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Preface

[A book] is a node within a network.
Michel Foucault (1926-1984), The Archaeology of Knowledge

Intended Audience

As the title of this book suggests, a modern book on financial engineering has to
cover investment theory, financial mathematics, and computer science evenly. This
interdisciplinary emphasis is tuned more to the capital markets wherever quantita-
tive analysis is being practiced. After all, even economics has moved away from a
time when “the bulk of [Alfred Marshall’s] potential readers were both unable and
unwilling to read economics in mathematical form” according to Viner (1892-1970)
[860] toward the new standard of which Markowitz wrote in 1987, “more than half
my students cannot write down the formal definition of [the limit of a sequence]”
[642].

This text is written mainly for students of engineering and the natural sciences
who want to study quantitative finance for academic or professional reasons. No
background in finance is assumed. Years of teaching students of business adminis-
tration convince me that technically oriented MBA students will benefit from the
book’s emphasis on computation. With a sizable bibliography, the book can serve as
a reference for researchers.

This text is also written for practitioners. System analysts will find many compact
and useful algorithms. Portfolio managers and traders can obtain the quantitative
underpinnings for their daily activities. This work also serves financial engineers in
their design of financial instruments by expounding the underlying principles and
the computational means to pricing them.

The marketplace has already offered several excellent books on derivatives (e.g.,
[236, 470, 514, 746, 878]), financial engineering (e.g., [369, 646, 647]), financial theory
(e.g., [290, 492]), econometrics (e.g., [147]), numerical techniques (e.g., [62, 215]),
and financial mathematics (e.g., [59, 575, 692, 725]). There are, however, few books
that come near to integrating the wide-ranging disciplines. I hope this text succeeds
at least partially in that direction and, as a result, one no longer has to buy four or
five books to get good coverage of the topics.

Xiii
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Presentation

This book is self-contained. Technically sophisticated undergraduates and graduates
should be able to read it on their own. Mathematical materials are added where they
are needed. In many instances, they provide the coupling between earlier chapters
and upcoming themes. Applications to finance are generally added to set the stage.
Numerical techniques are presented algorithmically and clearly; programming them
should therefore be straightforward. The underlying financial theory is adequately
covered, as understanding the theory underlying the calculations is critical to financial
innovations.

The large number of exercises is an integral part of the text. Exercises are placed
right after the relevant materials. Hints are provided for the more challenging ones.
There are also numerous programming assignments. Those readers who aspire to be-
come software developers can learn a lot by implementing the programming assign-
ments. Thoroughly test your programs. The famous adage of Hamming (1916-1998),
“The purpose of computing is insight, not numbers,” does not apply to erroneous
codes. Answers to all nontrivial exercises and some programming assignments can
be found near the end of the book.

Most of the graphics were produced with Mathematica [882]. The programs that
generate the data for the plots have been written in various languages, including C,
C++, Java, JavaScript, Basic, and Visual Basic. It is a remarkable fact that most — if
not all — of the programming works could have been done with spreadsheet software
[221, 708]. Some computing platforms admit the integration of the spreadsheet’s
familiar graphical user interface and programs written in more efficient high-level
programming languages [265]. Although such a level of integration requires certain
sophistication, it is a common industry practice. Freehand graphics were created with
Canvas and Visio.

The manuscript was typeset in IATEX [580], which is ideal for a work of this size
and complexity. I thank Knuth and Lamport for their gifts to technical writers.

Software

Many algorithms in the book have been programmed. However, instead of being
bundled with the book in disk, my software is Web-centric and platform-independent
[412]. Any machine running a World Wide Web browser can serve as a host for those
programs on The Capitals page at

www.csie.ntu.edu.tw/~lyuu/capitals.html

There is no more need for the (rare) author to mail the upgraded software to the
reader because the one on the Web page is always up to date. This new way of software
development and distribution, made possible by the Web, has turned software into
an Internet service.

Organization
Here is a grand tour of the book:

Chapter 1 sets the stage and surveys the evolution of computer technology.
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Chapter 2 introduces algorithm analysis and measures of complexity. My con-
vention for expressing algorithms is outlined here.

Chapter 3 contains a relatively complete treatment of standard financial mathe-
matics, starting from the time value of money.

Chapter 4 covers the important concepts of duration and convexity.

Chapter 5 goes over the static term structure of interest rates. The coverage of
classic, static finance theory ends here.

Chapter 6 marks the transition to stochastic models with coverage of statistical
inference.

Chapters 7-12 are about options and derivatives. Chapter 7 presents options and
basicstrategies with options. Chapter 8 introduces the arbitrage argument and derives
general pricing relations. Chapter 9is a key chapter. It covers option pricing under the
discrete-time binomial option pricing model. The celebrated Black—Scholes formulas
are derived here, and algorithms for pricing basic options are presented. Chapter 10
presents sensitivity measures for options. Chapter 11 covers the diverse applications
and kinds of options. Additional derivative securities such as forwards and futures
are treated in Chap. 12.

Chapters 13-15 introduce the essential ideas in continuous-time financial math-
ematics. Chapter 13 covers martingale pricing and Brownian motion, and Chap. 14
moves on to stochastic integration and the Ito process. Together they give a fairly
complete treatment of the subjects at an accessible level. From time to time, we go
back to discrete-time models and establish the linkage. Chapter 15 focuses on the
partial differential equations that derivative securities obey.

Chapter 16 covers hedging by use of derivatives.

Chapters 17-20 probe deeper into various technical issues. Chapter 17 investi-
gates binomial and trinomial trees. One of the motives here is to demonstrate the use
of combinatorics in designing highly efficient algorithms. Chapter 18 covers numer-
ical methods for partial differential equations, Monte Carlo simulation, and quasi—
Monte Carlo methods. Chapter 19 treats computational linear algebra, least-squares
problems, and splines. Factor models are presented as an application. Chapter 20
introduces financial time series analysis as well as popular time-series models.

Chapters 21-27 are related to interest-rate-sensitive securities. Chapter 21 sur-
veys the wide varieties of interest rate derivatives. Chapter 22 discusses yield curve
fitting. Chapter 23 introduces interest rate modeling and derivative pricing with the
elementary, yet important, binomial interest rate tree. Chapter 24 lays the mathemat-
ical foundations for interest rate models, and Chaps. 25 and 26 sample models from
the literature. Finally, Chap. 27 covers fixed-income securities, particularly those with
embedded options.

Chapters 28-30 are concerned with mortgage-backed securities. Chapter 28 in-
troduces the basic ideas, institutions, and challenging issues. Chapter 29 investigates
the difficult problem of prepayment and pricing. Chapter 30 surveys collateralized
mortgage obligations.
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Chapter 31 discusses the theory and practice of portfolio management. In partic-
ular, it presents modern portfolio theory, the Capital Asset Pricing Model, the Arbi-
trage Pricing Theory, and value at risk.

Chapter 32 documents the Web software developed for this book.
Chapter 33 contains answers or pointers to all nontrivial exercises.

This book ends with an extensive index. There are two guiding principles behind
its structure. First, related concepts should be grouped together. Second, the index
should facilitate search. An entry containing parentheses indicates that the term
within should be consulted instead, first at the current level and, if not found, at the
outermost level.

Acknowledgments

Many people contributed to the writing of the book: George Andrews, Nelson
Beebe, Edward Bender, Alesandro Bianchi, Tomas Bjork, Peter Carr, Ren-Raw
Chen, Shu-Heng Chen, Oren Cheyette, Jen-Diann Chiou, Mark Fisher, Ira Gessel,
Mau-Wei Hung, Somesh Jha, Ming-Yang Kao, Gow-Hsing King, Timothy Klassen,
Philip Liang, Steven Lin, Mu-Shieung Liu, Andrew Lo, Robert Lum, Chris McLean,
Michael Rabin, Douglas Rogers, Masako Sato, Erik Schlogl, James Tilley, and Keith
Weintraub.

Ex-colleagues at Citicorp Securities, New York, deserve my deep thanks for the
intellectual stimuli: Mark Bourzutschky, Michael Chu, Burlie Jeng, Ben Lis, James
Liu, and Frank Feikeh Sung. In particular, Andy Liao and Andy Sparks taught me a
lot about the markets and quantitative skills.

Students at National Taiwan University, through research or course work, helped
improve the quality of the book: Chih-Chung Chang, Ronald Yan-Cheng Chang,
Kun-Yuan Chao [179], Wei-Jui Chen [189], Yuan-Wang Chen [191], Jing-Hong Chou,
Tian-Shyr Dai, [257, 258, 259] Chi-Shang Draw, Hau-Ren Fang, Yuh-Yuan Fang,
Jia-Hau Guo [405], Yon-Yi Hsiao, Guan-Shieng Huang [250], How-Ming Hwang,
Heng-Yi Liu, Yu-Hong Liu [610], Min-Cheng Sun, Ruo-Ming Sung, Chen-Leh Wang
[867], Huang-Wen Wang [868], Hsing-Kuo Wong [181], and Chao-Sheng Wu [885].

This book benefited greatly from the comments of several anonymous reviewers.
As the first readers of the book, their critical eyes made a lasting impact on its
evolution. As with my first book with Cambridge University Press, the editors at the
Press were invaluable. In particular, I would like to thank Lauren Cowles, Jodo da
Costa, Caitlin Doggart, Scott Parris, Eleanor Umali, and the anonymous copy editor.

I want to thank my wife Chih-Lan and my son Raymond for their support during
the project, which started in January 1995. This book, I hope, finally puts to rest their
dreadful question, “When are you going to finish it?”



Acronyms

APT
AR
ARCH

ARM
ARMA

BDT
BEY
BOPM
BPV

CAPM
CB
CBOE
CBT
CD
CIR
CME
CMO
CMT
COFI
CPR

DEM
DITA

FHA
FHLMC

FNMA
forex

FRA
FV

Useful Abbreviations

Arbitrage Pricing Theory

autoregressive (process)

autoregressive conditional heteroskedastic
(process)

adjustable-rate mortgage

autoregressive moving average (process)

Black-Derman-Toy (model)
bond-equivalent yield
binomial option pricing model
basis-point value

Capital Asset Pricing Model
convertible bond

Chicago Board of Exchange
Chicago Board of Trade
certificate of deposit
Cox-Ingersoll-Ross

Chicago Mercantile Exchange
collateralized mortgage obligation
constant-maturity Treasury (rate)
Cost of Funds Index

conditional prepayment rate

German mark
Dow Jones Industrial Average

Federal Housing Administration

Federal Home Loan Mortgage Corporation
(“Freddie Mac”)

Federal National Mortgage Association
(“Fannie Mae”)

foreign exchange

forward rate agreement

future value



Xviii Useful Abbreviations

GARCH generalized autoregressive conditional

heteroskedastic
GLS generalized least-squares
GMM generalized method of moments

GNMA  Government National Mortgage Association
(“Ginnie Mae”)

HIM Heath-Jarrow—Morton
HPR holding period return

IAS index-amortizing swap

IMM International Monetary Market
10 interest-only

IRR internal rate of return

JPY Japanese yen

LIBOR London Interbank Offered Rate
LTCM Long-Term Capital Management

MA moving average

MBS mortgage-backed security

MD Macauley duration

ML maximum likelihood

MPTS mortgage pass-through security
MVP minimum-variance point

NPV net present value

NYSE New York Stock Exchange

OAC option-adjusted convexity
OAD option-adjusted duration
OAS option-adjusted spread

OLS ordinary least-squares

PAC Planned Amortization Class (bond)
P&I principal and interest

PC participation certificate

PO principal-only

PSA Public Securities Association

PV present value

REMIC Real Estate Mortgage Investment Conduit
RHS Rural Housing Service
RS Ritchken-Sankarasubramanian

S&P 500 Standard and Poor’s 500 Index
SMBS stripped mortgage-backed security
SMM single monthly mortality

SSE error sum of squares



Useful Abbreviations

SSR regression sum of squares

SST total sum of squares

SVD singular value decomposition
TAC Target Amortization Class (bond)
VA Department of Veterans Affairs
VaR value at risk

WAC weighted average coupon

WAL weighted average life

WAM weighted average maturity
WWW  World Wide Web

Ticker Symbols

DJ Dow Jones Industrial Average
IRX thirteen-week T-bill

NDX Nasdaq 100

NYA New York Stock Exchange Composite Index
OEX S&P 100

RUT Russell 200

SPX S&P 500

TYX thirty-year T-bond

VLE Value Line Index

WSX Wilshire S-C

XMI Major Market Index

XiX






CHAPTER
ONE

Introduction

But the age of chivalry is gone. That of sophisters, oeconomists, and
calculators, has succeeded; and the glory of Europe is extinguished
for ever.

Edmund Burke (1729-1797), Reflections on the Revolution

in France

1.1 Modern Finance: A Brief History

Modern finance began in the 1950s [659, 666]. The breakthroughs of Markowitz,
Treynor, Sharpe, Lintner (1916-1984), and Mossin led to the Capital Asset Pric-
ing Model in the 1960s, which became the quantitative model for measuring risk.
Another important influence of research on investment practice in the 1960s was
the Samuelson-Fama efficient markets hypothesis, which roughly says that security
prices reflect information fully and immediately. The most important development in
terms of practical impact, however, was the Black—Scholes model for option pricing
in the 1970s. This theoretical framework was instantly adopted by practitioners. Op-
tion pricing theory is one of the pillars of finance and has wide-ranging applications
[622, 658]. The theory of option pricing can be traced to Louis Bachelier’s Ph.D. thesis
in 1900, “Mathematical Theory of Speculation.” Bachelier (1870-1946) developed
much of the mathematics underlying modern economic theories on efficient markets,
random-walk models, Brownian motion [ahead of Einstein (1879-1955) by 5 years],
and martingales [277, 342, 658, 776].!

1.2 Financial Engineering and Computation

Today, the wide varieties of financial instruments dazzle even the knowledgeable.
Individuals and corporations can trade, in addition to stocks and bonds, options,
futures, stock index options, and countless others. When it comes to diversifica-
tion, one has thousands of mutual funds and exchange-traded funds to choose from.
Corporations and local governments increasingly use complex derivative securities
to manage their financial risks or even to speculate. Derivative securities are finan-
cial instruments whose values depend on those of other assets. All are the fruits of
financial engineering, which means structuring financial instruments to target in-
vestor preferences or to take advantage of arbitrage opportunities [646].
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The innovations in the financial markets are paralleled by equally explosive
progress in computer technology. In fact, one cannot think of modern financial
systems without computers: automated trading, efficient bookkeeping, timely clear-
ing and settlements, real-time data feed, online trading, day trading, large-scale
databases, and tracking and monitoring of market conditions [647, 866]. These
applications deal with information. Structural changes and increasing volatility in
financial markets since the 1970s as well as the trend toward greater complexity
in financial product design call for quantitative techniques. Today, most investment
houses use sophisticated models and software on which their traders depend. Here,
computers are used to model the behavior of financial securities and key indicators,
price financial instruments, and find combinations of financial assets to achieve
results consistent with risk exposures. The confidence in such models in turn leads
to more financial innovations and deeper markets [659, 661]. These topics are the
focus of financial computation.

One must keep in mind that every computation is based on input and assumptions
made by the model. However, input might not be accurate enough or complete,
and the assumptions are, at best, approximations.”> Computer programs are also
subject to errors (“bugs”). These factors easily defeat any computation. Despite
these difficulties, the computer’s capability of calculating with fine details and trying
out vast numbers of scenarios is a tremendous advantage. Harnessing this power and
a good understanding of the model’s limitations should steer us clear of blind trust
in numbers.

1.3 Financial Markets

A society improves its welfare through investments. Business owners need out-
side capital for investments because even projects of moderate sizes are beyond
the reach of most wealthy individuals. Governments also need funds for public in-
vestments. Much of that money is channeled through the financial markets from
savers to borrowers. In so doing, the financial markets provide a link between sav-
ing and investment,® and between the present and the future. As a consequence,
savers can earn higher returns from their savings instead of hoarding them, borrow-
ers can execute their investment plans to earn future profits, and both are better off.
The economy also benefits by acquiring better productive capabilities as a result.
Financial markets therefore facilitate real investments by acting as the sources of
information.

A financial market typically takes its name from the borrower’s side of the market:
the government bond market, the municipal bond market, the mortgage market,
the corporate bond market, the stock market, the commodity market, the foreign
exchange (forex) market,* the futures market, and so on [95, 750]. Within financial
markets, there are two basic types of financial instruments: debt and equity. Debt
instruments are loans with a promise to repay the funds with interest, whereas equity
securities are shares of stock in a company. As an example, Fig. 1.1 traces the U.S.
markets of debt securities between 1985 and 1999. Financial markets are often divided
into money markets, which concentrate on short-term debt instruments, and capital
markets, which trade in long-term debt (bonds) and equity instruments (stocks)
[767, 799, 828].



1.3 Financial Markets

3

Outstanding U.S. Debt Market Securities (U.S. $ billions)

Agency Us. Fed Money Asset-

Year Municipal ~ Treasury ~ MBSs corporate  agencies  market backed  Total

1985 859.5 1,360.2 3721 719.8 293.9 8470 24 4,4549
1986 920.4 1,564.3 534.4 952.6 3074 8770 33 5,159.4
1987 1,010.4 1,724.7 672.1 1,061.9 3414 979.8 5.1 5,795.4
1988 1,082.3 1,821.3 749.9 1,181.2 381.5 1,108.5 6.8 6,331.5
1989 1,135.2 1,945.4 876.3 1,2771 411.8 1,192.3 59.5 6,897.6
1990 1,184.4 2,195.8 1,024.4 1,333.7 434.7 1,156.8 102.2 7,432.0
1991 1,272.2 2,471.6 1,160.5 1,440.0 442.8 1,054.3 133.6 7,975.0
1992 1,302.8 2,754.1 1,273.5 1,542.7 484.0 994.2 156.9 8,508.2
1993 1,3775 2,989.5 1,349.6 1,662.1 570.7 971.8 179.0 9,100.2
1994 1,341.7 3,126.0 1,441.9 1,746.6 738.9 1,034.7 205.0 9,634.8
1995 1,293.5 3,307.2 1,570.4 1,912.6 844.6 11772 2979 10,403.5
1996 1,296.0 3,459.0 1,715.0 2,055.9 925.8 1,393.8 390.5 11,235.0
1997 1,367.5 3,456.8 1,825.8 2,213.6 1,022.6 1,692.8 518.1 12,097.2
1998 1,464.3 3,355.5 2,018.4 2,462.0 1,296.5 1,978.0 632.7 13,2074
1999 1,532.5 3,281.0 2,292.0 3,022.9 1,616.5 2,338.2 746.3 14,829.4

Figure 1.1: U.S. debt markets 1985-1999. The Bond Market Association estimates. Sources: Federal Home Loan
Mortgage Corporation, Federal National Mortgage Association, Federal Reserve System, Government National
Mortgage Association, Securities Data Company, and U.S. Treasury. MBS, mortgage-backed security.

Borrowers and savers can trade directly with each other through the financial
markets or direct loans. However, minimum-size requirements, transactions costs,
and costly evaluation of the assets in question often prohibit direct trades. Such
impediments are remedied by financial intermediaries. These are financial institu-
tions that act as middlemen to transfer funds from lenders to borrowers; unlike most
firms, they hold only financial assets [660]. Banks, savings banks, savings and loan
associations, credit unions, pension funds, insurance companies, mutual funds, and
money market funds are prominent examples. Financial intermediaries can lower
the minimum investment as well as other costs for savers.

Financial markets can be divided further into primary markets and secondary
markets. The primary market is often merely a fictional, not a physical, location.
Governments and corporationsinitially sell securities —debt or equity —in the primary
market. Such sales can be done by means of public offerings or private placements.
A syndicate of investment banks underwrites the debt and the equity by buying
them from the issuing entities and then reselling them to the public. Sometimes the
investment bankers work on a best-effort basis to avoid the risk of not being able to
sell all the securities. Subsequently people trade those instruments in the secondary
markets, such as the New York Stock Exchange. Existing securities are exchanged
in the secondary market.

The existence of the secondary market makes securities more attractive to in-
vestors by making them tradable after their purchases. It is the very idea that created
the secondary market in mortgages in 1970 by asset securitization [54]. Securitiza-
tion converts assets into traded securities with the assets pledged as collaterals, and
these assets can often be removed from the balance sheet of the bank. In so doing,
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financial intermediaries transform illiquid assets into liquid liabilities [843]. By mak-
ing mortgages more attractive to investors, the secondary market also makes them
more affordable to home buyers. In addition to mortgages, auto loans, credit card
receivables, senior bank loans, and leases have all been securitized [330]. Securitiza-
tion has fundamentally changed the credit market by making the capital market a
major supplier of credit, a role traditionally held exclusively by the banking system.

1.4 Computer Technology

Computer hardware has been progressing at an exponential rate. Measured by the
widely accepted integer Standard Performance Evaluation Corporation (SPEC)
benchmarks, the workstations improved their performance by 49% per year be-
tween 1987 and 1997. The memory technology is equally impressive. The dynamic
random-access memory (DRAM) has quadrupled its capacity every 3 years since
1977. Relative performance per unit cost of technologies from vacuum tube to tran-
sistor to integrated circuit to very-large-scale-integrated (VLSI) circuit is a factor of
2,400,000 between 1951 and 1995 [717].

Some milestones in the industry include the IBM/360 mainframe, followed by
Digital’s minicomputers. (Digital was acquired by Compagq in 1998.) The year 1963
saw the first supercomputer, built by Cray (1926-1996) at the Control Data Corpo-
ration. Apple II of 1977 is generally considered to be the first personal computer.
It was overtaken by the IBM Personal Computer in 1981, powered by Intel mi-
croprocessors and Microsoft’s disk operating system (DOS) [638, 717]. The 1980s
also witnessed the emergence of the so-called massively parallel computers, some of
which had more than 65,000 processors [487]. Parallel computers have also been ap-
plied to database applications [247, 263] and pricing complex financial instruments
[528, 794, 891]. Because commodity components offer the best performance/cost
ratio, personal computers connected by fast networks have been uprooting niche
parallel machines from most of their traditional markets [24, 200].

On the software side, high-level programming languages dominate [726]. Al-
though they are easier to program with than low-level languages, it remains difficult
to design and maintain complex software systems. In fact, in the 1960s, the software
cost of the IBM/360 system already dominated its hardware cost [872]. The current
trend has been to use the object-oriented principles to encapsulate as much infor-
mation as possible into the so-called objects [101, 466]. This makes software easier
to maintain and develop. Object-oriented software development systems are widely
available [178].

The revolution fostered by the graphical user interface (GUI) brought comput-
ers to the masses. The omnipotence of personal computers armed with easy-to-use
interfaces enabled employees to have access to information and to bypass several
layers of management [140]. It also paved the way for the client/server concept [736].

Client/server systems consist of components that are logically distributed rather
than centralized (see Fig. 1.2). Separate components therefore can be optimized
based on their functions, boosting the overall performance/cost ratio. For instance,
the three-tier client/server architecture contains three parts: user interface, com-
puting (application) server, and data server [310]. Because the user interface de-
mands fewer resources, it can run on lightly configured computers. Best of all, it can
potentially be made platform independent, thus offering maximum availability of the
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Metwork/World Wide Web

Computing server Diata server

Figure 1.2: Client/server architecture. In a typical three-tier
client/server architecture, client machines are connected to
the computing server, which in turn is connected to the data
server. As the bulk of the computation is with the computing
server and the bulk of the data access is with the data server,
the client computer can be lightly equipped.

server applications, thanks to Internet-induced developments in the mid-1990s. The
server machines, on the other hand, can be powerful multiprocessors for the comput-
ing servers and machines with high disk throughputs for the data servers. The typical
World Wide Web (WWW) architecture, for instance, is a three-tier client/server sys-
tem consisting of the browser, Web server, and database server. The object-oriented
methodology and client/server architecture can be profitably combined for financial
computation [626, 867].

Database management systems are the backbone of information systems
[497, 871]. With products from Computer Associates, IBM, Informix, Microsoft,
Oracle, and Sybase, the database scenery is dominated by the relational database
model invented by Codd at IBM in 1970 [216]. In a relational database, data are
organized as two-dimensional tables. Consider the following table for storing daily
interest rate data.

Attribute Null? Type

maturity NOT NULL CHAR(10)
ratedate NOT NULL DATE
rate — DECIMAL(15,8)

Name the table yieldcurve. The structured query language (SQL)° statement below
can be used to retrieve the two-year U.S. Treasury yield as of December 1, 1994,

SELECT rate FROM yieldcurve
WHERE maturity = '2YR’ AND ratedate = '1994-12-01’

SQL can also be embedded into general-purpose programming languages. The ad-
vancement in the capability of low-cost personal computers and the release of truly
multitasking operating systems for them (IBM’s OS/2, Microsoft’s Windows NT, and
Linux) brought client/server database systems to the masses [1, 182, 688, 888]. How-
ever, by 1996, the relational database market started to be affected by the Internet
momentum [311].

5
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Prototyped in 1991 by Berners-Lee, the WWW is a global information system
that provides easy access to Internet resources [63]. It quickly sparked a revolution
in the use of the Internet for communications, information, and businesses [655]. A
personal computer with access to the WWW — typically through a graphical browser
from Microsoft or Netscape (part of America Online) — opens up a window to a
world that can be described only as awesome: shopping, stock and bond quotes,
online stock trading, up-to-date and historical financial data, financial analysis soft-
ware, online versions of major newspapers and magazines, academic research results,
journal archives and preprints, to mention just a few. The WWW can also form the
information network within corporations, or intranet [733]. The surge of the WWW
was one of the major reasons behind the Internet’s growing from fewer than 500,000
hosts to more than 10 million between 1990 and 1996 [63, 655] (that number stood at
93 million as of July 2000). In 1998, 100 million people were using the Internet [852].
Even software development strategies were fundamentally changed [488]. These
amazing developments are currently reshaping the business and the financial worlds
[13, 338, 498, 831].

NOTES

1. Bachelier remained obscure until approximately 1960 when his major work was translated into
English. His career problem seems to stem from some technical errors and the topic of his
dissertation [637]. “The topic is somewhat remote from those our candidates are in the habit
of treating,” wrote his advisor, Poincaré (1854-1912) [277]. This is not the first time that ideas
in economics have influenced other sciences [426, 660], the most celebrated being Malthus’s
simultaneous influence on Darwin and Wallace in 1838 [648].

2. Two Nobel laureates in economics, Merton and Scholes, helped found the hedge fund company,
Long-Term Capital Management (LTCM). The firm’s tools were “computers and powerful math-
ematics, not intuition nor inside information” [869]. The company underwent a U.S.$3.6 billion
forced bailout by 14 commercial and investment banks in September 1998.

3. Distinction is often made between real and financial investments. What economists mean by
investment is the sort that produces real capital formation such as plants, land, and machinery
[778]. Investments in this book will be of the financial kind as opposed to the real kind mentioned
above. They involve only papers such as stocks and bonds [797].

4. The forex market is the world’s largest financial market, in which an estimated U.S.$1.5 trillion
was traded in April 1998 [51]. Players are the major commercial and investment banks, with their
traders connected by computers, telephones, and other telecommunication equipment [767].

5. The most widely used database language, SQL [315] is derived from SEQUEL (for Structured
English QUEry Language), which was designed and implemented at IBM.



CHAPTER
TWO

Analysis of Algorithms

In computer science there is no history of critical experiments that
decide between the validity of various theories, as there are in phy-
sical sciences.

Juris Hartmanis [421]

Algorithms are precise procedures that can be turned into computer programs. A
classical example is Euclid’s algorithm, which specifies the exact steps toward com-
puting the greatest common divisor. Problems such as the greatest common divisor
are therefore said to be computable, whereas those that do not admit algorithms are
uncomputable. A computable problem may have complexity so high that no effi-
cient algorithms exist. In this case, it is said to be intractable. The difficulty of pricing
certain financial instruments may be linked to their intrinsic complexity [169].

The hardest part of software implementation is developing the algorithm [264].
Algorithms in this book are expressed in an informal style called a pseudocode. A
pseudocode conveys the algorithmic ideas without getting tied up in syntax. Pseu-
docode programs are specified in sufficient detail as to make their coding in a pro-
gramming language straightforward. This chapter outlines the conventions used in
pseudocode programs.

2.1 Complexity

Precisely predicting the performance of a program is difficult. It depends on such
diverse factors as the machine it runs on, the programming language it is written in,
the compiler used to generate the binary code, the workload of the computer, and
so on. Although the actual running time is the only valid criterion for performance
[717], we need measures of complexity that are machine independent in order to
have a grip on the expected performance.

We start with a set of basic operations that are assumed to take one unit of
time. Logical comparisons (<, =, >, and so on) and arithmetic operations of finite
precision (+, —, x, /, exponentiation, logarithm, and so on) are among them. The
total number of these operations is then used as the total work done by an algorithm,
called its computational complexity. Similarly, the space complexity is the amount
of memory space used by an algorithm. The purpose here is to concentrate on the
abstract complexity of an algorithm instead of its implementation, which involves
so many details that we can never fully take them into account. Complexity serves
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Algorithm for searching an element:
input: x,n, A; (1 <i <n),

integer k; Figure 2.1: Sequential search algorithm.
for (k=1+to n)

if [x = Ax] return k;
return not-found;

as a good guide to an algorithm’s actual running time. Because space complexity
is seldom an issue in this book, the term complexity is used to refer exclusively to
computational complexity.

The complexity of an algorithm is expressed as a function of the size of its input.
Consider the search algorithm in Fig. 2.1. It looks for a given element by comparing
it sequentially with every element in an array of length n. Apparently the worst-case
complexity is # comparisons, which occurs when the matching element is the last
element of the array or when there is no match. There are other operations to be sure.
The for loop, for example, uses a loop variable k that has to be incremented for each
execution of the loop and compared against the loop bound n. We do not need to
count them because we care about the asymptotic growth rate, not the exact number
of operations; the derivation of the latter can be quite involved, and its effects on
real-world performance cannot be pinpointed anyway [37,227]. The complexity from
maintaining the loop is therefore subsumed by the complexity of the body of the loop.

2.2 Analysis of Algorithms

We are interested in worst-case measures. It is true that worst cases may not occur
in practice. But an average-case analysis must assume a distribution on the input,
whose validity is hard to certify. To further suppress unnecessary details, we are
concerned with the rate of growth of the complexity only as the input gets larger,
ignoring constant factors and small inputs. The focus is on the asymptotic growth
rate, as mentioned in Section 2.1.

Let R denote the set of real numbers, R the set of positive real numbers, and
N={0,1,2,...,}. The following definition lays out the notation needed to formulate
complexity.

DEFINITION 2.2.1 We say that g = O(f) if g(n) < cf(n) for some nonnegative ¢ and
sufficiently large n, where f,g: N— R™.

EXAMPLE 2.2.2 The base of a logarithm is not important for asymptotic analysis
because

log, x
—5e” _ ol ,
log (log, x)

e

log, x =

where e =2.71828.... We abbreviate log, x as Inx.

EXAMPLE 2.2.3 Let f(n) = n® and g(n) = 3.5 x n?> 4+ Inn +sinn. Clearly, g = O( f) be-
cause g(n) is less than n? for sufficiently large n. On the other hand, f # O(g).

Denote the input size by N. An algorithm runs in logarithmic time if its complex-
ity is O(log N). An algorithm runs in linear time if its complexity is O(N). The
sequential search algorithm in Fig. 2.1, for example, has a complexity of O(N)
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because it has N =n+2 inputs and carries out O(n) operations. A complexity
of O(Nlog N) typifies sorting and various divide-and-conquer types of algorithms.
An algorithm runs in quadratic time if its complexity is O(N?). Many elementary
matrix computations such as matrix—vector multiplication have this complexity. An
algorithm runs in cubic time if its complexity is O(N?). Typical examples are matrix—
matrix multiplication and solving simultaneous linear equations. An algorithm runs
in exponential time if its complexity is O(2"). Problems that require exponential time
are clearly intractable. It is possible for an exponential-time algorithm to perform
well on “typical” inputs, however. The foundations for computational complexity
were laid in the 1960s [710].

