

AES 34th International Conference, Jeju Island, Korea, 2008 August 28–30 1

INTRODUCTION TO THE OPENCORE AUDIO COMPONENTS
 USED IN THE ANDROID PLATFORM

JAVIER TAPIA, JIM KOSMACH, DUSAN VESELINOVIC, GREG SHERWOOD, RALPH NEFF

PacketVideo Corporation, San Diego CA, USA
tapia@pv.com

kosmach@pv.com
veselinovic@pv.com
sherwood@pv.com
neff@pv.com

Audio and speech codecs such as MP3, AAC, and AMR are used extensively on mobile devices throughout the world.
In the ideal case, such codecs rely on hardware acceleration. However, it is also very common to see software audio
codecs running on the main application processor, which is often an ARM core processor. Such codecs must be
memory efficient, processing cycle efficient, portable to multiple operating systems, robust to data loss, and must also
have a modular interface. In this paper, we introduce the OpenCORE multimedia framework and associated optimized
audio codecs which are a part of the Android platform. We show how these components meet the challenging
requirements for use in mobile devices. The OpenCORE audio components are currently available from the Open
Handset Alliance as part of the Android SDK, and the source code for these components is scheduled for release in late
2008. The components are thus freely available for use in mobile device projects, and for non-mobile projects as well.

INTRODUCTION
The current paper provides an introduction to the
OpenCORE multimedia framework and associated
audio codecs which are a part of the Android platform
from the Open Handset Alliance. The OpenCORE
multimedia framework provides a modular interface
which allows the associated audio codecs to be easily
used and configured. The framework may be used
purely for audio, or in conjunction with companion
components such as video codecs or file format
elements, to support many typical multimedia scenarios.
OpenCORE audio codecs are highly optimized for
speed, efficient use of memory, robustness and
portability. The codecs are based on PacketVideo’s
commercial audio codecs, which have been deployed in
over 200 million handsets to date.

Section 1 introduces the Android Platform and provides
some relevant history. Section 2 describes the
OpenCORE multimedia framework on which the
Android multimedia subsystem is built. Section 3
describes the OpenCORE audio codecs, and provides
details about the availability, performance, features, and
usability of the codecs.

1 THE ANDROID PLATFORM
In fall of 2007, the mobile phone industry was abuzz
with rumors that Google would soon release its long
awaited “G-Phone.” Nobody was quite sure what this

phone was, but many believed or hoped that it would be
Google’s answer to the iPhone. Various web articles
were guessing at what revolutionary features the phone
might contain, and some suggested that the phone
would be commercially available in early 2008.
However, when the actual announcement came in
November 2007, it was clear that there would be no
single “G-Phone” coming from Google. Instead, there
would be a revolutionary new mobile phone platform.
The platform’s name was Android, and it would come
not only from Google but from an alliance of companies
from around the mobile communications industry [1].

Android is the first complete platform for mobile
devices which is truly free and open. By “open,” we
mean the operating system, middleware, UI, and an
assortment of typical mobile applications will all be
available as open-source which may be seen and
modified, thus removing many of the development
limitations present on traditional mobile platforms.
Thus the development of mobile applications and
services for Android will be open in the same way that
the development of general internet applications and
services has been for years. By “free,” we mean the
complete Android source code will be made available
for use in commercial products under a free software
license. This should enable manufacturers to produce
inexpensive Android-based handsets, since software
license fees are typically a significant part of a handset’s
Bill of Materials (BOM).

AES 34th International Conference, Jeju Island, Korea, 2008 August 28–30 2

Although Android was initiated by Google, it has
evolved into a collaborative project with membership
from 34 companies, many of which are key players in
the mobile phone industry. The resulting organization
is called the Open Handset Alliance (OHA) [2].

Within a week of the initial November 2007 Android
announcement, the OHA released an “early-look”
version of the Android SDK. This SDK included
development tools, a device emulator, documentation
and sample projects, as well as the rich set of libraries
that implement the Android system functionality. Many
developers downloaded the SDK and began writing
applications based on it. As a result, Google announced
in April 2008 that nearly 1800 Android applications
were submitted in response to the first phase of its
Android Developer Challenge contest [3].

