
marakana.com

Android Bootcamp
Courseware

by Marko Gargenta

Learn to Develop Mobile Apps for Android

Marakana Android Bootcamp
i

Marakana Android Bootcamp

Marakana Android Bootcamp
ii

Copyright © 2010 Marakana Inc.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of Marakana Inc.

We took every precaution in preparation of this material. However, the we assumes no responsibility for errors or omis-
sions, or for damages that may result from the use of information, including software code, contained herein.

Android is trademark of Google. Java is trademark of Oracle. All other names are used for identification purposes only
and are trademarks of their respective owners.

Marakana offers a whole range of training courses, both on public and private. For list of upcoming courses, visit
http://marakana.com

Marakana Android Bootcamp
iii

Contents

1 Main Building Blocks 1
1.1 Main Building Blocks . 1

1.2 A Real World Example . 1

1.3 Activities . 5

1.3.1 Activity Lifecycle . 5

1.3.1.1 Starting Up . 7

1.3.1.2 Running . 7

1.3.1.3 Paused . 7

1.3.1.4 Stopped . 7

1.3.1.5 Destroyed . 7

1.4 Intents . 8

1.5 Services . 9

1.6 Content Providers . 10

1.7 Broadcast Receivers . 11

2 MyTwitter Project Overview 12
2.1 Project Design . 12

2.2 MyTwitter Part 1 . 13

2.3 MyTwitter Part 2 . 13

2.4 MyTwitter Part 3 . 14

2.5 MyTwitter Park 4 . 14

3 MyTwitter Part 1 15
3.1 StatusActivity Layout . 15

3.1.1 Important Widget Properties . 16

3.2 Strings Resource . 17

3.3 StatusActivity . 17

3.4 Update Manifest File for Internet Permission . 18

3.5 Summary . 19

3.5.1 Source Code . 20

Marakana Android Bootcamp
iv

4 MyTwitter Part 2 21

4.1 Prefs Resource . 21

4.2 PrefsActivity . 21

4.3 Update Manifest File . 22

4.4 Menu Resource . 23

4.5 Update StatusActivity to Load Menu . 23

4.6 Update StatusActivity to Handle Menu Events . 24

4.7 Strings Resource . 24

4.8 Colors in Android . 25

4.9 Units in Android User Interface . 25

4.10 Spicing Up StatusActivity Layout . 25

4.11 UpdaterService . 27

4.12 Summary . 29

4.12.1 Source Code . 30

5 MyTwitter Part 3 31

5.1 DbHelper . 31

5.2 Verify Database Got Created . 33

5.3 Update UpdaterService . 33

5.4 TimelineActivity Layout . 34

5.5 About Adapters . 35

5.6 TimelineActivity . 37

5.7 TimelineAdapter . 38

5.8 Summary . 40

5.8.1 Source Code . 40

6 MyTwitter Part 4 41

6.1 BootReceiver . 41

6.2 Register BootReceiver with AndroidManifest file . 42

6.3 Testing Boot Receiver . 42

6.4 TimelineReceiver . 42

6.5 Broadcasting Intents . 44

6.6 Summary . 45

6.6.1 Source Code . 45

Marakana Android Bootcamp
v

7 Web Browser 46

7.1 Main Layout . 46

7.2 WebBrowser Activity . 47

7.3 Manifest File . 48

7.4 Summary . 49

7.4.1 Source Code . 50

8 Compass 51

8.1 Compass Main Activity . 51

8.2 Custom Rose Widget . 53

8.3 Summary . 54

8.3.1 Source Code . 55

9 Where Am I 56

9.1 Layout . 56

9.2 Activity . 57

9.3 Manifest File . 59

9.4 Summary . 59

9.4.1 Source Code . 60

10 Unit Testing Android Applications 61

10.1 About JUnit . 61

10.1.1 JUnit 101 . 61

10.1.2 Advantages of JUnit . 62

10.1.3 Disadvantages of JUnit . 63

10.1.4 Android JUnit Implementation . 63

10.2 Application to be Tested . 63

10.2.1 Kilo/Pound Converter Layout . 64

10.2.2 Kilo/Pound Converter Activity . 65

10.3 Application Performing Testing . 66

10.3.1 TestDemoTests Test Case . 67

10.3.2 Android Manifest File . 69

10.4 Running Unit Tests . 70

10.5 Summary . 71

Marakana Android Bootcamp
vi

A Android Resources 72

A.1 Software . 72

A.2 Websites . 72

A.3 Books . 72

A.4 Android Internals Websites . 73

B Virtual Machine 74

C Slides 75

Marakana Android Bootcamp
1 / 75

Chapter 1

Main Building Blocks

In this chapter, you will learn about the big blocks in Android. We’ll give you a high-level overview of what Activities
are, how Intents work, why Services are cool, how to use Broadcast Receivers and Content Providers to make your app
scale, and much more.

By the end of this chapter, you will understand the main Android components for building applications. You should
conceptually know when you’d use what component. You will also see how these components relate to a real world
application.

1.1 Main Building Blocks

Main building blocks are components that you as application developer use to build Android apps. They are the conceptual
items that you put together to create a bigger whole. When you start thinking about your application, it is good to
approach it top down. You design your application in terms of screens, features, and interactions between them. You start
with conceptual drawing, something that you can represent in terms of "lines and circles". This approach to application
development helps you see the big picture - how the components fit together and it all makes sense.

1.2 A Real World Example

Let’s say that I want to build a Twitter app. I know that the user should be able to post hers status updates. I also know
she should be able to see what her friends are up to. Those are basic features. Beyond that, she should also be able to set
her username and password in order to login to her Twitter account. So, now I know I should have these three screens.

Marakana Android Bootcamp
2 / 75

Figure 1.1: Status Activity

Marakana Android Bootcamp
3 / 75

Figure 1.2: Preference Activity

Marakana Android Bootcamp
4 / 75

Figure 1.3: Timeline Activity

Next, I figured I would like my app to work fast regardless of network connection, or lack of. To achieve that, the app has
to pull the data from Twitter when it’s online, and cache it locally. That will require a service that runs in the background
as well as a database.

I also know that I’d like this background service to be started when the device is initially turned on, so by the user first
uses the app, there’s already up-to-date information on her friends.

So, these are some straight froward requirements. Android building blocks make it easy to break them down into concep-
tual units so that you can work on them independently, and can also easily put them together into a complete package.

Marakana Android Bootcamp
5 / 75

1.3 Activities

An activity is usually a single screen that user sees on the device at one time. An application will typically have multiple
activities and user will be flipping back and forth among them. As such, activities are the most visible part of your
application.

I usually use a website as an analogy for activities. Just like a website consists of multiple pages, so does an Android
application consists of multiple activities. Just like a website has a "home page", an Android app has a "main" activity. It
is usually the one that is shown first when you launch the application. And just like a website has to provide some sort of
navigation among various page, an Android app should do the same.

On the web, you can jump from a page on one website to a page on another. Similarly, in Android, you could be looking
at an activity of one application, but shortly after you could start another activity in a completely separate application. For
example, if you are in your Contacts app, and you choose to text a friend, you’d be launching the activity to compose a
text message in the Messaging application.

1.3.1 Activity Lifecycle

Launching an activity is quite expensive. It is expensive because it involves a lot of work, such as creating a new linux
process, allocating memory for all the UI objects, inflating all the objects from XML layouts, and setting the whole screen
up. Since we’re doing a lot of work to launch an activity, it’s be a waste to just toss it out once user leaves that screen. To
avoid this waste, activity lifecycle is managed via Activity Manager.

Activity manager is responsible for creating, destroying, and overall managing activities. For example, when the user
wants to start an application first time, the activity manager will create its activity and put it on the screen. Later, when the
user switches screens, the activity manger will move that previous activity to a holding place. This way, if the user wants
to go back to an older activity, it can be started quicker. Older activities that user hasn’t used in a while will be destroyed
in order to free more space for the currently active one. This mechanism is designed to help improve the speed of user
interface and thus improve the overall user experience.

Marakana Android Bootcamp
6 / 75

Figure 1.4: Activity Lifecycle

Programming for Android is conceptually different than programming for some other environments. In Android, you find
yourself more responding to certain changes in the state of your application rather than driving that change yourself. It
is a managed, container-based environment similar to programming for Java applets or servlets. So, when it comes to
activity lifecycle, you don’t get to say what state the activity is in but you have plenty of opportunity to say what happens
on transitions from state to state.

Marakana Android Bootcamp
7 / 75

1.3.1.1 Starting Up

When an activity doesn’t exist in memory, it is in Starting state. While it’s starting up, the activity will go through a whole
set of callback methods that you as developer have an opportunity to fill out. Eventually, the activity will be in Running

state.

Keep in mind that this transition from Starting to Running is one of the most expensive operations in terms of computing
time needed. This is the exact reason why we don’t automatically destroy activities that are no longer shown. User may
want to come back to them, so we keep them around for awhile.

1.3.1.2 Running

A Running activity is the one that is currently on the screen interacting with the user. We also say this activity is in focus,
meaning that all user interactions, such as typing, touching screen, clicking buttons, are handled by this one activity. As
such, there is only one running activity at one time.

The running activity has all the priorities in terms of getting memory and resources needed to run as fast as possible. This
is because we want to make sure the running activity is zippy and responsive to user.

1.3.1.3 Paused

When an activity is not in focus (i.e. not interacting with the user) but still visible on the screen, we say it’s in Paused

state. This is not a very typical scenario since the screen is usually small and an activity is either taking the whole screen
or not at all. But, non the less, this is a valid state and all activities go through it en route to being stopped.

Paused activities still have high priority in terms of getting memory and other resources. This is because they are visible
and cannot be removed from the screen without making it look very strange to the user.

1.3.1.4 Stopped

When an activity is not visible, but still in memory, we say it’s in Stopped state. Stopped activity could be brought back
to front to become Running activity again. Or, it could be destroyed and removed from memory.

System keeps activities around in Stopped state because it is likely that the user will still want to get back to those activities
some time soon. And restarting a stopped activity is far cheaper than starting an activity from scratch. That is because we
already have all the objects loaded in memory and just simply have to bring it all up to foreground.

Stopped activities can also, an any point, be removed from memory.

1.3.1.5 Destroyed

A destroyed activity is no longer in memory. The activity manager decided that this activity is no longer needed, and as
such has removed it. Before the activity is destroyed, you, the developer, have an opportunity to perform certain actions,
such as save any unsaved information.

Note
The fact that an activity is in Running state doesn’t mean it’s doing much. It could be just sitting there and waiting for

user input. Similarly, a Stopped activity is not necessarily doing nothing - it could be still actively getting sensor updates

and processing them, for example. The state names mostly refer to how active the activity is with respect to user input.

Marakana Android Bootcamp
8 / 75

1.4 Intents

Figure 1.5: Intents

Intents are messages that are sent among major building blocks. They trigger an activity to start up, a service to start or
stop, or are simply broadcasts. Intents are asynchronous, meaning the code that is sending them doesn’t have to wait for
them to be completed.

An intent could be explicit or implicit. In an explicit intent the sender clearly spells out which specific component should
be on the receiving end. In an implicit intent, the sender specifies the type of receiver. For example, your activity could
send an intent saying it simply wants someone to open up a web page. In that case, any application that is capable of
opening a web page could "compete" to complete this action.

What this type of messaging allows for is to allow the user to replace any app on the system with a custom one. For
example, you may want to download a different SMS application, or another browser to replace your existing ones.

When you have competing applications, the system will ask you which one you’d like to use to complete a given action.
You can also set an app as the default one. This mechanism works very similarly to your desktop environment, when you
downloaded Firefox or Chrome to replace your default Internet Explorer or Safari web browsers.

Marakana Android Bootcamp
9 / 75

1.5 Services

Services are background processes. They don’t have any user interface components. Services are useful for actions that
we want to make sure performs for a while, regardless of what is on the screen. For example, you may want to have your
music player play music even as you are flipping between other applications. Or, in our Twitter example, we may want to
have the Twitter app be checking for the latest updates from our friends even when we are doing something else.

Figure 1.6: Service Lifecycle

Services have a much simpler lifecycle than activities. You start a service, or stop it. Also, the service lifecycle is more or
less controlled by the developer, and not so much by the system. The reason for this is that services tend to be easier on
resources than activities.

The fact that a service runs in the background doesn’t mean it runs on a separate thread. So, if your service is doing
some processing that takes a while to complete (such as perform network calls), you may want to consider running it on
a separate thread. Otherwise, your user interface will run noticeably slower.

Marakana Android Bootcamp
10 / 75

1.6 Content Providers

Figure 1.7: Content Provider

Content Providers are interfaces for sharing data between applications. Android by default runs each application in its
own sandbox so that all data that belongs to an application is totally isolated from other applications on the system. If you
want to expose certain data to another application, Content Providers offer a mechanism to do so.

Android system uses this mechanism all the time. For example, Contacts Provider is a content provider that exposes all
users contacts data to various applications. Settings Provider exposes system settings to various applications including
the built-in Settings application. Media Store is responsible for storing and sharing all various media, such as photos, and
music across various applications. This separation of data storage and the actual user interface application offers greater
flexibility to mash up various parts of the system.

Content Providers are a relatively simple interface with the standard insert(), update(), delete() and query()
methods. These methods look a lot like standard database methods, so it is relatively easy to implement a content provider
as a proxy to the database. Having said that, you are much more likely to use content providers than write your own.

Marakana Android Bootcamp
11 / 75

1.7 Broadcast Receivers

Figure 1.8: Broadcast Receiver

Broadcast Receivers is an Android implementation of system-wide publish/subscribe mechanism. The receiver is simply
a dormant code that gets activated once an event it is subscribed to happens.

The system itself broadcasts events all the time. For example, when an SMS arrives, or call comes in, or battery runs low,
or system gets booted, all those events are broadcasted and any number of receivers could be triggered by them. In our
Twitter app, we want to start the update service once the system starts up. To do that, we can subscribe to the broadcast
that tells us the system has completed booting up.

