Adrian Mouat

.allitebooks.coni

)
o
L
=
=
=
O
o
T
=
=
Ll
(a
<C
=
T
L
o
(Yp]
&)
=
>~
o
—l
(a
Ll
()
o
=2
<t
&)
=
o
o
—
Ll
=
Ll
(an)

O'REILLY"



http://www.allitebooks.org

O'REILLY"

Using Docker

Docker containers offer simple, fast and robust methods for developing,
distributing and running software, especially in dynamic and distributed
environments. With this hands-on guide, you'll learn why containers are so
important, what you'll gain by adopting Docker, and how to make it part of
your development process.

Ideal for developers, operations engineers, and system administrators—
especially those keen to embrace a DevOps approach—Using Docker will
take you from basics to running dozens of containers on a multi-host
system with networking and scheduling. The core of the book walks you
through the steps needed to develop, test, and deploy a web application
with Docker.

m Get started with Docker by building and deploying a simple
web application

m Use Continuous Deployment techniques to push your
application to production multiple times a day

m Learn various options and techniques for logging and
monitoring multiple containers

m Examine networking and service discovery: how do containers
find each other and how do you connect them?

m Orchestrate and cluster containers to address load-balancing,
scaling, failover, and scheduling

m Secure your system by following the principles of defense-in-
depth and least privilege

m Exploit containers to build microservice architectures

Adrian Mouat is Chief Scientist at Container Solutions. He's worked on a wide
range of software projects, from small web apps to large-scale data analysis
software.

“Using Docker is a
detailed practical
guide for the
Docker ecosystem
as containerized
microservice
applications move
from dev/test to

production.”

— Adrian Cockcroft
Technology Fellow, Battery Ventures

“Using Docker is a deep
and comprehensive
overview of Docker
and the container
ecosystem. A practical
focus with lots of
examples makes it easy
to apply the concepts
and techniques to real

projects.”

—PiniReznik
CTO, Container Solutions

SYSTEM ADMINISTRATION

US $59.99 CAN $68.99
ISBN: 978-1-491-91576-9

JORTATOIONR

7814911915769

vww allitebooks.conl

Twitter: @oreillymedia
facebook.com/oreilly


http://www.allitebooks.org

Using Docker

Adrian Mouat

Beijing + Boston + Farnham - Sebastopol + Tokyo KOA{={|HAE

vww allitebooks.cond



http://www.allitebooks.org

Using Docker
by Adrian Mouat

Copyright © 2016 Adrian Mouat. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Brian Anderson Indexer: WordCo Indexing Services
Production Editor: Melanie Yarbrough Interior Designer: David Futato
Copyeditor: Christina Edwards Cover Designer: Randy Comer
Proofreader: Amanda Kersey lllustrator: Rebecca Demarest
December 2015: First Edition

Revision History for the First Edition
2015-12-07:  First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491915769 for release details.

The O'Reilly logo is a registered trademark of O’'Reilly Media, Inc. Using Docker, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-491-91576-9
[LST]

vww allitebooks.cond



http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491915769
http://www.allitebooks.org

To those who try, whether they fail or succeed.

vww allitebooks.cond



http://www.allitebooks.org

vww allitebooks.cond



http://www.allitebooks.org

Table of Contents

vww allitebooks.cond

Preface. .o Xi
Partl. Background and Basics
. The Whatand Why of Containers. ............ooviiiiiiiiiiiiiiiiiieininnnennn. 3
Containers Versus VMs 4
Docker and Containers 6
Docker: A History 8
Plugins and Plumbing 10
64-Bit Linux 10
dnstallation........ooo 13
Installing Docker on Linux 13
Run SELinux in Permissive Mode 14
Running Without sudo 15
Installing Docker on Mac OS or Windows 15
A Quick Check 17
B 3 ) (- £ 19
Running Your First Image 19
The Basic Commands 20
Building Images from Dockerfiles 24
Working with Registries 27
Private Repositories 29
Using the Redis Ofticial Image 30
Conclusion 33
v


http://www.allitebooks.org

4. Docker Fundamentals...............oooiiiiiiiii 35
The Docker Architecture 35
Underlying Technologies 36
Surrounding Technologies 37
Docker Hosting 39
How Images Get Built 39
The Build Context 39
Image Layers 41
Caching 43
Base Images 44
Dockerfile Instructions 46
Connecting Containers to the World 49
Linking Containers 49
Managing Data with Volumes and Data Containers 51
Sharing Data 53
Data Containers 54
Common Docker Commands 55
The run Command 56
Managing Containers 59
Docker Info 62
Container Info 62
Dealing with Images 63
Using the Registry 66
Conclusion 67
Partll. The Software Lifecycle with Docker
5. Using Dockerin Development.........cccoviiiiiiiiiiiiiiiiiiiiernneeennnns n
Say “Hello World!” 71
Automating with Compose 81
The Compose Workflow 83
Conclusion 84
6. Creatinga Simple Web App.....covvniiiiiii i i i it i 85
Creating a Basic Web Page 86
Taking Advantage of Existing Images 88
Add Some Caching 93
Microservices 96
Conclusion 97

vi

| Table of Contents

vww allitebooks.cond



http://www.allitebooks.org

. Image Distribution. ........cooiiiiiiiiii i e 99

Image and Repository Naming 99
The Docker Hub 100
Automated Builds 102
Private Distribution 104
Running Your Own Registry 104
Commerical Registries 111
Reducing Image Size 111
Image Provenance 113
Conclusion 114

. Continuous Integration and Testing with Docker...................ccovvvvnnn.n. 115
Adding Unit Tests to Identidock 116
Creating a Jenkins Container 121
Triggering Builds 128
Pushing the Image 129
Responsible Tagging 129
Staging and Production 131
Image Sprawl 131
Using Docker to Provision Jenkins Slaves 132
Backing Up Jenkins 132
Hosted CI Solutions 133
Testing and Microservices 133
Testing in Production 135
Conclusion 135
. Deploying Containers. .......oovvuiiiuirinireiieiieriiireinienieenierannes 137
Provisioning Resources with Docker Machine 138
Using a Proxy 141
Execution Options 147
Shell Scripts 148
Using a Process Manager (or systemd to Rule Them All) 150
Using a Configuration Management Tool 153
Host Configuration 157
Choosing an OS 157
Choosing a Storage Driver 157
Specialist Hosting Options 160
Triton 160
Google Container Engine 162
Amazon EC2 Container Service 162
Giant Swarm 165
Persistent Data and Production Containers 167
Table of Contents | vii

vww allitebooks.cond



http://www.allitebooks.org

Sharing Secrets 167
Saving Secrets in the Image 167
Passing Secrets in Environment Variables 168
Passing Secrets in Volumes 168
Using a Key-Value Store 169

Networking 170

Production Registry 170

Continuous Deployment/Delivery 171

Conclusion 171

10. Loggingand Monitoring. ... .....oeuueeunirenieenneeeneeeneeenneenneeennnens 173

Logging 174
The Default Docker Logging 174
Aggregating Logs 176
Logging with ELK 176
Docker Logging with syslog 187
Grabbing Logs from File 193

Monitoring and Alerting 194
Monitoring with Docker Tools 194
cAdvisor 196
Cluster Solutions 197

Commercial Monitoring and Logging Solutions 201

Conclusion 201

Partlll. Tools and Techniques
11. Networking and Service Discovery..........c.coovviiiiiiiiiiiiiiiiiiiennnnnens 205

Ambassadors 206

Service Discovery 210
eted 210
SkyDNS 215
Consul 219
Registration 223
Other Solutions 225

Networking Options 226
Bridge 226
Host 227
Container 228
None 228

New Docker Networking 228
Network Types and Plugins 230

viii

| Table of Contents

vww allitebooks.cond



http://www.allitebooks.org

Networking Solutions 230

Overlay 231
Weave 233
Flannel 237
Project Calico 242
Conclusion 246
. Orchestration, Clustering, and Management............ccovvviiiiiiiinnnennn. 249
Clustering and Orchestration Tools 250
Swarm 251
Fleet 257
Kubernetes 263
Mesos and Marathon 271
Container Management Platforms 282
Rancher 282
Clocker 283
Tutum 285
Conclusion 286
. Security and Limiting Containers. ..........cooveiiiiiiiriinrennienneennnens 289
Things to Worry About 290
Defense-in-Depth 292
Least Privilege 292
Securing Identidock 293
Segregate Containers by Host 295
Applying Updates 296
Avoid Unsupported Drivers 299
Image Provenance 300
Docker Digests 300
Docker Content Trust 301
Reproducible and Trustworthy Dockerfiles 305
Security Tips 307
Set a User 307
Limit Container Networking 309
Remove Setuid/Setgid Binaries 311
Limit Memory 312
Limit CPU 313
Limit Restarts 314
Limit Filesystems 314
Limit Capabilities 315
Apply Resource Limits (ulimits) 316
Run a Hardened Kernel 318

Table of Contents | ix



Linux Security Modules
SELinux
AppArmor
Auditing
Incident Response
Future Features
Conclusion

318
319
322
322
323
324
324

X

Table of Contents



Preface

Containers are a lightweight and portable store for an application and its dependencies.

Written down by itself, this sounds dry and boring. But the process improvements
made possible by containers are anything but; used correctly, containers can be game-
changing. So persuasive is the lure of the architectures and workflows made possible
by containers that it feels like every major IT company has gone in a year from never
having heard of Docker or containers to actively investigating and using them.

The rise of Docker has been astonishing. I don’t remember any technology that has
had such a fast and profound effect on the IT industry. This book is my attempt to
help you understand why containers are so important, what you stand to gain from
adopting containerization and, most importantly, how to go about it.

Who Should Read This Book

This book tries to take a holistic approach to Docker, explaining the reasons for using
Docker and showing how to use it and how to integrate it into a software-
development workflow. The book covers the entire software lifecycle, from develop-
ment through to production and maintenance.

I have tried to avoid assuming too much of the reader beyond a basic knowledge of
Linux and software development in general. The intended readership is primarily
software developers, operations engineers, and system administrators (particularly
those keen to develop a DevOps approach), but technically informed managers and
enthusiasts should also be able to get something out of this book.

Why | Wrote This Book

I was in the fortunate position to learn about and use Docker while it was still in the
early stages of its meteoric rise. When the opportunity to write this book appeared, I
leapt at it with both hands. If my scribblings can help some of you to understand and

Xi



make the most of the containerization movement, I will have achieved more than I
have in years of developing software.

I truly hope that you enjoy reading this book and that it helps you on the path to
using Docker in your organization.

Navigating This Book

This book is organized roughly as follows:

Part I starts by explaining what containers are and why you should be interested
in them, before going into a tutorial chapter showing the basics of Docker. It ends
with a large chapter explaining the fundamental concepts and technology in
Docker, including an overview of the various Docker commands.

Part II explains how to use Docker in a software-development lifecycle. It starts
by showing how to set up a development environment, before building a simple
web application that is used as an ongoing example through the rest of Part II.
The chapter covers development, testing, and integration, as well as how to
deploy containers and how to effectively monitor and log a production system.

Part IIT goes into advanced details and the tools and techniques needed to run
multihost clusters of Docker containers safely and reliably. If you are already
using Docker and need to understand how to scale up or solve networking and
security issues, this is for you.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

Xii

Preface



This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

\

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/using-docker/.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless youre reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi-
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Using Docker by Adrian Mouat
(O’Reilly). Copyright 2016 Adrian Mouat, 978-1-491-91576-9”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Safari Books Online is an on-demand digital library that deliv-
‘ e ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Preface | xiii


https://github.com/using-docker/
mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’'Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf-
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/using-docker.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

I am immensely grateful for all the help, advice, and criticism I received during the
writing of this book. If I missed your name in the following list, please accept my
apologies; your contribution was appreciated whether I acted on it or not.

For their generous feedback, I would like to thank Ally Hume, Tom Sugden, Lukasz
Guminski, Tilaye Alemu, Sebastien Goasguen, Maxim Belooussov, Michael Boelen,

xiv | Preface


https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com
http://bit.ly/using-docker
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Ksenia Burlachenko, Carlos Sanchez, Daniel Bryant, Christoffer Holmstedt, Mike
Rathbun, Fabrizio Soppelsa, Yung-Jin Hu, Jouni Miikki, and Dale Bewley.

For technical conversations and input on specific technologies in the book, I would
like to thank Andrew Kennedy, Peter White, Alex Pollitt, Fintan Ryan, Shaun Cramp-
ton, Spike Curtis, Alexis Richardson, Ilya Dmitrichenko, Casey Bisson, Thijs
Schnitger, Sheng Liang, Timo Derstappen, Puja Abbassi, Alexander Larsson, and Kel-
sey Hightower. For allowing me to reuse monsterid.js, I would like to thank Kevin
Gaudin.

For all their help, I would like to thank the O’Reilly staff, in particular my editor Brian
Anderson and Meghan Blanchette, for starting the whole process.

Diogo Moénica and Mark Coleman—thanks to both of you for answering my last-
minute plea for help.

A particular shout-out has to go to two companies: Container Solutions and Cloud-
Soft. Jamie Dobson and Container Solutions kept me busy blogging and speaking at
events, and put me in contact with several people who had an impact on this book.
CloudSoft graciously allowed me to use their office during the writing of this book
and hosted the Edinburgh Docker meetup, both of which were very important to me.

For putting up with my obsession and moaning over the book, I would like to thank
all my friends and family; you know who you are (and are unlikely to read this any-

way).

Finally, I would like to thank the BBC 6 Music DJs who provided the soundtrack to
this book, including Lauren Laverne, Radcliffe and Maconie, Shaun Keaveny, and
Iggy Pop.

Preface | xv






PART |
Background and Basics

In the first part of this book, we'll start by taking look at what containers are and why
they are becoming so popular. This is followed by an introduction to Docker and the
key concepts you need to understand to make the most of containers.



vww allitebooks.cond



http://www.allitebooks.org

CHAPTER 1
The What and Why of Containers

Containers are fundamentally changing the way we develop, distribute, and run soft-
ware. Developers can build software locally, knowing that it will run identically
regardless of host environment—be it a rack in the IT department, a user’s laptop, or
a cluster in the cloud. Operations engineers can concentrate on networking, resour-
ces, and uptime and spend less time configuring environments and battling system
dependencies. The use and uptake of containers is increasing at a phenomenal rate
across the industry, from the smallest start ups to large-scale enterprises. Developers
and operations engineers should expect to regularly use containers in some fashion
within the next few years.

Containers are an encapsulation of an application with its dependencies. At first
glance, they appear to be just a lightweight form of virtual machines (VMs)—like a
VM, a container holds an isolated instance of an operating system (OS), which we
can use to run applications.

However, containers have several advantages that enable use cases that are difficult or
impossible with traditional VMs:

o Containers share resources with the host OS, which makes them an order of
magnitude more efficient. Containers can be started and stopped in a fraction of
a second. Applications running in containers incur little to no overhead com-
pared to applications running natively on the host OS.

o The portability of containers has the potential to eliminate a whole class of bugs
caused by subtle changes in the running environment—it could even put an end
to the age-old developer refrain of “but it works on my machine!”

o The lightweight nature of containers means developers can run dozens of con-
tainers at the same time, making it possible to emulate a production-ready dis-




tributed system. Operations engineers can run many more containers on a single
host machine than using VMs alone.

« Containers also have advantages for end users and developers outside of deploy-
ing to the cloud. Users can download and run complex applications without
needing to spend hours on configuration and installation issues or worrying
about the changes required to their system. In turn, the developers of such appli-
cations can avoid worrying about differences in user environments and the avail-
ability of dependencies.

More importantly, the fundamental goals of VMs and containers are different—the
purpose of a VM is to fully emulate a foreign environment, while the purpose of a
container is to make applications portable and self-contained.

Containers Versus VMs

Though containers and VMs seem similar at first, there are some important differ-
ences, which are easiest to explain using diagrams.

Figure 1-1 shows three applications running in separate VMs on a host. The hypervi-
sor' is required to create and run VMs, controlling access to the underlying OS and
hardware as well as interpreting system calls when necessary. Each VM requires a full
copy of the OS, the application being run, and any supporting libraries.

In contrast, Figure 1-2 shows how the same three applications could be run in a con-
tainerized system. Unlike VMs, the host’s kernel® is shared with the running contain-
ers. This means that containers are always constrained to running the same kernel as
the host. Applications Y and Z use the same libraries and can share this data rather
than having redundant copies. The container engine is responsible for starting and
stopping containers in a similar way to the hypervisor on a VM. However, processes
running inside containers are equivalent to native processes on the host and do not
incur the overheads associated with hypervisor execution.

Both VMs and containers can be used to isolate applications from other applications
running on the same host. VMs have an added degree of isolation from the hypervi-
sor and are a trusted and battle-hardened technology. Containers are comparatively
new, and many organizations are hesitant to completely trust the isolation features of
containers before they have a proven track record. For this reason, it is common to

1 The diagram depicts a type 2 hypervisor, such as Virtualbox or VMWare Workstation, which runs on top of a
host OS. Type 1 hypervisors, such as Xen, are also available where the hypervisor runs directly on top of the
bare metal.

2 The kernel is the core component in an OS and is responsible for providing applications with essential system

functions related to memory, CPU, and device access. A full OS consists of the kernel plus various system
programs, such as init systems, compilers, and window managers.

4 | Chapter 1: The What and Why of Containers



find hybrid systems with containers running inside VMs in order to take advantage
of both technologies.

M1 M2 VM3

App X AppY AppZ

Libs A Libs B Libs B

Guest Guest Guest
0S 0S 0S

Hypervisor

Host 0S

Hardware

Figure 1-1. Three VMs running on a single host

(o1 (02 (03

App X AppY AppZ

Libs A Libs B

Container Engine

Host 0S

Hardware

Figure 1-2. Three containers running on a single host

Containers VersusVMs | 5



Docker and Containers

Containers are an old concept. For decades, UNIX systems have had the chroot com-
mand that provides a simple form of filesystem isolation. Since 1998, FreeBSD has
had the jail utility, which extended chroot sandboxing to processes. Solaris Zones
offered a comparatively complete containerization technology around 2001 but was
limited to the Solaris OS. Also in 2001, Parrallels Inc, (then SWsoft) released the
commercial Virtuozzo container technology for Linux and later open sourced the
core technology as OpenVZ in 2005.° Then Google started the development of
CGroups for the Linux kernel and began moving its infrastructure to containers. The
Linux Containers (LXC) project started in 2008 and brought together CGroups, ker-
nel namespaces, and chroot technology (among others) to provide a complete con-
tainerization solution. Finally, in 2013, Docker brought the final pieces to the
containerization puzzle, and the technology began to enter the mainstream.

Docker took the existing Linux container technology and wrapped and extended it in
various ways—primarily through portable images and a user-friendly interface—to
create a complete solution for the creation and distribution of containers. The Docker
platform has two distinct components: the Docker Engine, which is responsible for
creating and running containers; and the Docker Hub, a cloud service for distributing
containers.

The Docker Engine provides a fast and convenient interface for running containers.
Before this, running a container using a technology such as LXC required significant
specialist knowledge and manual work. The Docker Hub provides an enormous
number of public container images for download, allowing users to quickly get
started and avoid duplicating work already done by others. Further tooling developed
by Docker includes Swarm, a clustering manager; Kitematic, a GUI for working with
containers; and Machine, a command-line utility for provisioning Docker hosts.

By open sourcing the Docker Engine, Docker was able to grow a large community
around Docker and take advantage of public help with bug fixes and enhancements.
The rapid rise of Docker meant that it effectively became a de facto standard, which
led to industry pressure to move to develop independent formal standards for the
container runtime and format. In 2015, this culminated in the establishment of the

Open Container Initiative, a “governance structure” sponsored by Docker, Microsoft,
CoreOS, and many other important organizations, whose mission is to develop such
a standard. Docker’s container format and runtime forms the basis of the effort.

The uptake of containers has largely been driven by developers, who for the first time
were given the tools to use containers effectively. The fast start-up time of Docker

3 OpenVZ never achieved mass adoption, possibly because of the requirement to run a patched kernel.

6 | Chapter 1: The What and Why of Containers



containers is essential to developers who crave quick and iterative development cycles
where they can promptly see the results of code changes. The portability and isolation
guarantees of containers ease collaboration with other developers and operations;
developers can be sure their code will work across environments, and operations can
focus on hosting and orchestrating containers rather than worrying about the code
running inside them.

The changes brought about by Docker are significantly changing the way we develop
software. Without Docker, containers would have remained in the shadows of IT for
a long time to come.

The Shipping Metaphor

The Docker philosophy is often explained in terms of a shipping-container metaphor,
which presumably explains the Docker name. The story normally goes something like
this:

When goods are transported, they have to pass through a variety of different means,
possibly including trucks, forklifts, cranes, trains, and ships. These means have to be
able to handle a wide variety of goods of different sizes and with different require-
ments (e.g., sacks of coffee, drums of hazardous chemicals, boxes of electronic goods,
fleets of luxury cars, and racks of refrigerated lamb). Historically, this was a cumber-
some and costly process, requiring manual labor, such as dock workers, to load and
unload items by hand at each transit point (Figure 1-3).

The transport industry was revolutionized by the introduction of the intermodal con-
tainer. These containers come in standard sizes and are designed to be moved
between modes of transport with a minimum of manual labor. All transport machi-
nery is designed to handle these containers, from the forklifts and cranes to the
trucks, trains, and ships. Refrigerated and insulated containers are available for trans-
porting temperature sensitive goods, such as food and pharmaceuticals. The benefits
of standardization also extend to other supporting systems, such as the labeling and
sealing of containers. This means the transport industry can let the producers of
goods worry about the contents of the containers so that it can focus on the move-
ment and storage of the containers themselves.

The goal of Docker is to bring the benefits of container standardization to IT. In
recent years, software systems have exploded in terms of diversity. Gone are the days
of a LAMP* stack running on a single machine. A typical modern system may include
Javascript frameworks, NoSQL databases, message queues, REST APIs, and backends
all written in a variety of programming languages. This stack has to run partly or
completely on top of a variety of hardware—from the developer’s laptop and the in-
house testing cluster to the production cloud provider. Each of these environments is

4 This originally stood for Linux, Apache, MySQL, and PHP—common components in a web application.

Docker and Containers | 7



different, running different operating systems with different versions of libraries on
different hardware. In short, we have a similar issue to the one seen by the transport
industry—we have to continually invest substantial manual effort to move code
between environments. Much as the intermodal containers simplified the transporta-
tion of goods, Docker containers simplify the transportation of software applications.
Developers can concentrate on building the application and shipping it through test-
ing and production without worrying about differences in environment and depen-
dencies. Operations can focus on the core issues of running containers, such as
allocating resources, starting and stopping containers, and migrating them between
servers.

Figure 1-3. Dockers working in Bristol, England, in 1940 (by Ministry of Information
Photo Division Photographer)

Docker: A History

In 2008, Solomon Hykes founded dotCloud to build a language-agnostic Plaftform-
as-a-Service (PaaS) offering. The language-agnostic aspect was the unique selling
point for dotCloud—existing PaaSs were tied to particular sets of languages (e.g.,

8 | (Chapter 1: The What and Why of Containers



Heroku supported Ruby, and Google App Engine supported Java and Python). In
2010, dotCloud took part in Y Combinator accelerator program, where it was were
exposed to new partners and began to attract serious investment. The major turning
point came in March 2013, when dotCloud open sourced Docker, the core building
block of dotCloud. While some companies may have been scared that they were giv-
ing away their magic beans, dotCloud recognized that Docker would benefit enor-
mously from becoming a community-driven project.

Early versions of Docker were little more than a wrapper around LXC paired with a
union filesystem, but the uptake and speed of development was shockingly fast.
Within six months, it had more than 6,700 stars on GitHub and 175 nonemployee
contributors. This led dotCloud to change its name to Docker, Inc. and to refocus its
business model. Docker 1.0 was announced in June 2014, just 15 months after the 0.1
release. Docker 1.0 represented a major jump in stability and reliability—it was now
declared “production ready;” although it had already seen production use in several
companies, including Spotify and Baidu. At the same time, Docker started moving
toward being a complete platform rather than just a container engine, with the launch
of the Docker Hub, a public repository for containers.

Other companies were quick to see the potential of Docker. Red Hat became a major
partner in September 2013 and started using Docker to power its OpenShift cloud
offering. Google, Amazon, and DigitalOcean were quick to offer Docker support on
their clouds, and several startups began specializing in Docker hosting, such as Stack-
Dock. In October 2014, Microsoft announced that future versions of Windows Server
would support Docker, representing a huge shift in positioning for a company tradi-
tionally associated with bloated enterprise software.

DockerConEU in December 2014 saw the announcement of Docker Swarm, a clus-
tering manager for Docker and Docker Machine, a CLI tool for provisioning Docker
hosts. This was a clear signal of Docker’s intention to provide a complete and integra-
ted solution for running containers and not allowing themselves to be restricted to
only providing the Docker engine.

Also that December, CoreOS announced the development of rkt, its own container
runtime, and the development of the appc container specification. In June 2015, dur-
ing DockerCon in San Francisco, Solomon Hykes from Docker and Alex Polvi from
CoreOS announced the formation of the Open Container Initiative (then called the
Open Container Project) to develop a common standard for container formats and
runtimes.

Also in June 2015, the FreeBSD project announced that Docker was now supported
on FreeBSD, using ZFS and the Linux compatibility layer. In August 2015, Docker
and Microsoft released a “tech preview” of the Docker Engine for Windows server.

Docker: AHistory | 9



With the release of Docker 1.8, Docker introduced the content trust feature, which
verifies the integrity and publisher of Docker images. Content trust is a critical com-
ponent for building trusted workflows based on images retrieved from Docker regis-
tries.

Plugins and Plumbing

As a company, Docker Inc. has always been quick to recognize it owes a lot of its suc-
cess to the ecosystem. While Docker Inc. was concentrating on producing a stable,
production-ready version of the container engine, other companies such as CoreOS,
WeaveWorks, and ClusterHQ were working on related areas, such as orchestrating
and networking containers. However, it quickly became clear that Docker Inc., was
planning to provide a complete platform out of the box, including networking, stor-
age, and orchestration capabilities. In order to encourage continued ecosystem
growth and ensure users had access to solutions for a wide range of use cases, Docker
Inc. announced it would create a modular, extensible framework for Docker where
stock components could be swapped out for third-party equivalents or extended with
third-party functionality. Docker Inc. called this philosophy “Batteries Included, But
Replaceable,” meaning that a complete solution would be provided, but parts could be
swapped out.”

At the time of writing, the plugin infrastructure is in its infancy, but is available.
There are several plugins already available for networking containers and data man-
agement.

Docker also follows what it calls the “Infrastructure Plumbing Manifesto,” which
underlines its commitment to reusing and improving existing infrastructure compo-
nents where possible and contributing reusable components back to the community
when new tools are required. This led to the spinning out of the low-level code for
running containers into the runC project, which is overseen by the OCI and can be
reused as the basis for other container platforms.

64-Bit Linux

At the time of writing, the only stable, production-ready platform for Docker is 64-bit
Linux. This means your computer will need to run a 64-bit Linux distribution, and all
your containers will also be 64-bit Linux. If you are a Windows or Mac OS user, you
can run Docker inside a VM.

5 Personally, I've never liked the phrase; all batteries provide much the same functionality and can only be
swapped with batteries of the same size and voltage. I assume the phrase has its origins in Python’s “Batteries
Included” philosophy, which it uses to describe the extensive standard library that ships with Python.

10 | Chapter1: The What and Why of Containers



Support for other native containers on other platforms, including BSD, Solaris, and
Windows Server, is in various stages of development. Since Docker does not natively
do any virtualization, containers must always match the host kernel—a Windows
Server container can only run on a Windows Server host, and a 64-bit Linux con-
tainer will only run on a 64-bit Linux host.

Microservices and Monoliths

One of the biggest use cases and strongest drivers behind the uptake of containers are
microservices.

Microservices are a way of developing and composing software systems such that
they are built out of small, independent components that interact with one another
over the network. This is in contrast to the traditional monolithic way of developing
software, where there is a single large program, typically written in C++ or Java.

When it comes to scaling a monolith, commonly the only choice is to scale up, where
extra demand is handled by using a larger machine with more RAM and CPU power.
Conversely, microservices are designed to scale out, where extra demand is handled
by provisioning multiple machines the load can be spread over. In a microservice
architecture, it's possible to only scale the resources required for a particular service,
focusing on the bottlenecks in the system. In a monolith, it’s scale everything or noth-
ing, resulting in wasted resources.

In terms of complexity, microservices are a double-edged sword. Each individual
microservice should be easy to understand and modify. However, in a system com-
posed of dozens or hundreds of such services, the overall complexity increases due to
the interaction between individual components.

The lightweight nature and speed of containers mean they are particularly well suited
for running a microservice architecture. Compared to VMs, containers are vastly
smaller and quicker to deploy, allowing microservice architectures to use the mini-
mum of resources and react quickly to changes in demand.

For more information on microservices, see Building Microservices by Sam Newman
(O’Reilly) and Martin Fowler’s Microservice Resource Guide.

64-BitLinux | 11


http://shop.oreilly.com/product/0636920033158.do
http://martinfowler.com/microservices/

vww allitebooks.cond



http://www.allitebooks.org

CHAPTER 2
Installation

This chapter will briefly cover the steps required to install Docker. There are a few
gotchas, depending on which operating system youre using; but with any luck it,
should be a straightforward and painless affair. If you already have a recent version of
Docker installed (say 1.8 or newer), you can safely skip to the next chapter.

Installing Docker on Linux

By far the best way to install Docker on Linux is through the installation script pro-
vided by Docker. While most of the major Linux distributions have their own pack-
ages, these tend to lag behind Docker releases, which is a serious issue, given the pace
of Docker development.

Docker Requirements

Docker doesn't have many requirements, but you do need to be
running a reasonably modern kernel (version 3.10 or above at the
time of writing). You can check this by running uname -r. If you
are using RHEL or CentOS, you will need version 7 or later.

Also remember that you need to be running on a 64-bit architec-
ture. You can check this by running uname -m; the result should be
x86_64.

