization schedule, before the cashflow is allocated.Note that trancheA is retired
after 4 months, and tranche B starts principal paydown at the end of month four.

EXAMPLE 28.4.2 (Continued)When prepayments are present the calculation is slightly
more complex. Suppose the singlemonthlymortality (SMM) permonth is 5%,which
means that the prepayment amount is 5% of the remaining principal. The remain-
ing principal at month i after prepayment then equals the scheduled remaining
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Outstanding volume of agency collateralized mortgage obligations (U.S.$ billions)

GNMA FNMA FHLMC Total GNMA FNMA FHLMC Total

1987 − 0.9 − 0.9 1994 − 315.0 263.7 578.7
1988 − 11.6 10.9 22.5 1995 − 294.0 247.0 540.9
1989 − 47.6 47.6 95.2 1996 − 283.4 237.6 521.0
1990 − 104.3 83.4 187.7 1997 17.5 328.6 233.6 579.7
1991 − 193.3 43.0 336.3 1998 29.0 311.4 260.3 600.8
1992 − 276.9 217.0 494.0 1999 52.5 293.6 316.1 662.1
1993 − 323.4 264.1 587.6

Issuance of agency collateralized mortgage obligations (U.S.$ billions)

GNMA FNMA FHLMC Total GNMA FNMA FHLMC Total

1987 − 0.9 − 0.9 1994 3.1 56.3 73.1 132.6
1988 − 11.2 13.0 24.2 1995 1.9 8.2 15.4 25.4
1989 − 37.6 39.8 77.3 1996 9.5 26.6 34.1 70.2
1990 − 60.9 40.5 101.4 1997 7.9 74.8 84.4 167.0
1991 − 101.8 72.0 173.8 1998 13.6 76.3 135.2 225.1
1992 − 154.8 131.3 286.1 1999 29.6 50.6 119.6 199.7
1993 − 168.0 143.3 311.3

Figure 28.5: Agency CMOs 1987–1999. Source: Public Securities Association.

principal as computed by Eq. (3.8) times (0.95)i . This done for all the months,
the total interest payment at any month is the remaining principal of the previ-
ous month times 1%. And the prepayment amount equals the remaining principal
times 0.05/0.95 (the division by 0.95 yields the remaining principal before prepay-
ment). Figure 28.7 tabulates the cash flows of the same two-tranche CMO under
5% SMM. For instance, the total principal payment at month one, $204,421, can
be verified as follows. The scheduled remaining principal is $837,452 from Fig. 28.6.
The remaining principal is hence 837452× 0.95= 795579, which makes the total
principal payment 1000000− 795579= 204421. Because trancheA’s remaining prin-
cipal is $500,000, all 204,421 dollars go to tranche A. Incidentally, the prepayment is
837452× 5%= 41873 (alternatively, 795579× 0.05/0.09). Note that tranche A is re-
tiredafter 3months, and trancheBstarts principal paydownat theendofmonth three.

Interest Principal Remaining principal

Month A B Total A B Total A B Total

500,000 500,000 1,000,000
1 5,000 5,000 10,000 162,548 0 162,548 337,452 500,000 837,452
2 3,375 5,000 8,375 164,173 0 164,173 173,279 500,000 673,279
3 1,733 5,000 6,733 165,815 0 165,815 7,464 500,000 507,464
4 75 5,000 5,075 7,464 160,009 167,473 0 339,991 339,991
5 0 3,400 3,400 0 169,148 169,148 0 170,843 170,843
6 0 1,708 1,708 0 170,843 170,843 0 0 0

Total 10,183 25,108 35,291 500,000 500,000 1,000,000

Figure 28.6: CMO cash flows without prepayments. The total monthly payment is $172,548. Month-i numbers
reflect the i th monthly payment.
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Interest Principal Remaining principal

Month A B Total A B Total A B Total

500,000 500,000 1,000,000
1 5,000 5,000 10,000 204,421 0 204,421 295,579 500,000 795,579
2 2,956 5,000 7,956 187,946 0 187,946 107,633 500,000 607,633
3 1,076 5,000 6,076 107,633 64,915 172,548 435,085 435,085
4 0 4,351 4,351 0 158,163 158,163 0 276,922 276,922
5 0 2,769 2,769 0 144,730 144,730 0 132,192 132,192
6 0 1,322 1,322 0 132,192 132,192 0 0 0

Total 9,032 23,442 32,474 500,000 500,000 1,000,000

Figure 28.7: CMO cash flows with prepayments. Month-i numbers reflect the i th monthly payment.

SMBSs were created in February 1987 when Fannie Mae issued its Trust 1
SMBS. For SMBSs, the P&I are divided between the PO strip and the IO strip.
In the scenarios of Examples 28.4.1 and 28.4.2, the IO strip receives all the interest
payments under the Interest/Total column, whereas the PO strip receives all the princi-
pal payments under the Principal/Total column. These new instruments allow investors
to better exploit anticipated changes in interest rates. Because the collateral for an
SMBS is a pass-through, this is yet another example of resecuritization. CMOs and
SMBSs are usually called derivative MBSs

➤ Exercise 28.4.1 Repeat the calculations in Example 28.4.2 under 3% SMM.

28.5 Federal Agency Mortgage-Backed Securities Programs

28.5.1 Government National Mortgage Association (“Ginnie Mae”)

Security guaranteed by Ginnie Mae is called an MBS. Ginnie Mae issues its MBSs
under one of two programs, GNMA I (established in 1970) and GNMA II (estab-
lished in 1983). The two programs differ in terms of the collateral underlying the
pass-throughs. For example, GNMA I MBSs require all loans in a pool to be ap-
proximately homogeneous [297]. A GNMA I MBS is issued with an annual coupon
rate that is 0.50% lower than the coupon rate on the underlying mortgages because
of guarantee and servicing fees. MBSs backed by adjustable-payment mortgages
(APMs) are issued under the GNMA II program.

The issuer of a Ginnie Mae security passes through the scheduled P&I payments
on theunderlyingmortgages to securityholders eachmontheven if the issuerdoesnot
collect payments from some mortgagors. It also passes through any additional prin-
cipal prepayments because of foreclosure settlements. If the issuer defaults on the
monthlypayments,GinnieMaeassumes responsibility for the timelypaymentofP&I.

➤ Exercise 28.5.1 Even without prepayments, the scheduled monthly payment to
MBS holders increases slightly over time. Why?

28.5.2 Federal Home Loan Mortgage Corporation (“Freddie Mac”)

Freddie Mac was created on July 24, 1970, as a government-charted corporation.
It became a public corporation like Fannie Mae in 1989. Freddie Mac seeks to
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increase liquidity and available credit for the conventional mortgage market by
establishing and maintaining a secondary market for such mortgages. It started is-
suing pass-through securities in 1971, which was the first time conventional mort-
gages were securitized with a federal agency guarantee. Its mortgage pass-throughs
are referred to as PCs. Unlike the Ginnie Mae pass-throughs, the Freddie Mac
pass-throughs guarantee only eventual repayment of principal. In the fall of 1990,
Freddie Mac introduced its Gold PC, which has stronger guarantees: All Gold PCs
are fully modified pass-throughs. Freddie Mac securities are not backed by the full
faith and credit of the U.S. government. The credit of its securities is perceived to be
equivalent to that of securities issued by U.S. government agencies (“U.S. agency”
status).

FreddieMac issues CMOs and SMBSs besides PCs. All FreddieMac CMOs have
semiannual payments much like bonds. They also use only fixed-rate mortgages as
collateral and a guaranteed sinking fund to establish minimum principal prepay-
ments.

28.5.3 Federal National Mortgage Association (“Fannie Mae”)

Established in 1938, Fannie Mae is the oldest of the three agencies and one of the
largest corporations in the United States in terms of assets (U.S.$575 billion as of
the end of 1999). It introduced the mortgage pass-through program in 1981. Pass-
throughs issued by Fannie Mae are called MBSs. Fannie Mae guarantees the timely
payment of both principal and interest on itsMBSwhether or not the payments have
been collected from the borrower. The guarantee encompasses principal payments
resulting from foreclosure or prepayment; the securities are fully modified pass-
throughs, in other words. Although Fannie Mae obligations are not backed by the
full faith and credit of the U.S. government, they carry “U.S. agency” status in the
credit markets.

28.6 Prepayments

The prepayment option sets MBSs apart from other fixed-income securities. The
exercise of options on most securities is expected to be “rational” in the sense that
it will be executed only when it is profitable to do so. This kind of “rationality” is
weakened when it comes to the homeowner’s decision to prepay. For example, even
when the prevailingmortgage rate, called the current coupon, exceeds themortgage’s
loan rate, some loans remain prepaid.

Prepayment risk refers to theuncertainty in theamountand timingof theprincipal
prepayments in the pool of mortgages that collateralize the security. This risk can be
divided into contraction risk and extension risk. Contraction risk refers to the risk
of having to reinvest the prepayments at a rate lower than the coupon rate when
interest rates decline. Extension risk is due to the slowdown of prepayments when
interest rates climb, making the investor earn the security’s lower coupon rate rather
than the market’s higher rate. Prepayments can be in whole or in part; the former is
called liquidation, and the latter curtailment. Prepayments, however, need not always
result in losses (see Exercise 28.6.1). The holder of a pass-through security is exposed
to the total prepayment risk associated with the underlying pool of mortgage loans,
whereas the CMO is designed to alter the distribution of that risk among investors.
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Besides prepayment risk, investors in mortgages are exposed to at least three
other risks: interest rate risk, credit risk, and liquidity risk. Interest rate risk is
inherent in any fixed-income security. Credit risk is the risk of loss from default. It is
almost nonexisting for FHA-insured andVA-guaranteedmortgages. As for privately
insured mortgage, the risk is related to the credit rating of the company that insures
the mortgage. Liquidity risk is the risk of loss if the investment must be sold quickly.

➤ Exercise 28.6.1 There are reasons prepayments arising from lower interest rates
increase the return of a pass-through if it was purchased at a discount. What are
they?

28.6.1 Causes and Characteristics

Prepayments have at least five components [4, 433].

Home sale (“housing turnover”). The sale of a home generally leads to the pre-
payment of mortgage because of the full payment of the remaining principal.
This due-on-sale clause applies to most conventional loans. Exceptions are
FHA/VA mortgages, which are assumable, meaning the buyer can assume the
existing loan.

Refinancing. Mortgagors can refinance their homemortgage at a lowermortgage
rate. This is the most volatile component of prepayment and constitutes the
bulk of it when prepayments are extremely high.

Default. This type of prepayment is caused by foreclosure and subsequent liqui-
dation of a mortgage. It is relatively minor in most cases.

Curtailment. As the extra payment above the scheduled payment, curtailment
applies to the principal and shortens the maturity of fixed-rate loans. Its con-
tribution to prepayments is minor.

Full payoff (liquidation). There is evidence that many mortgagors pay off their
mortgage completely when it is very seasoned and the remaining balance is
small. Full payoff can also be due to natural disasters. It is important for only
very seasoned loans.

Prepayments exhibit certain characteristics [504]. They usually increase as the
mortgage ages – first at an increasing rate and then at a decreasing rate. They are
higher in the spring and summer and lower in the fall and winter. They vary by
the geographic locations of the underlying properties. Prepayments increase when
interest rates drop but with a time lag. If prepayments were higher for some time
because of high refinancing rates, they tend to slow down. Perhaps homeowners who
do not prepay when rates have been low for a prolonged time tend never to prepay.

Figure 28.8 illustrates the typical price/yield curves of the Treasury and pass-
through. As yields fall and the pass-through’s price moves above a certain price, it
flattens and then follows a downward slope. This phenomenon is called the price
compression of premium-priced MBSs. It demonstrates the negative convexity of
such securities.

➤ Exercise 28.6.2 Given that refinancing involves certain fixed costs, which will
tend to prepay faster, mortgage securities backed by 15-year mortgages or 30-year
mortgages?
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Figure 28.8: MBS vs. Treasury. Both are 15-year securities paying a 9% coupon
rate in mortgage-equivalent yield. The segment above 100 means the security is
premium-priced, whereas the segment below 100 signifies discount securities.
Price compression occurs as yields fall through a threshold. The cusp represents
that point.

28.6.2 An Analysis of the Incentive to Refinance

Consider a loan with a mortgage rate ro for a term of n months. Let the scheduled
monthly payment of the original loan be C. At the time of refinancing, the mortgage
rate for a new n-month loan is rn, and a monthly payments have been remitted.
Both ro and rn are monthly rates.

From Eq. (3.8), the remaining principal at the time of refinancing is

C
1− (1+ ro)−n+a

ro
. (28.1)

At the current rate rn, the future cash flow of the original loan has a PV of

n−a∑
i=1
C(1+ rn)−i = C 1− (1+ rn)−n+a

rn
.

Therefore the net monetary savings are

C
1− (1+ rn)−n+a

rn
−C 1− (1+ ro)−n+a

ro
. (28.2)

Divide the preceding expression by expression (28.1) to obtain the savings per dollar
of the remaining principal as

ro
rn

1− (1+ rn)−n+a
1− (1+ ro)−n+a

− 1.

For loans that have not seasoned sufficiently, the preceding expression is roughly

ro
rn
− 1. (28.3)

This heuristic argument points to using the ratio of loan rates rather than the differ-
ence to measure the incentive to refinancing [433].

➤ Exercise 28.6.3 Does it make economic sense to refinance amortgage if rates have
not changed?
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➤ Exercise 28.6.4 Consider a mortgagor who refinances every a months with an
n-month loan every time. Show that the monthly payment after the ith refinancing
is

original balance×
[
(1+ r)n− (1+ r)a

(1+ r)n− 1

]i r(1+ r)n
(1+ r)n− 1

,

where r is the unchanging monthly mortgage rate.

➤ Exercise 28.6.5 Which represents a better deal, refinancing from an 8% loan to a
6% loan or from an 11.5% loan to a 9.5% loan?

Additional Reading

This chapter reviewed the mortgage markets, the institutions, the securitization of
mortgages, and various mortgage products. Consult [54, 323, 325, 330, 331, 432, 469,
698, 799] for more background information and particularly [54] for a history of the
MBS market. References [320, 324, 328] are also rich sources of information. See
[54, Table 3.1] and [432, Exhibit 24-3] for other differences between Freddie Mac
and Ginnie Mae pass-throughs. That securitization lowers the mortgage rates is not
without its dissents [404].

NOTES

1. Fannie Mae used to be a government agency before being sold to the public in 1968.
2. Tranche is a French word for “slice.”



CHAPTER
TWENTY-NINE

Analysis of
Mortgage-Backed Securities

Oh, well, if you cannot measure, measure anyhow.

Frank H. Knight (1885–1972)

Compared with other fixed-income securities, the MBS is unique in two respects.
First, its cash flow consists of PRINCIPAL AND INTEREST (P&I). Second, the cash flow
may vary because of prepayments in the underlying mortgages. This chapter covers
theMBS’s cash flow and valuation.We adopt the following time line when discussing
cash flows:

✲

Time 0 Time 1 Time 2 Time 3 Time 4

Month 1 Month 2 Month 3 Month 4

Because mortgage payments are paid in arrears, a payment for month i occurs at
time i , that is, end of month i . The end of a month is identified with the beginning
of the coming month.

29.1 Cash Flow Analysis

A traditional mortgage has a fixed term, a fixed interest rate, and a fixed monthly
payment. Figure 29.1 illustrates the scheduled P&I for a 30-year, 6% mortgage with
an initial balance of $100,000. Figure 29.2 shows how the remaining principal balance
decreases over time. In the early years, the P&I consists mostly of interest. Then it
gradually shifts toward principal payment with the passage of time. However, the
total P&I payment remains the same each month, hence the term level pay. Identical
characteristics hold for the pool’s P&I payments in the absence of prepayments and
servicing fees.

From the discussions in Section 3.3, we know that the remaining principal balance
after the kth payment is

C
1− (1+ r/m)−n+k

r/m
, (29.1)

where C is the scheduledP&Ipaymentof an n-monthmortgagemaking m payments
per year and r is the annual mortgage rate. For mortgages, m= 12. The remaining

427
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Figure 29.1: Scheduled P&I payments. The schedule is for a 30-year 6% mortgage
with an original loan amount of $100,000.

principal balance after k payments can be expressed as a portion of the original
principal balance; thus

Balk ≡ 1− (1+ r/m)k− 1
(1+ r/m)n− 1

= (1+ r/m)n− (1+ r/m)k
(1+ r/m)n− 1

. (29.2)

We can verify this equation by dividing balance (29.1) by Bal0. The remaining
principal balance after k payments is simply

RBk ≡O×Balk,

where O is the original principal balance.
The term factor denotes the portion of the remaining principal balance to its

original principal balance expressed as a decimal [729]. So Balk is the monthly factor
when there are no prepayments. It is also known as the amortization factor. When
the idea of factor is applied to a mortgage pool, it is called the paydown factor on
the pool or simply the pool factor [298].

Figure 29.2: Scheduled remaining principal balances. Plotted are the remaining
principal balances as percentages of par after each scheduled payment is made.
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EXAMPLE 29.1.1 The remaining balance of a 15-year mortgage with a 9% mortgage
rate after 54 months is

O× [ 1+ (0.09/12) ]180− [ 1+ (0.09/12) ]54

[ 1+ (0.09/12) ]180− 1
=O× 0.824866.

In other words, roughly 82.49%of the original loan amount remains after 54months.

By the amortization principle, the tth interest payment is

It ≡RBt−1× rm =O× r
m
× (1+ r/m)n− (1+ r/m)t−1

(1+ r/m)n− 1
.

The principal part of the tth monthly payment is

Pt ≡RBt−1−RBt =O× (r/m)(1+ r/m)t−1
(1+ r/m)n− 1

. (29.3)

The scheduled P&I payment at month t , or Pt + It , is therefore

(RBt−1−RBt)+RBt−1× rm =O×
[
(r/m)(1+ r/m)n
(1+ r/m)n− 1

]
, (29.4)

indeed a level pay independent of t . The termwithin the brackets, called the payment
factor or annuity factor, represents themonthly payment for each dollar ofmortgage.

EXAMPLE 29.1.2 The mortgage in Example 3.3.1 has a monthly payment of

250,000× (0.08/12)× [ 1+ (0.08/12) ]180

[ 1+ (0.08/12) ]180− 1
= 2,389.13

by Eq. (29.4), in total agreement with the number derived there.

➤ Exercise 29.1.1 Derive Eq. (29.4) from Eq. (3.6).

➤ Exercise 29.1.2 Consider two mortgages with identical remaining principals but
different mortgage rates. Show that their remaining principal balances after the next
monthly payment will be different; in fact, the mortgage with a lower mortgage rate
amortizes faster.

29.1.1 Pricing Adjustable-Rate Mortgages

We turn to ARM pricing as an interesting application of derivatives pricing and
the analysis above. Consider a 3-year ARM with an interest rate that is 1% above
the 1-year T-bill rate at the beginning of the year. This 1% is called the margin.
For simplicity, assume that this ARM carries annual, not monthly, payments. The
T-bill rates follow the binomial process, in boldface, in Fig. 29.3, and the risk-neutral
probability is 0.5. How much is the ARM worth to the issuer?

Each new coupon rate at the reset date determines the level mortgage payment
for the months until the next reset date as if the ARMwere a fixed-rate loan with the
new coupon rate and amaturity equal to that of the ARM. This implies, for example,
that in the interest rate tree of Fig. 29.3 the scenario A→ B→ E will leave our
3-year ARM with a remaining principal at the end of the second year different from
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4.000%
5.000%
0.36721

B
3.526%
4.526%
0.53420

C
5.289%
6.289%
0.54765

1.0

D
2.895%
3.895%
1.03895

1.0

E
4.343%
5.343%
1.05343

1.0

F
6.514%
7.514%
1.07514

year 1 year 2 year 3

A
Figure 29.3: ARM’s payment factors under stochas-
tic interest rates. Stacked at each node are the T-bill
rate, the mortgage rate (which is 1% above the T-bill
rate), and the payment factor for a mortgage initi-
ated at that node and ending at the end of year three
(based on the mortgage rate at the same node, of
course). The short rates are from Fig. 23.8.

that under the scenario A→ C→ E (see Exercise 29.1.2). This path dependency
calls for care in algorithmic design to avoid exponential complexity.

The idea is to attach to each node on the binomial tree the annual payment per
$1 of principal for a mortgage initiated at that node and ending at the end of year
three – in other words, the payment factor [546]. At node B, for example, the annual
payment factor can be calculated byEq. (29.4) with r = 0.04526,m= 1, and n= 2 as

0.04526× (1.04526)2

(1.04526)2− 1
= 0.53420.

The payment factors for other nodes in Fig. 29.3 are calculated in the same manner.
We now apply backward induction to price the ARM (see Fig. 29.4). At each

node on the tree, the net value of an ARM of value $1 initiated at that node and
ending at the end of the third year is calculated. For example, the value is zero at
terminal nodes because the ARM is immediately repaid. At node D, the value is

1.03895
1.02895

− 1= 0.0097186,

which is simply the NPV of the payment 1.03895 next year (note that the issuer
makes a loan of $1 at D). The values at nodes E and F can be computed similarly. At

A

0.0189916

B

0.0144236

C

0.0141396

0
D

0.0097186

0
E

0.0095837

0
F

0.0093884

year 1 year 2 year 3

Figure 29.4: Backward induction for ARMs.
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node B, we first figure out the remaining principal balance after the payment 1 year
hence as

1− (0.53420− 0.04526)= 0.51106,

because $0.04526 of the payment of $0.53426 constitutes interest. The issuer will
receive $0.01 above the T-bill rate next year, and the value of the ARM is either
$0.0097186 or $0.0095837 per $1, each with probability 0.5. The ARM’s value at
node B thus is

0.51106× (0.0097186+ 0.0095837)/2+ 0.01
1.03526

= 0.0144236.

The values at nodes C and A can be calculated similarly as

[ 1− (0.54765− 0.06289) ]× (0.0095837+ 0.0093884)/2+ 0.01
1.05289

= 0.0141396,

[ 1− (0.36721− 0.05) ]× (0.0144236+ 0.0141396)/2+ 0.01
1.04

= 0.0189916,

respectively. The value of the ARM to the issuer is hence $0.0189916 per $1 of loan
amount. The complete algorithm appears in Fig. 29.5. The above idea of scaling has
wide applicability for pricing certain classes of path-dependent securities [449, 546].

ARMs are indexed to publicly available indices such as LIBOR, the constant-
maturity Treasury (CMT) rate, and the Cost of Funds Index (COFI). The CMT rates
are based on the daily CMT yield curve constructed by the Federal Reserve Bank

Algorithm for pricing ARMs:

input: n, r [n ][n ], s;
real P[n ], f, p;
integer i, j ;
for ( j = 0 to n− 1) { // Nodes at time n− 1.

f := 1+ r [n− 1 ][ j ]+ s; //(29.4) with n= 1.
P[ j ] := f/(1+ r [n− 1 ][ j ])− 1;

}
for (i = n− 2 down to 0) // Nodes at time i .

for ( j = 0 to i) {
f := (r [ i ][ j ]+ s)(1+ r [ i ][ j ]+ s)n−i×

((1+ r [ i ][ j ]+ s)n−i − 1)−1; //See (29.4).
p := 1− ( f − r [ i ][ j ]− s);
P[ j ] := (p× (P[ j ]+ P[ j + 1 ])× 0.5+ s)×

(1+ r [ i ][ j ])−1;
}

return P[ 0 ];

Figure 29.5: Algorithm for pricing ARMs. r [ i ][ j ] is the ( j + 1)th T-bill rate for period i + 1, the ARM has
n periods to maturity, s is the margin, f stores the payment factors, and p stores the remaining principal
amounts. All rates are measured by the period. In general, the floating rate may be based on the k -period
Treasury spot rate plus a spread. Then Programming Assignment 29.1.3 can be used to generate the k -period
spot rate at each node.
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of New York and published weekly in the Federal Reserve’s Statistical ReleaseH.15
[525]. Cost of funds for thrifts indices are calculated based on the monthly weighted
average interest cost for thrifts. The most popular cost of funds index is the 11th
Federal Home Loan Bank Board District COFI [325, 330, 820].

If the ARM coupon reflects fully and instantaneously current market rates, then
the ARM security will be priced close to par and refinancings rarely occur. In reality,
adjustments are imperfect in many ways. At the reset date, a margin is added to
the benchmark index to determine the new coupon. ARMs also often have periodic
rate caps that limit the amount by which the coupon rate may increase or decrease at
the reset date. They also have lifetime caps and floors. To attract borrowers,mortgage
lenders usually offer abelow-market initial rate (the “teaser” rate).The reset interval,
the time period between adjustments in theARMcoupon rate, is often annual, which
is not frequent enough. Note that these terms are easy to incorporate into the pricing
algorithm in Fig. 29.5.

➢ Programming Assignment 29.1.3 Given an n-period binomial short rate tree,
design an O(kn2)-time algorithm for generating k-period spot rates on the nodes
of the tree. This tree documents the dynamics of the k-period spot rate.

➢ Programming Assignment 29.1.4 Implement the algorithm in Fig. 29.5. The bino-
mial T-bill rate tree and the mortgage rate as a spread over the T-bill rate are parts
of the input.

➢ Programming Assignment 29.1.5 Consider an IASwith an amortizing schedule that
depends solely on the prevailing k-period spot interest rate. This swap’s cash flow de-
pends on only the prevailing principal amount and the prevailing k-period spot inter-
est rate. Design an efficient algorithm to price this swap on a binomial short rate tree.

29.1.2 Expressing Prepayment Speeds

The cash flow of amortgage derivative is determined from that of themortgage pool.
The single most important factor complicating this endeavor is the unpredictability
of prepayments. Recall that prepayment represents the principal payment made in
excess of the scheduled principal amortization. We need only compare the amorti-
zation factor Balt of the pool with the reported factor to determine if prepayments
have occurred. The amount by which the reported factor exceeds the amortization
factor is the prepayment amount.

Single Monthly Mortality
An SMMof ω means that ω% of the scheduled remaining balance at the end of the
month will prepay. In other words, the SMM is the percentage of the remaining bal-
ance that prepays for themonth. Suppose the remaining principal balance of anMBS
at the beginning of a month is $50,000, the SMM is 0.5%, and the scheduled principal
payment is $70. Then the prepayment for the month is 0.005× (50,000− 70)≈ 250
dollars. If the same monthly prepayment speed s is maintained since the issuance
of the pool, the remaining principal balance at month i will be RBi × (1− s/100)i .
It goes without saying that prepayment speeds must lie between 0% and 100%.

EXAMPLE 29.1.3 Take the mortgage in Example 29.1.1. Its amortization factor at the
54th month is 0.824866. If the actual factor is 0.8, then the SMM for the initial period
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of 54 months is

100×
[
1−

(
0.8

0.824866

)1/54
]
= 0.0566677.

In other words, roughly 0.057% of the remaining principal is prepaid per month.

Conditional Prepayment Rate
The conditional prepayment rate (CPR) is the annualized equivalent of an SMM:

CPR= 100×
[
1−

(
1− SMM

100

)12
]
.

Conversely,

SMM= 100×
[
1−

(
1− CPR

100

)1/12
]
.

For example, the SMM of 0.0566677 in Example 29.1.3 is equivalent to a CPR of

100×
{
1−

[
1−

(
0.0566677

100

)12
]}
= 0.677897.

Roughly 0.68% of the remaining principal is prepaid annually. Figure 29.6 plots the
P&I cash flows under various prepayment speeds. Observe that with accelerated
prepayments, the principal cash flow is shifted forward in time.

PSA
In 1985 the Public Securities Association (PSA) standardized a prepayment model.
ThePSAstandard is expressedas amonthly series ofCPRsand reflects the increase in
CPR that occurs as the pool seasons [619]. ThePSA standard postulates the following
prepayment speeds:TheCPR is 0.2%for thefirstmonth, increases thereafter by0.2%
per month until it reaches 6% per year for the 30th month, and then stays at 6% for
the remaining years. (At the time the PSA proposed its standard, a seasoned 30-year
GNMA’s typical prepayment speed was ∼6% CPR [260].) The PSA benchmark is
also referred to as 100 PSA. Other speeds are expressed as some percentage of PSA.
For example, 50 PSAmeans one-half the PSACPRs, 150 PSAmeans one-and-a-half

Figure 29.6: Principal (left) and interest (right) cash flows at various CPRs. The 6% mortgage has 30 years to
maturity and an original loan amount of $100,000.
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Figure 29.7: The PSA prepayment assumption.

the PSA CPRs, and so on. Mathematically,

CPR=
{
6%× PSA

100 , if the pool age exceeds 30 months

0.2%×m× PSA
100 , if the pool age m≤ 30 months

. (29.5)

See Fig. 29.7 for an illustration and Fig. 29.8 for the cash flows at 50 and 100 PSAs.
Conversely,

PSA=
{
100× CPR

6 , if the pool age exceeds 30 months

100× CPR
0.2×m, if the pool age m≤ 30 months

.

See Fig. 29.9 for the conversion algorithm.
Conversion between PSA and CPR/SMM requires knowing the age of the pool.

A prepayment speed of 150 PSA implies a CPR of 0.2%× 2× (150/100)= 0.6%
if the pool is 2 months old, but a CPR of 6%× 1.5= 9% if the pool age exceeds
30 months.

➤ Exercise 29.1.6 Consider the following PSA numbers:

Month 6 12 18 24 30 36

PSA 100 130 154 230 135 125

Compute their equivalent CPRs.

Figure 29.8: P&I payments at 100 PSA (left) and 50 PSA (right). The 6% mortgage has 30 years to maturity
and an original loan amount of $100,000.
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PSA-to-SMM algorithm:

input: n, PSA, age;
real SMM[ 1..n ], cpr;
integer i ;
PSA := PSA/100;
for (i = 1 to n) {

if [ i + age≤ 30 ]
cpr := 0.2× (i + age)× PSA/100 ;

else cpr := 6.0× PSA/100;
SMM[ i ] := 1− (1−PSA× cpr)1/12;

}
return SMM[ ];

Figure 29.9: PSA-to-SMM conversion. The pool has n more monthly cash flows, PSA is the prepayment
speed, and age is the number of months since the pool’s inception. SMM[ ] stores the prepayment vector in
decimal, the i th of which denotes the SMM during month i as seen from now.

➤ Exercise 29.1.7 Is the SMMassuming 200 PSA twice the SMMassuming 100 PSA?

29.1.3 Prepayment Vector and Cash Flow Analysis

Although it tries to capture, if crudely, how prepayments vary with age, the PSA
should be viewed as a market convention rather than as a model. Instead of a single
PSA number, a vector of PSAs generated by a prepayment model should be used to
describe the monthly prepayment speed through time. The monthly cash flows can
be derived thereof.

Similarly, the CPR should be seen purely as a measure of speed rather than a
model. When we treat a single CPR number as the true prepayment speed, that
number will be called the constant prepayment rate for obvious reasons. This simple
model fails toaddress theempirical fact thatpoolswithnewproduction loans typically
prepay at a slower rate than seasoned pools. As in the PSA case, a vector of CPRs
should be preferred. In practice, a vector of CPRs or SMMs is easier to work with
than a vector of PSAs because of the lack of dependence on the pool age. In any case,
a CPR vector can always be converted into an equivalent PSA vector and vice versa.

To price an MBS, we start with its cash flow, that is, the periodic P&I under a
static prepayment assumption as given by a prepayment vector. The invoice price
is now

∑n
i=1Ci/(1+ r)ω−1+i , where Ci is the cash flow at time i , n is the weighted

average maturity (WAM),1 r is the discount rate, and ω is the fraction of period
from settlement until the first P&I payment date. TheWAM is the weighted average
remaining term of the mortgages in the pool, where the weight for each mortgage is
the remaining balance. The r that equates the above with the market price is called
the (static) cash flow yield. The implied PSA is the single PSA speed producing the
same cash flow yield.

MBSs are quoted in the same manner as U.S. Treasury notes and bonds. For
example, a price of 94-05 means 945/32% of par value. Sixty-fourth of a percent is
expressedby appending “+” to theprice.Hence, theprice 94-05+ represents 9411/64%
of par value.
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Cash Flow
Each cash flow is composed of the principal payment, the interest payment, and
the principal prepayment. Let Bk denote the actual remaining principal balance at
month k. Given the pool’s actual remaining principal balance at time i − 1 (i.e.,
Bi−1), the P&I payments at time i are

Pi ≡ Bi−1
(
Bali−1−Bali

Bali−1

)
= Bi−1 r/m

(1+ r/m)n−i+1− 1
, (29.6)

Ii ≡ Bi−1 r −αm , (29.7)

where α is the servicing spread (or servicing fee rate), which consists of the servicing
fee for the servicer as well as the guarantee fee. The prepayment at time i is

PPi = Bi−1 Bali
Bali−1

×SMMi ,

where SMMi is the prepayment speed for month i . If the total principal payment
from the pool is Pi +PPi , the remaining principal balance is

Bi = Bi−1− Pi −PPi

= Bi−1
[
1−

(
Bali−1−Bali

Bali−1

)
− Bali

Bali−1
×SMMi

]
= Bi−1×Bali × (1−SMMi )

Bali−1
. (29.8)

Equation (29.8) can be applied iteratively to obtain

Bi =RBi ×
i∏
j=1

(1−SMM j ). (29.9)

Define bi ≡
∏i
j=1(1−SMM j ). Then the scheduled P&I is

Pi = bi−1Pi , Ii = bi−1 I ′i (29.10)

where I ′i ≡RBi−1× (r −α)/m is the scheduled interest payment. The scheduled
cash flow and the bi s determined from the prepayment vector are therefore all that
are needed to calculate the projected actual cash flows. Note that if the servicing fees
do not exist (that is, α = 0), the projected monthly payment before prepayment at
month i becomes

Pi + Ii = bi−1(Pi + Ii )= bi−1C, (29.11)

where C is the scheduled monthly payment on the original principal. See Fig. 29.10
for a linear-time algorithm for generating the mortgage pool’s cash flow.

Servicing and guarantee fees are deducted from the gross weighted average
coupon (WAC) of the aggregate mortgage P&I to obtain the pass-through rate.
The WAC is the weighted average of all the mortgage rates in the pool, in which
the weight used for each mortgage is the remaining balance. The servicing spread
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Mortgage pool cash flow under prepayments:

input: n, r (r > 0),SMM[ 1..n ];
real B[n+ 1 ], P[ 1..n ], I [ 1..n ],PP[ 1..n ],b;
integer i ;
b := 1;
B[ 0 ] := 1;
for (i = 1 to n) {

b := b× (1−SMM[ i ]); //See (29.9).

B[ i ] := b× (1+r)n−(1+r)i
(1+r)n−1 ; // See (29.2).

P[ i ] := B[ i − 1 ]− B[ i ];
I [ i ] := B[ i − 1 ]× r ; //See (29.7).
PP [ i ] := B[ i ]×SMM[ i ]/(1−SMM[ i ]);

}
return B[ ], P[ ], I [ ],PP[ ];

Figure 29.10: Mortgage pool cash flow under prepayments. SMM is the prepayment vector, and the mortgage
rate r is a monthly rate. The pool has n monthly cash flows, and its principal balance is $1. B stores the
remaining principals, P are the principal payments (prepayments included), I are the interest payments, and
PP are the prepayments. The prepayments are calculated based on Exercise 29.1.9, part (1).

for an MBS represents both the guarantee fee and the actual servicing fee itself. For
example, a Ginnie Mae MBS with a 10.5% pass-through rate has a total servicing of
0.50%, of which 0.44% is retained by the servicer and 0.06% is remitted to Ginnie
Mae. The figure most visible to the investor is the pass-through rate, but the amorti-
zation of P&I is a function of the gross mortgage rate of the individual loans making
up the pool.

➤ Exercise 29.1.8 Show that the scheduled monthly mortgage payment at month i
is

Bi−1
(r/m)(1+ r/m)n−i+1
(1+ r/m)n−i+1− 1

.

➤ Exercise 29.1.9 Verify that (1) PPi = Bi [ SMMi/(1−SMMi ) ] and (2) the actual
principal payment Pi +PPi is bi−1(Pi +RBi ×SMMi ) (not bi Pi ).

➤ Exercise 29.1.10 Verify Eqs. (29.9) and (29.10).

➤ Exercise 29.1.11 Derive Eq. (29.11) by using Eqs. (29.2) and (29.4).

➤ Exercise 29.1.12 Derive the PVs of the PO and IO strips based on current-coupon
mortgages under constant SMM and zero servicing spread.

➤ Exercise 29.1.13 Show that a pass-through backed by traditional mortgages with a
mortgage rate equal to the market yield is priced at par regardless of prepayments.
Assume either zero servicing spread or a pass-through rate equal to the market
yield. (Prices of par-priced pass-throughs are hence little affected by variations in
the prepayment speed.)

➢ Programming Assignment 29.1.14 Implement the algorithm in Fig. 29.10.
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29.1.4 Pricing Sequential-Pay CMOs

Consider a three-tranche sequential-pay CMO backed by $3,000,000 of mortgages
with a 12% coupon and 6 months to maturity. The three tranches are called A, B,
and Z. All three tranches carry the same coupon rate of 12%. The Z tranche consists
of Z bonds. A Z bond receives no payments until all previous tranches are retired.
Although a Z bond carries an explicit coupon rate, the owed interest is accrued and
added to the principal balance of that tranche. For that reason,Zbonds are also called
accrual bonds or accretion bonds. When a Z bond starts receiving cash payments, it
becomes a pass-through instrument.

Assume that the ensuing monthly interest rates are 1%, 0.9%, 1.1%, 1.2%, 1.1%,
and 1.0%. Assume further that the SMMs are 5%, 6%, 5%, 4%, 5%, and 6%. We
want to calculate the cash flow and the fair price of each tranche.

We can compute the pool’s cash flow by invoking the algorithm in Fig. 29.10
with n= 6, r = 0.01, and SMM= [ 0.05, 0.06, 0.05, 0.04, 0.05, 0.06 ]. We can derive
individual tranches’ cash flows and remaining principals thereof by allocating the
pool’s P&I cash flows based on the CMO structure. See Fig. 29.11 for the break-
down. Note that the Z tranche’s principal is growing at 1% per month until all
previous tranches are retired. Before that time, the interest due the Z tranche is
used to retire A’s and B’s principals. For example, the $10,000 interest due tranche
Z at month one is directed to tranche A instead, reducing A’s remaining principal
from $386,737 to $376,737 while increasing Z’s from $1,000,000 to $1,010,000. At
month four, the interest amount that goes into tranche Z, $10,303, is exactly what
is required of Z’s remaining principal of $1,030,301. The tranches can be priced

Month 1 2 3 4 5 6

Interest rate 1.0% 0.9% 1.1% 1.2% 1.1% 1.0%
SMM 5.0% 6.0% 5.0% 4.0% 5.0% 6.0%

Remaining principal (B i )
3,000,000 2,386,737 1,803,711 1,291,516 830,675 396,533 0

A 1,000,000 376,737 0 0 0 0 0
B 1,000,000 1,000,000 783,611 261,215 0 0 0
Z 1,000,000 1,010,000 1,020,100 1,030,301 830,675 396,533 0

Interest ( I i ) 30,000 23,867 18,037 12,915 8,307 3,965

A 20,000 3,767 0 0 0 0
B 10,000 20,100 18,037 2,612 0 0
Z 0 0 0 10,303 8,307 3,965

Principal 613,263 583,026 512,195 460,841 434,142 396,534

A 613,263 376,737 0 0 0 0
B 0 206,289 512,195 261,215 0 0
Z 0 0 0 199,626 434,142 396,534

Figure 29.11: CMO cash flows. Month-i numbers reflect the i th monthly payment. “Interest” and “Principal”
denote the pool’s P&I and distributions to individual tranches. Interest payments may be used to make principal
payments to tranches A, B, and C. The Z bond thus protects earlier tranches from extension risk.
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as follows:

tranche A = 20000+ 613263
1.01

+ 3767+ 376737
1.01× 1.009

= 1000369,

tranche B = 10000+ 0
1.01

+ 20100+ 206289
1.01× 1.009

+ 18037+ 512195
1.01× 1.009× 1.011

+ 2612+ 261215
1.01× 1.009× 1.011× 1.012

= 999719,

tranche Z = 10303+ 199626
1.01× 1.009× 1.011× 1.012

+ 8307+ 434142
1.01× 1.009× 1.011× 1.012× 1.011

+ 3965+ 396534
1.01× 1.009× 1.011× 1.012× 1.011× 1.01

= 997238.

This CMO has a total theoretical value of $2,997,326, slightly less than its par value
of $3,000,000. See the algorithm in Fig. 29.12.

We have seen that once the interest rate path and the prepayment vector for that
interest rate path are available, a CMO’s cash flow can be calculated and the CMO
priced. Unfortunately, the remaining principal of a CMO under prepayments is, like
an ARM, path dependent. For example, a period of high rates before dropping to
the current level is not likely to result in the same remaining principal as a period
of low rates before rising to the current level. This means that if we try to price a
30-year CMO on a binomial interest rate model, there will be 2360 ≈ 2.35× 10108

paths to consider! As a result, Monte Carlo simulation is the computational method
of choice. It works as follows. First, one interest rate path is generated. Based on that
path, the prepayment model is applied to generate the pool’s principal, prepayment,
and interest cash flows. Now the cash flows of individual tranches can be generated
and their PVs derived. The above procedure is repeated over many interest rate
scenarios. Finally, the average of the PVs is taken.

➤ Exercise 29.1.15 Calculate the monthly prepayment amounts for Fig. 29.11.

➢ Programming Assignment 29.1.16 Implement the algorithm in Fig. 29.12 for the cash
flows of a four-tranche sequential CMO with a Z tranche. Assume that each tranche
carries the same coupon rate as the underlying pool’s mortgage rate. Figures 29.13
and 29.14 plot the cash flows and remaining principal balances of one such CMO.

29.1.5 Weighted Average Life

The weighted average life (WAL) of an MBS is the average number of years that
each dollar of unpaid principal due on the mortgages remains outstanding. It is
computed by

WAL≡
∑m
i=1 i Pi

12× P ,

where m is the remaining term to maturity in months, Pi is the principal repayment
i months from now, and P is the current remaining principal balance.2 See Fig. 29.15
for an illustration. Usually, the greater the anticipated prepayment rate, the shorter
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Sequential CMO cash flow generator:

input: n, r (r > 0),SMM[ 1..n ],O[ 1..4 ];
real B[n+ 1 ], P[ 1..n ], I [ 1..n ]; // Pool cash flows.
real B[ 1..4 ][n+ 1 ], P[ 1..4 ][ 1..n ], I [ 1..4 ][ 1..n ];
real P, I ;
integer i, j ;
Call the algorithm in Fig. 29.10 for B[n+ 1 ], P[ 1..n ], I [ 1..n ];
for ( j = 1 to 4) { B[ j ][ 0 ] :=O[ j ]; } // Original balances.
for (i = 1 to n) { // Month i .

P := P[ i ]; I := I [ i ]; // Pool P&I for month i .
for ( j = 1 to 3) { // Tranches A,B,C.
I [ j ][ i ] := B[ j ][ i − 1 ]× r ; // Interest due tranche j .
I := I − I [ j ][ i ];
if [ B[ j ][ i − 1 ]≤ P ] { // Retire it.
P := P− B[ j ][ i − 1 ]; P[ j ][ i ] := B[ j ][ i − 1 ];
B[ j ][ i ] := 0;

} else {
B[ j ][ i ] := B[ j ][ i − 1 ]− P; P[ j ][ i ] := P; P := 0;

}
}
for ( j = 1 to 3) { // Interest as prepayment for A,B,C.

if [ B[ j ][ i ]≤ I ] { // Retire it.
I [ j ][ i ] := I [ j ][ i ]+ B[ j ][ i ]; I := I − B[ j ][ i ];
B[ j ][ i ] := 0;

} else {
B[ j ][ i ] := B[ j ][ i ]− I; I [ j ][ i ] := I [ j ][ i ]+ I;
I := 0;

}
}
// Tranche Z.
I [ 4 ][ i ] := I; P[ 4 ][ i ] := P;
B[ 4 ][ i ] := B[ 4 ][ i − 1 ]× (1+ r)− P− I;

}
return B[ ][ ], P[ ][ ] I [ ][ ];

Figure 29.12: Sequential CMO cash flow generator. SMM is the prepayment vector, and the mortgage rate
r is a monthly rate. The pool has n monthly cash flows, and its principal balance is assumed to be $1. B
stores the remaining principals, P are the principal payments (prepayments included), and I are the interest
payments. Tranche 1 is the A tranche, tranche 2 is the B tranche, and so on. O stores the original balances of
individual tranches as fractions of $1.

the average life. Given a static prepayment vector, the WAL increases with coupon
rates because a larger proportion of the payment in early years is then interest,
delaying the repayment of principal. The implied PSA is sometimes defined as the
single PSA speed that gives the same WAL as the static prepayment vector.

29.2 Collateral Prepayment Modeling

The interest rate level is themost important factor in influencing prepayment speeds.
The MBS typically experiences accelerating prepayments after a lag when the pre-
vailing mortgage rate becomes 200 basis points below theWAC. This event is known
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Figure 29.13: Cash flows of a four-tranche sequential CMO. The mort-
gage rate is 6%, the actual prepayment speed is 150 PSA, and each
tranche has an identical original principal amount.

as the threshold for refinancing. The prepayment speed accelerates rapidly and then
tends to “burn out” and settle at a lower speed. The subsequent times when rates fall
through the refinancing threshold will not produce the same response. Over time, the
pool is left mostly with mortgagors who do not refinance under any circumstances,
and the pool’s interest rate sensitivity falls. Next to refinancing incentive, loan size is
also critical as the monetary savings are proportional to it [4].

The age of a pool has a general impact on prepayments. Refinancing rates are
generally lower for new loans than seasoned ones. Interest rate changes and other
human factors have little impact on prepayment speeds for the early years of the
pool’s life. Afterwards, the pool begins to experience such factors that can lead to
higher prepayment speeds, such as the sale of the house. This increase in prepayment
speeds will stabilize to a steady state with age. We must add that given sufficient
refinancing incentives, prepayment speeds can rise sharply even for new loans.

Refinancing is not the only reason prepayments accelerate when interest rates
decline. Lower interest rates make housing more affordable and may trigger the
trade-up to a bigger house. However, by and large, very high prepayment speeds are
primarily due to refinancings, not housing turnover.

In prepayment modeling, the WAC instead of the pass-through rate is the gov-
erning factor. To start with, MBSs with identical pass-through rate may have differ-
ent WACs, which almost surely result in different prepayment characteristics. The

Figure 29.14: Remaining principal balances of a four-
tranche sequential CMO. The CMO structure is identical
to the one in Fig. 29.13. Tranche Zs principal balance
grows until it becomes the current-pay tranche.
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Figure 29.15: WAL under various PSAs. The underlying mortgages
have 30 years to maturity and a 6% coupon rate.

WACmay also change over time because, absent prepayments, mortgages with lower
coupons amortize faster than those with higher coupons (see Exercise 29.1.2). This
makes the WAC increase over time. With prepayments, however, mortgages with
higher coupons prepay faster, making the pool’s WAC decline over time.

Each mortgage type (government-insured, conventional, and so forth) has a
different prepayment behavior. For example, Freddie Mac and Fannie Mae pass-
throughs seem to take longer to season than Ginnie Maes, and prepayment rates for
15-yearmortgage pass-throughs usually exceed those of comparable-coupon 30-year
pass-throughs [54, 325].

From the analysis above, a prepaymentmodel needs at least the following factors:
current and past interest rates, state of the economy (especially the housing market),
WAC, current coupon rate, loan age, loan size, agency and pool type, month of the
year, andburnout.Althoughwehavediscussedprepayment speeds at thepool level, a
modelmaygo into individual loans togenerate thepool’s cashflow if such information
is available and the benefits outweigh the costs [4, 259]. A long-term average of the
projected speeds is typically reported as the model’s projected prepayment vector.
This projection can be a weighted average of the projected speeds, the single speed
that gives the same weighted average life as the vector, or the single speed that gives
the same yield as the vector [433].

A PO is purchased at a discount. Because its cash flow is returned at par, a
PO’s dollar return is simply the difference between the par value and the purchase
price. The faster that dollar return is realized, the higher the yield. Prepayments are
therefore beneficial to POs. In declining mortgage rates, not only do prepayments
accelerate, the cash flow is also discounted at a lower rate; consequently, POs appre-
ciate in value. The opposite happens when mortgage rates rise (see Fig. 29.16). In
summary, POs have positive duration and do well in bull markets.

An IO, in contrast, has no par value. Any prepayments reduce the pool principal
and thus the interest as well. Whenmortgage rates decline and prepayments acceler-
ate, an IO’s price usually declines even though the cash flow will be discounted at a
lower rate. If mortgage rates rise, the cash flow improves. However, beyond a certain
point, the price of an IOwill decline because of higher discount rates (see Fig. 29.17).
An IO’s price therefore moves in the same direction as the change in mortgage rates
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Figure 29.16: Price of PO.

over certain ranges (negative duration, in other words). Unlike most fixed-income
securities, IOs do best in bear markets.

SMBSs are extremely sensitive to changes in prepayment speeds (see Exercise
29.2.2). These securities are often combined with other types of securities to alter the
return characteristics. For example, because the PO thrives on the acceleration of
prepayment speeds, it serves as an excellent hedge againstMBSs whose price flattens
or declines if prepayments accelerate, whereas IOs can hedge the interest rate risk
of securities with positive duration.

➤ Exercise 29.2.1 Divide the borrowers into slow and fast refinancers. (More refined
classification is possible.) The slow refinancers are assumed to respond to refinanc-
ing incentive at a higher rate than fast refinancers. Describe how this setup models
burnout.

➤ Exercise 29.2.2 From Exercise 29.1.12, show that the prices of PO and IO strips
are extremely sensitive to prepayment speeds.

Figure 29.17: Priceof IO. IOsandPOsdonothave symmetric exposures
to rate changes.
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Figure 29.18: MD under various PSAs. The coupon rate and the
market yield are assumed to be 6%. The underlying mortgages have
30 years to maturity.

➤ Exercise 29.2.3 Firms that derive income from servicing mortgages can be viewed
as taking a long position in IOs. Why?

29.3 Duration and Convexity

Duration ismore important for the evaluation of pass-throughs than theWAL,which
measures the time to the receipt of the principal cash flows [247, 619]. Figure 29.18
illustrates theMacaulay duration (MD) of a pass-through under various prepayment
assumptions. The MD derived under a static prepayment vector, which does not
change as yields change, is also called static duration or cash flow duration.

Duration is supposed to reveal how a change in yields affects the price, that is,

percentage price change≈−effective duration× yield change. (29.12)

Relation (29.12) has obvious applications in hedging. However, static duration is in-
adequate for that purpose because the cash flowof anMBSdepends on the prevailing
yield. The most relevant measure of price volatility is the effective duration,

∂P
∂y
≈ P− − P+
P0(y+ − y−) ,

where P0 is the current price, P− is the price if yield is decreased by �y, P+ is the
price if yield is increased by �y, y is the initial yield, y+ ≡ y+�y, and y− ≡ y−�y.
Figure 29.19 plots the effective duration of an MBS. For example, it says that the
effective duration is approximately six at 9%; a 1% change in yields will thus move
the price by roughly 6%. The prices P+ and P− are often themselves expected
values calculated by simulation. To save computation time, either (P− − P0)/(P0�t)
or (P0− P+)/(P0�t) may be used instead, as only one of P− and P+ needs to be
calculated then.

Similarly, convexity ∂2P/∂y2 can be approximated by the effective convexity:

P+ + P− − 2× P0
P0[ 0.5× (y+ − y−) ]2 .
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Figure 29.19: Effective duration. The MBS is from Fig. 28.8.