You can also send your own broadcasts from one part of your application to another, or a totally different application.

Broadcast receivers themselves do not have any visual representation. Nor they are actively running in memory. But when
triggered, they get to execute some code, such as start an activity, a service, or something else.

Marakana Android Bootcamp
12 / 75

Chapter 2

MyTwitter Project Overview

The sample project application for this course is a twitter application. The reason for this particular application is two-fold:

1. Twitter example covers most of the main Android building blocks in a natural way. As such, it’s a great sample
application to illustrate how various components work individually as well as fit together.

2. Twitter is more or less ubiquitous to most people, so the features of the application do not require much explaining.

2.1 Project Design

This is the design of the entire MyTwitter application, explained in lines and circles.

Marakana Android Bootcamp
13 / 75

Figure 2.1: MyTwitter Design Diagram

2.2 MyTwitter Part 1

Part one introduces a single activity, StatusActivity. We build a simple layout, and handle the user events. We also add
JTwitter external Jar to our project and connect to twitter.com to post a status update.

2.3 MyTwitter Part 2

First, we spice up the user interface a bit, add some graphics and images. Next, we add preferences activity to that user
can change her twitter username and password. We also introduce the options menu in Android.

We also learn about Android services and implement UpdaterService.

Marakana Android Bootcamp
14 / 75

2.4 MyTwitter Part 3

We introduce SQLite database and the DbHelper. We add TimelineActivity to display the list of friends’ statuses. We also
create a custom TimelineAdapter to make it all look good.

2.5 MyTwitter Park 4

We finally introduce broadcast receivers, and wrap up the project into a shippable application.

Marakana Android Bootcamp
15 / 75

Chapter 3

MyTwitter Part 1

Part one introduces a single activity, StatusActivity. We build a simple layout, and handle the user events. We also add
JTwitter external Jar to our project and connect to twitter.com to post a status update.

3.1 StatusActivity Layout

Let’s start by designing the user interface for our screen where we’ll enter the new status and click a button to update it.

This screen will have four components:

• Title at the top of the screen. This will be a TextView widget.

• Big text area to type our 140-character status update. We’ll use EditText for this purpose.

• Button to click to update the status. This will be a Button widget.

• A layout to contain all these widgets and lay them out one after another in vertical fashion. For this screen, we’ll use
LinearLayout, one of the more common ones.

The source code for our StatusActivity layout looks like this:

res/layout/main.xml
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical" android:layout_width="fill_parent"
android:layout_height="fill_parent">
<TextView android:layout_width="fill_parent"
android:layout_height="wrap_content" android:gravity="center"
android:text="@string/titleMyTwitter" android:textSize="30sp"
android:layout_margin="10dp" />

<EditText android:layout_width="fill_parent"
android:layout_height="fill_parent" android:layout_weight="1"
android:hint="@string/hintText" android:id="@+id/editText"
android:gravity="top|center_horizontal"></EditText>

<Button android:layout_width="fill_parent"
android:layout_height="wrap_content" android:text="@string/buttonUpdate"
android:textSize="20sp" android:id="@+id/buttonUpdate"></Button>

</LinearLayout>

Marakana Android Bootcamp
16 / 75

3.1.1 Important Widget Properties

While each widget can have many different properties, some are more important than others. Table 3.1 show what
properties are more important than others.

Table 3.1: Important Widget Properties

Properties Description
layout_height and layout_width Defines how much space this widget is asking from its

parent layout to display itself. While you could enter a
value in pixels, inches, or similar, that is not a good
practice. Since your application could run on many
different devices with various screen sizes, you want to
use relative size for your components, not absolute.
So, best practice would be to use either
fill_parent or wrap_content for the value.
fill_parent means that your widget wants all the
available space from its parent. wrap_content
means that it only requires as much space as it needs to
display its own content.

layout_gravity Specifies how this particular widget is positioned within
its layout, both horizontally and vertically. Notice the
difference between this property and gravity below.

gravity Specifies how the content of this widget is positioned
within the widget itself. It is commonly confused with
layout_gravity. Which one to use will depend on
size of your widget and desired look.

id id is simply the unique identifier for this particular
widget in this particular layout resource file. Not every
widget needs an id and I recommend removing id’s if
not needed to minimize clutter. But widgets that we’ll
later need to manipulate from Java do need id’s.
Id has the following format: @+id/someName where
someName is whatever you want to call your widget.
My naming convention is to use type followed by name,
so @+id/buttonUpdateStatus for example.

text Not all widgets have this property, but many do, such as
Button, EditText, and TextView. It simply
specifies the text for the widget. Now, it is not a good
practice to just enter the text because than your layout
will only work in one locale/language. Best practice is
to define all text in strings.xml resource and refer
to particular string via this notation:
@string/titleStatusUpdate.

Marakana Android Bootcamp
17 / 75

3.2 Strings Resource

Android tries hard to keep data in separate files. So, layouts are defined in their own resources, and all text values (such
as button text, title text, etc.) should be defined in their own file called strings.xml. This later allows you to provide
multiple versions of strings resources to be used for various languages, such as English, Japanese, or Russian.

Here’s what our strings.xml file looks like at this point:

res/values/strings.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>

<string name="hello">Hello World, MyTwitter!</string>
<string name="app_name">My Twitter</string>
<string name="titleMyTwitter">My Twitter</string>
<string name="hintText">Please enter your 140-characeter tweet</string>
<string name="buttonUpdate">Update</string>

</resources>

That this is simply a set of name/value pairs.

Tip
I use a certain naming convention for my resource names. Let’s look at titleMyTwitter, for example. First, I prefix

the resource with the name of what it is, in this case a title of the activity. Secondly, I give it a name, MyTwitter. This

naming convention helps later on keep many different resources sorted in a easy to find way. Finally, I use CamelCase

for my names. Again, this is my convention that I see work well. There’s no industry standard at this time.

3.3 StatusActivity

src/com/marakana/StatusActivity.java

package com.marakana;

import winterwell.jtwitter.Twitter;
import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.EditText;

public class StatusActivity extends Activity implements OnClickListener { // ✈1
EditText editText;
Button updateButton;
Twitter twitter;

/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

// Find views

http://en.wikipedia.org/wiki/CamelCase

Marakana Android Bootcamp
18 / 75

editText = (EditText) findViewById(R.id.editText); // ✈2
updateButton = (Button) findViewById(R.id.buttonUpdate);

updateButton.setOnClickListener(this); // ✈3
twitter = new Twitter("androidbootcamp", "pass2009"); // ✈4

}

// Called when button is clicked // ✈5
public void onClick(View v) {
twitter.setStatus(editText.getText().toString()); // ✈6

}
}

✈2 Find views inflated from the XML layout and assign them to Java variables.✈3 Register the button to notify this i.e. StatusActivity when it gets clicked on.✈1 To make StatusActivity capable of being a button listener, it needs to implement OnClickListener
interface.✈5 The method that is called when button is clicked, as part of OnClickListener interface.✈4 Connect to Twitter.com. At this point, we hard code the username and password.✈6 Make the web service API call to Twitter to update our status.

3.4 Update Manifest File for Internet Permission

Before this application can work, we must ask user to grant us right to use the internet. The way Android manages security
is by specifying permissions needed for certain dangerous operations. User then must explicitly grant those permissions
to each application when she installs the application first time around. User must grant all or no permissions - there’s no
middle ground. Also, user is not prompted about permissions upon upgrading an existing app.

Note
Since we are running this application in debug mode and installing it via USB cable, Android doesn’t prompt us for

permissions like it would the end user. However, we still must specify that the application requires certain permissions.

In this case, we want to ask user to grant this application the use of INTERNET permission. We need internet in order to
connect to Twitter.com.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.marakana" android:versionCode="1" android:versionName="1.0">
<application android:icon="@drawable/icon" android:label="@string/app_name">
<activity android:name=".StatusActivity" android:label="@string/app_name">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

Marakana Android Bootcamp
19 / 75

</activity>

</application>
<uses-sdk android:minSdkVersion="8" />

<uses-permission android:name="android.permission.INTERNET" /> <!-- ✈1 -->
</manifest>

✈1 Defines the <uses-permission> element for INTERNET permission.

3.5 Summary

By the end of this section, you should have your application run and look like StatusActivity, Part 1. It should also
successfully post your tweets to your twitter account. You can verify it is working by logging into twitter.com using the
same username/password as hard coded in the application.

StatusActivity, Part 1

http://twitter.com

Marakana Android Bootcamp
20 / 75

3.5.1 Source Code

Source code can be downloaded from http://marakana.com/static/courseware/android/MyTwitter-1.zip

http://marakana.com/static/courseware/android/MyTwitter-1.zip

Marakana Android Bootcamp
21 / 75

Chapter 4

MyTwitter Part 2

First, we spice up the user interface a bit, add some graphics and images. Next, we add preferences activity to that user
can change her twitter username and password. We also introduce the options menu in Android.

We also learn about Android services and implement UpdaterService.

4.1 Prefs Resource

We need a way for users to specify their individual twitter username and password information. This requires a screen to
enter the information, a Java code to validate and process that information, and some kind of storage mechanism to store
this information.

While all this sounds like a lot of work, Android provides a framework to help streamline working with user preferences.
First, we’ll define what our preference data looks like in a prefs.xml resource.

res/xml/prefs.xml
<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android">

<EditTextPreference android:title="@string/titleUsername"
android:summary="@string/summaryUsername" android:key="username"></ ←�

EditTextPreference>
<EditTextPreference android:title="@string/titlePassword"
android:summary="@string/summaryPassword" android:key="password"></ ←�

EditTextPreference>
</PreferenceScreen>

<PreferenceScreen> is the root element that defines our main preference screen. It has two children, both <EditTextPreference>.
This is simply a piece of editable text. Other common elements here could be <CheckBoxPreference>, <ListPreference>,
and so on.

The main property of any of these elements is the key. The key is how we’ll look up these values later on. Remember,
preferences is just a set of name-value pairs at the end of the day.

4.2 PrefsActivity

Now that we have the preferences defined in their own XML resource file, we can create the activity to display these
preferences. PrefsActivity is a very simple Java file.

Marakana Android Bootcamp
22 / 75

src/com/marakana/PrefsActivity.java

package com.marakana;

import android.os.Bundle;
import android.preference.PreferenceActivity;

public class PrefsActivity extends PreferenceActivity { // ✈1
@Override
protected void onCreate(Bundle savedInstanceState) { // ✈2
super.onCreate(savedInstanceState);
addPreferencesFromResource(R.xml.prefs); // ✈3

}

}

✈1 Unlike regular activities, PrefsActivity will subclass (i.e. extend) PreferenceActivity class.✈2 Just like any other activity, we override onCreate() method to initialize the activity.✈3 Unlike regular activities that usually call setContentView(), preference activity will set its content from the
prefs.xml file via a call to addPreferencesFromResource().

4.3 Update Manifest File

Whenever you create one of these main building blocks (Activities, Services, etc.) you need to define them in AndroidManifest.xml
file.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.marakana" android:versionCode="1" android:versionName="1.0">
<application android:icon="@drawable/icon" android:label="@string/app_name">

<activity android:name=".StatusActivity" android:label="@string/app_name">
<intent-filter>

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

<activity android:name=".PrefsActivity" /> <!-- ✈1 -->

<service android:name=".UpdaterService" /> <!-- ✈2 -->

</application>
<uses-sdk android:minSdkVersion="8" />

<uses-permission android:name="android.permission.INTERNET" />
</manifest>

✈1 Defines the new PrefsActivity.

Marakana Android Bootcamp
23 / 75

✈2 Defines the new UpdaterService which we’ll create later in this chapter.

You should now have a preference screen, but no good way of viewing it yet. We need a way to launch this new activity.
For that, we use options menu.

4.4 Menu Resource

Our new PrefsActivity is good to go, except we don’t have a way of displaying it. We need to somehow tell the app to
launch this new activity.

A very Android-like user experience is to setup options menu. Options menu is the menu that pops up at the bottom of
the application screen when user clicks on Menu button on the device itself.m

We start by defining the menus in an XML resource.

res/menu/menu.xml

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">

<item android:id="@+id/itemPrefs" android:title="@string/titlePrefs"
android:icon="@android:drawable/ic_menu_preferences"></item>

<item android:title="@string/titleServiceStart" android:id="@+id/itemServiceStart"
android:icon="@android:drawable/ic_media_play"></item>

<item android:title="@string/titleServiceStop" android:id="@+id/itemServiceStop"
android:icon="@android:drawable/ic_media_pause"></item>

</menu>

An options menu consists of <menu> root element. That element can contain multiple <item> elements, each specifying
a specific menu item.

While menu items can have many different properties, some are more important than others. The id property is necessary
so later on when can identify in Java which item user clicked on. title specifies what text to put on the actual menu
button on the screen. As before, you could hard code the text value here, but better practice is to define all your text in
strings.xml file and reference them here.

Finally, we chose to specify the optional icon property as well. Icon specifies the image that the user will see along with
the text on the menu item button.

Note
Notice that we refer to actual images as drawables. Also, notice that in this case, the reference looks like this:

@android:drawable/ic_menu_preferences. The use of android: is new and it specifies that his re-

source is not part of our our application but rather part of the Android system-wide set of resources.

4.5 Update StatusActivity to Load Menu

We need to update the StatusActivity to load up the options menu. To do that, add onCreateOptionsMenu() method
to StatusActivity. This method gets called only first time when user clicks on the Menu button.

// Called first time user clicks on the menu button
@Override
public boolean onCreateOptionsMenu(Menu menu) {

MenuInflater inflater = getMenuInflater(); // ✈1

Marakana Android Bootcamp
24 / 75

inflater.inflate(R.menu.menu, menu); // ✈2
return true;

}

✈1 We get the MenuInflater object from the context.✈2 Use the inflater to inflate the menu from the XML resource.