You should be able to the use the script provided at https://get.docker.com to automat-
ically install Docker. The official instructions will tell you to simply run curl -sSL |
sh or wget -q0- | sh, and youre welcome to do that, but I recommend you inspect
the script before running it to verify you are happy with the changes it will make to
your system:

13


https://get.docker.com

$ curl https://get.docker.com > /tmp/install.sh
$ cat /tmp/install.sh

$ chmod +x /tmp/install.sh
$ [tmp/install.sh

The script will do a few checks, then install Docker using the appropriate package for
your system. It will also install some extra dependencies for security and filesystem
features if they are missing.

If you simply don’t want to use the installer, or you would like to use a different ver-
sion of Docker than the one provided by the installer, you can also download a binary
from the Docker website. The downside to this approach is that no checks for depen-
dencies will be done, and you will have to manually install updates. For more infor-
mation and links to binaries, see the Docker Binary page.

Tested with Docker 1.8

At the time of writing, Docker is at version 1.8. All commands have
been tested against this version.

Run SELinux in Permissive Mode

If you are running a Red Hat-based distribution, including RHEL, CentOS, and
Fedora, you will probably have the SELinux security module installed.

When getting started with Docker, I recommend you run SELinux in permissive
mode, which will log, rather than enforce, errors. If you run SELinux in enforcing
mode, you are likely to see various cryptic “Permission Denied” errors when running
examples from this book.

To check your SELinux mode, run sestatus and check the output. For example:

$ sestatus

SELinux status: enabled
SELinuxfs mount: /sys/fs/selinux
SELinux root directory: /etc/selinux
Loaded policy name: targeted
Current mode: enforcing (1)
Mode from config file: error (Success)
Policy MLS status: enabled

Policy deny_unknown status: allowed

Max kernel policy version: 28

O Ifyou see “enforcing” here, SELinux is enabled and enforcing rules.

To change SELinux into permissive mode, just run sudo setenforce 0.

14 | Chapter2: Installation


https://docs.docker.com/installation/binaries/

For more information on SELinux and why you should consider enabling it once you
are confident with Docker, see “SELinux”.

Running Without sudo

As Docker is a priviliged binary, by default, we need to prefix commands with sudo in
order for them to run. This quickly gets boring. We can get around this by adding our
user to the docker group. On Ubuntu, you should be able to do the following:

$ sudo usermod -aG docker

which will create the docker group, if it doesn't exist already, and add the current user.
You'll then need to log out and log in again. Other Linux distributions should be sim-
ilar.

You'll also need to restart the Docker service, which is distribution dependent. On
Ubuntu, this looks like:

$ sudo service docker restart

For the sake of brevity, this book omits sudo from all Docker commands.

Adding a user to the docker group is equivalent to giving that user
root privileges. As such, it has security implications you should be
“ aware of, especially if you are using a shared machine. For futher
\ information, see the Docker security page.

Installing Docker on Mac 0S or Windows

If you are using Windows or Mac OS, you will need some form of virtualization in
order to run Docker.! You can either download a full VM solution and follow the
Linux instructions to install Docker or install the Docker Toolbox, which includes the
minimal boot2docker VM as well as other Docker tools we will use in this book, such
as Compose and Swarm. If you use Homebrew to install applications on your Mac,
there is a brew recipe available for boot2docker; but in general, I recommend using
the official Toolbox installation to avoid issues.

Once the Toolbox is installed, you can access Docker by opening the Docker quick-
start terminal.? Alternatively, you can configure an existing terminal by entering the
following commands:

1 Windows and Docker have announced a joint initiative to support Docker on Windows Server. This will
allow Windows Server users to launch Windows-based images without virtualization.

2 The Docker Toolbox also includes Kitematic, a GUI for running Docker containers. We won’t cover Kitematic
in this book, but it is certainly worth investigating, especially when getting started with Docker.

Installing Docker on Mac 0S or Windows | 15


https://docs.docker.com/articles/security/
https://www.docker.com/toolbox

$ docker-machine start default
Starting VM...
Started machines may have new IP addresses. You may need to rerun the
“docker-machine env' command.
$ eval $(docker-machine env default)
which will set up your environment with the settings needed to access the Docker
Engine running in the VM.

Be aware of the following when using the Docker Toolbox:

o In the examples in this book, I assume Docker is running on the host machine. If
youre using the Docker Toolbox, this won't be the case. In particular, you will
need to change references to localhost to the IP address of the VM. For exam-

ple:
$ curl localhost:5000
will become something like:
$ curl 192.168.59.103:5000

You can easily discover the IP of the VM by running docker-machine ip default,
which allows for some automation:

$ curl $(docker-machine ip default):5000

« Mapped volumes between your local OS and the Docker container must be cross-
mounted inside the VM. The Docker Toolbox automates this to some extent, but
be aware that this is happening if you have issues when using Docker volumes.

 You may need to change settings inside the VM if you have special requirements.
The file /var/lib/boot2docker/profile inside the boot2docker VM has various set-
tings, including the Docker Engine configuration. You can also run your own
scripts after VM initialization by editing the /var/lib/boot2docker/bootlocal.sh file.
Refer to the boot2docker GitHub repository for full details.

If you have any problems following the examples in this book, try logging in to the
VM directly with docker-machine ssh default and running the commands from
there.

16 | Chapter2: Installation


https://github.com/boot2docker/boot2docker

Docker Experimental Channel

As well as the normal, stable build, Docker maintain an experimen-
tal build that contains the latest features for testing purposes. As
these features are still being discussed and developed, they are
likely to change significantly before making it into a stable build.
The experimental build should only be used for investigating new
features before they are officially released and should never be used
in production.

The experimental build can be installed on Linux using the script:

$ curl -sSL https://experimental.docker.com/ | sh

or by downloading a binary version from the Docker website. Note
that the build is updated nightly, and hashes are available for verify-
ing the download.

A Quick Check

Just to make sure everything is installed correctly and working, try running the
docker version command. You should see something like:

$ docker version

Client:

Version: 1.8.1

API version: 1.20

Go version: gol.4.2

Git commit:  di12ea79

Built: Thu Aug 13 02:35:49 UTC 2015
0S/Arch: 1inux/amd64

Server:

Version: 1.8.1

API version: 1.20

Go version: gol.4.2

Git commit:  d12ea79

Built: Thu Aug 13 02:35:49 UTC 2015
0S/Arch: 1inux/amd64

If so, you're all set and ready for the next chapter. If instead you get something like:

$ docker version

Client:

Version: 1.8.1

API version: 1.20

Go version: gol.4.2

Git commit: d12ea79

Built: Thu Aug 13 02:35:49 UTC 2015

0S/Arch: 1inux/amd64

Get http:///var/run/docker.sock/v1.20/version: dial unix /var/run/docker.sock:
no such file or directory.

AQuick Check | 17


http://bit.ly/1Q8g39C

* Are you trying to connect to a TLS-enabled daemon without TLS?

* Is your docker daemon up and running?
this means that the Docker daemon isn’t running (or the client can’t access it). To
investigate the problem, try starting the Docker daemon manually by running sudo
docker daemon—this should give you some information on what is going wrong and
help in searching for an answer. (Note that this will only work on a Linux host. If
youre using the Docker Toolbox or similar, you'll need to check the documentation
for more help.)

18 | Chapter2: Installation



CHAPTER 3
First Steps

This chapter will guide you through your first steps with using Docker. We start by
launching and using some simple containers to give you a feel for how Docker works.
Then we move onto Dockerfiles—the basic building block of Docker containers —and
Docker Registries, which support the distribution of containers. The chapter ends with
a look at how to use a container to host a key-value store with persistent storage.

Running Your First Image

To test Docker is installed correctly, try running:
$ docker run debian echo "Hello World"

This may take a little while, depending on your Internet connection, but eventually
you will get something similar to the following:

Unable to find image 'debian' locally

debian:latest: The image you are pulling has been verified
511136ea3c5a: Pull complete

638fd9704285: Pull complete

61f7f4f722fb: Pull complete

Status: Downloaded newer image for debian:latest

Hello World

So what’s happened here? We've called the docker run command, which is responsi-
ble for launching containers. The argument debian is the name of the image' we want
to use—in this case, a stripped-down version of the Debian Linux distribution. The
first line of the output tells us we don’t have a local copy of the Debian image. Docker
then checks online at the Docker Hub and downloads the newest version of the

1 Images will be defined in more detail later; but for the moment, just consider them “templates” for containers.

19



Debian image. Once the image has been downloaded, Docker turns the image into a
running container and executes the command we specified—echo "Hello World"—
inside it. The result of running this command is shown in the last line of the output.

If you run the same command again, it will immediately launch the container without
downloading. The command should take around one second to run, which is
astounding if you consider the amount of work that has happened: Docker has provi-
sioned and launched our container, executed our echo command, and then shut
down the container again. If you were to try to do something similar with a tradi-
tional VM, you would be waiting several seconds, possibly minutes.

We can ask Docker to give us a shell inside a container with the following command:

$ docker run -i -t debian /bin/bash

root@622ac5689680: /# echo "Hello from Container-land!"

Hello from Container-land!

root@622ac5689680: /# exit

exit
This will give you a new command prompt inside the container, very similar to
ssh’ing into a remote machine. In this case, the flags -1 and -t tell Docker we want
an interactive session with a tty attached. The command /bin/bash gives us a bash
shell. When you exit the shell, the container will stop—containers only run as long as
their main process.

The Basic Commands

Let’s try to understand Docker a bit more by launching a container and seeing what
effect various commands and actions have. First, let’s launch a new container; but this
time, we'll give it a new hostname with the -h flag:

$ docker run -h CONTAINER -i -t debian /bin/bash
root@CONTAINER: /#

What happens if we break a container?

root@CONTAINER: /# mv /bin /basket

root@CONTAINER: /# 1s

bash: 1s: command not found
We've moved the /bin directory and made the container pretty useless, at least tem-
porarily.” Before we get rid of this container, let’s see what the ps, inspect, and diff
commands tell us about it. Open a new terminal (leave the container session run-
ning), and try running docker ps from the host. You will see something like this:

2 I normally use rm rather than mv when demonstrating this in presentations, but the fear of someone running
the command on the their host forced me to use mv here.

20 | Chapter3:First Steps



CONTAINER ID IMAGE COMMAND v NAMES
00723499fdbf debian "/bin/bash" ... stupefied_turing

This tells us a few details about all the currently running containers. Most of the out-
put should be self-explanatory, but note that Docker has given the container a reada-
ble name that can be used to identify it from the host, in this case
"stupefied_turing“’ We can get more information on a given container by running
docker inspect with the name or ID of the container:

$ docker inspect stupefied_turing
[

{
"Id": "00723499fdbfe55c14565dc53d61452519deac72e18a8a6fd7b371ccb75f1d91",

"Created": "2015-09-14T09:47:20.2064793Z2",
"Path": "/bin/bash",
"Args": [1,
"State": {
"Running": true,

There is a lot of valuable output here, but it’s not exactly easy to parse. We can use
grep or the - -format argument (which takes a Go template*) to filter for the informa-
tion we're interested in. For example:

$ docker inspect stupefied_turing | grep IPAddress

"IPAddress": "172.17.0.4",

"SecondaryIPAddresses": null,
$ docker inspect --format {{.NetworkSettings.IPAddress}} stupefied_turing
172.17.0.4

Both give us the IP address of the running container. But for now, let’s move onto
another command, docker diff:

$ docker diff stupefied_turing
C /.wh..wh.plnk

A /.wh..wh.plnk/101.715484

D /bin

A /basket

A /basket/bash

A /basket/cat

A /basket/chacl

A /basket/chgrp

3 Docker-generated names are a random adjective followed by the name of a famous scientist, engineer, or
hacker. You can instead set the name by using the - -name argument (e.g., docker run --name boris debian
echo "Boo").

4 As in the templating engine for the Go programming language. This is a fully featured templating engine that
provides a lot of flexibility and power for filtering and selecting data. You can find more information on how
to use inspect at the Docker website.

The BasicCommands | 21


https://docs.docker.com/reference/commandline/inspect/

A /basket/chmod

What we're seeing here is the list of files that have changed in the running container;
in this case, the deletion of /bin and addition of everything in /basket, as well as the
creation of some files related to the storage driver. Docker uses a union file system
(UFS) for containers, which allows multiple filesystems to be mounted in a hierarchy
and to appear as a single filesystem. The filesystem from the image has been mounted
as a read-only layer, and any changes to the running container are made to a read-
write layer mounted on top of this. Because of this, Docker only has to look at the
topmost read-write layer to find the changes made to the running system.

The last thing I want to show you before were finished with this container is docker
logs. If you run this command with the name of your container, you will get a list of
everything that’s happened inside the container:

$ docker logs stupefied_turing

root@CONTRAINER: /# mv /bin /basket

root@CONTRAINER: /# 1s

bash: 1ls: command not found
We're finished with our broken container now, so let’s get rid of it. First, exit from the
shell:

root@CONTRAINER: /# exit

exit

$
This will also stop the container, since the shell was the only running process. If you
run docker ps, you should see there are no running containers.

However, this doesn’t tell the whole story. If you type docker ps -a, you will get a list
of all containers including stopped containers (officially called exited containers). An
exited container can be restarted by issuing docker start (although we've broken the
paths in this container, so in this case, you won’t be able to start it). To get rid of the
container, use the docker rm command:

$ docker rm stupefied_turing
stupefied_turing

22 | Chapter3:First Steps

vww allitebooks.cond



http://www.allitebooks.org

Cleaning Up Stopped Containers

If you want to get rid of all your stopped containers, you can use
the output of docker ps -aq -f status=exited, which gets the
IDs of all stopped containers. For example:

$ docker rm -v $(docker ps -aq -f status=exited)

Since this is a common operation, you might want to put it into a
shell script or alias. Note that the -v argument will delete any
Docker-managed volumes that aren’t referenced by other contain-
ers.

You can avoid piling up stopped containers by giving the --rm flag
to docker run, which will delete the container and associated file
system when the container exits.

OK, let’s see how we can build a new, useful container we actually want to keep.’
We're going to create a Dockerized cowsay application. If you don’t know what cow-
say is, I suggest you brace yourself. Start by launching a container and installing some
packages:

$ docker run -it --name cowsay --hostname cowsay debian bash
root@cowsay:/# apt-get update

Reading package lists... Done
root@cowsay: /# apt-get install -y cowsay fortune

root@cowsay: /#
Give it a whirl!

root@cowsay: /# [usr/games/fortune | /usr/games/cowsay

/ Writing is easy; all you do is sit \
| staring at the blank sheet of paper |
| until drops of blood form on your |
| forehead. |
I I
\ -- Gene Fowler /
"""" \oaa
\' (oo)\______
(N JAVAN

- |

5 Well, I say useful, but that’s not strictly accurate.

The BasicCommands | 23



Excellent. Lets keep this container.® To turn it into an image, we can just use the
docker commit command. It doesn’t matter if the container is running or stopped. To
do this, we need to give the command the name of the container (“cowsay”) a name
for the image (“cowsayimage”) and the name of the repository to store it in (“test”):
root@cowsay: /# exit
exit
$ docker commit cowsay test/cowsayimage
d1795abbc71e14db39d24628ab335c58b0b45458060d1973af7acf113a0ce61d

The returned value is the unique ID of our image. Now we have an image with cow-
say installed that we can run:

$ docker run test/cowsayimage /[usr/games/cowsay "Moo"

< Moo >
\ /\_l\
\' (oo)\______
(N JAVAN

[1-w |

This is great! However, there are a few problems. If we need to change something, we
have to manually repeat our steps from that point. For example, if we want to use a
different base image, we would have to start again from scratch. More importantly, it
isn't easily repeatable; it’s difficult and potentially error-prone to share or repeat the
set of steps required to create the image. The solution to this is to use a Dockerfile to
create an automated build for the image.

Building Images from Dockerfiles

A Dockerfile is simply a text file that contains a set of steps that can be used to create
a Docker image. Start by creating a new folder and file for this example:

$ mkdir cowsay
$ cd cowsay
$ touch Dockerfile

And insert the following contents into Dockerfile:

FROM debian:wheezy

RUN apt-get update && apt-get install -y cowsay fortune

The FROM instruction specifies the base image to use (debian, as before; but this time,
we have specified that we want to use the version tagged “wheezy”). All Dockerfiles

6 Just play along. It’s easier that way.

24 | Chapter3:First Steps



must have a FROM instruction as the first noncomment instruction. RUN instructions
specify a shell command to execute inside the image. In this case, we are just instal-
ling cowsay and fortune in the same way as we did before.

We can now build the image by running the docker build command inside the same
directory:

$ s

Dockerfile

$ docker build -t test/cowsay-dockerfile .

Sending build context to Docker daemon 2.048 kB

Step 0 : FROM debian:wheezy
---> f6fab3b798be

Step 1 : RUN apt-get update && apt-get install -y cowsay fortune
---> Running in 29c7bd4b0adc

Setting up cowsay (3.03+dfsgl-4) ...

---> dd66dc5a99bd
Removing intermediate container 29c7bd4b0adc
Successfully built dd66dc5a99bd

Then we can run the image in the same way as before:

$ docker run test/cowsay-dockerfile /usr/games/cowsay "Moo"

Images, Containers, and the Union File System

In order to understand the relationship between images and containers, we need to
explain a key piece of technology that enables Docker—the UFS (sometimes simply
called a union mount). Union file systems allow multiple file systems to be overlaid,
appearing to the user as a single filesytem. Folders may contain files from multiple
filesystems, but if two files have the exact same path, the last mounted file will hide
any previous files. Docker supports several different UFS implentations, including
AUFS, Overlay, devicemapper, BTRFS, and ZFS. Which implementation is used is
system dependent and can be checked by running docker info where it is listed
under “Storage Driver” It is possible to change the filesystem, but this is only recom-
mended if you know what you are doing and are aware of the advantages and disad-
vantages.

Docker images are made up of multiple layers. Each of these layers is a read-only fil-
eystem. A layer is created for each instruction in a Dockerfile and sits on top of the
previous layers. When an image is turned into a container (from a docker run or
docker create command), the Docker engine takes the image and adds a read-write
filesystem on top (as well as initializing various settings such as the IP address, name,
ID, and resource limits).

Because unnecessary layers bloat images (and the AUFS filesystem has a hard limit of
127 layers), you will notice that many Dockerfiles try to minimize the number of lay-
ers by specifying several UNIX commands in a single RUN instruction.

Building Images from Dockerfiles | 25



A container can be in one of several states: created, restarting, running, paused, or exi-
ted. A “created” container is one that has been initialized with the docker create
command but hasn’t been started yet. The exited status is commonly referred to as
“stopped” and indicates there are no running processes inside the container (this is
also true of a “created” container, but an exited container will have already been
started at least once). A container exits when its main processes exits. An exited con-
tainer can be restarted with the docker start command. A stopped container is not
the same as an image. A stopped container will retain changes to its settings, meta-
data, and filesystem, including runtime configuration such as IP address that are not
stored in images. The restarting state is rarely seen in practice and occurs when the
Docker engine attempts to restart a failed container.

But we can actually make things a little bit easier for the user by taking advantage of
the ENTRYPOINT Dockerfile instruction. The ENTRYPOINT instruction lets us specify an
executable that is used to handle any arguments passed to docker run.

Add the following line to the bottom of the Dockerfile:
ENTRYPOINT ["/usr/games/cowsay"]

We can now rebuild and run the image without needing to specify the cowsay com-
mand:

$ docker build -t test/cowsay-dockerfile .

$ docker run test/cowsay-dockerfile "Moo"

Much easier! But now we've lost the ability to use the fortune command inside the
container as input to cowsay. We can fix this by providing our own script for the
ENTRYPOINT, which is a common pattern when creating Dockerfiles. Create a file
entrypoint.sh with the following contents and save it in the same directory as the
Dockerfile:”

#!/bin/bash
if [ $# -eq 0 ]; then
Jusr/games/fortune | /usr/games/cowsay
else
Jusr/games/cowsay "$@"
fi

Set the file to be executable with chmod +x entrypoint.sh.

7 Be careful not to confuse users when writing ENTRYPOINT scripts—remember the script will swallow any com-
mands given to docker run, which they may not be expecting.

26 | Chapter3:First Steps



All this script does is pipe input from fortune into cowsay if it is called with no argu-
ments; otherwise, it calls cowsay with the given arguments. We next need to modify
the Dockerfile to add the script into the image and call it with the ENTRYPOINT
instruction. Edit the Dockerfile so that it looks like:

FROM debian

RUN apt-get update && apt-get install -y cowsay fortune
COPY entrypoint.sh / (1)

ENTRYPOINT ["/entrypoint.sh"]

© The COPY instruction simply copies a file from the host into the image’s filesys-
tem, the first argument being the file on the host and the second the destination
path, very similar to cp.

Try building a new image and running containers with and without arguments:

$ docker build -t test/cowsay-dockerfile .
...snip...
$ docker run test/cowsay-dockerfile

/ The last thing one knows in \
| constructing a work is what to put |
| first. |
| |
\ -- Blaise Pascal /

\ A A

\' (oo)\______

(N DAVA

[1---w |

$ docker run test/cowsay-dockerfile Hello Moo

\ /\_l\
\' (oo)\___
(N JAVAN

- |

Working with Registries

Now that we've created something amazing, how can we share it with others? When
we first ran the Debian image at the start of the chapter, it was downloaded from the
official Docker registry—the Docker Hub. Similarly, we can upload our own images
to the Docker Hub for others to download and use.

Working with Registries | 27



The Docker Hub can be accessed from both the command line and the website. You
can search for existing images with the Docker search command or use http://regis
try.hub.docker.com.

Registries, Repositories, Images, and Tags
There is a hierarchical system for storing images. The following terminology is used:

Registry
A service responsible for hosting and distributing images. The default registry is
the Docker Hub.

Repository
A collection of related images (usually providing different versions of the same
application or service).

Tag
An alphanumeric identifier attached to images within a repository (e.g., 14.04 or
stable).

So the command docker pull amouat/revealjs:latest will download the image
tagged latest within the amouat/revealjs repository from the Docker Hub registry.

In order to upload our cowsay image, you will need to sign up for an account with the
Docker Hub (either online or using the docker login command). After you have
done this, all we need to do is tag the image into an appropriately named repository
and use the docker push command to upload it to the Docker Hub. But first, let’s add
a MAINTAINER instruction to the Dockerfile, which simply sets the author contact
information for the image:

FROM debian

MAINTAINER John Smith <john@smith.com>
RUN apt-get update && apt-get install -y cowsay fortune
COPY entrypoint.sh /

ENTRYPOINT ["/entrypoint.sh"]

Now let’s rebuild the image and upload it to the Docker Hub. This time, you will need
to use a repository name that starts with your username on the Docker Hub (in my
case, amouat), followed by / and whatever name you want to give the image. For
example:

$ docker build -t amouat/cowsay .

$ docker push amouat/cowsay
The push refers to a repository [docker.io/amouat/cowsay] (len: 1)

28 | Chapter3:First Steps


http://registry.hub.docker.com
http://registry.hub.docker.com

e8728c722290: Image successfully pushed
5427ac510fe6: Image successfully pushed
4a63ead8b301: Image successfully pushed
73805e6e9ac7: Image successfully pushed
c90d655b99b2: Image successfully pushed
30d39e59ffe2: Image successfully pushed
511136ea3c5a: Image successfully pushed
latest: digest: sha256:bfd17b7c5977520211cecb202ad73c3cald4acde6878d9ffc81d95. ..

As T didn't specify a tag after the repository name, it was automatically assigned the

latest tag. To specify a tag, just add it after the repository name with a colon (e.g.,
docker build -t amouat/cowsay:stable.).

Once the upload has completed, the world can download your image via the docker
pull command (e.g., docker pull amouat/cowsay).

Private Repositories

Of course, you might not want the world to have access to your image. In this case,
you have a couple of choices. You can pay for a hosted private repository (on the
Docker Hub or a similar service such as quay.io), or you can run your own registry.
For more information on private repositories and registries, see Chapter 7.

Image Namespaces

There are three namespaces pushed Docker images can belong to, which can be iden-
tified from the image name:

o Names prefixed with a string and /, such as amouat/revealjs, belong to the
“user” namespace. These are images on the Docker Hub that have been uploaded
by a given user. For example, amouat/revealjs is the revealjs image uploaded by
the user amouat. It is free to upload public images to the Docker Hub, which
already contains thousands of images from the whimisical supertest2014/nyan
to the very useful gliderlabs/logspout.

o Names such as debian and ubuntu, with no prefixes or /s, belong to “root” name-
space, which is controlled by Docker Inc. and reserved for the official images for
common software and distributions available from the Docker Hub. Although
curated by Docker, the images are generally maintained by third parties, nor-
mally the providers of the software in question (e.g., the nginx image is main-
tained by the nginx company). There are official images for most common
software packages, which should be your first port of call when looking for an
image to use.

o Names prefixed with a hostname or IP are images hosted on third-party regis-
tries (not the Docker Hub). These include self-hosted registries for organizations,

Working with Registries | 29



as well as competitors to the Hub, such as quay.io. For example, localhost:
5000/wordpress refers to an WordPress image hosted on a local registry.

This namespacing ensures users cannot be confused about where images have come
from; if youre using the debian image, you know it is the official image from the
Docker Hub and not some other registry’s version of the debian image.

Using the Redis Official Image

Ok, I admit it: youre probably not going to get a lot of mileage out of the cowsay
image. Let’s see how we can use an image from one of the official Docker repositories
—in this case, we’ll have a look at the offical image for Redis, a popular key-value
store.

Official Repositories

If you search the Docker Hub for a popular application or service,
such as the Java programming language or the PostgreSQL data-
base, you will find hundreds of results.® The official Docker reposi-
tories are intended to provide curated images of known quality and
provenance and should be your first choice where possible. They
should be returned at the top of searches and marked as official.

When you pull from an official repository, the name will have no
user portion, or it will be set to library (e.g., the MongoDB reposi-
tory is available from mongo and library/mongo). You will also get
a message saying, “The image you are pulling has been verified,
indicating the Docker daemon has validated the checksums for the
image and therefore has verified its provenance.

Start by getting the image:

$ docker pull redis
Using default tag: latest
latest: Pulling from library/redis

d990a769a35e: Pull complete
8656a511ce9c: Pull complete
f7022ac152fb: Pull complete
8e84d9ce7554: Pull complete
c9e5dd2a9302: Pull complete
27b967cdd519: Pull complete
3024bf5093a1: Pull complete

8 At the time of writing, there are 1,350 PostgreSQL images.

30 | Chapter3:First Steps



e6a9eb403efb:
c3532a4c89bc:
35fc08946add:
d586de7d17cd:
1f677d77a8fa:
ed09b32b8ab1:
54647d88bc19:
2f2578ff984f:
ba249489d0b6:
19de96c112fc:
library/redis:

Important: image verification is a tech preview feature and should not be re...

Pull
Pull
Pull
Pull
Pull
Pull
Pull
Pull

Already exists
Already exists

complete
complete
complete
complete
complete
complete
complete
complete

latest: The image you are pulling has been verified.

Digest: sha256:3c3e4a25690f9f82a2alec6d4f577dc2c81563ciccd52efdf4903ccdd26cadal

Status: Downloaded newer image for redis:latest

Start up the Redis container, but this time use the -d argument:

$ docker run --name myredis -d redis

585b3d36e7cec8d06f768f6eb199a29feb8b2e5622884452633772169695b9%4a

The -d tells Docker to run the container in the background. Docker starts the con-
tainer as normal, but rather than printing the output from the container, it returns
the containers ID and exits. The container is still running in the background, and you

can use the docker logs command to see any output from the container.

Ok, so how do we use it? Obviously we need to connect to the database in some way.
We don’t have an application, so we'll just use the redis-cli tool. We could just
install the redis-cli on the host, but it’s easier and more informative to launch a new
container to run redis-cli in and link the two:

$ docker run --rm -it --link myredis:redis redis /bin/bash

root@ca38735c5747: /data# redis-cli -h redis -p 6379

redis:6379> ping

PONG

redis:6379> set "abc" 123

0K

redis:6379> get "abc"

n123"

redis:6379> exit

root@ca38735c5747: /data# exit

exit

Pretty neat—we've just linked two containers and added some data to Redis in a few

seconds. So how did this work?

Using the Redis Official Image

31



Docker Networking Changes

This chapter, and the rest of this book, use the - -1ink command to
network containers. Forthcoming changes to the way networking
works in Docker mean that in the future, it will be more idiomatic
to “publish services” rather than link containers. However, links
will continue to be supported for the forseeable future, and the
examples in this book should work without changes.

For more information on the upcoming changes to networking, see
“New Docker Networking”.

The linking magic happened with the --1ink myredis:redis argument to docker
run. This told Docker that we wanted to connect the new container to the existing
“myredis” container, and that we want to refer to it by the name “redis” inside our
new container. To achieve this, Docker set up an entry for “redis” in /etc/hosts inside
the container, pointing to the IP address of the “myredis” This allowed us to use the
hostname “redis” in the redis-cli rather than needing to somehow pass in, or discover,
the IP address of the Redis container.

After that, we run the Redis ping command to verify that we are connected to a Redis
server before adding and retrieving some data with set and put.

This is all good, but there is still an issue: how do we persist and back up our data?
For this, we don't want to use the standard container filesystem—instead we need
something that can be easily shared between the container and the host or other con-
tainers. Docker provides this through the concept of volumes. Volumes are files or
directories that are directly mounted on the host and not part of the normal union
file system. This means they can be shared with other containers and all changes will
be made directly to the host filesystem. There are two ways of declaring a directory as
a volume, either using the VOLUME instruction inside a Dockerfile or specifying the
-v flag to docker run. Both the following Dockerfile instruction and docker run
command have the effect of creating a volume as /data inside a container:

VOLUME /data
and:
$ docker run -v /data test/webserver

By default, the directory or file will be mounted on the host inside your Docker
installation directory (normally /var/lib/docker/). 1t is possible to specify the host
directory to use as the mount via the docker run command (e.g., docker run -d -
v /host/dir:/container/dir test/webserver). It isn't possible to specify a host
directory inside a Dockerfile for reasons of portability and security (the file or direc-
tory may not exist in other systems, and containers shouldn't be able to mount sensi-
tive files like etc/passwd without explicit permission).

32 | Chapter3:First Steps

vww allitebooks.cond



http://www.allitebooks.org

So, how do we use this to do backups with the Redis container? The following shows
one way, assuming the myredis container is still running:

$ docker run --rm -it --link myredis:redis redis /bin/bash

root@09alc4abf81f:/data# redis-cli -h redis -p 6379

redis:6379> set "persistence" "test"

OK

redis:6379> save

OK

redis:6379> exit

root@09alc4abf81f:/data# exit

exit

$ docker run --rm --volumes-from myredis -v $(pwd)/backup:/backup \
debian cp /data/dump.rdb /backup/

$ 1s backup

dump.rdb

Note that we have used the -v argument to mount a known directory on the host and
--volumes-from to connect the new container to the Redis database folder.

