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Purpose 
This project consists of a series of reference designs that will teach the fundamentals if real-time 
operating systems for embedded control. The each of 12 reference designs builds on previous 
projects with increase in complexity. The initial reference introduce methodologies and standard 
terminology used in RTOS based embedded system design.  

Minimum Knowledge and Programming Skills 

1. Knowledge of C or C++ programming 

2. Working knowledge of MPLAB ® X IDE 

3. Understanding embedded system design 
 

Equipment List 

1. chipKITTM Pro MX7 processor board with USB cable 

2. PmodSTEP Stepper Motor Driver module or 

3. Microchip MPLAB ® X IDE 

4. MPLAB ® XC32 Compiler  

Software Resources 

1. XC32 C/C++ Compiler Users Guide 

2. MPLAB ® X User’s Guide 

3. C Programming Reference 

References 

1. chipKITTM Pro MX7 Board Reference Manual  

2. chipKITTM Pro MX7 Board Reference Schematic 

3. FreeRTOS Quick Start Guide 

4. FreeRTOS Customization Parameters 

5. Introduction to RTOS 

Real Time Operating Systems Introduction  
In general, an operating system (OS) is responsible for managing the hardware resources of 

a computer and hosting applications that run on the computer. Modern microprocessors have 
sufficient memory capacity and performance to host one or more complex applications 
comprised of multiple tasks that require the sharing of critical resources such as human-
machine interfaces (keypads and buttons, and displays) communications, memory, and 

http://en.wikibooks.org/wiki/C_Programming/Compiling
http://ww1.microchip.com/downloads/en/DeviceDoc/52027B.pdf
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,892,1219&Prod=CHIPKIT-PRO-MX7
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,401,1160&Prod=PMOD-STEP
https://www.microchip.com/pagehandler/en-us/family/mplabx/
https://www.microchip.com/pagehandler/en-us/devtools/mplabxc/home.html
http://ww1.microchip.com/downloads/en/DeviceDoc/50001686G.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/52027B.pdf
http://www.w3schools.in/c-programming-language/intro/
http://www.digilentinc.com/Data/Products/CHIPKIT-PRO-MX7/chipKIT_Pro_MX7_rm-1.pdf
http://www.digilentinc.com/Data/Products/CHIPKIT-PRO-MX7/chipKIT_Pro_MX7_bysa_a_sch.pdf
http://www.freertos.org/FreeRTOS-quick-start-guide.html
http://www.freertos.org/a00110.html
http://info.quadros.com/Portals/62908/docs/Introduction_to_RTOS_2013.pdf
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processor time. With the proper computer software, the processor is able to switch tasks so 
frequently and rapidly that it appears that a single processor is performing the tasks in parallel. 
A real-time operating system (RTOS) is a library of functions designed as a management 
program that allocates the processors resources such that the system performance meets 
specific timing requirements without conflicts between independent tasks. The advantages 
offered by a professional grade RTOS include assurance that time critical elements of the 
program meet the timing requirements, promotes system partitioning into tasks that are easier 
to develop and maintain, and allows the assignment  

The claim that every embedded application has an OS at the core of its operation is justified 
in light of the functional requirements of an OS.  When the application has a firm requirement for 
time performance, then the OS must now incorporate the elements of RTOS. Many embedded 
applications have minimal requirements for management of resources because of low demand 
for processor resources.  However, the complexity of a software-based system can quickly 
expand and the resource management requirements exceed the performance provided by 
polling tasks in a round-robin fashion or a demand base system that uses preemption 
(interrupts).  One of the challenges to embedded system design is determining when to 
transition for an in-house developed OS and making the needed investment to use a 
commercially available OS.   

When making this decision one must always be conscious of the fact that commercial RTOS 
packages rarely reduce the memory requirements or increase the operating speed. One can 
rightly ask, then why bother with a commercial system?  The answer lies in two areas: 
development time and time needed for code validation.  Commercial RTOS systems have 
undergone many hours of software testing both by the developers of the RTOS and by those 
who integrate the RTOS in to their own applications. Most times the RTOS library of functions is 
considered SOUP – Software of Unknown Providence. Commercial RTOS software packages 
provide a systematic and dependable approach to resource management designed to 
guarantee critical timing is maintained.  