4.6 Update StatusActivity to Handle Menu Events

We also need a way to handle various clicks on the menu items. To do that, we add another method, onOptionsItemSelected().
This method is called every time user clicks on a menu item.

// Called when an options item is clicked
@Override
public boolean onOptionsItemSelected(MenuItem item) {

switch (item.getItemId()) { // ✈1
case R.id.itemServiceStart:
startService(new Intent(this, UpdaterService.class)); // ✈2
break;

case R.id.itemServiceStop:
stopService(new Intent(this, UpdaterService.class)); // ✈3
break;

case R.id.itemPrefs:
startActivity(new Intent(this, PrefsActivity.class)); // ✈4

break;
}

return true;
}

✈1 Since the same method is called regardless which item user clicked on, we need to figure out the id of that item
and based on that switch to a specific case to handle each item.✈2 startService() method is part of the context and it allows us to send an intent to the system that we’d like a
specific service started.✈3 stopService() sends an intent to the system to stop a specific service. If service is not started, nothing
happens.✈4 startActivity() method in context allows us to launch a new activity. In this case, we are creating a new
intent specifying to start PrefsActivity class.

4.7 Strings Resource

Our updated strings.xml now looks like this:

res/values/strings.xml

Marakana Android Bootcamp
25 / 75

<?xml version="1.0" encoding="utf-8"?>
<resources>

<string name="titleServiceStop">Stop Service</string>
<string name="titleServiceStart">Start Service</string>
<string name="titlePrefs">Prefs</string>
<string name="hello">Hello World, MyTwitter!</string>
<string name="app_name">My Twitter</string>
<string name="titleMyTwitter">My Twitter</string>
<string name="hintText">Please enter your 140-characeter tweet</string>
<string name="buttonUpdate">Update</string>
<string name="titleUsername">Username</string>
<string name="titlePassword">Password</string>
<string name="summaryUsername">Please enter your Twitter username</string>
<string name="summaryPassword">Please enter your Twitter password</string>

</resources>

You should be able to run your application at this point an and see the new PreferenceActivity.

PreferenceActivity images/PreferenceActivity-2.png

4.8 Colors in Android

Android supports standard RGB colors (Red, Green, Blue). The value of each color is between 0 and 255 in decimal
system, or 00 to FF in hexadecimal. So, yellow color would be 255,255,0 or #ffff00 in hex. In Android you can also
shorten this to #ff0.

Additionally, Android also supports the Alpha channel to specify the transparency of the color. Alpha value is also between
0 and 255, or 00 and FF, where higher number represents more solid color and 0 value would be fully transparent. You can
optionally specify Alpha channel either as AARRGGBB, or in short form as ARGB. So, semi translucent yellow would
be #7fffff00.

4.9 Units in Android User Interface

Just like in other systems, you can use pixels, points, inches, millimeters, and other typical units to specify sizes of widgets
and such. But Android also introduces two new units:

• Dp (synonym for Dip) is a density-independent pixel where at 160dpi screen, 1dp is the same as 1px.

• Sp is used for fonts to denote fonts that should be scalable based on users preference. So a 12sp font may be 18px if
user chooses to make all text extra large.

4.10 Spicing Up StatusActivity Layout

Now that we have the basic screen to post a Twitter update, we can make it look better. Android comes with a very rich
support for user interface.

We update our main.xml to add some background images, colors, text sizes, and such.

res/layout/main.xml

Marakana Android Bootcamp
26 / 75

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical" android:layout_width="fill_parent"
android:layout_height="fill_parent" android:background="@drawable/background">
<TextView android:layout_width="fill_parent"
android:layout_height="wrap_content" android:gravity="center"
android:text="@string/titleMyTwitter" android:textSize="30sp"
android:layout_margin="10dp" android:textColor="#fff" />

<EditText android:layout_width="fill_parent"
android:layout_height="fill_parent" android:layout_weight="1"
android:hint="@string/hintText" android:id="@+id/editText"
android:gravity="top|center_horizontal" android:background="#6009"
android:layout_margin="10dp" android:textColorHint="#fff"
android:textColor="#fff"></EditText>

<Button android:layout_width="fill_parent"
android:layout_height="wrap_content" android:text="@string/buttonUpdate"
android:textSize="20sp" android:id="@+id/buttonUpdate"
android:layout_margin="10dp" android:background="@drawable/buttonbg"></Button>

</LinearLayout>

You should now have a much better looking StatusActivity.

Marakana Android Bootcamp
27 / 75

StatusActivity, Part 2

4.11 UpdaterService

We need to define a service so there’s an always-on background process running and pulling latest twitter updates into a
local database. Remember, the purpose of this pull mechanism is so that we cache updates locally in order for our app to
have data even when its off line.

Just like an activity, a service is implemented by subclassing Service class and overriding certain methods. The ones
of interest to us are:

• onCreate(): Called when the service is created first time.

Marakana Android Bootcamp
28 / 75

• onStart(): Called when the service is started.

• onDestroy(): Called when the service is terminated.

In UpdaterService, we also make a use of a Handler. Handler is a responsible for handling jobs posted on a message
queue. That’s the mechanism for managing various jobs on a single thread.

In our case, we’ll define a job as pulling data from Twitter. As this is something that could take a long time due to network
latency, we don’t want this job to be blocking other processing. This is a good use of handler to post this job for some
future execution. Also, once the job is done, it reposts itself back on the same queue to execute again. This is how we
accomplish the pull from Twitter to happen over and over again.

For now, we’re simply going to print out to the log the fact that the job ran. We’ll implement the actual pulling data from
Twitter later.

src/com/marakana/UpdaterService.java

package com.marakana;

import android.app.Service;
import android.content.Intent;
import android.os.Handler;
import android.os.IBinder;
import android.util.Log;

public class UpdaterService extends Service { // ✈1
static final String TAG = "UpdaterService";
static final int DELAY = 30000; // 1/2 a min
UpdaterRunnable updaterRunnable;
Handler handler;

@Override
public IBinder onBind(Intent intent) { // ✈2
return null;

}

@Override
public void onCreate() {
super.onCreate();

// Initialize handler & runnable
handler = new Handler(); // ✈3
updaterRunnable = new UpdaterRunnable(); // ✈4
handler.post(updaterRunnable); // ✈5
Log.d(TAG, "onCreate’d");

}

@Override
public void onStart(Intent intent, int startId) { // ✈6
super.onStart(intent, startId);
Log.d(TAG, "onStart’d");

}

@Override
public void onDestroy() { // ✈7
super.onDestroy();

Marakana Android Bootcamp
29 / 75

// Cleanup handler & runnable
handler.removeCallbacks(updaterRunnable);
updaterRunnable = null;
handler = null;

Log.d(TAG, "onDestroy’d");
}

class UpdaterRunnable implements Runnable { // ✈8
public void run() {

Log.d(TAG, "UpdaterRunnable run’d");

handler.postDelayed(updaterRunnable, DELAY); // ✈9
}

}
}

✈1 To create a service, subclass android.app.Service class.✈2 onBind() method is not used for non-bound services, which this one is. For now ignore this method (i.e.
implement it by returning null).✈3 In onCreate() we create a new handler object.✈4 Instantiate a new instance of our "job" represented by the inner class UpdaterRunnable.✈5 Post the job on the message queue via the handler. This is not a blocking call.✈6 onStart() doesn’t do much in this case.✈7 In onDestroy() we unwind everything we did in onCreate().✈8 UpdaterRunnable class represents our job to be done. It needs to implement Runnable interface in order for
us to post it on the message queue.✈9 Once we are done with our work, we re-post it to run again at some future point in time.

4.12 Summary

At this point, our StatusActivity looks like StatusActivity, Part 1. We have also added PrefsActivity which looks like
PrefsActivity. You should also have a way to update your Twitter preferences. You can also start and stop the service at
this point. The service will run although it currently still doesn’t connect to Twitter.

StatusActivity, Part 1

Marakana Android Bootcamp
30 / 75

PrefsActivity

images/PrefsActivity-1.png

4.12.1 Source Code

Source code can be downloaded from http://marakana.com/static/courseware/android/MyTwitter-2.zip

http://marakana.com/static/courseware/android/MyTwitter-2.zip

Marakana Android Bootcamp
31 / 75

Chapter 5

MyTwitter Part 3

We introduce SQLite database and the DbHelper. We add TimelineActivity to display the list of friends’ statuses. We also
create a custom TimelineAdapter to make it all look good.

5.1 DbHelper

Android provides an elegant interface for your app to store its data in a SQLite database. To get access to the database,
you need a helper class that will create your database if it doesn’t already exist. It will also provide you with the access to
the database via a Java class SQLiteDatabase.

src/com/marakana/DbHelper.java

package com.marakana;

import android.content.Context;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteOpenHelper;
import android.util.Log;

public class DbHelper extends SQLiteOpenHelper { // ✈1
static final String TAG = "DbHelper";
static final String DB_NAME = "timeline.db"; // ✈2
static final int DB_VERSION = 3; // ✈3
static final String TABLE = "timeline"; // ✈4
static final String C_ID = "_id";
static final String C_CREATED_AT = "created_at";
static final String C_SOURCE = "source";
static final String C_TEXT = "txt";
static final String C_USER = "user";
Context context;

// Constructor
public DbHelper(Context context) { // ✈5
super(context, DB_NAME, null, DB_VERSION);
this.context = context;

}

// Called only once, first time the DB is created

Marakana Android Bootcamp
32 / 75

@Override
public void onCreate(SQLiteDatabase db) {
String sql = context.getString(R.string.sql1); // ✈6
Log.d(TAG, "onCreat’d sql: " + sql);

db.execSQL(sql); // ✈7
}

// Called whenever newVersion != oldVersion
@Override
public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) { // ✈8
// Typically do ALTER TABLE statements, but...we’re just in development,
// so:

db.execSQL("drop table if exists " + TABLE); // blow the old database
// away
Log.d(TAG, "onUpdate’d");
onCreate(db); // run onCreate to get new database

}

}

✈1 Start by subclassing SQLiteOpenHelper.✈2 This is the database file name.✈3 This is the version of our database. Version is important so that later when you change the schema, you can provide
existing users with a way to upgrade their database to the latest schema.✈4 The following are some database constants specific to our application. It is handy to define these as constants to
that we can refer to them from other classes.✈5 We override the SQLiteOpenHelper by passing the constants to the super and retaining the local reference
to the context.✈6 In this case, I defined the actual SQL to create the database schema in our strings.xml resource file. We use
context.getString() to get the actual string value of this XML resource.✈7 Once we have our SQL to create the database by running execSQL() on the database object that was passed into
onCreate().✈8 onUpgrade() is called whenever user’s database version is different than the application version. This will
typically happen when you change the schema and release the application update to users who already have older
version of your app.

Note
onCreate() is called only once, when the database file doesn’t exist. You typically run CREATE TABLE ... SQL

statement in onCreate(). The result of `onCreate() should be that the actual database is created

for the user. onUpgrade() will get called when the app is upgraded with a newer database schema. You typically

execute ALTER TABLE ... SQL statements in onUpgrade().

Marakana Android Bootcamp
33 / 75

5.2 Verify Database Got Created

If the database file got created successfully, it will be located in /data/data/com.marakana/databases/timeline.db
file. You can use Eclipse DDMS and File Explorer to look at the file system of the device, or you can use adb shell on
your command line, and then ls /data/data/com.marakana/databases/timeline.db to make sure the
file is there.

5.3 Update UpdaterService

We can now update the UpdaterService to pull the data from Twitter and store it in the database.

@Override
public void onCreate() {

super.onCreate();

// Open the database
dbHelper = new DbHelper(this); // ✈1
db = dbHelper.getWritableDatabase(); // ✈2
// Setup preferences
prefs = PreferenceManager.getDefaultSharedPreferences(this); // ✈3
prefs.registerOnSharedPreferenceChangeListener(this); // ✈4
// Initialize handler & runnable
handler = new Handler();
updaterRunnable = new UpdaterRunnable();
handler.post(updaterRunnable);

Log.d(TAG, "onCreate’d");
}

✈1 Create the instance of DbHelper and pass this as the context for it. DbHelper will figure out if the database needs
to be created or upgraded.✈2 Get the writable database so we can insert new statuses into it.✈3 Using SharedPreferences, find out the Twitter username and password.✈4 Also register for changes to preferences, since it’s likely they may change while the service is running.

We also need to update our UpdaterRunnable inner class to call a method that does the actual work of pulling data
from Twitter.

class UpdaterRunnable implements Runnable {
public void run() {
pullFromTwitter(); // ✈1
Log.d(TAG, "UpdaterRunnable run’d");

// Do this again
handler.postDelayed(updaterRunnable, DELAY);

}
}

Marakana Android Bootcamp
34 / 75

✈1 Call to method to do the actual pull of data from Twitter.

And finally, we need to connect to Twitter, get latest updates, and insert them into the database. That is done in
pullFromTwitter() method.

private void pullFromTwitter() {
List<Status> timeline = null;
try {
timeline = getTwitter().getFriendsTimeline(); // ✈1

} catch (TwitterException e) {
e.printStackTrace();

}

ContentValues values = new ContentValues(); // ✈2
// Loop over the timeline and print it out
for (Status status : timeline) { // ✈3
// Insert into database
values.put(DbHelper.C_ID, status.id); // ✈4
values.put(DbHelper.C_CREATED_AT, status.createdAt.getTime());
values.put(DbHelper.C_SOURCE, status.source);
values.put(DbHelper.C_TEXT, status.text);
values.put(DbHelper.C_USER, status.user.name);
try {

db.insertOrThrow(DbHelper.TABLE, null, values); // ✈5
Log.d(TAG, String.format("%s: %s", status.user.name, status.text));

} catch (SQLException e) {
}

}
}

✈1 getTwitter() is our lazy initialization of Twitter object. Then we call the actual Twitter API call getFriendsTimeline()
to get last 20 statuses from friends in last 24 hours.✈2 ContentValues is a simple name-value pairs data structure that maps database table names to their respective
values.✈3 We loop over all the records we got via the Twitter web service API call.✈4 For each record, we create a content value.✈5 We insert the content value into the database via insert() call to SQLiteDatabase object. Notice that we
are not piecing together a SQL statement here, but rather using a prepared statement approach to inserting into the
database.