See Fig. 29.20 for an illustration. Convexity can improve first-order formula (29.12)
by adding second-order terms,

percentage price change≈−effective duration× yield change
+ 0.5× convexity× (yield change)2.

We saw in Fig. 28.8 that an MBS’s price increases at a decreasing rate as the yield
falls below the cusp because of accelerating prepayments, at which point it starts to
decrease. This negative convexity is evident in Fig. 29.20. Therefore, even if the MD,
which is always positive, is acceptable for current-coupon and moderately discount
MBSs, it will not work for premium-priced MBSs.

➤ Exercise 29.3.1 Suppose that MBSs are priced based on the premise that there are
no prepayments until the 12th year, at which time the pool is repaid completely. This
is called the FHA 12-year prepaid-life concept. Argue that premium-priced MBSs
are overvalued and discountMBSs are undervalued if prepayments occur before the
12th year. (Studies have shown that the average life is much shorter than 12 years
[577].)

Figure 29.20: Effective convexity. The MBS is from Fig. 28.8.
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➤ Exercise 29.3.2 Modified duration (1/P)
∑n
i=1 iCi (1+ y)−(i+1) cannot be nega-

tive for pass-throughs. On the other hand, effective duration, which approximates
modified duration, can be negative, as shown in Fig. 29.19. Why?

➤ Exercise 29.3.3 A hedger takes a long position in MBSs and hedges it by shorting
T-bonds. Assess this strategy.

➤ Exercise 29.3.4 Consider options on mortgage pass-through forwards. Argue that
Black’s model tends to overstate the call value and to underestimate the put value.

29.4 Valuation Methodologies

Mortgage valuation involves modeling the uncertain cash flow and computing its PV.
As in Section 27.4, the three basic approaches to valuing MBSs are static cash flow
yield, optionmodeling, andOAS.Because their valuation ismore technical and relies
more on judgment than do other fixed-income securities, not to mention such issues
as prepayment risk, credit quality, and liquidity, MBSs are priced to a considerable
yield spread over the Treasuries and corporate bonds.

29.4.1 The Static Cash Flow Yield Methodology

When an internal rate of return is calculated with the static prepayment assumption
over the life of the security, the result is the (static) cash flow yield, we recall. The
static cash flow yield methodology compares the cash flow yield on an MBS with
that on “comparable” bonds. For this purpose, it is inappropriate to use the stated
maturity of the MBS because of prepayments. Instead, either the MD or the WAL
under the same prepayment assumption can be used.

Although simple to use, this methodology sheds little light on the relative value
of an MBS. Its problems, besides being static, are that (1) the projected cash flow
may not be reinvested at the cash flow yield, (2) the MBS may not be held until the
final payout date, and (3) the actual prepayment behavior is likely to deviate from
the assumptions.

The static spread methodology goes beyond the cash flow yield by incorporating
the Treasury yield curve. The static spread to the Treasuries is the spread that makes
the PV of the projected cash flow from the MBS when discounted at the spot rate
plus the spread equal its market price (review Section 5.4).

29.4.2 The Option Pricing Methodology

Virtually all mortgage loans give the homeowner the right to prepay the mortgage at
any time. The homeowner in effect holds an option to call the mortgage. The totality
of these rights to prepay constitutes the embedded call option of the pass-through.
Because the homeowner has the right to call a pro rata portion of the pool, the MBS
investor is short the embedded call; therefore,

pass-through price= noncallable pass-through price− call option price.

The option pricing methodology prices the call option by an option pricing model. It
then estimates the market price of the noncallable pass-through by

noncallable pass-through price= pass-through price+ call option price.
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The preceding price is finally used to compute the yield on this theoretical bond that
does not prepay. This yield is called the option-adjusted yield.

The option pricing methodology was criticized in Subsection 27.4.2. It has ad-
ditional difficulties here. Prepayment options are often “irrationally” exercised.
Furthermore, a partial exercise is possible as the homeowner can prepay a portion
of the loan; there is not one option but many, one per homeowner. Finally, valuation
of the call option becomes very complicated for CMO bonds.

29.4.3 The Option-Adjusted-Spread Methodology

TheOASmethodology has four major parts [382]. The interest rate model is the first
component. Then there is the prepayment model, which is the single most important
component. Although the prepayment model may be deterministic or stochastic,
there is evidence showing that deterministic models that are accurate on average are
good enough for pass-throughs, IOs, and POs [428, 433]. The cash flow generator
is the third component. It calculates the current coupon rates for the interest rate
paths given by the interest rate model. It then generates the P&I cash flows for the
pool as well as allocating them for individual securities based on the prepayment
model and security information such as CMO rules. Note that the same pool cash
flow drives many securities. Finally, the equation solver calculates the OAS. Because
several paths of interest rates are used, many statistics are often computed as well.
See Fig. 29.21 for the overall structure.

Figure 29.21: OAS computation framework for MBSs. Components boxed by thinner borders are
supplied externally.
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The general valuation formula for uncertain cash flows can be written as

PV= lim
N→∞

1
N

∑
N paths r∗

C∗n
(1+ r∗1 )(1+ r∗2 ) · · · (1+ r∗n)

, (29.13)

where r∗ denotes a risk-neutral interest rate path for which r∗i is the ith one-
period rate and C∗n is the cash flow at time n under this scenario. The summation
averages over a large number of scenarios whose distribution matches the interest
rate dynamics. The average over scenarios must also match the current spot rate
curve, i.e.,

1
(1+ f1)(1+ f2) · · · (1+ fn) = lim

N→∞
1
N

∑
N paths r∗

1
(1+ r∗1 )(1+ r∗2 ) · · · (1+ r∗n)

,

n= 1, 2, . . . , where fi are the implied forward rates.
TheMonte Carlo valuation ofMBSs is closely related to Eq. (29.13). The interest

rate model randomly produces a set of risk-neutral rate paths. The cash flow is then
generated for each path. Finally, we solve for the spread s that makes the average
discounted cash flow equal the market price:

P = lim
N→∞

1
N

∑
N paths r∗

C∗n
(1+ r∗1 + s)(1+ r∗2 + s) · · · (1+ r∗n + s)

.

This spread s is the OAS. The implied cost of the embedded option is then calcula-
ted as

option cost= static spread−OAS.

A common alternative averages the cash flows first and then calculates the OAS as
the spread that equates this average cash flow with the market price. Although this
approach is more efficient, it will generally give a different spread.

OAScalculation is very time consuming.Themajority of the cost lies in generating
the cash flows. This is becauseCMOs canbecomearbitrarily complex in their rules for
allocating the cash flows. Such complexity requires special data structures in software
design. The computational costs are then multiplied by the many runs of the Monte
Carlo simulation.

OAS can be seen to measure the risk premium for bearing systematic risks in
the mortgage market. Under this interpretation, the OAS methodology identifies
investments with the best potential for excess returns. Being statistically derived,
the prepayment model will always be out of date and provide only a crude forecast
for future conditions. Therefore an alternative interpretation is that no such risk
premium exists: A nonzero OAS simply implies that the market is trading off a
different set of prepayment assumptions [34]. This view suggests that one investigate
the implied prepayment assumptions [188].

➤ Exercise 29.4.1 Argue that the OAS with zero interest rate volatility, called the
zero-volatility OAS, corresponds to the static spread.

➢ Programming Assignment 29.4.2 Implement the OAS computation for the four-
tranche sequential CMO under the BDT model. Assume a constant SMM.
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Duration and Convexity
Effective duration and convexity can be computed if the OAS is held constant. The
results are called the OAS duration and the OAS convexity, respectively [323, 325].
Key rate durations, introduced in Section 27.5 and calculated like the OAS dura-
tion, are most useful in identifying the segments of the yield curve that most affect
the MBS value [260]. Note that the OAS duration is at least twice as expensive as
the OAS in terms of computation time because at least one of P+ and P− has to
be computed by simulation. The OAS convexity is three times as expensive because
both P+ and P− have to be computed.

Prepayment risk can represent the risk that the market price reflects prepayment
assumptions that are different from the model. An interesting measure of prepay-
ment risk is the prepayment duration. It is the percentage change in price, with the
OAS held constant, for a given percentage deviation in speeds from some base level
projection (see Exercise 29.2.2) [198, 328, 433, 815].

Holding Period Returns
The HPR assesses the MBS over a holding period. The FV at the horizon consists
of the projected P&I cash flows, the interest on the reinvestment thereof, and the
projected horizon price. The monthly total return is(

total future amount
price of the MBS

)1/number of months

− 1.

To calculate the preceding return, prepayment assumptions, reinvestment rates, and
interest rate dynamics are all needed. These assumptions are not independent.

The OAS can be combined with the HPR analysis. First we create a few static
interest rate and prepayment scenarios for the holding period. The prepayment as-
sumptions are in the form of prepayment vectors. We then calculate the HPR for
each scenario by assuming that the OAS remains unchanged at the horizon.

Additional Reading

See [54, 55, 260, 330, 829] for more information on MBSs, [54, 55, 124, 259, 260, 276,
297, 323, 325, 330, 595, 619, 649, 788, 789, 818, 896] for thevaluationofMBSs, [134, 188,
197, 198, 438, 454] for OAS analysis, and [142, 715] for the Monte Carlo valuation
of MBSs. Monte Carlo simulation typically provides an unbiased estimate [478].
Application of the variance-reduction techniques and quasi-Monte Carlo methods
in Chap. 18 can result in less work [197, 354]. Parallel processing for much faster
performance has been convincingly demonstrated [601, 794, 892, 893]. Additional
information on duration measures can be found in [33, 258, 272, 394, 429, 504, 889].
Many yield concepts are discussed in [406]. See [118, 220, 268, 361, 411, 430, 431, 433,
540] for prepaymentmodels, [260] for a historical account, and [296] for earlymodels.
Factors used in prepayment modeling are considered in [54, 330, 430, 433]. The FHA
12-year prepaid-life concept is discussed in [54, 363]. Valuation of MBSs may profit
from two-factor models because prepayments tend to dependmore on the long-term
rate [456]. See [316] for the prepayments of multifamilyMBSs and [203, 742, 864] for
the empirical analysis of prepayments. Burnout modeling is discussed in [199]. The
refinancing waves of 1991–1993 cast some doubts on the burnout concept, however
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[433]. Consult [524] for hedging MBSs and [460] for options on MBSs. The 11th
District COFI is analyzed in [347, 684], and the CMT rates are compared with the
on-the-run yields in [525].

NOTES

1. Also known as the weighted average remaining maturity (WARM).
2. Payment delays should be incorporated in theWALcalculation: 14 (actual) or 45 days (stated) for

GNMAIs, 19 (actual) or 50 days (stated) forGNMAIIs, 24 (actual) or 55 (stated) for FannieMae
MBSs, 44 (actual) or 75 (stated) for Freddie Mac non-Gold PCs, and 14 (actual) or 45 (stated)
for Freddie Mac Gold PCs. The stated payment delay denotes the number of days between the
first day of the month and the date the servicer actually remits the P&I to the investor [54, 330].
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THIRTY

Collateralized Mortgage
Obligations

Capital can be understood only as motion, not as a thing at rest.

Karl Marx (1818–1883), Das Kapital

Mutual funds combine diverse financial assets into a portfolio and issue a single
class of securities against it. CMOs reverse that process by issuing a diverse set
of securities against a relatively homogeneous portfolio of assets [660]. This chapter
surveys CMOs. The tax treatment of CMOs is generally covered under the provisions
of theReal EstateMortgage InvestmentConduit (REMIC) rules of 1986.As a result,
CMOs are often referred to as REMICs [162, 469].

30.1 Introduction

The complexity of a CMO arises from layering different types of payment rules on a
prioritized basis. In the first-generation CMOs, the sequential-pay CMOs, each class
of bondwould be retired sequentially. A sequential-payCMOwith a large number of
tranches will have very narrow cash flowwindows for the tranches. To further reduce
prepayment risk, tranches with a principal repayment schedule were introduced.
They are called scheduled bonds. For example, bonds that guarantee the repayment
schedule when the actual prepayment speed lies within a specified range are known
as planned amortization class bonds (PACs). PACs were introduced in August 1986
[141]. Whereas PACs offer protection against both contraction and extension risks,
some investors may desire protection from only one of these risks. For them, a bond
class known as the targeted amortization class (TAC) was created.

Scheduled bonds expose certain CMO classes to less prepayment risk. However,
this can occur only if the redirection in the prepayment risk is absorbed as much
as possible by other classes referred to as the support bonds or companion bonds.
Support bonds are a necessary by-product of the creation of scheduled tranches.
Pro rata bonds provide another means of layering. Principal cash flows to these

bonds are divided proportionally, but the bonds can have different interest payment
rules. Suppose the WAC of the collateral is 10%, tranche B1 receives 40% of the
principal, and trancheB2 receives 60%of the principal. Given this pro rata structure,
many choices of interest payment rules are possible for B1 and B2 as long as the
interest payments are nonnegative and the WAC does not exceed 10%. The coupon
rates can even be floating. One possibility is for B1 to have a coupon of 5% and
B2 to have a coupon of 13.33%. Bonds with pass-through coupons that are higher
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and lower than the collateral coupon have thus been created. Bonds like B1 are
called synthetic discount securities and bonds like B2 are called synthetic premium
securities. An extreme case is for B1 to receive 99% of the principal and have a 5%
coupon and B2 to receive only 1% of the principal and have a 505% coupon. In fact,
first-generation IOs took the form of B2 in July 1986 [55].

IOs have either a nominal principal or a notional principal. A nominal principal
represents actual principal that will be paid. It is called “nominal” because it is
extremely small, resulting in an extremely high coupon rate. A case in point is the
B2 class with a 505% coupon above. A notional principal, in contrast, is the amount
on which interest is calculated. An IO holder owns none of the notional principal.
Once the notional principal amount declines to zero, no further payments are made
on the IO.

30.2 Floating-Rate Tranches

A form of pro rata bonds are floaters and inverse floaters whose combined coupon
does not exceed the collateral coupon. A floater is a class whose coupon rate varies
directly with the change in the reference rate, and an inverse floater is a class whose
coupon rate changes in the direction opposite to the change in the reference rate.
When the coupon on the inverse floater changes by x times the amount of the change
in the reference rate, this multiple x is called its slope. Because the interest comes
fromfixed-ratemortgages, floatersmust have a coupon cap. Similarly, inverse floaters
must have a coupon floor. Floating-rate classes were created in September 1986.

Suppose the floater has a principal of Pf and the inverse floater has a principal
of Pi. Define ωf ≡ Pf/(Pf+ Pi) and ωi ≡ Pi/(Pf+ Pi). To make the structure self-
supporting, the coupon rates of the floater, cf, and the inverse floater, ci, must satisfy
ωf× cf+ωi× ci =WAC, or

ci = WAC−ωf× cf
ωi

.

The slope is clearly ωf/ωi. To make sure that the inverse floater will not encounter a
negative coupon, the cap on the floater must be less than WAC/ωf. In fact, caps and
floors are related by

floor= WAC−ωf× cap
ωi

.

EXAMPLE 30.2.1 Consider a CMO deal that includes a floater with a principal of
$64 million and an inverse floater with a principal of $16 million. The coupon
rate for the floating-rate class is LIBOR+ 0.65 and that for the inverse floater is
42.4− 4× LIBOR. The slope is thus four. The WAC of the two classes is

64
80
× floater coupon rate+ 16

80
× inverse floater coupon rate= 9%,

regardless of the level of LIBOR. Consequently the coupon rate on the underlying
collateral, 9%, can support the aggregate interest payments that must be made to
these two classes. If we set a floor of 0% for the inverse floater, the cap on the floater
is 11.25%.
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A variant of the floating-rate CMO is the superfloater introduced in 1987. In a
conventional floating-rate class, the coupon rate moves up or down on a one-to-one
basis with the reference rate subject to caps and floors. A superfloater’s coupon rate,
in comparison, changes by some multiple of the change in the reference rate, thus
magnifying any changes in the value of the reference rate. Superfloater tranches are
bearish because their value generally appreciates with rising interest rates.

Suppose that the initial LIBOR is 7% and the coupon rate for a superfloater is
based on this formula:

(initial LIBOR− 40 basis points)+ 2× (change in LIBOR).

The following table shows how the superfloater changes its coupon rate as LIBOR

changes. The coupon rates for a conventional floater of LIBOR plus 50 basis points are
also listed for comparison.

LIBOR Change (Basis Points) −300 −200 −100 0 +100 +200 +300
Superfloater 0.6 2.6 4.6 6.6 8.6 10.6 12.6
Conventional floater 4.5 5.5 6.5 7.5 8.5 9.5 10.5

Asuperfloater provides amuchhigher yield than a conventional floaterwhen interest
rates rise and a much lower yield when interest rates fall or remain stable. We verify
this by looking at the above table by means of spreads in basis points to LIBOR in the
next table:

LIBOR Change (Basis Points) −300 −200 −100 0 +100 +200 +300
Superfloater −340 −240 −140 −40 60 160 260
Conventional floater 50 50 50 50 50 50 50

➤ Exercise 30.2.1 Repeat the calculations in the text by using the following formula:

(initial LIBOR− 50 basis points)+ 1.5× (change in LIBOR).

➤ Exercise 30.2.2 Argue that the maximum coupon rate that could be paid to a
floater is higher than would be possible without the inclusion of an inverse floater.

30.3 PAC Bonds

PACbondsmaybe themost important innovation in theCMOmarket [141]. They are
created by calculation of the cash flows from the collateral by use of two prepayment
speeds, a fast one and a slow one. Consider a PAC band of 100 PSA (the lower
collar) to 300 PSA (the upper collar). Figure 30.1 shows the principal payments at
the two collars. Note that the principal payments under the higher-speed scenario
are higher in the earlier years but lower in later years. The shaded area represents
the principal payment schedule that is guaranteed for every possible prepayment
speed between 100% and 300% PSAs. It is calculated by taking the minimum of the
principal paydowns at the lower collar and those at the upper collar. This schedule
is called the PAC schedule. See Fig. 30.2 for a linear-time cash flow generator for a
simple CMO containing a PAC bond and a support bond.
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Figure 30.1: PAC schedule. The underlying mortgages are 30-year ones with
a total original loan amount of $100,000,000 (the numbers on the y axis are in
thousands) and a coupon rate of 6%. The PAC schedule is determined by the
principal payments at 100 PSA and 300 PSA.

Adherence to the amortization schedule of the PAC takes priority over those
of all other bonds. The cash flow of a PAC bond is therefore known as long as its
support bonds are not fully paid off. Whether this happens depends to a large extent
on the CMO structure, such as priority and the relative sizes of PAC and non-PAC
classes. For example, a relatively small PAC is harder to break than a larger PAC,
other things being equal.

If the actual prepayment speed is 150 PSA, the principal payment pattern of the
PAC bond adheres to the PAC schedule. The cash flows of the support bond “flow
around” the PAC bond (see Fig. 30.3). The cash flows are neither sequential nor pro
rata; in fact, the support bond pays down simultaneouslywith the PACbond. Because
more than one class of bonds may be receiving principal payments at the same
time, structures with PAC bonds are called simultaneous-pay CMOs. At the lower
prepayment speed of 100 PSA, far less principal cash flow is available in the early
years of the CMO. As all the principal cash flows go to the PAC bond in the early
years, the principal payments on the support bond are deferred and the support bond
extends. The support bond does, however, receive more interest payments.

If prepayments move outside the PAC band, the PAC schedule may not be met.
At 400 PSA, for example, the cash flows to the support bond are accelerated. After
the support bond is fully paid off, all remaining principal payments go to the PAC
bond, shortening its life. See Fig. 30.4 for an illustration. The support bond thus
absorbs part of the contraction risk. Similarly, should the actual prepayment speed
fall below the lower collar, then in subsequent periods the PAC bond has priority on
the principal payments. This reduces the extension risk, which is again absorbed by
the support bond.

The PAC band guarantees that if prepayments occur at any single constant speed
within the band and stay there, the PAC schedule will be met. However, the PAC
schedulemay not bemet even if prepayments on the collateral always varywithin the
band over time. This is because the band that guarantees the original PAC schedule
can expand and contract, depending on actual prepayments. This phenomenon is
known as PAC drift.
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PAC cash flow generator:

input: n, r (r > 0),SMM[ 1..n ],PSAu,PSA�,O[ 2 ];
real P[ 1..n ], I [ 1..n ]; // Pool cash flows.
real smm[ 1..n ], B[ 2 ][n+ 1 ], P[ 2 ][ 1..n ], I [ 2 ][ 1..n ], P, I;
integer i ;
Call the algorithm in Fig. 29.10 with SMM[ 1..n ] for

P[ 1..n ] and I [ 1..n ]; // Pool cash flows.
Call the algorithm in Fig. 29.9 for smm[ 1..n ] based on PSAu;
Call the algorithm in Fig. 29.10 with smm[ 1..n ] and

store the principal cash flow in P[ 0 ][ 1..n ];
Call the algorithm in Fig. 29.9 for smm[ 1..n ] based onPSA�;
Call the algorithm in Fig. 29.10 with smm[ 1..n ] and

store the principal cash flow in P[ 1 ][ 1..n ];
for (i = 1 ton) {P[ 0 ][ i ] :=min(P[ 0 ][ i ], P[ 1 ][ i ]); }
// PAC schedule per one dollar of original principal:
Normalize P[ 0 ][ 1..n ] so that then elements sum to one;
B[ 0 ][ 0 ] :=O[ 0 ]; B[ 1 ][ 0 ] :=O[ 1 ]; // Original balances.
for (i = 1 to n) { // Month i .

P := P[ i ]; I := I [ i ]; // Pool P&I for month i .
P[ 1 ][ i ] :=min(0, P−O[ 0 ]× P[ 0 ][ i ], B[ 1 ][ i − 1 ]);
B[ 1 ][ i ] := B[ 1 ][ i − 1 ]− P[ 1 ][ i ];
I [ 1 ][ i ] := B[ 1 ][ i − 1 ]× r ; // Support bond done.
P := P− P[ 1 ][ i ];
P[ 0 ][ i ] := P;
B[ 0 ][ i ] := B[ 0 ][ i − 1 ]− P;
I [ 0 ][ i ] := I − I [ 1 ][ i ]; // PAC bond done.

}
return B[ ][ ], P[ ][ ], I [ ][ ];

Figure 30.2: PAC cash flow generator. SMM[ ] stores the actual prepayment speeds, PSAu and PSA� form
the PAC band, and the mortgage rate r is a monthly rate. The pool has n monthly cash flows, and its
principal balance is assumed to be $1. O stores the original balances of individual bonds as fractions of $1;
in particular, bond 0 is the PAC bond, bond 1 is the support bond, and O[ 0 ]+O[ 1 ]= 1. B stores the
remaining principals, P are the principal payments (prepayments included), and I are the interest payments.
The CMO deal contains one PAC tranche and one support tranche.

Figure 30.3: Cash flows of a PAC bond at 150 PSA.
The mortgage rate is 6%, the PAC band is 100 PSA
to 300 PSA, and the actual prepayment speed is
150 PSA.
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Figure 30.4: Cash flows of a PAC bond at 400 PSA. The mortgage
rate is 6%, the PAC band is 100 PSA to 300 PSA, and the actual
prepayment speed is 400 PSA.

PACs can be divided sequentially to provide narrower paydown structures. These
sequential PACs narrow the range of years over which principal payments occur. See
Fig. 30.5 for an illustration. Although these bonds are all structured with the same
band, the actual range of speeds over which their schedules will be met may differ.
We can take a CMO bond and further structure it. For example, the sequential PACs
could be split by use of a pro rata structure to create high and low coupon PACs. We
can also replace the second tranche in a four-tranche ABCZ sequential CMOwith a
PAC class that amortizes starting in year four, say. But note that tranche C may start
to receive prepayments that are in excess of the schedule of the PAC bond. It may
even be retired earlier than tranche B.

Support bonds themselves can have cash flows prioritized so as to reduce pre-
payment risk. Support bonds with schedules, also referred to as PAC II bonds, are
supported by other support bonds without schedules. PACs in a structure in which
there are PAC II level bonds are called PAC I bonds.

➢ Programming Assignment 30.3.1 Implement the cash flow generator in Fig. 30.2.

➢ Programming Assignment 30.3.2 Implement the cash flow generator for sequential
PAC bonds.

Figure 30.5: Cash flows of sequential PAC bonds. The mort-
gage rate is 6%, the PAC band is 100 PSA to 300 PSA, and the
actual prepayment speed is 150 PSA. The three PAC bonds have
identical original principal amounts.
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30.4 TAC Bonds

Created in 1986, TACbonds, just as PACbonds, have priority over other bond classes
that do not have a schedule for principal repayment. PACs have a higher priority over
TACs, however. TAC bonds have a single PSA prepayment speed over which the
principal repayment schedule is guaranteed. When prepayments exceed the speed,
the excess principal is paid to the support bonds first. However, when prepayments
fall short of the speed, TAC bonds will extend. TACs are therefore designed to
provide protection against contraction risk but not extension risk.

30.5 CMO Strips

A class in a CMO structure can be a CMO strip. A CMO strip that is created when
an IO is stripped from a CMO bond is called a bond IO. For example, this stripping
mechanism creates an inverse IO from an inverse floater and a PAC IO from a PAC
bond. Bond IOs lower the coupon of the CMO tranche. Some people call bond IOs
IOettes to distinguish them from IO strips created off the entire collateral. A PO
class that is neither a PAC nor a TAC is called a super PO. Like a PO strip, such
bonds are purchased at a substantial discount frompar and are returned at par.When
prepayments accelerate as interest rates decline, “super” performance follows, hence
the name.

30.6 Residuals

All CMOs contain a residual interest composed of the excess of collateral cash flows
plus any reinvestment incomeover the payments for principal, interest, and expenses.
This excess cash flow is called the CMO residual. The residual arises in part because
credit rating agencies requireCMOs tobeovercollateralized inorder to receiveAAA
credit rating: The cash flows must be sufficient to meet all the obligations under any
prepayment scenario.

Another source of residual cash flow is reinvestment income. There is usually a
delay between the time the payments from the collateral are received and the time
they are remitted to the CMO bondholders. For example, whereas the mortgages in
the collateral pay monthly, most CMOs pay quarterly or semiannually. The CMO
trustee is therefore able to reinvest the pool cash flows before distribution dates. To
be conservative in calculating the funds needed to meet future obligations, the rating
agencies require that the trustee assume a relatively low reinvestment rate. CMO
trustees have been able to reinvest at higher rates, and the excess is retained as a
residual.

Additional Reading

See [14, 54, 161, 260, 325, 439, 758] for in-depth analyses of CMOs.



CHAPTER
THIRTY-ONE

Modern Portfolio Theory

Truly important and significant hypotheses will be found to have
“assumptions” that are wildly inaccurate descriptive representations
of reality.

Milton Friedman,“The Methodology of Positive Economics”

This chapter starts with themean-variance theory of portfolio selection. This theory
provides a tractable framework for quantifying the risk–return trade-off of assets.We
then investigate the equilibrium structure of asset prices. The result is the celebrated
Capital Asset Pricing Model (CAPM, pronounced cap-m). The CAPM is the foun-
dational quantitative model for measuring the risk of a security. Alternative asset
pricing models based on factor analysis are also presented. The practically important
concept of value at risk (VaR) for risk management concludes the chapter.

31.1 Mean–Variance Analysis of Risk and Return

Risk is the chance that expected returns will not be realized. We adopt standard
deviation of the rate of return as the measure of risk.1 This choice, although not
without its critics, is standard in portfolio analysis and has nice statistical properties.
Investors are presumed to prefer higher expected returns and lower variances.

Assume that there are n assets with random rates of return, r1, r2, . . . , rn. The
expected values of these returns are r i ≡ E[ ri ]. If we form a portfolio of these n
assets by using (capitalization) weights ω1, ω2, . . . , ωn, the portfolio’s rate of return
is

r = ω1r1+ω2r2+ · · ·+ωnrn
with mean r =∑n

i=1 ωi r i and variance

σ2 =
n∑
i=1

n∑
j=1
ωiω jσi j =

∑
i �= j
ωiω jσi j +

n∑
i=1
ω2
i σ

2
i ,

where σ 2
i represents the variance of ri and σi j represents the covariance between

ri and r j . Note that σi i = σ 2
i .

The portfolio’s total risk as measured by its variance consists of (1)
∑
i �= j ωiω jσi j ,

the systematic risk associated with the correlations between the returns on the as-
sets in the portfolio, and (2)

∑n
i=1 ω

2
i σ

2
i , the specific or unsystematic risk associated

458
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with the individual variances alone. Every possible weighting scheme ω1, ω2, . . . , ωn
with

∑n
i=1 ωi = 1 corresponds to a portfolio, with negative weights meaning short

sales. The constraints ωi ≥ 0 can be added to exclude short sales. A portfolio
ω ≡ [ω1, ω2, . . . , ωn ]T that satisfies all the specified constraints is said to be a feasible
portfolio.

Interestingly, if the returns2 of the assets are uncorrelated, i.e., σi j = 0 for i �= j ,
the variance of the portfolio’s return decreases toward zero as n increases, provided
that the portfolio is well diversified. For example, with ωi = 1/n,

σ2 =
n∑
i=1
ω2
i σ

2
i =

∑n
i=1 σ

2
i

n2
≤ σ

2
max

n
,

where σmax ≡maxi σi . This shows the power of diversification. Diversification, how-
ever, has its limits when asset returns are correlated. To see this point, assume that
(1) all the returns have the same variance s2, (2) the return correlation is a constant
z, hence σi j = zs2 for i �= j , and (3) ωi = 1/n. The variance of r then is

σ2 =
∑
i �= j

zs2

n2
+

n∑
i=1

s2

n2
= n(n− 1)

zs2

n2
+ s

2

n
= zs2+ (1− z) s

2

n
,

which cannot be reduced below the average covariance zs2.
These twoexamplesdemonstrate that specific risk and systematic riskbehavevery

differently as the number of assets included in the portfolio grows. In general, as the
portfolio gets larger and is well diversified, the specific risk tends to zero, whereas the
systematic risk converges to the average of all the covariances for all pairs of assets in
the portfolio. Markowitz called this phenomenon the law of the average covariance
[644]. Systematic risk therefore does not disappear with diversification.

Consider a two-dimensional diagram with the horizontal axis denoting standard
deviation and the vertical axis denoting mean. This is called the mean–standard
deviation diagram. Every feasible portfolio with mean return rate r and standard
deviation σ can be represented as a point at (σ, r) on the diagram; it is anobtainable
mean–standard deviation combination. The set of feasible points form the feasible
set. In general, the feasible set is a solid two-dimensional region and convex to the
left. Thus the straight line segment connecting any two points in the set does not
cross the left boundary of the set. For a given expected rate of return, the feasible
point with the smallest variance is the corresponding left boundary point. The left
boundary of the feasible set is hence called theminimum-variance set, and the point
on this set having the minimum variance is the minimum-variance point (MVP).
Most investors will choose the portfolio with the smallest variance for a given mean.
Such investors are risk averse because they seek to minimize risk as measured by
the standard deviation. Similarly, most investors will choose the portfolio with the
highest mean for a given level of standard deviation (i.e., the highest point on a given
vertical line). Therefore only the subset of theminimum-variance set above theMVP
will be of interest. An obtainable mean–standard deviation combination is efficient
if no other obtainable combinations have either higher mean and no higher variance
or less variance and no less mean. The set of efficient combinations is termed the
efficient frontier, and the corresponding portfolios are termed the efficient portfolios.
See Fig. 31.1.
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Figure 31.1: Feasible, minimum-variance, and efficient sets. The points in the minimum-
variance set (that are above the MVP) form the efficient frontier, which is also called the
efficient set. When short sales are not allowed, the feasible set is bounded because its
mean lies within [ mini r i , maxi r i ] and its standard deviation lies within [ 0, maxi σi ]
(see Exercise 31.1.3).

Here is the mathematical formulation for the minimum-variance portfolio with
a given mean value r that is due to Markowitz in 1952 [641]:

minimize (1/2)
n∑
i=1

n∑
j=1
ωiω jσi j ,

subject to
n∑
i=1
ωi r i = r,

n∑
i=1
ωi = 1.

Short selling can be prohibited if ωi ≥ 0 for i = 1, 2, . . . ,n, is added to the con-
straints. (The factor 1/2 in front of the variance will simplify the analysis later.) The
preceding Markowitz problem is a quadratic programming problem. It is a single-
period investment theory that specifies the trade-off between the mean and the
variance of a portfolio’s rate of return.3

The Markowitz problem can be solved as follows. The weights ωi and the two
Lagrange multipliers λ and µ for an efficient portfolio satisfy

n∑
j=1
σi jω j − λr i −µ= 0 for i = 1, 2, . . . ,n,

n∑
i=1
ωi r i = r,

n∑
i=1
ωi = 1.
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There are n+ 2 equations with n+ 2 unknowns: ω1, ω2, . . . , ωn, λ, µ. Because the
equations are linear, they can be easily solved (see Fig. 19.2). If the goal is to obtain
the highest return for a given level of variance σ 2

p , then the problem becomes

maximize
n∑
i=1
ωi r i ,

subject to
n∑
i=1

n∑
j=1
ωiω jσi j = σ 2

p ,

n∑
i=1
ωi = 1.

Sophisticated quadratic programming techniques are needed to solve it.
Striking conclusions can be drawn from the mean–variance framework. Sup-

pose that two solutions are available: (1) (ω1, λ1, µ1) with expected return rate
r1 and (2) (ω2, λ2, µ2) with expected return rate r2. Direct substitution shows
that (αω1+ (1−α)ω2, αλ1+ (1−α) λ2, αµ1+ (1−α)µ2) is also a solution to the
n+ 2 equations and corresponds to the expected return rate αr1+ (1−α) r2 . Thus
the combined portfolio αω1+ (1−α)ω2 also represents a point in the minimum-
variance set. To use this result, suppose that ω1 and ω2 are two different port-
folios in the minimum-variance set. Then as α varies over −∞< α <∞, the port-
folios defined by αω1+ (1−α)ω2 sweep out the entire minimum-variance set. In
particular, if ω1 and ω2 are efficient, they will generate all other efficient points.
This is the two-fund theorem. Hence all investors seeking efficient portfolios need
consider investing in combinations of only these two funds instead of individual
stocks. This conclusion rests on the assumptions, among others, that everyone cares
about only means and variances, that everyone has the same assessment of the para-
meters (means, variances, and covariances), that short selling is allowed, and that a
single-period framework is appropriate.

➤ Exercise 31.1.1 Express the efficient portfolio in matrix form.

➤ Exercise 31.1.2 Construct a portfolio with zero risk from two perfectly negatively
correlated assets without short sales.

➤ Exercise 31.1.3 Let C ≡ [ σi j ] be a positive definitematrix. (1) Prove that maxi σi i
is themaximumvalue of

∑
i

∑
j ωiω jσi j under the constraints

∑
i ωi = 1 and ωi ≥ 0.

(2) How about the minimum value under the same constraints? (You may assume
that the row sums of C−1 are all nonnegative.)

➤ Exercise 31.1.4 Let P(t) denote the asset price at time t . Define r(T)≡
[ P(T)/P(0) ]− 1 as the holding period rate of return for a period of length T and
rc(T)≡ ln(P(T)/P(0)) as the continuous holding period rate of return for the same
period. Under the assumption that asset prices are lognormally distributed, derive
the relations between the mean and the variance of r(T) and those of rc(T).

➤ Exercise 31.1.5 Consider a portfolio P of n assets each following an inde-
pendent geometric Brownian motion process with identical mean and variance,
dSi/Si = µdt + σ dWi . Each asset has the same weight of 1/n in the portfolio.
Show that this portfolio’s expected rate of return, E[ ln(P(t)/P(0)) ]/t , exceeds each
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individual asset’s expected rate of return, E[ ln(Si (t)/Si (0)) ]/t , by (1− 1/n) σ 2/2.
(Volatility is thus not synonymous with risk.)

31.1.1 Adding the Riskless Asset

The riskless asset by definition has a return that is certain; its return has zero volatility.
The riskless return’s covariancewith any risky asset’s return is thus zero.Thepresence
of the riskless asset in a portfolio implies lending or borrowing cash at the riskless
rate: Lending means a long position in the asset, whereas borrowing means a short
position. Clearly the riskless asset has to be a zero-coupon bond whose maturity
matches the investment horizon.

The shape of the feasible set changes dramatically when the riskless asset is
available. Let rf denote the riskless rate of return. Start with the feasible set defined
by risky assets. Now for each portfolio in this set, say portfolio A, form combinations
with the riskless asset. These new combinations trace out the infinite straight line
originating at the riskless point, passing through the risky portfolio, and continuing
indefinitely: the rf–A ray in Fig. 31.2. There is a ray of this type for every portfolio
in the feasible set. The totality of these rays forms a triangularly shaped feasible
set. If borrowing of the riskless asset is not allowed, we can adjoin only the line
segment between the riskless asset and points in the original feasible set but cannot
extend the line further. The inclusion of these line segments leads to a feasible set
with a straight-line front edge but a rounded top: the rf–P–Q curve in Fig. 31.2. Note
that investors who hold some riskless assets invest the remaining funds in portfolio
P, as they are on the rf–P segment.

Figure 31.2: The efficient frontier with riskless lending and borrowing. The shaded area
is the feasible set defined by risky assets. The line segment between r f and A consists of
combinations of portfolio A and lending, whereas the line segment beyond A consists of
combinations of portfolio A and borrowing. The equation for the line is y = r f+ x ( r A−
r f)/σA. The same observation can be made of any risky portfolio such as B, P, and Q. The
ray through the tangent portfolio P defines the efficient frontier.
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A special portfolio, denoted by P in Fig. 31.2, lies on the tangent point between
the feasible set and a ray passing through rf. When both borrowing and lending of
the riskless asset are available, the efficient frontier is precisely this ray. Any efficient
portfolio therefore can be expressed as a combination of P and the riskless asset.
We have thus proved Tobin’s one-fund theorem, which says there is a single fund of
risky assets such that every efficient portfolio can be constructed as a combination
of the fund and the riskless asset.

Identifying the tangent point P is computationally easy. For any point (σ, r) in
the feasible set defined by risky assets, we can draw a line between the riskless asset
and that point as in Fig. 31.2. The slope is equal to θ ≡ (r − rf)/σ , which has the
interesting interpretation of the excess return per unit of risk. The tangent portfolio
is the feasible point that maximizes θ . Assign weights ω1, ω2, . . . , ωn to the n risky
assets such that

∑n
i=1 ωi = 1. The weight on the riskless asset in the tangent fund is

zero. As a result, r − rf =
∑n
i=1 ωi (r i − rf), and

θ =
∑n
i=1 ωi (r i − rf)√∑n
i=1
∑n
j=1 σi jωiω j

.

Setting thederivativeof θ with respect toeach ω j equal to zero leads to theequations

λ

n∑
i=1
σi jωi = r j − rf, j = 1, 2, . . . ,n,

where λ≡∑n
i=1 ωi (r i − rf)/(

∑n
i=1
∑n
j=1 σi jωiω j )= (r − rf)/σ 2. Making the substitu-

tion vi = λωi for each i simplifies the preceding equations to

n∑
i=1
σi j vi = r j − rf, j = 1, 2, . . . ,n. (31.1)

We solve these linear equations for the vi s (see Fig. 19.2) and determine ωi by setting
ωi = vi/(

∑n
j=1 vj ). A negative ωi means that asset i needs to be sold short.

If riskless lending and borrowing are disallowed, the whole efficient frontier can
be traced out by solving Eq. (31.1) for all possible riskless rates, because an efficient
portfolio is a tangent portfolio to a ray extending from some riskless rate (consult
Fig. 31.2 again). However, there is a better way. Observe that vi are linear in rf; in
other words, vi = ci +dirf for some constants ci and di . We can find ci and di by
first solving Eq. (31.1) for vi under two different rfs, say r ′f and r ′′f . The solutions
v′i and v′′i correspond to two efficient portfolios. Now we solve

v′i = ci +dir ′f,
v′′i = ci +dir ′′f

for the unknown ci and di for each i . By treating rf as a variable and varying it,
we can trace out the entire frontier. Just as the two-fund theorem says, two efficient
portfolios suffice to determine the frontier.

➤ Exercise 31.1.6 What would the one-fund theorem imply about trading volumes?
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31.1.2 Alternative Efficient Portfolio Selection Models

In theBlackmodel, portfolios are chosen subject only to
∑n
i=1 ωi = 1. In the standard

portfolio selection model, short sales are disallowed, and the constraints are

n∑
i=1
ωi = 1,

ωi ≥ 0, i = 1, 2, . . . ,n.

By law or by policy, there may be restrictions on the amounts that can be invested in
any one security. To handle them, one may augment the standard model with upper
bounds:

n∑
i=1
ωi = 1,

ωi ≥ 0, i = 1, 2, . . . ,n,

ωi ≤ ui , i = 1, 2, . . . ,n.

In the Tobin–Sharpe–Lintner model, the portfolios are chosen subject to

n+1∑
i=1
ωi = 1,

ωi ≥ 0, i = 1, 2, . . . ,n.

The variable ωn+1 represents the amount lent (or borrowed if ωn+1 is negative). The
covariances σn+1,i are of course zero for i = 1, 2, . . . ,n+ 1. Limited borrowing can
be modeled by the addition of the constraint ωn+1 ≤ un+1. In the general portfolio
selection model, a portfolio is feasible if it satisfies

Aω = b,
ω ≥ 0,

where A is any m×n matrix and b is an m-dimensional vector [642].

➤ Exercise 31.1.7 Two portfolio selection models are strictly equivalent if they have
the same set of obtainable mean–standard deviation combinations. Prove that any
model that does not impose the nonnegative constraint on ω is strictly equivalent
to some general portfolio selection model, which does.

31.2 The Capital Asset Pricing Model

Imagine a world in which all investors are mean–variance portfolio optimizers and
they share the same expectation as to expected returns, variances, and covariances.
Also assumezero transactions cost.By theone-fund theorem, every investorwill hold
some amounts of the riskless asset and the same portfolio of risky assets. As all risky
assets must be held by somebody, an immediate implication is that every investor
holds themarket portfolio in equilibrium regardless of one’s degree of risk aversion.
The market portfolio, which consists of all risky assets, is furthermore efficient (see
Exercise 31.2.1).4

Given that the single efficient fund of risky assets is the market portfolio, the
efficient frontier consists of a single straight line emanating from the riskless point
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Figure 31.3: The capital market line. The point M stands for the market portfolio. The
shaded set is the feasible set defined by risky assets. Investors can adjust the risk level
by changing their holdings of riskless asset; for example, risk can be increased by holding
negative amounts of the riskless asset.

and passing through the market portfolio. No complex computation is needed to
determine the efficient frontier. This line is called the capitalmarket line, which shows
the relation between the expected rate of return and the risk for efficient portfolios
(see Fig. 31.3). Prices should adjust so that efficient assets and portfolios fall on the
line. Individual risky securities and inefficient portfolios, in contrast, will plot below
the line. This is Sharpe’s famous CAPM of 1964 [796],5 which was independently
arrived at by Lintner [605] and Mossin [680]. This model is fundamental to the
equilibrium pricing of risky assets.

The capital market line states that

r = rf+ rM− rf
σM

σ,

where rM and σM are the expected value and the standard deviation of the market
rate of return and r and σ are the expected value and the standard deviation of the
rate of return of any efficient asset. Observe that as risk increases, the expected rate
of return must also increase. The slope of the capital market line is (rM− rf)/σM,
which is called the market price of risk. It tells by how much the expected rate of
return of an efficient portfolio must increase if the standard deviation of that rate
increases by one unit. Themarket price of risk is also known as the Sharpe ratio [798].

The capital market line relates the expected rate of return of an efficient portfolio
to its standard deviation, but it does not show how the expected rate of return of an
individual asset relates to its individual risk. That relation is stated in the following
theorem.

THEOREM 31.2.1 If the market portfolio M is efficient, the expected return r j of any
asset j satisfies r j − rf = β j (rM− rf), where β j ≡ σ j,M/σ 2

M and σ j,M ≡ Cov[ r j , rM ].

The value βi is referred to as the beta of an asset. An asset’s beta is all that needs
to be known about its risk characteristics. The value r i − rf is the expected excess



466 Modern Portfolio Theory

Company Beta Company Beta

America Online 2.43 Intel 1.03
AT&T 0.82 Merck 0.87
Citigroup 1.68 Microsoft 1.49
General Motors 1.01 Sun Micro. 1.19
IBM 1.07 Wal-Mart 1.20

Figure 31.4: Betas of some U.S. corporations. Amer-
ica Online merged with Time-Warner in 2001.
Source: Standard & Poor’s, May 8, 2000.

rate of return of asset i . It is the amount by which the rate of return is expected to
exceed the riskless rate. Likewise, rM− rf is the expected excess rate of return of the
market portfolio. The CAPM says that the expected excess rate of return of an asset
is proportional to the expected excess rate of return of the market portfolio, and the
proportionality factor is beta. Beta, not volatility, is the measure of a security’s risk,
and the method of beating the market is to assume greater risk, i.e., beta. Figure 31.4
shows the betas of some U.S. corporations. We can estimate beta by regressing the
excess return on the asset against the excess return on the market.

The CAPM formula in Theorem 31.2.1 shows a linear relation between beta
and the expected rate of return for all assets whether they are efficient or not. This
relationship, when plotted on a beta expected-return diagram, is termed the security
market line. All assets fall on the security market line; in particular, the market is the
point at β = 1.

Essentially the same arguments go through even if there is no riskless asset (see
Exercise 31.2.12). The role of the riskless rate of return is then played by the mean
rate of return in which the line in Fig. 31.3 intercepts the axis of mean rate of return.

➤ Exercise 31.2.1 Verify that the market portfolio is efficient.

➤ Exercise 31.2.2 Prove the security market line formula in Theorem 31.2.1.

31.2.1 More on the CAPM

The portfolio beta is the weighted average of the betas of the individual assets in
the portfolio. Specifically, suppose a portfolio contains n assets with the weights
ω1, ω2, . . . , ωn. The rate of return of the portfolio is r ≡∑i ωi ri . Hence Cov[ r, rM ]=∑
i ωiσi,M. It follows immediately that the portfolio beta equals

∑
i ωiβi .

Write asset i ’s rate of return as

ri = rf+βi (rM− rf)+ εi , (31.2)

where E[ εi ]= 0 by the CAPM.Now take the covariance of ri with rM in Eq. (31.2)
to yield

σi,M = β2
i σ

2
M+Cov[ εi , rM ]= σi,M+Cov[ εi , rM ].

Therefore Cov[ εi , rM ]= 0 and

σ 2
i = β2

i σ
2
M+Var[ εi ]. (31.3)
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It is important to note that the total risk σ 2
i is a sum of two parts. The first part,

β2
i σ

2
M, is the systematic risk. This is the risk associated with the market as a whole,

also called the market risk. It cannot be reduced by diversification because every
asset with nonzero beta contains this risk. The second part Var[ εi ] is the specific
risk. This risk is uncorrelated with the market and can be reduced by diversification.
Only the systematic risk has any bearing on returns.

Consider an asset on the capital market line with a beta of β and an expected rate
of return equal to r = rf+β(rM− rf). This asset, which is efficient,must be equivalent
to a combination of themarket portfolio and the riskless asset. Its standard deviation
is therefore βσM, which implies it has only systematic risk but no specific risk by
Eq. (31.3). Now consider another asset with the same beta β. According to the
CAPM, its expected rate of return must be r . However, if it carries specific risk, it
will not fall on the capital market line. The specific risk is thus the distance by which
the portfolio lies below the capital market line.

Although stated in terms of expected returns, the CAPM is also a pricing model.
Suppose an asset is purchased at a known price P and later sold at price Q. The rate
of return is r ≡ (Q− P)/P. By the CAPM,

Q − P
P

= rf+β(rM− rf),
where β is the beta of the asset. Solve for P to obtain

P = Q
1+ rf+β(rM− rf) . (31.4)

Hence the CAPM can be used to decide whether the price for a stock is “right.” Note
that the risk-adjusted interest rate is rf+β(rM− rf), not rf.

Equation (31.4) can take another convenient form. The value of beta is

β = Cov[ r, rM ]
σ 2
M

= Cov[ (Q/P)− 1, rM ]
σ 2
M

= Cov[Q, rM ]
Pσ 2
M

.

Substituting this into pricing formula (31.4) and dividing by P yields

1= Q

P(1+ rf)+Cov[Q, rM ] (rM− rf)
/
σ 2
M

.

Solve for P again to obtain

P = 1
1+ rf

{
Q − Cov[Q, rM ] (rM− rf)

σ 2
M

}
. (31.5)

This demonstrates it is the asset’s covariance with the market that is relevant for
pricing.

➤ Exercise 31.2.3 For an asset uncorrelated with the market (that is, with zero beta),
the CAPM says its expected rate of return is the riskless rate even if this asset is very
risky with a large standard deviation. Why?

➤ Exercise 31.2.4 If an asset has a negative beta, the CAPM says its expected rate of
return should be less than the riskless rate even if this asset is very risky with a large
standard deviation. Why? (For example, we saw in Chap. 24 that IO strips earn less
than the riskless rate despite their high riskiness.)
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➤ Exercise 31.2.5 Why must all portfolios with the same expected rate of return but
different total risks fall on the same point on the security market line?

➤ Exercise 31.2.6 (1) Verify that pricing formula (31.4) is linear (the price of the
sum of two assets is the sum of their prices, and the price of a multiple of an asset
is the same multiple of the price). (2) Derive the same results from the no-arbitrage
principle.

31.2.2 Portfolio Insurance

Portfolio insurance is a trading strategy that protects a portfolio frommarket declines
but without losing the opportunity to participate in market rallies – in a word, a
protective put [772]. Using puts to protect a portfolio from falling below a specified
floor is a simple example of static portfolio insurance. Alternatives to static schemes
are dynamic strategies that create synthetic options with stocks and bonds. Dynamic
strategies, however, generate high transactions costs. This problem was mitigated by
the introduction of stock index futures. Compared with the underlying assets, futures
can be traded at much lower transactions costs in achieving the desired mixture of
risky and riskless assets.6

Let the value of the index be S and each put be on $100 times the index. Consider
a diversified portfoliowith a beta of β. If for each 100× S dollars in the portfolio, one
put contract is purchased with strike price X, the value of the portfolio is protected
against the possibility of the index’s falling below the floor of X. Our goal is to
implement this protective put. Specifically, to protect each dollar of the portfolio
against falling below W at time T, we buy β put contracts for each 100× S dollars
in the portfolio. Note that the total number of puts bought is βV/(S× 100), where
V is the current value of the portfolio. The strike price X is the index value when
the portfolio value reaches W.

Let r be the interest rate and q the dividend yield. Suppose that the index
reaches ST at time T. The excess return of the index over the riskless interest rate is
(ST − S)/S+q− r , and theexcess returnof theportfolioover the riskless interest rate
is β((ST − S)/S+q− r). The return from the portfolio is therefore β[ (ST − S)/S+
q− r ]+ r , and the increase in the portfolio value net of the dividends is β[ (ST −
S)/S+q− r ]+ r −q. Therefore the portfolio value per dollar of the original value is

1+β
(
ST − S
S
+q− r

)
+ r −q = β ST

S
+ (β − 1)(q− r − 1). (31.6)

Choose X to be the ST that makes Eq. (31.6) equal W; in other words,

X= [W+ (q− r − 1)(1−β) ] S
β
.

From Eq. (31.6), the portfolio value is less than W by β(�S/S) if and only if the
index value is less than X by β(�S/S)(S/β)=�S. Exercising the options therefore
induces a matching cash inflow of

β
�S

100× S × 100= β �S
S
.

