

ffirs.indd iiffirs.indd ii 28/06/11 2:58 PM28/06/11 2:58 PM

BEGINNING

ANDROID™ TABLET APPLICATION DEVELOPMENT

INTRODUCTION . xiii

 � PART I QUICK TOUR OF ANDROID 3 FOR TABLETS

CHAPTER 1 Getting Started with Android Programming for Tablets 3

CHAPTER 2 Components of an Android Tablet Application . 29

CHAPTER 3 Android User Interface . 65

 � PART II PROJECTS

CHAPTER 4 Creating Location-Based Services Applications 109

CHAPTER 5 SMS Messaging and Networking . 151

CHAPTER 6 Publishing Android Applications . 205

 � PART III APPENDICES

APPENDIX A Using Eclipse for Android Development . 229

APPENDIX B Using the Android Emulator . 243

APPENDIX C Answers to Exercises . 259

INDEX . 263

ffirs.indd iffirs.indd i 28/06/11 2:58 PM28/06/11 2:58 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

ffirs.indd iiffirs.indd ii 28/06/11 2:58 PM28/06/11 2:58 PM

BEGINNING

Android™ Tablet Application Development

Wei-Meng Lee

ffirs.indd iiiffirs.indd iii 28/06/11 2:58 PM28/06/11 2:58 PM

Beginning Android™ Tablet Application Development

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2011 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-10673-0
ISBN: 978-1-118-15075-7 (ebk)
ISBN: 978-1-118-15077-1 (ebk)
ISBN: 978-1-118-15076-4 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to
the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,
fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Not all content that is available in
standard print versions of this book may appear or be packaged in all book formats. If you have purchased a version of this
book that did not include media that is referenced by or accompanies a standard print version, you may request this media by
visiting http://booksupport.wiley.com. For more information about Wiley products, visit us at www.wiley.com.

Library of Congress Control Number: 2011930129

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other countries,
and may not be used without written permission. Android is a trademark of Google, Inc. All other trademarks are the property
of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

ffirs.indd ivffirs.indd iv 28/06/11 2:59 PM28/06/11 2:59 PM

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

To my family:

Thanks for the understanding and support while I

worked on getting this book ready. I love you all!

ffirs.indd vffirs.indd v 28/06/11 2:59 PM28/06/11 2:59 PM

CREDITS

EXECUTIVE EDITOR

Bob Elliott

SENIOR PROJECT EDITOR

Ami Frank Sullivan

TECHNICAL EDITOR

Kunal Mittal

PRODUCTION EDITOR

Rebecca Anderson

COPY EDITOR

Luann Rouff

EDITORIAL MANAGER

Mary Beth Wakefi eld

FREELANCER EDITORIAL MANAGER

Rosemarie Graham

ASSOCIATE DIRECTOR OF MARKETING

Ashley Zurcher

BUSINESS MANAGER

Amy Knies

PRODUCTION MANAGER

Tim Tate

VICE PRESIDENT AND EXECUTIVE GROUP

PUBLISHER

Richard Swadley

VICE PRESIDENT AND EXECUTIVE PUBLISHER

Neil Edde

ASSOCIATE PUBLISHER

Jim Minatel

PROJECT COORDINATOR, COVER

Katie Crocker

PROOFREADER

Nancy Carrasco

INDEXER

Johnna VanHoose Dinse

COVER DESIGNER

Ryan Sneed

COVER IMAGE

© Dmitry Mordvintsev/iStockPhoto

ffirs.indd viffirs.indd vi 28/06/11 2:59 PM28/06/11 2:59 PM

ABOUT THE AUTHOR

WEI-MENG LEE is a technologist and founder of Developer Learning Solutions (www.learn2develop
.net), a technology company specializing in hands-on training on the latest mobile technologies.
Wei-Meng has many years of training experience and his training courses place special emphasis
on the learning-by-doing approach. This hands-on approach to learning programming makes
understanding the subject much easier than reading books, tutorials, and other documentation.

Wei-Meng is also the author of Beginning iOS 4 Application Development (Wrox, 2010) and
Beginning Android Application Development (Wrox, 2011). Contact Wei-Meng at
weimenglee@learn2develop.net.

ABOUT THE TECHNICAL EDITOR

KUNAL MITTAL serves as an Executive Director of Technology at Sony Pictures Entertainment
where he is responsible for the SOA, Identity Management, and Content Management programs.
Kunal is an entrepreneur who helps startups defi ne their technology strategy, product roadmap,
and development plans. He generally works in an Advisor or Consulting CTO capacity, and serves
actively in the Project Management and Technical Architect functions.

He has authored and edited several books and articles on J2EE, Cloud Computing, and mobile
technologies. He holds a Master’s degree in Software Engineering and is an instrument-rated
private pilot.

ffirs.indd viiffirs.indd vii 28/06/11 2:59 PM28/06/11 2:59 PM

ACKNOWLEDGMENTS

WRITING THIS BOOK HAS BEEN A roller-coaster ride. Working with just-released software is always
a huge challenge. When I fi rst started work on this book, the Android 3.0 SDK had just been
released, and wading through the documentation was like fi nding a needle in a haystack. To add
to the challenge, the Android emulator for the tablet is extremely slow and unstable, making the
development process very slow and painful.

Well, now that the book is done, I hope your journey will not be as eventful as mine. Like a good
guide, my duty is to make your foray into Android tablet development an enjoyable and fruitful
experience. The book you are now holding is the result of the collaborative efforts of many people,
and I wish to take this opportunity to acknowledge them here.

First, my personal gratitude to Bob Elliott, executive editor at Wrox. Bob is always ready to lend a
listening ear and to offer help when it’s needed. It is a great pleasure to work with Bob, as he is one
of the most responsive persons I have ever worked with! Thank you, Bob, for the help and guidance!

Of course, I cannot forget Ami Sullivan, my editor (and friend!), who is always a pleasure to work
with. After working together on four books, we now know each other so well that we know the
content of incoming e-mail messages even before we open them! Thank-you, Ami!

Nor can I forget the heroes behind the scenes: copy editor Luann Rouff and technical editor
Kunal Mittal. They have been eagle-eye editing the book, making sure that every sentence makes
sense — both grammatically as well as technically. Thanks, Luann and Kunal!

Last, but not least, I want to thank my parents and my wife, Sze Wa, for all the support they have
given me. They have selfl essly adjusted their schedules to accommodate my busy schedule when
I was working on this book. My wife, as always, has stayed up with me on numerous nights as I
was furiously working to meet the deadlines, and for this I would like to say to her and my parents:
“I love you all!” Finally, to our lovely dog, Ookii, thanks for staying by our side.

ffirs.indd viiiffirs.indd viii 28/06/11 2:59 PM28/06/11 2:59 PM

CONTENTS

INTRODUCTION xiii

PART I: QUICK TOUR OF ANDROID 3 FOR TABLETS

CHAPTER 1: GETTING STARTED WITH ANDROID
PROGRAMMING FOR TABLETS 3

What Is Android? 4

Android Versions 4

Android Devices in the Market 6

The Android Market 7

Obtaining the Required Tools 7

Java JDK 7

Eclipse 8

Downloading the Android SDK 8

Installing the Packages 9

Creating Android Virtual Devices (AVDs) 11

Android Development Tools (ADT) 14

Creating Your First Android Application 17

Anatomy of an Android Application 24

Summary 27

CHAPTER 2: COMPONENTS OF AN ANDROID TABLET APPLICATION 29

Activities 29

Fragments 36

Adding Fragments Dynamically 41

Understanding the Life Cycle of a Fragment 44

Interactions between Fragments 48

Utilizing the Action Bar 52

Adding Action Items to the Action Bar 54

Customizing the Action Items and Application Icon 59

Summary 62

CHAPTER 3: ANDROID USER INTERFACE 65

Views and ViewGroups 65

LinearLayout 66

AbsoluteLayout 70

toc.indd ixtoc.indd ix 28/06/11 1:45 PM28/06/11 1:45 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

x

CONTENTS

TableLayout 72

RelativeLayout 74

FrameLayout 76

ScrollView 79

Basic Views 81

TextView View 81

Common Views 82

Fragments 91

ListFragment 91

DialogFragment 95

PreferenceFragment 99

Summary 104

PART II: PROJECTS

CHAPTER 4: CREATING LOCATION-BASED SERVICES APPLICATIONS 109

Displaying Maps 109

Creating the Project 110

Obtaining the Maps API Key 111

Displaying the Map 113

Displaying the Zoom Control 120

Changing Views 122

Navigating to a Specifi c Location 124

Adding Markers 127

Getting the Location That Was Touched 130

Geocoding and Reverse Geocoding 132

Getting Location Data 135

Summary 147

CHAPTER 5: SMS MESSAGING AND NETWORKING 151

SMS Messaging 152

Sending SMS Messages Programmatically 152

Getting Feedback after Sending the Message 156

Sending SMS Messages Using Intent 158

Receiving SMS Messages 159

Caveats and Warnings 170

Project: Building the Location Tracker Applications 171

Sending E-Mail 185

Networking 187

Downloading Binary Data 190

toc.indd xtoc.indd x 28/06/11 1:45 PM28/06/11 1:45 PM

xi

CONTENTS

Downloading Text Files 193

Accessing Web Services Using the GET Method 195

Performing Asynchronous Calls 200

Summary 201

CHAPTER 6: PUBLISHING ANDROID APPLICATIONS 205

Preparing for Publishing 205

Versioning 206

Digitally Signing Your Android Applications 208

Deploying APK Files 213

Using the adb.exe Tool 213

Using a Web Server 215

Publishing on the Android Market 217

Summary 223

PART III: APPENDICES

APPENDIX A: USING ECLIPSE FOR ANDROID DEVELOPMENT 229

Getting Around in Eclipse 229

Workspaces 229

Package Explorer 231

Using Projects from Other Workspaces 232

Editors 233

Perspectives 236

Auto Import of Namespaces 236

Code Completion 237

Refactoring 237

Debugging 238

Setting Breakpoints 239

Exceptions 241

APPENDIX B: USING THE ANDROID EMULATOR 243

Uses of the Android Emulator 243

Creating Snapshots 245

Installing Custom AVDs 246

Emulating Real Devices 247

SD Card Emulation 249

Emulating Devices with Diff erent Screen Sizes 250

Emulating Physical Capabilities 250

Sending SMS Messages to the Emulator 253

toc.indd xitoc.indd xi 28/06/11 1:45 PM28/06/11 1:45 PM

xii

CONTENTS

Making Phone Calls 255

Transferring Files into and out of the Emulator 256

Resetting the Emulator 258

APPENDIX C: ANSWERS TO EXERCISES 259

INDEX 263

toc.indd xiitoc.indd xii 28/06/11 1:45 PM28/06/11 1:45 PM

INTRODUCTION

I FIRST STARTED PLAYING WITH THE ANDROID SDK before it was offi cially released as a 1.0 release.
Back then, the tools were unpolished, the APIs in the SDK were unstable, and the documentation
was sparse. Fast forward two and a half years, Android is now a formidable mobile operating
system, with a following no less impressive that the iPhone. Having gone through all the growing
pains of Android, I think now is the best time to start learning about Android programming —
the APIs have stabilized and the tools have improved. But one thing remains: Getting started is
still an elusive goal for many. What’s more, Google has recently released their latest version of
the Android SDK — 3.0, for tablet development. The Android 3.0 SDK comes with several new
features for tablet developers, and understanding all these new features requires some effort on
the part of beginners. It was with this mission in mind that I was motivated to write a book that
beginning Android tablet programmers could appreciate, and one that would enable them to write
progressively sophisticated applications.

This book was written to help jump-start beginning Android developers, in particular developers
targeting tablet devices. It covers just enough for you to get started with tablet programming using
Android. You will learn the basics of the new features in Android 3.0. For a more comprehensive
overview of the various programming capabilities of Android, I suggest you look at my other book,
Beginning Android Application Development (Wrox, 2011).

To make the learning interesting, this book walks through the process of building two projects.
The fi rst project shows how to build a mapping application for your Android tablet. You will
be able to monitor your current location using the built-in GPS, cellular, and wireless network
connections. In addition, you will be able to view your location using the Google Maps. The second
project demonstrates how to build a pair of location tracker applications, allowing you to track
the geographical locations of other Android users through the use of SMS messaging. These two
projects serve as a solid starting point for building real-life tablet applications. Have fun!

WHO THIS BOOK IS FOR

This book is for the beginning Android tablet developer who wants to start developing tablet
applications using the Google’s Android 3.0 SDK. To truly benefi t from this book, you should
have some background in programming and at least be familiar with object-oriented programming
concepts. If you are totally new to Java — the language used for Android development — you might
want to take a programming course in Java programming fi rst, or grab one of many good books on
Java programming. In my experience, if you already know C# or VB.NET, learning Java is not too
much of an effort; you should be comfortable just following along with the Try It Out exercises.

For those totally new to programming, I know the lure of developing mobile apps and making some
money is simply too tempting to miss. However, I think a better starting point is learning the basics
of programming before attempting to try out the examples in this book.

Flast.indd xiiiFlast.indd xiii 28/06/11 1:41 PM28/06/11 1:41 PM

xiv

INTRODUCTION

WHAT THIS BOOK COVERS

This book covers the fundamentals of Android programming using the Android SDK. It is divided
into six chapters and three appendices.

Chapter 1: Getting Started with Android Programming for Tablets covers the basics of the Android
OS and its current state. You will learn about the features of Android devices, as well as some of
the popular devices on the market. You will then learn how to download all the required tools to
develop Android applications and then test them on the various types of Android emulators.

Chapter 2: Components of an Android Tablet Application covers the various parts that make up an
Android tablet application and some of the new features in Android 3.0 that are specifi cally designed
for tablet applications. In particular, you will learn about the fragment and Action Bar APIs new in
Android 3.0, and how you can make use of them to develop compelling tablet applications.

Chapter 3: Android User Interface covers the various components that make up the UI of an Android
application. You will learn about the different layouts you can use to build the UI of your application,
and the numerous events that are associated with the UI when users interact with the application.
You will also learn about the specialized fragments available for Android tablet applications.

Chapter 4: Creating Location-Based Services Applications shows how to make use of Google Maps in
your Android application, and how to manipulate it programmatically. In addition, you will learn how
to obtain your geographical location using the LocationManager class available in the Android SDK.
By the end of the chapter, you will have created a very cool Android tablet mapping project.

Chapter 5: SMS Messaging and Networking demonstrates how to send and receive SMS messages
programmatically from within your Android application. You will also learn how to use the HTTP
protocol to talk to web servers so that you can download text and binary data. The last part of
this chapter shows you how to parse XML fi les to extract the relevant parts of an XML fi le — a
technique that is useful if you are accessing Web services. By the end of this chapter, you will have
built a functional location tracker application!

Chapter 6: Publishing Android Applications discusses the various ways you can publish your
Android applications when you are ready. You will also learn about the steps to publishing and
selling your applications on the Android Market.

Appendix A: Using Eclipse for Android Development provides a quick run-through of the many
features in Eclipse.

Appendix B: Using the Android Emulator provides tips and tricks on using the Android emulator to
test your applications.

NOTE All the examples discussed in this book were written and tested using
version 2.x and 3.0 of the Android SDK. While every eff ort has been made to
ensure that all the tools used in this book are the latest, it is likely that by the
time you read this, a newer version of the tools may be available. As such, some
of the instructions/screenshots may diff er slightly. However, any changes should
be minimal and you should not have any problems following along.

Flast.indd xivFlast.indd xiv 28/06/11 1:41 PM28/06/11 1:41 PM

xv

INTRODUCTION

Appendix C: Answers to Exercises contains the solutions to the end-of-chapter exercises found in
every chapter.

HOW THIS BOOK IS STRUCTURED

This book breaks down the task of learning Android programming into several smaller chunks,
enabling you to digest each topic before delving into a more advanced one.

If you are a total beginner to Android programming, start with Chapter 1. Once you are
comfortable with the basics here, head on to the appendices to read more about Eclipse and the
Android emulator. When you are ready, you can continue with Chapter 2 and gradually move into
more advanced concepts.

A key feature of this book is that all the code samples in each chapter are independent of those
discussed in previous chapters. This gives you the fl exibility to dive into the topics that interest you
most and start working on the Try It Out projects.

WHAT YOU NEED TO USE THIS BOOK

All the examples in this book run on the Android emulator (which is included with the Android
SDK). However, to get the most out of this book, having a real Android device would be optimal
(though not absolutely necessary).

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

TRY IT OUT These Are Exercises or Examples for You to Follow

The Try It Out exercises appear once or more per chapter as exercises to work through as you follow
the text in the book.

 1. They usually consist of a set of numbered steps.

 2. Follow the steps through with your copy of the project fi les.

How It Works

After each Try It Out, the code you’ve typed is explained in detail.

As for other conventions in the text:

 ➤ New terms and important words are highlighted in italics when fi rst introduced.

 ➤ Keyboard combinations are treated like this: Control+R.

 ➤ Filenames, URLs, and code within the text are treated like so: persistence.properties.

Flast.indd xvFlast.indd xv 28/06/11 1:41 PM28/06/11 1:41 PM

xvi

INTRODUCTION

Code is presented in two different ways:

We use a monofont type with no highlighting for most code examples.

We use bold to emphasize code that is of particular importance in the
present context.

WARNING Boxes like this one hold important, not-to-be forgotten information
that is directly relevant to the surrounding text.

NOTE Notes, tips, hints, tricks, and asides to the current discussion look
like this.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code
manually or to use the source code fi les that accompany the book. All the source code used in this
book is available for download at www.wrox.com. When at the site, simply locate the book’s title
(use the Search box or one of the title lists) and click the Download Code link on the book’s detail
page to obtain all the source code for the book.

NOTE Because many books have similar titles, you may fi nd it easiest to search
by ISBN; this book’s ISBN is 978-1-118-10673-0.

Code that is included on the website is highlighted by the following CodeNote:

code snippet fi lename

After you download the code, just decompress it with your favorite compression tool. Alternatively,
go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to see
the code available for this book and all other Wrox books.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you fi nd an error in one of our books, such as a spelling mistake or a
faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may save
another reader hours of frustration and at the same time help us provide even higher-quality information.

Flast.indd xviFlast.indd xvi 28/06/11 1:41 PM28/06/11 1:41 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://www.wrox.com
http://www.wrox.com

xvii

INTRODUCTION

To fi nd the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you
can view all errata that has been submitted for this book and posted by Wrox editors.

NOTE A complete book list, including links to each book’s errata, is also available
at www.wrox.com/misc-pages/booklist.shtml.

NOTE You can read messages in the forums without joining P2P, but in order to
post your own messages, you must join.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll check
the information and, if appropriate, post a message to the book’s errata page and fi x the problem in
subsequent editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics
of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

At p2p.wrox.com, you will fi nd a number of different forums that will help you not only as you read
this book but also as you develop your own applications. To join the forums, just follow these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join as well as any optional information you want to
provide and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and
complete the joining process.

After you join, you can post new messages and respond to messages that other users post. You
can read messages at any time on the Web. If you want to have new messages from a particular forum
e-mailed to you, click the Subscribe to This Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers
to questions about how the forum software works as well as for many common questions specifi c to
P2P and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

Flast.indd xviiFlast.indd xvii 28/06/11 1:41 PM28/06/11 1:41 PM

http://www.wrox.com
http://www.wrox.com
http://www.wrox.com

Flast.indd xviiiFlast.indd xviii 28/06/11 1:41 PM28/06/11 1:41 PM

PART I

Quick Tour of Android 3 for Tablets

 � CHAPTER 1: Getting Started with Android Programming for Tablets

 � CHAPTER 2: Components of an Android Tablet Application

 � CHAPTER 3: Android User Interface

C01.indd 1C01.indd 1 28/06/11 12:32 PM28/06/11 12:32 PM

C01.indd 2C01.indd 2 28/06/11 12:32 PM28/06/11 12:32 PM

Getting Started with Android
Programming for Tablets

WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ What is Android?

 ➤ Android versions and its feature set

 ➤ The Android architecture

 ➤ The various Android devices on the market

 ➤ The Android Market application store

 ➤ How to obtain the tools and SDK for developing

Android applications

 ➤ How to develop your fi rst Android application

Welcome to the world of Android! When I was writing my fi rst book on Android (which was
just a couple of months ago), I stated that Android was ranked second in the U.S. smartphone
market, second to Research In Motion’s (RIM) BlackBerry, and overtaking Apple’s iPhone.
Shortly after the book went to press, comScore (a global leader in measuring the digital world
and the preferred source of digital marketing intelligence) reported that Android has overtaken
BlackBerry as the most popular smartphone platform in the U.S.

Indeed. With Google’s recent introduction of Android 3.0, code-named Honeycomb, it’s
a perfect time to start learning about Android programming. In my fi rst book, Beginning
Android Application Development (Wrox, 2011), I focused on getting readers started with the
building blocks of Android programming, with particular emphasis on developing applications
for Android smartphone applications. With the release of Android 3.0, Google’s focus in
this new SDK is the introduction of several new features designed for wide-screen devices,

1

C01.indd 3C01.indd 3 28/06/11 12:32 PM28/06/11 12:32 PM

4 ❘ CHAPTER 1 GETTING STARTED WITH ANDROID PROGRAMMING FOR TABLETS

specifi cally tablets. This focus was the impetus behind the book you are currently holding. Therefore,
it also focuses on the various features that are specifi c to wide-screen devices, and contains enough
information that can get you jumpstarted with Android tablet development quickly. Readers who
want more comprehensive coverage on Android development in general should start with my
Beginning Android Application Development book fi rst, and then read this book for information
on designing for tablets.

In this chapter you will learn what Android is, and what makes it so compelling to both
developers and device manufacturers alike. You will also get started with developing your fi rst
Android application, and learn how to obtain all the necessary tools and set them up so that you
can test your application on an Android 3.0 tablet emulator. By the end of this chapter, you will be
equipped with the basic knowledge you need to explore more sophisticated techniques and tricks for
developing your next killer Android tablet application.

WHAT IS ANDROID?

Android is a mobile operating system that is based on a modifi ed version of Linux. It was originally
developed by a startup of the same name, Android, Inc. In 2005, as part of its strategy to enter
the mobile space, Google purchased Android and took over its development work (as well as its
development team).

Google wanted Android to be open and free; hence, most of the Android code was released under
the open-source Apache License, which means that anyone who wants to use Android can do so by
downloading the full Android source code. Moreover, vendors (typically hardware manufacturers)
can add their own proprietary extensions to Android and customize Android to differentiate their
products from others. This simple development model makes Android very attractive and has
thus piqued the interest of many vendors. This has been especially true for companies affected by
the phenomenon of Apple’s iPhone, a hugely successful product that revolutionized the smartphone
industry. Such companies include Motorola and Sony Ericsson, which for many years have been
developing their own mobile operating systems. When the iPhone was launched, many of these
manufacturers had to scramble to fi nd new ways to revitalize their products. These manufacturers
see Android as a solution — they will continue to design their own hardware and use Android as the
operating system that powers it.

The main advantage of adopting Android is that it offers a unifi ed approach to application
development. Developers need only develop for Android, and their applications should be able
to run on numerous different devices, as long as the devices are powered using Android. In the
world of smartphones, applications are the most important part of the success chain. Device
manufacturers therefore see Android as their best hope to challenge the onslaught of the iPhone,
which already commands a large base of applications.

Android Versions

Android has gone through quite a number of updates since its fi rst release. Table 1-1 shows the
various versions of Android and their codenames.

C01.indd 4C01.indd 4 28/06/11 12:32 PM28/06/11 12:32 PM

What Is Android? ❘ 5

In February 2011, Google released Android 3.0, a tablet-only release supporting wide-screen
devices. The key changes in Android 3.0 are as follows:

 ➤ New user interface optimized for tablets

 ➤ 3D desktop with new widgets

 ➤ Refi ned multi-tasking

 ➤ New web browser features, such as tabbed browsing, form auto-fi ll, bookmark syncing,
and private browsing

 ➤ Support for multicore processors

Applications written for versions of Android prior to 3.0 are compatible with Android 3.0 devices, and
they run without modifi cations. Android 3.0 tablet applications that make use of the newer features
available in 3.0, on the other hand, will not be able to run on older devices. If you want to ensure that
an Android tablet application is able to run on all versions of devices, you must programmatically
ensure that you only make use of features that are supported in specifi c versions of Android. To do
so, you can make use of the android.os.Build.VERSION.SDK constant. The following code snippet
shows how you can determine the version of the device during runtime:

 int version =
 Integer.parseInt(android.os.Build.VERSION.SDK);
 switch (version) {
 case 8:
 //---use features specific to Android 2.2---
 break;
 case 9:
 //---use features specific to Android 2.3.1---
 break;
 case 10:
 //---use features specific to Android 2.3.3---
 break;

TABLE 1-1: A Brief History of Android Versions

ANDROID VERSION RELEASE DATE CODENAME

1.1 9 February 2009

1.5 30 April 2009 Cupcake

1.6 15 September 2009 Donut

2.0/2.1 26 October 2009 Eclair

2.2 20 May 2010 Froyo

2.3 6 December 2010 Gingerbread

3.0 22 February 2011 Honeycomb

C01.indd 5C01.indd 5 28/06/11 12:32 PM28/06/11 12:32 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

6 ❘ CHAPTER 1 GETTING STARTED WITH ANDROID PROGRAMMING FOR TABLETS

 case 11:
 //---use features specific to Android 3.0---
 break;
 }

Android Devices in the Market

Android devices come in all shapes and sizes. As of late May 2010, the Android OS powers all of
the following types of devices:

 ➤ Smartphones

 ➤ Tablets

 ➤ E-reader devices

 ➤ Netbooks

 ➤ MP4 players

 ➤ Internet TVs

Increasingly, manufacturers are rushing out to release Android tablets. Tablet sizes typically start
at seven inches, measured diagonally. Figure 1-1 shows the Samsung Galaxy Tab (top), a seven-inch
tablet, and the Dell Streak (bottom), a fi ve-inch tablet.

While the Samsung Galaxy Tab and the Dell Streak run the older Android 2.x, the newer tablets
run the latest Android 3.0 Honeycomb. Figure 1-2 shows the Motorola Xoom.

FIGURE 1-1 FIGURE 1-2

C01.indd 6C01.indd 6 28/06/11 12:32 PM28/06/11 12:32 PM

Obtaining the Required Tools ❘ 7

Besides the Motorola Xoom, the LG Optimus
Pad, shown in Figure 1-3, is another Android 3.0
device, running the latest Android Honeycomb OS.

The Android Market

As mentioned earlier, one of the main factors
determining the success of a smartphone platform
is the applications that support it. It is clear from
the success of the iPhone that applications play
a very vital role in determining whether a new
platform swims or sinks. In addition, making
these applications accessible to the general user is
extremely important.

As such, in August 2008, Google announced the
Android Market, an online application store for Android devices, and made it available to users in
October 2008. Using the Market application that is preinstalled on their Android device, users can
simply download third-party applications directly onto their devices. Both paid and free applications
are supported on the Android Market, though paid applications are available only to users in certain
countries due to legal issues.

Similarly, in some countries, users can buy paid applications from the Android Market, but
developers cannot sell in that country. As an example, at the time of writing, users in India can buy
apps from the Android Market, but developers in India cannot sell apps on the Android Market.
The reverse may also be true; for example, users in South Korea cannot buy apps on the Android
Market, but developers in South Korea can sell apps on it.

OBTAINING THE REQUIRED TOOLS

Naturally, you are anxious to get your hands dirty and start writing some applications! Before you
write your fi rst tablet application, however, you need to download the required tools and SDKs.

For Android development, you can use a Mac, a Windows PC, or a Linux machine. All the tools
needed are free and can be downloaded from the Web. All the examples provided in this book will
work fi ne with the Android emulator.

FIGURE 1-3

 NOTE This book uses a Windows 7 computer to demonstrate all the code samples.
If you are using a Mac or a Linux computer, the screenshots should look similar; minor
diff erences may be present, but you should be able to follow along without problems.

So, let the fun begin!

Java JDK

The Android SDK makes use of the Java SE Development Kit (JDK). Hence, if your computer does
not have the JDK installed, you should start off by downloading the JDK from www.oracle.com/

C01.indd 7C01.indd 7 28/06/11 12:32 PM28/06/11 12:32 PM

8 ❘ CHAPTER 1 GETTING STARTED WITH ANDROID PROGRAMMING FOR TABLETS

technetwork/java/javase/downloads/index.html and installing it prior to moving to the
next section.

Eclipse

The fi rst step toward developing any applications is obtaining the integrated development environment
(IDE). In the case of Android, the recommended IDE is Eclipse, a multi-language software development
environment featuring an extensible plug-in system. It can be used to develop various types of
applications, using languages such as Java, Ada, C, C++, COBOL, Python, and others.

For Android development, you should download the Eclipse IDE for Java EE Developers (www
.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/heliossr1). Six
editions are available: Windows (32 and 64-bit), Mac OS X (Cocoa 32 and 64), and Linux (32 and
64-bit). Simply select the relevant one for your operating system. All the examples in this book were
tested using the 32-bit version of Eclipse for Windows.

Once the Eclipse IDE is downloaded, unzip its contents (the eclipse folder) into a folder, say
C:\Android\.

Downloading the Android SDK

The next important piece of software you need to download is, of course, the Android SDK. The
Android SDK contains a debugger, libraries, an emulator, documentation, sample code, and tutorials.

You can download the Android SDK from http://developer.android.com/sdk/index.html
(see Figure 1-4).

FIGURE 1-4

C01.indd 8C01.indd 8 28/06/11 12:32 PM28/06/11 12:32 PM

Obtaining the Required Tools ❘ 9

For Windows users, there are two ways in
which you can download the Android
SDK — either you download the entire
Android SDK package — android-sdk_
r10-windows.zip or you can download
the SDK installer — installer_
r10-windows.zip. For beginning Android
developers, I strongly encourage you to
download the latter, as it makes it very easy
for you to get started.

Once the installer_r10-windows.zip
package is downloaded, double-click on it
to start the installation process. It will fi rst
detect whether the JDK is installed and
will only continue if it fi nds one installed
on your computer. Next, you will be asked
to choose a destination folder for installing
the SDK (see Figure 1-5). Remember the
path to this folder because you need to use
it later.

Click Next to continue.

You will next be asked to choose a Start
Menu folder to install the Android SDK
shortcut. Use the default Android
SDK Tools folder and click Install. When
the installation is complete, click Finish
(see Figure 1-6). Doing so will start the
SDK Manager, which downloads all
the necessary packages for you to test your
Android applications.

Installing the Packages

When the SDK Manager is started, it fi rst checks for the packages that are available for installation.
The packages contain the documentation and SDK specifi c to each version of the Android OS. They
also contain sample code and tools for the various platforms.

Figure 1-7 shows the various SDK packages that you can install on your computer. Double-click
on each package name to select or deselect a package. If you are not sure which packages

FIGURE 1-5

FIGURE 1-6

C01.indd 9C01.indd 9 28/06/11 12:32 PM28/06/11 12:32 PM

10 ❘ CHAPTER 1 GETTING STARTED WITH ANDROID PROGRAMMING FOR TABLETS

to install, you might want to select the Accept All radio button to download and install all
the packages.

Click Install to proceed with the downloading and installation of the various selected
packages.

FIGURE 1-7

Each version of the Android OS is identifi ed by an API level number. For example, Android 3.0 is
level 11 (API 11), while Android 2.3.3 is level 10 (API 10), and so on. For each level, two platforms
are available. For example, level 11 offers the following:

 ➤ SDK Platform Android 3.0

 ➤ Google APIs by Google Inc., Android API 11, revision 1

The key difference between the two is that the Google APIs platform contains the Google Maps
library. Therefore, if the application you are writing requires Google Maps, you need to create an
AVD using the Google APIs platform.

Downloading and installing the packages takes some time, so you have to be patient. When all
the packages are installed, click Close. You should now see a listing of all the packages installed
(see Figure 1-8).

C01.indd 10C01.indd 10 28/06/11 12:32 PM28/06/11 12:32 PM

Obtaining the Required Tools ❘ 11

Creating Android Virtual Devices (AVDs)

Once the packages are downloaded and installed, the next step is to create an Android Virtual
Device (AVD) to be used for testing your Android applications. An AVD is an emulator instance
that enables you to model an actual device. Each AVD consists of a hardware profi le, a mapping to a
system image, as well as emulated storage, such as a secure digital (SD) card.

You can create as many AVDs as you want in order to test your applications with several different
confi gurations. This testing is important to confi rm that your application behaves as expected when
it is run on different devices with varying capabilities.

FIGURE 1-8

 NOTE Appendix B discusses some of the capabilities of the Android emulator.

To create an AVD, select the Virtual Devices item in the left pane of the Android SDK and AVD
Manager window (see Figure 1-9).

C01.indd 11C01.indd 11 28/06/11 12:32 PM28/06/11 12:32 PM

12 ❘ CHAPTER 1 GETTING STARTED WITH ANDROID PROGRAMMING FOR TABLETS

Then click the New… button located in the right pane of the window. In the Create new Android
Virtual Device (AVD) window, enter the items as shown in Figure 1-10. Click the Create AVD
button when you are done.

FIGURE 1-9

FIGURE 1-10

C01.indd 12C01.indd 12 28/06/11 12:32 PM28/06/11 12:32 PM

Obtaining the Required Tools ❘ 13

In this case, you have created an AVD (put simply, an Android emulator) that emulates an Android
device running version 3.0 of the OS. In addition to what you have created, you also have the option
to emulate the device with an SD card and different screen densities and resolutions.

NOTE Appendix B explains how to emulate the diff erent types of Android devices.

It is preferable to create a few AVDs with different API levels so that your application can be tested
on different devices. To emulate the Motorola Xoom, you should choose the “Google APIs (Google
Inc.) – API Level 11” target.

To see what the Android emulator looks like, select the AVD you have just created and click the
Start… button. Figure 1-11 shows the Android 3.0 emulator.

Click and move the lock icon to touch a circle that appears when you move the mouse. This unlocks
the emulator. Figure 1-12 shows the main window of the Android 3.0 screen.

FIGURE 1-11

C01.indd 13C01.indd 13 28/06/11 12:32 PM28/06/11 12:32 PM

14 ❘ CHAPTER 1 GETTING STARTED WITH ANDROID PROGRAMMING FOR TABLETS

Clicking the Apps icon on the top-right corner of the screen reveals a list of installed applications on
the device (see Figure 1-13).

FIGURE 1-12

FIGURE 1-13

Android Development Tools (ADT)

With the Android SDK and AVD set up, it is now time to confi gure Eclipse to recognize the Android
project template. The Android Development Tools (ADT) plug-in for Eclipse is an extension to the

C01.indd 14C01.indd 14 28/06/11 12:32 PM28/06/11 12:32 PM

Obtaining the Required Tools ❘ 15

Eclipse IDE that supports the creation and debugging of Android applications. Using the ADT, you
will be able to do the following in Eclipse:

 ➤ Create new Android application projects

 ➤ Access the tools for accessing your Android emulators and devices

 ➤ Compile and debug Android applications

 ➤ Export Android applications into Android Packages (APKs)

 ➤ Create digital certifi cates for code-signing your APK

To install the ADT, fi rst launch Eclipse by double-clicking the
eclipse.exe fi le located in the eclipse folder.

When Eclipse is fi rst started, you are prompted for a folder to
use as your workspace. In Eclipse, a workspace is a folder where
you store all your projects. Take the default suggestion and
click OK.

Once Eclipse is up and running, select the Help ➪ Install New
Software… menu item (see Figure 1-14).

In the Install window that appears, type http://dl-ssl.google.com/
android/eclipse in the topmost text box (see Figure 1-15) and press Enter.

FIGURE 1-14

FIGURE 1-15

After a while, you will see the Developer Tools item appear in the middle of the window
(see Figure 1-16). Expand it and it will reveal its contents: Android DDMS, Android Development
Tools, Android Hierarchy Viewer, and Android Traceview. Check all of them and click Next.

C01.indd 15C01.indd 15 28/06/11 12:32 PM28/06/11 12:32 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

16 ❘ CHAPTER 1 GETTING STARTED WITH ANDROID PROGRAMMING FOR TABLETS

When you see the Install Details window, shown in Figure 1-17, click Next.

FIGURE 1-16

FIGURE 1-17

C01.indd 16C01.indd 16 28/06/11 12:32 PM28/06/11 12:32 PM

Creating Your First Android Application ❘ 17

You will be asked to review the licenses for the tools. Check the option to accept the license
agreements (see Figure 1-18). Click Finish to continue.

Eclipse proceeds to download the tools from the Internet and install them. This takes some time, so
be patient.

FIGURE 1-18

Once the ADT is installed, you will be prompted to restart Eclipse.
After doing so, select Window ➪ Preferences (see Figure 1-19).

In the Preferences window that appears, select Android. Enter
the location of the Android SDK folder (that you supplied earlier
when you downloaded and installed the Android SDK). Click OK.

CREATING YOUR FIRST ANDROID APPLICATION

With all the tools and the SDK downloaded and installed, it is now time
to start your engine! As in all programming books, the fi rst example uses
the ubiquitous Hello World application. This will enable you to have a
detailed look at the various components that make up an Android project.

 NOTE If you have any problems downloading the ADT, check out Google’s help
at http://developer.android.com/sdk/eclipse-adt.html#installing.

FIGURE 1-19

C01.indd 17C01.indd 17 28/06/11 12:32 PM28/06/11 12:32 PM

18 ❘ CHAPTER 1 GETTING STARTED WITH ANDROID PROGRAMMING FOR TABLETS

TRY IT OUT Creating Your First Android Application

codefi le HelloWorld.zip available for download at Wrox.com

1. Using Eclipse, create a new project by selecting File ➪ New ➪ Project… (see Figure 1-20).

NOTE After you have created your fi rst Android application, subsequent
Android projects can be created by selecting File ➪ New ➪ Android Project.

2. Expand the Android folder and select Android Project (see Figure 1-21).

FIGURE 1-21

FIGURE 1-20

C01.indd 18C01.indd 18 28/06/11 12:32 PM28/06/11 12:32 PM

Creating Your First Android Application ❘ 19

NOTE You need to have at least a period (.) in the package name. The
recommended convention for the package name is to use your domain name
in reverse order, followed by the project name. For example, my company’s
domain name is learn2develop.net, hence my package name would be net
.learn2develop.HelloWorld.

3. Name the Android project as shown in Figure 1-22 and then click Finish.

FIGURE 1-22

4. The Eclipse IDE should now look like Figure 1-23.

C01.indd 19C01.indd 19 28/06/11 12:32 PM28/06/11 12:32 PM

20 ❘ CHAPTER 1 GETTING STARTED WITH ANDROID PROGRAMMING FOR TABLETS

 5. In the Package Explorer (located on the left of the Eclipse IDE), expand the HelloWorld project
by clicking the various arrows displayed to the left of each item in the project. In the res/layout
folder, double-click the main.xml fi le (see Figure 1-24).

FIGURE 1-23

FIGURE 1-24

C01.indd 20C01.indd 20 28/06/11 12:32 PM28/06/11 12:32 PM

Creating Your First Android Application ❘ 21

NOTE Some Eclipse installations have an irritating bug: After creating a
new project, Eclipse reports that it contains errors when you try to debug the
application. This happens even when you have not modifi ed any fi les or folders
in the project. To solve this problem, simply delete the R.java fi le located under
the gen/net.learn2develop.HelloWorld folder; Eclipse will automatically
generate a new R.java fi le for you. Once this is done, the project shouldn’t
contain any errors.

6. The main.xml fi le defi nes the user interface (UI) of your application. The default view is the
Layout view, which lays out the activity graphically. To modify the UI, click the main.xml tab
located at the bottom.

7. Add the following code in bold to the main.xml fi le:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent” >

<TextView
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/hello” />

<TextView
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”This is my first Android Application!” />

<Button
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”And this is a clickable button!” />

</LinearLayout>

 8. To save the changes made to your project, press Ctrl+s.

 9. You are now ready to test your application on the Android emulator.
Select the project name in Eclipse and press F11. You will be asked
to select a way to debug the application. Select Android Application as
shown in Figure 1-25 and click OK. FIGURE 1-25

C01.indd 21C01.indd 21 28/06/11 12:32 PM28/06/11 12:32 PM

22 ❘ CHAPTER 1 GETTING STARTED WITH ANDROID PROGRAMMING FOR TABLETS

 10. The Android emulator will now be started (if the emulator is locked, you need to slide the unlock
button to unlock it fi rst). Figure 1-26 shows the application running on the Android emulator.

 11. Click the Home button (the house icon in the lower-left corner above the keyboard) so that it now
shows the Home screen (see Figure 1-27).

FIGURE 1-27

FIGURE 1-26

C01.indd 22C01.indd 22 28/06/11 12:32 PM28/06/11 12:32 PM

Creating Your First Android Application ❘ 23

TABLE 1-2: Project Files Created By Default

PROPERTIES DESCRIPTION

Project name The name of the project.

Application name A user-friendly name for your application.

Package name The name of the package. You should use a reverse domain name

for this.

Create Activity The name of the fi rst activity in your application.

Min SDK Version The minimum version of the SDK that your project is targeting.

 12. Click the Apps icon to display the list of applications installed on the device. Note that the
HelloWorld application is now installed in the application launcher (see Figure 1-28).

How It Works

To create an Android project using Eclipse, you need to supply the information shown in Table 1-2.

FIGURE 1-28

C01.indd 23C01.indd 23 28/06/11 12:32 PM28/06/11 12:32 PM

24 ❘ CHAPTER 1 GETTING STARTED WITH ANDROID PROGRAMMING FOR TABLETS

ANATOMY OF AN ANDROID APPLICATION

Now that you have created your fi rst Hello World Android
application, it is time to dissect the innards of the Android project
and examine all the parts that make everything work.

First, note the various fi les that make up an Android project in the
Package Explorer in Eclipse (see Figure 1-29).

The various folders and their fi les are as follows:

 ➤ src — Contains the .java source fi les for your project. In
this example, there is one fi le, MainActivity.java. The
MainActivity.java fi le is the source fi le for your activity.
You will write the code for your application in this fi le.

 ➤ Android 3.0 library — This item contains one fi le,
android.jar, which contains all the class libraries needed
for an Android application.

 ➤ gen — Contains the R.java fi le, a compiler-generated fi le
that references all the resources found in your project. You
should not modify this fi le.

 ➤ assets — This folder contains all the assets used by your
application, such as HTML, text fi les, databases, etc.

 ➤ res — This folder contains all the resources used in
your application. It also contains a few other subfolders:
drawable-<resolution>, layout, and values.

 ➤ AndroidManifest.xml — This is the manifest fi le for your Android application. Here you
specify the permissions needed by your application, as well as other features (such as intent-
fi lters, receivers, etc.).

In Android, an activity is a window that contains the user interface of your applications. An application
can have zero or more activities; in this example, the application contains one activity: MainActivity.
This MainActivity is the entry point of the application, which is displayed when the application is
started. Chapter 2 discusses activities in more detail.

In this simple example, you modifi ed the main.xml fi le to display the string “This is my fi rst Android
Application!” and a button. The main.xml fi le contains the user interface of the activity, which is
displayed when MainActivity is loaded.

When you debug the application on the Android emulator, the application is automatically installed on
the emulator. And that’s it — you have developed your fi rst Android tablet application!

The next section unravels how all the various fi les in your Android project work together to make your
application come alive.