» Exercise 2.2.1 Show that f+ g = O(f) if g = O(f).

» Exercise 2.2.2 Prove the following relations: (1) Y7 i = O(n?), (2) Y.I i’ =
O(n), (3) ;%" 2 = O(n), (4) Li558" 2 = 0(n®), (5) n Yigi~™ = O(ninn).

2.3 Description of Algorithms

Universally accepted mathematical symbols are respected. Therefore +, —, %, /, <,
>, <, >, and = mean addition, subtraction, and so on. The symbol := denotes as-
signment. For example, a := b assigns the value of b to the variable a. The statement
return a says that a is returned by the algorithm.

The construct

for (i=atob) {---}

means that the statements enclosed in braces ({ and }) are executed b—a + 1 times,
with i equalto a,a+1,..., b, in that order. The construct

for (i=a downto b) {---}

means the statements enclosed in braces are executed a —b+1 times, with i equal
toa,a—1,...,b,in that order. The construct

while [S] {---}

executes the statements enclosed in braces until the condition S is violated. For
example, while [a =b] {---} runs until a is not equal to b. The construct

if[S]{Ti}else{T}

executes 77 if the expression S is true and 7; if the expression § is false. The
statement break causes the current for loop to exit. The enclosing brackets can be
dropped if there is only a single statement within.

The construct a[n] allocates an array of n elements a[0],...,a[n—1]. The
construct a[n][m] allocates the following n x m array (note that the indices start
from zero, not one):

afO]O] -+ a[0][m—1]
a[n—1][0] --- a[n—-1][m—-1]

Although the zero-based indexing scheme is more convenient in many cases, the
one-based indexing scheme may be preferred in others. So we use a[1l..n][1..m]
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to denote an array with the following n x m elements,
a[l][1],a[1][2],...,a[n][m—1],a[n][m].

Symbols such as a[ ] and «[ ][ ] are used to reference the entire array. Anything
following // is treated as comment.

2.4 Software Implementation

Implementation turns an algorithm into a computer program on specific computer
platforms. Design, coding, debugging, and module testing are all integral parts of
implementation.! A key to a productive software project is the reuse of code,
either from previous projects or commercial products [650]. The current trend to-
ward object-oriented programming and standardization promises to promote soft-
ware reuse.

The choice of algorithms in software projects has to be viewed within the context
of a larger system. The overall system design might limit the choices to only a few
alternatives [791]. This constraint usually arises from the requirements of other parts
of the system and very often reflects the fact that most pieces of code are written for
an existing system [714].

I now correct a common misconception about the importance of performance.
People tend to think that a reduction of the running time from, say, 10 s to 5 s is not
as significant as that from 10 min to 5 min. This view rests on the observation that a
5-s difference is not as critical as a 5-min difference. This is wrong. A 5-s difference
can be easily turned into a 5-min difference if there are 60 such tasks to perform. A
significant reduction in the running time for an important problem is always desirable.

Finally, a word of caution on the term recursion. Computer science usually re-
serves the word for the way of attacking a problem by solving smaller instances of the
same problem. Take sorting a list of numbers as an example. One recursive strategy
is to sort the first half of the list and the second half of the list separately before
merging them. Note that the two sorting subproblems are indeed smaller in size than
the original problem. Consistent with most books in finance, however, in this book
the term “recursion” is used loosely to mean “iteration.” Adhering to the strict com-
puter science usage will usually result in problem formulations that lead to highly
inefficient pricing algorithms.

NOTE

1. Software errors can be costly. For example, they were responsible for the crash of the maiden
flight of the Ariane 5 that was launched on June 4, 1996, at a cost of half a billion U.S. dollars
[606].

Probably only a person with some mathematical
knowledge would think of beginning with 0 instead of
with 1.
Bertrand Russell (1872-1970), Introduction to
Mathematical Philosophy




CHAPTER
THREE

Basic Financial Mathematics

In the fifteenth century mathematics was mainly concerned with
questions of commercial arithmetic and the problems of the architect.
Joseph Alois Schumpeter (1883-1950), Capitalism, Socialism

and Democracy

To put a value on any financial instrument, the first step is to look at its cash flow.
As we are most interested in the present value of expected cash flows, three features
stand out: magnitudes and directions of the cash flows, times when the cash flows
occur, and an appropriate factor to discount the cash flows. This chapter deals with
elementary financial mathematics. The following convenient time line will be adopted
throughout the chapter:

Period 1 Period 2 Period 3 Period 4

Time 0 Time 1 Time 2 Time 3 Time 4

3.1 Time Value of Money

Interest is the cost of borrowing money [785, 787]. Let r be the annual interest rate.
If the interest is compounded once per year, the future value (FV) of P dollars after
n yearsis FV = P(1+r)". Tolook at it from another perspective, FV dollars n years
from now is worth P =FV x (14r)" today, its present value (PV).! The process
of obtaining the present value is called discounting.

In general, if interest is compounded m times per annum, the future value is

FV = P(l + n%)m G.1)

Hence, [1+ (r/m)]™ —1 is the equivalent annual rate compounded once per annum
or simply the effective annual interest rate. In particular, we have annual compound-
ing with m = 1, semiannual compounding with m =2, quarterly compounding with
m = 4, monthly compounding with m =12, weekly compounding with m = 52, and
daily compounding with m = 365. Two widely used yields are the bond-equivalent
yield (BEY) (the annualized yield with semiannual compounding) and the mortgage-
equivalent yield (MEY) (the annualized yield with monthly compounding).

11
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An interest rate of » compounded m times a year is equivalent to an interest
rate of r/m per 1/m year by definition. If a loan asks for a return of 1% per month,
for example, the annual interest rate will be 12% with monthly compounding.

EXAMPLE 3.1.1 With an annual interest rate of 10% compounded twice per annum,
each dollar will grow to be [14(0.1/2)]> =1.1025 1 year from now. The rate is
therefore equivalent to an interest rate of 10.25% compounded once per annum.

EXAMPLE 3.1.2 An insurance company has to pay $20 million 4 years from now to
pensioners. Suppose that it can invest money at an annual rate of 7% compounded
semiannually. Because the effective annual rate is [ 14 (0.07/2)]> =1 =7.1225%, it
should invest 20,000,000 x (1.071225)_4 =15,188,231 dollars today.

As m approaches infinity and [1+ (r/m)]™ — ¢", we obtain continuous com-
pounding:

FV = Pe'™",

where e =2.71828. We call scheme (3.1) periodic compounding to differentiate it
from continuous compounding. Continuous compounding is easier to work with. For
instance, if the annual interest rate is r; for n; years and r, for the following n,
years, the future value of $1 will be e "1 17272,

» Exercise 3.1.1 Verify that, given an annual rate, the effective annual rate is higher
the higher the frequency of compounding.

> Exercise 3.1.2 Below is a typical credit card statement:
NOMINAL ANNUAL PERCENTAGE RATE (%) 18.70
MONTHLY PERIODIC RATE (%) 1.5583
Figure out the frequency of compounding.

» Exercise3.1.3 (1) It was mentioned in Section 1.4 that workstations improved their
performance by 54 % per year between 1987 and 1992 and that the DRAM technology
has quadrupled its capacity every 3 years since 1977. What are their respective annual
growth rates with continuous compounding? (2) The number of requests received by
the National Center for Supercomputing Applications (NCSA) WWW servers grew
from ~300,000 per day in May 1994 to ~500,000 per day in September 1994. What
is the growth rate per month (compounded monthly) during this period?

3.1.1 Efficient Algorithms for Present and Future Values
The PV of the cash flow C;, G, ..., C, attimes 1,2,...,nis

C G T C,
1+y (A+y)?

T

It can be computed by the algorithm in Fig. 3.1 in time O(n), as the bulk of the
computation lies in the four arithmetic operations during each execution of the loop
that is executed n times. We can save one arithmetic operation within the loop
by creating a new variable, say z, and assigning 1+ y to it before the loop. The
statement d :=d x (1 + y) can then be replaced with d :=d x z. Such optimization
is often performed by modern compilers automatically behind the scene. This lends
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Algorithm for evaluating present value:
Figure 3.1: Algorithm for PV. C; are the cash flows,
y is the interest rate, and n is the term of the
investment. We can easily verify that the variable d

input: y,n,C (1<t <n),
real x,d;

: ; R x:=0;

isequalto (14 y)' atthe beginning of the for loop. di=1+y;

As a result, the variable x becomes the partial sum fo.r (=1 jco ) {

i - i =

Y1 Ce(1+y)™" at the end of each loop. This x 1= x+(C/d):;

proves the correctness of the algorithm. doed x a T y)"
}
return x;

support to the earlier argument for asymptotic analysis: In a complex environment
in which many manipulations are being done without our knowing them, the best we
can do is often the asymptotics.

One further simplification is to replace the loop with the following statement:

for i =n downto 1) {x:=(x+G(;)/d;}.

The above loop computes the PV by means of

C, 1 1 1
+Ch1 ) —+C,— _— e —
{ [<1+y 1>1+y 2]1+y }1+y

This idea, which is due to Horner (1786-1837) in 1819 [582], is the most efficient
possible in terms of the absolute number of arithmetic operations [103].

Computing the FV is almost identical to the algorithm in Fig. 3.1. The following
changes to that algorithm are needed: (1) d is initialized to 1 instead of 1+ y,
(2) i shouldstart from » and rundown to 1,and (3) x := x + (C;/d) isreplaced with
x:=x+(C; xd).

» Exercise 3.1.4 Prove the correctness of the FV algorithm mentioned in the text.

3.1.2 Conversion between Compounding Methods

We can compare interest rates with different compounding methods by convert-
ing one into the other. Suppose that r; is the annual rate with continuous com-
pounding and r, is the equivalent rate compounded m times per annum. Then
[1+(r?/m)]" = . Therefore

m:mmo+2> (3.2)
m

ry = m(em—1). (33)

EXAMPLE 3.1.3 Consider an interest rate of 10% with quarterly compounding. The
equivalent rate with continuous compounding is

0.1
4 x ln<1 + T) =0.09877, or 9.877%,

derived from Eq. (3.2) with m=4 and r, =0.1.

13
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For n compounding methods, there is a total of n(n— 1) possible pairwise con-
versions. Such potentially huge numbers of cases invite programming errors. To make
that number manageable, we can fix a ground case, say continuous compounding, and
then convert rates to their continuously compounded equivalents before any com-
parison. This cuts the number of possible conversions down to the more desirable
2(n—1).

3.1.3 Simple Compounding

Besides periodic compounding and continuous compounding (hence compound in-
terest), there is a different scheme for computing interest called simple compounding
(hence simple interest). Under this scheme, interest is computed on the original prin-
cipal. Suppose that P dollars is borrowed at an annual rate of r. The simple interest
each year is Pr.

3.2 Annuities

An ordinary annuity pays out the same C dollars at the end of each year for n years.
With a rate of r, the FV at the end of the nth year is

1+r)"

Zc(l Y= L (3.4)

For the annuity due, cash flows are received at the beginning of each year. The FV is
14+r)"

anJr ) = L (1+7). (3.5)

If m payments of C dollars each are received per year (the general annuity), then
Egs. (3.4) and (3.5) become

1 an_l 1 an—l
L0+5) U (1)

)

r
m

respectively. Unless stated otherwise, an ordinary annuity is assumed from now on.
The PV of a general annuity is

nm —i 1-(1 r\—hm
PV:ZC<1+’%> ekl G B (3.6)
i=1 m

EXAMPLE 3.21 The PV of an annuity of $100 per annum for 5 years at an annual
interest rate of 6.25% is

1—(1.0625)73
0.0625

based on Eq. (3.6) with m = 1.

100 x =418.387
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EXAMPLE 3.2.2 Suppose that an annuity pays $5,000 per month for 9 years with an
interest rate of 7.125% compounded monthly. Its PV, $397,783, can be derived from
Eq. (3.6) with C =5000, r =0.07125,n =9, and m = 12.

An annuity that lasts forever is called a perpetual annuity. We can derive its PV
from Eq. (3.6) by letting n go to infinity:
mC

PV=—. (3.7)

This formula is useful for valuing perpetual fixed-coupon debts [646]. For example,
consider a financial instrument promising to pay $100 once a year forever. If the
interest rate is 10%, its PV is 100/0.1 = 1000 dollars.

» Exercise 3.2.1 Derive the PV formula for the general annuity due.

3.3 Amortization

Amortization is a method of repaying a loan through regular payments of interest
and principal. The size of the loan — the original balance —is reduced by the principal
part of the payment. The interest part of the payment pays the interest incurred on
the remaining principal balance. As the principal gets paid down over the term of
the loan,” the interest part of the payment diminishes.

Home mortgages are typically amortized. When the principal is paid down con-
sistently, the risk to the lender is lowered. When the borrower sells the house, the
remaining principal is due the lender. The rest of this section considers mainly the
equal-payment case, i.e., fixed-rate level-payment fully amortized mortgages, com-
monly known as traditional mortgages.

EXAMPLE 3.3.1 A home buyer takes out a 15-year $250,000 loan at an 8.0% interest
rate. Solving Eq. (3.6) with PV =250000, n =15, m=12, and r =0.08 gives a
monthly payment of C =2389.13. The amortization schedule is shown in Fig. 3.2.
We can verify that in every month (1) the principal and the interest parts of the
payment add up to $2,389.13, (2) the remaining principal is reduced by the amount
indicated under the Principal heading, and (3) we compute the interest by multiply-
ing the remaining balance of the previous month by 0.08/12.

Remaining
Month Payment Interest Principal principal

250,000.000

1 2,389.13 1,666.667 722.464 249,277.536
2 2,389.13 1,661.850 727280 248,550.256
3 2,389.13 1,657.002 732.129 247,818.128
178 2,389.13 47153 2,341.980 4,730.899
179 2,389.13 31.539 2,357.591 2,373.308
180 2,389.13 15.822 2,373.308 0.000

Total 430,043.438 180,043.438 250,000.000

Figure 3.2: An amortization schedule. See Example 3.3.1.
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Suppose that the amortization schedule lets the lender receive m payments a
year for n years. The amount of each paymentis C dollars, and the annual interest
rate is r. Right after the kth payment, the remaining principal is the PV of the future
nm— k cash flows:

nm—k r —i
;C<1+E> =C

For example, Eq. (3.8) generates the same remaining principal as that in the amor-
tization schedule of Example 3.3.1 for the third month with C =2389.13, n =15,
m=12,r =0.08, and k=3.

A popular mortgage is the adjustable-rate mortgage (ARM). The interest rate
now is no longer fixed but is tied to some publicly available index such as the constant-
maturity Treasury (CMT) rate or the Cost of Funds Index (COFI). For instance, a
mortgage that calls for the interest rate to be reset every month requires that the
monthly payment be recalculated every month based on the prevailing interest rate
and the remaining principal at the beginning of the month. The attractiveness of
ARMs arises from the typically lower initial rate, thus qualifying the home buyer for
a bigger mortgage, and the fact that the interest rate adjustments are capped.

A common method of paying off a long-term loan is for the borrower to pay
interest on the loan and to pay into a sinking fund so that the debt can be retired
with proceeds from the fund. The sum of the interest payment and the sinking-fund
deposit is called the periodic expense of the debt. In practice, sinking-fund provisions
vary. Some start several years after the issuance of the debt, others allow a balloon
payment at maturity, and still others use the fund to periodically purchase bonds in
the market [767].

1 _ (1 + %)—nm-‘rk

(3.8)

r
m

EXAMPLE 3.3.2 A company borrows $100,000 at a semiannual interest rate of 10%. If
the company pays into a sinking fund earning 8% to retire the debt in 7 years, the
semiannual payment can be calculated by Eq. (3.6) as follows:
100000 x 0.08/2
X082 _ 9466.9.
1-(1+40.08/2)

Interest on the loan is 100000 x (0.1/2) = 5000 semiannually. The periodic expense
is thus 5000 + 9466.9 = 14466.9 dollars.

» Exercise 3.3.1 Explain why

F\E K N
PV{1+—) - ) Cl1+—
(1+5) -2+ )

i=1
where the PV from Eq. (3.6) equals that of Eq. (3.8).

> Exercise 3.3.2 Start with the cash flow of a level-payment mortgage with the lower
monthly fixed interest rate » — x. From the monthly payment D, construct a cash
flow that grows at a rate of x per month: D, De*, De**, De*, .... Both x and r
are continuously compounded. Verify that this new cash flow, discounted at r, has
the same PV as that of the original mortgage. (This identity forms the basis of the
graduated-payment mortgages (GPMs) [330].)
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> Programming Assignment 3.3.3 Write a program that prints out the monthly amorti-
zation schedule. The inputs are the annual interest rate and the number of payments.

3.4 Yields

The term yield denotes the return of investment and has many variants [284]. The
nominal yield is the coupon rate of the bond. In the Wall Street Journal of August 26,
1997, for instance, a corporate bond issued by AT&T is quoted as follows:

Company CurYld. Vol Close Net chg.
ATT85/831 8.1 162 10612 —3/8

This bond matures in the year 2031 and has a nominal yield of 8%%, which is
part of the identification of the bond. In the same paper, we can find other AT&T
bonds: ATT43498, ATT6s00, ATTS51/801, and ATT63404. The current yield is the
annual coupon interest divided by the market price. In the preceding case, the an-
nual interest is 8 % x 1000/100 = 86.25, assuming a par value of $1,000. The closing
price is 106 % x 1000/100 = 1065 dollars. (Corporate bonds are quoted as a percent-
age of par.) Therefore 86.25/1065 ~ 8.1% is the current yield at market closing.
The preceding two yield measures are of little use in comparing returns. For exam-
ple, the nominal yield completely ignores the market condition, whereas the current
yield fails to take the future into account, even though it does depend on the current
market price.

Securities such as U.S. Treasury bills (T-bills) pay interest based on the discount
method rather than on the more common add-on method [95]. With the discount
method, interest is subtracted from the par value of a security to derive the purchase
price, and the investor receives the par value at maturity. Such a security is said to
be issued on a discount basis and is called a discount security. The discount yield or
discount rate is defined as

par value — purchase price 360 days

. 39

par value x number of days to maturity (3.9)
This yield is also called the yield on a bank discount basis. When the discount yield
is calculated for short-term securities, a year is assumed to have 360 days [698, 827].

EXAMPLE 3.4.1 T-bills are a short-term debt instrument with maturities of 3, 6, or
12 months. They are issued in U.S.$10,000 denominations. If an investor buys a
U.S.$10,000, 6-month T-bill for U.S.$9,521.45 with 182 days remaining to maturity,
the discount yield is

10000 —9521.45 360

10000 X Tg5 = 0.0947,

or 9.47%. Itis this annualized yield that is quoted. The equivalent effective yield with
continuous compounding is

365 ( 10000
In

18" 9521.45) = 0.09835,

or 9.835%.
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The CD-equivalent yield (also called the money-market-equivalent yield) is a
simple annualized interest rate defined by

par value — purchase price 360

X .
purchase price number of days to maturity

To make the discount yield more comparable with yield quotes of other money
market instruments, we can calculate its CD-equivalent yield as

360 x discount yield
360 — (number of days to maturity x discount yield)’

which we can derive by plugging in discount yield formula (3.9) and simplifying. To
make the discount yield more comparable with the BEY, we compute

par value — purchase price 365

purchase price x number of days to maturity'
For example, the discount yield in Example 3.4.1 (9.47% ) now becomes

478.55 365 o
952145 < 130 = 0.1008, or 10.08%. (3.10)

The T-bill’s ask yield is computed in precisely this way [510].

3.4.1 Internal Rate of Return

For the rest of this section, the yield we are concerned with, unless stated otherwise,
is the internal rate of return (IRR). The IRR is the interest rate that equates an
investment’s PV with its price P:

_ C 4 G n G + + C,
(I+y)  (A+y? (A+y)p? (I+y)
The right-hand side of Eq. (3.11) is the PV of the cash flow C;, C;, ..., C, discounted

at the IRR y. Equation (3.11) and its various generalizations form the foundation
upon which pricing methodologies are built.

P

(3.11)

EXAMPLE 3.42 A bank lent a borrower $260,000 for 15 years to purchase a house.
This 15-year mortgage has a monthly payment of $2,000. The annual yield is 4.583%
because Y1252 2000 x [ 1+ (0.04583/12) ]~ ~ 260000.

EXAMPLE 3.4.3 A financial instrument promises to pay $1,000 for the next 3 years and
sells for $2,500. Its yield is 9.7%, which can be verified as follows. With 0.097 as the
discounting rate, the PVs of the three cash flows are 1000/(1 4 0.097)" for t =1, 2, 3.
The numbers — 911.577, 830.973, and 757.5 — sum to $2,500.

Example 3.4.3 shows that it is easy to verify if a number is the IRR. Finding it,
however, generally requires numerical techniques because closed-form formulas in
general do not exist. This issue will be picked up in Subsection 3.4.3.

EXAMPLE 3.4.4 A financial instrument can be bought for $1,000, and the investor will
end up with $2,000 5 years from now. The yield is the y that equates 1000 with
2000 x (1 + y)~>, the present value of $2,000. It is (1000/2000)~/5 —1 ~ 14.87%.
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Given the cash flow Ci, C,, ..., C,,its FVis

n
FV=>)"CG(1+y)". (3.12)
=1
By Eq. (3.11), the yield y makes the preceding FV equal to P(1+ y)". Hence, in
principle, multiple cash flows can be reduced to a single cash flow P(1+ y)" at
maturity. In Example 3.4.4 the investor ends up with $2,000 at the end of the fifth
year one way or another. This brings us to an important point. Look at Egs. (3.11)
and (3.12) again. They mean the same thing because both implicitly assume that all
cash flows are reinvested at the same rate as the IRR y.

Example 3.4.4 suggests a general yield measure: Calculate the FV and then
find the yield that equates it with the PV. This is the holding period return (HPR)
methodology.? With the HPR, it is no longer mandatory that all cash flows be rein-
vested at the same rate. Instead, explicit assumptions about the reinvestment rates
must be made for the cash flows. Suppose that the reinvestment rate has been deter-
mined to be r.. Then the FV is

FV= C[(1+re)n_t.

=1
We then solve for the holding period yield y such that FV = P(1+ y)". Of course,
if the reinvestment assumptions turn out to be wrong, the yield will not be realized.

This is the reinvestment risk. Financial instruments without intermediate cash flows
evidently do not have reinvestment risks.

EXAMPLE 3.4.5 A financial instrument promises to pay $1,000 for the next 3 years
and sells for $2,500. If each cash flow can be put into a bank account that pays an
effective rate of 5%, the FV of the security is Z?:1 1000 x (14 0.05)>~" =3152.5,
and the holding period yield is (3152.5/2500)'/3 —1 = 0.08037, or 8.037%. This yield
is considerably lower than the 9.7% in Example 3.4.3.

» Exercise 3.4.1 A security selling for $3,000 promises to pay $1,000 for the next
2 years and $1,500 for the third year. Verify that its annual yield is 7.55%.

» Exercise 3.4.2 A financial instrument pays C dollars per year for n years. The
investor interested in the instrument expects the cash flows to be reinvested at an
annual rate of r and is asking for a yield of y. What should this instrument be selling
for in order to be attractive to this investor?

3.4.2 Net Present Value

Consider an investment that has the cash flow Ci, C,, ..., C, and is selling for P.
For an investor who believes that this security should have a return rate of y*, the
net present value (NPV) is

2": G
~ (1+y*)

The IRR is thus the return rate that nullifies the NPV. In general, the NPV is the
difference between the PVs of cash inflow and cash outflow. Businesses are often
assumed to maximize their assets’ NPV.
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EXAMPLE 3.4.6 The management is presented with the following proposals:

Net Cash Flow at end of

Proposal Investment Now Year 1 Year 2 Year 3

A 9,500 4,500 2,000 6,000
B 6,000 2,500 1,000 5,000

It believes that the company can earn 15% effective on projects of this kind. The
NPV for Proposal A is

4500 2000 6000

—9500 = —129.57
115 T (1152 T (115)
and that for Proposal B is
2500 1000 5000 6000 = 217.64.

115 T (LI52  (115)
Proposal A is therefore dropped in favor of Proposal B.

> Exercise 3.4.3 Repeat the calculation for Example 3.4.6 for an expected return of
4%.

3.4.3 Numerical Methods for Finding Yields

Computing the yield amounts to solving f(y) =0 for y > —1, where

(1+y)

and P is the market price. (The symbol = introduces definitions.) The function f(y)
ismonotonicin y if the C;s are all positive. In this case, a simple geometric argument
shows that a unique solution exists (see Fig. 3.3). Even in the general case in which

fmn=> G —P (3.13)
t=1

8001

600}

200t

0 0.05 0.1 0.15 0.2
Yield

Figure 3.3: Computing yields. The current market price is represented by

the horizontal line, and the PV of the future cash flow is represented by the

downward-sloping curve. The desired yield is the value on the x axis at which

the two curves intersect.
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The bisection method for solving equations:

input: €,a,and b (b > a and f(a) f(b) <0);
real length, c;

length := b —a;
while [length > €] {
c:=(b+a)/2;

if[ f(c)=0] returnc;
elseif[ f(a) f(c) <0]b:=c;
elsea:=c;

}

return c;

Figure 3.4: Bisection method. The number ¢ is an upper bound on the absolute error of the returned value c:
|€ — c| < e.Theinitial bracket [a, b] guarantees the existence of a root with the f(a) f(b) < 0 condition.
“if [ f(c) = 0]" may be replaced with testing if | f ()| is a very small number.

all the C;s do not have the same sign, usually only one value makes economic sense
[547]. We now turn to the algorithmic problem of finding the solution to y.

The Bisection Method
One of the simplest and failure-free methods to solve equations such as Eq. (3.13)
for any well-behaved function is the bisection method. Start with two numbers, a and
b, where a < b and f(a) f(b) <0. Then f(&) must be zero for some & between a
and b, written as £ € [a, b].* If we evaluate f at the midpoint ¢ = (a + b)/2, then
(1) f(c)=0,(2) f(a)f(c) <0, 0r (3) f(c)f(b) <O0. In the first case we are done,
in the second case we continue the process with the new bracket [ a, c], and in the
third case we continue with [ ¢, b ]. Note that the bracket is halved in the latter two
cases. After n steps, we will have confined & within a bracket of length (b —a)/2".
Figure 3.4 implements the above idea.

The complexity of the bisection algorithm can be analyzed as follows. The while
loop is executed, at most, 1 +log,[ (b —a)/e ] times. Within the loop, the number of
arithmetic operationsis dominated by the evaluation of f.Denote thisnumberby C;.
The running time is O(Cylog,[ (b —a)/e]). In particular, in computing the IRR,
the running time is O(nlog,[ (b —a)/e¢]) because Cy = O(n) by the algorithm in
Fig. 3.1.

The Newton-Raphson Method
The iterative Newton—Raphson method converges faster than the bisection method.
In iterative methods, we start with a first approximation xy to a root of f(x)=0.
Successive approximations are then computed by

X0, F(X()), F(F(X())), e

for some function F. In other words, if we let x; denote the kth approximation,
then x; = F®(x,), where

L S
F®x)=F(F(---(F(x))---)).
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y

Jfx)

Figure 3.5: Newton-Raphson method.

In practice, we should put an upper bound on the number of iterations k. The neces-
sary condition for the convergence of such a procedure to a root £ is

IF'¢)l <1, (3.14)

where F’ denotes the derivative of F [447].
The Newton—-Raphson method picks F(x) =x — f(x)/f'(x); in other words,

f (k)
J'(x)
This is the method of choice when f’ can be evaluated efficiently and is nonzero near

the root [727]. See Fig. 3.5 for an illustration and Fig. 3.6 for the algorithm. When
yields are being computed,

f/(X) Z (1 _|_x)t+1

Xir1l = Xk — (315)

Assume that we start with an initial guess xp near a root &. It can be shown that
2 [(§)

211(8)
This means that the method converges quadratically: Near the root, each iteration

roughly doubles the number of significant digits. To achieve |x;1 — xi| < € required
by the algorithm, O(loglog(1/¢)) iterations suffice. The running time is thus

O((Cy+Cy)loglog(1/e)).

& — X1 ~ —(& — xi)

The Newton-Raphson method for solving equations:

input: €, Xintial;

real Xnew, Xold>
Xold -= Xinitial
Xnew = OO,

while [ |Xnew — Xold| > €]

Xnew = Xold — f(xold)/f/(xold);

return Xnew;

Figure 3.6: Algorithm for the Newton-Raphson method. A good initial guess is important [727].
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In particular, the running time is O(nloglog(1/¢)) for yields calculations. This
bound compares favorably with the O(nlog[(b—a)/e]) bound of the bisection
method.

A variant of the Newton—Raphson method that does not require differentiation
is the secant method [35]. This method starts with two approximations, xy and xi,
and computes the (k4 1)th approximation by

) (o = Xk-1)
fOo) = fOo-1)

The secant method may be preferred when the calculation of f” is to be avoided. Its
convergence rate, 1.618, is slightly worse than that of the Newton—Raphson method,
2, but better than that of the bisection method, 1.

Unlike the bisection method, neither the Newton—Raphson method nor the se-
cant method guarantees that the root remains bracketed; as a result, they may not
converge at all. The Ridders method, in contrast, always brackets the root. It starts
with xy and x; that bracket a root and sets x; = (xo + x1)/2. In general,

] JGe) (e — x—2) '
V Fa)? = f(xr—2) f(xi-r)

The Ridders method has a convergence rate of +/2 [727].

» Exercise3.4.4 Let f(x)=x>— x? andstart with the guess xy = 2.0 to the equation
f(x) =0. Iterate the Newton-Raphson method five times.

» Exercise3.4.5 Suppose that f/(£) #0 and f”(£) isbounded. Verify that condition
(3.14) holds for the Newton—Raphson method.

> Exercise 3.4.6 Let £ be aroot of f and J be an interval containing £. Suppose
that f'(x)#0 and f’(x)>0 or f”(x)< 0 for x € J. Explain why the Newton—
Raphson method converges monotonically to & from any point xo € J such that

f(x0) f"(x0) = 0.

X1 = Xk

Xiep1 = Xk +sign[ f(xk—2) — f(xk-1)

3.4.4 Solving Systems of Nonlinear Equations

The Newton—-Raphson method can be extended to higher dimensions. Consider the
two-dimensional case. Let (xx, yx) be the kth approximation to the solution of the
two simultaneous equations

f(x,y) =0,
g(x,y) =0.

The (k+ 1)th approximation (xx.1, yr+1) satisfies the following linear equations:

of (xk, yk)/0x  df (xx, yi)/ dy A | _ F (X yi) (3.16)
9g(xe, yu)/0x 38 (xic, yi)/ 3y | | Aviern g yi) | '

where Axpy = X3 — X, and Aygy = Vi1 — Vi Equations (3.16) have a unique
solution for (Axgy1, Ayrr1) when the matrix is invertible. Note that the (k+ 1)th
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approximation is (xx+ AXgi1, Yk + Aykt1). Solving nonlinear equations has thus
been reduced to solving a set of linear equations. Generalization to n dimensions is
straightforward.

» Exercise 3.4.7 Write the analogous n-dimensional formula for Egs. (3.16).

> Exercise 3.4.8 Describe a bisection method for solving systems of nonlinear equa-
tions in the two-dimensional case. (The bisection method may be applied in cases in
which the Newton—Raphson method fails.)