The strategy’s cost is PβV/(S× 100), where P is the put premium with strike price
X.
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Clearly a higher strike price provides a higher floor of WV dollars at a greater
cost. This trade-off between the cost of insurance and the level of protection is typical
of any insurance. The total wealth of course has a floor of

WV− PβV
S× 100

.

EXAMPLE 31.2.2 Start with S= 1000, β = 1.5, q = 0.02, and r = 0.07 for a period of
1 year. We have the following relations between the index value and the portfolio
value per dollar of the original value.

Index value in a year 1200 1100 1000 900 800

Portfolio value in a year 1.275 1.125 0.975 0.825 0.675

For example, if theportfolio starts at $1million and the insuredvalue is $0.825million,
then (1.5× 1,000,000)/(100× 1,000)= 15 put contracts with a strike price of 900
should be purchased.

➤ Exercise 31.2.7 RedoExample 31.2.2 with S= 1000, β = 2, q = 0.01, and r = 0.05.

➤ Exercise 31.2.8 Consider a portfolio worth $1,000 times the S&P 500 Index and
with a beta of 1.0 against the index. Argue that buying 10 put index options with a
strike price of 1,000 insures against the portfolio value’s dropping below $1,000,000.

➤ Exercise 31.2.9 A mutual fund manager believes that the market is going to be
relatively calm in the near future and writes a covered index call. Analyze it by
following the same logic as that of the protective put.

➤ Exercise 31.2.10 A bank offers the following financial product to a mutual fund
manager planning to buy a certain stock in the near future. If the stock price is over
$50, the manager buys it at $50. If the stock price is below $40, the manager buys
it at $40. If the stock price is between the two, the manager buys at the spot price.
Analyze the underlying options.

31.2.3 Critical Remarks
Fire those CAPM-peddling consultants.

—Louis Lowenstein [620]

Although the CAPM is widely used by practitioners [592], many of its assumptions
have been controversial. It assumes either normally distributed asset returns or
quadratic utility functions. It furthermore assumes that investors care about only
the mean and the variance of returns, which implies that they view upside and down-
side risks with equal distaste. In reality, portfolio returns are not, strictly speaking,
normally distributed, and investors seem to distinguish between upside and down-
side risks. The theory posits, unrealistically, that everyone has identical information
about the returns of all assets and their covariances. Even if this assumption were
valid, it would not be easy to obtain accurate data. Usually, the variances and co-
variances can be accurately estimated, but not the expected returns (see Example
20.1.1). Unfortunately, errors in means are more critical than errors in variances, and
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errors in variances are more critical than errors in covariances [204]. The assumption
that all investors share a common investment horizon is rarely the case in practice.

The CAPM assumes that all assets can be bought and sold on the market. The
assets include not just securities, but also real estate, cash, and even human capital.
Because the market portfolio is difficult to define, in reality proxies for the market
portfolio are used [799]. The trouble is that different proxies result in different beta
estimates for the same security (see Exercise 31.2.12). Finally, a single risk factor
does not seem adequate for describing the cross section of expected returns [145,
336, 424, 635, 636, 666].

➤ Exercise 31.2.11 Why are security analysts’ 1-year forecasts worse than 5-year
ones?

➤ Exercise 31.2.12 Prove that using any efficient portfolio for the risky assets as the
proxy for the market portfolio results in linear relations between the expected rates
of return and the betas, just as in the CAPM.

31.3 Factor Models

The mean–variance theory requires that many parameters be estimated: n for the
expected returns of the assets and n(n+ 1)/2 for their covariances. Luckily, asset
returns can often be explained by a much smaller number of underlying sources of
randomness called factors.A factormodel represents the connection between factors
and individual returns. In this section a factor model of the return process for asset
pricing is presented, the Arbitrage Pricing Theory (APT).

31.3.1 Single-Factor Models

We start with single-factor models. Suppose there are n assets with rates of return,
r1, r2, . . . , rn. There is a single factor f , which is a random quantity such as the return
on a stock index for the holding period. The rates of return and the factor are related
by

ri = ai +bi f + εi , i = 1, 2, . . . ,n,

where ai and bi are constants. The bi s are the factor loadings or factor betas, and
they measure the sensitivity of the return to the factor. Without loss of generality, let
E[ εi ]= 0. Assume that εi are uncorrelated with f : Cov[ f, εi ]= 0. Furthermore,
assume that they are uncorrelated with each other, i.e., E[ εiε j ]= 0 for i �= j .7 Any
correlation between asset returns thus arises from a common response to the factor.
The variance of εi is denoted by σ 2

εi
and that of f by σ 2

f . There is a total of 3n+ 2
parameters: ai , bi , σ 2

εi
, f , and σ 2

f . The following results are straightforward:

r i = ai +bi f ,
σ 2
i = b2i σ 2

f + σ 2
εi
,

Cov[ ri , r j ] = bibjσ 2
f , i �= j,

bi = Cov[ ri , f ]
/
σ 2
f .
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The preceding simple covariance matrix leads to very efficient algorithms for the
portfolio selection problems in Subsection 31.1.1 [317]. The single-factor model is
due to Sharpe [795].

The return on a portfolio can be analyzed similarly. Consider a portfolio con-
structed with weights ωi . Its rate of return is just

r = a+bf + ε,
where a ≡∑n

i=1 ωi ai , b≡
∑n
i=1 ωi bi , and ε ≡∑n

i=1 ωiεi . The portfolio’s beta b is
hence the average of the underlying assets’ betas bi (recall the law of the average co-
variance). It is easy to verify that E[ ε ]= 0, Cov[ f, ε ]= 0, and Var[ ε ]=∑n

i=1 ω
2
i σ

2
εi
.

Finally, the variance of r is

σ 2 = b2σ 2
f +Var[ ε ],

similar to Eq. (31.3). Among the total risk above, the systematic part is b2σ 2
f . The

systematic risk, which is due to the bi f terms, results from the factor f that influ-
ences every asset and is therefore present even in a diversified portfolio. The Var[ ε ]
term represents the specific risk. The specific risk, which is due to the εi terms, can
be made to go to zero through diversification. It is also called the diversifiable risk.

➤ Exercise 31.3.1 Assume that the single factor f is the market rate of return, rM.
Write the return processes as ri − rf = αi +bi (rM− rf)+ εi . As usual, E[ εi ]= 0 and
εi is uncorrelated with the market return. Show that bi = Cov[ ri , rM ]/Var[ rM ] , as
in the CAPM.

31.3.2 Multifactor Models

Now there are two factors f1 and f2, and the rate of return of asset i takes the form

ri = ai +bi1 f1+bi2 f2+ εi .
As in Subsection 31.3.1, assume that E[ εi ]= 0 and that εi is uncorrelated with
the factors and ε j for j �= i . The formulas for the expected rates of return and
covariances are

r i = ai +bi1 f 1+bi2 f 2,

σ 2
i = b2i1σ 2

f1 +b2i2σ 2
f2 + 2bi1bi2 Cov[ f1, f2 ]+ σ 2

εi
,

Cov[ ri , r j ] = bi1bj1σ 2
f1 +bi2bj2σ 2

f2 + (bi1bi2+bj1bj2) Cov[ f1, f2 ], i �= j .
From the preceding equations,

Cov[ ri , f1 ] = bi1σ 2
f1 +bi2 Cov[ f1, f2 ],

Cov[ ri , f2 ] = bi2σ 2
f2 +bi1 Cov[ f1, f2 ].

These give two equations that can be solved for bi1 and bi2. Factormodels withmore
than two factors are easy generalizations. For U.S. stocks, between 3 and 15 factors
may be needed [623].

➤ Exercise 31.3.2 Describe a procedure to convert a set of correlated factors into a
set of uncorrelated factors, which are easier to handle.
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31.3.3 The Arbitrage Pricing Theory (APT)

The factor-model framework leads to an alternative theory of asset pricing, Ross’s
APT, which is a theory about equilibrium under factor models [765]. The APT does
not require that investors evaluate portfolios on the basis of means and variances.
Neither is a quadratic utility function required. Instead, (1) themean–variance frame-
work is replaced with a factor model for returns, (2) investors are assumed to prefer
a greater return to a lesser return when returns are certain, and (3) the universe of
assets is assumed to be large.

Consider first a special case in which the rates of return observe the one-factor
model:

ri = ai +bi f.
This factor model has no residual errors, and the uncertainty associated with a return
is due solely to the uncertainty in the factor f . Interestingly, the values of ai and bi
must be related if arbitrage opportunities are to be excluded. Here is the argument.
Consider two assets i and j with bi �= bj . Now form a portfolio with weights ωi ≡ ω
for asset i and ω j ≡ 1−ω for asset j . Its rate of return is

r = ωai + (1−ω) a j + (ωbi + (1−ω)bj ) f.
If we select ω = bj/(bj −bi ) to make the coefficient of f zero, the rate of return r
becomes

λ0 ≡ aibj − a jbibj −bi .

This portfolio is riskless because the equation for r contains no random elements.
If there happens to be a riskless asset, then λ0 = rf. Even if riskless assets do not
exist, all portfolios constructed without dependence on f must have the same rate
of return, λ0. Now λ0(bj −bi )= aibj − a jbi , which can be rearranged as

a j − λ0
bj

= ai − λ0
bi

.

As this relation holds for all i and j , there is a constant c such that

ai − λ0
bi

= c

for all i .8 The values of ai and bi are thus related by ai = λ0+bic. The expected
rate of return of asset i is now

r i = ai +bi f = λ0+bic+bi f = λ0+biλ1, (31.7)

where λ1 ≡ c+ f .We see that once the constants λ0 and λ1 are known, the expected
return of an asset is determined entirely by the factor betas bi . The above analysis
can be generalized (see Exercise 31.3.4).

THEOREM 31.3.1 Let there be n assets whose rates of return are governed by m< n
factors according to the equations ri = ai +

∑m
j=1 bi j f j , i = 1, 2, . . . ,n.Then there exist

constants λ0, λ1, . . . , λm such that r i = λ0+
∑m
j=1 bi jλ j , i = 1, 2, . . . ,n. The value λi

is called the market price of risk associated with factor fi or simply the factor price.
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Next we consider general multifactor models with residual errors,

ri = ai +
m∑
j=1
bi j f j + εi ,

where E[ εi ]= 0 and σ 2
εi
≡ E[ ε2i ]. As before, εi is assumed to be uncorrelated with

the factors and with the residual errors of other assets. Let us form a portfolio by
using theweights ω1, ω2, . . . , ωn with

∑n
i=1 ωi = 1. The rate of return of the portfolio

is

r = a+
m∑
j=1
bj f j + ε,

where a ≡∑n
i=1 ωi ai , bj ≡

∑n
i=1 ωi bi j , and ε ≡

∑n
i=1 ωiεi . Let σεi ≤ S for some con-

stant S for all i . Assume that the portfolio is well diversified in the sense that
ωi ≤W/n for some constant W for all i – no single asset dominates the port-
folio. Then

Var[ ε ]=
n∑
i=1
ω2
i σ

2
εi
≤ 1
n2

n∑
i=1
W2S2 = W

2S2

n
→ 0

as n→∞.Combinedwith the fact E[ ε ]= 0, the residual error ε of awell-diversified
portfolio selected from a very large number of assets is approximately zero.9

A riskless portfolio in terms of zero sensitivity to all factors was used in the proof
of Theorem 31.3.1. We just showed that the portfolio remains riskless under the
more general models as long as it is well diversified. The existence of a riskless well-
diversified portfolio suffices to extend Theorem 31.3.1 to the more general models
(see Exercise 31.3.5).

The APT and the CAPM are not directly comparable [289]. Neither of the
two models’ assumptions imply the other’s. The CAPM makes strong assumptions
about the probability distribution of assets’ rates of return, agents’ utility func-
tions, or both. The APT on the other hand, makes strong assumptions about as-
sets’ equilibrium rates of return. However, because the APT does not identify the
factors, the CAPM can be made consistent with the APT and vice versa. For exam-
ple, consider a two-factor model ri = ai +bi1 f1+bi2 f2+ εi . Under the APT model,
r i = rf+bi1λ1+bi2λ2. Let portfolio j ( j = 1, 2) have an expected return rate of
λ j + rf and a beta value of β f j . Clearly portfolio j ’s only source of risk is factor f j .
Because the CAPM says that λ j = β f j (rM− rf),

r i = rf+bi1β f1 (rM− rf)+bi2β f2 (rM− rf)= rf+ (bi1β f1 +bi2β f2 )(rM− rf).

The beta is thus a weighted sum of the underlying factors’ betas with the factor betas
as the weights. Different factor betas are the reason different assets have different
betas.

➤ Exercise 31.3.3 For the one-factor APT, what will become of λ1 if the CAPM
holds?

➤ Exercise 31.3.4 Prove Theorem 31.3.1.

➤ Exercise 31.3.5 Complete the proof of the APT under the general factor models.
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31.4 Value at Risk
Anyone that relied on so-called
value-at-risk models has been crucified.

—The Economist, 1999 [309]

Introduced in 1983, the VaR is an attempt to provide a single number for senior
management that summarizes the total risk in a portfolio of financial assets. The
VaR calculation is aimed at making a statement of the form: “We are c percent
certain not to lose more than V dollars in the next m days.” The variable V is
the VaR of the portfolio. The VaR is therefore an estimate, with a given degree of
confidence, of howmuch one can lose from one’s portfolio over a given time horizon,
or

Prob[ change in portfolio value≤−VaR ]= 1− c,
where c is the confidence level (seeFig. 31.5). TheVaR is usually calculated assuming
“normal” market circumstances, meaning that extreme market conditions such as
market crashes are not considered. It has becomewidely usedby corporate treasurers
and fund managers as well as financial institutions.

For the purposes of measuring the adequacy of bank capital, the Bank for Inter-
national Settlements (BIS) sets the confidence level c = 0.99 and the time horizon
m= 10 (days) [293]. Another interesting application is in investment evaluation.
Here risk is viewed in terms of the impact of the prospective change on the over-
all value at risk, i.e., incremental VaR, and we go ahead with the investment if the
incremental VaR is low enough relative to the expected return [283].

Suppose returns are normally distributed and independent on successive days.10

We consider a single asset first. We assume that the stock price is S , whose daily
volatility for the return rate �S/S is σ . Because the time horizon m is usually
small, we assume that the expected price change is zero. The standard deviation
of the stock price over this time horizon is Sσ

√
m . The VaR of holding one unit

of the stock is 2.326× Sσ√m if the confidence level is 99% and 1.645× Sσ√m if

Figure 31.5: Confidence level and VAR. The diagram shows a confidence
level of 95% under the standard normal distribution; the shaded area is
5% of the total area under the density function. It corresponds to 1.64485
standard deviations from the mean.
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Confidence Number of
level (c) standard deviations

95% 1.64485
96% 1.75069
97% 1.88079
98% 2.05375
99% 2.32635

Figure 31.6: Confidence levels and standard deviations
from the mean. The table samples confidence levels
and their corresponding numbers of standard deviations
from the mean when the random variable is normally
distributed.

the confidence level is 95%. In general, the VaR is −N−1(1− c) times the standard
deviation, or

−N−1(1− c) Sσ√m ,
where N( · ) is the distribution function of the standard normal distribution (see
Fig. 31.6). The preceding equationmakes it easy to convert one horizon or confidence
level to another. For example, the relation between 99% VaR and 95% VaR is

VaR (95%)=VaR (99%)× (1.645/2.326).

Similarly, the variance of an m-day return should be m times the variance of a 1-day
return. The m-day VaR thus equals

√
m times the 1-day VaR, which is also called

the daily earnings at risk. When m is not small, the expected annual rate of return
µ needs to be considered. In that case, the drift Sµm/T is subtracted from the VaR
when there are T trading days per annum.

Now consider a portfolio of assets. Assume that the changes in the values of asset
prices have a multivariate normal distribution. Let the daily volatility of asset i be
σi , let the correlation between the returns on assets i and j be ρi j , and let Si be
the market value of the positions in asset i . The VaR for the whole portfolio then is

−N−1(1− c)√m
√∑

i

∑
j

Si Sjσiσ jρi j .

This way of computing the VaR is called the variance–covariance approach [518]. It
was popularized by J.P. Morgan’s RiskMetricsTM (1994).

The variance–covariance methodology may break down if there are derivatives
in the portfolio because the returns of derivatives may not be normally distributed
even if the underlying asset is. Nevertheless, if movements in the underlying asset are
expected to be very small because, say, the time horizon is short, wemay approximate
the sensitivity of the derivative to changes in the underlying asset by the derivative’s
delta as follows. Consider a portfolio P of derivatives with a single underlying asset
S. Recall that the delta of the portfolio, δ, measures the price sensitivity to S, or
approximately �P/�S. The standard deviation of the distribution of the portfolio
is δSσ

√
m , and its VaR is −N−1(1− c) δSσ√m . In general when there are many

underlying assets, the VaR of a portfolio containing options becomes

−N−1(1− c)√m
√∑

i

∑
j

δiδ j Si Sjσiσ jρi j ,

where δi denotes the delta of the portfolio with respect to asset i and Si is the
value of asset i . This is called the delta approach [527, 878]. The delta approach
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essentially treats a derivative as delta units of its underlying asset for the purpose
of VaR calculation. This is not entirely unreasonable because such equivalence does
hold instantaneously. It becomes questionable, however, as m increases.

Rather than using asset prices, VaR usually relies on a limited number of basic
market variables that account for most of the changes in portfolio value [603]. As
mentioned in Subsection 31.3.1, this greatly reduces the complexity related to the
covariance matrix because only the covariances between the market variables are
needed now. Typical market variables are yields or bond prices, exchange rates, and
market returns. A basic instrument is then associated with each market variable. A
security is now approximated by a portfolio of these basic instruments. Finally, its
VaR is reduced to those of the basic instruments.

➤ Exercise 31.4.1 What is the VaR of a futures contract on a stock?

➤ Exercise 31.4.2 If the stock price follows dS= Sµdt + Sσ dW, what is its VaR τ

years from now at c confidence?

31.4.1 Simulation

The Monte Carlo simulation is a general method to estimate the VaR, particularly
for derivatives [571]. It works by computing the values of the portfolio over many
sample paths, and the VaR is based on the distribution of the values. Figure 31.7
contains an algorithm for n asset prices following geometric Brownian motion:

dSj
Sj
= µ j dt + σ j dWj , j = 1, 2, . . . ,n,

where the n factors, dWj , are correlated. As always, actual returns, not risk-neutral
returns, should be used. For short time horizons, this distinction is not critical formost
cases. In practice, to save computation time, a stock with a beta of β is mapped to
a position in β times the index. Of course, this approach ignores the stock’s specific
risk. A related simulation method, called historical simulation, utilizes historical
data [518]. It is identical to the Monte Carlo simulation except that the sample paths
are generated by sampling the historical data as if they are to be repeated in the
future.

Brute-force Monte Carlo simulation is inefficient when the number of factors is
large. Fortunately, factor analysis and principal components analysis can often re-
duce the number of factors needed in the simulation [2, 509]. Let C denote the
covariance matrix of the n factors dW1,dW2, . . . ,dWn. Let ui ≡ [u1i ,u2i , . . . ,uni ]T

be the eigenvectors of C and λ1 ≥ λ2 ≥ · · · ≥ λn be the corresponding positive eigen-
values. Hence λi ui = Cui for i = 1, 2, . . . ,n. Recall that each eigenvalue indicates
how much of the variation in the data its corresponding eigenvector explains. By the
Schur decomposition theorem, the eigenvectors can be assumed to be orthogonal to
each other. Normalize the eigenvectors such that |ui |2 = λi and define

dZj ≡ λ−1j
n∑
k=1
ukj dWk.

It follows that

dWi =
n∑
k=1
uik dZk,
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VaR with Monte Carlo simulation:

input: p, c,n,C[n ][n ], S[n ], µ[n ],�t,m, N;
real S[m+ 1 ][n ], y[n ],dW[n ], P[n ][n ], p[ N ];
real ξ( ); // ξ( )∼ N(0, 1).
integer i, j,k;
Let P be such thatC = PPT; // See p. 248.
for ( j = 0 to n− 1) { S[ 0 ][ j ] := S[ j ]; }
for (k= 0 to N− 1) {

for (i = 1 to m) {
for ( j = 0 to n− 1)
y[ j ] := ξ( )×√�t ;

dW := Py;
for ( j = 0 to n− 1) {
S[ i ][ j ] := S[ i − 1 ][ j ]× ((1+µ[ j ])× �t +√C[ j ][ j ]×dW[ j ]);

}
}
Calculate the horizon portfolio value p[k ];

}
Sort p[ 0 ], p[ 1 ], . . . , p[ N− 1 ] in non-decreasing order;
return p − p[ �(1− c) N− 1� ];

Figure 31.7: VaR with Monte Carlo simulation. The expected rates of return µ[ ] and the covariances are
annualized. There are n assets, the portfolio’s initial value is p, c is the confidence level, C is the covariance
matrix for the annualized asset returns, m is the number of days until the horizon, the number of replications
is N, and S [ ] stores the initial asset prices. Recall that C = P P T is the Cholesky decomposition of C .
The portfolio’s values at the horizon date are calculated and stored in p[ ]. Here we need pricing models
and assume that early exercise is not possible during the period. The appropriate percentile is returned after
sorting.

where dZk dZj = 0 for j �= k and dZk dZk = dt (see Exercise 31.4.3, part (3)). If the
empirical analysis shows that all but the first m principal components are small, then

dWi ≈
m∑
k=1
uik dZk.

As a result, the asset price processes can be approximated by

dSj
Sj
≈ µ j dt + σ j

m∑
k=1
uik dZk, j = 1, 2, . . . ,n.

Only m orthogonal factors dZ1,dZ2, . . . ,dZm remain.

➤ Exercise 31.4.3 Prove that (1) C = PPT, where P’s ith column is the eigen-
vector ui , (2) P−1 = diag[ λ−11 , λ

−1
2 , . . . , λ

−1
n ] PT, (3) P [dZ1,dZ2, . . . ,dZn ]T =

[dW1,dW2, . . . ,dWn ]T, and (4) PTP = diag[ λ1, λ2, . . . , λn ].

31.4.2 Critical Remarks

VaR relies on certain assumptions that are inconsistent with empirical evidence.
Many implementations assume that asset returns are normally distributed. This sim-
plifies the computation considerably but is inconsistent with the empirical evidence,
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which finds that many returns have fat tails, both left and right, at both daily and
monthly time horizons. Extreme events are hence muchmore likely to occur in prac-
tice than would be predicted based on the assumption of normality [857]. A standard
measure of tail fatness is kurtosis. Price jumps and stochastic volatility can be used to
generate fat tails (see, e.g., Exercise 20.2.1) [293]. Although daily market returns are
not normal [743], for longer periods, say 3 months, returns are quite close to being
normally distributed [592].

The method of calculating the VaR depends on the horizon. A method yielding
good results over a short horizon may not work well over longer horizons. The
method of calculating the VaR also depends on asset types. If the portfolio contains
derivatives, methods different from these used to analyze portfolios of stocks may
be needed [464].

The ability to quantify risk exposure into a number represents the single most
powerful advantage of the VaR. However, the VaR is extremely dependent on para-
meters, data, assumptions, and methodology. Although it should be part of an effec-
tive risk management program, the VaR is not sufficient to control risk [61, 464]. On
occasion, it becomes necessary to quantify the magnitude of the losses that might
accrue under events less likely than those analyzed in a standard VaR calculation.
The procedures used to quantify potential loss exposures under such special circum-
stances are called stress tests [571]. A stress test measures the loss that could be
experienced if a set of factors are exogenously specified.

31.4.3 VaR for Fixed-Income Securities

In contrast to stock prices, bond prices tend to move together because much of the
movement is systematic, the common factor being the interest rate. For this reason,
bond portfolio management does not require that the portfolios be well diversified.
Instead, a few bonds of differing maturities can usually hedge the price fluctuations
in any single bond or portfolio of bonds [91].

Duration (see Section 4.2) and key rate duration (see Section 27.5) were used
to quantify the interest rate exposure of fixed-income portfolios and securities. A
VaR methodology can also be based on duration. If S refers to the initial yield
of a fixed-income instrument with duration D, the VaR for a long position in the
instrument is 1.645× σ SD for a 95% confidence level. As before, VaR analysis
requires parameters for the actual term structure dynamics. Simulation-based VaR
usually conducts factor analysis before the actual simulation [804]. Three orthogonal
factors seem to be sufficient (see Subsection 19.2.5).

The variance–covariance approach to the VaR is more complicated [470, 720].
First, an “equivalent” portfolio of standard zero-coupon bonds is obtained for each
bond (this is called cash flow mapping). Then the historical volatility of spot rates
and the correlations between them are used to construct a 95% confidence interval
for the dollar return. It is difficult to apply this approach to securities with embedded
options, however.

Additional Reading

In 1952, Markowitz and Roy independently published their papers that mark the era
of modern portfolio theory [642, 644]. Our presentation of modern portfolio theory
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was drawn from [317, 623]. General treatment of mean–variance can be found in
[643]. See [82, 174, 403, 760, 862] for additional information on beta and [81, 332,
399] for the issue of expected return and risk. The framework of modern portfolio
theory can be applied to real estate [389, 407]. See [28] for modern portfolio theory’s
applicability in Japan. One of the reasons cited for the choice of standard deviation
as the measure of risk is that it is easier to work with than the alternatives [799]. An
interesting theory from experimental psychology, the prospect theory, says that an
investor is much more sensitive to reductions in wealth than to increases, which is
called loss aversion [533, 534]. Spreads can be used to profit from such behavioral
“biases” [180]. Consult [592] for an approach beyond mean–variance analysis.

See [826] for development of the utility function.Optimization theory is discussed
in [278, 687]. See [346, 470, 567, 646, 693] for additional information on portfolio in-
surance. Consult [317, 623, 673] for investment performance evaluation; there seems
to be no consistent performance formutual funds [634]. See [96, 360, 799] for security
analysis, such as technical analysis and fundamental analysis, and [132] on market
timing.

Consult [314] for theVaRof derivatives, [484, 691, 720, 771] forVaRwhen returns
are not normally distributed, [8] formanagingVaRusing puts, [293, 390, 464, 484, 720,
804, 857] for the VaR of fixed-income securities. The Cornish–Fisher expansion is
useful for correcting the skewness in distribution during VaR calculations [470, 522].

NOTES

1. Sometimes we use variance of return as the measure of risk for convenience.
2. “Rate of return” and “return” are often used interchangeably as only single-period analysis is

involved.
3. Markowitz’s Ph.D. dissertation was initially voted down by Friedman on the grounds that “It’s

not math, it’s not economics, it’s not even business administration.” See [64, p. 60].
4. The S&P 500 Index often serves as the proxy for the market portfolio. Index funds are mutual

funds that attempt to duplicate a stock market index. Offered in 1975 under the name of
Vanguard Index Trust, the Vanguard 500 Index Fund is the first index mutual fund. It tracks the
S&P 500 and became the largest mutual fund in April of 2000.

5. Sharpe sent the paper in 1962 to the Journal of Finance, but it was quickly rejected [64, p. 194].
6. Dynamic strategies rely on the market to supply the needed liquidity. The Crash of 1987 and

the Russian and the LTCM crises of 1998 demonstrate that such liquidity may not be available
at times of extreme market movements [308, 654]. As prices began to fall during the Crash of
1987, portfolio insurers sold stock index futures. This activity in the futures market led to more
selling in the cash market as program traders attempted to arbitrage the spreads between the
cash and futures markets. Further price declines led to more selling by portfolio insurers, and
so on [567, 647].

7. The CAPM does not require that the residuals εi be uncorrelated; see Eq. (31.2).
8. See Eqs. (15.12) and (24.10) for similar arguments.
9. Chebyshev’s inequality in Exercise 13.3.10, part (2), supplies the intuition.

10. “Return” means price change �S or simple rate of return �S/S. This is consistent with the
stochastic differential equation �S= Sµ�t + Sσ√�t ξ when �t is small.



CHAPTER
THIRTY-TWO

Software

Test everything. Hold on to the good.

I Thessalonians 5:21

32.1 Web Programming

The software for the book is Web-centric in that a reasonably updated Web browser
is all that is needed to run it. The software is transferred to the user when clicked;
no installation is necessary. As the collection of software expands, The CapitalsWeb
page will reflect that. This newmedium of software distribution excels the traditional
way of bundling software with each book in a floppy disk or a CD-ROM [705].

The Web promises to be a platform that is independent of the computer’s oper-
ating system and hardware. That means a program or document written in HTML
(Hypertext Markup Language [167]) can be run everywhere, and the author is re-
lieved fromworrying about the potentially infinite number of computer systems that
may access the code. As of now, this promise is not yet fully realized. To start with,
the same document or program often elicits different behaviors from browsers of
various companies or even browsers of the same family but with different versions.
Browsers may implement only a subset of the standard plus a few nonstandard fea-
tures. Additional complications are the possible versions of Java shipped with the
browser and window systems running on top of the operating system. Fortunately, in
most cases these problems are either inessential or can be avoided by upgrading the
browser and not using nonstandard features.

32.2 Use of The Capitals Software

Open The Capitals at

www.csie.ntu.edu.tw/ ˜lyuu/capitals.html.

See Fig. 32.1 for a typical look. Now click on any program to run it. For example,
click on “mortgage” to generate the calculator in Fig. 32.2. Many financial problems
can be solved by using two or more programs simultaneously. For example, one
can run “spot & forward rates from coupon bonds” to calculate the spot rates.
Then copy these rates into “seq. CMO pricer (vector)” to price CMOs. As another
example, consider pricing CMO tranches at 10 years before maturity. We can run

480
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Figure 32.1: The Capitals page. This page is displayed by the Netscape browser in a Unix environment. The
looks may differ from browser to browser and can be altered by changing the browser’s settings.

“seq. CMO (vector)” to derive the tranches’ remaining balances at that time. Then
plug those numbers as original principals into “seq. CMO pricer (vector)” with
10 years remaining.

Some programs can be applied to situations not originally intended. For instance,
CMO programs can be used for individual mortgages by allocating the entire prin-
cipal to the first tranche; the cash flow of an SMBS can be tabulated by “pool P&I
tabulator (vector),” and so on.

The following guidelines are recommended to run The Capitals software
smoothly.

� Netscape Navigator 4.0 or higher, or Microsoft’s Internet Explorer 4.0 or higher.
� Enable Java.
� Use Java 1.1.4 or higher.

Check “notes on software & browsers” for additional information.
The programs at The Capitals are written in JavaScript [357] and Java [356, 467].1

Because it is the Java-enabledWebbrowser that interprets andexecutes the code,user
interaction and processing are offloaded to the user’s computer. This client/server
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Figure 32.2: Mortgage calculator.

architecture is more efficient than having many clients’ computing and interaction
tasks running on the server, slowing it down for everybody. The unstated assump-
tions have been that the user’s computer is reasonably powerful and the network
is reasonably fast [719]. Java programs that run in a Web browser are called Java
applets (see Fig. 32.3) [264].

Figure 32.3: Java client/server architecture on the Web. The Java programming
language was released by Sun in May of 1995. It promised platform-independent
client/server software systems [356, 416].
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32.3 Further Topics

Some computation-intensive tasks can take advantage of parallel processing for
much faster performance. A good example is Monte Carlo MBS pricing. It starts by
breaking the job into several tasks, each of which, on a different computer, simulates
a fraction of the interest rate scenarios and calculates the average price. The averages
are then collected to obtain the overall average price. Note that once the work has
been divided, no communication among the tasks is needed before the collection
stage. Good speed-ups have been obtained [528, 601, 794, 892, 893]. In contrast, a
task that cannot be structured in such away as to limit the amount of communication,
hence dependency, among the tasks will not result in good performance [588]. Only
computation-intensive problems are worthwhile to parallelize.

The Web technology is young and evolving quickly. Users and developers have
been willing to tolerate many annoyances because they are witnessing something
that promises to change the way society works. If the history of the auto industry
is any guide, it will take decades for the technology to mature. Fortunately, thanks
to the efforts and dedication of many corporations and computer professionals, the
Web has become the most important and easy-to-use platform for software.

NOTE

1. JavaScript is not Java, but it has a similar syntax.

There is nothing new to be discovered in physics now
[1900].

William Thomson (aka Lord Kelvin) (1824–1907)
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THIRTY-THREE

Answers to Selected Exercises

More questions may be easier to answer than just one question.

Imre Lakatos (1922–1974), Proofs and Refutations

CHAPTER 2

Exercise 2.2.2: (1) Recall that
∑n
i=1 i = n(n+ 1)/2. (2) Use

∑n
i=1 i

2 = (2n3+ 3n2+n)/6. (3), (4) Use∑k
i=0 2

i = 2k+1− 1. (5) Use Euler’s summation formula [461, p. 18],

∫ b+1
a

g(x)dx ≤
b∑
i=a
g(i)≤

∫ b
a−1
g(x)dx.

CHAPTER 3

Exercise 3.1.1: It is sufficient to show that g(m)≡ (1+ 1
m)
m is an increasing function of m. Note that

g′(m)= g(m)
[
ln
(
1+ 1
m

)
− 1
m+ 1

]
.

We can show the expression within the brackets to be positive by differentiating it with respect
to m.

An alternative approach is to expand g(m) and g(m+ 1) as polynomials of x ≡ 1/m using the
binomial expansion. It is not hard to see that every term in g(m+ 1), except the one of degree
m+ 1 (which g(m) does not have), is at least as large as the term of the same degree in g(m). This
approach does not require calculus.

Exercise 3.1.2: Monthly compounding, i.e., 12 times per annum. This can be verified by noting that
18.70/12= 1.5583.

Exercise 3.1.3: (1) The computing power’s growth function is (1.54)n, where n is the number of
years since 1987. The equivalent continuous compounding rate is 43.18%. Because the memory
capacity has quadrupled every 3 years since 1977, the function is 4n/3 = (1.5874)n, where n is
the number of years since 1977. The equivalent continuous compounding rate is 46.21%. (2) It is
(500,000/300,000)1/4− 1≈ 13.6%. Data are from [574].

Exercise 3.2.1:

PV=
nm−1∑
i=0
C
(
1+ r
m

)−i
= C 1− (1+ r

m

)−nm
(r/m)

(
1+ r
m

)
.

Exercise 3.3.1: We derived Eq. (3.8) by looking forward into the future. We can also derive the same
relation by looking back into the past: Right after the kth payment, the remaining principal is the
value of the original principal minus the value of all the payments made to date, which is exactly

484
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what the formula says. Mathematically,

C
1− (1+ r

m

)−nm
r
m

(
1+ r
m

)k
−

k∑
i=1
C
(
1+ r
m

)i−1
= C

(
1+ r

m

)k− (1+ r
m

)−nm+k
r
m

−C 1− (1+ r
m

)k
r
m

= C 1− (1+ r
m

)−nm+k
r
m

.

Exercise 3.3.2: Note that the PVof an ordinary annuity becomes
∑n
i=1 Ce

ir = C 1−e−nr
er−1 under contin-

uous compounding.Without loss of generality, assume that thePVof the originalmortgage is $1. The
monthly payment is hence er−1

1−e−nr . For an interest rate of r − x, the level payment is D≡ er−x−1
1−e−n(r−x) .

The new instrument’s cash flow is Dex,De2x, . . . ,Denx by definition. The PV is therefore
n∑
i=1
D
eix

eir
= D 1− e−n(r−x)

er−x − 1
= 1.

Consult [330, p. 120].

Exercise 3.4.1: Apply Eq. (3.11) with y= 0.0755, n= 3, C1 = 1000, C2 = 1000, C3 = 1500, and P =
3000.

Exercise 3.4.2: The FV is C (1+r)n−1
r from Eq. (3.4). To guarantee a return of y, the PV should be

C (1+r)n−1
r

1
(1+y)n .

Exercise 3.4.3: Proposal A’s NPV is now $2,010.014, and Proposal B’s is $1,773.384. Proposal A wins
out under this scenario.

Exercise 3.4.4: The iteration is

xk+1 = xk− f (xk)
f ′(xk)

= xk− x3k − x2k
3x2k − 2xk

= 2x2k − xk
3xk− 2

by Eq. (3.15), and the desired sequence is 1.5, 1,2, 1.05, 1.004348, and 1.00003732. The last approx-
imation is very close to the root 1.0.

Exercise 3.4.5: F ′(x)= f (x) f ′′(x)
f ′(x)2 ; hence F ′(ξ)= 0.

Exercise 3.4.6: See Fig. 3.5 [656].

Exercise 3.4.8: Let yf (x) be the y that makes f (x, y)= 0 given x. Similarly, let yg(x) be the y that
makes g(x, y)= 0 given x. Assume that yf and yg are continuous functions. Then the bisection
method is applicable to the function φ(x)≡ yf (x)− yg(x) if it starts with x1 and x2 such that
φ(x1)φ(x2)< 0. In so doing, a two-dimensional problem is reduced to the standard one-dimensional
problem.Note that φ(x)= 0 if andonly if yf (x)= yg(x).Unfortunately, thismethodhas noobvious
generalizations to n> 2 dimensions. Note that yf (x) and yg(x) may have to be numerically solved.
See [447, p. 585].

Exercise 3.5.1: For each �t time, it pays out c�t dollars, which is discounted at the rate of r [462].

Exercise 3.5.2: The price that guarantees the return if the bond is called is, from Eq. (3.18),

5× 1− [ 1+ (0.12/2) ]−2×5

0.12/2
+ 100

[ 1+ (0.12/2) ]2×5
= 92.6399.

Similarly, the price should be

5× 1− [ 1+ (0.12/2) ]−2×10

0.12/2
+ 100

[ 1+ (0.12/2) ]2×10
= 88.5301

dollars if the bond is held to maturity. Hence the price to pay is $88.5301. (A more rigorous method
yielding the same conclusion goes as follows. The formula for various call half-years n= 10, . . . , 20
is (250/3)+ (50/3)× (1.06)−n, which is minimized at n= 20.)
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Exercise 3.5.3: It is

PV =
n∑
i=1

C(1−T)
(1+ r)i +

F −max((F − P)TG, 0)
(1+ r)n

= C(1−T) 1− (1+ r)−n
r

+ F −max((F − P)TG, 0)
(1+ r)n .

See [827, p. 123].

Exercise 3.5.4: (1) Because P = F/(1+ r)n,
∂P
∂n
=− F ln(1+ r)

(1+ r)n ,
∂P
∂r
=− Fn

(1+ r)n+1 .

(2) For r = 0.04 and n= 40, we have

&P ≈−0.00817× F ×&n, &P ≈−8.011× F ×&r.

Exercise 3.5.5:
n∑
i=1

Fr
(1+ r)i +

F
(1+ r)n = F.

Exercise 3.5.6: Intuitively, this is true because the accrued interest is not discounted, whereas the
next coupon to be received by the buyer is. Mathematically,

F + Fc(1−ω)= Fc
(1+ r)ω +

Fc
(1+ r)ω+1 +

Fc
(1+ r)ω+2 + · · ·+

Fc+ F
(1+ r)ω+n−1 .

If r ≥ c, then 1+ c(1−ω)≤ 1+r
(1+r)ω , which can be shown to be impossible.

Another approach is to observe that the buyer should have paid Fc[ (1+ r)1−ω − 1 ] instead of
Fc(1−ω) and to prove that the former is smaller than the latter.

Exercise 3.5.7: The number of days between the settlement date and the next coupon date is calcu-
lated as 30+ 31+ 1= 62. The number of days in the coupon period being 30+ 30+ 31+ 30+ 31+
31+ 1= 184, the accrued interest is 100× (0.1/2)× (184− 62)/184= 3.31522. The yield tomaturity
can be calculated with the help of Eq. (3.20). Note that the PV should be 116+ 3.31522.

Exercise 3.5.9: Let P0 be the bond price now and P1 be the bond price one period from now after
the coupon is paid. We are asked to prove that (c+ P1− P0)/P0 = y. Without loss of generality, we
assume that the par value is $1. From Eq. (3.18),

P0 = (c/y)[ 1− (1+ y)−n ]+ (1+ y)−n = (c/y)+ (1+ y)−n(1− c/y),
P1 = (c/y), [ 1− (1+ y)−(n−1) ]+ (1+ y)−(n−1) = (c/y)+ (1+ y)−(n−1)(1− c/y).

So P1− P0 = (y− c)(1+ y)−n. Also, yP0 = c+ (y− c)(1+ y)−n. Hence c+ P1− P0 = yP0.

CHAPTER 4

Exercise 4.1.2: Equation (4.1) can be rearranged to become

− ∂P/P
∂y

=
C
{− (n/y)+ 1

y2
[ (1+ y)n+1− (1+ y) ] }+nF

C{ [ (1+ y)n+1− (1+ y) ]/y }+ F(1+ y) = CA(y)+nF
CB(y)+ F(1+ y) .

To show that −(∂P/P)/∂y increases monotonically if y> 0 as C decreases, it suffices to prove
that

A(y)
B(y)

<
nF

F(1+ y) =
n

(1+ y) .

We can verify that

A(y)
B(y)

− n
(1+ y) =

(1+ y)2[ (1+ y)n− 1−ny(1+ y)n−1 ]
B(y)(1+ y) .

The expression within the brackets is nonpositive because it is zero for y= 0 and its derivative is
−n(n− 1) y(1+ y)n−2 ≤ 0. (In fact, the expression within the brackets is strictly negative for n> 1.)
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Exercise 4.1.3: (1) We observe that − ∂P/P
∂y = 1−(1+y)−n

y , which is clearly a decreasing function of y.
(2) We differentiate −(∂P/P)/∂y with respect to yield y. After rearranging, we obtain

−(1+ y)
{ ∑

i i
2(1+ y)−iCi∑
i (1+ y)−iCi

−
[∑

i i(1+ y)−iCi∑
i (1+ y)−iCi

]2 }
.

The term within the braces can be interpreted in terms of probability theory: the variance of the
random variable X defined by

Prob[ X= j ]= (1+ y)− jCj∑
i (1+ y)−iCi

, j ≥ 1.

Hence it has to be positive. This shows that −(∂P/P)/∂y is a decreasing function of yield. See
[547, p. 318].

Exercise 4.2.1: 2.67 years.

Exercise 4.2.2: Let D be the modified duration as originally defined. We need to make sure that

100×D×�r = D%×�r%,
where �r% denotes the rate change in percentage. Because �r =�r%/100, the above identity
implies that D% = D.
Exercise 4.2.3: The cash flow of the bond is C,C, . . . ,C,C+ F , and that of the mortgage is
M,M, . . . ,M. The conditions imply that M> C. The bond hence has a longer duration as its cash
flow is more tilted to the rear. Mathematically, we want to prove that

C
n∑
i=1
i(1+ y)−i +nF(1+ y)−n > M

n∑
i=1
i(1+ y)−i

subject to

C
n∑
i=1

(1+ y)−i + F(1+ y)−n = M
n∑
i=1

(1+ y)−i .

The preceding equality implies that C−M=− F(1+y)−n∑n
i=1(1+y)−i

. Hence

C
n∑
i=1
i(1+ y)−i +nF(1+ y)−n−M

n∑
i=1
i(1+ y)−i

= (C−M)
n∑
i=1
i(1+ y)−i +nF(1+ y)−n

=− F(1+ y)−n∑n
i=1(1+ y)−i

n∑
i=1
i(1+ y)−i +nF(1+ y)−n

= F
(1+ y)n

[
n−

∑n
i=1 i(1+ y)−i∑n
i=1(1+ y)−i

]
> 0.

We remark that the market prices of the two instruments are not necessarily equal. To show this,
assume the market price of the bond is some a > 0 times that of the mortgage. Express M as a
function now of C, F , y, n, and a. Finally, substitute the expression for M into the formula of the
MD for the mortgage.

Exercise 4.2.4: The MD is equal to
∑
i
iM

(1+y)i /
∑
i

M
(1+y)i , where M is the monthly payment. Note

that M cancels out completely. The rest is just simple algebraic manipulation. See [348, p. 94].

Exercise 4.2.6: This is because convexity is additive. Check with Eq. (4.10) again and observe that it
holds as long as each cash flow is nonnegative.

Exercise 4.2.7: Assume again that the liability is L at time m. The present value is therefore
L/(1+ y)m. A coupon bond with an equal PV will grow to be exactly L at time m. In fact, it
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is not hard to show that at every point in time, the PV of the bond plus the cash incurred by
reinvesting the coupon payments exactly matches the PV of the liability.

Exercise 4.2.8: Rearrange Eq. (4.8) to get

∂FV
∂y
= (1+ y)m−1P

[
m+ (1+ y) ∂P/P

∂y

]
.

If m is less than the MD, the expression within the brackets is negative. This means that the FV
decreases as y increases. The other cases can be handled similarly.

Exercise 4.2.9: Let �y denote the rate change, which may be positive or negative. At time �t , the
PV of the liability will be L/(1+ y−�y)m−�t , whereas the PV of the bond plus any reinvestment
of the interest will be

∑
i Ci/(1+ y−�y)i−�t . We are asked to prove that

L
(1+ y−�y)m−�t <

∑
i

Ci
(1+ y−�y)i−�t .

After dividing both sides by (1+ y−�t)�t , we are left with the equivalent inequality

L
(1+ y−�y)m <

∑
i

Ci
(1+ y−�y)i .

However, this must be true because we have shown in the text that any instantaneous change in the
interest rate raises the bond’s value over the liability because of convexity. Note that this conclusion
holds for any �t <m!

Exercise 4.2.10: Solve for ω1 and ω2 such that

1 = ω1+ω2,

3 = ω1+ 4ω2.

The results: ω1 = 1/3 and ω2 = 2/3. So 1/3 of the portfolio’s market value should be put in bond
one, and the remaining 2/3 in bond two.

Exercise 4.2.11: (1) Observe that

P(y′) = A1ea1y
′ + A2e−a2y

′ − Lt
= A1ea1y

′ + A2e−a2y
′ − (A1ea1y+ A2e−a2y)

= A1ea1y
[
ea1(y

′−y)+ a1
a2
e−a2(y

′−y)−
(
1+ a1
a2

)]
after A1a1ea1y− A2a2e−a2y = 0 is applied. It is easy to show that

g(x)= eax + a
b
e−bx −

(
1+ a
b

)
> 0

when x �= 0. The expression within the brackets is hence positive for y′ �= y. See [547, pp. 406–407].
A more concise proof is this. It is easy to see that

A1 = a2e
−a1y

a1+ a2 Lt > 0, A2 = a1e
a2y

a1+ a2 Lt > 0.

So P′′(y)= A1a21e
a1y+ A2a22e

a2y > 0.
(2) It is not hard to see that a portfolio with cash inflows at t1, t2, t3 can be constructed so that it

is more valuable than one with cash inflows at T < t3 after the shift [496, p. 635].

Exercise 4.2.12: To show that Eq. (4.12) is at most j , differentiate it with respect to y and prove that
its first derivative is less than zero. Hence Eq. (4.12) is a decreasing function. Finally, show that it
approaches j as y→ 0. An alternative approach uses the observation that (1+ y)− j ≥ 1− j y. Yet
another alternative applies induction on j to show that Eq. (4.12) is at most j .

Exercise 4.3.1: Let C be the convexity in the original sense and C% be the convexity in percentage
terms. We need to make sure that

100×C× (�r)2 = C%× (�r%)2,
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where �r% denotes the rate change in percentage. Because �r =�r%/100, it follows that C% =
C/100. See [490, p. 29].

Exercise 4.3.2: This is just a simple application of the chain rule. Recall that duration=−∂P/∂y and
convexity= (∂2P/∂y2)(1/P). See [547, p. 333].

Exercise 4.3.4: From Eq. (4.15) we can verify that convexity is equal to CA(y)+n(n+1) y3
CB(y)+y3(1+y)2 , where

A(y) = 2(y+ 1)n+2− 2(y+ 1)2− 2ny(y+ 1)−n(n+ 1) y2,

B(y) = y2(1+ y)2[ (1+ y)n− 1 ].

To prove the claim, it suffices to show that A(y)/B(y)< n(n+ 1)/(1+ y)2. This is equivalent to
proving that

G(y)= 2(1+ y)n+1− y2n(n+ 1)(1+ y)n−1− 2(1+ y)− 2ny< 0

after simplification. It is easy to show that G(y) is concave for y> 0 because G′′(y)< 0 for y> 0.
Hence

G ′(y)= 2(n+ 1)(1+ y)n− 2yn(n+ 1)(1+ y)n−1− y2n(n+ 1)(n− 1)(1+ y)n−2− 2− 2n

is less than zero for y> 0 as it is a decreasing function of y with G′(0)= 0. This leads directly to
our conclusion because G(0)= 0.

Exercise 4.3.5: Aproof is presentedwith only elementarymathematics. Suppose the universe consists
of three kinds of zero-coupon bonds (n= 3). Note that Ci = Di (Di + 1)/(1+ y)2 by Exercise 4.3.3.
The portfolio convexity, which is the objective function, is hence

3∑
i=1
ωiCi = (1+ y)−2

3∑
i=1
ωi
(
D2
i +Di

)= (1+ y)−2
(
D+

3∑
i=1
ωi D2

i

)
.

The original objective function can be replaced with the simpler
3∑
i=1
ωi D2

i . (33.1)

It is not hard to show that, for distinct i, j,k∈ { 1, 2, 3 },

ωi = D−Dj + (Dj −Dk)ωk
Di −Dj ,

ω j = D−Di + (Di −Dk)ωk
Dj −Di ,

by manipulation of the two linear equality constraints. So only one variable ωk remains. Objective
function (33.1) becomes

D−Dj + (Dj −Dk)ωk
Di −Dj D2

i +
D−Di + (Di −Dk)ωk

Dj −Di D2
j +ωkD2

k

= (D−Dj )D2
i − (D−Di )D2

j

Di −Dj +ωk
[
(Dj −Dk)D2

i − (Di −Dk)D2
j

Di −Dj +D2
k

]
= D(Di +Dj )−Di Dj +ωk

(
Di Dj −Dk(Di +Dj )+D2

k

)
= D2− (D−Di )(D−Dj )+ωk(Dk−Di )(Dk−Dj ). (33.2)

Equation (33.2) equals D2− (D−D1)(D−D3) by picking i = 1, k= 2, j = 3, and ωk = 0. We can
confirm that this is a valid choice by checking ω1 = (D−D3)/(D1−D3)> 0 and ω3 = (D−D1)/
(D3−D1)> 0 because D1 < D< D3. Note that it is a barbell portfolio.

To verify that no other valid portfolios have as high a convexity, we prove that Eq. (33.2) is
indeed maximized with ω2 = 0 as follows. From Eq. (33.2) we must choose ωk = 0 for the k= 2
case because (D2−Di )(D2−Dj )< 0. Now we consider the objective function with k �= 2. First, we
consider k= 3. Without loss of generality, we assume that D1 = Di < Dj = D2. The formulas for
ω1 and ω2 dictate that

D2−D
D2−D3

≤ ω3 ≤ D1−D
D1−D3

.
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We plug the preceding second inequality into objective function (33.2) to obtain an upper bound of

D2− (D−D1)(D−D2)+ D1−D
D1−D3

(D3−D1)(D3−D2)

= D2− (D−D1)(D−D2)+ (D−D1)(D3−D2)

= D2− (D−D1)(D−D3).

Now we consider k= 1. Without loss of generality, we assume that D2 = Di < Dj = D3. The for-
mulas for ω2 and ω3 dictate that

D2−D
D2−D1

≤ ω1 ≤ D3−D
D3−D1

.