Once you've finished with the myredis container, you can stop and delete it:

$ docker stop myredis
myredis
$ docker rm -v myredis
myredis

And you can remove all leftover containers with:

$ docker rm $(docker ps -aq)
45e404caad93
e4b31d0550cd
7a24491027fc

Conclusion

This ends the chapter on getting started with Docker. It’s been a whirlwind tour, but
by now, you should feel confident about creating and running your own containers.
In the next chapter, we'll go into details about the architecture of Docker and some of
the fundamental concepts.

Conclusion | 33






CHAPTER 4
Docker Fundamentals

In this chapter, we'll expand on the fundamental Docker concepts. We'll start by look-
ing at the overall architecture of Docker, including the technologies it builds on. This
is followed by more in-depth sections on building Docker images, networking con-
tainers, and handling data in volumes. The chapter ends with an overview of the
remaining Docker commands.

As this chapter contains a lot of reference material, you may prefer
to skim the main points and move onto Chapter 5, referring back
to this chapter as needed.

The Docker Architecture

In order to understand how best to use Docker and some of the more unusual behav-
ior in Docker, it's good to have a rough understanding of how the Docker platform is
put together under the covers.

In Figure 4-1, we can see the major components of a Docker installation:

o At the center is the Docker daemon, which is responsible for creating, running,
and monitoring containers, as well as building and storing images, both of which
are represented on the right of the diagram. The Docker daemon is launched by
running docker daemon, which is normally taken care of by the host OS.

o The Docker client is on the left-hand side and is used to talk to the Docker dae-
mon via HTTP. By default, this happens over a Unix domain socket, but it can
also use a TCP socket to enable remote clients or a file descriptor for systemd-
managed sockets. Since all communication has to be done over HT TP, it is easy

35



connect to remote Docker daemons and develop programming language bind-
ings, but it also has implications for how features are implemented, such as
requiring a build context for Dockerfiles as explained in “The Build Context”).
The API used for communication with daemon is well defined and documented,
allowing developers to write programs that interface directly with the deamon,
without using the Docker client. The Docker client and daemon are distributed
as a single binary.

Docker registries store and distribute images. The default registry is the Docker
Hub, which hosts thousands of public images as well as curated “official” images.
Many organizations run their own registries that can be used to store commercial
or sensitive images as well as avoiding the overhead of needing to download
images from the Internet. See “Running Your Own Registry” for information on
running your own registry. The Docker daemon will download images from reg-
istries in response to docker pull requests. It will also automatically download
images specified in docker run requests and in the FROM instruction of Docker-
files if they are not available locally.

| Registry iﬂ
A I — }
1
, Images '
1 debian:wheezy 1
' ubuntu:14.04 !
: 4 redis:2.6 :
. htt

Client 2 +5| Daemon '
, Containers '
1 clever_bell 1
! sad_cori !
, evil_colden ,
1 Host .

Figure 4-1. High-level overview of major Docker components

Underlying Technologies

The Docker daemon uses an “execution driver” to create containers. By default, this is
Docker’s own runc driver, but there is also legacy support for LXC. Runc is very
closely tied to the following kernel features:

o cgroups, which are responsible for managing resources used by a container (e.g.,

CPU and memory usage). They are also responsible for freezing and unfreezing
containers, as used in the docker pause functionality.

36

Chapter 4: Docker Fundamentals



o namespaces are responsible for isolating containers; making sure that a contain-
er’s filesystem, hostname, users, networking, and processes are separated from
the rest of the system.

Libcontainer also supports SElinux and AppArmor, which can be enabled for tighter
security. See Chapter 13 for more information.

Another major technology underlying Docker is the Union File System (UFS), used
to store the layers for containers. The UFS is provided by one of several storage driv-
ers, either AUFS, devicemapper, BTRES, or Overlay. See the previous discussion of
UES in “Images, Containers, and the Union File System”

Surrounding Technologies

The Docker engine and the Docker Hub do not in-and-of themselves constitute a
complete solution for working with containers. Most users will find they require sup-
porting services and software, such as cluster management, service-discovery tools,
and advanced networking capabilities. As described in “Plugins and Plumbing”,
Docker Inc. plans to build a complete out-of-the-box solution that includes these fea-
tures but allows users to easily swap out the default components for third-party ones.
The “swappable batteries” strategy primarily refers to the API level—allowing compo-
nents to hook into the Docker Engine—but can also been seen as allowing supporting
Docker technology packaged as independent binaries to be easily replaced with third-
party equivalents.

The current list of supporting technologies supplied by Docker includes:

Swarm
Docker’s clustering solution. Swarm can group together several Docker hosts,
allowing the user to treat them as a unified resource. See Chapter 12 for more
information.

Compose
Docker Compose is a tool for building and running applications composed of
multiple Docker containers. It is primarily used in development and testing
rather than production. See “Automating with Compose” for more details.

Machine
Docker Machine installs and configures Docker hosts on local or remote resour-
ces. Machine also configures the Docker client, making it easy to swap between
environments. See Chapter 9 for an example.

Kitematic
Kitematic is a Mac OS and Windows GUI for running and managing Docker
containers.

The Docker Architecture | 37



Docker Trusted Registry
Docker’s on-premise solution for storing and managing Docker images. Effec-
tively a local version of the Docker Hub that can integrate with an existing secu-
rity infrastructure and help organizations comply with regulations regarding the
storage and security of data. Features include metrics, Role-Based Access Control
(RBAC), and logs, all managed through an administrative console. This is cur-
rently the only non-open source product from Docker Inc.

There is already a large list of services and applications from third parties that build
on or work with Docker. Several solutions have already emerged in the following
areas:

Networking
Creating networks of containers that span hosts is a nontrivial problem that can
be solved in a variety of ways. Several solutions have appeared in this area,
including Weave and Project Calico. In addition, Docker will soon have an inte-
grated networking solution called Overlay. Users will be able to swap out the
Overlay driver for other solutions using Docker’s networking plugin framework.

Service discovery
When a Docker container comes up, it needs some way of finding the other serv-
ices it needs to talk to, which are typically also running in containers. As contain-
ers are dynamically assigned IP addresses, this isn't a trivial problem in a large
system. Solutions in this area include Consul, Registrator, SkyDNS, and etcd.

Orchestration and cluster management
In large container deployments, tooling is essential in order to monitor and man-
age the system. Each new container needs to be placed on a host, monitored, and
updated. The system needs to respond to failures or changes in load by moving,
starting, or stopping containers appropriately. There are already several compet-
ing solutions in the area, including Kubernetes from Google, Marathon (a frame-
work for Mesos), CoreOS’s Fleet, and Docker’s own Swarm tooling.

All of these topics are covered in more depth in Part III. It is worth pointing out that
there also alternatives to the Docker Trusted Registry, including the CoreOS Enter-
prise Registry and Artifactory from JFrog.

In addition to the previously mentioned network-driver plugins, Docker also sup-
ports volume plugins for integration with other storage systems. Notable volume plu-
gins include Flocker, a multihost data management and migration tool, and
GlusterFS for distributed storage. More information on the plugin framework can be
found at the Docker website.

An interesting side effect of the rise of containers is the new breed of operating sys-
tems designed to host them. While Docker runs happily on most current Linux dis-
tributions such as Ubuntu and Red Hat, there are several projects underway to create

38 | Chapter4: Docker Fundamentals


http://weave.works/net/
http://www.projectcalico.org/
https://consul.io/
https://github.com/gliderlabs/registrator
https://github.com/skynetservices/skydns/
https://github.com/coreos/etcd
http://kubernetes.io/
https://github.com/mesosphere/marathon
https://mesos.apache.org/
https://github.com/coreos/fleet
https://coreos.com/products/enterprise-registry/
https://coreos.com/products/enterprise-registry/
http://www.jfrog.com/open-source/#os-arti
https://github.com/ClusterHQ/flocker
https://github.com/calavera/docker-volume-glusterfs
https://docs.docker.com/extend/plugins/

minimal and easy-to-maintain distributions that are focused entirely on running con-
tainers (or containers and VMs), especially within a context of powering a data-
centre or cluster. Examples include Project Atomic, CoreOS, and RancherOS.

Docker Hosting

We'll cover Docker hosting in more detail in Chapter 9, but it's worth pointing out
some of the many choices here. Many of the traditional cloud providers, including
Amazon, Google, and Digital Ocean, have brought out some level of Docker offering.
Google’s Container Engine may be the most interesting of these, as it is built directly
on top of Kubernetes. Of course, even when a cloud provider doesn’t have a specific
Docker offering, it’s normally still possible to provision VMs that can run Docker
containers.

Joyent has also entered the space with its own container offering, called Triton, built
on top of SmartOS. By implementing the Docker API with its own container and
Linux emulation technology, Joyent was able to create a public cloud that interfaces
with the standard Docker client. Importantly, Joyent believes its container implemen-
tation is secure enough to run directly on bare metal rather than having to be placed
in VMs, meaning it can result in large efficiency savings, especially in terms of I/O.

There are also several projects that build a PaaS platform on top of Docker, including
Deis, Flynn, and Paz.

How Images Get Built

We saw in “Building Images from Dockerfiles” that the primary way to make new
images is through Dockerfiles and the docker build command. This section will
look at what happens here in a little more depth and end with a guide to the various
instructions that can be used in a Dockerfile. It's handy to have some understanding
of how the build command works internally, as its behavior can sometimes be sur-
prising.

The Build Context

The docker build command requires a Dockerfile and a build context (which may be
empty). The build context is the set of local files and directories that can be refer-
enced from ADD or COPY instructions in the Dockerfile and is normally specified as a
path to a directory. For example, we used the build command docker build -t
test/cowsay-dockerfile . in “Building Images from Dockerfiles”, which sets the
context to '.', the current working directory. All the files and directories under the
path form the build context and will be sent to the Docker daemon as part of the
build process.

How Images Get Built | 39


http://www.projectatomic.io/
https://coreos.com/
http://rancher.com/rancher-os/
http://deis.io/
https://flynn.io/
http://paz.sh

In cases where a context is not specified-if only a URL to a Dockerfile is given or the
contents of a Dockerfile is piped from STDIN--the build context is considered to be

empty.

Don't Use+/+as the Build Context

P As the build context is gathered into a tarball and sent to the
Docker daemon, you really don’t want to use a directory with lots
of files in it already. For example, using /home/user, Downloads,
or / will result in a long delay while the Docker client bundles
everything up and transfers it to the daemon.

If a URL beginning with http or https is given, it is assumed to be a direct link to a
Dockerfile. This is unlikely to be very useful, as no context is associated with the
Dockerfile (and links to archives are not accepted).

A git repository can also be given as the build context. In this situation, the Docker
client will clone the repository and any submodules to a temporary directory that is
then sent to the Docker daemon as the build context. Docker will interpret the con-
text as a git repository if the path begins with github.com/, _ git@, or _git://. In gen-
eral, I would suggest avoiding this method and instead checking out repositories by
hand, which is more flexible and leaves less chance for confusion.

The Docker client can also take input on STDIN by giving a "-" as an argument in
place of the build context. The input can either be a Dockerfile with no context (e.g.,
docker build - < Dockerfile) or an archive file that constitutes the context and includes
a Dockerfile (e.g. docker build - < context.tar.gz). Archive files can be in tar.gz, xz, or
bzip2 format.

The location of the Dockerfile within the context can be specified with the -f argu-
ment (e.g., docker build -f dockerfiles/Dockerfile.debug .). If unspecified, Docker will
look for a file called Dockerfile at the root of the context.

40 | Chapter4: Docker Fundamentals



Use a .dockerignore File

In order to remove unneeded files from the build context, you can
use a .dockerignore file. The file should contain the names of files to
exclude, separated by newlines. The wildcard characters * and ? are
allowed. For example, if we have the following .dockerignore file:

.git (1)

*/.git @

*[%/ . git ©

*.su2 @

@ Willignore a .git file or directory in the root of the build con-
text, but allow it any subdirectory (i.e., .git is ignored, but
dirl/.git isn’t).

® Will ignore a .git file or directory exactly one directory below
the root (i.e., dirl/.git is ignored but .git and dir1/dir2/.git
aren’t).

©® Willignore a.git file or directory exactly two directories below
the root (i.e., dirl/dir2/.git is ignored but .git and dir1/.git
aren’t).

O Will ignore test.swp, test.swo, and bla.swp but not dirl/test.swp.

Full regular expressions such as [A-Z]* are not supported.

At the time of writing, there isn’t a way to match files over all sub-
directories (e.g., you can't ignore both /ftest.tmp and /dirl/test.tmp
in one expression).

Image Layers

New Docker users are often thrown by the way images are built up. Each instruction
in a Dockerfile results in a new image layer, which can also be used to start a con-
tainer. The new layer is created by starting a container using the image of the previ-
ous layer, executing the Dockerfile instruction and saving a new image. When a
Dockerfile instruction successfully completes, the intermediate container will be
deleted, unless the - -rm=false argument was given.' Since each instruction results in
an static image—essentially just a filesystem and some metadata—all running pro-
cesses in the instruction will be stopped. This means that while you can start long-
lived processes, such as databases or SSH daemons in a RUN instruction, they will not
be running when the next instruction is processed or a container is started. If you

1 Don’t worry if 've lost you here. It should make more sense after looking at the output of docker build in
our debug example.

How Images Get Built | 41



want a service or process to start with the container, it must be launched from an
ENTRYPOINT or CMD instruction.

You can see the full set of layers that make up an image by running the docker his
tory command. For example:
$ docker history mongo:latest

IMAGE CREATED CREATED BY
278372cb22b2 4 days ago  /bin/sh -c #(nop) CMD ["mongod"]

341d04fd3d27 4 days ago /bin/sh -c #(nop) EXPOSE 27017/tcp
ebd34b5e9c37 4 days ago /bin/sh -c #(nop) ENTRYPOINT &{["/entrypoint.
f3b2b8cf226c 4 days ago /bin/sh -c #(nop) COPY file:ef2883b33ed7balcc
ba53e9f50f18 4 days ago /bin/sh -c #(nop) VOLUME [/data/db]
c537910de5cc 4 days ago  /bin/sh -c mkdir -p /data/db && chown -R mong
f48ad436057a 4 days ago  /bin/sh -c set -x

df59596772ab 4 days ago  /bin/sh -c echo "deb http://repo.mongodb.org/
96de83c82d4b 4 days ago /bin/sh -c #(nop) ENV MONGO_VERSION=3.0.6
0dab801053d9 4 days ago /bin/sh -c #(nop) ENV MONGO_MAJOR=3.0
5e7b428dddf7 4 days ago /bin/sh -c apt-key adv --keyserver ha.pool.sk
e81ad85ddfce 4 days ago /bin/sh -c curl -o /usr/local/bin/gosu -SL "h
7328803cad452 4 days ago  /bin/sh -c gpg --keyserver ha.pool.sks-keyser
ec5be38a3c65 4 days ago  /bin/sh -c apt-get update

430e6598f55b 4 days ago /bin/sh -c groupadd -r mongodb && useradd -r
19de96c112fc 6 days ago /bin/sh -c #(nop) CMD ["/bin/bash"]
ba249489dOb6 6 days ago /bin/sh -c #(nop) ADD file:b908886c97e2b96665

When a build fails, it can be very useful to launch the layer before the failure. For
example, if we have the following Dockerfile:

FROM busybox:latest

RUN echo "This should work"
RUN /bin/bash -c echo "This won't"

and try to build it:

$ docker build -t echotest .
Sending build context to Docker daemon 2.048 kB
Step 0 : FROM busybox:latest
---> 4986bf8c1536
Step 1 : RUN echo "This should work"
---> Running in f63045cc086b (1)
This should work
---> 85b49a851fcc @
Removing intermediate container f63045cc086b (3]
Step 2 : RUN /bin/bash -c echo "This won't"
---> Running in e4b31d0550cd
/bin/sh: /bin/bash: not found
The command '/bin/sh -c /bin/bash -c echo "This won't
code: 127

"

returned a non-zero

© 1D of the temporary container Docker launched to run our instruction in.

42 | Chapter4: Docker Fundamentals

vww allitebooks.cond



http://www.allitebooks.org

© 1D of the image created from the container.

© The temporary container is now deleted.

While, in this case, the problem is fairly clear from the error, we can run the image
created from the last successful layer in order to debug the instruction. Note that we
are using the last image ID here (85b49a851fcc), not the ID of the last container
(e4b31d0550cd):

$ docker run -it 7831e2ca1809

/ # [bin/bash -c "echo hmm"

/bin/sh: /bin/bash: not found

/ # /bin/sh -c "echo ahh!"

ahh!

/| #
And the problem becomes even more obvious: the busybox image doesn't include the
bash shell.

Caching

Docker also caches each layer in order to speed up the building of images. This cach-
ing is very important for efficient workflows, but is somewhat naive. The cache is
used for an instruction if:

o The previous instruction was found in the cache and

o there is a layer in the cache that has exactly the same instruction and parent layer
(even spurious spaces will invalidate the cache).

Also, in the case of COPY and ADD instructions, the cache will be invalidated if the
checksum or metadata for any of the files has changed.

This means that RUN instructions that are not guaranteed to have the same result
across multiple invocations will still be cached. Be particularly aware of this if you
download files, run apt-get update, or clone source repositories.

If you need to invalidate the cache, you can run docker build with the --no-cache
argument. You can also add or change an instruction before the point where you
want to invalidate the cache; and for this reason, you may sometimes see Dockerfiles
with lines like this:

ENV UPDATED_ON "14:12 17 February 2015"
RUN git clone....

I would advise against using this technique, since it tends to confuse later users of the
image, especially when the image was built on a different date than the line suggests.

How Images Get Built | 43



Base Images

When creating your own images, you will need to decide which base image to start
from. There are a lot of choices, and it’s worth taking the time to understand the vari-
ous advantages and disadvantages of each.

The best-case scenario is that you don’t need to create an image at all—you can just
use an existing one and mount your configuration files and/or data into it. This is
likely to be the case for common application software, such as databases and web
servers, where there are official images available. In general, you are much better off
using an official image than rolling your own—you get the benefit of other people’s
work and experience in figuring out how best to run the software inside a container.
If there is a particular reason an official image doesn’t work for you, consider opening
an issue on the parent project, as it is likely others are facing similar problems or
know of workarounds.

If you need an image to host your own application, first have a look to see if there is
an official base image for the language or framework you are using (e.g., Go or Ruby
on Rails). Often you can use separate images for building and distributing your soft-
ware (e.g., you could use the java: jdk image to build a Java application but then dis-
tribute the resulting JAR file using the smaller java: jre image, which gets rid of the
unnecessary build tooling). Similarly, some official images (such as node) have special
“slim” builds that remove a lot of development tools and headers.

Sometimes you really just need a small but complete Linux distro. If I'm going for
true minimalism, I'll use the alpine image, which is only just over 5 MB in size but
still has an extensive packager manager for easily installing applications and tools. If I
want a more complete image, I'll normally use one of the debian images, which are
much smaller than the also common ubuntu images but has access to the same pack-
ages. If your organization is tied to a particular distribution of Linux, you should also
be able to find a Docker image for it. This may make more sense than moving to a
new distribution that your organization doesn’t support or have experience with.

A lot of the time, it’s not necessary to go overboard with making sure images are as
small as possible. Remember that base layers are shared between images, so if you
already have the ubuntu:14.04 image and pull an image from the Hub that is based
on it, you will only pull the changes rather than the full image. However, minimal
images are definitely a big bonus when aiming for fast deploys and easy distribution.

It is possible to go ultra minimal and ship images with only binaries. To do this, write
a Dockerfile that inherits from the special scratch image (a completely blank filesys-
tem) and simply copies your binary in and sets an appropriate CMD instruction. Your
binary will need to include all its required libraries (no dynamic linking) and have no
possibility of calling external commands. In addition, remember the binary will need

44 | Chapter4: Docker Fundamentals



to be compiled for the architecture of the container, which may be different than the
architecture of the machine running the Docker client.”

While the minimalist approach can be very tempting, note that it can leave you in a
difficult situation when it comes to debugging and maintenance—busybox won't have
a lot tools to work with, and if you've used scratch, you won’t even have a shell.

Phusion Reaction

Another interesting choice of base image is phusion/baseimage-docker. The Phu-
sion developers created this base image in reaction to the official Ubuntu image,
which they claim is missing several essential services. Several core Docker developers
disagreed with Phusion’s standpoint, which led to various exchanges across blogs,
IRC, and Twitter. The main points of contention are:

The need for an init service

The view of Docker is that each container should only run a single application
and ideally a single process. If you only have a single process, there is no need for
an init service. The main argument put forth by Phusion is that the lack of an init
service can lead to containers full of zombie processes—processes that have not
been killed correctly by their parent processes or reaped by a supervising process.
While this argument is correct, the only way zombie processes can occur is from
bugs in the application code; the vast majority of users should not run into this
problem, and if they do, the best solution is to fix the code.

A running cron daemon
The base ubuntu and debian images do not start the cron daemon by default, but
the phusion image does. Phusion argues that many applications are dependent
on cron, so it is essential to have it running. The Docker view—which I'm
inclined to agree with—is that cron should only be running if your application is
dependent on it.

An SSH daemon
The default images do not install or run an SSH daemon by default. The normal
way of getting a shell is to use the docker exec command (see “Managing Con-
tainers”), which avoids the penalty of running an unnecessary process per con-
tainer. Phusion seems to accept this and has disabled their SSH daemon by

2 It’s actually possible to take this concept of minimal computing even further by abandoning Docker and the
full Linux kernel in favor of a unikernel approach. In an unikernel architecture, applications are combined
with a kernel containing only the features used by the application, which is then run directly on a hypervisor.
This gets rid of several unnecessary layers of code and unused drivers, resulting in a much smaller and faster
application (unikernels commonly boot in under a second, that is, they can be started in direct response to
user requests). If youd like to learn more about this, take a look at “Unikernels: Rise of the Virtual Library
Operating System” by Anil Madhavapeddy and David J. Scott and MirageOS.

How Images Get Built | 45


https://queue.acm.org/detail.cfm?id=2566628
https://queue.acm.org/detail.cfm?id=2566628
http://www.openmirage.org/

default, but their image is still considerably bloated by the inclusion of the dae-
mon and its libraries.

Personally, I would only recommend using the Phusion base image if you have a spe-
cific need to run multiple processes, cron, and ssh inside your container. Otherwise, I
would stick with images from the official Docker repositories, such as ubuntu:14.04
and debian:wheezy.

Rebuilding Images

Y Note that when docker build is run, Docker will look at the FROM

\ instruction and attempt to pull the image if it doesn’t exist locally. If
it does exist, Docker will use that image without checking to see if
there is a newer version available. This means that just doing a
docker build isn’t enough to ensure your images are completely
up to date, you also have to either explicitly docker pull all ances-
tor images or delete them in order to force the build command to
download the latest versions.

This becomes very important when common base images, such as
debian, are updated with security patches.

Dockerfile Instructions

This section briefly covers the various instructions available for use in Dockerfiles. It
doesn't go deep into details, partly because things are still changing and likely to
quickly get out of date and partly because there is comphrensive and always up-to-
date documentation available on the Docker website. Comments in Dockerfiles are
indicated by starting the line with a #.

Exec Versus Shell Form

Several instructions (RUN, CMD, and ENTRYPOINT) take both a shell
format and an exec format. The exec form takes a JSON array (e.g.,
["executable", "paraml", "param2"]) that assumes the first
item is the name of an executable that is then executed with the
remaining items as parameters. The shell format is a freeform
string that will be interpreted by passing to /bin/sh -c. Use the
exec form to avoid the shell munging strings or in cases where the
image doesn’t have /bin/sh.

The following instructions are available in Dockerfiles:

46 | Chapter4: Docker Fundamentals


http://docs.docker.com/reference/builder/

ADD

CMD

Copies files from the build context or remote URLs into the image. If an archive
file is added from a local path, it will automatically be unpacked. As the range of
functionality covered by ADD is quite large, it’s generally best to prefer the simpler
COPY command for copying files and directories in the build context and RUN
instructions with curl or wget to download remote resources (which retains the
possibility of processing and deleting the download in the same instruction).

Runs the given instruction when the container is started. If an ENTRYPOINT has
been defined, the instruction will be interpreted as an argument to the ENTRY
POINT (in this case, make sure you use the exec format). The CMD instruction is
overridden by any arguments to docker run after the image name. Only the last
CMD instruction will have an effect, and any previous CMD instructions will be
overridden (including those in base images).

CoPY

Used to copy files from the build context into the image. It has two forms, COPY
src dest_and COPY ["src", "dest"], both of which copy the file or directory
at src in the build context to dest inside the container. The JSON array format is
required if the paths have spaces in them. Wildcards can be used to specify multi-
ple files or directories. Note that you cannot specify src paths outside the build
context (e.g., ../another_dir/myfile will not work).

ENTRYPOINT

ENV

Sets an executable (and default arguments) to be run when the container starts.
Any CMD instructions or arguments to docker run after the image name will be
passed as parameters to the executable. ENTRYPOINT instructions are often used to
provide “starter” scripts that initialize variables and services before interpreting
any given arguments.

Sets environment variables inside the image. These can be referred to in subse-
quent instructions. For example:

ENV MY_VERSION 1.3
RUN apt-get install -y mypackage=$MY_VERSION

The variables will also be available inside the image.

EXPOSE

Indicates to Docker that the container will have a process listening on the given
port or ports. This information is used by Docker when linking containers (see

How Images Get Built | 47



“Linking Containers”) or publishing ports by supplying the -P argument to
docker run; by itself the EXPOSE instruction will not affect networking.

FROM
Sets the base image for the Dockerfile; subsequent instructions build on top of
this image. The base image is specified as IMAGE: TAG (e.g., debian:wheezy). If the
tag is omitted, it is assumed to be latest, but I strongly recommend you always
set the tag to a specific version to avoid surprises. Must be the first instruction in
a Dockerfile.

MAINTAINER
Sets the “Author” metadata on the image to the given string. You can retrieve this
with docker 1inspect -f {{.Author}} IMAGE. Normally used to set the name
and contact details of the maintainer of the image.

ONBUILD
Specifies an instruction to be executed later, when the image is used as the base
layer to another image. This can be useful for processing data that will be added
in a child image (e.g., the instruction may copy in code from a chosen directory
and run a build script on the data).

RUN
Runs the given instruction inside the container and commits the result.

USER
Sets the user (by name or UID) to use in any subsequent RUN, CMD, or ENTRYPOINT
instructions. Note that UIDs are the same between the host and container, but
usernames may be assigned to different UIDs, which can make things tricky
when setting permissions.

VOLUME
Declares the specified file or directory to be a volume. If the file or directory
already exists in the image, it will copied into the volume when the container is
started. If multiple arguments are given, they are interpreted as multiple volume
statements. You cannot specify the host directory for a volume inside a Docker-
file for portability and security reasons. For more information, see “Managing
Data with Volumes and Data Containers”.

WORKDIR
Sets the working directory for any subsequent RUN, CMD, ENTRYPOINT, ADD, or COPY
instructions. Can be used multiple times. Relative paths may be used and are
resolved relative to the previous WORKDIR.

48 | Chapter4: Docker Fundamentals



Connecting Containers to the World

Say you’re running a web server inside a container. How do you provide the outside
world with access? The answer is to “publish” ports with the -p or -P commands. This
command forwards ports on the host to the container. For example:

$ docker run -d -p 8000:80 nginx
af9038e18360002ef3f3658f16094dadd4928c4b3e88e347c9a746b131db5444
$ curl localhost:8000

<!DOCTYPE html>

<html>

<head>

<title>Welcome to nginx!</title>

The -p 8000:80 argument has told Docker to forward port 8000 on the host to port
80 in the container. Alternatively, the -P argument can be used to tell Docker to auto-
matically select a free port to forward to on the host. For example:

$ ID=$(docker run -d -P nginx)

$ docker port $ID 80
0.0.0.0:32771

$ curl localhost:32771

<!DOCTYPE html>

<html>

<head>

<title>Welcome to nginx!</title>

The primary advantage of the -P command is that you are no longer responsible for
keeping track of allocated ports, which becomes important if you have several con-
tainers publishing ports. In these cases you can use the docker port command to
discover the port allocated by Docker.

Linking Containers

Docker links are the simplest way to allow containers on the same host to talk to each
other. When using the default Docker networking model, communication between
containers will be over an internal Docker network, meaning communications are
not exposed to the host network.

Connecting Containers tothe World | 49



Docker Networking Changes

In future versions of Docker (likely 1.9 and on), the idiomatic way
to network containers will be to “publish services,” rather than link
containers. However, links will continue to be supported for the
forseeable future, and the examples in this book should work
without changes.

For more information on the upcoming changes to networking, see
“New Docker Networking”.

Links are initialized by giving the argument --link CONTAINER:ALIAS to docker
run, where CONTAINER is the name of the link container® and ALIAS is a local name
used inside the master container to refer to the link container.

Using Docker links will also add the alias and the link container ID to /etc/hosts on
the master container, allowing the link container to be addressed by name from the
master container.

In addition, Docker will set a bunch of environment variables inside the master con-
tainer that are designed to make it easy to talk to the link container. For example, if
we create and link to a Redis container:

$ docker run -d --name myredis redis
c9148dee046a6fefac48806cd8ecOce85492b71f25e97aae9a1a75027b1c8423

$ docker run --link myredis:redis debian env
ATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
HOSTNAME=f015d58d53b5

REDIS_PORT=tcp://172.17.0.22:6379
REDIS_PORT_6379_TCP=tcp://172.17.0.22:6379
REDIS_PORT_6379_TCP_ADDR=172.17.0.22

REDIS_PORT_6379_TCP_PORT=6379

REDIS_PORT_6379_TCP_PROTO=tcp

REDIS_NAME=/distracted_rosalind/redis

REDIS_ENV_REDIS_VERSION=3.0.3
REDIS_ENV_REDIS_DOWNLOAD_URL=http://download.redis.io/releases/redis-3.0.3.tar.gz
REDIS_ENV_REDIS_DOWNLOAD_SHA1=0e2d7707327986ae652df717059354b358b83358
HOME=/root

we can see that Docker has set up environment variables prefixed with REDIS_PORT,
that contain information on how to connect to the container. Most of these seem
somewhat redundant, as the information in the value is already contained in the vari-
able name. Nevertheless, they are useful as a form of documentation if nothing else.