3.5 Bonds

A bond is a contract between the issuer (borrower) and the bondholder (lender).
The issuer promises to pay the bondholder interest, if any, and principal on the re-
maining balance. Bonds usually refer to long-term debts. A bond has a par value.’
The redemption date or maturity date specifies the date on which the loan will
be repaid. A bond pays interest at the coupon rate on its par value at regular
time intervals until the maturity date. The payment is usually made semiannually in
the United States. The redemption value is the amount to be paid at a redemption
date. A bond is redeemed at par if the redemption value is the same as the par value.
Redemption date and maturity date may differ.

There are several ways to redeem or retire a bond. A bondisredeemed at maturity
if the principal is repaid at maturity. Most corporate bonds are callable, meaning that
the issuer can retire some or all of the bonds before the stated maturity, usually at a
price above the par value.®

Because this provision gives the issuer the advantage of calling a bond when
the prevailing interest rate is much lower than the coupon rate, the bondholders
usually demand a premium. A callable bond may also have call protection so that
it is not callable for the first few years. Refunding involves using the proceeds from
the issuance of new bonds to retire old ones. A corporation may deposit money into
a sinking fund and use the funds to buy back some or all of the bonds. Convertible
bonds can be converted into the issuer’s common stock. A consol is a bond that pays
interest forever. It can therefore be analyzed as a perpetual annuity whose value and
yield satisfy the simple relation

P=c/r, (3.17)

where ¢ denotes the interest payout per annum.

The U.S. bond market is the largest in the world. It consists of U.S. Treasury
securities, U.S. agency securities, corporate bonds, Yankee bonds, municipal secu-
rities, mortgages, and MBSs. Agency securities are those issued by either the U.S.
Federal government agencies or U.S. Federal government-sponsored organizations.
The mortgage market is usually the largest (U.S.$6,388 billion as of 1999), followed
by the U.S. Treasury securities market (U.S.$3,281 billion as of 1999).

Treasury securities with maturities of 1 year or less are discount securities: the
T-bills. Treasury securities with original maturities between 2 and 10 years are called
Treasury notes (T-notes). Those with maturities greater than ten years are called
Treasury bonds (T-bonds). Both T-notes and T-bonds are coupon securities, paying
interest every 6 months.
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Bonds are usually quoted as a percentage of par value. A quote of 95 therefore
means 95% of par value. For T-notes and T-bonds, a quote of 100.05 means 1005/32%
of par value, not 100.05%. It is typically written as 100-05.

» Exercise 3.5.1 A consol paying out continuously at a rate of ¢ dollars per annum
has value fooc ce”" dt,where r is the continuously compounded annual yield. Justify
the preceding formula. (Consistent with Eq. (3.17), this integral evaluates to c/r.)

3.5.1 Valuation

Let us begin with pure discount bonds, also known as zero-coupon bonds or simply
zeros. They promise a single payment in the future and are sold at a discount from
the par value. The price of a zero-coupon bond that pays F dollars in n periods is
F/(1+4r)" where r is the interest rate per period. Zero-coupon bonds can be bought
to meet future obligations without reinvestment risk. They are also an important
theoretical tool in the analysis of coupon bonds, which can be thought of as a package
of zero-coupon bonds. Although the U.S. Treasury does not issue such bonds with
maturities over 1 year, there were companies that specialized in coupon stripping
to create stripped Treasury securities. This financial innovation became redundant
when the U.S. Treasury facilitated the creation of zeros by means of the Separate
Trading of Registered Interest and Principal Securities program (STRIPS) in 1985
[799]. Prices and yields of stripped Treasury securities have been published daily in
the Wall Street Journal since 1989.

EXAMPLE 3.5.1 Suppose that the interest rate is 8% compounded semiannually. A
zero-coupon bond that pays the par value 20 years from now will be priced at
1/(1.04)*, or 20.83%, of its par value and will be quoted as 20.83. If the interest
rate is 9% instead, the same bond will be priced at only 17.19. If the bond matures
in 10 years instead of 20, its price would be 45.64 with an 8% interest rate. Clearly
both the maturity and the market interest rate have a profound impact on price.

A level-coupon bond pays interest based on the coupon rate and the par value,
which is paid at maturity. If F denotes the par value and C denotes the coupon,
then the cash flow is as shown in Fig. 3.7. Its price is therefore

. C F I-(1+L)™ F
PV: + n:C 7 + rF\n°
Zj:] (1+5) (1+£) m 1+7)

3=

(3.18)

where n is the number of cash flows, m is the number of payments per year, and r
is the annual interest rate compounded m times per annum. Note that C = Fc/m
when c is the annual coupon rate.

C+F
C C C
t t t
1 2 3 n

Figure 3.7: Cash flow of level-coupon bond.
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EXAMPLE 3.5.2 Consider a 20-year 9% bond with the coupon paid semiannually. This
means that a payment of 1000 x 0.09/2 =45 dollars will be made every 6 months
until maturity, and $1,000 will be paid at maturity. Its price can be computed from
Eq. (3.18) with n=2x20, r =0.08, m=2, F=1, and C=0.09/2. The result is
1.09896, or 109.896% of par value. When the coupon rate is higher than the interest
rate, as is the case here, a level-coupon bond will be selling above its par value.

The yield to maturity of a level-coupon bond is its IRR when the bond is held
to maturity. In other words, it is the r that satisfies Eq. (3.18) with the PV being
the bond price. For example, for an investor with a 15% BEY to maturity, a 10-year
bond with a coupon rate of 10% paid semiannually should sell for

1—[1+(0.15/2)] 2" 100

3 0.15/2 [1+(0.15/2) Px10

=74.5138

percent of par.

For a callable bond, the yield to stated maturity measures its yield to matu-
rity as if it were not callable. The yield to call is the yield to maturity satisfied by
Eq. (3.18), with n denoting the number of remaining coupon payments until the first
call date and F replaced with the call price, the price at which the bond will be called.
The related yield to par call assumes the call price is the par value. The yield to effec-
tive maturity replaces n with the effective maturity date, the redemption date when
the bond is called. Of course, this date has to be estimated. The yield to worst is the
minimum of the yields to call under all possible call dates.

> Exercise 3.5.2 A company issues a 10-year bond with a coupon rate of 10%, paid
semiannually. The bond is callable at par after 5 years. Find the price that guarantees
areturn of 12% compounded semiannually for the investor.

» Exercise 3.5.3 How should pricing formula (3.18) be modified if the interest is
taxed at a rate of T and capital gains are taxed at a rate of 75?

» Exercise 3.5.4 (1) Derive dP/dn and dP/dr for zero-coupon bonds. (2) For
r =0.04 and n=40 as in Example 3.5.1, verify that the price will go down by ap-
proximately d x 8.011% of par value for every d% increase in the period interest
rate r for small d.

3.5.2 Price Behaviors

The price of a bond goes in the opposite direction from that of interest rate move-
ments: Bond prices fall when interest rates rise, and vice versa. This is because the
PV decreases as interest rates increase.” A good example is the loss of U.S.$1 trillion
worldwide that was due to interest rate hikes in 1994 [312].

Equation (3.18) can be used to show that a level-coupon bond will be selling at
a premium (above its par value) when its coupon rate is above the market interest
rate, at par (at its par value) when its coupon rate is equal to the market interest
rate, and at a discount (below its par value) when its coupon rate is below the market
interest rate. The table in Fig. 3.8 shows the relation between the price of a bond and
the required yield. Bonds selling at par are called par bonds.

The price/yield relation has a convex shape, as shown in Fig. 3.9. Convexity is
attractive for bondholders because the price decrease per percent rate increase is
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Price
Yield (%) (% of par)
15 113.37
Figure 3.8: Price/yield relations. A 15-year 9% 8.0 108.65
coupon bond is assumed. 85 104.19
9.0 100.00
9.5 96.04
10.0 92.31
10.5 88.79

smaller than the price increase per percent rate decrease. This observation, how-
ever, may not hold for bonds with embedded options such as callable bonds. The
convexity property has far-reaching implications for bonds and will be explored in
Section 4.3.

As the maturity date draws near, a bond selling at a discount will see its price move
up toward par, a bond selling at par will see its price remain at par, and a bond selling
at a premium will see its price move down toward par. These phenomena are shown
in Fig. 3.10. Besides the two reasons cited for causing bond prices to change (interest
rate movements and a nonpar bond moving toward maturity), other reasons include
changes in the yield spread to T-bonds for non-T-bonds, changes in the perceived
credit quality of the issuer, and changes in the value of the embedded option.

» Exercise 3.5.5 Prove that a level-coupon bond will be sold at par if its coupon rate
is the same as the market interest rate.

3.5.3 Day Count Conventions

Teach us to number our days aright,
that we may gain a heart of wisdom.

—Psalms 90:12

1750¢

1500¢

1250¢

1000¢

Price

750¢

500¢

250¢

0 0.05 0.1 0.15 0.2
Yield

Figure 3.9: Price vs. yield. Plotted is a bond that pays 8% interest on a par value
of $1,000, compounded annually. The term is 10 years.
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Figure 3.10: Relations between price and time to maturity. Plotted are three

curves for bonds, from top to bottom, selling at a premium, at par, and at a

discount, with coupon rates of 12%, 6%, and 2%, respectively. The coupons are

paid semiannually. The par value is $1,000, and the required yield is 6%. The

term is 10 years (the x axis is measured in half-years).

Handling the issue of dating correctly is critical to any financial software. In the
so-called actual/actual day count convention, the first “actual” refers to the actual
number of days in a month, and the second refers to the actual number of days in a
coupon period. For example, for coupon-bearing Treasury securities, the number of
days between June 17, 1992, and October 1, 1992, is 106: 13 days in June, 31 days in
July, 31 days in August, 30 days in September, and 1 day in October.

A convention popular with corporate and municipal bonds and agency securities
is 30/360. Here each month is assumed to have 30 days and each year 360 days.
The number of days between June 17, 1992, and October 1, 1992, is now 104: 13 days
in June, 30 days in July, 30 days in August, 30 days in September, and 1 day in October.
In general, the number of days from date Dy = (y1, m, di) todate Dy = (y1, my, dy)
under the 30/360 convention can be computed by

360 x (y2 — y1) +30 x (my —my) + (dr — dy),

where y; denote the years, m; the months, and d; the days. If d; or 4, is 31, we
need to change it to 30 before applying the above formula.

3.5.4 Accrued Interest

Up to now, we have assumed that the next coupon payment date is exactly one period
(6 months for bonds, for instance) from now. In reality, the settlement date may fall on
any day between two coupon payment dates and yield measures have to be adjusted
accordingly. Let

number of days between the settlement and the next coupon payment date

w

bl

number of days in the coupon period
(3.19)
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the day count is based on the convention applicable to the security in question. The
price is now calculated by

F
1+ %)w+n71 ’

n—1 C
PV = —+ (3.20)
2

where n is the number of remaining coupon payments [328]. This price is called the
full price, dirty price, or invoice price. Equation (3.20) reduces to Eq. (3.18) when
=1

As the issuer of the bond will not send the next coupon to the seller after the
transaction, the buyer has to pay the seller part of the coupon during the time the
bond was owned by the seller. The convention is that the buyer pays the quoted price
plus the accrued interest calculated by

number of days from the last coupon payment to the settlement date
X

number of days in the coupon period
=Cx(1-w).

The yield to maturity is the r satisfying Eq. (3.20) when the PV is the invoice price,
the sum of the quoted price and the accrued interest. As the quoted price in the
United States does not include the accrued interest, it is also called the clean price
or flat price.

EXAMPLE 3.5.3 Consider a bond with a 10% coupon rate and paying interest semi-
annually. The maturity date is March 1, 1995, and the settlement date is July 1,
1993. The day count is 30/360. Because there are 60 days between July 1, 1993, and
the next coupon date, September 1, 1993, the accrued interest is (10/2) x [ (180 —
60)/180 ] =3.3333 per $100 of par value. At the clean price of 111.2891, the yield
to maturity is 3%. This can be verified by Eq. (3.20) with « =60/180,m=2, C =5,
PV=111.2891+3.3333, and r = 0.03.

> Exercise 3.5.6 It has been mentioned that a bond selling at par will continue to sell
at par as long as the yield to maturity is equal to the coupon rate. This conclusion rests
on the assumption that the settlement date is on a coupon payment date. Suppose
that the settlement date for a bond selling at par (i.e., the quoted price is equal to the
par value) falls between two coupon payment dates. Prove that its yield to maturity
is less than the coupon rate.

» Exercise 3.5.7 Consider a bond with a 10% coupon rate and paying interest semi-
annually. The maturity date is March 1, 1995, and the settlement date is July 1, 1993.
The day count used is actual/actual. Verify that there are 62 days between July 1,
1993, and the next coupon date, September 1, 1993, and that the accrued interest is
3.31522% of par value. Also verify that the yield to maturity is 3% when the bond is
selling for 111.3.

> Programming Assignment 3.5.8 Write a program that computes (1) the accrued
interest as a percentage of par and (2) the BEY of coupon bonds. The inputs are
the coupon rate as a percentage of par, the next coupon payment date, the coupon
payment frequency per annum, the remaining number of coupon payments after the
next coupon, and the day count convention.
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3.5.5 Yield for a Portfolio of Bonds

Calculation for the yield to maturity for a portfolio of bonds is no different from that
for a single bond. First, the cash flows of the individual bonds are combined. Then the
yield is calculated based on the combined cash flow as if it were from a single bond.

EXAMPLE 3.5.4 A bond portfolio consists of two zero-coupon bonds. The bonds are
selling at 50 and 20, respectively. The term is exactly 3 years from now. To calculate
the yield, we solve

100 + 100
(1+y)°
for y. Because y =0.19121, the annualized yield is 38.242%. The yields to maturity

for the individual bonds are 24.4924% and 61.5321%. Neither a simple average
(43.01225%) nor a weighted average (35.0752% ) matches 38.242%.

50+20=

3.5.6 Components of Return
Recall that a bond has a price
1-(1+y)™ F

y (1+y)"

where c is the period couponrate and y is the period interest rate. Its total monetary
returnis P(1+ y)" — P, which is equal to

P=Fc

1+y) -1
pedE =L g p
T+y)' =1 T—(1+4y)™" F
:Fc%—i-F—Fc I+y " )
y y (1+y)

This return can be broken down into three components: capital gain/loss F — P,
coupon interest n Fc, and interest on interest equal to

[PA+y)"—P]—(F—P)—nFc= P(l1+y)"—F—nFc

1 "1
ZFC%_
y

The interest on interest’s percentage of the total monetary return can be shown
to increase as c¢ increases. This means that the higher the coupon rate, the more
dependent is the total monetary return on the interest on interest. So bonds selling
at a premium are more dependent on the interest-on-interest component, given the
same maturity and yield to maturity. It can be verified that when the bond is selling
at par (¢ = y), the longer the maturity n, the higher the proportion of the interest
on interest among the total monetary return. The same claim also holds for bonds
selling at a premium (y < ¢) or at a discount (y > ¢).

The above observations reveal the impact of reinvestment risk. Coupon bonds
that obtain a higher percentage of their monetary return from the reinvestment of
coupon interests are more vulnerable to changes in reinvestment opportunities. The
yield to maturity, which assumes that all coupon payments can be reinvested at the
yield to maturity, is problematic because this assumption is seldom realized in a
changing environment.

nkFc.



Additional Reading

Recall that the HPR measures the return by holding the security until the horizon
date. This period of time is called the holding period or the investment horizon. The
HPR is composed of (1) capital gain/loss on the horizon date, (2) cash flow income
such as coupon and mortgage payments, and (3) reinvestment income from rein-
vesting the cash flows received between the settlement date and the horizon date.
Apparently, one has to make explicit assumptions about the reinvestment rate during
the holding period and the security’s market price on the horizon date called the hori-
zon price. Computing the HPR for each assumption is called scenario analysis. The
scenarios may be analyzed to find the optimal solution [891]. The value at risk (VaR)
methodology is a refinement of scenario analysis. It constructs a confidence interval
for the dollar return at horizon based on some stochastic models (see Section 31.4).

EXAMPLE 3.5.5 Consider a 5-year bond paying semiannual interest at a coupon rate of
10%. Assume that the bond is bought for 90 and held to maturity with a reinvestment
rate of 5%. The coupon interest plus the interest on interest amounts to

2x5 i-1
10 0.05
E — X <1 + —) =56.017 dollars.

i=1 2 2

The capital gainis 100 — 90 = 10. The HPR is therefore 56.017 4+ 10 = 66.017 dollars.
The holding period yield is y = 12.767% because

2x5
1+ y _ 100+56.017.
2 90

As a comparison, its BEY to maturity is 12.767%. Clearly, different HPRs obtain
under different reinvestment rate assumptions. If the security is to be sold before it
matures, its horizon price needs to be figured out as well.

» Exercise3.5.9 Prove that the holding period yield of a level-coupon bond is exactly
y when the horizon is one period from now.

Additional Reading

Yield, day count, and accrued interest interact in complex ways [827]. See [244,
323, 325, 328, 895] for more information about the materials in the chapter. Consult
[35, 224,381, 417, 447, 727] for the numerical techniques on solving equations.

NOTES

1. The idea of PV is due to Irving Fisher (1867-1947) in 1896 [646].

2. There are arrangements whereby the remaining principal actually increases and then decreases
over the term of the loan. The same principle applies (see Exercise 3.3.2).

3. Terms with identical connotation include total return, horizon return, horizon total return, and
investment horizon return [646].

4. [a, b] denotes the interval a <x < b, [a, b) denotes the interval a <x < b, (a, b] denotes the
interval a < x < b, and (a, b) denotes the interval a < x < b.

5. Also called denomination, face value, maturity value, or principal value.

6. See [767] for the reasons why companies issue callable bonds. Callable bonds were not issued by
the U.S. Treasury after February 1985 [325].

7. Reversing this basic relation is common. For example, it is written in [703] that “If Japanese
banks are hit by a liquidity problem, they may have to sell U.S. Treasury bonds. A strong sell-off
could have the effect of pushing down bond yields and rattling Wall Street.”
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CHAPTER
FOUR

Bond Price Volatility

Can anyone measure the ocean by handfuls or measure the sky with
his hands?

Isaiah 40:12

Understanding how interest rates affect bond prices is key to risk management of
interest-rate-sensitive securities. This chapter focuses on bond price volatility or the
extent of price movements when interest rates move. Two classic notions, duration
and convexity, are introduced for this purpose with a few applications in risk man-
agement. Coupon bonds mean level-coupon bonds for the rest of the book.

4.1 Price Volatility

The sensitivity of the percentage price change to changes in interest rates measures
price volatility. We define price volatility by —(3 P/P)/dy. The price volatility of a
coupon bond is

_AP/P_ (C/y)n—(C/y)(A+y)" —(1+y)) —nF
dy C/N[A+y)y*H—=A+y) ]+ F(1+y)

where n is the number of periods before maturity, y is the period yield, F is the
par value, and C is the coupon payment per period. For bonds without embedded
options, —(d P/ P)/dy > 0 for obvious reasons.

Price volatility increases as the coupon rate decreases, other things being equal
(see Exercise 4.1.2). Consequently zero-coupon bonds are the most volatile, and
bonds selling at a deep discount are more volatile than those selling near or above
par. Price volatility also increases as the required yield decreases, other things being
equal (see Exercise 4.1.3). So bonds traded with higher yields are less volatile.

For bonds selling above or at par, price volatility increases, but at a decreasing
rate, as the term to maturity lengthens (see Fig. 4.1). Bonds with a longer maturity
are therefore more volatile. This is consistent with the preference for liquidity and
with the empirical fact that long-term bond prices are more volatile than short-term
ones. (The yields of long-term bonds, however, are less volatile than those of short-
term bonds [217].) For bonds selling below par, price volatility first increases, then
decreases, as shown in Fig. 4.2 [425]. Longer maturity here can no longer be equated
with higher price volatility.

(4.1)
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Percentage price change

10 20 30 40
Maturity

Figure 4.1: Volatility with respect to terms to maturity: par
bonds. Plotted is the percentage bond price change per per-
centage change in the required yield at various terms to matu-
rity. The annual coupon rate is 10% with semiannual coupons.
The yield to maturity is identical to the coupon rate.

» Exercise 4.1.1 Verify Eq. (4.1).

» Exercise 4.1.2 Show that price volatility never decreases as the coupon rate de-
creases when yields are positive.

» Exercise 4.1.3 (1) Prove that price volatility always decreases as the yield increases
when the yield equals the coupon rate. (2) Prove that price volatility always decreases
as the yield increases, generalizing (1).

Percentage price change

~1F

—4f

=5F

-6k ; . - ; A i i

Maturity

Figure 4.2: Volatility with respect to terms to maturity: dis-
count bonds. The annual coupon rate is 10% with semiannual
coupons, and the yield to maturity is 40% (a deep discount
bond). The terms to maturity are measured in half-years. The
rest follows Fig. 4.1.
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4.2 Duration

The Macaulay duration (MD), first proposed in 1938 by Macaulay, is defined as the
weighted average of the times to an asset’s cash flows [627]. The weights are the cash
flows’ PVs divided by the asset’s price. Formally,

"Z<1+y>

where n is the number of periods before maturity, y is the required yield, C; is the
cash flow at time i, and P is the price. Clearly, the MD, in periods, is equal to

8P/P

MD=-(1+y) —— 4.2)
This simple relation was discovered by Hicks (1904-1989) in 1939 [231, 496]. In
particular, the MD of a coupon bond is

nkF
{Z My @y } | 4

The above equation can be simplified to

c(I+y)[(1+y)" =1]+ny(y—c)
cy[(A+y)yr—1]+y?

where c¢ is the period coupon rate. The MD of a zero-coupon bond (corresponding
to ¢ =0) is n, its term to maturity. In general, the Macaulay duration of a coupon
bond is less than its maturity. The MD of a coupon bond approaches (1+ y)/y as
the maturity increases, independent of the coupon rate.

Equations (4.2) and (4.3) hold only if the coupon C, the par value F, and the
maturity » are all independent of the yield y, in other words, if the cash flow is inde-
pendent of yields. When the cash flow is sensitive to interest rate movements, the MD
is no longer inappropriate. To see this point, suppose that the market yield declines.
The MD will be lengthened by Exercise 4.1.3, Part (2). However, for securities whose
maturity actually decreases as a result, the MD may decrease.

Although the MD has its origin in measuring the length of time a bond investment
is outstanding, it should be seen mainly as measuring the sensitivity of price to market
yield changes, that is, as price volatility [348]. As a matter of fact, many, if not most,
duration-related terminologies cannot be comprehended otherwise.

To convert the MD to be year based, modify (4.3) as follows:

Pl oty i
Ty
where y is the annual yield and k is the compounding frequency per annum.
Equation (4.2) also becomes

MD=_<1+X>M.
k) 9y

MD =
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Modified
duration

Yield to
maturity

Figure 4.3: Modified duration with respect to coupon rate and yield. Bonds are assumed to pay semiannual
coupon payments with a maturity date of September 15, 2000. The settlement date is September 15, 1995.

Note from the definition that

MD (i iod
MD (in years) = M.

k
A related measure is the modified duration, defined as
P/P MD
modified duration = _9F/F = . (4.4)
ay A+

The modified duration of a coupon bond is Eq. (4.1), for example (see Fig. 4.3). By
Taylor expansion,

percentage price change ~ —modified duration x yield change.

The modified duration of a portfolio equals ), w; D;, where D; is the modified dura-
tion of the ith asset and w; is the market value of that asset expressed as a percentage
of the market value of the portfolio. Modified duration equals MD (in periods)/
(14 y) or MD (in years)/(1+ y/k) if the cash flow is independent of changes in
interest rates.

EXAMPLE 4.2.1 Consider a bond whose modified duration is 11.54 with a yield of 10%.
This means if the yield increases instantaneously from 10% to 10.1%, the approxi-
mate percentage price change would be —11.54 x 0.001 = —0.01154, or —1.154%.
A general numerical formula for volatility is the effective duration, defined as
P —P,

Po(ys —y-)’ (45)
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where P_ is the price if the yield is decreased by Ay, P, is the price if the yield is
increased by Ay, Py is theinitial price, y is theinitialyield, y; = y+ Ay, y_ =y — Ay,
and Ay issufficiently small. In principle, we can compute the effective duration of just
about any financial instrument. A less accurate, albeit computationally economical
formula for effective duration is to use forward difference,

Py Ay

(4.6)

instead of the central difference in (4.5).

Effective duration is most useful in cases in which yield changes alter the cash flow
or securities whose cash flow is so complex that simple formulas are unavailable. This
measure strengthens the contention that duration should be looked on as a measure
of volatility and not average term to maturity. In fact, it is possible for the duration
of a security to be longer than its maturity or even to go negative [321]! Neither can
be understood under the maturity interpretation.

For the rest of the book, duration means the mathematical expression
—(@P/P)/dy or its approximation, effective duration. As a consequence,

percentage price change &~ —duration x yield change.

The principal applications of duration are in hedging and asset/liability management
[55].

> Exercise 4.2.1 Assume that 9% is the annual yield to maturity compounded semi-
annually. Calculate the MD of a 3-year bond paying semiannual coupons at an annual
coupon rate of 10%.

» Exercise 4.2.2 Duration is usually expressed in percentage terms for quick mental
calculation: Given duration Ds,, the percentage price change expressed in percent-
age terms is approximated by — Dy, x Ar when the yield increases instantaneously
by Ar%. For instance, the price will drop by 20% if Dy, =10 and Ar =2 because
10 x 2 =20. Show that Do, equals modified duration.

> Exercise 4.2.3 Consider a coupon bond and a traditional mortgage with the same
maturity and payment frequency. Show that the mortgage has a smaller MD than
the bond when both provide the same yield to maturity.! For simplicity, assume that
both instruments have the same market price.

» Exercise 4.2.4 Verify that the MD of a traditional mortgage is (1+y)/y—
n/((1+y)y"=1).

4.2.1 Continuous Compounding

Under continuous compounding, the formula for duration is slightly changed. The
price of a bond isnow P =), Cie %, and
Zi t;Cie oP/P

duration (continuous compounding) = 5 =——
y

(4.7)

Unlike the MD in Eq. (4.2), the extra 1+ y term disappears.
» Exercise 4.2.5 Show that the duration of an n-period zero-coupon bond is n.
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Figure 4.4: Bond value under three rate scenarios. Plotted is the value of an 8%
15-year bond from now to maturity if the interest rate is unchanged at 8% (solid
curve), increased to 10% (dashed curve), and decreased to 6% (dotted curve). At
the MD m = 17.9837 (half-years), the curves roughly meet [98].

4.2.2 Immunization

Buying coupon bonds to meet a future liability incurs some risks. Assume that we are
at the horizon date when the liability is due. If interest rates rise subsequent to the
bond purchase, the interest on interest from the reinvestment of the coupon payments
will increase, and a capital loss will occur for the sale of the bonds. The reverse is true
if interest rates fall. The results are uncertainties in meeting the liability.

A portfolio is said to immunize a liability if its value at the horizon date covers
the liability for small rate changes now. How do we find such a bond portfolio?
Amazingly, the answer is as elegant as it is simple: We construct a bond portfolio
whose MD is equal to the horizon and whose PV is equal to the PV of the single
future liability [350]. Then, at the horizon date, losses from the interest on interest
will be compensated for by gains in the sale price when interest rates fall, and losses
from the sale price will be compensated for by the gains in the interest on interest
when interest rates rise (see Fig. 4.4). For example, a $100,000 liability 12 years from
now should be matched by a portfolio with an MD of 12 years and a future value of
$100,000.

The proof is straightforward. Assume that the liability is a certain L at time m
and the current interest rate is y. We are looking for a portfolio such that

(1)its FVis L at the horizon m,
(2) 9FV/ay =0,
(3) FV is convex around y.

Condition (1) says the obligation is met. Conditions (2) and (3) together mean that
L is the portfolio’s minimum FV at the horizon for small rate changes.
Let FV = (1+ y)" P, where P isthe PV of the portfolio. Now,

aFV P
—— =m(1+y)" P+ (1+y)"—. (4.8)
ay ay
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Imposing Condition (2) leads to

apP/P
m= —(1+y)—/. (4.9)
dy
This identity is what we were after: the MD is equal to the horizon m.
Suppose that we use a coupon bond for immunization. Because
a C F
= i-m + n—m’
izt (1+) (1+y)
it follows that
°FV & —i)(m—-i-1)C - —n—1)F
V _§nmoim—i=hC | mommon-DF |, (4.10)
Wy o (1+y) (L+y)y=

for y > —1 because (m—i)(m—i+1) is either zero or positive. Because the FV is
convex for y > —1, the minimum value of the FV isindeed L (see Fig. 4.5).

If there is no single bond whose MD matches the horizon, a portfolio of two
bonds, A and B, can be assembled by the solution of

1 = wa +ws,

(4.11)
D = wa DA +wpDp

for wa and wp. Here, D; is the MD of bond i and w; is the weight of bond i in
the portfolio. Make sure that D falls between Ds and Dg to guarantee wa > 0,
wg > 0, and positive portfolio convexity.

Although we have been dealing with immunizing a single liability, the extension
to multiple liabilities can be carried out along the same line. Let there be a liability
of size L; attime i and a cash inflow A; at time i. The NPV of these cash flows at

Horizon price

400

350
300

0 0.05 B3 0.15 T
Figure 4.5: Horizon price. Plotted is the future value of a bond at the horizon. The
yield at which the graph is minimized equates the bond's MD with the horizon.
In this example, the bond pays semiannual coupons at an annual rate of 10% for
30 years and the horizon is 10 years from now. The FV is minimized at y = 9.91%,
and the MD at y is exactly 10 years. The bond’s FV at the horizon will increase if
the rate moves.
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the horizon is

FV =3 (A4~ L)(1+y)"".

Conditions (1)-(3) require that FV =0, 3FV/dy = 0, and 3*’FV/dy?> > 0 around the
current rate y. Together, they guarantee that the cash inflows suffice to cover the
liabilities for small instantaneous rate movements now. In this more general setting,
the distribution of individual assets’ durations must have a wider range than that of
the liabilities to achieve immunization (see Exercise 4.2.11).

Of course, a stream of liabilities can always be immunized with a matching stream
of zero-coupon bonds. This is called cash matching, and the bond portfolio is called a
dedicated portfolio [799]. Two problems with this approach are that (1) zero-coupon
bonds may be missing for certain maturities and (2) they typically carry lower yields.

Immunization is a dynamic process. It has to be rebalanced constantly to ensure
that the MD remains matched to the horizon for the following reasons. The MD
decreases as time passes, and, except for zero-coupon bonds, the decrement is not
identical to the decrement in the time to maturity [217]. This phenomenon is called
duration drift [246]. This point can be easily confirmed by a coupon bond whose MD
matches the horizon. Because the bond’s maturity date lies beyond the horizon date,
its duration will remain positive at the horizon instead of zero. Therefore immuniza-
tion needs to be reestablished even if interest rates never change. Interest rates will
fluctuate during the holding period, but it was assumed that interest rates change
instantaneously after immunization has been established and then stay there. Finally,
the durations of assets and liabilities may not change at the same rate [689].

When liabilities and assets are mismatched in terms of duration, adverse interest
rate movements can quickly wipe out the equity. A bank that finances long-term
mortgage investments with short-term credit from the savings accounts or certifi-
cates of deposit (CDs) runs such a risk. Other institutions that worry about duration
matching are pension funds and life insurance companies [767].

» Exercise 4.2.6 In setting up the two-bond immunization in Egs. (4.11), we did not
bother to check the convexity condition. Justify this omission.

» Exercise 4.2.7 Show that, in the absence of interest rate changes, it suffices to
match the PVs of the liability and the asset.

> Exercise 4.2.8 Start with a bond whose PV is equal to the PV of a future liability
and whose MD exceeds the horizon. Show that, at the horizon, the bond will fall
short of the liability if interest rates rise and more than meet the goal if interest rates
fall. The reverse is true if the MD falls short of the horizon.

» Exercise 4.2.9 Consider a liability currently immunized by a coupon bond. Sup-
pose that the interest rate changes instantaneously. Prove that profits will be gener-
ated when rebalancing is performed at time At from now (but before the maturity).