5.4 TimelineActivity Layout

Timeline activity is responsible for displaying all the statuses from our friends. The first iteration of TimelineActivity
could be one where we simply out a TextView to display all the output from the database. Since there may be quite a
bit of data, we may want to wrap TextView into ScollView.

While this approach would work for smaller data sets, it is not optimal nor recommended. The better approach would be
to use ListView to represent the list of statuses that we have in the database. ListView is much more scalable and
efficient.

res/layout/timeline.xml

Marakana Android Bootcamp
35 / 75

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical" android:layout_height="fill_parent"
android:layout_width="fill_parent" android:background="@drawable/background">
<TextView android:layout_width="wrap_content"
android:layout_height="wrap_content" android:layout_gravity="center"
android:layout_margin="10dp" android:text="@string/titleTimeline"
android:textColor="#fff" android:textSize="30sp" />

<!-- ✈1 -->
<ListView android:layout_height="fill_parent"
android:layout_width="fill_parent" android:id="@+id/listTimeline"
android:background="#6000" />

</LinearLayout>

✈1 Adding ListView to your layout is like adding any other widget. The main attributes are id, and layout_height
and layout_width.

5.5 About Adapters

In the first iteration of TimelineActivity, you may just use a TextView to print out the data you got from the database.
Soon, you’d realize that there’s too much data for the size of the screen. You may then wrap your TextView into a
ScrollView so that you can put more text and scroll around the small screen. This will work for a few dozen records.
But what if you have 100s or 1,000s of records in the database? Waiting to get them all and print them all would be highly
inefficient. User probably doesn’t even care about all of the data anyhow.

To address this issue, Android provides adapters. Adapters are a smart way to connect a View with some kind of data
source. Typically, your view would be ListView and the data would come in form of a Cursor or Array. So, adapters
come as subclasses of CursorAdapter or ArrayAdapter.

Marakana Android Bootcamp
36 / 75

Figure 5.1: Adapter

For MyTwitter project, we may want to use SimpleCursorAdapter initially. It works well for mapping a piece of
data in the database to a single view on the screen.

The row of data in the ListView is represented by a custom layout defined in row.xml file.

res/layout/row.xml

<?xml version="1.0" encoding="utf-8"?>
<!-- Vertical linear layout ✈1 -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_height="wrap_content" android:orientation="vertical"
android:layout_width="fill_parent">
<!-- Horizontal linear layout ✈2 -->
<LinearLayout android:layout_height="wrap_content"
android:layout_width="fill_parent">
<!-- User ✈3 -->
<TextView android:layout_height="wrap_content"

android:layout_width="fill_parent" android:layout_weight="1"
android:id="@+id/textUser" android:text="Slashdot"
android:textStyle="bold"></TextView>

<!-- Timestamp ✈4 -->
<TextView android:layout_height="wrap_content"

android:layout_width="fill_parent" android:layout_weight="1"
android:gravity="right" android:id="@+id/textCreatedAt"
android:text="10 minutes ago"></TextView>

</LinearLayout>
<!-- Status ✈5 -->
<TextView android:layout_height="wrap_content"
android:layout_width="fill_parent" android:id="@+id/textText"
android:text="Firefox comes to Android"></TextView>

Marakana Android Bootcamp
37 / 75

</LinearLayout>

✈1 The main layout for the entire row. It is vertical because our row consists of two lines.✈2 Layout that runs horizontally and represents first line of data, namely user and timestamp.✈3 Twitter user that posted this update.✈4 Timestamp when it was posted. It should be relative time (e.g. 10 minutes ago).✈5 The actual Twitter status, no longer than 140 characters.

5.6 TimelineActivity

Timeline activity will load its layout described above, but it also needs to connect to the database and read all the data.
Then it needs to create an adapter to connect the data source to the list view.

src/com/marakana/TimelineActivity.java

package com.marakana;

import android.app.Activity;
import android.database.Cursor;
import android.database.sqlite.SQLiteDatabase;
import android.os.Bundle;
import android.widget.ListView;

public class TimelineActivity extends Activity {
DbHelper dbHelper;
SQLiteDatabase db;
Cursor cursor; // ✈1
ListView listTimeline; // ✈2
TimelineAdapter adapter; // ✈3
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.timeline);

// Find your views
listTimeline = (ListView) findViewById(R.id.listTimeline); // ✈4
// Connect to database
dbHelper = new DbHelper(this);
db = dbHelper.getReadableDatabase();

}

@Override
public void onDestroy() {
super.onDestroy();

// Close the database
db.close();

}

Marakana Android Bootcamp
38 / 75

@Override
protected void onResume() { // ✈5
super.onResume();

// Get the data from the database
cursor = db.query(DbHelper.TABLE, null, null, null, null, null,

DbHelper.C_CREATED_AT + " DESC"); // ✈6
// Create the adapter
adapter = new TimelineAdapter(this, cursor); // ✈7
listTimeline.setAdapter(adapter); // ✈8

}

}

✈1 cursor represents the data. It could be one row of the data at the time, or pointer to a beginning of a dataset. In
this case, cursor points to all the status updates that we have in the database.✈2 listTimeline is our ListView that displays the data.✈3 adapter is our custom adapter explained below.✈4 We get the view from the XML layout.✈5 In this case, we read the data from the database in onResume() instead of onCreate(). This is because we’d
like to have the data be refreshed every time we come back to this activity, and not just first time the activity is
created.✈6 The actual query to get all the statuses from the timeline database. Notice that we sort them in descending order
based on timestamp.✈7 Create a new instance of the TimelineAdapter and pass it the context and the data.✈8 Set our ListView to connect to the data via the adapter.

At this point, TimelineActivity is complete.

5.7 TimelineAdapter

TimelineAdapter is our custom adapter. While SimpleCursorAdapter did the job of straight forward mapping
of data in the database to views on the screen, we had an issue with the timestamp. The timestamp in the database is
represented as a number of seconds since January 1, 1070. This is the standard Unix Time and as such is very useful
for representing actual points in time. However, it is not very user friendly. For example, "July 5 at 1:37" is stored as
1278293869. So, instead of displaying the actual timestamp, we want to show user the relative time since that event, for
example "10 minutes ago". In other words, our mapping from data to screen is not straight forward in this case.

The job of TimelineAdapter is to inject some business logic to convert Unix timestamp to relative time.

src/com/marakana/TimelineAdapter.java

package com.marakana;

import android.content.Context;
import android.database.Cursor;

http://en.wikipedia.org/wiki/Unix_time

Marakana Android Bootcamp
39 / 75

import android.text.format.DateUtils;
import android.view.View;
import android.widget.SimpleCursorAdapter;
import android.widget.TextView;

public class TimelineAdapter extends SimpleCursorAdapter { // ✈1
static final String[] from = { DbHelper.C_CREATED_AT, DbHelper.C_USER,

DbHelper.C_TEXT }; // ✈2
static final int[] to = { R.id.textCreatedAt, R.id.textUser, R.id.textText }; // ✈3
// Constructor
public TimelineAdapter(Context context, Cursor c) { // ✈4
super(context, R.layout.row, c, from, to);

}

// This is where the actual binding of a cursor to view happens
@Override
public void bindView(View row, Context context, Cursor cursor) { // ✈5
super.bindView(row, context, cursor);

// Manually bind created at timestamp to its view
long timestamp = cursor.getLong(cursor

.getColumnIndex(DbHelper.C_CREATED_AT)); // ✈6
TextView textCreatedAt = (TextView) row.findViewById(R.id.textCreatedAt); // ✈7
textCreatedAt.setText(DateUtils.getRelativeTimeSpanString(timestamp)); // ✈8

}

}

✈1 To create our own custom adapter, we subclass one of the Android standard adapters, in this case SimpleCursorAdapter.✈2 This constant defines the columns of interest to us in the database.✈3 This constant specifies the id’s of views that we’ll map those columns to.✈4 Our constructor simply calls the constructor in super.✈5 The only method we override is bindView() method. This method is called for each row to map its data to
its views. This is where the jest of adapter work happens. In order to reuse most of data-to-views mapping that
SimpleCursorAdapter does, we call super.bindView() first.✈6 To override default mapping for timestamp, first we get the actual timestamp value from the database.✈7 Next, we find the specific TextView in the row.xml file.✈8 Finally, we set the value of textCreatedAt to relative time since the timestamp. We use Android SDK method
DateUtils.getRelativeTimeSpanString() to help us with that.

You should now have a new TimelineActivity with all your twitter data.

Marakana Android Bootcamp
40 / 75

TimelineActivity

5.8 Summary

At this point, MyTwitter can post new status as well as list statuses of our friends. Our application is complete and usable.

5.8.1 Source Code

Source code can be downloaded from http://marakana.com/static/courseware/android/MyTwitter-3.zip

http://marakana.com/static/courseware/android/MyTwitter-3.zip

Marakana Android Bootcamp
41 / 75

Chapter 6

MyTwitter Part 4

At this point MyTwitter is a complete app that does what user would expect it to do. However, there are couple of minor
improvements that can help make it even better while also introducing Broadcast Receivers.

6.1 BootReceiver

We have UpdaterService responsible for periodically pulling data from Twitter and storing it locally. However,
currently user needs to manually start the service. User does this by first starting the application, then clicking on Start
Service menu option.

Better approach would be if somehow UpdaterService was started automatically by the system, when the device is
powered up. To do this, we create BootReceiver, a broadcast receiver that will launch our activity and it itself will get
launched by the system when the boot is complete.

src/com/marakana/BootReceiver.java

package com.marakana;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.util.Log;

public class BootReceiver extends BroadcastReceiver { // ✈1
@Override
public void onReceive(Context context, Intent intent) { // ✈2
context.startService(new Intent(context, UpdaterService.class)); // ✈3
Log.d("BootReceiver", "onReceive’d");

}

}

✈1 We create BootReceiver by subclassing BroadcastReceiver base class for all receivers.✈2 The only method that we need to implement is onReceive(). It is this method that gets called when an intent
matches this receiver.

Marakana Android Bootcamp
42 / 75

✈3 We launch an intent to start our updater service.

At this point, we have our boot receiver. But, in order for it to get called, we must register it with the system.

6.2 Register BootReceiver with AndroidManifest file

To register BootReceiver, we add it to the manifest file. We also add an intent filter to it. It is the intent filter that
specifies what triggers the receiver to get activated.

AndroidManifest.xml: <application> section

...
<receiver android:name=".BootReceiver">

<intent-filter>
<action android:name="android.intent.action.BOOT_COMPLETED" />

</intent-filter>
</receiver>
...

In order to get notifications for this particular intent filter, we must specify that we’re using a specific permission required
by it.

AndroidManifest.xml: <manifest> section

...
<uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED" />
...

Note
If we don’t specify the permission we require, we simply won’t get notified when this event occurs. We won’t even know

we won’t get notified, so this is potentially a hard bug to find.

6.3 Testing Boot Receiver

At this point, you can reboot your device. Once it comes back up, our UpdaterService should be up and running. You can
verify that by either looking at the LogCat for our output, or by using System Settings.

At Home screen, click on Menu button, choose Settings→Applications→Running Services. You should see UpdaterSer-
vice listed there.

6.4 TimelineReceiver

Currently, if you are viewing TimelineActivity while a new status update comes in, you wouldn’t now about it. That’s
because the UpdaterService doesn’t have a way to notify TimelineActivity to refresh itself.

To address this, we create another broadcast receiver, this time as an inner class of TimelineActivity.

src/com/marakana/TimelineActivity.java: TimelineReceiver inner class

Marakana Android Bootcamp
43 / 75

...
class TimelineReceiver extends BroadcastReceiver { // ✈1

@Override
public void onReceive(Context context, Intent intent) { // ✈2
cursor.requery(); // ✈3
Log.d("TimelineReceiver", "onReceive’d");

}
}
...

✈1 Like before, to create a broadcast receiver, we subclass BroadcastReceiver class.✈2 The only method we need to override is onReceive(). This is where we put the work we want done when this
receiver is triggered.✈3 The work we want done is to simply tell cursor object to refresh itself. We do this by invoking requery()
which executes the same query that was executed initially to obtain this cursor object.

At this point, our receiver is ready but not registered. Unlike BootReceiver where we registered our receiver with
the system statically via the manifest file, we’ll register TimelineReceiver programmatically. This is because
TimelineReceiver only makes sense within TimelineActivity (it’s refreshing its view).

src/com/marakana/TimelineActivity.java

...
@Override
protected void onResume() {

super.onResume();

// Get the data from the database
cursor = db.query(DbHelper.TABLE, null, null, null, null, null,

DbHelper.C_CREATED_AT + " DESC");
startManagingCursor(cursor);

// Create the adapter
adapter = new TimelineAdapter(this, cursor);
listTimeline.setAdapter(adapter);

// Register the receiver
registerReceiver(receiver, filter); // ✈1

}

@Override
protected void onPause() {

super.onPause();

// UNregister the receiver
unregisterReceiver(receiver); // ✈2

}
...

✈1 We register the receiver in onResume() so it’s registered whenever the TimelineActivity is running. Recall that
all paths to Running state go via onResume() as described in Section 1.3.1.2.

Marakana Android Bootcamp
44 / 75

✈2 Similarly, we unregister the receiver on way to Stopped state (recall Section 1.3.1.4). onPause() is a good place
to do that.

What’s missing now is the explanation of what filter is. To specify what triggers the receiver, we need an instance of
IntentFilter. Intent filter is simply a filter for intent actions. In this case, we make up an action string that we filter
based on.

src/com/marakana/TimelineActivity.java: onCreate()

...
filter = new IntentFilter("Marakana.Twitter.NEW_STATUS"); // ✈1
...

