
Marko	
 Gargenta	

Marakana	

Android	
 	

Internals	

Overview	

Agenda	

•  Working	
 with	
 Hardware	

•  Android	
 Startup	
 and	
 Run<me	

•  Na<ve	
 Development	
 Kit	

•  Summary	

WORKING	
 WITH	
 HARDWARE	

Sensors	

Android supports many built-in
sensors. You simply register with
Sensor Manager to get notifications
when sensor data changes.

Sensors are erratic and data comes
in uneven intervals.

Emulator doesn’t have good support
for sensors.

Camera	

Android SDK supports access to
built-in Camera and its preview.

You can access real-time frames,
or get a callback when shutter is
open. The photo data is passed
back in either raw or jpeg format.

WiFi	

WiFi API allows for managing your
connection, scanning for active WiFi
points and find out details about each.

Telephony	

With Telephony API, you can:

Make phone calls
Monitor phone state and activity
Access phone properties and status
Monitor data connectivity
Control the phone

It is a simple yet powerful API

ANDROID	
 	

STARTUP	
 &	
 	

RUNTIME	

Startup	
 Walkthrough	

Run<me	
 Overview	

Layer	
 Interac<ons	

There are three main
scenarios for your app to talk
to native library:

-  Directly
-  Via native service
-  Via native daemon

It will depend on the type of
app and type of native library
which method works best.

App	
 –	
 Run<me	
 Service	
 -­‐	
 Lib	

App	
 –	
 Run<me-­‐Na<ve	
 Service-­‐Lib	

App–Run<me–Na<ve	
 Daemon-­‐Lib	

Binder	
 IPC	

High-performance IPC: shared memory, per-process thread pool, synchronous

Java	
 Na<ve	
 Interface	

JNI defines naming and coding
convention so that Java VM can find
and call native code.

JNI is built into JVM to provide
access to OS I/O and others.

Building	
 and	
 Running	
 JNI	
 Code	

NATIVE	

DEVELOPMENT	

KIT	

What’s	
 in	
 NDK?	

Tools to build and compile your native code for the device
architecture (such as ARM)

A way to package your library into the APK file so you can
distribute your application easily

A set of native system headers that will be supported for
the future releases of Android platform (libc, libm, libz,
liblog, JNI headers, some C++ headers, and OpenGL)

(some) documentation, sample code and examples

Why	
 NDK?	

NDK allows you to develop parts of your Android
application in C/C++.

You cannot develop native-only apps in NDK –
your app is still subject to security sandboxing.

Main motivation for native code is performance.

Using	
 NDK	

Summary	

Android SDK provides many APIs to
allow you to get to the hardware.

In some cases, you may want to provide
parts of your application in C. Main
reason would be performance.

Android OS is based on Linux. You can
modify the entire platform as well.

Licensed under Creative Commons
License (cc-by-nc-nd) – non-commercial.
Please Share!

Marko Gargenta, Marakana.com
marko@marakana.com
+1-415-647-7000