FIGURE 1-29

C01.indd 24C01.indd 24 28/06/11 12:32 PM28/06/11 12:32 PM

Anatomy of an Android Application ❘ 25

The main.xml fi le defi nes the user interface for your activity. Observe the following in bold:

<TextView
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/hello” />

The @string in this case refers to the strings.xml fi le located in the res/values folder. Hence,
@string/hello refers to the hello string defi ned in the strings.xml fi le, which is “Hello World,
MainActivity!”:

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
 <string name=”hello”>Hello World, MainActivity!</string>
 <string name=”app_name”>HelloWorld</string>
</resources>

It is recommended that you store all the string constants in your application in this strings.xml fi le
and reference these strings using the @string identifi er. That way, if you ever need to localize your
application to another language, all you need to do is replace the strings stored in the strings.xml
fi le with the targeted language and recompile your application.

Observe the content of the AndroidManifest.xml fi le:

<?xml version=”1.0” encoding=”utf-8”?>
<manifest xmlns:android=”http://schemas.android.com/apk/res/android”
 package=”net.learn2develop.HelloWorld”
 android:versionCode=”1”
 android:versionName=”1.0”>
 <uses-sdk android:minSdkVersion=”11” />
 <application android:icon=”@drawable/icon”
 android:label=”@string/app_name”>
 <activity android:name=”.MainActivity”
 android:label=”@string/app_name”>
 <intent-filter>
 <action android:name=”android.intent.action.MAIN” />
 <category android:name=”android.intent.category.LAUNCHER” />
 </intent-filter>
 </activity>
 </application>
</manifest>

The AndroidManifest.xml fi le contains detailed information about the application:

 ➤ It defi nes the package name of the application as net.learn2develop.HelloWorld.

 ➤ The version code of the application is 1. This value is used to identify the version number of
your application. It can be used to programmatically determine whether an application needs
to be upgraded.

 ➤ The version name of the application is 1.0. This string value is mainly used for display to the
user. You should use the format: <major>.<minor>.<point> for this value.

 ➤ The application uses the image named icon.png located in the drawable folder.

C01.indd 25C01.indd 25 28/06/11 12:32 PM28/06/11 12:32 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

26 ❘ CHAPTER 1 GETTING STARTED WITH ANDROID PROGRAMMING FOR TABLETS

 ➤ The name of this application is the string named app_name defi ned in the strings.xml fi le.

 ➤ There is one activity in the application, represented by the MainActivity.java fi le. The
label displayed for this activity is the same as the application name.

 ➤ Within the defi nition for this activity, there is an element named <intent-filter>:

 ➤ The action for the intent fi lter is named android.intent.action.MAIN to indicate
that this activity serves as the entry point for the application.

 ➤ The category for the intent fi lter is named android.intent.category.LAUNCHER
to indicate that the application can be launched from the device’s Launcher icon.
Chapter 2 discusses intents in more details.

 ➤ Finally, the android:minSdkVersion attribute of the <uses-sdk> element specifi es the
minimum version of the OS on which the application will run.

As you add more fi les and folders to your project, Eclipse automatically generates the content of
R.java, which at the moment contains the following:

package net.learn2develop.HelloWorld;

public final class R {
 public static final class attr {
 }
 public static final class drawable {
 public static final int icon=0x7f020000;
 }
 public static final class layout {
 public static final int main=0x7f030000;
 }
 public static final class string {
 public static final int app_name=0x7f040001;
 public static final int hello=0x7f040000;
 }
}

You are not supposed to modify the content of the R.java fi le; Eclipse automatically generates the
content for you when you modify your project.

NOTE If you delete R.java manually, Eclipse regenerates it for you immediately.
Note that in order for Eclipse to generate the R.java fi le for you, the project must
not contain any errors. If you realize that Eclipse has not regenerated R.java
after you have deleted it, check your project again. The code may contain syntax
errors, or your XML fi les (such as AndroidManifest.xml, main.xml, etc.) may not
be well formed.

C01.indd 26C01.indd 26 28/06/11 12:32 PM28/06/11 12:32 PM

Summary ❘ 27

Finally, the code that connects the activity to the UI (main.xml) is the setContentView() method,
which is in the MainActivity.java fi le:

package net.learn2develop.HelloWorld;

import android.app.Activity;
import android.os.Bundle;

public class MainActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
}

Here, R.layout.main refers to the main.xml fi le located in the res/layout folder. As you add
additional XML fi les to the res/layout folder, the fi lenames are automatically generated in the
R.java fi le. The onCreate() method is one of many methods that are fi red when an activity is
loaded. Chapter 2 discusses the life cycle of an activity in more detail.

SUMMARY

This chapter provided a brief overview of Android, and highlighted some of its capabilities. If you
have followed the sections on downloading the tools and SDK, you should now have a working
system — one that is capable of developing more interesting Android applications than the Hello
World application. In the next chapter, you will learn about activities and some of the new features
in Android 3.0.

EXERCISES

 1. What is an AVD?

 2. What is the diff erence between the android:versionCode and android:versionName attributes

in the AndroidManifest.xml fi le?

 3. What is the purpose of the strings.xml fi le?

Answers to the Exercises can be found in Appendix C.

C01.indd 27C01.indd 27 28/06/11 12:32 PM28/06/11 12:32 PM

28 ❘ CHAPTER 1 GETTING STARTED WITH ANDROID PROGRAMMING FOR TABLETS

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Android OS Android is an open-source mobile operating system based on the Linux

operating system. It is available to anyone who wants to adapt it to run on

their own devices.

Languages used for

Android application

development

You use the Java programming language to develop Android applications.

Android Market The Android Market hosts all the various Android applications written by

third-party developers.

Tools for Android

application

development

Eclipse IDE, Android SDK, and the ADT

Activity An activity is represented by a screen in your Android application. Each

application can have zero or more activities.

The Android

manifest fi le

The AndroidManifest.xml fi le contains detailed confi guration information

for your application. As your application becomes more sophisticated as

you progress through the chapters, you modify this fi le and learn about the

diff erent information you can add to it.

C01.indd 28C01.indd 28 28/06/11 12:32 PM28/06/11 12:32 PM

Components of an Android
Tablet Application

WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ What are activities in Android?

 ➤ The new Fragments feature in Android 3.0 for Tablets

 ➤ The new Action Bar in Android 3.0 applications

In the previous chapter, you learned how to obtain the latest version of the Android SDK, how
to start developing your fi rst Android tablet application using Eclipse, and how to test it on
the Android emulator. In this chapter, you will learn the various components that make up an
Android tablet application and some of the new features in Android 3.0 that are specifi cally
designed for tablet applications. In particular, you will learn about the new fragment and
Action Bar APIs in Android 3.0, and how you can use them to develop compelling tablet
applications.

ACTIVITIES

In Android, an activity is a window that contains the user interface for your application, and
users interact directly with the activities of your applications.

2

NOTE If you are new to Android programming, I suggest you read my book
Beginning Android Application Development (also from Wrox, 2011) to get
acquainted with the basic concepts of activities and intents.

C02.indd 29C02.indd 29 28/06/11 12:33 PM28/06/11 12:33 PM

30 ❘ CHAPTER 2 COMPONENTS OF AN ANDROID TABLET APPLICATION

To create an activity, you create a Java class that extends the Activity base class:

package net.learn2develop.Activities;

import android.app.Activity;
import android.os.Bundle;

public class MainActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
}

Your activity class would then load its UI component using the XML fi le defi ned in your res/
layout folder of the project. In this example, you would load the UI from the main.xml fi le:

 setContentView(R.layout.main);

Every activity you have in your application must be declared in your AndroidManifest.xml fi le,
like this:

<?xml version=”1.0” encoding=”utf-8”?>
<manifest xmlns:android=”http://schemas.android.com/apk/res/android”
 package=”net.learn2develop.Activities”
 android:versionCode=”1”
 android:versionName=”1.0”>
 <application android:icon=”@drawable/icon”
 android:label=”@string/app_name”>
 <activity android:name=”.MainActivity”
 android:label=”@string/app_name”>
 <intent-filter>
 <action android:name=”android.intent.action.MAIN” />
 <category
 android:name=”android.intent.category.LAUNCHER” />
 </intent-filter>
 </activity>
 </application>
 <uses-sdk android:minSdkVersion=”11” />
</manifest>

The Activity base class defi nes a series of events that governs the life cycle of an activity. The
Activity class defi nes the following events:

 ➤ onCreate() — Called when the activity is fi rst created

 ➤ onStart() — Called when the activity becomes visible to the user

 ➤ onResume() — Called when the activity starts interacting with the user

 ➤ onPause() — Called when the current activity is being paused and the previous activity is
being resumed

C02.indd 30C02.indd 30 28/06/11 12:33 PM28/06/11 12:33 PM

Activities ❘ 31

 ➤ onStop() — Called when the activity is no longer visible to the user

 ➤ onDestroy() — Called before the activity is destroyed by the system (either manually or by
the system) to conserve memory

 ➤ onRestart() — Called when the activity has been stopped and is restarting again

By default, the activity created for you contains the onCreate() event. Within this event handler is
the code that helps to display the UI elements of your screen.

Figure 2-1 shows the life cycle of an activity and the various stages it goes through — from when the
activity is started until it ends.

Activity
starts

Activity is
shut down

Process is
killed

Activity is
running

onCreate()

onStart() onRestart()

onResume()

onPausev()

onStop()

onDestroy()

Another activity comes
in front of the activity

The activity is no
longer visible

Other applications
need memory

The activity comes
to the foreground

The activity comes
to the foreground

User navigates
back to the activity

Image reproduced from work created and shared by the Android Open

Source Project and used according to terms described in the Creative

Commons 2.5 Attribution License. See http://developer.android.com

/reference/android/app/Activity.html

FIGURE 2-1

C02.indd 31C02.indd 31 28/06/11 12:33 PM28/06/11 12:33 PM

32 ❘ CHAPTER 2 COMPONENTS OF AN ANDROID TABLET APPLICATION

The best way to understand the various stages of an activity is to create a new project, implement
the various events, and then subject the activity to various user interactions.

TRY IT OUT Exploring the Life Cycle of an Activity

codefi le Activities.zip available for download at Wrox.com

 1. Using Eclipse, create a new Android project and name it as shown in Figure 2-2.

FIGURE 2-2

C02.indd 32C02.indd 32 28/06/11 12:33 PM28/06/11 12:33 PM

Activities ❘ 33

 2. In the MainActivity.java fi le, add the following statements in bold:

package net.learn2develop.Activities;

import android.app.Activity;
import android.os.Bundle;

import android.util.Log;

public class MainActivity extends Activity {
 String tag = “Events”;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 Log.d(tag, “In the onCreate() event”);
 }
 public void onStart()
 {
 super.onStart();
 Log.d(tag, “In the onStart() event”);
 }
 public void onRestart()
 {
 super.onRestart();
 Log.d(tag, “In the onRestart() event”);
 }
 public void onResume()
 {
 super.onResume();
 Log.d(tag, “In the onResume() event”);
 }
 public void onPause()
 {
 super.onPause();
 Log.d(tag, “In the onPause() event”);
 }
 public void onStop()
 {
 super.onStop();
 Log.d(tag, “In the onStop() event”);
 }
 public void onDestroy()
 {
 super.onDestroy();
 Log.d(tag, “In the onDestroy() event”);
 }
}

 3. Press F11 to debug the application on the Android emulator. The activity is shown in Figure 2-3.

C02.indd 33C02.indd 33 28/06/11 12:33 PM28/06/11 12:33 PM

34 ❘ CHAPTER 2 COMPONENTS OF AN ANDROID TABLET APPLICATION

 4. When the activity is fi rst loaded, you should see the following in the LogCat window (Window ➪
Show View ➪ LogCat; see also Figure 2-4):

04-03 01:05:01.256: DEBUG/Events(1222): In the onCreate() event
04-03 01:05:01.256: DEBUG/Events(1222): In the onStart() event
04-03 01:05:01.276: DEBUG/Events(1222): In the onResume() event

FIGURE 2-3

FIGURE 2-4

 5. When you now click the Back button on the Android emulator, observe that the following is printed:

04-03 01:07:15.785: DEBUG/Events(1222): In the onPause() event
04-03 01:07:17.335: DEBUG/Events(1222): In the onStop() event
04-03 01:07:17.335: DEBUG/Events(1222): In the onDestroy() event

C02.indd 34C02.indd 34 28/06/11 12:33 PM28/06/11 12:33 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Activities ❘ 35

 6. Click the Recent Apps button (located on the System Bar at the bottom of the screen) and then
click the Activities icon (see Figure 2-5). Observe the following printed in the LogCat window:

04-03 01:08:42.446: DEBUG/Events(1222): In the onCreate() event
04-03 01:08:42.446: DEBUG/Events(1222): In the onStart() event
04-03 01:08:42.466: DEBUG/Events(1222): In the onResume() event

 7. Click the Home button on the Android emulator so that the activity is pushed to the background.
Observe the output in the LogCat window:

04-03 01:12:54.945: DEBUG/Events(1222): In the onPause() event
04-03 01:12:57.106: DEBUG/Events(1222): In the onStop() event

 8. Notice that the onDestroy() event is not called, indicating that the activity is still in memory.
Click the Apps button and launch the Activities application once more. The activity is now
visible again. Observe the output in the LogCat window:

04-03 01:18:06.855: DEBUG/Events(1222): In the onRestart() event
04-03 01:18:06.855: DEBUG/Events(1222): In the onStart() event
04-03 01:18:06.865: DEBUG/Events(1222): In the onResume() event

The onRestart() event is now fi red, followed by the onStart() and onResume() events.

How It Works

As you can see from this simple experiment, an activity is destroyed when you press the Back button.
This is crucial to know, as whatever state the activity is currently in will be lost; hence, you need to

FIGURE 2-5

C02.indd 35C02.indd 35 28/06/11 12:33 PM28/06/11 12:33 PM

36 ❘ CHAPTER 2 COMPONENTS OF AN ANDROID TABLET APPLICATION

write additional code in your activity to preserve its state when it is destroyed. At this point, note that
the onPause() event is called in both scenarios — when an activity is sent to the background, as well as
when it is killed when the user presses the Back button.

When an activity is started, the onStart() and onResume() events are always called, regardless of
whether the activity is restored from the background or newly created.

NOTE Even if an application has only one activity and the activity is killed, the
application will still be running in memory.

FRAGMENTS

The previous section showed you what an activity is. In a small-screen device (such as a
smartphone), an activity typically fi lls up an entire screen, displaying the various views that make up
the user interface of an application. The activity is essentially a container for views. However, when
an activity is displayed in a large-screen device, such as on a tablet, it is somewhat out of place.
Suddenly, the screen becomes much bigger and all the views in an activity must be arranged to make
full use of the bigger screen, resulting in complex changes to the view hierarchy. A better approach
would be to have “mini-activities,” each containing its own set of views. During runtime, an activity
can contain one or more of these “mini-activities,” depending on the screen orientation in which the
device is held. In Android 3.0, these “mini-activities” are known as fragments.

Think of a fragment as another form of activity. You create fragments to contain views, just like
activities. Fragments are always embedded in an activity. A good way to imagine a fragment is to look
at Figure 2-6. Here, you have two fragments. Fragment 1 may contain a ListView showing a list of
book titles. Fragment 2 may contain some TextViews and ImageViews showing some text and images.

Now, imagine the application is running on an Android tablet in portrait mode (or on an Android
smartphone). In this case, Fragment 1 may be embedded in one activity, while Fragment 2 may be
embedded in another activity (see Figure 2-7). When users select an item in the list in Fragment 1,
Activity 2 will be started.

Fragment 1 Fragment 2

FIGURE 2-6

Fragment 1

Activity 1 Activity 2

Fragment 2

FIGURE 2-7

C02.indd 36C02.indd 36 28/06/11 12:33 PM28/06/11 12:33 PM

Fragments ❘ 37

If the application is now displayed in a tablet in
landscape mode, then both fragments can be embedded
within a single activity, as shown in Figure 2-8.

From this discussion, it becomes apparent that fragments
present a versatile way in which you can create the user
interface of an Android application. Fragments form
the atomic unit of your user interface, and they can be
dynamically added (or removed) to activities in order
to create the best user experience possible for the target
device.

The following Try It Out shows you the basics of
fragments.

Fragment 1

Activity 1

Fragment 2

FIGURE 2-8

TRY IT OUT Using Fragments

codefi le Fragments.zip available for download at Wrox.com

 1. Using Eclipse, create a new Android project and name it Fragments.

 2. In the res/layout folder, add a new fi le and name it fragment1.xml. Populate it with the
following:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 android:background=”#00FF00”
 >
<TextView
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”This is fragment #1” />
</LinearLayout>

 3. Also in the res/layout folder, add another new fi le and name it fragment2.xml. Populate it as
follows:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 android:background=”#FFFE00”
 >

C02.indd 37C02.indd 37 28/06/11 12:33 PM28/06/11 12:33 PM

38 ❘ CHAPTER 2 COMPONENTS OF AN ANDROID TABLET APPLICATION

<TextView
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”This is fragment #2” />
</LinearLayout>

 4. In main.xml, add the following code in bold:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”horizontal”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”>
 <fragment
 android:name=”net.learn2develop.Fragments.Fragment1”
 android:id=”@+id/fragment1”
 android:layout_weight=”1”
 android:layout_width=”0px”
 android:layout_height=”match_parent” />
 <fragment
 android:name=”net.learn2develop. Fragments.Fragment2”
 android:id=”@+id/fragment2”
 android:layout_weight=”1”
 android:layout_width=”0px”
 android:layout_height=”match_parent” />
</LinearLayout>

 5. Under the net.learn2develop.Fragments package name,
add two Java class fi les and name them Fragment1.java and
Fragment2.java (see Figure 2-9).

 6. Add the following code to Fragment1.java:

package net.learn2develop.Fragments;

import net.learn2develop.Fragments.R;
import android.app.Fragment;
import android.os.Bundle;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;

public class Fragment1 extends Fragment {
 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 // Inflate the layout for this fragment
 return inflater.inflate(
 R.layout.fragment1, container, false);
 }
}

FIGURE 2-9

C02.indd 38C02.indd 38 28/06/11 12:33 PM28/06/11 12:33 PM

Fragments ❘ 39

 7. Add the following code to Fragment2.java:

package net.learn2develop.Fragments;

import net.learn2develop.Fragments.R;
import android.app.Fragment;
import android.os.Bundle;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;

public class Fragment2 extends Fragment {
 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 // Inflate the layout for this fragment
 return inflater.inflate(
 R.layout.fragment2, container, false);
 }
}

 8. Select the Fragment project in Eclipse and press F11 to debug the application on the Android
emulator. Figure 2-10 shows the two fragments contained within the activity.

FIGURE 2-10

How It Works

A fragment behaves very much like an activity — it has a Java class and it loads its UI from
an XML fi le. The XML fi le contains all the usual UI elements that you expect from an

C02.indd 39C02.indd 39 28/06/11 12:33 PM28/06/11 12:33 PM

40 ❘ CHAPTER 2 COMPONENTS OF AN ANDROID TABLET APPLICATION

activity — TextView, EditText, Button, and so on. The Java class for a fragment needs to extend the
Fragment base class:

NOTE Besides the Fragment base class, a fragment can also extend a
few other subclasses of the Fragment class, such as DialogFragment,
ListFragment, and PreferenceFragment. Chapter 3 will discuss these types
of fragments in more detail.

public class Fragment1 extends Fragment {
 //...
}

To draw the UI for a fragment, you override the onCreateView() method. This method needs to return
a View object, like this:

public class Fragment1 extends Fragment {
 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 // Inflate the layout for this fragment
 return inflater.inflate(
 R.layout.fragment1, container, false);
 }
}

Here, you use a LayoutInflater object to infl ate the UI from the specifi ed XML fi le (R.layout
.fragment1 in this case). The container argument refers to the parent ViewGroup, which is the
activity in which you are trying to embed the fragment. The savedInstanceState argument enables
you to restore the fragment to its previously saved state.

To add a fragment to an activity, you use the <fragment> element:

<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”horizontal”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”>
 <fragment
 android:name=”net.learn2develop.Fragments.Fragment1”
 android:id=”@+id/fragment1”
 android:layout_weight=”1”
 android:layout_width=”0px”
 android:layout_height=”match_parent” />
 <fragment
 android:name=”net.learn2develop. Fragments.Fragment2”
 android:id=”@+id/fragment2”

C02.indd 40C02.indd 40 28/06/11 12:33 PM28/06/11 12:33 PM

Fragments ❘ 41

 android:layout_weight=”1”
 android:layout_width=”0px”
 android:layout_height=”match_parent” />
</LinearLayout>

Note that each fragment needs a unique identifi er. You can assign one via the android:id or
android:tag attribute.

Adding Fragments Dynamically

While fragments enable you to compartmentalize your UI into various confi gurable parts, the
real power of fragments is realized when you add them dynamically to activities during runtime.
In the previous section, you saw how you added fragments to an activity by modifying the XML
fi le during design time. In reality, it is much more useful if you create fragments and add them
to activities during runtime. This allows you to create a customizable user interface for your
application. For example, if the application is running on a smartphone, you might fi ll an activity
with a single fragment; if the application is running on a tablet, you might then fi ll the activity with
two or more fragments, since the tablet has a much bigger screen estate compared to a smartphone.

TRY IT OUT Adding Fragments during Runtime

 1. Using the same project created in the previous section, modify the main.xml fi le by commenting
out the two <fragment> elements:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”horizontal”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”>
 <!--
 <fragment
 android:name=”net.learn2develop.Fragments.Fragment1”
 android:id=”@+id/fragment1”
 android:layout_weight=”1”
 android:layout_width=”0px”
 android:layout_height=”match_parent” />

 <fragment
 android:name=”net.learn2develop.Fragments.Fragment2”
 android:id=”@+id/fragment2”
 android:layout_weight=”1”
 android:layout_width=”0px”
 android:layout_height=”match_parent” />
 -->
</LinearLayout>

C02.indd 41C02.indd 41 28/06/11 12:33 PM28/06/11 12:33 PM

42 ❘ CHAPTER 2 COMPONENTS OF AN ANDROID TABLET APPLICATION

 2. Add the following code in bold to the MainActivity.java fi le:

package net.learn2develop.Fragments;

import net.learn2develop.Fragments.R;
import android.app.Activity;
import android.os.Bundle;

import android.app.FragmentManager;
import android.app.FragmentTransaction;
import android.view.Display;
import android.view.WindowManager;

public class MainActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 FragmentManager fragmentManager = getFragmentManager();
 FragmentTransaction fragmentTransaction =
 fragmentManager.beginTransaction();

 //---get the current display info---
 WindowManager wm = getWindowManager();
 Display d = wm.getDefaultDisplay();
 if (d.getWidth() > d.getHeight())
 {
 //---landscape mode---
 Fragment1 fragment1 = new Fragment1();
 // android.R.id.content refers to the content
 // view of the activity
 fragmentTransaction.replace(
 android.R.id.content, fragment1);
 }
 else
 {
 //---portrait mode---
 Fragment2 fragment2 = new Fragment2();
 fragmentTransaction.replace(
 android.R.id.content, fragment2);
 }
 fragmentTransaction.commit();
 }
}

 3. Press F11 to run the application on the Android emulator. Observe that when the emulator is
in landscape mode, fragment 1 (green) is displayed (as Figure 2-11). If you press Ctrl+F11 to
change the orientation of the emulator to landscape, fragment 2 (yellow) is added instead (see
Figure 2-12).

C02.indd 42C02.indd 42 28/06/11 12:33 PM28/06/11 12:33 PM

Fragments ❘ 43

FIGURE 2-11

FIGURE 2-12

C02.indd 43C02.indd 43 28/06/11 12:33 PM28/06/11 12:33 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

44 ❘ CHAPTER 2 COMPONENTS OF AN ANDROID TABLET APPLICATION

How It Works

To add fragments to an activity, you use the FragmentManager class by fi rst obtaining an instance of it:

 FragmentManager fragmentManager = getFragmentManager();

You also need to use the FragmentTransaction class to perform fragment transactions in your activity
(such as add, remove or replace):

 FragmentTransaction fragmentTransaction =
 fragmentManager.beginTransaction();

In this example, you used the WindowManager to determine whether the device is currently in portrait
or landscape mode. Once that is determined, you add the appropriate fragment to the activity by
creating the fragment and then calling the replace() method of the FragmentTransaction object to
add the fragment to the specifi ed view container (in this case, android.R.id.content refers to the
content view of the activity):

 //---landscape mode---
 Fragment1 fragment1 = new Fragment1();
 // android.R.id.content refers to the content
 // view of the activity
 fragmentTransaction.replace(
 android.R.id.content, fragment1);

Using the replace() method is essentially the same as calling the remove() method followed by the
add() method of the FragmentTransaction object. To ensure that the changes take effect, you need to
call the commit() method.

Understanding the Life Cycle of a Fragment

Like activities, fragments have their own life cycle. Understanding the life cycle of a fragment
enables you to properly save an instance of the fragment when it is destroyed, and restore it to its
previous state when it is recreated.

The following Try It Out examines the various states of a fragment.

TRY IT OUT Working through the Life Cycle of a Fragment

 1. Using the same project created in the previous section, add the following code in bold to the
Fragment1.java fi le:

package net.learn2develop.Fragments;

import android.app.Activity;
import android.app.Fragment;
import android.os.Bundle;
import android.view.LayoutInflater;

C02.indd 44C02.indd 44 28/06/11 12:33 PM28/06/11 12:33 PM

Fragments ❘ 45

import android.view.View;
import android.view.ViewGroup;

import android.util.Log;

public class Fragment1 extends Fragment {

 @Override
 public void onAttach(Activity activity) {
 super.onAttach(activity);
 Log.d(“Fragment 1”, “onAttach”);
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 Log.d(“Fragment 1”, “onCreate”);
 }

 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 Log.d(“Fragment 1”, “onCreateView”);

 // Inflate the layout for this fragment
 return inflater.inflate(R.layout.fragment1,
 container, false);
 }

 @Override
 public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);
 Log.d(“Fragment 1”, “onActivityCreated”);
 }

 @Override
 public void onStart() {
 super.onStart();
 Log.d(“Fragment 1”, “onStart”);
 }

 @Override
 public void onResume() {
 super.onResume();
 Log.d(“Fragment 1”, “onResume”);
 }

 @Override
 public void onPause() {
 super.onPause();
 Log.d(“Fragment 1”, “onPause”);
 }

 @Override

C02.indd 45C02.indd 45 28/06/11 12:33 PM28/06/11 12:33 PM

46 ❘ CHAPTER 2 COMPONENTS OF AN ANDROID TABLET APPLICATION

 public void onStop() {
 super.onStop();
 Log.d(“Fragment 1”, “onStop”);
 }

 @Override
 public void onDestroyView() {
 super.onDestroyView();
 Log.d(“Fragment 1”, “onDestroyView”);
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 Log.d(“Fragment 1”, “onDestroy”);
 }

 @Override
 public void onDetach() {
 super.onDetach();
 Log.d(“Fragment 1”, “onDetach”);
 }
}

 2. Switch the Android emulator to landscape mode by pressing Ctrl+F11.

 3. Press F11 in Eclipse to debug the application on the Android emulator.

 4. When the application is loaded on the emulator, the following is displayed in the LogCat window
(Windows ➪ Show View ➪ LogCat):

04-02 06:55:38.953: DEBUG/Fragment 1(6818): onAttach
04-02 06:55:38.953: DEBUG/Fragment 1(6818): onCreate
04-02 06:55:38.963: DEBUG/Fragment 1(6818): onCreateView
04-02 06:55:38.983: DEBUG/Fragment 1(6818): onActivityCreated
04-02 06:55:38.983: DEBUG/Fragment 1(6818): onStart
04-02 06:55:39.003: DEBUG/Fragment 1(6818): onResume

 5. Press the Home button on the emulator. The following output will be displayed in the LogCat
window:

04-02 04:03:45.543: DEBUG/Fragments(2606): onPause
04-02 04:03:47.394: DEBUG/Fragments(2606): onStop

 6. On the emulator, click the Apps button in the top-right corner of the screen to launch the
application again. This time, the following is displayed:

04-02 04:04:32.703: DEBUG/Fragments(2606): onStart
04-02 04:04:32.703: DEBUG/Fragments(2606): onResume

 7. Finally, click the Back button on the emulator. Now you should see the following output:

04-02 07:23:07.393: DEBUG/Fragment 1(7481): onPause
04-02 07:23:07.393: DEBUG/Fragment 1(7481): onStop

C02.indd 46C02.indd 46 28/06/11 12:33 PM28/06/11 12:33 PM

Fragments ❘ 47

04-02 07:23:07.393: DEBUG/Fragment 1(7481): onDestroyView
04-02 07:23:07.403: DEBUG/Fragment 1(7481): onDestroy
04-02 07:23:07.413: DEBUG/Fragment 1(7481): onDetach

How It Works

Like activities, fragments in Android also have their own life cycle. As you have seen, when a fragment
is being created, it goes through the following states:

 ➤ onAttach()

 ➤ onCreate()

 ➤ onCreateView()

 ➤ onActivityCreated()

When the fragment becomes visible, it goes through these states:

 ➤ onStart()

 ➤ onResume()

When the fragment goes into the background mode, it goes through these states:

 ➤ onPause()

 ➤ onStop()

When the fragment is destroyed (when the activity it is currently hosted in is destroyed), it goes through
the following states:

 ➤ onPause()

 ➤ onStop()

 ➤ onDestroyView()

 ➤ onDestroy()

 ➤ onDetach()

Like activities, you can restore an instance of a fragment using a Bundle object, in the following states:

 ➤ onCreate()

 ➤ onCreateView()

 ➤ onActivityCreated()

NOTE You can save a fragment’s state in the onSaveInstanceState() event.

C02.indd 47C02.indd 47 28/06/11 12:33 PM28/06/11 12:33 PM

48 ❘ CHAPTER 2 COMPONENTS OF AN ANDROID TABLET APPLICATION

Most of the states experienced by a fragment are similar to those of activities. However, a few new
states are specifi c to fragments:

 ➤ onAttached() — Called when the fragment has been associated with the activity

 ➤ onCreateView() — Called to create the view for the fragment

 ➤ onActivityCreated() — Called when the activity’s onCreate() method has been returned

 ➤ onDestroyView() — Called when the fragment’s view is being removed

 ➤ onDetach() — Called when the fragment is detached from the activity

Note one of the main differences between activities and fragments. When an activity goes into the
background, the activity is placed in the back stack. This allows the activity to be resumed when the
user presses the Back button. In the case of fragments, however, they are not automatically placed in
the back stack when they go into the background. Rather, to place a fragment into the back stack, you
need to explicitly call the addToBackStack() method during a fragment transaction, like this:

 if (d.getWidth() > d.getHeight())
 {
 //---landscape mode---
 Fragment1 fragment1 = new Fragment1();
 fragmentTransaction.replace(
 R.id.fragmentContainer, fragment1);
 }
 else
 {
 //---portrait mode---
 Fragment2 fragment2 = new Fragment2();
 fragmentTransaction.replace(
 R.id.fragmentContainer, fragment2);
 }

 //---add to the back stack---
 fragmentTransaction.addToBackStack(null);
 fragmentTransaction.commit();

The preceding code ensures that after the fragment has been added to the activity, the user can click the
Back button to remove it.

Interactions between Fragments

Very often, an activity may contain one or more fragments working together to present a coherent
UI to the user. In this case, it is very important for fragments to communicate with one another and
exchange data. For example, one fragment might contain a list of items (such as postings from a
RSS feed) and when the user taps on an item in that fragment, the details of the selected item may be
displayed in another fragment.

The following Try It Out shows how one fragment can access the views contained within another
fragment.

C02.indd 48C02.indd 48 28/06/11 12:34 PM28/06/11 12:34 PM

Fragments ❘ 49

TRY IT OUT Communication between Fragments

 1. Using the same project created in the previous section, add the following statement in bold to the
Fragment1.xml fi le:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 android:background=”#00FF00”
 >
<TextView
 android:id=”@+id/lblFragment1”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”This is fragment #1” />
</LinearLayout>

 2. Add the following lines in bold to fragment2.xml:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 android:background=”#FFFE00”
 >
<TextView
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”This is fragment #2” />

<Button android:id=”@+id/btnGetText”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”Get text in Fragment #1” />

</LinearLayout>

 3. Modify the MainActivity.java fi le by commenting out the code that you have added in the
earlier sections. It should look like this after modifi cation:

package net.learn2develop.Fragments;

import net.learn2develop.Fragments.R;
import android.app.Activity;
import android.os.Bundle;

public class MainActivity extends Activity {
 /** Called when the activity is first created. */
 @Override

C02.indd 49C02.indd 49 28/06/11 12:34 PM28/06/11 12:34 PM

50 ❘ CHAPTER 2 COMPONENTS OF AN ANDROID TABLET APPLICATION

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
}

 4. Add the following statements in bold to the Fragment2.java fi le:

package net.learn2develop.Fragments;

import android.app.Fragment;
import android.os.Bundle;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.Button;
import android.widget.TextView;
import android.widget.Toast;

public class Fragment2 extends Fragment {
 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 // Inflate the layout for this fragment
 return inflater.inflate(R.layout.fragment2,
 container, false);
 }

 @Override
 public void onStart() {
 super.onStart();
 //---Button view---
 Button btnGetText = (Button)
 getActivity().findViewById(R.id.btnGetText);
 btnGetText.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 TextView lbl = (TextView)
 getActivity().findViewById(R.id.lblFragment1);
 Toast.makeText(getActivity(), lbl.getText(),
 Toast.LENGTH_SHORT).show();
 }
 });
 }
}

 5. Put back the two fragments in main.xml:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”horizontal”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”>

C02.indd 50C02.indd 50 28/06/11 12:34 PM28/06/11 12:34 PM

Fragments ❘ 51

 <fragment
 android:name=”net.learn2develop.Fragments.Fragment1”
 android:id=”@+id/fragment1”
 android:layout_weight=”1”
 android:layout_width=”0px”
 android:layout_height=”match_parent” />
 <fragment
 android:name=”net.learn2develop.Fragments.Fragment2”
 android:id=”@+id/fragment2”
 android:layout_weight=”1”
 android:layout_width=”0px”
 android:layout_height=”match_parent” />
</LinearLayout>

 6. Press F11 to debug the application on the Android emulator. In the second fragment on the right,
click the button. You should see the Toast class displaying the text “This is fragment #1” (see
Figure 2-13).

How It Works

As fragments are embedded within activities, you can obtain the activity in which a fragment is
currently embedded by using the getActivity() method and then using the findViewById() method
to locate the view(s) contained within the fragment:

 TextView lbl = (TextView)
 getActivity().findViewById(R.id.lblFragment1);
 Toast.makeText(getActivity(), lbl.getText(),
 Toast.LENGTH_SHORT).show();

FIGURE 2-13

C02.indd 51C02.indd 51 28/06/11 12:34 PM28/06/11 12:34 PM

52 ❘ CHAPTER 2 COMPONENTS OF AN ANDROID TABLET APPLICATION

UTILIZING THE ACTION BAR

Besides fragments, another new feature introduced in Android 3.0 is the Action Bar. In place of the
traditional title bar located at the top of the device’s screen, the Action Bar displays the application
icon together with the activity title. Optionally, on the right side of the Action Bar are action items.
Figure 2-14 shows the built-in Email application
displaying the application icon, activity title, and
some action items in the Action Bar. The next
section discusses action items in more details.

The following Try It Out shows how you can programmatically hide or display the Action Bar.

FIGURE 2-14

TRY IT OUT Showing and Hiding the Action Bar

 1. Using Eclipse, create a new Android project and name it MyActionBar.

 2. Press F11 to debug the application on the Android emulator. You should see the application and
its Action Bar located at the top of the screen (containing the application icon and the application
name “MyActionBar”; see Figure 2-15).

FIGURE 2-15

 3. To hide the Action Bar, add the following line in bold to the AndroidManifest.xml fi le:

<?xml version=”1.0” encoding=”utf-8”?>
<manifest xmlns:android=”http://schemas.android.com/apk/res/android”
 package=”net.learn2develop.MyActionBar”
 android:versionCode=”1”
 android:versionName=”1.0”>

C02.indd 52C02.indd 52 28/06/11 12:34 PM28/06/11 12:34 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Utilizing the Action Bar ❘ 53

 <uses-sdk android:minSdkVersion=”11” />

<application android:icon=”@drawable/icon”
 android:label=”@string/app_name”>
 <activity android:name=”.MainActivity”
 android:label=”@string/app_name”
 android:theme=
 “@android:style/Theme.Holo.NoActionBar”>
 <intent-filter>
 <action android:name=”android.intent.action.MAIN” />
 <category
 android:name=”android.intent.category.LAUNCHER” />
 </intent-filter>
 </activity>
</application>
</manifest>

 4. Press F11 to debug the application on the Android emulator again. This time, the Action Bar is
not displayed (see Figure 2-16).

FIGURE 2-16

 5. You can also programmatically remove the Action Bar using the ActionBar class. To do so,
you fi rst need to remove the android:theme attribute you added in the previous step (note the
strikethrough):

 <activity android:name=”.MainActivity”
 android:label=”@string/app_name”
 android:theme=
 "@android:style/Theme.Holo.NoActionBar">

C02.indd 53C02.indd 53 28/06/11 12:34 PM28/06/11 12:34 PM

54 ❘ CHAPTER 2 COMPONENTS OF AN ANDROID TABLET APPLICATION

 <intent-filter>
 <action android:name=”android.intent.action.MAIN” />
 <category
 android:name=”android.intent.category.LAUNCHER” />
 </intent-filter>
 </activity>

 6. Modify the MainActivity.java fi le as follows:

package net.learn2develop.MyActionBar;

import android.app.Activity;
import android.os.Bundle;
import android.app.ActionBar;

public class MainActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 ActionBar actionBar = getActionBar();
 actionBar.hide();
 //actionBar.show(); //---show it again---
 }
}

 7. Press F11 to debug the application on the emulator again. The Action Bar remains hidden.

How It Works

The android:theme attribute lets you turn off the display of the Action Bar for your activity.
Setting this attribute to “@android:style/Theme.Holo.NoActionBar” hides the Action Bar.
Alternatively, you can programmatically get a reference to the Action Bar during runtime by using the
getActionBar() method. Calling the hide() method hides the Action Bar, and calling the show()
method displays it.

Note that if you use the android:theme attribute to turn off the Action Bar, calling the
getActionBar() method returns a null during runtime. Hence, it is always better to turn the Action
Bar on/off programmatically using the ActionBar class.

Adding Action Items to the Action Bar

Besides displaying the application icon and the activity title on the left of the Action Bar, you can
also display additional items on the Action Bar. These additional items are called action items.
Action items are shortcuts to some of the commonly performed operations in your application. For
example, you might be building an RSS reader application and hence some of the action items might
be “Refresh feed,” “Delete feed” and “Add new feed.”

The following Try It Out shows how you can add action items to the Action Bar.

C02.indd 54C02.indd 54 28/06/11 12:34 PM28/06/11 12:34 PM

Utilizing the Action Bar ❘ 55

TRY IT OUT Adding Action Items

 1. Using the same project created in the previous section, add the following code in bold to the
MainActivity.java fi le:

package net.learn2develop.MyActionBar;

import android.app.Activity;
import android.os.Bundle;
import android.app.ActionBar;

import android.view.Menu;
import android.view.MenuItem;
import android.widget.Toast;

public class MainActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 ActionBar actionBar = getActionBar();
 //actionBar.hide();
 //actionBar.show(); //---show it again---
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 super.onCreateOptionsMenu(menu);
 CreateMenu(menu);
 return true;
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item)
 {
 return MenuChoice(item);
 }

 private void CreateMenu(Menu menu)
 {
 MenuItem mnu1 = menu.add(0, 0, 0, “Item 1”);
 {
 mnu1.setAlphabeticShortcut(‘a’);
 mnu1.setIcon(R.drawable.icon);
 }
 MenuItem mnu2 = menu.add(0, 1, 1, “Item 2”);
 {
 mnu2.setAlphabeticShortcut(‘b’);
 mnu2.setIcon(R.drawable.icon);
 }
 MenuItem mnu3 = menu.add(0, 2, 2, “Item 3”);

C02.indd 55C02.indd 55 28/06/11 12:34 PM28/06/11 12:34 PM

56 ❘ CHAPTER 2 COMPONENTS OF AN ANDROID TABLET APPLICATION

 {
 mnu3.setAlphabeticShortcut(‘c’);
 mnu3.setIcon(R.drawable.icon);
 }
 MenuItem mnu4 = menu.add(0, 3, 3, “Item 4”);
 {
 mnu4.setAlphabeticShortcut(‘d’);
 }
 menu.add(0, 3, 3, “Item 5”);
 menu.add(0, 3, 3, “Item 6”);
 menu.add(0, 3, 3, “Item 7”);
 }

 private boolean MenuChoice(MenuItem item)
 {
 switch (item.getItemId()) {
 case 0:
 Toast.makeText(this, “You clicked on Item 1”,
 Toast.LENGTH_LONG).show();
 return true;
 case 1:
 Toast.makeText(this, “You clicked on Item 2”,
 Toast.LENGTH_LONG).show();
 return true;
 case 2:
 Toast.makeText(this, “You clicked on Item 3”,
 Toast.LENGTH_LONG).show();
 return true;
 case 3:
 Toast.makeText(this, “You clicked on Item 4”,
 Toast.LENGTH_LONG).show();
 return true;
 case 4:
 Toast.makeText(this, “You clicked on Item 5”,
 Toast.LENGTH_LONG).show();
 return true;
 case 5:
 Toast.makeText(this, “You clicked on Item 6”,
 Toast.LENGTH_LONG).show();
 return true;
 case 6:
 Toast.makeText(this, “You clicked on Item 7”,
 Toast.LENGTH_LONG).show();
 return true;
 }
 return false;
 }

}

 2. Press F11 to debug the application on the Android emulator. Observe the icon on the right side of
the Action Bar (see Figure 2-17). This is known as the overfl ow action item.

C02.indd 56C02.indd 56 28/06/11 12:34 PM28/06/11 12:34 PM

Utilizing the Action Bar ❘ 57

 3. Clicking the overfl ow action item reveals a list of menus items (see Figure 2-18). Clicking each
menu item will cause the Toast class to display the name of the menu item selected.

FIGURE 2-17

FIGURE 2-18

C02.indd 57C02.indd 57 28/06/11 12:34 PM28/06/11 12:34 PM

58 ❘ CHAPTER 2 COMPONENTS OF AN ANDROID TABLET APPLICATION

How It Works

The Action Bar populates its action items by calling the onCreateOptionsMenu() method of an
activity:

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 super.onCreateOptionsMenu(menu);
 CreateMenu(menu);
 return true;
 }

In the preceding example, you call the CreateMenu() method to display a list of menu items:

 private void CreateMenu(Menu menu)
 {
 MenuItem mnu1 = menu.add(0, 0, 0, “Item 1”);
 {
 mnu1.setAlphabeticShortcut(‘a’);
 mnu1.setIcon(R.drawable.icon);
 }
 MenuItem mnu2 = menu.add(0, 1, 1, “Item 2”);
 {
 mnu2.setAlphabeticShortcut(‘b’);
 mnu2.setIcon(R.drawable.icon);
 }
 MenuItem mnu3 = menu.add(0, 2, 2, “Item 3”);
 {
 mnu3.setAlphabeticShortcut(‘c’);
 mnu3.setIcon(R.drawable.icon);
 }
 MenuItem mnu4 = menu.add(0, 3, 3, “Item 4”);
 {
 mnu4.setAlphabeticShortcut(‘d’);
 }
 menu.add(0, 3, 3, “Item 5”);
 menu.add(0, 3, 3, “Item 6”);
 menu.add(0, 3, 3, “Item 7”);
 }

When a menu item is selected by the user, the onOptionsItemSelected() method is called:

 @Override
 public boolean onOptionsItemSelected(MenuItem item)
 {
 return MenuChoice(item);
 }

Here, you call the self-defi ned MenuChoice() method to check which menu item was clicked and then
print out a message:

C02.indd 58C02.indd 58 28/06/11 12:34 PM28/06/11 12:34 PM

Utilizing the Action Bar ❘ 59

 private boolean MenuChoice(MenuItem item)
 {
 switch (item.getItemId()) {
 case 0:
 Toast.makeText(this, “You clicked on Item 1”,
 Toast.LENGTH_LONG).show();
 return true;
 case 1:
 Toast.makeText(this, “You clicked on Item 2”,
 Toast.LENGTH_LONG).show();
 return true;
 case 2:
 Toast.makeText(this, “You clicked on Item 3”,
 Toast.LENGTH_LONG).show();
 return true;
 case 3:
 Toast.makeText(this, “You clicked on Item 4”,
 Toast.LENGTH_LONG).show();
 return true;
 case 4:
 Toast.makeText(this, “You clicked on Item 5”,
 Toast.LENGTH_LONG).show();
 return true;
 case 5:
 Toast.makeText(this, “You clicked on Item 6”,
 Toast.LENGTH_LONG).show();
 return true;
 case 6:
 Toast.makeText(this, “You clicked on Item 7”,
 Toast.LENGTH_LONG).show();
 return true;
 }
 return false;
 }

By default, all the menu items are grouped and displayed under the overfl ow action button, which is on
the far right side of the Action Bar.