The popularity of Free RTOS as an off the shelf (OTS) RTOS1 is due to the fact that it free.   
Although it does not have all of the features of a full featured RTOS, it provides basic support for  
multiple threads or tasks, queues, mutexes, semaphores and software timers. FreeRTOSTM 
currently supports 34 different microprocessors and 18 different tool chains or development 
environments. Although the basic RTOS is in fact free, there is a cost for documentation 
targeting a specific tool chain and processor.  There is also a cost for additional features. 

Various algorithms are employed to schedule processor tasks. The two most common are 
the cooperative and preemptive. Cooperative multitasking depends on a task relinquishing their 
control of the processor and generally works best when one or more of the tasks sends 
considerable time waiting for an external event (such as the arrival of a communications packet) 
or internal timed event. For cooperative multitasking scheduling to meet the requirements for 
real-time, the accumulated time to execute all tasks must be less than the shortest period 
required to repeat a given task. Preemptive scheduling is based upon processor interrupts such 
as a clock timer or the occurrence of an external event.  Preemptive scheduling offers the 
advantage of allowing priorities to be assigned based upon the need for responsiveness. It is 
common for an RTOS to use both cooperative and preemptive scheduling in a single 
application. 

A thread or task can be thought of as a job or an operation.  Some tasks consist of a 
collection of smaller tasks.  Each task is scheduled and is either ready to run, running or 
blocked. Communications between tasks use queues, semaphores, and mutexs (mutually 

                                                           
1
 http://en.wikipedia.org/wiki/Real-time_operating_system  

http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Thread_(computer_science)
http://en.wikipedia.org/wiki/Task_(computing)
http://www.freertos.org/Embedded-RTOS-Queues.html
http://www.freertos.org/Real-time-embedded-RTOS-mutexes.html
http://www.freertos.org/Embedded-RTOS-Binary-Semaphores.html
http://en.wikipedia.org/wiki/Real-time_operating_system
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exclusive semaphore). Queues are generally used to pass information while semaphores are 
used to synchronize tasks and are binary in nature (i.e. either TRUE of FALSE). 

Essential Elements of FreeRTOS 

Definitions 
 

Execution – the performance of instructions in a computer program 
 
Concurrency – the property of a system that supports multiple simultaneous computations 
 
Context – the state of the processor as defined by the values stored in the program counter, 
stack pointer, CPU registers, status flags and selected global variables 
 
Kernel – the part that schedules which thread gets to execute at a given point in time 
 
Multithreading – the ability to manage a processor so that it executes code in multiple threads  
 
Multitasking – the ability to switch between different tasks that give the appearance of managing 
all tasks simultaneously. 
 
Operating System – software that manages hardware and software resources to provide 
services for computer programs 
 
Process – an overall context in which the thread runs 
 
Program – an executable file 

Task – a specific piece of work to be done – usage varies: in computing, a task is a unit 
of execution. In some operating systems, a task is synonymous with a process, in others with 
a thread. In batch processing computer systems, a task is a unit of execution within a job. 

Thread – a single sequential flow of control 

Concepts  
  

FreeRTOS is a collection software library files that contain functions called by a user 
application. The files are organized in a manner that allows MPLAB to build a project. The file 
structure is described in Appendix A.  RTOS consists of three major components: application 
hardware initialization, one or more tasks, and a scheduler that determines which task is to be 
running. Some applications can also require independent preemption tasks that are not under 
the control of the RTOS scheduler but in many cases must communicated with tasks that are 
under the control of the scheduler.  

Programs written for embedded system applications follow a typical format: hardware and 
software resources are initialized followed by an infinite loop containing the code to implement 
that application processes. Applications developed using a RTOS break with this traditional 
format.  The order of operations starts with the general hardware initialization. This includes 
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initializing interrupt that not managed by the RTOS scheduler. Next each task is created using a 
function call to xTaskCreate that registers each task with the scheduler along with parameters 
that the scheduler passes to the task. Queues (xQueueCreate) and semaphores 
(xSemaphoreCreateMutex) are created that provide communications between tasks using 
global variables. Finally, the function, vTaskScheduler, is called from which the code execution 
never returns.   

The format of each task follows the general format of the typical main function. Local 
variables are declared and initialized if appropriate to do so. This is followed by code that is to 
be executed only once such as initialization of specific hardware and variables. Finally, each 
task contains an infinite loop from containing the task functionality which the task is never to 
exit. The scheduler perceives each task in one of three states illustrated in Figure 1. Each task 
is initially in the Ready state and is waiting for the scheduler to start running the task. Since 
each task is provided with its own stack memory space, static local variables should not be 
declared with in a task function. 
 