✈1 Create new instance of IntentFilter to filter for intent action "Marakana.Twitter.NEW_STATUS"

6.5 Broadcasting Intents

Finally, to trigger the filter, we need to broadcast an intent that matches the action that the intent filter is listening for. In
case of BootReceiver earlier, we didn’t have to do this since the system was already broadcasting the appropriate intent.
However, for TimelineReceiver, the broadcast is ours to do since the intent is very specific to our application.

src/com/marakana/UpdaterService.java: UpdaterRunnable inner class

...
// The actual work of connecting to twitter and getting latest data
private void pullFromTwitter() {

boolean hasNewStatus = false; // ✈1
List<Status> timeline = null;
try {
timeline = getTwitter().getFriendsTimeline();

} catch (TwitterException e) {
e.printStackTrace();

}
if (timeline == null)
return; // Didn’t get anything from twitter

ContentValues values = new ContentValues();
// Loop over the timeline and print it out
for (Status status : timeline) {
// Insert into database
values.put(DbHelper.C_ID, status.id);
values.put(DbHelper.C_CREATED_AT, status.createdAt.getTime());
values.put(DbHelper.C_SOURCE, status.source);
values.put(DbHelper.C_TEXT, status.text);
values.put(DbHelper.C_USER, status.user.name);
try {

db.insertOrThrow(DbHelper.TABLE, null, values);
Log.d(TAG, String.format("%s: %s", status.user.name, status.text));
hasNewStatus = true; // ✈2

} catch (SQLException e) {
}

}// for

Marakana Android Bootcamp
45 / 75

// Do we have new statuses?
if (hasNewStatus) { // ✈3
// Send a broadcast
sendBroadcast(new Intent("Marakana.Twitter.NEW_STATUS")); // ✈4

}
}
...

✈1 We define a boolean flag to represent if we have any new statuses from Twitter. By default, we don’t.✈2 Remember that we do our db.inser() inside of a try-catch block because it may fail when it encounters dupli-
cate id’s from statuses that we already have in the database. This is a normal behavior and that’s why we have a
try-catch block. But, we can also use it to figure out if a status is new or not by simply flipping the switch after the
db.insert() statement.✈3 Once our hasNewStatus flag is true, we can notify TimelineActivity to refresh itself.✈4 We send the broadcast via sendBroadcast() call and an intent with the same "Marakana.Twitter.NEW_STATUS"

message as the one our intent filter is filtering for.

Note
UpdaterService may be sending broadcasts even when the TimelineReceiver is not registered. That is perfectly fine.

Those broadcasts will simply be ignored.

At this point, a new status received by UpdaterService causes an intent to be broadcasted over to the TimelineActivity
which gets received by the TimelineReceiver which in turn refreshes the ListView of statuses.

6.6 Summary

MyTwitter is now complete and ready for prime time. Our application can now send status updates to Twitter, get latest
statuses from our friends as well as get started on boot time and refreshed live when a new status is received.

6.6.1 Source Code

Source code can be downloaded from http://marakana.com/static/courseware/android/MyTwitter-4.zip

http://marakana.com/static/courseware/android/MyTwitter-4.zip

Marakana Android Bootcamp
46 / 75

Chapter 7

Web Browser

Web Browser example demonstrates how to use WebView widget in order to render HTML content inside of your Android
apps. HTML, especially HTML5 is very important. It has the potential to become the common denominator for most
mobile apps.

Android uses WebKit open source browser engine. WebKit is extremely fast and powerful and as such is the engine not
just for Android but for Safari, OSX Dashboard and Mail apps, Chrome, and so on.

With emergence of HTML5 standard, WebKit becomes even more important for developing portable mobile applications
as it supports many features previously done natively on each platform.

Android wraps WebKit into WebView, a widget that can be placed anywhere on Android UI.

7.1 Main Layout

The layout of our web browser is fairly simple. We have a field to enter URL and a Go button to start loading it. The
actual HTML content that is loaded is rendered below and takes most of the screen.

res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical" android:layout_width="fill_parent"
android:layout_height="fill_parent">

<!-- ✈1 -->
<LinearLayout android:orientation="horizontal"
android:layout_width="fill_parent" android:layout_height="wrap_content">

<EditText android:id="@+id/url" android:layout_height="wrap_content"
android:layout_width="wrap_content" android:lines="1"
android:layout_weight="1.0" android:hint="http://"
android:visibility="visible" />

<Button android:id="@+id/go_button" android:layout_height="wrap_content"
android:layout_width="wrap_content" android:text="@string/go_button" />

</LinearLayout>

http://webkit.org/

Marakana Android Bootcamp
47 / 75

<!-- ✈2 -->
<WebView android:id="@+id/webview_compontent"
android:layout_width="fill_parent" android:layout_height="fill_parent"
android:layout_weight="1.0" />

</LinearLayout>

✈1 Linear layout running horizontally that contains our URL field as well as the Go button.✈2 WebView is just like any other widget we place into the layout. Main attributes are id, layout_height and
layout_width. We also set the layout_weight to have it not push out the URL bar, yet still take all the
available screen space.

7.2 WebBrowser Activity

This is the main activity of our web browser. For the most part, we setup our UI handling here. The notable exception is
a workaround we have to do for WebView to behave properly.

WebView by default will open any subsequent URL request via the default system Browser app. What that means is that if
you navigate to, say http://google.com, and Google redirects you to their mobile version of the site at http://m.google.com,
the new page will be opened by system Browser application and not our WebBrowser. This is probably not the desired
user experience in our case.

To work around this, we create an instance of WebViewClient and setup WebView to use our client to handle subse-
quent URL loading.

src/com/marakana/WebBrowser.java

package com.marakana;

import android.app.Activity;
import android.os.Bundle;
import android.view.KeyEvent;
import android.view.View;
import android.view.View.OnClickListener;
import android.view.View.OnKeyListener;
import android.webkit.WebView;
import android.webkit.WebViewClient;
import android.widget.Button;
import android.widget.EditText;

public class WebBrowser extends Activity {
private WebView webView; // ✈1
private EditText urlField;
private Button goButton;

/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

// Create reference to UI elements
webView = (WebView) findViewById(R.id.webview_compontent);
urlField = (EditText) findViewById(R.id.url);

http://google.com
http://m.google.com

Marakana Android Bootcamp
48 / 75

goButton = (Button) findViewById(R.id.go_button);

// workaround so that the default browser doesn’t take over
webView.setWebViewClient(new MyWebViewClient()); // ✈2
// Setup click listener
goButton.setOnClickListener(new OnClickListener() { // ✈3

public void onClick(View view) {
webView.loadUrl(urlField.getText().toString()); // ✈4

}
});

// Setup key listener
urlField.setOnKeyListener(new OnKeyListener() { // ✈5

public boolean onKey(View view, int keyCode, KeyEvent event) {
if (keyCode == KeyEvent.KEYCODE_ENTER) {
webView.loadUrl(urlField.getText().toString());
return true;

} else {
return false;

}
}

});

}

// Our WebViewClient, to keep opening URLs within our component by default ✈6
private class MyWebViewClient extends WebViewClient {
@Override
public boolean shouldOverrideUrlLoading(WebView webView, String url) { // ✈7

webView.loadUrl(url);
return true;

}
}

}

✈1 The local reference to the WebView loaded from XML resource.✈2 We create a new instance of MyWebViewClient and set it up as the client for WebView to use.✈3 Button clicks are handled here via this anonymous inner class.✈4 When the button is clicked, we tell the WebView to load the URL that we have in the URL field.✈5 Keyboard entires are handled here. Handling is very similar to button handling.✈6 This is where we define our custom version of WebViewClient, to specify how subsequent URL loading is done.✈7 We change default behavior, we override shouldOverrideUrlLoading().

7.3 Manifest File

The manifest file for WebBrowser is fairly standard. We include it here for completeness.

AndroidManifest.xml

Marakana Android Bootcamp
49 / 75

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.marakana" android:versionCode="1" android:versionName="1.0.0">
<uses-permission android:name="android.permission.INTERNET" />
<application android:icon="@drawable/icon" android:label="@string/app_name">
<activity android:name=".WebBrowser" android:label="@string/app_name">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

</application>
</manifest>

7.4 Summary

At this point, your WebBrowser should work. If you type in a URL such as http://google.com and the website redirects
you to http://m.google.com, you should still see the actual site within your own WebView.

Marakana Android Bootcamp
50 / 75

Figure 7.1: WebBrowser

7.4.1 Source Code

Source code can be downloaded from http://marakana.com/static/courseware/android/WebBrowser.zip

http://marakana.com/static/courseware/android/WebBrowser.zip

Marakana Android Bootcamp
51 / 75

Chapter 8

Compass

The Compass example illustrates two main points:

• Sensors - what they are and how to use them

• Custom Widgets - how to create custom UI components

8.1 Compass Main Activity

The main Compass activity sets the Rose as its only widget on the screen. It also registers with SensorManager to listen
to sensor events, and updates the Rose orientation accordingly.

src/com/marakana/Compass.java

package com.marakana;

import android.app.Activity;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;
import android.os.Bundle;
import android.util.Log;
import android.view.Window;
import android.view.WindowManager;

// implement SensorListener
public class Compass extends Activity implements SensorEventListener { // ✈1

SensorManager sensorManager; // ✈2
Sensor sensor;
Rose rose;

/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

// Set full screen view ✈3

Marakana Android Bootcamp
52 / 75

getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
WindowManager.LayoutParams.FLAG_FULLSCREEN);

requestWindowFeature(Window.FEATURE_NO_TITLE);

// Create new instance of custom Rose and set it on the screen
rose = new Rose(this); // ✈4
setContentView(rose); // ✈5
// Get sensor and sensor manager
sensorManager = (SensorManager) getSystemService(SENSOR_SERVICE); // ✈6
sensor = sensorManager.getDefaultSensor(Sensor.TYPE_ORIENTATION); // ✈7
Log.d("Compass", "onCreate’d");

}

// Register to listen to sensors
@Override
public void onResume() {
super.onResume();
sensorManager.registerListener(this, sensor,

SensorManager.SENSOR_DELAY_NORMAL); // ✈8
}

// Unregister the sernsor listener
@Override
public void onPause() {
super.onPause();
sensorManager.unregisterListener(this); // ✈9

}

// Ignore accuracy changes
public void onAccuracyChanged(Sensor sensor, int accuracy) { // ✈10

}

// Listen to sensor and provide output
public void onSensorChanged(SensorEvent event) { // ✈11

int orientation = (int) event.values[0]; // ✈12

rose.setDirection(orientation); // ✈13

}
}

✈1 Since Compass listens to sensor events, it needs to implement SensorEventListener interface.✈2 We define local variable for Sensor, SensorManager and Rose.✈3 The window manager flags to set the activity into full-screen mode.✈4 We create a new instance of Rose widget, our custom compass rose.✈5 In this case, the activity content is the single Rose widget. This is unlike the usual reference to an XML layout
resource.✈6 We get the sensor manager from the system service.✈7 From the sensor manager, we can obtain the actual sensor object that we are interested in.

Marakana Android Bootcamp
53 / 75

✈8 We register to listen to sensor updates in activity’s onResume() method since all roads to Running state (de-
scribed in Section 1.3.1.2) of the activity lead through onResume(). We don’t want to register in onCreate()
because it’d be wasteful to listen and process sensor updates even when our activity is not in the foreground. Recall
Activity Lifecycle in Section 1.3.1 for details.✈9 We unregister from sensor updates in onPause() since this is the callback called whenever our activity is about
to go into background and thus user cannot see further updates.✈10 onAccuracyChanged() is called when sensor’s accuracy changes. It is not applicable in this example but we
still have to implement is as part of SensorEventListener interface.✈11 onSensorChanged() is called whenever sensor changes. The particular information about the change is stored
in SensorEvent.✈12 We are particularly interested in new values reported.✈13 Once we have the new orientation, we update our Rose widget to rotate accordingly.

This illustrates all the work related to sensors we need to do. Again, we get the sensor manager, and register for updates.
Once sensor changes, it reports values back to our sensor event listener.

Note
Sensor data is erratic. Also, sensors are not supported by the emulator so to really test your application, you’d need a

physical device with support for orientation sensor. Most Android phones do have that support.

8.2 Custom Rose Widget

Rose represents our custom widget. It is simply an image of a compass rose that can be rotated as to behave like a real
compass.

src/com/marakana/Rose.java

package com.marakana;

import android.content.Context;
import android.graphics.Canvas;
import android.widget.ImageView;

public class Rose extends ImageView { // ✈1
int direction = 0;

public Rose(Context context) {
super(context);

this.setImageResource(R.drawable.compassrose); // ✈2
}

// Called when component is to be drawn
@Override
public void onDraw(Canvas canvas) { // ✈3
int height = this.getHeight(); // ✈4
int width = this.getWidth();

Marakana Android Bootcamp
54 / 75

canvas.rotate(direction, width / 2, height / 2); // ✈5
super.onDraw(canvas); // ✈6

}

// Called by Compass to update the orientation
public void setDirection(int direction) { // ✈7
this.direction = direction;
this.invalidate(); // request to be redrawn ✈8

}

}

✈1 The easiest way to create a new widget is to subclass an existing one. If you are creating a totally custom widget,
start by subclassing most basic one in the SDK, namely View. Since our widget is a special type of image, we
start from ImageView.✈2 ImageView already knows how to set an image as its content. We just specify to super what image resource to
use. Note that compassrose.jpg is in our /res/drawable folder.✈3 onDraw() is the method that layout manager calls to have each widget draw itself. It also passes the Canvas to
this method. This method is where you typically do any custom drawing to the canvas.✈4 Once we have the canvas, we can figure out its size.✈5 We simply rotate the entire canvas for some direction (in degrees) around its mid point.✈6 We tell super to draw the image on this rotated canvas. At this point we have our rose drawn at an angle.✈7 setDirection() is called by Compass activity to update the direction of the rose based on values that sensor
manager reported.✈8 Calling invalidate() on a View marks it for redraw, which happens later via a call to onDraw().