Customizing the Action Items and Application Icon

From the previous Try It Out, note that even though the fi rst three menu items have their icons set,
they are not displayed in the overfl ow action item. To make the icon for each menu item appear, you
have to make the menu item appear as an action item, not within the overfl ow action item.

Suppose you have an image named save.png located in each of the drawable folders in the res
folder. You can modify the previous Try It Out as follows:

 MenuItem mnu1 = menu.add(0, 0, 0, “Item 1”);
 {
 mnu1.setAlphabeticShortcut(‘a’);

C02.indd 59C02.indd 59 28/06/11 12:34 PM28/06/11 12:34 PM

60 ❘ CHAPTER 2 COMPONENTS OF AN ANDROID TABLET APPLICATION

 mnu1.setIcon(R.drawable.save);
 mnu1.setShowAsAction(MenuItem.SHOW_AS_ACTION_IF_ROOM);
 }

Doing so causes the menu item to appear as an action item (see Figure 2-19). The SHOW_AS_ACTION_
IF_ROOM constant tells the device to display the menu item as an action item if there is room for
it. This is because you may run out of room to display the action item if too many menu items are
vying for space in the Action Bar. In general, you should restrict the number of action items in the
Action Bar to prevent overcrowding — three should be the maximum.

FIGURE 2-19

If you want to display the text for the action item together with the icon, you could use the “|”
operator together with the MenuItem.SHOW_AS_ACTION_WITH_TEXT constant:

 MenuItem mnu1 = menu.add(0, 0, 0, “Item 1”);
 {
 mnu1.setAlphabeticShortcut(‘a’);
 mnu1.setIcon(R.drawable.save);
 mnu1.setShowAsAction(MenuItem.SHOW_AS_ACTION_IF_ROOM |
 MenuItem.SHOW_AS_ACTION_WITH_TEXT);
 }

This causes the icon to be displayed together with the text of the menu item (see Figure 2-20).

C02.indd 60C02.indd 60 28/06/11 12:34 PM28/06/11 12:34 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Utilizing the Action Bar ❘ 61

Besides clicking the action items, users can also click the application icon on the Action Bar. When
the application icon is clicked, the onOptionsItemSelected() method is called. To identify the
application icon being called, you check the item id against the android.R.id.home constant:

 private boolean MenuChoice(MenuItem item)
 {
 switch (item.getItemId()) {
 case android.R.id.home:
 Toast.makeText(this,
 “You clicked on the Application icon”,
 Toast.LENGTH_LONG).show();
 return true;
 case 0:
 Toast.makeText(this, “You clicked on Item 1”,
 Toast.LENGTH_LONG).show();
 return true;
 //...
 //...
 return false;
 }

The application icon is often used by applications to enable them to return to the main activity
of the application. For example, your application may have several activities, and you can use the
application icon as a shortcut for users to return directly to the main activity of your application.
To do this, it is always good practice to create an Intent object and set it using the Intent.FLAG_
ACTIVITY_CLEAR_TOP fl ag:

 case android.R.id.home:
 Toast.makeText(this,

FIGURE 2-20

C02.indd 61C02.indd 61 28/06/11 12:34 PM28/06/11 12:34 PM

62 ❘ CHAPTER 2 COMPONENTS OF AN ANDROID TABLET APPLICATION

 “You clicked on the Application icon”,
 Toast.LENGTH_LONG).show();
 Intent i = new Intent(this, MainActivity.class);
 i.addFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP);
 startActivity(i);
 return true;

The Intent.FLAG_ACTIVITY_CLEAR_TOP fl ag ensures that the series of activities in the back stack is
cleared when the user clicks the application icon on the Action Bar. This way, if the user clicks the
Back button, the other activities in the application do not appear again.

SUMMARY

In this chapter, you have learned about the three most important components of an Android 3.0
application: activities, fragments, and the Action Bar.

An activity defi nes the UI of your application, whereas a fragment breaks down an activity into
smaller manageable chunks. Depending on the device that the application is currently running on,
your application can show or hide different fragments, enabling your application to display the best
UI for the current device.

Along with Android 3.0, activities now have the Action Bar, which enables them to display
commonly used items, such as options menu items. In the following chapters, you will have a chance
to see all these new features in action.

EXERCISES

 1. Name the two ways to add fragments to an activity.

 2. Name one key diff erence between a fragment and an activity.

 3. How do you add action items to an Action Bar?

Answers to the Exercises can be found in Appendix C.

C02.indd 62C02.indd 62 28/06/11 12:34 PM28/06/11 12:34 PM

Summary ❘ 63

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Activity Contains the UI of your Android application.

Life cycle of an

activity

An activity is destroyed when the user presses the Back button.

Otherwise, it goes into the background when it loses visibility. To preserve

the state of an activity, handle its onPause() event and restore it in the

onStart() or onResume() events.

Fragment A fragment is a mini-activity, with its own life cycle. Fragments are

embedded in activities.

Manipulating

fragments

programmatically

You need to use the FragmentManager and FragmentTransaction

classes when adding, removing, or replacing fragments during runtime.

Life cycle of a

fragment

Similar to that of an activity — you save the state of a fragment in the

onPause() event, and restore its state in one of the following events:

onCreate(), onCreateView(), or onActivityCreated().

Action Bar Replaces the traditional title bar for older versions of Android.

Action items Action items are displayed on the right of the Action Bar. They are created

just like options menus.

Application icon Usually used for going back to the “home” activity of an application. It is

advisable to use the Intent object with the Intent.FLAG_ACTIVITY_

CLEAR_TOP fl ag.

C02.indd 63C02.indd 63 28/06/11 12:34 PM28/06/11 12:34 PM

C02.indd 64C02.indd 64 28/06/11 12:34 PM28/06/11 12:34 PM

Android User Interface

WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ What the various ViewGroups are that you can use to lay out

your views

 ➤ How to use the basic views in Android to design your user interface

 ➤ How to use the specialized fragments available in Android 3.0

In Chapter 2, you learned about the Activity and Fragment classes and their life cycles. You
learned that an activity (as well as a fragment) is a means by which users interact with the
application. However, an activity or fragment by itself does not have a presence on the screen.
Instead, it has to draw the screen using Views and ViewGroups. In this chapter, you learn the
details about creating user interfaces in Android, and how users interact with them.

VIEWS AND VIEWGROUPS

An activity or fragment contains Views and ViewGroups. A view is a widget that has an
appearance on screen. Examples of views are buttons, labels, and text boxes. A view derives
from the base class android.view.View.

One or more views can be grouped together into a ViewGroup. A ViewGroup (which is itself a
special type of view) provides the layout in which you can order the appearance and sequence
of views. Examples of ViewGroups include LinearLayout and FrameLayout. A ViewGroup
derives from the base class android.view.ViewGroup.

Android supports the following ViewGroups:

 ➤ LinearLayout

 ➤ AbsoluteLayout

3

C03.indd 65C03.indd 65 28/06/11 4:42 PM28/06/11 4:42 PM

66 ❘ CHAPTER 3 ANDROID USER INTERFACE

 ➤ TableLayout

 ➤ RelativeLayout

 ➤ FrameLayout

 ➤ ScrollView

The following sections describe each of these ViewGroups in more detail. Note that in practice it is
common to combine different types of layouts to create the UI you want.

LinearLayout

The LinearLayout arranges views in a single column or a single row. Child views can be arranged
either vertically or horizontally. To see how LinearLayout works, consider the following elements
typically contained in the main.xml fi le:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 >
<TextView
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/hello”
 />
</LinearLayout>

In the main.xml fi le, observe that the root element is <LinearLayout> and it has a <TextView>
element contained within it. The <LinearLayout> element controls the order in which the views
contained within it appear.

Each View and ViewGroup has a set of common attributes, some of which are described in Table 3-1.

TABLE 3-1: Common Attributes Used in Views and ViewGroups

ATTRIBUTE DESCRIPTION

layout_width Specifi es the width of the View or ViewGroup

layout_height Specifi es the height of the View or ViewGroup

layout_marginTop Specifi es extra space on the top side of the View or ViewGroup

layout_marginBottom Specifi es extra space on the bottom side of the View or ViewGroup

layout_marginLeft Specifi es extra space on the left side of the View or ViewGroup

layout_marginRight Specifi es extra space on the right side of the View or ViewGroup

C03.indd 66C03.indd 66 28/06/11 4:42 PM28/06/11 4:42 PM

Views and ViewGroups ❘ 67

For example, the width of the <TextView> element fi lls the entire width of its parent (which is the
screen in this case) using the fill_parent constant. Its height is indicated by the wrap_content
constant, which means that its height is the height of its content (in this case, the text contained
within it). If you don’t want to have the <TextView> view occupy the entire row, you can set its
layout_width attribute to wrap_content, like this:

<TextView
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”@string/hello”
/>

This will set the width of the view to be equal to the width of the text contained within it.

ATTRIBUTE DESCRIPTION

layout_gravity Specifi es how child Views are positioned

layout_weight Specifi es how much of the extra space in the layout should be

allocated to the View

layout_x Specifi es the x-coordinate of the View or ViewGroup

layout_y Specifi es the y-coordinate of the View or ViewGroup

NOTE Some of these attributes are applicable only when a View is in a specifi c
ViewGroup. For example, the layout_weight and layout_gravity attributes
are applicable only when a View is in either a LinearLayout or a TableLayout.

UNITS OF MEASUREMENT

When specifying the size of an element on an Android UI, you should be aware of
the following units of measurement:

dp — Density-independent pixel. 160dp is equivalent to one inch of physical screen
size. This is the recommended unit of measurement when specifying the dimension
of views in your layout. You can specify either “dp” or “dip” when referring to a
density-independent pixel.

sp — Scale-independent pixel. This is similar to dp and is recommended for
specifying font sizes.

pt — Point. A point is defi ned to be 1/72 of an inch, based on the physical screen size.

px — Pixel. Corresponds to actual pixels on the screen. Using this unit is not
recommended, as your UI may not render correctly on devices with different screen
sizes.

C03.indd 67C03.indd 67 28/06/11 4:42 PM28/06/11 4:42 PM

68 ❘ CHAPTER 3 ANDROID USER INTERFACE

Consider the following layout:

<?xml version=”1.0” encoding=”utf-8”?>

<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”

 android:orientation=”vertical”

 android:layout_width=”fill_parent”

 android:layout_height=”fill_parent”

 >

<TextView

 android:layout_width=”105dp”

 android:layout_height=”wrap_content”

 android:text=”@string/hello”

 />

<Button

 android:layout_width=”160dp”

 android:layout_height=”wrap_content”

 android:text=”Button”

 />

</LinearLayout>

Here, you set the width of both the TextView and Button views to an absolute value. In this case,
the width for the TextView is set to 105 density-independent pixels wide, and the Button to 160
density-independent pixels wide. Figure 3-1 shows how the views look when viewed on an emulator
with a resolution of 320×480.

Figure 3-2 shows how the views look when viewed on a high-resolution (480×800) emulator.

FIGURE 3-1 FIGURE 3-2

C03.indd 68C03.indd 68 28/06/11 4:42 PM28/06/11 4:42 PM

Views and ViewGroups ❘ 69

As you can see, in both emulators the width of both views is the same with respect to the width of
the emulator. This demonstrates the usefulness of using the dp unit, which ensures that even if the
resolution of the target device is different, the size of the view relative to the device remains unchanged.

The preceding example also specifi es that the orientation of the layout is vertical:

<LinearLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 >

The default orientation layout is horizontal, so if you omit the android:orientation attribute, the
views appear as shown in Figure 3-3.

FIGURE 3-3

In LinearLayout, you can apply the layout_weight and layout_gravity attributes to views
contained within it, as the following modifi cations to main.xml show:

<?xml version=”1.0” encoding=”utf-8”?>

<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”

 android:orientation=”vertical”

 android:layout_width=”fill_parent”

 android:layout_height=”fill_parent”

 >

<TextView
 android:layout_width=”105dp”

 android:layout_height=”wrap_content”

 android:text=”@string/hello”

 />

C03.indd 69C03.indd 69 28/06/11 4:42 PM28/06/11 4:42 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

70 ❘ CHAPTER 3 ANDROID USER INTERFACE

<Button

 android:layout_width=”160dp”

 android:layout_height=”wrap_content”

 android:text=”Button”

 android:layout_gravity=”right”

 android:layout_weight=”0.2”

 />

<EditText

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:textSize=”18sp”

 android:layout_weight=”0.8”

 />
</LinearLayout>

Figure 3-4 shows that the button is aligned to the right of its parent (which is the LinearLayout)
using the layout_gravity attribute. At the same time, you use the layout_weight attribute to
specify the ratio in which the Button and EditText views occupy the remaining space on the
screen. The total value for the layout_weight attribute must be equal to 1.

FIGURE 3-4

AbsoluteLayout

The AbsoluteLayout enables you to specify the exact location of its child views. Consider the
following UI defi ned in main.xml:

<?xml version=”1.0” encoding=”utf-8”?>
<AbsoluteLayout

C03.indd 70C03.indd 70 28/06/11 4:42 PM28/06/11 4:42 PM

Views and ViewGroups ❘ 71

 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 xmlns:android=”http://schemas.android.com/apk/res/android”
 >
<Button
 android:layout_width=”188dp”
 android:layout_height=”wrap_content”
 android:text=”Button”
 android:layout_x=”126px”
 android:layout_y=”361px”
 />
<Button
 android:layout_width=”113dp”
 android:layout_height=”wrap_content”
 android:text=”Button”
 android:layout_x=”12px”
 android:layout_y=”361px”
 />
</AbsoluteLayout>

Figure 3-5 shows the two Button views located at their specifi ed positions using the android_
layout_x and android_layout_y attributes.

FIGURE 3-5

However, there is a problem with the AbsoluteLayout when the activity is viewed on a high-
resolution screen (see Figure 3-6). For this reason, the AbsoluteLayout has been deprecated since
Android 1.5 (although it is still supported in the current version). You should avoid using the
AbsoluteLayout in your UI, as it is not guaranteed to be supported in future versions of Android.
Instead, use the other layouts described in this chapter.

C03.indd 71C03.indd 71 28/06/11 4:42 PM28/06/11 4:42 PM

72 ❘ CHAPTER 3 ANDROID USER INTERFACE

FIGURE 3-6

TableLayout

The TableLayout groups views into rows and columns. You use the <TableRow> element to designate a
row in the table. Each row can contain one or more views. Each view you place within a row forms a
cell. The width of each column is determined by the largest width of each cell in that column.

Consider the content of main.xml shown here:

<?xml version=”1.0” encoding=”utf-8”?>

<TableLayout

 xmlns:android=”http://schemas.android.com/apk/res/android”

 android:layout_height=”fill_parent”

 android:layout_width=”fill_parent”

 >

 <TableRow>

 <TextView

 android:text=”User Name:”

 android:width =”120px”

 />

 <EditText

 android:id=”@+id/txtUserName”

C03.indd 72C03.indd 72 28/06/11 4:42 PM28/06/11 4:42 PM

Views and ViewGroups ❘ 73

 android:width=”200px” />

 </TableRow>

 <TableRow>

 <TextView

 android:text=”Password:”

 />

 <EditText

 android:id=”@+id/txtPassword”

 android:password=”true”

 />

 </TableRow>

 <TableRow>

 <TextView />

 <CheckBox android:id=”@+id/chkRememberPassword”
 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:text=”Remember Password”

 />
 </TableRow>

 <TableRow>

 <Button

 android:id=”@+id/buttonSignIn”

 android:text=”Log In” />

 </TableRow>

</TableLayout>

Figure 3-7 shows what the preceding looks like when rendered on the Android emulator.

FIGURE 3-7

C03.indd 73C03.indd 73 28/06/11 4:42 PM28/06/11 4:42 PM

74 ❘ CHAPTER 3 ANDROID USER INTERFACE

Note that in the preceding example, there are two columns and four rows in the TableLayout. The
cell directly under the Password TextView is populated with a <TextView/> empty element. If you
don’t do this, the Remember Password checkbox appears under the Password TextView, as shown
in Figure 3-8.

FIGURE 3-8

RelativeLayout

The RelativeLayout enables you to specify how child views are positioned relative to each other.
Consider the following main.xml fi le:

<?xml version=”1.0” encoding=”utf-8”?>

<RelativeLayout

 android:id=”@+id/RLayout”

 android:layout_width=”fill_parent”

 android:layout_height=”fill_parent”

 xmlns:android=”http://schemas.android.com/apk/res/android”

 >

 <TextView

 android:id=”@+id/lblComments”

 android:layout_width=”wrap_content”

C03.indd 74C03.indd 74 28/06/11 4:42 PM28/06/11 4:42 PM

Views and ViewGroups ❘ 75

 android:layout_height=”wrap_content”

 android:text=”Comments”

 android:layout_alignParentTop=”true”

 android:layout_alignParentLeft=”true”

 />

 <EditText

 android:id=”@+id/txtComments”

 android:layout_width=”fill_parent”

 android:layout_height=”170px”

 android:textSize=”18sp”

 android:layout_alignLeft=”@+id/lblComments”

 android:layout_below=”@+id/lblComments”

 android:layout_centerHorizontal=”true”

 />

 <Button

 android:id=”@+id/btnSave”

 android:layout_width=”125px”

 android:layout_height=”wrap_content”

 android:text=”Save”

 android:layout_below=”@+id/txtComments”

 android:layout_alignRight=”@+id/txtComments”

 />

 <Button

 android:id=”@+id/btnCancel”

 android:layout_width=”124px”

 android:layout_height=”wrap_content”

 android:text=”Cancel”

 android:layout_below=”@+id/txtComments”

 android:layout_alignLeft=”@+id/txtComments”

 />

</RelativeLayout>

Notice that each view embedded within the RelativeLayout has attributes that enable it to align
with another view. These attributes are as follows:

 ➤ layout_alignParentTop

 ➤ layout_alignParentLeft

 ➤ layout_alignLeft

 ➤ layout_alignRight

 ➤ layout_below

 ➤ layout_centerHorizontal

The value for each of these attributes is the ID for the view that you are referencing. The preceding
XML UI creates the screen shown in Figure 3-9.

C03.indd 75C03.indd 75 28/06/11 4:42 PM28/06/11 4:42 PM

76 ❘ CHAPTER 3 ANDROID USER INTERFACE

FrameLayout

The FrameLayout is an on-screen placeholder that you can use to display a single view. Views that
you add to a FrameLayout are always anchored to the top left of the layout. Consider the following
content in main.xml:

<?xml version=”1.0” encoding=”utf-8”?>

<RelativeLayout

 android:id=”@+id/RLayout”

 android:layout_width=”fill_parent”

 android:layout_height=”fill_parent”

 xmlns:android=”http://schemas.android.com/apk/res/android”

 >

 <TextView

 android:id=”@+id/lblComments”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”
 android:text=”This is my lovely dog, Ookii”

 android:layout_alignParentTop=”true”

 android:layout_alignParentLeft=”true”

 />

 <FrameLayout

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”
 android:layout_alignLeft=”@+id/lblComments”

 android:layout_below=”@+id/lblComments”

 android:layout_centerHorizontal=”true”

 >

FIGURE 3-9

C03.indd 76C03.indd 76 28/06/11 4:42 PM28/06/11 4:42 PM

Views and ViewGroups ❘ 77

 <ImageView

 android:src = “@drawable/ookii”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 />

 </FrameLayout>
</RelativeLayout>

Here, you have a FrameLayout within a RelativeLayout. Within the FrameLayout, you embed an
ImageView. The UI is shown in Figure 3-10.

NOTE This example assumes that the res/drawable-mdpi folder has an image
named ookii.png.

FIGURE 3-10

If you add another view (such as a Button view) within the FrameLayout, the view will overlap the
previous view (see Figure 3-11):

<?xml version=”1.0” encoding=”utf-8”?>

<RelativeLayout

 android:id=”@+id/RLayout”

 android:layout_width=”fill_parent”

 android:layout_height=”fill_parent”

 xmlns:android=”http://schemas.android.com/apk/res/android”

 >

 <TextView

C03.indd 77C03.indd 77 28/06/11 4:42 PM28/06/11 4:42 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

78 ❘ CHAPTER 3 ANDROID USER INTERFACE

 android:id=”@+id/lblComments”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:text=”This is my lovely dog, Ookii”

 android:layout_alignParentTop=”true”

 android:layout_alignParentLeft=”true”

 />

 <FrameLayout

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:layout_alignLeft=”@+id/lblComments”

 android:layout_below=”@+id/lblComments”

 android:layout_centerHorizontal=”true”

 >

 <ImageView

 android:src = “@drawable/ookii”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 />

 <Button

 android:layout_width=”124dp”

 android:layout_height=”wrap_content”

 android:text=”Print Picture”

 />

 </FrameLayout>
</RelativeLayout>

FIGURE 3-11

C03.indd 78C03.indd 78 28/06/11 4:42 PM28/06/11 4:42 PM

Views and ViewGroups ❘ 79

ScrollView

A ScrollView is a special type of FrameLayout in that it enables users to scroll through a list of
views that occupy more space than the physical display. The ScrollView can contain only one child
View or ViewGroup, which normally is a LinearLayout.

The following main.xml content shows a ScrollView containing a LinearLayout, which in turn
contains some Button and EditText views:

<?xml version=”1.0” encoding=”utf-8”?>

<ScrollView
 android:layout_width=”fill_parent”

 android:layout_height=”fill_parent”

 xmlns:android=”http://schemas.android.com/apk/res/android”

 >

 <LinearLayout

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:orientation=”vertical”

 >

 <Button

 android:id=”@+id/button1”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:text=”Button 1”
 />

 <Button

 android:id=”@+id/button2”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:text=”Button 2”
 />

 <Button

 android:id=”@+id/button3”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:text=”Button 3”

 />

 <EditText

NOTE You can add multiple views to a FrameLayout, but each will be stacked
on top of the previous one. This is useful in cases where you want to animate
series of images, with only one visible at a time.

C03.indd 79C03.indd 79 28/06/11 4:42 PM28/06/11 4:42 PM

80 ❘ CHAPTER 3 ANDROID USER INTERFACE

 android:id=”@+id/txt”

 android:layout_width=”fill_parent”

 android:layout_height=”300px”

 />

 <Button

 android:id=”@+id/button4”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:text=”Button 4”

 />

 <Button

 android:id=”@+id/button5”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:text=”Button 5”

 />

 </LinearLayout>

</ScrollView>

Figure 3-12 shows the ScrollView enabling users to drag the screen upward to reveal the views
located at the bottom of the screen.

FIGURE 3-12

C03.indd 80C03.indd 80 28/06/11 4:42 PM28/06/11 4:42 PM

Basic Views ❘ 81

BASIC VIEWS

In the previous section, you learned about the various layouts that you can use to position your
views in an activity. You also learned about the techniques you can use to adapt to different screen
resolutions and sizes. In this section, you will take a look at the various views that you can use to
design the user interface for your applications.

In particular, you will explore some of the basic views that you can use to design the UI of your
Android applications:

 ➤ TextView

 ➤ EditText

 ➤ Button

 ➤ ImageButton

 ➤ CheckBox

 ➤ ToggleButton

 ➤ RadioButton

 ➤ RadioGroup

These basic views enable you to display text information, as well as perform some basic selection.
The following sections explore all these views in more detail.

TextView View

When you create a new Android project, Eclipse always creates the main.xml fi le (located in the
res/layout folder), which contains a <TextView> element:

<?xml version=”1.0” encoding=”utf-8”?>

<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”

 android:orientation=”vertical”

 android:layout_width=”fill_parent”

 android:layout_height=”fill_parent”

 >

<TextView

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:text=”@string/hello”

 />

</LinearLayout>

The TextView view is used to display text to the user. This is the most basic view and one that you
will frequently use when you develop Android applications. If you need to allow users to edit the text
displayed, you should use the subclass of TextView, EditText, which is discussed in the next section.

C03.indd 81C03.indd 81 28/06/11 4:42 PM28/06/11 4:42 PM

82 ❘ CHAPTER 3 ANDROID USER INTERFACE

Common Views

Besides the TextView view, which you will likely use the most often, there are some other basic
controls that you will fi nd yourself frequently using: Button, ImageButton, EditText, CheckBox,
ToggleButton, RadioButton, and RadioGroup:

 ➤ Button — Represents a push-button widget.

 ➤ ImageButton — Similar to the Button view, except that it also displays an image.

 ➤ EditText — A subclass of the TextView view, except that it allows users to edit its text content.

 ➤ CheckBox — A special type of button that has two states: checked or unchecked.

 ➤ RadioGroup and RadioButton — The RadioButton has two states: either checked or
unchecked. Once a RadioButton is checked, it cannot be unchecked without selecting another
RadioButton. A RadioGroup is used to group together one or more RadioButton views,
thereby allowing only one RadioButton to be checked within the RadioGroup.

 ➤ ToggleButton — Displays checked/unchecked states using a light indicator (green for checked).

The following Try It Out provides details about how these views work.

NOTE In some other platforms, the TextView is commonly (though not offi cially)
known as the label view. Its sole purpose is to display text on the screen.

TRY IT OUT Using the Basic Views

codefi le BasicViews.zip available for download at Wrox.com

1. Using Eclipse, create an Android project and name it BasicViews.

NOTE For subsequent projects that you will create in this book, the various
fi elds for the project will adopt the following values:
Application Name — <project name>
Package name — net.learn2develop.<project name>
Create Activity — MainActivity
Min SDK Version — <version number>

2. Modify the main.xml fi le located in the res/layout folder by adding the following elements
shown in bold:

<?xml version=”1.0” encoding=”utf-8”?>

<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/

C03.indd 82C03.indd 82 28/06/11 4:42 PM28/06/11 4:42 PM

Basic Views ❘ 83

android”

 android:orientation=”vertical”

 android:layout_width=”fill_parent”

 android:layout_height=”fill_parent”>

 <Button android:id=”@+id/btnSave”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:text=”Save” />

 <Button android:id=”@+id/btnOpen”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:text=”Open” />

 <ImageButton android:id=”@+id/btnImg1”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:src=”@drawable/icon” />

 <EditText android:id=”@+id/txtName”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content” />

 <CheckBox android:id=”@+id/chkAutosave”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:text=”Autosave” />

 <CheckBox android:id=”@+id/star”

 style=”?android:attr/starStyle”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content” />

 <RadioGroup android:id=”@+id/rdbGp1”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:orientation=”vertical” >

 <RadioButton android:id=”@+id/rdb1”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:text=”Option 1” />

 <RadioButton android:id=”@+id/rdb2”

 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content”

 android:text=”Option 2” />

C03.indd 83C03.indd 83 28/06/11 4:43 PM28/06/11 4:43 PM

84 ❘ CHAPTER 3 ANDROID USER INTERFACE

 </RadioGroup>

 <ToggleButton android:id=”@+id/toggle1”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content” />

</LinearLayout>

 3. To see the views in action, debug the project in Eclipse by selecting the project name and
pressing F11.

Figure 3-13 shows the various views displayed in the Android emulator.

FIGURE 3-13

 4. Click on the various views and note how they vary in their look and feel. Figure 3-14 shows the
following changes to the view:

• The fi rst CheckBox view (Autosave) is checked.

• The second CheckBox view (star) is checked.

• The second RadioButton (Option 2) is selected.

• The ToggleButton is turned on.

C03.indd 84C03.indd 84 28/06/11 4:43 PM28/06/11 4:43 PM

Basic Views ❘ 85

How It Works

So far, all the views are relatively straightforward — they are listed using the <LinearLayout> element,
so they are stacked on top of each other when they are displayed in the activity.

For the fi rst Button, the layout_width attribute is set to fill_parent so that its width occupies the
entire width of the screen:

 <Button android:id=”@+id/btnSave”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”

 android:text=”Save” />

For the second Button, the layout_width attribute is set to wrap_content so that its width will be the
width of its content — specifi cally, the text that it is displaying (i.e.,“Open”):

 <Button android:id=”@+id/btnOpen”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”

 android:text=”Open” />

FIGURE 3-14

C03.indd 85C03.indd 85 28/06/11 4:43 PM28/06/11 4:43 PM

86 ❘ CHAPTER 3 ANDROID USER INTERFACE

The ImageButton displays a button with an image. The image is set through the src attribute. In this
case, you simply use the image used for the application icon:

 <ImageButton android:id=”@+id/btnImg1”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”

 android:src=”@drawable/icon” />

The EditText view displays a rectangular region where the
user can enter some text. You set the layout_height to
wrap_content so that if the user enters a long string of text, its
height will automatically be adjusted to fi t the content
(see Figure 3-15).

 <EditText android:id=”@+id/txtName”
 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content” />

The CheckBox displays a checkbox that users can tap to check or uncheck it:

 <CheckBox android:id=”@+id/chkAutosave”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”

 android:text=”Autosave” />

If you don’t like the default appearance of the CheckBox, you can apply a style attribute to it to
display it as some other image, such as a star:

 <CheckBox android:id=”@+id/star”

 style=”?android:attr/starStyle”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content” />

The format for the value of the style attribute is as follows:

?[package:][type:]name.

The RadioGroup encloses two RadioButtons. This is important because radio buttons are usually used
to present multiple options to the user for selection. When a RadioButton in a RadioGroup is selected,
all other RadioButtons are automatically unselected:

 <RadioGroup android:id=”@+id/rdbGp1”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”

 android:orientation=”vertical” >

 <RadioButton android:id=”@+id/rdb1”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”

 android:text=”Option 1” />

FIGURE 3-15

C03.indd 86C03.indd 86 28/06/11 4:43 PM28/06/11 4:43 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Basic Views ❘ 87

 <RadioButton android:id=”@+id/rdb2”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”

 android:text=”Option 2” />

 </RadioGroup>

Notice that the RadioButtons are listed vertically, one on top of another. If you want to list them
horizontally, you need to change the orientation attribute to horizontal. You would also need to
ensure that the layout_width attribute of the RadioButtons are set to wrap_content:

 <RadioGroup android:id=”@+id/rdbGp1”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:orientation=”horizontal” >
 <RadioButton android:id=”@+id/rdb1”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”Option 1” />
 <RadioButton android:id=”@+id/rdb2”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”Option 2” />
 </RadioGroup>

Figure 3-16 shows the RadioButtons displayed horizontally.

The ToogleButton displays a rectangular button that users can
toggle on and off by clicking it:

 <ToggleButton android:id=”@+id/toggle1”
 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content” />

One thing that has been consistent throughout this example is that each view has the id attribute set to
a particular value, such as in the case of the Button:

 <Button android:id=”@+id/btnSave”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”

 android:text=”Save” />

The id attribute is an identifi er for a view so that it may later be retrieved using the View
.findViewById() or Activity.findViewById() methods.

FIGURE 3-16

Now that you have seen how the various views look for an activity, the following Try It Out
demonstrates how you can programmatically control them.

C03.indd 87C03.indd 87 28/06/11 4:43 PM28/06/11 4:43 PM

88 ❘ CHAPTER 3 ANDROID USER INTERFACE

TRY IT OUT Handling View Events

 1. Using the same project created in the previous Try It Out, modify the MainActivity.java fi le
by adding the following statements in bold:

package net.learn2develop.BasicViews1;

import android.app.Activity;
import android.os.Bundle;

import android.view.View;
import android.widget.Button;
import android.widget.CheckBox;
import android.widget.RadioButton;
import android.widget.RadioGroup;
import android.widget.Toast;
import android.widget.ToggleButton;
import android.widget.RadioGroup.OnCheckedChangeListener;

public class MainActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 //---Button view---
 Button btnOpen = (Button) findViewById(R.id.btnOpen);
 btnOpen.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 DisplayToast(“You have clicked the Open button”);
 }
 });

 //---Button view---
 Button btnSave = (Button) findViewById(R.id.btnSave);
 btnSave.setOnClickListener(new View.OnClickListener()
 {
 public void onClick(View v) {
 DisplayToast(“You have clicked the Save button”);
 }
 });

 //---CheckBox---
 CheckBox checkBox = (CheckBox) findViewById(R.id.chkAutosave);
 checkBox.setOnClickListener(new View.OnClickListener()
 {
 public void onClick(View v) {
 if (((CheckBox)v).isChecked())
 DisplayToast(“CheckBox is checked”);
 else

 DisplayToast(“CheckBox is unchecked”);
 }

C03.indd 88C03.indd 88 28/06/11 4:43 PM28/06/11 4:43 PM

Basic Views ❘ 89

 });

 //---RadioButton---
 RadioGroup radioGroup = (RadioGroup) findViewById(R.id.rdbGp1);
 radioGroup.setOnCheckedChangeListener(new OnCheckedChangeListener()
 {
 public void onCheckedChanged(RadioGroup group, int checkedId) {
 RadioButton rb1 = (RadioButton) findViewById(R.id.rdb1);
 if (rb1.isChecked()) {
 DisplayToast(“Option 1 checked!”);
 } else {
 DisplayToast(“Option 2 checked!”);
 }
 }
 });

 //---ToggleButton---
 ToggleButton toggleButton =
 (ToggleButton) findViewById(R.id.toggle1);
 toggleButton.setOnClickListener(new View.OnClickListener()
 {
 public void onClick(View v) {
 if (((ToggleButton)v).isChecked())
 DisplayToast(“Toggle button is On”);
 else
 DisplayToast(“Toggle button is Off”);
 }
 });
 }

 private void DisplayToast(String msg)
 {
 Toast.makeText(getBaseContext(), msg,
 Toast.LENGTH_SHORT).show();
 }
}

 2. Press F11 to debug the project on the Android emulator.

 3. Click on the various views and observe the message displayed in the Toast window.

How It Works

To handle the events fi red by each view, you fi rst have to programmatically locate the view that you
created during the onCreate() event. You do so using the Activity.findViewById() method,
supplying it with the ID of the view:

 //---Button view---

 Button btnOpen = (Button) findViewById(R.id.btnOpen);

The setOnClickListener() method registers a callback to be invoked later when the view is clicked:

 btnOpen.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {

C03.indd 89C03.indd 89 28/06/11 4:43 PM28/06/11 4:43 PM

90 ❘ CHAPTER 3 ANDROID USER INTERFACE

 DisplayToast(“You have clicked the Open button”);
 }
 });

The onClick() method is called when the view is clicked.

To determine the state of the CheckBox, you have to typecast the argument of the onClick() method to
a CheckBox and then check its isChecked() method to see if it is checked:

 //---CheckBox---
 CheckBox checkBox = (CheckBox) findViewById(R.id.chkAutosave);
 checkBox.setOnClickListener(new View.OnClickListener()
 {
 public void onClick(View v) {
 if (((CheckBox)v).isChecked())
 DisplayToast(“CheckBox is checked”);
 else
 DisplayToast(“CheckBox is unchecked”);
 }
 });

For RadioButtons, you need to use the setOnCheckedChangeListener() method on the RadioGroup
to register a callback to be invoked when the checked RadioButton changes in this group:

 //---RadioButton---
 RadioGroup radioGroup = (RadioGroup) findViewById(R.id.rdbGp1);
 radioGroup.setOnCheckedChangeListener(new OnCheckedChangeListener()
 {
 public void onCheckedChanged(RadioGroup group, int checkedId) {
 RadioButton rb1 = (RadioButton) findViewById(R.id.rdb1);
 if (rb1.isChecked()) {
 DisplayToast(“Option 1 checked!”);
 } else {
 DisplayToast(“Option 2 checked!”);
 }
 }
 });

When a RadioButton is selected, the onCheckedChanged() method is fi red. Within it, you locate
individual RadioButtons and then call their isChecked() method to determine which RadioButton is
selected. Alternatively, the onCheckedChanged() method contains a second argument that contains a
unique identifi er for the RadioButton selected.

NOTE Because this book focuses on developing apps for Tablets, events are
not covered in depth. For more information on Events in Android, please see
Beginning Android Application Development (by Lee, Wrox, 2011).

C03.indd 90C03.indd 90 28/06/11 4:43 PM28/06/11 4:43 PM

Fragments ❘ 91

FRAGMENTS

In Chapter 2, you learn about the fragment feature that is new in Android 3.0. Using fragments,
you can customize the user interface of your Android application by dynamically rearranging
fragments to fi t within an activity. This enables you to build applications that run on devices with
different screen sizes.

As you have learned, fragments are really “mini-activities” that have their own life cycles. To create
a fragment, you need a class that extends the Fragment base class. In Chapter 2, you learned how
to create fragments and add them to your activities. Besides the Fragment base class, you can also
extend from some other subclasses of the Fragment base class to create more specialized fragments.
The following sections discuss the three subclasses of Fragment: ListFragment, DialogFragment,
and PreferenceFragment.

ListFragment

A list fragment is a fragment that contains a ListView, displaying a list of items from a data source
such as an array or a Cursor. A list fragment is very useful, as you may often have one fragment that
contains a list of items (such as a list of RSS postings), and another fragment that displays the details
of the selected posting. To create a list fragment, you need to extend the ListFragment base class.

The following Try It Out shows you how to get started with a list fragment.

TRY IT OUT Creating and Using a List Fragment

codefi le ListFragmentExample.zip available for download at Wrox.com

 1. Using Eclipse, create an Android 3.0 project and name it ListFragmentExample.

 2. Add a XML fi le to the res/layout folder and name it fragment1.xml.

 3. Populate the fragment1.xml as follows:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>
 <ListView
 android:id=”@id/android:list”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:layout_weight=”1”
 android:drawSelectorOnTop=”false”/>
</LinearLayout>

C03.indd 91C03.indd 91 28/06/11 4:43 PM28/06/11 4:43 PM

92 ❘ CHAPTER 3 ANDROID USER INTERFACE

 4. Add a class fi le under the package (see Figure 3-17) and name it
Fragment1.java.

 5. Populate the Fragment1.java fi le as follows:

package net.learn2develop.ListFragmentExample;

import android.os.Bundle;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.ArrayAdapter;
import android.widget.ListView;
import android.widget.Toast;
import android.app.ListFragment;

public class Fragment1 extends ListFragment {
 String[] presidents = {
 “Dwight D. Eisenhower”,
 “John F. Kennedy”,
 “Lyndon B. Johnson”,
 “Richard Nixon”,
 “Gerald Ford”,
 “Jimmy Carter”,
 “Ronald Reagan”,
 “George H. W. Bush”,
 “Bill Clinton”,
 “George W. Bush”,
 “Barack Obama”
 };

 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 return inflater.inflate(R.layout.fragment1, container, false);
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setListAdapter(new ArrayAdapter<String>(getActivity(),
 android.R.layout.simple_list_item_1, presidents));
 }

 public void onListItemClick(ListView parent, View v,
 int position, long id)
 {
 Toast.makeText(getActivity(),
 “You have selected “ + presidents[position],
 Toast.LENGTH_SHORT).show();

FIGURE 3-17

C03.indd 92C03.indd 92 28/06/11 4:43 PM28/06/11 4:43 PM

Fragments ❘ 93

 }

}

 6. Modify the main.xml fi le as shown in bold:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”horizontal”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>
 <fragment
 android:name=”net.learn2develop.ListFragmentExample.Fragment1”
 android:id=”@+id/fragment1”
 android:layout_weight=”1”
 android:layout_width=”0dp”
 android:layout_height=”match_parent” />
</LinearLayout>

 7. Press F11 to debug the application on the Android emulator. Figure 3-18 shows the list fragment
displaying the list of presidents’ names.

FIGURE 3-18

 8. Click on any of the items in the ListView and a message is displayed (see Figure 3-19).

C03.indd 93C03.indd 93 28/06/11 4:43 PM28/06/11 4:43 PM

94 ❘ CHAPTER 3 ANDROID USER INTERFACE

How It Works

First, you created the XML fi le for the fragment by adding a ListView element to it:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>
 <ListView
 android:id=”@id/android:list”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:layout_weight=”1”
 android:drawSelectorOnTop=”false”/>
</LinearLayout>

To create a list fragment, the Java class for the fragment must extend the ListFragment base class:

public class Fragment1 extends ListFragment {

}

You then declared an array to contain the list of presidents’ names:

 String[] presidents = {
 “Dwight D. Eisenhower”,
 “John F. Kennedy”,
 “Lyndon B. Johnson”,

FIGURE 3-19

C03.indd 94C03.indd 94 28/06/11 4:43 PM28/06/11 4:43 PM

Fragments ❘ 95

 “Richard Nixon”,
 “Gerald Ford”,
 “Jimmy Carter”,
 “Ronald Reagan”,
 “George H. W. Bush”,
 “Bill Clinton”,
 “George W. Bush”,
 “Barack Obama”
 };

In the onCreate() event, you use the setListAdapter() method to programmatically fi ll the
ListView with the content of the array. The ArrayAdapter object manages the array of strings that
will be displayed by the ListView. In the preceding example, you set the ListView to display in the
simple_list_item_1 mode:

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setListAdapter(new ArrayAdapter<String>(getActivity(),
 android.R.layout.simple_list_item_1, presidents));
 }

The onListItemClick() method is fi red whenever an item in the ListView is clicked:

 public void onListItemClick(ListView parent, View v,
 int position, long id)
 {
 Toast.makeText(getActivity(),
 “You have selected “ + presidents[position],
 Toast.LENGTH_SHORT).show();
 }

DialogFragment

Another type of fragment that you can create is the dialog fragment. A dialog fragment fl oats on
top of an activity and is displayed modally. Dialog fragments are useful in cases where you need to
obtain the user’s response before continuing with the execution. To create a dialog fragment, you
need to extend the DialogFragment base class.

The following Try It Out shows how to create a dialog fragment.