We plug the preceding second inequality into objective function (33.2) to obtain an upper bound of

D2− (D−D2)(D−D3)+ D3−D
D3−D1

(D1−D2)(D1−D3)

= D2− (D−D2)(D−D3)+ (D−D3)(D1−D2)

= D2− (D−D1)(D−D3).

Exercise 4.3.6: Let there be n≥ 3 kinds of zero-coupon bonds in the universe. Given a portfolio with
more than two kinds of bonds, replace those with duration D, where D1 < D< Dn, with bonds with
durations D1 and Dn with a matching duration. By Exercise 4.3.5, the new portfolio has a higher
convexity. We repeat the steps for each such D until we end up with a barbell portfolio consisting
solely of bonds with durations D1 and Dn.

CHAPTER 5

Exercise 5.2.1: Because P =∑i Ci [ 1+ S(i) ]−i ,

P ≈
∑
i

{
Ci (y)+ ∂Ci (y)

∂y
[ S(i)− y ]

}
when Ci [ 1+ S(i) ]−i is expanded in Taylor series at y. The preceding relation, when combined
with P =∑i Ci (y), leads to∑

i

∂Ci (y)
∂y

[ S(i)− y ]≈ 0.

Rearrange the above to obtain the result. See [38, pp. 23–24].

Exercise 5.3.1:

100=
19∑
i=1

8/2
(1+ 0.1)i

+ (8/2)+ 100
[ 1+ S(20) ]20 .

Thus

66.54= 104
[ 1+ S(20) ]20 ,

and S(20)= 2.258%.

Programming Assignment 5.4.1: See the algorithm in Fig. 33.1.

Exercise 5.5.1: (1) As always, assume S(1)= y1 to start with; hence S(1)≥ y1. From Eq. (5.1) and
the definition of yield to maturity,

k−1∑
i=1

C
(1+ yk)i +

C+ F
(1+ yk)k =

k−1∑
i=1

C
[ 1+ S(i) ]i +

C+ F
[ 1+ S(k) ]k

=
k−1∑
i=1

C
(1+ yk−1)i +

{
F

(1+ yk−1)k−1 −
F

[ 1+ S(k− 1) ]k−1

}
+ C+ F

[ 1+ S(k) ]k . (33.3)
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Static spread with the Newton-Raphson method:

input: n,C, P, S[ 1..n ];
real spread, price, priceD;
integer k;
spread := 0;
for (k= 1 to 10) {

price :=∑n
i=1 C/(1+ S[ i ]+ spread)i + 100/(1+ S[n ]+ spread)n;

if [ |price− P|< 0.000001 ] return spread;
priceD :=−∑n

i=1 iC/(1+ S[ i ]+ spread)i+1− 100×n/(1+ S[n ]+ spread)n+1;
spread := spread− (price− P)/priceD;

}

Figure 33.1: Static spread with the Newton–Raphson method. P is the price (as a percentage of par) of the
coupon bond maturing n periods from now, C is the coupon of the bond expressed as a percentage of par
per period, and S [ i ] denotes the i -period spot rate.

Because S(k− 1)≥ yk−1 by the induction hypothesis, the term inside the braces is nonnegative. The
normality assumption about the yield curve further implies that

k−1∑
i=1

C
(1+ yk)i <

k−1∑
i=1

C
(1+ yk−1)i .

Therefore
C+ F

(1+ yk)k >
C+ F

[ 1+ S(k) ]k ,

that is, S(k)> yk, as claimed. (2) We can easily confirm the two claims by inspecting Eq. (33.3).

Exercise 5.5.2: Assume that the coupon rate is 100%, y1 = 0.05, y2 = 0.5, y3 = 0.6, and n= 3. The
spot rates are then S(1)= 0.05, S(2)= 0.82093, and S(3)= 0.58753.

Exercise 5.5.3: (1) The assumption means that we can use Eq. (33.3) with F = 0, which, after
simplification, becomes

k∑
i=1

1
(1+ yk)i =

k∑
i=1

1
[ 1+ S(i) ]i .

First, we assume that the spot rate curve is upward sloping but yk−1 > yk. The preceding equation
implies that

k−1∑
i=1

1
(1+ yk−1)i +

1
(1+ yk)k =

k−1∑
i=1

1
[ 1+ S(i) ]i +

1
(1+ yk)k <

k∑
i=1

1
[ 1+ S(i) ]i .

Hence yk > S(k), a contradiction. (2) The given yield curve implies the following spot rates: S(1)=
0.1, S(2)= 0.89242, and S(3)= 0.5036. These spot rates are not increasing.

Exercise 5.6.1: S(1)= 0.03, S(2)= 0.04020, S(3)= 0.04538, f (1, 2)= 0.0505, f (1, 3)= 0.0532, and
f (2, 3)= 0.0558.

Exercise 5.6.2: One dollar invested for b+ c periods at the (b+ c)-period forward rate starting from
period a is the same as one dollar invested for b periods at the b-period forward rate starting from
period a and reinvested for another c periods at the c-period forward rate starting from period
a+b.

Exercise 5.6.3: ThePVof $1at time T, or d(T)= [ 1+ S(T) ]−T , is the sameas thatof 1+ f (T,T+ 1)
dollars at time T+ 1. Mathematically,

[ 1+ f (T,T+ 1) ]d(T+ 1)= [ 1+ S(T+ 1) ]T+1

[ 1+ S(T) ]T [ 1+ S(T+ 1) ]−(T+1) = d(T).
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A shorter proof:

f (T,T+ 1)= [ 1+ S(T+ 1) ]T+1

[ 1+ S(T) ]T − 1= [ 1+ S(T) ]−T
[ 1+ S(T+ 1) ]−(T+1)

− 1= d(T)
d(T+ 1)

− 1.

Exercise 5.6.4: The 10-year spot rate is 5.174%. Now we move the bond price to $60.6. The 10-
year spot rate becomes 2× [ (1/0.606)1/20− 1 ]= 0.05072. The percentage change is ∼1.97%. By
Exercise 5.6.3, the forward rate in question equals f (19, 20)= 2× [ 0.62

d(20) − 1 ]. The multiplicative
factor 2 converts the forward rate into a semiannual yield. Note that each year has two periods.
Simple calculations show that the forward rate moves from 6.667% to 4.620%. The percentage
change is therefore 30.7%!

Exercise 5.6.5: From relation (5.3), f ( j, j + 1)> S( j + 1)> S( j), where the spot rate is upward
sloping. Similarly from relation (5.4), f ( j, j + 1)< S( j + 1)< S( j), where the spot rate curve is
downward sloping. And f ( j, j + 1)= S( j + 1)= S( j), where the spot rate curve is flat. See also
[147, p. 400].

Exercise 5.6.6: (1) Otherwise, there are arbitrage opportunities. See [198], [234, p. 385], and [746,
p. 526]. For an uncertain world, the arbitrage argument no longer holds: Although we are still able
to lock in the forward rate, there is no a priori reason any future rate has to be known today for
sure. (2) Because they are all realized by today’s spot rate for that period according to (1) [731,
p. 165].

Exercise 5.6.7: (1) From Eq. (3.6), we solve

1000= 1
0.0255

×
[
1− 1

(1+ 0.0255)100

]
× 27+ F

(1+ 0.0255)100

for F . The answer is F = 329.1686. (2) They are equivalent because their cash flows match exactly.
(3) Verify with Eq. (3.6) again. See [302].

Exercise 5.6.8: The probability of default is 1− (0.92/0.94)= 0.0213. The forward probability of
default, f , satisfies (1− 0.0213)(1− f )= (0.84/0.87). Hence f = 0.0135.

Exercise 5.6.9: Let S(i) denote the probability that the corporation survives past time i and let
dc( · ) denote the discount factors obtained by corporate zeros. (1) By definition, dc(i)= d(i) S(i).
(2) As in Exercise 5.6.3, 1+ fc(i − 1, i)= dc(i − 1)/dc(i). The forward probability of default for
period i is

S(i − 1)− S(i)
S(i − 1)

= 1− S(i)
S(i − 1)

= 1− dc(i)d(i − 1)
d(i)dc(i − 1)

= 1− 1+ f (i − 1, i)
1+ fc(i − 1, i)

≈ fc(i − 1, i)− f (i − 1, i).

See [583, pp. 96–97]. The forward probability of default is also called the hazard rate [846].

Exercise 5.6.10: The forward rate is simply the f that equates eiS(i)e( j−i) f = e jS( j).
Exercise 5.6.11:

Period Spot Rate One-Period Forward Rate
(n) % Per Period % Per Period

1 2.00
2 2.50 3.00
3 3.00 4.00
4 3.50 5.00
5 4.00 6.00

Exercise 5.6.12: (1) Let S(1)→ S(1)+�y and, in general, S(i)→ S(i)+�y/ i . We confirm that this
works by inspecting Eq. (5.9). (2) From Eq. (5.5), we know the n-period zero-coupon bond costs

1
[ 1+ S(1) ][ 1+ f (1, 2) ] · · · [ 1+ f (n− 1,n) ]
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now. By the assumption, none of the forward rates in the preceding formula changes when S(1)
does. So − ∂P/P

∂y = 1
1+S(1) for zero-coupon bonds. The same equation holds for coupon bonds as well

by similar arguments. See [231, p. 53].

Exercise 5.6.13: An investor is assured that $1 will grow to be 1+ j S( j) at time j . Suppose a person
invests $1 in riskless securities for i periods and, at time i , invests the proceeds in riskless securities
for another j − i periods ( j > i). The implied ( j − i)-period forward rate at time i is the f that
satisfies

[ 1+ i S(i) ](1+ ( j − i) f )= 1+ j S( j).
See [731, p. 7].

Exercise 5.7.1: An n-period zero-coupon bond fetches [ 1+ S(n) ]−n today and [ 1+ S(k,n) ]−(n−k)
at time k. The return is hence{

[ 1+ S(k,n) ]−(n−k)
[ 1+ S(n) ]−n

}1/k

− 1.

If the forward rate is realized, then S(k,n)= f (k,n) and [1+ S(k,n)]n−k = [ 1+S(n) ]n
[ 1+S(k) ]k . After substi-

tution, we arrive at the desired result.

Exercise 5.7.2: By Eq. (5.14),

E[ { 1+ S(1) } ]E [ { 1+ S(1, 2) } ] · · · E[ { 1+ S(n− 1,n) } ]
= [ 1+ S(1) ][ 1+ f (1, 2) ] · · · [ 1+ f (n− 1,n) ],

which equals [ 1+ S(n) ]n by Eq. (5.5).

Exercise 5.7.3: (1) Rearrange definition (5.16) to be

E
[ { 1+ S(1,n) }−(n−1) ]

1+ S(1) = [ 1+ S(n) ]−n. (33.4)

It implies that

E
[

1
{ 1+ S(1) }{ 1+ S(1,n) }n−1

]
= [ 1+ S(n) ]−n.

Now recursively apply Eq. (33.4) to [ 1+ S(1,n) ]−(n−1). (2) Take n= 2. The local expecta-
tions theory implies that E[ { 1+ S(1) }−1{ 1+ S(1, 2) }−1 ]= [ 1+ S(2) ]−2. However, this equals
[ 1+ S(1) ]−1[ 1+ f (1, 2) ]−1 = [ 1+ S(1) ]−1E[ 1+ S(1, 2) ]−1 under the unbiased expectations
theory. We conclude that E[ { 1+ S(1, 2) }−1 ]= E[ 1+ S(1, 2) ]−1, which is impossible unless there
is no randomness by Jensen’s inequality.

Exercise 5.7.4: If they were consistent, then

E[ { 1+ S(1, 2) } · · · { 1+ S(n− 1,n) } ] E
[

1
{ 1+ S(1, 2) } · · · { 1+ S(n− 1,n) }

]
= 1

from Exercise 5.7.3(1). However, this is impossible from Jensen’s inequality unless there is no
randomness.

Exercise 5.7.5: From the assumption, S(1)= S(2)= · · · = s. Hence

E[ S(i, i + 1) ]< f (i, i + 1)= s = S(i).

Exercise 5.8.1: (1) Suppose that the yields to maturity change by the same amount and that the spot
rate curve shift is parallel. We prove that the spot rate curve is flat. Consider a security with cash
flows Ci �= 0 at times ti , i = 1, 2. In the beginning, by definition,

2∑
i=1
Cie−S(ti ) ti =

2∑
i=1
Cie−yti . (33.5)

Suppose that the spot rate curve witnesses a parallel shift by the amount of � �= 0. The yield to
maturitymust also shift by � because, inparticular, a t1-period zero-couponbond’s yield tomaturity
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is the t1-period spot rate (hence (2) holds, incidentally). Therefore,

2∑
i=1
Cie−(S(ti )+�) ti =

2∑
i=1
Cie−(y+�) ti .

The preceding two equations give rise to

C1e−�×t1 [ e−yt1 − e−S(t1) t1 ]= C2e−�×t2 [ e−S(t2) t2 − e−yt2 ]. (33.6)

Because Eq. (33.6) reduces to Eq. (33.5) for �= 0, it cannot hold for any other � because of the
different growing rates between e−�×t1 and e−�×t2 when t1 �= t2 unless y= S(ti ) for all i . See
[496, Theorem 1] for a different proof.

Exercise 5.8.2:

− lim
�y→0

∑
i

Ci
[ 1+S(i) ]i −

∑
i

Ci
[ [ 1+S(i) ](1+{�y/[ 1+S(1) ] }) ]i

�y
∑
i

Ci
[ 1+S(i) ]i

=
∑
i

iCi
[ 1+S(i) ]i

[ 1+ S(1) ]∑i
Ci

[ 1+S(i) ]i
.

Exercise 5.8.3: See [424, p. 561].

CHAPTER 6

Exercise 6.1.1: See [273, p. 196].

Exercise 6.1.2: E[ XY ]= E[ E[ XY |Y ] ]= E[YE[ X |Y ] ]= E[YE[ X ] ]= E[ X ] E[Y ]. By
Eq. (6.3), Cov[ X,Y ]= E[ XY ]− E[ X ] E[Y ]; thus Cov[ X,Y ]= 0.

Exercise 6.1.3: See [75, p. 3].

Exercise 6.1.4: Simple manipulations will do [30, p. 10].

Exercise 6.1.5: Easy corollary from Eq. (6.11). See also [147, p. 16].

Exercise 6.1.6: See [492, pp. 14–15].

Exercise 6.2.1: See [273, p. 463].

Exercise 6.3.1: The estimated regression line is 0.75+ 0.32 x. The coefficient of determination is
r2 = 0.966038. On the other hand, it is easy to show, by using Eq. (6.18), that r = 0.982872. Finally
0.982872× 0.982872= 0.966038.

Exercise 6.4.1: (1) Square both sides and take expectations to yield

E
[
Y2 ]=Var[ X2 ]+α2+β2 Var[ X1 ]− 2β Cov[ X1, X2 ].

We minimize the preceding equation by setting α = 0 and β = Cov[ X1,X2 ]
Var[ X1 ]

. See [642, p. 19]. (2) It
is because

Cov[ X1,Y ]= E[ (X1− E[ X1 ])({ X2− E[ X2 ] }−β{ X1− E[ X1 ] }) ]
= Cov[ X1, X2 ]−β Var[ X1 ]= 0.

Exercise 6.4.2: Differentiate Eq. (6.20) with respect to X̂ and set it to zero. The average emerges as
an extremal value. To verify that it minimizes the function, check that the second derivative equals
2n> 0. See [417, pp. 429–430].

Exercise 6.4.3: (1) This is because

(X− a)2 = { (X− E[ X ])− (E[ X ]− a) }2
= (X− E[ X ])2+ 2(E[ X ]− a)(X− E[ X ])+ (E[ X ]− a)2.

Now take expectations of both sides to obtain

E[ (X− a)2 ]=Var[ X ]+ (E[ X ]− a)2,
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which is clearly minimized at the said a value. See [195, p. 319]. (2) For any a,

E[ (Xk− a)2 | X1, . . . , Xk−1 ]

= E[ X2
k | X1, . . . , Xk−1 ]− 2a E[ Xk | X1, . . . , Xk−1 ]+ a2

= E[ (Xk− E[ Xk | X1, . . . , Xk−1 ])2 | X1, . . . , Xk−1 ]

+ (a− E[ Xk | X1, . . . , Xk−1 ])2,

which we minimize by choosing a = E[ Xk | X1, X2, . . . , Xk−1 ]. See [413, p. 173].

CHAPTER 7

Exercise 7.4.1: It is bullish and defensive.

Exercise 7.4.2: The maximum profit is derived as follows. The initial cash outflow is PV(X)− P. If
the option is not exercised, then the cash grows to be X, the final cash inflow.

Exercise 7.4.3: Insurance works by diversification of risk: Fires do not burn down all insured houses
at the same time. In contrast, when the market goes down, all diversified portfolios take a nose dive.
See [64, p. 271].

Exercise 7.4.4: The payoff 1 year fromnow is clearly 100+α×max(S− X, 0), where α is the number
of calls purchased. This is because the initial cost is $100, and the fund in the money market will
grow to be $100, thus guaranteeing the preservation of capital. Because 90% of the money is to be
put into the money market and the fund 1 year from now should be just sufficient to exercise the
call, we have to make sure that 100= 90× (1+ r). So r = 11%.

Exercise 7.4.5: Consider the butterfly spread CX−�X− 2CX+CX+�X with the strike prices in sub-
script. Because the area under the spread’s terminal payoff equals (1/2)(2�X)�X= (�X)2,

CX−�X− 2CX+CX+�X
(�X)2

has area one at the expiration date. As �X→ 0, the area is maintained at one, and the payoff
function approaches the Dirac delta function. See [157].

CHAPTER 8

Exercise 8.1.1: Short the high-priced bonds and long the low-priced ones.

Exercise 8.1.2: Let p ∈ Rn denote theprices of the n securities.Onenecessary condition for arbitrage
freedom is that a portfolio of securities has a nonnegativemarket value if it has a nonnegative payoff
in every state; in otherwords, pTγ ≥ 0 if Dγ ≥ 0.This is calledweakly arbitrage-free [289, p. 71]. The
equivalent condition for this property to hold depends on Farka’s lemma [67, 289, 581]. Another
necessary condition for arbitrage freedom is pTγ > 0 if Dγ > 0, which says that a portfolio of
securities must have a positive market value if it has a positive payoff in every state. Interestingly,
the two conditions combined are equivalent to the existence of a vector θ > 0 satisfying DTθ = p.
This important result is called the arbitrage theorem, and the m elements of θ are called the state
prices [692, p. 39]. In the preceding, v > 0 means every element of the vector v is positive, and
v ≥ 0 means that every element of the vector v is nonnegative.

Exercise 8.2.1: We want to show that PV(X2− X1)< CX1 −CX2 . Suppose it is not true. Then we can
generate arbitrage profits by buying CX2 and shorting CX1 . This generates a positive cash flow.
We deposit PV(X2− X1) in a riskless bank account. At expiration, the funds will be sufficient
to cover the calls because (1) S< X1: the payoff is X2− X1 > 0; (2) X1 ≤ S< X2: the payoff is
X2− X1− (S− X1)= X2− S> 0; (3) X2 ≤ S: the payoff is X2− X1− (X2− X1)= 0.

Another proof is to use the put–call parity:
CX1 = PX1 + S−PV(X1),

CX2 = PX2 + S−PV(X2).
We subtract to obtain

CX1 −CX2 = PX1 − PX2 −PV(X1)+PV(X2)> PV(X2− X1).

Exercise 8.2.2: It is P ≤ X if we consider a cash-secured put. An alternative is to observe that,
because noone will put money in the bank, the interest rate can be treated as if it were zero and
PV(X)= X. Lemma 8.2.4 is thus applicable, and we have P ≤ X.
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Exercise 8.3.1: (1) The put–call parity shows the threshold interest to be r = 12.905% because it
satisfies 95× e−r/3 = 3+ 94− 6= 91. Because r > 10%, C− P > S−PV(X). We can create an ar-
bitrage profit by shorting the call, buying the put, buying the stock, and lending PV(X). (2) Apply
the put–call parity PV(X)= P+ S−C. See [346].

Exercise 8.3.2: Consider the payoffs from the following two portfolios.

Value at Expiration Date

Initial Investment S1 > X S1 ≤ X

Buy a call −C S1− X 0
Buy bonds −PV(X ) X X
Total −C − PV(X ) S1 X

Buy stock −S0 S1 S1

(S0 and S1 denote the stock prices now and at the expiration date, respectively.) The table shows
that whichever case actually happens, the first portfolio is worth at least as much as the second. It
therefore cannot cost less, and C+PV(X)≥ S0. (A simpler alternative is to use the put–call parity.)
American calls on a non-dividend-paying stock cannot be worth less than European ones. See [317,
p. 577].

Exercise 8.3.3: The C ≥ S−PV(X) inequality is derived under the no-arbitrage condition. Appar-
ently, not every stock price series is arbitrage free. For instance, S> PV(X) is not for, otherwise,
we can sell short the stock and invest the proceeds in riskless bonds, and at the option’s expira-
tion date, we close out the short position with X from the bonds. Margin requirements ignored,
this is doable because we already assume that the stock price at expiration is less than the strike
price.

Exercise 8.3.4: Consider the following portfolio: one short call, one long put, one share of stock, a
loan of PV(X) maturing at time t , and a loan of D∗d(t1) maturing at time t1. The initial cash flow
is C− P− S+PV(X)+D∗d(t1). The loan amount D∗d(t1) will be repaid by the dividend. The rest
of the argument replicates that for the put–call parity at expiration. See [746, p. 148].

Exercise 8.3.5: It is equivalent to a long European call with strike price X and a short European call
with exercise H, a vertical spread in short [111].

Exercise 8.3.6: Let the payoff function be

F(S)≡
 0, if S< 0
αi S+βi , if Si ≤ S< Si+1 for 0≤ i < n,
αnS+βn, if Sn ≤ S

where 0= S0 < S1 < · · ·< Sn are thebreakpoints, αi−1Si +βi−1 = αi Si +βi for continuity, and β0 =
0 for origin crossing. Clearly, F(0)= 0 and F(Si )=

∑i
j=1 α j−1(Sj − Sj−1) for i > 0.

A generalized option can be replicated by a portfolio of α0 European calls with strike price
S0 = 0, α1−α0 European calls with strike price S1, α2−α1 European calls with strike price S2,
and so on, all with the same expiration date. When the stock price S finishes between Si and Si+1,
the option has the payoff

F(S)= F(Si )+αi (S− Si )=
i∑
j=1
α j−1(Sj − Sj−1)+αi (S− Si ).

Among the options in the package, only those with the strike price not exceeding Si finish in the
money. The payoff is thus

α0(S− S0)+
i∑
j=1

(α j −α j−1)(S− Sj )= αi (S− Si )+
i∑
j=1
α j−1(Sj − Sj−1),

the same as that of the generalized option.
For a payoff function that does not pass through the origin, saywith an intercept of β, we add zero-

coupon bonds with a total obligation in the amount of β at the expiration date to the portfolio. In
general, when the payoff function could be any continuous function, we can use a piecewise linear
function with enough breakpoints to approximate the payoff to the desired accuracy. See [236,
pp. 371ff].
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Exercise 8.4.1: FromExercise 8.3.2, theoptionvalue is at least 45− 40× e−0.08/6 > 45− 40= 5 dollars
per share. Because the stock is considered overpriced and there is no dividend, the intrinsic value
of the option will never exceed $5. Furthermore, other things being equal, the call becomes less
valuable as its maturity approaches. Hence the investor should sell the option.

Exercise 8.4.2: In short, X−PV(X)> D. Take a date just before an ex-dividend date. If a call holder
exercises the option, the holdings just after that date will be worth S− X+D ′ with D ′ denoting
the dividend for holding the stock through the ex-dividend date. Note that D ′ ≤ D. If the holder
chooses not to exercise the call, on the other hand, the holdings will then be worth by definition C
after the dividend date. From Eq. (8.2) we conclude that

C ≥ S−PV(X)− (D−D ′)> S− X+D ′.
Hence it is better to sell the call than to exercise it just before an ex-dividend date. Combine this
conclusion with Theorem 8.4.2 to prove the result. See [236, p. 140].

Exercise 8.4.3: Because it is worse than exercising the option just after the ex-dividend date. More
formally, let S be the stock price immediately before an ex-dividend date, let S′ be the stock price
immediately after an ex-dividend date, and let D be the amount of the dividend. S′ should be S−D
within so short a time interval. So exercise immediately after an ex-dividend date fetches X− S′ =
X− S+D, and exercise immediately before an ex-dividend date fetches X− S. The interest gained
from X− S in such a short period of time can be ignored. The late-exercise strategy clearly domi-
nates [236, p. 251].

Exercise 8.4.4: This inequality says that exercising this option now and investing the proceeds in
riskless bonds fetches a terminal value exceeding X. However, Lemma 8.2.4 says that theAmerican
put can never be worth more than X. Exercising it is hence better.

Exercise 8.4.5: (1) The covered call strategy guarantees arbitrage profits otherwise. (2) Combine (1)
with the put–call parity. (3) Lemma 8.2.4 says that P ≤ X. The case of P < X can never happen
because it would imply that the put is selling at less than its intrinsic value.

Exercise 8.4.6: Assume that C− P < S− X. Write the put, buy the call, sell the stock short (hence
the need for the no-dividend assumption), and place X in a bank account. This generates a positive
net cash flow. If the short put is exercised before expiration, withdraw the money from the bank
account to pay for the stock, which is then used to close out the short position.

Exercise 8.6.1: Although the floor is the same, the portfolio of options offers a higher payoff when
the terminal stock prices are such that some, but not all, put options finish in the money.

CHAPTER 9

Exercise 9.2.1: Suppose that R> u. Selling the stock short and investing the proceeds in riskless
bonds for one period creates a pure arbitrage profit. A similar argument can bemade for the d > R
case.

Exercise 9.2.2: Let P denote B’s current price. Consider a portfolio consisting of one unit of A and h
units of B, worth 100+ Ph now. It can fetch either 160+ (50× h ) or 80+ (60× h) in a period. Pick
h= 8 to make them both equal to 560. Note that h is simply the delta, because A’s price in a period
has a range of 160− 80= 80 vs. B’s 60− 50= 10, a ratio of eight. Now that this particular portfolio’s
FV is no longer random, its PV must be 560/e0.1 = 506.71. Hence P = (506.71− 100)/8≈ 50.84.
The above methodology is apparently general.

Exercise 9.2.4: Suppose that k> 0 (the other case is symmetric). Sell short M/k options and use the
proceeds to buy (M/k) h shares of stock and (M/k) B dollars in riskless bonds. This transaction
nets a current value of

M
k

(hS+ B+k)− Mh
k
S− MB

k
= M.

The obligations after one period are nil because, modulo a multiplicative factor of M/k, the pre-
ceding levered position above is h shares of stock and M dollars in riskless bonds, which replicate
the option. See [289, p. 7].

Exercise 9.2.5: The expected value of the call in a risk-neutral economyoneperiod fromnow is pCu+
(1− p)Cd. After being discounted by the riskless interest rate, the call value now is pCu+(1−p)Cd

R ,
which is equal to C = hS+ B by Eq. (9.3).
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Exercise 9.2.6: If Su≤ X, then S− X< 0 but C = 0> S− X. If X≤ Sd, then

C = p(Su− X)+ (1− p)(Sd− X)
R

= S− X
R
> S− X.

Finally, if Sd < X< Su, then C = p(Su− X)/R, which exceeds S− X because

C = (R−d)(Su− X)
R(u−d) = Ru−ud

Ru− Rd S−
R−d
Ru− Rd X> S− X.

See [236, p. 173]. A more compact derivation is to observe that, from Eq. (9.4),

hS+ B= pCu+ (1− p)Cd
R

≥ p(Su− X)+ (1− p)(Sd− X)
R

= S− X
R
> S− X.

Exercise 9.2.7: This fact can be easily seen from Eq. (9.1) and the inductive steps in deriving the
deltas.

Exercise 9.2.8: The stock price should grow at the riskless rate to SRn at expiration in a risk-
neutral economy. As u> R> d, we must have R→ d as well. Now the formula says that C = 0 if
PV(X)= XR−n > S. This makes sense because X> Sdn and the call will finish out of the money.
On the other hand, the formula says that C = S−PV(X) if PV(X)≤ S. This also makes sense as
the call will have a terminal payoff of SRn− X.
Exercise 9.2.10: (1) Consider the butterfly spread with strike prices XL, XM, and XH such that

Sui−1dn−i+1 < XL< Suidn−i ,
XM = Suidn−i ,

Suidn−i < XH < Sui+1dn−i−1,

with 2XM− XH− XL= 0. This portfolio pays off Suidn−i − XL dollars when the stock price reaches
Suidn−i . Furthermore, its payoff is zero if the stock price finishes at other prices. (2) The claim holds
because calls can be replicated by continuous trading. Note that the continuous trading strategy
described in Subsection 9.2.1 does not require that the strike price be one of the possible n+ 1 stock
prices.

Exercise 9.2.11: For p to be a risk-neutral probability, both securities must earn an expected return
equal to R, or

p= R−d1
u1−d1 =

R−d2
u2−d2 .

It is not hard to pick R,u1,d1,u2, and d2 such that the preceding identity does not hold. See [836,
p. 91].

Programming Assignment 9.2.14: The limited precision of digital computers dictates that we compute
and store lnb( j ;n, p) instead of b( j ;n, p). The needed changes to the algorithm are

· · ·
b := lnn!− ln a!− ln(n− a)!+ a× ln p+ (n− a)× ln(1− p);

· · ·
1. b := b+ ln p+ ln(n− j + 1)− ln(1− p)− ln j ;

· · ·
3. C := C+ eb× (D− X)/R;

· · ·
Exercise 9.3.1: (1) This approach, which is due to Jarrow and Rudd [690], differs from the one
in the text in that we do not derive the risk-neutral probability [346, p. 546]. See [346, pp. 103–
104, p. 544], [289, p. 146], and [290, p. 197]. (2) Theoretically, the risk-neutral probability formula
p≡ (R−d)/(u−d) with the new choices of u and d should be used as is required by the replication
argument. In fact, Lemma 9.3.3 will imply that the risk-neutral probability simplifies to

eσ
2(τ/n)/2− e−σ

√
τ/n

eσ
√
τ/n− e−σ√τ/n →

1
2
.

However, if we treat the discrete-time economy as an approximation to its continuous-time limit
and are concerned about its behavior only as n→∞, either p or 1/2 should work in the limit.
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Exercise 9.3.2: Use Eq. (9.15) with n→∞.

Exercise 9.3.4: Observe that

p=
[
1+ rτn +

( rτ
n

)2 /2!+ · · ·]− [1− σ√ τ
n +

(
σ
√
τ
n

)2 /
2!− · · ·

]
[
1+ σ√ τ

n +
(
σ
√
τ
n

)2 /
2!+ · · ·

]
−
[
1− σ√ τ

n +
(
σ
√
τ
n

)2 /
2!− · · ·

] .
Exercise 9.3.5: The probability for Sτ ≥ X equals that for ln(Sτ /S)≥ ln(X/S). By Lemma 9.3.3, this
event occurs with probability

1− N
(
ln(X/S)− (r − σ 2/2

)
τ

σ
√
τ

)
= N

(
− ln(X/S)− (r − σ 2/2

)
τ

σ
√
τ

)

= N
(
− ln(S/X)+ (r − σ 2/2

)
τ

σ
√
τ

)
.

Multiply it by e−rτ to get the desired result. See [495].

Exercise 9.3.6: The put–call parity says that C− P = S−PV(X). The exercise clearly holds because
the right-hand side equals S− Xe−rT . See also [853].

Exercise 9.3.7: Lemma9.2.1 says that the call value equals e−rτ Eπ [max(Sτ − X) ], where ln Sτ is nor-
mally distributedwithmean ln S+ (r − σ 2/2) τ and variance σ 2τ by Lemma 9.3.3. The expectation
for European calls is

e−rτ
∫ ∞
X

(S− X) f (S)dS

= e−rτ
∫ ∞
X
S f (S)dS− e−rτX

∫ ∞
X
f (S)dS

= e−rτ eln S+(r−σ 2/2) τ+σ 2τ/2N

(
ln S+ (r − σ 2/2

)
τ − ln X

σ
√
τ

+ σ√τ
)

− e−rτXN
(
ln S+ (r − σ 2/2

)
τ − ln X

σ
√
τ

)

= SN
(
ln(S/X)+ (r + σ 2/2

)
τ

σ
√
τ

)
− e−rτXN

(
ln(S/X)+ (r − σ 2/2

)
τ

σ
√
τ

)
,

as desired. The second equality was due to Exercise 6.1.6 and Eq. (6.12).

Exercise 9.3.8: (1) This choice has the correct mean stock price Serτ/n. The second moment also
converges to that under the standard choice in the text. (2) When n is even, Sun/2dn/2 = X, which
places the strike price at the center of the tree at maturity. When n is odd, Su(n+1)/2d(n−1)/2 =
Xeσ

√
τ/n and Sd(n+1)/2u(n−1)/2 = Xe−σ

√
τ/n; the strike price is therefore between the two middle

nodes of the tree at maturity. See [555, 589].

Exercise 9.4.3: (1) There are m+ 2 equations: the discounted expected payoffs of the options (m
equations), the discounted expected stock price (one equation), and the summing of the terminal
probabilities to one (one equation). So we can divide the time into m+ 1 periods, creating m+ 2
terminal nodes. (2)We solve for the terminal nodes’ probabilities first by using the above-mentioned
m+ 2 equations. Because each path leading up to the same node is equally likely, we divide each
nodal probability by the number of paths leading up to that node for the path probability. Finally, we
use backward induction to solve for the rest of the probabilities on the tree as follows. We assume
that node A is followed by nodes B and C, which have path probabilities pB and pC, respectively.
The path probability for node A is pB+ pC, and the transition probability from node A to B is
pB/(pB+ pC). See [502, 503]. An algorithm for constructing the implied binomial tree under a
more general setting is considered in [269].

Exercise 9.6.1: From the text we know the value can be computed by replacing the current stock
price S with (1− δ)mS. But this effectively implies a payoff function of

max ((1− δ)mS− X)= (1− δ)m×max(S− (1− δ)−mX).

See [879, p. 97].
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Exercise 9.6.2: No. When the American call is exercised, there is always a corresponding European
call to exercise with the same payoff. Because there may be European calls remaining after the
American call is exercised, the package is potentially more valuable than the American call.

Exercise 9.6.5: We know that C = P+ S−D−PV(X) from Eq. (8.2). Now, S−D= Se−qτ because
the stock price would be S−qτ today to reach the same terminal price if there were no dividends.
See [894, p. 72] for the formula.

Exercise 9.6.6: Just follow the same steps as before in setting up the replicating portfolio except that,
now,

hSueq̂ + RB= Cu, hSdeq̂ + RB= Cd.
The reason is that the stockholder is getting new shares at a rate of q per year. (Throughout this
exercise, q̂ ≡ q�t means thedividendyield per period.)Equations (9.1) and (9.2) are hence replaced
with

h= Cu−Cd
(Su− Sd) eq̂ , B= uCd −dCu

(u−d) R .

After substitution and rearrangement,

hS+ B=
(
Re−q̂ −d
u−d Cu+ u− Re

−q̂

u−d Cd

)/
R

in place of Eq. (9.3). Finally, Eq. (9.4) becomes hS+ B= [ pCu+ (1− p)Cd ]/R, where p≡
(Re−q̂ −d)/(u−d).

Another way to look at it is by observing that in a risk-neutral economy, the per-period return of
holding the stock should be R. Now, because the stock is paying a dividend yield of q̂, the return
of the stock price net of the dividends should be Re−q̂.

Exercise 9.6.7: (1) The total wealth is growing at µ , not µ−q! (2) It retains the binomial tree’s
backward-induction structure except that each S at j periods from now should be replaced with
Se−qj�t . Of course, the result is not exactly the same as usingEq. (9.21) and pretending therewere no
dividends. However, it should converge to the same value. Interestingly, this is the same as retaining
(er�t −d)/(u−d) and the original algorithm as if there were no dividends but with u and d
multiplied by eq�t .

Exercise 9.6.8: Suppose there is one period to expiration and Sue−q̂ < X, where q̂ is the dividend
yield per period. Clearly the option has zero value at present as it will not be exercised at expiration.
However, if S> X, the option has positive intrinsic value, which means it should be exercised now.
These two inequalities imply that X< S< Xu−1eq̂, which is possible when u< eq̂.

Exercise 9.7.1: Consult [154, 156], [575, Subsection 4.1.4], or [783].

Exercise 9.7.2: Suppose the option is not exercised at price S but it is optimal to exercise it at the
same price two periods earlier. It must hold that

er�t (X− S) ≤ pPu+ (1− p) Pd,
er�t (X− S) > pP′u+ (1− p) P′d.

(Primed symbols are for values two periods earlier.) Hence,

pP′u+ (1− p) P′d < pPu+ (1− p) Pd.
However, Pd ≤ P′d and Pu ≤ P′u by Lemma 8.2.1 because of the longer maturity. That lemma
works whether there are dividends or not.We now have the contradiction pP′u+ (1− p)P′d < pP′u+
(1− p)P′d.

CHAPTER 10

Exercise 10.1.1: Note that N′(y)= e−(y2/2)/√2π and x′ ≡ ∂x/∂S in the following equation:

∂C/∂S= N(x)+ SN′(x) x′ − Xe−rτN′(x− σ√τ ) x′

= N(x)+ SN′(x) x′ − Xe−rτN′(x) exσ
√
τ−σ 2τ/2x′

= N(x)+ SN′(x) x′ − Xe−rτN′(x) eln(S/X)+rτ x′ = N(x).
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Exercise 10.1.2: Note that N′(y)= e−(y2/2)/√2π and x′ ≡ ∂x/∂X in the following equation:

∂P/∂X= e−rτN(−x+ σ√τ )− Xe−rτN′(−x+ σ√τ ) x′ + SN′(−x) x′

= e−rτN(−x+ σ√τ )− Xe−rτN′(−x) exσ
√
τ−σ 2τ/2 x′ + SN′(−x) x′

= e−rτN(−x+ σ√τ )− Xe−rτN′(−x) eln(S/X)+rτ x′ + SN′(−x) x′
= e−rτN(−x+ σ√τ ).

Exercise 10.1.3: We have to prove that the strike price X that maximizes the option’s time value
is the current stock price S. Recall that the time value is defined as V ≡ C−max(S− X, 0). It
is not hard to verify that ∂C/∂X =−e−rτN(x− σ√τ ). So ∂V/∂X= ∂C/∂X< 0 if X> S, and
∂V/∂X= (∂C/∂X)+ 1> 0 if X≤ S. The time value is hence maximized at X= S. The case of puts
is similar.

Exercise 10.1.4: It is rτ+σ
2τ/2−ln(S/X)
2στ
√
τ

[894, p. 78].

Exercise 10.1.5: (1) It is S= Xe(r+σ 2/2) τ (not S= X). To derive it, note that

∂�

∂S
= −N

′(x) σ + SN′′(x) x′σ
2
√
τ

− r Xe−rτN′(x− σ√τ ) x′

= −N
′(x) σ + SN′′(x) x′σ

2
√
τ

− r SN′(x) x′.

The last equality above takes advantage of Xe−rτN′(x− σ√τ ) x′ = SN′(x) x′, which can be verified
with Eq. (10.1) and the Black–Scholes formula for the European call. With N′′(x)=−xN′(x) and
x′ = 1/(Sσ

√
τ ), it is not hard to see that ∂�/∂S= 0 if and only if −σ 2+ (xσ/

√
τ )− 2r = 0. From

here, our claim follows easily. (2) This is by virtue of Lemma 8.2.1.

Exercise 10.1.6: Vega’s derivative with respect to σ is −xx′�. Note that x can be expressed as
(A/σ )+ Bσ . Hence x′x =−2(A2/σ 3)+ 2B2σ . Clearly, x′x = 0 has a positive solution at σ = σ ∗ ≡√| A/B | . It is not hard to see that �′ begins at ∞ for σ = 0, penetrates the x axis at σ ∗ into the
negative domain, and converges to zero at positive infinity. This confirms the unimodality of vega.

Exercise 10.1.7: (1) − x+σ
√
τ

Sσ
√
τ
� [894, p. 78]. (2) − σ

√
τ+(ln(X/S)+(r+σ 2/2) τ ) x

2σ 2τ2S
N(x). See [894, p. 78].

Exercise 10.2.7: The standard finite-difference scheme approximates the second derivative by using
the function values at the three equally spaced stock prices S−�S, S, and S+�S. It purports to
improve the accuracy by varying �S. Scheme (10.2) instead approximates the second derivative at
the fixed prices Suu, S, and Sdd, and it improves the accuracy by varying n.

CHAPTER 11

Exercise 11.1.1: The guarantee generates a cash flow to the bondholders of −min(0,V∗ − B), which
is equal to max(0, B−V∗) [660, p. 630].

Exercise 11.1.3: Leibniz’s rule might be useful [448]: If F(x)≡ ∫ b(x)a(x) f (x, z)dz, then

F ′(x)=
∫ b(x)
a(x)

∂ f (x, z)
∂x

dz+ f (x,b(x))b′(x)− f (x, a(x)) a′(x).

(1) The higher the firm value, the higher the bond price is. Intuitively, the higher the firm value, the
less likely the firm is to default. (2) The more the firm borrows, the higher the bond price. However,
note that the increase in the total bond value is less than the net increase in the face value. (3) The
longer the time to maturity, the lower the bond price is. This is because the PV decreases and the
default premium increases. See [746, p. 396].

Exercise 11.1.4: Any other bond price will lead to arbitrage profits by trading Merck stock, Merck
calls, and XYZ.com’s bonds.

Exercise 11.1.5: The stockholders gain [ 35000× (5/35) ]+ 9500− 15250=−750 dollars. The original
bondholders lose the equal amount, 29250− [ (30/35)× 35000 ]=−750. So the bondholders gain.

Exercise 11.1.6: The results are tabulated below.
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Promised Payment Current Market Current Market Current Total Stockholders’
to Bondholders Value of Bonds Value of Stock Value of Firm Gains from Issuing
X B nS V X −30000

1000 Bonds

55,000 54,375 16,750 71,125 0
60,000 59,375 11,750 71,125 −52.083
65,000 64,125 7,000 71,125 115.385
70,000 68,000 3,125.5 71,125 946.429

Exercise 11.1.7: Dividends reduce the total value by the equal amount. However, the stock, as an
option on the total value, decreases by less than the dividend amount because of the convexity of
option value by Lemma 8.5.1. See [424, p. 531].

Programming Assignment 11.1.8: (2) Guess a V > nS and build the binomial tree for V/n. Price an
American call with a strike price of X on that tree. Each warrant W is then n/(n+m) of the call
value. Stop if V ≈ nS+mW. Otherwise, choose a new V > nS and repeat the procedure.

Exercise 11.1.9: It is

V−C(X)+ λC(X/λ), (33.7)

where C(Y ) represents a European call with a strike price of Y.

Exercise 11.1.10: (1) From expression (33.7) and that V−C(X) is equivalent to a zero-coupon bond
with a face value of X, a CB is basically a zero-coupon bond plus a call on λ times the total value
of the corporation with a strike price of X/λ [746, p. 401]. (2) Warrants are calls (see Subsection
11.1.2). (3) By analyzation of the payoff at maturity, the terminal value is easily seen to be at least
λV∗ and sometimes more. On the other hand, conversion grants the owner a fraction 1/λ of the
firm. The former strategy therefore dominates the latter. See [491, Theorem 1], [492, p. 430], and
[697].

Exercise 11.1.11: In all three cases, the PVs are either less than or equal to P:

V < PV(X)≤ P,
PV(X)≤ X≤ P,
λV < P.

Exercise 11.2.1: (1) See [470, p. 463]. (2) See [470, p. 464].

Programming Assignment 11.2.5: Assume that the barrier option is a call in the following discussions.
Our approach computes down-and-in and down-and-out options simultaneously, noting that they
sum to the standard European call value at each node by the in–out parity.

Working from the terminal nodes toward the root, backward induction calculates the option value
at each node if the derivative is issued at that node. Each node keeps two values: The in-value records
the value of the down-and-in option and the out-value records the value of the down-and-out option.
Each terminal node above the strike price starts with the payoff of the standard call option in the
out-value and zero in the in-value, whereas each terminal node at or below the strike price startswith
zeros in both values. Inductively, a node not on the barrier takes the expected PV of the in-values
of its two successor nodes and that of the out-values of its two successor nodes and puts them into
its respective value cells. For a node on the barrier, we do the same thing and then set the out-value
to zero and the in-value to the sum of the in-value and out-value. The overall space requirement is
linear, and the time complexity is quadratic. When there is a rebate for the down-and-out call, the
rebate’s cash flow has to be calculated separately. See Fig. 33.2 for the algorithm.

Exercise 11.2.6: It can be replicated as

D(X0,H1)+
n−1∑
i=1

[D(Xi ,Hi+1)−D(Xi ,Hi ) ].

Here D(X,H) denotes a down-and-out option with strike price X and barrier H. This can be
justified as follows. If the nearest barrier H1 is never hit, then the first down-and-out option provides
the necessary payoff and each term in the summation is zero because it contains two options with
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Binomial tree algorithm for pricing down-and-out and down-and-in calls on a
non-dividend-paying stock:

input: S,u,d, X,H (H< X,H< S),n, r̂ ,K;
real R, p,Co[n+ 1 ],Ci[n+ 1 ],Cr[n+ 1 ];
integer i, j, h;
R := êr ; p := (R−d)/(u−d);
h := �ln(H/S)/ lnu�;H := Suh;
for (i = 0 to n) {

Co[ i ] :=max(0, Sun−i di − X);
Ci[ i ] := 0;
Ci[ r ] := 0;

}
if [n− h is even and 0≤ (n− h)/2≤ n ] { //A hit.

Ci[ (n− h)/2 ] := Co[ (n− h)/2 ];
Co[ (n− h)/2 ] := 0;
Cr[ (n− h)/2 ] := K;

}
for ( j = n− 1 down to 0) {

for (i = 0 to j) {
Co[ i ] := (p×Co[ i ]+ (1− p)×Co[ i + 1 ])/R;
Ci[ i ] := (p×Ci[ i ]+ (1− p)×Ci[ i + 1 ])/R;
Cr[ i ] := (p×Cr[ i ]+ (1− p)×Cr[ i + 1 ])/R;

}
if [ j − h is even and 0≤ ( j − h)/2≤ j ] { // A hit.
Ci[ ( j − h)/2 ] := Ci[ ( j − h)/2 ]+Co[ ( j − h)/2 ];
Co[ ( j − h)/2 ] := 0;
Cr[ ( j − h)/2 ] := K;

}
}
return Co[ 0 ]+Cr[ 0 ], Ci[ 0 ];

Figure 33.2: Binomial tree algorithm for barrier calls on a non-dividend-paying stock. Because H may
not correspond to a legal stock price, we lower it to Suh , the highest stock price not exceeding H . The
new barrier corresponds to C x [ ( j − h)/2 ] at times j = n , n− 1, . . . , h , where x ∈ { “o”, “i”, “r” }. The
knock-out option provides a rebate K when the barrier is hit.

identical strike price. If H1 is hit, then D(X0,H1) and D(X1,H1) are rendered worthless. The
remaining portfolio is

D(X1,H2)+
n−1∑
i=2

[D(Xi ,Hi+1)−D(Xi ,Hi ) ].

The rest follows inductively. See [158, p. 16].

Exercise 11.4.1: See [95, p. 288].

Exercise 11.5.1: Buy a call with strike XH and sell a put with strike XL [346, p. 297].

Exercise 11.5.2: Buy a call with strike X+ p, sell a put with strike X+ p, and buy a put with strike
X [346, p. 299].

Exercise 11.5.3: Buy a call with strike X and sell α puts with strike X [346, p. 302].

Exercise 11.5.4: (1)UseEq. (9.21) [346, p. 165]. (2) Supposewehold $h foreign riskless bond (denom-
inated in foreign currency) and $B domestic riskless bond. The portfolio has the value hS+ B in
domestic currency. Here S denotes the current domestic/foreign exchange rate. The same argument
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as that in Subsection 9.2.1 leads to the following equations:

hêr�t Su+ RB= Cu, hêr�t Sd+ RB= Cd.
The êr�t term arises from foreign interest income. Solving them gives the result. See [514, p. 321].

Exercise 11.5.5: Use N(x)= 1− N(−x) and r = r̂ .
Exercise 11.5.6: It holds when S� X [746, p. 345].

Exercise 11.5.7: (1) See [746, p. 332] and Eq. (8.1). (2) See [746, p. 333] and Lemma 8.3.2.

Exercise 11.6.1: The stockholders, by paying the first interest payment, acquire the option to own the
firm by making future interest and principal payments. See [424, p. 531] and [746, pp. 398–400].

Exercise 11.6.2: Because it can be exercised only when the contract is awarded [346, p. 305].

Exercise 11.6.3: See [879, p. 201].

Exercise 11.7.1: Construct a portfolio consisting of a lookback call on the minimum and a lookback
put on the maximum [388].

Exercise 11.7.2: Let rk ≡ Sk/Sk−1. Then rk ∈ {u,d }, depending on whether the kth move is up or
down. As Si = S0

∏i
j=1 r j , we have

n∏
i=0
Si = Sn+10

n∏
i=1

i∏
j=1
r j = Sn+10

n∏
i=1
rn−i+1i .

Our problem thus amounts to counting the distinct numbers (call it N) the expression
∏n
i=1 r

n−i+1
i

can take for ri ∈ {u,d }; equivalently, we can ask the same question of
∑n
i=1(n− i + 1) ln ri . This

implies that N equals the number of distinct sums of integers drawn from { 1, 2, . . . , n }. Because
it is easy to see that every integer from 1 to n(n+ 1)/2 can be represented uniquely as the sum of
distinct integers drawn from { 1, 2, . . . , n }, we conclude that N= n(n+ 1)/2. The preceding analysis
did not assume that ud = 1.

Exercise 11.7.3: See [147, p. 382].

Exercise 11.7.4: Let the historical average from m prices be A as of time zero. The terminal payoff
for a call is then

max
(
mA+∑n

i=0 Si
m+n+ 1

− X, 0
)

=max
( ∑n

i=0 Si
m+n+ 1

−
(
X− mA

m+n− 1

)
, 0
)

= n+ 1
m+n+ 1

×max
(∑n

i=0 Si
n+ 1

− m+n+ 1
n+ 1

(
X− mA

m+n− 1

)
, 0
)
.

So it becomes n+1
m+n+1 option with strike price m+n+1

n+1 (X− mA
m+n−1 ).

Exercise 11.7.5: (1) In a risk-neutral economy, E[ Si ]= S0êri . So the expected average price is

S0
n+ 1

n∑
i=0
êri =

{
S0
n+1

1−êr(n+1)
1−êr if r̂ �= 0

S0 if r̂ = 0
.

(2) Assume that r̂ �= 0. The value of the running sum implies that the call will be in the money
because any path extending that initial path will end up with an arithmetic average of at least
X+ a/(n+ 1)≥ X. The expected terminal value is thus a/(n+ 1) plus E[ 1

n+1
∑n
i=k Si ], which is

equal to

Sk
n+ 1

1− êr(n−k+1)
1− êr

by (1).