The first Android-powered handsets are expected to be
available in the second half of 2008. As well, the
Android source code is scheduled for release by the end
of 2008. The Linux Kernel which powers Android will
be available under the free GNU Public License v2.0
(GPL2.0) [4]. The rest of the Android code, including
that of the audio components, will be made available
under the equally free but less commercially restrictive
Apache 2.0 license [5].

PacketVideo [6] was chosen to be the multimedia sub-
system provider for Android. Thus PacketVideo
provides the multimedia framework and associated
components (e.g audio and video codecs, file format
parsing and authoring, streaming components, etc)
which power Android’s multimedia experience and
which will be freely available to the Android developer
community. These components are collectively called
OpenCORE, and include the multimedia framework and
codecs which are the focus of the current paper.

2 OPENCORE MULTIMEDIA FRAMEWORK
OpenCORE is a modular, extensible framework for
combining independent media processing components
such as file formats, codecs, streaming protocol
components, rendering components, and other elements
in different ways to implement a wide variety of
multimedia scenarios. Figure 1 shows a very high-level
view of the major functional blocks of OpenCORE. A
detailed description of the entire framework is beyond
the scope of the current paper, but this section will point
out some of the highlights.

The lowest layer provides the interface to operating
system APIs and platform services needed by the
framework including memory management, DNS
lookup, network and file I/O, process and thread

control, etc. Although not shown as a separate
functional block, the multimedia framework defines
methods and data structures for negotiating formats and
parameters between components, and for passing media
data between components. The design has provisions
which minimize the copying of media data as it flows
through the resulting graph.

Android Application Layer

Linux Operating System

OpenCore

Linux Interface

Audio CodecsVideo Codecs

Data Formats

Multimedia Engines

Content Policy Manager

Android Application Layer

Linux Operating System

OpenCore

Linux Interface

Audio CodecsVideo Codecs

Data Formats

Multimedia Engines

Content Policy Manager

Figure 1 – High-level view of the major OpenCORE
functional blocks.

The video codec block includes MPEG4, H.263, and
H.264 video codecs along with interfaces to integrate
other formats and hardware accelerated codecs. The
audio codec block similarly provides interfaces for the
integration of additional codecs along with the included
audio codecs which are described in detail in Section 3.

The data formats block handles the reading and writing
of file formats, as well as support for various streaming
protocols. Supported file formats include .mp3, .mp4,
.3gp, .aac, .amr, and .wav. Supported streaming
protocols include RTSP and HTTP, the latter including
both simple and “progressive” download functionality.
The multimedia engines block provides the logic for
selecting and connecting components into the
appropriate graph structure as well as providing the high
level controls to the application for a given multimedia
use-case. Finally, the Content Policy Manager block
provides a framework for content access and control,
which can be used for integration of DRM functionality.

AES 34th International Conference, Jeju Island, Korea, 2008 August 28–30 3

In a typical scenario, the Multimedia Engines block
would be used to assemble a graph containing
appropriate file formats, audio and video decoders, and
rendering interfaces in order to achieve local playback
of media files. Other graphs could be assembled to
achieve other typical scenarios, such as media
authoring/recording, or streaming media playback. The
availability of standard components with modular graph
assembly should allow Android application developers
to easily access and make effective use of the available
multimedia resources.

3 OPENCORE AUDIO AND SPEECH CODECS
The OpenCORE audio and speech codecs are listed in
Table 1, along with the supported sampling frequencies
(KHz), channel configurations (#Ch), and bit rates
(kbps). Supported codecs include MP3, AAC, HE-
AACv1, HE-AACv2, AMR-NB and AMR-WB
decoders and an AMR-NB encoder.

Codec Type KHz #Ch kbps
MP3 1/2/2.5 8~48 2/1 8 to 320
AAC LC/LTP 8~48 2/1 Up to 160
HE-AACv1 8~48 2/1 Up to 96
HE-AACv2 8~48 2 Up to 64
AMR-NB 8 1 4.75 to 12.2
AMR-WB 16 1 6.6 to 23.85

Table 1: OpenCORE audio codecs for Android

3.1 Modular Design
OpenCORE has adopted the OpenMAX Integration
Layer (IL) interface [7]. OpenMAX IL is a well-
known cross-platform API that allows multimedia
components to be developed once and then easily
integrated across multiple operating systems and
hardware platforms. Figure 2 shows the modular
OpenCORE design that takes advantage of the
OpenMAX IL interface.