TRY IT OUT Creating and Using a Dialog Fragment

codefi le DialogFragmentExample.zip available for download at Wrox.com

 1. Using Eclipse, create an Android project and name it DialogFragmentExample.

 2. Add a class fi le under the package and name it Fragment1.java.

C03.indd 95C03.indd 95 28/06/11 4:43 PM28/06/11 4:43 PM

96 ❘ CHAPTER 3 ANDROID USER INTERFACE

 3. Populate the Fragment1.java fi le as follows:

package net.learn2develop.DialogFragmentExample;

import android.app.AlertDialog;
import android.app.Dialog;
import android.app.DialogFragment;
import android.content.DialogInterface;
import android.os.Bundle;

public class Fragment1 extends DialogFragment {

 static Fragment1 newInstance(String title) {
 Fragment1 fragment = new Fragment1();
 Bundle args = new Bundle();
 args.putString(“title”, title);
 fragment.setArguments(args);
 return fragment;
 }

 @Override
 public Dialog onCreateDialog(Bundle savedInstanceState) {
 String title = getArguments().getString(“title”);
 return new AlertDialog.Builder(getActivity())
 .setIcon(R.drawable.icon)
 .setTitle(title)
 .setPositiveButton(“OK”,
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog,
 int whichButton) {
 ((MainActivity)getActivity()).doPositiveClick();
 }
 }
)
 .setNegativeButton(“Cancel”,
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog,
 int whichButton) {
 ((MainActivity)getActivity()).doNegativeClick();
 }
 }
)
 .create();
 }

}

 4. Populate the MainActivity.java fi le as shown here in bold:

package net.learn2develop.DialogFragmentExample;

import android.app.Activity;
import android.os.Bundle;

C03.indd 96C03.indd 96 28/06/11 4:43 PM28/06/11 4:43 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Fragments ❘ 97

import android.util.Log;

import android.app.FragmentManager;
import android.app.FragmentTransaction;

public class MainActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Fragment1 dialogFragment = Fragment1.newInstance(
 “Are you sure you want to do this?”);
 dialogFragment.show(getFragmentManager(), “dialog”);
 }

 public void doPositiveClick() {
 //---perform steps when user clicks on OK---
 Log.i(“DialogFragmentExample”, “User clicks on OK”);
 }

 public void doNegativeClick() {
 //---perform steps when user clicks on Cancel---
 Log.i(“DialogFragmentExample “, “User clicks on Cancel”);
 }
}

 5. Press F11 to debug the application on the Android emulator. Figure 3-20 shows the fragment
displayed as an alert dialog.

FIGURE 3-20

C03.indd 97C03.indd 97 28/06/11 4:43 PM28/06/11 4:43 PM

98 ❘ CHAPTER 3 ANDROID USER INTERFACE

How It Works

To create a dialog fragment, fi rst your Java class must extend the DialogFragment base class:

public class Fragment1 extends DialogFragment {

}

In this example, you created an alert dialog, which is a dialog window that displays a message with
optional buttons. Within the Fragment1 class, you defi ned the newInstance() method:

 static Fragment1 newInstance(String title) {
 Fragment1 fragment = new Fragment1();
 Bundle args = new Bundle();
 args.putString(“title”, title);
 fragment.setArguments(args);
 return fragment;
 }

The newInstance() method allows a new instance of the fragment to be created, and at the same time
it accepts an argument specifying the string (title) to display in the alert dialog. The title is then
stored in a Bundle object for use later.

Next, you defi ned the onCreateDialog() method, which is called after onCreate() and before
onCreateView():

 @Override
 public Dialog onCreateDialog(Bundle savedInstanceState) {
 String title = getArguments().getString(“title”);
 return new AlertDialog.Builder(getActivity())
 .setIcon(R.drawable.icon)
 .setTitle(title)
 .setPositiveButton(“OK”,
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog,
 int whichButton) {
 ((MainActivity)getActivity()).doPositiveClick();
 }
 }
)
 .setNegativeButton(“Cancel”,
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog,
 int whichButton) {
 ((MainActivity)getActivity()).doNegativeClick();
 }
 }
)
 .create();
 }

Here, you created an alert dialog with two buttons: OK and Cancel. The string to be displayed in it is
obtained from the title argument saved in the Bundle object.

C03.indd 98C03.indd 98 28/06/11 4:43 PM28/06/11 4:43 PM

Fragments ❘ 99

To display the dialog fragment, you created an instance of it and then called its show() method:

 Fragment1 dialogFragment = Fragment1.newInstance(
 “Are you sure you want to do this?”);
 dialogFragment.show(getFragmentManager(), “dialog”);

You also needed to implement two methods, doPositiveClick() and doNegativeClick(), to handle
the user clicking the OK and Cancel buttons, respectively:

 public void doPositiveClick() {
 //---perform steps when user clicks on OK---
 Log.i(“DialogFragmentExample”, “User clicks on OK”);
 }

 public void doNegativeClick() {
 //---perform steps when user clicks on Cancel---
 Log.i(“DialogFragmentExample “, “User clicks on Cancel”);
 }

PreferenceFragment

Your Android applications will typically provide preferences that allow users to personalize the
application for their own usage. For example, you may allow users to save the login credentials
that they use to access their web resources, or save information such as how often the feeds
must be refreshed (such as in a RSS reader application), and so on. In Android, you can use the
PreferenceActivity base class to display an activity for the user to edit the preferences. In
Android 3.0, you can now use the PreferenceFragment class to do the same thing.

The following Try It Out shows you how to create and use a preference fragment in Android 3.0.

TRY IT OUT Creating and Using a Preference Fragment

codefi le PreferenceFragmentExample.zip available for download at Wrox.com

 1. Using Eclipse, create an Android project and name it
PreferenceFragmentExample.

 2. Create a new xml folder under the res folder and then add a new Android
XML fi le to it. Name the XML fi le preferences.xml (see Figure 3-21).

 3. Populate the preferences.xml fi le as follows:

<?xml version=”1.0” encoding=”utf-8”?>
<PreferenceScreen
 xmlns:android=”http://schemas.android.com/apk/res/android”>

 <PreferenceCategory android:title=”Category 1”>
 <CheckBoxPreference FIGURE 3-21

C03.indd 99C03.indd 99 28/06/11 4:43 PM28/06/11 4:43 PM

100 ❘ CHAPTER 3 ANDROID USER INTERFACE

 android:title=”Checkbox”
 android:defaultValue=”false”
 android:summary=”True of False”
 android:key=”checkboxPref” />
 </PreferenceCategory>

 <PreferenceCategory android:title=”Category 2”>
 <EditTextPreference
 android:name=”EditText”
 android:summary=”Enter a string”
 android:defaultValue=”[Enter a string here]”
 android:title=”Edit Text”
 android:key=”editTextPref” />
 <RingtonePreference
 android:name=”Ringtone Preference”
 android:summary=”Select a ringtone”
 android:title=”Ringtones”
 android:key=”ringtonePref” />
 <PreferenceScreen
 android:title=”Second Preference Screen”
 android:summary=
 “Click here to go to the second Preference Screen”
 android:key=”secondPrefScreenPref”>
 <EditTextPreference
 android:name=”EditText”
 android:summary=”Enter a string”
 android:title=”Edit Text (second Screen)”
 android:key=”secondEditTextPref” />
 </PreferenceScreen>
 </PreferenceCategory>

</PreferenceScreen>

 4. Add a class fi le under the package and name it Fragment1.java.

 5. Populate the Fragment1.java fi le as follows:

package net.learn2develop.PreferenceFragmentExample;

import android.os.Bundle;
import android.preference.PreferenceFragment;

public class Fragment1 extends PreferenceFragment {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 //--load the preferences from an XML file---
 addPreferencesFromResource(R.xml.preferences);
 }
}

C03.indd 100C03.indd 100 28/06/11 4:43 PM28/06/11 4:43 PM

Fragments ❘ 101

 6. Modify the MainActivity.java fi le as shown in bold:

package net.learn2develop.PreferenceFragmentExample;

import android.app.Activity;
import android.os.Bundle;

import android.app.FragmentManager;
import android.app.FragmentTransaction;

public class MainActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 FragmentManager fragmentManager = getFragmentManager();
 FragmentTransaction fragmentTransaction =
 fragmentManager.beginTransaction();
 Fragment1 fragment1 = new Fragment1();
 fragmentTransaction.replace(android.R.id.content, fragment1);
 fragmentTransaction.addToBackStack(null);
 fragmentTransaction.commit();
 }
}

 7. Press F11 to debug the application on the Android emulator. Figure 3-22 shows the preference
fragment displaying the list of preferences that the user can modify.

FIGURE 3-22

C03.indd 101C03.indd 101 28/06/11 4:43 PM28/06/11 4:43 PM

102 ❘ CHAPTER 3 ANDROID USER INTERFACE

 8. When the Edit Text preference is clicked, a popup will be displayed (see Figure 3-23).

FIGURE 3-23

 9. Clicking on the Second Preference Screen item will cause a second preference screen to be
displayed (see Figure 3-24).

FIGURE 3-24

C03.indd 102C03.indd 102 28/06/11 4:43 PM28/06/11 4:43 PM

Fragments ❘ 103

 10. To cause the preference fragment to go away, click the Back button located in the lower-left corner
of the screen.

 11. If you look at the File Explorer (available in the DDMS perspective), you will be able to locate the
preferences fi le located in the /data/data/net.learn2develop.PreferenceFragmentExample/
shared_prefs/ folder (see Figure 3-25). All the changes made by the user will be persisted in this fi le.

FIGURE 3-25

How It Works

To create a list of preferences in your Android application, you fi rst needed to create the preferences
.xml fi le and populate it with the various XML elements. This XML fi le defi nes the various items that
you want to persist in your application.

To create the preference fragment, you needed to extend the PreferenceFragment base class:

public class Fragment1 extends PreferenceFragment {

}

To load the preferences fi le in the preference fragment, you use the addPreferencesFromResource()
method:

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 //--load the preferences from an XML file---
 addPreferencesFromResource(R.xml.preferences);
 }

C03.indd 103C03.indd 103 28/06/11 4:43 PM28/06/11 4:43 PM

104 ❘ CHAPTER 3 ANDROID USER INTERFACE

To display the preference fragment in your activity, you can make use of the FragmentManager and the
FragmentTransaction classes:

 FragmentManager fragmentManager = getFragmentManager();
 FragmentTransaction fragmentTransaction =
 fragmentManager.beginTransaction();
 Fragment1 fragment1 = new Fragment1();
 fragmentTransaction.replace(android.R.id.content, fragment1);
 fragmentTransaction.addToBackStack(null);
 fragmentTransaction.commit();

You needed to add the preference fragment to the back stack using the addToBackStack() method so
that the user can dismiss the fragment by clicking the Back button.

SUMMARY

In this chapter, you have learned how user interfaces are created in Android. You have also learned
about the different layouts and views that you can use to build the UI in your Android application.
Layouts views help to arrange the various views in the user interface of your Android application.

Finally, this chapter concluded with an overview of some of the specialized types of fragments that
you can create in Android 3.0 for tablet applications. The three types of specialized fragments are
ListFragment (for showing a list of items through a ListView), DialogFragment (for displaying as
a dialog window), and PreferenceFragment (for displaying the shared preferences).

EXERCISES

 1. What is the diff erence between the dp unit and the px unit? Which one should you use to specify

the dimension of a view?

 2. Why is the AbsoluteLayout not recommended for use?

 3. How do you programmatically determine whether a RadioButton is checked?

 4. Name the three specialized fragments you can use in your Android application.

Answers to the Exercises can be found in Appendix C.

C03.indd 104C03.indd 104 28/06/11 4:43 PM28/06/11 4:43 PM

Summary ❘ 105

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

LinearLayout Arranges views in a single column or single row.

AbsoluteLayout Enables you to specify the exact location of its children.

TableLayout Groups views into rows and columns.

RelativeLayout Enables you to specify how child views are positioned relative to

each other.

FrameLayout An on-screen placeholder that you can use to display a single view.

ScrollView A special type of FrameLayout in that it enables users to scroll

through a list of views that occupy more space than the physical

display allows.

Unit of Measure Use the dp to specify the dimension of views, and sp for font size.

TextView <TextView
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/hello”
 />

Button <Button android:id=”@+id/btnSave”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”Save” />

ImageButton <ImageButton android:id=”@+id/btnImg1”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:src=”@drawable/icon” />

EditText <EditText android:id=”@+id/txtName”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content” />

CheckBox <CheckBox android:id=”@+id/chkAutosave”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”Autosave” />

continues

C03.indd 105C03.indd 105 28/06/11 4:43 PM28/06/11 4:43 PM

106 ❘ CHAPTER 3 ANDROID USER INTERFACE

TOPIC KEY CONCEPTS

RadioGroup and

RadioButton

<RadioGroup android:id=”@+id/rdbGp1”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:orientation=”vertical” >
 <RadioButton android:id=”@+id/rdb1”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”Option 1” />
 <RadioButton android:id=”@+id/rdb2”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”Option 2” />
 </RadioGroup>

ToggleButton <ToggleButton android:id=”@+id/toggle1”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content” />

Specialized types of

fragments

ListFragment, DialogFragment, and PreferenceFragment

 (continued)

C03.indd 106C03.indd 106 28/06/11 4:43 PM28/06/11 4:43 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

PART II

Projects

 � CHAPTER 4: Creating Location-Based Services Applications

 � CHAPTER 5: SMS Messaging and Networking

 � CHAPTER 6: Publishing Android Applications

C04.indd 107C04.indd 107 28/06/11 12:45 PM28/06/11 12:45 PM

C04.indd 108C04.indd 108 28/06/11 12:45 PM28/06/11 12:45 PM

Creating Location-Based
Services Applications

WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ How to display Google Maps in your Android application

 ➤ How to display the zoom controls on the map

 ➤ Switching between the diff erent map views

 ➤ Adding markers to maps

 ➤ How to get the address location touched on the map

 ➤ How to perform geocoding and reverse geocoding

 ➤ Obtaining geographical data using GPS, Cell-ID, and Wi-Fi triangulation

 ➤ How to monitor for a location

Everyone has seen the explosive growth of mobile apps in recent years. One category of apps
that is very popular is location-based services, commonly known as LBS. LBS apps track
your location, and may offer additional services such as locating amenities nearby, as well as
offering suggestions for route planning, and so on. Of course, one of the key ingredients in an
LBS app is maps, which present a visual representation of your location.

In this chapter, you will learn how to make use of Google Maps in your Android application,
and how to manipulate it programmatically. In addition, you will learn how to obtain your
geographical location using the LocationManager class available in the Android SDK. At the
end of the chapter, you will have created a very cool Android tablet mapping application!

DISPLAYING MAPS

Google Maps is one of the many applications bundled with the Android platform. In addition
to simply using the Maps application, you can also embed it into your own applications and

4

C04.indd 109C04.indd 109 28/06/11 12:45 PM28/06/11 12:45 PM

110 ❘ CHAPTER 4 CREATING LOCATION-BASED SERVICES APPLICATIONS

make it do some very cool things. This section describes how to use Google Maps in your Android
applications and programmatically perform the following:

 ➤ Change the views of Google Maps

 ➤ Obtain the latitude and longitude of locations in Google Maps

 ➤ Perform geocoding and reverse geocoding (translating an address to latitude and longitude
and vice versa)

 ➤ Add markers to Google Maps

Creating the Project

To get started, you need to fi rst create an Android project so you can display the Google Maps in
your Android application.

TRY IT OUT Creating the Project

codefi le LBS.zip available for download at Wrox.com

 1. Using Eclipse, create an Android project as shown in Figure 4-1. Be sure to check the Google APIs
checkbox in the Build Target section.

FIGURE 4-1

C04.indd 110C04.indd 110 28/06/11 12:45 PM28/06/11 12:45 PM

Displaying Maps ❘ 111

 2. Once the project is created, observe the additional JAR fi le (maps
.jar) located under the Google APIs folder (see Figure 4-2).

How It Works

This simple Try It Out created an Android project that uses the Google
APIs add-on. The Google APIs add-on includes the standard Android
library, with the addition of the Maps library, packaged within the
maps.jar fi le.

Obtaining the Maps API Key

Beginning with the Android SDK release v1.0, you need to apply for a free Google Maps API key
before you can integrate Google Maps into your Android application. When you apply for the
key, you must also agree to Google’s terms of use, so be sure to read them carefully.

To apply for a key, follow the series of steps outlined next.

FIGURE 4-2

NOTE In order to use Google Maps in your Android application, you need to
ensure that you check the Google APIs as your build target. Google Maps is not
part of the standard Android SDK, so you need to fi nd it in the Google APIs add-
on, as was discussed in Chapter 1.

NOTE Google provides detailed documentation on applying for a Maps API key
at http://code.google.com/android/add-ons/google-apis/mapkey.html.

NOTE For Windows XP users, the default Android folder is C:
\Documents and Settings\<username>\Local Settings\Application

Data\Android.

First, if you are testing the application on the Android emulator or an Android device directly
connected to your development machine, locate the SDK debug certifi cate located in the default
folder (C:\Users\<username>\.android for Windows 7 users). You can verify the existence of the
debug certifi cate by going to Eclipse and selecting Window ➪ Preferences. Expand the Android item
and select Build (see Figure 4-3). On the right side of the window, you will be able to see the debug
certifi cate’s location.

C04.indd 111C04.indd 111 28/06/11 12:45 PM28/06/11 12:45 PM

112 ❘ CHAPTER 4 CREATING LOCATION-BASED SERVICES APPLICATIONS

The fi lename of the debug keystore is debug.keystore. This is the certifi cate that Eclipse uses to
sign your application so that it may be run on the Android emulator or other devices.

Using the debug keystore, you need to extract its MD5 fi ngerprint using the Keytool.exe
application included with your JDK installation. This fi ngerprint is needed to apply for the free
Google Maps key. You can usually fi nd the Keytool.exe in the C:\Program Files\Java\<JDK_
version_number>\bin folder.

Issue the following command (see Figure 4-4) to extract the MD5 fi ngerprint:

keytool.exe -list -alias androiddebugkey -keystore
“C:\Users\<username>\.android\debug.keystore” -storepass android
-keypass android

FIGURE 4-3

FIGURE 4-4

C04.indd 112C04.indd 112 28/06/11 12:46 PM28/06/11 12:46 PM

Displaying Maps ❘ 113

In this example, my MD5 fi ngerprint is EF:7A:61:EA:AF:E0:B4:2D:FD:43:5E:1D:26:04:34:BA.

Copy the MD5 certifi cate fi ngerprint and navigate your web browser to: http://code.google
.com/android/maps-api-signup.html. Follow the instructions on the page to complete the
application and obtain the Google Maps key. When you are done, you should see something similar
to what is shown in Figure 4-5.

FIGURE 4-5

Displaying the Map

You are now ready to display Google Maps in your Android application. This involves two main
tasks:

 ➤ Modify your AndroidManifest.xml fi le by adding both the <uses-library> element and
the INTERNET permission.

 ➤ Add the MapView element to your UI.

NOTE Although you can use the MD5 fi ngerprint of the debug keystore to
obtain the Maps API key for debugging your application on the Android emulator
or other devices, the key is not valid if you try to deploy your Android application
as an APK fi le. When you are ready to deploy your application to the Android
Market (or use another method of distribution), you need to reapply for a Maps
API key using the certifi cate that will be used to sign your application. Chapter 6
discusses this topic in more detail.

C04.indd 113C04.indd 113 28/06/11 12:46 PM28/06/11 12:46 PM

114 ❘ CHAPTER 4 CREATING LOCATION-BASED SERVICES APPLICATIONS

The following Try It Out shows you how.

TRY IT OUT Displaying Google Maps

 1. Using the project created in the previous section, add two XML
fi les to the res/layout folder and name them locations.xml and
showmap.xml. Also, add two class fi les under the package name and
name them Locations.java and ShowMap.java. Figure 4-6 shows
the four fi les added to the project.

 2. Populate locations.xml as follows:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>

<TextView
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”List of Locations”
 android:textSize=”30sp”
 android:textColor=”#adff2f” />

<ListView
 android:id=”@id/android:list”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:layout_weight=”1”
 android:drawSelectorOnTop=”false”/>

</LinearLayout>

 3. Populate showmap.xml as follows (be sure to replace the value of the apiKey attribute with the
API key you obtained earlier):

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent” >

<com.google.android.maps.MapView
 android:id=”@+id/mapView”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 android:enabled=”true”
 android:clickable=”true”

FIGURE 4-6

C04.indd 114C04.indd 114 28/06/11 12:46 PM28/06/11 12:46 PM

Displaying Maps ❘ 115

 android:apiKey=”<your_maps_API_key_here>” />

</LinearLayout>

 4. Populate the Locations.java fi le as follows:

package net.learn2develop.LBS;

import android.app.ListFragment;
import android.os.Bundle;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.ArrayAdapter;
import android.widget.ListView;
import android.widget.Toast;

public class Locations extends ListFragment {
 String[] locations = {
 “Grand Canyon, Arizona (Valley)”,
 “Bill Gates’ house”,
 “Yosemite National Park, California (Park)”,
 };

 String[] latlng = {
 “36.1125,-113.995833”,
 “47.627787,-122.242135”,
 “36.849722,-119.5675”,
 };

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 //---displays the list of locations in the ListView---
 setListAdapter(new ArrayAdapter<String>(getActivity(),
 android.R.layout.simple_list_item_1, locations));
 }

 public void onListItemClick(ListView parent, View v,
 int position, long id)
 {
 Toast.makeText(getActivity(),
 “You have selected “ + locations[position],
 Toast.LENGTH_SHORT).show();
 }

 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 return inflater.inflate(R.layout.locations, container, false);
 }
}

C04.indd 115C04.indd 115 28/06/11 12:46 PM28/06/11 12:46 PM

116 ❘ CHAPTER 4 CREATING LOCATION-BASED SERVICES APPLICATIONS

 5. Populate the ShowMap.java fi le as follows:

package net.learn2develop.LBS;

import android.app.Fragment;
import android.os.Bundle;
import android.view.LayoutInflater;
import android.view.Menu;
import android.view.MenuInflater;
import android.view.MenuItem;
import android.view.View;
import android.view.ViewGroup;
import android.widget.Toast;

import com.google.android.maps.GeoPoint;
import com.google.android.maps.MapController;
import com.google.android.maps.MapView;

public class ShowMap extends Fragment {
 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 return inflater.inflate(
 R.layout.showmap, container, false);
 }
}

 6. Populate the main.xml fi le as follows:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:id=”@+id/container”
 android:orientation=”horizontal”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 >
 <fragment
 android:name=”net.learn2develop.LBS.Locations”
 android:id=”@+id/locationFragment”
 android:layout_weight=”0.25”
 android:layout_width=”20dp”
 android:layout_height=”match_parent” />
 <fragment
 android:name=”net.learn2develop.LBS.ShowMap”
 android:id=”@+id/mapFragment”
 android:layout_weight=”1”
 android:layout_width=”0px”
 android:layout_height=”match_parent” />

</LinearLayout>

C04.indd 116C04.indd 116 28/06/11 12:46 PM28/06/11 12:46 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Displaying Maps ❘ 117

 7. Add the following statements in bold to the MainActivity.java fi le. Note that MainActivity is
now extending the MapActivity class.

package net.learn2develop.LBS;

import android.os.Bundle;
import com.google.android.maps.MapActivity;

public class MainActivity extends MapActivity {

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 @Override
 protected boolean isRouteDisplayed() {
 // TODO Auto-generated method stub
 return false;
 }
}

 8. Add the following lines in bold to the AndroidManifest.xml fi le:

<?xml version=”1.0” encoding=”utf-8”?>
<manifest xmlns:android=”http://schemas.android.com/apk/res/android”
 package=”net.learn2develop.LBS”
 android:versionCode=”1”
 android:versionName=”1.0”>
 <uses-sdk android:minSdkVersion=”11” />

 <uses-permission android:name=”android.permission.INTERNET”>
 </uses-permission>

 <application android:icon=”@drawable/icon” android:label=”Where Am I”>
 <uses-library android:name=”com.google.android.maps” />
 <activity android:name=”.MainActivity”
 android:label=”@string/app_name”>
 <intent-filter>
 <action android:name=”android.intent.action.MAIN” />
 <category android:name=”android.intent.category.LAUNCHER” />
 </intent-filter>
 </activity>
 </application>
</manifest>

 9. Press F11 to debug the application on the Android emulator. Figure 4-7 shows the Android
emulator displaying two fragments — one showing a list of locations and another showing
Google Maps.

C04.indd 117C04.indd 117 28/06/11 12:46 PM28/06/11 12:46 PM

118 ❘ CHAPTER 4 CREATING LOCATION-BASED SERVICES APPLICATIONS

How It Works

In this Try It Out, you have two fragments, Locations and ShowMap. The Locations fragment is a
list fragment showing a list of locations. The ShowMap fragment displays Google Maps. Note that any
activity that is going to host a fragment that displays Google Maps must extend the MapActivity base
class, which itself is an extension of the Activity class. Hence, you needed to make the following
changes to MainActivity.java:

public class MainActivity extends MapActivity {

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 @Override
 protected boolean isRouteDisplayed() {
 // TODO Auto-generated method stub
 return false;
 }
}

For the MapActivity base class, you need to implement one method: isRouteDisplayed(). This
method is used for Google’s accounting purposes, and you should return true for this method if you
are displaying routing information on the map. For most simple cases, you can simply return false.

In order to display Google Maps in your application, you need to have the INTERNET permission in your
manifest fi le. You then add the <com.google.android.maps.MapView> element to the XML fi le to
embed the map within the fragment.

FIGURE 4-7

C04.indd 118C04.indd 118 28/06/11 12:46 PM28/06/11 12:46 PM

Displaying Maps ❘ 119

The Locations fragment contains a TextView showing the text “List of Locations” displayed in green.
It also contains a ListView to display the list of locations:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>

<TextView
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”List of Locations”
 android:textSize=”30sp”
 android:textColor=”#adff2f” />

<ListView
 android:id=”@id/android:list”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:layout_weight=”1”
 android:drawSelectorOnTop=”false”/>

</LinearLayout>

The Locations class extends the ListFragment base class. It also contains two arrays — locations
contains the names of various locations and latlng contains the corresponding latitude and longitude
pair for each location stored in the locations array:

public class Locations extends ListFragment {
 String[] locations = {
 “Grand Canyon, Arizona (Valley)”,
 “Bill Gates’ house”,
 “Yosemite National Park, California (Park)”,
 };

 String[] latlng = {
 “36.1125,-113.995833”,
 “47.627787,-122.242135”,
 “36.849722,-119.5675”,
 };

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 //---displays the list of locations in the ListView---
 setListAdapter(new ArrayAdapter<String>(getActivity(),
 android.R.layout.simple_list_item_1, locations));
 }

 public void onListItemClick(ListView parent, View v,
 int position, long id)
 {

C04.indd 119C04.indd 119 28/06/11 12:46 PM28/06/11 12:46 PM

120 ❘ CHAPTER 4 CREATING LOCATION-BASED SERVICES APPLICATIONS

 Toast.makeText(getActivity(),
 “You have selected “ + locations[position],
 Toast.LENGTH_SHORT).show();
 }

 @Override
public View onCreateView(LayoutInflater inflater,
ViewGroup container, Bundle savedInstanceState) {
 return inflater.inflate(R.layout.locations, container, false);
 }
}

When a location is clicked (or tapped on a real device), you display the name of the location using the
Toast class.

The ShowMap fragment simply loads the showmap.xml fi le to display Google Maps:

public class ShowMap extends Fragment {
 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 return inflater.inflate(
 R.layout.showmap, container, false);
 }
}

CAN’T SEE THE MAP?

If instead of seeing Google Maps displayed you see an empty screen with grids,
then most likely you are using the wrong API key in the main.xml fi le. It is also
possible that you omitted the INTERNET permission in your AndroidManifest.xml
fi le. Finally, ensure that you have Internet access on your emulator/devices.

If your program does not run (i.e., it crashes), then you probably forgot to add the
following statement to the AndroidManifest.xml fi le:

 <uses-library android:name=”com.google.android.maps” />

Note its placement in the AndroidManifest.xml fi le; it should be within the
<Application> element.

Displaying the Zoom Control

The previous section showed how you can display Google Maps in your Android application. You can
pan the map to any desired location and it will be updated on the fl y. However, on the emulator there
is no way to zoom in or out from a particular location (on a real Android device you can pinch the
map to zoom it). Thus, in this section, you learn how you can enable users to zoom in or out of
the map using the built-in zoom controls.

C04.indd 120C04.indd 120 28/06/11 12:46 PM28/06/11 12:46 PM

Displaying Maps ❘ 121

TRY IT OUT Displaying the Built-In Zoom Controls

 1. Using the project created in the previous activity, add the following statements in bold to the
ShowMap.java fi le:

public class ShowMap extends Fragment {
 private MapView mapView;

 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 return inflater.inflate(
 R.layout.showmap, container, false);
 }

 @Override
 public void onStart() {
 super.onStart();
 mapView = (MapView) getActivity().findViewById(R.id.mapView);
 mapView.setBuiltInZoomControls(true);
 }
}

 2. Press F11 to debug the application on the Android emulator. Observe the built-in zoom controls
that appear at the bottom of the map when you click it (see Figure 4-8). Click the minus (–) icon
to zoom out of the map, and the plus (+) icon to zoom into the map.

FIGURE 4-8

C04.indd 121C04.indd 121 28/06/11 12:46 PM28/06/11 12:46 PM

122 ❘ CHAPTER 4 CREATING LOCATION-BASED SERVICES APPLICATIONS

How It Works

To display the built-in zoom controls, you fi rst get a reference to the map and then call the
setBuiltInZoomControls() method:

 mapView = (MapView) getActivity().findViewById(R.id.mapView);
 mapView.setBuiltInZoomControls(true);

Besides displaying the zoom controls, you can also programmatically zoom in or out of the map
by obtaining an instance of the MapController class from the MapView object and then calling the
zoomIn() or zoomOut() method of the MapController class:

public class ShowMap extends Fragment {
 private MapView mapView;
 private MapController mc;

 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 return inflater.inflate(
 R.layout.showmap, container, false);
 }

 @Override
 public void onStart() {
 super.onStart();
 mapView = (MapView) getActivity().findViewById(R.id.mapView);
 mapView.setBuiltInZoomControls(true);

 mc = mapView.getController();
 mc.zoomIn(); //---zoom into the map---
 mc.zoomOut(); //---zoom out of the map---
 }
}

Changing Views

By default, Google Maps is displayed in a map view, which is basically drawings of streets
and places of interest. You can also set Google Maps to display in satellite view using the
setSatellite() method of the MapView class:

 @Override
 public void onStart() {
 super.onStart();
 mapView = (MapView) getActivity().findViewById(R.id.mapView);

C04.indd 122C04.indd 122 28/06/11 12:46 PM28/06/11 12:46 PM

Displaying Maps ❘ 123

 mapView.setBuiltInZoomControls(true);

 mc = mapView.getController();
 mapView.setSatellite(true);
 }

Figure 4-9 shows Google Maps displayed in satellite view.

FIGURE 4-9

If you want to display traffi c conditions on the map, use the setTraffic() method:

 mapView.setTraffic(true);

Figure 4-10 shows the map displaying the current traffi c conditions. The different colors refl ect the
varying traffi c conditions. In general, green means smooth traffi c of about 50 miles per hour, yellow
means moderate traffi c of about 25–50 miles per hour, and red means slow traffi c of about less than
25 miles per hour.

Currently, traffi c information is available only in major cities in the United States, France, Britain,
Australia, and Canada, although new cities and countries are frequently added.

C04.indd 123C04.indd 123 28/06/11 12:46 PM28/06/11 12:46 PM

124 ❘ CHAPTER 4 CREATING LOCATION-BASED SERVICES APPLICATIONS

Navigating to a Specifi c Location

By default, Google Maps displays the map of the United States when it is fi rst loaded. However, you
can set Google Maps to display a particular location. To do so, use the animateTo() method of the
MapController class.

The following Try It Out shows how you can programmatically animate Google Maps to a
particular location.

TRY IT OUT Setting the Map to Display a Specifi c Location

 1. Using the project created in the previous activity, add the following statements in bold to the
ShowMap.java fi le:

public class ShowMap extends Fragment {
 private MapView mapView;
 private MapController mc;
 private GeoPoint p;

 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 return inflater.inflate(

FIGURE 4-10

C04.indd 124C04.indd 124 28/06/11 12:46 PM28/06/11 12:46 PM

Displaying Maps ❘ 125

 R.layout.showmap, container, false);
 }

 @Override
 public void onStart() {
 super.onStart();
 mapView = (MapView) getActivity().findViewById(R.id.mapView);
 mc = mapView.getController();

 mapView.setBuiltInZoomControls(true);
 mapView.setSatellite(true);
 mapView.setTraffic(true);
 }

 //---go to a particular location---
 public void gotoLocation(String latlng)
 {
 //---the location is represented as “lat,lng”---
 String[] coordinates = latlng.split(“,”);
 double lat = Double.parseDouble(coordinates[0]);
 double lng = Double.parseDouble(coordinates[1]);
 p = new GeoPoint((int) (lat * 1E6),
 (int) (lng * 1E6));
 mc.animateTo(p);
 mc.setZoom(16);
 mapView.invalidate();
 }
}

 2. Add the following statements in bold to the Locations.java fi le:

 public void onListItemClick(ListView parent, View v,
 int position, long id)
 {
 Toast.makeText(getActivity(),
 “You have selected “ + locations[position],
 Toast.LENGTH_SHORT).show();

 //---obtain a reference to the ShowMap fragment---
 ShowMap mapFragment =
 (ShowMap)getFragmentManager().findFragmentById(
 R.id.mapFragment);
 //---invoke the method from the fragment---
 mapFragment.gotoLocation(latlng[position]);
 }

 3. Press F11 to debug the application on the Android emulator. Click a particular location
listed in the left fragment. Observe that the map animates to the selected location (see
Figure 4-11).

C04.indd 125C04.indd 125 28/06/11 12:46 PM28/06/11 12:46 PM

126 ❘ CHAPTER 4 CREATING LOCATION-BASED SERVICES APPLICATIONS

How It Works

In the ShowMap fragment, you defi ned the gotoLocation() method, which takes a single input string
argument containing the location in the following format: Latitude,longitude. From this string, you
can extract the latitude and longitude of the location and then use a GeoPoint object to represent a
geographical location. Note that for this class, the latitude and longitude of a location are represented
in micro degrees. This means that they are stored as integer values. For a latitude value of 40.747778,
for example, you need to multiply it by 1e6 (which is one million) to obtain 40747778.

To navigate the map to a particular location, you used the animateTo() method of the MapController
class. The setZoom() method enables you to specify the zoom level at which the map is displayed
(the bigger the number, the more details you see on the map). The invalidate() method forces the
MapView to be redrawn.

In the Locations fragment, when a location is clicked in the ListView, you call the gotoLocation()
method that you have defi ned in the ShowMap fragment:

 //---obtain a reference to the ShowMap fragment---
 ShowMap mapFragment =
 (ShowMap)getFragmentManager().findFragmentById(
 R.id.mapFragment);
 //---invoke the method from the fragment---
 mapFragment.gotoLocation(latlng[position]);

FIGURE 4-11

C04.indd 126C04.indd 126 28/06/11 12:46 PM28/06/11 12:46 PM

Displaying Maps ❘ 127

You made use of the getFragmentManager() method to obtain an instance of the FragmentManager
object, and then called its findFragmentById() method to obtain an instance of the ShowMap
fragment. You then called the gotoLocation() method available in the fragment.

Adding Markers

Adding markers to a map to indicate places of interest enables your users to easily locate the places
they are looking for. The following Try It Out shows you how to add a marker to Google Maps.

TRY IT OUT Adding Markers to the Map

 1. Create a GIF image containing a pushpin (see Figure 4-12) and copy it
into the res/drawable-mdpi folder of the project. For the best effect,
make the background of the image transparent so that it does not block
parts of the map when the image is added to the map.

 2. Using the project created in the previous activity, add the following
statements in bold to the ShowMap.java fi le:

package net.learn2develop.LBS;

import com.google.android.maps.GeoPoint;
import com.google.android.maps.MapController;
import com.google.android.maps.MapView;

//...

import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.graphics.Canvas;
import android.graphics.Point;
import com.google.android.maps.Overlay;
import java.util.List;

public class ShowMap extends Fragment {
 private MapView mapView;
 private MapController mc;
 private GeoPoint p;

 class MapOverlay extends com.google.android.maps.Overlay
 {
 @Override
 public boolean draw(Canvas canvas, MapView mapView,
 boolean shadow, long when)
 {
 super.draw(canvas, mapView, shadow);

 //---translate the GeoPoint to screen pixels---
 Point screenPts = new Point();

FIGURE 4-12

C04.indd 127C04.indd 127 28/06/11 12:46 PM28/06/11 12:46 PM

128 ❘ CHAPTER 4 CREATING LOCATION-BASED SERVICES APPLICATIONS

 mapView.getProjection().toPixels(p, screenPts);

 //---add the marker---
 Bitmap bmp = BitmapFactory.decodeResource(
 getResources(), R.drawable.pushpin);
 canvas.drawBitmap(bmp, screenPts.x, screenPts.y-50, null);
 return true;
 }
 }

 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 return inflater.inflate(
 R.layout.showmap, container, false);
 }

 @Override
 public void onStart() {
 super.onStart();
 mapView = (MapView) getActivity().findViewById(R.id.mapView);
 mc = mapView.getController();

 mapView.setBuiltInZoomControls(true);
 mapView.setSatellite(true);
 mapView.setTraffic(true);
 }

 //---go to a particular location---
 public void gotoLocation(String latlng)
 {
 //---the location is represented as “lat,lng”---
 String[] coordinates = latlng.split(“,”);
 double lat = Double.parseDouble(coordinates[0]);
 double lng = Double.parseDouble(coordinates[1]);
 p = new GeoPoint((int) (lat * 1E6),
 (int) (lng * 1E6));
 mc.animateTo(p);
 mc.setZoom(16);

 //---Add a location marker---
 MapOverlay mapOverlay = new MapOverlay();
 List<Overlay> listOfOverlays = mapView.getOverlays();
 listOfOverlays.clear();
 listOfOverlays.add(mapOverlay);

 mapView.invalidate();
 }
}

 3. Press F11 to debug the application on the Android emulator. Click a location on the left fragment
to see the marker added to the map, as shown in Figure 4-13.

C04.indd 128C04.indd 128 28/06/11 12:46 PM28/06/11 12:46 PM

Displaying Maps ❘ 129

How It Works

To add a marker to the map, you fi rst need to defi ne a class that extends the Overlay class:

 class MapOverlay extends com.google.android.maps.Overlay
 {
 @Override
 public boolean draw(Canvas canvas, MapView mapView,
 boolean shadow, long when)
 {
 super.draw(canvas, mapView, shadow);

 //...
 }
 }

An overlay represents an individual item that you can draw on the map. You can add as many overlays
as you want. In the MapOverlay class, you override the draw() method so that you can draw the
pushpin image on the map. In particular, note that you need to translate the geographical location
(represented by a GeoPoint object, p) into screen coordinates:

 //---translate the GeoPoint to screen pixels---
 Point screenPts = new Point();
 mapView.getProjection().toPixels(p, screenPts);

FIGURE 4-13

C04.indd 129C04.indd 129 28/06/11 12:46 PM28/06/11 12:46 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

130 ❘ CHAPTER 4 CREATING LOCATION-BASED SERVICES APPLICATIONS

Because you want the pointed tip of the pushpin to indicate the position of the location, you need to
deduct the height of the image (which is 50 pixels) from the y coordinate of the point (see Figure 4-14)
and draw the image at that location:

 //---add the marker---
 Bitmap bmp = BitmapFactory.decodeResource(
 getResources(), R.drawable.pushpin);
 canvas.drawBitmap(bmp, screenPts.x, screenPts.y-50, null);

FIGURE 4-14

To add the marker, you create an instance of the MapOverlay class and add it to the list of overlays
available on the MapView object:

 //---Add a location marker---
 MapOverlay mapOverlay = new MapOverlay();
 List<Overlay> listOfOverlays = mapView.getOverlays();
 listOfOverlays.clear();
 listOfOverlays.add(mapOverlay);

Getting the Location That Was Touched

After using Google Maps for a while, you may want to know the latitude and longitude of a location
corresponding to the position on the screen that was just touched. Knowing this information is very
useful, as you can determine a location’s address, a process known as reverse geocoding (you will
learn how this is done in the next section).

If you have added an overlay to the map, you can override the onTouchEvent() method within the
MapOverlay class. This method is fi red every time the user touches the map. This method has two
parameters: MotionEvent and MapView. Using the MotionEvent parameter, you can determine
whether the user has lifted his or her fi nger from the screen using the getAction() method. In the
following code snippet, if the user has touched and then lifted the fi nger, you display the latitude
and longitude of the location touched:

C04.indd 130C04.indd 130 28/06/11 12:46 PM28/06/11 12:46 PM

Displaying Maps ❘ 131

import android.view.MotionEvent;

//...

 class MapOverlay extends com.google.android.maps.Overlay
 {
 @Override
 public boolean draw(Canvas canvas, MapView mapView,
 boolean shadow, long when)
 {
 super.draw(canvas, mapView, shadow);

 //---translate the GeoPoint to screen pixels---
 Point screenPts = new Point();
 mapView.getProjection().toPixels(p, screenPts);

 //---add the marker---
 Bitmap bmp = BitmapFactory.decodeResource(
 getResources(), R.drawable.pushpin);
 canvas.drawBitmap(bmp, screenPts.x, screenPts.y-50, null);
 return true;
 }

 @Override
 public boolean onTouchEvent(MotionEvent event, MapView mapView)
 {
 //---when user lifts his finger---
 if (event.getAction() == 1) {
 GeoPoint p = mapView.getProjection().fromPixels(
 (int) event.getX(),
 (int) event.getY());

 Toast.makeText(getActivity(),
 “Location: “+
 p.getLatitudeE6() / 1E6 + “,” +
 p.getLongitudeE6() /1E6 ,
 Toast.LENGTH_SHORT).show();
 }
 return false;
 }
 }

The getProjection() method returns a projection for converting between screen-pixel coordinates
and latitude/longitude coordinates. The fromPixels() method then converts the screen
coordinates into a GeoPoint object.

Figure 4-15 shows the map displaying a set of coordinates when the user clicks a location
on the map.

C04.indd 131C04.indd 131 28/06/11 12:46 PM28/06/11 12:46 PM

132 ❘ CHAPTER 4 CREATING LOCATION-BASED SERVICES APPLICATIONS

Geocoding and Reverse Geocoding

As mentioned in the preceding section, if you know the latitude and longitude of a location, you can
fi nd out its address using a process known as reverse geocoding. Google Maps in Android supports
this via the Geocoder class. The following code snippet shows how you can retrieve the address of a
location just touched using the getFromLocation() method:

import android.location.Address;
import android.location.Geocoder;
import java.util.Locale;
import java.io.IOException;
//...

 class MapOverlay extends com.google.android.maps.Overlay
 {
 @Override
 public boolean draw(Canvas canvas, MapView mapView,
 boolean shadow, long when)
 {
 super.draw(canvas, mapView, shadow);

 //---translate the GeoPoint to screen pixels---
 Point screenPts = new Point();
 mapView.getProjection().toPixels(p, screenPts);

 //---add the marker---

FIGURE 4-15

C04.indd 132C04.indd 132 28/06/11 12:46 PM28/06/11 12:46 PM

Displaying Maps ❘ 133

 Bitmap bmp = BitmapFactory.decodeResource(
 getResources(), R.drawable.pushpin);
 canvas.drawBitmap(bmp, screenPts.x, screenPts.y-50, null);
 return true;
 }

 @Override
 public boolean onTouchEvent(MotionEvent event, MapView mapView)
 {
 //---when user lifts his finger---
 if (event.getAction() == 1) {
 GeoPoint p = mapView.getProjection().fromPixels(
 (int) event.getX(),
 (int) event.getY());

 /*
 Toast.makeText(getActivity(),
 “Location: “+
 p.getLatitudeE6() / 1E6 + “,” +
 p.getLongitudeE6() /1E6 ,
 Toast.LENGTH_SHORT).show();
 */

 Geocoder geoCoder = new Geocoder(
 getActivity(), Locale.getDefault());
 try {
 List<Address> addresses = geoCoder.getFromLocation(
 p.getLatitudeE6() / 1E6,
 p.getLongitudeE6() / 1E6, 1);

 String add = “”;
 if (addresses.size() > 0) {
 for (int i=0;
 i<addresses.get(0).getMaxAddressLineIndex();
 i++)
 add += addresses.get(0).getAddressLine(i) +
 “\n”;
 }
 Toast.makeText(getActivity(), add,
 Toast.LENGTH_SHORT).show();
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 return true;
 }
 return false;
 }
 }

The Geocoder object converts the latitude and longitude into an address using the
getFromLocation() method. Once the address is obtained, you display it using the Toast class.
Figure 4-16 shows the application displaying the address of a location that was touched on the map.