8.3 Summary

At this point your compass application is complete. You should now have a good understanding of how sensors work
from SDK point of view. You should also know how to create a simple custom widget for your app.

Marakana Android Bootcamp
55 / 75

Figure 8.1: Compass App

8.3.1 Source Code

Source code can be downloaded from http://marakana.com/static/courseware/android/Compass.zip

http://marakana.com/static/courseware/android/Compass.zip

Marakana Android Bootcamp
56 / 75

Chapter 9

Where Am I

This example illustrates how to use location based services in Android. First, we use LocationManager to figure out
our current location based on GPS. Secondly, we use Geocoder to convert this location to an address.

9.1 Layout

The layout for this example is trivial. We have a TextView for the title, and a TextView for the output. Since the
output could be longer than the screen size, we wrap the output in ScrollView.

res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_height="fill_parent" android:layout_width="fill_parent"
android:background="#fff" android:orientation="vertical">
<!-- ✈1 -->
<TextView android:layout_width="wrap_content"
android:layout_height="wrap_content" android:layout_gravity="center"
android:textColor="#333" android:textSize="30dp" android:text="@string/title"></ ←�

TextView>
<!-- ✈2 -->
<ScrollView android:layout_height="fill_parent"
android:layout_width="fill_parent">
<!-- ✈3 -->
<TextView android:textColor="#333" android:layout_gravity="center"

android:layout_height="fill_parent" android:layout_width="fill_parent"
android:gravity="center" android:textSize="25dp" android:text="Waiting..."
android:id="@+id/textOut"></TextView>

</ScrollView>
</LinearLayout>

✈1 Title for our application.✈2 ScrollView to enable scrolling if the output grows beyond the size of the screen.✈3 TextView to represent the output. It will be programmatically set from the WhereAmI activity.

Marakana Android Bootcamp
57 / 75

9.2 Activity

The main activity that sets up the screen, connects to LocationManager and uses the Geocoder to figure out our
address.

LocationManager uses location providers, such as GPS or Network, to figure out our current location. The location is
expressed as latitude and longitude values.

Geocoder searches an online database for known addresses in the vicinity of the location provided. It may come up with
multiple results, some more specific than others.

src/com/marakana/WhereAmI.java

package com.marakana;

import java.io.IOException;
import java.util.List;

import android.app.Activity;
import android.location.Address;
import android.location.Geocoder;
import android.location.Location;
import android.location.LocationListener;
import android.location.LocationManager;
import android.os.Bundle;
import android.widget.TextView;

public class WhereAmI extends Activity implements LocationListener { // ✈1
LocationManager locationManager; // ✈2
Geocoder geocoder; // ✈3
TextView textOut; // ✈4
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

textOut = (TextView) findViewById(R.id.textOut);

locationManager = (LocationManager) getSystemService(LOCATION_SERVICE); // ✈5
geocoder = new Geocoder(this); // ✈6
// Initialize with the last known location
Location lastLocation = locationManager

.getLastKnownLocation(LocationManager.GPS_PROVIDER); // ✈7
if (lastLocation != null)

onLocationChanged(lastLocation);
}

@Override
protected void onResume() { // ✈8
super.onRestart();
locationManager.requestLocationUpdates(LocationManager.GPS_PROVIDER, 60000,

10, this);
}

@Override

Marakana Android Bootcamp
58 / 75

protected void onPause() { // ✈9
super.onPause();
locationManager.removeUpdates(this);

}

// Called when location has changed
public void onLocationChanged(Location location) { // ✈10

String text = String.format(
"Lat:\t %f\nLong:\t %f\nAlt:\t %f\nBearing:\t %f",
location.getLatitude(), location.getLongitude(),
location.getAltitude(), location.getBearing()); // ✈11

textOut.setText(text);

// Perform geocoding for this location
try {

List<Address> addresses = geocoder.getFromLocation(
location.getLatitude(), location.getLongitude(), 10); // ✈12

for (Address address : addresses) {
textOut.append("\n" + address.getAddressLine(0)); // ✈13

}
} catch (IOException e) {

e.printStackTrace();
}

}

// Methods required by LocationListener ✈14

public void onProviderDisabled(String provider) {
}

public void onProviderEnabled(String provider) {
}

public void onStatusChanged(String provider, int status, Bundle extras) {
}

}

✈1 Notice that WhereAmI implements LocationListener. This is the interface that LocationManager uses
to notify us of changes to location.✈2 Local reference to LocationManager.✈3 Local reference to Geocoder.✈4 textOut is the text view that we print our output to for user to see.✈5 We get the local reference to LocationManager by asking the context to get the location manager system
service.✈6 We create a new instance of Geocoder and pass the current context to it.✈7 Location manager memorizes its last known location. This is useful since it may take a while to get the lock on the
new location.✈8 As usual, we register in onResume(), since that is the method that is called en route to Running state. We use
location manager’s requestLocationUpdates() method to register for updates.

Marakana Android Bootcamp
59 / 75

✈9 We unregister in onPause(), just before the activity goes into Stopped state. This is important because GPS
tends to use a lot of power, so listening to updates even while the app is in the background would waste a lot of
battery power.✈10 onLocationChanged() is the callback method called by the location manager when it detects that the location
has changed.✈11 We get the Location object that contains a lot of useful information about current location. We create a human-
readable string with this info.✈12 Once we have the location, we can try to "geocode" the location, a process of converting latitude and longitude to
a known address.✈13 If we do find known addresses for this location, we print them out.✈14 These are some other callback methods that are part of LocationListener interface. We don’t use them for
purposes of this example.

9.3 Manifest File

The manifest file for this app is fairly standard. Notice that in order to be able to register as location listener, we have to
hold the appropriate permissions.

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.marakana" android:versionCode="1" android:versionName="1.0">
<application android:icon="@drawable/icon" android:label="@string/app_name">
<activity android:name=".WhereAmI" android:label="@string/app_name">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

</application>
<uses-sdk android:minSdkVersion="8" />
<!-- ✈1 -->
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

</manifest>

✈1 Declares that this app uses location providers. Location permissions could be android.permission.ACCESS_FINE_LOCATION
for GPS provider or android.permission.ACCESS_COARSE_LOCATION for network provider.

9.4 Summary

At this point, your WhereAmI application is complete. It illustrates how to use LocationManager to get the actual location
via a specific location provider (such as GPS or network) and how to convert that location into a known addresses via
Geocoder.

Marakana Android Bootcamp
60 / 75

Figure 9.1: WhereAmI

9.4.1 Source Code

Source code can be downloaded from http://marakana.com/static/courseware/android/WhereAmI.zip

http://marakana.com/static/courseware/android/WhereAmI.zip

Marakana Android Bootcamp
61 / 75

Chapter 10

Unit Testing Android Applications

Unit testing is very important to ensure quality of your code. Every unit of your code should have a corresponding code
to test it. Unit testing should also be automated.

Android uses JUnit testing framework.

10.1 About JUnit

JUnit is a testing framework intended to promote structured approach to automated unit testing of software written in Java

• It represents a reusable pattern (structure) for testing Java code

• It was developed by Erich Gamma (co-author of Design Patterns) and Kent Back (known for work on Extreme Pro-
gramming) in 1997

– It is an instance of xUnit testing architecture that offers instances for testing other languages such as C/C++, Python,
and Perl

• JUnit is now an open-source project hosted by Source Forge

– It is distributed under the Common Public License thereby making it easier to be incorporated into commercial tools

• In the context of JUnit, a "unit test""”"" refers to testing "unit of work"" such as a method, a group of related methods,
or even a class

– The key distinction is isolation of the unit from other units

– JUnit is not intended for testing unit interaction such as integration testing of components

10.1.1 JUnit 101

JUnit is a combination of two concepts

• Design patterns – the framework in its structure represents an instance of a Command design pattern

• Assertions – the framework makes use of assertions to generate output of individual tests

http://www.junit.org/

Marakana Android Bootcamp
62 / 75

The JUnit is meant to follow the structure of the code

• For each Java class, typically there is a JUnit Test class

• Each JUnit Test class extends the TestCase base class, which provides the JUnit framework interfaces

• Within the JUnit test class, individual test[UnitTestName] methods are defined to test specific units, such as class
methods

• With each test[UnitTestName] method, the assert[Type] assertions are used to check desired testing conditions

Figure 10.1: JUnit Diagram

10.1.2 Advantages of JUnit

JUnit tests are easy to write since they are written in Java, and they are more reflective of the software requirements

• For each test, typically we need to decide how to define the test, what test variables to instantiate, and how to analyze
the output

• With JUnit, we need to focus on the test itself, as the framework resolves questions about the test case instantiation and
output (e.g., setUp method for setting up shared test variables)

Unit test cases costs less since much of the creation and maintenance overhead is eliminated through the framework

• The need for defining a new test suite structure for every module is eliminated

• JUnit structure does not change but additional suites can be added or existing ones extended

• Overhead of deciding how to create individual test cases is reduced through a familiar test-suite assertions interface

• Individual test cases run independently of each other so the need for testing coordination is decreased

JUnit tests internally check results and instantly provide feedback

• With the use of assertions, the need for an output language and its analysis is eliminated

• JUnit provides a summary of passed and failed tests, with corresponding details for each one of the tests that failed

The use of JUnit tests leads to increase in software quality

Marakana Android Bootcamp
63 / 75

• By promoting simplicity of writing test cases and decreasing cost of creating, running, and maintaining test suites, the
appeal of testing to developers should increase

• Given that the JUnit suites can be rerun inexpensively after each change or a set of changes, disruption to the expected
software operation can be detected earlier

• Test-driven development promotes focus on satisfying software requirements, and in turn leads to higher quality soft-
ware

JUnit provides a method for creation of hierarchical test suites

• Individual test classes can be composed into test suits

• Test suits can be composed into other test suits to create a hierarchy of testing modules that reflects the code structure

10.1.3 Disadvantages of JUnit

JUnit does not guarantee better quality software

• It is a framework that promotes the use of testing in software development

• Software systems are inherently complex and their inherent complexity is present even at the lowest levels of abstraction

• Creation of test cases and testing suites in highly complex or critical domains may require a more dedicated approach
to testing such as the use of formal methods or simulations

• Moreover, using JUnit by itself will not improve quality unless it is a part of a structured system testing approach

JUnit does not invalidate previous testing methods

• It provides a framework that simplifies test case definition and use, but the analysis algorithms such as boundary-case
analysis still apply

10.1.4 Android JUnit Implementation

While Android does adopt JUnit framework, it also makes some changes to it. The following example illustrates that.

10.2 Application to be Tested

First, we need an application that we want to test. In this case, we picked a simple unit converter that converts metric
kilograms to imperial pounds. It has to fields, one for kilos and the other one for pounds. As user starts typing into one of
those fields, the value in the other unit is automatically calculated by the system.

Marakana Android Bootcamp
64 / 75

Figure 10.2: TestDemo Screen

10.2.1 Kilo/Pound Converter Layout

The layout for the screen consists of two EditText fields and couple of TextViews. Notice that there are not buttons. In
this case, we are listening to keyboard inputs and processing the conversion as user types.

res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

Marakana Android Bootcamp
65 / 75

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical" android:layout_width="fill_parent"
android:layout_height="fill_parent" android:layout_gravity="center">
<TextView android:layout_width="fill_parent"
android:layout_height="wrap_content" android:text="@string/titleConverter"
android:gravity="center" android:textSize="20sp"
android:layout_margin="20dp" />

<TextView android:layout_width="wrap_content"
android:layout_height="wrap_content" android:text="@string/titleKilos"
android:textSize="20sp"></TextView>

<EditText android:layout_height="wrap_content" android:hint="@string/titleKilos"
android:id="@+id/editKilos" android:layout_width="fill_parent"></EditText>

<TextView android:layout_width="wrap_content"
android:layout_height="wrap_content" android:text="@string/titlePounds"
android:textSize="20sp"></TextView>

<EditText android:layout_height="wrap_content" android:id="@+id/editPounds"
android:hint="@string/titlePounds" android:layout_width="fill_parent"></EditText>

</LinearLayout>

10.2.2 Kilo/Pound Converter Activity

The main activity loads up the XML layout for the view and sets up two key listeners for each of the two input fields. As
keys are pressed, it performs the calculations and updates the other field.

src/com/marakana/TestDemo.java

package com.marakana;

import android.app.Activity;
import android.os.Bundle;
import android.util.Log;
import android.view.KeyEvent;
import android.view.View;
import android.view.View.OnKeyListener;
import android.widget.EditText;

public class TestDemo extends Activity {
static final String TAG = "TestDemo";
EditText editKilos, editPounds;
public static final String ERROR = "ERROR";

/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

// Find views
editKilos = (EditText) findViewById(R.id.editKilos);
editPounds = (EditText) findViewById(R.id.editPounds);

// Setup listener for Kilos to Pounds
editKilos.setOnKeyListener(new OnKeyListener() { // ✈1

public boolean onKey(View view, int keyCode, KeyEvent event) {
if (event.getAction() != KeyEvent.ACTION_UP) // ✈2

Marakana Android Bootcamp
66 / 75

return false;
try {
Log.d(TAG,

String.format("Kilos: %s", editKilos.getText().toString()));
double kilos = Double.parseDouble(editKilos.getText().toString());
double pounds = kilos * 2.20462262; // ✈3
editPounds.setText(new Double(pounds).toString()); // ✈4

} catch (NumberFormatException e) { // ✈5
editPounds.setText(ERROR);
Log.e(TAG, "e:" + e);

}
return true;

}
});

// Setup listener for Pounds to Kilos
editPounds.setOnKeyListener(new OnKeyListener() {

public boolean onKey(View view, int keyCode, KeyEvent event) {
if (event.getAction() != KeyEvent.ACTION_UP)
return false;

try {
Log.d(TAG,

String.format("Pounds: %s", editPounds.getText().toString()));
double pounds = Double.parseDouble(editPounds.getText().toString());
double kilos = pounds * 0.45359237;
editKilos.setText(new Double(kilos).toString());

} catch (NumberFormatException e) {
editKilos.setText(ERROR);
Log.e(TAG, "e:" + e);

}
return true;

}
});

}
}

✈1 The OnKeyListener is implemented as an anonymous inner class at attached to kilos field.✈2 We only care about key event ACTION_UP meaning that the key has been released.✈3 1 lb is about 2.2 kg✈4 Once we have the conversion done, we update the pounds field.✈5 Conversion may fail because user didn’t enter valid values. In that case, we simply print ERROR.