3 In this discussion and throughout the book, I will refer to the container being linked as the link container and
the container being launched as the master container (as it is responsible for initiating the link).

50 | Chapter4: Docker Fundamentals



Docker has also imported environment variables from the linked container, which it
has prefixed with REDIS_ENV. While this functionality can be very useful, it’s impor-
tant to be aware that this happens if you use environment variables to store secrets
such as API tokens or database passwords.

By default, containers will be able to talk to each other whether or not they have been
explicitly linked. If you want to prevent containers that haven’t been linked from
communicating, use the arguments --icc=false and --iptables when starting the
Docker daemon. Now when containers are linked, Docker will set up Iptables rules to
allow the containers to communicate on any ports that have been declared as
exposed.

Unfortunately, Docker links as they stand have several shortcomings. Perhaps most
significantly, they are static—although links should survive container restarts, they
aren’t updated if the linked container replaced. Also, the link container must be
started before the master container, meaning you can’t have bidirectional links.

For further information on networking containers, see Chapter 11.

Managing Data with Volumes and Data Containers

To recap, Docker volumes are directories* that are not part of the container’s UFS (see
“Images, Containers, and the Union File System”)—they are just normal directories
on the host that are bind mounted (see Bind Mounting) into the container.

There are three’ different ways to initialize volumes, and it’s important to understand
the differences between the methods. First, we can declare a volume at runtime with
the -v flag:

$ docker run -it --name container-test -h CONTAINER -v /data debian /bin/bash

root@CONTAINER: /# 1ls /data

root@CONTAINER: /#
This will make the directory /data inside the container into a volume. Any files the
image held inside the /data directory will be copied into the volume. We can find out
where the volume lives on the host by running docker inspect on the host from a
new shell:

$ docker inspect -f {{.Mounts}} container-test
[{5cad... /mnt/sdal/var/lib/docker/volumes/5cad.../_data /data local true}]

4 Technically, directories or files, as a volume may be a single file.

5 OK, two-and-a-half, depending on how you want to count.

Managing Data with Volumes and Data Containers | 51



In this case, the volume /data/ in the container is simply a link to the direc-
tory /var/lib/docker/volumes/5cad.../_data on the host. To prove this, we can add a
file into the directory on the host:*

$ sudo touch /var/lib/docker/volumes/5cad.../_data/test-file
And you should immediately be able to see from inside the container:

$ root@CONTAINER:/# ls /data
test-file

The second way to set up a volume is by using the VOLUME instruction in a Dockerfile:

FROM debian:wheezy
VOLUME /data

This has exactly the same effect as specifying -v /data to docker run.

Setting Volume Permissions in Dockerfiles

You will often need to set the permissions and ownership on a volume or initialize a
volume with some default data or configuration files. The key point to be aware of
here is that any instruction after the VOLUME instruction in a Dockerfile will not be
able to make changes to that volume. For example, the following Dockerfile will not
work as expected:

FROM debian:wheezy

RUN useradd foo

VOLUME /data

RUN touch /data/x

RUN chown -R foo:foo /data

We want the touch and chown commands to run on the image’s filesystem, but they
will actually run inside the volume of a temporary container used to create the layer
(refer back to “How Images Get Built” for more details). This volume will be removed
once the commands complete, rendering the instruction pointless.

The following Dockerfile will work:

FROM debian:wheezy

RUN useradd foo

RUN mkdir /data && touch /data/x
RUN chown -R foo:foo /data
VOLUME /data

6 If you're connected to a remote Docker daemon, you'll need to run this on the remote host via SSH. If you're
using Docker Machine (which you will be if you installed Docker via the Docker Toolbox), you can do this via
docker-machine ssh default.

52 | Chapter4: Docker Fundamentals

vww allitebooks.cond



http://www.allitebooks.org

When a container is started from this image, Docker will copy any files from the vol-
ume directory in the image into the container’s volume. This won't happen if you
specify a host directory for the volume (so that host files aren’t accidentally overwrit-
ten).

If for some reason you can’t set permissions and ownership in a RUN instruction, you
will have to do so using a CMD or ENTRYPOINT script that runs after container creation.

The third” way is to extend the -v argument to docker run with an explicit directory
to bind to on the host using the format -v HOST_DIR:CONTAINER_DIR. This can’t be
done from a Dockerfile (it would be nonportable and a security risk). For example:

$ docker run -v /home/adrian/data:/data debian ls /data

This will mount the directory /home/adrian/data on the host as /data inside the con-
tainer. Any files already existing in the /home/adrian/data directory will be available
inside the container. If the /data directory already exists in the container, its contents
will be hidden by the volume. Unlike the other invocations, no files from the image
will be copied into the volume, and the volume won’t be deleted by Docker (i.e.,
docker rm -v will not remove a volume that is mounted at a user-chosen directory).

Bind Mounting

When a specific host directory is used in a volume (the -v
HOST_DIR:CONTAINER_DIR syntax), it is often referred to as bind
mounting. This is somewhat misleading, as all volumes are techni-
cally bind mounted—the difference is that the mount point is made
explicit rather than hidden in a directory owned by Docker.

Sharing Data

The -v HOST_DIR:CONTAINER_DIR syntax is very useful for sharing files between the
host and one or more containers. For example, configuration files can be kept on the
host and mounted into containers built from generic images.

We can also share data between containers by using the - -volumes-from CONTAINER
argument with docker run. For example, we can create a new container that has
access to the volumes from the container in our previous example like so:

$ docker run -it -h NEWCONTAINER --volumes-from container-test debian /bin/bash
root@NEWCONTAINER: /# 1s /data

test-file

root@NEWCONTAINER: /#

7 Second equal?

Managing Data with Volumes and Data Containers | 53



It's important to note that this works whether or not the container holding the vol-
umes (container-test in this case) is currently running. As long as at least one exist-
ing container links to a volume, it won’t be deleted.

Data Containers

A common practice is to create data containers—containers whose sole purpose is to
share data between other containers. The main benefit of this approach is that it pro-
vides a handy namespace for volumes that can be easily loaded using the - -volumes-
from command.

For example, we can create a data container for a PostgreSQL database with the fol-
lowing command:

$ docker run --name dbdata postgres echo "Data-only container for postgres"

This will create a container from the postgres image and initialize any volumes
defined in the image before running the echo command and exiting.® There’s no need
to leave data containers running, since doing so would just be a waste of resources.

We can then use this volume from other containers with the --volumes-from argu-
ment. For example:

$ docker run -d --volumes-from dbdata --name dbl postgres

Images for Data Containers

There’s normally no need to use a “minimal image” such as busy
box or scratch for the data container. Just use the same image that
is used for the container consuming the data. For example, use the
postgres image to create a data container to be used with the Post-
gres database.

Using the same image doesn’t take up any extra space—you must
already have downloaded or created the image for the consumer. It
also gives the image a chance to seed the container with any initial
data and ensures permissions are set up correctly.

Deleting volumes

Volumes are only deleted if:

o the container was deleted with docker rm -v, or

8 We could have used any command that exits immediately here, but the echo message will serve to remind us
of the purpose of the container when we run docker ps -a. Another option is not to start the container at all
by using the docker create command instead of docker run.

54 | Chapter4: Docker Fundamentals



o the --rm flag was provided to docker run
and:

« 1o existing container links to the volume

« 1o host directory was specified for the volume (the -v HOST_DIR:CONTAINER_DIR
syntax was not used)

At the moment, this means that unless you are very careful about always running
your containers like this, you are likely to have orphan files and directories in your
Docker installation directory and no easy way of telling what they represent. Docker
is working on a top-level “volume” command that will allow you to list, create,
inspect, and remove volumes independent of containers. This is expected to land in
1.9, which should be out by the time this book is published.

Common Docker Commands

This section gives a brief (at least in comparison to the official documentation) and
nonexhaustive overview of the various Docker commands, focusing on the com-
mands commonly used on a day-to-day basis. Since Docker is rapidly changing and
evolving, refer to the official documentation on the Docker website for full and up-to-
date details on a given command. I have not specified in detail the arguments and
syntax of the various commands (with the exception of docker run). Refer to the in-
built help for this, which can be accessed by giving the - -help argument to any com-
mand or via the docker help command.

Common Docker Commands | 55


http://docs.docker.com

Docker Boolean Flags

In most Unix command-line tools, you will find flags that don’t
take a value, such as -1in 1s -1. Since these flags are either set or
not set, Docker considers these to be boolean flags and—unlike
most other tools—supports explictly supplying a boolean value flag
(i.e., it will accept both -f=true and -f). In addition (and this is
where things get confusing), you can have both default true and
default false flags. Unlike default false, default true flags are consid-
ered to be set if unspecified. Specifying a flag without an argument
has the same effect as setting it to true—a default true flag is not
unset by an argument with a value; the only way a default true flag
can be unset is by explicitly setting it to false (e.g., - f=false).

To find out if a flag is default true or default false, refer to docker
help for the command. For example:

$ docker logs --help

-f, --follow=false Follow log output

--help=false Print usage
-t, --timestamps=false Show timestamps

shows that the -f, - -help, and -t arguments are all default false.

To give a couple of concrete examples, consider the default true - -
sig-proxy argument to docker run. The only way to turn this
argument off is by explicitly setting it false. For example:

$ docker run --sig-proxy=false ...
All of the following are equivalent:

$ docker run --sig-proxy=true ...
$ docker run --sig-proxy ...
$ docker run ...

In the case of a default false argument, such as --read-only, the
following will set it to true:

$ docker run --read-only=true
$ docker run --read-only

Leaving it unspecified or explicitly setting to false are equivalent.

This also leads to some quirky behavior with flags that normally
short-circuit logic (e.g., docker ps --help=false will work as
normal without printing the help message).

The run Command

We've already seen docker run in action; it’s the go-to command for launching new
containers. As such, it is by far the most complex command and supports a large list

56 | Chapter4: Docker Fundamentals



of potential arguments. The arguments allow users to configure how the image is run,
override Dockerfile settings, configure networking, and set privileges and resources
for the container.

The following options control the lifecycle of the container and its basic mode of
operation:

-a,

-d,

-1,

--attach

Attaches the given stream (STDOUT, etc.) to the terminal. If unspecified, both
stdout and stderr are attached. If unspecified and the container is started in
interactive mode (-1), stdin is also attached.

Incompatible with -d

- -detach
Runs the container in “detached” mode. The command will run the container in
the background and return the container ID.

--interactive
Keeps stdin open (even when it’s not attached). Generally used with -t to start
an interactive container session. For example:

$ docker run -it debian /bin/bash
root@bdof26f928bb: /# 1s
...snip...

--restart

Configures when Docker will attempt to restart an exited container. The argu-
ment no will never attempt to restart a container, and always will always try to
restart, regardless of exit status. The on-failure argument will attempt to restart
containers that exit with a nonzero status and can take an optional argument
specifying the number of times to attempt to restart before giving up (if not
specified, it will retry forever). For example, docker run --restart on-
failure:10 postgres will launch the postgres container and attempt to restart it
10 times if it exits with a nonzero code.

--rm

-t,

Automatically removes the container when it exits. Cannot be used with -d.

--tty
Allocates a pseudo-TTY. Normally used with -1 to start an interactive container.

The following options allow setting of container names and variables:

-e,

--env
Sets environment variables inside the container. For example:

Common Docker Commands | 57



$ docker run -e vari=val -e var2="val 2" debian env
PATH=/usr/local/sbin:/usr/local/bin: /usr/sbin:/usr/bin:/sbin:/bin
HOSTNAME=b15f833d65d8

varil=val

var2=val 2

HOME=/root

Also note the - -env-file option for passing variables in via a file.

-h, --hostname
Sets the container’s unix host name to NAME. For example:

$ docker run -h "myhost" debian hostname
myhost

--name NAME
Assigns the name NAME to the container. The name can then be used to address
the container in other Docker commands.

The following options allow the user to set up volumes (see “Managing Data with
Volumes and Data Containers” for more details):

-v, --volume
There are two forms of the argument to set up a volume (a file or directory
within a container that is part of the native host filesystem, not the container’s
union file system). The first form only specifies the directory within the con-
tainer and will bind to a host directory of Docker’s choosing. The second form
specifies the host directory to bind to.

--volumes-from
Mounts volumes from the specified container. Often used in association with
data containers (see “Data Containers”).

There are several options affecting networking. The basic commands you can expect
to commonly use are:

- -expose
Equivalent of Dockerfile EXPOSE instruction. Identifies the port or port range as
being used in the container but does not open the port. Only really makes sense
in association with -P and when linking containers.

--link
Sets up a private network interface to the specified container. See “Linking Con-
tainers” for more information.

-p, --publish
“Publishes” a port on the container, making it accessible from the host. If the host
port is not defined, a random high-numbered port will chosen, which can be dis-

58 | Chapter4: Docker Fundamentals



covered by using the docker port command. The host interface on which to
expose the port may also be specified.

-P, --publish-all
Publish all exposed ports on the container to the host. A random high-numbered
port will be chosen for each exposed port. The docker port command can be
used to see the mapping.

There are several more advanced options you may find useful if you need to do more
advanced networking. Be aware that several of these options will require you to have
some understanding of networking and how it is implemented in Docker. For more
information, refer to Chapter 11.

The docker run command also has a large set of options for controlling the privi-
leges and capabilities of containers. See Chapter 13 for details on these.

The following options directly override Dockerfile settings:

--entrypoint
Sets the entrypoint for the container to the given argument, overriding any ENTRY
POINT instruction in the Dockerfile.

-u, --user
Sets the user that commands are run under. May be specified as a username or
UID. Overrides USER instruction in Dockerfile.

-w, --workdir
Sets the working directory in the container to the provided path. Overrides any
value in the Dockerfile.

Managing Containers

In addition to docker run, the following docker commands are used to manage con-
tainers during their lifecyle:

docker attach [OPTIONS] CONTAINER
The attach command allows the user to view or interact with the main process
inside the container. For example:

$ ID=$(docker run -d debian sh -c "while true; do echo 'tick'; sleep 1; done;")
$ docker attach $ID

tick

tick

tick

tick

Note that using CTRL-C to quit will end the process and cause the container to exit.

Common Docker Commands | 59



docker create
Creates a container from an image but does not start it. Takes most of the same
arguments as docker run. To start the container, use docker start.

docker cp
Copies files and directories between a container and the host.

docker exec
Runs a command inside a container. Can be used to perform maintenance tasks

or as a replacement for ssh to log in to a container.

For example:

$ ID=$(docker run -d debian sh -c "while true; do sleep 1; done;")
$ docker exec $ID echo "Hello"

Hello

$ docker exec -it $ID /bin/bash

root@5c6c32041d68: /# 1s

bin dev home 1ib64 mnt proc run selinux sys usr

boot etc 1ib media opt root sbin srv tmp var
root@5c6c32041d68: /# exit
exit

docker kill

Sends a signal to the main process (PID 1) in a container. By default, sends a
SIGKILL, which will cause the container to exit immediately. Alternatively, the
signal can be specified with the -s argument. The container ID is returned.

For example:

$ ID=$(docker run -d debian bash -c \

"trap 'echo caught' SIGTRAP; while true; do sleep 1; done;")
$ docker kill -s SIGTRAP $ID
e33da73c275b56e734a4bbbefcOb41f6ba84967d09bad8314edd860ebd2da86c
$ docker logs $ID
caught
$ docker kill $ID
e33da73c275b56e734a4bbbefcOb41f6ba84967d09bad8314edd860ebd2da86c

docker pause

Suspends all processes inside the given container. The processes do not receive
any signal that they are being suspended and consequently cannot shut down or
clean up. The processes can be restarted with docker unpause. docker pause
uses the Linux cgroups freezer functionality internally. This command contrasts

with docker stop, which stops the processes and sends signals observable by the

processes.

60

Chapter 4: Docker Fundamentals



docker restart
Restarts one or more containers. Roughly equivalent to calling docker stop fol-
lowed by docker start on the containers. Takes an optional argument -t that
specifies the amount of time to wait for the container to shut down before it is
killed with a STGTERM.

docker rm
Removes one or more containers. Returns the names or IDs of succesfully
deleted containers. By default, docker rm will not remove any volumes. The -f
argument can be used to remove running containers, and the -v argument will
remove volumes created by the container (as long as they aren’t bind mounted or
in use by another container).

For example, to delete all stopped containers:

$ docker rm $(docker ps -aq)
b7a4e94253b3
e33da73c275b
f47074b60757

docker start
Starts a stopped container (or containers). Can be used to restart a container that
has exited or to start a container that has been created with docker create but
never launched.

docker stop
Stops (but does not remove) one or more containers. After calling docker stop
on a container, it will transition to the “exited” state. Takes an optional argument
-t which specifies the amount of time to wait for the container to shutdown
before it is killed with a SIGTERM.

docker unpause
Restarts a container previously paused with docker pause.

Detaching from Containers

When attached to a Docker container, either by starting it in inter-
active mode or attaching to it with docker attach, you will stop
the container if you try to disconnect with CTRL-C. Instead, if you
use CTRL-P CTRL-Q you can detach from the container without
stopping it.

This code will only work when attached in interactive mode with a
TTY (i.e., using both the -1 and -t flags).

Common Docker Commands | 61



Docker Info

The following subcommands can be used to get more information on the Docker
installation and usage:

docker 1info
Prints various information on the Docker system and host.

docker help
Prints usage and help information for the given subcommand. Identical to run-
ning a command with the - -help flag.

docker version
Prints Docker version information for client and server as well as the version of
Go used in compilation.

Container Info

The following commands provide more information on running and stopped con-
tainers.

docker diff
Shows changes made to the containers filesystem compared to the image it was
launched from. For example:

$ ID=$(docker run -d debian touch /NEW-FILE)
S docker diff SID
A /NEW-FILE

docker events
Prints real-time events from the daemon. Use CTRL-C to quit. For more infor-
mation on this, see Chapter 10.

docker inspect
Provides detailed information on given containers or images. The information
includes most configuration information and covers network settings and vol-
ume mappings. The command can take one argument, -f, which is used to sup-
ply a Go template that can be used to format and filter the output.

docker logs
Outputs the “logs” for a container. This is simply everything that has been writ-
ten to STDERR or STDOUT inside the container. For more information on logging in
Docker, see Chapter 10.

62 | Chapter4: Docker Fundamentals

vww allitebooks.cond



http://www.allitebooks.org

docker port
Lists the exposed port mappings for the given container. Can optionally be given
the internal container port and protocol to look up. Often used after docker run
-P <image> to discover the assigned ports.

For example:

$ ID=$(docker run -P -d redis)
$ docker port $ID

6379/tcp -> 0.0.0.0:32768

$ docker port $ID 6379
0.0.0.0:32768

$ docker port $ID 6379/tcp
0.0.0.0:32768

docker ps
Provides high-level information on current containers, such as the name, ID, and
status. Takes a lot of different arguments, notably -a for getting all containers,
not just running ones. Also note the -q argument, which only returns the con-
tainer IDs and is very useful as input to other commands such as docker rm.

docker top
Provides information on the running processes inside a given container. In effect,
this command runs the UNIX ps utility on the host and filters for processes in
the given container. The command can be given the same arguments the ps util-
ity and defaults to -ef (but be careful to make sure the PID field is still in the
output).

For example:

$ ID=$(docker run -d redis)

$ docker top $ID

UID PID PPID C STIME TTY TIME CMD

999 9243 1836 0 15:44 ? 00:00:00 redis-server *:6379
$ ps -f -u 999

UID PID PPID C STIME TTY TIME CMD

999 9243 1836 0 15:44 ? 00:00:00 redis-server *:6379
$ docker top $ID -axZ

LABEL PID TTY STAT TIME COMMAND

docker-default 9243 ? Ssl 0:00 redis-server *:6379

Dealing with Images

The following commands provide tools for creating and working with images:

docker build
Builds an image from a Dockerfile. See “Building Images from Dockerfiles” and
“How Images Get Built” for details on usage.

Common Docker Commands | 63



docker commit

Creates an image from the specified container. While docker commit can be use-
ful, it is generally preferable to create images using docker build, which is easily
repeatable. By default, containers are paused prior to commit, but this can be
turned off with the - -pause=false argument. Takes -a and -m arguments for set-
ting metadata.

For example:

$ ID=$(docker run -d redis touch /new-file)

$ docker commit -a "Joe Bloggs" -m "Comment" $ID commit:test
ac479108b0fa9a02a7fb290a22dacd5e20c867ec512d6813ed42e3517711a0cf
$ docker images commit

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
commit test ac479108b0fa About a minute ago 111 MB

$ docker run commit:test ls /new-file

/new-file

docker export

Exports the contents of the container’s filesystem as a tar archive on STDOUT. The
resulting archive can be loaded with docker import. Note that only the filesys-
tem is exported; any metadata such as exported ports, CMD, and ENTRYPOINT set-
tings will be lost. Also note that any volumes are not inlcuded in the export.
Contrast with docker save.

docker history

Outputs information on each of the layers in an image.

docker images

Provides a list of local images, including information such as repository name,
tag name, and size. By default, intermediate images (used in the creation of top-
level images) are not shown. The VIRTUAL SIZE is the total size of the image
including all underlying layers. As these layers may be shared with other images,
simply adding up the size of all images does not provide an accurate estimate of
disk usage. Also, images will appear multiple times if they have more than one
tag; different images can be discerned by comparing the ID. Takes several argu-
ments; in particular, note -q, which only returns the image IDs and is useful as
input to other commands such as docker rmti.

For example:

$ docker images | head -4

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
identidock_identidock latest 9fc66b46a2e6 26 hours ago 839.8 MB
redis latest 868be653dea3 6 days ago 110.8 MB

containersol/pres-base latest 13919d434c95 2 weeks ago 401.8 MB

To remove all dangling images:

64

Chapter 4: Docker Fundamentals



$ docker rmi $(docker images -q -f dangling=true)
Deleted: a9979d5ace9af55a562b8436ba66a1538357bc2e0e43765b406f2cf0388fe062

docker import

Creates an image from an archive file containing a filesystem, such as that created
by docker export. The archive may be identified by a file path or URL or
streamed through STDIN (by using the - flag). Returns the ID of the newly cre-
ated image. The image can be tagged by supplying a repository and tag name.
Note that an image built from import will only consist of a single layer and will
lose Docker configuration settings such as exposed ports and CMD values. Con-
trast with docker load.

Example of “flattening” an image by exporting and importing:

$ docker export 35d171091d78 | docker import - flatten:test
5a9bc529af25e2cf6411c6d87442e0805c066b96e561fbd1935122f988086009

$ docker history flatten:test

IMAGE CREATED CREATED BY SIZE COMMENT
981804b0c2b2 59 seconds ago 317.7 MB Imported from -

docker Tload
Loads a repository from a tar archive passed via STDIN. The repository may con-
tain several images and tags. Unlike docker import, the images will include his-
tory and metadata. Suitable archive files are created by docker save, making
save and load a viable alternative to registries for distributing images and pro-
ducing backups. See docker save for an example.

docker rmi
Deletes the given image or images. Images are specified by ID or repository and
tag name. If a repository name is supplied but no tag name, the tag is assumed to
be latest. To delete images that exist in multiple repositories, specify that image
by ID and use the - f argument. You will need to run this once per repository.

docker save
Saves the named images or repositories to a tar archive, which is streamed to
STDOUT (use -o to write to a file). Images can be specified by ID or as
repository:tag. If only a repository name is given, all images in that repository
will be saved to the archive, not just the latest tag. Can be used in conjunction
with docker load to distribute or back up images.

For example:

$ docker save -o /tmp/redis.tar redis:latest

$ docker rmi redis:latest

Untagged: redis:latest

Deleted: 868be653dea3ff6082b043c0Of34b95bb180cc82ab14a18d9d6b8e27b7929762¢

Common Docker Commands | 65



$ docker load -i /tmp/redis.tar
$ docker images redis

REPOSITORY TAG IMAGE ID CREATED
VIRTUAL SIZE
redis latest 03059144681 3 months ago
111 MB

docker tag

Associates a repository and tag name with an image. The image can identified by
ID or repository and tag (the latest tag is assumed if none is given). If no tag is
given for the new name, latest is assumed.

For example:

$ docker tag faa2b75ce09a newname @

$ docker tag newname:latest amouat/newname @

$ docker tag newname:latest amouat/newname:newtag ©

$ docker tag newname:latest myregistry.com:5000/newname:newtag (4]

Adds the image with ID faa2b75ce09a to the repository newname, using the
tag latest as none was specified.

Adds the newname:latest image to the amouat/newname repository, again
using the tag latest. This label is in a format suitable for pushing to the
Docker Hub, assuming the user is amouat.

As above except using the tag newtag instead of latest.

Adds the newname:latest image to the repository myregistry.com/newname
with the tag newtag. This label is in a format suitable for pushing to a registry
at http://myregistry.com:5000.(((range="endofrange’,
startref="ix_04_docker_fundamentals-asciidoc23”)))(((range="endofrange”,
startref="ix_04_docker_fundamentals-asciidoc22”)))

Using the Registry

The following commands relate to using registries, including the Docker Hub. Be
aware the Docker saves credentials to the file .dockercfg in your home directory:

docker login

Register with, or log in to, the given registry server. If no server is specified, it is
assumed to be the Docker Hub. The process will interactively ask for details if
required, or they can be supplied as arguments.

66

Chapter 4: Docker Fundamentals



docker logout
Logs out from a Docker registry. If no server is specified, it is assumed to be the
Docker Hub.

docker pull
Downloads the given image from a registry. The registry is determined by the
image name and defaults to the Docker Hub. If no tag name is given, the image
tagged latest will be downloaded (if available). Use the -a argument to down-
load all images from a repository.

docker push
Pushes an image or repository to the registry. If no tag is given, this will push all
images in the repository to the registry, not just the one marked latest.

docker search
Prints a list of public repositories on the Docker Hub matching the search term.
Limits results to 25 repositories. You can also filter by stars and automated
builds. In general, it’s easiest to use the website.

Conclusion

There has been a lot of information in this chapter! If you even just managed to skim
the main points, you should have a reasonably broad understanding of how Docker
works and the main commands. In Part IT, we will see how to apply this knowledge to
a software project, from development through to production. You may find it easier
to understand some of the material in this chapter after seeing it in practice.

Conclusion | 67






PART II
The Software Lifecycle with Docker

In Part I, we introduced the philosophy behind containers and got familiar with their
basic use. In Part II, we go into more depth, using Docker to build, test, and deploy a
web application. We will see how Docker containers can be used in development,
testing, and production. This chapter will focus on a single-host system—see Part III
for information on deploying and orchestrating containers on multiple hosts.

By the end of Part II, you will understand how to integrate Docker into the software-
development process and be comfortable with everyday use of Docker. To make the
most of Docker, it is important to adopt a DevOps approach. In particular, during
development, we will be thinking about how to run software in production, which
will ease the pain of deployment to a variety of environments.

While the application we will build over the course of the chapters is necessarily very
small, we will also cover technology and practices required for running large-scale
applications maintained by large teams of developers.

Containers are not suited to building enterprise software monoliths with a release
cycle measured in weeks or months. Instead, we will naturally find ourselves taking
microservice approach and exploring techniques such as continuous deployment
where it is possible to safely push to production multiple times a day.

The advantage of containers, DevOps, microservices, and continuous delivery essen-
tially comes down to the idea of a fast feedback loop. By iterating quicker, we can
develop, test, and validate systems of higher quality in shorter time periods.






CHAPTER 5
Using Docker in Development

Throughout Part II, we are going to develop a simple web application that returns a
unique image for a given string, similar to the identicons used on GitHub and Stack-
Overflow for users with no set image. We will write the application using the Python
programming and the Flask web framework. Python was chosen for this example
because it is commonly used and succinct and readable. Don’t worry if you don't pro-
gram in Python. We will focus on how to interact with Docker, not on details of the
Python code.! Similarly, Flask was chosen since it is lightweight and easy to under-
stand. We will be using Docker to manage all our dependencies, so there is no need
install Python or Flask on your host computer.

This chapter will focus on getting on a container-based workflow and tools in place
before we begin development in the next chapter.

Say “Hello World!”

Let’s begin by creating a web server that just returns “Hello World!” First, create a
new directory called identidock to hold our project. Inside this directory, create a sub-
directory app that will hold our Python code. Inside the app directory, create a file
called identidock.py:

$ tree identidock/

identidock/
— app

L— identidock.py

1 directory, 1 file

1 If you want to learn more about Python and Flask, have a look at Flask Web Development by Miguel Grinberg
(O'Reilly), especially if you're going to be creating web apps.

n


http://shop.oreilly.com/product/0636920031116.do

Put the following code in identidock.py:

from flask import Flask
app = Flask(__name__) (1)

(/0
def hello_world():
return 'Hello World!\n'

if __name__ == '__main__
app.run(debug=True, host='0.0.0.0") (3]

To briefly explain this code:
© Initializes Flask and sets up the application object.

@ Creates a route associated with the URL. Whenever this URL is requested, it will
result in a call to the hello_world function.

© [Initializes the Python webserver. The use of 0.0.0.0 (instead of localhost or
127.0.0.1) as host argument binds to all network interfaces, which is needed to
allow the container to be accessed from the host or other containers. The if
statement on the line above ensures this line only executes when the file is called
as a standalone program and not when running as part of a larger application.

Source Code

The source code for this chapter can be found on GitHub. There
are tags for the various stages of the code through the chapter.

I've been told that code doesn’t copy/paste well from the e-book
release, so use the GitHub repo if you're having issues.

Now we need a container to put this code in and run it. In the identidock directory,
create a file called Dockerfile with the following contents:

FROM python:3.4

RUN pip install Flask==0.10.1
WORKDIR /app

COPY app /app

CMD ["python", "identidock.py"]

72 | Chapter5: Using Docker in Development

vww allitebooks.cond



https://github.com/using-docker/using_docker_in_dev
http://www.allitebooks.org

This Dockerfile uses an official Python image as a base, which contains a Python 3
installation. On top of this, it installs Flask and copies in our code. The CMD instruc-
tion simply runs our identidock code.