Ready Running

Waiting

Resource busy

Preemption

Resource free

Schedule Task

Activation TerminationVoluntary Yield

 
Figure 1. Task states and transitions 

 

There are four different ways to stop a task. A task can terminate itself in which by removing 
the task from the scheduler never to be executed again. A task can be “blocked” by waiting for a 
resource to become free or available. In this case, the task transitions to the Waiting state. A 
task can be preempted by the scheduler when the scheduler determines that a task with a 
higher priority is ready to run or it is time to share the execution time with a task that is of the 
same priority level.  Finally, a task can voluntarily return to the scheduler on its own accord.   

A task that has transitioned to the waiting state remains in that state until the resource that 
was blocking the execution becomes available.  Examples of a blocking resource is waiting for a 
button to be pressed and waiting for serial communications. Tasks can also be waiting for a time 
delay to expire. As such, the RTOS can only guarantee a minimum time delay. But because 
another task may be running either at the same or higher priority level, the delay time may be 
extended.  

As discussed above, schedulers use various algorithms to determine which task should be 
running.  A schedule operating on fairness allocates equal time to all tasks that are ready to run 
and programmed for the same priority level. The execution time is divided into time slices that 
are defined by the RTOS preemptive tick clock. The determination is made as to which task to 
run next either at the end of each time slice or whenever a task exits the running state for one of 
the four reasons listed above.  Tasks that have the highest priority are checked to see if any of 
those tasks are ready to run. If so, the scheduler runs those tasks.  If not, then the scheduler 

http://www.freertos.org/a00125.html
http://www.freertos.org/a00116.html
http://www.freertos.org/a00113.html
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checks for tasks at the next lower priority level that are ready to run. This process continues 
until the scheduler identifies a task that is ready to run. If no tasks are ready to run, the 
scheduler runs an idle task. For additional information regarding the operation of the task 
scheduler, see the FreeRTOS web link for Real Time Scheduling at 
 http://www.freertos.org/implementation/a00008.html.  

FreeRTOS Reference Design Descriptions  
 

The following reference designs are demonstrations of FreeRTOSTM operating systems 
being used to control simple functions. Each successive reference design increases in 
complexity and leverages for previous designs. The development environment uses MPLAB ® 
X version 1.85 or above and the XC C/C++ compiler version 1.2 or higher. The designs use 
FreeRTOS v7.5.2 and the chipKITTM Pro MX7 board that is equipped with a PIC32MX795F512 
processor. 
 

The FreeRTOS library functions use the following naming conventions for their coding 
standard and style guide. 

A. Variables 

i. Variables of type char are prefixed c 

ii. Variables of type short are prefixed s 

iii. Variables of type long are prefixed l 

iv. Enumerated variables are prefixed e 

v. Other types (e.g. structs) are prefixed x 

vi. Pointers have an additional prefixed p, for example a pointer to a short will have 

prefix ps 

vii. Unsigned variables have an additional prefixed u, for example an unsigned short 

will have prefix us, and a pointer to an unsigned short will have prefix pus. 
B. Functions 

i. File private functions are prefixed with prv File private functions are prefixed 
with prv 

ii. API functions are prefixed with their return type, as per the convention defined for 
variables 

iii. Function names start with the file in which they are defined. For example 
vTaskDelete is defined in the tasks.c file, and has a void return type. A function 
prefix of pv is a pointer to a function that returns a void. 

C. Macros 

i. Macros are pre-fixed with the file in which they are defined. The pre-fix is lower 

case. For example, configUSE_PREEMPTION is defined in FreeRTOSConifg.h. 

ii. Other than the pre-fix, macros are written in all upper case, and use an 

underscore to separate words. 

http://www.freertos.org/implementation/a00008.html
http://www.freertos.org/FreeRTOS-Coding-Standard-and-Style-Guide.html
http://www.freertos.org/FreeRTOS-Coding-Standard-and-Style-Guide.html
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RD1 – Simple Task Scheduler Example: 

Scheduler

prvTestTask1 /

LEB B on

&

LED A off

prvTestTask2 /

LEB A on

&

LED B off

Setup System

 

Figure 2.  Control Flow Diagram for RD1 
 

 

This project introduces the basic process of building an application under the FreeRTOS 

environment. The operating system creates manages two tasks that turn on an LED and 

increments a counter. The program continues to run the code in that function until the scheduler 

stops the task that is currently running and starts the other task, 

Task1 turns LED A on and turns LED B off. Task2 turns LED B on and turns LED A off. 