The OpenCORE multimedia framework provides OMX
components which are used to integrate the audio and
video codecs. An OMX component serves as a wrapper
around the audio codec, and provides compatibility to
the OpenMAX IL API set. Most of the APIs are
asynchronous, meaning that the OMX component
queues the commands and input data buffers which it
receives via the OpenMAX Integration Layer, and
processes them at a later time. When scheduled to run,
the OMX component may process one or more queued
input data buffers in order to decode the associated
audio bitstream data using the connected software audio
codec. The OMX component then returns the processed

input buffer back to the OpenMAX Audio Decoder
Node via the OpenMAX integration layer.

Figure 2: OpenCORE modular design for Android

Where applicable, the audio codec libraries have a
configurable design which allows optimization of the
memory footprint. For instance, the AAC library uses
separate layers to accommodate baseline AAC, Spectral
Band Replication (SBR) and Parametric Stereo (PS)
tools. Thus when selecting among the AAC and HE-
AAC codec options at build time, it is possible to
configure the code to exclude the layers which are not
needed. As another example, the MP3 decoder has an
embedded equalizer that can be included or excluded
using build-time configuration.

3.2 Optimizations
The OpenCORE audio codec libraries were originally
based on floating point reference implementations of the
various standard codecs [8][9][10][11]. Over time, the
codecs have been translated to efficient fixed-point
implementations, and then re-architected and optimized
to make the best use of the available system resources.

The audio codec libraries are written mainly in C. Since
many embedded devices utilize an ARM core processor,
the code is supplemented in limited key areas using
optimized inline assembly code. In many places there
are multiple configurable inline assembly sets, which
are chosen at build time depending on the hardware
configuration. Such optimizations may be switched on
or off at compile time, and are particularly useful for
cases in which the hardware does not accommodate an
advanced optimizing compiler such as ARM
ADS/RVCT.

PV OpenMAX Audio Decoder Node

OpenMAX Integration Layer

AMR OMX
Component

MP3 OMX
Component

AAC
SW Codec

AAC OMX
Component

AMR
SW Codec

MP3
SW Codec

PV OpenMAX Audio Decoder Node

OpenMAX Integration Layer

AMR OMX
Component

MP3 OMX
Component

AAC
SW Codec

AAC OMX
Component

AMR
SW Codec

MP3
SW Codec

AES 34th International Conference, Jeju Island, Korea, 2008 August 28–30 4

The OpenCORE audio codec libraries make use of an
efficient internal memory management process. A pool
of memory is allocated to the library upon instantiation,
and this memory is recycled and reused throughout the
decoding session. This prevents the decoding process
from incurring delay due to dynamic memory allocation
requests to the OS.

The OpenCORE audio codec libraries make intrinsic
use of an OS portability layer called OSCL. Thus the
libraries may be easily ported to new operating systems
by simply porting the OSCL layer. OSCL ports exist
for many operating systems, including Win32, Symbian,
Linux, and ARM-Linux. However, the initial releases
of Android will include only the Linux port of OSCL,
since the Android platform is Linux-based.

The OpenCORE audio codecs are based on
PacketVideo commercial codecs which have been
deployed on nearly 200 different device models across a
wide variety of operating systems and compilers. The
environments which have been supported include:

• Linux (using gcc compiler)
• Symbian (using gcc and rvct compilers)
• Brew (using ads compiler)
• Windows CE (using Microsoft compiler)

3.3 Performance
The OpenCORE audio codecs have been optimized with
ARM’s ADS/RVCT compiler and profiled on the
ARMulator (ARM emulator). Table 2 shows the zero-
wait state performance of the codecs as profiled on the
ARMulator using an ARM9E processor.

Codec Type KHz Ch kbps MHz
MP3 44.1 2 128 21.8
AAC 44.1 2 96 13.7
HE-AACv1 44.1 2 48 29.1
HE-AACv2 44.1 2 32 40.2
AMR-NB 8 1 12.2 11.2
AMR-WB 16 1 23.85 20

Table 2: ARMulator performance results for

OpenCORE audio codecs on zero-wait state ARM9E.