> Exercise 4.2.10 The liability has an MD of 3 years, but the money manager has
access to only two kinds of bonds with MDs of 1 year and 4 years. What is the right
proportion of each bond in the portfolio in order to match the liability’s MD?

» Exercise 4.2.11 (1) To achieve full immunization, we set up cash inflows at more
points in time than liabilities as follows. Consider a single-liability cash outflow L, at
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time ¢. Assemble a portfolio with a cash inflow A; at time ¢ —a; and a cash inflow
A, attime ¢ +a, with a1,a; > 0 and a; <t¢. Conditions (1) and (2) demand that

P(y) = Are"? + Aze ™™ — L, =0,

dpP
ﬁ = Aja;e™ — Arare ™ =0
dy
under continuous compounding. Solve the two equations for any two unknows of
your choice, say A; and A, and prove that it achieves immunization for any changes

in y. (2) Generalize the result to more than two cash inflows.

4.2.3 Macaulay Duration of Floating-Rate Instruments

A floating-rate instrument makes interest rate payments based on some publicized
index such as the prime rate, the London Interbank Offered Rate (LIBOR), the U.S.
T-bill rate, the CMT rate, or the COFI [348]. Instead of being locked into a number,
the coupon rate is reset periodically to reflect the prevailing interest rate.

Assume that the coupon rate ¢ equals the market yield y and that the bond is
priced at par. The first reset date is j periods from now, and resets will be performed
thereafter. Let the principal be $1 for simplicity. The cash flow of the floating-rate
instrument is thus

A f—n"_‘]—
C,Chee s G Yy, Y, y+1

J

where ¢ is a constant and y =c. So the coupon payment at time j+1 starts to
reflect the market yield. For example, when j =0, every coupon payment reflects
the prevailing market yield, and when j =1, which is more typical, interest rate
movements during the first period will not affect the first coupon payment. The
MD is

&,y N P 1
=L iyt o [ (d+y) (1+y>f—1}+”<1+y>"

i=j+1

_MD_ S 1L _d4pit=a+y7]
=MD l;i;l = S , (4.12)

where MD denotes the MD of an otherwise identical fixed-rate bond. Interestingly,
the MD is independent of the maturity of the bond, n. Formulas for nonpar bonds
are more complex but do not involve any new ideas [306, 348].

The attractiveness of floating-rate instruments is not hard to explain. Floating-
rate instruments are typically less sensitive to interest rate changes than are fixed-
rate instruments. In fact, the less distant the first reset date, the less volatile the
instrument. And when every coupon is adjusted to reflect the market yield, there is
no more interest rate risk. Indeed, the MD is zero when j = 0. In the typical case
of j=1, the MD is one period. By contrast, a bond that pays 5% per period for
30 periods has an MD of 16.14 periods.
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» Exercise 4.2.12 Show that the MD of a floating-rate instrument cannot exceed the
first reset date.

4.2.4 Hedging

Hedging aims at offsetting the price fluctuations of the position to be hedged by the
hedging instrument in the opposite direction, leaving the total wealth unchanged
[222]. Define dollar duration as

P
dollar duration = modified duration x price (% of par) = T
Yy
where P is the price as a percentage of par. It is the tangent on the price/yield curve

such as the one in Fig. 3.9. The approximate dollar price change per $100 of par
value is

price change ~ —dollar duration x yield change.

The related price value of a basis point, or simply basis-point value (BPV), defined as
the dollar duration divided by 10,000, measures the price change for a one basis-point
change in the interest rate. One basis point equals 0.01%.

Because securities may react to interest rate changes differently, we define yield
beta as

) change in yield for the hedged security
yield beta =

change in yield for the hedging security’
which measures relative yield changes. If we let the hedge ratio be

h— dollar durat.ion of the hedg.ed securi.ty « yield beta, (4.13)
dollar duration of the hedging security

then hedging is accomplished when the value of the hedging security is 4 times that
of the hedged security because

dollar price change of the hedged security
= —h x dollar price change of the hedging security.

EXAMPLE 4.2.2 Suppose we want to hedge bond A with a duration of seven by using
bond B with a duration of eight. Under the assumption that the yield beta is one and
both bonds are selling at par, the hedge ratio is 7/8. This means that an investor who
is long $1 million of bond A should short $7/8 million of bond B.

4.3 Convexity

The important notion of convexity is defined as

2P 1

or L 4.14
2 P (4.14)

convexity (in periods) =

4
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It measures the curvature of the price/yield relation. The convexity of a coupon
bond is

1 oo C F
P |:Zl(l+1)ﬁ+n(n+l)m:|

i=1 I+y
_E{E[ 1 :|_ 2Cn n(n+1)[F—(C/y)]}
Py (A+y)yr ] A+ yyt (1+ y)r2 ’

(4.15)

which is positive. For a bond with positive convexity, the price rises more for a rate
decline than it falls for a rate increase of equal magnitude. Hence between two
bonds with the same duration, the one with a higher convexity is more valuable,
other things being equal. Convexity measured in periods and convexity measured in
years are related by

convexity (in periods)

2
when there are k periods per annum. It can be shown that the convexity of a coupon
bond increases as its coupon rate decreases (see Exercise 4.3.4). Furthermore, for a

given yield and duration, the convexity decreases as the coupon decreases [325]. In
analogy with Eq. (4.7), the convexity under continuous compounding is

convexity (in years) =

> 7Cie™  9’P/P
P oy

convexity (continuous compounding) =

The approximation A P/P = —duration X yield change we saw in Section 4.2
works for small yield changes. To improve on it for larger yield changes, second-
order terms are helpful:

APN8P1A+182P1(A)2
P oy PP T2%2 P Y

1
= —duration x Ay + e convexity x (Ay)?.

See Fig. 4.6 for illustration.
A more general notion of convexity is the effective convexity defined as

P,+P —2xPy
B [0.5x (yr —y)]*

where P_ is the price if the yield is decreased by Ay, P, is the price if the yield is
increased by Ay, Py istheinitial price, y istheinitialyield, y, = y+ Ay, y_ =y — Ay,
and Ay issufficiently small. Note that Ay = (y, — y_)/2. Effective convexity is most
relevant when a bond’s cash flow is interest rate sensitive.

The two-bond immunization scheme in Subsection 4.2.2 shows that countless
two-bond portfolios with varying duration pairs (Da, Dg) can be assembled to sat-
isfy Egs. (4.11). However, which one is to be preferred? As convexity is a desir-
able feature, we phrase this question as one of maximizing the portfolio convexity
among all the portfolios with identical duration. Let there be n kinds of bonds, with
bond i having duration D; and convexity C;, where D) < D, < --- < D,. Typically,

(4.16)
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Figure 4.6: Linear and quadratic approximations to bond price changes. The
dotted curve is the result of a duration-based approximation, whereas the dashed
curve, which fits better, utilizes the convexity information. The bond in question
has 30 periods to maturity with a period coupon rate of 5%. The current yield is
4% per period.

D; =0.25 (3-month discount instruments) and D, =30 (30-year zeros). We then
solve the following constrained optimization problem:

maximize ;Ci+w,C+ -+ 0,Cy,

subjectto l=w)+wy+-- -+ wy,
D=w1 D+ oDy + -+ w, Dy,
O<w; <1.

The function to be optimized, w1 Ci + w2 Cy + - - - + w, Gy, is called the objective func-
tion. The equalities or inequalities make up the constraints. The preceding optimiza-
tion problem is a linear programming problem because all the functions are linear.
The solution usually implies a barbell portfolio, so called because the portfolio con-
tains bonds at the two extreme ends of the duration spectrum (see Exercise 4.3.6).
» Exercise 4.3.1 In practice, convexity should be expressed in percentage terms,
call it Co,, for quick mental calculation. The percentage price change in percentage
terms is then approximated by —De, x Ar + Co, x (Ar)?/2 when the yield increases
instantaneously by Ar %. For example, if Dy, =10, Co, = 1.5, and Ar = 2, the price
will drop by 17% because

1 1
—D%xAr—{—ExC%x(Ar)zz—lOXZ—{—E><1.5><22=—17.

Show that C9, equals convexity divided by 100.

» Exercise 4.3.2 Prove that d(duration)/dy = (duration)? — convexity.

» Exercise4.3.3 Show that the convexity of a zero-coupon bondis n(n+1)/(1 + y)?.
> Exercise 4.3.4 Verify that convexity (4.15) increases as the coupon rate decreases.
» Exercise 4.3.5 Prove that the barbell portfolio has the highest convexity for n = 3.
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> Exercise 4.3.6 Generalize Exercise 4.3.5: Prove that a barbell portfolio achieves
immunization with maximum convexity given n > 3 kinds of zero-coupon bonds.

Additional Reading

Duration and convexity measure only the risk of changes in interest rate levels.
Other types of risks, such as the frequency of large movements in interest rates, are
ignored [618]. They furthermore assume parallel shifts in the yield curve, whereas
yield changes are not always parallel in reality (more is said about yield curves in
Chap.5). Closed-form formulas for duration and convexity can be found in [89, 209].
See [496] for a penetrating review. Additional immunization techniques can be found
in [206,325,547]. The idea of immunization is due to Redington in 1952 [732]. Consult
[213, 281, 545] for more information on linear programming. Many fundamental
problems in finance and economics are best cast as optimization problems [247, 278,
281, 891].

NOTE

1. The bond was the standard design for mortgages, called balloon mortgages, before the Federal
Housing Administration introduced fully amortized mortgages [330]. Balloon mortgages are
more prone to default because the borrower may not have the funds for the balloon payment
due. This exercise shows that fully amortized mortgages are less volatile than balloon mortgages
if prepayments are nonexisting.



CHAPTER
FIVE

Term Structure of Interest Rates

He pays least [ ... ] who pays latest.
Charles de Montesquieu (1689-1755), The Spirit of Laws

The term structure of interest rates is concerned with how the interest rates change
with maturity and how they may evolve in time. It is fundamental to the valuation of
fixed-income securities. This subject is important also because the term structure is
the starting point of any stochastic theory of interest rate movements. Interest rates in
this chapter are period based unless stated otherwise. This simplifies the presentation
by eliminating references to the compounding frequency per annum.

5.1 Introduction

The set of yields to maturity for bonds of equal quality and differing solely in their
terms to maturity' forms the term structure. This term often refers exclusively
to the yields of zero-coupon bonds. Term to maturity is the time period during
which the issuer has promised to meet the conditions of the obligation. A yield
curve plots yields to maturity against maturity and represents the prevailing interest
rates for various terms. See Fig. 5.1 for a sample Treasury yield curve. A par yield
curve is constructed from bonds trading near their par value.

At least four yield-curve shapes can be identified. A normal yield curve is upward
sloping, an inverted yield curve is downward sloping, a flat yield curve is flat (see
Fig.5.2), and a humped yield curve is upward sloping at first but then turns downward
sloping. We will survey the theories advanced to explain the shapes of the yield curve
in Section 5.1.

The U.S. Treasury yield curve is the most widely followed yield curve for the
following reasons. First, it spans a full range of maturities, from 3 months to 30 years.
Second, the prices are representative because the Treasuries are extremely liquid and
their market deep. Finally, as the Treasuries are backed by the full faith and credit
of the U.S. government, they are perceived as having no credit risk [95]. The most
recent Treasury issues for each maturity are known as the on-the-run or current
coupon issues in the secondary market (see Fig. 5.3). Issues auctioned before the
current coupon issues are referred to as off-the-run issues. On-the-run and off-the-
run yield curves are based on their respective issues [325, 489].
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46 Term Structure of Interest Rates

Figure 5.1: Treasury yield curve. The Treasury yield
curve as of May 3, 1996, published by the U.S.
Treasury and based on bid quotations on the most
actively traded Treasury securities as of 3:30 pm
with information from the Federal Reserve Bank of
New York.

Year

The yield on a non-Treasury security must exceed the base interest rate offered by
an on-the-run Treasury security of comparable maturity by a positive spread called
the yield spread [326]. This spread reflects the risk premium of holding securities not
issued by the government. The base interest rate is also known as the benchmark
interest rate.

5.2 Spot Rates

The i-period spotrate S(i) is the yield to maturity of an i-period zero-coupon bond.
The PV of $1 i periods from now is therefore [ 1+ S(i)]~. The one-period spot
rate — the short rate — will play an important role in modeling interest rate dynamics
later in the book. A spot rate curve is a plot of spot rates against maturity. Its other
names include spot yield curve and zero-coupon yield curve.

In the familiar bond price formula,

X”: C N F
—~ (1+y)y (A4

every cash flow is discounted at the same yield to maturity, y. To see the inconsis-
tency, consider two riskless bonds with different yields to maturity because of their
different cash flow streams. The yield-to-maturity methodology discounts their con-
temporaneous cash flows with different rates, but common sense dictates that cash
flows occurring at the same time should be discounted at the same rate. The spot-rate
methodology does exactly that.

A fixed-rate bond with cash flow Ci, G, ..., C, is equivalent to a package of
zero-coupon bonds, with the ith bond paying C; dollars at time i. For example, a

.08
.07
.06
.05
.04
.03
.02
.01

Figure 5.2: Three types of yield curves. Depicted
from top to bottom are inverted, flat, and normal
yield curves.

O O O O O O o O




5.3 Extracting Spot Rates from Yield Curves

Curr Securities Prev Close 9:28
3 - 11/13/97 5.10 5.24 5.1 5.25
6 - 2/12/98 513 5.34 5.12 533
1 - 8/20/98 5.20 5.49 5.19 5.48
2 5.875 7/31/99 100-03+ 5.81 100-04+ 5.80
3 6.000 8/15/00 100-03+ 5.96 100-04+ 5.95
5 6.000 7/31/02 99-23+ 6.06 99-24 6.06
10 6.125 8/15/07 99-07 6.23 99-09 6.22
30 6.375 8/15/27 97-25+ 6.54 97-27+ 6.54

Figure 5.3: On-the-run U.S. Treasury yield curve (Aug. 18, 1997, 9:28 am EDT). Source: Bloomberg.

level-coupon bond has the price

F
P= Z[Hsm EEO

(5.1)

This pricing method incorporates information from the term structure by discounting
each cash flow at the corresponding spot rate. In general, any riskless security having
a predetermined cash flow Ci, C,, ..., C, should have a market price of

P= Z Gid(i),

i=1

where
d@)=[1+SG)]", i=1,2,...,n

are called the discount factors. The discount factor d(i) denotesthe PV of $1i periods
from now, in other words, the price of the zero-coupon bond maturing i periods from
now. If the market price is less than P, it is said to be undervalued or cheap. It is
said to be overvalued or rich otherwise. The discount factors are often interpolated
to form a continuous function called the discount function. It is the discount factors,
not the spot rates, that are directly observable in the market.

» Exercise 5.2.1 Prove that the yield to maturity y is approximately

Y[3Gi()/ay]1S()
aP/dy

to the first order, where C;(y) = C;/(1+y)' denotes the ith cash flow discounted at
the rate y. Note that dC;(y)/dy is the dollar duration of the i-period zero-coupon
bond. (The yield to maturity is thus roughly a weighted sum of the spot rates, with
each weight proportional to the dollar duration of the cash flow.)

5.3 Extracting Spot Rates from Yield Curves

Spot rates can be extracted from the yields of coupon bonds. Start with the
short rate S(1), which is available because short-term Treasuries are zero-coupon
bonds. Now S(2) can be computed from the two-period coupon bond price P by
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use of Eq. (5.1),

o C+100
= 11s0) T[S

EXAMPLE 5.3.1 Suppose the 1-year T-bill has a yield of 8%. Because this security is a
zero-coupon bond, the 1-year spot rate is 8 %. When the 2-year 10% T-note is trading
at 90, the 2-year spot rate satisfies

10 n 110
1.08  [1+S(2)]*
Therefore S(2) =0.1672, or 16.72%.

90 =

In general, S(n) can be computed from Eq. (5.1), given the market price of the
n-period coupon bond and S(1), S(2), ..., S(n — 1). The complete algorithm is given
in Fig. 5.4. The correctness of the algorithm is easy to see. The initialization steps and
step 3 ensure that

i—1
1
pP= PR
Z [T+
at the beginning of each loop. Step 1 solves for x such that

il ci+100

" j=1 [1+S(])]] (14x)"

where C; is the level-coupon payment of bond i and P is its price.

Each execution of step 1 requires O(1) arithmetic operations because x =
[(Ci+100)/(P —Cip)]'—1 and expressions like y? can be computed by
exp[ zln y] (note that exp[x ] = e*). Similarly, step 3 runs in O(1) time. The total
running time is hence O(n).

Algorithm for extracting spot rates from coupon bonds:

input: n,C[1l..n], P[1.n];

real S[1..n], p, x;

S[1]:=@00/P[1])—

— P[1]/100;

for (i =2ton) {
1.Solve P[i]=C[i] x p+(C[i]+100)/(1+x)' forx;
2.8[i]:=
3.p=p+(1+x)7"

}

return §[ |;

Figure 5.4: Algorithm for extracting spot rates from a yield curve. P[ i ] is the price (as a percentage of par)
of the coupon bond maturing i periods from now, C[ i ] is the coupon of the i-period bond expressed as a
percentage of par, and n is the term of the longest maturity bond. The first bond is a zero-coupon bond. The
i-period spot rate is computed and stored in S| J ].



5.4 Static Spread

In reality, computing the spot rates is not as clean-cut as the above bootstrap-
ping procedure. Treasuries of the same maturity might be selling at different yields
(the multiple cash flow problem), some maturities might be missing from the data
points (the incompleteness problem), Treasuries might not be of the same qual-
ity, and so on. Interpolation and fitting techniques are needed in practice to create a
smooth spot rate curve (see Chap. 22). Such schemes, however, usually lack economic
justifications.

» Exercise 5.3.1 Suppose that S(i) =0.10 for 1 <i <20 and a 20-period coupon
bond is selling at par, with a coupon rate of 8% paid semiannually. Calculate S(20).

>> Programming Assignment 5.3.2 Implement the algorithm in Fig. 5.4 plus an option
to return the annualized spot rates by using the user-supplied annual compounding
frequency.

5.4 Static Spread

Consider a risky bond with the cash flow Cj, G;, ..., C, and selling for P. Were this
bond riskless, it would fetch

Z[l-l—S(t)

Because riskiness must be compensated for, P < P*. The static spread is the amount
s by which the spot rate curve has to shift in parallel in order to price the bond
correctly:

P= Z[l—i—s—i—S(r)]’

It measures the spread that a risky bond would realize over the entire Treasury
spot rate curve if the bond is held to maturity. Unlike the yield spread, which is the
difference between the yield to maturity of the risky bond and that of a Treasury
security with comparable maturity, the static spread incorporates information from
the term structure. The static spread can be computed by the Newton—Raphson
method.

> Programming Assignment 5.4.1 Write a program to compute the static spread. The
inputs are the payment frequency per annum, the annual coupon rate as a percentage
of par, the market price as a percentage of par, the number of remaining coupon
payments, and the discount factors. Some numerical examples are tabulated below:

Price (% of par) 98 98.5 99 99.5 100 100.5 101

Static spread (%) 0.435 0.375 0.316 0.258 0.200 0.142 0.085

(A 5% 15-year bond paying semiannual interest under a flat 7.8% spot rate curve is
assumed.)
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5.5 Spot Rate Curve and Yield Curve

Many interesting relations hold between spot rate and yield to maturity. Let y, de-
note the yield to maturity for the k-period coupon bond. The spot rate dominates
the yield to maturity if the yield curve is normal; in other words, S(k) > yy if y1 <
v, < --- (see Exercise 5.5.1, statement (1)). Analogously, the spot rate is dominated
by the yield to maturity if the yield curve is inverted. Moreover, the spot rate domi-
nates the yield to maturity if the spot rate curve is normal (S(1) < S(2) < ---) and is
dominated when the spot rate curve is inverted (see Exercise 5.5.1, statement (2)).
Of course, if the yield curve is flat, the spot rate curve coincides with the yield curve.

These results illustrate the coupon effect on the yield to maturity [848]. For in-
stance, under a normal spot rate curve, a coupon bond has a lower yield than a
zero-coupon bond of equal maturity. Picking a zero-coupon bond over a coupon
bond based purely on the zero’s higher yield to maturity is therefore flawed.

The spot rate curve often has the same shape as the yield curve. That is, if the spot
rate curve is inverted (normal, respectively), then the yield curve is inverted (normal,
respectively). However, this is only a trend, not a mathematical truth. Consider
a three-period coupon bond that pays $1 per period and repays the principal of
$100 at the end of the third period. With the spot rates S(1) = 0.1, S(2) = 0.9, and
S(3) = 0.901, the yields to maturity can be calculated as y; =0.1, y, = 0.8873, and
y3 = 0.8851, clearly not strictly increasing. However, when the final principal payment
is relatively insignificant, the spot rate curve and the yield curve do share the same
shape. Such is the case with bonds of high coupon rates and long maturities (see
Exercise 5.5.3). When we refer to the typical agreement in shape later, the above
proviso will be implicit.

» Exercise 5.5.1 Prove the following statements: (1) The spot rate dominates the
yield to maturity when the yield curve is normal, and (2) the spot rate dominates the
yield to maturity if the spot rate curve is normal, and it is smaller than the yield to
maturity if the spot rate curve is inverted.

» Exercise 5.5.2 Contrive an example of a normal yield curve that implies a spot
rate curve that is not normal.

» Exercise 5.5.3 Suppose that the bonds making up the yield curve are ordinary
annuities instead of coupon bonds. (1) Prove that a yield curve is normal if the spot
rate curve is normal. (2) Still, a normal yield curve does not guarantee a normal
spot rate curve. Verify this claim with this normal yield curve: y; =0.1, y, = 0.43,
y3 = 0.456.

5.6 Forward Rates

The yield curve contains not only the prevailing interest rates but also information
regarding future interest rates currently “expected” by the market, the forward rates.
By definition, investing $1 for j periods will end up with [14 S(j)]/ dollars at time
j. Call it the maturity strategy. Alternatively, suppose we invest $1 in bonds for i
periods and at time i invest the proceeds in bonds for another j —i periods, where
j > i.Clearly we willhave [1+ S() ] [1+ S(@i, j)]/~* dollarsattime j,where S(i, j)
denotes the (j —i)-period spot rate i periods from now, which is unknown today.
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f(0.1) ‘ f(1.2) ‘ f2.3) ‘ f(3.4) ‘
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Figure 5.5: Time line for spot and forward rates.
Call it the rollover strategy. When S(i, j) equals
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we will end up with [1+ S(j)]/ dollars again. (By definition, f(0, j) = S(;j).) The
rates computed by Eq. (5.2) are called the (implied) forward rates or, more precisely,
the (j —i)-period forward rate i periods from now. Figure 5.5 illustrates the time
lines for spot rates and forward rates.

In the above argument, we were not assuming any a priori relation between the
implied forward rate f(i, j) and the future spot rate S(i, j). This is the subject of
the term structure theories to which we will turn shortly. Rather, we were merely
looking for the future spot rate that, if realized, would equate the two investment
strategies. Forward rates with a duration of a single period are called instantaneous
forward rates or one-period forward rates.

When the spot rate curve is normal, the forward rate dominates the spot rates:

f@, j)>S8() > > S3@). (5.3)

This claim can be easily extracted from Eq. (5.2). When the spot rate curve is inverted,
the forward rate is in turn dominated by the spot rates:

fl, j)<8() <--- < S3). 54)

See Fig. 5.6 for illustration.

forward rate curve
spot rate curve yield curve

yield curve spot rate curve
forward rate curve

(a) (b)
Figure 5.6: Yield curve, spot rate curve, and forward rate curve. When the yield curve is
normal, it is dominated by the spot rate curve, which in turn is dominated by the forward
rate curve (if the spot rate curve is also normal). When the yield curve is inverted, on the
other hand, it dominates the spot rate curve, which in turn dominates the forward rate curve
(if the spot rate curve is also inverted). The forward rate curve here is a plot of one-period
forward rates.
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Forward rates, spot rates, and the yield curve® can be derived from each other.
For example, the future value of $1 at time n can be derived in two ways. We
can buy n-period zero-coupon bonds and receive [1+ S(n) ]* or we can buy one-
period zero-coupon bonds today and then a series of such bonds at the forward
rates as they mature. The future value of this approachis [1+ S(1)][1+ f(1,2)]---
[14+ f(n—1, n)]. Because they are identical,

Sm)y={[1+SM][1+ f(1,2)]---[1+ f(n—1,n)]}}/" —1. (5.5)

Hence, the forward rates, specifically the one-period forward rates f(s,s+1),
determine the spot rate curve.

EXAMPLE 5.6.1 Suppose that the following 10 spot rates are extracted from the yield
curve:

Period 1 2 3 4 5 6 7 8 9 10

Rate (%) 4.00 4.20 4.30 4.50 4.70 4.85 5.00 5.25 5.40 5.50
The following are the 9 one-period forward rates, starting one period from now.

Period 1 2 3 4 5 6 7 8 9

Rate %) 440 450 510 550 560 591 702 661 640

If $1 is invested in a 10-period zero-coupon bond, it will grow to be (14 0.055)!° =
1.708. An alternative strategy is to invest $1 in one-period zero-coupon bonds at 4%
and reinvest at the one-period forward rates. The final result,

1.04 x 1.044 x 1.045 x 1.051 x 1.055 x 1.056
x 1.0591 x 1.0702 x 1.0661 x 1.064 = 1.708,

is exactly the same as expected.

» Exercise 5.6.1 Assume that all coupon bonds are par bonds. Extract the spot rates
and the forward rates from the following yields to maturity: y; = 0.03, y, = 0.04, and
y3 =0.045.

» Exercise5.6.2 Arguethat[1+ f(a,a+b+c)]>*=[1+ f(a,a+b)°[1+ f(a+
ba+b+c)].

» Exercise 5.6.3 Show that f(T, T+1)=d(T)/d(T+1)—1 (to be generalized in
Eq. (24.2)).

> Exercise5.6.4 Let the price of a 10-year zero-coupon bond be quoted at 60 and that
of a 9.5-year zero-coupon bond be quoted at 62. Calculate the percentage changes in
the 10-year spot rate and the 9.5-year forward rate if the 10-year bond price moves
up by 1%. (All rates are bond equivalent.)

> Exercise 5.6.5 Prove that the forward rate curve lies above the spot rate curve
when the spot rate curve is normal, below it when the spot rate curve is inverted, and
that they cross where the spot rate curve is instantaneously flat (see Fig. 5.7).
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Figure 5.7: Spot rate curve and forward rate curve. The forward rate curve is built
by one-period forward rates.

5.6.1 Locking in the Forward Rate

Although forward rates may or may not be realized in the future, we can lock in any
forward rate f(n, m) today by buying one n-period zero-coupon bond for 1/[1+
S(n)]" and selling [14 S(m)]"/[1+ S(n)]" m-year zero-coupon bonds. Here is
the analysis. There is no net initial investment because the cash inflow and the cash
outflow, both at 1/[14 S(n)]" dollars, cancel out. At time n there will be a cash
inflow of $1, and at time m there will be a cash outflow of [1+ S(m) |"/[1+ S(n)]"
dollars. This cash flow stream implies the rate f(n, m) between times n and m (see
Fig. 5.8).

The above transactions generate the cash flow of an important kind of financial
instrument called a forward contract. In our particular case, this forward contract,
agreed on today, enables us to borrow money at time 7 in the future and repay the
loan at time m > n with an interest rate equal to the forward rate f(n, m).

Now that forward rates can be locked in, clearly they should not be negative.
However, forward rates derived by Eq. (5.2) may be negative if the spot rate curve
is steeply downward sloping. It must be concluded that the spot rate curve cannot be
arbitrarily specified.

» Exercise 5.6.6 (1) The fact that the forward rate can be locked in today means that
future spot rates must equal today’s forward rates, or S(a, b) = f(a, b), in a certain
economy. Why? How about an uncertain economy? (2) Verify that forward rates
covering the same time period will not change over time in a certain economy.

» Exercise 5.6.7 (1) Confirm that a 50-year bond selling at par ($1,000) with a semi-
annual coupon rate of 2.55% is equivalent to a 50-year bond selling for $1,000 with
a semiannual coupon rate of 2.7% and a par value of $329.1686. (2) Argue that a

Figure 5.8: Locking in the forward rate. By trading zero- n m

coupon bonds of maturities n and m in the right pro-
portion, the forward rate f(n,m) canbelocked intoday.

(I+8(m))"/(1+ S(n))"
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100-year bond selling at par with a semiannual coupon rate of 2.7% is equivalent
to a portfolio of the above-mentioned 50-year bond and a contract to buy 50 years
from now a 50-year bond at a price of $329.1686 with a semiannual coupon rate of
2.7%. (3) Verify that the bond to be bought 50 years hence has a semiannual yield
of 8.209%. (Therefore we should not underestimate the importance of later forward
rates on long-term coupon bonds’ prices as even a small increase in yields between
two long-term coupon bonds could imply an unreasonably high forward rate.)

5.6.2 Term Structure of Credit Spreads

Static spread can be interpreted as the constant credit spread to the Treasury spot
rate curve that reflects the risk premium of a corporate bond. However, an identical
credit spread at all maturities runs counter to the common sense that the credit spread
should rise with maturity; a corporation is more likely to fail in, say, 10 years rather
than in 1.

One theory of term structure of credit spreads postulates that the price of a corpo-
rate bond equals that of the Treasury times the probability of solvency. Furthermore,
once default occurs, a corporation remains in that state and pays zero dollar. Because
the probability of default is one minus the probability of solvency,

price of 1-period corporate zero

1 — probability of default (1 period) = — - .
price of 1-period Treasury zero

After using the above equation to compute the probability of default for corporate
bonds with one period to maturity, we can calculate the forward probability of default,
the conditional probability of default in the second period given that default has not
occurred in the first period. This forward probability of default clearly satisfies

[1 — probability of default (1 period) |
x [1 —forward probability of default (period 2) ]
price of 2-period corporate zero
- price of 2-period Treasury zero

In general, the equation satisfied by the forward probability is

[1 — probability of default (i—1 periods) |
x [1 —forward probability of default (period i) ]
= probability the corporate bond survives past time i
__ price of i-period corporate zero

= . 5.6
price of i-period Treasury zero (56)

The algorithm for computing the forward probabilities of default is shown in Fig. 5.9.

» Exercise 5.6.8 Consider the following four zero-coupon bonds:

Type Maturity Price Yield Type Maturity Price Yield
Treasury 1 year 94 6.28% Treasury 2 year 87 7.09%
Corporate 1 year 92 8.51% Corporate 2 year 84 8.91%

Compute the probabilities of default and the forward probabilities of default.
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Algorithm for forward probabilities of default:

input: n, P[1..n], Q[1..n];
real fll.n], p[l.n];
pl1]:=1-(Q[1]/P[1]);
f[1]=p[1];
for (i=2ton) {
flil=1=QA—=pli=11)" x(Q[i1/P[i]);
} plil=pli—1]x f[i];

return f[ |;

Figure 5.9: Algorithm for forward probabilities of default. P [ i ] is the price of the riskless i-period zero,
Q[ i] is the price of the risky i-period zero, p[ i ] stores the probability of default during period one to i/,
and the forward probability of default for the jth period is calculated in [/ ].

» Exercise 5.6.9 (1) Prove Eq. (5.6). (2) Define the forward spread for period i,
s(i), as the difference between the instantaneous period-i forward rate f(i —1, i)
obtained by riskless bonds and the instantaneous period-i forward rate f.(i —1, i)
obtained by corporate bonds. Prove that s(i) roughly equals the forward probability
of default for period i.