Independent counters in each tasks is incremented each time a task turns on the associated 

LED. If a logic analyzer or oscilloscope is connected to the PmodSTEP test points for LED A and 

LED B, one will see two square waves that are 180 degrees out of phase from each other as 

shown in Figure 3. This indicates that each task is allotted one timer tick to execute. Since both 

tasks are assigned the same priority level and use all of their allotted task time, the scheduler 

implements a fair and equal distribution of operating time. No idle task is scheduled. 

 

 
Figure 3. Screen capture showing the time each task is running for RD1. 

  

http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,401,1160&Prod=PMOD-STEP
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RD2 - Multiple Tasks Implemented Using Common Execution Code 

This reference design demonstrates how to use reentrant code to implement two tasks that 
use the code written as a single function. This is a common technique for minimizing the amount 
of required lines of code to manage tasks that essentially perform the same operation on 
different application resources. Examples of this include reading different push buttons or 
controlling different LEDs.  

In this reference design, the operating system manages three tasks that turn on an LED and 
increments a counter.  One task is scheduled twice and uses parameters passed from the 
scheduler to determine which LED to turn on.  The operation uses the idle hook task to 
determine if the scheduler has any idle time. Since all tasks are set to the same priority as the 
idle task – they all get the same allotment of CPU time as shown in Figure 4. The idle task 
yields as soon as the execution of the function vApplicationIdleHook is completed.  The 
operation uses the idle hook task to determine when the scheduler has idle time. The 
configUSE_IDLE_HOOK bit in FreeRTOSconfig.h must be set to a 1 and the function 
vApplicationIdleHook defined in the application code as illustrated in Listing 1 below. The 
expanded timing diagram shown in Figure 5 demonstrates that the idle hook task only requires 
5us. The LED used for timing the idle time is reset in each task.  
 
 
Listing 1. 
 

void vApplicationIdleHook( void ) 

{ 

static unsigned long ulIdleCycleCount = 0UL; 

    ulIdleCycleCount++;     /* System declared global variable */ 

    LATBSET = LEDH;         /* For timing instrumentation only */ 

} 

  

 
Figure 4. Run time allocation for three equal priority tasks with idle hook trap 
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Figure 5. Execution time of the idle hook function 

RD3 - Setting Task Priorities  

This application reference design creates and manages multiple tasks that turn on an LED 
and increments a counter. Four tasks toggle LEDs at various rates. Both the vTaskDelay and 
vTaskDelayUntil function call block the tasks for various periods. The prvTestJacob task has no 
parameters passed to it by the scheduler.    

The prvTestCody task toggles LEDD each millisecond. This task also uses the 
vTaskDelayUntil delay function that implements a period delay that is not dependent on the time 
to execute the task code. The vTaskDelayUntil function implements a true period delay rather 
than a fixed time delay implemented by vTaskDelay. The prvTestCody task is set for a higher 
priority level than the other tasks and toggles LEDD with a 100ms period. 

The prvTestBen task is scheduled twice to control LEDB and LEDC. Each creation of the 
prvTestBen task uses a different set of task parameters that controls LEDB to toggle with a 
period of 250 ms and LEDC to toggle with a 750ms period. The two scheduled BenTasks 
demonstrate the potential for code conservation by using reentrant functions. The main reason it 
is possible to make the the code for the prvTestBen task reentrant is that each schedule of the 
task uses independent resources. In this case - the resources that are not shared are the LED 
that is being flashed and the time delay.  

This application uses the idle hook task to determine when the scheduler has idle time. The 
configUSE_IDLE_HOOK bit in FreeRTOSconfig.h must be set to 1. Each time the idle hook 
function is called, LEDH is turned on.  Whenever any other task resumes running, LEDH is 
turned off. Since LEDH is high (meaning the idle task is running) most of the time, very little time 
is spent executing the idle task code and execution is immediately passed on to the four 
scheduled tasks as shown in Figure 6. 
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Figure 6. Four tasks running at various rates controlled by OS delay and delay until functions. 

 

RD4 -Task Queues 

The operating system manages three tasks that toggles an assigned LED and based upon 

which button is pressed.  That task in turn sends a queue to another LED control function that 

changes the state of a second LED. The single button (prvbutton) function serves the three 

scheduled tasks to process the three different button inputs. The operation of each button task 

is determined by the argument values in pvParameters. The program uses a queue 

(xButtonQueue) to send a message from the button task to the LED (prvled) task to indicate 

which other LED to toggle. The xButtonQueue depth is set to 10 meaning that if a button is 

pressed faster than the LEDs cab be toggled, up to 10 press operations can stacked up and will 

eventually be processed. 