Exercise 11.7.6: We prove the claim for the i < n/2 case. Assume S0 = 1 for convenience. The said
difference at uidn−i = u2i−n equals

A≡ (u+u2+ · · ·+ui +ui−1+ · · ·+u2i−n)− (d+d2+ · · ·+dn−i +dn−i−1+ · · ·+dn−2i ).
Similarly, the said difference at ui−1dn−i+1 = u2i−n−2 equals

B≡ (u+u2+ · · ·+ui−1+ui−2+ · · ·+u2i−n−2)− (d+d2+ · · ·+dn−i+1+dn−i + · · ·+dn−2i+2).
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Now,

A− B = ui +ui−1−u2i−n−1−u2i−n−2+dn−i+1+dn−i −dn−2i+1−dn−2i
= ui +ui−1−u2i−n−1−u2i−n−2− (u2i−n+u2i−n−1−ui−n−ui−n−1)
= ui +ui−1−u2i−n−1−u2i−n−2−ui−n(ui +ui−1− 1−u−1)
> ui +ui−1−u2i−n−1−u2i−n−2− (ui +ui−1− 1−u−1)> 0,

as claimed.

Exercise 11.7.7: y= y0+ y1−y0
x1−x0 (x− x0)+ [ y2−y0

(x2−x0)(x2−x1) −
y1−y0

(x1−x0)(x2−x1) ] (x− x0)(x− x1).

Exercise 11.7.8: “Bucketing” is no longer necessary because all the running sums at node N( j, i) are
integers lying between the integers ( j + 1) Amin( j, i) and ( j + 1) Amax( j, i), hence finite in number.
The second error, from interpolation, disappears as a consequence because the running sum – now
an integer – that we seek in the next node exists. Specifically, let V( j, i,k) denote the option value
at node N( j, i) given that the sum up to that node is k. Use S( j, i) to represent the integral asset
price at node N( j, i). By backward induction,

V( j, i,k)= [ pV( j + 1, i,k+ S( j + 1, i))+ (1− p)V( j + 1, i + 1,k+ S( j + 1, i + 1)) ] e−r�t ,

where 0≤ j < n, 0≤ i ≤ j , and ( j + 1) Amin( j, i)≤ k≤ ( j + 1) Amax( j, i). See [251, 252].

Exercise 11.7.9: Run both algorithms and output their average. This average cannot deviate from the
true value by more than the difference of their respective bounds.

Programming Assignment 11.7.11: We follow the terms in Subsection 11.7.1. Consider a lookback
call on the minimum and let Smin denote the historical low as it stands now. (1) Figure 11.12 re-
veals that at node N( j, i), the maximum minimum price between now and N( j, i) is Smax( j, i)≡
min(S0, S0u j−i di ). Similarly, the minimum minimum price is Smin( j, i)≡ S0u−i , which is indepen-
dent of j . The states at N( j, i) obviously are Smin( j, i),uSmin( j, i), u2Smin( j, i), . . . , Smax( j, i). The
number of states is either (a) j − i when j ≥ 2i and Smax( j, i)= S0u j−i di or (b) i when j < 2i
and Smax( j, i)= S0. It is then not hard to show that the total number of states over the whole tree is
proportional to n3, which is also the time bound. Use N( j, i,k) to denote the state at node N( j, i)
when ukSmin( j, i)= S0uk−i is theminimum price between now and N( j, i). Note that k≤ i . Finally,
let C( j, i,k) denote the option value at state N( j, i,k).

Backward induction starts with

C(n, i,k)=max(S0un−i di −min(ukSmin(n, i), Smin)),

at time n, where 0≤ i ≤ n and 0≤ k≤ lnu
Smax(n,i)
Smin(n,i)

. Inductively, each state at node N( j, i) takes in-
puts froma state at the upnode N( j + 1, i) and a state at the downnode N( j + 1, i + 1). Specifically,
for j = n− 1,n− 2, . . . , 0, the algorithm carries out

C( j, i,k)=


[ pC( j + 1, i,k)+ (1− p)C( j + 1, i + 1,k+ 1) ]/R, if j > 2i (i),
[ pC( j + 1, i,k)+ (1− p)C( j + 1, i + 1,k+ 1) ]/R, if j = 2i , k< i (ii),
[ pC( j + 1, i,k)+ (1− p)C( j + 1, i + 1,k) ]/R, if j = 2i , k= i (iii),
[ pC( j + 1, i,k)+ (1− p)C( j + 1, i + 1,k+ 1) ]/R, if j < 2i , k< j − i (iv),
[ pC( j + 1, i,k)+ (1− p)C( j + 1, i + 1,k) ]/R, if j < 2i , k= j − i (v),

where 0≤ i ≤ j and 0≤ k≤ lnu
Smax( j,i)
Smin( j,i)

. The observations to follow were utilized in deriving the
preceding formula. First, theminimumprice in theup-node state always equals N( j, i,k)’sminimum
price. In case (i), N( j, i,k)’s stock price S0u j−i di = S0u j−2i exceeds S0; thus the minimum price in
the down-node state equals N( j, i,k)’s minimum price. In both (ii) and (iii), N( j, i,k)’s stock price
equals S0. In case (ii), N( j, i,k)’s minimum price is less than S0; thus the minimum price in the
down-node state equals N( j, i,k)’s minimum price. In case (iii), N( j, i,k)’s minimum price equals
S0; thus theminimumprice in the down-node state equals S0d. In both (iv) and (v), N( j, i,k)’s stock
price S0uj−i di = S0u j−2i is less than S0. In case (iv), N( j, i,k)’s minimum price is less than S0uj−2i ;
thus the minimum price in the down-node state equals N( j, i,k)’s minimum price. In case (v),
N( j, i,k)’s minimum price equals S0u j−2i ; thus the minimum price in the down-node state equals
S0uj−2i−1. The returned value is C(0, 0, 0). If the option is American, simply take the greater of
S0uj−i di −min(ukSmin( j, i), Smin) and the C( j, i,k) above for the final C( j, i,k).

(2)When theoption is newly issued, thenumberof states at eachnodecanbedrastically reduced to
one.Thebasic idea is to calculate at eachnodeanewly issued lookbackoptionwhen the current stock
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price is one. See [470, pp. 475–477] (the algorithm in Fig. 29.5 uses a similar idea). Unfortunately,
this idea may not work for lookback options with a price history.

CHAPTER 12

Exercise 12.2.1: 4,288,200+ 400,000× r in U.S. dollars, where r is the spot exchange rate in $/DEM
3 months from now.

Exercise 12.2.2: (1) Germany has lower interest rates than the U.S.

Exercise 12.2.3: Apply the interest rate parity [514, pp. 328–329].

Exercise 12.2.4: (1)Anewlywritten forward contract is equivalent to aportfolioofone longEuropean
call and one short European put on the same underlying asset with a common expiration date equal
to the delivery date. This is true because ST − X=max(ST − X, 0)−max(X− ST, 0). Hence, if X
equals the forward price, the payoff matches exactly that of a forward contract. (2) Because a new
forward contract has zero value, the strike price must be such that the put premium is equal to
the call premium. Alternatively, we may write put–call parity (8.1) as C = P+PV(F − X) with the
help of Eq. (12.3). The conclusion is immediate as F = X. See [159]. (3) With (2), put–call parity
(8.1) implies that

0= C− P− S+ Fe−rτ =−S+ Fe−rτ ,
which is exactly Lemma 12.2.1. See [236, pp. 59–61] and [346, p. 244].

Exercise 12.2.5: Consider the case f > (F − X) e−rτ . We can create an arbitrage opportunity by
buying one forward contract with delivery price F and shorting one forward contract with delivery
price X, both maturing τ from now. This generates an initial cash inflow of f because the first
contract has zero value by the definition of F . The cash flow at maturity is

(ST − F)+ (X− ST)=−(F − X).

Hence a cash flowwith a PV of f − (F − X) e−rτ > 0 has been ensured. To prove the identity under
the remaining case f < (F − X) e−rτ , just reverse the above transactions.

Exercise 12.3.1: Repeat the argument leading to Eq. (12.8) but with lending when the cash flow is
positive and borrowing when the cash flow is negative. The result is

(F1− F0) Rn−1+ (F2− F1) Rn−2+ · · ·+ (Fn− Fn−1).
Clearly the result depends on how Fn− F0 is distributed over the n-day period.

Exercise 12.3.3: Higher rates beget higher futures prices, generating positive cash flows that can be
reinvested at higher rates. Similarly, lower rates beget lower futures prices, generating negative
cash flows that can be financed at lower rates. Because both are advantageous to holders of futures
contracts, their prices must be higher. See [402] or [514, p. 58] for more rigorous arguments.

Exercise 12.3.4: It assumes that the stock index is not adjusted for dividend payouts. First, note a
crucial element in the proofs of Eqs. (12.4) and (12.6), that is, the dividends of the stock index – in
fact, any underlying asset – are predictable. Therefore dividends must have predictable value. Now
we come to the problem of adjustments for dividends. If the index were adjusted for dividends, the
adjustment would have the effect of making the initial position in the underlying asset, a portfolio
of stocks in the case of stock indices, not deliverable as is. This breaks the proofs, in which the
only transactions that take place are related to the loan used to take a long position in the underlying
asset or the cash outflow incurred when a short position is taken in the underlying asset.

Exercise 12.3.5: (1) The cost of carry is Serτ because it costs that much to carry the cash instrument.
(2) F = Serτ by the condition of full carry. See [88, p. 170].

Exercise 12.3.6: If T-bills are yielding 6% per year and one owns gold outright for 1 year, then the
“cost” of ownership is 6% of the cost, representing the interest one would have earned if one had
bought a T-bill instead of the gold. At $350 an ounce, the opportunity cost of owning 100 ounces
for 1 year is 100× $350× 0.06= $2,100. Thus $2,100 is the cost of carry. See [698, p. 192].

Exercise 12.3.7: Consider a portfolio consisting of borrowing S to buy a unit of the underlying
commodity and a short position in a forward contract with the delivery price F (hence zero value).
The initial net cash flow is zero. On the delivery date, the cash flow is F − S−C. Hence F − S−C ≤
0 must hold to prevent arbitrage. See [746, p. 40].
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Exercise 12.3.8: Consider the strategyof shorting the commodity, investing theproceeds at the riskless
rate, and buying the forward contract with the delivery price F . The initial net cash flow is zero.
On the delivery date, the cash flow is S+ I − F −D. This is because the investor has to pay F
to get the commodity and close out the short position. The investor also has to pay any cash flow
due the commodity holder. On the other hand, the investor receives S+ I for the investment. By
Eq. (12.12),

S+ I − F −D= S− F +C−U.
Hence S− F +C−U ≤ 0 must hold to prevent arbitrage. See [746, p. 41].

Exercise 12.4.1: We have to show that there is no net cash outflow at expiration. Suppose the futures
price decreases at expiration. We then exercise the put for a short position in futures, offsetting the
long position in futures, and abandon the call. Similar actions can be taken for two other cases. See
[95, p. 188] and [328].

Exercise 12.4.2: See [514, p. 204].

Exercise 12.4.3: Consider a portfolio of one long call, one short put, one short futures contract, and
a loan of Fe−r t − X. The initial portfolio value is C− P− Fe−r t + X. At time t , the portfolio value
is

0− (X− Ft )− (Ft − F)− (F − Xert ) = X(ert − 1) ≥ 0 if Ft ≤ X,
(Ft − X)− 0− (Ft − F)− (F − Xert ) = X(ert − 1) ≥ 0 if Ft > X.

Suppose the put is exercised at time s < t . The value then is

C− (X− Fs)− (Fs − F)− [ Fe−r(t−s)− Xers ]= C+ F[ 1− e−r(t−s) ]+ X(ers − 1)≥ 0.
We hence conclude that C− P− Fe−r t + X≥ 0.

For the other bound, consider a portfolio of one long put, one futures contract, lending of F −
Xe−r t , and one short call. The initial portfolio value is P+ F − Xe−r t −C. At time t , the portfolio
value is

(X− Ft )+ (Ft − F)+ (Fert − X)− 0 = F (ert − 1) ≥ 0 if Ft ≤ X,
0+ (Ft − F)+ (Fert − X)− (Ft − X) = F (ert − 1) ≥ 0 if Ft > X.

Suppose the call option is exercised at time s < t . The value then is

P+ (Fs − F)+ [ Fers − Xe−r(t−s) ]− (Fs − X)= P+ F (ers − 1)+ X[ 1− e−r(t−s) ]≥ 0.
We hence conclude that P+ F − Xe−r t −C ≥ 0. See [746, pp. 281–282].

Exercise 12.4.4: (1)We shall do it for calls only. Substitute Se(r−q) t for F into Eqs. (12.16) of Black’s
model to obtain Eq. (9.20). If the underlying asset does not pay dividends, then substitute Sert

for F to obtain the original Black–Scholes formula for European calls. See [346, p. 201] and [470,
p. 295]. (2) This holds because the futures price equals the cash asset’s price at maturity.

Exercise 12.4.6: (1) From the binomial tree for the underlying stock, we replace the stock price
S at each node of the tree with Serτ , where τ is the time to the futures contract’s maturity at
that node. The binomial model for the futures price is then Serτ → Suer(τ−�t) or Sder(τ−�t); in
other words, F→ Fue−r�t or Fde−r�t . (2) If the underlying stock pays a continuous dividend
yield of q, the binomial model for the futures price under the same risk-neutral probability is
Se(r−q)τ → Sue−q�t e(r−q)(τ−�t) or Sde−q�t e(r−q)(τ−�t); in other words, F→ Fue−r�t or Fde−r�t ,
identical to (1).

Exercise 12.5.3: The forward dollar/yen exchange rate applicable to time [ 0, i ] is Fi ≡ Se(r−q) i by
Eq. (12.1).Hence thePVof the forward exchangeof cashflow i years fromnow is (FiYi −Di ) e−ri =
SYie−qi −Die−ri , in total agreement with Eq. (12.17).

CHAPTER 13

Exercise 13.1.1:
E[ X(t + s)− X(0) ] = E[ X(t + s)− X(s) ]+ E[ X(s)− X(0) ]

= E[ X(t)− X(0) ]+ E[ X(s)− X(0) ].
Define f (t)≡ E[ X(t)− X(0) ]. The above equality says that f (t + s)= f (t)+ f (s).Differentiate it
to get f ′(t + s)= f ′(s). In particular, f ′(t)= f ′(t − 1+ 1)= f ′(1). Hence f (t)= t f ′(1)+ a. How-
ever, a = 0 because f (0)= f (0 + 0)= 2 f (0); hence f (t)= t f ′(1). This implies that f (1)= f ′(1)
and f (t)= t f (1).
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We now proceed to the proof for the variance. Note that
Var[ X(t + s)− X(0) ] = Var[ X(t + s)− X(s) ]+Var[ X(s)− X(0) ]

= Var[ X(t)− X(0) ]+Var[ X(s)− X(0) ],
where the first equality is due to independent increments and the second to stationarity. Define
f (t)≡Var[ X(t)− X(0) ]. The above equality says that f (t + s)= f (t)+ f (s). Differentiate it to
get

f ′(t + s)= f ′(t), f ′(t + s)= f ′(s);
in particular, f ′(t)= f ′(1). Hence f (t)= t f ′(1)+ a. However, a = 0 because f (0)= 2 f (0); hence
f (t)= t f ′(1). This implies that f (1)= f ′(1) and f (t)= t f (1). This proves the claim because

Var[ X(t)− X(0) ]=Var[ X(t) ]−Var[ X(0) ].
See [566, p. 61].

Exercise 13.1.2: See [280, p. 96].

Exercise 13.1.3: First, mX(n)= E[ Xn ]= 0. Now, for a �= b,
E[ XaXb ]= Cov[ Xa, Xb ]= 0

because Xa and Xb are uncorrelated. Finally,

KX(m+n,m)= E[ Xm+nXm ]=
{
1 if n= 0 .
0 otherwise

Exercise 13.1.4: (1) In Eq. (13.1), use µ= 0 and

ξn =
{

1 with probability p
−1 with probability q ≡ 1− p .

(2) Because the mean is zero, the variance equals n[ (1/2)× 1+ (1/2)× (−1)2 ]= n.
Exercise 13.1.5: Consider two symmetric random walks whose joint displacement follows this distri-
bution:

(X1, X2)=


(+1,+1) with probability (1+ ρ)/4
(+1,−1) with probability (1− ρ)/4
(−1,+1) with probability (1− ρ)/4
(−1,−1) with probability (1+ ρ)/4

.

It is straightforward to verify that Var[ X1 ]=Var[ X2 ]= 1 and E[ X1X2 ]= ρ. See [254].

Exercise 13.2.1: In fact,
E[ X(tn) | X(tn−1), X(tn−2), . . . , X(t1) ]
= E[ X(tn)− X(tn−1) | X(tn−1), X(tn−2), . . . , X(t1) ]+ X(tn−1)
= X(tn−1),

where the last equality is true because
E[ X(tn)− X(tn−1) | X(tn−1), X(tn−2), . . . , X(t1) ]
= E[ X(tn)− X(tn−1) | X(tn−1)− X(tn−2), . . . , X(t2)− X(t1), X(t1)− X(0) ]
= E[ X(tn)− X(tn−1) ]= 0.

Exercise 13.2.2: Apply the result of Exercise 6.4.3(2), and the definition of a martingale, Eq. (13.3).

Exercise 13.2.3: See [763, p. 229].

Exercise 13.2.4: By the definition and Eq. (6.5),
Var[ Zn ]=Var[ Zn−1 ]+Var[ Xn ]+Cov[ Zn−1, Xn ].

We are done if we can prove that Cov[ Zn−1, Xn ]= 0. Now,

Cov[ Zn−1, Xn ] = E[ Zn−1Xn ]− E[ Zn−1 ] E[ Xn ]
= E[ Zn−1Xn ]
= E[ Zn−1(Zn− Zn−1) ]
= E[ Zn−1Zn ]− E

[
Z2
n−1

]
= E[ E[ Zn−1Zn | Zn−1 ] ]− E

[
Z2
n−1

]
= E[ Zn−1 E[ Zn | Zn−1 ] ]− E

[
Z2
n−1

]
= E[ Zn−1Zn−1 ]− E

[
Z2
n−1

]= 0,
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where the first equality is due to Eq. (6.3), the second equality is due to Eq. (13.4) and E[ Z0 ]= 0,
the fifth equality is due to the law of iterated conditional expectations, and the seventh equality is
due to the definition of a martingale. See [763, p. 247].

Exercise 13.2.5: Observe that {Sn,n≥ 1} is amartingale byExample 13.2.1. Let Zn ≡ S2n −nσ 2. Now,

E[ Zn | Z1, . . . , Zn−1 ]
= E [ S2n ∣∣ Z1, . . . , Zn−1 ]−nσ 2

= E [ (Sn−1+ Xn)2 ∣∣ S1, . . . , Sn−1 ]−nσ 2

= E [ S2n−1 ∣∣ S1, . . . , Sn−1 ]+ 2 E[ Sn−1Xn | S1, . . . , Sn−1 ]
+ E [ X2

n

∣∣ S1, . . . , Sn−1 ]−nσ 2

= S2n−1+ 2Sn−1 E[ Xn | X1, . . . , Xn−1 ]+ E
[
X2
n

∣∣ X1, . . . , Xn−1
]−nσ 2

= S2n−1+ 2Sn−1E[ Xn ]+ E
[
X2
n

]−nσ 2

= S2n−1+ E
[
X2
n

]−nσ 2

= S2n−1− (n− 1) σ 2

= Zn−1.
See [763, p. 247].

Exercise 13.2.6: E[Yn−Yn−1 | X1, X2, . . . , Xn−1 ] equals

E[Cn(Xn− Xn−1) | X1, X2, . . . , Xn−1 ]= CnE[ Xn− Xn−1 | X1, X2, . . . , Xn−1 ]= 0.

See [725, p. 94] or [877, p. 97].

Exercise 13.2.7: By induction. See also [419, p. 227].

Exercise 13.2.8: Let p denote the unknown risk-neutral probability. One unit of foreign currency
will be Rf units in a period. Translated into domestic currency, the expected value is

pRfSu+ (1− p) RfSd = RfS[ pu+ (1− p)d ],
where S is the current exchange rate. By Eq. (13.7), we must have S= RfS[ pu+ (1− p)d ]/R; so

R
Rf
= pu+ (1− p)d = p(u−d)+d.

See [514, p. 320].

Exercise 13.2.9: Because S(i + 1)= S(i)up+ S(i)d(1− p), where p= (R−d)/(u−d), we have
S(i + 1)= S(i) R. The claim is then proved by induction.

Exercise 13.2.10: From relation (13.8), Fi = Eπi [ Fn ]. However, Fn = Sn because the futures price
equals the spot price at maturity. See [514, p. 149].

Exercise 13.2.11: It suffices to show that Fi = Eπi [ Fi+1 ] as the general case can be derived by recur-
sion. Because futures contracts are marked to market daily, their value (not price) is zero. Hence
0= Eπi [ (Fi+1− Fi )/M(i + 1) ] from Eq. (13.7). Because M(i + 1) is known at time i , this equality

becomes 0= Eπi [ Fi+1 ]−Fi
M(i+1) , from which the claim easily follows. See [514, p. 171].

Exercise 13.2.12: (1) Assume that the bond’s current price is 1/R and define p≡ ( 1
d − 1

R)
ud
u−d . The

bond’s prices relative to the stock price one period from now equal 1/(Su) and 1/(Sd). Now

p
1
Su
+ (1− p) 1

Sd
=
(
1
d
− 1
R

)
ud
u−d

1
Su
+
(

1
R
− 1
u

)
ud
u−d

1
Sd
= 1
SR
,

which is the bond price relative to the stock price today. An alternative is to evaluate Eq. (13.10)
by using S= 1, S1 = S2 = R, P = S, P1 = Su, and P2 = Sd. See [681, p. 46]. (2) Prob1 and Prob2 are
the risk-neutral probabilities that use the stock price and the bond price as numeraire, respectively.
See [519] or [681, p. 48].

Exercise 13.2.13: Use the zero-coupon bond maturing at time k as numeraire in Eq. (13.9) to obtain
C(i)
P(i, k)

= Eπi
[
C(k)
P(k,k)

]
,
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where P( j,k) denotes the zero-coupon bond’s price at time j ≤ k. We now prove the claim by
observing that P(i,k)= d(k− i) and P(k,k)= 1. See [731, p. 171].

Exercise 13.3.1: The first two conditions for Brownian motion remain satisfied. Now,

E
[
x(t)−µt

σ
− x(s)−µs

σ

]
= E[ x(t)− x(s) ]−µ(t − s)

σ
= 0.

Furthermore, the variance of Z≡ { [ x(t)−µt ]− [ x(s)−µs ] }/σ equals

E[ Z2 ] = σ−2(E[ { x(t)− x(s) }2 ]− 2E[ { x(t)− x(s) }(µt −µs) ]+µ2(t − s)2)
= σ−2(E[ { x(t)− x(s) }2 ]− E[ x(t)− x(s) ]2 )
= σ−2 Var[ x(t)− x(s) ]
= t − s.

(Note that Z’s expected value is zero.)

Exercise 13.3.2: Without loss of generality, assume that s < t . Now,

KX(t, s) ≡ E[ { X(t)−µt }{ X(s)−µs } ]
= E[ { X(t)− X(s)−µ(t − s)+ X(s)−µs }{ X(s)−µs } ]
= E[ { X(t)− X(s)−µ(t − s) }{ X(s)−µs } ]+ E[ { X(s)−µs }2 ]
= E[ { X(t)− X(s)−µ(t − s) }X(s) ]+ sσ 2

= { E[ X(t)− X(s) ]−µ(t − s) } E[ X(s) ]+ sσ 2 from independence

= sσ 2.

See [147, p. 345] or [364, p. 36]. Another method is to observe that [763, p. 187]

Cov[ X(s), X(t) ] = Cov[ X(s), X(s)+ X(t)− X(s) ]
= Cov[ X(s), X(s) ]+Cov[ X(s), X(t)− X(s) ]
= Var[ X(s) ]

= sσ 2.

Exercise 13.3.3: Let 0< t1 < · · ·< tn. Then,
E[ X(tn)− X(0) | X(tn−1)− X(0), . . . , X(t1)− X(0) ]
= E[ X(tn)− X(tn−1)+ X(tn−1)− X(0) | X(tn−1)− X(0), . . . , X(t1)− X(0) ]
= E[ X(tn)− X(tn−1) | X(tn−1)− X(0), . . . , X(t1)− X(0) ]+ X(tn−1)− X(0)
= X(tn−1)− X(0).

The last equality holds because E[ X(tn)− X(tn−1) ]= 0 by the definition of theWiener process and
independent increments. This problem is in fact just a specialization of Exercise 13.2.1. See [280,
p. 97] or [541, p. 233].

Exercise 13.3.5: For (2),

E[ X(t)2− σ 2t | X(u), 0≤ u≤ s ]
= E[ X(t)2 | X(s) ]− σ 2t

= E[ { X(t)− X(s) }2 | X(s) ]+ E[ 2X(s){ X(t)− X(s) }+ X(s)2 | X(s) ]− σ 2t

= σ 2(t − s)+ X(s)2− σ 2t

= X(s)2− σ 2s.

For (3),

E[ eαX(t)−α
2σ 2t/2

∣∣ X(u), 0≤ u≤ s ] = eαX(s)−α2σ 2s/2E[ eα{ X(t)−X(s) }−α
2(t−s)/2 ]

= eαX(s)−α2σ 2s/2,

where the last equality is due to Eq. (6.8). See [419, p. 7] and [543, p. 358].
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Exercise 13.3.6: First, dP = 2−n because the random walk is symmetric. On the other hand,
dQ=∏ni=1[ 2−1+ (p− 2−1) Xi ]. Recall that p≡ (1+µ√�t )/2. Hence dQ/dP =∏ni=1[1+
(2p− 1) Xi ]=

∏n
i=1(1+µ

√
�t Xi ).

Exercise 13.3.7: Because X(t)− X(s)∼ N(µ(t − s), σ 2(t − s)),
E[Y(t) |Y(s) ]= E[ eX(t) | eX(s) ]= eX(s)E[ eX(t)−X(s) ]= Y(s) e(t−s)(µ+σ 2/2),

where the last equality is due to Eq. (13.12). See [543, p. 364] or [692, p. 349].

Exercise 13.3.8: (1) From Exercise 13.3.7, the rate of return is µ+ σ 2/2. Refer to Comment 14.4.1
for a discussion of why it is not µ. (2) It follows easily from the definition of S(t). To establish (3),
simply observe that ln( · ) is a concave function.

Exercise 13.3.9: Recall that Var[ X ]= E[ X2 ]− E[ X ]2.Hence, for X∼ N(µ, σ 2), we have E[ X2 ]=
σ 2+µ2.Returning toourexercise, simplyobserve that theexpressionwithin thebrackets is normally
distributed with mean µt/2n and variation σ 2t/2n.

Exercise 13.3.10: (1) Recall that X((k+ 1) t/2n)− X(kt/2n)∼ N(0, 2−n). Note that if X∼ N(0, σ 2),
then |X| has mean σ

√
2/π and variance σ 2(1− 2/π). (2) Let b≡ 2n/2

√
2/π and c ≡ 1− 2/π . For

any α > 0, we can easily find an n0 such that α < b− c1/22n/2 for n> n0. Chebyshev’s inequality
implies that

Prob[ fn(X)> α ] ≥ Prob[ fn(X)≥ b− c1/22n/2 ]
≥ Prob[ | fn(X)−b | ≤ c1/22n/2 ]
≥ 1− c

(c1/22n/2)2

= 1− 2−n→ 1.

See [73, p. 64].

Exercise 13.4.1 For instance,

E[ B(t)2 ] = E
[
W(t)2− 2t

T
W(t)W(T)+ t

2

T2
W(T)2

]
= t − 2t

T
E[W(t) {W(T)−W(t) } ]− 2t

T
E[W(t)2 ]+ t

2

T

= t − 0− 2t2

T
+ t

2

T
= t − t

2

T
.

See [193, p. 193] or [557, p. 59].

Exercise 13.4.2 It is x+W(t)− (t/T)[W(T)− y+ x ], 0≤ t ≤ T [557, p. 59].

Chapter14

Exercise 14.1.1: Consider s and t such that tk ≤ s < t ≤ tk+1 first. From Eq. (14.1),

E[ It (X) |W(u), 0≤ u≤ s ]
= E[ Is(X)+ X(tk){W(t)−W(s) } |W(u), 0≤ u≤ s ]
= E[ Is(X) |W(u), 0≤ u≤ s ]+ X(tk) E[W(t)−W(s) |W(u), 0≤ u≤ s ]
= Is(X). (33.8)

Simple induction can show that E[ It (X) |W(u), 0≤ u≤ ti ]= Iti (X) for ti < tk ≤ t ≤ tk+1. Hence,
for ti ≤ s < ti+1, tk ≤ t < tk+1, and i < k,

E[ It (X) |W(u), 0≤ u≤ s ] = E[ E[ It (X) |W(u), 0≤ u≤ ti+1 ] |W(u), 0≤ u≤ s ]
= E[ Iti+1 (X) |W(u), 0≤ u≤ s ]
= Is(X)

by Eq. (33.8). See [566, p. 158] and [585, pp. 167–168].

Exercise 14.1.2: The approximating sum is now
∑n−1
k=0W(tk+1)[W(tk+1)−W(tk) ] [30, p. 104].
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Exercise 14.1.3:

E
[
W(t)2

2

∣∣∣∣ W(u), 0≤ u≤ s
]

= E
[
W(s)2

2

∣∣∣∣ W(u), 0≤ u≤ s
]
+ E

[
W(t)2

2
− W(s)2

2

∣∣∣∣ W(u), 0≤ u≤ s
]

= W(s)2

2
+ t − s

2
,

which is not a martingale [566, p. 160].

Exercise 14.1.4: Use Eq. (14.3) and the definition E[W(t)2 ]=Var[W(t) ]= t .
Exercise 14.1.5: This is because

∫ t
t0
dW(s)=W(t)−W(t0) [30, p. 59].

Exercise 14.2.1:

φ0S0+Gk = φ0S0+
k−1∑
i=0

φi (Si+1− Si )= φ0S0+
k−1∑
i=0

(φi+1Si+1−φi Si )= φkSk.

See [70] or [420, p. 226].

Exercise 14.2.2: Applying Ito’s formula with f (x)= x2, we have W(t)2 = ∫ t0 ds+ ∫ t0 2W(s) dW.
Hence

∫ t
0 W(s)dW = [W(t)2/2 ]− (t/2). See [585, p. 172].

Exercise 14.3.1: (1) See [746, p. 175]. (2) From Example 14.3.3, we know that X(t)= eY(t), where Y
is a (µ− σ 2/2, σ ) Brownian motion. Thus ln(X(t)/X(0))∼ N((µ− σ 2/2) t, σ 2t).

Exercise 14.3.2: Note that dR= d(ln X)+ (σ 2/2)dt . From the solution to Exercise 14.3.1, we arrive
at

dR=
(
µ− σ

2

2

)
dt + σ dW+ σ

2

2
dt = µdt + σ dW.

Exercise 14.3.3: (1) Apply Ito’s formula (14.10) to the function f (x)= xn to obtain

dXn = nXn−1 dX+ 1
2
n(n− 1) Xn−2 (dX)2.

Substitute Wt for X above to arrive at the stochastic differential equation,

dWn
t = nWn−1

t dWt + n(n− 1)
2

Wn−2
t dt.

See [30, p. 94]. (2) Expand

dW(t)n = [W(t)+dW(t) ]n−W(t)n = nW(t)n−1 dW(t)+ n(n− 1)
2

W(t)n−2 dt

with Eq. (13.15) and (13.16). See [373, p. 89].

Exercise 14.3.4: The multidimensional Ito’s lemma (Theorem 14.2.2) can be used to show that dU =
(1/2)dY+ (1/2)dZ, which can be expanded into

dU
U
=
(
Y
Y+ Z a+

Z
Y+ Z f

)
dt +

(
Y
Y+ Z b+

Z
Y+ Z g

)
dW.

Exercise 14.3.5: The Ito process U = YZ is defined by Y and Z with differentials, respectively,
dY= a dt +bdWy and dZ= f dt + g dWz. Keep in mind that dWy and dWz have correlation ρ.
The multidimensional Ito’s lemma (Theorem 14.2.3) can be used to show that

dU = Z dY+YdZ+ (a dt +bdWy)( f dt + g dWz)= (Za+Yf +bgρ)dt + ZbdWy+Yg dWz.

Exercise 14.3.7: It is (1/F)dF = (1/X)dX+ (1/Y )dY+ σ 2 dt [746, p. 176].

Exercise 14.3.8: View Y as Y(X, t)≡ Xekt and apply Ito’s lemma [373, p. 106].

Exercise 14.3.9 Let f (t)≥ 0 be any continuous strictly increasing function. Then
W( f (t +�t))−W( f (t))∼ N(0, f (t +�t)− f (t)),

which approaches N(0, f ′(t)�t)=√ f ′(t)�t N(0, 1). Now,

dY(t)= ∂e
−t

∂t
W(e2t )dt + e−t dW( f (t))=−Y(t)dt + e−t

√
2e2t dt ξ =−Y(t)dt +

√
2dW,

where ξ ∼ N(0, 1). Hence dY=−Ydt +√2dW. The general formula for a(t)W( f (t)) appears in
[230, p. 229].
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Exercise 14.3.10: Ito’s lemma (Theorem 14.2.3) says that H satisfies

dH= ∂H
∂S
dS+ ∂H

∂σ
dσ − ∂H

∂τ
dτ + 1

2
σ 2S2

∂2H
∂S2

dt + σγ Sρ ∂
2H
∂S∂τ

dt + 1
2
γ 2 ∂

2H
∂τ 2

dt

=
[
µS

∂H
∂S
+β(σ − σ ) ∂H

∂σ
− ∂H
∂τ
+ 1

2
σ 2S2

∂2H
∂S2

+ σγ Sρ ∂
2H
∂S∂τ

+ 1
2
γ 2 ∂

2H
∂τ 2

]
dt

+ σ S ∂H
∂S
dW1+ γ ∂H

∂σ
dW2.

Note that dτ =−dt . See [790].

Exercise 14.3.11: Without loss of generality, we will verify, instead, that
∂p
∂τ
= 1

2
∂2 p
∂x2
− 1

2
x
∂p
∂x
,

where τ ≡ t − s. This is admissible because the process is homogeneous, which we can see by
observing that both the drift and the diffusion of the Ito process are independent of time t [30,
Remark 2.6.8]. From the hint, we know that

p(x, s; y, t)= 1√
2π (1− e−τ ) exp

[
−
(
y− xe−τ/2)2
2 (1− e−τ )

]
= B−1/2A,

where

A≡ exp
[
− (y− xe−τ/2)2

2 (1− e−τ )
]
, B≡ 2π(1− e−τ ).

After we verify the following equations, we will be done:
∂p
∂τ
= B−3/2Aπ

[
−e−τ + (y− xe−τ/2)2 e−τ

1− e−τ − (y− xe−τ/2)xe−τ/2
]
,

1
2
x
∂p
∂x
= B−3/2Aπ(y− xe−τ/2)e−τ/2x,

1
2
∂2 p
∂x2
= B−3/2Aπ

[
−e−τ +

(
y− xe−τ/2)2
1− e−τ e−τ

]
.

Exercise 14.4.1: It follows from Eq. (13.17), the infinite total variation of Brownian motion (with
probability one) [723].

Exercise 14.4.2: If rates are negative, then the price exceeds the total sum of future cash flows. To
generate arbitrage profits, short the bond and reserve part of the proceeds to service future cash
flow obligations.

Exercise 14.4.3: It must be that g(T)= 0; hence µ= σ = 0. In particular, there are no random
changes. See [207].

Exercise 14.4.4: Let the current time be zero and the portfolio contain bi > 0 units of bond i for
i = 1, 2. (1) Let θ(t)≡ A(t)/L(t). To begin with,

A(t)=
2∑
i=1
bi P(r(t), t, ti ), L(t)= P(r(t), t, s),

where P(r(t), t, s) is from Eq. (14.16). Note that r(t) is a random variable. Now,

θ(t) =
2∑
i=1
bi
P( r(t), t, ti )
P( r(t), t, s )

=
2∑
i=1
bi × exp

[
−r(t) (ti − s)−µ (ti − t)2− (s− t)2

2
+ σ 2 (ti − t)3− (s− t)3

6

]
.

Because ∂2θ(t)/∂r2 equals
2∑
i=1
bi (ti − s)2× exp

[
−r(t) (ti − s)−µ (ti − t)2− (s− t)2

2
+ σ 2 (ti − t)3− (s− t)3

6

]
> 0,

θ(t) is indeed a convex function of r(t).
(2) Immunization requires that ∂θ/∂r = 0 at time zero, that is,

2∑
i=1
−(ti − s)bi × exp

[
−r(0) (ti − s)−µ t

2
i − s2
2
+ σ 2 t

3
i − s3
6

]
= 0. (33.9)
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Incidentally, after some easy manipulations, Eq. (33.9) becomes the standard duration condition,
−[ ∂A(t)/∂r ]/A(t)= s. Another immunization condition is that the asset and the liability should
match in value at time zero, or θ(0)= 1. This leads to

2∑
i=1
bi × exp

[
−r(0) (ti − s)−µ t

2
i − s2
2
+ σ 2 t

3
i − s3
6

]
= 1. (33.10)

With the definitions

wi ≡ bi × exp
[
−r(0) (ti − s)−µ t

2
i − s2
2
+ σ 2 t

3
i − s3
6

]
,

we arrive at

θ(t) =
2∑
i=1
wi × exp

[
−{ r(t)− r(0) } (ti − s)−µ (ti − t)2− (s− t)2− t2i + s2

2

+ σ 2 (ti − t)3− (s− t)3− t3i + s3
6

]
=

2∑
i=1
wi × exp

[
−{ r(t)− r(0) } (ti − s)+µt(ti − s)+ σ 2 t − ti − s

2
t(ti − s)

]
(33.11)

The following lemma then implies that θ(t)< w1+w2 = 1, concluding the proof.

LEMMA

exp
[
−{ r(t)− r(0) } (ti − s)+µt(ti − s)+ σ 2 t − ti − s

2
t(ti − s)

]
< 1

for i = 1, 2.

Proof of Lemma: Equations (33.9) and (33.10) can be used to obtain w1 = [ (s− t2)/(t1− t2) ] and
w2 = [ (t1− s)/(t1− t2) ] because

∑2
i=1−(ti − s)wi = 0 and

∑2
i=1 wi = 1. From Eq. (33.11), the

[ ∂θ(t)/∂r(t) ] = 0 condition becomes
2∑
i=1

(s− ti )wi × exp
[
−{ r(t)− r(0) } (ti − s)+µt(ti − s)+ σ 2 t − ti − s

2
t(ti − s)

]
= 0.

Substitute the solution for (w1,w2) into the preceding equation to get

0 = (s− t1) s− t2t1− t2 exp
[
−{ r(t)− r(0) } (t1− s)+µt(t1− s)+ σ 2 t − t1− s

2
t(t1− s)

]

+ (s− t2) t1− st1− t2 exp
[
−{ r(t)− r(0) } (t2− s)+µt(t2− s)+ σ 2 t − t2− s

2
t(t2− s)

]
.

Therefore
−[ r(t)− r(0) ] (t1− s)+µt(t1− s)+ σ 2 t − t1− s

2
t(t1− s)

=−[ r(t)− r(0) ] (t2− s)+µt(t2− s)+ σ 2 t − t2− s
2

t(t2− s). (33.12)

Identity (33.12) implies

r(t) =
[
r(0)(t2− t1)+µt(t2− t1)+ σ 2 t − t2− s

2
t(t2− s)− σ 2 t − t1− s

2
t(t1− s)

]/
(t2− t1)

= r(0)+µt + σ
2t
2

(t − t2− t1).
Finally, substitute the preceding equation into the i = 1 term in Eq. (33.11) to get

exp
[
−
{
µt + σ

2t
2

(t − t2− t1)
}
(t1− s)+µt(t1− s)+ σ 2 t − t1− s

2
t(t1− s)

]
= exp

[
σ 2t
2

(t1− s)(t2− s)
]
< 1.

The i = 2 case is redundant as its value is identical by identity (33.12).



Answers to Selected Exercises 515

Exercise 14.4.5: Direct from identity (13.12), it is SeµT .

Exercise 14.4.6: Although dS/S= σ dW looks “symmetric” around zero, it is not. We can see this
most clearly by looking at its discrete version, which says that the percentage change has zeromean.
However, a 2% decrease followed by a 2% increase results in 1.02× 0.98= 0.9996< 1. In other
words, a 2% decrease has to be followed by a more than 2% increase to be back to the original
level.

Exercise 14.4.7: They follow from identity (13.12) and the fact that ln(S(t)/S(0)) is a (µ− σ 2/2, σ )
Brownian motion.

Exercise 14.4.8: This can be justified heuristically as follows. Partition [ 0,T ] into n equal periods.
Let σi−1 denote the (annualized) volatility during period i and Si the stock price at time i .
Consequently,

ln
Si
Si−1

∼ N
(
µ�t − 1

2
σ 2
i−1�t, σ

2
i−1�t

)
by relation (14.17). If S and σ are uncorrelated, preceding relation holds, given σi−1. The prob-
ability distribution of ln(Sn/S0), given the path followed by σ (i.e., σ1, σ2, . . . , σn), is thus normal
with mean∑

i

(
µ�t − 1

2
σ 2
i−1�t

)
= µT− 1

2

∑
i

σ 2
i−1�t→ µT− 1

2
σ̂ 2 T

and variance
∑
i (σ

2
i−1�t)→ σ̂ 2 T.

Exercise 14.4.9: This is due to (�S)2 ≈ σ 2S2�t [514, p. 221].

Exercise 14.4.11: Note that

lnu=−ln 0, u≈ 1+ σ
√
τ

n
+ σ

2τ

2n
, d ≈ 1− σ

√
τ

n
+ σ

2τ

2n
.

Hence, u+d ≈ 2+ σ 2(τ/n) and u−d ≈ 2σ
√
τ/n . Finally,

p≈ [ 1+ r(τ/n) ]− [ 1− σ√τ/n+ (1/2) σ 2(τ/n)
]

2σ
√
τ/n

≈ 1
2
+ r(τ/n)− (1/2) σ 2(τ/n)

2σ
√
τ/n

.

Now,

E[ Xi ]= p lnu+ (1− p) lnd = (2p− 1) lnu≈ r τ
n
− 1

2
σ 2 τ

n
.

Hence E[
∑n
i=1 Xi ]= n E[ Xi ]≈ rτ − σ 2τ/2, as desired.

We proceed to calculate the variance:

Var[ Xi ] = p(lnu− E[ Xi ])2+ (1− p)(lnd− E[ Xi ])2
= p[ lnu− (2p− 1) lnu ]2+ (1− p)[ lnd− (2p− 1) lnu ]2

= p[ lnu− (2p− 1) lnu ]2+ (1− p)[− lnu− (2p− 1) lnu ]2

= 4p(1− p) ln2 u

≈ 4
[
1
2
+ r(τ/n)− (1/2) σ 2(τ/n)

2σ
√
τ/n

] [
1
2
− r(τ/n)− (1/2) σ 2(τ/n)

2σ
√
τ/n

]
σ 2 τ

n

≈ σ 2 τ

n
.

Hence Var[
∑n
i=1 Xi ]= nVar[ Xi ]≈ σ 2τ , as desired.

Exercise 14.4.12: The troubling step is

Xi+1 = ln
(
1+ Si+1− Si

Si

)
≈ Si+1− Si

Si
≡ �Si
Si
.

It should have been

Xi+1 = ln
(
1+ Si+1− Si

Si

)
≈ �Si
Si
− 1

2

(
�Si
Si

)2

.

Now, because (dS)2 = σ 2S2 dt , the preceding approximation becomes Xi+1 ≈ (�Si/Si )−
(1/2) σ 2�t . This corrects the problem.

Exercise 14.4.13: Apply Eq. (14.7) to dX= (r − σ 2/2)dt + σ dW [229].
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CHAPTER 15

Exercise 15.2.2: Different specifications of the underlying process imply different ways of estimating
the diffusion coefficient from the data, and they may not give the same value. Hence the σ that gets
plugged into the Black–Scholes formula could be different for different models. Misspecification of
the drift therefore may lead to misestimation of the diffusion of the Ito process [819]. See [613] for
the complete argument.

Exercise 15.2.3: Write valuation formula (9.4) as

C(S, t)= pC(S
+, t +�t)+ (1− p)C(S−, t +�t)

er�t
,

where p≡ (Ser�t − S−)/(S+ − S−). Express C(S+, t +�t) and C(S−, t +�t) in Taylor expansion
around (S, t) and substitute them into the preceding formula. See [696, p. 416].

Exercise 15.2.4: This is the risk-neutral valuation with the density function of the lognormal distri-
bution [492, p. 312].

Exercise 15.2.5: Follow the same steps with slightly different boundary conditions: B(0, τ )= 1 for
τ > 0 and B(S, 0)=max(1− S/X, 0). In the end, we get �(z, 0)=max(e−z− 1, 0) instead. Now,

�(z,u) = 1√
2πu

∫ 0

−∞
(e−y− 1) e−(z−y)

2/(2u) dy= · · · = −N
(
− z√
u

)
+ 1
x
N
(
− z−u√

u

)
.

The rest is straightforward.

Exercise 15.2.6:
∂P
∂t
+ r S ∂P

∂S
+ 1

2
σ 2S2

∂2P
∂S2
− r P = r X< 0

when X− S is substituted into the equation [879, p. 112].

Exercise 15.3.1: It is
∂C
∂t
+ 1

2
σ 2F2 ∂

2C
∂F2

= rC.
This can be derived by the hedging argument with the observation that it costs nothing to enter
into a futures contract. An alternative replaces ∂C/∂t with ∂C/∂t − r F(∂C/∂F), ∂C/∂S with
er(T−t)(∂C/∂F), and ∂2C/∂S2 with e2r(T−t)(∂2C/∂F2) in the original Black–Scholes differential
equation. See [125], [575, Subsection 2.3.3], and [879, p. 100].

Exercise 15.3.3: (1) It is straightforward [492, p. 380]. (2)

∂C
∂t
+

n∑
i=1
r Si

∂C
∂Si
+

n∑
i=1

σ 2
i S

2
i

2
∂2C

∂S2i
+ 1

2

n∑
i=1

n∑
j=1
ρi jσiσ j Si Sj

∂2C
∂Si∂Sj

= rC.

Exercise 15.3.4: max(S1, S2)= S1+max(S2− S1, 0).
Exercise 15.3.5: Its terminal value can be written as

max(S1(τ )− X, 0)+max(S2(τ )− X, 0)−max(max(S1(τ ), S2(τ ))− X, 0).
The last term is the terminal value of a call on the maximum of two assets with strike price X. See
[746, p. 376].

Exercise 15.3.6: See [492, p. 4].

Exercise 15.3.8: Ito’s lemma applied to f (S1, S2)= S2/S1 gives

df = (· · ·)dt − S2
S1
σ1 dW1+ S2S1 σ2 dW2.

From variance (6.9), we know that the variance for df/ f = d(S2/S1)/(S2/S1) is the σ 2 in Eq. (15.5).

Exercise 15.3.10: It is due to dV−V1 dS1−V2 dS2 = 0.

Exercise 15.3.11: Just plug in the interpretation into formulas (9.20) for a stock paying a continuous
dividend yield.
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Exercise 15.3.12: (1) Let F denote the forward exchange rate τ years from now. Start with S
units of domestic currency and convert it into one unit of foreign currency. Also sell forward the
foreign currency. From then on, apply the standard hedging argument by using only foreign assets
to construct replicating portfolios, earning the riskless rate rf in foreign currency. To verify that
the strategy is self-financing in terms of domestic value, observe that the forward price is Se(r−rf) τ

′

at τ ′ years remaining to expiration. The final wealth is erfτ , identical to a call option in a foreign
risk-neutral economy. This can be converted for erfτ F = Serτ dollars in domestic currency because
F = Se(r−rf) τ . Correlation between the exchange rate and the foreign asset price is eliminated by
the forward contract. (2) The results in (1) show that Gf grows at a rate of rf−qf+ r − rf = r −qf in
a domestic risk-neutral economy, equivalent to a payout rate of qf. Furthermore, in this economy,
Xf becomes XfF/S= Xfe(r−rf) τ at expiration.

Exercise 15.3.13: Let Sf(t)≡ S(t) Bf(t), which follows geometric Brownian motion. What we have is
an exchange option that buys S(T) Bf(T) with XB(T) at T. Note that B(T)= Bf(T)= 1. Hence
the desired formula is SBfN(x)− XBN(x− σ√τ ), where x ≡ ln(SBf/(XB))+(σ 2/2) τ

σ
√
τ

, σ 2 ≡ σ 2
Sf
−

2ρσSfσB+ σ 2
B, and ρ is the correlation between Sf and B. See [575, p. 110].

Exercise 15.3.15: Identity the U.S. dollar with the currency C in the case of foreign domestic options.
The case of forex options is trivial.

Exercise 15.3.16: The portfolio has the following terminal payoff in U.S. dollars:
max(SA− XA, 0)+ X×max(XC− SC, 0).

Now consider all six possible relations between the spot prices (SA, SC, and S) and the strike prices.
See [775].

Exercise 15.3.17: For simplicity, let Ŝ= 1. The exchange rate and the foreign asset’s price follow
dS= µsSdt + σsSdWs, dGf = µfGf dt + σfGf dWf,

respectively. The foreign asset pays a continuous dividend yield of qf. Let C be the price of the
quanto option. From Ito’s lemma (Theorem 14.2.2),

dC =
(
µsS

∂C
∂S
+µfGf

∂C
∂Gf
+ ∂C
∂t
+ 1

2
σ 2
s S

2 ∂
2C
∂S2
+ 1

2
σ 2
f G

2
f
∂2C

∂G2
f

+ ρσsσfSGf
∂2C
∂S ∂Gf

)
dt

+ σsS ∂C
∂S
dWs+ σfGf

∂C
∂Gf

dWf.

Set up a portfolio that is long one quanto option, short δs units of foreign currency, and short δf
units of the foreign asset. Its value is �= C− δsS− δfGfS. The total wealth change of the portfolio
at time dt is given by

d�= dC− δs dS− δf d(GfS)− δsSrf dt − δfGfSqf dt.

The last two terms are due to foreign interest and dividends. From Example 14.3.5,

d(GfS)=GfS(µs+µf+ ρσsσf)dt + σsGfSdWs+ σfGfSdWf.

Substitute the formulas for dC, dS, and d(GfS) into d� to yield

d�=
[
µsS

∂C
∂S
+µfGf

∂C
∂Gf
+ ∂C
∂t
+ 1

2
σ 2
s S

2 ∂
2C
∂S2
+ 1

2
σ 2
f G

2
f
∂2C

∂G2
f

+ ρσsσfSGf
∂2C
∂S ∂Gf

− δsµsS− δfGfS(µs+µf+ ρσsσf)− δsSrf− δfGfSqf

]
dt.

+
(
σsS

∂C
∂S
− δsσsS− δfσsGfS

)
dWs+

(
σfGf

∂C
∂Gf
− δfσfGfS

)
dWf.

Clearly, we have to pick δf = (∂C/∂Gf) S−1 and δs = (∂C/∂S)− (∂C/∂Gf)(Gf/S) to remove the
randomness. Under these choices,

d�=
[
µsS

∂C
∂S
+µfGf

∂C
∂Gf
+ ∂C
∂t
+ 1

2
σ 2
s S

2 ∂
2C
∂S2
+ 1

2
σ 2
f G

2
f
∂2C

∂G2
f

+ ρσsσfSGf
∂2C
∂S ∂Gf

−
(
∂C
∂S
− ∂C
∂Gf

Gf

S

)
µsS− ∂C

∂Gf
Gf(µs+µf+ ρσsσf)−

(
∂C
∂S
− ∂C
∂Gf

Gf

S

)
Srf− ∂C

∂Gf
Gfqf

]
dt

= r�dt = r (C− δsS− δfGfS)dt = r
[
C−

(
∂C
∂S
− ∂C
∂Gf

Gf

S

)
S− ∂C

∂Gf
Gf

]
dt.
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After simplification,

rC = (r − rf) S ∂C
∂S
+ ∂C
∂t
+ σ

2
s S

2

2
∂2C
∂S2
+ σ

2
f G

2
f

2
∂2C

∂G2
f

+ ρσsσfSGf
∂2C
∂S ∂Gf

+ ∂C
∂Gf

Gf (rf− ρσsσf−qf).
Finally, C does not directly depend on the exchange rate S [734]. Hence the equation becomes

rC = ∂C
∂t
+ σ

2
f G

2
f

2
∂2C

∂G2
f

+ ∂C
∂Gf

Gf (rf− ρσsσf−qf).