C04.indd 133C04.indd 133 28/06/11 12:46 PM28/06/11 12:46 PM

134 ❘ CHAPTER 4 CREATING LOCATION-BASED SERVICES APPLICATIONS

If you know the address of a location but want to know its latitude and longitude, you can do so via
geocoding. Again, you can use the Geocoder class for this purpose. The following code shows how
you can fi nd the exact location of the Empire State Building by using the getFromLocationName()
method:

 //---geo-coding---
 Geocoder geoCoder = new Geocoder(this, Locale.getDefault());
 try {
 List<Address> addresses = geoCoder.getFromLocationName(
 “empire state building”, 5);

 String add = “”;
 if (addresses.size() > 0) {
 p = new GeoPoint(
 (int) (addresses.get(0).getLatitude() * 1E6),
 (int) (addresses.get(0).getLongitude() * 1E6));
 mc.animateTo(p);
 mapView.invalidate();
 }
 } catch (IOException e) {
 e.printStackTrace();
 }

FIGURE 4-16

C04.indd 134C04.indd 134 28/06/11 12:46 PM28/06/11 12:46 PM

Getting Location Data ❘ 135

GETTING LOCATION DATA

Nowadays, mobile devices are commonly equipped with GPS receivers. Because of the many
satellites orbiting the earth, you can use a GPS receiver to fi nd your location easily. However, GPS
requires a clear sky to work and hence does not always work indoors or where satellites can’t
penetrate (such as a tunnel through a mountain).

Another effective way to locate your position is through cell tower triangulation. When a mobile
phone is switched on, it is constantly in contact with base stations surrounding it. By knowing the
identity of cell towers, it is possible to translate this information into a physical location through
the use of various databases containing the cell towers’ identities and their exact geographical
locations. The advantage of cell tower triangulation is that it works indoors, without the need to
obtain information from satellites. However, it is not as precise as GPS because its accuracy depends
on overlapping signal coverage, which varies quite a bit. Cell tower triangulation works best in
densely populated areas where the cell towers are closely located.

A third method of locating your position is to rely on Wi-Fi triangulation. Rather than connect
to cell towers, the device connects to a Wi-Fi network and checks the service provider against
databases to determine the location serviced by the provider. Of the three methods described here,
Wi-Fi triangulation is the least accurate.

On the Android, the SDK provides the LocationManager class to help your device determine the
user’s physical location. The following Try It Out shows you how this is done in code.

TRY IT OUT Setting the Map to Display a Specifi c Location Using
 the Location Manager Class

 1. Using the same project created in the previous section, add the following statements in bold to the
MainActivity.java fi le:

package net.learn2develop.LBS;

import com.google.android.maps.MapActivity;
import android.os.Bundle;
import android.widget.Toast;

import android.content.Context;
import android.location.Location;
import android.location.LocationListener;
import android.location.LocationManager;

public class MainActivity extends MapActivity {
 private LocationManager lm;
 private LocationListener locationListener;

 /** Called when the activity is first created. */

C04.indd 135C04.indd 135 28/06/11 12:46 PM28/06/11 12:46 PM

136 ❘ CHAPTER 4 CREATING LOCATION-BASED SERVICES APPLICATIONS

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 //---use the LocationManager class to obtain locations data---
 lm = (LocationManager)
 getSystemService(Context.LOCATION_SERVICE);
 locationListener = new MyLocationListener();
 }

 public void TrackingUsingGPS(boolean StartTracking)
 {
 if (StartTracking) {
 lm.requestLocationUpdates(
 LocationManager.GPS_PROVIDER,
 0,
 0,
 locationListener);
 } else {
 lm.removeUpdates(locationListener);
 }
 }

 public void TrackingUsingCellularWiFi(boolean StartTracking)
 {
 if (StartTracking) {
 lm.requestLocationUpdates(
 LocationManager.NETWORK_PROVIDER,
 0,
 0,
 locationListener);
 } else {
 lm.removeUpdates(locationListener);
 }
 }

 private class MyLocationListener implements LocationListener
 {
 @Override
 public void onLocationChanged(Location loc) {
 if (loc != null) {
 Toast.makeText(getBaseContext(),
 “Location changed : Lat: “ + loc.getLatitude() +
 “ Lng: “ + loc.getLongitude(),
 Toast.LENGTH_SHORT).show();
 }
 //---obtain a reference to the ShowMap fragment---
 ShowMap mapFragment =
 (ShowMap)getFragmentManager().findFragmentById(
 R.id.mapFragment);
 //---invoke the method from the fragment---
 mapFragment.gotoLocation(loc.getLatitude() +

C04.indd 136C04.indd 136 28/06/11 12:46 PM28/06/11 12:46 PM

Getting Location Data ❘ 137

 “,” + loc.getLongitude());
 }

 @Override
 public void onProviderDisabled(String provider) {
 }

 @Override
 public void onProviderEnabled(String provider) {
 }

 @Override
 public void onStatusChanged(String provider, int status,
 Bundle extras) {
 }
 }

 @Override
 protected boolean isRouteDisplayed() {
 // TODO Auto-generated method stub
 return false;
 }
}

 2. Add the following statements in bold to the ShowMap.java fi le:

package net.learn2develop.LBS;

import com.google.android.maps.GeoPoint;
import com.google.android.maps.MapController;
import com.google.android.maps.MapView;
//...

import android.view.Menu;
import android.view.MenuInflater;
import android.view.MenuItem;

public class ShowMap extends Fragment {
 private MapView mapView;
 private MapController mc;
 private GeoPoint p;

 class MapOverlay extends com.google.android.maps.Overlay
 {
 //...
 }

 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 return inflater.inflate(
 R.layout.showmap, container, false);

C04.indd 137C04.indd 137 28/06/11 12:46 PM28/06/11 12:46 PM

138 ❘ CHAPTER 4 CREATING LOCATION-BASED SERVICES APPLICATIONS

 }

 @Override
 public void onStart() {
 super.onStart();
 mapView = (MapView) getActivity().findViewById(R.id.mapView);
 mc = mapView.getController();

 mapView.setBuiltInZoomControls(true);
 mapView.setSatellite(true);
 mapView.setTraffic(true);
 }

 //---go to a particular location---
 public void gotoLocation(String latlng)
 {
 //---the location is represented as “lat,lng”---
 String[] coordinates = latlng.split(“,”);
 double lat = Double.parseDouble(coordinates[0]);
 double lng = Double.parseDouble(coordinates[1]);
 p = new GeoPoint((int) (lat * 1E6),
 (int) (lng * 1E6));
 mc.animateTo(p);
 mc.setZoom(16);

 //---Add a location marker---
 MapOverlay mapOverlay = new MapOverlay();
 List<Overlay> listOfOverlays = mapView.getOverlays();
 listOfOverlays.clear();
 listOfOverlays.add(mapOverlay);

 mapView.invalidate();
 }

 @Override
 public void onCreate (Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 //---need to call this in order to fire the
 // onCreateOptionsMenu() event---
 setHasOptionsMenu(true);
 }

 //---creating action items on the action bar for a fragment---
 @Override
 public void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {
 super.onCreateOptionsMenu(menu, inflater);
 CreateMenu(menu);
 }

 //---when a menu item is selected---
 @Override
 public boolean onOptionsItemSelected(MenuItem item)

C04.indd 138C04.indd 138 28/06/11 12:46 PM28/06/11 12:46 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Getting Location Data ❘ 139

 {
 return MenuChoice(item);
 }

 //---create the action items---
 private void CreateMenu(Menu menu)
 {
 MenuItem mnu1 = menu.add(0, 0, 0, “Start Tracking”);
 {
 mnu1.setShowAsAction(
 MenuItem.SHOW_AS_ACTION_IF_ROOM |
 MenuItem.SHOW_AS_ACTION_WITH_TEXT);
 }

 MenuItem mnu2 = menu.add(0, 1, 1, “Stop Tracking”);
 {
 mnu2.setShowAsAction(
 MenuItem.SHOW_AS_ACTION_IF_ROOM |
 MenuItem.SHOW_AS_ACTION_WITH_TEXT);
 }

 MenuItem mnu3 = menu.add(0, 2, 1, “Use GPS”);
 {
 mnu3.setShowAsAction(
 MenuItem.SHOW_AS_ACTION_WITH_TEXT);
 mnu3.setCheckable(true);
 }

 MenuItem mnu4 = menu.add(0, 3, 1, “Use Cellular/WiFi”);
 {
 mnu4.setShowAsAction(
 MenuItem.SHOW_AS_ACTION_WITH_TEXT);
 mnu4.setCheckable(true);
 }
 }

 private boolean MenuChoice(MenuItem item)
 {
 //---obtain an instance of the activity---
 MainActivity mainActivity;
 mainActivity = (MainActivity) getActivity();

 switch (item.getItemId()) {
 case 0:
 Toast.makeText(getActivity(), “Tracking turned on”,
 Toast.LENGTH_LONG).show();
 //---calling the methods from the activity---
 mainActivity.TrackingUsingGPS(true);
 mainActivity.TrackingUsingCellularWiFi(true);
 return true;
 case 1:
 Toast.makeText(getActivity(), “Tracking turned off”,
 Toast.LENGTH_LONG).show();

C04.indd 139C04.indd 139 28/06/11 12:46 PM28/06/11 12:46 PM

140 ❘ CHAPTER 4 CREATING LOCATION-BASED SERVICES APPLICATIONS

 mainActivity.TrackingUsingGPS(false);
 mainActivity.TrackingUsingCellularWiFi(false);
 return true;
 case 2:
 if (!item.isChecked()) {
 Toast.makeText(getActivity(),
 “Using GPS for location tracking”,
 Toast.LENGTH_LONG).show();
 }
 item.setChecked(!(item.isChecked()));
 mainActivity.TrackingUsingGPS(item.isChecked());
 return true;
 case 3:
 if (!item.isChecked()) {
 Toast.makeText(getActivity(),
 “Using Cellular/WiFi for location tracking”,
 Toast.LENGTH_LONG).show();
 }
 item.setChecked(!(item.isChecked()));
 mainActivity.TrackingUsingCellularWiFi(item.isChecked());
 return true;
 }
 return false;
 }
}

 3. Add the following statements in bold to the AndroidManifest.xml fi le:

<?xml version=”1.0” encoding=”utf-8”?>
<manifest xmlns:android=”http://schemas.android.com/apk/res/android”
 package=”net.learn2develop.LBS”
 android:versionCode=”1”
 android:versionName=”1.0”>
 <uses-sdk android:minSdkVersion=”11” />

 <uses-permission android:name=”android.permission.INTERNET”>
 </uses-permission>
 <uses-permission
 android:name=”android.permission.ACCESS_COARSE_LOCATION”>
 </uses-permission>
 <uses-permission
 android:name=”android.permission.ACCESS_FINE_LOCATION”>
 </uses-permission>

 <application android:icon=”@drawable/icon” android:label=”Where Am I”>
 <uses-library android:name=”com.google.android.maps” />
 <activity android:name=”.MainActivity”
 android:label=”@string/app_name”>
 <intent-filter>
 <action android:name=”android.intent.action.MAIN” />
 <category android:name=”android.intent.category.LAUNCHER” />
 </intent-filter>
 </activity>
 </application>
</manifest>

C04.indd 140C04.indd 140 28/06/11 12:46 PM28/06/11 12:46 PM

Getting Location Data ❘ 141

4. Press F11 to debug the application on the Android emulator. Figure 4-17 shows the action items
displayed on the action bar.

FIGURE 4-17

NOTE When testing on the Android emulator, clicking the Start Tracking or
Use Cellular/Wi-Fi items causes the application to crash. This is because the
NETWORK_PROVIDER is not supported on the Android 3.0 emulator.

5. Clicking the Start Tracking item makes the application listen for location information using
GPS, the cellular network, and Wi-Fi. Clicking the Stop Tracking item stops the application from
listening for location information. Alternatively, you can also click the Use GPS item to only use
GPS, and click Use Cellular/Wi-Fi to use cellular and Wi-Fi networks. For this exercise, click the
Use GPS item.

6. To simulate GPS data received by the Android emulator, use the Location Controls tool (see
Figure 4-18) located in the DDMS perspective.

C04.indd 141C04.indd 141 28/06/11 12:46 PM28/06/11 12:46 PM

142 ❘ CHAPTER 4 CREATING LOCATION-BASED SERVICES APPLICATIONS

 7. Ensure that you have fi rst selected the emulator in the Devices tab. Then, in the Emulator Control
tab, locate the Location Controls tool and select the Manual tab. Enter a latitude and longitude
and click the Send button.

 8. Note that the map on the emulator now animates to another location (see Figure 4-19). This
proves that the application has received the GPS data.

FIGURE 4-18

FIGURE 4-19

C04.indd 142C04.indd 142 28/06/11 12:46 PM28/06/11 12:46 PM

Getting Location Data ❘ 143

How It Works

In Android, location-based services are provided by the LocationManager class, located in the
android.location package. Using the LocationManager class, your application can obtain periodic
updates of the device’s geographical locations, as well as fi re an intent when it enters the proximity of a
certain location.

In the MainActivity.java fi le, you fi rst obtain a reference to the LocationManager class using the
getSystemService() method. To be notifi ed whenever there is a change in location using GPS, you
need to register a request for location changes so that your program can be notifi ed periodically. This is
done via the requestLocationUpdates() method:

 lm.requestLocationUpdates(
 LocationManager.GPS_PROVIDER,
 0,
 0,
 locationListener);

This method takes four parameters:

 ➤ provider — The name of the provider with which you register. In this case, you are using GPS to
obtain your geographical location data.

 ➤ minTime — The minimum time interval for notifi cations, in milliseconds.

 ➤ minDistance — The minimum distance interval for notifi cations, in meters.

 ➤ listener — An object whose onLocationChanged() method will be called for each
location update.

The MyLocationListener class implements the LocationListener abstract class. You overrode four
methods in this implementation:

 ➤ onLocationChanged(Location location) — Called when the location has changed

 ➤ onProviderDisabled(String provider) — Called when the provider is disabled by the user

 ➤ onProviderEnabled(String provider) — Called when the provider is enabled by the user

 ➤ onStatusChanged(String provider, int status, Bundle extras) — Called when the
provider status changes

In this example, you’re more interested in what happens when a location changes, so you write some
code in the onLocationChanged() method. Specifi cally, when a location changes, you display a small
dialog on the screen showing the new location information: latitude and longitude. You show this
dialog using the Toast class.

To use the Cellular and Wi-Fi networks (important for indoor use) to obtain your location data, you
use the network location provider, like this:

 lm.requestLocationUpdates(
 LocationManager.NETWORK_PROVIDER,
 0,
 0,
 locationListener);

C04.indd 143C04.indd 143 28/06/11 12:46 PM28/06/11 12:46 PM

144 ❘ CHAPTER 4 CREATING LOCATION-BASED SERVICES APPLICATIONS

You combine both the GPS location provider with the network location provider within your application.

To stop listening for location updates, you use the removeUpdates() method:

 lm.removeUpdates(locationListener);

In the ShowMap fragment, you added four action items to the Action Bar, two of which are displayed
on the Action Bar, and two under the overfl ow action item. In Chapter 2, you learned how to add
action items to the Action Bar by overriding the onCreateOptionsMenu() method within the activity.
However, in this case, the fragment is adding action items, instead of the activity. To enable a fragment
to add action items, you need to call the setHasOptionsMenu() method so that the fragment fi res the
onCreateOptionsMenu():

 @Override
 public void onCreate (Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 //---need to call this in order to fire the
 // onCreateOptionsMenu() event---
 setHasOptionsMenu(true);
 }

Once this is done, the rest is relatively straightforward:

 //---creating action items on the action bar for a fragment---
 @Override
 public void onCreateOptionsMenu(Menu menu, MenuInflater
 inflater) {
 super.onCreateOptionsMenu(menu, inflater);
 CreateMenu(menu);
 }

 //---when a menu item is selected---
 @Override
 public boolean onOptionsItemSelected(MenuItem item)
 {
 return MenuChoice(item);
 }

 //---create the action items---
 private void CreateMenu(Menu menu)
 {
 MenuItem mnu1 = menu.add(0, 0, 0, “Start Tracking”);
 {
 mnu1.setShowAsAction(
 MenuItem.SHOW_AS_ACTION_IF_ROOM |
 MenuItem.SHOW_AS_ACTION_WITH_TEXT);
 }

 MenuItem mnu2 = menu.add(0, 1, 1, “Stop Tracking”);
 {
 mnu2.setShowAsAction(
 MenuItem.SHOW_AS_ACTION_IF_ROOM |
 MenuItem.SHOW_AS_ACTION_WITH_TEXT);

C04.indd 144C04.indd 144 28/06/11 12:46 PM28/06/11 12:46 PM

Getting Location Data ❘ 145

 }

 MenuItem mnu3 = menu.add(0, 2, 1, “Use GPS”);
 {
 mnu3.setShowAsAction(
 MenuItem.SHOW_AS_ACTION_WITH_TEXT);
 mnu3.setCheckable(true);
 }

 MenuItem mnu4 = menu.add(0, 3, 1, “Use Cellular/WiFi”);
 {
 mnu4.setShowAsAction(
 MenuItem.SHOW_AS_ACTION_WITH_TEXT);
 mnu4.setCheckable(true);
 }
 }

 private boolean MenuChoice(MenuItem item)
 {
 MainActivity mainActivity;
 mainActivity = (MainActivity) getActivity();

 switch (item.getItemId()) {
 case 0:
 Toast.makeText(getActivity(), “Tracking turned on”,
 Toast.LENGTH_LONG).show();
 mainActivity.TrackingUsingGPS(true);
 mainActivity.TrackingUsingCellularWiFi(true);
 return true;
 case 1:
 Toast.makeText(getActivity(), “Tracking turned off”,
 Toast.LENGTH_LONG).show();
 mainActivity.TrackingUsingGPS(false);
 mainActivity.TrackingUsingCellularWiFi(false);
 return true;
 case 2:
 if (!item.isChecked()) {
 Toast.makeText(getActivity(),
 “Using GPS for location tracking”,
 Toast.LENGTH_LONG).show();
 }
 item.setChecked(!(item.isChecked()));
 mainActivity.TrackingUsingGPS(item.isChecked());
 return true;
 case 3:
 if (!item.isChecked()) {
 Toast.makeText(getActivity(),
 “Using Cellular/WiFi for location tracking”,
 Toast.LENGTH_LONG).show();
 }
 item.setChecked(!(item.isChecked()));
 mainActivity.TrackingUsingCellularWiFi(item.isChecked());
 return true;
 }
 return false;
 }

C04.indd 145C04.indd 145 28/06/11 12:46 PM28/06/11 12:46 PM

146 ❘ CHAPTER 4 CREATING LOCATION-BASED SERVICES APPLICATIONS

Note that when a particular option is selected (for example, Use GPS), a
checkmark is displayed next to it (see Figure 4-20). This is achieved using the
setChecked() method of the MenuItem object. In order for a checkmark to
be displayed, you need to call its setCheckable() method fi rst.

In order to call a method on the activity from within a fragment, you need
to obtain an instance of the activity and then call its method directly, like
this:

 //---obtain an instance of the activity---
 MainActivity mainActivity;
 mainActivity = (MainActivity) getActivity();

 //---calling the methods from the activity---
 mainActivity.TrackingUsingGPS(true);
 mainActivity.TrackingUsingCellularWiFi(true);

FIGURE 4-20

MONITORING A LOCATION

One very cool feature of the LocationManager class is its ability to monitor a
specifi c location. This is achieved using the addProximityAlert() method. The
following code snippet shows how to monitor a particular location so that if the
user is within a fi ve-meter radius from that location, your application will fi re an
intent to launch the web browser:

 //--use the LocationManager class to obtain locations data--
 lm = (LocationManager)
 getSystemService(Context.LOCATION_SERVICE);

 //---PendingIntent to launch activity if the user is within
 // some locations---
 PendingIntent pendIntent = PendingIntent.getActivity(
 this, 0, new
 Intent(android.content.Intent.ACTION_VIEW,
 Uri.parse(“http://www.amazon.com”)), 0);

 lm.addProximityAlert(37.422006, -122.084095, 5, -1, pendIntent);

The addProximityAlert() method takes fi ve arguments: latitude, longitude,
radius (in meters), expiration (time for the proximity alert to be valid, after which it
will be deleted; -1 for no expiration), and the pending intent.

Note that if the Android device’s screen goes to sleep, the proximity is also checked
once every four minutes in order to preserve the battery life of the device.

C04.indd 146C04.indd 146 28/06/11 12:46 PM28/06/11 12:46 PM

Summary ❘ 147

SUMMARY

This chapter took a whirlwind tour of the MapView object, which displays Google Maps in your
Android application. You have learned the various ways in which the map can be manipulated, and
you have also learned how you can obtain geographical location data using the various network
providers: GPS, Cellular triangulation, or Wi-Fi triangulation.

EXERCISES

 1. If you have embedded the Google Maps API into your Android application but it does not show

the map when the application is loaded, what could be the likely reasons?

 2. What is the diff erence between geocoding and reverse geocoding?

 3. Name the two location providers that you can use to obtain your location data.

 4. What is the method for monitoring a location?

Answers to the Exercises can be found in Appendix C.

C04.indd 147C04.indd 147 28/06/11 12:46 PM28/06/11 12:46 PM

148 ❘ CHAPTER 4 CREATING LOCATION-BASED SERVICES APPLICATIONS

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Displaying the MapView <com.google.android.maps.MapView

 android:id=”@+id/mapView”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 android:enabled=”true”
 android:clickable=”true”
 android:apiKey=”<your_key_here>” />

Referencing the Map library <uses-library android:name=”com.google.android.
maps” />

Displaying the zoom controls mapView.setBuiltInZoomControls(true);

Programmatically zooming in

or out of the map

mc.zoomIn();
mc.zoomOut();

Changing views mapView.setSatellite(true);
mapView.setTraffic(true);

Animating to a particular

location

mc = mapView.getController();
String coordinates[] = {“1.352566007”,
“103.78921587”};
double lat = Double.
parseDouble(coordinates[0]);
double lng = Double.
parseDouble(coordinates[1]);
p = new GeoPoint(
 (int) (lat * 1E6),
 (int) (lng * 1E6));
 mc.animateTo(p);

Adding markers Implement an Overlay class and override the
draw() method

Getting the location of the

map touched

GeoPoint p = mapView.getProjection().
fromPixels(
 (int) event.getX(),
 (int) event.getY());

Geocoding and reverse

geocoding

 Use the Geocoder class

C04.indd 148C04.indd 148 28/06/11 12:46 PM28/06/11 12:46 PM

Summary ❘ 149

TOPIC KEY CONCEPTS

Obtaining location data private LocationManager lm;

//...

 lm = (LocationManager)
 getSystemService(Context.LOCATION_
SERVICE);

 locationListener = new
MyLocationListener();

 lm.requestLocationUpdates(
 LocationManager.GPS_PROVIDER,
 0,
 0,
 locationListener);

//...

 private class MyLocationListener implements
LocationListener
 {
 @Override
 public void onLocationChanged(Location
loc) {
 if (loc != null) {
 }
 }

 @Override
 public void onProviderDisabled(String
provider) {
 }

 @Override
 public void onProviderEnabled(String
provider) {
 }

 @Override
 public void onStatusChanged(String
provider, int status,
 Bundle extras) {
 }
 }

Monitoring a location lm.addProximityAlert(37.422006, -122.084095, 5,
-1, pendIntent);

C04.indd 149C04.indd 149 28/06/11 12:46 PM28/06/11 12:46 PM

C04.indd 150C04.indd 150 28/06/11 12:46 PM28/06/11 12:46 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

SMS Messaging and
Networking

WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ Sending SMS messages programmatically from within your

application

 ➤ Sending SMS messages using the built-in Messaging

application

 ➤ How to receive incoming SMS messages

 ➤ How to build a location tracker application

 ➤ Sending e-mail messages from your application

 ➤ Connecting to the Web using HTTP

 ➤ How to consume Web services

Once your basic Android application is up and running, the next interesting thing you
can add to it is the capability to communicate with the outside world. You may want your
application to send an SMS message to another phone when an event happens (such as when
you reach a particular geographical location), or you may wish to access a Web service that
provides certain services (such as currency exchange, weather, etc.). In this chapter, you
learn how to send and receive SMS messages programmatically from within your Android
application.

5

c05.indd 151c05.indd 151 28/06/11 1:19 PM28/06/11 1:19 PM

152 ❘ CHAPTER 5 SMS MESSAGING AND NETWORKING

You will also learn how to use the HTTP protocol to talk to web servers so that you can
download text and binary data. The last part of this chapter shows you how to parse XML fi les
to extract the relevant parts of an XML fi le — a technique that is useful if you are accessing
Web services.

SMS MESSAGING

SMS messaging is one of the main killer applications on a mobile device today. Any mobile
phone (or devices) you buy today should have at least SMS messaging capabilities, and nearly
all users of any age know how to send and receive such messages. Android comes with a built-
in SMS application that enables you to send and receive SMS messages. However, in some
cases you might want to integrate SMS capabilities into your own Android application. For
example, you might want to write an application that automatically sends an SMS message at
regular time intervals. This would be useful, for example, if you wanted to track the location of
your kids — simply give them an Android device that sends out an SMS message containing its
geographical location every 30 minutes. Now you know if they really went to the library after
school! (Of course, that would also mean you would have to pay the fees incurred for sending all
those SMS messages . . .)

This section describes how you can programmatically send and receive SMS messages in your
Android applications. The good news for Android developers is that you don’t need a real device to
test SMS messaging: The free Android emulator provides that capability.

Sending SMS Messages Programmatically

You will fi rst learn how to send SMS messages programmatically from within your application.
Using this approach, your application can automatically send an SMS message to a recipient without
user intervention. The following Try It Out shows you how.

NOTE For the following Try It Out, you will create an Android 2.2 application
because it is easier and faster to test it out on a pre-Android 3.0 emulator. The
concepts covered apply to Android 3.0 as well. Later in this chapter, you will
modify the project to run on Android 3.0 devices.

TRY IT OUT Sending SMS Messages

codefi le SMS.zip available for download at Wrox.com

 1. Using Eclipse, create a new Android project and name it SMS, as shown in Figure 5-1.

c05.indd 152c05.indd 152 28/06/11 1:19 PM28/06/11 1:19 PM

SMS Messaging ❘ 153

 2. Add the following statements in bold to the main.xml fi le:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
>
<Button
 android:id=”@+id/btnSendSMS”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”Send SMS” />
</LinearLayout>

FIGURE 5-1

c05.indd 153c05.indd 153 28/06/11 1:19 PM28/06/11 1:19 PM

154 ❘ CHAPTER 5 SMS MESSAGING AND NETWORKING

 3. In the AndroidManifest.xml fi le, add the following statements in bold:

<?xml version=”1.0” encoding=”utf-8”?>
<manifest xmlns:android=”http://schemas.android.com/apk/res/android”
 package=”net.learn2develop.SMS”
 android:versionCode=”1”
 android:versionName=”1.0”>
 <application android:icon=”@drawable/icon” android:label=”@string/app_name”>
 <activity android:name=”.MainActivity”
 android:label=”@string/app_name”>
 <intent-filter>
 <action android:name=”android.intent.action.MAIN” />
 <category android:name=”android.intent.category.LAUNCHER” />
 </intent-filter>
 </activity>
 </application>
 <uses-sdk android:minSdkVersion=”8” />
 <uses-permission android:name=”android.permission.SEND_SMS”>
 </uses-permission>
</manifest>

 4. Add the following statements in bold to the MainActivity.java fi le:

package net.learn2develop.SMS;

import android.app.Activity;
import android.os.Bundle;

import android.app.PendingIntent;
import android.content.Intent;
import android.telephony.SmsManager;
import android.view.View;
import android.widget.Button;

public class MainActivity extends Activity {
 Button btnSendSMS;
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 btnSendSMS = (Button) findViewById(R.id.btnSendSMS);
 btnSendSMS.setOnClickListener(new View.OnClickListener()
 {
 public void onClick(View v)
 {
 sendSMS(“5556”, “Hello my friends!”);

 }
 });
 }

 //---sends an SMS message to another device---

c05.indd 154c05.indd 154 28/06/11 1:19 PM28/06/11 1:19 PM

SMS Messaging ❘ 155

 private void sendSMS(String phoneNumber, String message)
 {
 SmsManager sms = SmsManager.getDefault();
 sms.sendTextMessage(phoneNumber, null, message, null, null);
 }
}

 5. Press F11 to debug the application on an Android 2.2 emulator. Using the Android SDK and AVD
Manager, launch another Android 2.2 emulator.

 6. On the fi rst Android emulator, click the Send SMS button to send an SMS message to the second
emulator. The left side of Figure 5-2 shows the SMS message received by the second emulator
(note the notifi cation bar at the top of the second emulator).

FIGURE 5-2

How It Works

Android uses a permissions-based policy whereby all the permissions needed by an application must be
specifi ed in the AndroidManifest.xml fi le. This ensures that when the application is installed, the user
knows exactly which access permissions it requires.

c05.indd 155c05.indd 155 28/06/11 1:19 PM28/06/11 1:19 PM

156 ❘ CHAPTER 5 SMS MESSAGING AND NETWORKING

Because sending SMS messages incurs additional costs on the user’s end, indicating the SMS
permissions in the AndroidManifest.xml fi le enables users to decide whether to allow the application
to install or not.

To send an SMS message programmatically, you used the SmsManager class. Unlike other classes, you
do not directly instantiate this class; instead, you call the getDefault() static method to obtain an
SmsManager object. You then sent the SMS message using the sendTextMessage() method:

 private void sendSMS(String phoneNumber, String message)
 {
 SmsManager sms = SmsManager.getDefault();
 sms.sendTextMessage(phoneNumber, null, message, null, null);
 }

Following are the fi ve arguments to the sendTextMessage() method:

 ➤ destinationAddress — Phone number of the recipient.

 ➤ scAddress — Service center address; use null for default SMSC.

 ➤ text — Content of the SMS message.

 ➤ sentIntent — Pending intent to invoke when the message is sent (discussed in more detail in the
next section).

 ➤ deliveryIntent — Pending intent to invoke when the message has been delivered (discussed in
more detail in the next section).

Getting Feedback after Sending the Message

In the previous section, you learned how to programmatically send SMS messages using the
SmsManager class; but how do you know that the message has been sent correctly? To do so, you
can create two PendingIntent objects to monitor the status of the SMS message-sending process.
These two PendingIntent objects are passed to the last two arguments of the sendTextMessage()
method. The following code snippets show how you can monitor the status of the SMS message
being sent:

 //---sends an SMS message to another device---
 private void sendSMS(String phoneNumber, String message)
 {
 String SENT = “SMS_SENT”;
 String DELIVERED = “SMS_DELIVERED”;

 PendingIntent sentPI = PendingIntent.getBroadcast(this, 0,
 new Intent(SENT), 0);

 PendingIntent deliveredPI = PendingIntent.getBroadcast(this, 0,
 new Intent(DELIVERED), 0);

 //---when the SMS has been sent---

c05.indd 156c05.indd 156 28/06/11 1:19 PM28/06/11 1:19 PM

SMS Messaging ❘ 157

 registerReceiver(new BroadcastReceiver(){
 @Override
 public void onReceive(Context arg0, Intent arg1) {
 switch (getResultCode())
 {
 case Activity.RESULT_OK:
 Toast.makeText(getBaseContext(), “SMS sent”,
 Toast.LENGTH_SHORT).show();
 break;
 case SmsManager.RESULT_ERROR_GENERIC_FAILURE:
 Toast.makeText(getBaseContext(), “Generic failure”,
 Toast.LENGTH_SHORT).show();
 break;
 case SmsManager.RESULT_ERROR_NO_SERVICE:
 Toast.makeText(getBaseContext(), “No service”,
 Toast.LENGTH_SHORT).show();
 break;
 case SmsManager.RESULT_ERROR_NULL_PDU:
 Toast.makeText(getBaseContext(), “Null PDU”,
 Toast.LENGTH_SHORT).show();
 break;
 case SmsManager.RESULT_ERROR_RADIO_OFF:
 Toast.makeText(getBaseContext(), “Radio off”,
 Toast.LENGTH_SHORT).show();
 break;
 }
 }
 }, new IntentFilter(SENT));

 //---when the SMS has been delivered---
 registerReceiver(new BroadcastReceiver(){
 @Override
 public void onReceive(Context arg0, Intent arg1) {
 switch (getResultCode())
 {
 case Activity.RESULT_OK:
 Toast.makeText(getBaseContext(), “SMS delivered”,
 Toast.LENGTH_SHORT).show();
 break;
 case Activity.RESULT_CANCELED:
 Toast.makeText(getBaseContext(), “SMS not delivered”,
 Toast.LENGTH_SHORT).show();
 break;
 }
 }
 }, new IntentFilter(DELIVERED));

 SmsManager sms = SmsManager.getDefault();
 sms.sendTextMessage(phoneNumber, null, message, sentPI, deliveredPI);
 }

c05.indd 157c05.indd 157 28/06/11 1:19 PM28/06/11 1:19 PM

158 ❘ CHAPTER 5 SMS MESSAGING AND NETWORKING

Here, you created two PendingIntent objects. You then registered for two BroadcastReceivers.
These two BroadcastReceivers listen for intents that match “SMS_SENT” and “SMS_DELIVERED”
(which are fi red by the OS when the message has been sent and delivered, respectively). Within each
BroadcastReceiver you override the onReceive() method and get the current result code.

The two PendingIntent objects are passed into the last two arguments of the sendTextMessage()
method:

 sms.sendTextMessage(phoneNumber, null, message, sentPI, deliveredPI);

In this case, whether a message has been sent correctly or failed to be delivered, you will be notifi ed
of its status via the two PendingIntent objects.

Sending SMS Messages Using Intent

Using the SmsManager class, you can send SMS messages from within your application without
the need to involve the built-in Messaging application. However, sometimes it would be easier if
you could simply invoke the built-in Messaging application and let it do all the work of sending
the message.

To activate the built-in Messaging application from within your application, you can use an Intent
object together with the MIME type “vnd.android-dir/mms-sms”, as shown by the following
code snippet:

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 btnSendSMS = (Button) findViewById(R.id.btnSendSMS);
 btnSendSMS.setOnClickListener(new View.OnClickListener()
 {
 public void onClick(View v)
 {
 //sendSMS(“5556”, “Hello my friends!”);
 Intent i = new
 Intent(android.content.Intent.ACTION_VIEW);
 i.putExtra(“address”, “5556; 5558; 5560”);
 i.putExtra(“sms_body”, “Hello my friends!”);
 i.setType(“vnd.android-dir/mms-sms”);
 startActivity(i);
 }
 });
 }

This will invoke the Messaging application, as shown in Figure 5-3. Note that you can send your
SMS to multiple recipients by simply separating each phone number with a semicolon (in the
putExtra() method).

c05.indd 158c05.indd 158 28/06/11 1:19 PM28/06/11 1:19 PM

SMS Messaging ❘ 159

Receiving SMS Messages

Besides sending SMS messages from your Android applications, you can also receive incoming
SMS messages from within your application by using a BroadcastReceiver object. This is useful
when you want your application to perform an action when a certain SMS message is received. For
example, you might want to track the location of your phone in case it is lost or stolen. In this case,
you can write an application that automatically listens for SMS messages containing some secret
code. Once that message is received, you can then send an SMS message containing the location’s
coordinates back to the sender.

The following Try It Out shows how to programmatically listen for incoming SMS messages.

FIGURE 5-3

NOTE If you use this method to invoke the Messaging application, there is no
need to ask for the SMS_SEND permission in AndroidManifest.xml because
your application is ultimately not the one sending the message.

c05.indd 159c05.indd 159 28/06/11 1:19 PM28/06/11 1:19 PM

160 ❘ CHAPTER 5 SMS MESSAGING AND NETWORKING

TRY IT OUT Intercepting Incoming SMS Messages

 1. Using the same project created in the previous section, add the following statements in bold to the
AndroidManifest.xml fi le:

<?xml version=”1.0” encoding=”utf-8”?>
<manifest xmlns:android=”http://schemas.android.com/apk/res/android”
 package=”net.learn2develop.SMS”
 android:versionCode=”1”
 android:versionName=”1.0”>
 <application android:icon=”@drawable/icon” android:label=”@string/app_name”>
 <activity android:name=”.MainActivity”
 android:label=”@string/app_name”>
 <intent-filter>
 <action android:name=”android.intent.action.MAIN” />
 <category android:name=”android.intent.category.LAUNCHER” />
 </intent-filter>
 </activity>
 <receiver android:name=”.SMSReceiver”>
 <intent-filter>
 <action android:name=
 “android.provider.Telephony.SMS_RECEIVED” />
 </intent-filter>
 </receiver>
 </application>
 <uses-sdk android:minSdkVersion=”8” />
 <uses-permission android:name=”android.permission.SEND_SMS”></uses-permission>
 <uses-permission android:name=”android.permission.RECEIVE_SMS”>
 </uses-permission>
</manifest>

 2. In the src folder of the project, add a new class fi le to the package
name and call it SMSReceiver.java (see Figure 5-4).

 3. Code the SMSReceiver.java fi le as follows:

package net.learn2develop.SMS;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.os.Bundle;
import android.telephony.SmsMessage;
import android.widget.Toast;

public class SMSReceiver extends BroadcastReceiver
{
 @Override
 public void onReceive(Context context, Intent intent)
 {
 //---get the SMS message passed in---
 Bundle bundle = intent.getExtras();
 SmsMessage[] msgs = null;
 String str = “”;

FIGURE 5-4

c05.indd 160c05.indd 160 28/06/11 1:19 PM28/06/11 1:19 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

SMS Messaging ❘ 161

 if (bundle != null)
 {
 //---retrieve the SMS message received---
 Object[] pdus = (Object[]) bundle.get(“pdus”);
 msgs = new SmsMessage[pdus.length];
 for (int i=0; i<msgs.length; i++){
 msgs[i] = SmsMessage.createFromPdu((byte[])pdus[i]);
 str += “SMS from “ + msgs[i].getOriginatingAddress();
 str += “ :”;
 str += msgs[i].getMessageBody().toString();
 str += “\n”;
 }
 //---display the new SMS message---
 Toast.makeText(context, str, Toast.LENGTH_SHORT).show();
 }
 }
}

 4. Press F11 to debug the application on the Android emulator.

 5. Using the DDMS, send a message to the emulator. Your application should be able to receive the
message and display it using the Toast class (see Figure 5-5).

FIGURE 5-5

c05.indd 161c05.indd 161 28/06/11 1:19 PM28/06/11 1:19 PM

162 ❘ CHAPTER 5 SMS MESSAGING AND NETWORKING

How It Works

To listen for incoming SMS messages, you created a BroadcastReceiver class. The
BroadcastReceiver class enabled your application to receive intents sent by other applications using
the sendBroadcast() method. Essentially, the sendBroadcast() method enables your application
to handle events raised by other applications. When an intent is received, the onReceive() method is
called; hence, you need to override this.

When an incoming SMS message is received, the onReceive() method is fi red. The SMS message
is contained in the Intent object (intent; the second parameter in the onReceive() method)
via a Bundle object. The messages are stored in an Object array in the PDU format. To extract
each message, you use the static createFromPdu() method from the SmsMessage class. The SMS
message is then displayed using the Toast class. The phone number of the sender is obtained via
the getOriginatingAddress() method, so if you need to send an autoreply to the sender, this is the
method to obtain the sender’s phone number.

One interesting characteristic of the BroadcastReceiver is that you can continue to listen for
incoming SMS messages even if the application is not running; as long as the application is installed on
the device, any incoming SMS messages will be received by the application.

Updating an Activity from a BroadcastReceiver

The previous section described how you can use a BroadcastReceiver class to listen for incoming
SMS messages and then use the Toast class to display the received SMS message. Often, you’ll want to
send the SMS message back to the main activity of your application. For example, you might wish
to display the message in a TextView. The following Try It Out demonstrates how you can do this.

TRY IT OUT Updating an Activity through a BroadcastReceiver

 1. Using the same project created in the previous section, add the following lines in bold to the
main.xml fi le:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
>
<Button
 android:id=”@+id/btnSendSMS”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”Send SMS” />

<TextView
 android:id=”@+id/textView1”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content” />

</LinearLayout>

c05.indd 162c05.indd 162 28/06/11 1:19 PM28/06/11 1:19 PM

SMS Messaging ❘ 163

 2. Add the following statements in bold to the SMSReceiver.java fi le:

package net.learn2develop.SMS;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.os.Bundle;
import android.telephony.SmsMessage;
import android.widget.Toast;

public class SMSReceiver extends BroadcastReceiver
{
 @Override
 public void onReceive(Context context, Intent intent)
 {
 //---get the SMS message passed in---
 Bundle bundle = intent.getExtras();
 SmsMessage[] msgs = null;
 String str = “”;
 if (bundle != null)
 {
 //---retrieve the SMS message received---
 Object[] pdus = (Object[]) bundle.get(“pdus”);
 msgs = new SmsMessage[pdus.length];
 for (int i=0; i<msgs.length; i++){
 msgs[i] = SmsMessage.createFromPdu((byte[])pdus[i]);
 str += “SMS from “ + msgs[i].getOriginatingAddress();
 str += “ :”;
 str += msgs[i].getMessageBody().toString();
 str += “\n”;
 }
 //---display the new SMS message---
 Toast.makeText(context, str, Toast.LENGTH_SHORT).show();

 //---send a broadcast intent to update the SMS received in
 // the activity---
 Intent broadcastIntent = new Intent();
 broadcastIntent.setAction(“SMS_RECEIVED_ACTION”);
 broadcastIntent.putExtra(“sms”, str);
 context.sendBroadcast(broadcastIntent);
 }
 }
}

 3. Add the following statements in bold to the MainActivity.java fi le:

package net.learn2develop.SMS;

import android.app.Activity;
import android.os.Bundle;
import android.app.PendingIntent;
import android.content.Context;
import android.content.Intent;

c05.indd 163c05.indd 163 28/06/11 1:19 PM28/06/11 1:19 PM

164 ❘ CHAPTER 5 SMS MESSAGING AND NETWORKING

import android.telephony.SmsManager;
import android.view.View;
import android.widget.Button;
import android.widget.Toast;

import android.content.BroadcastReceiver;
import android.content.IntentFilter;
import android.widget.TextView;

public class MainActivity extends Activity {
 Button btnSendSMS;
 IntentFilter intentFilter;

 private BroadcastReceiver intentReceiver = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 //---display the SMS received in the TextView---
 TextView SMSes = (TextView) findViewById(R.id.textView1);
 SMSes.setText(intent.getExtras().getString(“sms”));
 }
 };

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 //---intent to filter for SMS messages received---
 intentFilter = new IntentFilter();
 intentFilter.addAction(“SMS_RECEIVED_ACTION”);

 btnSendSMS = (Button) findViewById(R.id.btnSendSMS);
 btnSendSMS.setOnClickListener(new View.OnClickListener()
 {
 public void onClick(View v)
 {
 //sendSMS(“5554”, “Hello my friends!”);

 Intent i = new
 Intent(android.content.Intent.ACTION_VIEW);
 i.putExtra(“address”, “5556; 5558; 5560”);
 i.putExtra(“sms_body”, “Hello my friends!”);
 i.setType(“vnd.android-dir/mms-sms”);
 startActivity(i);
 }
 });
 }

 @Override
 protected void onResume() {
 //---register the receiver---
 registerReceiver(intentReceiver, intentFilter);

c05.indd 164c05.indd 164 28/06/11 1:19 PM28/06/11 1:19 PM

SMS Messaging ❘ 165

 super.onResume();
 }

 @Override
 protected void onPause() {
 //---unregister the receiver---
 unregisterReceiver(intentReceiver);
 super.onPause();
 }

 //---sends an SMS message to another device---
 private void sendSMS(String phoneNumber, String message)
 {
 //...
 }
}

 4. Press F11 to debug the application on the Android emulator. Using the DDMS, send an SMS
message to the emulator. Figure 5-6 shows the Toast class displaying the message received, and
the TextView showing the message received.