The xButtonQueue task has parameters passed to it that indicates which button to monitor 

(port and bit), which PORT B LED to toggle and which PORT B LED to have the prvled task 

toggle.  

The xButtonQueue task is created three times with parameters to specify BTN1, BTN2, and 

BTN3. The prvled task is pased parameter to indicate which PORT to use for toggling the LEDs. 

When BTN1 is pressed, the xButtonQueue task toggles LEDA each 100ms and sends a 

qMwessage to the prvled task to toggle LEDB. The prvled task has a delay of 250ms.  Hence 

while BTN1 is pressed LEDA blinks on or off each 100ms indicating that a message is being 

sent to the prvled task. The prvled task is taking messages out of the queue slower than 

messages are being put in to the queue buffer. When the queue buffer is filled, both LED A and 

LEDB will blink at the 250 ms rate. This shows that as the prvled task reads a message from the 

queue buffer, memory is available for the prvled task to place another message into the queue 

buffer. Once BTN1 is released, LEDA stops blinking but LEDB continues to blink until the queue 

buffer is emptied. All three button tasks use the same message queue to pass data the prvled 

task. Hence holding down two or three buttons fills the queue buffer faster. 

The above description applied to BTN2 that controls LEDC and LEDD and also BTN3 that 
controls LEDE and LEDF. See the declarations for Button1 through Button3 in main.  This 
operation uses the idle hook task to determine when the scheduler has idle time. The 
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configUSE_IDLE_HOOK bit in FreeRTOSconfig.h must be set to 1. LEDH is set each time the 
OS enters the idle state and is turned off whenever the OS returns to an application task. 

 
Note: This program DOES NOT perform a "press on - press off" operation.  This functionality is 
left to the motivated student as an assignment.   

RD5 – Stepper Motor Control Using Timer Interrupts 

This program controls a stepper motor based upon the status of BTN1 and BTN2.  The Button 
task (prvButtons) detects a change of button status, decodes the button controls, and 
determines the values of step delay, direction, and step mode.  These values are passed via a 
queue to the stepper motor control task (prvStepperStep).  The stepper motor control task is 
blocked from execution until a semaphore is sent from the Timer 3 ISR. The queue for 
messages from the button detection task is checked each step to determine if new operating 
parameters have been set by pressing BTN1 or BTN2. 

  
The operation uses the idle hook task to determine when the scheduler has idle time. The 
configUSE_IDLE_HOOK bit in FreeRTOSconfig.h must be set to 1. LEDD is set each time idle 
hook is run. The button and stepper motor control task reset LEDD when resumed. 

 
LEDA is toggled each time the Timer3 ISR sends a semaphore to the stepper motor step task 
(prvStepperStep). LEDB is toggled each time a step is taken. The button task checks for a 
button press then executes a 100ms delay using “vTaskDelay”.  The scheduler stays in the idle 
task and does not go back to the button task (prvButtons) until the delay period has expired or a 
semaphore is received by the stepper motor control task (prvStepperStep). Hence, most of the 
processors execution time is spent in the idle mode as illustrated in Figure 7. 

 

 
Figure 7. Stepper motor control timing with idle time. 

 

A possible design modification is to control LED1 and LED2 when BTN1 and BTN2 are pressed. 
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RD6 – LCD Control Using Mutex Semaphores  

In this reference design a counter values is passed between two tasks each task increments the 
counter before passing it back. Each task sends a message to the LCD that is protected by a 
mutually exclusive (mutex) semaphore.  Commenting out the semaphore take and give 
instructions demonstrates how the LCD text gets messed up without using the device exclusion 
protection provided by the mutex. 

  

RD6a - I2C EEPROM Control Using Mutex Semaphores 

The purpose of this code is to program an I2Cwith 1024 bytes of randomly generated data 

starting at a random address and verify that the data was correctly saved. The specific lines of 

code that directly addresses each item in the specification list are identified in main.c.  Access to 

the LCD and EEPROM are protected by “mutex” semaphores. LEDH is used for idle task timing 

only. LEDA is used to time the data generation task. LEDB is used to time EEPROM write 

operation. LEDC is used to time the read memory task. 