See [878, pp. 156–157].

Exercise 15.3.18: This is because the bond exists beyond time t∗ only if C(V, t∗)< P(t∗) and the
market value if not called is exceeded by P(t) at t = t∗ for, otherwise, it would be called at t = t∗.
From that moment onward, the bond will be called the moment its market value if not called rises
to the call price. Because themarket value if not called cannot be exceeded by the conversion value,
C(V, t)≤ P(t). As a consequence, on a coupon date and when the bond is callable (i.e., t > t∗),

W(V, t−)=min(W(V−mc, t+)+ c, P(t))
because, as argued in the text, the bond should be called only when its value if not called equals the
call price, which equals the value if called under C(V, t)≤ P(t).
Exercise 15.4.1: Let f1, f2, . . . , fn+1 denote the prices of securities whose value depends on
S1, S2, . . . , Sn, and t . By Ito’s lemma (Theorem 14.2.2),

df j =
(
∂ f j
∂t
+
∑
i

µi Si
∂ f j
∂Si
+
∑
i,k

1
2
ρikσiσkSi Sk

∂2 f j
∂Si∂Sk

)
dt +

∑
i

σi Si
∂ f j
∂Si
dWi

≡ µ j f j dt +
∑
i

σi j f j dWi (33.13)

Maintain a portfolio of kj units of f j such that∑
j

kjσi j f j = 0 for i = 1, 2, . . . , n. (33.14)

Because∑
j

kj d f j =
∑
j

kjµ j f j dt +
∑
j

kj
∑
i

σi j f j dWi

=
∑
j

kjµ j f j dt +
∑
i

∑
j

kjσi j f j dWi =
∑
j

kjµ j f j dt,

the portfolio is instantaneously riskless. Its return therefore equals the short rate, or
∑
j kjµ j f j =

r
∑
j kj f j . After rearrangements,∑
j

kj f j (µ j − r)= 0. (33.15)

Equations (33.14) and (33.15) under the condition that not all kj s are zeros imply that µ j − r =∑
i λiσi j for some λ1, λ2, . . . , λn , which dependononly S1, S2, . . . , Sn, and t .1 Therefore any deriva-

tive whose value depends only on S1, S2, . . . , Sn, and t and that follows
df
f
= µdt +

∑
i

σi dWi (33.16)

must satisfy

µ− r =
∑
i

λiσi , (33.17)

where λi is the market price of risk for Si . Equation (33.17) links the excess expected return and
risk. The term λiσi measures the extent to which the required return on a security is affected by its
dependence on Si . From Eq. (33.13), µ and σi in Eq. (33.16) are

µ = ∂ f
∂t
+
∑
i

µi Si
∂ f
∂Si
+ 1

2

∑
i,k

ρikσiσkSi Sk
∂2 f
∂Si∂Sk

,

σi =
∑
i

σi Si
∂ f
∂Si

.

Plugging them into Eq. (33.17) and rearranging the terms, we obtain Eq. (15.14). Risk-neutral
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valuation discounts the expected payoff of f at the riskless interest rate assuming that dSi/Si =
(µi − λiσi )dt +σi dWi . The correlation between the dWi s is unchanged.

Exercise 15.4.2: (1) Just note that S= X. (2) Use the risk-neutral argument. See [894, p. 186].

Chapter16

Exercise 16.2.1: It reduces risk (standard deviation of returns) without paying a risk premium [3,
p. 38].

Exercise 16.2.2: Because the formula for β̂1 in formula (6.14) is exactly the hedge ratio h= ρδS/δF ,
resulting from plugging in Eq. (6.2) for δS and δF and plugging in Eq. (6.18) for ρ.

Exercise 16.2.3: Byformula (16.2)we short (1.25− 2.0)× [ 2,400,000/(600× 500) ]=−6 futures con-
tracts, or, equivalently, long six futures contracts.

Exercise 16.3.1: (1) In the current setup, the stock price forms a continuum instead of only two states
as in the binomial model. (2) This happens, for example, when their respective values are related
linearly. See [119].

Exercise 16.3.3: Because of the convexity of option values, the value of the hedge, being a linear
function of the stock price, loses money whichever way the price moves; one is buying stock when
the stock price rises and selling it when its price falls. So the premium can be seen as the cash reserve
to offset future hedging losses in order to maintain a self-financing strategy. See [593].

Alternatively, we can check that the equivalent portfolio at any time, � shares of stock plus
B dollars of bonds, is not self-financing unless B exceeds the stock value by exactly the option
premium. This means that we borrow money to buy the stock but have to initially invest our own
money in the amount equal to the option premium.

Exercise 16.3.5: From Eq. (15.3), it is clear that �= 0 when �= � = f = 0.

Exercise 16.3.8: If the two strike prices used in the bull call spread are relatively close to each other,
the payoff of the position will be approximately that of a binary option [514, p. 604].

CHAPTER 17

Exercise 17.1.1: Use the reflection principle [725, p. 106].

Exercise 17.1.3: Just note that for each terminal price, the number of paths that have the minimum
price level M equals the number of paths that hit M minus the number of paths that hit M− 1.
Both numbers can be obtained by the reflection principle.

Exercise 17.1.4: Set

κ ≡
⌊
ln (K/ (Sdn))

ln(u/d)

⌋
=
⌊
ln(K/S)

2σ
√
�t
+ n

2

⌋
.

It is easy to see that K̃ ≡ Suκdn−κ is the price among Su jdn− j (0≤ j ≤ n) closest to, but not
exceeding, K. The role of the trigger price is played by the effective trigger price K̃ in the binomial
model. Assume that the trigger price exceeds the current stock price, i.e., 2κ ≥ n.

Take any node A that is reachable from the root in l moves and with a price level equal to
the trigger price, i.e., Sujdl− j = K̃ for some 0≤ j ≤ l. The PV of the payoff is R−l(K̃− X). What
we need to calculate is the probability that the price barrier K̃ has never been touched until
now. Consider the node B that reaches A by way of two up moves. B’s price level is Su j−2dl− j .
Observe that the probability a path of length l − 2 that reaches node B without touching the
barrier, K̃ = Suj−1dl−2−( j−1), is precisely what we are after. However, this equivalent problem is the
complement of the ballot problem!WriteB’s price level as Su j−2d(l−2)−( j−2). The desired probability
can be obtained from formula (17.5) as(

l − 2
(l − 2)− 2( j − 1)+ ( j − 2)

)
pj−2(1− p)(l−2)−( j−2) =

(
l − 2
l − j − 2

)
pj−2(1− p)l− j .

The nature of the process dictates that n− l be even. By Eq. (17.4), we have l ≥ 2κ −n. Further-
more, because Sujdl− j = Suκdn−κ , we have j = (l −n)/2+ κ . The preceding probability therefore
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becomes(
l − 2

(l +n)/2− κ − 2

)
p(l−n)/2+κ−2(1− p)(l+n)/2−κ .

We conclude that the payoff from early exercise is∑
2κ−n≤l≤n
n− j is even

R−l
(

l − 2
(l +n)/2− κ − 2

)
p(l−n)/2+κ−2(1− p)(l+n)/2−κ(K̃− X).

The remaining part is to add the payoff from exercise at maturity, which is just the down-and-out
option with the barrier set to the trigger price.

Exercise 17.1.6: First verify that[
up

d(1− p)
]2h−n

→
(
H
S

)2λ

, (33.18)

where λ≡ (r + σ 2/2)/σ 2, by plugging in the formulas for u, d, and p from Eq. (17.1) and using
ln(1+ x)≈ x. Now,

(17.6) = S
2h∑
j=a

(
n

n− 2h+ j
)(up
R

) j [d(1− p)
R

]n− j
− XR−n

2h∑
j=a

(
n

n− 2h+ j
)
pj (1− p)n− j

= S
[

up
d(1− p)

]2h−n 2h∑
j=a

(
n

n− 2h+ j
)(up
R

)n−2h+ j [d(1− p)
R

]2h− j
− X× ( · · · ).

We analyze the first term; the second term can be handled analogously. Note that h≤ n/2 because
H< S. Thus,

2h∑
j=a

(
n

n− 2h+ j
)(up
R

)n−2h+ j [d(1− p)
R

]2h− j
=

n∑
j=n−2h+a

(
n
j

)(up
R

) j [d(1− p)
R

]n− j
= � (n− 2h+ a;n, pu/R) .

It is straightforward to check that n− 2h+ a ≈ ln( SX
H2dn

)/ ln(u/d). Finally, apply convergence
(9.18) to obtain �(n− 2h+ a;n, pu/R)→ N(x), where x ≡ ln(H2/(SX))+(r+σ 2/2) τ

σ
√
τ

. With convergence
(33.18), we have proved the validity of Eq. (11.4) for the no-dividend-yield case.

Exercise 17.1.7: FromLemma 9.3.3, ln Sτ ∼ N(ln S+ (r −q− σ 2/2) τ, σ 2τ ) in a risk-neutral economy,
where q is the continuous dividend yield. Hence, ln S2τ ∼ N(2 ln S+ (2r − 2q− σ 2) τ, 2σ 2τ ). The
desired formula thus equals the Black–Scholes formula after the following substitutions: S→ S2,
r→ 2r + σ 2, q→ 2q, and σ → 2σ . See [845].

Programming Assignment 17.1.8: See Programming Assignment 17.3 and [624].

Programming Assignment 17.1.9: We use the current stock price and the geometric average of past
stock prices as the state information each node keeps. Based on Exercise 11.7.2, the number of
states at time i is approximately i3/2, and backward induction over n periods gives us a running
time of O(n4). Consult [249] for the subtle issue of data structures.

To reduce the running time to O(n3), we prove that the number of paths of length n having
the same geometric average is precisely the number of unordered partitions of some integer into
unequal parts, none of which exceeds n. Let q(m) denote the number of such partitions of integer
m> 0. Any legitimate partition of m, say λ≡ (x1, x2, . . . , xk), satisfies

∑
i xi =m, where n≥ x1 >

x2 > · · ·> xk > 0. Interpret λ as the path of length n that makes the first up move at step n− x1
(i.e., during period n− x1+ 1), the second up move at step n− x2, and so on. Each up move at step
n− xi contributes xi to the sum m. This path has a terminal geometric average of SM1/(n+1), where
M≡ umdn(n+1)/2−m, in which the ith up move contributes uxi to the um term. For completeness, let
q(0)= 1. (See [26] for more information on integer partitions.) The crucial step is to observe that

(1+ x) (1+ x2) (1+ x3) · · · (1+ xn)= n(n+1)/2∑
m=0

q(m) xm.

The above polynomial clearly can be expanded in time O(n3). Thus the q(m)s can be computed in
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cubic time as well. With the parameters from Exercise 9.3.1, the option value is

R−n
n(n+1)/2∑
m=0

2−nq(m)×max (S[umdn(n+1)/2−m ]1/(n+1)− X, 0).

Note that this particular parameterization makes calculating the probability of reaching any given
terminal geometric average easy: 2−nq(m). The standard parameters u= eσ

√
τ/n and d = 1/u would

have led to complications because of the inequality between the probabilities of up and downmoves.

Programming Assignment 17.1.10: (1) Let Hi ≡ Sdn−i , i = 0, 1, . . . , n, and H−1 ≡−∞. A lookback
option on the minimum on an n-period binomial tree is equivalent to a portfolio of n+ 1 barrier-
type options, the ith of which is an option that knocks in at Hi but knocks out at Hi−1. Because this
option is basically long a knock-in option with barrier Hi and short a knock-out option with barrier
Hi−1, it can be priced in O(n) time. With n+ 1 such options the total running time is O(n2). See
Exercise 17.1.3 and [285]. (2) For the barrier options mentioned in (1), successive pairs are related:
Each can be priced from the prior one in O(1) time.

Exercise 17.1.12: This holds because h is the result of taking the floor operation; the opposite would
hold if h were the result of taking the ceiling. The influence of a is negligible in comparison.

Exercise 17.1.13: Consider the j that makes H′ = Sujdn−1− j the largest such number not exceeding
H. Call this number h′. Use 2h+ 1 in place of 2h if Suh

′
dn−1−h

′
> Suhdn−h, as this effective barrier

H′ is “tighter” (closer to H) than Suhdn−h. An equivalent procedure is to test if Suhdn−1−h ≤ H
and, if true, replace 2h with 2h+ 1. The effect on the choice of n is that of simplification:

n=
⌊

τ

[ ln(S/H)/( jσ ) ]2

⌋
, j = 1, 2, 3, . . . .

Exercise 17.1.15: We prove formula (17.8) with reference to Fig. 33.3. Consider any legitimate path
from (0,−a) to (n,−b) that hits H. Let J denote the first position at which this happens. (The
path may have hit the L line earlier.) By reflecting the portion of the path from (0,−a) to J , a
path from (0,a) to (n,−b) is constructed. Note that this path hits H at J . The number of paths
from (0,−a) to (n,−b) in which an L hit is preceded by an H hit is exactly the number of paths
from (0,a) to (n,−b) that hits L. The desired number is as claimed by application of the reflection
principle.

Exercise 17.1.16: See [675, p. 7]. Note that |Bi | can be derived from |Ai | if a is replaced with s−a
and b with s−b.

Exercise 17.1.17: Apply the inclusion–exclusion principle [604].

Figure 33.3: Repeated applications of the reflection prin-
ciple. The random walk from (0,− a ) to (n ,− b ) must hit
either barrier, and there must exist an L hit preceded by an
H hit. In counting the number of such walks, reflect the path
first at J and then at K .
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Trinomial backward induction with the diagonal method:

input: S, σ, τ, X, r,n;
real pu, pm, pd,u,d,C[n+ 1 ][ 2n+ 1 ];
integer i, j ;
Calculate u andd;
Calculate the branching probabilities pu, pm, and pd;
for (i = 2n down to 0)

for ( j = n down to �i/2�)
if [ j = n ] // Expiration date.

Calculate C[ j ][ i ] based on Suj−i ;
else { // Backward induction.

Calculate C[ j ][ i ] based onC[ j + 1 ][ i ],
C[ j + 1 ][ i + 1 ],C[ j + 1 ][ i + 2 ],
pu, pm, pd, and Suj−i (with
discounting factor e−rτ/n);

}
return C[ 0 ][ 0 ];

Figure 33.4: Trinomial backward induction with the diagonal method. C [ j ][ i ] represents the derivative
value at time j if the stock price makes j − i more up moves than down moves; it corresponds to the node
with the (i + 1)th largest underlying asset price. Recall that ud = 1. The space requirement can be further
reduced by using a 1-dimensional array for C .

Exercise 17.1.18: (1) A standard European call is equivalent to a double-barrier option and a double-
barrier option that knocks out if neither barrier is hit. (2) Construct a portfolio of long a down-and-
in option, long an up-and-in option, and short the double-barrier option. (3) It equals

∑n
i=2(−1)i

(|Ai | + |Bi |).
Exercise 17.1.19: Consider the process Y(t)≡ [ X(t)− f�(t)] /[ fh(t)− f�(t) ], where X(t)≡ ln S(t).
The payoff of the option at maturity becomes max(e[ fh(T)− f�(T)]Y(T)+ f�(T)− X, 0) with barriers at 0
and 1. See [757].

Programming Assignment 17.1.20: Calculate
(n
0

)
,
(n
1

)
,
(n
2

)
, . . . ,

(n
n

)
and store them for random access

when needed by the |Ai |s and the |Bi |s. Note that the calculation of N(a,b, s) takes time O(n/s) be-
cause |Ai | = |Bi | = 0 for i > n/s. The implication is that expression (17.10) only has (h− a) n

2(h−l) <
n/2 nonzero terms because l < a.

Exerciset 17.2.2: Consider one period to maturity with S= X.
Programming Assignment 17.2.3: See the algorithm in Fig. 33.4.

Exercise 17.2.4: See [745, p. 21].

Exercise 17.2.5: We focus on the down-and-in call with barrier H< X. Assume without loss of gen-
erality that H< S for, otherwise, the option is identical to a standard call. Under the trinomial
model, there are 2n+ 1 stock prices Suj (−n≤ j ≤ n). Let

a ≡
⌈
ln(X/S)

λσ
√
�t

⌉
, h≡ ln(S/H)

λσ
√
�t

> 0.

A process with n moves ends up at a price at or above X if and only if the number of up moves
exceeds that of down moves by at least a because Sua−1 < X≤ Sua . The starting price is separated
from the barrier by h down moves because Su−h = H (see Fig. 33.5). The following formula is the
pricing formula for European down-and-in calls:

R−n
n−2h−a∑
m=0

n−m−2h∑
j≥max(a,m−n)

n!
[ (n−m+ j + 2h)/2 ]!m! [ (n−m− j − 2h)/2 ]!

p(n−m+ j)/2u pmmp
(n−m− j)/2
d (Suj − X). (33.19)

This is an alternative characterization of the trinomial tree algorithm for down-and-in calls.
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Figure 33.5: Down-and-in calls under trinomial tree.
Note that the interpretations of a , j , and h differ from
those in Fig. 17.2.

We use the reflection principle for trinomial random walks to prove the correctness of pricing
formula (33.19). Consider paths that hit the barrier and end up at Su j with m level moves. Any
such path must contain, cumulatively, (n−m+ j)/2 up moves, m level moves, and (n−m− j)/2
down moves with probability p(n−m+ j)/2u pmmp

(n−m− j)/2
d . The reflection principle tells us that their

number equals the number of paths from (0,−h) to (n, j + h), which is

n!
[ (n−m+ j + 2h)/2 ]!m! [ (n−m− j − 2h)/2 ]!

because the number of up moves is (n−m+ j + 2h)/2, the number of down moves is (n−m− j −
2h)/2, and the number of level moves is m.

The correctness of the bounds on m (the number of level moves) and j (the number of up
moves minus the number of down moves) in pricing formula (33.19) can be verified as follows.
The former cannot exceed n− 2h− a as it takes 2h+ a nonlevel moves to hit the barrier and
end up at a price of at least X. That (n−m+ j + 2h)/2, (n−m− j − 2h)/2, (n−m+ j)/2, and
(n−m− j)/2 are integersmeans that n−m+ j must be even. That j must be at least a is obvious.
The bound j ≥m−n is necessitated by (n−m+ j)/2≥ 0. The bound j ≤ n−m− 2h is needed
because (n−m− j − 2h)/2≥ 0. Finally, we can easily check that all the terms are now nonnegative
integers within their respective bounds.

Exercise 17.3.1: The number of nodes at time n is 1+ 4+ 8+ 12+ 16+ · · ·+ 4n.

Exercise 17.3.2: The covariance between R1 and R2, or E[ R1R2 ]−µ1µ2, equals

σ1σ2(p1− p2− p3+ p4)= σ1σ2[p1− (1− p1− p4)+ p4]= σ1σ2(2p1+ 2p4− 1).

Hence their correlation is 2p1+ 2p4− 1, as claimed.

Exercise 17.3.5: We use asset 1 to denote the stock S and asset 2 to denote the futures F . Let
h denote the hedge ratio and the stock price has a correlation of ρ with the derivative’s price.
The variance at time �t is δ2S+ h2δ2F − 2hρδSδF , where δS denotes the standard deviation of the
stock price and δF the standard deviation of the futures price at time �t . The optimal hedge ratio
is h= ρ(δS/δF )= E[ (S− Sµ1)(F − Fµ2) ]/δ2F as shown in Eq. (16.1), where µ1 and µ2 are the
expected gross returns of the respective assets at �t . The formula for h is

(Fu2− Fµ2)[ p1(Su1− Sµ1)+ p3(Sd1− Sµ1) ]+ (Fd2− Fµ2)[ p2(Su1− Sµ1)+ p4(Sd1− Sµ1) ]
(p1+ p3)(Fu2− Fµ2)2+ (p2+ p4)(Fd2− Fµ2)2

.

Of course, there is no stopping at stocks and futures. For instance, we can use index futures to hedge
equity options dynamically, and the same formula applies!

Chapter18

Exercise 18.1.1: See [706, p. 135].

Exercise 18.1.2: Ui,T =max(0, X− eVmin+i×�V).

Exercise 18.1.4: After discretization, Ui, j−1 = aUi+1, j +bUi, j + cUi−1, j , where

a ≡
[(
σ Si
�S

)2

+ r Si
�S

]
1

2�t
, b≡

[
−r + 1

�t
−
(
σ Si
�S

)2
]
�t, c ≡

[(
σ Si
�S

)2

− r Si
�S

]
1

2�t
,

and Si is the stock price for Ui, j . Two conditions must be met: (1) 1/�t > (σ Si/�S)2+ r to ensure
that b> 0 and (2) σ 2Si/r >�S to ensure that a > 0 and c > 0. See [897].

Exercise 18.2.2: The node with the maximum discounted intrinsic value may not be exercised [129].
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Exercise 18.2.4: From Exercise 14.3.1 we know that d(ln X)= (µ− σ 2/2)dt + σ dW, a Brownian
motion process. BecauseBrownianmotion’s sample paths can be generatedwithout loss of accuracy
once we have access to a perfect random-number generator, a better algorithm generates sample
paths for ln X and then turns them into ones for X by taking exponentiation. Specifically, Xi =
Xi−1e(µ−σ

2/2)�t+σ√�t ξ , where ξ ∼ N(0, 1).
Exercise 18.2.7: Observe that Prob[ X<−y ]= 1−Prob[ X< y ] if X is normally distributed with
mean zero. Hence themethod alluded to does indeed fall into the category of the antithetic-variates
method by the inverse-transform method. It also works for any random variable with a density
function that is symmetric around zero.

Programming Assignment 18.2.9: Generalize the model for stochastic volatility in Section 15.5 as fol-
lows. In a risk-neutral economy, dS= r Sdt + σ S(ρ dWv+

√
1− ρ2 dWs) and dσ 2 = µdt + σv dWv,

where µ(t) and σv(t) may depend on the history of σ 2(t), and Wv(t) and Ws(t) are uncorrelated.
Now,

ST = S0× exp
[
rT− 1

2

∫ T
0
σ 2 du+ ρ

∫ T
0
σ dWv+

√
1− ρ2

∫ T
0
σ dWs

]
= S0× exp

[
−ρ

2

2

∫ T
0
σ 2 du+ ρ

∫ T
0
σ dWv

]
× exp

[
rT− 1− ρ2

2

∫ T
0
σ 2 du+

√
1− ρ2

∫ T
0
σ dWs

]
.

If the path of Wv is known, then ξ ≡ exp[− ρ2

2

∫ T
0 σ

2 du+ ρ ∫ T0 σ dWv ] is a constant and ln ST is

normally distributed with mean ln(S0ξ)+ rT− 1−ρ2
2

∫ T
0 σ

2 du and variance (1− ρ2)
∫ T
0 σ

2 du, in
which case the Black–Scholes formula applies. The algorithmic idea is now clear. Simulate Wv to
obtain a path of σ values. Use the analytic solution to obtain the option value conditional on that
path. Repeat a few times and average. There is no need to simulate Ws. See [876].

Exercise 18.2.10: They are Var[Y ]< 2Cov[ X,Y ] for β =−1 and Var[Y ]<−2Cov[ X,Y ] for
β = 1. Both are more stringent than relation (18.6). See [584].

Exercise 18.2.11: This scheme will make Cov[ X,Y ]= 0 and thus Var[W ]>Var[ X ].

Programming Assignment 18.2.12: See the algorithm in Fig. 33.6.

Control variates for pricing average-rate calls on a non-dividend-paying stock:

input: S, X,n, r, σ, τ,m;
real P,C,M1,M2;
real ξ( ); //ξ( )∼ N(0, 1).
integer i, j ;
C := 0;
for (i = 1 to m) {

P := S;M1 := S;M2 := S1/(n+1);
for ( j = 1 to n) {

P := Pe(r−σ 2/2)(τ/n)+σ√τ/n ξ( );
M1 := M1+ P;
M2 := M2× P1/(n+1);

}
C := C+ e−rτ ×max(M1/(n+ 1)− X, 0)−

(e−rτ ×max(M2− X, 0)− analytic value);
}
return C/m;

Figure 33.6: Control-variates method for arithmetic average-rate calls.m is the number of replications,n is the
number of periods, M 1 is the arithmetic average, and M 2 is the geometric average. The analytic value is
computed by Eq. (11.8) for the geometric average-rate option. In practice, the option value under the binomial
model may be preferred as the analytic value (but it takes more time, however, to calculate). Note
carefully that the expected value of the control variate is not exactly M 2.
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Exercise 18.2.13: Let ε ≡ |B|/|A|. The Monte Carlo approach’s probability of failure is clearly (1−
ε)N. The refined search scheme,on theotherhand,hasaprobabilityof failureequal to

∏
i (1− εi )N/m,

where εi is the proportion of Ai that intersects B, in other words, εi ≡ |B∩ Ai |/|Ai |. Clearly,∑
i εi =mε. Now, [

∏
i (1− εi ) ]N/m ≤ (

∑
i

1−εi
m )N = (1− ε)N, where the inequality is by the relation

between the arithmetic average and the geometric average.

Exercise 18.3.1: They are 1
3 ,

2
3 ,

1
9 ,

4
9 ,

7
9 ,

2
9 ,

5
9 ,

8
9 ,

1
27 ,

10
27 .

Chapter19

Exercise 19.1.1: This follows from the definition and cii = σ 2
i , the variance of xi .

Exercise 19.1.2: Consider any normalized linear combination
∑
i bi xi = bTx, where

∑
i b

2
i = 1. Let

b= Be for some unit-length vector e ≡ [ e1, e2, . . . , en ]T. Then bTx = eTBTx = eTP. Finally,

Var[ eTP ] = E[(eTP)2 ]=
n∑
i=1
e2i E

[
p2i
]

from the uncorrelatedness of the pi s

= λ1+
n∑
i=2
e2i (λi − λ1) because E

[
p2i
]= λi and e21 = 1−∑n

i=2 e
2
i .

The preceding equation achieves the maximum at λ1 when e2 = e3 = · · · = en = 0, that is, when
eTP = p1. In general, pj is the normalized linear combination of the xi s, which is uncorrelated with
p1, p2, . . . , pj−1 and has the maximum variance. This can be verified as follows. Uncorrelatedness
implies that e1 = e2 = · · · = e j−1 = 0. Hence

Var[ eTP ]=
n∑
i= j
e2i E

[
p2i
]= λ j + n∑

i= j+1
e2i (λi − λ j ).

The preceding equation achieves themaximum at λ j when e j+1 = e j+2 = · · · = en = 0, that is, when
eTP = pj .
Exercise 19.1.3: Note that[

1 ρ

ρ 1

]
=
[
1 0
ρ

√
1− ρ2

] [
1 ρ

0
√
1− ρ2

]
.

Exercise 19.1.4: See Exercise 6.1.3.

Exercise 19.1.5: (1) Let B≡∑p
i=1 σi ui v

T
i . It is sufficient to prove that Avi = Bvi for i = 1, 2, . . . , n

because { v1, v2, . . . , vn } forms a basis of Rn. Now Avi = σi ui and Bvi =
∑
j σ j u j (v

T
j vi )=

σi ui . See [870, p. 395]. (2) It is because Avi = σi ui and ATui = σi vi . See [392, p. 258], or
[870, p. 392].

Exercise 19.2.1: From Eq. (19.5), we have the following LS problem for linear regression:
1 x1
1 x2
...

...
1 xm


[
β0
β1

]
=


y1
y2
...
ym

 .
The normal equations are then[

m
∑
i xi∑

i xi
∑
i x

2
i

] [
β0
β1

]
=
[∑

i yi∑
i xi yi

]
.

See [381, p. 263].

Exercise 19.2.2: (1) Let the data be
{ (x1,1, x1,2, . . . , x1,n, y1), (x2,1, x2,2, . . . , x2,n, y2), . . . , (xm,1, xm,2, . . . , xm,n, ym) }.

We desire to fit the data to the linear model β0+β1x1+β2x2+ · · ·+βnxn. The LS formulation is
1 x1,1 x1,2 · · · x1,n
1 x2,1 x2,2 · · · x2,n
...

...
...

. . .
...

1 xm,1 xm,2 · · · xm,n



β0
β1
...
βn

=

y1
y2
...
ym

 .
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(2) It is
m

∑m
i=1 xi,1

∑m
i=1 xi,2 · · · ∑m

i=1 xi,n∑m
i=1 xi,1

∑m
i=1 xi,1xi,1

∑m
i=1 xi,1xi,2 · · · ∑m

i=1 xi,1xi,n...
...

...
. . .

...∑m
i=1 xi,n

∑m
i=1 xi,nxi,1

∑m
i=1 xi,nxi,2 · · · ∑m

i=1 xi,nxi,n



β0
β1
...
βn

=

∑m
i=1 yi∑m
i=1 xi,1yi...∑m
i=1 xi,nyi

 .
Exercise 19.2.3: See [392, p. 223].

Exercise 19.2.4: Let A≡ [ ai j ] ∈ Rm×n. Then ai j aik �= 0 only if | j −k |< ω. Hence, the ( j,k)th entry
of ATA, which is

∑m
i=1 ai j aik, equals 0 for | j −k| ≥ ω. See [75, p. 217].

Exercise 19.2.5: Because AT(AxLS−b)= 0 [415, p. 201].

Exercise 19.2.6: Let C = PPT be theCholeskydecomposition,where P is nonsingular.With Py= b
and Pε′ = ε, we have transformed the problem into Py= Ax+ Pε′ or, equivalently, y= P−1Ax+
ε′. We claim that y= P−1Ax is the LS problem to solve; in other words, we regress P−1b on P−1A.
This can be verified by

Cov[ ε′ ]= Cov[ P−1ε ]= P−1Cov[ ε ]
(
PT
)−1 = P−1σ 2C

(
PT
)−1 = σ 2C.

See Exercise 6.1.3 and [802, p. 54].

Exercise 19.2.7: The covariance matrix of xLS is

(ATA)−1ATE[bbT ]A[ (ATA)−1 ]T = σ 2(ATA)−1ATA[(ATA)−1]T

= σ 2(ATA)−1[ATA(ATA)−1]T

= σ 2(ATA)−1.

Exercise 19.2.8: Because both U and V are orthogonal, we have U−1 =UT and V−1 = VT. Expand
(ATA)−1AT and use the property  + = −1 to obtain the desired result.

Exercise 19.2.9: Just do the transformation A=U VT→ A+ = V +UT twice.

Exercise 19.2.10: This can be verified informally as follows. To begin with,
Âx = AA+b+ AV2y=U VTV +UTb+U VTV2y= b+U0y= b.

We complete the proof by noting that our solution set has dimension n−m. See [586].

Exercise 19.2.11: ByExercise 19.2.6 we should solve y= P−1Ax for x , where C = PPT and Py= b.
By normal equations (19.6), the solution must satisfy

(P−1A)T(P−1A)x = (P−1A)Ty= (P−1A)TP−1b.
After expansion, the preceding identity becomes AT(P−1)TP−1Ax = AT(P−1)TP−1b, which implies
that ATC−1Ax = ATC−1b, as claimed.

Exercise 19.2.12: Let B=U VT be the SVD of B and V ≡ [ V1︸︷︷︸
p

, V2︸︷︷︸
n−p

]}n. The solution to the
constrained problem is [586]

B+d+V2(AV2)+(b− AB+d). (33.20)

Solution (33.20) clearly satisfies the constraint Bx = d because all solutions to Bx = d are of
the form B+d+V2y for arbitrary y ∈ Rn−p by virtue of Eq. (19.10). An algorithm implementing
solution (33.20) is given in Fig. 33.7. We verify its correctness as follows. After step 1, UTBV = .
Observe that B+BV1 = V1 even if B+B �= I. This holds because, by pseudoinverse (19.9),

B+BV1 = V +UTU VTV1
= V + VTV1
= V + ×diagp×p[ σ1, σ2, . . . , σp ]

= V×diagn×p[ σ
−1
1 , σ−12 , . . . , σ−1p ]×diagp×p[ σ1, σ2, . . . , σp ]

= V×diagn×p[ 1, 1, . . . , 1 ]

= V1.
Therefore, after step 3, B+d = B+BV1x1 = V1x1. Step 4 makes b̂= b− AV1x1 = b− AB+d. Af-
ter step 5, x2 = (AV2)+ b̂= (AV2)+(b− AB+d). Finally the returned value is V1x1+V2x2 = B+d+
V2(AV2)+(b− AB+d), matching solution (33.20).

Exercise 19.2.13: See [586, p. 139].
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Algorithm for the LS problem with linear equality constraints:

input: A[m ][n ],b[m ], B[ p ][n ],d[ p ],m,n, p (p≤ n);
real x1[ p ], x2[n− p ], b̂ [m ],U[ p ][ p ],V[n ][n ],  [ p ][n ];
1. Compute the SVD of B, B=U VT;
2. Partition V ≡ [ V1︸︷︷︸

p

, V2︸︷︷︸
n−p

]}n;

3. Solve BV1x1 = d for x1;
4. b̂ := b− AV1x1;
5. Solve the LS problem AV2x2 = b̂ for x2;
6. return V1x1+V2x2;

Figure 33.7: Algorithm for the LS problem with linear equality constraints. See the text for the meanings of
the input variables. Because only the diagonal elements of  are needed, a one-dimensional array suffices
(the needed change to the algorithm is straightforward).

Exercise 19.2.14: Define W ≡ diag[ 1/
√
!1, 1/

√
!2, . . . , 1/

√
!p ]. It plays the role of W in weighted

LS problem (19.11). In other words, we claim that our problem is equivalent to

min
x∈Rn
‖WLft −W(yt −µ)‖ . (33.21)

This granted, because !−1 =WTW, the solution for ft is (LT!−1L)−1LT!−1 (yt −µ) by formula
(19.13), as desired.Hencewe need to verify only equivalence (33.21). Because the covariancematrix
of εt in Eq. (19.15) is !, the discussion leading to Eq. (19.14) says that the inverse of WTW should
equal that matrix, which is true.

Exercise 19.2.15: Cov[ yt , f Tt ]= E[ (yt −µ) f Tt ]= E[ (Lft + εt ) f Tt ]= E[ Lft f Tt ]= L [523, p. 399].

Exercise 19.2.16: See [239, 390].

Exercise 19.3.1: First we derive

f ′′(x) = f ′i−1
6x− 4xi − 2xi−1

h2i
− f ′i

−6x+ 2xi + 4xi−1
h2i

+ yi−1 12x− 6xi − 6xi−1
h3i

+ yi −12x+ 6xi + 6xi−1
h3i

(33.22)

for x ∈ [ xi−1, xi ]. For the f ′′(xi−) case, we simply evaluate f ′′(xi ) as xi is the right end point of
Eq. (33.22) for f ′′(x). As for the f ′′(xi+) case, we first derive an analogous formula for f ′′(x),
x ∈ [ xi , xi+1 ]. It is obvious that the desired formula is merely Eq. (33.22) but with i replaced with
i + 1. Finally, we evaluate f ′′(xi ) for the answer as xi is the left end point of the formula in question.
See [447, p. 479].

Exercise 19.3.2: With the help of Eq. (19.16), f ′′(x0)= f ′′(xn)= 0 implies that

f ′′(x0) = − 2
h1

(2 f ′0+ f ′1)+ 6
y1− y0
h21

,

f ′′(xn) = 2
hn

( f ′n−1+ 2 f ′n)− 6
yn− yn−1
h2n

.

Hence

2
h1

1
h1

0 0 0 · · · 0
1
h1

2
h1
+ 2
h2

1
h2

0 0 · · · 0

0 1
h2

2
h2
+ 2
h3

1
h3

0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
0 · · · · · · 0 1

hn−1
2
hn−1
+ 2
hn

1
hn

0 · · · · · · 0 0 1
hn

2
hn




f ′0
f ′1
...
f ′n

=



3 y1−y0
h21

3 y1−y0
h21
+3 y2−y1

h22
3 y2−y1

h22
+3 y3−y2

h23...
3 yn−1−yn−2

h2n−1
+3 yn−yn−1

h2n

3 yn−yn−1
h2n


.
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Exercise 19.3.4: 19.3.4: This time we solve 4 1 0

1 4 1

0 1 4


 f

′′
1

f ′′2
f ′′3

=
−16.226.4

−28.2

 .
The solutions are f ′′1 =−6.72857, f ′′2 = 10.7143, and f ′′3 =−9.72857. Thus

p1(x) = 2x+ 6.72857
6

(x− x3),

p2(x) = 2(2− x)+ 1.3 (x− 1)+ 6.72857
6

[ (2− x)− (2− x)3 ]− 10.7143
6

[ (x− 1)− (x− 1)3 ],

p3(x) = 1.3 (3− x)+ 5(x− 2)− 10.7143
6

[ (3− x)− (3− x)3 ]+ 9.72857
6

[ (x− 2)− (x− 2)3 ],

p4(x) = 5(4− x)+ 4(x− 3)+ 9.72857
6

[ (4− x)− (4− x)3 ].

Exercise 19.3.5: B is 1 x1 x21 x31 −1 −x1 −x21 −x31 0 0 0 0 0 0 0 0 · · · · · ·
0 0 0 0 0 0 0 0 1 x2 x22 x32 −1 −x2 −x22 −x32 0 · · ·

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

 ,
d is the zero vector, the jth row of A∈ Rm×4n is

[

4(i−1)︷ ︸︸ ︷
0, . . . , 0, 1, x̃ j , x̃2j , x̃

3
j ,

4(m−i)︷ ︸︸ ︷
0, . . . , 0 ]T

when x̃ j falls within [ xi−1, xi ] , and b≡ [ ỹ1, ỹ2, . . . , ỹm ]T.

Chapter 20

Exercise 20.1.1: As �S/S= µ�t + σ√�t ξ , we have �Si − Siµ�t ∼ N(0, S2σ 2�t). The log-
likelihood function is

n∑
i=1
− ln

(
2πS2σ 2�t

)− n∑
i=1

(�Si − Siµ�t)2
2S2σ 2�t

.

After differentiation with respect to µ and σ 2, the estimators are found to be

µ̂=
∑n
i=1(�Si/Si )
n�t

, σ̂ 2 =
∑n
i=1[ (�Si/Si )− µ̂�t ]2

n�t
.

They are essentially the estimators of Eqs. (20.2) and (20.3) with Ri replaced with (Si+1− Si )/Si
and α replaced with µ. Estimating µ remains difficult.

Exercise 20.1.2: Exercise 14.4.7 shows that the simple rate of return has mean µs = etµ− 1 and
variance σ 2

s = (etσ
2 − 1) e2tµ. Hence

σ =
√

1
t
ln
(
1+ σ 2

s

(1+µs)2

)
.

Published statistics for stock returns are mostly based on simple rates of return [147, p. 362]. Simple
rates of return also should be used when calculating the VaR in Section 31.4.

Exercise 20.1.3: Equation (20.5) can be simplified to
0=

∑
i

(�ri −β(µ− ri )�t) r−1i (33.23)

with the help of Eq. (20.6) and the assumption that µ �= 0. Multiply out Eqs. (33.23) and (20.6) to
obtain

0 =
∑
i

�ri r
−1
i −βµ�t

∑
i

r−1i +βn�t,

0 =
∑
i

�ri r
−2
i −βµ�t

∑
i

r−2i +β�t
∑
i

r−1i .



Answers to Selected Exercises 529

Eliminate µ to gain a formula for β. Then plug the formula into one of the preceding equations to
obtain the formula for µ. Finally, µ and β can be used in Eq. (20.7) to calculate σ 2.

Exercise 20.1.4: From Eq. (20.4) and Ito’s lemma, d ln r = [ β(µ−r)r − 1
2 σ

2]dt + σ dW. The discrete
approximation thus satisfies

ln
(
1+ �r

r

)
−
(
β(µ− r)
r

− 1
2
σ 2
)
�t ∼ N (0, σ 2�t

)
.

The log-likelihood function of n observations �r1,�r2, . . . , �rn after the removal of the constant
terms and simplification is

−n ln σ − (2σ 2�t
)−1 n∑

i=1

{
ln
(
1+ �ri

ri

)
−
[
β(µ− ri )
ri

− 1
2
σ 2
]
�t
}2

.

We differentiate the log-likelihood function with respect to β, µ, and σ and equate them to zero.
After simplification, we arrive at

0=
n∑
i=1

{
ln
(
1+ �ri

ri

)
−
[
β(µ− ri )
ri

− 1
2
σ 2
]
�t
}
r−1i , (33.24)

0=
n∑
i=1

{
ln
(
1+ �ri

ri

)
−
[
β(µ− ri )
ri

− 1
2
σ 2
]
�t
}
, (33.25)

σ 2 = 1
n�t

n∑
i=1

{
ln
(
1+ �ri

ri

)
−
[
β(µ− ri )
ri

− 1
2
σ 2
]
�t
}
ln
(
1+ �ri

ri

)
.

This set of three equations can be solved numerically. (The preceding formulas can be obtained as
follows. We derive Eq. (33.24) first by differentiating the log-likelihood function with respect to µ
and setting it to zero. Then we differentiate the function with respect to β and set it to zero. The
resulting equation can be simplified with the help of Eq. (33.24) to obtain Eqs. (33.25). Finally, we
differentiate the function with respect to σ and set it to zero. With the help of Eq. (33.24),

1
n�t

n∑
i=1

{
ln
(
1+ �ri

ri

)
−
[
β(µ− ri )
ri

− 1
2
σ 2
]
�t
}2

= σ 2.

Multiplying out the summand and using Eqs. (33.24) and (33.25) again leads to the last formula.)

Exercise 20.1.5: The log-likelihood function for a sample of size n is

−n
2
ln(2π)− n

2
ln(λ2)− θ

n∑
i=1

ln Si − 1
2λ2

n∑
i=1

(
�Si
Si

)2

S−2θ .

Straightforward maximization of the function with respect to λ2 and θ results in

λ2 = 1
n

∑
i

(
�Si
Si

)2

S−2θi , λ2 =
∑
i

ln Si∑
i ln Si

(
�Si
Si

)2

S−2θi .

There are two nonlinear equations in two unknowns λ2 and θ , that can be estimated by the
Newton–Raphson method. See [208] and also [113] for a trinomial model for the CEV process.

Exercise 20.1.8: FromExercise 6.4.3, (2), the desired prediction of Xt+1 given X1, X2, . . . , Xt should
be E[ Xt+1 | X1, X2, . . . , Xt ], which equals E[ Xt+1 ]= µ by stationarity.

Exercise 20.1.9: Let X≡ [ Xt , Xt−1, . . . , X1 ]T and a≡ [ a1, a2, . . . , at ]T. The linear prediction is
then a0+aT X. The matrix version of Exercise 6.4.1 says that we should pick a0 = µ and
aT = Cov[ Xt+1, X ] Cov[ X ]−1 [416, p. 75]. (See Exercise 19.2.2(2), for the finite-sample version
and Exercise 6.4.1, (1), for the one-dimensional version called beta.) By definition Cov[ X ]=
[ λ| i− j | ]1≤i, j≤t . As the covariance between Xt+1 and Xt−i is λi+1, Cov[ Xt+1, X ]= [ λ1, λ2, . . . , λt ].
See [416, p. 86].

Exercise 20.1.10: Let St denote the price at time t and St = St−1+ εt . By the assumption, Var[ St ]=
Var[ St−1 ]+Var[ εt ] based on Eq. (6.5).

Exercise 20.1.12: Take a positive autocorrelation for example. It implies that a higher-than-average
(lower-than-average) return today is likely to be followed by higher-than-average (lower-than-
average, respectively) returns in the future. In other words, today’s returns can be used to predict
future returns [424, 767].
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Exercise 20.1.13: Note that E[Yt ]=
∑l
k=0 E[ akXt−k ]= 0 and

λτ = E
[(

l∑
j=0
a j Xt+τ− j

)(
l∑
k=0
akXt−k

)]
=
{
alal−τ + · · ·+ aτa0, if τ ≤ l
0, otherwise .

See [541, p. 167].

Exercise 20.1.14: λτ ≡ E[ (Xt−τ −b)(Xt −b) ] equals

E

[( ∞∑
j=0
c jεt− j−τ

)( ∞∑
j=0
c jεt− j

)]
= σ 2(c0cτ + c1cτ+1+ c2cτ+2+ · · ·)= σ 2

∞∑
j=0
c j c j+τ .

See [667, p. 68].

Exercise 20.1.15: Similar to Exercise 19.2.2(1), the LS problem is
1 Xp Xp−1 · · · X1
1 Xp+1 Xp · · · X2
...

...
...

. . .
...

1 Xn−1 Xn−2 · · · Xn−p



c
a1
...
ap

=

Xp+1
Xp+2
...
Xn

 .

Exercise 20.2.1: (1) Let kX denote the kurtosis of Xt and kU the kurtosis of Ut . First, kU = E[U4
t ]

because E[Ut ]= 0 and E[U2
t ]= 1. Now,

kX ≡ E[ (Xt −µ)4 ]
E [ (Xt −µ)2 ]2

= E
[
V4
t U

4
t

]
E
[
V2
t
]2
E
[
U2
t
]2 = kU E

[
V4
t

]
E
[
V2
t
]2 > kU . (33.26)

The inequality is due to Jensen’s inequality. Note that we need to require only that Vt and Ut be
independent. See [839, p. 72].

Exercise 20.2.2: Keep E[Vnt ]= ena+n2b2/2 (see p. 68) and E[Vit U
i
t ]= E[Vit ] E[Uit ] for any i in

mind in the following. (1) By Eq. (33.26) and the fact that the kurtosis of the standard normal
distribution is three. (3) |Xt −µ| = Vt |Ut | and the mean of |Ut | is

√
2/π . (4) (Xt −µ)2 = V2

t U
2
t .

Exercise 20.2.3: (1) By repeated substitutions. (2) V2
t+1 = (1− a1− a2)V+ a1(Xt −µ)2+ a2V2

t given
Vt . Take expectations of both sides and rearrange to obtain E[V2

t+1 |Vt ]= V+ (a1+ a2)(V2
t −V).

Repeat the above steps to arrive at E[V2
t+k |Vt ]= V+ (a1+ a2)k(V2

t −V). Finally, applyEq. (20.11),
which holds as long as Ut and Vt are uncorrelated. See [470, p. 379].

CHAPTER 21

Exercise 21.1.1: A change of 0.01 translates into a change in the yield on a bank discount basis of one
basis point, or 0.0001, which will change the dollar discount, and therefore the invoice price, by

0.0001× $1,000,000× t
360
= $0.2778× t,

where t is the number of days to maturity. As a result, the tick value is $0.2778× 91= $25.28. See
[88, p. 163] or [325, p. 393].

Exercise 21.1.2: The implied rate over the 9-month period is
1.01656× 1.01694× [ 1+ 0.0689× (91/360) ]− 1= 5.179%.

The annualized rate is therefore 5.179%× (360/274)= 6.805%.

Exercise 21.1.4: In calculating the conversion factor, the bond is assumed to have exactly 19 years
and 9 months to maturity. Therefore there are 40 coupon payments, starting 3 months from now.
The value of the bond is

39∑
i=0

6.5
(1.04)i+.5

+ 100
(1.04)38.5

− 3.25= 149.19.

The conversion factor is therefore 1.4919.

Exercise 21.1.5: Buy the September T-note contracts and sell them in August [95, p. 107].

Exercise 21.1.6: (1) The forward rate for the Tth period is f (T,T+ 1). Now sell one unit of the
T-period zero-coupon bond and buy d(T)/d(T+ 1) units of the (T+ 1)-period zero-coupon bond.
The net cash flow today is zero. This portfolio generates a cash outflow of $1 at time T and a cash
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inflow of d(T)/d(T+ 1) dollars at time T+ 1. As the forward rate can be locked in today, it must
satisfy 1+ f (T,T+ 1)= d(T)/d(T+ 1) to prevent arbitrage profits. (2) It is the cost to replicate
the FRA now.

Exercise 21.2.2: See Exercise 12.2.4 or [346, p. 244].

Exercise 21.4.1: From A’s point of view, by issuing a fixed-rate loan and entering into a swap with
the bank, it effectively pays a floating rate of (LIBOR −S′A− F ′A)%. It is better off if SA >−S′A−
F ′A. Similarly, from B’s point of view, by issuing a floating-rate loan and entering into a swap, it
effectively pays a fixed rate of (FB+ F ′B+ SB+ S′B)%. It is better off if FB > FB+ F ′B+ SB+ S′B.
Finally, the bank is better off by entering into both swaps if FB+ F ′B− S′A− FA− F ′A+ S′B > 0. Put
these inequalities together and rearrange terms to get the desired result. See [849].

Exercise 21.4.2: The cash flow is identical to that of the fixed-rate payer/floating-rate receiver. To
start with, there is no initial cash flow. Furthermore, on all six payment dates, the net position is a
cash inflow of LIBOR plus 0.5% and a cash outflow of $5 million.

Exercise 21.4.3: Because the swap value is

(0.5− x) e−0.101×0.3+
(
0.106962

2
× 10− x

)
e−0.103×0.8

million, the x that makes it zero is 0.51695. The desired fixed rate is 10.339%.

Exercise 21.4.4: To start with,

P2− P1− (21.4) = (N +C∗) e−r1t1 −
n∑
i=1
Ce−ri ti −N e−rntn

− (C∗ −C) e−r1t1 −
n∑
i=2

(
fi
k
N −C

)
e−ri ti

= N e−r1t1 −N e−rntn −
n∑
i=2

fi
k
N e−ri ti .

So we need to prove only that

e−r1t1 − e−rntn −
n∑
i=2

fi
k
e−ri ti = 0. (33.27)

The annualized, continuously compounded forward rate ti−1 years from now is

ci ≡ ri ti − ri−1ti−1ti − ti−1 = ri ti − ri−1ti−1
(1/k)

from Eq. (5.9). Hence, fi = k(eci /k− 1)= k(eri ti−ri−1ti−1 − 1) according to Eq. (3.3), as the desired
rate needs to be one that is compounded k times per annum. Now, plug the formula for fi into
Eq. (33.27) to get e−r1t1 − e−rntn −∑n

i=2(e
ri ti−ri−1ti−1 − 1) e−ri ti = 0, as claimed.

Exercise 21.4.5: It is (C− Ĉ) e−r1t1 +∑n
i=2(C− Ĉ) e−ri ti .

Exercise 21.4.7: Callable bonds are called away when rates decline. This leaves the institution with
long interest rate swap positions that have a high fixed rate. Callable swaps can alleviate such a
situation. See [821, p. 602].

Exercise 21.4.8: A cap gives the holder an option at each reset date to borrow at a capped rate. An
option on a swap, in contrast, offers the holder the one-time option to borrow at a fixed rate over
the remaining lifetime of the swap. Clearly, swaptions are less flexible. More rigorously, a swaption
can be viewed as an option on a portfolio and a cap as a portfolio of options. Theorem 8.6.1 says
that a portfolio of options is more valuable than an option on a portfolio. See [346, p. 248] or [746,
p. 513].

Chapter 22

Exercise 22.1.1: See Exercise 5.6.3 and Eq. (5.11).