FIGURE 5-6

How It Works

You fi rst added a TextView to your activity so that it can be used to display the received SMS message.

c05.indd 165c05.indd 165 28/06/11 1:19 PM28/06/11 1:19 PM

166 ❘ CHAPTER 5 SMS MESSAGING AND NETWORKING

Next, you modifi ed the SMSReceiver class so that when it receives an SMS message, it will broadcast
another Intent object so that any applications listening for this intent can be notifi ed (which we will
implement in the activity next). The SMS received is also sent out via this intent:

 //---send a broadcast intent to update the SMS received in
 // the activity---
 Intent broadcastIntent = new Intent();
 broadcastIntent.setAction(“SMS_RECEIVED_ACTION”);
 broadcastIntent.putExtra(“sms”, str);
 context.sendBroadcast(broadcastIntent);

In your activity, you then created a BroadcastReceiver object to listen for broadcast intents:

 private BroadcastReceiver intentReceiver = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 //---display the SMS received in the TextView---
 TextView SMSes = (TextView) findViewById(R.id.textView1);
 SMSes.setText(intent.getExtras().getString(“sms”));
 }
 };

When a broadcast intent is received, you update the SMS message in the TextView.

You need to create an IntentFilter object so that you can listen for a particular intent. In this case,
the intent is “SMS_RECEIVED_ACTION”:

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 //---intent to filter for SMS messages received---
 intentFilter = new IntentFilter();
 intentFilter.addAction(“SMS_RECEIVED_ACTION”);
 //...
 }

Finally, you registered the BroadcastReceiver in the activity’s onResume() event and unregistered it in
the onPause() event:

 @Override
 protected void onResume() {
 //---register the receiver---
 registerReceiver(intentReceiver, intentFilter);
 super.onResume();
 }

 @Override
 protected void onPause() {
 //---unregister the receiver---
 unregisterReceiver(intentReceiver);
 super.onPause();
 }

c05.indd 166c05.indd 166 28/06/11 1:19 PM28/06/11 1:19 PM

SMS Messaging ❘ 167

This means that the TextView will display the SMS message only when the message is received while
the activity is visible on the screen. If the SMS message is received when the activity is not in the
foreground, the TextView will not be updated.

Invoking an Activity from a BroadcastReceiver

The previous example showed how you can pass the SMS message received to be displayed in
the activity. However, in many situations your activity may be in the background when the SMS
message is received. In this case, it would be useful to be able to bring the activity to the foreground
when a message is received. The following Try It Out shows you how.

TRY IT OUT Invoking an Activity

 1. Using the same project created earlier, add the following lines in bold to the MainActivity
.java fi le:

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 //---intent to filter for SMS messages received---
 intentFilter = new IntentFilter();
 intentFilter.addAction(“SMS_RECEIVED_ACTION”);

 //---register the receiver---
 registerReceiver(intentReceiver, intentFilter);

 btnSendSMS = (Button) findViewById(R.id.btnSendSMS);
 btnSendSMS.setOnClickListener(new View.OnClickListener()
 {
 public void onClick(View v)
 {
 //sendSMS(“5554”, “Hello my friends!”);
 Intent i = new
 Intent(android.content.Intent.ACTION_VIEW);
 i.putExtra(“address”, “5556; 5558; 5560”);
 i.putExtra(“sms_body”, “Hello my friends!”);
 i.setType(“vnd.android-dir/mms-sms”);
 startActivity(i);
 }
 });
 }

 @Override
 protected void onResume() {
 //---register the receiver---
 //registerReceiver(intentReceiver, intentFilter);

c05.indd 167c05.indd 167 28/06/11 1:19 PM28/06/11 1:19 PM

168 ❘ CHAPTER 5 SMS MESSAGING AND NETWORKING

 super.onResume();
 }

 @Override
 protected void onPause() {
 //---unregister the receiver---
 //unregisterReceiver(intentReceiver);
 super.onPause();
 }

 @Override
 protected void onDestroy() {
 //---unregister the receiver---
 unregisterReceiver(intentReceiver);
 super.onPause();
 }

 2. Add the following statements in bold to the SMSReceiver.java fi le:

 @Override
 public void onReceive(Context context, Intent intent)
 {
 //---get the SMS message passed in---
 Bundle bundle = intent.getExtras();
 SmsMessage[] msgs = null;
 String str = “”;
 if (bundle != null)
 {
 //---retrieve the SMS message received---
 Object[] pdus = (Object[]) bundle.get(“pdus”);
 msgs = new SmsMessage[pdus.length];
 for (int i=0; i<msgs.length; i++){
 msgs[i] = SmsMessage.createFromPdu((byte[])pdus[i]);
 str += “SMS from “ + msgs[i].getOriginatingAddress();
 str += “ :”;
 str += msgs[i].getMessageBody().toString();
 str += “\n”;
 }
 //---display the new SMS message---
 Toast.makeText(context, str, Toast.LENGTH_SHORT).show();

 //---launch the MainActivity---
 Intent mainActivityIntent = new Intent(context, MainActivity.class);
 mainActivityIntent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
 context.startActivity(mainActivityIntent);

 //---send a broadcast to update the SMS received in the activity---
 Intent broadcastIntent = new Intent();
 broadcastIntent.setAction(“SMS_RECEIVED_ACTION”);
 broadcastIntent.putExtra(“sms”, str);
 context.sendBroadcast(broadcastIntent);
 }
 }

c05.indd 168c05.indd 168 28/06/11 1:19 PM28/06/11 1:19 PM

SMS Messaging ❘ 169

 3. Modify the main.xml fi le as follows:

 <activity android:name=”.MainActivity”
 android:label=”@string/app_name”
 android:launchMode=”singleTask” >
 <intent-filter>
 <action android:name=”android.intent.action.MAIN” />
 <category android:name=”android.intent.category.LAUNCHER” />
 </intent-filter>
 </activity>

 4. Press F11 to debug the application on the Android emulator. When the MainActivity is shown,
click the Home button to send the activity to the background.

 5. Use the DDMS to send an SMS message to the emulator again. This time, note that the activity is
brought to the foreground, displaying the SMS message received.

How It Works

In the MainActivity class, you fi rst registered the BroadcastReceiver in the activity’s onCreate()
event, instead of the onResume() event; and instead of unregistering it in the onPause() event, you
unregistered it in the onDestroy() event. This ensures that even if the activity is in the background, it
can still listen for the broadcast intent.

Next, you modifi ed the onReceive() event in the SMSReceiver class by using an intent to bring the
activity to the foreground before broadcasting another intent:

 //---launch the MainActivity---
 Intent mainActivityIntent =
 new Intent(context, MainActivity.class);
 mainActivityIntent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
 context.startActivity(mainActivityIntent);

 //---send a broadcast to update the SMS received in the activity---
 Intent broadcastIntent = new Intent();
 broadcastIntent.setAction(“SMS_RECEIVED_ACTION”);
 broadcastIntent.putExtra(“sms”, str);
 context.sendBroadcast(broadcastIntent);

The startActivity() method launches the activity and brings it to the foreground. Note that you
needed to set the Intent.FLAG_ACTIVITY_NEW_TASK fl ag because calling startActivity() from
outside of an activity context requires the FLAG_ACTIVITY_NEW_TASK fl ag.

You also needed to set the launchMode attribute of the <activity> element in the AndroidManifest
.xml fi le to singleTask:

 <activity android:name=”.MainActivity”
 android:label=”@string/app_name”
 android:launchMode=”singleTask” >

If you don’t set this, multiple instances of the activity will be launched as your application receives SMS
messages.

c05.indd 169c05.indd 169 28/06/11 1:19 PM28/06/11 1:19 PM

170 ❘ CHAPTER 5 SMS MESSAGING AND NETWORKING

Note that in this example, when the activity is in the background (such as when you click the Home
button to show the home screen), the activity was brought to the foreground and its TextView was
updated with the SMS received. However, if the activity were killed (such as when you click the Back
button to destroy it), the activity is launched again but the TextView is not updated.

Caveats and Warnings

While the capability to send and receive SMS messages makes Android a very compelling platform
for developing sophisticated applications, this fl exibility comes with a price. A seemingly innocent
application may send SMS messages behind the scenes without the user knowing, as demonstrated
by a recent case of an SMS-based Trojan Android application (http://forum.vodafone.co.nz/
topic/5719-android-sms-trojan-warning/). Claiming to be a media player, after it is installed
the application sends SMS messages to a premium number, resulting in huge phone bills for the user.

While the user needs to explicitly give permission to your application, the request for permission
is only shown at installation time. Figure 5-7 shows the request for permission that appears when
you try to install the application (as an APK fi le; Chapter6 discusses packaging your Android
applications in more detail) on the emulator (same as on a real device). If the user clicks the Install
button, he or she is considered to have given permission to allow the application to send and receive
SMS messages. This is dangerous, because after the application is installed it can send and receive
SMS messages without ever prompting the user again.

FIGURE 5-7

c05.indd 170c05.indd 170 28/06/11 1:19 PM28/06/11 1:19 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

SMS Messaging ❘ 171

In addition to this, the application can also “sniff” for incoming SMS messages. For example, based
on the techniques you learned from the previous section, you can easily write an application that
checks for certain keywords in the SMS message. When an SMS message contains the keyword
you are looking for, you can use the Location Manager (covered in Chapter 4) to obtain your
geographical location and then send the coordinates back to the sender of the SMS message. The
sender could then easily track your location. All these tasks can be done without the user knowing
it! That said, users should try to avoid installing Android applications that come from dubious
sources, such as unknown websites, strangers, and so on.

Project: Building the Location Tracker Applications

Now that you have learned how to make your Android application send and receive SMS messages,
let’s put this knowledge to good use by writing a pair of applications that enable users to track the
whereabouts of their friends. We’ll call the pair of applications — one for the phone and one for the
tablet — the Location Tracker.

The phone application will listen for incoming SMS messages. If an incoming message starts with the
sentence “Where are you?”, it will invoke the Location Manager (see Chapter 4) to obtain
the device’s geographical location. It will then send back an SMS message (to the sender)
containing the device’s latitude and longitude. The format of the message is “location:<lat>:<lon>.”

The tablet application, conversely, allows users to send SMS messages to the phone application
and wait for returning SMS messages containing the devices’ locations. It, too, waits for incoming
messages, but only for those messages that start with the word “location:.” Once these messages
are received, it will display the location of the device using Google Maps. Figure 5-8 summarizes the
fl ow of the two applications.

Where are you?

Location Tracker

(tablet)

Location Tracker

(phone)

location:37. 422006:-122. 184095

FIGURE 5-8

c05.indd 171c05.indd 171 28/06/11 1:19 PM28/06/11 1:19 PM

172 ❘ CHAPTER 5 SMS MESSAGING AND NETWORKING

Building the Location Tracker (Phone)

The fi rst application you will build for this project is the application that will be installed on an
Android phone. Once it is installed, you will be able to track its whereabouts by sending it an SMS
message. The following Try It Out shows you how.

TRY IT OUT Creating the Location Tracker Application (Phone)

1. Using Eclipse, create a new Android application and name it LocationTracker. For this project,
select the Android 2.2 target, as the Android 2.3 emulator seems to have problems receiving SMS
messages from the DDMS perspective.

2. Modify the AndroidManifest.xml as follows:

<?xml version=”1.0” encoding=”utf-8”?>
<manifest
 xmlns:android=”http://schemas.android.com/apk/res/android”
 package=”net.learn2develop.LocationTracker”
 android:versionCode=”1”
 android:versionName=”1.0”>
 <uses-sdk android:minSdkVersion=”8” />
 <uses-permission
 android:name=”android.permission.ACCESS_FINE_LOCATION”>
 </uses-permission>
 <uses-permission android:name=”android.permission.RECEIVE_SMS”>
 </uses-permission>
 <uses-permission android:name=”android.permission.SEND_SMS”>
 </uses-permission>
<application
 android:icon=”@drawable/icon” android:label=”@string/app_name”>
 <activity android:name=”.MainActivity”
 android:label=”@string/app_name”>
 <intent-filter>
 <action android:name=”android.intent.action.MAIN” />
 <category android:name=”android.intent.category.LAUNCHER” />
 </intent-filter>
 </activity>
 <receiver android:name=”.SMSReceiver”>
 <intent-filter>
 <action android:name=

WARNING In some countries, it is illegal for you to track the location of a person
without his or her knowledge. If you install the Location Tracker application on
a user’s phone, that device will automatically return its location information to
whomever sends it an SMS message beginning with the words “Where are you?”
Therefore, if you want to use this project in real life, you must alert potential
users about the application’s functionality, so that they have the option to not
reveal their location. That said, this project also has its perfectly legitimate
uses – using it to track your child while they’re on a fi eld trip, or using it to track
your elderly folks when they go travelling, for example.

c05.indd 172c05.indd 172 28/06/11 1:19 PM28/06/11 1:19 PM

SMS Messaging ❘ 173

 “android.provider.Telephony.SMS_RECEIVED” />
 </intent-filter>
 </receiver>
 </application>
</manifest>

 3. Add a class fi le under the package name and name it SMSReceiver.java. Populate it as follows:

package net.learn2develop.LocationTracker;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.os.Bundle;
import android.telephony.SmsMessage;

public class SMSReceiver extends BroadcastReceiver
{
 @Override
 public void onReceive(Context context, Intent intent)
 {
 //---get the SMS message that was received---
 Bundle bundle = intent.getExtras();
 SmsMessage[] msgs = null;
 String str = “”;
 if (bundle != null)
 {
 //---retrieve the SMS message received---
 Object[] pdus = (Object[]) bundle.get(“pdus”);
 msgs = new SmsMessage[pdus.length];
 String senderTel = “”;
 for (int i=0; i<msgs.length; i++){
 msgs[i] = SmsMessage.createFromPdu((byte[])pdus[i]);
 //---store the sender phone number---
 senderTel = msgs[i].getOriginatingAddress();
 //---get the body of the message received---
 str += msgs[i].getMessageBody().toString();
 }

 if (str.startsWith(“Where are you?”)) {
 //---send a broadcast to update the SMS received in
 // the activity---
 Intent broadcastIntent = new Intent();
 broadcastIntent.putExtra(“senderTel”, senderTel);
 broadcastIntent.setAction(“SMS_RECEIVED_ACTION”);
 context.sendBroadcast(broadcastIntent);
 }
 }
 }
}

 4. Modify MainActivity.java as follows:

package net.learn2develop.LocationTracker;

import android.app.Activity;

c05.indd 173c05.indd 173 28/06/11 1:19 PM28/06/11 1:19 PM

174 ❘ CHAPTER 5 SMS MESSAGING AND NETWORKING

import android.os.Bundle;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.content.IntentFilter;
import android.location.Location;
import android.location.LocationListener;
import android.location.LocationManager;
import android.telephony.SmsManager;

public class MainActivity extends Activity {
 private IntentFilter intentFilter;
 private LocationManager lm;
 private LocationListener locationListener;
 private String senderTel;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 //---intent to filter for SMS messages received---
 intentFilter = new IntentFilter();
 intentFilter.addAction(“SMS_RECEIVED_ACTION”);

 //---register the receiver---
 registerReceiver(intentReceiver, intentFilter);
 }

 private BroadcastReceiver intentReceiver = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 //---get the phone number of the sender passed in via
 // the intent---
 senderTel = intent.getExtras().getString(“senderTel”);

 //---use the LocationManager class to obtain locations data---
 lm = (LocationManager)
 getSystemService(Context.LOCATION_SERVICE);

 //---request location updates---
 locationListener = new MyLocationListener();
 lm.requestLocationUpdates(
 LocationManager.GPS_PROVIDER,
 0,
 0,
 locationListener);
 }
 };

 private class MyLocationListener implements LocationListener
 {
 @Override

c05.indd 174c05.indd 174 28/06/11 1:19 PM28/06/11 1:19 PM

SMS Messaging ❘ 175

 public void onLocationChanged(Location loc) {
 if (loc != null) {
 //---send a SMS containing the current location---
 SmsManager sms = SmsManager.getDefault();
 sms.sendTextMessage(senderTel, null,
 “location:” + loc.getLatitude() + “:” +
 loc.getLongitude(), null, null);
 //---stop listening for location changes---
 lm.removeUpdates(locationListener);
 }
 }

 @Override
 public void onProviderDisabled(String provider) {
 }

 @Override
 public void onProviderEnabled(String provider) {
 }

 @Override
 public void onStatusChanged(String provider, int status,
 Bundle extras) {
 }
 }
}

That’s it for now. You will learn how to test the application later, after the tablet application is built.

How It Works

Basically, the application you built here simply listens for incoming SMS messages. The SMSReceiver
class listens for incoming SMS messages. If the message starts with the sentence “Where are you?”, it
sends a broadcast (SMS_RECEIVED_ACTION) containing the sender’s phone number:

 //---retrieve the SMS message received---
 Object[] pdus = (Object[]) bundle.get(“pdus”);
 msgs = new SmsMessage[pdus.length];
 String senderTel = “”;
 for (int i=0; i<msgs.length; i++){
 msgs[i] = SmsMessage.createFromPdu((byte[])pdus[i]);
 //---store the sender phone number---
 senderTel = msgs[i].getOriginatingAddress();
 //---get the body of the message received---
 str += msgs[i].getMessageBody().toString();
 }

 if (str.startsWith(“Where are you?”)) {
 //---send a broadcast to update the SMS received in
 // the activity---
 Intent broadcastIntent = new Intent();
 broadcastIntent.putExtra(“senderTel”, senderTel);
 broadcastIntent.setAction(“SMS_RECEIVED_ACTION”);
 context.sendBroadcast(broadcastIntent);
 }

c05.indd 175c05.indd 175 28/06/11 1:19 PM28/06/11 1:19 PM

176 ❘ CHAPTER 5 SMS MESSAGING AND NETWORKING

The MainActivity listens for this SMS_RECEIVED_ACTION intent:

 private BroadcastReceiver intentReceiver = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 //---get the phone number of the sender passed in via
 // the intent---
 senderTel = intent.getExtras().getString(“senderTel”);

 //---use the LocationManager class to obtain locations data---
 lm = (LocationManager)
 getSystemService(Context.LOCATION_SERVICE);

 //---request location updates---
 locationListener = new MyLocationListener();
 lm.requestLocationUpdates(
 LocationManager.GPS_PROVIDER,
 0,
 0,
 locationListener);
 }
 };

Once this intent is received, it extracts the sender’s phone number so that later you can send an SMS
message containing the user’s location back to the sender. Here, you requested for location updates
using the GPS provider (alternatively, you can also use the NETWORK_PROVIDER as shown in Chapter 4).
When a location is obtained, you send the location information using SMS:

 @Override
 public void onLocationChanged(Location loc) {
 if (loc != null) {
 //---send a SMS containing the current location---
 SmsManager sms = SmsManager.getDefault();
 sms.sendTextMessage(senderTel, null,
 “location:” + loc.getLatitude() + “:” +
 loc.getLongitude(), null, null);

 //---stop listening for location changes---
 lm.removeUpdates(locationListener);
 }
 }

Note that once the location is found, you immediately remove the location listener.

Building the Location Tracker (Tablet)

Now that the location tracker for the smartphone is created, it is time to create the application that
enables you to display a map showing the location of the person you are tracking. For this, you can
use the original SMS application that you created earlier in this chapter. In the following exercise,
you’ll add the Google Maps MapView to the application so that it can be used to display the location
of the person you are tracking.

c05.indd 176c05.indd 176 28/06/11 1:19 PM28/06/11 1:19 PM

SMS Messaging ❘ 177

TRY IT OUT Adding Google Maps to the SMS Application

 1. Right-click on the SMS project name in Eclipse and select Properties.

 2. Select Android on the left side of the Properties window and then select the Google APIs target on
the right (see Figure 5-9). Click OK.

FIGURE 5-9

 3. Add the following statements in bold to the main.xml fi le (be sure to replace the Maps API key
with your own):

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent” >
<Button
 android:id=”@+id/btnSendSMS”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”Send SMS” />
<TextView
 android:id=”@+id/textView1”

c05.indd 177c05.indd 177 28/06/11 1:19 PM28/06/11 1:19 PM

178 ❘ CHAPTER 5 SMS MESSAGING AND NETWORKING

 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content” />
<com.google.android.maps.MapView
 android:id=”@+id/mapView”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 android:enabled=”true”
 android:clickable=”true”
 android:apiKey=”0K2eMNyjc5HFPsiobLh6uLHb8F9ZFmh4uIm7VTA” />
</LinearLayout>

 4. Add the following statements in bold to the AndroidManifest.xml fi le:

<?xml version=”1.0” encoding=”utf-8”?>
<manifest
 xmlns:android=”http://schemas.android.com/apk/res/android”
 package=”net.learn2develop.SMS”
 android:versionCode=”1”
 android:versionName=”1.0”>
 <application android:icon=”@drawable/icon”
 android:label=”@string/app_name”>
 <uses-library android:name=”com.google.android.maps” />
 <activity android:name=”.MainActivity”
 android:label=”@string/app_name”
 android:launchMode=”singleTask”
 >
 <intent-filter>
 <action android:name=”android.intent.action.MAIN” />
 <category android:name=”android.intent.category.LAUNCHER” />
 </intent-filter>
 </activity>
 <receiver android:name=”.SMSReceiver”>
 <intent-filter>
 <action android:name=
 “android.provider.Telephony.SMS_RECEIVED” />
 </intent-filter>
 </receiver>
 </application>
 <uses-sdk android:minSdkVersion=”11” />
 <uses-permission android:name=”android.permission.SEND_SMS”>
 </uses-permission>
 <uses-permission android:name=”android.permission.RECEIVE_SMS”>
 </uses-permission>
 <uses-permission android:name=”android.permission.INTERNET”>
 </uses-permission>
</manifest>

 5. Modify the SMSReceiver.java fi le as follows:

package net.learn2develop.SMS;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;

c05.indd 178c05.indd 178 28/06/11 1:19 PM28/06/11 1:19 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

SMS Messaging ❘ 179

import android.os.Bundle;
import android.telephony.SmsMessage;
import android.widget.Toast;

public class SMSReceiver extends BroadcastReceiver
{
 @Override
 public void onReceive(Context context, Intent intent)
 {
 //---get the SMS message passed in---
 Bundle bundle = intent.getExtras();
 SmsMessage[] msgs = null;
 String str = “”;
 if (bundle != null)
 {
 //---retrieve the SMS message received---
 Object[] pdus = (Object[]) bundle.get(“pdus”);
 msgs = new SmsMessage[pdus.length];
 for (int i=0; i<msgs.length; i++){
 //---get the body of the message---
 msgs[i] = SmsMessage.createFromPdu((byte[])pdus[i]);
 str += msgs[i].getMessageBody().toString();
 }
 //---display the new SMS message---
 Toast.makeText(context, str, Toast.LENGTH_SHORT).show();

 //---launch the MainActivity---
 Intent mainActivityIntent = new
 Intent(context, MainActivity.class);
 mainActivityIntent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
 context.startActivity(mainActivityIntent);

 //---if the message body starts with location:---
 if (str.startsWith(“location:”)) {
 // e.g. location:1.23566:103.222344
 //---send a broadcast to update the SMS
 // received in the activity---
 Intent broadcastIntent = new Intent();
 broadcastIntent.setAction(“SMS_RECEIVED_ACTION”);
 broadcastIntent.putExtra(“sms”, str);
 context.sendBroadcast(broadcastIntent);
 }
 }
 }
}

 6. Modify the MainActivity.java as follows:

package net.learn2develop.SMS;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;

c05.indd 179c05.indd 179 28/06/11 1:19 PM28/06/11 1:19 PM

180 ❘ CHAPTER 5 SMS MESSAGING AND NETWORKING

import android.content.IntentFilter;

import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.TextView;

import com.google.android.maps.GeoPoint;
import com.google.android.maps.MapActivity;
import com.google.android.maps.MapController;
import com.google.android.maps.MapView;

public class MainActivity extends MapActivity {
 Button btnSendSMS;
 IntentFilter intentFilter;

 private MapView mapView;
 private MapController mc;

 private BroadcastReceiver intentReceiver = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 //---display the SMS received in the TextView---
 TextView SMSes = (TextView) findViewById(R.id.textView1);
 SMSes.setText(intent.getExtras().getString(“sms”));

 //---Make the map display the location information received---
 // e.g. location:1.23566:103.222344
 String[] coordinates =
 intent.getExtras().getString(“sms”).split(“:”);
 double lat = Double.parseDouble(coordinates[1]);
 double lng = Double.parseDouble(coordinates[2]);
 GeoPoint p = new GeoPoint((int) (lat * 1E6),
 (int) (lng * 1E6));
 mc.animateTo(p);
 mc.setZoom(16);
 }
 };

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mapView = (MapView) findViewById(R.id.mapView);
 mc = mapView.getController();

 //---intent to filter for SMS messages received---
 intentFilter = new IntentFilter();
 intentFilter.addAction(“SMS_RECEIVED_ACTION”);

 //---register the receiver---

c05.indd 180c05.indd 180 28/06/11 1:19 PM28/06/11 1:19 PM

SMS Messaging ❘ 181

 registerReceiver(intentReceiver, intentFilter);

 btnSendSMS = (Button) findViewById(R.id.btnSendSMS);
 btnSendSMS.setOnClickListener(new View.OnClickListener()
 {
 public void onClick(View v)
 {
 //sendSMS(“5554”, “Hello my friends!”);
 Intent i = new
 Intent(android.content.Intent.ACTION_VIEW);
 i.putExtra(“address”, “5556”);
 i.putExtra(“sms_body”, “Where are you?”);
 i.setType(“vnd.android-dir/mms-sms”);
 startActivity(i);
 }
 });
 }

 @Override
 protected void onResume() {
 //---register the receiver---
 //registerReceiver(intentReceiver, intentFilter);
 super.onResume();
 }

 @Override
 protected void onPause() {
 //---unregister the receiver---
 //unregisterReceiver(intentReceiver);
 super.onPause();
 }

 @Override
 protected void onDestroy() {
 //---unregister the receiver---
 unregisterReceiver(intentReceiver);
 super.onPause();
 }

 @Override
 protected boolean isRouteDisplayed() {
 // TODO Auto-generated method stub
 return false;
 }
}

 Alright! After the How It Works explanation, you learn how to test the two applications.

How It Works

For this application, you added the Google Maps MapView to the UI of the application. For ease of
testing the application on the Android emulator, you hard-coded the Send SMS button to send an SMS
message to 5556, with the text “Where are you?”:

c05.indd 181c05.indd 181 28/06/11 1:19 PM28/06/11 1:19 PM

182 ❘ CHAPTER 5 SMS MESSAGING AND NETWORKING

 btnSendSMS = (Button) findViewById(R.id.btnSendSMS);
 btnSendSMS.setOnClickListener(new View.OnClickListener()
 {
 public void onClick(View v)
 {
 //sendSMS(“5554”, “Hello my friends!”);
 Intent i = new
 Intent(android.content.Intent.ACTION_VIEW);
 i.putExtra(“address”, “5556”);
 i.putExtra(“sms_body”, “Where are you?”);
 i.setType(“vnd.android-dir/mms-sms”);
 startActivity(i);
 }
 });

When the location tracker application returns the SMS message containing the location information
(starting with the word “location:”), you broadcast an intent containing the content of the SMS
message:

 //---retrieve the SMS message received---
 Object[] pdus = (Object[]) bundle.get(“pdus”);
 msgs = new SmsMessage[pdus.length];
 for (int i=0; i<msgs.length; i++){
 //---get the body of the message---
 msgs[i] = SmsMessage.createFromPdu((byte[])pdus[i]);
 str += msgs[i].getMessageBody().toString();
 }
 //---display the new SMS message---
 Toast.makeText(context, str, Toast.LENGTH_SHORT).show();

 //---launch the MainActivity---
 Intent mainActivityIntent = new
 Intent(context, MainActivity.class);
 mainActivityIntent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
 context.startActivity(mainActivityIntent);

 if (str.startsWith(“location:”)) {
 // e.g. location:1.23566:103.222344
 //---send a broadcast to update the SMS
 // received in the activity---
 Intent broadcastIntent = new Intent();
 broadcastIntent.setAction(“SMS_RECEIVED_ACTION”);
 broadcastIntent.putExtra(“sms”, str);
 context.sendBroadcast(broadcastIntent);
 }

In MainActivity, you extract the latitude and longitude from the SMS message and then navigate the
MapView to display the location of the user:

 //---Make the map display the location information received---
 // e.g. location:1.23566:103.222344
 String[] coordinates =
 intent.getExtras().getString(“sms”).split(“:”);
 double lat = Double.parseDouble(coordinates[1]);

c05.indd 182c05.indd 182 28/06/11 1:19 PM28/06/11 1:19 PM

SMS Messaging ❘ 183

 double lng = Double.parseDouble(coordinates[2]);
 GeoPoint p = new GeoPoint((int) (lat * 1E6),
 (int) (lng * 1E6));
 mc.animateTo(p);
 mc.setZoom(16);

Testing the Applications

To test the two applications, now launch two Android emulators. For consistency, you will
fi rst launch an Android 3.0 tablet emulator (using the Google APIs) with the port number 5554
(henceforth referred to as the Android 5554 emulator). Then, launch another Android 2.2 emulator
with port number 5556 (henceforth referred to as the Android 5556 emulator).

In Eclipse, deploy the SMS tablet application onto the Android 5554 emulator, and the LocationTracker
application onto the Android 5556 emulator.

On the Android tablet application, click the Send SMS button (see Figure 5-10).

FIGURE 5-10

The Messaging application launches. Because you have hard-coded the recipient and content of the
message to send, simply click the Send button to send the message (see Figure 5-11). Note that on the
Android 3.0 emulator, the content of the message is not shown.

c05.indd 183c05.indd 183 28/06/11 1:19 PM28/06/11 1:19 PM

184 ❘ CHAPTER 5 SMS MESSAGING AND NETWORKING

FIGURE 5-11

Once the SMS is sent, it should be received by the Android 5556 emulator (see Figure 5-12).

FIGURE 5-12

c05.indd 184c05.indd 184 28/06/11 1:19 PM28/06/11 1:19 PM

Sending E-Mail ❘ 185

To simulate the Android 5556 emulator having a
location fi x (this is the term that refers to the process of
a device obtaining a location determination from GPS)
returned by its GPS receiver, you will use the DDMS
perspective in Eclipse to send a pair of coordinates
to it. Figure 5-13 shows that you fi rst have to select
the Android 5556 emulator, and then click the Send
button to send the latitude and longitude to the selected
emulator.

Once the Android 5556 emulator receives the location
coordinates, it will send an SMS message to the
Android 5554 emulator. Figure 5-14 shows the Android
5554 emulator receiving the SMS message containing
the location data, and Google Maps navigating to
display the location.

Have fun! FIGURE 5-13

FIGURE 5-14

SENDING E-MAIL

Like SMS messaging, Android also supports e-mail. The Gmail/Email application on Android
enables you to confi gure an e-mail account using POP3 or IMAP. Besides sending and receiving
e-mails using the Gmail/Email application, you can also send e-mail messages programmatically
from within your Android application. The following Try It Out shows you how.

c05.indd 185c05.indd 185 28/06/11 1:19 PM28/06/11 1:19 PM

186 ❘ CHAPTER 5 SMS MESSAGING AND NETWORKING

TRY IT OUT Sending E-Mail Programmatically

codefi le Emails.zip available for download at Wrox.com

 1. Using Eclipse, create a new Android project and name it Emails.

 2. Add the following statements in bold to the main.xml fi le:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent” >
<Button
 android:id=”@+id/btnSendEmail”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”Send Email” />
</LinearLayout>

 3. Add the following statements in bold to the MainActivity.java fi le:

package net.learn2develop.Email;

import android.app.Activity;
import android.os.Bundle;

import android.content.Intent;
import android.net.Uri;
import android.view.View;
import android.widget.Button;

public class MainActivity extends Activity {
 Button btnSendEmail;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 btnSendEmail = (Button) findViewById(R.id.btnSendEmail);
 btnSendEmail.setOnClickListener(new View.OnClickListener()
 {
 public void onClick(View v)
 {
 String[] to = {“weimenglee@learn2develop.net”,
 “weimenglee@gmail.com”};
 String[] cc = {“course@learn2develop.net”};
 sendEmail(to, cc, “Hello”, “Hello my friends!”);
 }
 });

c05.indd 186c05.indd 186 28/06/11 1:19 PM28/06/11 1:19 PM

Networking ❘ 187

 }

 //---sends an SMS message to another device---
 private void sendEmail(String[] emailAddresses, String[] carbonCopies,
 String subject, String message)
 {
 Intent emailIntent = new Intent(Intent.ACTION_SEND);
 emailIntent.setData(Uri.parse(“mailto:”));
 String[] to = emailAddresses;
 String[] cc = carbonCopies;
 emailIntent.putExtra(Intent.EXTRA_EMAIL, to);
 emailIntent.putExtra(Intent.EXTRA_CC, cc);
 emailIntent.putExtra(Intent.EXTRA_SUBJECT, subject);
 emailIntent.putExtra(Intent.EXTRA_TEXT, message);
 emailIntent.setType(“message/rfc822”);
 startActivity(Intent.createChooser(emailIntent, “Email”));
 }
}

 4. Press F11 to test the application on a real Android device. Click the Send Email button and you
should see the Email application launched in your device. Note that if you test this application
on the Android emulator (both 2.2 and 3.0), it will display a “No applications can perform this
action” message.

How It Works

In this example, you launched the built-in Email application to send an e-mail message. To do so,
you used an Intent object, setting the various parameters using the setData(), putExtra(), and
setType() methods:

 Intent emailIntent = new Intent(Intent.ACTION_SEND);
 emailIntent.setData(Uri.parse(“mailto:”));
 String[] to = emailAddresses;
 String[] cc = carbonCopies;
 emailIntent.putExtra(Intent.EXTRA_EMAIL, to);
 emailIntent.putExtra(Intent.EXTRA_CC, cc);
 emailIntent.putExtra(Intent.EXTRA_SUBJECT, subject);
 emailIntent.putExtra(Intent.EXTRA_TEXT, message);
 emailIntent.setType(“message/rfc822”);
 startActivity(Intent.createChooser(emailIntent, “Email”));

NETWORKING

The previous sections covered how to connect to the outside world using SMS and e-mail. Another
way to achieve that is to use the HTTP protocol. Using the HTTP protocol, you can perform a
wide variety of tasks, such as downloading web pages from a web server, downloading binary data,
and so on.

The following Try It Out creates an Android project so you can use the HTTP protocol to connect
to the Web to download all sorts of data.

c05.indd 187c05.indd 187 28/06/11 1:19 PM28/06/11 1:19 PM

188 ❘ CHAPTER 5 SMS MESSAGING AND NETWORKING

TRY IT OUT Creating the Base Project for HTTP Connection

codefi le Networking.zip available for download at Wrox.com

 1. Using Eclipse, create a new Android 3.0 project and name it Networking.

 2. Add the following statement in bold to the AndroidManifest.xml fi le:

<?xml version=”1.0” encoding=”utf-8”?>
<manifest xmlns:android=”http://schemas.android.com/apk/res/android”
 package=”net.learn2develop.Networking”
 android:versionCode=”1”
 android:versionName=”1.0”>
 <application android:icon=”@drawable/icon” android:label=”@string/app_name”>
 <activity android:name=”.MainActivity”
 android:label=”@string/app_name”>
 <intent-filter>
 <action android:name=”android.intent.action.MAIN” />
 <category android:name=”android.intent.category.LAUNCHER” />
 </intent-filter>
 </activity>
 </application>
 <uses-sdk android:minSdkVersion=”8” />
 <uses-permission android:name=”android.permission.INTERNET”></uses-permission>
</manifest>

 3. Import the following namespaces in the MainActivity.java fi le:

package net.learn2develop.Networking;

import android.app.Activity;
import android.os.Bundle;

import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.net.HttpURLConnection;
import java.net.URL;
import java.net.URLConnection;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.widget.ImageView;
import android.widget.Toast;

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.ParserConfigurationException;

import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.Node;

c05.indd 188c05.indd 188 28/06/11 1:19 PM28/06/11 1:19 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Networking ❘ 189

import org.w3c.dom.NodeList;

public class MainActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
}

 4. Defi ne the OpenHttpConnection() method in the MainActivity.java fi le:

public class MainActivity extends Activity {

 private InputStream OpenHttpConnection(String urlString)
 throws IOException
 {
 InputStream in = null;
 int response = -1;

 URL url = new URL(urlString);
 URLConnection conn = url.openConnection();

 if (!(conn instanceof HttpURLConnection))
 throw new IOException(“Not an HTTP connection”);
 try{
 HttpURLConnection httpConn = (HttpURLConnection) conn;
 httpConn.setAllowUserInteraction(false);
 httpConn.setInstanceFollowRedirects(true);
 httpConn.setRequestMethod(“GET”);
 httpConn.connect();
 response = httpConn.getResponseCode();
 if (response == HttpURLConnection.HTTP_OK) {
 in = httpConn.getInputStream();
 }
 }
 catch (Exception ex)
 {
 throw new IOException(“Error connecting”);
 }
 return in;
 }

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
}

c05.indd 189c05.indd 189 28/06/11 1:19 PM28/06/11 1:19 PM

190 ❘ CHAPTER 5 SMS MESSAGING AND NETWORKING

How It Works

Because you are using the HTTP protocol to connect to the Web, your application needs the INTERNET
permission; hence, the fi rst thing you did is add the permission in the AndroidManifest.xml fi le.

You then defi ned the OpenHttpConnection() method, which takes a URL string and returns an
InputStream object. Using an InputStream object, you can download the data by reading bytes from
the stream object. In this method, you made use of the HttpURLConnection object to open an HTTP
connection with a remote URL. You set all the various properties of the connection, such as the request
method, and so on:

 HttpURLConnection httpConn = (HttpURLConnection) conn;
 httpConn.setAllowUserInteraction(false);
 httpConn.setInstanceFollowRedirects(true);
 httpConn.setRequestMethod(“GET”);

After you try to establish a connection with the server, you get the HTTP response code from it. If the
connection is established (via the response code HTTP_OK), then you proceed to get an InputStream
object from the connection:

 httpConn.connect();
 response = httpConn.getResponseCode();
 if (response == HttpURLConnection.HTTP_OK) {
 in = httpConn.getInputStream();
 }

Using the InputStream object, you can then start to download the data from the server.

Downloading Binary Data

One of the common tasks you need to perform is downloading binary data from the Web. For
example, you may want to download an image from a server so that you can display it in your
application. The following Try It Out shows how this is done.

TRY IT OUT Downloading Binary Data

 1. Using the same project created earlier, add the following statements in bold to the main
.xml fi le:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent” >
<ImageView
 android:id=”@+id/img”

c05.indd 190c05.indd 190 28/06/11 1:19 PM28/06/11 1:19 PM

Networking ❘ 191

 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_gravity=”center” />
</LinearLayout>

 2. Add the following statements in bold to the MainActivity.java fi le:

public class MainActivity extends Activity {
 ImageView img;

 private InputStream OpenHttpConnection(String urlString)
 throws IOException
 {
 //...
 }

 private Bitmap DownloadImage(String URL)
 {
 Bitmap bitmap = null;
 InputStream in = null;
 try {
 in = OpenHttpConnection(URL);
 bitmap = BitmapFactory.decodeStream(in);
 in.close();
 } catch (IOException e1) {
 Toast.makeText(this, e1.getLocalizedMessage(),
 Toast.LENGTH_LONG).show();

 e1.printStackTrace();
 }
 return bitmap;
 }

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 //---download an image---
 Bitmap bitmap =
 DownloadImage(
 “http://www.mayoff.com/5-01cablecarDCP01934.jpg”);
 img = (ImageView) findViewById(R.id.img);
 img.setImageBitmap(bitmap);
 }
}

 3. Press F11 to debug the application on the Android emulator. Figure 5-15 shows the image
downloaded from the Web and then displayed in the ImageView.

c05.indd 191c05.indd 191 28/06/11 1:19 PM28/06/11 1:19 PM

192 ❘ CHAPTER 5 SMS MESSAGING AND NETWORKING

How It Works

The DownloadImage() method takes the URL of the image to download and then opens the
connection to the server using the OpenHttpConnection() method that you have defi ned earlier.
Using the InputStream object returned by the connection, the decodeStream() method from
the BitmapFactory class is used to download and decode the data into a Bitmap object. The
DownloadImage() method returns a Bitmap object.

The image is then displayed using an ImageView view.

FIGURE 5-15

REFERRING TO LOCALHOST FROM YOUR EMULATOR

When working with the Android emulator, you may frequently need to access
data hosted on the local web server using localhost. For example, your own Web
services are likely to be hosted on your local computer during development, and
you’ll want to test them on the same development machine you use to write your
Android applications. In such cases, you should use the special IP address
of 10.0.2.2 (not 127.0.0.1) to refer to the host computer’s loopback interface.
From the Android emulator’s perspective, localhost (127.0.0.1) refers to its own
loopback interface.

c05.indd 192c05.indd 192 28/06/11 1:19 PM28/06/11 1:19 PM

Networking ❘ 193

Downloading Text Files

Besides downloading binary data, you can also download plain-text fi les. For example, you might be
writing an RSS Reader application and therefore need to download RSS XML feeds for processing.
The following Try It Out shows how you can download a plain-text fi le in your application.

TRY IT OUT Downloading Plain-Text Files

 1. Using the same project created earlier, add the following statements in bold to the MainActivity
.java fi le:

public class MainActivity extends Activity {
 ImageView img;

 private InputStream OpenHttpConnection(String urlString)
 throws IOException
 {
 //...
 }

 private Bitmap DownloadImage(String URL)
 {
 //...
 }

 private String DownloadText(String URL)
 {
 int BUFFER_SIZE = 2000;
 InputStream in = null;
 try {
 in = OpenHttpConnection(URL);
 } catch (IOException e1) {
 Toast.makeText(this, e1.getLocalizedMessage(),
 Toast.LENGTH_LONG).show();

 e1.printStackTrace();
 return “”;
 }

 InputStreamReader isr = new InputStreamReader(in);
 int charRead;
 String str = “”;
 char[] inputBuffer = new char[BUFFER_SIZE];
 try {
 while ((charRead = isr.read(inputBuffer))>0)
 {
 //---convert the chars to a String---
 String readString =
 String.copyValueOf(inputBuffer, 0, charRead);
 str += readString;
 inputBuffer = new char[BUFFER_SIZE];
 }
 in.close();
 } catch (IOException e) {
 Toast.makeText(this, e.getLocalizedMessage(),

c05.indd 193c05.indd 193 28/06/11 1:19 PM28/06/11 1:19 PM

194 ❘ CHAPTER 5 SMS MESSAGING AND NETWORKING

 Toast.LENGTH_LONG).show();

 e.printStackTrace();
 return “”;
 }
 return str;
 }

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 //---download an image---
 Bitmap bitmap =
 DownloadImage(
 “http://www.streetcar.org/mim/cable/images/cable-01.jpg”);
 img = (ImageView) findViewById(R.id.img);
 img.setImageBitmap(bitmap);

 //---download an RSS feed---
 String str = DownloadText(
 “http://www.appleinsider.com/appleinsider.rss”);
 Toast.makeText(getBaseContext(), str,
 Toast.LENGTH_SHORT).show();
 }
}

 2. Press F11 to debug the application on the Android emulator. Figure 5-16 shows the RSS feed
downloaded and displayed using the Toast class.