 
Functional Specifications for RD6a I2C_EEPROM: 

a. RD6a RTOS Tasks 

i. BUTTON_DET:  

1.  Button press detect (BTN1) 

2. Operates in PUSH-ON PUSH-OFF 

ii.  Toggles LED1 

iii. Send queue message to DATA_GEN to initiate test when button is 

pressed 

b. DATA_GEN:  Generates random data array and write EEPROM  

i. Waits for BUTTON_DET message 

ii. Turns on LEDA 

iii. Generates 1024 byte random array and random bytes (module 256) and 

random starting address (modulo 32768). 

iv. Turns on LEDB 

v. Writes starting address in hexadecimal to line one of the LCD  (employes 

mutex semaphore #1. 

vi. Turns off LEDB 

vii. Sends 1024 bytes of random values and starting address to 

c. DATA_CHK task using queue. (suggestion: consider structure to pass data) 

i. Waits for results from DATA_CHK task 

ii. Turns off LEDA  

d. DATA_CHK: Reads EEPROM and compares with data sent from DATA_GEN. 

i. Waits for message queue from DATA_GEN task 

ii. Writes starting address in hexadecimal to line two of the LCD (employes 

mutex semaphore #1) 

iii. Turns on LEDC 

iv. Read EEPROM starting at address communicated by message 
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v. Turns off LEDC 

vi. Compares 1024 bytes of data received from DATA_GEN with data read 

from EEPROM 

vii. Writes either "PASSED" or "FAILED" to second line of LCD following the 

hexadecimal value of the starting address (employs mutex semaphore 

#1)) 

  

RD7  –  UART Control Using Interrupts in an FreeRTOS Environment 

 
This reference design demonstrates how to implement UART line base IO at 19200 BAUD.  
One task reads a character at a time and fills a buffer until a NL or CR character is detected or 
the buffer has reached its size limit.  The message is then sent to a task that sends the text 
string back to the UART. RX and TX interrupts are used to manage character based serial 
communications.  The serial communications uses UART 1 at 19200 BAUD N81. 
 
Note: You will not see anything on the terminal screen while entering text until you press the 
enter key unless you have the terminal setup for local echo characters. Lines of text echoed 
back to the terminal have CR, and LF appended. 

  

RD8 – TIMERS  

This reference design uses the same serial code as RD7 for the serial communications. A timer 
is started that starts a task at a specific interval.  The tick count is reported to the serial terminal 
each second. Timers.c and Timers.h must be added to this project 

  

RD8a – Stepper Motor Control using RTOS Timer API 

An example of FreeRTOS running on an chipKITTM Pro MX7  using  a PIC32MX7 processor. 
This example controls the stepper motor similar to RD 5 except that the RTOS timer API is used 
instead of a timer interrupt to control the speed of the stepper motor. The stepper motor step 
interval is changes using the  xTimerChangePeriod statement in the  prvButtons task. Note the 
additions to FreeRTOSConfigure.h for configurations necessary to use timers.   

  

RD9 – Real Time Performance Statistics  

This program implements the Stepper motor control problem using a RTOS. The stepper motor 
speed, direction and mode are controlled at 6 pre-defined operating points based upon the 
conditions of the BTN1, BTN2, and BTN3 controls. All buttons operate as push on - push off 
switches. The stepper motor can be controlled to speeds that resolve to whole milliseconds per 
step intervals from 0.1 RPM to 60 RPM.  The serial port uses the PIC32 UART1 at 19200 
BAUD. Statics are sent to the serial terminal using a serial Tx queue one line at a time 
whenever LED1, LED2 and LED3 are all off. 
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Notes: This version implements the vTaskGetRundTimeStats api that gathers the run time 
statistics and reports them whenever the buttons are sent to the 0 condition. the implementation 
suggested in FreeRTOS documentation requires the following changes: 
1.      You must use the file FreeRTOSConfig.h modified for the MPLAB X PIC32 environment. 
Modify to be:  

#define configGENERATE_RUN_TIME_STATS 1 
 
2. add the lines in task.h immediately following the “#include” statements: 

#if configGENERATE_RUN_TIME_STATS == 1 
extern volatile unsigned long ulHighFrequencyTimerTicks;  
#endif 

 

RD10 – LCD Control with RTOS Statistics  

This example passes a counter between two tasks. Each task increments the counter before 
passing it back. If BTN1 is pressed, a message is set to the LCD at the rate of one message per 
1/2 second. Since the LCD is set for a 2 second the LCD queue is soon filled.  Once the LCD 
queue is filled, the ping ponging is slowed from the 1/2 second rate to the LCD 2 second rate.  
When BTN1 is released, the LCD continues to update the display until the LCD queue is empty.  
When BTN is pressed, the statics are sent to the   serial terminal using a serial Tx queue one 
line at a time. See notes for RD9. 
 