Exercise 22.2.1: As d(t)= e−ts(t), Eq. (22.1) becomes e−ts(t) = e−ts(t1)
t2−t
t2−t1 e−ts(t2)

t−t1
t2−t1 , which can be

simplified to s(t)= s(t1) t2−tt2−t1 + s(t2)
t−t1
t2−t1 .
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Exercise 22.3.1: Consistent with the numbers in Eq. (22.2), the LS problem is

Pi =
ni∑
j=1
Ci (a0+ a1 j + a2 j2)+ (a0+ a1ni + a2n2i )

= a0(niCi + 1)+ a1
(
ni +Ci

ni∑
j=1
j

)
+ a2

(
n2i +Ci

ni∑
j=1
j2
)
, 1≤ i ≤m,

which can be solved by multiple regression.

Exercise 22.3.2: Suppose that y≈ aebx for each piece of data. Then ln y≈ bx+ ln a. Transform the
data into pairs (xi , ln yi ) and perform linear regression to obtain a line z= a′ +b′x. Finally, set
a = ea′ and b= b′ so that y= ez = ea′+b′x = aebx . See [846, p. 545].

Exercise 22.4.2: Note that

f (T)= ∂[−lnd(T)]
∂T

=− 1
d(T)

∂d(T)
∂T

by Eq. (5.7). For the forward rate curve to be continuous, the discount function must have at least
one continuous derivative, hence claim (1). The preceding identities also show that if the forward
rate curve should be continuously differentiable, then a cubic spline is needed. See [147, p. 411].

Chapter 23

Exercise 23.1.1: No [492, p. 388].

Exercise 23.1.2: The accumulated value of a $1 investment is a(n)≡∏nt=1(1+ it ). As ln(1+ it )∼
N(µ, σ 2), the mean and the variance of this lognormal variable are given by eµ+σ

2/2 and e2µ+σ
2

(eσ
2 − 1), respectively, according to Eq. (6.11). Now ln a(n)=∑n

t=1 ln(1+ it ) is normal with
mean nµ and variance nσ 2. Equivalently, a(n) is lognormal with mean enµ+nσ

2/2 and variance
e2nµ+nσ

2
(enσ

2 − 1). See [547, p. 368].

Exercise 23.2.1: The logarithms of the short rates are ln rk, ln rk+ ln vk, ln rk+ 2 ln vk, . . . , rk+
(k− 1) ln vk. As far as variance is concerned, the term ln rk is irrelevant; hence it is deleted from
the list. The mean of the logarithms of the short rates is

k−1∑
i=0

(i ln vk)

(k−1
i

)
2k−1

= k− 1
2

ln vk.

Hence the variance equals
k−1∑
i=0

(i ln vk)2
(k−1
i

)
2k−1

−
(
k− 1
2

ln vk

)2

= (ln vk)2

2k−1

k−1∑
i=0
i2
(
k− 1
i

)
−
(
k− 1
2

ln vk

)2

= (ln vk)2

2k−1
(k− 1)[2k−2+ (k− 2) 2k−3]−

(
k− 1
2

ln vk

)2

= (k− 1)
(
ln vk
2

)2

,

which equals σ 2
k (k− 1)�t based on Eq. (23.2). See [731, p. 440].

Exercise 23.2.2: Consider rate r ≡ r j vij for period j and its two subsequent rates r j+1vij+1 and

r j+1vi+1j+1. By Eq. (23.2) and the constant-volatility assumption, we have vj = vj+1 = e2σ
√
�t . Hence

the dynamics becomes r→ r(r j+1/r j ) e2σ
√
�t ξ , where ξ = 0, 1, each with a probability of one-half.

We establish the claim by defining µ such that r j+1/r j = eµ−σ
√
�t .

Exercise 23.2.3: (1) It is equal to

q(ln r�)2+ (1−q)(ln rh)2− [q ln r�+ (1−q) ln rh ]2 = q(1−q)(ln rh− ln r�)2.

(2) Use r(�t) to denote the r after a time period of �t . From (1),

σ 2�t =Var[ ln r(�t) ]=Var[ ln(r +�r) ]=Var
[
ln
(
1+ �r

r

)]
≈Var

[
�r
r

]
= Var[�r ]

r2
.

So Var[ r +�r ]=Var[�r ]= r2σ 2�t .
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Exercise 23.2.4: (1) Let the rate for the first period be r and the forward rate one period from now
be f . Suppose the binomial interest rate tree gives r� and rh for the forward rates applicable in
the second period. By construction, rh/r� = v and (rh+ r�)/2= f . The price of a zero-coupon bond
two periods from now is priced by the tree as

1
1+ r

1
2

(
1

1+ rh +
1

1+ r�

)
.

It is not difficult to see that the above number exceeds 1/[ (1+ r)(1+ f ) ] unless v = 1.
(2) By (1) we know that the claim holds for trees with two periods. Assume that the claim holds

for trees with n− 1 periods and proceed to prove its validity for trees with n periods. Suppose the
tree has baseline rates r1, r2, . . . , rn, where ri is the baseline rate for the ith period. Denote this
tree by T(r1, . . . , rn). Split the tree into two (n− 1)-period subtrees by taking out the root. The
first tree can be denoted by T(r2, . . . , rn) and the second by T(r2v2, . . . , rnvn). If V(T) is used to
signify the value of a security as evaluated by the binomial interest rate tree T, clearly

V(T(r1, . . . , rn))= V(T(r2, . . . , rn))+V(T(r2v2, . . . , rnvn))2(1+ r1) . (33.28)

It suffices to prove the claim for zero-coupon bonds by the additivity of the valuation process. Hence
the problem is reduced to proving

V(T(r1, . . . , rn))> [ (1+ f1)(1+ f2) · · · (1+ fn) ]−1,
where fi is the one-period forward rate for period i .

By Eq. (23.4), f j = r j (1+ vj/2) j−1. So T(r2, . . . , rn) implies that its ith-period forward rate
(counting from its root) is

f ′i = ri+1
(
1+ vi+1

2

)i−1
= fi+1 2

1+ vi+1 .
Similarly, T(r2v2, . . . , rnvn) implies that its ith-period forward rate is

f ′′i = ri+1vi+1
(
1+ vi+1

2

)i−1
= fi+1 2vi+1

1+ vi+1 .
Apply the induction hypothesis to each of the subtrees to obtain

V(T(r2, . . . , rn))> [ (1+ f ′1)(1+ f ′2) · · · (1+ f ′n−1) ]−1
V(T(r2v2, . . . , rnvn))> [ (1+ f ′′1 )(1+ f ′′2 ) · · · (1+ f ′′n−1) ]−1

Add them up:
V(T(r2, . . . , rn))+V(T(r2v2, . . . , rnvn))
> [ (1+ f ′1)(1+ f ′2) · · · (1+ f ′n−1) ]−1+ [ (1+ f ′′1 )(1+ f ′′2 ) · · · (1+ f ′′n−1) ]−1.

By Eq. (33.28) we are done if we can show that

[ (1+ f ′1)(1+ f ′2) · · · (1+ f ′n−1) ]−1+ [ (1+ f ′′1 )(1+ f ′′2 ) · · · (1+ f ′′n−1) ]−1 > 2[(1+ f2) · · · (1+ fn)]−1.
Recall that r1 = f1 by definition. Now,

[ (1+ f ′1)(1+ f ′2) · · · (1+ f ′n−1) ]−1+ [ (1+ f ′′1 )(1+ f ′′2 ) · · · (1+ f ′′n−1) ]−1

≥ 2
√
[ (1+ f ′1)(1+ f ′2) · · · (1+ f ′n−1) ]−1[ (1+ f ′′1 )(1+ f ′′2 ) · · · (1+ f ′′n−1) ]−1

because of the relation between arithmetic and geometric means. It is sufficient to prove that

(1+ f ′1)(1+ f ′2) · · · (1+ f ′n−1)(1+ f ′′1 )(1+ f ′′2 ) · · · (1+ f ′′n−1)< [ (1+ f2) · · · (1+ fn) ]2.
Wenowprove thevalidityof thepreceding inequalityby showing that (1+ f ′i )(1+ f ′′i )< (1+ fi+1)2
for each 1≤ i ≤ n− 1 .

Because

(1+ f ′i )(1+ f ′′i )=
(
1+ fi+1 2

1+ vi+1

)(
1+ fi+1 2vi+1

1+ vi+1

)
= 4vi+1

(1+ vi+1)2 f
2
i+1+ 2 fi+1+ 1,

we have

(1+ f ′i )(1+ f ′′i )− (1+ fi+1)2 =−
(
1− vi+1
1+ vi+1

)2

f 2i+1 < 0,

as desired.
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Exercise 23.2.5: 23.2.5: Fix a period [ k− 1,k ]. (1) Let f be the forward rate for that period. Initiate
an FRA at time zero for that period. Its payoff at time k equals s− f , where s is the future spot
rate for the period. The forward rate f is the fixed contract rate that makes the FRA zero valued.
Adopt the forward-neutral probability measure πk with the zero-coupon bond maturing at time k
as numeraire. By Exercise 13.2.13, 0= d(k) Eπk0 [ s− f ], which implies that f = Eπk0 [ s ]. (2) Let f ′
denote the same forward rate one period from now. Again, f ′ = Eπk1 [ s ]. By applying Eπk0 to both
sides of the equation and then Eq. (6.6), the law of iterated conditional expectations, we obtain
Eπk0 [ f ′ ]= Eπk0 [ Eπk1 [ s ] ]= Eπk0 [ s ], which equals f . See [691, p. 398] and [731, p. 177].

Exercise 23.2.6: Solve for

0.112832
1+ r + 0.333501

1+ 1.5× r +
0.327842

1+ (1.5)2× r +
0.107173

1+ (1.5)3× r =
1

(1+ 0.044)4
.

The result is r = 0.024329. The forward rate for the fourth period is (1+ 0.044)4/(1+ 0.043)3−
1= 1.047006. So the baseline rate would have been 23× 0.047006/(2.5)3 = 0.024067 had we used
Eq. (23.4). It is lower than 0.024329.

Exercise 23.2.7: (1) Because d( j)=∑i Pi , where Pi is the state price in state i at time j , sim-
ply define the risk-neutral probabilities as qi ≡ Pi/d( j). Clearly qi sum to one. These probabil-
ities are called forward-neutral probabilities in Exercise 13.2.13. (2) They are 0.232197/0.92101,
0.460505/0.92101, and 0.228308/0.92101. See [40].

Exercise 23.2.8: Calculate all the state prices in O(n2) time by using forward induction. Then sum
the state prices of each column.

Exercise 23.2.9: (1)We do it inductively. Supposewe are at time j and there are j + 1 nodeswith the
state prices P′1, P

′
2, . . . , P

′
j+1. Let the baseline rate for period j be r ≡ r j , themultiplicative ratio be

v ≡ vj , and P1, P2, . . . , Pj be the state prices a period prior, corresponding to rates r, rv, . . . , rv j−1.
Each Pi has branching probabilities pi for the upmove and 1− pi for the downmove.Add P0 ≡ 0
for convenience.Clearly, P′i = (1− pi−1)Pi−1/(1+ rvi−2)+ pi Pi/(1+ rvi−1), i = 1, 2, . . . , j + 1 (see
Fig. 23.7). We are done because there are j + 1 equations (one of which is redundant) and j
unknowns p1, p2, . . . , pj . (2) Although the j state prices P1, P2, . . . , Pj are now unknown, p1 =
p2 = · · · = pj from the assumption. Hence j + 1 unknowns remain. We use the j + 1 equations,
none of which is redundant, to solve for the unknowns.

Exercise 23.3.1: No [427].

Exercise 23.3.4: (1) It is identical to the calculation for the futures price except that (a) discounting
should be used during backward induction and (b) the final price, the PV of a bond delivered at
the delivery date T, should be divided by the discount factor d(T) to obtain its future value [623,
p. 390]. (2) The forward price is

97.186× 0.232197+ 95.838× 0.460505+ 93.884× 0.228308
0.92101

= 95.693.

Note that the forward price exceeds the futures price 95.687 as Exercise 12.3.3 predicts.

Exercise 23.3.6: Consider the strategy of buying a coupon bond, selling a call on this bond struck at
X, and buying a put on this bond also struck at X. The options have the same expiration date t .
The cash flow is C,C, . . . ,C, X, where C is the periodic coupon payment of the bond. Note that
there is no cash flow beyond time t . Hence PV(I)+PV(X)= B+ P−C, where PV(I) denotes
the present value of the bond’s cash flow on and before time t . See [731, p. 269].

Exercise 23.4.1: At any node on the correlated binomial tree with the stock price–short rate pair
(S, r), it must hold that d < 1+ r < u by Exercise 9.2.1. Unless there are prior restrictions on r ,
this implies that u and d must be state, time, and path dependent. See [779].

Chapter 24

Exercise 24.2.1: (1) If the forward price satisfies it, the following two strategies yield the same dollar
amount after M time for the samecost: (1)Buyingan M-timezero-couponbond for P(t,M) dollars
and (2) spending P(t,M) dollars to buy P(t,M)/P(t,T) units of the T-time zero-coupon bond
and entering into a T-time forward contract for the (M−T)-time zero-coupon bond. Observe
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that we have F(t,T,M) dollars at the end of time T in strategy (2), exactly what is needed to
take delivery of one (M−T)-time zero-coupon bond. If P(t,M)> P(t,T) F(t,T,M), arbitrage
opportunities exist by taking short positions in the M-time zero-coupon bonds and long positions
in both the T-time zero-coupon bonds and the T-time forward contracts for (M−T)-time zero-
coupon bonds. Reverse the positions if P(t,M)< P(t,T) F(t,T,M). Note the affinity between
Eq. (24.1) and Eq. (5.2).

(2) Suppose the cash flows before the forward contract’s delivery date are C1,C2, . . . , at times
T1,T2, . . . . Let F denote the forward price. Our replicating strategy is this: Borrow FP(t,T)
dollars for T years, borrow Ci P(t,Ti ) dollars for Ti years for i = 1, 2, . . ., and buy one unit of the
underlying bond for B(t,M) dollars. Each of the loans’ obligations before T can be paid off by
the bond’s coupon. On the delivery date T, the position is worth the bond’s FV minus the forward
price, B(T,M)− F , replicating the forward contract’s payoff. Because the forward contract has zero
value at time t , we must have FP(t,T)+∑i Ci P(t,Ti )− B(t,M)= 0. Thus F = B(t,M)−∑i Ci P(t,Ti )

P(t,T) .
In words, the forward price equals the FV of the underlying bond’s current invoice price minus the
PV of the bond’s cash flow until the delivery date. The forward price includes the accrued interest
of the underlying bond payable at time T. See [848, p. 169].

Exercise 24.2.2: There is no net investment at time t , and we pay $1 at time T and receive
P(t,T)/P(t,M) dollars at time M. In other words, the investment at time T results in a certain
gross return of P(t,T)/P(t,M) at time M. So the said forward price must be P(t,M)/P(t,T). See
[76, p. 22].

Exercise 24.2.3: Note that Eq. (5.11) is equivalent to f (T)= ∂(TS(T))/∂T and TS(T)=−lnd(T)
by Eq. (5.7). The rest is simple translation between the two systems of notations.

Exercise 24.2.4: Equation (24.2) is

1+ f (t, s, 1)= 1+ f (t, s)= P(t, s)
P(t, s+ 1)

.

With the preceding identity applied recursively, we have

P(t,T)= P(t, t + 1)
[ 1+ f (t, t + 1) ] · · · [ f (t,T− 1) ]

Now,

P(t, t + 1)= [ 1+ r(t, t + 1) ]−1 = [ 1+ r(t) ]−1.
Combine the preceding two equations above to obtain the desired result. See [492, p. 388].

Exercise 24.2.5: We know that the spot rate s satisfies P = e−sτ . On the other hand, Eq. (24.6)’s
continuous compounding analog, Eq. (5.8), says that P = e−

∑τ−1
i=0 f (t,t+i). See [746, p. 422].

Exercise 24.2.6: Straightforward from Eqs. (5.12) and (5.13). An alternative starts from Eq. (24.1)
with F(t,T,T+ L)= P(t,T+L)

P(t,T) . Then observe that

f (t,T, L)= 1
L

[
1

F(t,T,T+ L) − 1
]
= 1
L

[
P(t,T)
P(t,T+ L) − 1

]
.

Exercise 24.2.8: Apply Eqs. (14.16) and (24.4) to obtain f (t,T)= r(t)+µ(T− t)− σ 2(T− t)2/2.
From the definition, Et [ r(T) | r(t) ]= r(t)+µ(T− t). So the premium is

f (t,T)− Et [ r(T) | r(t) ]=−σ
2(T− t)2

2
< 0.

As for the forward rate, use Eqs. (14.16) and (24.4) to obtain r +µ(T− t)− σ 2(T− t)2/2.
Exercise 24.2.9: Exercise 5.6.6 and Eq. (24.5) imply that P(t,T)= e−

∫ T
t r(s)ds for a certain economy

[746, p. 527].

Exercise 24.2.10: From rc ≡ ln(1+ re), we have re/(1+ re)= 1− e−rc . Hence,

drc = (1+ re)−1 dre− 1
2
(1+ re)−2 (dre)2

= (1+ re)−1re(µdt + σ dW)− 1
2
(1+ re)−2r2eσ 2 dt

= (1− e−rc )(µdt + σ dW)− 1
2
(1− e−rc )−2σ 2 dt,

from which the equation follows. See [781, Theorem 3].
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Exercise 24.3.1: From P(t,T)= e−r(t,T)(T−t) and Eq. (24.9), r(t,T)=− ln Et [ e−
∫ T
t r(s)ds ]

T−t . Jensen’s in-
equality says it is less than Et [

∫ T
t r(s)ds ]
T−t unless there is no uncertainty. See [302, Theorem 1].

Exercise 24.3.2: From Eqs. (24.4) and (24.9) and Leibniz’s rule,

f (t,T)=− ∂P(t,T)/∂T
P(t,T)

= Et [ r(T) e
− ∫ Tt r(s)ds ]

Et [ e−
∫ T
t r(s)ds ].

So the forward rate is a weighted average of future spot rates. Finally, the assumption says that the
above average is less than the simple average Et [ r(T) ]. See [302, Theorem 2].

Exercise 24.3.3: Yes for the calibrated tree and independent of the term structure of volatilities.
Consider an n-period bond with n> 1. One period from now (time t), the bond will have two
prices, Pu and Pd, such that (Pu+ Pd)/{ 2[ 1+ r(t) ] } = P(t, n), the market price of n-period zero-
coupon bonds. The expected one-period return for this bond is, by construction,

(Pu+ Pd)/2
P(t,n)

= 1+ r(t),

exactly as demanded by the local expectations theory.As for the uncalibrated tree, it does not satisfy
the theory. The reason is simple:

Pu+ Pd
2(1+ r(t)) > P(t,n),

as the tree is known to overestimate the discount factor by Theorem 23.2.2.

Exercise 24.3.4: From Eqs. (24.5) and (24.6) and the theory, which says that f (s, t)= Es [ r(t) ].
Exercise 24.3.5: Every cash flow has to be discounted by the appropriate discount function [292].

Exercise 24.3.7: See [725, p. 231].

Exercise 24.3.8: An interest rate cap, we recall, is a contract in which the seller promises to pay a
certain amount of cash to the holder if the interest rate exceeds a certain predetermined level (the
cap rate) at certain future dates. In the same way, the seller of a floor contract promises to pay cash
when future interest rates fall below a certain level. Technically, a cap contract is a sum of caplets.
We now give a precise description of the caplet.

Let t stand for the time at which the contract is written and [ t0, t1 ] be the period for which
the caplet is in effect with �t ≡ t1− t0. Denote the cap rate by x. For simplicity, assume that the
notional principal is $1.

The interest rate that in real life determines the payments of the cap is some market rate such as
LIBOR. The rate is quoted as a simple rate over the period [ t0, t1 ]. This simple rate, which we denote
by f , is determined at t0 and defined by the relation P(t0, t1)= 1/(1+ f�t). Finally a caplet is a
contingent t1 claim that at time t1 will pay max( f − x, 0)×�t to the holder of the contract. The
payment is in arrears. Specifically, the payoff at time t1 is

max
(
1− P(t0, t1)
P(t0, t1)�t

− x, 0
)
×�t = max

(
1

P(t0, t1)
− (1+ x�t), 0

)
= max

(
1

P(t0, t1)
−α, 0

)
,

where α ≡ 1+ x�t . The price of the caplet at time t can be easily proved to be

Eπt

[
e−

∫ t1
t r(s)ds max

(
1

P(t0, t1)
−α, 0

)]
= α Eπt

[
e−

∫ t0
t r(s)ds max

(
1
α
− P(t0, t1), 0

)]
.

Thus a caplet is equivalent to α put options on a t1 bond with delivery date t0 and strike price 1/α
(see also Subsection 21.2.4).

Exercise 24.4.1: From Eq. (24.13) we have �1−�2 = σ (r, t)2(C2−C1)/2 [207].



Answers to Selected Exercises 537

Exercise 24.4.3: Rearrange the equation as

1
2
σ (r)2

∂2P
∂r2
+µ(r) ∂P

∂r
− r P− ∂P

∂T
= 0

and assume that µ and σ are independent of time for simplicity. The partial differential equation
becomes the following N− 1 difference equations:

1
2
σ 2
i
Pi+1, j − 2Pi, j + Pi−1, j

(�r)2
+µi Pi+1, j − Pi, j

�r
− r Pi, j − Pi, j − Pi, j−1

�t
= 0

for 1≤ i ≤ N− 1, where µi ≡ µ(i�r) and σi ≡ σ (i�r). (In the preceding equation, we could have
used (Pi+1, j − Pi−1, j )/(2�r) for ∂P/∂r .) Regroup the terms by Pi, j−1, Pi−1, j , Pi, j , and Pi+1, j to
obtain the following system of equations at every time step:

ai Pi−1, j +bi Pi, j + ci Pi+1, j = Pi, j−1,
where

ai ≡−
(
σi

�r

)2
�t
2
, bi ≡ 1+ i�r �t +

(
σi

�r

)2

�t + µi�t
�r

, ci ≡−
(
σi

�r

)2
�t
2
− µi�t

�r
.

Initially, the terminal conditions Pi,0 are given. The condition σ (0)= 0 implies that a0 = 0. The
other condition, limr→∞ P(r,T)= 0, leads to PN, j = 0. The system of equations can be written as

b0 c0 0 · · · · · · · · · 0
a1 b1 c1 0 · · · · · · 0
0 a2 b2 c2 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
0 · · · · · · 0 aN−2 bN−2 cN−2
0 · · · · · · · · · 0 aN−1 bN−1




P0, j
P1, j
P2, j
...

PN−1, j

=



P0, j−1
P1, j−1
P2, j−1

...

...
PN−2, j−1
PN−1, j−1


.

We can obtain the Pi, j s by inverting the tridiagonal matrix given the Pi, j−1s. See Section 18.1 or
[38, pp. 81–84]. Note that the time partial derivative of the Black–Scholes differential equation in
Section 18.1 is with respect to t , not T here. This accounts for the slight notational differences from
the implicit equations in Subsection 18.1.3.

In practice, a finite interval in the r axis such as [ 0%, 30% ] suffices to obtain good approxi-
mations. A better approach is to consider a transform like x ≡ 1/(1+ r) and solve the differential
equation in terms of x, whose domain ( 0, 1 ] is finite [38]. See also [859].

Exercise 24.4.4: The argument is the same as that leading to the term structure equation except that
the futures contract’s return is zero, not r [746, p. 565].

Exercise 24.5.1: In a risk-neutral probability measure, µp(t,T)= r(t) and

d ln P(t,T)=
[
r(t)− 1

2
σp(t,T, P(t,T))2

]
dt + σp(t,T, P(t,T))dWt .

Recall from Eq. (24.3) that

f (t,T,�t)= ln P(t,T)− ln P(t,T+�t)
�t

.

Hence df (t,T,�t) equals

σp(t,T+�t, P(t,T+�t))2− σp(t,T, P(t,T))2
2�t

dt

+ σp(t,T, P(t,T))− σp(t,T+�t, P(t,T+�t))
�t

dWt .

As �t→ 0 the preceding equation becomes

d( f,T)= σp(t,T, P(t,T)) ∂σp(t,T, P(t,T))
∂T

dt − ∂σp(t,T, P(t,T))
∂T

dWt .

See [692, Subsection 19.3.2].
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Exercise 24.5.2: Let σp(t,T, P)= ψ(t) ln P(t,T). The desired diffusion term, −∂σp(t,T, P)/∂T,
equals −ψ(t)(∂ ln P(t,T)/∂T)= ψ(t) f (t,T) because f (t,T)=−∂ ln P(t,T)/∂T. See [731,
p. 378].

Exercise 24.6.2: In a period, bond one’s price can go to P1u1 or P1d1, and bond two’s price can go
to P2u2 or P2d2. A portfolio consisting of one short unit of bond one and P1u1−P1d1

P2u2−P2d2 long units of
bond two is riskless because its value equals P1(u1d2−u2d1)

u2−d2 in either state. Hence[
−B1+ P1(u1−d1)P2(u2−d2) B2

]
(1+ r)= P1(u1d2−u2d1)

u2−d2 ,

in which Bi is bond i ’s current price. Use the preceding equation and Eqs. (24.16) and (24.17)
in the formula for λ to make sure that the final result is indeed independent of the bond. See
[38, §3.3] and [781, Footnote 3].

Exercise 24.6.3: (1) In a period the portfolio’s value is either Pu+Vu(Pd− Pu)/(Vu−Vd) or
Pd+Vd(Pd− Pu)/(Vu−Vd). Because both equal −PuVd+PdVuVu−Vd , the return must be riskless. (2) Solve

(1+ x Pd−PuVu−Vd )R=
−PuVd+PdVu
Vu−Vd for x. See [739].

Exercise 24.6.4: (1) To match the payoff one period from now, we need

uP(t, t + 2)�+ er B = Vu,
dP(t, t + 2)�+ er B = Vd.

It is easy to deduce from the preceding equations that the values are correct as listed. (2) Plug the
values in (1) into V =�× P(t, t + 2)+ B. See [441].

Exercise 24.6.5: Simple algebraic manipulations [38, p. 44].

Exercise 24.6.6: Without the current term structure, the step 100/(1.05)2 = 90.703 would not have
been taken, and everything that followed would have broken down. See [725, Example 6.1] for
more information.

Exercise 24.6.7: (90.703×1.04)−92.593
98.039−92.593 .

Exercise 24.6.8: When a security’s value is matched in every state by the bond portfolio which is set
up dynamically, it will be immunized. This notion admits of no arbitrage profits.

Exercise 24.7.1: (1) Because the bond can never be worth more than $100 if interest rates are non-
negative. (2) This is due to the lognormal assumption for bond prices and the result that there is
some probability that the bond will reach any given positive price. However, in fact, bond prices
must lie between zero and the sum of the remaining cash flows if interest rates are nonnegative. See
[304].

Exercise 24.7.2: No. The value of this option equals themaximum of zero and the discounted value of
par minus the strike price, i.e., max(0, P(t,T)(100− X)), where T is the expiration date. See [304].

Chapter 25

Exercise 25.1.1: Rearrange the AR(1) process Xt −b= a(Xt−1−b)+ εt to yield Xt − Xt−1 = (1−
a)(b− Xt−1)+ εt , which is the discrete-time analog of the Vasicek model [41, p. 94]. Recall that the
autocorrelation of X at lag one is a, which translates into 1−β dt in the Vasicek model.

Exercise 25.1.2: (2) Observe that ∂B(t,T)/∂T = e−β(T−t). From Eq. (24.4) we have

f (t,T)=−σ
2
(
e−β(T−t)− 1

)2
2β2

−µ(e−β(T−t)− 1)+ r(t) e−β(T−t).

As Et [ r(T) | r(t) ]= µ+ (r(t)−µ) e−β(T−t), the liquidity premium is −σ 2[ e−β(T−t)− 1 ]2/(2β2).
Note that this premium is zero for T = t , as it should be. It is negative otherwise and converges to
−σ 2/(2β2) as T→∞, which is the difference between the long rate and the long-termmean of the
short rate, µ. See [855].
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Exercise 25.1.3: Just plug in the following equations into Eq. (24.12):

λ(t, r) = 0,

µ(r, t) = β(µ− r),
σ (r, t) = σ,
∂P/∂T
P

= −re−β(T−t)+µe−β(T−t)− σ
2

β2
e−β(T−t)−µ+ σ 2

2β2
+ σ 2

2β2
e−2β(T−t),

∂P/∂r
P

= −B(t,T)= e
−β(T−t)− 1

β
,

∂2P/∂r2

P
= B(t,T)2 =

[
1− e−β(T−t)

β

]2

.

The β = 0 case is simpler.

Exercise 25.1.4: Obtain the formula for ∂P/∂r from Exercise 25.1.3.

Exercise 25.1.5: From Exercise 25.1.4,

d ln P =
[
r − 1

2
B(t,T)2σ 2

]
dt − B(t,T) σ dW.

Because f (t,T)=−∂ ln P(t,T)/∂T,

df =−
[
−B(t,T) σ 2 ∂B(t,T)

∂T

]
dt + σ ∂B(t,T)

∂T
dW.

We can simplify the preceding equation by using ∂B(t,T)/∂T = e−β(T−t) to

df =
[
1− e−β(T−t)

β
e−β(T−t)σ 2

]
dt + e−β(T−t)σ dW.

See [16].

Exercise 25.1.6: Use ln P(t,T)= ln A(t,T)− B(t,T) r(t) and Eq. (14.14) to prove that

Var[ ln P ]= B(t,T)2 Var[ r(t) ]= σ
2

2β

[
1− e−2β(T−t)

]
.

Exercise 25.2.1: It approaches 2βµ/(β + γ ) by letting T→∞.

Exercise 25.2.4: The spot rate curve is r(t,T)=− ln P(t,T)
T−t =− ln A(t,T)

T−t + B(t,T) r(t,T)
T−t . So the spot rate

volatility structure becomes ∂r(t,T)
∂r σ (r, t)= σ (r, t) B(t,T)/(T− t). See [731, p. 415].

Exercise 25.2.5: (2) It is
√
2(φ1φ2−φ2

2) [138].

Exercise 25.2.6: Equations (25.1) and (25.3) say that the spot rate is a linear function of the short
rate under these two models, say r(t,T)= a(T− t)+b(T− t) r(t). In particular, r(T,T1)= a′ +
b′r(T,T2) for some a′ and b′. Now

max(0, r(T,T1)− r(T,T2)) = max(0, a′ + (b′ − 1) r(T,T2))

= (b′ − 1)×max
(
0, r(T,T2)− a′

1−b′
)
,

which means a portfolio of caplets. The case of floorlets is symmetric. See [616].

Exercise 25.2.9: Substitute the definitions of r+, r−, and r = f (x) into Eq. (25.4) [268].

Exercise 25.2.11: See [868].

Exercise 25.2.12: Observe that all the rates on the same horizontal row are identical. Nodes with
identical short rates generate identical term structures because the term structure depends solely
on the prevailing short rate. As a result, we need to store only a vector of rates and a vector of
probabilities. To answer (1), for example, we slide the two vectors backward in time as we perform
the necessary computation on a third vector. See [405].
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Exercise 25.2.13: Let x ≡ f (y, t). By Ito’s lemma,

dx =
[
∂ f
∂t
+ ∂ f
∂y
α(y, t)+ 1

2
∂2 f
∂y2

σ (y, t)2
]
dt + ∂ f

∂y
σ (y, t)dW.

The said transformation makes the diffusion term above equal one. See [696, 841].

Exercise 25.2.14: In asking if

σ (r, t)
√
�t − σ (ru, t)

√
�t =−σ (r, t)

√
�t + σ (rd, t)

√
�t , (33.29)

we have σ (r, t)= σ√r for the CIR model and σ (r, t)= rσ for the geometric Brownian motion.
Hence, for the CIR model,

ru = r +β(µ− r)�t + σ
√
r
√
�t,

rd = r +β(µ− r)�t − σ
√
r
√
�t,

whereas for the geometric Brownian motion,

ru = r + rµ�t + rσ
√
�t,

rd = r + rµ�t − rσ
√
�t,

It is easy to verify that Eq. (33.29) holds for the geometric Brownian motion but not for the CIR
model.

Exercise 25.3.1: The tree should model x(r)≡ r1−γ [475].

Exercise 25.5.1: Changes in slope are due to changes in a, changes in curvature are due to changes
in b, and parallel moves are due to changes in r [239, 564].

CHAPTER 26

Exercise 26.1.1: The equilibrium model, as the no-arbitrage model is calibrated to the government
bonds.

Exercise 26.2.3: Consider an n-period bond. Let Pud(t + 2, t +n) denote its price when the short
rate first rises and then declines. Similarly, let Pdu(t + 2, t +n) denote its price when the short rate
first declines and then rises. From Eq. (26.3),

Pud(t + 2, t +n) = Pu(t + 1, t +n)
Pu(t + 1, t + 2)

2ev3+···+vn

1+ ev3+···+vn

= P(t, t +n)
P(t, t + 1)

2
1+ ev2+···+vn e

r2+v2 2ev3+···+vn

1+ ev3+···+vn ,

Pdu(t + 2, t +n) = Pd(t + 1, t +n)
Pd(t + 1, t + 2)

2
1+ ev3+···+vn

= P(t, t +n)
P(t, t + 1)

2ev2+···+vn

1+ ev2+···+vn e
r2

2
1+ ev3+···+vn .

These two formulas are indeed equal.

Exercise 26.2.5: The portfolio value is P(t, t +T1)+βP(t, t +T2). It becomes Vu = Pu(t + 1, t +
T1)+βPu(t + 1, t +T2) if the short rate rises and Vd = Pd(t + 1, t +T1)+βPd(t + 1, t +T2) if the
short rate declines. Tomake it riskless, theremust be no uncertainty, that is Vu = Vd. The implication
is, by Eq. (26.3),

β = − Pu(t + 1, t +T1)− Pd(t + 1, t +T1)
Pu(t + 1, t +T2)− Pd(t + 1, t +T2)

=
2 P(t,t+T1)P(t,t+1)

(
1−exp[ v2+···+vT1 ]
1+exp[ v2+···+vT1 ]

)
2 P(t,t+T2)P(t,t+1)

(
1−exp[ v2+···+vT2 ]
1+exp[ v2+···+vT2 ]

)
= P(t, t +T1)(1− exp[ v2+ · · ·+ vT1 ])(1+ exp[ v2+ · · ·+ vT2 ])
P(t, t +T2)(1− exp[ v2+ · · ·+ vT2 ])(1+ exp[ v2+ · · ·+ vT1 ])

.

See [458].
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Exercise 26.2.7: The return r(t, t +n) is either ln Pd(t + 1, t +n)− ln P(t, t +n)= (n− 1) v+C with
probability 1− p or ln Pu(t + 1, t +n)− ln P(t, t +n)= C with probability p for some constant C.
The varianceof r(t, t +n) is hence p(1− p)[ (n− 1) v ]2. Equation (26.2) says that σ 2 = p(1− p) v2.
Hence the variance of r(t, t +n) is (n− 1)2σ 2. As for the covariance, use Eq. (6.3). See [72].

Exercise 26.2.8: Observe that Var[ ξs ]= (1/4) ln δ = v2/4 and v = 2σ .

Exercise 26.2.9:

−ln
(

1+ δn
1+ δn+1

)
− 1

2
ln δ = ln

(
δ−1/2+ δn+1/2

1+ δn
)

= ln

(
e−σ (�t)

1.5 + e2σ
√
�t [ (T−t)+�t/2 ]

1+ e2σ√�t (T−t)

)

≈ ln

(
1− σ (�t)1.5+ e2σ

√
�t [ (T−t)+�t/2 ]

1+ e2σ√�t (T−t)

)

≈ −σ (�t)
1.5+ e2σ

√
�t [ (T−t)+�t/2 ]− e2σ

√
�t (T−t)

1+ e2σ√�t (T−t)

≈ (1/2)(2σ
√
�t [ (T− t)+�t/2) ]2− (1/2)[ 2σ

√
�t (T− t) ]2

2

≈ σ 2(T− t)(�t)2.

Exercise 26.2.10: Following the proof of Exercise 26.2.9, we have

−ln
(
1+ δt−1
1+ δt

)
− 1

2
ln δ = ln

(
δ−1/2+ δt−1/2

1+ δt−1
)
≈ σ 2t (�t)2.

Exercise 26.3.1: Rearrange Eqs. (26.7) and (26.8) as simultaneous equations:

f (Pu, Pd) ≡ Pu+ Pd− 2(1+ r1)
(1+ y)i = 0,

g(Pu, Pd) ≡ Pu−1/(i−1)− 1− e2κ [Pd−1/(i−1)− 1]= 0.

Because Pu and Pd are functions of ri and vi , f (Pu, Pd) and g(Pu, Pd) are also functions of ri
and vi . Denote them by F(ri , vi ) and G(ri , vi ), respectively. For brevity, we use f (r, v) instead
of f (ri , vi ), g(r, v) instead of g(ri , vi ), and so on. By the Newton–Raphson method, the (k+ 1)th
approximation to (ri , vi ) – denoted as (r(k+ 1), v(k+ 1)) – satisfies

∂F(r(k), v(k))
∂r

∂F(r(k), v(k))
∂v

∂G(r(k), v(k))
∂r

∂G(r(k), v(k))
∂v

[�r(k+ 1)
�v(k+ 1)

]
=−

[
F(r(k), v(k))
G(r(k), v(k))

]
,

where�r(k+ 1)≡ r(k+ 1)− r(k) and �v(k+ 1)≡ v(k+ 1)− v(k).Weneed ∂F/∂r , ∂F/∂v, ∂G/∂r ,
and ∂G/∂v to solve the preceding matrix for (r(k+ 1), v(k+ 1)). Obviously,

∂F
∂r
= ∂Pu
∂r
+ ∂Pd
∂r
,

∂F
∂v
= ∂Pu
∂v
+ ∂Pd
∂v
.

By the chain rule,

∂G
∂r
= ∂g
∂Pu

∂Pu
∂r
+ ∂g
∂Pd

∂Pd
∂r
,

∂G
∂v
= ∂g
∂Pu

∂Pu
∂v
+ ∂g
∂Pd

∂Pd
∂v
.

In the preceding four equations, the items we need to evaluate are

∂Pu
∂r
,

∂Pd
∂r
,

∂Pu
∂v
,

∂Pd
∂v
,

∂g
∂Pu

,
∂g
∂Pd

.

The differential tree method can compute them as follows. Working backward, the method ends
up with Pu, Pd, ∂Pu/∂r , ∂Pd/∂r , ∂Pu/∂v, and ∂Pd/∂v. The remaining ∂g/∂Pu and ∂g/∂Pd can be
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computed directly from the definition of g:

∂g
∂Pu

=− 1
i − 1

P−i/(i−1)u ,
∂g
∂Pd

= e2κ

i − 1
P−i/(i−1)d .

Thus ∂F/∂r , ∂F/∂v, ∂G/∂r , and ∂G/∂v can be computed.
This backward-induction algorithm runs in cubic time because the Newton–Raphson method

takes only a few iterations to get to the desired accuracy. See [625].

Exercise 26.3.4: The proof is similar to Exercise 23.2.3. From the process,

σ (t)2�t = Var[ ln r(t +�t)− ln r(t) ]

= Var[ ln r(t){ 1+�r(t)/r(t) }− ln r(t) ]

= Var[ ln(1+�r(t)/r(t)) ]
≈ Var[�r(t)/r(t) ]

= Var[�r(t) ]/r(t)2.

So Var[�r(t) ]≈ r(t)2σ (t)2�t . See [514, p. 482].

Exercise 26.4.1: The normal model does, for the following reason. It has fatter left tails and thinner
right tails for the probability distribution of interest rates in the future (see Fig. 6.1). It therefore
gives thinner left tails and fatter right tails for the probability distribution of bond prices. See [476].

Exercise 26.4.2: Apply the moment generating function of the normal distribution with mean
r j +µi, j�t and variance σ 2�t . In other words, use formula (6.8) with t =−�t , µ= r j +µi, j�t ,
and σ = σ√�t . The result is

e−r j�t−µi, j (�t)
2+σ 2(�t)3/2 ≈ e−r j�t

[
1−µi, j (�t)2+ 1

2
σ 2(�t)3

]
.

See [477].

Programming Assignment 26.4.3: Because the unreachable nodes’ corresponding branch entries are
useless, we can improve the algorithm by keeping track of the upper and the lower bounds of the
reachable nodes in each column of branch and limiting the calculation to those nodes.

Programming Assignment 26.4.5: Apply the trinomial tree algorithm for the Hull–White model to
x ≡ ln r . See also [215, 848].

Exercise 26.5.1: It is (σ 2/κ)(e−κ(T−t)− e−2κ(T−t)) [746, p. 581].

Exercise 26.5.2: From Eq. (26.14), the process for df (t,T) in Eq. (26.15) can be written as

df (t,T)= µ(t,T)dt + σ (t,T)dWt .
Now r(t)= f (t, t)= f (0, t)+ ∫ t0 µ(s, t)ds+ ∫ t0 σ (s, t)dWs . Differentiate it with respect to t to
obtain

dr(t) = ∂ f (0, t)
∂t

dt +
[∫ t

0

∂µ(s, t)
∂t

ds
]
dt +

[∫ t
0

∂σ (s, t)
∂t

dWs

]
dt +µ(t, t)dt + σ (t, t)dWt

=
{
∂

∂T

[
f (0,T)+

∫ t
0
µ(s,T)ds+

∫ t
0
σ (s,T)dWs

]∣∣∣∣
T=t

}
dt +µ(t, t) dt + σ (t, t)dWt

=
[
µ(t, t)+ ∂ f (t,T)

∂T

∣∣∣∣
T=t

]
dt + σ (t, t)dWt

=
[
σ (t, t) λ(t)+ ∂ f (t,T)

∂T

∣∣∣∣
T=t

]
dt + σ (t, t)dWt .

See [515, Appendix 1].

Exercise 26.5.4: From Eq. (26.21),

Ct = P(t,T) N(dt )− XP(t, s) N(dt − σt ),
where dt ≡ (1/σt ) ln(P(t,T)/[ XP(t, s) ])+ (σt/2). (1) Let σt ≡ σ (T− s)

√
s− t . (2) Let σt ≡

β(s− t,T− t)√φ(s− t) .
Exercise 26.5.5: From Example 26.5.3 it is ∂r(t,T)

∂r(t) σ =− 1
T−t

∂ ln P(t,T)
∂r(t) σ = β(t,T) σ

T−t .
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Exercise 26.5.7: If every node contains forward rates up to the maturity of the underlying bond, a
term structure up to that maturity can be constructed. The tree then needs to extend to only the
maturity of the claim.

Exercise 26.5.8: Use Eqs. (24.5), (26.23), and (26.24) to arrive at

1 = 1
2
× exp

[
−
{
�t
∫ T
t+�t

µ(t,u)du+
√
�t
∫ T
t+�t

σ (t,u)du
}]

+ 1
2
× exp

[
−
{
�t
∫ T
t+�t

µ(t,u)du−
√
�t
∫ T
t+�t

σ (t,u)du
}]
.

Exercise 26.5.9: Equation (26.25) can be applied iteratively to obtain

(�t)2µ(t,T) ≈ ln
ex + e−x
ey+ e−y

≈ e
x − ey+ e−x − e−y
ey+ e−y

≈ [ e(�t)
1.5σ (t,T)− 1 ]ey− [ 1− e−(�t)1.5σ (t,T) ]e−y

ey+ e−y

≈ (�t)1.5σ (t,T) ey− (�t)1.5σ (t,T) e−y

ey+ e−y

= (�t)1.5σ (t,T)
ey− e−y
ey+ e−y

≈ (�t)1.5σ (t,T)
ex − e−x
ex + e−x

= (�t)1.5σ (t,T) tanh(x),

where x ≡√�t ∫ Tt+�t σ (t,u)du and y≡√�t ∫ T−�tt+�t σ (t,u) du.

Chapter 27

Exercise 27.3.1: Without loss of generality, assume that the par value of the bond is $1. Let the
call price at time t be C(t). Suppose the sinking-fund provision requires the issuer to retire the
principal by Fi dollars at time ti for i = 1, 2, . . . , n, where

∑n
i=1 Fi = 1. As before, it is best to

view the embedded option as n separate options. In particular, the ith option has the right to buy
a face value Fi callable bond at par at maturity (time ti ) with the call schedule equal to FiC(t) for
0≤ t ≤ ti . The underlying bond is otherwise identical to the original bond. The option value can be
calculated by backward induction. The desired price is that of the otherwise identical straight bond
minus the n options. See [848].

Exercise 27.3.2: Suppose the bond were trading below its conversion value. Consider the following
strategy: Buy one CB and sell short the stock with the number of shares equal to the conversion
ratio, and cover the short position by conversion. Note that there is a positive initial cash flow, and
the number of shares exactly covers the short position. See [325, p. 374].

Exercise 27.3.3: As bondholders convert, the price of the stock will decline because of dilution. The
correct definition for the conversion value would use the stock price after conversion, taking into
account the dilution issue. However, here we are assuming that the CBs in questions are the only
securities to affect the number of outstanding shares, which is rarely true. See [221, Chapter 8] and
[325, p. 373n].

Exercise 27.3.4: A CB’s market value is at least its conversion value, but early conversion generates
exactly the conversion value.

Exercise 27.3.5: If the current stock price is so high that the conversion option always expires in the
money and is exercised, every node will be an exercise node by induction from the terminal nodes.
As a result, every node’s CB value equals the stock price.

Exercise 27.3.6: On a per-share basis, the desired relation is

CB value (B)= warrant value (W)+ straight value (s), (33.30)
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where the warrant’s strike price X equals the CB’s conversion price P plus the coupon payment.
Assume that the stock price of the issuer follows the binomial model and that there are n periods
before maturity. Let ci be the coupon payment at time, P be the par value of the option-free bond,
R be the riskless gross return per period, and si ≡ PR−(n−i)+

∑n
j=i c j R

−( j−i), the straight value at
time i . Identity (33.30) can be proved by induction as follows. At maturity,W =max(S− X, 0) and
B=max(S, X)=W+ (P+ cn)=W+ sn. Inductively, at time i ,

B= pBu+ (1− p) Bd
R

+ ci = p(Wu+ si+1)+ (1− p)(Wd+ si+1)
R

+ ci =W+ si .

See [221, Chapter 8].

Exercise 27.4.1: It is identical to the valuation of riskless bonds by use of backward induction in a
risk-neutral economy except that at every node at time i , the bond may branch with probability pi
into a default state and thus pay zero dollar atmaturity. In other words, the risk-neutral probabilities
at time i are those for the riskless bond multiplied by 1− pi . See [514, p. 570] or [535] for the more
general case in which the firm pays a fraction of the par value instead of zero.

Exercise 27.4.2: When interest rates rise, both the price of the noncallable bond component and the
price of the embedded call option fall. The fall in price of the embedded option will offset some of
the fall in price of the noncallable bond. See [325, p. 324].

Exercise 27.4.3: (1) From Eq. (27.1), pricec = pricenc− call price. Differentiate both sides and then
divide by the price of the callable bond, pricec, to obtain

−OADc = ∂(pricenc)
∂y

1
pricec

− ∂(call price)
∂y

1
pricec

. (33.31)

The first term on the right-hand side of Eq. (33.31) is

∂(pricenc)
∂y

1
pricenc

pricenc

pricec
=−durationnc× pricenc

pricec
. (33.32)

From the chain rule and delta’s definition,

∂(call price)
∂y

= ∂(call price)
∂(pricenc)

∂(pricenc)
∂y

=�× ∂(pricenc)
∂y

.

The second term on the right-hand side of Eq. (33.31) thus is

∂(call price)
∂y

1
pricenc

pricenc

pricec
= �× ∂(pricenc)

∂y
1

pricenc

pricenc

pricec

= −�× durationnc× pricenc

pricec
.

Combine Eq. (33.32) and the preceding equation to yield the desired result. See [325, pp. 332–334].

Exercise 27.4.4: See Exercise 23.3.1.

Exercise 27.4.5: Increased volatility makes the bond more likely to be called, reducing the investor’s
return.

Exercise 27.4.6: (1) The OAS increases. The price of course cannot drop below par. (2) The OAS
decreases but will level off at zero after a certain point.

Exercise 27.4.7: Consider a T-period zero-coupon bond callable at time m with call price X. For
ease of comparison, assume a binomial interest rate process in which rn(i) denotes the short rate
for period i on the nth path. The true value is derived by backward induction thus:

Pb ≡ 1
2T

2m∑
n1=1
×min

2T−m∑
n2=1

100∏T
i=1[ 1+ rn1n2 (i)+OAS ]

,
X∏m

i=1[ 1+ rn1n2 (i)+OAS ]

 ,
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whereas the Monte Carlo method calculates

PMC ≡ 1
2T

2T∑
n=1

1∏m
i=1[ 1+ rn(i)+OAS ]

×min

(
100∏T

i=m+1[ 1+ rn(i)+OAS ]
, X

)

= 1
2T

2m∑
n1=1

2T−m∑
n2=1

1∏m
i=1[ 1+ rn1n2 (i)+OAS ]

×min

(
100∏T

i=m+1[ 1+ rn1n2 (i)+OAS ]
, X

)

= 1
2T

2m∑
n1=1

2T−m∑
n2=1
×min

(
100∏T

i=1[ 1+ rn1n2 (i)+OAS ]
,

X∏m
i=1[ 1+ rn1n2 (i)+OAS ]

)
.

From Jensen’s inequality
∑l
n=1 min(xn, c)≤min(

∑l
n=1 xn, c), we conclude that PMC ≤ Pb. Similarly

the Monte Carlo method tends to overestimate the value of putable bonds. See [349].

Exercise 27.4.11: In Fig. 27.7(d), (1) change 0.936 to 1.754 because 1.754= (106.754− 5)− 100 and
(2) change 0.482 to 0.873 because 0.873= (1.754+ 0.071)/1.045.

Exercise 27.4.12: We prove the claim for binomial interest rate trees with reference to Fig. 23.1. The
same argument can be applied to any tree. Let s represent the OAS. Consider zero-coupon bonds
first. Backward induction performs

PA = PB+ PC2er+s
= e−s PB+ PC

2er
at each node. It follows by mathematical induction that the n-period benchmark bond price
Pb(n) and the n-period nonbenchmark bond price Pnb(n) are related by Pb(n)= Pnb(n) esn. Let
rb(n) and rnb(n) denote their respective yields. Then e−rb(n)n = e−rnb(n)nesn, i.e., rb(n)= rnb(n)− s.
By assumption, rb(n) are all identical. We can hence drop the dependence on the maturity n,
and the identity becomes rb = rnb− s. Consider coupon bonds with cash flow C1,C2, . . . ,Cn.
Then

Pnb ≡
n∑
i=1
Ci Pnb(n)=

n∑
i=1
Cie−rnbi =

n∑
i=1
Cie−(rb+s) i .

The yield spread is hence s, as claimed.

CHAPTER 28

Exercise 28.5.1: It is because the servicing and guaranteeing fee is a percentage of the remaining
principal, and the principal is paid down through time.

Exercise 28.6.1: The investor first has a capital gain. Now a pass-through trades at a discount because
its coupon rate is lower than the current coupon rate of new issues. The prepayments therefore can
be reinvested at a higher coupon rate. See [325, p. 254].

Exercise 28.6.2: Given the premise, there is a smaller incentive to refinance a loan with a lower
remaining balance, other things being equal. Because 30-year loans amortize more slowly than
15-year loans, MBSs backed by 30-year mortgages should prepay faster. See [433].

Exercise 28.6.3: Even without the transactions costs, expression (28.2) says that refinancing does not
make economic sense unless the old rate exceeds the new one.