FIGURE 5-16

c05.indd 194c05.indd 194 28/06/11 1:19 PM28/06/11 1:19 PM

Networking ❘ 195

How It Works

The DownloadText() method takes an URL of the text fi le to download and then returns the string
of the text fi le downloaded. It basically opens an HTTP connection to the server and then uses an
InputStreamReader object to read each character from the stream and save it in a String object.

Accessing Web Services Using the GET Method

So far, you have learned how to download images and text from the Web. The previous section
showed how to download an RSS feed from a server. Very often, you need to download XML fi les
and parse the contents (a good example of this is consuming Web services). Therefore, in this section
you learn how to connect to a Web service using the HTTP GET method. Once the Web service returns
a result in XML, you will extract the relevant parts and display its content using the Toast class.

For this example, the web method you will be using is from http://services.aonaware.com/
DictService/DictService.asmx?op=Define. This web method is from a Dictionary Web service
that returns the defi nition of a given word.

The web method takes a request in the following format:

GET /DictService/DictService.asmx/Define?word=string HTTP/1.1
Host: services.aonaware.com
HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length

It returns a response in the following format:

<?xml version=”1.0” encoding=”utf-8”?>
<WordDefinition xmlns=”http://services.aonaware.com/webservices/”>
 <Word>string</Word>
 <Definitions>
 <Definition>
 <Word>string</Word>
 <Dictionary>
 <Id>string</Id>
 <Name>string</Name>
 </Dictionary>
 <WordDefinition>string</WordDefinition>
 </Definition>
 <Definition>
 <Word>string</Word>
 <Dictionary>
 <Id>string</Id>
 <Name>string</Name>
 </Dictionary>
 <WordDefinition>string</WordDefinition>
 </Definition>
 </Definitions>
</WordDefinition>

c05.indd 195c05.indd 195 28/06/11 1:19 PM28/06/11 1:19 PM

196 ❘ CHAPTER 5 SMS MESSAGING AND NETWORKING

Hence, to obtain the defi nition of a word, you need to establish an HTTP connection to the web
method and then parse the XML result that is returned. The following Try It Out shows you how.

TRY IT OUT Consuming Web Services

 1. Using the same project created earlier, add the following statements in bold to the MainActivity
.java fi le:

public class MainActivity extends Activity {
 ImageView img;

 private InputStream OpenHttpConnection(String urlString)
 throws IOException
 {
 //...
 }

 private Bitmap DownloadImage(String URL)
 {
 //...
 }

 private String DownloadText(String URL)
 {
 //...
 }

 private void WordDefinition(String word) {
 InputStream in = null;
 try {
 in = OpenHttpConnection(
“http://services.aonaware.com/DictService/DictService.asmx/Define?word=” + word);
 Document doc = null;
 DocumentBuilderFactory dbf =
 DocumentBuilderFactory.newInstance();
 DocumentBuilder db;
 try {
 db = dbf.newDocumentBuilder();
 doc = db.parse(in);
 } catch (ParserConfigurationException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (Exception e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 doc.getDocumentElement().normalize();

 //---retrieve all the <Definition> nodes---
 NodeList itemNodes =
 doc.getElementsByTagName(“Definition”);

 String strDefinition = “”;

c05.indd 196c05.indd 196 28/06/11 1:19 PM28/06/11 1:19 PM

Networking ❘ 197

 for (int i = 0; i < definitionElements.getLength(); i++) {
 Node itemNode = definitionElements.item(i);
 if (itemNode.getNodeType() == Node.ELEMENT_NODE)
 {
 //---convert the Node into an Element---
 Element definitionElement = (Element) itemNode;

 //---get all the <WordDefinition> elements under
 // the <Definition> element---
 NodeList wordDefinitionElements =
 (definitionElement).getElementsByTagName(
 “WordDefinition”);

 strDefinition = “”;
 for (int j = 0; j < wordDefinitionElements.getLength(); j++) {
 //---convert a <WordDefinition> Node into an Element---
 Element wordDefinitionElement =
 (Element) wordDefinitionElements.item(j);

 //---get all the child nodes under the
 // <WordDefinition> element---
 NodeList textNodes =
 ((Node) wordDefinitionElement).getChildNodes();

 strDefinition +=
 ((Node) textNodes.item(0)).getNodeValue() + “. “;
 }

 //---display the title---
 Toast.makeText(getBaseContext(),strDefinition,
 Toast.LENGTH_SHORT).show();
 }
 }
 } catch (IOException e1) {
 Toast.makeText(this, e1.getLocalizedMessage(),
 Toast.LENGTH_LONG).show();
 e1.printStackTrace();
 }
 }

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 //---download an image---
 Bitmap bitmap =
 DownloadImage(
 “http://www.mayoff.com/5-01cablecarDCP01934.jpg”);
 img = (ImageView) findViewById(R.id.img);
 img.setImageBitmap(bitmap);

 //---download an RSS feed---

c05.indd 197c05.indd 197 28/06/11 1:19 PM28/06/11 1:19 PM

198 ❘ CHAPTER 5 SMS MESSAGING AND NETWORKING

 String str = DownloadText(
 “http://www.appleinsider.com/appleinsider.rss”);
 Toast.makeText(getBaseContext(), str,
 Toast.LENGTH_SHORT).show();

 //---access a Web service using GET---
 WordDefinition(“Apple”);
 }
}

 2. Press F11 to debug the application on the Android emulator. Figure 5-17 shows the result of the
Web service call being parsed and then displayed using the Toast class.

FIGURE 5-17

How It Works

The WordDefinition() method fi rst opens an HTTP connection to the Web service, passing in the
word that you are interested in:

 in = OpenHttpConnection(
“http://services.aonaware.com/DictService/DictService.asmx/Define?word=” + word);

It then uses the DocumentBuilderFactory and DocumentBuilder objects to obtain a Document (DOM)
object from an XML fi le (which is the XML result returned by the Web service):

c05.indd 198c05.indd 198 28/06/11 1:19 PM28/06/11 1:19 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Networking ❘ 199

 Document doc = null;
 DocumentBuilderFactory dbf =
 DocumentBuilderFactory.newInstance();
 DocumentBuilder db;
 try {
 db = dbf.newDocumentBuilder();
 doc = db.parse(in);
 } catch (ParserConfigurationException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (Exception e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 doc.getDocumentElement().normalize();

Once the Document object is obtained, you fi nd all the elements with the <Definition> tag:

 //---retrieve all the <Definition> nodes---
 NodeList itemNodes =
 doc.getElementsByTagName(“Definition”);

Figure 5-18 shows the structure of the XML document returned by the Web service.

FIGURE 5-18

Because the defi nition of a word is contained within the <WordDefinition> element, you then proceed
to extract all the defi nitions:

 String strDefinition = “”;
 for (int i = 0; i < definitionElements.getLength(); i++) {
 Node itemNode = definitionElements.item(i);
 if (itemNode.getNodeType() == Node.ELEMENT_NODE)
 {
 //---convert the Node into an Element---
 Element definitionElement = (Element) itemNode;

 //---get all the <WordDefinition> elements under

c05.indd 199c05.indd 199 28/06/11 1:19 PM28/06/11 1:19 PM

200 ❘ CHAPTER 5 SMS MESSAGING AND NETWORKING

 // the <Definition> element---
 NodeList wordDefinitionElements =
 (definitionElement).getElementsByTagName(
 “WordDefinition”);

 strDefinition = “”;
 for (int j = 0; j < wordDefinitionElements.getLength(); j++) {
 //---convert a <WordDefinition> Node into an Element---
 Element wordDefinitionElement =
 (Element) wordDefinitionElements.item(j);

 //---get all the child nodes under the
 // <WordDefinition> element---
 NodeList textNodes =
 ((Node) wordDefinitionElement).getChildNodes();
 //---get the first node, which contains the text---
 strDefinition +=
 ((Node) textNodes.item(0)).getNodeValue() + “. “;
 }
 //---display the title---
 Toast.makeText(getBaseContext(),strDefinition,
 Toast.LENGTH_SHORT).show();
 }
 }
 } catch (IOException e1) {
 Toast.makeText(this, e1.getLocalizedMessage(),
 Toast.LENGTH_LONG).show();
 e1.printStackTrace();
 }

The preceding code loops through all the <Definition> elements looking for a child element named
<WordDefinition>. The text content of the <WordDefinition> element contains the defi nition of a
word. The Toast class displays each word defi nition that is retrieved.

Performing Asynchronous Calls

All the connections made in the previous few sections have been synchronous — that is, the
connection to a server will not return until the data is received. In real life, this presents some
problems due to network connections being inherently slow. When you connect to a server to
download some data, the user interface of your application remains frozen until a response is
obtained. In most cases, this is not acceptable. Hence, you need to ensure that the connection to the
server is made in an asynchronous fashion.

The easiest way to connect to the server asynchronously is to use the AsyncTask class available
in the Android SDK. Using AsyncTask enables you to perform background tasks in a separate
thread and then return the result in a UI thread. That way, you can perform background operations
without needing to handle complex threading issues.

c05.indd 200c05.indd 200 28/06/11 1:19 PM28/06/11 1:19 PM

Summary ❘ 201

Using the previous example of downloading an image from the server and then displaying the image
in an ImageView, you could wrap the code in an instance of the AsyncTask class, as shown here:

public class MainActivity extends Activity {
 ImageView img;

 private class BackgroundTask extends AsyncTask
 <String, Void, Bitmap> {
 protected Bitmap doInBackground(String... url) {
 //---download an image---
 Bitmap bitmap = DownloadImage(url[0]);
 return bitmap;
 }

 protected void onPostExecute(Bitmap bitmap) {
 ImageView img = (ImageView) findViewById(R.id.img);
 img.setImageBitmap(bitmap);
 }
 }

 private InputStream OpenHttpConnection(String urlString)
 throws IOException
 {
 ...
 }

Basically, you defi ned a class that extends the AsyncTask class. In this case, there are two methods
within the BackgroundTask class: doInBackground() and onPostExecute(). You put all the code
that needs to be run asynchronously in the doInBackground() method. When the task is completed,
the result is passed back via the onPostExecute() method. The onPostExecute() method
is executed on the UI thread, hence it is thread safe to update the ImageView with the bitmap
downloaded from the server.

To perform the asynchronous tasks, simply create an instance of the BackgroundTask class and call
its execute() method:

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 new BackgroundTask().execute(
 "http://www.mayoff.com/5-01cablecarDCP01934.jpg");
 }

SUMMARY

This chapter described the various ways to communicate with the outside world. You fi rst learned
how to send and receive SMS messages. You then learned how to send e-mail messages from within
your Android application. The chapter ended with lessons on using the HTTP protocol to download
data from a web server.

c05.indd 201c05.indd 201 28/06/11 1:19 PM28/06/11 1:19 PM

202 ❘ CHAPTER 5 SMS MESSAGING AND NETWORKING

EXERCISES

 1. Name the two ways in which you can send SMS messages in your Android application.

 2. Name the permissions you need to declare in your AndroidManifest.xml fi le for sending and

receiving SMS messages.

 3. How do you notify an activity from a BroadcastReceiver?

 4. Name the permissions you need to declare in your AndroidManifest.xml fi le for an

HTTP connection.

Answers to the Exercises can be found in Appendix C.

c05.indd 202c05.indd 202 28/06/11 1:19 PM28/06/11 1:19 PM

Summary ❘ 203

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Programmatically sending SMS

messages

Use the SmsManager class.

Getting feedback on messages sent Use two PendingIntent objects in the

sendTextMessage() method.

Sending SMS messages using Intent Set the intent type to “vnd.android-dir/mms-sms.”

Receiving SMS messages Implement a BroadcastReceiver and set it in the

AndroidManifest.xml fi le.

Sending e-mail using Intent Set the intent type to “message/rfc822.”

Establishing an HTTP connection Use the HttpURLConnection class.

Accessing Web services Use the Document, DocumentBuilderFactory, and

DocumentBuilder classes to parse the XML result

returned by the Web service.

c05.indd 203c05.indd 203 28/06/11 1:19 PM28/06/11 1:19 PM

c05.indd 204c05.indd 204 28/06/11 1:19 PM28/06/11 1:19 PM

Publishing Android Applications

WHAT YOU WILL LEARN IN THIS CHAPTER

 ➤ How to prepare your application for deployment

 ➤ How to export your application as an APK fi le and sign it with a new

certifi cate

 ➤ How to distribute your Android application

 ➤ How to publish your application on the Android Market

So far you have seen quite a lot of interesting things you can do with your Android tablet.
However, in order to get your application running on users’ devices, you need a way to deploy
it and distribute it. In this chapter, you will learn how to prepare your Android applications for
deployment and get them onto your customer’s devices. In addition, you will learn how to publish
your applications on the Android Market, where you can sell them and make some money!

PREPARING FOR PUBLISHING

Google has made it relatively easy to publish your Android application so that it can be
quickly distributed to end users. The steps to publishing your Android application generally
involve the following:

 1. Export your application as an APK (Android Package) fi le.

 2. Generate your own self-signed certifi cate and digitally sign your application with it.

 3. Deploy the signed application.

 4. Use the Android Market for hosting and selling your application.

In the following sections, you will learn how to prepare your application for signing, and then
learn about the various ways to deploy your applications.

6

C06.indd 205C06.indd 205 28/06/11 1:23 PM28/06/11 1:23 PM

206 ❘ CHAPTER 6 PUBLISHING ANDROID APPLICATIONS

This chapter uses the LBS project created in Chapter 4 to demonstrate how to deploy an Android
application.

Versioning

Beginning with version 1.0 of the Android SDK, the AndroidManifest.xml fi le of every Android
application includes the android:versionCode and android:versionName attributes:

<?xml version=”1.0” encoding=”utf-8”?>
<manifest xmlns:android=”http://schemas.android.com/apk/res/android”
 package=”net.learn2develop.LBS”
 android:versionCode=”1”
 android:versionName=”1.0”>
 <application android:icon=”@drawable/icon” android:label=”@string/app_name”>
 <uses-library android:name=”com.google.android.maps” />
 <activity android:name=”.MainActivity”
 android:label=”@string/app_name”>
 <intent-filter>
 <action android:name=”android.intent.action.MAIN” />
 <category android:name=”android.intent.category.LAUNCHER” />
 </intent-filter>
 </activity>
 </application>
 <uses-sdk android:minSdkVersion=”11” />
 <uses-permission android:name=”android.permission.INTERNET” />
<uses-permission android:name=”android.permission.ACCESS_FINE_LOCATION” />
<uses-permission android:name=”android.permission.ACCESS_COARSE_LOCATION” />
</manifest>

The android:versionCode attribute represents the version number of your application. For
every revision you make to the application, you should increment this value by 1 so that you can
programmatically differentiate the newest version from the previous one. This value is never used
by the Android system, but it is useful for developers as a means to obtain the version number of an
application. However, the android:versionCode attribute is used by Android Market to determine
if a newer version of your application is available.

You can programmatically retrieve the value of the android:versionCode attribute by using the
getPackageInfo() method from the PackageManager class, like this:

 PackageManager pm = getPackageManager();
 try {
 //---get the package info---
 PackageInfo pi =
 pm.getPackageInfo(“net.learn2develop.LBS”, 0);
 //---display the versioncode---
 Toast.makeText(getBaseContext(),
 “VersionCode: “ +Integer.toString(pi.versionCode),
 Toast.LENGTH_SHORT).show();
 } catch (NameNotFoundException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

C06.indd 206C06.indd 206 28/06/11 1:23 PM28/06/11 1:23 PM

Preparing for Publishing ❘ 207

The android:versionName attribute contains versioning information that is visible to the users.
It should contain values in the format: <major>.<minor>.<point>. If your application undergoes
a major upgrade, you should increase the <major> by 1. For small incremental updates, you can
increase either the <minor> or <point> by 1. For example, a new application may have a version
name of “1.0.0.” For a small incremental update, you might change it to “1.1.0” or “1.0.1.” For the
next major update, you might change it to “2.0.0.”

If you are planning to publish your application on the Android Market (www.android.com/
market/), the AndroidManifest.xml fi le must have the following attributes:

 ➤ android:versionCode (within the <manifest> element)

 ➤ android:versionName (within the <manifest> element)

 ➤ android:icon (within the <application> element)

 ➤ android:label (within the <application> element)

The android:label attribute specifi es the name of your application. This name is displayed
in the Settings ➪ Applications ➪ Manage Applications section of your Android device. For the LBS
project, give the application the name “Where Am I”:

<?xml version=”1.0” encoding=”utf-8”?>
<manifest xmlns:android=”http://schemas.android.com/apk/res/android”
 package=”net.learn2develop.LBS”
 android:versionCode=”1”
 android:versionName=”1.0”>
 <application android:icon=”@drawable/icon” android:label=”Where Am I”>
 <uses-library android:name=”com.google.android.maps” />
 <activity android:name=”.MainActivity”
 android:label=”@string/app_name”>
 <intent-filter>
 <action android:name=”android.intent.action.MAIN” />
 <category android:name=”android.intent.category.LAUNCHER” />
 </intent-filter>
 </activity>
 </application>
 <uses-sdk android:minSdkVersion=”11” />
 <uses-permission android:name=”android.permission.INTERNET” />
<uses-permission android:name=”android.permission.ACCESS_FINE_LOCATION” />
<uses-permission android:name=”android.permission.ACCESS_COARSE_LOCATION” />
</manifest>

In addition, if your application needs a minimum version of the SDK, you can specify it in the
AndroidManifest.xml fi le using the <uses-sdk> element:

<?xml version=”1.0” encoding=”utf-8”?>
<manifest xmlns:android=”http://schemas.android.com/apk/res/android”
 package=”net.learn2develop.LBS”
 android:versionCode=”1”
 android:versionName=”1.0”>
 <application android:icon=”@drawable/icon” android:label=”Where Am I”>

C06.indd 207C06.indd 207 28/06/11 1:23 PM28/06/11 1:23 PM

208 ❘ CHAPTER 6 PUBLISHING ANDROID APPLICATIONS

 <uses-library android:name=”com.google.android.maps” />

 <activity android:name=”.MainActivity”
 android:label=”@string/app_name”>
 <intent-filter>
 <action android:name=”android.intent.action.MAIN” />
 <category android:name=”android.intent.category.LAUNCHER” />
 </intent-filter>
 </activity>
 </application>
 <uses-sdk android:minSdkVersion=”11” />
 <uses-permission android:name=”android.permission.INTERNET” />
 <uses-permission android:name=”android.permission.ACCESS_FINE_LOCATION” />
 <uses-permission android:name=”android.permission.ACCESS_COARSE_LOCATION” />
</manifest>

In the preceding example, the application requires a minimum of SDK version 11, which is Android 3.0.
In general, it is always good to set this version number to the lowest one that your application can
support. This ensures that a wider range of users will be able to run your application.

Digitally Signing Your Android Applications

All Android applications must be digitally signed before they are allowed to be deployed onto a
device (or emulator). Unlike some mobile platforms, you need not purchase digital certifi cates from
a certifi cate authority (CA) to sign your applications. Instead, you can generate your own self-signed
certifi cate and use it to sign your Android applications.

When you use Eclipse to develop your Android application and then press F11 to deploy it to
an emulator, Eclipse automatically signs it for you. You can verify this by going to Windows ➪
Preferences in Eclipse, expanding the Android item, and selecting Build (see Figure 6-1). Eclipse
uses a default debug keystore (appropriately named “debug.keystore”) to sign your application.
A keystore is commonly known as a digital certifi cate.

FIGURE 6-1

C06.indd 208C06.indd 208 28/06/11 1:23 PM28/06/11 1:23 PM

Preparing for Publishing ❘ 209

If you are publishing an Android application, you must sign it with your own certifi cate.
Applications signed with the debug certifi cate cannot be published. While you can manually
generate your own certifi cates using the keytool.exe utility provided by the Java SDK, Eclipse has
made it easy for you by including a wizard that walks you through the steps to generate a certifi cate.
It will also sign your application with the generated certifi cate (which you can also sign manually
using the jarsigner.exe tool from the Java SDK).

The following Try It Out demonstrates how to use Eclipse to export an Android application and
sign it with a newly generated certifi cate.

TRY IT OUT Exporting and Signing an Android Application

1. Using Eclipse, open the LBS projected created in Chapter 4.

2. Select the LBS project in Eclipse and then select File ➪ Export. . . .

3. In the Export dialog, expand the Android item and select Export Android Application
(see Figure 6-2). Click Next.

4. The LBS project should now be displayed (see Figure 6-3). Click Next.

FIGURE 6-2 FIGURE 6-3

C06.indd 209C06.indd 209 28/06/11 1:23 PM28/06/11 1:23 PM

210 ❘ CHAPTER 6 PUBLISHING ANDROID APPLICATIONS

5. Select the “Create new keystore” option to
create a new certifi cate (keystore) for signing
your application (see Figure 6-4). Enter a path
to save your new keystore and then enter a
password to protect the keystore. For this
example, enter password as the password.
Click Next.

6. Provide an alias for the private key (name it
DistributionKeyStoreAlias; see Figure 6-5)
and enter a password to protect the private
key. For this example, enter password as the
password. You also need to enter a validity
period for the key. According to Google,
your application must be signed with a
cryptographic private key whose validity
period ends after 22 October 2033. Hence,
enter a number that is greater than 2033
minus the current year. Click Next.

7. Enter a path to store the destination APK fi le
(see Figure 6-6). Click Finish. The APK fi le will now be generated.

FIGURE 6-4

FIGURE 6-5 FIGURE 6-6

C06.indd 210C06.indd 210 28/06/11 1:23 PM28/06/11 1:23 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Preparing for Publishing ❘ 211

8. Recall from Chapter 4 that the LBS application requires the use of the Google Maps API key, which
you applied by using your debug.keystore’s MD5 fi ngerprint. This means that the Google Maps
API key is essentially tied to the debug.keystore used to sign your application. Because you are
now generating your new keystore to sign your application for deployment, you need to apply for
the Google Maps API key again, using the new keystore’s MD5 fi ngerprint. To do so, go to the
command prompt and enter the following command (the location of your keytool.exe utility
might differ slightly, in which case you would need to replace the path of the keystore with the
path you selected earlier in step 5; see also Figure 6-7):

C:\Program Files\Java\jre6\bin>keytool.exe -list -alias DistributionKeyStoreAlias
-keystore “C:\Users\Wei-Meng Lee\Desktop\DistributionKeyStore” -storepass
password -keypass password

FIGURE 6-7

9. Using the MD5 fi ngerprint obtained from the previous step, go to http://code.google.com/
android/add-ons/google-apis/maps-api-signup.html and sign up for a new Maps
API key.

10. Enter the new Maps API key in the main.xml fi le:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 >
<com.google.android.maps.MapView
 android:id=”@+id/mapView”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 android:enabled=”true”
 android:clickable=”true”
 android:apiKey=”<Your Key Here>” />
</LinearLayout>

C06.indd 211C06.indd 211 28/06/11 1:23 PM28/06/11 1:23 PM

212 ❘ CHAPTER 6 PUBLISHING ANDROID APPLICATIONS

11. With the new Maps API key entered in
the main.xml fi le, you now need to export the
application once more and resign it. Repeat
steps 2 through 4. When you are asked
to select a keystore, select the “Use existing
keystore” option (see Figure 6-8) and enter
the password you used earlier to protect
your keystore (in this case, “password”).
Click Next.

12. Select the “Use existing key” option (see
Figure 6-9) and enter the password you
set earlier to secure the private key
(enter “password”). Click Next.

13. Click Finish (see Figure 6-10) to generate
the APK fi le again.

FIGURE 6-8

FIGURE 6-9 FIGURE 6-10

That’s it! The APK is now generated and it contains the new Map API key that is tied to the new keystore.

How It Works

Eclipse provides the Export Android Application option, which helps you to both export your Android
application as an APK fi le and generate a new keystore to sign the APK fi le. For applications that use
the Maps API key, note that the Maps API key must be associated with the new keystore that you
use to sign your APK fi le.

C06.indd 212C06.indd 212 28/06/11 1:23 PM28/06/11 1:23 PM

Deploying APK Files ❘ 213

DEPLOYING APK FILES

Once you have signed your APK fi les, you need a way to get them onto your users’ devices. The
following sections describe the various ways to deploy your APK fi les. Three methods are covered:

 ➤ Deploying manually using the adb.exe tool

 ➤ Hosting the application on a web server

 ➤ Publishing through the Android Market

Besides these methods, you can install your applications on users’ devices through e-mails, SD
card, and so on. As long as you can transfer the APK fi le onto the user’s device, you can install
the application.

Using the adb.exe Tool

Once your Android application is signed, you can deploy it to emulators and devices using the
adb.exe (Android Debug Bridge) tool (located in the platform-tools folder of the Android SDK).

Using the command prompt in Windows, navigate to the <Android_SDK>\platform-tools folder.
To install the application to an emulator/device (assuming the emulator is currently up and running
or a device is currently connected), issue the following command:

adb install “C:\Users\Wei-Meng Lee\Desktop\LBS.apk”

EXPLORING THE ADB.EXE TOOL

The adb.exe tool is a very versatile tool that enables you to control Android
devices (and emulators) connected to your computer.

By default, when you use the adb command, it assumes that currently there is only
one connected device/emulator. If you have more than one device connected, the
adb command returns an error message:

error: more than one device and emulator

You can view the devices currently connected to your computer by using the
devices option with adb, like this:

D:\Android 3.0\android-sdk-windows\platform-tools>adb devices
List of devices attached
HT07YPY09335 device
emulator-5554 device
emulator-5556 device

continues

C06.indd 213C06.indd 213 28/06/11 1:23 PM28/06/11 1:23 PM

214 ❘ CHAPTER 6 PUBLISHING ANDROID APPLICATIONS

When you inspect the Launcher on the Android device/emulator, you will be able to see the LBS icon
(on the top of Figure 6-11). If you select Settings ➪ Applications ➪ Manage Applications on your
Android device/emulator, you will see the “Where Am I” application (on the bottom of Figure 6-11).

As the preceding example shows, this returns the list of devices currently attached.
To issue a command for a particular device, you need to indicate the device using
the -s option, like this:

adb –s emulator-5556 install LBS.apk

If you try to install an APK fi le onto a device that already has the APK fi le, it will
display the following error message:

Failure [INSTALL_FAILED_ALREADY_EXISTS]

(continued)

FIGURE 6-11

C06.indd 214C06.indd 214 28/06/11 1:23 PM28/06/11 1:23 PM

Deploying APK Files ❘ 215

Besides using the adb.exe tool to install applications, you can also use it to remove an installed
application. To do so, use the shell option to remove an application from its installed folder:

adb shell rm /data/app/net.learn2develop.LBS.apk

Another way to deploy an application is to use the DDMS tool in Eclipse (see Figure 6-12). With an
emulator (or device) selected, use the File Explorer in DDMS to go to the /data/app folder and use
the “Push a fi le onto the device” button to copy the APK fi le onto the device.

FIGURE 6-12

Using a Web Server

If you wish to host your application on your own, you can use a web server to do that. This is
ideal if you have your own web hosting services and want to provide the application free of charge
to your users (or you can restrict access to certain groups of people).

NOTE Even if you restrict your application to a certain group of people, there
is nothing to stop users from redistributing your application to other users after
they have downloaded your APK fi le.

To demonstrate this, I will use the Internet Information Server (IIS) on my Windows 7 computer.
Copy the signed LBS.apk fi le to c:\inetpub\wwwroot\. In addition, create a new HTML fi le named
Install.html with the following content:

<html>
<title>Where Am I application</title>
<body>
Download the Where Am I application here
</body>
</html>

C06.indd 215C06.indd 215 28/06/11 1:23 PM28/06/11 1:23 PM

216 ❘ CHAPTER 6 PUBLISHING ANDROID APPLICATIONS

On your web server, you may need to register a new MIME type for the APK fi le. The MIME type
for the .apk extension is application/vnd.android.package-archive.

NOTE If you are unsure how to set up the IIS on your Windows 7 computer,
check out the following link: http://technet.microsoft.com/en-us/library/
cc725762.aspx.

NOTE To install APK fi les over the Web, you need an SD card installed on your
emulator or device. This is because the downloaded APK fi les will be saved to
the download folder created on the SD card.

By default, for online installation of Android applications, the Android emulator or device only
allows applications to be installed from the Android Market (www.android.com/market/). Hence,
for installation over a web server, you need to confi gure your Android emulator/device to accept
applications from non-Market sources.

From the Application settings menu, check the “Unknown sources” item (see Figure 6-13). You will
be prompted with a warning message. Click OK. Checking this item will allow the emulator/device
to install applications from other non-Market sources (such as from a web server).

FIGURE 6-13

C06.indd 216C06.indd 216 28/06/11 1:23 PM28/06/11 1:23 PM

Deploying APK Files ❘ 217

To install the LBS.apk application from the IIS web server running on your computer, launch the
Browser application on the Android emulator/device and navigate to the URL pointing to the APK
fi le. To refer to the computer running the emulator, you should use the computer’s IP address.
Figure 6-14 shows the Install.html fi le loaded on the web browser. Clicking the “here” link will
download the APK fi le onto your device. Click the Download button at the bottom of the screen to
reveal the download’s status.

FIGURE 6-14

To install the downloaded application, simply tap on it. It will show the permission(s) required
by the application. Click the Install button to proceed with the installation. When the application
is installed, you can launch it by clicking the Open button.

Besides using a web server, you can also e-mail your application to users as an attachment; when the
users receive the e-mail, they can download the attachment and install the application directly onto
their device.

Publishing on the Android Market

So far, you have learned how to package your Android application and distribute it in various
ways — via web server, the adb.exe fi le, e-mail, and SD card.

C06.indd 217C06.indd 217 28/06/11 1:23 PM28/06/11 1:23 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

218 ❘ CHAPTER 6 PUBLISHING ANDROID APPLICATIONS

However, these methods do not provide a way for users to discover your applications easily. A better
way is to host your application on the Android Market, a Google-hosted service that makes it very
easy for users to discover and download (i.e., purchase) applications for their Android devices. Users
simply need to launch the Market application on their Android device in order to discover a wide
range of applications that they can install on their devices.

In this section, you will learn how to publish your Android application on the Android Market. You
will walk through each of the steps involved, including the various items you need to prepare your
application for submission to the Android Market.

Creating a Developer Profi le

The fi rst step toward publishing on the Android Market is to create a developer profi le at
http://market.android.com/publish/Home. For this, you need a Google account (such as
your Gmail account). Once you have logged in to the Android Market, you fi rst create your
developer profi le (see Figure 6-15). Click Continue after entering the required information.

FIGURE 6-15

C06.indd 218C06.indd 218 28/06/11 1:23 PM28/06/11 1:23 PM

Deploying APK Files ❘ 219

For publishing on the Android Market, you need to pay a one-time registration fee, currently U.S.
$25. Click the Google Checkout button to be redirected to a page where you can pay the registration
fee. After paying, click the Continue link.

Next, you need to agree to the Android Market Developer Distribution Agreement. Check the
“I agree” checkbox and then click the “I agree. Continue” link.

Submitting Your Apps

Once you have set up your profi le, you are ready to submit your application to the Android
Market. If you intend to charge for your application, click the Setup Merchant Account link
located at the bottom of the screen. Here you enter additional information such as bank account
and tax ID.

For free applications, click the Upload Application link, shown in Figure 6-16.

FIGURE 6-16

C06.indd 219C06.indd 219 28/06/11 1:23 PM28/06/11 1:23 PM

220 ❘ CHAPTER 6 PUBLISHING ANDROID APPLICATIONS

You will be asked to supply some details about your application. Figure 6-17 shows the fi rst set of
details you need to provide. Among the information needed, the following are compulsory:

 ➤ The application in APK format.

 ➤ At least two screenshots. You can use the DDMS perspective in Eclipse to capture screenshots
of your application running on the emulator or real device.

 ➤ A high-resolution application icon. This size of this image must be 512 � 512 pixels.

The other information details are optional, and you can always supply them later.

FIGURE 6-17

Figure 6-18 shows that I have uploaded the LBS.apk fi le to the Android Market site. In particular,
note that based on the APK fi le that you have uploaded, users are warned about any specifi c
permissions required, and your application’s features will be used to fi lter search results. For
example, because my application requires GPS access, it will not appear in the search result list
if a user searches for my application on a device that does not have a GPS receiver.

C06.indd 220C06.indd 220 28/06/11 1:23 PM28/06/11 1:23 PM

Deploying APK Files ❘ 221

FIGURE 6-18

The next set of information you need to supply, shown in Figure 6-19, includes the title of your
application, its description, as well as recent changes’ details (useful for application updates). You
can also select the application type and the category in which it will appear in the Android Market.

FIGURE 6-19

C06.indd 221C06.indd 221 28/06/11 1:23 PM28/06/11 1:23 PM

222 ❘ CHAPTER 6 PUBLISHING ANDROID APPLICATIONS

On the last dialog, you indicate whether your application employs copy protection, and specify a
content rating. You also supply your website URL and your contact information (see Figure 6-20).
When you have given your consent to the two guidelines and agreements, click Publish to publish
your application on the Android Market.

FIGURE 6-20

That’s it! Your application is now available on the Android Market. You will be able to monitor
any comments submitted about your application (see Figure 6-21), as well as bug reports and total
number of downloads.

C06.indd 222C06.indd 222 28/06/11 1:23 PM28/06/11 1:23 PM

Summary ❘ 223

Good luck! All you need to do now is wait for the good news; and hopefully you can laugh your
way to the bank soon!

SUMMARY

In this chapter, you have learned how you can export your Android application as an APK fi le
and then digitally sign it with a keystore you create yourself. You then learned about the various
ways you can distribute your application, and the advantages of each method. Finally, you walked
through the steps required to publish on the Android Market, which makes it possible for you to sell
your application and reach out to a wider audience. Hopefully, this exposure enables you to sell a lot
of copies and thereby make some decent money!

FIGURE 6-21

C06.indd 223C06.indd 223 28/06/11 1:23 PM28/06/11 1:23 PM

224 ❘ CHAPTER 6 PUBLISHING ANDROID APPLICATIONS

EXERCISES

 1. How do you specify the minimum version of Android required by your application?

 2. How do you generate a self-signed certifi cate for signing your Android application?

 3. How do you confi gure your Android device to accept applications from non-Market sources?

Answers to the Exercises can be found in Appendix C.

C06.indd 224C06.indd 224 28/06/11 1:23 PM28/06/11 1:23 PM

Summary ❘ 225

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Checklist for publishing

your apps

To publish an application on the Android Market, an application must

have the four required attributes in the AndroidManifest.xml fi le:

 ➤ android:versionCode

 ➤ android:versionName

 ➤ android:icon

 ➤ android:label

Signing applications All applications to be distributed must be signed with a self-signed

certifi cate. The debug keystore is not valid for distribution.

Exporting an application

and signing it

Use the Export feature of Eclipse to export the application as an APK fi le

and then sign it with a self-signed certifi cate.

Deploying APK fi les You can deploy using various means, including web server, e-mail,

adb.exe, DDMS, etc.

Publishing your

application on the

Android Market

Apply for the Android Market with a one-time fee of U.S.$25 and you will

be able to sell and host your apps on the Android Market.

C06.indd 225C06.indd 225 28/06/11 1:23 PM28/06/11 1:23 PM

C06.indd 226C06.indd 226 28/06/11 1:23 PM28/06/11 1:23 PM

PART III

Appendices

 � APPENDIX A: Using Eclipse for Android Development

 � APPENDIX B: Using the Android Emulator

 � APPENDIX C: Answers to Exercises

BAPP01.indd 227BAPP01.indd 227 28/06/11 1:31 PM28/06/11 1:31 PM

BAPP01.indd 228BAPP01.indd 228 28/06/11 1:31 PM28/06/11 1:31 PM

GETTING AROUND IN ECLIPSE

Eclipse is a highly extensible multi-language software development environment that supports
application development of all sorts. Using Eclipse, you could write and test your applications
using a wide variety of languages, such as Java, C, C++, PHP, Ruby, and so on. Because of
its extensibility, new users of Eclipse often feel inundated with the IDE. Hence, the following
sections aim to make you more at home with Eclipse when you develop your Android
applications.

Workspaces

Eclipse adopts the concept of a workspace. A workspace is a folder that you have chosen to
store all your projects.

Using Eclipse for Android
Development

Although Google supports the development of Android applications using IDEs such as IntelliJ,
or basic editors like Emacs, Google’s recommendation is to use the Eclipse IDE together with
the Android Development Tools Plugin. Doing so makes developing Android applications much
easier and more productive. This appendix describes some of the neat features available in
Eclipse that can make your development life much easier.

A

NOTE If you have not downloaded Eclipse yet, please start with Chapter 1,
where you will learn how to obtain Eclipse and confi gure it to work with the
Android SDK. This appendix assumes that you have already set up your Eclipse
environment for Android development.

BAPP01.indd 229BAPP01.indd 229 28/06/11 1:31 PM28/06/11 1:31 PM

230 ❘ APPENDIX A USING ECLIPSE FOR ANDROID DEVELOPMENT

When you fi rst start Eclipse, you are prompted to select a workspace (see Figure A-1).

FIGURE A-1

FIGURE A-2

When Eclipse has fi nished launching the projects located in your workspace, it will display several
panes in the IDE (see Figure A-2).

BAPP01.indd 230BAPP01.indd 230 28/06/11 1:31 PM28/06/11 1:31 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Getting Around in Eclipse ❘ 231

The following sections highlight some of the more important panes
that you need to know about when developing Android applications.

Package Explorer

The Package Explorer, shown in Figure A-3, lists all the projects
currently in your workspace. To edit a particular item in your
project, you can double-click on it and the fi le will be displayed in the
respective editor.

You can also right-click on each item displayed in the Package
Explorer to display context sensitive menu(s) related to the selected
item. For example, if you wish to add a new .java fi le to the project,
you can right-click on the package name in the Package Explorer and
then select New ➪ Class (see Figure A-4).

FIGURE A-3

FIGURE A-4

BAPP01.indd 231BAPP01.indd 231 28/06/11 1:31 PM28/06/11 1:31 PM

232 ❘ APPENDIX A USING ECLIPSE FOR ANDROID DEVELOPMENT

Using Projects from Other Workspaces

There may be times when you have several workspaces created to store different projects. If you
need to access the project in another workspace, there are generally two ways to go about doing
so. First, you can switch to the desired workspace by selecting File ➪ Switch Workspace (see
Figure A-5). Specify the new workspace to work on and then restart Eclipse.

FIGURE A-5

The second method is to import the project from another workspace into the current one.
To do so, select File ➪ Import… and then select General ➪ Existing Projects into Workspace
(see Figure A-6).

BAPP01.indd 232BAPP01.indd 232 28/06/11 1:31 PM28/06/11 1:31 PM

Getting Around in Eclipse ❘ 233

FIGURE A-6 FIGURE A-7

In the Select root directory textbox, enter the path of the workspace containing the project(s) you
want to import and tick the project(s) you want to import (see Figure A-7). To import the selected
project(s), click Finish.

Note that even when you import a project from another workspace into the current workspace, the
physical location of the imported project remains unchanged. That is, it will still be located in its
original directory. To have a copy of the project in the current workspace, check the “Copy projects
into workspace” option.

Editors

Depending on the type of items you have double-clicked in the Package Explorer, Eclipse will open
the appropriate editor for you to edit the fi le. For example, if you double-click on a .java fi le, the
text editor for editing the source fi le will be opened (see Figure A-8).

BAPP01.indd 233BAPP01.indd 233 28/06/11 1:31 PM28/06/11 1:31 PM

234 ❘ APPENDIX A USING ECLIPSE FOR ANDROID DEVELOPMENT

FIGURE A-8

If you double-click on the icon.png fi le in
the res/drawable-mdpi folder, the Windows
Photo Viewer application will be invoked to
display the image (see Figure A-9).

If you double-click on the main.xml fi le in the
res/layout folder, Eclipse will display the UI
editor, where you can graphically view and
build the layout of your UI (see Figure A-10).

FIGURE A-9

BAPP01.indd 234BAPP01.indd 234 28/06/11 1:31 PM28/06/11 1:31 PM

Getting Around in Eclipse ❘ 235

To edit the UI manually using XML, you can switch to XML view by clicking on the main.xml
tab located at the bottom of the screen (see Figure A-11).

FIGURE A-10

FIGURE A-11

BAPP01.indd 235BAPP01.indd 235 28/06/11 1:31 PM28/06/11 1:31 PM

236 ❘ APPENDIX A USING ECLIPSE FOR ANDROID DEVELOPMENT

Perspectives

In Eclipse, a perspective is a visual container for a set of
views and editors. When you edit your project in Eclipse,
you are in the Java perspective (see Figure A-12).

The Java EE perspective is used for developing enterprise
Java applications, and it includes other modules that are
relevant to it.

You can switch to other perspectives by clicking on the
perspective name. If the perspective name is not shown,
you can click the Open Perspective button and add a new
perspective (see Figure A-13).

The DDMS perspective contains the tools for
communicating with Android emulators and devices.
This is covered in more detail in Appendix B. The Debug
perspective contains panes used for debugging your
Android applications. You will learn more about this later
in this appendix.

Auto Import of Namespaces

The various classes in the Android library are organized into namespaces. As such, when you use a
particular class from a namespace, you need to import the appropriate namespaces, like this:

import android.app.Activity;

import android.os.Bundle;

Because the number of classes in the Android
Library is very large, remembering the correct
namespace for each class is not an easy task.
Fortunately, Eclipse can help fi nd the correct
namespace for you, enabling you to import it
with just a click.

Figure A-14 shows that I have declared an
object of type Button. Because I did not
import the correct namespace for the Button
class, Eclipse signals an error beneath the
statement. When you move the mouse over
the Button class, Eclipse displays a list of
suggested fi xes. In this case, I need to import
the android.widget.Button namespace.
Clicking the “Import ‘Button’ (android
.widget)” link will add the import statement
at the top of the fi le.

FIGURE A-12

FIGURE A-13

FIGURE A-14

BAPP01.indd 236BAPP01.indd 236 28/06/11 1:31 PM28/06/11 1:31 PM

Getting Around in Eclipse ❘ 237

Alternatively, you can also use the following key combination: Control+Shift+o. This key
combination will cause Eclipse to automatically import all the namespaces required by your class.

Code Completion

Another very useful feature of Eclipse is the support for code completion. Code completion displays
a context-sensitive list of relevant classes, objects, methods, and property names as you type in the
code editor. For example, Figure A-15 shows code-completion in action. As I type the word “fin,”
I can activate the code-completion feature by pressing Ctrl+Space. This will bring up a list of names
that begin with “fin.”

To select the required name, simply double-click on it or use your cursor to highlight it and
press the Enter key.

Code completion also works when you type a “.” after an object/class name. Figure A-16 shows
an example.

FIGURE A-15 FIGURE A-16

FIGURE A-17

Refactoring

Refactoring is a very useful feature that most
modern IDEs support. Eclipse supports a
whole slew of refactoring features that make
application development effi cient.

In Eclipse, when you position the cursor at
a particular object/variable, the editor will
highlight all occurrences of the selected object
in the current source (see Figure A-17).