Official Image Variants

Many of the official repositories for popular programming languages such as Python,
Go, and Ruby contain multiple images for different purposes. In addition to images
for different version numbers, you are likely to find one or both of the following:

slim
These images are cut-down versions of the standard images. Many common
packages and libraries will be missing. These are essential when you need to
reduce on image size for distribution but often require extra work installing and
maintaining packages already available in the standard image.

onbuild

These images use the Dockerfile ONBUILD instruction to delay execution of cer-
tain commands until a new “child” image is built that inherits the onbuild image.
These commands are processed as part of the FROM instruction of the child image
and typically do things like copy over code and run a compile step. These images
can make it quicker and easier to get started with a language, but in the long-run,
they tend to be limiting and confusing. I would generally only recommend using
onbuild images when first exploring a repository.

For our example application, we are using a standard base image for Python 3 and not
one of these variants.

Now we can build and run our simple application:

$ cd identidock
$ docker build -t identidock .

$ docker run -d -p 5000:5000 identidock
0c75444e8f5f16dfe5acebfaae074cc33dfcO6f2d2fb6adb773ac51f20605aa4
Here I've passed the -d flag to docker run in order to start the container in the back-
ground, but you can also omit it if you want to see output from the webserver. The -p
5000:5000 argument tells Docker we want to forward port 5000 in the container to
port 5000 on the host.

Now let’s test it out:

$ curl localhost:5000
Hello World!

Say “Hello World!” | 73



Docker Machine IPs

If you're running Docker using Docker machine (which you will be
if you installed Docker using the Docker Toolbox on Mac or Win-
dows), you won’t be able to use localhost as the URL. Instead,
you’'ll need to use the IP address of the VM running Docker. Using
Docker machine’s ip command can help automate this. For exam-
ple:

$ curl $(docker-machine ip default):5000

Hello World!
This book assumes Docker is running locally; be sure to replace
localhost with the appropriate IP where appropriate.

Excellent! But there’s a pretty major problem with the workflow as it stands: every lit-
tle change to the code means we need to rebuild the image and restart the container.
Thankfully, there is a simple solution. We can bind mount the source code folder on
the host over the top of the one inside the container. The following code stops and
removes the last run container (if the previous example wasn’t the last run container,
you’ll need to look up its ID in docker ps) before starting a new one with the code
directory mounted to /app:

$ docker stop $(docker ps -1q)

0c75444e8f5f

$ docker rm $(docker ps -1q)

$ docker run -d -p 5000:5000 -v "$(pwd)"/app:/app identidock

The -v $(pwd)/app:/app argument mounts the app directory at /app inside the con-
tainer. It will override the contents of /app inside the container and also be writable
inside the container (you can mount a volume as read-only if you don’t want this).
Arguments to -v must be absolute paths, so here we've used $(pwd) to prepend the
current directory, which saves us some typing and keeps things portable.

74 | Chapter5: Using Docker in Development



Bind Mounts

When a host directory is specified for a volume using the -v
HOST_DIR:CONTAINER_DIR argument to docker run, it is com-
monly referred to as a “bind mount,” as it binds a folder (or file) on
the host to a folder (or file) inside the container. This is a little con-
fusing, as all volumes are technically bind mounts, but we have to
do a little more work to find the folder on the host when it isn't
specificed explicitly.

Note that the HOST_DIR always refers to the machine running the
Docker engine. If you are connected to a remote Docker daemon,
the path must exist on the remote machine. If youre using a local
VM provisioned by Docker machine (which you will be if you
installed Docker via Toolbox), it will cross-mount your home
directory to make things easier during development.

Verify that it’s still working:

$ curl localhost:5000
Hello World!

Although we have just mounted the same directory that was added using the COPY
command inside the image, it is now using exactly the same directory on the host and
inside the container, rather than its own copy from the image. Because of this, we can
now edit identidock.py and see our changes immediately:

$ sed -1 '' s/World/Docker/ app/identidock.py
$ curl localhost:5000
Hello Docker!

Here I've used the sed utility to make a quick in-place change to the identidock.py file.
If sed isn’t available, or you're not familiar with it, you can always use a normal text
editor to change the text “World” to “Docker”

So now we have a fairly normal development environment, except all our dependen-
cies—the Python compiler and libraries—are encapsulated inside a Docker container.
However, there is still a key problem. There is no way we could use this container in
production, mainly because it is running the default Flask webserver, which is only
intended for development and too inefficient and insecure for production use. A cru-
cial point in adopting Docker is to reduce the differences between development and
production, so let’s look at how we can do that now.

Say “Hello World!” | 75



Wot? No virtualenv?

If you're an experienced Python developer, you may be surprised that we're not using
virtualenv to develop our application. virtualenv is an extremely useful tool for isolat-
ing Python environments. It allows developers to have separate versions of Python
and supporting libraries for each application. Normally, it is essential and ubiquitous
in Python development.

When using containers, however, it is less useful, as we are already provided with an
isolated environment. If you're used to virtualenv, you can certainly still use it inside a
container, but you are unlikely to see much benefit, unless you experience clashes
with other applications or libraries installed in the container.

uWSGI is a production-ready application server that can also sit behind a webserver
such as nginx. Using uWSGI instead of the default Flask webserver will provide us
with a flexible container we can use in a range of settings. We can transition the con-
tainer to use uWSGI by just modifying two lines in the Dockerfile:

FROM python:3.4

RUN pip install Flask==0.10.1 uWSGI==2.0.8 @
WORKDIR /app
COPY app /app

CMD ["uwsgi", "--http", "0.0.0.0:9090", "--wsgi-file", "/app/identidock.py", \
"--callable", "app", "--stats", "0.0.0.0:9191"] (2]

Add uWSGI to the list of Python packages to install.

Create a new command to run uWSGI. Here we tell uWSGI to start an http
server listening on port 9090, running the app application from /app/identi-
dock.py. It also starts a stats server on port 9191. We could alternatively have
overridden the CMD via the docker run command.

Build it and run it so that we can see the difference:

$ docker build -t identidock .

Successfully built 3133f91af597

$ docker run -d -p 9090:9090 -p 9191:9191 identidock
00d6fa65092cbd91a97b512334d8d4be624bf730fcb482d6e8aecc83b272130
$ curl localhost:9090

Hello Docker!

If you now run docker logs with the container ID, you will see the logging informa-
tion for uWSGI, confirming we are indeed using the uWSGI server. Also, we've asked

76 | Chapter5: Using Docker in Development


https://virtualenv.pypa.io/en/latest/
https://uwsgi-docs.readthedocs.org/en/latest/

uWSGI to expose some stats, which you can see at http://localhost:9191. The Python
code that normally starts the default web server hasn’t been executed as it wasn’t run
directly from the command line.

The server is working correctly now, but there is still some housekeeping we should
do. If you examine the uWSGI logs, you'll notice that the server is rightly complain-
ing about being run as root. This is a pointless security leak we can easily fix in the
Dockerfile by specifying a user to run under. At the same time, we will explicitly
declare the ports the container listens on:

FROM python:3.4

RUN groupadd -r uwsgi && useradd -r -g uwsgi uwsgi (1]
RUN pip install Flask==0.10.1 uWSGI==2.0.8

WORKDIR /app

COPY app /app

EXPOSE 9090 9191 @
USER uwsgi ©

CMD ["uwsgi", "--http", "0.0.0.0:9090", "--wsgi-file", "/app/identidock.py", \
"--callable", "app", "--stats", "0.0.0.0:9191"]

To explain the new lines:
O Creates the uwsgi user and group in a normal Unix fashion.

© Uses the EXPOSE instruction to declare the ports accessible to the host and other
containers.

© Sets the user for all the following lines (including CMD and ENTRYPOINT) to be
uwsgi.

Say “Hello World!” | 77


http://localhost:9191

Users and Groups Inside Containers

rs’"inside containers”)))The Linux kernel uses UIDs and GIDs to
identify users and detemine their access rights. Mapping UIDs and
GIDs to identifiers is handled in userspace by the OS. Because of
this, UIDs in the container are the same as UIDs on the host, but
users and groups created inside containers do not propogate to the
host. A side effect of this is that access permissions can get confus-
ing; files can appear to be owned by different users inside and out-
side of containers. For example, note the changing owner of the

following file:
$ 1s -1 test-file
STW-T--r-- 1 docker staff 0 Dec 28 18:26 test-file

$ docker run -it -v $(pwd)/test-file:/test-file
debian bash

root@e877f924ea27: /# 1s -1 test-file

-rw-r--r-- 1 1000 staff 0 Dec 28 18:26 test-file
root@e877f924ea27: /# useradd -r test-user
root@e877f924ea27: /# chown test-user test-file
root@e877f924ea27:/# 1s -1 [test-file

-rw-r--r-- 1 test-user staff 0 Dec 28 18:26 /test-file
root@e877f924ea27: /[# exit

exit
docker@boot2docker:~$ 1s -1 test-file
STW-T--r-- 1 999 staff 0 Dec 28 18:26 test-file

Build this image as normal and test the new user setting:

$ docker build -t identidock .

$ docker run identidock whoami
uwsgi

Note we've overridden the default CMD instruction that calls the webserver with the
whoami command, which returns the name of the running user inside the container.

Always Set a USER

Y It's important to set the USER statement in all your Dockerfiles (or
change the user within an ENTRYPOINT or CMD script). If you don’t
do this, your processes will be running as root within the container.
As UIDs are the same within a container and on the host, should
an attacker manage to break the container, he will have root access
to the host machine.

There is work ongoing to automatically map the root user inside a
container to a high-numbered user on the host, but at the time of
writing (Docker version 1.8), this hasn’t landed yet.

78 | Chapter5: Using Docker in Development



Great, now commands inside the container are no longer running as root. Lets
launch the container again, but with a slightly different set of arguments:

$ docker run -d -P --pame port-test identidock

This time we haven't specified specific ports on the host to bind to. Instead, we've
used the -P argument, which makes Docker automatically map a random high-
numbered port on the host to each “exposed” port on the container. We have to ask
Docker what these ports are before we can access the service:

$ docker port port-test
9090/tcp -> 0.0.0.0:32769
9191/tcp -> 0.0.0.0:32768

Here we can see that it has bound 9090 to 32769 on the host and 9191 to 32768, so we
can now access the service (note that the port numbers are likely to be different for

you):

$ curl localhost:32769
Hello Docker!

At first this might seem a pointless extra step—and it is in this case—but when you
have multiple containers running on a single host, it’s a lot easier to ask Docker to
automatically map free ports than it is keep track of unused ports yourself.

So now we have a webservice running that is pretty close to how it would look in pro-
duction. There are still a lot of things you would want to tweak in production—such
as the uWSGI options for processes and threads—but we have closed the gap enor-
mously from the default Python debug webserver.

We now have a new problem: we've lost access to the development tools such as
debugging output and live code-reloading provided by the default Python web server.
While we can drastically reduce the differences between the development and pro-
duction environments, they still have fundamentally different needs that will always
require some changes. Ideally, we want to use the same image for both development
and production but enable a slightly different set of features depending on where it is
running. We can achieve this by using an environment variable and a simple script to
switch features depending on context.

Create a file called cmd.sh in the same directory as the Dockerfile with the following
contents:

#!/bin/bash
set -e

if [ "SENV" = 'DEV' ]; then
echo "Running Development Server"
exec python "identidock.py"

else
echo "Running Production Server"

Say “Hello World!” | 79



exec uwsgi --http 0.0.0.0:9090 --wsgi-file /app/identidock.py \
--callable app --stats 0.0.0.0:9191
fi

The intent of this script should be fairly clear. If the variable ENV is set to DEV, it will
run the debug webserver; otherwise it will use the production server.?. The exec com-
mand is used in order to avoid creating a new process, which ensures any signals
(such as SIGTERM) are recieved by our uwsgi process rather than being swallowed by
the parent process.

Use Configuration Files and Helper Scripts

To keep things simple, I've included everything inside the Docker-
file. However, as the application grows, it makes sense to move
things out into supporting files and scripts where possible. In par-
ticular, the pip dependencies should be moved to a requirements.txt
file, and the uWSGI configuration can move to a .ini file.

Next, we need to update the Dockerfile to use the script:

FROM python:3.4

RUN groupadd -r uwsgi && useradd -r -g uwsgil uwsgi
RUN pip install Flask==0.10.1 uWSGI==2.0.8
WORKDIR /app

COPY app /app

COPY cmd.sh / (1]

EXPOSE 9090 9191
USER uwsgi

CMD ["/cmd.sh"] (2]

© Adds the script to the container.

® Calls it from the CMD instruction.

Before we try out the new version, it’s time to stop any old containers we have run-
ning. The following will stop and remove all containers from the host; do not run this
if you have containers you want to keep:

$ docker stop $(docker ps -q)
c4b3d240f187
9be42abaf902
78af7d12d3bb

2 We now have variables such as port numbers duplicated across files. We could fix this by using arguments or
environment variables.

80 | Chapter5: Using Docker in Development



$ docker rm $(docker ps -aq)
11988486390
c4b3d240f187
9be42abaf902
78af7d12d3bb

Now we can rebuild the image with the script and test it out:

$ chmod +x cmd.sh
$ docker build -t identidock .

$ docker run -e "ENV=DEV" -p 5000:5000 identidock

unning Development Server
* Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)
* Restarting with stat

Good. Now when we run with -e "ENV=DEV", we get a development server; other-
wise, we get the production server.

Development Servers

You may find that the default Python server doesn’t meet your
needs during development, especially when linking several con-
tainers together. In this case, you can run uWSGI in development
as well. You will still want the ability to switch environments so that
you can turn on uWSGI features such as live code-reloading, which
shouldn’t be run in production.

Automating with Compose

There’s a final bit of automation we can add to make things a bit simpler. Docker
Compose is designed to quickly get Docker development environments up and run-
ning. Essentially, it uses YAML files to store the configuration for sets of containers,
saving developers from repetitive and error-prone typing or rolling thier own solu-
tion. Our application is so basic that it doesn’t buy us much at the moment, but it will
quickly come into its own as things get more complicated. Compose will free us from
the need to maintain our own scripts for orchestration, including starting, linking,
updating, and stopping our containers.

If you installed Docker using the Docker Toolbox, you should already have Compose
available. If not, follow the instructions at the Docker website. I used version 1.4.0 of
Compose in this chapter, but as we're only using basic functionality, anything after 1.2
should be good.

Create a file called docker-compose.yml in the identidock directory with the follow-
ing contents:

identidock: @
build: . @

Automating with Compose | 81


http://docs.docker.com/compose/
http://docs.docker.com/compose/
http://docs.docker.com/compose/install/

ports: (3]

- "5000:5000"
environment: @

ENV: DEV
volumes: @

- ./app:/app

The first line declares the name of the container to build. Multiple containers
(often called services in Compose lingo) can be defined in a single YAML file.

The build key tells Compose that the image for this container is to be built from
a Dockerfile that exists in the current directory (.). Every container definition
needs to include either a build or image key. image keys take the tag or ID of an
image to use for the container, the same as image argument to docker run.

The ports key is directly analagous to the -p argument to docker run for expos-
ing ports. Here we map port 5000 in the container to port 5000 on the host. Ports
can be specified without quotes, but this is best avoided as it can cause confusion
when YAML parses statements such as 56:56 as a base 60 number.

The environment key is directly analagous to the -e argument to docker run,
which sets environment variables in the container. Here we are setting ENV to DEV
in order to run the Flask development webserver.

The volumes key is directly analogous to the -v argument to docker run for set-
ting volumes. Here we are bind mounting the app directory into the container as
before in order to allow us to make changes to the code from the host.

Many more keys can be set in Compose YAML files, normally mapping directly to the
equivalent docker run arguments.

If you now run docker -compose up, you will get almost exactly the same result as the
previous docker run command:

$ docker-compose up

Creating identidock_identidock_1...

Attaching to identidock_identidock_1

identidock_1 | Running Development Server
identidock_1 | * Running on http://0.0.0.0:5000/
identidock_1 | * Restarting with reloader

From another terminal:

$ curl localhost:5000
Hello Docker!

When you're finished running the application, you can just hit ctrl-c to stop the
container.

82

|  Chapter 5: Using Docker in Development



To switch to the uWSGI server, we would need to change the environment and ports
keys in the YAML. This can either be done by editing the existing docker-compose.yml
or by creating a new YAML file for production and pointing docker - compose at using
the - f flag or the COMPOSE_FILE environment variable.

The Compose Workflow

The following commands are commonly used when working with Compose. Most
are self-explanatory and have direct Docker equivalents, but it's worth being aware of
them:

up
Starts all the containers defined in the Compose file and aggregates the log out-
put. Normally you will want to use the -d argument to run Compose in the back-
ground.

build
Rebuilds any images created from Dockerfiles. The up command will not build
an image unless it doesn't exist, so use this command whenever you need to
update an image.

ps

Provides information on the status of containers managed by Compose.

run
Spins up a container to run a one-off command. This will also spin up any linked
containers unless the - -no-deps argument is given.

logs
Outputs colored and aggregated logs for the Compose-managed containers.

stop
Stops containers without removing them.

rm
Removes stopped containers. Remember to use the -v argument to remove any
Docker-managed volumes.

A normal workflow begins with calling docker-compose up -d to start the applica-
tion. The docker-compose logs and ps commands can be used to verify the status of
the application and help debugging.

After changes to the code, call docker-compose build followed by docker-compose
up -d. This will build the new image and replace the running container. Note that
Compose will preserve any old volumes from the original containers, which means
that databases and caches persist over containers (this can be confusing, so be care-

Automating with Compose | 83



ful). If you don’t need a new image but have modified the Compose YAML, calling up
-d will cause Compose to replace the container with one with the new settings. If you
want to force Compose to stop and recreate all the containers, use the --force-
recreate flag.

When you're finished with the application, calling docker -compose stop will halt the
application. The same containers will be restarted if docker-compose start or up is
called, assuming no code has changed. Use docker-compose rm to get rid of them
completely.

For a full overview of all the commands, see the Docker reference page.

Conclusion

We're now at the stage where we have a working environment and we can begin to
develop our application. We've seen:

« How to leverage the official images to quickly create a portable and recreatable
development suite, without installing any tools on the host

» How to use volumes to make dynamic changes to code running in containers

« How to maintain both a production and development environment in a single
container

o How to use Compose to automate the development workflow

Docker has given us a familiar development environment, with all the tools we need;
yet at the same time, we can quickly test things out in an environment that mirrors
production.

There’s still a lot of things we need to do, especially with regard to testing and contin-
uous integration/delivery, but we'll come to those in the next few chapters as we pro-
gress with development.

84 | Chapter5: Using Docker in Development


https://docs.docker.com/compose/reference/

CHAPTER

6

Creating a Simple Web App

In this chapter, we'll turn our “Hello World!” program into a simple web app that
generates a unique image for users when they enter some text. These images are
sometimes known as identicons and can be used to identify users by providing a
unique image generated from their username or IP address. At the end of this chap-
ter, you'll have a basic working application that we will extend and play with in the
following chapters. By creating this application, we'll see how to compose Docker
containers to build a fully functioning system and how this naturally leads to a micro-
service approach.

Identicons

Identicons are images that are automatically generated from a value, normally the
hash of an IP address or username. They provide a visual representation of the object
so that it can be readily identified. Use cases include providing identifying images for
users on a website by hashing their username or IP address and providing automatic
favicons for websites.

They were originally developed by Don Park in early 2007 to identify commentors on
his blog, the code for which is still available on his GitHub project page.

Since then, there have been several further implementations with different graphical
styles. Two large creators of identicons are Stack Overflow and GitHub (Figure 6-1,
left), both of which use them for users who haven’t set their own. Stack Overflow uses
ones generated by the Gravatar service (Figure 6-1, right).! GitHub generates its own
identicons.

—

Which in turn uses the WP_Identicon project, among others.

85


http://scott.sherrillmix.com/blog/blogger/wp_identicon/
https://github.com/donpark/identicon

“‘A“
> >
4 1w

Figure 6-1. Left: A typical GitHub identicon; Right: A typical Gravatar identicon

If you've followed along with the previous chapter, you should have a project with the
following structure:

identidock/

}— Dockerfile

F— app

| L— identidock.py

— cmd.sh

L— docker-compose.yml

Don’t worry if you haven’t been following along. You can grab the code so far from
this book’s GitHub page. For example:

$ git clone -b vO https://github.com/using-docker/creating-a-simple-web-app/

Alternatively, go to the releases page on the GitHub project to download the files.

The tag v0 is the code as it was at the end of the last chapter; later tags provide the
updates as we work through the chapter.

Version Control

This book assumes knowledge of Git for pushing and cloning repo-
sitories. In a later chapter, we'll also look at the Docker Hub inte-
gration with GitHub and BitBucket. If youre not up-to-speed with
Git, check out https://try.github.io for a free tutorial.

Creating a Basic Web Page

As a first step, let’s get a very basic web page working for our application. For simplic-
ity, we will just return the HTML as a string.” Replace identidock.py with the fol-
lowing:

from flask import Flask

2 A better solution would be to use a templating engine such as Jinja2, which comes bundled with Flask.

86 | Chapter6: Creating a Simple Web App


https://github.com/using-docker/creating-a-simple-web-app
https://try.github.io

app = Flask(__name__)
default_name = 'Joe Bloggs'

/"
def get_identicon():

name = default_name

header = '<html><head><title>Identidock</title></head><body>"'
body = '''<form method="POST">
Hello <input type="text" name="name" value="{}">
<input type="submit" value="submit">
</form>
<p>You look like a:
<img src="/monster/monster.png"/>
""" format(name)
footer = '</body></html>'

return header + body + footer

if __name__ == '__main__
app.run(debug=True, host='0.0.0.0")
We're really not doing much more than the “Hello World!” program here. We've just
modified the returned text to be a small HTML page including a form for the user to
type in a name. The format function replaces the substring "{}" with the value of the
name variable, which we've hardcoded to “Joe Bloggs” for the time being.

Run docker-compose up -d and open a browser to http://localhost:5000 to see the
page shown in Figure 6-2.

Hello Joe Bloggs submit

You look like a: =

Figure 6-2. First Look at identidock

The broken image is expected, as we haven't added any code for image generation yet.
Similarly, the submit button is also broken.

At this point in development, it would be a wise idea to put in place automated tests
and perhaps even continuous integration/delivery. However, for the sake of narrative,
we'll continue to develop the application a bit more before introducing testing and
continuous integration in the following chapters.

Creating a Basic Web Page | 87


http://localhost:5000

Taking Advantage of Existing Images

It’s time to actually make this program do something. What we need is a function or
service that takes a string and returns a unique image. We can then call it with the
name the user supplies in the web page and use it to replace the broken image.

In this case, we are going to use dnmonster, an existing Docker image for this pur-
pose. dnmonster exposes a (roughly) RESTful API we can use. We could easily substi-
tute another identicon services for dnmonster, especially if it exposes a RESTful API
and is packaged into a container.

To call it from our existing code, we need to make a few changes, primarily adding a
new get_1identicon function:

from flask import Flask, Response (1]
import requests (2]

app = Flask(__name__)
default_name = 'Joe Bloggs'

/"
def mainpage():

name = default_name

header = '<html><head><title>Identidock</title></head><body>"'
body = '''<form method="POST">
Hello <input type="text" name="name" value="{}">
<input type="submit" value="submit">
</form>
<p>You look like a:
<img src="/monster/monster.png"/>
""" format(name)
footer = '</body></html>'

return header + body + footer

('/monster/<name>")
def get_identicon(name):

r = requests.get('http://dnmonster:8080/monster/' + name + '?size=80") (3]
image = r.content

return Response(image, mimetype='image/png') (4]

if __name__ == '__main__
app.run(debug=True, host='0.0.0.0")

@ Import the Response module from Flask, which we use to return images.

88 | (Chapter6: Creating a Simple Web App



® Import the requests library, which we will use to talk to the dnmonster service.

©® Make an HTTP GET request to the dnmonster service. We ask for an identicon
for the value of the name variable with a size of 80 pixels.

O Our return statement is a little more complicated because we need to use the
Response function to tell Flask we are returning a PNG image rather than HTML
or text.

Next, we need to make a small change to our Dockerfile so that our new code has the
correct libraries:

FROM python:3.4

RUN groupadd -r uwsgi && useradd -r -g uwsgil uwsgi

RUN pip install Flask==0.10.1 uWSGI==2.0.8 requests==2.5.1 (1)
WORKDIR /app

COPY app /app

COPY cmd.sh /

EXPOSE 9090 9191
USER uwsgi

CMD ["/cmd.sh"]

© We've added the requests library used in the preceding Python code.

Were now ready to launch the dnmonster container and link it to our application
container. In order to make it clear what is happening under the surface, we’ll do this
with plain Docker commands before moving to Compose later. As this is the first
time we've used the dnmonster image, it will be downloaded from the Docker Hub:

$ docker build -t identidock .

$ docker run -d --name dnmonster amouat/dnmonster:1.0
Unable to find image 'amouat/dnmonster:1.0' locally
1.0: Pulling from amouat/dnmonster

Status: Downloaded newer image for amouat/dnmonster:1.0
€695026b14f7d0c48f9f4b110c7c06ab747188c33fc80ad407b3ead6902feb2d
Now we start the application container in almost the same way as the previous chap-
ter, except we add the argument --1ink dnmonster:dnmonster to connect the con-
tainers. This is the magic that makes the URL http://dnmonster:8080 addressable in
the Python code:

$ docker run -d -p 5000:5000 -e "ENV=DEV" --link dnmonster:dnmonster identidock
162€69839c705587f6316a6b53dd0268cfc3d263f2ce70eadad24ddb56916e36

For more information on links, refer back to “Linking Containers”.

Taking Advantage of Existing Images | 89


http://docs.python-requests.org/en/latest/
http://dnmonster:8080

If you open your browser to http://localhost:5000 again, you should see something
like Figure 6-3.

Hello Joe Bloggs submit

You look like a:

Figure 6-3. The first identicon!

It doesn't look like much, but we've just generated our first identicon. The submit but-
ton is still broken, so we're not actually using any user input, but we'll fix that in a
minute. First, let’s get Compose running again so we don’t have to remember all those
docker run commands. Update docker-compose.yml:

identidock:
build: .
ports:
- "5000:5000"
environment:
ENV: DEV
volumes:

- ./app:/app
links:

- dnmonster

dnmonster: @
image: amouat/dnmonster:1.0

© Declares a link from the identidock container to the dnmonster container. Com-
pose will take care of starting containers in the correct order for this to happen.

@ Defines the new dnmonster container. All we need to tell Compose is to use the
amouat/dnmonster:1.0 image from the Docker Hub.

At this point, you should stop and remove the containers we launched earlier’ and
run docker-compose up -d. You should now have the app running again and be able
to update the code without needing to restart the containers.

To enable the button, we need to handle a POST request to the server and use the form
variable (which holds the username) to generate the image. We're also going to be a

3 To remove running containers, you can run docker rm $(docker stop ps -q).

90 | Chapter6: Creating a Simple Web App


http://localhost:5000

bit clever and hash the user input. This anonymizes any sensitive input such as e-mail
addresses and also makes sure the input is in a form suitable for a URL (we won’t
need to escape characters such as spaces). In our application, the hashing isn’t impor-
tant since we're only dealing with names, but it shows how to use the service in other
scenarios and protects anyone that does happen to enter sensitive information.

Update identicon.py so that it looks like:

from flask import Flask, Response, request
import requests
import hashlib (1)

app = Flask(__name__)
salt = "UNIQUE SALT" @
default_name = 'Joe Bloggs'

('/', methods=['GET', 'P0OST']) ©
def mainpage():

name = default_name
if request.method == 'POST': (4]
name = request.form[ 'name']

salted_name = salt + name
name_hash = hashlib.sha256(salted_name.encode()).hexdigest() (5]

header = '<html><head><title>Identidock</title></head><body>'
body = '''<form method="POST">
Hello <input type="text" name="name" value="{0}">
<input type="submit" value="submit">
</form>
<p>You look like a:
<img src="/monster/{1}"/>
""" format(name, name_hash) (6]
footer = '</body></html>'

return header + body + footer

('/monster/<name>")
def get_identicon(name):

r = requests.get('http://dnmonster:8080/monster/' + name + '?size=80")
image = r.content

return Response(image, mimetype='image/png')

if __pame__ == '__main__":
app.run(debug=True, host='0.0.0.0")

Taking Advantage of Existing Images | 91



Imports the library we will use to hash user input. As it’s a standard library, we
don’t need to update the Dockerfile to install it.

Defines the salt value to use with our hash function. By changing this value, dif-
ferent sites can produce different identicons for the same input.

By default, Flask routes only respond to HTTP GET requests. Our form submits
an HTTP POST request, so we need to add the named argument methods to the
route declaration and explicitly announce that the route will handle both POST
and GET requests.

If the request.method equals "POST", the request is a result of clicking on the
submit button. In this case, we want to update the name variable to the value of
the text entered by the user.

Gets the hash for our input using the SHA256 algorithm.

Modify the image URL to take our hashed value. This will cause the browser to
call the get_identicon route with our hashed value when it tries to load the
image.

Once you've saved the new version of this file, the debug Python webserver should
pick up the changes and automatically restart. You can now view the fully working
version of our web app and find out what your identicon is (Figure 6-4).

Hello Gorden the Turtle submit

You look like a:

Figure 6-4. Gordon the Turtle’s identicon!

dnmonster

The dnmonster image is a Node.js application wrapped in a Docker container. The
application is a port of Kevin Guadin’s monsterid.js from in-browser JavaScript to
Node.js. Monsterid.js is itself based on MonsterID by Andreas Gohr, which creates
monsters in the 8-bit computing style of RetroAvatar. You can find dnmonster on
GitHub.

Unlike monsterid.js, dnmonster does not do any hashing of inputs, instead leaving
this up to the caller (Figure 6-5).

92

|  Chapter 6: Creating a Simple Web App



https://github.com/KevinGaudin/monsterid.js
http://www.splitbrain.org/projects/monsterid
http://retroavatar.appspot.com/
https://github.com/amouat/dnmonster

LA REBE TS

Figure 6-5. Monsters!

Add Some Caching

So far so good. But there’s one horrible thing about this application at the minute
(apart from the monsters)—every time a monster is requested, we make a computa-
tionally expensive call to the dnmonster service. There’s no need for this—the whole
point of an identicon is that the image remains the same for a given input, so we
should be caching the result.