5.6.3 Spot and Forward Rates under Continuous Compounding
Under continuous compounding, the pricing formula becomes
- iS3) nS(n)
P= ; Ce™ 50 4 Femst),
In particular, the market discount function is
d(n) = ™50, (5.7)

A bootstrapping procedure similar to the one in Fig. 5.4 can be used to calculate
the spot rates under continuous compounding. The spot rate is now an arithmetic
average of forward rates:

_ O+ (1,244 f(n—1,m)

S(n) o (5.8)
The formula for the forward rate is also very simple:

fii. iy = BD=20, 59)
In particular, the one-period forward rate equals

P D =G+ S+ D= j5() = ~in TG D (5.10)

(compare it with Exercise 5.6.3).
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Rewrite Eq. (5.9) as
i

NCHENOEINOENON P

Then under continuous time instead of discrete time, Eq. (5.10) becomes
T
f(T, T+AT)=S(T+AT)+[S(T+AT)—S(T)] T

and the instantaneous forward rate at time 7 equals

. aS
f(T):Al%IEO f(T,T+AT)_S(T)+Ta—T. (5.11)
Note that f(T) > S(T) if and only if 3S/0T > 0.
» Exercise 5.6.10 Derive Egs. (5.8) and (5.9).
» Exercise 5.6.11 Compute the one-period forward rates from this spot rate curve:
S(1) =2.0%, S(2) =2.5%, S(3) =3.0%, S(4) =3.5%, and S(5) =4.0%.

» Exercise 5.6.12 (1) Figure out a case in which a change in the spot rate curve leaves
all forward rates unaffected. (2) Derive the duration —(8 P/dy)/P under the shape
change in (1), where y is the short rate S(1).

5.6.4 Spot and Forward Rates under Simple Compounding

This is just a brief subsection because the basic principles are similar. The pricing
formula becomes

o F
P= .
21+i5(i)+1+n5(n)

i=1

The market discount function is
d(n)y=[1+nS(n)]™", (5.12)
and the (i — j)-period forward rate j periods from now is

S(j i@ -
.y = LLHSDILHSOT -1 513)

To annualize the rates, multiply them by the number of periods per annum.
> Exercise 5.6.13 Derive Eq. (5.13).

5.7 Term Structure Theories

Term structure theories attempt to explain the relations among interest rates of
various maturities. As the spot rate curve is most critical for the purpose of valuation,
the term structure theories discussed below will be about the spot rate curve.
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5.71 Expectations Theory

Unbiased Expectations Theory
According to the unbiased expectations theory attributed to Irving Fisher, forward
rate equals the average future spot rate:

fla,b)=E[S(a,b)]. (5.14)

where E[-] denotes mathematical expectation [653, 799]. Note that this theory does
not imply that the forward rate is an accurate predictor for the future spot rate. It
merely asserts that it does not deviate from the future spot rate systematically. The
theory also implies that the maturity strategy and the rollover strategy produce the
same result at the horizon on the average (see Exercise 5.7.2). A normal spot rate
curve, according to the theory, is due to the fact that the market expects the future spot
rate to rise. Formally, because f(j, j+1) > S(j +1) if and only if S(j+1) > S(j)
from Eq. (5.2), it follows that

E[S(j,j+1)]>S(j+1) ifandonlyifS(j+1)> S(j)

when the theory holds. Conversely, the theory implies that the spot rate is expected
to fall if and only if the spot rate curve is inverted [750].

The unbiased expectations theory, however, has been rejected by most empirical
studies dating back at least to Macaulay [627, 633, 767], with the possible exception
of the period before the founding of the Federal Reserve System in 1915 [639, 751].
Because the term structure has been upward sloping ~80% of the time, the unbiased
expectations theory would imply that investors have expected interest rates to rise
80% of the time. This does not seem plausible. It also implies that riskless bonds,
regardless of their different maturities, earn the same return on the average (see
Exercise 5.7.1) [489, 568]. This is not credible either, because that would mean in-
vestors are indifferent to risk.

» Exercise 5.7.1 Prove that an n-period zero-coupon bond sold at time k < n has a
holding period return of exactly S(k) if the forward rates are realized.
» Exercise 5.7.2 Show that

[14S(n) "= E[1+SA)] E[1+81,2)]-- E[1+ S(n—1,n)]

under the unbiased expectations theory.

Other Versions of the Expectations Theory
At least four other versions of the expectations theory have been proposed, but they
are inconsistent with each other for subtle reasons [232]. Expectation also plays a
critical role in other theories, which differ by how risks are treated [492].

Consider a theory that says the expected returns on all possible riskless bond
strategies are equal for all holding periods. In particular,

[1+SQP=[14+S1)]E[1+5(1,2)] (5.15)

because of the equivalency between buying a two-period bond and rolling over
one-period bonds. After rearrangement, E[1+ S(1,2)]=[1+S2)]*/[1+S(1)].
Now consider the following two one-period strategies. The first strategy buys a
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two-period bond and sells it after one period. The expected return is E[{1+
S(1,2)}71 ][ 1 + S(2) J*. The second strategy buys a one-period bond with a return of
14 S(1). The theory says they are equal: E[ {1+ S(1,2)}7'][1+S2) > =1+ S(1),
which implies that

[1+5@)F _ L
1+8(1)  E[{(1+S1.2)} ']

Combining this equation with Eq. (5.15), we conclude that

1 1
E[l—l—S(l,Z)}: E[1+S5(1,2)]

However, this is impossible, save for a certain economy. The reason is Jensen’s in-
equality, which states that E[g(X) ] > g(E[ X]) for any nondegenerate random
variable X and strictly convex function g (i.e., g”(x) > 0). Use g(x)=(1+x)! to
prove our point. So this version of the expectations theory is untenable.

Another version of the expectations theory is the local expectations theory [232,
385]. It postulates that the expected rate of return of any bond over a single period
equals the prevailing one-period spot rate:

E[{1+5(1,n)}) D]
[1+S()]™

=14+51) foralln=>1. (5.16)

This theory will form the basis of many stochastic interest rate models later. We call

E[{1+81,n)}~D]
[1+S(n)]™

the holding premium, which is zero under the local expectations theory.

Each version of the expectations theory postulates that a certain expected dif-
ference, called the liquidity premium or the term premium, is zero. For instance, the
liquidity premium is f(a, b) — E[ S(a, b) ] under the unbiased expectations theory
and it is the holding premium under the local expectations theory [694]. The in-
compatibility between versions of the expectations theory alluded to earlier would
disappear, had they postulated nonzero liquidity premiums [143]. For example, the
biased expectations theory says that

f(a,b)— E[S(a, b)] = p(a, D),

where the liquidity premium p is not zero [39, 653]. A nonzero liquidity premium is
reasonably supported by evidence. There is also evidence that p is neither constant
nor time-independent [43, 335].

» Exercise 5.7.3 (1) Prove that

—[1+5(M)]

1 1
E =
[{1+S(1)}{1+S(1,2)}-~-{1+S(n—1,n)}} [1+S() ]
under the local expectations theory. (2) Show that the local expectations theory is
inconsistent with the unbiased expectations theory.

» Exercise 5.7.4 The return-to-maturity expectations theory postulates that the
maturity strategy earns the same return as the rollover strategy with one-period
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bonds, i.e.,
[1+Sm)]"=E[{1+SD)}{1+S8(1,2)}---{1+S(n—1,n)}], n>1.

Show that it is inconsistent with the local expectations theory.

5.72 Liquidity Preference Theory

The liquidity preference theory holds that investors demand a risk premium for
holding long-term bonds [492]. The liquidity preference theory is attributed to Hicks
[445]. Consider an investor with a holding period of two. If the investor chooses the
maturity strategy and is forced to sell the two-period bonds because of an unexpected
need for cash, he would face the interest rate risk and the ensuing price risk because
bond prices depend on the prevailing interest rates at the time of the sale. This risk is
absent from the rollover strategy. As a consequence, the investor demands a higher
return for longer-term bonds. This implies that f(a, b) > E[ S(a, b) ]. When the spot
rate curve is inverted,

[14 @)1+ E[S(1, i +1) 170+
< [14S@) VD + E[S(1, i 41)])/6+D
<14+8G+1)
< 1+ 8().

Thus E[S(1,i+1)] < S(i). The market therefore has to expect the interest rate to
decline in order for an inverted spot rate curve to be observed.

The liquidity preference theory seems to be consistent with the typically upward-
sloping yield curve. Even if people expect the interest rate to decline and rise equally
frequently, the theory asserts that the curve is upward sloping more often. This is be-
cause a rising expected interest rate is associated with only a normal spot rate curve,
and a declining expected interest rate can sometimes be associated with a normal
spot rate curve. Only when the interest rate is expected to fall below a threshold does
the spot rate curve become inverted. The unbiased expectations theory, we recall, is
not consistent with this case.

» Exercise 5.7.5 Show that the market has to expect the interest rate to decline in
order for a flat spot rate curve to occur under the liquidity preference theory.

5.7.3 Market Segmentation Theory

The market segmentation theory holds that investors are restricted to bonds of certain
maturities either by law, preferences, or customs. For instance, life insurance compa-
nies generally prefer long-term bonds, whereas commercial banks favor shorter-term
ones. The spot rates are determined within each maturity sector separately [653, 799].

The market segmentation theory is closely related to the preferred habitats
theory of Culbertson, Modigliani, and Sutch [674]. This theory holds that the in-
vestor’s horizon determines the riskiness of bonds. A horizon of 5 years will prefer a
5-year zero-coupon bond, demanding higher returns from both 2- and 7-year bonds,
for example, because the former choice has reinvestment risk and the latter has price
risk. Hence, in contrast to the liquidity preference theory, f(a, b) < E[ S(a, b)] can
happen if the market is dominated by long-term investors.
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5.8 Duration and Immunization Revisited

Rate changes considered before for duration were parallel shifts under flat spot
rate curves. We now study duration and immunization under more general spot rate
curves and movements.

5.8.1 Duration Measures

Let S(1), S(2), ..., be the spot rate curve and P(y) =Y, C;/[1+ S(i)+y] be the
price associated with the cash flow Cj, C,. ... Define duration as

ic;
CAP)/PO) | i mrsore
Y = -
dy y=0 i [TISOT
Note that the curve is shifted in parallel to S(1) + Ay, S(2) + Ay, ..., before letting
Ay go to zero. As before, the percentage price change roughly equals duration
multiplied by the size of the parallel shift in the spot rate curve. But the simple linear
relation between duration and MD (4.4) breaks down. One way to regain it is to
resort to a different kind of shift, the proportional shift, defined as
A[T+SGE)]  A[1+S(1)]
14+8G) — 14+8(01)
forall i [317]. Here, Ax denotes the change in x when the short-term rate is shifted
by Ay. Duration now becomes

i
1 { p [+ T } . (5.17)
L+8M) | X sy

If we define Macaulay’s second duration to be the number within the braces in
Eq. (5.17):

Macaulay’s second duration
[14S1)]

This measure is also called Bierwag’s duration [71, 496].

Parallel shift does not reflect market reality. For example, long-term rates do
not correlate perfectly with short-term rates; in fact, the two rates often move in
opposite directions. Short-term rates are also historically more volatile. Practitioners
sometimes break the spot rate curve into segments and measure the duration in each
segment [470].

Duration can also be defined under custom changes of the yield curve. For ex-
ample, we may define the short-end duration as the effective duration under the fol-
lowing shifts. The 1-year yield is changed by +50 basis points (£0.5%). The amounts
of yield changes for maturities 1 <i <10 are £50 x (11 —{)/10 basis points. Yields
of maturities longer than 10 remain intact. If the yield curve is normal, the 450
basis-point change corresponds to flattening of the yield curve, whereas the —50
basis-point change corresponds to steepening of the yield curve. Long-end duration
can be specified similarly. Two custom shifts are behind nonproportional shifts (see
Exercise 5.8.3) and Ho’s key rate durations (see Section 27.5).

Although durations have many variants, the one feature that all share is that the
term structure can shift in only a fixed pattern. Despite its theoretical limitations,

duration =
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duration seems to provide as good an estimate for price volatility as more so-
phisticated measures [348]. Furthermore, immunization with the MD, still widely
used [91], is as effective as alternative duration measures [424]. One explanation
is that, although long-term rates and short-term rates do not in general move
by the same amount or even in the same direction, roughly parallel shifts in the
spot rate curve are responsible for more than 80% of the movements in interest
rates [607].

» Exercise 5.8.1 Assume continuous compounding. Show that if the yields to matu-
rity of all fixed-rate bonds change by the same amount, then (1) the spot rate curve
must be flat and (2) the spot rate curve shift must be parallel. (Hint: The yields of
zero-coupon bonds of various maturities change by the same amount.)

» Exercise 5.8.2 Verify duration (5.17).

» Exercise 5.8.3 Empirically, long-term rates change less than short-term ones. To
incorporate this fact into duration, we may postulate nonproportional shifts as

A[1+S8@)] _ pit Al1+SA) ]
1+8G) 1+ 5(1)

Show that a ¢-period zero-coupon bond’s price sensitivity satisfies

AP i AL+ S(D)]

for some K < 1.

P 1+ 8(1)

under nonproportional shifts.

5.8.2 Immunization

The Case of NO Rate Changes
Recall that in the absence of interest rate changes and assuming a flat spot rate
curve, it suffices to match the PVs of the future liability and the asset to achieve
immunization (see Exercise 4.2.7). This conclusion continues to hold even if the spot
rate curve is not flat, as long as the future spot rates equal the forward rates. Here is
the analysis. Let L be the liability at time m. Then

F L
Z[Hsa)r [1+Sm) T~ [1+Sm)]

The PV of the liability at any time k < m is hence
L
[1+ S(k, m) |k

by Eq. (5.2) and the premise that f(a, b) = S(a, b). The PV of the bond plus the
reinvestments of the coupon payments at the same time is

= P[1+S(k)]*

k ' . n— C F
;C[”S(”k)]k +Z[1+S(k,i+k)]i+[1+S(k,n)]"—k
LG CI+SR A C1+ SR F[1+ Sk
_; [1+SG) ] Z[1+S(i+k)]i+k [1+S(n)]"

= P[1+S(k) ],
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which matches the liability precisely. Therefore, in the absence of unpredictable
interest rate changes, duration matching and rebalancing are not needed for immu-
nization.

The Case of Certain Rate Movements

Recall that a future liability can be immunized by a portfolio of bonds with the same
PV and MD under flat spot rate curves (see Subsection 4.2.2). If only parallel shifts
are allowed, this conclusion can be extended to general spot rate curves. Here is
the analysis. We are working with continuous compounding. The liability L is T
periods from now. Without loss of generality, assume that the portfolio consists of
only zero-coupon bonds maturing at # and #, with 4 < T <t,. Let there be n;
bonds maturing at time ¢;,7 =1, 2. Assume that L=1 for simplicity. The portfolio’s
PVis

V=nje S0 e~ S0 — p=S(DT

and its MD is
nyt1e= SN 4 pypye= S0
% =
These two equations imply that
n1€*3(‘1)f1 — 7‘/52[2__1‘1]“), nzefs(’z)fz — 7‘/21__[271).

Now shift the spot rate curve uniformly by § # 0. The portfolio’s PV becomes

Vib-T) 5, V(t—T)
h—1n h—n

[e7®(ty — T)+ e~ (T —11)],

nye 1S+81n oy p=[S)+6]n _ p=in

h—1Hh
whereas the liability’s PV after the parallel shift is e [S(D+1T = ¢=9Ty Ag

|4

pa— [e (= T)+e ™ (T—1)] > TV,
2— 14

immunization is established. See Fig. 5.10 for illustration.

Intriguingly, we just demonstrated that (1) a duration-matched position under
parallel shifts in the spot rate curve implies a free lunch as any interest rate change
generates profits and (2) no investors would hold the T-period bond because a
portfolio of #- and f,-period bonds has a higher return for any interest rate shock
(in fact, they would own bonds of only the shortest and the longest maturities).
Implausible as the assertions may be, the reasoning seems impeccable. The way
to resolve the conundrum lies in observing that rate changes were assumed to be
instantaneous. The problem disappears when price changes occur after rate changes
[207, 848].2

A barbell portfolio often arises from maximizing the portfolio convexity, as
argued in Section 4.3. Higher convexity may be undesirable, however, when it comes
to immunization. Recall that convexity assumes parallel shifts in the term structure.
The moment this condition is compromised, as is often the case in reality, the more
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Asset/liability ratio
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Figure 5.10: Asset/liability ratios under parallel shifts in the spot rate curve. Each
curve is the result of a pair of zero-coupon bonds with maturities (¢, ¢,) to
immunize a liability 10 periods away. All curves have a minimum value of one
when there are no shifts. Interest rate changes move the portfolio value ahead of
the liability, and the effects are more pronounced the more ¢, and t, are away
from 10.

dispersed the cash flows, the more exposed the portfolio is to the shape risk (or the
twist risk) [206, 246].

> Exercise 5.8.4 Repeat the above two-bond argument to prove that the claims in
Exercise 4.2.8 remain valid under the more general setting here.

Additional Reading

Consult [325, 514, 583, 629] for more information on the term structure of credit
spread. Pointers to empirical studies of the expectations theory can be found in
[144,147]. Also called the Fisher-Weil duration [424], Macaulay’s second duration is
proposed in [350]. See [239, 245,267, 318] for alternative approaches to immunization
and [367] for immunization under stochastic interest rates.

NOTES

1. “Maturity” and ‘“term” are usually used in place of “term to maturity.”
2. The coupon rates of the coupon bonds making up the yield curve need to be specified.
3. We return to this issue in Exercises 14.4.4 and 24.6.8.
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CHAPTER
SIX

Fundamental Statistical
Concepts

There are three kinds of lies: lies, damn lies, and statistics.
Benjamin Disraeli (1804-1881)

Statistics is vital to any scientific discipline that is confronted with the task of sum-
marizing data and making inferences from them. This elementary chapter presents
notations and results in probability and statistics that will be useful or extended
later.

6.1 Basics

Several definitions are related to expressing the variability of a random variable. The
variance 0% of a random variable X is defined as

Var[ X | = E[(X— E[ X ])*].

The standard deviation o is the square root of the variance, /Var[ X ]. The skew-
ness of X with mean p is E[ (X —u)?/o?], and the kurtosis is E[ (X — u)*/o*].

The sample mean of a random sample Xj, X5, ..., X, is
— 1<
X=-) X.

A measure of a random sample’s variability is its sample variance, defined as

n

> (X —X). (6.1)

i=1

o?=

n—1

The sample standard deviation o is the square root of the sample variance:

Iy = 1 -
as\/;= m;(x,-—x)% (6.2)

An estimator for a parameter 6 is said to be unbiased if its expected value equals
6. Sample variance (6.1) is an unbiased estimator of ¢% when each random sample
X; has the same distribution as X. Although the sample standard deviation is a biased
estimator of the standard deviation, it converges to the unbiased one.



6.1 Basics

The covariance between two random variables X and Y is defined by
Cov X, Y] = E[(X— ju0)(Y = ) ],

where ux and uy are the means of Xand Y, respectively. If X and Y tend to move
in the same direction, their covariance will be positive, whereas if they tend to move
in opposite directions, their covariance will be negative. Call X and Y uncorrelated
random variables if Cov[ X, Y] =0. A computational shortcut for covariance is

Cov[ X, Y] = E[ XY]— pxpy. (6.3)
The correlation (or correlation coefficient) between X and Y is

Cov[ X, Y
pry= SNXY] (6.4)
Ox0y

provided that both have nonzero standard deviations. The variance of a weighted
sum of random variables satisfies

Var|:2n:a,~X,-:|=Xn:2n:aiajCov[Xi,Xj]. (6.5)
i=1

i=1 j=1

The above becomes 7 > a? Var[ X; ] when X; are uncorrelated.

Let X'| I denote X conditional on the information set /. The information set can
be another random variable’s value or the past values of X, for example. The condi-
tional expectation E[X |7] is the expected value of X conditional on /. Note that it
is a random variable. The extremely useful law of iterated conditional expectations
says that

E[X]|=E[E[X|I]]
More generally, if /, contains at least as much information as I;, then
E[X|Lh]=E[E[X|L]IL] (6.6)

A typical example is for [; to contain price information up to time #; and for L, to
contain price information up to a later time .

» Exercise 6.1.1 Prove Eq. (6.3) by using the well-known identity E[); a;X; | =
Zi a; E[ X ]

» Exercise 6.1.2 Prove that if E[ X |Y = y]= E[ X] for all realizations y, then X
and Y are uncorrelated. (Hint: Use the law of iterated conditional expectations.)

6.1.1 Generalization to Higher Dimensions

It is straightforward to generalize the above concepts to higher dimensions. Let
X=[X1, X;,..., X, ]" be a vector random variable (A" means the transpose of A).
Its mean vector and the » x n covariance matrix are defined, respectively, as

E[X]=[E[X]. E[X2]...., E[ X,]]".
Cov[ X]=[Cov[ Xi, Xj | li<i.j<n-
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In analogy with Eq. (6.3), Cov[X]= E[XX"]— E[ X] E[ X]". The correlation
matrix is defined as [ px. x; |i<i.j<n- Let X1, X2,..., Xy be N observations on X.
The sample mean vector and the sample covariance matrix are defined, respec-
tively, as

1

X =—
Ni

M=

1 X _ _
X, — Y X -X)X;-X)".
N—li;( ) )

Il
—_

The sample covariance matrix is an unbiased estimator of the covariance matrix.

» Exercise 6.1.3 Prove that E[ AX] = AE[ X] and that Cov[ AX]= A Cov[ X] A".

6.1.2 The Normal Distribution

A random variable X is said to have normal distribution with mean u and variance
o2 if its probability density function is e~(*~%"/2") /(¢+/27r) . This fact is expressed
by X~ N(u,0?) where ~ means equality in distribution. The standard normal
distribution has zero mean, unit variance, and the distribution function

1 : 2
Nz =— [ e dx
( ) kY 21 J—o0
(The distribution function of a random variable X isdefined as F(z) = Prob[ X < z]
for any real number z.) The normal distribution is due to de Moivre (1667-1754).
There are fast and accurate approximations to N(z) [5, 423]. An example is

2
—— e ¢ /z(alx +arx? 4 azx> +agxt + asxs)

V2
for z >0, where x =1/(1+0.2316419z) and

N(z)~1-

a1 =0.319381530, a3 =1.781477937, as =1.330274429,
ay = —0.356563782, a4 = —1.821255978.

Asfor z<0,use N(z) =1— N(—z).
The central moments of the normal random variable X are

_eny

2!
where n=0,1,2.... For example, the skewness and the kurtosis of the standard
normal distribution are zero and three, respectively. The moment generating func-
tion of a random variable X is defined as 6x(¢) = E[ ¢X]. The moment generating
function of X ~ N(u, o?) is known to be

E[(X—p)™] L E[(X—py ] =0, (6.7)

o212
0x(t) =exp [/u + Tt } . (6.8)

If X; ~ N(ui,0?) are independent (or, equivalently for normal distributions,
uncorrelated), then ), X; has a normal distribution with mean ), u; and
variance ) ;07. In general, let X; ~ N(u;,0?), which may not be indepen-
dent. Then ) !, 4 X; is normally distributed with mean ) ., #u; and variance
Y1 2 i1 titj Cov[ X;, X; ] [343]. The joint distribution of X, X5, ..., X, has this
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joint moment generating function:

E|:eXp|:Zn:[i)(i:|:| =eXp|:zn:liMi+%Zn:Zn:tile0V[)(i, )(]]:|
i i=1

i=1 j=1

These X; are said to have a multivariate normal distribution. We use X ~ N(u, C)
to denote that X=[ Xj, X5, ..., X, ]" has a multivariate normal distribution with
mean p = [ 1, 2, ..., n | and covariance matrix C = [ Cov[ X;, X | ]i<i j<u. With
M=C7! and the (i, j)th entry of the matrix M being M, ;, the X’s probability
density function is

n

1 Lo
T | 3 B |

where det(C) denotes the determinant of C [23].
In particular, if X; and X, have a bivariate normal distribution with correlation
p, their joint probability density function is

1—HK1 2 1—HK1 22 22 2
L[ s e + (i)
201024/ 1 — p?

2(1-p?%)
The sum w1 X + wy X5 is normally distributed with mean w1 + @y and variance

wiol + 2w po10s + @303 (6.9)

Fast and accurate approximations to the bivariate normal random variable’s distri-
bution function are available [470].

If X; ~ N(u;, 0?) are independent, then Y=Y/, X?/o? has a noncentral chi-
square distribution with n degrees of freedom and noncentrality parameter 6 =
(>, 1u2)/o? > 0, denoted by Y~ x(n,6). The mean and the variance are n+0
and 2n+ 40, respectively [463]. When u; are zero, Y has the central chi-square
distribution.

The central limit theorem, which is due to Laplace (1749-1827), is a cornerstone
for probability and statistics. It says that, if X; are independent with mean p and
variance o2, then

n
Ty
Lio X —np ”“—>N(0,1).

o/n
Conditions for the theorem’s applicability are rather mild [343].
» Exercise 6.1.4 Prove that central moments (6.7) are equivalent to

a0, if n>1 is odd
E[(X—pw) ]—{1.3.5...(;1—1)0", if n>2 iseven’

wheren=1,2,....

6.1.3 Generation of Univariate and Bivariate Normal Distributions

Let X be uniformly distributed over (0, 1] so that Prob[ X <x]=x for 0 <x < 1.
Repeatedly draw two samples x; and x, from Xuntilo = (2x; — 1)2 4+ (2x, — 1)? < 1.
Then ¢(2x; — 1) and ¢(2x; — 1) are independent standard normal variables, where
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Normal distribution Lognormal distribution

Figure 6.1: Normal and lognormal distributions: the standard normal distribution X
and the lognormal distribution e*.

¢=,/—2(Inw)/w. This is called the polar rejection method [727]. Pairs of normally
distributed variables with correlation p can be generated as follows. Let X; and X,
be independent standard normal variables. Then

UELZX1,
V=pU+V1-prakX,

are the desired random variables because Var[ U] = Var[ V] =4a? and Cov[U, V] =

pa’.

6.1.4 The Lognormal Distribution

A random variable Y is said to have a lognormal distribution if In Y has a normal
distribution (see Fig. 6.1). This distribution is due to Bachelier [147].

If X is normally distributed with mean x and variance o2, then the density
function of the lognormally distributed random variable Y = e¥ is

—L_ o= (ny=p?/20%) " if y >0

fy=1 7V : (6.10)
0, if y<0
The mean and the variance of Y are
ny = entol2, oy = eto’ (e"2 —-1), (6.11)
respectively. Furthermore,
Prob[ Y < y]:Prob[Xglny]:N(lnyU_M>. (6.12)

The nth moment about the origin, defined as . x" f(x) dx for arandom variable x
with density function f(x),is e”+7'2°/2 for Y. A version of the central limit theorem
states that the product of n independent positive random variables approaches a
lognormal distribution as n goes to infinity.

» Exercise 6.1.5 Let Y be lognormally distributed with mean p and variance o?.

Show that In Y has mean In[ 1/,/1+ (o/1)?] and variance In[ 1+ (o/u)?].

> Exercise 6.1.6 Let X be alognormal random variable such that In X has mean p
and variance o2. Prove the identity [ xf(x)dx = et+o"/2 N(4-2 4 o),



6.2 Regression

0 5 10 15 20 25 30
Figure 6.2: Linear regression. The linear function Y = 10.1402 + 2.0238X
is fit to the data under the least-squares criterion.

6.2 Regression

Suppose we are presented with the data (x1, y1), (x2, ¥2), ..., (xn, y»). The datacan be
plotted on a rectangular coordinate system, resulting in the so-called scatter diagram,
such as the dots in Fig. 6.2. If the scatter diagram suggests a linear relation between
the variables, we can fit a simple straight-line model y = 8y + B1x to the data. The
problem of finding such a fit is called linear regression.! To estimate the model
parameters By and B; with the least-squares principle, we find Eo and 31 that
minimize

Z[)’i —(Bo+Bi0) . (6.13)

i=1

This line is called the linear regression of y on x [632]. It is well known that

~ Y =D —y) i xayi— (2 x) (X v)
B = S (% —x) = ny, xiz _ (Zz xi)2 ) (6.14)
fo=ZAT LN 5 (6.15)

The resulting line y = Eo + ﬁlx is called the estimated regression line or the least-
squares line. The ith fitted valueis y; = Eo + ﬁl x;. Note that (¥, y) ison the estimated
regression line by virtue of Eq. (6.15).

A few statistics are commonly used. The error sum of squares (SSE) is the sum
of the squared deviation about the estimated regression line:

SSE=) (n =3 =) _(n—Bo—Px).

Because the SSE measures how much variation in y is not explained by the linear
regression model, it is also called the residual sum of squares or the unexplained
variation. The total sum of squares (SST) is defined as SST =) ;(y; — ¥)?, which
measures the total amount of variation in observed y values. This value is also
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known as the total variation. By the least-squares criterion, SSE < SST. The ratio
SSE/SST is the proportion of the total variation that is left unexplained by the linear
regression model. The coefficient of determination is defined as

SSE
RP=1-—; 1
ST (6.16)

itis the proportion of the total variation that can be explained by the linear regression
model. A high R’ is typically a sign of success of the linear regression model in
explaining the y variation. Finally, the regression sum of squares (SSR) is defined
as SSR=Y"",(y; — y)* Itis well known that

SSR = SST — SSE = B, i(x,- %)y — 7). (6.17)

i=1

Thus R?> = SSR/SST. Because the SSR is large when the estimated regression line
fits the data closely (as SSE is small), it is interpreted as the amount of total variation
that is explained by the linear regression model. For this reason it is sometimes called
the explained variation.

The more general linear regression, also known as multiple regression, fits

Yy =HBo+pixi+ faxo + - - -+ Brex
to the data. Equation (6.17) holds for multiple regression as well [422, 523]. Non-
linear regression uses nonlinear regression functions. In pelynomial regression, for
example, the problem is to fit

y=Bo+Brx+ fox’ +- -+ prx
to the data. See Fig. 6.3 for the k=2 case.
» Exercise 6.2.1 Prove that SSE =Y, y> — By X, yi — By Y Xii-

Y

1000t
800}
600}
400}

200¢

X
5 10 15 20 25 30

Figure 6.3: Nonlinear regression. The quadratic function Y = —1.28204 +
2.52945X +0.945518X ? is fit to the data under the least-squares criterion.



6.3 Correlation

6.3 Correlation

Given n pairs of observations (xi1, y1), (X2, y2), ..., (Xs, yn) on (X, Y), their sample
correlation coefficient or Pearson’s r is definedas

Yixi=xX)(i—Y) 6.18
NN N (19

The sample correlation coefficient is a point estimator for pyy and is traditionally
used to summarize the strength of correlation. It can be shown that —1 <r <1.In
particular, r =1 when the data lie on a straight line with positive slope and r = —1
when the data lie on a straight line with negative slope. In some sense r measures
the linear relation between the variables.

In regression, one variable is considered dependent and the others independent;
the purpose is to predict. Correlation analysis, in contrast, studies how strongly two
or more variables are related, and the variables are treated symmetrically; it does
not matter which of the two variables is called x and which y.

We used the symbol r deliberately: Squaring r gives exactly the coefficient of
determination R’. Indeed, from Egs. (6.14) and (6.17),

p_p L =X 5 B -D0i=3) SR _ 619)
! 2 (i = ¥)? > —y)? SST

Interestingly, Eq. (6.16) implies that SSE = SST x (1 —r?).

r

EXAMPLE 6.3.1 Figure 6.4 plots the stock prices of Intel, Silicon Graphics, Inc. (SGI),
VLSI Technology, and Wal-Mart from August 30, 1993, to August 30, 1995. The sam-
ple correlation coefficient between VLSI Technology and Intel is extremely high at
0.950376. The sample correlation coefficient between Intel and SGI is also high at
0.883291. Technology stocks seem to move together. In contrast, the sample correla-
tion coefficient between Intel and Wal-Mart is low at 0.14917. From these numbers
and Eq. (6.19), we can deduce, for example, that 90.3215% of the total variations
between Intel’s and VLSI Technology’s stock prices can be explained by a linear
regression model.