The explanation for pounds-to-kilos conversion is the same as the one above.

10.3 Application Performing Testing

The application testing the unit converter is a whole other application. So, we have one Android app testing another. The
reason for this is to keep the testing separate from the tester code.

Marakana Android Bootcamp
67 / 75

10.3.1 TestDemoTests Test Case

TestDemoTests is our unit testing code.

src/com/marakana/test/TestDemoTests.java

package com.marakana.test;

import android.test.ActivityInstrumentationTestCase2;
import android.test.TouchUtils;
import android.test.ViewAsserts;
import android.test.suitebuilder.annotation.SmallTest;
import android.widget.EditText;

import com.marakana.TestDemo;

/*
* Test code to test com.marakana.TestDemo

*
* To run on command line:

* adb -e shell am instrument -w -e class com.marakana.test.TestDemoTests

* com.marakana.test/android.test.InstrumentationTestRunner

*/
public class TestDemoTests extends ActivityInstrumentationTestCase2<TestDemo> { // ✈1

EditText editKilos, editPounds;
TestDemo activity; // ✈2
public TestDemoTests(String name) { // ✈3
super("com.marakana", TestDemo.class);
setName(name);

}

protected void setUp() throws Exception { // ✈4
super.setUp();

// Find views
activity = getActivity(); // ✈5
editKilos = (EditText) activity.findViewById(com.marakana.R.id.editKilos); // ✈6
editPounds = (EditText) activity.findViewById(com.marakana.R.id.editPounds); // ✈7

}

protected void tearDown() throws Exception { // ✈8
super.tearDown();

}

@SmallTest
public void testViewsCreated() { // ✈9
assertNotNull(getActivity());
assertNotNull(editKilos);
assertNotNull(editPounds);

}

@SmallTest
public void testViewsVisible() { // ✈10

ViewAsserts.assertOnScreen(editKilos.getRootView(), editPounds);
ViewAsserts.assertOnScreen(editPounds.getRootView(), editKilos);

}

Marakana Android Bootcamp
68 / 75

@SmallTest
public void testStartingEmpty() { // ✈11

assertTrue("Kilos field is empty",
"".equals(editKilos.getText().toString()));

assertTrue("Pounds field is empty",
"".equals(editPounds.getText().toString()));

}

@SmallTest
public void testKilosToPounds() { // ✈12

editKilos.clearComposingText();
editPounds.clearComposingText();

TouchUtils.tapView(this, editKilos); // ✈13

sendKeys("1"); // ✈14

double pounds;
try {

pounds = Double.parseDouble(editPounds.getText().toString());
} catch (NumberFormatException e) {

pounds = -1;
}
assertTrue("1 kilo is 2.20462262 pounds", pounds > 2.2 && pounds < 2.3); // ✈15

}

}

✈1 Unlike regular JUnit TestCase, here we subclass ActivityInstrumentationTestCase2 - a special kind
of TestCase for testing activities.✈2 activity is reference to our unit converter activity that we are testing.✈3 The constructor specifies what code we are testing by calling the constructor in super.✈4 setUp() is the method provided by JUnit. It is a good place to setup your test environment.✈5 We get the reference to our activity that we are testing.✈6 editKilos is the kilos text field in our unit converter.✈7 editPounds is the text field for the pounds in TestDemo activity.✈8 tearDown() is JUnit placeholder to undo any work previously done in setUp(), if needed.✈9 testViewsCreated() is a simple test that verifies that our objects actually exist. Notice the use of assertNotNull()
as one of many standard JUNit assert methods. Also, notice the use of @SmallTest annotation to communicate
that this is a single test case. Prior to Java5, test cases had to be named starting with the word test. That’s not
necessary any more, however still a practice of many.✈10 testViewsVisible() is another test demonstrating the use of a non-standard assert methods provided by
Android. ViewAsserts.assertOnScreen() is an example of an Android extension to JUnit specifically
for testing UI elements.✈11 testStartingEmpty() is a simple test that checks that the edit fields are empty when the application is
launched.

Marakana Android Bootcamp
69 / 75

✈12 testKilosToPounds() performs the actual user input and verifies the output.✈13 Notice the use of TouchUtils.tapView() to simulate the touch of the screen. This is another Android
extension to JUnit specific to UI.✈14 sendKeys() simulates clicking a key on the keyboard.✈15 And finally we verify that the output is indeed what we’d expect it to be.

You can keep on adding more tests to this TestDemoTests test case. Typically, you’d have at least one test for each public
method but the actual coverage depends on your app and testing requirements.

10.3.2 Android Manifest File

Notice that the manifest file looks different here than in most applications we’ve seen so far. The key difference is the use
of <uses-library> and <instrumentation> elements

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.marakana.test" android:versionCode="1"
android:versionName="1.0">
<application android:icon="@drawable/icon" android:label="@string/app_name">
<uses-library android:name="android.test.runner" /> <!-- ✈1 -->

</application>
<uses-sdk android:minSdkVersion="8" />
<instrumentation android:targetPackage="com.marakana"
android:name="android.test.InstrumentationTestRunner" /> <!-- ✈2 -->

</manifest>

✈1 Specifies that this application uses the code of another application, namely application we are testing.✈2 Specifies that we’re using android.test.InstrumentationTestRunner to run our tests.

We are now ready almost ready to run our tests. Before we do that, you need to tell Eclipse about the dependency of one
project to another. Namely, our TestDemoTest project depends on TestDemo project. To tell Eclipse about that:

• In Eclipse Project Explorer, select TestDemoTest project.

• Open properties window for TestDemoTest project by choosing File→ Properties.

• Select Java Build Path→ Projects.

• Click on Add and choose TestDemo project.

Marakana Android Bootcamp
70 / 75

Figure 10.3: TestDemoTest Project Properties

10.4 Running Unit Tests

To run your tests:

• Right-click on TestDemoTest project in Eclipse Project Explorer.

• Choose Run As→ Android JUnit Test.

You should get JUnit tab pop up in Eclipse. Your test would actually be performed on the device (e.g. emulator) and
you’d see the outcome as it keeps on going.

Marakana Android Bootcamp
71 / 75

Figure 10.4: Running JUNit Tests in Eclipse

10.5 Summary

Unit testing is very important to maintain the quality and reliability of your Android application. Automated testing based
on JUnit framework is a very good solution.

Android SDK integrated the entire JUnit framework, but it also extends it with features necessary to test Activities,
Services and other Android-specific components.

You write your test code as a separate application. You can then run your test application in Eclipse and see the results.
You can also script running and reporting of the tests using command-line tools.

Marakana Android Bootcamp
72 / 75

Appendix A

Android Resources

A.1 Software

To setup your environment, you will need Android SDK and Eclipse vailable at:

• Android SDK http://d.android.com/sdk/index.html

• Eclipse http://www.eclipse.org/downloads/ Choose Eclipse IDE for Java Developers (~98 MB)

Alternatively, you may want to choose to run your development inside a virtual machine:

• Marakana Ubuntu VM for Android http://marakana.com/external/VirtualMachines/Marakana-Ubuntu-VM.zip (~1.4GB)
Preconfigured Ubuntu virtual machine with everything you need to start developing for Android. Requires VMWare
Player.

• VMWare Player is needed to play a virtual image: http://www.vmware.com/products/player/

A.2 Websites

• Android Main Site http://Android.com

• DroidDraw http://droiddraw.org/

• Turbo-charge your UI: How to Make your Android UI Fast and Efficient http://code.google.com/events/io/2009/sessions/-
TurboChargeUiAndroidFast.html

• Drawables http://androiddrawableexplorer.appspot.com/

• Sensor Simulator http://code.google.com/p/openintents/wiki/SensorSimulator

A.3 Books

• O’Reilly: Learning Android by Marko Gargenta (coming out Q3 2010)

• Wrox: Professional Android2 Development

http://d.android.com/sdk/index.html
http://www.eclipse.org/downloads/
http://marakana.com/external/VirtualMachines/Marakana-Ubuntu-VM.zip
http://www.vmware.com/products/player/
http://Android.com
http://droiddraw.org/
http://code.google.com/events/io/2009/sessions/TurboChargeUiAndroidFast.html
http://code.google.com/events/io/2009/sessions/TurboChargeUiAndroidFast.html
http://androiddrawableexplorer.appspot.com/
http://code.google.com/p/openintents/wiki/SensorSimulator

Marakana Android Bootcamp
73 / 75

A.4 Android Internals Websites

• Linux-Specific Android Portal http://elinux.org/Android_Portal

• Emulator Controls http://developer.android.com/guide/developing/tools/emulator.html

• Android ROMs http://code.google.com/p/android-roms/wiki/TableOfContents

• BusyBox for Android http://benno.id.au/blog/2007/11/14/android-busybox

• Android Platform Development Kit http://pdk.android.com/online-pdk/guide/index.html

• For Building Source on Mac http://www.justinlee.sg/2010/01/08/compiling-android-source-on-mac-os-x-10-6-snow-
leopard/

• To Get Android Kernel git clone git://android.git.kernel.org/kernel/common.git kernel

http://elinux.org/Android_Portal
http://developer.android.com/guide/developing/tools/emulator.html
http://code.google.com/p/android-roms/wiki/TableOfContents
http://benno.id.au/blog/2007/11/14/android-busybox
http://pdk.android.com/online-pdk/guide/index.html
http://www.justinlee.sg/2010/01/08/compiling-android-source-on-mac-os-x-10-6-snow-leopard/
http://www.justinlee.sg/2010/01/08/compiling-android-source-on-mac-os-x-10-6-snow-leopard/

Marakana Android Bootcamp
74 / 75

Appendix B

Virtual Machine

You can download the complete Android-ready Ubuntu virtual machine from: http://marakana.com/external/VirtualMachines/-
Marakana-Ubuntu-VM.zip (~1.4GB)

You will also need VMWare Player available at: http://www.vmware.com/products/player/

http://marakana.com/external/VirtualMachines/Marakana-Ubuntu-VM.zip
http://marakana.com/external/VirtualMachines/Marakana-Ubuntu-VM.zip
http://www.vmware.com/products/player/

Marakana Android Bootcamp
75 / 75

Appendix C

Slides

Attached are various slides for your reference.

Android Overview

marakana.com 1

!"#$%&#'((
!()*+++,-%%.(
/01$0&12(

!31"#4(
•  54$61.(78491(

•  :;1(7.496(
•  !"#$%&#(7<=(
•  >1??%(@%$?#A(
•  54&"(BC&?#&"3(B?%96D(

•  !"#$%&#(ED1$(F".1$-491(
•  /81$4G"3(7HD.1I(J14.C$1D(
•  <1KC33&"3(
•  7CII4$H(

Android Overview

marakana.com 2

!"#$%&'(
)**+(,%%-./(01'#(234&%"45(6378(

9%&:(%3(;<.=":(#$<&$#(

)**>(?@/3(!<34#/$(2.."<37/(<33%137/4(
A<&.'(B%CD<&/(;/=/.%@E/3$(F"$(

)**G(!HI(,J(233%137/4(
B;F(J8*(K/./<#/4(

)**L(,)(M()*(%$N/&(@N%3/#(&/./<#/4(
I1@7<:/5(;%31$5(O7.<"&(

)*J*(P".."%3(4/="7/#(
Q&%R%5(,"3-/&0&/<45(S6H(

T/&#"%3#(
!"#$%&'()*+(,"-".(/%01'23"(

234&%"4(J8*(J(

234&%"4(J8J()(

234&%"4(J8+(U(

234&%"4(J8V(W(

234&%"4()8*(+(

234&%"4()8*J(V(

234&%"4()8J(>(

234&%"4()8)(G(

Android Overview

marakana.com 3

!"#$%&'()%$*#%+,-&'(

!"#$%&'()(

.'/#&%/(010(2134(

.'/#&%/(015((30124(

.'/#&%/(016(78164(

.'/#&%/(912((2184(

.'/#&%/(91210((92174(

Source: Android.com

*+,-./,(01*23(

Android Overview

marakana.com 4

!"#$%&'()$

*+,-.$/#0,#1$
Android runs on Linux.

Linux provides as well as:
 Hardware abstraction layer
Memory management
Process management
Networking

Users never see Linux sub system

The adb shell command opens
Linux shell

Linux Kernel

Libraries

Application Framework

Applications

Home Contacts Phone Browser Other

Activity
Manager

Window
Manager

Content
Providers

View
System

Package
Manager

Telephony
Manager

Resource
Manager

Location
Manager

Notiication
Manager

Surface
Manager

OpenGL

SGL

Media
Framework

FreeType

SSL

SQLite

WebKit

libc

Android Runtime

Core Libs

Delvik
VM

Display
Driver

Keypad
Driver

Camera
Driver

WiFi
Driver

Flash
Driver

Audio
Driver

Binder
Driver

Power
Mgmt

Android Overview

marakana.com 5

!"#$%&'()*"*(%+&
Bionic, a super fast and small
license-friendly libc library
optimized for embedded use

Surface Manager for composing
window manager with off-screen
buffering

2D and 3D graphics hardware
support or software simulation

Media codecs offer support for
major audio/video codecs

SQLite database

WebKit library for fast HTML
rendering

Linux Kernel

Libraries

Application Framework

Applications

Home Contacts Phone Browser Other

Activity
Manager

Window
Manager

Content
Providers

View
System

Package
Manager

Telephony
Manager

Resource
Manager

Location
Manager

Notiication
Manager

Surface
Manager

OpenGL

SGL

Media
Framework

FreeType

SSL

SQLite

WebKit

libc

Android Runtime

Core Libs

Delvik
VM

Display
Driver

Keypad
Driver

Camera
Driver

WiFi
Driver

Flash
Driver

Audio
Driver

Binder
Driver

Power
Mgmt

,"-$(.&

Dalvik VM is Google’s implementation of
Java VM

Optimized for mobile devices

Key Dalvik differences:
- Register-based versus stack-based VM
- Dalvik runs .dex files
- More efficient and compact implementation
- Different set of Java libraries than SDK

!/0
&0(12

&

345&

Android Overview

marakana.com 6

!""#$%&'()*+,&-./(,0*
The rich set of system services
wrapped in an intuitive Java API.