We'll use Redis to achieve this. Redis is an in-memory key-value data store. It’s great
for tasks like this where there’s not a huge amount of information and were not wor-
ried about durability (if an entry is lost or deleted, we can just regenerate the image).
We could add the Redis server into our identidock container, but it’s easier and more
idiomatic to spin up a new container. This way we can take advantage of the official
Redis image already available on the Docker Hub and avoid dealing with the extra
hassle of running multiple processes in a container.

Running Multiple Process in a Container

The majority of containers only run a single process. Where multiple processes are
needed, it’s best to run multiple containers and link them together, as we have done in
this example.

However, sometimes you really do need to run multiple processes in a single con-
tainer. In these cases, it’s best to use a process manager such as supervisord or runit to
handle starting and monitoring the processes. It is possible to write a simple script to
start your processes, but be aware that you will then be responsible for cleaning up
the processes and forwarding any signals.

For more information on using supervisord inside containers, see this Docker article.

First, we need to update our Python code to use the cache:

from flask import Flask, Response, request
import requests
import hashlib
import redis (1]

app = Flask(__name__)

Add Some Caching | 93


http://supervisord.org/
http://smarden.org/runit/
https://docs.docker.com/articles/using_supervisord/

cache = redis.StrictRedis(host="redis', port=6379, db=0) (2]
salt = "UNIQUE_SALT"
default_name = 'Joe Bloggs'

('/', methods=['GET', 'POST'])
def mainpage():

name = default_name
if request.method == 'POST':
name = request.form[ 'name']

salted_name = salt + name

name_hash = hashlib.sha256(salted_name.encode()).hexdigest()
header = '<html><head><title>Identidock</title></head><body>"
body = '''<form method="POST">

Hello <input type="text" name="name" value="{0}">
<input type="submit" value="submit">

</form>

<p>You look like a:

<img src="/monster/{1}"/>

""" format(name, name_hash)

'</body></html>"

footer

return header + body + footer

('/monster/<name>")
def get_identicon(name):

image = cache.get(name) (3]
if image is None:
print ("Cache miss", flush=True) (5]
r = requests.get('http://dnmonster:8080/monster/"' + name + '?size=80")
image = r.content
cache.set(name, image) (6]

return Response(image, mimetype='image/png')

if __pame__ == '__main__":
app.run(debug=True, host='0.0.0.0")

© Import the Redis module.

© Set up the Redis cache. We will use Docker links to make the redis hostname
resolvable.

© Check to see if the name is already in the cache.

94 | Chapter6: Creating a Simple Web App



O Redis will return None if we have a cache miss. In this case, we just get the identi-
con as usual except we also...

O Output some debug information to say we didn’t find a cached version and...

O Add the image into the cache and associate it with the given name.

We're using a new module and a new container, so unfortunately we need to update
both the Dockerfile and our docker-compose.yml. First the Dockerfile:

FROM python:3.4

RUN groupadd -r uwsgi && useradd -r -g uwsgi uwsgi

RUN pip install Flask==0.10.1 uWSGI==2.0.8 requests==2.5.1 redis==2.10.3 (1]
WORKDIR /app

COPY app /app

COPY cmd.sh /

EXPOSE 9090 9191
USER uwsgi

CMD ["/cmd.sh"]

© We just need to install the Redis client library for Python.
And the updated docker-compose.yml:

identidock:

build: .
ports:

- "5000:5000"
environment:

ENV: DEV
volumes:

- ./app:/app
links:

- dnmonster

- redis ©@

dnmonster:
image: amouat/dnmonster:1.0

redis:
image: redis:3.0 (2]

© Sets up alink to the Redis container.

@ Creates a Redis container based on the official image.

Now if you first stop identidock with docker-compose stop, you can do a docker -
compose build and docker-compose up to launch the new version. As we haven’t

Add Some Caching | 95



made any functional changes, you shouldn’t notice any differences with the new ver-
sion of the app. If you want to convince yourself that the new code is working, you
can check the debug output; or if you're really keen, try hooking up a monitoring sol-
ution such as Prometheus described in Chapter 10 and seeing what happens when
you generate load against the application.

Microservices

We've developed identidock according to a microservice architecture, where systems
are composed of multiple small and independent services. The style is often contras-
ted with monolithic architectures where the system is contained within a single large
service. Even though identidock is just a toy application, it still highlights various
characteristics of the style.

If we had instead used a monolithic architecture, we would have equivalents of
dnmonster, Redis, and identidock all written in a single language and running as a
single component in a single container. A well-designed monolith would factor these
components into separate libraries and use existing libraries where possible.

In contrast, our identidock application has a Python web application talking to a Java-
Script service and a C key-value store across three containers. Later on in the book,
we will see how to plug in more microservices to identidock with very little work,
including a reverse proxy in Chapter 9 and a monitoring and logging solution in
Chapter 10.

There are several advantages to this approach. It is much easier to scale-out a micro-
service framework to multiple machines. Microservices can be quickly and easily
swapped out for more efficient equivalents, or rolled back in the case of unexpected
problems without bringing down the rest of the system. Different languages can be
used in separate microservices, allowing developers to choose languages appropriate
to the task at hand.

There are disadvantages as well, primarily in the overhead of all the distributed com-
ponents. Communication occurs over the network rather than being a library call. We
have to use tools like Compose to ensure all the components are started together and
linked properly. Orchestration and service discovery become significant issues that
need to be addressed.

Modern Internet applications can derive enormous benefits from the increased scal-
ing and dynamic options provided by microservices, as proven by companies such as

96 | Chapter6: Creating a Simple Web App



Netflix, Amazon, and SoundCloud. For this reason, microservices will be a significant
and important architecture going forward, but—as usual—they are no silver bullet.*

Conclusion

We've now got a basic working version of our application. While it’s still very simple,
it has enough functionality to use several containers and highlight various aspects of
developing with containers. We've seen how we can reuse existing images, both as
foundations to build on—as with the Python base image—and as black boxes that
provide a service—as with the dnmonster image.

Most importantly, we've seen how containers naturally lead to groups of small, well-
defined services that interact to form a larger system—the microservices approach.

4 For more information on the advantages and disadvantages of microservices, take a look a Martin Fowler’s
articles on the subject, including “Microservices”

Conclusion | 97


http://martinfowler.com/articles/microservices.html




CHAPTER7
Image Distribution

Once you've created your images, you'll want to make them available, be it to cowork-
ers, continuous integration servers, or end users. There are several ways to distribute
images: you can rebuild them from Dockerfiles, pull from a registry, or use the
docker load command to install from an archive file.

In this chapter, we'll take a deeper look at the differences between these methods and
explore the best ways to handle image distribution both internally in a team and
externally to users. We'll see how we can tag and upload our identidock image so that
it can be used in other parts of our workflow and downloaded by others.

The code for this chapter is available at this book’s GitHub. The tag
v0 is the code as it was at the end of the last chapter, with later tags
representing the progression of the code through this chapter. To
get this version of the code:

$ git clone -b vO \
https://github.com/using-docker/image-dist/

Alternatively, you can download the code for any tag from the
Releases page on the GitHub project.

Image and Repository Naming

We saw in “Working with Registries” how to tag images appropriately and upload
them to remote repositories. When distributing images, it’s very important to use
descriptive and accurate names and tags. To recap, image names and tags are set
when building the image or by using the docker tag command:

99


http://bit.ly/1IaHmJE
http://bit.ly/1IaHitw

$ cd identidock
$ docker build -t "identidock:0.1" . o
$ docker tag "identidock:0.1" "amouat/identidock:0.1" (2)

Sets the repository name to identidock and the tag to 0. 1.

Associates the name amouat/identidock with the image, which refers to the
username amouat on the Docker Hub.

Beware of the latest Tag

Do not let the latest tag mislead you! Docker will use the tag as a

\ default when none is given, but beyond this, it carries no special
meaning. Many repositories use it as an alias for the most up-to-
date stable image, but this is only a convention and is entirely
unenforced.

Images tagged latest, as with all other images, will not be updated
automatically when a new version is pushed to the registry—you
still need to explicitly run docker pull to retrieve updated ver-
sions.

When a docker run or docker pull refers to an image name with
no tag, Docker will use the image tagged latest if it exists or throw
an error if it doesn't.

Because of the amount of user confusion surrounding the latest
tag, it is worth considering avoiding it completely, especially for
public-facing repositories.

Tag names have to follow a few rules. Tags must be made up of upper- or lowercase
letters, numbers, or the symbols . and -. They must be between 1 and 128 characters
in length. The first character cannot be . or -.

Repository names and tags are critically important when building a development
workflow. Docker places very few restrictions on legal names and allows the creation
and deletion of names at any time. This means it is up to the development team to
come up with and enforce a workable naming scheme.

The Docker Hub

The most straightforward solution to making your images available is to use the
Docker Hub. The Docker Hub is the online registry provided by Docker Inc. The
Hub provides free repositories for public images, or users can pay for private reposi-
tories.

100 | Chapter7:Image Distribution



Alternative Private Hosting

The Docker Hub isn’t the only game in town if you're looking to
host your private repositories in the cloud. At the time of writing,
the leading competitor is quay.io, which offers a few more features
than the Docker Hub at a competitive price.

We can easily upload our identidock image. Assuming you already have an account
on the Docker Hub,' we can do this directly from the command line:

$ docker tag identidock:latest amouat/identidock:0.1 (1)

$ docker push amouat/identidock:0.1 (2]

The push refers to a repository [docker.io/amouat/identidock] (len: 1)
76899e56d187: Image successfully pushed

0.1: digest: sha256:8aecd14cb97cc4333fdffe903aec1435a1883a44ea9f25b45513d4c2. ..

© The first thing we need to do is create an alias for the image in the Docker Hub
user namsepace. This means it must be in the form <username>/<repository
name> where <username> is your username on the Docker Hub (in my case
amouat) and <repositoryname> is the name you want the repository to have on
the Hub. We also take the opportunity to set the tag to 0.1 for this image.

@ Pushes the image using the alias we just created. This will create the repository if
it doesn't exist and upload the image under the appropriate tag.

At this point, identidock is publicly available, and anyone can retrieve it by doing a
docker pull.

If you go to the Docker Hub website, you will be able to find your repository under a
URL such as https://registry.hub.docker.com/u/amouat/identidock/. If you're logged in,
you will also be able to perform various admin tasks, such as setting a description for
the repository, marking other users as collaborators, and setting up webhooks.

1 If not, go and sign up at https://hub.docker.com.

The Docker Hub | 101


https://hub.docker.com
https://registry.hub.docker.com/u/amouat/identidock/

188 > Docker Trusted
STARS | puLLS | oema s Registry

Needan onpromice regstry?
STARS  PULLS o
STARS | PuLLS | oems s

STARS  PULLS

STARS | PULLS

STARS  PULLS

STARS | PULLS

STARS  PULLS

0 327 >
STARS  PULLS

T public STARS PULLS

Figure 7-1. Homepage on the Docker Hub

Whenever we want to update the repository, we just repeat the tag and push steps
using whichever image we want. If we use an existing tag, the previous image will be
overwritten. This is great, but what if we simply want our images to be updated
whenever our code is? This is a very common use case; and for that reason, the
Docker Hub introduced the concept of automated builds.

Automated Builds

Let’s set up an automated build on the Docker Hub for identidock. Once we've done
this, the Hub will build the identidock image and save it to our repository whenever
we push changes to the source code. To do this, you'll need to set up a GitHub or
Bitbucket repository. You can either push up the code you have so far, or “fork” the
official code, which can be found on this book’s GitHub.

Automated builds are configured via the Hub’s website interface rather than on the
command line. If you are logged in to the website, you should see a dropdown menu
on the top right titled “Create” From here, select “Create Automated Build” and
locate the repository with the identidock code.” Once you've selected the repository,
you will be taken to the configuration page for the automated build. The repository
name defaults to the name of the source code repository, which you should change to

2 You will first need to link your GitHub or Bitbucket account if you haven’t already done so.

102 | Chapter7:Image Distribution


https://github.com/using-docker/image-dist

something meaningful like identidock_auto. Give the repository a short description
such as “Automatic build for identidock” Leave the first “Tag” field as Branch and
name as master to track the code from the master branch. Set “Dockerfile Location”
to /identidock/Dockerfile it you've forked from my repository. The final “Tag” field
determines the name assigned to the image on the Docker Hub. You can leave this as
latest, or change it to something more meaninful such as auto. Once youre done,
click “Create” Docker will take you to the build page for this new repository. You can
kick off the first build by clicking “Trigger a Build” Once the build has completed,
you will be able to download the image (assuming the build succeeds).

We can test the build automation by making a small change to source code. In this
case, we'll add a README file the Docker Hub will also use to display some informa-
tion on the repository. Create a file README.md in the identidock directory with a
short description such as the following:’

identidock

Simple identicon server based on monsterid from Kevin Gaudin.

From "Using Docker" by Adrian Mouat published by O'Reilly Media.
Check this file in and push it:

$ git add README.md

$ git commit -m "Added README"

[master d8f3317] Added README

1 file changed, 6 insertions(+)

create mode 100644 identidock/README.md

$ git push

Counting objects: 4, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (4/4), done.

Writing objects: 100% (4/4), 456 bytes | 0 bytes/s, done.

Total 4 (delta 2), reused 0 (delta 0)

To git@github.com:using-docker/image-dist.git
c81ff68..d8f3317 master -> master

If you wait a moment and then visit the build page for the repository, you should see
it building a new version of the image.

Should a build fail for whatever reason, you can get the logs by clicking on the “Build
Code” on the “Build Details” tab. You can also kick off a new build at any time by
clicking the “Trigger a Build” button.

3 If you forked the repo, this file will already exist; just change some of the text instead.

Automated Builds | 103



This approach to building and distributing images isn't a great fit for all projects. Your
images are public unless you pay for private repositories, and you're at the mercy of
the Docker Hub—should the Hub go down, you won’t be able to update your images,
and users won't be able to download them. There’s also the simple matter of effi-
ciency; if you need to quickly build and move images through a pipeline, you are not
going to want the overhead of transferring files from the Hub and waiting on queued
builds. For open source projects and small side projects, the Hub is perfect. But for
anything larger or more serious, you will want to replace or augment it with other
solutions.

Private Distribution

There are a few options outside of the Docker Hub. You could do things manually, by
exporting and importing images or simply rebuilding images from Dockerfiles on
each Docker Host. Both these solutions are suboptimal: building from Dockerfiles
each time is slow and may result in differences between images across hosts; export-
ing and importing images is somewhat tricky and error prone. The remaining option
is to use a different registry, which can be hosted either by yourself or a third party.

We'll start by looking at the free solution—running your own registry—before taking
a look at some of the commercial offerings.

Running Your Own Registry

The Docker registry is not the same as the Docker Hub. Both implement the registry
API, allowing users to push, pull, and search images, but the Docker Hub is a closed-
source remote service, whereas the registry is an open source application that be run
locally. The Docker Hub also contains support for user accounts, statistics, and a web
interface that are not present in the Docker registry.

Work in Progress

While registry v2 is stable, several important features are still being
developed. For this reason, I have focused on the main use-cases in
this section and avoided going into detail on advanced features.
Full, up-to-date documentation on the registry can be found on the
Docker distribution GitHub project.

In this chapter, were only going to look at version 2 of the registry, which will only
work with Docker daemons version 1.6 and later. If you need to support older ver-
sions of Docker, you'll need to run the previous version of the registry (it’s also possi-
ble to run both versions of the registry in tandem for a transitionary period). Version
2 of the registry represents a major advance in security, reliability, and efficiency over
version 1, so I strongly recommend using version 2 if at all possible.

104 | Chapter7:Image Distribution


https://github.com/docker/distribution

The easiest way to run a local registry is by using the official image. We can quickly
get started by running:

$ docker run -d -p 5000:5000 registry:2

75fafd23711482bbee7be50b304b795a40b7b0858064473b88e3ddcae3847¢c37

Now that we have a running registry, we can tag an image appropriately and push it.
If youre using docker-machine, you can still use the localhost address, as it will be
interpreted by the Docker engine (rather than the client), which is running on the
same host as the registry:

$ docker tag amouat/identidock:0.1 localhost:5000/identidock:0.1
$ docker push localhost:5000/identidock:0.1
The push refers to a repository [localhost:5000/identidock] (len: 1)

0.1: digest: sha256:d20affe522a3c6ef1f8293de69fea5a8621d69561995526213fc2885. ..
If we now remove the local version, we can pull it again:

$ docker rmi localhost:5000/identidock:0.1
Untagged: localhost:5000/identidock:0.1

$ docker pull localhost:5000/identidock:0.1
0.1: Pulling from identidock

76899e56d187: Already exists
Digest: sha256:d20affe522a3c6ef1f8293de69fea5a8621d69561995526213fc28852e173108
Status: Downloaded newer image for localhost:5000/identidock:0.1

Docker sees that we already have an image with the same content, so all that really
happens is the tag is added back. You may have noticed that the registry generated a
digest for the image. This is unique hash based on the content on the image and its
metadata. You can pull images using the digest like so:

$ docker pull localhost:5000/identidock@sha256:\
d20affe522a3c6ef1f8293de69fea5a8621d695619955262f3fc28852e173108
sha256:d20affe522a3c6ef1f8293de69fea5a8621d69561995526213fc28852e173108: Pul...

76899e56d187: Already exists
Digest: sha256:d20affe522a3c6ef1f8293de69fea5a8621d69561995526213fc28852e173108
Status: Downloaded newer image for localhost:5000/identidock@sha256:d20affe5. ..

The primary advantage of using a digest is that it guarantees you are pulling exactly
the image you think you are. When pulling by tag, the underlying image may change
at any time without you knowing. Also, using digests ensures the integrity of the
image; you can be sure it hasn’t been tampered with during transit or in storage. For
details see on how to securely handle images and establish their provenance, see
“Image Provenance”.

The main reason you want a registry is to act as a central store for your team or orga-
nization. That means you will need to be able to pull from the registry from a remote

Private Distribution | 105



Docker daemon. But if we try that with the registry we just launched, well get the
following error:

$ docker pull 192.168.1.100:5000/identidock:0.1 (1]

Error response from daemon: unable to ping registry endpoint
https://192.168.99.100:5000/v0/

v2 ping attempt failed with error: Get https://192.168.99.100:5000/v2/:

tls: oversized record received with length 20527

vl ping attempt failed with error: Get https://192.168.99.100:5000/v1/_ping:
tls: oversized record received with length 20527

© Here I've substituted the IP address of the server for “localhost” You will get this
error whether you pull from a daemon on another machine or on the same
machine as the registry.

So what happened? The Docker daemon is refusing to connect to the remote host
because it doesn't have a valid Transport Layer Security (TLS) certificate. The only
reason it worked before is because Docker has a special exception for pulling from
“localhost” servers. We can fix this issue in one of three ways:

1. Restart each Docker daemon that accesses the registry with the argument --
insecure-registry 192.168.1.100:5000, replacing the address and port as
appropriate for your server.

2. Install a signed certificate from a trusted certificate authority on the host, as you
would for hosting a website accessed over HTTPS.

3. Install a self-signed certificate on the host and a copy on every Docker daemon
that needs to access the registry.

The first option is the easiest, but we won't consider it here due to the security con-
cerns. The second option is the best but requires you to obtain a certificate from a
trusted certificate authority, which normally has an associated cost. The third option
is secure but requires the manual step of copying the certificate to each daemon.

If you want to create your own self-signed certificate, you can use the OpenSSL tool.
These steps should be carried out on a machine you want to keep running long term
as a registry server. They were tested on an Ubuntu 14.04 VM running on Digital
Ocean; there are likely to be differences on other operating systems.

root@reginald:~# mkdir registry_certs

root@reginald:~# openssl req -newkey rsa:4096 -nodes -sha256 \

> -keyout registry_certs/domain.key -x509 -days 365 \
-out registry_certs/domain.crt (1]

Generating a 4096 bit RSA private key

106 | Chapter7:Image Distribution



You are about to be asked to enter information that will be incorporated
into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:

State or Province Name (full name) [Some-State]:

Locality Name (eg, city) []:

Organization Name (eg, company) [Internet Widgits Pty Ltd]:
Organizational Unit Name (eg, section) []:

Common Name (e.g. server FQDN or YOUR name) []:reginald (2]

Email Address []:

root@reginald:~# ls registry_certs/

domain.crt domain.key

O Creates a x509 self-signed certificate and a 4096-bit RSA private key. The certifi-
cate is signed with a SHA256 digest and is valid for 365 days. OpenSSL will ask
for information, you can input or leave at the default values.

® The common name is important; it must match the name you want to access the
server on and should not be an IP address (“reginald” is the name of my server).

© At the end of this process, we have a certificate file called domain.crt that will be
shared with clients and a private key domain.key that must be kept secure and not

shared.

Addressing the Registry by IP Address

If you want to use an IP address to reach your registry, things are a little more compli-
cated. You can't simply use the IP address as the common name. You need to set up
Subject Alternative Names (or SANSs) for the IP address or addresses you want to use.

In general, I would advise against this approach. It's better just to pick a name for
your server and make it addressable by the name internally (in the worst case, you
can always manually add the server name to /etc/hosts). This is generally easier to set
up and doesn't require retagging of all images should you want to change the IP
address.

Next, we need to copy the certificate to each Docker daemon that will access the reg-
istry.* It should be copied to the file /etc/docker/certs.d/<registry_address>/ca.crt

4 You can skip this step if you have a certificate signed by a trusted certificate authority.

Private Distribution | 107



where <registry_address> is the address and port of your registry server. You will also
need to restart the Docker daemon. For example:

root@reginald:~# sudo mkdir -p /etc/docker/certs.d/reginald:5000

root@reginald:~# sudo cp registry_certs/domain.crt \
[etc/docker/certs.d/reginald:5000/ca.crt (1]

root@reginald:~# sudo service docker restart

docker stop/waiting

docker start/running, process 3906

© To run on a remote host, you will need to transfer the CA certificate to the
Docker host, using scp or a similar tool. If you used a public, trusted CA, you can
skip this step.

Now we can start the registry:>

root@reginald:~# docker run -d -p 5000:5000 \
-v $(pwd)/registry_certs:/certs \ (1)
-e REGISTRY_HTTP_TLS_CERTIFICATE=/certs/domain.crt \
-e REGISTRY_HTTP_TLS_KEY=/certs/domain.key \ (2]
--restart=always --name registry registry:2

b79cb734d8778c0e36934514c0aled13d42c342c7b8d7d4d75f84497cc6f45f4

@ Places the certificates in the container as a volume.

® We can use environment variables to configure the registry to use our certificates.
Pull an image, retag it, and push it, just to prove things are working:

root@reginald:~# docker pull debian:wheezy

wheezy: Pulling from library/debian

ba249489dob6: Pull complete

19de96c112fc: Pull complete

library/debian:wheezy: The image you are pulling has been verified.

Important: image verification is a tech preview feature and should not be
relied on to provide security.

Digest: sha256:90de9d4ecb9c954bdacd9fbcc58b431864e8023e42f8cc21782f2107054344e1
Status: Downloaded newer image for debian:wheezy

root@reginald:~# docker tag debian:wheezy reginald:5000/debian:local (1)
root@reginald:~# docker push reginald:5000/debian:local

The push refers to a repository [reginald:5000/debian] (len: 1)

19de96c112fc: Image successfully pushed

ba249489d0b6: Image successfully pushed

local: digest: sha256:3569aa2244f895ee6be52ed5339bc83e19fafd713fb1138007b987. ..

© You'll need to replace “reginald” with the name of your server.

5 You may need to remove any previously launched registry instances.

108 | Chapter7:Image Distribution



Finally, we have a remotely accessible registry working securely and storing images.
When testing from other machines, remember to copy the certificate file to /etc/
docker/certs.d/<registry_address>/ca.crt on the Docker engine, and make sure the
Docker engine can resolve the address of the registry.®

There are plenty of configuration options for Docker that you can use to set up and
tweak the registry for particular use cases. The registry options are configured by a
YAML file in the image, which you can replace with a volume. Values can also be
overridden at runtime by specifying environment variables, as we did with REGIS
TRY_HTTP_TLS_KEY and REGISTRY_HTTP_TLS_CERTIFICATE in the previous example.
At the time of writing, the configuration file lives at /go/src/github.com/docker/distri-
bution/cmd/registry/config.yml, but this is likely to change to an easier path. The
default configuration is designed for development use and will need significant
changes for production usage. You can find full details on how to configure the regis-
try as well as example configuration files on the distribution GitHub project.

The following sections describe the major features and customizations you’ll need to
consider when setting up a registry.

Storage

By default, the registry image uses the filesystem driver, which will unsurprisingly
save all data and images to the filesystem. This is a great choice for development and
probably appropriate for many setups. You will need to declare a volume at the
defined root directory and point it to a reliable filestore. For example, including the
following code in config.yml will configure the registry to use the filesystem driver
and save data under /var/lib/registry, which should be declared as a volume:

storage:
filesystem:
rootdirectory: /var/lib/registry

To save data to the cloud, you can use either the Amazon S3 or Microsoft Azure stor-
age drivers.

There is also support for the Ceph distributed object store and using Redis as an in-
memory cache to speed up layer access.

Authentication

So far, we've seen how to access the registry with TLS, but we've not done anything
about authenticating users. This is probably reasonable if you are only using public

6 You can’t swap the registry name for an IP address as it will fail to match the certificate. Instead, edit /etc/hosts
or set up the DNS to allow the name to resolve.

Private Distribution | 109



images or your registry is only accessible on a private network, but most organiza-
tions will want to restrict access to only authenticated users.

There are two ways to achieve this:

1.

Set up a proxy, such as nginx, in front of the registry that is responsible for
authenticating users. An example of this is given in the official documentation on
the GitHub project, which uses nginx’s user/password authentication. Once set
up, the docker login command can be used to authenticate to the registry.

. Token-based authentication using JSON Web Tokens. When using this method,

the registry will refuse to serve clients that do not present a valid token but will
redirect them to the authentication server. Tokens can be obtained from the
authentication server after which the client will be able to access the registry. The
authentication server is not provided by Docker, and at the time of writing, there
is only a single open source solution by Cesanta Software. Currently, the only
other option is to roll your own based on a JSON Web Token library or pay for
one of the commerical solutions described in “Commerical Registries”. Although
this is clearly more complex and difficult to set up, it will be essential for many
large or distributed organizations.

HTTP

This section is used to configure the HTTP interface for the registry. It’s essential that
this is set correctly for the registry to function. In particular, you will need to set the
location of the TLS certificate and key for the registry; in the previous example, we
did this using the environment variables REGISTRY_HTTP_TLS_KEY and REGIS
TRY_HTTP_TLS_CERTIFICATE.

A typical configuration might look like:

http:

addr: reginald:5000 (1]
secret: DD100CC4-1356-11E5-A926-33C19330F945 (2]
tls: ©

certificate: /certs/domain.crt

key: /certs/domain.key

© Address of the registry.

® A random string used to sign state information stored by clients. Intended to
protect against tampering. Ideally should be randomly generated.

© Sets up the certificates as we saw before. The files must be accessible to the con-
tainer, either by mounting a volume or copying into the container.

110 | Chapter7: Image Distribution


https://docs.docker.com/registry/nginx/
https://github.com/cesanta/docker_auth

Other settings

Note that there are various other settings that can be used to set up middleware, noti-
fications, logging, and caching. For full information, see the Docker distribution Git-
Hub project.

Commerical Registries

If you're looking for a more complete solution with web-based management, both the
Docker Trusted Registry and the and CoreOS Enterprise Registry are available. These
are on-premise commercial solutions that will sit behind your firewall.

Both offerings come with significant features beyond the simple storing of images.
They both offer tools for working with Docker images in teams such as fine-grained
permission controls and GUIs for installation and administration tasks.

Reducing Image Size

By this point, you've probably noticed that Docker images can be on the large side;
most images seem to be 100s of MBs in size, which means a lot of time spent waiting
for images to be transferred back and forth. This is mitigated to a large degree by the
hierarchical structure of images; if you already have a parent layer of an image, you
only need to download the new child layers.

However, there is still a lot to be said for trying to reduce the size of images, and it’s
not quite as easy as it sounds. The naive answer is to start deleting unneeded files
from the image. Unfortunately, this doesn’t work. Remember that an image is made
up of multiple layers, one for each of the commands in the corresponding Dockerfile
and its parent Dockerfiles. The total size of the image is the sum of all its layers. If you
remove a file in one layer, it will still be present in the parent layers. To give a concrete
example, consider the following Dockerfile:

FROM debian:wheezy

RUN dd if=/dev/zero of=/bigfile count=1 bs=50MB (1]
RUN rm /bigfile

© This is just a quick way to create a file.
If we now build and inspect the image:

$ docker build -t filetest .

$ docker images filetest (1)

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE

filetest latest e2a98279a101 8 seconds ago 135 MB

$ docker history filetest @

IMAGE ... CREATED BY SIZE

Reducing Image Size | 111


https://www.docker.com/docker-trusted-registry
https://coreos.com/products/enterprise-registry/

€2a98279a101 /bin/sh -c rm /bigfile 0B

5d0f04380012 /bin/sh -c dd if=/dev/zero of=/bigfile count= 50 MB
c90d655b99b2 /bin/sh -c #(nop) CMD [/bin/bash] 0B
30d39e59ffe2 /bin/sh -c #(nop) ADD file:3f1a40df75bc5673ce 85.01 MB
511136ea3c5a 08B

© We can see here the total size of the image is 135 MB, exactly 50 MB larger than
the base image.

® The docker history command gives us the full picture. The top two lines
describe the layers created by our Dockerfile. We can see the dd command has
created a layer 50 MB in size, and the rm command has just created a new layer
on top.

In contrast, if we have the following Dockerfile:

FROM debian:wheezy

RUN dd if=/dev/zero of=/bigfile count=1 bs=50MB && rm /bigfile
And we build and inspect it:

$ docker build -t filetest .