Application Software Architecture 

Figure 8 is the data flow model for the stepper motor application. The value of this model is that 
it assists the developer to partition the problem in to single task operations and establish the 
required interfaces.  Sequence and timing are not an element of this diagram; only the 
operations and their relationship to other operations. Adding variables names that that are 
communicated to the diagram allows the developer to write code that implements the function 
structure. 
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Figure 8. Stepper Motor software model - Data Flow Diagram 

 
Figure 9 shows the control flow diagram for this tutorial. Control flow diagrams describe the 
order in which tasks or operations need to be completed. Control flow diagrams can use 
hierarchy to allow graphical representations of control flow at the detail level needed to facilitate 
understanding. For simplicity, only four graphical elements are needed for control flow 
diagrams: arrows that indicate program execution flow, the box that represents a process, a 
diamond that represents decisions, and circles that allow program paths to be joined. The rules 
are simple:  arrows go between boxes, circles and diamonds, boxes have single inputs and 
single outputs, circles join program paths and can have multiple inputs but only one output, and 
diamonds have single inputs but two or three outputs. Diamonds show how decisions are made 
to choose which one of multiple paths is to be selected.  Diamonds always ask a question and 
the outputs represent the possible answers.  The answers are either TRUE or FALSE or 
GREATER THAN, EQUAL TO, or LESS THAN. The path to any process is to be uniquely 
deterministic. Each one of the process blocks and be further modeled that provides greater 
detail of how the process is implemented.      
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Figure 9. Control Flow Diagram for the stepper motor control using polling 

 

For example, the stepper motor finite state machine process (SM_FSM) can be further modeled 
using a state diagram as shown in Figure 10. Each state has a specific output code that control 
the amplitude and polarity of the voltage applied to one or more of the motor coils.2,3 The 
parameters shown in the brackets are the conditions required for a given transition that is 
triggered by a time event.   
 

                                                           
2
 http://www.freescale.com/webapp/sps/site/overview.jsp?code=WBT_MOTORSTEPTUT_WP  

3
 http://en.wikipedia.org/wiki/Stepper_motor  

http://www.freescale.com/webapp/sps/site/overview.jsp?code=WBT_MOTORSTEPTUT_WP
http://en.wikipedia.org/wiki/Stepper_motor
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Figure 10.  Stepper Motor control FSM 

 

Hardware – Stepper Motor Control   
 

The example provided with this tutorial targets the PIC32 processor running on the Digilent PIC32 MX7ck 
microcontroller board.

4
 The example demonstrates the speed, direction, and step mode control of stepper 

motor that is the culmination of the laboratory exercises used in the chipKITTM Pro MX7 Projects 
1,through 7.   Those projects introduced topics covering digital IO, hardware and software timers, 
interrupts, handshaking and LCD interface using the Peripheral Master Port (PMP), serial 
communications, and finite state machine algorithms.  If you are unfamiliar with microcontroller design 
and programming, it is strongly recommended that Projects 0 through 7 be completed prior to attempting 
to implement the design using RTOS. The hardware configuration for this tutorial is shown in Figure 21 
with the parts list is provided in the appendix.  The buttons and LCD provide local control and monitoring 
while the connection to a serial terminal provide for remote operations. 

  

 

                                                           
4
 http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,396,986&Prod=CEREBOT-MX7CK  

http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,396,986&Prod=CEREBOT-MX7CK
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APPENDIX A - FreeRTOS Development for the ChipKIT
TM 

Pro 
MX7 

 

This appendix describes a method for creating the directory structure for integrating FreeRTOS 
with a given application. Once the directory structure is set up, new applications can be 
developed with minimal effort.  Although the source code is provided for all FreeRTOS library of 
files, it is recommended that the user not modify any of the FreeRTOS code. The FreeRTOS 
source code is compiled at some point in the project build process. The initial build of a 
FreeRTOS project may take a bit longer than subsequent project builds.  
 