Exercise 28.6.4: Expression (28.1) says that, at the first refinancing, the remaining balance is

C
1− (1+ r)−n+a

r
,

where C is the monthly payment. However, it is easy to show (or from Eq. (29.4)) that

C =O× r(1+ r)n
(1+ r)n− 1

, (33.33)

where O denotes theoriginal balance.When theprecedingexpressions are combined, the remaining
balance is

O′ =O× (1+ r)n
(1+ r)n− 1

[ 1− (1+ r)−n+a ]=O× (1+ r)n− (1+ r)a
(1+ r)n− 1

.

The new monthly payment is

C′ =O′ × r(1+ r)n
(1+ r)n− 1

=O× (1+ r)n− (1+ r)a
(1+ r)n− 1

r(1+ r)n
(1+ r)n− 1
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byEq. (33.33).After the preceding process is iterated, themonthly payment after the ith refinancing
is

O×
[
(1+ r)n− (1+ r)a

(1+ r)n− 1

]i r(1+ r)n
(1+ r)n− 1

.

Exercise 28.6.5: Although both scenarios have the same rate difference of 2%, the second deal is
better because of a higher refinancing incentive, as prescribed by expression (28.3).

CHAPTER 29

Exercise 29.1.2: From Eq. (29.2) with k= 1, the remaining principal balance per $1 of original prin-
cipal balance is

1− x− 1
xn− 1

= 1− 1
xn−1+ xn−2+ · · ·+ 1

,

where x ≡ 1+ r/m≥ 1. The preceding equation is monotonically increasing in x. Hence different
r ’s yield different balances as they give rise to different x’s.

Programming Assignment 29.1.3: See Fig. 33.8.

Exercise 29.1.5: First, run the algorithm in Fig. 33.8 but on a short rate tree with n+k− 1 periods
to obtain all the desired spot rates up to time n when the swap expires. Only the nodes up to
time n− 1 are needed. Now use backward induction to derive at each node the price of a swap
with $1 of notional principal initiated at that node and ending at time n. The swap’s amortization
amount follows the original swap’s. Specifically, let a be the amortizing amount at the current node,
which is determined uniquely by the node’s k-period spot rate. Then the value at the node equals
C+ (1− a)(puPu+ pdPd)/(1+ r), where r is the node’s short rate, C is its cash flow, pu and pd
are the branching probabilities, and Pu and Pd are the values of the swaps as described above at
the two successor nodes. Note the use of scaling. The running time is O(kn2).

Exercise 29.1.6:

Month 6 12 18 24 30 36
CPR 1.2 3.12 5.544 11.04 8.1 7.5

with the help of Eq. (29.5).

Exercise 29.1.7: No. See [323, p. 362] for an example.

Algorithm for generating spot rate dynamics:

input: n,k, r [n ][n ];
real s[n−k+ 1 ][n−k+ 1 ], P[n ];
integer i, j, l;
for (i = n−k down to 0) {

// Backward induction to obtain discount factors.
for ( j = 0 to i +k− 1)
P[ j ] := 1/(1+ r [ i +k− 1 ][ j ]);

for (l = i +k− 2 down to i)
for ( j = 0 to l)
P[ j ] := 0.5(P[ j ]+ P[ j + 1 ])/(r [ l ][ j ]+ 1);

// Turn discount factors into spot rates.
for ( j = 0 to i) s[ i ][ j ] := P[ j ]−1/k− 1;

}
return s[ ][ ];

Figure 33.8: Algorithm for generating spot rate dynamics. r [ i ][ j ] is the ( j + 1)th short rate for period
i + 1, the short rate tree covers n periods, and k is the maturity of the desired spot rates. The spot rates are
stored in s [ ][ ]. Specifically, s [ i ][ j ] refers to the desired spot rate at the same node as r [ i ][ j ], where
0≤ i ≤ n− k and 0≤ j ≤ i . All rates are measured by the period.
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Exercise 29.1.8: Sum Pi of Eq. (29.6) and Ii of Eq. (29.7) with α = 0.

Exercise 29.1.9: (1) Substitute Eq. (29.8) into the formula’s Bi (2)

Pi +PPi = bi−1Pi + Bi−1 RBi
RBi−1

×SMMi

= bi−1Pi +RBi−1×bi−1 RBi
RBi−1

×SMMi

= bi−1(Pi +RBi ×SMMi ).

Exercise 29.1.10: For Eq. (29.9), just observe that Bi/Bali = (Bi−1/Bali−1)(1−SMMi ). As for
Eqs. (29.10), use Eqs. (29.2) and (29.3) to prove the formula for Pi . The formula for Ii is due
to amortization.

Exercise 29.1.12: Let s denote the SMM. For simplicity, assume that the original balance is $1 and r
is the period yield:

PO =
n∑
i=1

Pi +PPi
(1+ r)i

=
n∑
i=1

(1− s)i−1 r(1+r)i−1(1+r)n−1 + Bi s
1−s

(1+ r)i from Eqs. (29.3) and (29.10) and Exercise 29.1.9(1)

=
n∑
i=1

(1− s)i−1 r(1+r)i−1(1+r)n−1 + (1+r)n−(1+r)i
(1+r)n−1 s(1− s)i−1

(1+ r)i from Eqs. (29.2) and (29.9)

= 1
(1+ r)n− 1

{
r

1+ r
1− (1− s)n

s
+ s (1+ r)

n− (1− s)n
r + s − [ 1− (1− s)n ]

}
.

Similarly,

IO =
n∑
i=1

Ii
(1+ r)i =

n∑
i=1

(1− s)i−1×RBi−1× r
(1+ r)i

= r
n∑
i=1

(1− s)i−1 (1+r)n−(1+r)i−1
(1+r)n−1

(1+ r)i from (29.2)

= r
(1+ r)n− 1

[
(1+ r)n− (1− s)n

r + s − 1
1+ r

1− (1− s)n
s

]
.

Exercise 29.1.13: Let the principal payments be P1, P2, . . . , Pn and the interest payment at time i
be Ii ≡ r(P−

∑i−1
j=1 Pj ) by the principle of amortization, where r is the period yield and P =

P1+ P2+ · · ·+ Pn is the original principal amount. The FV of the combined cash flow Pi + Ii ,
i = 1, 2, . . . ,n, is

n∑
i=1

[
Pi + r

(
P−

i−1∑
j=1
Pj

)]
(1+ r)n−i =

n∑
i=1

(
Pi + r

n∑
j=i
Pj

)
(1+ r)n−i

=
n∑
i=1
Pi (1+ r)n−i

[
1+

i∑
j=1
r(1+ r)i− j

]

=
n∑
i=1
Pi (1+ r)n−i (1+ r)i

= P(1+ r)n,
independent of how P is distributed among the Pi s.

Exercise 29.1.15: They are $125,618, $115,131, $67,975, $34,612, $20,870, and $0 for months 1–6. See
the formula in Exercise 29.1.9(1).

Programming Assignment 29.1.16: Validate your program by running it with zero original balance for
tranche C (that is, O[ 3 ]= 0) and comparing the output with those in Fig. 29.11.
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Exercise 29.2.1: Because the fast refinancers will exit the pool at a faster rate, an increasingly larger
proportion of the remaining population will be the slow refinancers. Consequently, the refinancing
rate of the pool will move toward that of the slow refinancers. See [433].

Exercise 29.2.2: PO≈ s/(r + s) and IO≈ r/(r + s). Hence, ∂(PO)/∂s
PO ≈ r

s(r+s) and ∂(IO)/∂s
IO ≈− 1

r+s .

Exercise 29.2.3: Like interests, servicing fees are a percentage of the principal [829, p. 105].

Exercise 29.3.1: A premium-priced MBS must have a coupon rate exceeding the market discount
rate. This means that the prepaid principal is less than the PV of the future cash flow foregone
by such a prepayment. Hence prepayment depresses the value of the cash flow. The argument for
discount MBSs is symmetric.

Exercise 29.3.2: The formula is valid only if the cash flow is independent of yields. For MBSs, this
does not hold. See [55, p. 132].

Exercise 29.3.3: Refer to Fig. 28.8. In a bull market, Treasury securities’ prices go up, whereas the
MBSs’ prices go down. This hedger therefore has the worst of both worlds, losing money on both.
See [54, p. 204].

Exercise 29.3.4: This model does not take into account the negative convexity of the security [304].

CHAPTER 30

Exercise 30.2.1:

LIBOR Change (Basis Points) −300 −200 −100 0 +100 +200 +300
Conventional floater 4.5 5.5 6.5 7.5 8.5 9.5 10.5
Superfloater 2.0 3.5 5.0 6.5 8.0 9.5 11.0

CHAPTER 31

Exercise 31.1.1: Let ω ≡ [ω1, ω2, . . . , ωn ]T be the vector of portfolio weights, r ≡ [ r1, r2, . . . , rn ]T

be the vector of mean security returns, and Q be the covariance matrix of security returns. The
efficient portfolio for a target return of r is determined by

minimize minω ωTQω,
subject to ωTr = r ,

ωT1= 1,

where 1≡ [ 1, 1, . . . , 1 ]T. See [3].

Exercise 31.1.2: The variance is ω2
1σ

2
1 + (1−ω1)2σ 2

2 − 2ω1(1−ω1) σ1σ2. Pick ω1 = σ2/(σ1+ σ2), which
lies between zero and one, to make the variance zero. See [317, p. 74].

Exercise 31.1.3: (1) The problem is

minimize −(1/2)
∑
i

∑
j

ωiω jσi j ,

subject to
∑
i

ωi = 1,

ωi ≥ 0 for all i .

Let i∗ be such that σi∗i∗ =maxi σi i . It is not hard to show that σi iσ j j > σ 2
i j for all i, j [465, p. 398];

hence σi∗i∗ > σi∗i for all i �= i∗. TheKuhn–Tucker conditions for the optimal solution say that there
exist µ and v1, v2, . . . such that [721, pp. 522–523]:

−
∑
j

σi jω j +µ− vi = 0 for all i ,∑
i

ωi = 1,

ωi ≥ 0 for all i ,
vi ≥ 0 for all i ,
viωi = 0 for all i .



Answers to Selected Exercises 549

Observe that
∑
i (µ− vi )ωi = µ > 0 is the desired value. The feasible solution in which ωi∗ = 1 and

ωi = 0 for i �= i∗ satisfies the above by the selection of µ= σi∗i∗ and vi = σi∗i∗ − σi∗i ≥ 0 for all i .
(2) The problem is

minimize (1/2)
∑
i

∑
j

ωiω jσi j ,

subject to
∑
i

ωi = 1,

ωi ≥ 0 for all i .

Use the Lagrange multiplier to show that the optimal solution satisfies∑
j

σi jω j +µ= 0 for all i ,∑
i

ωi = 1,

ωi ≥ 0 for all i .

Observe that −µ∑i ωi =−µ > 0 is the desired value. Let ω ≡ [ω1, ω2, . . . , ωn ]T and 1≡
[ 1, 1, . . . , 1 ]T. Hence, ω =−µC−11, which satisfies the conditions ωi ≥ 0 for all i by the assump-
tion. Combining this with 1Tω = 1, we have 1T(−µC−11)= 1, implying that −µ= 1/(1TC−11). If
we let C−1 ≡ [ ai j ], then −µ= 1/(

∑
i

∑
j ai j ).

Exercise 31.1.4: Note that r(T)+ 1 is lognormally distributed and rc(T) is normally distributed. The
mean and the variance of r(T) and those of rc(T) are therefore related by

µ(T)= eµc(T)+0.5σ 2
c (T)− 1,

σ 2(T)= e2µc(T)+2σ 2
c (T)− e2µc(T)+σ 2

c (T),

according to Eq. (6.11). Alternative formulations are

µc(T) = 2 ln(1+µ(T))− ln(σ 2(T)+ [ 1+µ(T) ]2)
2

,

σ 2
c (T) = ln

(
1+

[
σ (T)

1+µ(T)
]2)

.

See [646, p. 105].

Exercise 31.1.5: The return rate of each individual asset is µ− σ 2/2 (see Exercise 13.3.8(2)). The
variance of the portfolio is σ 2/n; the portfolio’s return rate is hence µ− σ 2/(2n). Their difference
is σ 2/2− σ 2/(2n)= (1− 1/n)(σ 2/2). See [623, p. 429].

Exercise 31.1.6: Because all investors trade the same fund of risky assets, trading activity in each stock
as a fraction of its shares outstanding is identical across all stocks [614].

Exercise 31.1.7: Replace every variable ωi with Yi − Zi and add the requirements Yi ≥ 0 and Zi ≥ 0.
Under thenewmodel, theequationaboutmeans remains ahomogeneous linear form in thevariables
and the equation about covariances remains a homogeneous quadratic form. It is thus a general port-
folio selectionmodel. Thenewmodel is strictly equivalent to theoriginalmodel for the following rea-
sons. If (Y1, Z1,Y2, Z2, . . . ,Yn, Zn) is a feasible portfolio for the new model, then (ω1, ω2, . . . , ωn)
with ωi ≡ Yi − Zi is feasible for the original model with the same mean and standard deviation.
Conversely, if (ω1, ω2, . . . , ωn) is feasible for the original model, then (Y1, Z1,Y2, Z2, . . . ,Yn, Zn)
with Yi ≡max(ωi , 0) and Zi ≡max(−ωi , 0) is feasible for the newmodel, and with the same mean
and standard deviation. See [642, p. 26].

Exercise 31.2.1: It has been shown in the text that the combination of minimum-variance portfolios
results in a minimum-variance portfolio. In fact, the combination of efficient portfolios results in
an efficient portfolio if the weights applied to the portfolios are all nonnegative. This is because the
resulting portfolio is a minimum-variance portfolio with an expected rate of return at or above the
MVP’s, making it efficient by definition. Because investors hold only efficient portfolios, the market
is a combination of efficient portfolios and thus is efficient as well.
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Exercise 31.2.2: Let the market return be rM =
∑
i ω
′
i ri , where ω′i are market proportions. The fact

that every investor holds the same market portfolio implies that the market portfolio satisfies
Eq. (31.1), or λ

∑
i σi jω

′
i = r j − rf. Note that λ is independent of the choice of j . Because

Cov[ r j , rM ]= E
[
(r j − r j )

∑
i

ω′i (ri − r i )
]
=
∑
i

ω′i E[ (r j − r j )(ri − r i ) ]=
∑
i

ω′iσi j ,

we recognize that λCov[ r j , rM ]= r j − rf. For the market portfolio, λCov[ rM, rM ]= rM− rf,
implying λ= (rM− rf)/σ 2

M. See [317, pp. 303–304], [623, p. 177], and [799, pp. 287–289].

Exercise 31.2.3: The risk of an asset that is uncorrelated with the market can be diversified away
because purchasing many such assets that are also mutually uncorrelated results in a small total
variance [623, p. 179].

Exercise 31.2.4: Such an asset reduces the overall portfolio risk when combined with the market.
Investors must pay for this risk-reducing benefit. Another example is insurance. See [424, p. 213],
[623, p. 179], and [799, p. 271].

Exercise 31.2.5: They all have the same level of systematic risk, thus beta. The part of the total risk
that is specific will not be priced. See [88, p. 300].

Exercise 31.2.6: (1) We need to show that if P1 = Q1
1+rf+β1(rM−rf) and P2 = Q2

1+rf+β2(rM−rf) , then

P1+ P2 = Q1+Q2

1+ rf+β ′(rM− rf) ,

where β ′ is the beta of the asset which is the sum of assets 1 and 2. Because both terms within the
braces of Eq. (31.5) depend linearly on Q, the claim holds. (2) If otherwise, then we can buy the
cheaper portfolio and sell themore expensive portfolio to earn arbitrage profits in a perfect market.
See [623, p. 188].

Exercise 31.2.7:

Index Value in a Year 1200 1100 1000 900 800
Portfolio Value in a Year 1.36 1.16 0.96 0.76 0.56

Exercise 31.2.8: If the index is S, the portfolio will be worth $1, 000× S. However, the payoff of the
options will be

10×max(1,000− S, 0)× 100≥ 1,000,000− 1,000× S
dollars. (Recall that the size of a stock index option is $100 times the index.) Add them up to obtain
a lower bound of $1,000,000.

Exercise 31.2.10: It is a bull call spread.

Exercise 31.2.11: Because the continuous compounded return ln S(t)/S(0) is a (µ− σ 2/2, σ )
Brownian motion by Example 14.3.3, its mean is proportional to t , whereas its volatility or noise is
proportional to

√
t . Shorter-term returns (i.e., small t ’s) are therefore dominated by noise.

Exercise 31.2.12: See [317, p. 359] or [424, pp. 132–135]. Whether riskless assets exist is not essential.

Exercise 31.3.1: Cov[ ri , rM ]= bi ×Var[ rM ]. The CAPM predicts that αi = 0. See [623, p. 205].

Exercise 31.3.2: Consider a k-factor model ri = ai +bi1 f1+bi2 f2+ · · ·+bik fk+ εi . Define f ≡
[ f1, f2, . . . , fk ]T and let C be the covariance matrix of the factors f . Assume that E[ f ]= 0
or apply the procedure below to f − E[ f ] instead. By Eq. (19.1), there exists a real orthogonal
matrix B such that  ≡ BTCB is a diagonal matrix. Because [ p1, p2, . . . , pk ]T ≡ BT f has the
covariance matrix  , { p1, p2, . . . , pk } can be used as the desired set of uncorrelated factors.

Exercise 31.3.3: When the CAPM holds, Eq. (31.7) becomes r = rf+b1λ1. Equate it with the
security market line r − rf = β(rM− rf) in Theorem 31.2.1 to obtain λ1 = β(rM− rf)/b1. Be-
cause β = Cov[ r, rM ]/σ 2

M = b1×Cov[ f, rM ]/σ 2
M, we obtain λ1 = (Cov[ f, rM ]/σ 2

M)(rM− rf). See
[799, p. 335].
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Exercise 31.3.4: Suppose we invest ωi dollars in asset i , i = 1, 2, . . . , n, in order to satisfy
∑n
i=1 ωi =

0,
∑n
i=1 ωi bi1 = 0, . . . ,

∑n
i=1 ωi bim = 0. This portfolio requires zero net investment and has zero risk.

Therefore its expected payoff must be zero, or
∑n
i=1 ωi r i = 0. Define ω ≡ (ω1, ω2, . . . , ωn)T, b j ≡

(b1 j ,b2 j , . . . ,bnj )T for j = 1, 2, . . . ,m, 1≡ (1, 1, . . . , 1)T, and r = (r1, r2, . . . , rn)T. We can restate
the conclusionas follows: For any ω satisfying ωT1= 0,ωTb1 = 0, . . . ,ωTbm = 0, it holds that ωTr =
0. That is, any ω orthogonal to 1,b1, . . . ,bm is also orthogonal to r . By a standard result in linear
algebra, r must be a linear combination of the vectors 1,b1, . . . , bm. Thus there are constants
λ0, λ1, . . . , λm such that r = λ01+ λ1b1+ · · ·+ λmbm.

Exercise 31.3.5: The proof of Exercise 31.3.4 goes through for the well-diversified portfolio as it is
riskless.

Exercise 31.4.2: As ln Sτ − ln S∼ N((µ− σ 2/2) τ, σ 2τ ) (see Comment 14.4.1), with probability c,
the return ln Sτ /S is at least (µ− σ 2/2) τ + N−1(1− c) σ√τ . The desired VaR thus equals Seµτ −
Se(µ−σ

2/2) τ+N−1(1−c) σ√τ . See [8].

Exercise 31.4.3: See Eq. (19.1) for (1) and (2). (3) It follows from
[dZ1,dZ2, . . . ,dZn ]T = diag[ λ−11 , λ

−1
2 , . . . , λ

−1
n ] PT [ dW1,dW2, . . . , dWn ]T

and (2). (4) It results from the construction of the ui s.

NOTE

1. This can be verified formally as follows. Put in matrix terms, Eqs. (33.14) and (33.15) say that
Ak= 0, where k is a column vector whose jth element is kj and A is the (n+ 1)× (n+
1) matrix whose ith row is [ σi1 f1, σi2 f2, . . . , σin fn ] for 1≤ i ≤ n and whose (n+ 1)th row is
[ f1(µ1− r), f2(µ2− r), . . . , fn(µn− r) ]. For this set of equations to have a nontrivial solution,
it is necessary that the determinant of A be zero. In particular, its last row must be a linear
combination of the first n rows. This implies that f j (µ j − r)=

∑
i λiσi j f j , j = 1, 2, . . . , n+ 1,

for some λ1, λ2, . . . , λn , which depend on only S1, S2, . . . , Sn, and t .
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PUDET. “Pricing of American Path-Depen-
dent Contingent Claims.” Mathematical Fin-
ance, 6, No. 1 (January 1996), 17–51.

[54] BARTLETT,W.W.Mortgage-Backed Securities.
New York: New York Institute of Finance,
1989.

[55] BARTLETT, W.W. The Valuation of Mortgage-
Backed Securities. Burr Ridge, IL: Irwin, 1994.

[56] BATTIG,ROBERT J. ANDROBERTA. JARROW.
“The Second Fundamental Theorem of As-
set Pricing: A New Approach.” The Review of
Financial Studies, 12, No. 5 (Winter 1999),
1219–1235.

[57] BAUMOHL, BERNARD. “The Banks’ Nuclear
Secrets.” Time (May 25, 1998).

[58] BAXTER, MARTIN. “General Interest-Rate
Models and the Universality of HJM.” In
Mathematics of Derivative Securities. Edited
by M. Dempster and S. Pliska. Cambridge,
U.K.: Cambridge Univ. Press, 1997.

[59] BAXTER, MARTIN AND ANDREW RENNIE. Fi-
nancial Calculus: An Introduction to Deriva-
tive Pricing. Cambridge, U.K.: Cambridge
Univ. Press, 1998.

[60] BECKETTI, SEAN. “Are Derivatives Too Risky
for Banks?” Economic Review (3rd Quarter,
1993), 27–42.

[61] BEDER, TANYA STYBLO. “VAR: Seductive
but Dangerous.” Financial Analysts Journal,
51, No. 5 (September–October 1995), 12–24.

[62] BENNINGA, S. Numerical Techniques in
Finance. Cambridge, MA: MIT Press, 1989.

[63] BERNERS-LEE, TIM. “WWW: Past, Present,
and Future.” Computer, 29, No. 10 (October
1996), 69–77.

[64] BERNSTEIN, PETER L. Capital Ideas: The
Improbable Origins of Modern Wall Street.
New York: Free Press, 1992.

[65] BERNSTEIN, PETER L. Against the Gods: The
Remarkable Story of Risk. New York: Wiley,
1996.

[66] BERTSEKAS, DIMITRI P. Dynamic Program-
ming: Deterministic and Stochastic Models.
Englewood Cliffs, NJ: Prentice-Hall, 1987.

[67] BERTSEKAS, DIMITRI P. AND JOHN N.
TSITSIKLIS. Parallel and Distributed Compu-
tation: Numerical Methods. Englewood Cliffs,
NJ: Prentice-Hall, 1989.

[68] BHAGAVATULA, RAVI S. AND PETER P.
CARR. Valuing Double Barrier Options with
Fourier Series.” Manuscript, September 12,
1997.
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Numéraire, Changes of Probability Measure
and Option Pricing.” Journal of Applied Prob-
ability, 32, No. 2 (June 1995), 443–458.
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Notation Page number
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0 271
0! 95
[ · , . . . , · ] 268
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� 123
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θX( · ) 66
λ 351
λτ 287
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ρτ 287
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σX 64
σ 64
σ 2 64
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A+ 275
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B 93
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bi 436
Bi 435
Bali 428
C 76
Cov[ · , · ] 65
Cov[ · ] 65
d( · ) 47
det( · ) 67
diag[ · , . . . , · ] 268
e 8
E[ · ] 57
E[ · | · ] 65
Eπ [ · ] 97
Eπi [ · ] 181
exp[ · ] 49

Notation Page number
f ′ 22
f ( · , · ) 51, 55, 346
f ( · , · , · ) 345
F( · , · , · ) 345
FV 11
h 93
I 268
Ii 429
Ii 436
It ( · ) 190
KX( · , · ) 177
ln 8
M( · ) 181
MD 34
mX( · ) 177
N 8
N( · ) 66
N( · , · ) 66, 67
n! 95
O 428
O( · ) 8
P 76
Pi 429
Pi 436
P( · , · ) 345
PV 14
PV( · ) 76
R2 70
R 93
R 8
r( · ) 345
r( · , · ) 345
rf 157
RBi 428
S( · , · ) 50
S( · ) 46, 55
tanh( · ) 393
Var[ · ] 64
Wt 190
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X 64
xLS 273
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“60:40” strategy, 157
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adjustable-rate mortgage, 16, 419,
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hedging, 419
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path-dependent, see path-dependent derivative,

adjustable-rate mortgage
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rate adjustment, 16, 419, 432
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periodic, 432
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algorithm, 7, 10
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computational, 7–9
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intractability, 7, 9
linear, 8
logarithmic, 8
quadratic, 9
space, 7

description, 9–10
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American option, 75, 78, 85, 86, 88–89,

113–114, 118
analytic results, 121
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binomial tree algorithm, 102, 113, 116, 122,
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call, see call, American
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forward option, see forward option, American,
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numerical techniques, 121
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see option, dividend, see option, dividend
yield

stock, 165, 404
stock index, see stock index, dividend
yield, 116, 405

continuous, see continuous dividend yield
Donsker theorem, 188, 194
Doob, Justin L., 188
DOS, 4
Dothan model, 370–371, 383, see lognormal

distribution, interest rate, problems
Dothan, M., 370
Dow Jones Industrial Average, 90, 91, 141, 142, 171

components, 153n
Dow Jones Industrial Average Index futures,

165, 171
Dow Jones Industrial Average Index futures

option, 171
Dow Jones Industrial Average Index option, 90,

142, 171
down-and-in option, see barrier option,

down-and-in
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estimator, consistent, see method of
moments, consistent, see method of
moments, generalized, consistent

cross section, 371–372
cross section/time series, 372
expected return, see expected return, estimation
interest rate model, see interest rate model,

calibration
Ito process, see Ito process, estimation
least squares, see least-squares estimator
linear, 72, 274
maximum likelihood estimator, seemaximum

likelihood estimator
method of moments, seemethod of moments
time series, see time series, parameter estimation
unbiased, 64, 66, 182, 256, 274
variance, see variance, estimator

Euclid algorithm, 7
Euclidean norm, 268
Euler method, 193, 194, 258
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call on zero-coupon bond, as, 309, 350
flotion, 308
Fokker–Planck equation, 185, 188, 207
Fong, H. Gifford, 327, 371
Fong–Vasicek model, 371
forecasting, see prediction
foreign domestic option, 216–217
foreign equity option, 216
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futures price, vs., see futures price, forward

price, vs.
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one-period (instantaneous), 51
simple compounding, 56, 347
spot rate curve, see spot rate curve, forward

rate
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futures price, 156, 162, 163, 167, 172, 212, 221, 225,

226, 296, 299
binomial interest rate tree, see binomial interest

rate tree, futures price
binomial option pricing model, see binomial

option pricing model, futures price
cost of carry, 166–167, 225
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discrete approximation, 186, 194, 234, 242–243,

370
Brownian bridge, 259

distribution, 198
exchange rate, 215
geometric average, 197–198
Ito process, 197
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variance function, 186
yield to maturity, see yield to maturity, geometric

Brownian motion
German mark, 144–146, 157, 227
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government-sponsored enterprise, xiv, 400, 418
gradient, 273
graphical user interface, 4, 481
Gray code, 264
gross return, 93, 94, 104, 354
guaranteed investment contract, 315

Halton sequence, see quasi-random sequence,
Halton

Hamming, Richard W., xiv
Hansen, Lars Peter, 294
Hanson, Richard J., 276
hardware, 4, 480
Hartmanis, J., 7
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discount factor, 47, 52, 55, 56, 322, 323
forward rate, see forward rate, future spot rate
forward rate, vs., see forward rate, spot rate, vs.
instantaneous (short rate), 345
simple compounding, 56
volatility term structure, see term structure, yield

volatility
yield to maturity, vs., see yield to maturity, spot

rate, vs.
spot rate curve, 46, 49–53, 56, 60–63, 202, 203, 278,

295, 326, 340, 346, 352, 355, 361, 406, 408,
446, 448, see term structure

forward rate, 52–53, 56, 322, 347
shape, 50, 53, 60, 373

curvature, 278, 372, 373
flat, 52, 59–62, 203, 412
humped, 372
interest rate model, see “term structure shape”

under various interest rate models
inverted, 50–53, 57, 59, 372
normal, 50–52, 57, 59, 372
slope, 278, 372, 373

shift, see yield curve, shift
unbiased expectations theory, see expectations

theory, unbiased, spot rate curve
spot yield curve (spot rate curve), 46
spread, see bid–ask spread, see binomial interest

rate tree, spread, see corporate bond,
forward spread, see credit spread, see
option-adjusted spread, see static spread, see
term structure fitting, complications, bid–ask
spread, see yield spread

spreader, 225
spreadsheet, xiv
SQL, 5, 6n
square-root process, 199–201, 364

interest rate model, 201
mean function, 201
transformed from Ornstein–Uhlenbeck process,

199, 201
variance function, 201

stability, 251, 252, 274, 386
condition, 251, 253

Standard & Poor’s, 141, 466
standard deviation, 64

estimator, 64
risk, see risk, standard deviation, as
sample, 64, 257

state contingent claim, 82, 83, 83n, 98, 99, 334, 386
valuation, 83, 110

state price, 334, 381, 495, see binomial state price
tree

static cash flow yield methodology, see
fixed-income security with option features,
valuation methodologies, static cash flow
yield, seemortgage-backed security
valuation methodologies, static cash flow
yield

static spread, 49, 54, 132, 339, 340, 406, 491, see
mortgage-backed security, valuation
methodologies, static spread, see
option-adjusted spread, static spread, vs.

statistics, 64, 65, 67, 74, 268, 273, 288
inference, 64, 74, 268
multivariate, 268

stencil, 251, 252
step function, 190, 278
stochastic differential equation, 193, 195, 205, 249

numerical techniques, 205
stochastic integral, 190–193, 205

Brownian motion, 190
choice of intermediate point, 192
Ito, see Ito integral
Stratonovich, see Stratonovich stochastic integral

stochastic optimization, 205
stochastic process, 177–179, 205, 255, 284

AR process, see autoregressive process
ARCH process, see autoregressive conditional

heteroskedastic process
ARMA process, see autoregressive moving

average process



Index 621

autocorrelation function, 287, see autoregressive
conditional heteroskedastic process,
autocorrelation function, see autoregressive
process, autocorrelation function, see
moving average process, autocorrelation
function

Brownian motion, see Brownian motion
constant elasticity variance, see constant

elasticity variance process
continuity, 191
continuous time, 177
correlated, 287
covariance function, see covariance

function
diffusion, see diffusion process
discount, 181

martingale, 181, 182, 205
discrete time (time series), 177
ergodic, 284, 290, 291, 294
GARCH process, see generalized autoregressive

conditional heteroskedastic process
Gaussian process, see Gaussian process
independent increments, 177, 179, 180
Ito, see Ito process
jump, 189n
lognormal diffusion, see lognormal diffusion
MA process, seemoving average process
Markov, seeMarkov process
maximum likelihood estimator, 73
mean function, 177, 178, 184
money market account, see money market

account, bank account process
nonanticipating, 190–193, 195
normal, 198, 376
Ornstein–Uhlenbeck, see Ornstein–Uhlenbeck

process
random walk, see random walk
rate of return, see rate of return, stochastic

process
realization (sample path), 177
sample path, 177, 186, 188, 284, 287
simple, 190–192

Ito integral, 191, 192, 195
square root, see square-root process
state, 177, 344
stationary, 178, 179, 287, 288, 290, 291, 294 see

autoregressive conditional heteroskedastic
process, stationarity, see autoregressive
process, stationarity, see
autoregressive moving average process,
stationarity, see Brownian motion,
stationarity, see central limit theorem,
stationary stochastic process, see covariance
function, stationary stochastic process, see
moving average process, stationarity, see
Ornstein–Uhlenbeck process, stationarity,
see term structure, yield volatility,
stationarity, see volarility stochastic,
stationary

asymptotic distribution, 290
strictly, 177, 287

stationary increments, 177, 179
stationary independent increments, 184
uncorrelated, 287, 288, 291, 292
variation, see variation
vector, 196
white noise, see white noise
Wiener, seeWiener process
Wiener–Bachelier, seeWiener–Bachelier process

stock, 2, 6n, 75, 77
common, 24
limited liability, 131
margin, 87
market, 2,

Crash of 1987, 479n
option features, 131–134, 136, 148
price, 478

continuous dividend yield, 211
correlation, 288
delta, 123
discreteness, 111
distribution, see rate of return, distribution
expected, 107, 204
geometric Brownian motion, see geometric

Brownian motion, stock price
logarithm, 285, 550
lognormal distribution, see lognormal

distribution, stock price
model, 85, 92, 188, 199, 200, 203–204, 209,

211, 293
prediction, 97, 180, 470
random walk, see random walk, stock price
volatility, see volatility, stock

rate of return, see rate of return
replicated as call, 131, 148
short sale, 76, 79, 172, 459–461, 464
split, 78, 112, 135, 141, 404

stock index, 141, 165
adjustment factor, 141
correlation, 142
cost of carry, 166
dividend, 142

futures contract, 165
Ito process, 211
weighting methods, 141

capitalization-weighted, 141, 143, 245, 458
geometrically weighted, 141–143
price-weighted, 141, 143, 162, 245

stock index futures, 155, 165, 171, 304
dividend, see stock index, dividend, futures

contract
hedging, see hedging, futures contract, stock

index
history, 165
portfolio insurance, 468
valuation, 165

stock index futures option, 171–172
stock index option, vs., 171
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stock index option, 1, 75, 90, 91, 141–143, 146,
171, 245

Black–Scholes option pricing model, see
Black–Scholes option pricing model, stock
index option

exchange-traded, 142
exercise, 142
exercise risk, 142
hedging, see hedging, index option
history, 142
put–call parity, see put–call parity, stock index

option
size, 143
stock index futures option, vs., see stock index

futures option, stock index option, vs.
valuation, 143

stockholder, 132, 401, 402
bondholder, vs., 133–134, 218

convertible bond, 136
storage cost, 166, see commodity, storage cost, see

futures contract, commodity, storage cost
stratified sampling, see variance reduction,

stratified sampling
Stratonovich stochastic integral, 192
stripped mortgage-backed security, 357, 415, 419,

422, 442, 443, 452, see collateralized
mortgage obligation, strip, see mortgage
pass-through, discount, synthetic, see
mortgage pass-through, premium, synthetic

agency
Fannie Mae, 422
Freddie Mac, 423
Trust 1 of Fannie Mae, 422

cash flow, 422, 481
collateral, 422
interest-only, 357–359, 422, 437, 442–443, 452, 467

duration, 443
hedging, 443
nominal principal, 452
notional principal, 452

prepayment, 442, 443
principal-only, 357–358, 422, 437, 442–443, 457

duration, 442
hedging, 443

valuation, 437, 443, 447
binomial model, 357

stripped Treasury security, 25, 322
liquidity, 322
quote, 401

STRIPS, 25
structured note, see note, structured
subordinated debt, see debt, subordinated
Sun Microsystems, Inc., 466, 482
supercomputer, 4
superfloater, see collateralized mortgage

obligation, superfloater
Sutch, Richard, 59
swap, 155–156, 173, 406

bond, see bond swap

commodity, 173
counterparty, 173, 314
cross rate, see cross-rate swap
currency, see currency swap
default, 314
equity, see equity swap
interest rate, see interest rate swap
market, 173
market maker, 314
rate, see rate swap

swap curve, 314
swap option, see Treasury bond futures, swap

option
swaption, 318–319

Black model, see Black model, swaption
European, 318
fixed-income option, as, 318–319
forward rate, 319
interest rate cap, vs., 319
payer, 318, 350
receiver, 318, 350
valuation, 294

Sybase, Inc., 5
synthetic security, 87, 94, 143, 317, 468
systematic risk, see risk, systematic
systems of nonlinear equations, 23–24

T-bill, see Treasury bill
T-bond, see Treasury bond
T-note, see Treasury note
Target Amortization Class bond, see collateralized

mortgage obligation, TAC bond
tax, 26, 322, 400, 402, see capital gain, tax, see term

structure fitting, complications, tax
Taylor, Stephen, 293
technical analysis, 122n, 479
term (bond, maturity), 63n
term premium (liquidity premium), 58
term structure, 45–47, see spot rate curve

credit spread, 54–55, 63
dynamics, 328, 375, 380, 388, 432, 546

binomial interest rate tree, 331–332,
335, 337

Cox–Ingersoll–Ross model, 367–369
Heath–Jarrow–Morton model, 393
Ho–Lee model, 377

forward rate volatility
Heath–Jarrow–Morton model, 388–391,

393, 394
Ritchken-Sankarasubramanian model,

395–396
LIBOR, 300, 301
model, see interest rate model
theories, 51, 56–59
yield volatility, 330, 344, 360, 381, 384, 398

affine model, 365
binomial interest rate tree, 334, 343–344
Black–Derman–Toy model, 380–381, 384
drift, 344, 388
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extended Cox–Ingersoll–Ross model, 388
extended Vasicek model, 384, 388
Heath–Jarrow–Morton model, 388
historical, 330
Ho–Lee model, 376, 378–380, 384
Hull–White model, 392
implied, 330
interest rate option, 330
stationarity, 388
Vasicek model, 362

term structure equation, 350–353, see expectations
theory, local, term structure equation, see
finite-difference method, term structure
equation, see fixed-income option, term
structure equation, see futures price, term
structure equation, see interest rate
derivative security, term structure
equation

term structure fitting, 49, 321–322, 398
comparison, 327
complications, 49, 322

bid-ask spread, 327
incompleteness problem, 49, 321–323, 325
multiple cash flow problem, 49, 321, 323
tax, 321–322, 324

discount function, 321–323
exponential function, 321, 323–324
exponential spline, 327
McCulloch, 323–325
quadratic function, 324

forward rate curve, 321–322, 325, 326
consistency with interest rate model, 398
Nelson-Siegel, 326, 398

least squares, 323–324
linear interpolation, 322–323, 413

problems, 322
regression, 321

multiple regression, 324
polynomial regression, 324–327

spline, 325
popularity, 325
problems, 326–327

spot rate curve, 321–323
Bradley–Crane, 324–326
Elliott–Echols, 324–326
linear programming, 327

weighted least squares, 324
yield curve, 321–322

term to maturity (bond, maturity), 32
theory, 84, 328, 458
theta, 124–125, 208

numerical, 128, 208
theta-neutral, 232
thrifts, 416, 418, 419, 432
“tick”, 297
Tilley, James A., 257
time, 206
time decay (theta), 124
time line, 11, 51, 308, 427

time series, 177, 284–294
financial, 284
parameter estimation, 284, 293, 371–372
prediction, 284, 288, 291
transformation, 285, 287

time value, 352
time value of money, 11–14, 88, 89
Time Warner, Inc., 466
timing option, see Treasury bond futures, timing

option
Tobin, James, 463, 464
Tokyo Stock Exchange, 162
total monetary return, 30
total return (holding period return), 31n
total sum of squares, 69, 70
total variation, see variation, total
Toy, William, 380
traded security, 209, 220, 221, 350

bond, 220
interest rate, 220, 352
stock, 220, 222
volatility, 222

trading strategy, 205, 288
Ito integral, 194–195
maturity strategy, 50, 57–59
rollover strategy, 51, 57–59, 181, 349
self-financing, 97, 195, 222, see

delta-neutral, delta hedge,
self-financing, see delta-neutral,
delta–gamma hedge, self-financing, see
risk-neutral valuation, self-financing trading
strategy

transactions cost, 3, 85, 121, 205, 288, 464
continuous trading, 201, 232
continuous-time model, see continuous-time

model, transactions cost
interest rate swap, see interest rate swap,

transactions cost
proportional model, 201

transistor, 4
transition probability density function,

185, 200
Treasury bill, 17, 24, 40, 48, 158, 167, 371

ask yield, 18, 401
duration, 298
par value, 17
quote, 17, 18, 297, 401

Treasury bill futures, 295–298
arbitrage, 297–298
dollar discount, 297
duration, 297
Eurodollar futures, vs., see Eurodollar futures,

Treasury bill futures, vs.
forward rate, see forward rate, Treasury bill

futures
index price, 297, 299, 341
invoice price, 297–298, 341
quote, 295, 297, 341
tick size, 297
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Treasury bill futures (cont.)
tick value, 298
valuation, 297–298, 341
yield, 297

Treasury bond, 24, 27, 31n
callable, 31n, 414
quote, 25, 401, 435

Treasury bond futures, 155, 163, 296, 301–304
accrued interest, 301–303
basis point value, 303–304
cheapest-to-deliver bond, 302–303
correlation with bonds, 303
delivery, 301, 302
delivery option, 302, 303
duration, 320
Eurodollar futures, vs., see Eurodollar futures,

Treasury bond futures, vs.
hedging, see hedging, futures contract, Treasury

bond
history, 301
invoice price, 301, 302
liquidity, 302
quality option (cheapest-to-deliver bond), 302
quote, 162, 301–302
settlement price, 301, 302
size, 301
swap option (cheapest-to-deliver bond), 302
tick size, 301
tick value, 301
timing option, 302
valuation, 303
wild card option, 302

Treasury bond futures option, 168, 169, 310–311
quote, 310
tick size, 310

Treasury Department (U.S.), 3, 25, 31n, 46,
400, 418

Treasury note, 24, 48
quote, 25, 313, 401, 435

Treasury note futures, 296, 301, 304
delivery, 301
delivery option, 304

Treasury note futures option, 168, 310–311
quote, 310

Treasury option, see fixed-income option,
Treasuries

Treasury securities, 24, 28, 45, 47, 399–401, 414
credit risk, see credit risk, Treasury securities
current coupon, 45
inflation-indexed, 400, 402, 414
liquidity, 322
market, 24

size, 24, 400
mortgage pass-through, vs., seemortgage

pass-through, Treasury securities, vs.
mortgage-backed security, vs., see

mortgage-backed security, Treasury
securities, vs.

off-the-run, 45

on-the-run, 45–47, 322, 327n, 406
quote, 400, 401
stripped, see stripped Treasury security

Treasury yield option, see interest rate option,
Treasury yields

Treynor, Jack L., 1
trinomial model, 234, 242–243, 248

binomial interest rate model, vs., see binomial
model, interest rate process, trinomial
model, vs.

correlated, 245–246
replication of option, see option, replicated as a

portfolio of stocks and bonds, trinomial
model

trinomial tree algorithm, 398
barrier option, 242–245, 248

binomial tree algorithm, vs., 244–245
convergence, 244
down-and-in, 244, 522–523
down-and-out, 243, 244
up-and-in, 244
up-and-out, 244

Black–Karasinski model, see Black–Karasinski
model, trinomial tree

constant elasticity variance process, see
constant elasticity variance process,
trinomial model

continuous dividend yield, 244
diagonal method, see diagonal method, trinomial

model
explicit method, see explicit method, trinomial

tree algorithm
extended, 244
extended Vasicek model, see Vasicek model,

extended, calibration
Hull–White model, see Hull–White model,

calibration
twist risk, see risk, twist
two-fund theorem, 461, 463

UBS AG, 155
Ulam, Stanislaw, 266
uncorrelated random variables, 65, 73, 179, 271,

274, 277, 459, 470, 471
underdetermined system, 275, 323, seematrix,

pseudoinverse, underdetermined system
underlying asset, 75, 155
underwriting, 3, 402
unexplained variation, see variation, unexplained
uniform distribution, 67, 256, 259
unimodal function, 126
Unix, 481
up-and-in option, see barrier option, up-and-in
up-and-out option, see barrier option,

up-and-out
utility function, 469, 472, 473, 479

vacuum tube, 4
value at risk, 31, 458, 474–479, 528
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delta approach, 475–476
derivative, 475–476, 478, 479
fixed-income security, 478–479

cash flow mapping, 478
futures contract, 476
geometric Brownian motion, 476
historical simulation, 476
Monte Carlo simulation, 476–478

principal component, 476–477
problems, 474, 477–478
stress test, 478
variance-covariance approach, 475, 478

Value Line Index, 91, 141, 142
Value Line Stock Index futures, 165
Vanguard 500 Index Fund, 479n
variance, 64, 65

Brownian motion, see Brownian motion,
variance

estimator, 64, 469
maximum likelihood estimator, 73
principal component, 271, 272
sample, 64, 72

variance reduction, 256, 259–262, 267, 449
antithetic variates, 259–260, see average-rate

option, arithmetic,antithetic variates, see
Cox-Ingersoll-Ross modle, discrete time,
antithetic variates, see Vasicet model,
discrete time, antithetic variates

conditioning, 261, see average-rate option,
arithmetic, conditioning

control variates, 261–262, see average-rate
option, arithmetic, control variates, see
Monte Carlo simulation, option, control
variates

problems, 262
importance sampling, 262
quasi-Monte Carlo method, vs., 263
stratified sampling, 262

variation, 187–188
explained (regression sum of squares), 70
quadratic, 187
total, 187

regression (total sum of squares), 70
unexplained (error sum of squares), 69

Vasicek model, 361–365, 370, 371
autocorrelation, 538
bond price formula, 361–362
bond price process, 362
Cox–Ingersoll–Ross model, vs., see

Cox–Ingersoll–Ross model, Vasicek model,
vs.

discrete time, 363–364, 369
antithetic variates, 368

duration, 362
empirical study, 361
extended, 384, 392, 396, 397

calibration, 384
fixed-income option, 384
forward rate process, 392

Hull–White model, see Hull–White model
multifactor, 397
problems, 388
short rate volatility, 384, 388
yield volatility term structure, see term

structure, yield volatility, extended Vasicek
model

fixed-income option, 363
forward rate process, 362
Ho–Lee model, vs., see Ho–Lee model, Vasicek

model, vs.
interest rate cap, 374
liquidity premium, see liquidity premium,

Vasicek model
long rate, 362
mean reversion, 361–363
parameter estimation, 372
short rate volatility, 362, 393
term structure equation, 361, 362
term structure shape, 362
yield volatility term structure, see term structure,

yield volatility, Vasicek model
Vasicek, Oldrich, 327, 328, 361, 371
vega, 125–126, 130, 229

numerical, 128
unimodality, 126

vega-neutral, 232
venture capital, 414
very-large-scale-integrated circuit, 4
Veterans Affairs, 416, 422

guarantee, 416, 417, 424
Viner, Jacob, xiii
Visio, xiv
Visual Basic, xiv
VLSI Technology, Inc., 71
volatility, 83, 125, 126, 462

basis, see futures contract, basis, volatility
bond, see bond, price volatility
exchange rate, see exchange rate, volatility
implied, seeAmerican option, implied volatility,

see Black–Scholes formula, volatility,
implied, see term structure,yield volatility,
implied

interest rate, see interest rate, volatility
mortgage-backed security, see mortgage-backed

security, volatility
stochastic, 112, 199, 200, 204, 221–223, 291–293,

478, 524
ARCH process, see autoregressive conditional

heteroskedastic process autoregressive
model, see autoregressive process, volatility

average variance, 204
conditional variance, 291, 292
correlation, 222, 261
empirical study, 222
GARCH process, see generalized

autoregressive conditional heteroskedastic
process

jump process, 293
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volatility (cont.)
lognormal model, see lonnormal distribution,

stock price, volatility
market price of risk, 222
Monte Carlo simulation, 261, 267
Ornstein–Uhlenbeck process, 222
replication, 222
risk premium, 222
stationary, 291, 292

stock, 99, 105, 405, 414, see Black-Scholes
fomula, volatility

volatility structure, 330, see term structure, forward
rate volatility, see term structure, yield
volatility

Wal-Mart Stores, Inc., 71, 154n, 466
Wald martingale, 185, 186
Wall Street Journal, 17, 25, 79, 91, 142–145, 157, 163,

168, 307, 311, 401, 402
Wallace, Alfred Russel, 6n
Walras, Leon, 189n
warrant, 134–135, 153, 399

binomial tree algorithm, 135
Black-Scholes option pricing model, 135
convertible bond, see convertible bond,

valuation, warrant, as
perpetual, 135

wave equation, 207
weighted average coupon, 436, 440–442,

451, 452
weighted average life, 439–440, 442, 444–446
weighted average maturity, 435
weighted average remaining maturity (weighted

average maturity), 450n
Weil, Roman L., 63
white noise, 287, 288

Gaussian, 287, 290–292
strict, 287–288

White, Alan, 150, 222, 384
whole loan, seemortgage, whole loan
Wiener process, 184–188, 190, 221, 259

correlation, 196, 197, 200, 214, 217, 222,
371, 476

generalized (Brownian motion), 184
Ornstein–Uhlenbeck process, see

Ornstein–Uhlenbeck process, Wiener
process transformed

Wiener theorem, 184
Wiener, Norbert, 184
Wiener–Bachelier process (Wiener process), 184
wild card option, see Treasury bond futures, wild

card option
Wilshire 5000 Index, 90
Wilshire Small Cap Index, 142
Windows NT, 5
wing, 82
Wold decomposition, 290, 293
Wold, Herman, 293
workstation, 4, 12

World Wide Web, 5, 6, 12, 480, 482–483
browser, 5, 6, 480–482
option, see option, World Wide Web
server, 5
software, see software, World Wide Web

Yankee bond, 24
yield, 17–19, 31, 47

bank discount basis (discount rate), 17
bond equivalent, 11, 18, 401

day count, 313
cash flow, 406, see static cash flow yield

methodology
CD-equivalent, 18
current, 17
discount (discount rate), 17
holding period, see holding period yield
money-market-equivalent (CD-equivalent), 18
mortgage equivalent, 11
nominal, 17
numerical techniques, 18, 20–23
option-adjusted, see option-adjusted yield
portfolio, 30
volatility, see interest rate, volatility

yield beta, see beta, yield
yield curve, 44–46, 50–52, 60, 61, 63n, 321, 372

benchmark, see benchmark yield curve
fitting, see term structure fitting, yield curve
Japan, 327
off-the-run, 45
on-the-run, 45, 330, 450
par, 45, 322, 323
shape, 45, 50, 326, 407

flat, 45, 46, 50
flattening, 60, 307, 318, 406
humped, 45
inverted, 45, 46, 50, 51
inverted-humped, 371
normal, 45, 46, 50, 51, 57, 59
steepening, 60

shift, see custom shift, see nonproportional shift,
see parallel shift, see proportional shift

factors, 61, 277–278, 372, 373, 478
Treasuries, 45, 46

yield curve option, 310, 372
yield spread option, 365

yield spread, 27, 46, 49, 339, 340, 365, 406, 407, 412,
446, option-adjusted spread, vs.,

option-adjusted spread, vs., 412
yield to call, 26, 406
yield to effective maturity, 26
yield to maturity, 26, 29, 30, 45, 46, 49, 50, 132,

322, 412
forward rate, 54
geometric Brownian motion, 360
lognormal distribution, see lognormal

distribution, yield to maturity
problems, 30, 46, 50
spot rate, vs., 47, 50
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yield to par call, 26, 406
yield to stated maturity, 26
yield to worst, 26, 406

zero (zero-coupon bond), 25
zero-coupon bond, 25, 34, 46, 48, 50, 52, 84, 85, 159,

201, 350
convexity, 43
discount function, 47, 331

duration, 36
immunization, see immunization, zero-coupon

bond
option features, 131–134
valuation, see “bond price formula” under

various interest rate models
volatility, 26, 32

zero-coupon yield curve (spot rate curve),
46
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