$ docker images filetest

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
filetest latest 40a9350a4fa2 34 seconds ago 85.01 MB

$ docker history filetest

IMAGE ... CREATED BY SIZE
40a9350a4fa2 /bin/sh -c dd if=/dev/zero of=/bigfile count= 0 B
c90d655b99b2 /bin/sh -c #(nop) CMD [/bin/bash] 0B
30d39e59ffe2 /bin/sh -c #(nop) ADD file:3f1a40df75bc5673ce 85.01 MB
511136ea3c5a 08B

We haven't increased the size of the base image. If we delete the file in the same layer
that it’s created, it won't be included in the image. Because of this, you will often find
Dockerfiles that download tarballs or other archive files, unpack them, and immedi-
ately remove the archive file in one RUN instruction. For example, the official Mon-
goDB image includes the following instruction (URL truncated for formatting):

RUN curl -SL "https://$MONGO_VERSION.tgz" -o mongo.tgz \
&& curl -SL "https://$MONGO_VERSION.tgz.sig" -o mongo.tgz.sig \
&& gpg --verify mongo.tgz.sig \
&& tar -xvf mongo.tgz -C /usr/local --strip-components=1 \
&& rm mongo.tgz*

A similar technique can applied to source code—you will sometimes see it downloa-
ded, compiled to a binary, and deleted all in the same line.

For the same reason, there is no point in attempting to clean up after the package
manager like this:

112 | Chapter7:Image Distribution



RUN rm -rf /var/lib/apt/lists/*
But you can do this (again from the official mongo Dockerfile):

RUN apt-get update \
&& apt-get install -y curl numactl \
&& rm -rf /var/lib/apt/lists/*

Also see the previous discussion in “Base Images” about choosing base images wisely
to keep image size down.

There is another option you can use to reduce image size if you're really in a pinch. If
you run docker export on a container then docker import the result, you end up
with an image containing only a single layer. For example:

$ docker create identidock:latest
fe165be64117612c94160c6a194a0d8791f4c6cb30702a61d4b3ac1d9271e3bf
$ docker export $(docker ps -1q) | docker import -
146880a742cbd0e92cd9a79f75a281f0fed46f6b5ece0219f5e1594ff8c18302
$ docker tag 146880a identidock:import

$ docker images identidock

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
identidock 1import 146880a742cb 5 minutes ago 730.9 MB
identidock 0.1 76899e56d187 23 hours ago  839.5 MB

identidock Tlatest 1432cc6c20e5 4 days ago 839 MB

$ docker history identidock:import

IMAGE CREATED CREATED BY SIZE COMMENT
146880a742cb 11 minutes ago 730.9 MB  Imported from -

This has cut down the image size, but at a cost:

o We need to redo all the Dockerfile instructions such as EXPOSE, CMD, PORTS, which
are not reflected in the filesystem.

o We have lost all the metadata associated with the image.

» We can no longer share space with other images that have the same parent.

Image Provenance

When distributing and consuming images, it is important to consider how to estab-
lish the provenance of images, that is, where and who they came from. If you down-
load an image, you want to be sure that it was really created by who it claims to be,
that it hasn’t been tampered with, and that it is exactly the same image the creator of
the image tested.

The Docker solution for this is known as Docker content trust, which at the time of
writing is undergoing testing and not enabled by default. See “Image Provenance” for
more details.

Image Provenance | 113


https://docs.docker.com/security/trust/content_trust/

Conclusion

The effective distribution of images is crucial component in any Docker workflow.
This chapter has taken a look at the primary solutions to this: the Docker Hub and
private registries. We also looked at some of the issues surrounding image distribu-
tion, including the need to name and tag images appropriately and how to reduce the
size of images.

In the next chapter, we'll see how to push the images to the next step in the workflow
—the continuous integration server.

114 | Chapter7: Image Distribution



CHAPTER 8

Continuous Integration and
Testing with Docker

In this chapter, we're going to look into how Docker and Jenkins can be used to create
a continuous integration (CI) workflow for building and testing our application. We'll
also take a look at other aspects of testing with Docker and a brief look at how to test
a microservices architecture.

Testing containers and microservices brings a few different challenges to testing.
Microservices make for easy unit tests but difficult system and integration tests due to
the increased number of services and network links. Mocking of network services
becomes more relevant than the traditional mocking of classes in a monolithic Java or
C# codebase. Keeping test code in images maintains the portability and consistency
benefits of containers but increases their size.

The code for this chapter is available from this book’s GitHub. The
tag v@ is the identdock code as it was at the end of the last chapter,
with later tags representing the progression of the code through
this chapter. To get this version of the code:

$ git clone -b vO \
https://github.com/using-docker/ci-testing/

Alternatively, you can download the code for any tag from the
Releases page on the GitHub project.

115


https://github.com/using-docker/ci-testing
https://github.com/using-docker/ci-testing/releases

Adding Unit Tests to Identidock

The first thing we should do is add some unit tests to our identidock codebase. These
will test some basic functionality of our identidock code, with no reliance on external
services.!

Start by creating the file identidock/app/tests.py with the following contents:

import unittest
import identidock

class TestCase(unittest.TestCase):

def setUp(self):
identidock.app.config["TESTING"] = True
self.app = identidock.app.test_client()

def test_get_mainpage(self):
page = self.app.post("/", data=dict(name="Moby Dock"))
assert page.status_code == 200
assert 'Hello' in str(page.data)
assert 'Moby Dock' in str(page.data)

def test_html_escaping(self):
page = self.app.post("/", data=dict(name='"><b>TEST</b><!--"))
assert '<b>' not in str(page.data)

if __name__ == '_main__
unittest.main()

This is just a very simple test file with three methods:

setUp
Initializes a test version of our Flask web application.

test_get_mainpage
Test method that calls the URL / with the input “Moby Dock” for the name field.

The test then checks that the method returns a 200 status code and the data con-
tains the strings “Hello” and “Moby Dock”

test_html_escaping
Tests that HTML entities are properly escaped in input.

Let’s run these tests:

1 Many developers advocate a test-driven development (TDD) approach, where tests are written before the
code that makes them pass. This book hasn't followed this approach, mainly for the sake of narrative.

116 | Chapter 8: Continuous Integration and Testing with Docker



$ docker build -t identidock .

$ docker run identidock python tests.py
.F

FAIL: test_html_escaping (__main__.TestCase)

Traceback (most recent call last):
File "tests.py", line 19, in test_html_escaping
assert '<b>' not in str(page.data)
AssertionError

Ran 2 tests in 0.010s

FAILED (failures=1)

Hmm, that’s not good. The first test passed, but the second one has failed, since were
not escaping user input properly. This is a serious security issue that in a larger appli-
cation can lead to data leaks and cross-site scripting attacks (XSS). To see the effect on
the application, launch identidock and try inputing a name such as "><b>pwned!</
b><!--", including the quotes. An attacker could portentially inject malicious Java-
script into our application and trick users into running it.

Thankfully, the fix is easy. We just need to update our Python application to sanitize
the user input by replacing HTML entities and quotes with escape codes. Update
identidock.py so that it looks like:

from flask import Flask, Response, request
import requests

import hashlib

import redis

import html

app = Flask(__name__)

cache = redis.StrictRedis(host="redis', port=6379, db=0)
salt = "UNIQUE_SALT"

default_name = 'Joe Bloggs'

('/", methods=['GET', 'POST'])
def mainpage():

name = default_name
if request.method == 'POST':
name = html.escape(request.form['name'], quote=True) (1]

salted_name = salt + name

name_hash = hashlib.sha256(salted_name.encode()).hexdigest()
header = '<html><head><title>Identidock</title></head><body>'
body = '''<form method="POST">

Adding Unit Tests to Identidock | 117



Hello <input type="text" name="name" value="{0}">
<input type="submit" value="submit">
</form>
<p>You look like a:
<img src="/monster/{1}"/>
""" format(name, name_hash)
footer = '</body></html>'

return header + body + footer

('/monster/<name>")
def get_identicon(name):

name = html.escape(name, quote=True) (1]
image = cache.get(name)
if image is None:
print ("Cache miss", flush=True)
r = requests.get('http://dnmonster:8080/monster/' + name + '?size=80")
image = r.content
cache.set(name, image)

return Response(image, mimetype='image/png')

if __name__ == '__main__
app.run(debug=True, host='0.0.0.0")
© Use the html.escape method to sanitize the user input.
Now if we build and test our application again:

$ docker build -t identidock .

$ docker run identidock python tests.py

Ran 2 tests in 0.009s

0K

Great—problem solved. You can verify this by restarting identidock with the new
containers (remember to run docker-compose build) and trying to enter malicious
input.” If we had used a real templating engine rather than simple string concatena-
tion, the escaping would have been handled for us, avoiding this issue.

2 Embarassingly, I never noticed this problem until the review stages of the book. I again learned the lesson that
it is important to test even trivial looking code and that it’s best to use pre-existing, proven code and tools
where possible.

118 | Chapter 8: Continuous Integration and Testing with Docker



Now that we have some tests, we should extend our ¢md.sh file to support automati-
cally executing them. Replace cmd.sh with the following:

#!/bin/bash
set -e

if [ "SENV" = 'DEV' ]; then
echo "Running Development Server"
exec python "identidock.py"
elif [ "SENV" = 'UNIT' ]; then
echo "Running Unit Tests"
exec python "tests.py"
else
echo "Running Production Server"
exec uwsgl --http 0.0.0.0:9090 --wsgi-file /app/identidock.py \
--callable app --stats 0.0.0.0:9191
fi

Now we can rebuild and run the tests by just changing the environment variable:

$ docker build -t identidock .

$ docker run -e ENV=UNIT identidock
Running Unit Tests

Ran 2 tests in 0.010s

0K

There are more unit tests we could write. In particular, there are no tests for the
get_1identicon method. To test this method in a unit test, we would need to either
bring up test versions of the dnmonster and Redis services, or use a test double. A test
double stands in for the real service, and is commonly either a stub, which simply
returns a canned answer (e.g., the stub for a stock price service might always return
“42”) or a mock that can be programmed with expectations for how it expects to be
called (such as being called exactly once for a given transaction). For more informa-
tion on test doubles, see the Python mock module as well as specialist HTTP tools
such as Pact, Mountebank, and Mirage.

Adding Unit Tests to Identidock | 119


https://docs.python.org/3/library/unittest.mock.html
https://github.com/realestate-com-au/pact
http://www.mbtest.org/
https://mirage.readthedocs.org

Including Tests in Images

In this chapter, we bundle the tests for identidock into the identi-
dock image, which is in line with the Docker philosophy of using a
single image through development, testing, and production. This
also means we can easily check the tests on images running in dif-
ferent environments, which can be useful to rule out issues when

debugging.

The disadvantage is that it creates a larger image—you have to
include the test code plus any dependencies such as testing libra-
ries. In turn, this also means there is a greater attack surface; it’s
possible, if unlikely, that an attacker could use test utilities or code
to break the system in production.

In most cases, the advantages of the simplicity and reliability of

using a single image will outweigh the disadvantages of the slightly
increased size and theoretical security risk.

The next step is to get our tests automatically run in a CI server so we can see how
our code could be automatically tested when code is checked in to source control and
before moving to staging or production.

Using Containers for Fast Testing

All tests, and in particular unit tests, need to run quickly in order to encourage devel-
opers to run them often without getting stuck waiting on results. Containers repre-
sent a fast way to boot a clean and isolated environment, which can be useful when
dealing with tests that mutate their environment. For example, imagine you have a
suite of tests that make use of a service® that has been prepopulated with some test
data. Each test that uses the service is likely to mutate the data in some way, either
adding, removing, or modifying data. One way to write the tests is to have each test
attempt to clean up the data after running, but this is problematic; if a test (or the
clean-up) fails, it will pollute the test data for all following tests, making the source of
the failure difficult to diagnose and requiring knowledge of the service being tested (it
is no longer a black box). An alternative is to destroy the service after each test and
start with a fresh one for each test. Using VMs for this purpose would be far too slow,
but it is achievable with containers.

Another area of testing where containers shine is running services in different envi-
ronments/configurations. If your software has to run across a range of Linux distribu-

w

Tests like these are likely to be system or integration tests rather than unit tests, or they could be unit tests in a
nonmockist test configuration. Many unit test experts will advise that components such as databases should
be replaced with mocks, but in situations where the component is stable and reliable, it is often easiest and
sensible to use the component directly.

120 | Chapter 8: Continuous Integration and Testing with Docker



tions with different databases installed, set up an image for each configuration and
you can fly through your tests. The caveat of this approach is that it won’t take into
account kernel differences between distributions.

Creating a Jenkins Container

Jenkins is a popular open source CI server. There are other options for CI servers and
hosted solutions, but we’ll use Jenkins for our web app, simply because of its popular-
ity. We want to set up Jenkins so that whenever we push changes to our identidock
project, Jenkins will automatically check out the changes, build the new images, and
run some tests against them—both our unit tests and some system tests. It will then
create a report on the results of the tests.

We'll base our solution on an image from the official Jenkins repository. I've used ver-
sion 1.609.3, but new Jenkins releases are constantly appearing—feel free to try
using a newer version, but I can't guarantee it will work without modification.

In order to allow our Jenkins container to build images, were going to mount the
Docker socket* from the host into the container, effectively allowing Jenkins to create
“sibling” containers. An alternative to this is to use Docker-in-Docker (DinD), where
the Docker container can create its own “child” containers. The two approaches are
contrasted in Figure 8-1.

4 The Docker socket is the endpoint used for communicating between the client and the daemon. By default,
this is an IPC socket accessed via the file /var/run/docker.sock, but Docker also supports TCP sockets exposed
via a network address and systemd-style sockets. This chapter assumes you are using the default socket
at /var/run/docker.sock. As the socket is accessed via a file descriptor, we can simply mount this endpoint as a
volume in the container.

Creating a Jenkins Container | 121



Docker Docker

Engine %\ Engine
v v v v v v
Docker
il Client
Engine

—

Docker-in-Docker Socket Mounting

Figure 8-1. Docker-In-Docker versus socket mounting

Docker-in-Docker

Docker-in-Docker (or DinD) is simply running Docker itself inside a Docker con-
tainer. There is some special configuration necessary to get this to work, primarily
running the container in privileged mode and dealing with some filesystem issues.
Rather than work this out yourself, it’s easiest to use Jérome Petazzoni’s DinD project,
which is available at https://github.com/jpetazzo/dind and describes all the required
steps. You can quickly get started by using Jérome’s DinD image from the Docker
Hub:

$ docker run --rm --privileged -t -i -e LOG=file jpetazzo/dind

1n: failed to create symbolic link '/sys/fs/cgroup/systemd/name=systemd':
Operation not permitted

root@02306db64f6a: /# docker run busybox echo "Hello New World!"

Unable to find image 'busybox:latest' locally

Pulling repository busybox

d7057cb02084: Download complete

cfa753dfea5e: Download complete

Status: Downloaded newer image for busybox:latest

Hello New World!

The major difference between DinD and the socket-mounting approach is that the
containers created by DinD are isolated from the host containers; running docker ps
in the DinD container will only show the containers created by the DinD Docker dae-

mon. In contrast, running docker ps under the socket-mounting approach will show
all the containers, regardless of where the command is run from.

In general, I prefer the simplicity of the socket-mounting approach, but in certain cir-
cumstances, you may want the extra isolation of DinD. If you do choose to run DinD,
be aware of the following:

122 | Chapter 8: Continuous Integration and Testing with Docker



https://github.com/jpetazzo/dind

« You will have your own cache, so builds will be slower at first, and you will have
to pull all your images again. This can be mitigated by using a local registry or
mirror. Don’t try mounting the build cache from the host; the Docker engine
assumes exclusive access to this, so bad things can happen when shared between
two instances.

o The container has to run in privileged mode, so it’s not any more secure than the
socket-mounting technique (if an attacker gains access, she can mount any
device, including drives). This should get better in the future as Docker adds sup-
port for finer-grained privileges, which will allow users to choose the devices
DinD has access to.

« DinD uses a volume for the /var/lib/docker directory, which will quickly eat up
your disk space if you forget to delete the volume when removing the container.

For more information on why you should be careful with DinD, see jpetazzo’s GitHub
article.

In order to mount the socket from the host, we need to make sure that the Jenkins
user inside the container has sufficient access privileges. In a new directory called
identijenk, create a Dockerfile with the following contents:

FROM jenkins:1.609.3

USER root
RUN echo "deb http://apt.dockerproject.org/repo debian-jessie main" \
> [etc/apt/sources.list.d/docker.list \
&& apt-key adv --keyserver hkp://p80.pool.sks-keyservers.net:80 \
--recv-keys 58118E89F3A912897C0O70ADBF76221572C52609D \
&& apt-get update \
&& apt-get install -y apt-transport-https \
&& apt-get install -y sudo \
&& apt-get install -y docker-engine \
& rm -rf /var/lib/apt/lists/*
RUN echo "jenkins ALL=NOPASSWD: ALL" >> /etc/sudoers

USER jenkins

This Dockerfile takes the Jenkins base image, installs the Docker binary, and adds
password-less sudo rights to the jenkins user. We intentionally haven't added jen
kins to the Docker group, so we will have to prefix all our Docker commands with
sudo.

Creating a Jenkins Container | 123


http://bit.ly/1WtECmm
http://bit.ly/1WtECmm

Don’t Use the docker Group

Y Instead of using sudo, we could have added the jenkins user to the
\ host’s docker group. The problem is that this requires us to find
and use the GID of the docker group on the CI host and hard-code
it into the Dockerfile. This makes our Dockerfile nonportable, as
different hosts will have different GIDs for the docker group. To
avoid the confusion and pain this can cause, it is preferable to use
sudo.

Build the image:

$ docker build -t identijenk .

Successfully built d0c716682562
Test it:

$ docker run -v /var/run/docker.sock:/var/run/docker.sock \

identijenk sudo docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
a36b75062e06 identijenk "/bin/tini -- /usr/lo" 1 seconds ago Up Less tha...

In the docker run command, we have mounted both the Docker socket in order to
connect to the host’s Docker daemon. In older versions of Docker, it was common to
also mount the Docker binary, rather than install Docker inside the container. This
had the advantage of keeping the version of Docker on the host and in the container
in sync. However, from version 1.7.1, Docker began using dynamic libraries, which
means any dependencies also need to be mounted in the container. Rather than deal
with the problems of finding and updating the correct libraries to mount, it is easier
to simply install Docker in the image.

Now that we've got Docker working inside the container, we can install some other
stuff we need to get our Jenkins’ build working. Update the Dockerfile like so:

FROM jenkins:1.609.3

USER root
RUN echo "deb http://apt.dockerproject.org/repo debian-jessie main" \
> [etc/apt/sources.list.d/docker.list \
&& apt-key adv --keyserver hkp://p80.pool.sks-keyservers.net:80 \
--recv-keys 58118E89F3A912897C0O70ADBF76221572C52609D \
&& apt-get update \
&& apt-get install -y apt-transport-https \
&& apt-get install -y sudo \
&& apt-get install -y docker-engine \
&& rm -rf /Jvar/lib/apt/lists/*
RUN echo "jenkins ALL=NOPASSWD: ALL" >> /etc/sudoers

RUN curl -L https://github.com/docker/compose/releases/download/1.4.1/\
docker-compose- ‘uname -s'-‘uname -m’ > /usr/local/bin/docker-compose; \

124 | Chapter 8: Continuous Integration and Testing with Docker



chmod +x /usr/local/bin/docker-compose (1)

USER jenkins
COPY plugins.txt /usr/share/jenkins/plugins.txt (2]
RUN /usr/local/bin/plugins.sh /usr/share/jenkins/plugins.txt

© Install Docker Compose, which we will use to build and run our images.

® Copy in and process a plugins.txt file, which defines a list of plugins to install in
Jenkins.

Create the file plugins.txt in the same directory as the Dockerfile with the following
contents:

scm-api:0.2

git-client:1.16.1

git:2.3.5
greenballs:1.14

The first three plugins set up an interface we can use to set up access to the Identi-

dock project in Git. The “greenballs” plugin replaces the default Jenkins blue balls for
successful builds with green ones.

We're now just about ready to launch our Jenkins container and start configuring our
build, but first we should create a data container to persist our configuration:

$ docker build -t identijenk .

$ docker run --name jenkins-data identijenk echo "Jenkins Data Container"
Jenkins Data Container

We've used the Jenkins image for data container so we can be sure the permissions are
set correctly. The container exits once the echo command completes, but as long as
it’s not deleted, it can be used in - -volumes-from arguments. For more details on data
containers, see “Managing Data with Volumes and Data Containers”.

Now we're ready to launch the Jenkins container:

$ docker run -d --name jenkins -p 8080:8080 \
--volumes-from jenkins-data \
-v [var/run/docker.sock:/var/run/docker.sock \
identijenk
75c4b300ade6a62394a328153b918c1dd58c5f6b9ac0288d46e02d5c593929dc
If you open a browser at http://localhost:8080, you should see Jenkins initializing. In a
moment, we'll set it up with a build and test for our identidock project. But first we
need to make a minor change to the identidock project itself. Currently, the docker-
compose.yml file for our project initializes a development version of identidock, but
we are about to develop some system tests we want to run on something much closer
to production. For this reason, we need to create a new file jenkins.yml that we will
use to start the production version of identidock inside Jenkins:

Creating a Jenkins Container | 125


http://localhost:8080

(2]

identidock:

build: .
expose:

- "9090" @
environment:

ENV: PROD ©
links:

- dnmonster

- redis

dnmonster:
image: amouat/dnmonster:1.0

redis:
image: redis:3.0

As Jenkins lives in a sibling container, we don’t need to publish ports on the host
in order to connect to it. I've included the expose command mainly as documen-
tation; you will still be able to access the identidock container from Jenkins
without it, assuming you haven't played with the default networking settings.

Set the environment to production.

This file needs to be added to the identidock repository that Jenkins will retrieve the
source code from. You can either add it to your own repository if you configured one
earlier or use the existing repository.

We're now ready to start configuring our Jenkins build. Open the Jenkins web inter-
face and follow these instructions:

1.
2.
3.

Click the “create new jobs” link.
Enter “identidock” for the “Item name,” select “Freestyle project,” and click OK.

Configure the “Source Code Management” settings. If you used a public GitHub
repository, you just need to select “Git” and enter the repository URL. If you used
a private repository, you will need to set up credentials of some sort (several
repositories, including BitBucket, have deployment keys that can be used to set up
read-only access for this purpose). Alternatively, you can use the version available
on GitHub.

. Click “Add build step” and select “Execute shell” In the “Command” box, enter

the following:

#Default compose args
COMPOSE_ARGS=" -f jenkins.yml -p jenkins "

#Make sure old containers are gone
sudo docker-compose $COMPOSE_ARGS stop (1)
sudo docker-compose $COMPOSE_ARGS rm --force -v

126

| Chapter 8: Continuous Integration and Testing with Docker


https://github.com/using-docker/identidock
https://github.com/using-docker/identidock

#build the system
sudo docker-compose $COMPOSE_ARGS build --no-cache
sudo docker-compose $COMPOSE_ARGS up -d

#Run unit tests
sudo docker-compose $COMPOSE_ARGS run --no-deps --rm -e ENV=UNIT identidock
ERR=$?

#Run system test if unit tests passed
if [ SERR -eq 0 ]; then
IP=$(sudo docker inspect -f {{.NetworkSettings.IPAddress}} \
jenkins_identidock_1) (2]
CODE=$(curl -sL -w "%{http_code}" $IP:9090/monster/bla -o /dev/null) || true (3]
if [ SCODE -ne 200 ]; then
echo "Site returned " $CODE
ERR=1
fi
fi

#Pull down the system
sudo docker-compose $COMPOSE_ARGS stop
sudo docker-compose $COMPOSE_ARGS rm --force -v

return $ERR

© Note that sudo is used to call Docker Compose, again because the Jenkins user
isn’t in the docker group.

We use docker inspect to discover the IP address of the identidock container.

We use curl to access the identidock service and check that it returns an HTTP
200 code indicating it is functioning correctly. Note that we are using the path /
monster/bla to ensure that identidock can connect to the dnmonster service.

You can also get this code from GitHub. Normally, scripts like this would be checked
into source control with other code, but for our example, simply pasting into Jenkins
is enough.

Now, you should be able to test this out by clicking “Save” followed by “Build Now.
You can view the details of the build by clicking on the build ID and selecting “Con-
sole Output” You should see something similar to Figure 8-2.

Creating a Jenkins Container | 127


https://github.com/using-docker/ci-testing

@ Jenkins

Jenkins > dentidock > #1

# Back to Project Q Console Output

\ Status

= Changes Started by user anonynous
B

& console Output

View as plain text

= et Buid formaton
© Delete Buid
© aisuidvan

o NoTags

tebi thucket. org/ansc/identidock.git +refs/heads/*:refs/renotes/origin/*
10

igin/master)

t ¥ -10
28£778b04b34e4518707db2840
elog

0n6858080823718467608. sh
top

Building identido
Step © : FROM python:
--'> 474f82d46535
Step 1 : WA

1y- i o
no previously-included directories found matching 'docs/_build

e s ocaes misome Page geneated Mar 1, 2015 $5299PM  RESTAPI  Jerkinsver 1566

Figure 8-2. Successful Jenkins build

This is pretty good in as far as it goes. We've successfully got Docker running and
managed to execute our unit tests, plus a simple “smoke test” on our application. If
this was a real application, we would be looking to have a full suite of tests that ensure
the application is functioning correctly and can handle a range of inputs, but this is
all we need for our simple demo.

Triggering Builds

At the moment, builds are triggered manually by clicking “Build Now” A major
improvement to this is to have builds happen automatically on check-in to the Git-
Hub project. To do this, enable the “Poll SCM” method in the identidock configura-
tion and enter “H/5 * * * *” into the text box. This will cause Jenkins to check the
repository every five minutes for any changes and schedule a build if any changes
have occurred.

This is a simple solution and it works well enough, but it is somewhat wasteful and
means builds are constantly lagging by up to five minutes. A better solution is to con-
figure the repository to notify Jenkins of updates. This can be done using Web Hooks
from either BitBucket or GitHub but requires that the Jenkins server is accessible on
the public Internet.

128 | Chapter 8: Continuous Integration and Testing with Docker



Using the Docker Hub Image

At this point, some of you may be asking, “Why are we building an
image at all?” If you followed the previous section, you should have
an automated build set up on the Docker Hub that is firing on
check-ins to the source repository. It is possible to take advantage
of this by using the Webhooks feature on Docker Hub to automati-
cally kick off a Jenkins build after a successful build on the Docker
Hub repository. We can then pull, rather than build, the image in
our script. This also requires the Jenkins server to be accessible on
the public Internet.

This solution may be useful for small projects that are creating
standalone Docker images, but larger projects will probably want
the extra speed and security of controlling their own build.

Pushing the Image

Now that we've tested our Identidock image, we need to push it through the rest of
our pipeline somehow. The first step in this is to tag it and push it to a registry. From
here it can be picked up by the next stage in the pipeline and pushed to staging or
production.

Responsible Tagging

Tagging images correctly is essential to maintain control and provenance over a
container-based pipeline. Get it wrong and you will have images running in produc-
tion that are difficult—if not impossible—to relate back to builds, making debugging
and maintenance unnecessarily tricky. For any given image, we should be able to
point to the exact Dockerfile and build context that was used to create it.”

Tags can be overwritten and changed at any time. Because of this, it is up to you to
create and enforce a reliable process for tagging and versioning images.

For our example application, we will add two tags to the image: the git hash of the
repository and newest. This way the newest tag will always refer to the newest build
that has passed our tests, and we can use the git hash to recover the build files for any
image. I've intentionally avoided using the latest tag due to the issues discussed in
Beware of the latest Tag. Update the build script in Jenkins to:

#Default compose args
COMPOSE_ARGS=" -f jenkins.yml -p jenkins "

5 Note that this doesn’t guarantee you will be able to recreate an identical container as dependencies may have
changed. See “Reproducible and Trustworthy Dockerfiles” for details on how to mitigate this.

Pushing thelmage | 129



#Make sure old containers are gone
sudo docker-compose $COMPOSE_ARGS stop
sudo docker-compose $COMPOSE_ARGS rm --force -v

#build the system
sudo docker-compose $COMPOSE_ARGS build --no-cache
sudo docker-compose $COMPOSE_ARGS up -d

#Run unit tests
sudo docker-compose $COMPOSE_ARGS run --no-deps --rm -e ENV=UNIT identidock
ERR=$?

#Run system test if unit tests passed
if [ SERR -eq O ]; then
IP=$(sudo docker inspect -f {{.NetworkSettings.IPAddress}} \
jenkins_1identidock_1)
CODE=$(curl -sL -w "%{http_code}" $IP:9090/monster/bla -o /dev/null) || true
if [ SCODE -eq 200 ]; then
echo "Test passed - Tagging"
HASH=$(git rev-parse --short HEAD) @
sudo docker tag -f jenkins_identidock amouat/identidock:S$SHASH (2]
sudo docker tag -f jenkins_identidock amouat/identidock:newest (2]
echo "Pushing"
sudo docker login -e joe@bloggs.com -u jbloggs -p jbloggle3€’
sudo docker push amouat/identidock:$HASH (4]
sudo docker push amouat/identidock:newest (4]
else
echo "Site returned " $CODE
ERR=1
fi
fi
#Pull down the system
sudo docker-compose $COMPOSE_ARGS stop
sudo docker-compose $COMPOSE_ARGS rm --force -v

return $ERR

© Get the short version of the git hash.
O Add the tags.
© Login to the registry.

Push the images to the registry.

Note that you will need to rename the tag appropriately for the repository you wish to
push to. For example, if your repository is running at myhost: 5000, you will need to
use myhost:5000/identidock:newest. Similarly, you will need to change the docker
login credentials to match.

130 | Chapter 8: Continuous Integration and Testing with Docker



If you start a new build, you should find that the script now tags and pushes the
images to the registry, ready for the next stage in the pipeline. This is great for our
example application and is probably a good start for most projects. But as things get
more complex, you are likely to want to use more tags and more descriptive names.
The git describe command can be put to good use in generating more meaningful
names based on tags.

Finding All Tags For an Image

Each tag for an image is stored separately. This means that in order
to discover all the tags for an image, you need to filter the full
image list based on the image ID. For example, to find all tags for
the image with tag amouat/identidock:newest:

$ docker images --no-trunc | grep \

$(docker inspect -f {{.Id}} amouat/identidock:newest)
amouat/identidock  51f6152 96c7b4c094c8f76ca82b6206f. . .
amouat/identidock newest  96c7b4c094c8f76ca82b6206f. ..
jenkins_1identidock Tlatest 96c7b4c094c8f76ca82b6206f. . .

And we can see that the same image is also tagged 51f6152.

Remember that you will only see a tag if it exists in your image
cache. For example, if I pull debian:latest, I don’t get the debian:
7 tag even though (at the time of writing) it has the image ID. Simi-
larly, if I have both the debian:latest and debian:7 images, and I
pull a new version of debian:latest, the debian:7 tagged image
will not be affected and will remain linked to the previous image
ID.