A. The MPLAB X Directory Structure 
 

The FreeRTOS port is the software support can be downloaded off the web at 
http://www.freertos.org/.   Figure 11 shows the directory structure that supports the development 
using the Microchip MPLAB X 1.8x development environment.  New projects are added at the 
level show for PROJ1 and PROJ2.  
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SourceMy Projects Documentation

Proj 1 Common

include
Other 

files

Proj 2

PDF 

files C Files

config_bits.h

include

Portable

MemMang

heap_2.c

MPLAB

PIC32MX

C and 

ASM 

files

Project 

files

Project 

files

include 

files

include 

files

 
Figure 11. FreeRTOS project development directory structure 

 

http://www.freertos.org/
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B. Steps to create a new FreeRTOS project 

By far, the easiest way to generate a FreeRTOS project is to use the Import Legacy 
MPLAB project wizard. Another way is to save one of the reference designs to a new 
project folder. Generating an MPLAB X project from  
 
Step I: Create a new MPLAB X project at the directory level shown for Proj 1 or Proj 2 in 
Figure 11. 
 
Step II: Copy into FreeRTOSConfig.h, config_bits.h, chipKIT_Pro_MX7.h, and 
chipKIT_Pro_MX7.c files into the project directory. 
 
Step III: Add FreeRTOSConfig.h , config_bits.h and chipKIT_Pro_MX7.h to the project 
Header Files 
 
Step IV: Add chipKIT_Pro_MX7.c to the project Source Files. 
 
Step V: Create a new logical folder under Source Files – FreeRTOS. 
 
Step VI: Add all C files in the My_RTOS_Directory/Source directory. 
 
Step VII: Add heap_2.c from the My_RTOS_Directory/Source/MemMang directory. 
(croutine.c, list.c, queue.c, task.c, and timers.c) 
 
Step VIII: Add port.c and port_asm.asm from the Source/MPLAB/PIC32 directory. 
 
Step IX: Create a new file called main.c under Source Files.  If required, create a new 
file called main.h under Headers Files. 
 
Step X: Verify that the project window appears as shown in the following figure. 
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Figure 12. FreeRTOS directory structure 

 
Step XI: Highlight the project Name as shown in Figure 12.  Right click the mouse button 
and select Properties from the bottom of the drop down list. This will result in displaying 
the project options as shown in Figure 13 based on the selections made during the 
creation of the project.  
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Figure 13. Project Properties window. 

 

Step XII: The following steps modify the project Make File for the XC32 assembler.  
 
Step XII a: Click on the bulleted item labeled xc32-as. A window as shown in Figure 14 is now 
displayed. 
 
Step XII b. Click on the […] box beside the line Preprocessor Include directories. Enter the text 
as shown in Figure 15. 
 
Step XII c. Click on the […] box beside the line Assembler Include directories. Enter the text as 
shown in Figure 16. 
 
Step XII d. Add the text for the entry box for  Advanced options: -gdwarf-2 
 
Step XII e. Click on the box labeled Generate Command Line. The text in the display window 
should read: --gdwarf-2 -I"../../common/include" -I"../../../Source/include" -
I"../../../Source/portable/mplab/pic32mx" -I".." -I"../../../Source/portable/mplab/pic32mx",-I".. as 
shown in Figure 17.  
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Figure 14. Project Properties XC32-as configuration window 

 
 

 
Figure 15. Assembler preprocessor include 

directory window 
 

 
Figure 16. Assembler include directory window 
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Figure 17. Completed Project Properties window for xc32-as after configuration 

 

Step XIII: The following steps modify the project Make File for the XC32 C compiler. 
 
Step XIII a:  Click on the bulleted item labeled xc32-gcc shown in Figure 13. The window shown 
in Figure 18 will now be displayed. 
 
Step XII c. Click on the […] box beside the line Include directories. Enter the text as shown in 
Figure 19. 
 
Step XII d. After completing the Include directories window, click on Generated Command Line. 
The text in the display box should read:  -g -I"../../common/include" -I"../../../source/include" -
I"../../../source/portable/mplab/pic32mx" -I".." as shown in Figure 20. 
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Figure 18. Project Properties XC32-gcc configuration window 

 

 
Figure 19. C compiler include directory window 
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Figure 20. Completed Project Properties window for xc32-as after configuration 
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APPENDIX B – Hardware Platform for FreeRTOS Reference 
Designs 
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Figure 21. Stepper Motor control hardware block diagram 
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Figure 22.  Stepper Motor Driver Module parts layout 

 