This ecosystem that developers
can easily tap into is what makes
writing apps for Android easy.

Location, web, telephony, WiFi,
Bluetooth, notifications, media,
camera, just to name a few.

Linux Kernel

Libraries

Application Framework

Applications

Home Contacts Phone Browser Other

Activity
Manager

Window
Manager

Content
Providers

View
System

Package
Manager

Telephony
Manager

Resource
Manager

Location
Manager

Notiication
Manager

Surface
Manager

OpenGL

SGL

Media
Framework

FreeType

SSL

SQLite

WebKit

libc

Android Runtime

Core Libs

Delvik
VM

Display
Driver

Keypad
Driver

Camera
Driver

WiFi
Driver

Flash
Driver

Audio
Driver

Binder
Driver

Power
Mgmt

!""#$%&'()1*

Dalvik Executable + Resources = APK
Must be signed (but debug key is okay
for development)
Many markets with different policies

Android Overview

marakana.com 7

!"#$%&#'("#')(*('

Android Java =
Java SE –
AWT/Swing +
Android API

!"#$%&#'+,-'.'/0(123'&"'104'5%6'

SDK

Tools
Docs
Platforms

Data
Skins
Images
Samples

Add-ons
Google Maps

Android Overview

marakana.com 8

!"#$!%%&'$
Tools are important part of the
SDK. They are available via
Eclipse plugin as well as command
line shell.

!"##$%&$'#()%

Android Overview

marakana.com 9

!"#$%#&'#(&)"*+#,%&
Use the Eclipse tool to create a new
Android project.

Here are some key constructs:

)"*+#,%& -,./01#&,*21%"3,%&

4$"5#%& 6/2/636&%*&"32&

700&2$6#& (8$%#9#"&

)$,:$5#& ;9&0$,:$5#&

7,<9/%=& ;9&,.$11&

48#&>$2/?#1%&@/.#&
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.marakana"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon"

 android:label="@string/app_name">
 <activity android:name=".HelloAndroid"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
 <uses-sdk android:minSdkVersion="5" />
</manifest>

Android Overview

marakana.com 10

!"#$%&'()*$+#,()-.#$

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello"
 />
</LinearLayout>

!"#$/&0&$123#$

package com.marakana;

import android.app.Activity;
import android.os.Bundle;

public class HelloAndroid extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
}

Android Overview

marakana.com 11

!"##$#%&'#&()"*+,'-&

!"#$%&'#()#$*%&(+,-.%

Android Overview

marakana.com 12

!"#$%#&'(
Android Application

Main Activity Another
Activity

Another
Activity

Activity is to an
application what a
web page is to a
website. Sort of.

!"#$%)*(+%,&"*"-&(
Starting

Running

PausedStopped

Destroyed

(1) onSaveInstanceState()
(2) onPause()

(3) onResume()
(2) onStart()

(1) onRestart() onResume()

(1) onSaveInstanceState()
(2) onStop()

<process killed>

onDestroy()
or

<process killed>

(1) onCreate()
(2) onStart()

(3) onRestoreInstanceState()
(4) onResume()

Activities have a well-
defined lifecycle. The
Android OS manages
your activity by
changing its state.
You fill in the blanks.

Android Overview

marakana.com 13

!"#$"#%&
Android Application

Another
Activity

Android Application

Main Activity

Intent

In
te
nt

Main Activity

Intent Another
Activity

Intents are to
Android apps
what hyperlinks
are to websites.
They can be
implicit and
explicit. Sort of
like absolute and
relative links.

'$()*+$%&
A service is something that can be started and
stopped. It doesn’t have UI. It is typically managed
by an activity. Music player,
for example

Android Overview

marakana.com 14

!"#$%&"'(%)"&*&+"'
Starting

RunningStopped

Destroyed

onStart()

onDestroy()
or

<process killed>

(1) onCreate()
(2) onStart()

onStop()

Service also has a
lifecycle, but it’s
much simpler than
activity’s. An activity
typically starts and
stops a service to do
some work for it in
the background.
Such as play music,
check for new
tweets, etc.

,-./"./'0#-$%1"#2'

Content
Provider

Content URI

insert()

update()

delete()

query()

Content Providers share
content with applications
across application
boundaries.
Examples of built-in
Content Providers are:
Contacts, MediaStore,
Settings and more.

Android Overview

marakana.com 15

!"#$%&$'()*+&+,-+"')

An Intent-based publish-subscribe mechanism. Great for listening
system events such as SMS messages.

Twitter.com

MyTwitter
Activity

Updater
Service

Timeline
Receiver

Timeline
DB

Prefs
XML

Updates
Status via

web service

Preference
Activity

Pull timeline
updates via
web service

Insert
updates

in DB

Notify of
new status

Timeline
Activity

Pull timeline
from DB

Update list

Timeline
Adapter

Update ListView
Read/write
preferences

Boot
Receiver

Start at
boot

Read
Prefs

Read
Prefs

./01,2+")3)4)*+$5)6#"5%)477)

Android Overview

marakana.com 16

!"#$%&#'()*$'&"+*$,!-*'

!"#$%&$'(()#*+,-.$

./01234/56' #2165/5782'

/#0$")12-$3*4*$+#5-$
61718*)$2#$6"19:$#)$';!$

/#0$")12-$<=>$+#5-$
61718*)$2#$?!=>$#@$*$"-A$(*:-$

You can mix and match both styles.
Declarative is preferred: easier and
more tools

Android Overview

marakana.com 17

!"#$%&'()*+'(,*-./(,0&1(*

Use WYSIWYG tools to build powerful XML-based UI.
Easily customize it from Java. Separate concerns.

234'*&.)*54'*

!"#6437(89* 2:/'*:.*/;(*'1,((.*

$%#63.1;('9* 53<(*&'*=(&'>,()*?@*&*,>8(,*

&=3883=(/(,'9* 53<(*&'*=(&'>,()*?@*&*,>8(,*

!'#64:3./'9* ABCD*:0*&.*3.1;*

(!#6)(.'3/@$3.)(4(.)(./*437(89* E?'/,&1/*>.3/F*G.*'1,((.*H3/;*AIJ)43K*
A)4LA47*

($!* '@.:.@=*0:,*)4*&.)*:M(.*>'()*?@*N::O8(*

)!* 53=38&,*/:*)4*?>/*&8':*'1&8()*?@*>'(,'*0:./*
'3<(*4,(0(,(.1(*

Android Overview

marakana.com 18

!"#$%&'()&*'+,-.%&

ViewGroup

ViewViewGroup

View View View

ViewGroups contain other Views but
are also Views themselves.

/,00,(&12&/,03,(#(.%&

Android UI includes many
common modern UI
widgets, such as Buttons,
Tabs, Progress Bars, Date
and Time Pickers, etc.

Android Overview

marakana.com 19

!"#"$%&'()&*+&'"',-(

Some UI widgets may
be linked to zillions of
pieces of data.
Examples are ListView
and Spinners
(pull-downs).

./0+,"1-(

To make sure they run smoothly, Android uses
Adapters to connect them to their data sources. A
typical data source is an Array or a Database.

Data
Source

Adapter

Android Overview

marakana.com 20

!"#$%&'(!"#$")&)*+(
Certain high-level components are simply
available just like Views. Adding a Map or a
Video to your application is almost like adding a
Button or a piece of text.

,&)-+(.)/(01.%"2+(

Android Overview

marakana.com 21

!"#$%&'()*)+,&-#./,)

Android has rich support for 2D graphics.
You can draw & animate from XML.
You can use OpenGL for 3D graphics.

012.-34&#)
AudioPlayer lets you simply specify
the audio resource and play it.

VideoView is a View that you can
drop anywhere in your activity, point
to a video file and play it.

XML:
<VideoView
 android:id="@+id/video"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_gravity="center” />

Java:
player = (VideoView) findViewById(R.id.video);
player.setVideoPath("/sdcard/samplevideo.3gp");
player.start();

Android Overview

marakana.com 22

!""#$%&'()*&

Google Maps is an add-on in Android.
It is not part of open-source project.

However, adding Maps is relatively
easy using MapView.

XML:
<com.google.android.maps.MapView
android:id="@+id/map"
android:clickable="true"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:apiKey="0EfLSgdSCWIN…A"
/>

!"#$%&'()*+,+&#-*.#%&/$#+**

Android Overview

marakana.com 23

!"#$%&'()

Android Application

PrefsDB
File

System

Linux Process

Each Android application
runs inside its own Linux
process.

Additionally, each application
has its own sandbox file
system with its own set of
preferences and its own
database.

Other applications cannot
access any of its data,
unless it is explicitly shared.

*&+")!(,'"-)
The file system has three main mount points. One
for system, one for the apps, and one for whatever.

Each app has its own sandbox easily accessible to
it. No one else can access its data. The sandbox is
in /data/data/com.marakana/

SDCard is expected to always be there. It’s a good
place for large files, such as movies and music.
Everyone can access it.

Android Overview

marakana.com 24

!"#$%&'#&()*+,)&-$./&

Big deal for many pull-based apps. Will make devices use less battery.

-0)1)0)2,).&

Your app can support complex
preferences quite easily.

You define your preferences in an
XML file and the corresponding UI and
data storage is done for free.

Android Overview

marakana.com 25

!"#$%&#"'()

Notifications are useful for
applications to notify user of things
going on in the background.

Notifications are implemented via
Notification Manager.

*+,-./)0&.&1&(/)
Android ships with SQLite3

SQLite is

Zero configuration
Serverless
Single database file
Cross-Platform
Compact
Public Domain

Database engine.

May you do good and not evil
May you find forgiveness for yourself and forgive others
May you share freely, never taking more than you give.

Android Overview

marakana.com 26

!"#$%%&'%((
)'!*+&!(),,-(

!"#$%&'
The universal, most
versatile way to track
what is going on in
your app.

Can be viewed via
command line or
Eclipse.

Logs can be
generated both from
SDK Java code, or
low-level C code via
Bionic libc extension.

Android Overview

marakana.com 27

!"#$%%"&'

Your standard debugger is included in SDK, with all the usual bells & whistles.

(&)*"+,"-'

TraceView helps you profile you application and find bottlenecks. It shows
execution of various calls through the entire stack. You can zoom into specific
calls.

Android Overview

marakana.com 28

!"#$%$&'()*"#+#$)
Hierarchy Viewer helps
you analyze your User
Interface.

Base UI tends to be the
most “expensive” part of
your application, this tool
is very useful.

,-..%$()
Android is open and complete system for
mobile development. It is based on Java
and augmented with XML.

Android is being adopted very quickly
both by users, carriers, and
manufacturers.

It takes about 3-5 days of intensive
training to learn Android application
development for someone who has basic
Java (or similar) experience.

Slides licensed under Creative Commons
License (cc-by-nc-nd) – non-commercial.
Please Share!

Marko Gargenta, Marakana.com
marko@marakana.com
+1-415-647-7000

	Main Building Blocks
	Main Building Blocks
	A Real World Example
	Activities
	Activity Lifecycle
	Starting Up
	Running
	Paused
	Stopped
	Destroyed

	Intents
	Services
	Content Providers
	Broadcast Receivers

	MyTwitter Project Overview
	Project Design
	MyTwitter Part 1
	MyTwitter Part 2
	MyTwitter Part 3
	MyTwitter Park 4

	MyTwitter Part 1
	StatusActivity Layout
	Important Widget Properties

	Strings Resource
	StatusActivity
	Update Manifest File for Internet Permission
	Summary
	Source Code

	MyTwitter Part 2
	Prefs Resource
	PrefsActivity
	Update Manifest File
	Menu Resource
	Update StatusActivity to Load Menu
	Update StatusActivity to Handle Menu Events
	Strings Resource
	Colors in Android
	Units in Android User Interface
	Spicing Up StatusActivity Layout
	UpdaterService
	Summary
	Source Code

	MyTwitter Part 3
	DbHelper
	Verify Database Got Created
	Update UpdaterService
	TimelineActivity Layout
	About Adapters
	TimelineActivity
	TimelineAdapter
	Summary
	Source Code

	MyTwitter Part 4
	BootReceiver
	Register BootReceiver with AndroidManifest file
	Testing Boot Receiver
	TimelineReceiver
	Broadcasting Intents
	Summary
	Source Code

	Web Browser
	Main Layout
	WebBrowser Activity
	Manifest File
	Summary
	Source Code

	Compass
	Compass Main Activity
	Custom Rose Widget
	Summary
	Source Code

	Where Am I
	Layout
	Activity
	Manifest File
	Summary
	Source Code

	Unit Testing Android Applications
	About JUnit
	JUnit 101
	Advantages of JUnit
	Disadvantages of JUnit
	Android JUnit Implementation

	Application to be Tested
	Kilo/Pound Converter Layout
	Kilo/Pound Converter Activity

	Application Performing Testing
	TestDemoTests Test Case
	Android Manifest File

	Running Unit Tests
	Summary

	Android Resources
	Software
	Websites
	Books
	Android Internals Websites

	Virtual Machine
	Slides