Staging and Production

Once an image has been tested, tagged, and pushed to a registry, it needs to be passed
on to the next stage in the pipeline, probably staging or production. This can be trig-
gered in several ways, including by using Registry webhook notifications, or by using
Jenkins to call the next step.

Image Sprawl

In a production system, you will need to address the problem of image sprawl. The
Jenkins server should be periodically purged of images, and you will also need to con-
trol the number of images in the Registry, or it will rapidly fill with old and obsolete
images. One solution is to remove all images older than a given date, possibly saving

Pushingthe Image | 131


https://docs.docker.com/registry/notifications/

them to a back-up store if space allows.°Alternatively, you may want to look at more
advanced tooling such as the CoreOS Enterprise Registry or Docker Trusted Registry,
both of which include advanced features for managing repositories.

Test the Right Thing

P It is important to make sure you test the same container image that
is run in production. Don’t build the image from a Dockerfile in
testing and build again for production—you want to be certain that
you are running the same thing you tested and no differences have
crept in. For this reason, it is essential to run some form of registry
or store for your images that can be shared between testing, stag-
ing, and production.

Using Docker to Provision Jenkins Slaves

As your build requirements grow, you will require more and more resources to run
your tests. Jenkins uses the concept of “build slaves,” which essentially form a task
farm Jenkins can use to outsource builds.

If you would like to use Docker to dynamically provision these slaves, take a look at
the Docker plugin for Jenkins.

Backing Up Jenkins

Since we used a data container for our Jenkins service, backing up Jenkins should be
as simple as:

$ docker run --volumes-from jenkins-data -v $(pwd):/backup \
debian tar -zcvf /backup/jenkins-data.tar.gz /var/jenkins_home

This should result in the file jenkins-data.tar.gz appearing in your $(pwd)/backup
directory. You may want to stop or pause the Jenkins container prior to running this
command. You can then run something like the following command to create a new
data container and extract the backup into it:

$ docker run --name jenkins-data2 identijenk echo "New Jenkins Data Container"
$ docker run --volumes-from jenkins-data2 -v $(pwd):/backup \
debian tar -xzvf /backup/backup.tar

Unfortunately, this approach does require you to be aware of the mount points of
your container. This can be automated by inspecting the container, so you can also

6 At the time of writing, this is easier said than done with locally hosted Docker registries, as the remove func-
tion hasn’'t been implemented. There are several issues to be overcome, which are described in detail on the
distribution roadmap.

132 | Chapter 8: Continuous Integration and Testing with Docker


https://github.com/docker/distribution/blob/master/ROADMAP.md
https://wiki.jenkins-ci.org/display/JENKINS/Docker+Plugin

use tools like docker-backup to do this for you, and I expect to see more support for
workflows like this in future versions of Docker.

Hosted Cl Solutions

There are also numerous hosted solutions for CI, from companies that will maintain
a Jenkins installation in the cloud for you, to more specialized solutions such as
Travis, Wercker, CircleCI, and drone.io. Most of these solutions seem to be targeted
at running unit tests for predefined language stacks rather than running tests against
systems of containers. There does seem to be some movement in this area, and I
expect to see offerings aimed at testing Docker containers soon.

Testing and Microservices

If youre using Docker, there’s a good chance you've also adopted a microservice
architecture. When testing a microservice architecture, you will find that there are
more levels of testing that are possible, and it is up to you to decide how and what to
test. A basic framework might consist of:

Unit tests
Each service’ should have a comprehensive set of unit tests associated with it.
Unit tests should only test small, isolated pieces of functionality. You may use test
doubles to replace dependencies on other services. Due to the number of tests, it
is important that they run as quickly as possible to encourage frequent testing
and avoid developers waiting on results. Unit tests should make up the largest
proportion of tests in your system.

Component tests

These can be on the level of testing the external interface of individual services,
or on the level of subsystem testing of groups of services. In both cases, you are
likely to find you have dependencies on other services, which you may need to
replace with test doubles as described earlier. You may also find it useful to
expose metrics and logging via your service’s API when testing, but make sure
this is kept in a separate namespace (e.g., use a different URL prefix) to your
functional APL

End-to-end tests
Tests that ensure the entire system is working. Since these are quite expensive to
run (in terms of both resources and time), there should only be a few of these—
you really don’t want a situation where it takes hours to run the tests, seriously

7 Normally, there will be one container per service, or multiple containers per service if more resources are
needed.

Hosted Cl Solutions | 133


https://github.com/discordianfish/docker-backup
https://travis-ci.org
http://wercker.com/
https://circleci.com
https://drone.io

delaying deployments and fixes (consider scheduled rums, which we describe
shortly). Some parts of the system may be impossible or prohibitively expensive
to run in testing and may still need to be replaced with test doubles (launching
nuclear missiles in testing is probably a bad idea). Our identidock test falls under
end-to-end testing; the test runs the full system from end to end with no use of
test doubles.

In addition, you may want to consider:

Consumer-contract tests

These tests, which are also called consumer-driven contracts, are written by the
consumer of a service and primarily define the expected input and output data.
They can also cover side effects (changing state) and performance expectations.
There should be a separate contract for each consumer of the service. The pri-
mary benefit of such tests is that it allows the developers of a service to know
when they risk breaking compatability with consumers; if a contract test fails,
they know to they need to either change their service, or work with the develop-
ers of the consumer to change the contract.

Integration tests
These are tests to check that the communication channels between each compo-
nent are working correctly. This sort of testing becomes important in a microser-
vice architecture where the amount of plumbing and coordination between
components is an order of magnitude greater than monolithic architectures.
However, you are likely to find that most of your communication channels are
covered by your component and end-to-end testing.

Scheduled runs
Since it’s important to keep the CI build fast, there often isn’t enough time to run
extensive tests, such as testing against unusual configurations or different plat-
forms. Instead, these tests can be scheduled to run overnight when there is spare
capacity.

Many of these tests can be classified as preregistry and postregistry, depending on
whether they occur prior to adding the image to the registry. For example, unit test-
ing is preregistry: no image should be pushed to the registry if it fails a unit test. The
same goes for some consumer contract tests and some component tests. On the other
hand, an image will have already been pushed to a registry before it can be end-to-
end tested. If a postregistry test fails, there is a question about what to do next. While
any new images should not be pushed to production (or should be rolled back if they
have already been deployed), the fault may actually be due to other, older images or
the interaction between new images. These sort of failures may require a greater level
of investigation and thought to handle correctly.

134 | Chapter 8: Continuous Integration and Testing with Docker



Testing in Production

Finally, you may want to think about testing in production. Don’t worry, this isn't as
crazy as it sounds. In particular, it can make a lot of sense when dealing with a large
number of users with widely different environments and configurations that are hard
to test for.

One common approach is sometimes called blue/green deployment. Say we want to
update an existing production service—let’s call it the “blue” version—to a new a ver-
sion—Ilet’s call it the “green” version. Rather than just replace the blue version with
the green version, we can run them in tandem for a given time period. Once the
green version is up and running, we flip the switch to start routing traffic to it. We
then monitor the system for any unexpected changes in behavior, such as increased
error rates or latency. If we're not happy with the new version, all we have to do is flip
the switch back to return the blue version to production. Once we're satisfied things
are working correctly, we can turn off the blue version.

Other methods follow a similar principle—both the old and new versions should run
in tandem. In A/B, or multivariate testing, two (or more) versions of a service are run
together for a test period, with users randomly split between two. Certain statistics
are monitored, and based on the results at the end of testing, one of the versions is
kept. In ramped deployment, the new version of a service is only made available to a
small subset of users. If these users find no problems, the new version will be progres-
sively made available to more and more users. In shadowing, both versions of the ser-
vice are run for all requests, but only the results from the old, stable version are used.
By comparing the results from the old version and the proposed new version, it is
possible to ensure the new version has identical behavior to the old version (or differs
in an expected and positive way). Shadowing is particularly useful when testing new
versions that do not have functional changes such as performance improvements.

Conclusion

The key idea to take away is that containers fit naturally into a continuous interga-
tion/delivery workflow. There are a few things to bear in mind—primarily that you
must push the same image through the pipeline rather than rebuilding at separate
stages—but you should be able to adapt existing CI tooling to containers without too
many problems, and the future is likely to bring further specialized tooling in this
area.

If youre embracing a large microservice architecture, it's worth taking more time to
think about how you are going to do testing and researching some of the techniques
outlined in this chapter.

Conclusion | 135






CHAPTER9
Deploying Containers

Now its time to start getting to the business end of things and thinking about how to
actually run Docker in production. At the time of writing, everybody is talking about
Docker, and many are experimenting with Docker, but comparatively few run Docker
in production. While detractors sometimes point to this as a failing of Docker, they
seem to miss a couple of key points. Given the relative youth of Docker, it is very
encouraging that so many people are using it in production (including Spotify, Yelp,
and Baidu) and that those who only use it in development and testing are still gaining
many advantages.

That being said, it is perfectly possible and reasonable to use containers in production
today. Larger projects and organizations may want to start small and build up over
time, but it is already a feasible and straightforward solution for the majority of
projects.

As things currently stand, the most common way of deploying containers is by first
provisioning VMs and then starting containers on the VMs. This isn’t an ideal solu-
tion—it creates a lot of overhead, slows down scaling, and forces users to provision
on a multicontainer granularity. The main reason for running containers inside VMs
is simply security. It’s essential that customers cannot access other customers” data or
network traffic, and containers by themselves only provide weak guarantees of isola-
tion at the moment. Further, if one container monopolizes kernel resources, or causes
a panic, it will affect all containers running on the same host. Even most of the spe-
cialist solutions—Google Container Engine (GKE) and the Amazon EC2 Container
Service (ECS)—still use VMs internally. There are currently two exceptions to this
rule, Giant Swarm and Triton from Joyent, both of which are discussed later.

Throughout this chapter, we will show how our simple web application can be
deployed on a range of clouds, as well as specialized Docker hosting services. We will

137



also look at some of the issues and techniques for running containers in production,
both in the cloud and using on-premise resources.

The code for this chapter is available at this book’s GitHub. We
won't build on the previous Python code anymore but will continue
to use the images we have created. You can choose to use your own
version of the identidock image or simply use the amouat/identi
dock repository.

You can check out the code for the start of the chapter using the vo
tag:

$ git clone -b vO \
https://github.com/using-docker/deploying-containers/

Later tags represent the progression of the code throughout the
chapter.

Alternatively, you can download the code for any tag from the
Releases page on the GitHub project.

Provisioning Resources with Docker Machine

The fastest and simplest way to provision new resources and run containers on them
is via Docker Machine. Machine can create servers, install Docker on them, and con-
figure the local Docker client to access them. Machine comes with drivers for most of
the major cloud providers (including AWS, Google Compute Engine, Microsoft
Azure, and Digital Ocean) as well as VMWare and VirtualBox.

Beta Software Alert!

P At the time of writing, Docker Machine is in beta (I tested Docker
Machine version 0.4.1). This means you are likely to encounter
bugs and missing functionality, but it should still be usable and rea-
sonably stable. Unfortunately, it also means the commands and
syntax are likely to change slightly from what you see here. For this
reason, I dont recommend using Machine in production yet,
although it is very useful for testing and experimentation.

(And yes, this warning is true for nearly everything in this book. It
just felt like time to point that out again....)

Lets have a look at how to use Machine to get identidock up and running in the
cloud. To begin with, you’ll need to install Machine on your local computer. If you
installed Docker via Docker Toolbox, it should already be available. If not, you can
download a binary from GitHub, which can then be placed on your path (e.g., /usr/

138 | Chapter9: Deploying Containers


https://github.com/using-docker/deploying-containers
https://github.com/using-docker/deploying-containers/releases
https://github.com/docker/machine/releases

local/bin/docker-machine). Once you've done this, you should be able to start running
commands:

$ docker-machine 1s
NAME ACTIVE DRIVER STATE URL SWARM
default virtualbox Running  tcp://192.168.99.100:2376

You may or may not get any output here, depending on what hosts Machine has
detected. In my case, it picked up my local boot2docker VM. What we want to do
next is add a host somewhere in the cloud. I'll walk through this using Digital Ocean,
but AWS and the other cloud providers should be very similar. You'll need to have
registered online and generated a personal access token (open the “Applications &
APT” page to do this) in order to follow along. You will be charged for resource usage,
so make sure to remove the machine when you're finished with it:

$ docker-machine create --driver digitalocean \
--digitalocean-access-token 4820... \
identihost-do
Creating SSH key...
Creating Digital Ocean droplet...
To see how to connect Docker to this machine, run: docker-machine env identti...

We've now created a Docker host on Digital Ocean. The next thing to do is to point
our local client at it, using the command given in the output:

$ docker-machine env identihost-do

export DOCKER_TLS_VERIFY="1"

export DOCKER_HOST="tcp://104.236.32.178:2376"
export DOCKER_CERT_PATH="/Users/amouat/.docker/machine/machines/identihost-do"
export DOCKER_MACHINE_NAME="identihost-do"

# Run this command to configure your shell:

# eval "$(docker-machine env identihost-do)"

$ eval "$(docker-machine env identihost-do)"

$ docker info

Containers: 0

Images: 0

Storage Driver: aufs

Root Dir: /var/lib/docker/aufs

Backing Filesystem: extfs

Dirs: 0

Dirperml Supported: false

Execution Driver: native-0.2

Logging Driver: json-file

Kernel Version: 3.13.0-57-generic

Operating System: Ubuntu 14.04.3 LTS

CPUs: 1

Total Memory: 490 MiB

Name: identihost-do

ID: PLDY:REFM:PU5B:PRJIK:L4QD:TRKG:RWL6:5T6W:AVA3:2FXF:ESRC:6DCT
Username: amouat

Registry: https://index.docker.io/v1/

Provisioning Resources with Docker Machine | 139


https://cloud.digitalocean.com/settings/applications
https://cloud.digitalocean.com/settings/applications

WARNING: No swap limit support
Labels:
provider=digitalocean

And we can see that we're connected to a Ubuntu host running on Digital Ocean. If
we now run docker run hello-world, it will execute on the remote server.

Now to run identidock, you can use the previous docker-compose.yml from the end of
Chapter 6, or use the following docker-compose.yml, which uses an image from the
Docker Hub for identidock:

identidock:
image: amouat/identidock:1.0
ports:
- "5000:5000"
- "9000:9000"
environment:
ENV: DEV
links:
- dnmonster
- redis
dnmonster:
image: amouat/dnmonster:1.0
redis:
image: redis:3

Note that if the Compose file includes a build instruction, this build will occur on the
remote server. Any volume mounts will need to be removed, since they will refer to
the disk on the remote server, not your local computer.

Run Compose normally:

$ docker-compose up -d (1)

Creating identidock_identidock_1...
$ curl $(docker-machine ip identihost-do):5000 (2]
<html><head><title>Hello...

© This will take a while as it will need to first download and build the required
images.

® We can use the docker-machine ip command to find where our Docker host is
running.

So now identidock is running in the cloud and accessible to anyone." It’s fantastic that
we were able to get something up and running so quickly, but there are a few things
that aren’t quite right. Notably, the application is running the development Python

1 Some providers, including AWS, may require you to open port 5000 in the firewall first.

140 | Chapter9: Deploying Containers



webserver on port 5000. We should change to use the production version, but it
would also be nice to put a reverse proxy or load balancer in front of the application,
which would allow us to make changes to the identidock infrastructure without
changing the external IP address. Nginx has support for load balancing, so it also
makes it simple to bring up several identidock instances and share traffic between
them.

Smoke Testing Identidock

Throughout this book, we curl the identidock service to make sure
it works. However, simply grabbing the frontpage isn't a great test;
it only proves that the identidock container is up and running. A
better test is to retrieve an identicon, which proves both the identi-
dock and dnmonster containers are active and communicating.
You can do this with a test such as:

$ curl localhost:5000/monster/gordon | head -c 4
©PNG

Here we've used the Unix head utility to grab the first four charac-
ters of the image, which avoids dumping binary data to our termi-
nal.

Using a Proxy

Let’s start by creating a reverse proxy using nginx that our identidock service can sit
behind. Create a new folder identiproxy for this and create the following Dockerfile:

FROM nginx:1.7

COPY default.conf /etc/nginx/conf.d/default.conf
Also create a file default.conf with the following contents:

server {
listen 80;
server_name 45.55.251.164; @

location / {

proxy_pass http://identidock:9090; (2]

proxy_next_upstream error timeout invalid_header http_500 http_5602
http_503 http_504;

proxy_redirect off;

proxy_buffering off;

proxy_set_header Host 45.55.251.164; (1]
proxy_set_header X-Real-IP Sremote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

UsingaProxy | 141



© Replace this with the IP address of your Docker host or a domain name that
points to it.

® Redirect all traffic to the identidock container. We'll use links to make this work.

If you still have Machine running and pointed to the cloud server, we can now build
our image on the remote server:

$ docker build --no-cache -t identiproxy:0.1 .

Sending build context to Docker daemon 3.072 kB

Sending build context to Docker daemon

Step 0 : FROM nginx:1.7
---> 637d3b2f5fb5

Step 1 : COPY default.conf /etc/nginx/conf.d/default.conf
---> 2e82d9a1f506

Removing intermediate container 5383f47e3dle

Successfully built 2e82d9a1f506

It's easy to forget that we're speaking to a remote Docker engine, but the image now
exists on the remote server, not your local development machine.

Now we can return to the identidock folder and create a new Compose configura-
tion file to test it out. Create a prod.yml with the following contents:

proxy:
image: identiproxy:0.1 (1)
links:
- identidock
ports:
- "80:80"
identidock:
image: amouat/identidock:1.0
links:
- dnmonster
- redis
environment:
ENV: PROD ©
dnmonster:
image: amouat/dnmonster:1.0 (1)
redis:
image: redis:3 (1]

© Note that I've used tags for the all the images. In production, you should be care-
ful about the versions of containers you are running. Using latest is particularly
bad as it can be difficult or impossible to figure out what version of the applica-
tion the container is running.

142 | Chapter9: Deploying Containers



® Note that were no longer exposing ports on the identidock container (only the
proxy container needs to do that) and we’ve updated the environment variable to

start the production version of the webserver.

the following contents:

identidock:

image: amouat/identidock:1.0

environment:

ENV: DEV

dnmonster:

image: amouat/dnmonster:1.0
redis:

image: redis:3

proxy:
image: identiproxy:0.1
links:
- identidock
ports:
- "80:80"
identidock:
extends:
file: common.yml
service: identidock
environment:
ENV: PROD
dnmonster:
extends:
file: common.yml
service: dnmonster
redis:
extends:
file: common.yml
service: redis

keep the examples standalone.

Using extends in Compose

For more verbose YAML files, you can use the extends keyword to share config
details between environments. For example, we could define a file common.yml with

We can then rewrite our prod.yml file as:

Where the extends keyword pulls in the appropriate config from the common file.
Settings in the prod.yml will override settings in the common.yml. Values in 1inks and
volumes-from are not inherited to avoid unexpected breakages. Because of this, in our
case, using extends actually results in a more verbose prod.yml file, although it would
still have the important advantage of automatically inheriting any changes made to
the base file. The main reason I've avoided using extends in the book is simply to

Using a Proxy

143



Stop the old version and start the new:

$ docker-compose stop

Stopping identidock_identidock_1... done
Stopping identidock_redis_1... done
Stopping identidock_dnmonster_1... done
Starting identidock_dnmonster_1...
Starting identidock_redis_1...
Recreating identidock_identidock_1...
Creating identidock_proxy_1...

Now let’s test it out; it should now answer on the default port 80 rather than port
9090:

$ curl $(docker-machine ip identihost-do)
<html><head><title>Hello...

Excellent! Now our container is sitting behind a proxy, which makes it possible to do
things like load balance over a group of identidock instances or move identidock to a
new host without breaking the IP address (as long as the proxy remains on the old
host and is updated with the new value). In addition, security has increased because
the application container can only be accessed via the proxy and is no longer expos-
ing ports to the Internet at large.

We can do a bit better than this though. It’s really annoying that the IP of the host and
the container name are hardcoded into the proxy image; if we want to use a different
name than “identidock” or use identiproxy for another service, we need to build a
new image or overwrite the config with a volume. What we want is to have these
parameters set as environment variables. We can’t use environment variables directly
in nginx, but we can write a script that will generate the config at runtime, then start
nginx. We need to go back to our identiproxy folder and update the default.conf file
so that we have placeholders instead of the hardcoded variables:

server {
listen 80;
server_name {{NGINX_HOST}};

location / {

proxy_pass {{NGINX_PROXY}};

proxy_next_upstream error timeout invalid_header http_500 http_5602
http_503 http_504;

proxy_redirect off;

proxy_buffering off;

proxy_set_header Host {{NGINX_HOST}};
proxy_set_header X-Real-IP Sremote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

}

and create the following entrypoint.sh, which will do our replacement:

144 | Chapter 9: Deploying Containers



#!/bin/bash
set -e

sed -1 "s|{{NGINX_HOST}}|$NGINX_HOST|;s|{{NGINX_PROXY}}|SNGINX_PROXY|" \
/etc/nginx/conf.d/default.conf

cat /etc/nginx/conf.d/default.conf (2]

exec "$@" (3]

We're using the sed utility to do our replacement. This is a bit hacky, but it will be

fine for our purposes. Note we've used |’s instead of /’s to avoid confusion with
slashes in URLs.

Prints the final template into the logs, which is handy for debugging.

Executes whatever CMD has been passed. By default, the Nginx container defines a
CMD instruction that starts nginx in the foreground, but we could define a differ-
ent CMD at runtime that runs different commands or starts a shell if required.

Now we just need to update our Dockerfile to include our new script:

FROM nginx:1.7

COPY default.conf /etc/nginx/conf.d/default.conf
COPY entrypoint.sh /entrypoint.sh

ENTRYPOINT ["/entrypoint.sh"]
CMD ["nginx", "-g", "daemon off;"] @

This command starts our proxy and will be passed as an argument to our entry-
point.sh script if no command is specified in docker run.

Make it executable and rebuild. This time we’ll just call it proxy, as we've abstracted
out the identidock details:

$ chmod +x entrypoint.sh
$ docker build -t proxy:1.0 .

To use our new image, go back to the identidock folder and update our prod.yml to
use the new image:

proxy:
image: proxy:1.0
links:
- identidock
ports:
- "80:80"
environment:
- NGINX_HOST=45.55.251.164 "
- NGINX_PROXY=http://identidock:9090
identidock:

UsingaProxy | 145



image: amouat/identidock:1.0
links:
- dnmonster
- redis
environment:
ENV: PROD
dnmonster:
image: amouat/dnmonster:1.0
redis:
image: redis:3

© Set this variable to the IP or name of your host.

So now if you bring down the old version and restart the app, we'll be using the new,
generic image. For our simple web app, this is all we need, but due to the use of
Docker links, we are currently stuck with a single-host configuration—we can’t move
to a multihost architecture (which would be necessary for fault tolerance and scaling)
without using more advanced networking and service discovery features that we will
see in Chapters 11 and 12.

Once you've finished with the application, you can stop it with:

$ docker-compose -f prod.yml stop

$ docker-compose -f prod.yml rm

When you're ready to shut down the cloud resource, just do:

$ docker-machine stop identihost-do
$ docker-machine rm identihost-do

It's worth making sure the resources have been correctly freed in the cloud provider’s
web interface.

Next, let’s take a look at some of the alternatives to using Compose.

146 | Chapter 9: Deploying Containers



Setting the COMPOSE_FILE Variable

Rather than explicitly specifying the -f prod.yml to compose each
time, you can also set the COMPOSE environment variable. For exam-
ple:

$ COMPOSE_FILE=prod.yml
$ docker compose up -d

This will use the file prod.yml rather than the default docker-
compose.yml.

Supercharged Config File Generation

The technique of using templates to build configuration files for Docker containers is
fairly common when Dockerizing applications, especially when they don't natively
support environment variables. When moving beyond simple examples like the one
here, you will want to use a proper template processor, such as Jinga2 or Go tem-
plates, in order to avoid strange errors due to regexp clashes.

The problem is common enough that Jason Wilder created dockerize to help auto-
mate this process. Dockerize will generate configuration files from a template file and
environment variables, then call the normal application. In this way, it can be used to
wrap application start-up scripts called from a CMD or ENTRYPOINT instruction.

However, Jason took this one step further with docker-gen. Docker-gen can use val-
ues from container metadata (such as IP address) as well as environment variables. It
can also run continuously, responding to Docker events such as new container cre-
ation to update configuration files appropriately. A great example of this is his nginx-
proxy container, which will automatically add containers with the k VIRTUAL_HOST
environment variable to a load-balanced group.

Execution Options

Now that we've got a production ready system,” how should we go about starting the
system on the server?® So far we've looked at Compose and Machine, but since both
these projects are relatively new and in rapid development, it’s wise to be wary of
using them in production for anything except small side projects (and, at the time of
writing, there are warnings to this extent on the Docker website). Both the projects

2 Well, not really. It's important to think about how to secure your application before inviting Joe Public to take
alook. See Chapter 13 for more information.

3 Oh, and you’ll want to think about how to handle monitoring and logging too. Don’t forget those. See Chap-
ter 10.

Execution Options | 147



https://github.com/jwilder/dockerize
https://github.com/jwilder/docker-gen

are quickly maturing and developing production features—to get an idea of where
they are going, you can find roadmap documents in the GitHub repositories, which
are great for getting an idea of how close the projects are to production-ready.

So, if Compose isn’t an option, what is? Let’s take a look at some of the other possibili-
ties. All of the following code assumes that images are available on Docker Hub,
rather than building them on the server. If you want to follow along, either push your
own images to a registry or use my images from the Docker Hub (amouat/identi
dock:1.0, amouat/dnmonster:1.0 and amouat/proxy:1.0).

Shell Scripts

The easiest answer to running without Compose is just to write a short shell script
that executes Docker commands to bring up the containers. This will work well
enough for a lot of simple use cases, and you if add in some monitoring, you can
make sure you know about it if anything goes wrong that requires your attention.
However, in the long run, it is far from perfect; you will likely end up maintaining a
messy and unstructured script that evolves over time to grow features of other solu-
tions.

We can ensure containers that exit prematurely are automatically restarted by using
the --restart argument to docker run. The argument specifies the restart policy,
which can be no, on-failure, or always. The default is no, which will never automat-
ically restart containers. The on-failure policy will only restart containers that exit
with a nonzero exit code and can also specify a maximum number of retries (e.g.,
docker run --restart on-failure:5 will attempt to restart the container five times
before giving up).

The following script (named deploy.sh) will get our identidock service up and run-
ning:

#!/bin/bash
set -e

echo "Starting identidock system"

docker run -d --restart=always --name redis redis:3
docker run -d --restart=always --name dnmonster amouat/dnmonster:1.0
docker run -d --restart=always \

--1link dnmonster:dnmonster \

--1ink redis:redis \

-e ENV=PROD \

--name identidock amouat/identidock:1.0
docker run -d --restart=always \

--name proxy \

--link identidock:identidock \

-p 80:80 \

-e NGINX_HOST=45.55.251.164 \

148 | Chapter9: Deploying Containers



-e NGINX_PROXY=http://identidock:9090 \
amouat/proxy:1.0

echo "Started"

Note that we're really just converting our docker-compose.yml file into the equivalent
shell commands. But unlike Compose, there is no logic for cleaning up after failures,
or to check for already running containers.

In the case of Digital Ocean, I can now use the following ssh and scp commands to
start identidock using the shell script:

$ docker-machine scp deploy.sh identihost-do:~/deploy.sh
deploy.sh 100% 575 0.6KB/s 00:00
$ docker-machine ssh identihost-do

$ chmod +x deploy.sh

$ ./deploy.sh

Starting identidock system
3b390441b16eaece94df7e0e07dledcb4c11ce7232108849d691d153330c6dfb
57459e4c0c2a75d2fbcef978aca9344d445693d2ad6d9efe70fe87bf5721a8f4
5da04a34302b400ecO08e9al1d59c3baeec14e3e65473533¢c165203c189ad58364
d1839d8de1952fca5c41e0825ebb27384135114574c20dd57f8ce718ed67e3f5
Started

We could also have just run these commands directly in the shell. The main reason to
prefer the script is for documentation and portability reasons—if I want to start iden-

tidock on a new host, I can easily find the instructions to bring up an identical ver-
sion of the application.

When we need to update images or make changes, we can either use Machine to con-
nect our local client to the remote Docker server or log directly in to the remote
server and use the client there. To perform a zero-downtime update of a container,
you will need to have a load balancer or reverse proxy in front of the container and
do something like:

1. Bring a up a new container with the updated image (it’s best to avoid trying to
update images in place).

2. Point the load balancer at the new image, for some or all of the traffic.
3. Test the new container is working.

4. Turn off the old container.

Also, refer to “Testing in Production”, which describes various techniques for deploy-
ing updates without breaking services.

Execution Options | 149



Breaking Links on Restart

P Older versions of Docker had problems with links breaking when
containers restarted. If you see similar issues, make sure you are
running an up-to-date version of Docker. At the time of writing, I
am using Docker version 1.8, which works correctly; any changes
to a container’s IP address are automatically propagated to linked
containers. Also note that only /etc/hosts is updated, and environ-
ment variables are not updated on changes to linked containers.

In the rest of this section, we'll look at how you can control the starting and deploy-
ment of containers using existing technology you may already be familiar with. In
Chapter 12, we will look at some of the newer, Docker specific tooling that also
addresses this issue.

Using a Process Manager (or systemd to Rule Them All)

Instead of relying on a shell script and the Docker restart functionality, you can use a
process manager or init system such as systemd or upstart to bring up your contain-
ers. This can be particularly useful if you have host services that don’t run in a con-
tainer, but are dependent on one or more containers. If you want to do this, be aware
that there are some issues:

 You will need to make sure you don’'t use Docker’s automatic container restarting
functionality, that is, dont use --restart=always in your docker run com-
mands.

o Normally, your process manager will end up monitoring the docker client pro-
cess, rather the processes inside the container. This works most of the time, but if
the network connection drops or something else goes wrong, the Docker client
will exit but leave the container running, which can cause problems. Instead, it
would be much better if the process manager monitored the main process inside
the container. This situation may change in the future, but until then, be aware of
the systemd-docker project, which works around this by taking control of the
container’s cgroup. (For more in