Intel

~ Martc
VLST

Figure 6.4: Correlation among stock prices. See Example 6.3.1.
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» Exercise 6.3.1 Find the estimated regression line for {(1,1.0), (2,1.5),(3,1.7),
(4,2.0) }. Check that the coefficient of determination indeed equals the sample cor-
relation coefficient.

6.4 Parameter Estimation

After a family of stochastic models has been chosen to capture the reality, the values
of their parameters must be found to completely specify the distribution. Inferring
those parameters constitutes the major goal of financial econometrics [147]. Three
estimation techniques are mentioned below.

6.4.1 The Least-Squares Method

This method is due to Legendre (1752-1833) in 1806 and Gauss (1777-1855) in 1809
[582].% It works by minimizing the sum of squares of the deviations, in other words,
the SSE. For example, the least-squares estimate of X, given the measurements x;
on it, is the number X that minimizes

n
fX)=) (i -X ). (6.20)
i=1
This method was also used in the derivation of the estimated regression line in
Section 6.2 by the minimization of (6.13). Recall that no stochastic models were
assumed there.
Suppose that the following linear regression model is postulated between x
and y:

y=PBo+pix+e,

where ¢ is a random variable with zero mean and finite variance. In other words,
added to each observation of y is some uncorrelated noise €. Then the estimated
parameters of the estimated regression line, which are now random variables, have
the smallest variances among all unbiased linear estimators. This is the Gauss—Markov
theorem, which is due to Gauss in 1821 and Markov (1856-1922) in 1912 [75, 632]. It
is interesting to observe that the least-squares estimate of g; —the El in Eq. (6.14) -
can be interpreted as the sample covariance between x and y divided by the sample
variance of x (see also Exercise 6.4.1).

EXAMPLE 6.4.1 Two nice properties of the bivariate normal distribution are
02
E[Xo| Xi]1=pot+p — (Xi—m), Var[ X | Xi]=(1-p%0;.
1

Hence the regressions are linear functions, and linear regression is justified. In
fact, the fitted (predicted) value for X, , given X; = x for any two random variables
X; and X, is exactly E[Xz|X; =x] under the least-squares principle (see
Exercise 6.4.3) [846].

» Exercise 6.4.1 Let X; and X, be random variables. The random variable

Y=(X—-E[X])—{a+B(X— E[X1])}
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is the prediction error of the linear prediction « + 8(X; — E[ X;]) of X, based on
X;. Show that (1) Var[ Y] = E[ Y?] is minimized at « =0 and g = (Cov[ X;, X2])/
(Var[ Xj ]), which is called beta, and (2) X; and Y are uncorrelated if the optimal
linear prediction is used.

» Exercise 6.4.2 Verify that the f in Eq. (6.20) is minimized at X = (1/n) Y X
» Exercise 6.4.3 (1) Prove that a minimizes the mean-square error E[ (X —a)?]
when a = E[ X].(2) Show that the best predictor a of X} basedon Xi, X3, ..., Xj_1
in the mean-square-error sense, that is, with minimum E[(X; —a)*| X1, X5, ...,
Xk—1 ], is the conditional least-squares estimator E[ X;| X1, X5, ..., Xi_1]-

6.4.2 The Maximum Likelihood Estimator

Suppose that the sample has the probability density function p(z|6). If Z is ob-
served, p(Z|6) is called the likelihood of #.> The maximum likelihood (ML)
method estimates 6 by the number © that maximizes the likelihood. Formally
the likelihood function as the joint probability of the event X; =x;, X = x5, ...,
X,=x, 18

L(@)=Prob[ X1=x1, o =x,..., X, =x,10],

where 6 = (01, 05, . .., 0y) is the vector of parameters to be estimated. The likelihood
function product equals []'_; px (x; | 0), where px (x; |0) is the probability density
function of X; =x; when the samples are drawn independently. The ML method
estimates 6 with 6 = ;. 05, ...,6,,) such that L(8) > L(6) for all 6. It may be
biased, however.

An estimator is consistent if it converges in probability to the true parameter as
the sample size increases. The ML method, among consistent estimators, enjoys such
optimality properties as minimum asymptotic variance and asymptotic normality
under certain regularity conditions. These properties carry over to samples from
a stochastic process [413, 422]. Unlike the least-squares method, which uses only
the first two moments of the observations, the ML method utilizes the complete
distribution of the observations.

Under certain regularity conditions, the ML estimate of 6 is the solution to the
simultaneous equations 9 1(0)/36; = 0. Often it is the logarithm of L(8), called the
log-likelihood function, that is more convenient to work with. Numerical techniques
are needed when a closed-form solution for @ is not available.

EXAMPLE 6.4.2 Based on n independent observations xi, x,, ..., x, from N(u, 02),
the log-likelihood function is

n n 1 &
In L(jt, 0%) = ~3 In(27) — 3 Ino? — 357 Z(xl- — )
i=1

After setting d1n L/dp and 91n L/do? to zero, we obtain 71 = (1/n) Y., x;, the sam-
plemean,and o2 = (1/n) Y, (y; — t). The ML estimator of variance is biased because
it differs from Eq. (6.1). It is consistent, however.
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6.4.3 The Method of Moments

The method of moments estimates the parameters of a distribution by equating
the population moments with their sample moments. Let Xj, Xz, ..., X, be random
samples from a distribution characterized by k parameters 61, 6,, ..., 6x. The method
of moments estimates these parameters by solving k of the following equations:

1 1< RS
D IE AV SPTNNTAED S5
n = (G ni3

where the moments M; = E[ X' ] are functions of the parameters.

The name method of moments comes from the notion that parameters should be
estimated by using moments. Also called the analog method, the method of moments
requires no knowledge of the likelihood function. Although only certain moments
of the observations instead of the full probability density function are used, this
method is convenient and usually leads to simple calculations as well as to consis-
tent estimators. Furthermore, it is the only approach of wide applicability in some
situations.

Additional Reading

This chapter draws on [12, 23, 195,273, 343, 463, 802, 816, 846] for probability theory,
statistics, and statistical inferences. A very accurate approximation to the normal
distribution appears in [678]. Regression analysis is covered by many books [317,
422, 632, 799]. See [273, 522, 584, 846] for more information about the lognormal
distribution. The method of moments was introduced by Pearson (1857-1936) in
1894 [415].

NOTES

1. The idea of regression is due to Galton (1822-1911) [65].
2. Gauss claimed to have made the discovery in 1795 [75, 339].
3. The idea of likelihood is due to Ronald Fisher (1890-1962) [671].



CHAPTER
SEVEN

Option Basics

The shift toward options as the center of gravity of finance [... ]
Merton H. Miller (1923-2000) [666]

Options grant their holder the right to buy or sell some underlying asset. Options
are therefore contingent claims or derivative securities because their value depends
on that of the underlying asset. Besides being one of the most important classes of
financial instruments, options have wide-ranging applications in finance and beyond.
As far as explaining empirical data goes, the option pricing theory ranks as the most
successful theory in finance and economics [766].

71 Introduction

There are two basic types of options: calls and puts. More complex instruments can
often be decomposed into a package of calls and puts. A call option gives its holder
the right to buy a specified number of the underlying asset by paying a specified
exercise price or strike price. A put option gives its holder the right to sell a specified
number of the underlying asset by paying a specified strike price. The underlying asset
may be stocks, stock indices, options, foreign currencies, futures contracts, interest
rates, fixed-income securities, mortgages, winter temperatures, and countless others
[54, 346, 698]. When an option is embedded, it has to be traded along with the
underlying asset.

The one who issues an option is called a writer. To acquire the option, the holder
pays the writer a premium. When a call is exercised, the holder pays the writer the
strike price in exchange for the stock, and the option ceases to exist. When a put is
exercised, the holder receives from the writer the strike price in exchange for the
stock, and the option ceases to exist. An option can be exercised before the expiration
date, which is called early exercise. It can also be sold at any trading date before the
expiration date.

American and European options differ in when they can be exercised. American
options can be exercised at any time up to the expiration date, whereas European
options can be exercised only at expiration.! An American option is worth at least as
much as an otherwise identical European option because of the early exercise feature.

Many strategies and analysis in the book depend on taking a short position. In
stocks, short sales involve borrowing stock certificates and buying them back later; in
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short, selling what one does not own precedes buying. The short seller is apparently
betting that the stock price will decline. Note that borrowed shares have to be paid
back with shares, not cash. The short seller does not receive cash dividends; in fact,
the short seller must make matching dividend payments to the person to whom the
shares were sold. Every dividend payout hence reduces a short seller’s return.

It is easier to take a short position in derivatives. All one has to do is to find an
investor who is willing to buy them, that is, to be long the derivatives. For derivatives
that do not deliver the underlying asset or those that are mostly settled by taking
offset positions, their outstanding contracts may cover many times the underlying
asset [60].

For the rest of this chapter, C denotes the call value, P the put value, X the strike
price, S the stock price, and D the dividend. Subscripts are used to differentiate or
emphasize times to expiration, stock prices, or strike prices. The notation PV(x)
indicates the PV of x dollars at expiration.

7.2 Basics

An option does not oblige its holder to exercise the right. An option will hence be
exercised only when it is in the best interest of its holder to do so. Clearly a call will
be exercised only if the stock price is higher than the strike price. Similarly, a put will
be exercised only if the stock price is less than the strike price. The value or payoff
of a call at expiration is therefore C = max(0, S — X), and that of a put at expiration
is P =max(0, X—S) (see Fig. 7.1). Payoff, unlike profit, does not account for the
initial cost. For example, the payoff of a long position in stock is S, and the payoff of a
short position in stock is —S (see Fig. 7.2). At any time ¢ before the expiration date,

Payoff

Long a call

Price

off

20 40 60 20

Long & put

Price

20 40 50 B0
Figure 7.1: Option payoffs: the option payoffs at expiration with a strike price of 50.
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Payoff Pavof
Long a stock SRS Short & stock
[=fimhay iy - ELOCH

20 40 60 a0

20 40 (4] an

Figure 7.2: Payoff of stock: the payoffs of long and short positions in stock.

we call max(0, S; — X)) the intrinsic value of a call and max(0, X— §;) the intrinsic
value of a put. The part of an option’s value above its intrinsic value is called its time
value and represents the possibility of becoming more valuable before the option
expires. The option premium thus consists of the intrinsic value and the time value.
A callis said to be in the money if S > X, atthe money if S = X, and out of the money
if $> X Similarly, a put is said to be in the money if S < X, at the money if S =X,
and out of the money if S > X. Options that are in the money at expiration should be
exercised. Surprisingly, more than 10% of option holders let in-the-money options
expire worthless [340]. Although an option’s terminal payoff is obvious, finding its
value at any time before expiration is a major intellectual breakthrough. Figure 7.3
plots the values of put and call before expiration.

73 Exchange-Traded Options

Puts and calls first appeared in 1790. (Aristotle described a kind of call in Politics [29,
Book 2, Chapter 11].) However, before 1973, options were traded in over-the-counter
markets in which financial institutions and corporations traded directly with one
another. The main distinction of over-the-counter options is that they are customized.
Today, over-the-counter options are most popular in the area of foreign currencies
and interest rates.

Call wvalue Put value
14
12
10
8
6
4
2
0
80 85 90 95 100 105 110 115 80 85 90 95 100 105 110 115
Stock price Stock price

Figure 7.3: Values of call and put before expiration. Plotted are the general shapes of call and put values as
functions of the stock price before expiration. Dashed lines denote the option values at expiration.
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The Chicago Board Options Exchange (CBOE) started the options trading
on April 26, 1973. Since then options have been traded in many exchanges such
as the American Stock Exchange (AMEX) and the Philadelphia Stock Exchange
(PHLX). Exchange-traded options standardize the terms of option contracts, cre-
ate centralized trading and price dissemination facilities, and introduce the Op-
tions Clearing Corporation (OCC), all of which serve to promote an active sec-
ondary market. The term listed option is also used to refer to an exchange-traded
option.

Terms on the exchange-traded stock options govern the expiration dates and the
strike prices. The strike prices are centered on the current price of the underlying
stock with fixed increments that depend on the price of the stock. Typical increments
are $212 for a stock price less than $25 per share, $5 for a stock price between $25
and $200 per share, and $10 for a stock price over $200 per share. A stock typically
has options outstanding expiring at three expiration dates. The exchange also limits
the maximum number of options an individual can take on one side of the market.
Exchange-traded stock options are American.

Exchange-traded stock options are not cash dividend protected (or simply pro-
tected). This means that the option contract is not adjusted for cash dividends. As the
stock price typically falls by the amount roughly equal to the amount of the cash div-
idend as it goes ex-dividend, dividends are detrimental for calls. The converse is true
for puts. However, options are adjusted for stock splits. After an n-for-m stock split,
the strike price is only m/n times its previous value, and the number of shares cov-
ered by one contract becomes n/m times its previous value. Exchange-traded stock
options are also adjusted for stock dividends. Unless stated otherwise, options are
assumed to be unprotected. Figure 7.4 shows a small sample of listed stock options.

EXAMPLE 7.3.1 For an option to buy 100 shares of a company for $50 per share, a
2-for-1 split would change the term to a strike price of $25 per share for 200 shares.

A contract normally covers 100 shares of stock. Option prices are quoted per unit
of the underlying asset. For instance, the Merck July 35 call closed at 912 on March
20, 1995, by Fig. 7.4. The total cost of the call was $950.

For exchange-traded options, an option holder can close out or liquidate the
position by issuing an offsetting order to sell the same option. Similarly, an option
writer can close out the position by issuing an offsetting order to buy the same option.
This is called settled by offset, made possible by the OCC. The open interest is the
total number of contracts that have not been offset, exercised, or allowed to expire —
in short, the total number of long (equivalently, short) positions.

74 Basic Option Strategies

Option strategies involve taking positions in options, the underlying assets, and bor-
rowing or lending. For example, six positions were mentioned before: long stock,
short stock, long call, short call, long put, and short put. A strategy can be bullish,
bearish, or neutral in terms of market outlook, it can be aggressive, defensive, or
virtually riskless in terms of risk posture, and it can be designed to profit in volatile
or calm markets. For example, buying a stock is a bullish and aggressive strategy,
bullish because it profits when the stock price goes up and aggressive because
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—Call- —Put—
Option Strike Exp. Vol. Last Vol. Last
Exxon 60 Apr 1053 512 1000 3/16
65 65 Apr 951 15/16 830 11/16
65 65 May 53 1716 10 11716
65 65 Oct 32 23/4 - ..
65 70 Jul 2 1/4 40 51/a
Merck 30 Jul 328 151/4 .. ..
4412 35 Jul 150 912 10 1/16
441/2 40 Apr 887 43/4 136 1/16
441)2 40 Jul 220 512 297 1/4
4412 40 Oct 58 6 10 1/2
441/2 45 Apr 3050 7/8 100 118
4412 45 May 462 13/8 50 13/8
4412 45 Jul 883 115/16 147 13/4
4412 45 Oct 367 23/4 188 21/16
Microsoft 55 Apr 65 163/4 52 1/8
71178 60 Apr 556 113/4 39 /8
s 65 Apr 302 7 137 3/8
7178 65 Jul 93 9 15 112
71178 65 Oct 34 105/8 9 21/4
s 70 Apr 1543 31/8 162 112
/8 70 May 42 41/4 2 21/8
T8 70 Jul 190 53/a 61 3
s 70 Oct 94 72 1 4

Figure 7.4: Options quotations. In August 2000, the Wall Street Journal started quoting stocks traded
on the New York Stock Exchange, the Nasdaq National Market, and the AMEX in decimals. All three ex-
changes are expected to convert to the decimal system by April 2001. Source: Wall Street Journal, March 21,
1995.

the investor runs the risk of maximum loss, dollar for dollar, if the stock goes
down. More aggressive strategies include buying stocks on margin and buying op-
tions. For instance, the Exxon April 60 call allows the holder to control a $65
stock for a mere $5.5 (see Fig. 7.4). Selling stocks short, on the other hand, is
aggressive but bearish. In covered positions, some securities protect the returns
of others. There are three basic kinds of covered positions: hedge, spread, and
combination.

» Exercise7.4.1 How would you characterize buying a callin terms of market outlook
and risk posture?

74.1 Hedge

A hedge combines an option with its underlying stock in such a way that one protects
the other against loss. A hedge that combines a long position in stock with a long put
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. ) Profit
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Figure 7.5: Profits of protective put and covered call. The strike price and the current stock price are both $95.
The dashed lines represent the positions’ profits at expiration. A profit diagram does not take into account
the time value of the money used in setting up the position.

is called a protective put. A hedge that combines a long position in stock with a short
call is called a covered call (see Fig. 7.5). Covered calls may be the most common
option strategy used by institutional investors to generate extra income in a flat
market. Because both strategies break even only if the stock price rises, their market
outlook is bullish. They are also defensive: The investor owns the stock anyway in a
covered call, and the protective put guarantees a minimum value for the portfolio.
A reverse hedge is a hedge in the opposite direction such as a short position in stock
combined with a short put or a long call.

Writing a cash-secured put means writing a put while putting aside enough money
to cover the strike price if the putis exercised. The payoffis similar to that of a covered
call. The maximum profitis X — [PV(X) — P],and the maximum lossis P — PV (X),
which occurs when the stock becomes worthless. A ratio hedge combines two short
calls against each share of stock. It profits as long as the stock price does not move
far in either direction. See Fig. 7.6 for illustration.

» Exercise 7.4.2 Verify the maximum profit of the cash-secured put.

» Exercise 7.4.3 Both a protective put on a diversified portfolio and a fire insurance
policy provide insurance. What is the essential difference between them?

» Exercise 7.4.4 Start with $100 and put 100/(1+r) in the money market earning
an annual yield of r. The rest of the money is used to purchase calls. (1) Figure out

Profit
15

Ratio hedge

10

-15

-20

Figure 7.6: Profit of ratio hedge. The solid line is the profit diagram of a ratio hedge
at expiration with a strike price of $95 and a current stock price of $95. The dashed
line represents the profit diagram of the stock, and the dotted line represents the
profit diagram of the option.

Stock price
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Profit

Bull spread (call)

Stock price
110

Figure 7.7: Profit of bull call spread. Plotted is the profit diagrams of a bull call
spread at expiration (dashed line) and at 1 month before expiration (solid curve).
Both the strike price and the current stock price are $95.

the payoff of this strategy when the option expires 1 year from now. (2) What is the
r that makes the strategy a “90/10” one, meaning putting 90% in the money market
today and earning just enough to exercise the option at expiration? (This strategy is
called the 90/10 strategy.)

74.2 Spread

A spread consists of options of the same type and on the same underlying asset
but with different strike prices or expiration dates. They are of great interest to
options market makers. We use Xz, Xy, and Xy to denote the strike prices with
XL < XM < XH.

A bull call spread consists of a long X call and a short Xy call with the
same expiration date. The initial investment is C; — Cy. The maximum profit is
(Xy — X1) — (CL— Cp), and the maximum loss is Cy — C;. The risk posture is de-
fensive. See Fig. 7.7 for illustration. This spread is also known as price spread, money
spread, or vertical spread (vertical, because it involves options on different rows

Profit Butterfly
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"\
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2 I \
! \
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/ y Stock price
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________ ! o ___Z

Figure 7.8: Profit of butterfly. Plotted is the profit diagram of a butterfly at expiration
(dashed line) and at 1 month before expiration when itis initially set up (solid curve).
The strike prices are $90, $95, and $100, and the current stock price is $95.
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Figure 7.9: Profit of horizontal spread. Plotted is the profit diagram of a horizontal
spread at expiration of the near call (dashed curve) and at the time when it is
initially set up (solid curve). Both the strike price and the current stock price are
$95. There is one month to the first expiration date and two months to the second
expiration date.

of the same vertical column as is obvious from Fig. 7.4). Writing an Xy put and
buying an X; put with identical expiration dates will create the so-called bull put
spread. A bear spread amounts to selling a bull spread. It profits from declining stock
prices.

EXAMPLE 741 An investor bought a call. Afterwards, the market moved in her favor,
and she was able to write a call for the same premium but at a higher strike price.
She ended up with a bull spread and a terminal payoff that could never be negative.

Three calls or three puts with different strike prices and the same expiration date
create a butterfly spread. Specifically, the spread is long one X call, long one X
call, and short two Xj, calls. The first two calls form the wings. See Fig. 7.8 for
illustration. A butterfly spread pays off a positive amount at expiration only if the
asset price falls between X and Xp. A butterfly spread with a small Xy — X thus
approximates a state contingent claim, which pays $1 only when a particular price
results [346].2

Profit

Straddle

Stock price

Figure 7.10: Profit of straddle. Plotted is the profit diagram of a straddle at expiration
(dashed line) and at 1 month before expiration when itis initially set up (solid curve).
The strike price and the current stock price are both $95.
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Profit Strangle
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Figure 7.11: Profit of strangle. Plotted is the profit diagram of a strangle at expiration
(dashed line) and at 1 month before expiration when it is set up (solid curve). Here
the strike prices are $95 (for the put) and $100 (for the call), and the current stock
price is $95.

A horizontal spread (also called time spread or calendar spread) involves two
options with the same strike price but different expiration dates. A typical horizontal
spread consists of a long call with a far expiration date and a short call with a near
expiration date. Its profit pattern arises from the difference in the rate of time decay
between options expiring at different dates. See Fig. 7.9 for illustration. A diagonal
spread involves two options with different strike prices and different expiration dates.

> Exercise 7.4.5 A state contingent claim has a payoff function f suchthat f(x) =0
forall x # X and [ f(x)dx =1.Mathematically, f is called the Dirac delta func-
tion. Argue that the value of a state contingent claim equals 3>C/d X2.

74.3 Combination

A combination consists of options of different types on the same underlying asset,
and they are either all bought or all written. A straddle is created by a long call
and a long put with the same strike price and expiration date. A straddle is neutral
on the direction of price movements and has limited risk. Because it profits from
high volatility, a person who buys a straddle is said to be long volatility [646].
See Fig. 7.10 for illustration. In contrast, selling a straddle benefits from low volatility
with a maximum profit of C + P. A strangle is identical to a straddle except that the
call’s strike price is higher than the put’s. Figure 7.11 illustrates the profit pattern of
a strangle.

A strip consists of a long call and two long puts with the same strike price and
expiration date. A strap consists of a long put and two long calls with the same strike
price and expiration date. Their profit patterns are very much like that of a straddle
except that they are not symmetrical around the strike price. Hence, although strips
and straps also bet on volatile price movements, one direction is deemed more likely
than the other.

NOTES

1. Like the Holy Roman Empire, the terms American and European have nothing to do with
geography.

2. State contingent claims are also called Arrow securities in recognition of Arrow’s contribution
[836].
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CHAPTER
EIGHT

Arbitrage in Option Pricing

All general laws are attended with inconveniences, when applied to
particular cases.
David Hume, “Of the Rise and Progress of the Arts and
Sciences”

The no-arbitrage principle says there should be no free lunch. Simple as it is,
this principle supplies the essential argument for option pricing. After the argu-
ment is presented in Section 8.1, several important option pricing relations will be
derived.

8.1 The Arbitrage Argument

A riskless arbitrage opportunity is one that, without any initial investment, gener-
ates nonnegative returns under all circumstances and positive returns under some
circumstances. In an efficient market, such opportunities should not exist. This no-
arbitrage principle is behind modern theories of option pricing if not a concept that
unifies all of finance [87, 303]. The related portfolio dominance principle says that
portfolio A should be more valuable than portfolio B if A’s payoff is at least as good
under all circumstances and better under some circumstances.

A simple corollary of the no-arbitrage principle is that a portfolio yielding a zero
return in every possible scenario must have a zero PV. Any other value would imply
arbitrage opportunities, which one can realize by shorting the portfolio if its value is
positive and buying it if its value is negative. The no-arbitrage principle also justifies
the PV formula P = )"} , C;d(i) for a security with known cash flow C;, G, ..., C,
(recall that d(i) is the price of the i-period zero-coupon bond with $1 par value). Any
price other than P will lead to riskless gains by means of trading the security and
the zeros. Specifically, if the price P* is lower than P, we short the zeros that match
the security’s n cash flows in both maturity and amount and use P* of the proceeds
P to buy the security. Because the cash inflows of the security will offset exactly the
obligations of the zeros, a riskless profit of P — P* dollars has been realized now. See
Fig. 8.1. On the other hand, if the security is priced higher than P, one can realize a
riskless profit by reversing the trades.

Here are two more examples. First, an American option cannot be worth less
than the intrinsic value for, otherwise, one can buy the option, promptly exercise
it, and sell the stock with a profit. Second, a put or a call must have a nonnegative



8.2 Relative Option Prices
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Figure 8.1: Price of fixed cash flow. Consider a security with cash flow C,, C,,...,C, and price
P *. Assemble a portfolio of zero-coupon bonds with matching principals C,, C,,...,C, and
maturities 1,2,...,n. Let its total price be P.Then P = P* to preclude arbitrage opportunities.

value for, otherwise, one can buy it for a positive cash flow now and end up with a
nonnegative amount at expiration.

» Exercise 8.1.1 Give an arbitrage argument for d(1) > d(2) > ---.

» Exercise 8.1.2 (Arbitrage Theorem). Consider a world with m states and n secu-
rities. Denote the payoff of security j instate i by D;;. Let D be the m x n matrix
whose (i, j)th entry is D;;. Formulate necessary conditions for arbitrage freedom.

8.2 Relative Option Prices

We derive arbitrage-free relations that option values must satisfy. These relations
hold regardless of the probabilistic model for stock prices. We only assume, among
other things, that there are no transactions costs or margin requirements, borrowing
and lending are available at the riskless interest rate, interest rates are nonnegative,
and there are no arbitrage opportunities. To simplify the presentation, let the current
time be time zero. PV (x) stands for the PV of x dollars at expiration; hence PV(x) =
xd(t),where t is the time to expiration.

The following lemma shows that American option values rise with the time to
expiration. This proposition is consistent with the quotations in Fig. 7.4; however, it
may not hold for European options.

LEMMA 8.2.1 An American call (put) with a longer time to expiration cannot be worth
less than an otherwise identical call (put) with a shorter time to expiration.

Proof: We prove the lemma for the call only. Suppose instead that C,, > C,,, where
H <. Webuy C, andsell C, to generate a net cash flow of C;, — C,, at time zero.
Up to the moment when the time to #, is T and the short call either expires or is
exercised, the position is worth C, — max(S; — X, 0). If this value is positive, close out
the position with a profit by selling the remaining call. Otherwise, max(S, — X, 0) >
C; > 0, and the short call is exercised. In this case, we exercise the remaining call and
have a net cash flow of zero. In both cases, the total payoff is positive without any
initial investment.

LEMMAB8.2.2 A call (put) option with a higher (lower) strike price cannot be worth more
than an otherwise identical call (put) with a lower (higher) strike price.

Proof: We prove the lemma for the call only. This proposition certainly holds at expi-
ration; hence it is valid for European calls. Let the two strike prices be X; < X;. Sup-
pose that Cy, < Cy, instead. We buy the low-priced Cx, and write the high-priced
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Cyx,, generating a positive return. If the holder of Cyx, exercises it before expiration,
just exercise the long call to generate a positive cash flow of X; — Xj.

LEMMA 8.2.3 The difference in the values of two otherwise identical options cannot be
greater than the difference in their strike prices.

Proof: We consider the calls only. Let the two strike prices be X; < X5. Assume
that Cx, — Cx, > X, — X; instead. We buy the lower-priced Cy,, write the higher-
priced Cy,, generating a positive return, and deposit X, — Xj in a riskless bank
account.

Suppose that the holder of Cyx, exercises the option before expiration. There are
two cases. If Cy, > S — Xj, thensell Cy, torealize a cash flow of Cyx, — (S — X7) > 0.
Otherwise, exercise Cy, and realize a cash flow of X; — X5 < 0. In both cases, close
out the position with the money in the bank to realize a nonnegative net cash flow.

Suppose the holder of Cx, does not exercise the option early. At the expiration
date, our cash flow is 0, X; — § <0, and X; — X, <0, respectively, if §< Xj, Xj <
S < Xp, and X; < S. The net cash flow remains nonnegative after the money in the
bank account is added, which is at least X; — Xj.

LEMMA 8.2.4 A call is never worth more than the stock price, an American put is never
worth more than the strike price, and a European put is never worth more than the
present value of the strike price.

Proof: If the call value exceeded the stock price, a covered call position could earn
arbitrage profits. If the put value exceeded the strike price, writing a cash-secured
put would earn arbitrage profits. The tighter bound holds for European puts because
the cash can earn riskless interest until expiration.

> Exercise 8.2.1 Show that Lemma 8.2.3 can be strengthened for European calls as
follows: The difference in the values of two otherwise identical options cannot be
greater than the present value of the difference in their strike prices.

> Exercise 8.2.2 Derive a bound similar to that of Lemma 8.2.4 for European puts
under negative interest rates. (This case might be relevant when inflation makes the
real interest rate negative.)

8.3 Put-Call Parity and Its Consequences

Assume that either the stock pays no cash dividends or that the options are protected
so that the option values are insensitive to cash dividends. Note that analysis for
options on a non-dividend-paying stock holds for protected options on a dividend-
paying stock by definition. Results for protected options therefore are not listed
separately.

Consider the portfolio of one short European call, one long European put, one
share of stock, and a loan of PV(X). All options are assumed to carry the same strike
price and time to expiration t. The initial cash flow is therefore C — P — S+ PV(X).
At expiration, if the stock price §; is at most X, the put will be worth X — S, and
the call will expire worthless. On the other hand, if S; > X, the call will be worth
S: — X and the put will expire worthless. After the loan, now X, is repaid, the net
future cash flow is zero in either case. The no-arbitrage principle implies that the
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initial investment to set up the portfolio must be nil as well. We have proved the
following put—call parity for European options:

C=P+S—PV(X). (8.1)

This identity seems to be due to Castelli in 1877 and thence has been rediscovered
many times [156].

The put—call parity implies that there is essentially only one kind of European
option because the other can be replicated from it in combination with the underlying
stock and riskless lending or borrowing. Combinations such as this create synthetic
securities. For example, rearranging Eq. (8.1) as §=C — P+ PV(X), we see that
a stock is equivalent to a portfolio containing a long call, a short put, and lending
PV(X). Other uses of the put—call parity are also possible. Consider C— P=§ —
PV(X), which implies that a long call and a short put amount to a long position in
stock and borrowing the PV of the strike price — in other words, buying the stock on
margin. This might be preferred to taking a levered long position in stock as buying
stock on margin is subject to strict margin requirements.

The put—call parity implies that C =(S— X)+[ X—-PV(X)]+ P> S— X. Be-
cause C > 0, it follows that C > max(S§ — X, 0), the intrinsic value. An American
call also cannot be worth less than its intrinsic value. Hence we have the following
lemma.

LEMMA 8.3.1 An American call or a European call on a non-dividend-paying stock is
never worth less than its intrinsic value.

A European put may sell below its intrinsic value. In Fig. 7.3, for example, the
put value is less than its intrinsic value when the option is deep in the money. This
can be verified more formally, as follows. The put—call parity implies that

P=(X-S)+[PV(X)— X+C].

As the put goes deeper in the money, the call value drops toward zero and
P~ (X-5)+PV(X)— X< X—§, its intrinsic value under positive interest rates.
By the put—call parity, the following lower bound holds for European puts.

LEMMA 8.3.2 For European puts, P > max(PV(X) — §, 0).