Table 3 shows an alternate result in which the
OpenCORE audio codecs were compiled using arm-
linux-g++ compiler (version 3.4.0) and were run on a
PacketVideo reference platform based on OMAP 2420.
Note that the OMAP 2420 contained an ARM 11
processor running at 266 MHz, and also a C55x DSP
running at 220 Mhz. The OpenCORE audio codecs
were in all cases running entirely on the ARM 11.

Codec Type KHz Ch kbps MHz
MP3 44.1 2 128 27
AAC 44.1 2 96 21
HE-AACv1 44.1 2 48 44
HE-AACv2 44.1 2 32 64
AMR-NB 8 1 12.2 12
AMR-WB 16 1 23.85 26

Table 3: OpenCORE ARM11 performance data on an
OMAP 2420 platform

The performance of the OpenCORE audio codec
libraries, written in C code with limited inline assembly
optimization, closely matches and often exceeds the
performance of assembly-only implementations that are
typical of other third party codecs. Maintaining most
of the code in C has the advantage that the code remains
easily portable, and that it remains easy to work on the
algorithmic and architecture elements of the code.

3.4 Error Concealment
Error resilience and concealment are extremely
important for audio and speech codecs which target a
mobile environment. For speech codecs, the standard
codec specifications provide simple mechanisms to
compensate for the loss of speech frames. For example,
AMR-NB specifies repetition of the last valid frame,
together with an exponential decay. For audio codecs,
the standard codec specifications may propose complex
concealment methods which may not be efficient in a
mobile environment. For example, AAC specifies a
concealment method based on storing several AAC
frames to mask a possible loss of data. This may
increase code size, memory usage, and computational
complexity.

In the speech case, we believe the non-continuous
nature of the speech signal makes the decaying
exponential mechanism sufficient. For general audio,
the information tends to be more continuous and so any
loss of data is more easily detectable. In those cases,
the OpenCORE audio framework provides a simplified
error concealment method. Loss of audio frames may
be detected outside of the codecs and compensated
through the insertion of pre-generated synthetic silence
frames. The use of silence frames maintains the
decoder flow and so maintains A/V synchronization.
The end result is that the packet loss is concealed using
less memory and processing cycles than the standard
method, thereby saving memory footprint and battery
life. This method can also be easily extended to include
other audio codecs that may be added to the Android
platform without requiring direct modifications to the
codec libraries themselves.

AES 34th International Conference, Jeju Island, Korea, 2008 August 28–30 5

4 CONCLUSION

Android is the first truly complete, free, and open
platform for mobile devices. PacketVideo's OpenCORE
components provide the multimedia functionality for the
Android platform. OpenCORE provides a flexible and
modular framework for assembling useful
configurations of the provided audio and video codecs
and related multimedia elements. The audio codecs
included in OpenCORE are highly optimized,
configurable, and easily adaptable to many
combinations of OS, processor, and compiler.

We expect to see many interesting devices based on the
Android platform in the near future. Thanks to the
OpenCORE audio components, we expect to hear many
interesting devices as well.

REFERENCES

[1] “Industry Leaders Announce Open Platform for

Mobile Devices,” Press Release from the Open
Handset Alliance, November 5, 2007.

[2] Open Handset Alliance web site,
 http://www.openhandsetalliance.com

[3] Announced on the Android Developer’s Blog
site, April 17, 2008.
 http://android-developers.blogspot.com/

[4] GNU Public License v2.0, June 1991. Available
at http://www.gnu.org/licenses/old-licenses/gpl-
2.0.html

[5] Apache Software License, Version 2.0, January
2004. Available at:
http://www.apache.org/licenses /LICENSE-
2.0.txt

[6] PacketVideo web site, http://www.pv.com/

[7] OpenMAX IL specification and tests, available
at http://www.khronos.org/openmax/

[8] ISO/IEC 14496-3 “Information Technology --
Coding of Audio visual objects -- Part-3:Audio.”

[9] ISO/IEC 11172-3 “Coding of moving pictures
and associated audio for digital storage media at
up to about 1,5 Mbits/s -- Part-3:Audio.”

[10] 3GPP TS 26.071: "Mandatory Speech CODEC
speech processing functions; AMR Speech
CODEC; General description".

[11] 3GPP TS 26.171: "AMR Wideband Speech
Codec; General Description"