BAPP01.indd 237BAPP01.indd 237 28/06/11 1:31 PM28/06/11 1:31 PM

238 ❘ APPENDIX A USING ECLIPSE FOR ANDROID DEVELOPMENT

This feature is very useful for identifying where a particular object is used in your code. To change
the name of an object, simply right-click on it and select Refactor ➪ Rename. . . (see Figure A-18).

FIGURE A-18

FIGURE A-19

After entering a new name for the object, all
occurrences of the object will be changed
dynamically (see Figure A-19).

A detailed discussion of refactoring is beyond
the scope of this book. For more information
on refactoring in Eclipse, refer to www.ibm
.com/developerworks/library/os-ecref/.

DEBUGGING

Eclipse supports debugging your application on both the Android emulators as well as on real
Android devices. When you press F11 in Eclipse, Eclipse will fi rst determine whether an Android
emulator instance is already running or a real device is connected. If at least one emulator
(or device) is running, Eclipse will deploy the application onto the running emulator or the
connected device. If there is no emulator running and no connected device, Eclipse will
automatically launch an instance of the Android emulator and deploy the application onto it.

If you have more than one emulator or device connected, Eclipse will prompt you to select the target
emulator/device on which to deploy the application (see Figure A-20). Select the target device you
want to use and click OK.

BAPP01.indd 238BAPP01.indd 238 28/06/11 1:31 PM28/06/11 1:31 PM

Debugging ❘ 239

If you want to launch a new emulator instance to test the application, select Window ➪ Android
SDK and AVD Manager to launch the AVD manager.

Setting Breakpoints

Setting breakpoints is a good way to
temporarily pause the execution of the
application and then examine the content of
variables and objects.

To set a breakpoint, double-click on the
leftmost column in the code editor.
Figure A-21 shows a breakpoint set on a
particular statement.

When the application is running and the fi rst breakpoint is reached, Eclipse will display a Confi rm
Perspective Switch dialog. Basically, it wants to switch to the Debug perspective. To prevent this
window from appearing again, check the “Remember my decision” checkbox at the bottom and
click Yes.

Eclipse now highlights the breakpoint (see Figure A-22).

FIGURE A-20

FIGURE A-21

BAPP01.indd 239BAPP01.indd 239 28/06/11 1:31 PM28/06/11 1:31 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

240 ❘ APPENDIX A USING ECLIPSE FOR ANDROID DEVELOPMENT

At this point, you can right-click on any
selected object/variable and view its content
using the various options (Watch, Inspect,
and Display) shown in Figure A-23.

Figure A-24 shows the Inspect option
displaying the content of the str variable.

There are several options at this point to
continue the execution:

 ➤ Step Into — Press F5 to step into the next method call/statement.

 ➤ Step Over — Press F6 to step over the next method call without entering it.

 ➤ Step Return — Press F7 to return from a method that has been stepped into.

 ➤ Resume Execution — Press F8 to resume the execution.

FIGURE A-22

FIGURE A-23

BAPP01.indd 240BAPP01.indd 240 28/06/11 1:31 PM28/06/11 1:31 PM

Debugging ❘ 241

Exceptions

As you develop in Android, you will encounter numerous run-time exceptions that prevent your
program from continuing. Examples of run-time exceptions include the following:

 ➤ Null reference exception (accessing an object which is null)

 ➤ Failure to specify the required permissions required by your application

 ➤ Arithmetic operation exceptions

Figure A-25 shows the current state of an application when an exception occurred. In this example,
I am trying to send an SMS message from my application and it crashes when the SMS message is
about to be sent.

FIGURE A-24

FIGURE A-25

BAPP01.indd 241BAPP01.indd 241 28/06/11 1:31 PM28/06/11 1:31 PM

242 ❘ APPENDIX A USING ECLIPSE FOR ANDROID DEVELOPMENT

The various windows do not really identify the cause of the exception. To fi nd out more, press F6 in
Eclipse so that it can step over the current statement. The Variables window, shown in Figure A-26,
indicates the cause of the exception. In this case, the SEND_SMS permission is missing.

FIGURE A-26

To remedy this, all you need to do is to add the following permission statement in the
AndroidManifest.xml fi le:

 <uses-permission
 android:name=”android.permission.SEND_SMS”/>

BAPP01.indd 242BAPP01.indd 242 28/06/11 1:31 PM28/06/11 1:31 PM

Using the Android Emulator

The Android emulator ships with the Android SDK and is an invaluable tool to help test your
application without requiring you to purchase a real device. While you should thoroughly
test your applications on real devices before you deploy them, the emulator mimics most of
the capabilities of real devices. It is a very handy tool that you should make use of during the
development stage of your project. This appendix provides some common tips and tricks for
mastering the Android emulator.

USES OF THE ANDROID EMULATOR

As discussed in Chapter 1, you can use the Android emulator to emulate the different Android
confi gurations by creating Android Virtual Devices (AVDs).

You launch the Android emulator by directly starting the AVD you have created in the
Android SDK and AVD Manager window (see Figure B-1). Simply select the AVD and
click the Start button. You have the option to scale the emulator to a particular size
and monitor DPI.

Alternatively, when you run an Android project in Eclipse, the Android emulator is
automatically invoked to test your application. You can customize the Android emulator for
each of your Android projects in Eclipse. To do so, simply select Run ➪ Run Confi gurations.
Select the project name listed under Android Application on the left (see Figure B-2), and on
the right you will see the Target tab. You can choose your preferred AVD to use for testing
your application, as well as emulate different scenarios such as network speed and network
latency.

B

BAPP02.indd 243BAPP02.indd 243 28/06/11 1:35 PM28/06/11 1:35 PM

244 ❘ APPENDIX B USING THE ANDROID EMULATOR

FIGURE B-1

FIGURE B-2

BAPP02.indd 244BAPP02.indd 244 28/06/11 1:36 PM28/06/11 1:36 PM

Creating Snapshots ❘ 245

CREATING SNAPSHOTS

In the latest version of the AVD Manager, you now have the option to save an emulator’s
state to a snapshot fi le. Saving an emulator’s state to a snapshot fi le enables the emulator to
be started quickly the next time you try to launch it, effectively bypassing the lengthy boot-up
time. This is especially useful for the Android 3.0 emulator, which can take up to fi ve minutes
to boot up.

To use the snapshot feature, simply check the Snapshot Enabled checkbox when you create a new
AVD (see Figure B-3).

When you launch the AVD from the Start . . . button, check the “Launch from snapshot” and
“Save to snapshot” checkboxes (see Figure B-4). The fi rst time you launch the emulator, it will
boot up normally. When you close the emulator, it will now save the state to a snapshot fi le. The
next time you launch the emulator, it will appear almost instantly, restoring its state from
the snapshot fi le.

FIGURE B-3 FIGURE B-4

BAPP02.indd 245BAPP02.indd 245 28/06/11 1:36 PM28/06/11 1:36 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

246 ❘ APPENDIX B USING THE ANDROID EMULATOR

INSTALLING CUSTOM AVDS

Sometimes device manufacturers provide their own AVDs that you can use to emulate your
applications running on their devices. A good example is Samsung, which provides the Samsung
Galaxy Tab add-on for emulating their Samsung Galaxy Tab tablet. To install the Samsung Galaxy
Tab add-on, fi rst launch the Android SDK and AVD Manager in Eclipse, and then select the
Available Packages item on the left side of the dialog (see Figure B-5).

FIGURE B-5

Check the “Third party Add-ons” checkbox and you should see a list of third-party tools that you
can download for testing. At the time of writing, both Samsung and Sony Ericsson provide their
own AVD for testing your apps on their devices.

After the downloaded packages are installed, you can create a new AVD based on the newly
downloaded package. Select the Virtual Devices item in the Androids SDK and AVD Manager
window and click the New . . . button.

Name the new AVD as shown in Figure B-6. Click the Create AVD button to create the AVD.

To launch the SamsungGalaxyTab AVD, select it and click the Start . . . button. The Launch
Options dialog will appear. Check the “Scale display to real size” option if you want to resize the
emulator. This is very useful if you are running the emulator on a small monitor (such as a notebook
computer). Specify a screen size and click the Launch button to start the emulator. Figure B-7 shows
the Samsung Galaxy Tab emulator.

BAPP02.indd 246BAPP02.indd 246 28/06/11 1:36 PM28/06/11 1:36 PM

Emulating Real Devices ❘ 247

FIGURE B-6 FIGURE B-7

NOTE If you use HTC’s image, you should be able to boot up the emulator
without problems. However, the network cannot be enabled. Some kind souls
have uploaded a modifi ed image that works properly. You can try downloading
it at www.4shared.com/get/x6pZm3-W/system.html.

EMULATING REAL DEVICES

Besides using the Android emulator to test the different confi gurations of Android, you can also make
use of the emulator to emulate real devices, using the system images provided by device manufacturers.

For example, HTC provides images for their devices running Android 1.5 and 1.6 (http://
developer.htc.com/google-io-device.html#s3). You can download a device’s system image
and then use the Android emulator to emulate it using the system image. Here is how this can be
done (in theory, this should work for any version of Android).

First, using the Android SDK and AVD Manager, create a new AVD. In the case of HTC,
create an AVD using Android 1.6 as the platform. The AVD will be located in the

BAPP02.indd 247BAPP02.indd 247 28/06/11 1:36 PM28/06/11 1:36 PM

248 ❘ APPENDIX B USING THE ANDROID EMULATOR

C:\Users\<username>\.android\avd\<avd_name>.avd folder. As shown in Figure B-8,
a newly created AVD contains only two fi les in the folder.

Using the downloaded system image, copy the system.img fi le into the AVD folder (see Figure B-9).

FIGURE B-10

Launch the AVD and you should see it booting up (see Figure B-10).

FIGURE B-9FIGURE B-8

You can proceed to sign in using your Google account. When prompted to slide open the keyboard,
press Ctrl+F11 to change the orientation of the emulator. This action tricks the emulator into
believing that you are sliding the keyboard open. Once you have successfully signed in, you will be
able to explore the Android Market on your emulator (see Figure B-11)!

BAPP02.indd 248BAPP02.indd 248 28/06/11 1:36 PM28/06/11 1:36 PM

SD Card Emulation ❘ 249

FIGURE B-11

FIGURE B-12

SD CARD EMULATION

When you create a new AVD, you can emulate the
existence of an SD card (see Figure B-12). Simply enter
the size of the SD card that you want to emulate (in the
fi gure, it is 200MB).

Alternatively, you can simulate the presence of an SD
card in the Android emulator by creating a disk image
fi rst and then attaching it to the AVD. The mksdcard
.exe utility (also located in the tools folder of the
Android SDK) enables you to create an ISO disk image.
The following command creates an ISO image that is
2GB in size (see also Figure B-13):

mksdcard 2048M sdcard.iso

BAPP02.indd 249BAPP02.indd 249 28/06/11 1:36 PM28/06/11 1:36 PM

250 ❘ APPENDIX B USING THE ANDROID EMULATOR

Once the image is created, you can specify the location
of the ISO fi le, as shown in Figure B-14.

EMULATING DEVICES WITH

DIFFERENT SCREEN SIZES

Besides emulating an SD card, you can also emulate
devices with different screen sizes. Figure B-15 indicates
that the AVD is emulating the WXGA skin, which has
a resolution of 1280 � 800 pixels. Note that the LCD
density is 160, which means that this screen has a
pixel density of 160 pixels per inch.

For each target that you select, a list of skins is available.
The Android SDK supports the following screen
resolutions:

 ➤ QVGA — 240 � 320

 ➤ WQVGA400 — 240 � 400

 ➤ WQVGA432 — 240 � 432

 ➤ HVGA — 320 � 480

 ➤ WVGA800 — 480 � 800

 ➤ WVGA854 — 480 � 854

 ➤ WXGA — 1280 � 800 (only applicable
for Android 3.0 targets)

EMULATING PHYSICAL CAPABILITIES

In addition to emulating devices of different screen sizes, you also have the option to emulate
different hardware capabilities. When creating a new AVD, clicking the New . . . button will display
a dialog for choosing the type of hardware you want to emulate (see Figure B-16).

For example, if you want to emulate an Android device with no touch screen, select the “Touch-
screen support” property and click OK. Back in the AVD dialog, change the value of the property
from yes to no (see Figure B-17).

FIGURE B-13

FIGURE B-14

FIGURE B-15

BAPP02.indd 250BAPP02.indd 250 28/06/11 1:36 PM28/06/11 1:36 PM

Emulating Physical Capabilities ❘ 251

FIGURE B-16 FIGURE B-17

This will create an AVD with no touch-screen support (i.e., users won’t be able to use their mouse
to click on the screen).

You can also simulate location data using the Android emulator. Chapter 4 discusses this in
more detail.

KEYBOARD SHORTCUTS

The Android emulator supports several keyboard shortcuts that enable you to
mimic the behavior of a real handset. The following list describes the shortcuts that
you can use with the emulator:

 ➤ Esc — Back

 ➤ Home — Main screen

 ➤ F2 — Toggles context-sensitive menu

 ➤ F3 — Call Log

 ➤ F4 — Lock

 ➤ F5 — Search

 ➤ F8 — Toggles data network (3G)

continues

BAPP02.indd 251BAPP02.indd 251 28/06/11 1:36 PM28/06/11 1:36 PM

252 ❘ APPENDIX B USING THE ANDROID EMULATOR

 ➤ Ctrl+F5 — Ringer volume up

 ➤ Ctrl+F6 — Ringer volume down

 ➤ Ctrl+F11/Ctrl+F12 — Toggle orientation

For example, by pressing Ctrl+F11, you can change the orientation of the emulator
to portrait mode (see Figure B-18).

(continued)

FIGURE B-18

One useful tip to make your development more productive is to keep your Android emulator
running during development — avoid closing and restarting it. Because the emulator takes time to
boot up, it is much better to leave it running when you are debugging your applications.

BAPP02.indd 252BAPP02.indd 252 28/06/11 1:36 PM28/06/11 1:36 PM

Sending SMS Messages to the Emulator ❘ 253

SENDING SMS MESSAGES TO THE EMULATOR

You can emulate sending SMS messages to the Android emulator using either the Dalvik Debug
Monitor Service (DDMS) tool available in Eclipse, or the Telnet client.

NOTE The Telnet client is not installed by default in Windows 7. To install it,
type the following command line in the Windows command prompt: pkgmgr
/iu:”TelnetClient”.

Take a look at how this is done in Telnet. First, ensure that the Android emulator is running.
In order to telnet to the emulator, you need to know the port number of the emulator. You can
obtain this by looking at the title bar of the Android emulator window. It normally starts
with 5554, with each subsequent emulator having a port number incremented by two, such as
5556, 5558, and so on. Assuming that you currently have one Android emulator running, you can
telnet to it using the following command (replace 5554 with the actual number of your emulator):

C:\telnet localhost 5554

To send an SMS message to the emulator, use the following command:

sms send +651234567 Hello my friend!

The syntax of the sms send command is as follows:

sms send <phone_number> <message>

Figure B-19 shows the emulator receiving the sent SMS message.

FIGURE B-19

BAPP02.indd 253BAPP02.indd 253 28/06/11 1:36 PM28/06/11 1:36 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

254 ❘ APPENDIX B USING THE ANDROID EMULATOR

Besides using Telnet for sending SMS messages, you can also use the
DDMS perspective in Eclipse. If the DDMS perspective is not visible
within Eclipse, you can display it by clicking the Open Perspective
button (highlighted in Figure B-20) and selecting Other.

Select the DDMS perspective (see Figure B-21) and click OK.

Once the DDMS perspective is displayed, you will see the Devices tab
(see Figure B-22), which shows the list of emulators currently running. Select the emulator instance
to which you want to send the SMS message, and under the Emulator Control tab you will see the
Telephony Actions section. In the Incoming number fi eld, enter an arbitrary phone number and
check the SMS radio button. Enter a message and click the Send button.

FIGURE B-20

FIGURE B-21 FIGURE B-22

The selected emulator will now receive the incoming SMS message.

If you have multiple AVDs running at the same time, you can send SMS messages between each
AVD by using the port number of the emulator as the phone number. For example, if you have an
emulator running on port number 5554 and another on 5556, their phone numbers will be 5554
and 5556, respectively.

BAPP02.indd 254BAPP02.indd 254 28/06/11 1:36 PM28/06/11 1:36 PM

Making Phone Calls ❘ 255

MAKING PHONE CALLS

Besides sending SMS messages to the emulator, you can also use the Telnet client to make a phone
call to the emulator. To do so, simply use the following commands.

NOTE At the time of writing, the Android 3.0 emulator does not support
phone calls.

To telnet to the emulator, use this command (replace 5554 with the actual number of your emulator):

C:\telnet localhost 5554

To make a phone call to the emulator, use this command:

gsm call +651234567

The syntax of the gsm send command is as follows:

gsm call <phone_number>

Figure B-23 shows the emulator receiving an incoming call.

FIGURE B-23

BAPP02.indd 255BAPP02.indd 255 28/06/11 1:36 PM28/06/11 1:36 PM

256 ❘ APPENDIX B USING THE ANDROID EMULATOR

Likewise, you can also use the DDMS perspective to
make a phone call to the emulator. Figure B-24 shows
how to make a phone call using the Telephony Actions
section.

As with sending SMS, you can also make phone calls
between AVDs by using their port numbers as phone
numbers.

TRANSFERRING FILES INTO AND OUT

OF THE EMULATOR

Occasionally, you may need to transfer fi les into or
out of the emulator. The easiest way is to use the
DDMS perspective. From the DDMS perspective,
select the emulator (or device if you have a real Android
device connected to your computer) and click the
File Explorer tab to examine its fi le systems (see
Figure B-25).

FIGURE B-24

FIGURE B-25

The two buttons highlighted in Figure B-25 enable you to either pull a fi le from the emulator or
push a fi le into the emulator.

BAPP02.indd 256BAPP02.indd 256 28/06/11 1:36 PM28/06/11 1:36 PM

Transferring Files into and out of the Emulator ❘ 257

Alternatively, you can also use the adb.exe utility shipped with the Android SDK to push or pull
fi les to and from the emulator. This utility is located in the <Android_SDK_Folder>
\platform-tools\ folder.

To copy a fi le from the connected emulator/device onto the computer, use the following command:

 adb.exe pull /data/app/<filename> c:\

NOTE When using the adb.exe utility to pull or push fi les from or into the emulator,
ensure that only one AVD is running.

Figure B-26 shows how you can extract an APK fi le from the emulator and save it onto your
computer.

FIGURE B-26

To copy a fi le into the connected emulator/device, use the following command:

adb.exe push NOTICE.txt /data/app

The preceding command copies the NOTICE.txt fi le located in the current directory and saves it
onto the emulator’s /data/app folder (see Figure B-27).

FIGURE B-27

If you need to modify the permissions of the fi les in the emulator, you can use the adb.exe utility
together with the shell option, like this:

adb.exe shell

BAPP02.indd 257BAPP02.indd 257 28/06/11 1:36 PM28/06/11 1:36 PM

258 ❘ APPENDIX B USING THE ANDROID EMULATOR

Figure B-28 shows how you can change the permissions of the NOTICE.txt fi le by using the chmod
command.

FIGURE B-28

Using the adb.exe utility, you can issue Unix commands against your Android emulator.

RESETTING THE EMULATOR

All applications and fi les that you have deployed to the Android emulator are stored in a fi le named
userdata-qemu.img located in the C:\Users\<username>\.android\avd\<avd_name>.avd folder.
For example, I have an AVD named AndroidTabletWithMaps; hence, the userdata-qemu.img fi le is
located in the C:\Users\Wei-Meng Lee\.android\avd\AndroidTabletWithMaps.avd folder.

If you want to restore the emulator to its original state (to reset it, that is), simply delete the
userdata-qemu.img fi le.

BAPP02.indd 258BAPP02.indd 258 28/06/11 1:36 PM28/06/11 1:36 PM

Answers to Exercises

This appendix contains the answers to the end of chapter exercises.

CHAPTER 1 ANSWERS

 1. An AVD is an Android Virtual Device. It represents an Android emulator, which
emulates a particular confi guration of an actual Android device.

 2. The android:versionCode attribute is used to programmatically check if an application
can be upgraded. It should contain a running number (an updated application is set to
a higher number than the older version). The android:versionName attribute is used
mainly for displaying to the user. It is a string, such as “1.0.1.”

 3. The strings.xml fi le is used to store all string constants in your application. This
enables you to easily localize your application by simply replacing the strings and then
recompiling your application.

CHAPTER 2 ANSWERS

 1. You can either use the <fragment> element in the XML fi le, or use the
FragmentManager and FragmentTransaction classes to dynamically add/remove
fragments from an activity.

 2. One of the main differences between activities and fragments is that when an activity
goes into the background, the activity is placed in the back stack. This allows an
activity to be resumed when the user presses the Back button. Conversely, fragments
are not automatically placed in the back stack when they go into the background.

 3. Adding action items to an Action Bar is similar to creating menu items
for an options menu — simply handle the onCreateOptionsMenu() and
onOptionsItemSelected() events.

C

Bapp03.indd 259Bapp03.indd 259 28/06/11 1:37 PM28/06/11 1:37 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

260 ❘ APPENDIX C ANSWERS TO EXERCISES

CHAPTER 3 ANSWERS

 1. The dp unit is density independent and 160dp is equivalent to one inch. The px unit
corresponds to an actual pixel on screen. You should always use the dp unit because it
enables your activity to scale properly when run on devices of varying screen size.

 2. With the advent of devices with different screen sizes, using the AbsoluteLayout makes it
diffi cult for your application to have a consistent look and feel across devices.

 3. For radio buttons, you need to use the setOnCheckedChangeListener() method on the
RadioGroup to register a callback to be invoked when the checked RadioButton changes
in this group. When a RadioButton is selected, the onCheckedChanged() method is fi red.
Within it, you locate individual RadioButton and then call their isChecked() method to
determine which RadioButton is selected.

 4. The three specialized fragments are ListFragment, DialogFragment, and PreferenceFragment.

CHAPTER 4 ANSWERS

 1. The likely reasons are as follows:

 ➤ No Internet connection

 ➤ Incorrect placement of the <uses-library> element in the AndroidManifest.xml fi le

 ➤ Missing INTERNET permission in the AndroidManifest.xml fi le

 2. Geocoding is the act of converting an address into its coordinates (latitude and longitude).
Reverse geocoding converts a pair of location coordinates into an address.

 3. The two providers are as follows:

 ➤ LocationManager.GPS_PROVIDER

 ➤ LocationManager.NETWORK_PROVIDER

 4. The method is addProximityAlert().

CHAPTER 5 ANSWERS

 1. You can either programmatically send an SMS message from within your Android application
or invoke the built-in Messaging application to send it on your application’s behalf.

 2. The two permissions are SEND_SMS and RECEIVE_SMS.

 3. The Broadcast receiver should fi re a new intent to be received by the activity. The activity
should implement another BroadcastReceiver to listen for this new intent.

 4. The permission is INTERNET.

Bapp03.indd 260Bapp03.indd 260 28/06/11 1:37 PM28/06/11 1:37 PM

CHAPTER 6 ANSWERS ❘ 261

CHAPTER 6 ANSWERS

 1. You specify the minimum Android version required using the minSdkVersion attribute in
the AndroidManifest.xml fi le.

 2. You can either use the keytool.exe utility from the Java SDK, or use Eclipse’s Export
feature to generate a certifi cate.

 3. Go to the Settings application and select the Applications item. Check the “Unknown
sources” item.

Bapp03.indd 261Bapp03.indd 261 28/06/11 1:37 PM28/06/11 1:37 PM

Bapp03.indd 262Bapp03.indd 262 28/06/11 1:37 PM28/06/11 1:37 PM

263

Numbers and Symbols

5554 emulator, 185
5556 emulator, 183–185

A

AbsoluteLayout ViewGroup, 70–72
Action Bar

action items, adding, 54–59
removing, 53
showing/hiding, 52–54

action items, 52
adding to Action Bar, 54–59
customizing, 59–62

ActionBar class, 53
activities, 24, 29–30

Activity class, 30
events, 30–31

fragments, adding, 40–41
invoking, 167–170
life cycle, 32–36
updating, 162–167

Activity class, 30
events, 30–31

Activity.findViewById() method, 89
adb.exe, 213–215
addPreferencesFromResource() method, 103
addProximityAlert() method, 146
addToBackStack() method, 103
ADT (Android Development Tools), 14–17
Android

Apache License, 4
devices, 6–7
emulator, 22
market, 7
projects, naming, 19
versions, 4–5
versus BlackBerry, 3

Android 3.0
changes in, 5
library, 24

Android Debug Bridge, 213–215
Android Market, publishing to, 207, 217–218

developer fi le, 218–219
submission, 219–223

Android SDK, 7–8
downloading, 8–9

android:label attribute, 207
android:theme attribute, 54
android:versionCode attribute, 206
AndroidManifest.xml fi le, 24, 117
animateTo() method, 126
APK fi les, deploying

adb.exe, 213–215
web server, 215–217

Application item, 59–62
applications. See also individual applications

creating, 17–24
digitally signing, 208–212
exporting, 209–212
Messaging, 158–159
publishing, versioning, 206–208
redistribution, 215
user interface, 24

assets folder, 24
asynchronous phone calls, 200–201
AsyncTask class, 200–201
attributes

android:label, 207
android:theme, 54
android:versionCode, 206
ViewGroups, 66–67
Views, 66–67

AVD Manager, 243
snapshots, 245

AVDs (Android Virtual Devices), 243
creating, 11–14
installation, 246–247

B

BackgroundTask class, 201
BasicViews project, 82–87
binary data download, 190–192

INDEX

Index.indd 263Index.indd 263 28/06/11 1:46 PM28/06/11 1:46 PM

264

BitmapFactory class – Eclipse IDE

BitmapFactory class, 192
BlackBerry versus Android, 3
breakpoints for debugging, 239–241
BroadcastReceiver, 158, 159–162

activities, invoking, 167–170
class, 162
updating activities, 162–167

Button control, 82

C

CA (certifi cate authority), 208
calling emulator, 255–256
cell tower triangulation, 135
certifi cate authority (CA), 208
CheckBox control, 82
child views

AbsoluteLayout ViewGroup, 70–72
LinearLayout ViewGroup, 66
RelativeLayout ViewGroup, 74–76

classes
ActionBar, 53
Activity, 30
AsyncTask, 200–201
BackgroundTask, 201
BitmapFactory, 192
BroadcastReceiver, 162
DialogFragment, 95
final, 26
Fragment, 40
FragmentManager, 44
FragmentTransaction, 44
Geocoder, 132–134
ListFragment, 91–95
LocationManager, 135–146
Locations, 119
MainActivity, 169
MapActivity, 118
MapController, 122, 126
MapOverlay, 129
MapView, 122
MyLocationListener, 143
Overlay, 129–130
PackageManager, 206
PreferenceActivity, 99
PreferenceFragment, 103
SmsManager, 156
SMSReceiver, 175–176
Toast, 51

code completion, 237
columns

LinearLayout ViewGroup, 66–70
TableLayout ViewGroup, 72–74

commit() method, 44
constants, string constant storage, 25
consuming Web services, 195–200
controls

Button, 82
CheckBox, 82
EditText, 82
ImageButton, 82
RadioButton, 82
RadioGroup, 82
ToggleButton, 82

CreateMenu() method, 58

D

debug keystore, 112
debugging, Eclipse, 238–239

breakpoints, 239–241
exceptions, 241–242

decodeStream() method, 192
Dell Streak, 6
developer fi le, Android Market publishing,

218–219
devices, 6–7

emulating, 247–249
screen size differences, 250

system image download, 247
dialog fragments, 95–99
DialogFragment class, 95
DialogFragmentExample project, 95–99
digital certifi cates, 208
digitally signing applications, 208–212
DocumentBuilder object, 198–199
DocumentBuilderFactory object,

198–199
doInBackground() method, 201
DownloadImage() method, 192
downloads

Android SDK, 8–9
binary data, 190–192
text fi les, 193–195

DownloadText() method, 195
dp (density-independent pixel), 67

E

Eclipse IDE, 8
ADT, installation, 15
bug, 21
code completion, 237
debugging, 238–239

breakpoints, 239–241

Index.indd 264Index.indd 264 28/06/11 1:46 PM28/06/11 1:46 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

265

editors (Eclipse) – Google Maps

exceptions, 241–242
editors, 233–235
namespaces, importing, 236–237
Package Explorer, 231
perspectives, 236
refactoring, 237–238
workspaces, 229–231

projects in others, 232–233
editors (Eclipse), 233–235
EditText control, 82
e–mail. See Gmail/E–mail application
emulator, 22

5554, 185
5556, 183–185
devices, 247–249

screen size differences, 250
fi le transfer, 256–258
fragments, 117–118
GPS data, 141–142
keyboard shortcuts, 251–252
phone calls to, 255–256
physical capabilities, 250–252
resetting, 258
SD card emulation, 249–250
sending SMS messages, 253–254
SMS messaging, 155
Start Tracking, 141
Use Cellular/Wi-Fi item, 141
uses, 243–244

events
Activity class

onCreate(), 30
onDestroy(), 31
onPause(), 30
onRestart(), 31
onResume(), 30
onStart(), 30
onStop(), 31

onCreate(), 89
onPause(), 166
onResume(), 166
views, 88–90

exporting applications, 209–212

F

fi le transfer to/from emulator, 256–258
fi les

AndroidManifest.xml, 24, 117
default, 23
locations.xml, 114
main.xml, 25

preferences, 103–104
showmap.xml, 114

final class, 26
findFragmentById() method, 127
findViewById() method, 51, 87
folders

assets, 24
gen, 24
res, 24
src, 24

Fragment class, extending, 40
FragmentManager class, 44
fragments, 36–41

activities, adding to, 40–41
adding, dynamically, 41–44
communication between, 49–51
dialog fragments, 95–99
emulator, 117–118
interactions, 48–51
life cycle, 44–48
list fragments, 91–95
ListFragment class, 91–95
preference fragment, 99–104
ShowMap, 118
using, 37–41

Fragments project, 37–41
FragmentTransaction class, 44
FrameLayout ViewGroup, 76–79

G

gen folder, 24
Geocoder class, 132–134
geocoding, 132–134
GeoPoint object, 126
GET method, Web services, 195–200
getActionBar() method, 54
getActivity() method, 51
getFragmentManager() method, 127
getFromLocation() method, 132
getPackageInfo() method, 206
getProjection() method, 131
getSystemService() method, 143
Gmail/Email application, 185

sending messages, 186–187
Google APIs, 10
Google Maps, 109–110

API key, 111–113
displaying, 110–111, 113–120
Geocoder class, 132–134
latitude, 130
location data, 135–146

Index.indd 265Index.indd 265 28/06/11 1:46 PM28/06/11 1:46 PM

266

Google Maps – methods

Google Maps (continued)
location display, 124–127
longitude, 130
markers, 127–130
reverse geocoding, 130
SMS application, 177–183
views, changing, 122–124
zoom control, 120–122

gotoLocation() method, 126
GPS emulator, 141–142

H

hide() method, 54
HTTP connection, 188–190
HTTP protocol, 187–190

I

IDE (integrated development environment), 8
IIS (Internet Information Server), 215
ImageButton control, 82
installation, packages, 9–11
IntentFilter object, 166
intents, 29

SMS_RECEIVED_ACTION, 175–176
INTERNET permission, 120
invoking activites, 167–170
isRouteDisplayed() method, 118

J

Java JDK, 7–8
Java, Fragment class, 40

K

keyboard shortcuts, emulator and, 251–252
keystores

creating, 210
digital certifi cates, 208

L

latitude in Google Maps, 130
LBS (location-based services), 109
libraries, Android 3.0, 24
LinearLayout ViewGroup, 66–70
list fragments, creating, 91–95
ListFragment class, 91–95
ListFragmentExample project, 91–95

location data
cell tower triangulation, 135
GPS, 135
LocationManager class, 135–146
Wi-Fi triangulation, 135

location display in Google Maps, 124–127
location monitoring, 146
Location Tracker, 171

legalities, 172
Phone, building, 172–176
tablet, building, 176–183
testing, 183–185

location-based services. See LBS (location-based
services)

LocationManager class, 135–146
Locations class, 119
locations.xml fi le, 114
longitude in Google Maps, 130

M

main.xml fi le, 25
MainActivity class, 169
MapActivity class, 118
MapController class, 122

animateTo() method, 126
MapOverlay class, 129
Maps, 109–110
maps

displaying, 109–110
Google Maps, 110–134

markers, 127–130
Overlay class, 129–130

MapView class, 122
MapView, redrawing, 126
markers in maps, 127–130
menu items, listing, 58
MenuChoice() method, 58
messaging

SMS, sending messages, 152–156
SMS messages to emulator, 253–254

Messaging application, 158–159
methods

Activity.findViewById(), 89
addPreferencesFromResource(), 103
addProximityAlert(), 146
addToBackStack(), 103
animateTo(), 126
commit(), 44
CreateMenu(), 58
decodeStream(), 192
doInBackground(), 201

Index.indd 266Index.indd 266 28/06/11 1:46 PM28/06/11 1:46 PM

267

mini-activities – PreferenceActivity class

DownloadImage(), 192
DownloadText(), 195
findFragmentById(), 127
findViewById(), 51, 87
GET, Web services, 195–200
getActionBar(), 54
getActivity(), 51
getFragmentManager(), 127
getFromLocation(), 132
getPackageInfo(), 206
getProjection(), 131
getSystemService(), 143
gotoLocation(), 126
hide(), 54
isRouteDisplayed(), 118
MenuChoice(), 58
newInstance(), 98
onCheckChanged(), 90
onClick(), 90
onCreateDialog(), 98
onCreateOptionsMenu(), 58
onCreateView(), 40
onListItemClick(), 95
onOptionsItemSelected(), 58
onPostExecute(), 201
onReceive(), 158, 162
onTouchEvent(), 130
OpenHttpConnection(), 189
putExtra(), 158
removeUpdates(), 144
replace(), 44
requestLocationUpdates(), 143
sendBroadcast(), 162
sendTextMessage(), 156
setBuiltInZoomControls(), 122
setCheckable(), 146
setChecked(), 146
setContentView(), 27
setListAdapter(), 95
setOnCheckedChangeListener(), 87
setOnClickListener(), 89–90
setSatellite(), 122–123
setTraffic(), 122–123
setType(), 187
setZoom(), 126
show(), 99
startActivity(), 169
WordDefinition(), 198–199
zoomIn(), 122
zoomOut(), 122

mini-activities. See fragments
monitoring locations, 146
Motorola Xoom, 6
MyLocationListener class, 143

N

namespaces (Eclipse), 236–237
Networking project, 188–190
networking, HTTP protocol, 187–190
newInstance() method, 98

O

objects
DocumentBuilder, 198–199
DocumentBuilderFactory, 198–199
GeoPoint, 126
IntentFilter, 166

onCheckChanged() method, 90
onClick() method, 90
onCreate() event, 30, 89
onCreateDialog() method, 98
onCreateOptionsMenu() method, 58
onCreateView() method, 40
onCreateView() method, overriding, 40
onDestroy() event, 31
onListItemClick() method, 95
onOptionsItemSelected() method, 58
onPause() event, 30, 166
onPostExecute() method, 201
onReceive() method, 158, 162
onRestart() event, 31
onResume() event, 30, 166
onStart() event, 30
onStop() event, 31
onTouchEvent() method, 130
OpenHttpConnection() method, 189
Overlay class, 129–130

P

Package Explorer, 20, 231
package installation, 9–11
PackageManager class, 206
PendingIntent object, 156–158
permissions

INTERNET, 190
INTERNET permission, 120
SMS messaging, 156

perspectives (Eclipse), 236
phone

asynchronous calls, 200–201
calling emulator, 255–256
Location Tracker, building, 172–176

preference fragments, 99–104
preferences fi le, loading, 103–104

PreferenceActivity class, 99

Index.indd 267Index.indd 267 28/06/11 1:46 PM28/06/11 1:46 PM

268

PreferenceFragment class – user interfaces

PreferenceFragment class, 103
PreferenceFragmentExample project, 99–104
projects

BasicViews, 82–87
DialogFragmentExample, 95–99
fi les, default, 23
ListFragmentExample, 91–95
naming, 19
Networking, 188–190
PreferenceFragmentExample, 99–104

pt (points), 67
publishing applications

Android Market, 207, 217–218
developer fi le, 218–219
submission, 219–223

versioning, 206–208
putExtra() method, 158
px (pixel), 67

R

R.java, 26
R.layout.main, 27
RadioButton control, 82
RadioGroup control, 82
redistribution of applications, 215
refactoring (Eclipse), 237–238
RelativeLayout ViewGroup, 74–76
removeUpdates() method, 144
replace() method, 44
requestLocationUpdates() method, 143
res folder, 24
resetting emulator, 258
reverse geocoding, 130, 132–134
rows, TableLayout ViewGroup, 72–74

S

Samsung Galaxy Tab, 6
screen size, device emulation and, 250
ScrollView ViewGroup, 79–80
SD cards, 11

emulation, 249–250
security, SMS messaging, 170–171
sendBroadcast() method, 162
sending e-mail, 186–187
sendTextMessage() method, 156
setBuiltInZoomControls() method, 122
setCheckable() method, 146
setChecked() method, 146
setContentView() method, 27
setListAdapter() method, 95

setOnCheckedChangeListener()
method, 87

setOnClickListener() method, 89–90
setSatellite() method, 122–123
setTraffic() method, 122–123
setType() method, 187
setZoom() method, 126
show() method, 99
ShowMap fragment, 118
showmap.xml fi le, 114
signing applications, 208–212
sizes, units of measurement, 67
SMS messaging

BroadcastReceiver, 159–162
BroadcastReceivers, 158
emulator, 155
Google Maps and, 177–183
intercepting incoming, 160–162
permissions, 156
receiving, 159–162
security, 170–171
sending, 152–156

Messaging application, 158–159
status monitoring, 156–158
to emulator, 253–254

SMS_RECEIVED_ACTION intent, 175–176
SmsManager class, 156
SMSReceiver class, 175–176
snapshots (AVD Manager), 245
sp (scale-independent pixel), 67
src folder, 24
startActivity() method, 169
string constants, storage, 25
submitting apps to Android Market, 219–223

T

TableLayout ViewGroup, 72–74
tablet, Location Tracker, building, 176–183
Telnet, 255–256
testing, Location Tracker, 183–185
text fi les, downloading, 193–195
TextView, 81, 165
Toast class, 51
ToggleButton control, 82
transferring fi les to/from emulator, 256–258
Trojan Android application, 170

U

units of measurement, 67
user interfaces, 24

Views, 65–80

Index.indd 268Index.indd 268 28/06/11 1:46 PM28/06/11 1:46 PM

269

versioning applications – zoomOut() method

V

versioning applications, 206–208
ViewGroups

AbsoluteLayout, 70–72
attributes, 66–67
FrameLayout, 76–79
LinearLayout, 66–70
RelativeLayout, 74–76
ScrollView, 79–80
supported, 65–66
TableLayout, 72–74

Views, 65
attributes, 66–67

views
events, 88–90
map views, 122–124
ScrollView ViewGroup, 79–80
TextView, 81
width, 67

W

Web servers, APK fi le deployment,
27, 215–217

Web services
consuming, 195–200
GET method, 195–200

Wi-Fi triangulation, 135
windows, activities, 24
WordDefinition() method,

198–199
workspaces (Eclipse), 229–231

projects in others, 232–233

X–Y–Z

zoom, Google Maps, 120–122
zoomIn() method, 122
zoomOut() method, 122

Index.indd 269Index.indd 269 28/06/11 1:46 PM28/06/11 1:46 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Try Safari Books Online FREE
for 15 days + 15% off
for up to 12 Months*

START YOUR FREE TRIAL TODAY!
Visit www.safaribooksonline.com/wrox3 to get started.

With Safari Books Online, you can experience
searchable, unlimited access to thousands of
technology, digital media and professional
development books and videos from dozens of
leading publishers. With one low monthly or yearly
subscription price, you get:

• Access to hundreds of expert-led instructional
videos on today’s hottest topics.

• Sample code to help accelerate a wide variety
of software projects

• Robust organizing features including favorites,
highlights, tags, notes, mash-ups and more

• Mobile access using any device with a browser

• Rough Cuts pre-published manuscripts

Read this book for free online—along with thousands of others—
with this 15-day trial offer.

*Available to new subscribers only. Discount applies to the
Safari Library and is valid for fi rst 12 consecutive monthly
billing cycles. Safari Library is not available in all countries.

badvert.indd 270badvert.indd 270 28/06/11 1:49 PM28/06/11 1:49 PM

	Beginning: Android™ Tablet Application Development
	Contents
	Introduction
	Part I: Quick Tour of Android 3 for Tablets
	Chapter 1: Getting Started With Android Programming for Tablets
	What Is Android?
	Android Versions
	Android Devices in the Market
	The Android Market

	Obtaining the Required Tools
	Java JDK
	Eclipse
	Downloading the Android SDK
	Installing the Packages
	Creating Android Virtual Devices (AVDs)
	Android Development Tools (ADT)

	Creating Your First Android Application
	Anatomy of an Android Application
	Summary

	Chapter 2: Components of an Android Tablet Application
	Activities
	Fragments
	Adding Fragments Dynamically
	Understanding the Life Cycle of a Fragment
	Interactions between Fragments

	Utilizing the Action Bar
	Adding Action Items to the Action Bar
	Customizing the Action Items and Application Icon

	Summary

	Chapter 3: Android User Interface
	Views and ViewGroups
	LinearLayout
	AbsoluteLayout
	TableLayout
	RelativeLayout
	FrameLayout
	ScrollView

	Basic Views
	TextView View
	Common Views

	Fragments
	ListFragment
	DialogFragment
	PreferenceFragment

	Summary

	Part II: Projects
	Chapter 4: Creating Location- Based Services Applications
	Displaying Maps
	Creating the Project
	Obtaining the Maps API Key
	Displaying the Map
	Displaying the Zoom Control
	Changing Views
	Navigating to a Specific Location
	Adding Markers
	Getting the Location That Was Touched
	Geocoding and Reverse Geocoding

	Getting Location Data
	Summary

	Chapter 5: SMS Messaging and Networking
	SMS Messaging
	Sending SMS Messages Programmatically
	Getting Feedback after Sending the Message
	Sending SMS Messages Using Intent
	Receiving SMS Messages
	Caveats and Warnings
	Project: Building the Location Tracker Applications

	Sending E- Mail
	Networking
	Downloading Binary Data
	Downloading Text Files
	Accessing Web Services Using the GET Method
	Performing Asynchronous Calls

	Summary

	Chapter 6: Publishing Android Applications
	Preparing for Publishing
	Versioning
	Digitally Signing Your Android Applications

	Deploying APK Files
	Using the adb.exe Tool
	Using a Web Server
	Publishing on the Android Market

	Summary

	Part III: Appendices
	Appendix A: Using Eclipse for Android Development
	Getting Around in Eclipse
	Workspaces
	Package Explorer
	Using Projects from Other Workspaces
	Editors
	Perspectives
	Auto Import of Namespaces
	Code Completion
	Refactoring

	Debugging
	Setting Breakpoints
	Exceptions

	Appendix B: Using the Android Emulator
	Uses of the Android Emulator
	Creating Snapshots
	Installing Custom AVDs
	Emulating Real Devices
	SD Card Emulation
	Emulating Devices with Different Screen Sizes
	Emulating Physical Capabilities
	Sending SMS Messages to the Emulator
	Making Phone Calls
	Transferring Files into and out of the Emulator
	Resetting the Emulator

	Appendix C: Answers to Exercises

	Index

. 8

g
Android Tablet
plcation Devcopmnt