Suppose that the PV of the dividends whose ex-dividend dates occur before the
expiration date is D. Then the put—call parity becomes

C=P+5S—D-—PV(X). (82)

> Exercise 8.3.1 (1) Suppose that the time to expiration is 4 months, the strike price
is $95, the call premium is $6, the put premium is $3, the current stock price is
$94, and the continuously compounded annual interest rate is 10%. How to earn a
riskless arbitrage profit? (2) An options market maker writes calls to a client, then
immediately buys puts and the underlying stock. Argue that this portfolio, called
conversion, should earn a riskless profit.

» Exercise 8.3.2 Strengthen Lemma 8.3.1 to C > max(S — PV(X), 0).
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> Exercise 8.3.3 In a certain world in which a non-dividend-paying stock’s price at
any time is known, a European call is worthless if its strike price is higher than the
known stock price at expiration. However, Exercise 8.3.2 says that C > § — PV(X),
which is positive when S > PV(X). Try to resolve the contradiction when X > S >
PV(X).

> Exercise 8.3.4 Prove put—call parity (8.2) for a single dividend of size D* at some
time #; before expiration: C = P+ S —PV(X) — D*d(t,).

> Exercise 8.3.5 A European capped call option is like a European call option
except that the payoff is H — X instead of S — X when the terminal stock price S
exceeds H. Construct a portfolio of European options with an identical payoff.

> Exercise 8.3.6 Consider a European-style derivative whose payoff is a piecewise
linear function passing through the origin. A security with this payoff is called a
generalized option. Show that it can be replicated by a portfolio of European calls.

8.4 Early Exercise of American Options

Assume that interest rates are positive in this section. It turns out that it never pays
to exercise an American call before expiration if the underlying stock does not pay
dividends; selling is better than exercising. Here is the argument. By Exercise 8.3.2,
C > max(S — PV(X), 0). If the call is exercised, the value is the smaller S— X. The
disparity comes from two sources: (1) the loss of the insurance against subsequent
stock price once the call is exercised and (2) the time value of money as X is paid
on exercise. As a consequence, every pricing relation for European calls holds for
American calls when the underlying stock pays no dividends. This somewhat surpris-
ing result is due to Merton [660)].

THEOREM 8.4.1 An American call on a non-dividend-paying stock should not be exer-
cised before expiration.

The above theorem does not mean American calls should be kept until maturity.
What it does imply is that when early exercise is being considered, a better alternative
is to sell it. Early exercise may become optimal for American calls on a dividend-
paying stock, however. The reason has to do with the fact that the stock price declines
as the stock goes ex-dividend. Surprisingly, an American call should be exercised at
only a few dates.

THEOREM 8.4.2 An American call will be exercised only at expiration or just before an
ex-dividend date.

Proof: We first show that C > § — X at any time other than the expiration date or just
before an ex-dividend date. Assume otherwise: C < § — X. Now, buy the call, short
the stock, and lend Xd(z), where 7 is time to the next dividend date. The initial
cash flow is positive because X > Xd(7). We subsequently close out the position just
before the next ex-dividend date by calling the loan, worth X, and selling the call,
worth at least max(S; — X, 0) by Lemma 8.3.1. The proceeds are sufficient to buy
the stock at S;. The initial cash flow thus represents an arbitrage profit. Now that
the value of a call exceeds its intrinsic value between ex-dividend dates, selling it is
better than exercising it.
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Unlike American calls on a non-dividend-paying stock, it might be optimal to
exercise an American put even if the underlying stock does not pay dividends. Part
of the reason lies in the fact that the time value of money now favors early exercise:
Exercising a put generates an immediate cash income X. One consequence is that
early exercise becomes more profitable as the interest rate increases, other things
being equal.

The existence of dividends tends to offset the benefits of early exercise in the case
of American puts. Consider a stock that is currently worthless, S = 0. If the holder of
a put exercises the option, X is tendered. If the holder sells the option, he receives
P < X by Lemma 8.2.4 and keeps the stock. Doing nothing generates no income. If
the stock will remain worthless till expiration, exercising the put now is optimal. It is
therefore no longer true that we consider only a few points for early exercise of the
put. Consequently, concrete results regarding early exercise of American puts are
scarcer and weaker.

The put—call parity holds for European options only; for American options,

P>C+PV(X)-S§ (8.3)

because an American call has the same value as a European call by Theorem 8.4.1
and an American put is at least as valuable as its European counterpart.

» Exercise 8.4.1 Consider an investor with an American call on a stock currently
trading at $45 per share. The option’s expiration date is exactly 2 months away,
the strike price is $40, and the continuously compounded rate of interest is 8%.
Suppose the stock is deemed overpriced and it pays no dividends. Should the option
be exercised?

> Exercise 8.4.2 Prove that if at all times before expiration the PV of the interest
from the strike price exceeds the PV of future dividends before the expiration date,
the call should not be exercised before expiration.

> Exercise 8.4.3 Why is it not optimal to exercise an American put immediately
before an ex-dividend date?

»> Exercise 8.4.4 Argue that an American put should be exercised when X— S >
PV(X).

» Exercise 8.4.5 Assume that the underlying stock does not pay dividends. Supply
arbitrage arguments for the following claims. (1) The value of a call, be it European
or American, cannot exceed the price of the underlying stock. (2) The value of a
European put is PV(X) when S =0. (3) The value of an American putis X when
S=0.

> Exercise 8.4.6 Prove that American options on a non-dividend-paying stock sat-
isfy C — P > S— X. (This and relation (8.3) imply that American options on a non-
dividend-paying stock satisfy C — S+ X> P> C - S+PV(X).)

8.5 Convexity of Option Prices

The convexity of option price is stated and proved below.
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LEMMA 8.5.1 For three otherwise identical calls with strike prices X, < Xo < Xz,
Cx, <wCyx, +(1-w)Cyx,
Py, < wPx, + (1 — o) Px,.
Here w = (X5 — X)/(Xs — X1). (Equivalently, X, = 0 X1 + (1 — w) X3.)
Proof: We prove the lemma for the calls only. Suppose the lemma were wrong. Write
Cx,,buy wCy,,and buy (1 —w) Cy, to generate a positive cash flow now. If the short

call is not exercised before expiration, hold the calls until expiration. The cash flow
is described by

SSX] X]<S§X2 X2<S<X3 X;SS
Call written at X, 0 0 X,—S X,—S
o calls bought at X, 0 (S —X4) oS —X4) (S —X4)
1 — o calls bought at X ; 0 0 0 (1T —w)(§—X3)
Net cash flow 0 (S —X4) o§—X)+X,—-S) 0

Because the net cash flows are either nonnegative or positive, there is an arbitrage
profit.

Suppose that the short call is exercised early when the stock price is S. If
wCyx, + (1 —w)Cyx, > S— X;, sell the long calls to generate a net cash flow of
oCx + (1 —w) Cx, — (S — X;) > 0. Otherwise, exercise the long calls and deliver the
stock. The net cash flow is —wXj; — (1 — @) X5 + X5 = 0. Again, there is an arbitrage
profit.

By Lemma 8.2.3, we know the slope of the call (put) value, when plotted against
the strike price, is at most one (minus one, respectively). Lemma 8.5.1 adds that the
shape is convex.

EXAMPLE 8.5.2 The prices of the Merck July 30 call, July 35 call, and July 40 call are
$15.25, $9.5, and $5.5, respectively, from Fig. 7.4. These prices satisfy the convexity
property because 9.5 x 2 < 15.25+5.5. Look up the prices of the Microsoft April 60
put, April 65 put, and April 70 put. The prices are $0.125, $0.375, and $1.5, respec-
tively, which again satisfy the convexity property.

8.6 The Option Portfolio Property

Stock index options are fundamentally options on a stock portfolio. The American
option on the Standard & Poor’s 100 (S&P 100) Composite Stock Price Index is cur-
rently the most actively traded option contract in the United States [150, 746, 865].
Options on the Standard & Poor’s 500 (S&P 500) Composite Stock Price Index are
also available. They are European, however. Options on the Dow Jones Industrial
Average (DJIA) were introduced in 1997. The underlying index, DJX, is DJIA di-
vided by 100. Other popular stock market indices include the Russell 2000 Index
for small company stocks and the broadest based Wilshire 5000 Index. Figure 8.2
tabulates some indices as of February 7, 2000.

As the following theorem shows, an option on a portfolio of stocks is cheaper
than a portfolio of options. Hence it is cheaper to hedge against market movements
as a whole with index options than with options on individual stocks.



Concluding Remarks and Additional Reading

Net From
High Low Close Chg. Dec. 31 %Chg.
DJ Indus (D)X) ... .. 109.71 108.46 109.06 —0.58 —5.91 —51
S&P 100 (OEX).... 778.01 768.45 774.19 —1.32 —18.64 —24
S&P 500 -A.M.(SPX) 1427.23 1413.33 1424.24 —0.13 —45.01 —3.1
Nasdaq 100 (NDX) 3933.75 3858.89 3933.34 +-58.97 +225.51 +6.1
NYSE (NYA) . ..... 627.03 621.14 623.84 —3.06 —26.46 —41
Russell 2000 (RUT) 532.40 525.52 532.39 +6.87 +-27.64 +5.5
Major Mkt (xmI) . 1110.00 1096.63 1098.09 —11.64 —67.89 —5.8
Value Line (VLE).. 1011.29 1003.91 1006.99 —2.13 —18.81 —1.8

Figure 8.2: Stock index quotations. Source: Wall Street Journal, February 8, 2000.

THEOREM 8.6.1 Consider a portfolio of non-dividend-paying assets with weights w;. Let
C; denote the price of a European call on asset i with strike price X;. Then the index
call on the portfolio with a strike price X= ", w; X; has a value of, at most, ) _; w; C;.
The same result holds for European puts as well. All options expire on the same date.

The theorem in the case of calls follows from the following inequality:

max <Z wi (S — X), 0) > Y max(wi (S5 — X), 0),
i=1 i=1

where §; denote the price of asset i. It is clear that a portfolio of options and an
option on a portfolio have the same payoff if the underlying stocks either all finish
in the money or out of the money. Their payoffs diverge only when the underlying
stocks are not perfectly correlated with each other. The degree of the divergence
tends to increase the more the underlying stocks are uncorrelated.

> Exercise 8.6.1 Consider the portfolio of puts and put on the portfolio in Theorem
8.6.1. Because both provide afloor of ), w; X;, why do they not fetch the same price?

Concluding Remarks and Additional Reading

The no-arbitrage principle can be traced to Pascal (1623-1662), philosopher, the-
ologian, and founder of probability and decision theories [409, 410]. In the 1950s,
Miller and Modigliani made it a pillar of financial theory [64, 853]. Bounds in this
chapter are model free and should be satisfied by any proposed model [236, 346, 470].
Observe that they are all relative price bounds. The next chapter presents absolute
option prices based on plausible models of stock prices. Justifications for the index
options can be found in [236, Section 8.3].
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CHAPTER
NINE

Option Pricing Models

Life can only be understood backwards; but it must be lived forwards.
Sgren Kierkegaard (1813-1855)

Although it is rather easy to price an option at expiration, pricing it at any prior mo-
ment is anything but. The no-arbitrage principle, albeit valuable in deriving various
bounds, is insufficient to pin down the exact option value without further assump-
tions on the probabilistic behavior of stock prices. The major task of this chapter is
to develop option pricing formulas and algorithms under reasonable models of stock
prices. The powerful binomial option pricing model is the focus of this chapter, and
the celebrated Black—Scholes formula is derived.

9.1 Introduction

The major obstacle toward an option pricing model is that it seems to depend on the
probability distribution of the underlying asset’s price and the risk-adjusted interest
rate used to discount the option’s payoff. Neither factor can be observed directly.
After many attempts, some of which were very close to solving the problem, the
breakthrough came in 1973 when Black (1938-1995) and Scholes, with help from
Merton, published their celebrated option pricing model now universally known as
the Black-Scholes option pricing model [87].! One of the crown jewels of finance
theory, this research has far-reaching implications. It also contributed to the success
of the CBOE [660]. In 1997 the Nobel Prize in Economic Sciences was awarded to
Merton and Scholes for their work on “the valuation of stock options.”

The mathematics of the Black—Scholes model is formidable because the price can
move to any one of an infinite number of prices in any finite amount of time. The
alternative binomial option pricing model (BOPM) limits the price movement to two
choices in a period, simplifying the mathematics tremendously at some expense of
realism. Allis not lost, however, because the binomial model converges to the Black—
Scholes model as the period length goes to zero. More importantly, the binomial
model leads to efficient numerical algorithms for option pricing. The BOPM is the
main focus of this chapter.

Throughout this chapter, C denotes the call value, P the put value, X the strike
price, S the stock price, and D the dividend amount. Subscripts are used to empha-
size or differentiate different times to expiration, stock prices, or strike prices. The
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Su

Figure 9.1: Binomial model for stock prices. S

Sd

symbol PV(x) stands for the PV of x at expiration unless stated otherwise. Let 7 > 0
denote the continuously compounded riskless rate per period and R=¢e" its gross
return.

9.2 The Binomial Option Pricing Model

In the BOPM, time is discrete and measured in periods. The model assumes that if the
current stock price is S, it can go to Su with probability ¢ and Sd with probability
1—g,where 0 <g <1 and d < u (see Fig. 9.1). In fact, d < R < u must hold to rule
out arbitrage profits (see Exercise 9.2.1). It turns out that six pieces of information
suffice to determine the option value based on arbitrage considerations: S, u, d, X,
7, and the number of periods to expiration.

» Exercise 9.2.1 Prove that d < R < u must hold to rule out arbitrage profits.

9.2.1 Options on a Non-Dividend-Paying Stock: Single Period

Suppose that the expiration date is only one period from now. Let C, be the price at
time one if the stock price moves to Su and C; be the price at time one if the stock
price moves to Sd. Clearly,

C,=max(0, Su— X), C;=max(0,Sd— X).

See Fig. 9.2 for illustration.

Now set up a portfolio of 4 shares of stock and B dollars in riskless bonds. This
costs hS+ B. We call & the hedge ratio or delta. The value of this portfolio at time
one is either ASu+ RB or hSd+ RB. The key step is to choose ~ and B such that
the portfolio replicates the payoff of the call:

hSu+ RB = C,,
hSd+ RB = C,.

C,,=max( 0, Su - X)

Figure 9.2: Value of one-period call in BOPM. €

Cg=max(0, Sd—-X)

93



94

Option Pricing Models

Solve the above equations to obtain

Cu - Cd
= Su—sa>" O
uCy—dcC,
B=——. 9.2
(u—d)R ©2)

An equivalent portfolio that replicates the call synthetically has been created. An
equivalent portfolio is also called a replicating portfolio or a hedging portfolio. By
the no-arbitrage principle, the European call should cost the same as the equivalent
portfolio, or C =hS+ B. As it is easy to verify that

uCy — dC, = max(0, Sud — Xu) — max(0, Sud — Xd) <0,

the equivalent portfolio is a levered long position in stocks.

For American calls, we have to consider immediate exercise. When AS+ B >
S — X, the call should not be exercised immediately; so C = hS+ B. When AS+ B <
S — X, on the other hand, the option should be exercised immediately for we can
take the proceeds S — X to buy the equivalent portfolio plus some more bonds;
so C =S — X. We conclude that C = max(hS+ B, S — X). For non-dividend-paying
stocks, early exercise is not optimal by Theorem 8.4.1 (see also Exercise 9.2.6). Again,
C=hS+B.

Puts can be similarly priced. The delta for the put is (P, — Py)/(Su— Sd) <0,
where P, =max(0, X— Su) and P; = max(0, X — Sd). The European put is worth
hS+ B, and the American put is worth max(hS+ B, X— ), where B={(uP;—
dP.)/[(u—d)R]}.

> Exercise 9.2.2 Consider two securities, A and B. In a period, security A’s price can
go from $100 to either (a) $160 or (b) $80, whereas security B’s price can move to
$50 in case (a) or $60 in case (b). Price security B when the interest rate per period
is 10%.

9.2.2 Risk-Neutral Valuation

Surprisingly, the option value is independent of g, the probability of an upward
movement in price, and hence the expected gross return of the stock, qSu+
(1—¢q) Sd, as well. It therefore does not directly depend on investors’ risk pref-
erences and will be priced the same regardless of how risk-averse an investor is. The
arbitrage argument assumes only that more deterministic wealth is preferred to less.
The option value does depend on the sizes of price changes, u and d, the magnitudes
of which the investors must agree on.
After substitution and rearrangement,

(Eh+(Bc

hS+B= 0. 9.3
- - 93)
Rewrite Eq. (9.3) as
C,+(1-pC
hst =Pt =P G (9:4)

R ’



9.2 The Binomial Option Pricing Model

where
R—d
u—d’

p= 9.5)
As 0 < p < 1, it may be interpreted as a probability. Under the binomial model, the
expected rate of return for the stock is equal to the riskless rate 7 under g = p
because pSu+ (1 — p) Sd = RS.

Aninvestor is said to be risk-neutral if that person is indifferent between a certain
return and an uncertain return with the same expected value. Risk-neutral investors
care about only expected returns. The expected rates of return of all securities must
be the riskless rate when investors are risk-neutral. For this reason, p is called the
risk-neutral probability. Because risk preferences and g are not directly involved
in pricing options, any risk attitude, including risk neutrality, should give the same
result. The value of an option can therefore be interpreted as the expectation of
its discounted future payoff in a risk-neutral economy. So it turns out that the rate
used for discounting the FV is the riskless rate in a risk-neutral economy. Risk-
neutral valuation is perhaps the most important tool for the analysis of derivative
securities.

We will need the following definitions shortly. Denote the binomial distribution
with parameters n and p by

b(jin. p) = (’;) Pl = pyi = #’_1), pi(1 = py'.

Recall that n! =nx (m—1)---2 x 1 with the convention 0! =1. Hence b(j;n, p)
is the probability of getting j heads when tossing a coin n times, where p is the
probability of getting heads. The probability of getting at least k heads when tossing
a coin 7 times is this complementary binomial distribution function with parameters
n and p:

®(k;n, p) =Y b(jn, p).
=k

Because getting fewer than k heads is equivalent to getting at least n — k+1 tails,

1-®(ksn, p)=d(n—k+1;n1-p). (9.6)

> Exercise9.2.3 Prove that the call’s expected gross return in a risk-neutral economy
is R

» Exercise 9.2.4 Suppose that a call costs hS+ B+k for some k#0 instead of
hS+ B. How does one make an arbitrage profit of M dollars?

» Exercise9.2.5 The standard arbitrage argument was used in deriving the call value.
Use the risk-neutral argument to reach the same value.

9.2.3 Options on a Non-Dividend-Paying Stock: Multiperiod

Consider a call with two periods remaining before expiration. Under the binomial
model, the stock can take on three possible prices at time two: Suu, Sud, and Sdd
(see Fig. 9.2.3). Note that, at any node, the next two stock prices depend on only the

95



96

Option Pricing Models

Suu

Su

Sud  Figure 9.3: Stock prices in two periods. This graph is called a bino-
S mial tree, although binomial lattice is a better term as real tree
branches do not merge.

Sd

Sdd

current price, not on the prices of earlier times. This memoryless property is a key
feature of an efficient market.?
Let C,, be the call’s value at time two if the stock price is Suu. Thus

Cyy = max(0, Suu — X).
Cua and Cy4 can be calculated analogously:
Cuq = max(0, Sud — X), Cyq = max(0, Sdd — X).

See Fig. 9.4 for illustration. We can obtain the call values at time one by applying the
same logic as that in Subsection 9.2.2 as follows:

PCu+ (1= p) Cu Co— PCua+(1—p) Caa

R LT R '
Deltas can be derived from Eq. (9.1). For example, the delta at C, is (C,, — Cuq)/
(Suu — Sud).

We now reach the current period. An equivalent portfolio of /4 shares of stock
and $ B riskless bonds can be set up for the call that costs C, (C,) if the stock price
goes to Su (Sd, respectively). The values of & and B can be derived from Egs. (9.1)
and (9.2).

Co= (9.7)

Cypp= max( 0, Suu — X')

C Cyq = max( 0, Sud —X)

Ca

Ciq = max( 0, Sdd — X)

Figure 9.4: Value of a two-period call before expiration.
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Because the call will not be exercised at time one even if it is American, C, >
Su— X and C; > Sd — X. Therefore,

pCi+(1-p)Cs  (pu+(1-p)d)S-X . X
R > R =S R>S X.

So the call again will not be exercised at present, and

pCu + (1 - P) Cy
R .

hS+ B=

C=hS+B=

The above expression calculates C from the two successor nodes C, and C; and
none beyond. The same computation happens at C,, and Cg, too, as demonstrated
in Egs. (9.7). This recursive procedure is called backward induction because it works
backward in time [27, 66]. Now,

_ PPCu+2p(—p) Cua+ (1= p)*Cua

< R

_ p*xmax (0,5u*—X) +2p(1—p) x max (0,Sud—X) + (1—p)*x max (0,8d*— X)

R
The general case is straightforward: Simply carry out the same calculation at every
node while moving backward in time. In the n-period case,
iz () P/(1 = p)y'~/ x max(0, Su/d"~/ — X)

C=
Rn

(9.8)

It says that the value of a call on a non-dividend-paying stock is the expected dis-
counted value of the payoff at expiration in a risk-neutral economy. As this C is the
only option value consistent with no arbitrage opportunities, it is called an arbitrage
value. Note that the option value depends on S, X,7, u, d, and n. Similarly, the value
of a European put is

> iz () P’ = p)"~/ x max(0, X — Su/d"~/)
R" '

P=

The findings are summarized below.

LEMMA 9.2.1 The value of a European option equals the expected discounted payoff at
expiration in a risk-neutral economy.

In fact, every derivative can be priced as if the economy were risk-neutral [420].
For a European-style derivative with the terminal payoff function D, its value is

e_?nE”['D],

where E” means that the expectation is taken under the risk-neutral probability.

Because the value of delta changes over time, the maintenance of an equivalent
portfolio is a dynamic process. The dynamic maintaining of an equivalent portfolio
does not depend on our correctly predicting future stock prices. By construction, the
portfolio’s value at the end of the current period, which can be either C, or Cy, is
precisely the amount needed to set up the next portfolio. The trading strategy is hence
self-financing because there is neither injection nor withdrawal of funds throughout
and changes in value are due entirely to capital gains.
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Let a be the minimum number of upward price moves for the call to finish in the
money. Obviously a is the smallest nonnegative integer such that Su‘d"~ > X, or

_ [ In(X/Sd")
o= " | )
Hence,
o T () PO pyi(swdr - x)
= =
_ o (MW [A-p)d]" X I~ (n\ o
= S; (;) = [ (1) p/(1-p)
= Sib(j;n, pue™) — Xe ™" ib(j;n, D) (9.10)
j=a j=a

The findings are summarized below.

THEOREM 9.2.2 The value of a European call and the value of a European put are
C = S®(a;n, pue™™) — Xe "®(a;n, p),
P=Xe "®(n—a+1;n1—p)—Sd(n—a+1;n,1— pue™),

respectively, where p= (¢’ —d)/(u—d) and a is the minimum number of upward
price moves for the option to finish in the money.

The option value for the put above can be obtained with the help of the put—call
parity and Eq. (9.6). It can also be derived from the same logic as underlies the steps
for the call but with max(0, S — X) replaced with max(0, X— §) at expiration. It is
noteworthy that with the random variable § denoting the stock price at expiration,
the options’ values are

C =S x Probj[$> X]— Xe ™ x Prob,[ § > X], (9.11)
P = Xe 7" x Prob,[ § < X] — S x Prob,[ § < X], (9.11)

where Prob; uses pu/R and Prob, uses p for the probability that the stock price
moves from S to Su. Prob, expresses the probability that the option will be exercised
in a risk-neutral world. Exercise 13.2.12 will offer an interpretation for Prob;.

A market is complete if every derivative security is attainable [420]. There are
n+1 possible states of the world at expiration corresponding to the n+1 stock
prices Su'd" 0<i<n. Consider n+1 state contingent claims, the ith of which
pays $1 at expiration if the stock price is Su'd"~* and zero otherwise. These claims
make the market complete for European-style derivatives that expire at time #n. The
reason is that a European-style derivative that pays p; dollars when the stock price
finishes at Su’d"~" can be replicated by a portfolio consisting of p; units of the
ith state contingent claim for 0 <i < n. In the case of continuous trading in which
trading is allowed for each period, two securities suffice to replicate every possible
derivative and make the market complete (see Exercise 9.2.10) [289, 434].

The existence of risk-neutral valuation is usually taken to define arbitrage freedom
in a model in that no self-financing trading strategies can earn arbitrage profits. In
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fact, the existence of risk-neutral valuation does imply arbitrage freedom for discrete-
time models such as the BOPM. The converse proposition, that arbitrage freedom
implies the existence of a risk-neutral probability, can be rigorously proved; besides,
this probability measure is unique for complete markets. The “equivalence” between
arbitrage freedom in a model and the existence of a risk-neutral probability is called
the (first) fundamental theorem of asset pricing .

> Exercise 9.2.6 Prove that early exercise is not optimal for American calls.

» Exercise 9.2.7 Show that the call’s delta is always nonnegative.

» Exercise9.2.8 Inspect Eq.(9.10) under u — d, thatis, zero volatility in stock prices.
> Exercise 9.2.9 Prove the put—call parity for European options under the BOPM.

» Exercise 9.2.10 Assume the BOPM. (1) Show that a state contingent claim that
pays $1 when the stock price reaches Su/d"~' and $0 otherwise at time n can be
replicated by a portfolio of calls. (2) Argue that continuous trading with bonds and
stocks can replicate any state contingent claim.

» Exercise 9.2.11 Consider a single-period binomial model with two risky assets $;
and §, and a riskless bond. In the next step, there are only two states for the risky
assets, (S1u1, Sup) and (81d1, $>d;). Show that this model does not admit a risk-
neutral probability for certain uy, uy, di, d>, and R. (Hence it is not arbitrage free.)

A Numerical Example

A non-dividend-paying stock is selling for $160 per share. From every price S, the
stock price can go to either § x 1.5 or § x 0.5. There also exists a riskless bond with a
continuously compounded interest rate of 18.232% per period. Consider a European
call on this stock with a strike price of $150 and three periods to expiration. The price
movements for the stock price and the call value are shown in Fig. 9.5. The call value
is found to be $85.069 by backward induction. The same value can also be found as
the PV of the expected payoff at expiration:

(390 x 0.343) + (30 x 0.441)

— 85.069.
(1.2)

Observe that the delta value changes with the stock price and time.

Any mispricing leads to arbitrage profits. Suppose that the option is selling for
$90 instead. We sell the call for $90 and invest $85.069 in the replicating portfolio with
0.82031 shares of stock as required by delta. To set it up, we need to borrow (0.82031 x
160) — 85.069 = 46.1806 dollars. The fund that remains, 90 — 85.069 = 4.931 dollars,
is the arbitrage profit, as we will see shortly.

Time 1. Suppose that the stock price moves to $240. The new delta is 0.90625. Buy
0.90625 — 0.82031 = 0.08594 more shares at the cost 0f 0.08594 x 240 = 20.6256
dollars financed by borrowing. Our debt now totals 20.6256 + (46.1806 x 1.2) =
76.04232 dollars.

Time 2. Suppose the stock price plunges to $120. The new delta is 0.25. Sell
0.90625 — 0.25 = 0.65625 shares for anincome of 0.65625 x 120 = 78.75 dollars.
Use this income to reduce the debt to (76.04232 x 1.2) —78.75 = 12.5 dollars.
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Binomial process for the stock price
(probabilities in parentheses)

Binomial process for the call price
(hedge ratios in parentheses)

540 390
(0.343) /
360 235
/(0.49) (1.0)
240 180 141.458 30
0.7) \ (0.441) (0.90625)\
160 120 85.069 17.5
/ (0.42) (0.82031) / 0.25)
80 60 10.208 0
0.3) \ (0.189) (0.21875)\
40 0
(0.09)\ 0.0 \
20 0
(0.027)

Figure 9.5: Stock prices and European call prices. The parameters are S = 160, X = 150,
n=3u=15d=05R=e""®2=12,p=(R —d)/u—-d)=07,h=(C, —Cy)/
(Su—Sd)=(C,—Cq)/S,andC =[ pC, +(1—p)C4 l/R =(0.7xC,+03xCyq)/
1.2.

Time 3 (The case of rising price). The stock price moves to $180, and the call we
wrote finishes in the money. For a loss of 180 — 150 =30 dollars, we close out
the position by either buying back the call or buying a share of stock for delivery.
Financing this loss with borrowing brings the total debt to (12.5 x 1.2) +30 =
45 dollars, which we repay by selling the 0.25 shares of stock for 0.25 x 180 =45
dollars.

Time 4 (The case of declining price). The stock price moves to $60. The call
we wrote is worthless. Sell the 0.25 shares of stock for a total of 0.25 x 60 =
15 dollars to repay the debt of 12.5 x 12 = 15 dollars.

9.2.4 Numerical Algorithms for European Options

Binomial Tree Algorithms
An immediate consequence of the BOPM is the binomial tree algorithm that applies
backward induction. The algorithm in Fig. 9.6 prices calls on a non-dividend-paying
stock with the idea illustrated in Fig. 9.7. This algorithm is easy to analyze. The first
loop can be made to take O(n) steps, and the ensuing double loop takes O(n?)
steps. The total running time is therefore quadratic. The memory requirement is also
quadratic. To adapt the algorithm in Fig. 9.6 to price European puts, simply replace
max(0, Su"'d’ — X) in Step 1 with max(0, X — Su"~'d").

The binomial tree algorithm starts from the last period and works its way toward
the current period. This suggests that the memory requirement can be reduced if
the space is reused. Specifically, replace C[n+1][n+1] in Fig. 9.6 with a one-
dimensional array of size n+1, C[n+ 1]. Then replace step 1 with

C[i]:=max(0, Su""d" — X);
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Binomial tree algorithm for pricing calls on a non-dividend-paying stock:

input: S,u,d, X,n,7(u>ée >d,7>0);
real R p,Cln+1][n+1];
integer i, j;
R:=¢;
pi=(R—d)/(u—d);
for (i =0 to n)
1.C[n][i]:= max(0, Su"'d’' — X);
for (j =n—1 down to 0)
for (i =0 to j)
21.C[j i l=(pxC[j+1][i]+
(=p)x CLj+11i +11)/R
return C[0][0];

Figure 9.6: Binomial tree algorithm for calls on a non-dividend-paying stock. C[j ][/ ] represents the call
value at time j if the stock price makes / downward movements out of a total of j movements.

Step 2.1 should now be modified as follows:
Cli]l={px(Cli]l+A-p)xC[i+1]}/R;

Finally, C[0] is returned instead of C[0][0]. The memory size is now linear. The
one-dimensional array captures the strip in Fig. 9.7 and will be used throughout the
book.

We can make further improvements by observing thatif C[ j +1][i ]and C[j 4 1]
[{ +1] are both zeros, then C[j][i] is zero, too. We need to let the i loop within
the double loop run only from zero to min(n — a, j) instead of j, where a is defined
in Eq. (9.9). This makes the algorithm run in O(n(n—a)) steps, which may be
substantially smaller than O(n?) when a is large. The space requirement can be
similarly reduced to O(n —a) with a smaller one-dimensional array C[n—a +1].
See Fig. 9.8, in which the one-dimensional array implements the strip in that figure.

max(0, 8’ — X)

max(O,Suja' - X)

max(0, Sud® - X)

max(O,Sd; - X)

Figure 9.7: Backward induction on binomial trees. Binomial
tree algorithms start with terminal values computed in step 1 of
the algorithm in Fig. 9.6. They then sweep a strip backward in
time to compute values at intermediate nodes until the root is
reached.
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Vs

All zeros

Figure 9.8: Skipping zero-valued nodes toimprove efficiency.
The stock expires worthless if it finishes below the horizontal
line. Zeros at the terminal nodes propagate through the tree
depicted here for a call. Such nodes can be skipped by binomial
tree algorithms. Note that nodes at the same horizontal level
have an identical stock price if ud = 1.

> Programming Assignment 9.2.12 Implement the binomial tree algorithms for calls
and puts.

An Optimal Algorithm
To reduce the running time to O(n — a) and the memory requirement to O(1), note
that
pn—j+1)
(I-p)j

The following program computes b(j;n, p) in b[j] for a <j <n:

b(j;n, p) = b(j —1;n, p).

tal= (") - pye
for (j=a+1ton)
bljl:=blj—-1]xpx(n—j+1)/[A=p)x ]

Itclearly runsin O(n — a) steps. With the b(j;n, p) available, risk-neutral valuation
formula (9.10) is trivial to compute. The case of puts is similar. As for the memory
requirement, we need only a single variable instead of a whole array to store the
b(j;n, p)s as they are being sequentially computed. The algorithm appears in Fig. 9.9.
This linear-time algorithm computes the discounted expected value of max(S§ — X, 0).
It can be adapted to price any European option. For example, if the payoff function
is max(+/S — X, 0), we simply replace D— X with /D — X in the algorithm. The
above technique cannot be applied to American options because of the possibility of
early exercise. As a result, algorithms for American options usually run in quadratic
time instead of in linear time. The performance gap between pricing American and
European options seems inherent in general.

» Exercise 9.2.13 Modify the linear-time algorithm in Fig. 9.9 to price puts.
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Linear-time, constant-space algorithm for pricing calls on a non-dividend-paying stock:

input:  S,u,d, X,n, 7(u> ¢ >dand 7> 0);
real R, p,b, D, C;

integer j,a;

a = [In(X/Sd")/In(u/d);

p= (" —d)/(u—dy;

R:= el‘l}'.

b:

p*(1— p)*=4; /] b(a;n, p) is computed.

D:=Sxu'd*

C:=bx(D-X)/R;

for (j=a+1to n){
bi=bx px(n—j+1)/((1—p)x j);
D:= D xu/d,
C:=C+bx(D-X)/R;

}

return C;

Figure 9.9: Optimal algorithm for European calls on a stock that does not pay dividends. Variable b stores
b(j;n,p) for j =a,a~+1,...,n,inthat order, and variable C accumulates the summands in Eq. (9.10)
by adding up b(j; n, p) x (Su/d"~/ —X)/e™,j =a, a+1,...,n.

> Programming Assignment 9.2.14 Implement the algorithm in Fig. 9.9 and bench-
mark its speed. Because variables such as b and D can take on extreme values, they
should be represented in logarithms to maintain precision.

The Monte Carlo Method
Now is a good time to introduce the Monte Carlo method. Equation (9.8) can be
interpreted as the expected value of the random variable Z defined by

Z =max(0, Su/d"~/ — X)/R" with probability b(j;n, p), 0<j<n.

To approximate the expectation, throw n coins, with p being the probability of
getting heads, and assign

max(0, Su/d"~/ — X)/R"

to the experiment if it generates j heads. Repeat the procedure m times and take
the average. This average clearly has the right expected value E[ Z]. Furthermore,
its variance Var[ Z]/m converges to zero as m increases.

Pricing European options may be too trivial a problem to which to apply the
Monte Carlo method. We will see in Section 18.2 that the Monte Carlo method is an
invaluable tool in pricing European-style derivative securities and MBSs.

> Programming Assignment 9.2.15 Implement the Monte Carlo method. Observe its
convergence rate as the sampling size m increases.

The Recursive Formulation and Its Algorithms
Most derivative pricing problems have a concise and natural recursive expression
familiar to programmers. Yet a brute-force implementation should be resisted. For
example, the recursive implementation of the binomial option pricing problem for
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the call is as follows:

Price(S,u,d, X,n,7) {// Pricing European calls recursively.
p=( —d)/(u—d);
if [n=0] return max(S — X, 0);
else return [ p x Price(Su, u,d, X,n—1,7)+ (1 - p)
x Price(Sd, u,d, X,n—1,7) ]/e?;
}

If every possible stock price sequence of length # is traced, the algorithm’s running
time is O(n2"), which is not practical.

9.3 The Black-Scholes Formula

On the surface, the binomial model suffers from two unrealistic assumptions: (1) The
stock price takes on only two values in a period and (2) trading occurs at discrete
points in time. These shortcomings are more apparent than real. As the number
of periods increases, the stock price ranges over ever-larger numbers of possible
values, and trading takes place nearly continuously. What needs to be done is proper
calibration of the model parameters so that the model converges to the continuous-
time model in the limit.

9.3.1 Distribution of the Rate of Return

Let t denote the time to expiration of the option measured in years and r be the
continuously compounded annual rate. With n periods during the option’s life, each
period therefore represents a time interval of 7/n. Our job is to adjust the period-
based u, d, and interest rate represented by 7 to match the empirical results as n
goes to infinity. Clearly 7 = rt/n. As before, let R denote the period gross return e’.

We proceed to derive u and d. Under the binomial model, Inu and Ind denote
the stock’s two possible continuously compounded rates of return per period. The
rate of return in each period is characterized by the following Bernoulli random
variable:

B Inu, with probability ¢q
" |Ind, with probability1—gq"

Let S; denote the stock price at expiration. The stock’s continuously compounded
rate of return, In(S;/S), is the sum of n independent Bernoulli random variables
above, and

S, Swdi
I =In 4 < = jIn(u/d) +nlnd. (9.12)

where the stock price makes j upward movements in n periods. Because each
upward price movement occurs with probability ¢, the expected number of upward
price movements in »n periods is E[ j ] =ng with variance

Var[ j]=n[q(1—q)*+ (1 —q)(0—q)*1=nq(1-q).



9.3 The Black-Scholes Formula

We use

1 S, o 1 S:
ﬁE;E[ll’l?}, ozzﬁVar[lnE}

to denote, respectively, the expected value and the variance of the period continu-
ously compounded rate of return. From the above,

E[j]xIn(u/d)+nlnd
n

n= =qln(u/d)+Ind,

s2_ Var[ j | x In*(u/d) _
n

q(1—q)In*(u/d).

For the binomial model to converge to the expectation ut and variance o’ of

the stock’s true continuously compounded rate of return over t years, the require-
ments are

nu =n(qIn(u/d)+1Ind) — ur, (9.13)
n6? =nq(1 —q)In*(u/d) — o’z. (9.14)

We call o the stock’s (annualized) volatility. Add ud = 1, which makes the nodes at
the same horizontal level of the tree have an identical price (review Fig. 9.8). Then
the above requirements can be satisfied by

1 1
u=e° T/Vl’ d=€_aJt/_n, q=E+E§\/g (915)

(See Exercises 9.3.1 and 9.3.8 for alternative choices of u, d, and g.) With Egs. (9.15),

nit = ut,
o 2T
ne’ = |:1 — (ﬁ) —:| o2t — ot

o n

We remark that the no-arbitrage inequalities # > R>d may not hold under
Eqgs. (9.15), and the risk-neutral probability may lie outside [0, 1]. One solution
can be found in Exercise 9.3.1 and another in Subsection 12.4.3. In any case, the
problems disappear when # is suitably large.

What emerges as the limiting probabilistic distribution of the continuously com-
pounded rate of return In(S,/S)? The central limit theorem says that, under certain
weak conditions, sums of independent random variables such as In(S;/S) converge
to the normal distribution, i.e.,

In(S:/S) —niw _

Jno T
A simple condition for the central limit theorem to hold is the Lyapunov condition
[100],

Prob [ z] — N(2).

glmu—7P+(1-q)|lnd—7P
—= —>
nos

0.
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After substitutions, the condition becomes
(-qrl+q’
nyq(l—q)

which is true. So the continuously compounded rate of return approaches the normal
distribution with mean wt and variance o’t. As a result, In S, approaches the
normal distribution with mean 7 +1n S and variance o°z. S, thus has a lognormal
distribution in the limit. The significance of using the continuously compounded rate
is now clear: to make the rate of return normally distributed.

The lognormality of a stock price has several consequences. It implies that the
stock price stays positive if it starts positive. Furthermore, although there is no upper
bound on the stock price, large increases or decreases are unlikely. Finally, equal
movements in the rate of return about the mean are equally likely because of the
symmetry of the normal distribution: S; and S, are equally likely if S;/S = S/$;.

» Exercise 9.3.1 The price volatility of the binomial model should match that of the
actual stock in the limit. As g does not play a direct role in the BOPM, there is more

than one way to assign u and d. Suppose we require that g = 0.5 instead of ud = 1.
(1) Show that

u:exp[%f—i-a\/;] d:exp[%r—a %i|

satisfy requirements (9.13) and (9.14) as equalities. (2) Is it valid to use the probability
0.5 during backward induction under these new assignments?

Oa

Comment 9.3.1 Recall that the Monte Carlo method in Subsection 9.2.4 used a biased
coin. The scheme in Exercise 9.3.1, in contrast, used a fair coin, which may be easier
to program. The choice in Egs. (9.15) nevertheless has the advantage that ud =1,
which is often easier to work with algorithmically. Alternative choices of u# and d
are expected to have only slight, if any, impacts on the convergence of binomial tree
algorithms [110].

» Exercise 9.3.2 Show that

E[(Sar—S)/S] o?
~ —ut (9.16)

where At =1/n.

Comment 9.3.2 Note the distinction between Eq. (9.13) and convergence (9.16). The
former says that the annual continuously compounded rate of return over t years,
In(S,/S)/t,has mean u, whereas the latter says that the instantaneous rate of return,
limu,_0(Sa; — S)/S)/At, has a larger mean of u + o2/2.

9.3.2 Toward the Black-Scholes Formula

We now take the final steps toward the Black—Scholes formula as n — co and ¢
equals the risk-neutral probability p = (""" — d)/(u — d).

LEMMA 9.3.3 The continuously compounded rate of return In(S,/S) approaches the
normal distribution with mean (r —o?/2)t and variance o’t in a risk-neutral
economy.



9.3 The Black-Scholes Formula

Proof: Applying ¢ =1+ y+(y*/2!)+--- to p, we obtain

1 1r—0?2 [z

So the g in Eq. (9.15) implies that u =r —o2/2 and

nu=|{r o
n= 5 )t

—o2/2\?
net= |:1 — (u> E:| 0’1 — ot
o n

Because
(1—-p)*+p?
— =0,
ny/p(1—p)

the Lyapunov condition is satisfied and the central limit theorem is applicable.

Lemma 9.3.3 and Egs. (6.11) imply that the expected stock price at expiration in
arisk-neutral economy is Se’”. The stock’s expected annual rate of return is thus the
riskless rate r.

THEOREM 9.3.4 (The Black-Scholes Formula):

C = SN(x)— Xe""N(x —o/7),

P = Xe""N(—x+0+7)— SN(—x),
where
In(S/X)+(r+02/2)t

o T '

Proof: As the put—call parity can be used to prove the formula for a European put
from that for a call, we prove the formula for the call only. The binomial option

pricing formula in Theorem 9.2.2 is similar to the Black—Scholes formula. Clearly,
we are done if

®(a;n, pue” ) — N(x),  ®(a;n, p) —> N(x —o /7). (9.18)

X =

We prove only ®(a;n, p) — N(x — o 4/7); the other part can be verified analogously.

Recall that ®(a;n, p) is the probability of at least a successes in n indepen-
dent trials with success probability p for each trial. Let j denote the number of
successes (upward price movements) in n such trials. This random variable, a sum
of n Bernoulli variables, has mean np and variance np(1 — p) and satisfies

. _1-
1_q)(a;nvp)=PrOb[jSa_l]:Pr0b|: ] —np < a np :|

Vnp(1=p) = Vnp(1-p)
(9.19)
It is easy to verify that
j—np _In(S/$)—npt

Jmi—p) s
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Now,

_ In(X/Sd")

In(u/d)
for some 0 < ¢ < 1. Combine the preceding equality with the definitions for & and
& to obtain
a—1-np In(X/S)—ni—eln(u/d)

= p) N

So Eq. (9.19) becomes

1 — ®(a;n, p) = Prob [ In(S:/$) —nit _ In(X/S) —nji — € In(u/d) } .

Jno - Jno
Because In(u/d) =20./t/n— 0,

In(X/S) — npi — € In(u/d) _ In(X/S)—1(r—0?/2)
NG T T

Hence 1 — ®(a;n, p) > N(z), which implies that

In(§/X)+rr 1

S(an. p) > N9 =N (P Do ) = N - o)

as desired.

We plot the call and put values as a function of the current stock price, time to

expiration, volatility, and interest rate in Fig. 9.10. Note particularly that the option
value for at-the-money options is essentially a linear function of volatility.
» Exercise 9.3.3 Verify the following with the Black-Scholes formula and give
heuristic arguments as to why they should hold without invoking the formula.
1) C=S—Xe " if S>X. 2)C—>Sast—>00.3) C—>0a o—>0if S<
Xe " () C—>S—Xe " aso—>0if S> Xe"".(5) C— § as r — oo.

» Exercise 9.3.4 Verify convergence (9.17).

» Exercise 9.3.5 A binary call pays off $1 if the underlying asset finishes above the
strike price and nothing otherwise.? Show that its price equals e™"* N(x — 04/7).

» Exercise 9.3.6 Prove 9°P/d X? = 32C/d X? (see Fig. 9.11 for illustration).
» Exercise 9.3.7 Derive Theorem 9.3.4 from Lemma 9.3.3 and Exercise 6.1.6.

Tabulating Option Values
Rewrite the Black—Scholes formula for the European call as follows:

C=Xe ' [ N(x) — N(x — oﬁ)} :

e*ff
where

In(S/(Xe™™)) , ov/T
oJT 2

X
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Figure 9.10: European option values as functions of parameters. The parameters are S =50, X =50, 0 =

0.3, T =201 (days), and r = 8%. When three curves are plotted together, the dashed curve uses S =40

(out-of-the-money call or in-the-money put), the solid curve uses S = 50 (at the money), and the dotted curve

uses S =60 (in-the-money call or out-of-the-money put).
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0.03

25 50 75 100

125 150

Stock price

Figure 9.11: Value of state contingent claim. Exercise 7.4.5 says that 02C /0X 2,
plotted here for the strike price of $95, is the value of a state contingent claim. The
fundamental identity in Exercise 9.3.6 has applications in asset pricing.

A table containing entries

Xe—rr

S

N(x)— N(x —o/7)

indexed by S/(Xe™"") and o/t allows a person to look up option values based on
S, X,r,7,and o. The call value is then a simple multiplication of the looked-up value
by Xe™’*. A precomputed table of judiciously selected option values can actually be
used to price options by means of interpolation [529].

9.3.3 The Black-Scholes Model and the BOPM

The Black—Scholes formula needs five parameters: S, X, o, 7, and r. However, bino-
mial tree algorithms take six inputs: S, X, u, d, 7, and n. The connections are

u=e” r/n, d= e—m/r/n’

T=rt/n.

The resulting binomial tree algorithms converge reasonably fast, but oscillations,
as displayed in Fig. 9.12, are inherent [704]. Oscillations can be eliminated by the
judicious choices of u and d (see Exercise 9.3.8).

Call wvalue

#Periods

R T T .

Call walue

50 100 150

#Periods

Figure 9.12: Convergence of binomial tree algorithms. Plotted are the European call values as computed by the
binomial tree algorithm against the number of time partitions, n. The parameters used are S = 100, X = 100
(left) and 95 (right),r = 8%, o = 0.2, and t = 1. The analytical values, 12.1058 (left) and 15.1749 (right), are
displayed for reference.



9.4 Using the Black-Scholes Formula m

EXAMPLE 9.3.5 Consider a 3-month option when the interest rate is 8% per annum
and the volatility is 30% per annum. This means that  =0.25,7 = 0.08, and ¢ = 0.3.
If the binomial tree algorithm uses n = 5, it should use u = ¢V %255 =1.0694 and
d=e03WO0BS = 09351,

» Exercise 9.3.8 Here is yet another way to assign u and d:

ert/n —d

u = eoVTn+(1/n) In(X/$) d = e—oTm+1/n) In(X/$). q= v
u J—

(1) Show that it works. (2) What is special about this choice?

9.4 Using the Black-Scholes Formula

9.4.1 Interest Rate

The riskless rate r should be the spot rate with a maturity near the option’s expi-
ration date (in practice, the specific rate depends on the investor [228]). The choice
can be justified as follows. Let r; denote the continuously compounded one-period
interest rate measured in periods for period i. The bond maturing at the option’s
expiration date is worth exp[ — Y ;_, r; | per dollar of face value. This implies that
rt =Yy, r;. Hence a single discount bond price with maturity at time n (equiva-
lently, the n-period spot rate) encompasses all the information needed for interest
rates. In the limit, Y7 r; — Jo r(z)dt, where r(z) is the short rate at time . The
relevant annualized interest rate is thus r = (1/7) f; r(¢) dt.

Interest rate uncertainty may not be very critical for options with lives under
1 year. Plots in Fig. 9.10 also suggest that small changes in interest rates, other things
being equal, do not move the option value significantly.

9.4.2 Estimating the Volatility from Historical Data

The volatility parameter o is the sole parameter not directly observable and has to
be estimated. The Black—-Scholes formula assumes that stock prices are lognormally
distributed. In other words, the n continuously compounded rates of return per
period,

S;
Si1’
are independent samples from a normal distribution with mean pt/n and variance

o?t/n, where S; denotes the stock price at time i. A good estimate of the standard
deviation of the per-period rate of return is

i (w —w)?
=TS

where = (1/n)Y_"_, u; = (1/n)In(S,/S). The preceding estimator may be biased
in practice, however, notably because of the bid-ask spreads and the discreteness
of stock prices [48, 201]. Estimators that utilize high and low prices can be superior
theoretically in terms of lower variance [374]. We note that # and s*(n—1)/n are
the ML estimators of u and o2, respectively (see Section 20.1).

u; =In i=1,2,...,n,
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The simple rate of return, (S; — S;_1)/S;_1, is sometimes used in place of u; to
avoid logarithms. This is not entirely correct because Inx ~ x —1 only when x is
small, and a small error here can mean huge differences in the option value [147].

If a period contains an ex-dividend date, its sample rate of return should be
modified to

where D is the amount of the dividend. If an n-for-m split occurs in a period, the
sample rate of return should be modified to

nSi
mS;_1

u; =In

Because the standard deviation of the rate of return equals o+/7/n, the estimate
for o is s/+/T/n. This value is called historical volatility. Empirical evidence suggests
that days when stocks were not traded should be excluded from the calculation. Some
even count only trading days in the time to expiration t [514].

Like interest rate, volatility is allowed to change over time as long as it is pre-
dictable. In the context of the binomial model, this means that « and d now depend
on time. The variance of In(S;/S) isnow [, o(t) dt rather than o*t, and the volatil-
ity becomes [ f; o(¢) dt/7 ]'/*>. A word of caution here: There is evidence suggesting
that volatility is stochastic (see Section 15.5).

9.4.3 Implied Volatility

The Black—Scholes formula can be used to compute the market’s opinion of the
volatility. This is achieved by the solution of o given the option price, S, X, 7, and
r with the numerical methods in Subsection 3.4.3. The volatility thus obtained is
called the implied volatility — the volatility implied by the market price of the option.
Volatility numbers are often stored in a table indexed by maturities and strike prices
[470, 482].

Implied volatility is often preferred to historical volatility in practice, but it is not
perfect. Options written on the same underlying asset usually do not produce the
same implied volatility. A typical pattern is a “smile” in relation to the strike price:
The implied volatility is lowest for at-the-money options and becomes higher the
further the option is in or out of the money [150]. This pattern is especially strong
for short-term options [44] and cannot be accounted for by the early exercise feature
of American options [97]. To address this issue, volatilities are often combined to
produce a composite implied volatility. This practice is not sound theoretically. In
fact, the existence of different implied volatilities for options on the same underlying
asset shows that the Black—Scholes option pricing model cannot be literally true.
Section 15.5 will survey approaches that try to explain the smile.

» Exercise 9.4.1 Calculating the implied volatility from the option price can be fa-
cilitated if the option price is a monotonic function of volatility. Show that this is true
of the Black—Scholes formula.

> Exercise 9.4.2 Solving for the implied volatility of American options as if they
were European overestimates the true volatility. Discuss.



9.5 American Puts on a Non-Dividend-Paying Stock

» Exercise 9.4.3 (Implied Binomial Tree). Suppose that we are given m different
European options prices, their identical maturity, their strike prices, their underlying
asset’s current price, the underlying asset’s o, and the riskless rate. (1) What should
n be? (2) Assume that the path probabilities for all paths reaching the same node
are equal. How do we compute the (implied) branching probabilities at each node
of the binomial tree so that these options are all priced correctly?

>> Programming Assignment 9.4.4 Write a program to compute the implied volatility
of American options.

9.5 American Puts on a Non-Dividend-Paying Stock

Early exercise has to be considered when pricing American puts. Because the person
who exercises a put receives the strike price and earns the time value of money, there
is incentive for early exercise. On the other hand, early exercise may render the put
holder worse off if the stock subsequently increases in value.

The binomial tree algorithm starts with the terminal payoffs max(0, X —
Sul/d"~7) and applies backward induction. At each intermediate node, it checks for
early exercise by comparing the payoff if exercised with continuation. The complete
quadratic-time algorithm appears in Fig. 9.13. Figure 9.14 compares an American put
with its European counterpart.

Let us go through a numerical example. Assume that §=160, X=130, n =3,
u=15,d=05,and R=e"1823? =1.2. We can verify that p=(R—d)/(u—d)=0.7,
h=(P,— Py)/Su—d)=(P,— Fy)/S,and P=[pP,+(1—p) Fy]/R=(0.7x P, +
0.3 x P;)/1.2. Consider node A in Fig. 9.15. The continuation value is

(0.7 x 0) + (0.3 x 70)
1.2
greater than the intrinsic value 130 —120 =10. Hence the option should not be
exercised even if it is in the money and the put value is 17.5. As for node B, the
continuation value is
(0.7 x 70) + (0.3 x 110)
1.2

lower than the intrinsic value 130 — 40 = 90. The option should be exercised, and the
put value is 90.

=17.5,

= 68.33,

Binomial tree algorithm for pricing American puts on a non-dividend-paying stock:

input: S,u,d, X,n,7 (u>e >dand 7> 0);
real R, p, P[n+1];
integer i, J;
R:=¢":
p=(R—-d)/(u—4d); o
for (i =0 to n) { P[i]:=max(0, X— Su""'d");}
for (j =n—1 down to 0)

for (i =0 to j)

Pli]:=max((px P[i]+(1—p)x P[i+1])/R, X— Su/~'d");

return P[0];

Figure 9.13: Binomial tree algorithm for American puts on a non-dividend-paying stock.
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Put value

90 92 94 96 98 100
Stock price

Figure 9.14: American put vs. European put. Plotted is the
American put price at 1 month before expiration. The strike price
is $95, and the riskless rate is 8%. The volatility of the stock is as-
sumed to be 0.25. The corresponding European put is also plotted
(dotted curve) for comparison.

>> Programming Assignment 9.5.1 Implement the algorithm in Fig. 9.13 for American
puts.

9.6 Options on a Stock that Pays Dividends

9.6.1 European Options on a Stock that Pays a Known Dividend Yield

The BOPM remains valid if dividends are predictable. A known dividend yield means
that the dividend income forms a constant percentage of the stock price. For a div-
idend yield of §, the stock pays out S§ on each ex-dividend date. Therefore the

Binomial process for the stock price Binomial process for the put price
(probabilities in parentheses) (hedge ratios in parentheses)
540 0
/ (0.343) /
360 0
(0.49) / (0.0)
240 180 4375 0
0.7) \ (0.441) (-0.073) \
160 120 30 175 A
/ (0.42) (-0.285) /(— 0.69)
80 60 50 70
(03) \ (0.189) (—0.906)
\
40 9% B
(0.09>\ - 1.0)\
20 110
(0.027)

Figure 9.15: Stock prices and American put prices.



9.6 Options on a Stock that Pays Dividends

Suuu(1l—39)
/!
Suu(1—35)
/ N
Su Suud(1—9)
Figure 9.16: Binomial modelfor astock thatpaysaknown / N /!
dividend yield. The ex-dividend date occurs in the second S Sud(1—6)
period. NS N
Sd Sudd(1-9)
N /
Sdd(1—6)
N\
Sddd(1—6)

stock price goes from S to Su(l—§) or Sd(1—3§) in a period that includes an ex-
dividend date. If a period does not contain an ex-dividend date, the binomial model
is unchanged. See Fig. 9.16 for illustration.

For European options, only the number of ex-dividend dates matters, not their
specific dates. This can be seen as follows. Let m denote the number of ex-
dividend dates before expiration. The stock price at expiration is then of the form
(1 —8)"Su/d"/, independent of the timing of the dividends. Consequently we can
use binomial tree algorithms for options on a non-dividend-paying stock but with
the current stock price § replaced with (1 —§)™S. Pricing can thus be achieved in
linear time and constant space.

» Exercise 9.6.1 Argue that the value of a European option under the case of known
dividend yields equals (1 —§8)™ European option on a non-dividend-paying stock
with the strike price (1 —§8)7"X.

9.6.2 American Options on a Stock that Pays a Known Dividend Yield

The algorithm for American calls applies backward induction and pays attention to
each ex-dividend date (see Fig. 9.17). It can be easily modified to value American
puts. Early exercise might be optimal when the period contains an ex-dividend date.
Suppose that Sd(1—68)> X. Then C,=Su(1-38)— X and Cy;=Sd(1—-8)— X.
Therefore

—(1-8)S— =,
R ( ) R

which is exceeded by S — X for sufficiently large S. This proves that early exercise
before expiration might be optimal.

» Exercise 9.6.2 Start with an American call on a stock that pays d dividends. Con-
sider a package of d+ 1 European calls with the same strike price as the American
call such that there is a European call expiring just before each ex-dividend date
and a European call expiring at the same date as the American call. In light
of Theorem 8.4.2, is the American call equivalent to this package of European
calls?
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Binomial tree algorithm for pricing American calls on a stock that pays a known dividend
yield:

input: S,u,d, X,n,8(1>8>0),m7u>¢e >d and 7> 0);
real R p,C[n+1];
integer i, j;
R:=¢;
pi=(R—d)/(u—d); y
for (i =0 to n) { C[i]:=max(0, Su"'d'(1-38)"— X);}
for (j=n—-1 down to 0)
for (i=0to j) {
if [ the period (j, j + 1] contains an ex-dividend date | m:=m—1;
Cli]:=max((px C[i]+ (1 —p) x C[i +1])/R, Su/~'d'(1 - 8)" — X);
}
return C[0];

Figure 9.17: Binomial tree algorithm for American calls on a stock paying a dividend yield. Recall that m
initially stores the total number of ex-dividend dates at or before expiration.

> Programming Assignment 9.6.3 Implement binomial tree algorithms for American
options on a stock that pays a known dividend yield.

9.6.3 Options on a Stock that Pays Known Dividends

Although companies may try to maintain a constant dividend yield in the long run,
a constant dividend is satisfactory in the short run. Unlike constant dividend yields,
constant dividends introduce complications. Use D to denote the amount of the
dividend. Suppose an ex-dividend date falls in the first period. At the end of that
period, the possible stock prices are Su— D and Sd — D. Follow the stock price one
more period. It is clear that the number of possible stock prices is not three but four:
(Su— D)u, (Su— D)d, (Sd — D)u, and (Sd — D)d. In other words, the binomial
tree no longer combines (see Fig. 9.18). The fundamental reason is that timing of
the dividends now becomes important; for example, (Su — D)u is different from
Suu — D. It is not hard to see that m ex-dividend dates will give rise to at least 2™
terminal nodes. The known dividends case thus consumes tremendous computation
time and memory.

(Su—D)u
Su—D
/! N\
(Su— D)d Figure 9.18: Binomial model for a stock that pays known dividends.
S The amount of the dividend is D, and the ex-dividend date occurs in the
(Sd— D)u first period.
N
Sd— D
Ny

(Sd— D)d



9.6 Options on a Stock that Pays Dividends

A Simplifying Assumption
One way to adjust for dividends is to use the Black—Scholes formula with the stock
price reduced by the present value of the anticipated dividends. This procedure is
valid if the stock price can be decomposed into a sum of two components, a riskless
one paying known dividends during the life of the option and a risky one. The riskless
component at any time is the PV of future dividends during the life of the option.
The Black—Scholes formula is then applicable with S equal to the risky component
of the stock price and o equal to the volatility of the process followed by the risky
component. The stock price, between two adjacent ex-dividend dates, follows the
same lognormal distribution. This means that the Black—Scholes formula can be
used provided the stock price is reduced by the PV of future dividends during the
life of the option. We note that uncertainty about dividends is rarely important for
options lasting less than 1 year.

With the above assumption, we can start with the current stock price minus the
PV of future dividends before the expiration date and develop the binomial tree for
the new stock price as if there were no dividends. Then we add to each stock price
on the tree the PV of all future dividends before expiration. European option prices
can be computed as before on this tree of stock prices. As for American options, the
same procedure applies except for the need to test for early exercises at each node.

>> Programming Assignment 9.6.4 Implement the ideas described in this subsection.

9.6.4 Options on a Stock that Pays a Continuous Dividend Yield

In the continuous-payout model, dividends are paid continuously. Such a model
approximates a broad-based stock market portfolio in which some company will pay
a dividend nearly every day. The payment of a continuous dividend yield at rate g
reduces the growth rate of the stock price by g. In other words, a stock that grows
from S to S, with a continuous dividend yield of ¢ would grow from S to S,e?"
without the dividends. Hence a European option on a stock with price S paying a
continuous dividend yield of g has the same value as a European option on a stock
with price Se~?" that pays no dividends. The Black—Scholes formulas thus hold, with
S replaced with Se™7":

C=Se " N(x)— Xe ""N(x —o+/7), (9.20)
P = Xe""N(—x+0+7)— Se™9" N(—x), (9.20')
where
In(S/ X)+ (r—q+0?/2) T
oT ’
Formulas (9.20) and (9.20"), which are due to Merton [660], remain valid even if
the dividend yield is not a constant as long as it is predictable, in which case g is
replaced with the average annualized dividend yield during the life of the option

[470, 746].
To run binomial tree algorithms, pick the risk-neutral probability as

X

e(r_q) Ar d

21
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where At = t/n. The quick reason is that the stock price grows at an expected rate
of r — ¢ in a risk-neutral economy. Note that the u and d in Egs. (9.15) now stand
for stock price movements as if there were no dividends Other than the change in
probability (9.21), binomial tree algorithms are identical to the no-dividend case.

» Exercise 9.6.5 Prove that the put—call parity becomes C = P+ Se~9" — PV(X)
under the continuous-payout model.

> Exercise 9.6.6 Derive probability (9.21) rigorously by an arbitrage argument.

» Exercise 9.6.7 (1) Someone argues that we should use [ ("% —d)/(u—d)] as the
risk-neutral probability thus: Because the option value is independent of the stock’s
expected return p — g, it can be replaced with 7. Show him the mistakes. (2) Suppose
that we are asked to use the original risk-neutral probability [ (e’ —d)/(u—d)].
Describe the needed changes in the binomial tree algorithm.

> Exercise 9.6.8 Give an example whereby the use of risk-neutral probability (9.21)
makes early exercise for American calls optimal.

> Programming Assignment 9.6.9 Implement the binomial tree algorithms for
American options on a stock that pays a continuous dividend yield.

9.7 Traversing the Tree Diagonally

Can the standard quadratic-time backward-induction algorithm for American op-
tions be improved? Here an algorithm, which is due to Curran, is sketched that
usually skips many nodes, saving time in the process [242]. Although only American
puts are considered in what follows, the parity result in Exercise 9.7.1 can be used to
price American calls as well.

Figure 9.19 mentions two properties in connection with the propagation of early-
exercise nodes and non-early-exercise nodes during backward induction. The first
property 