A Developer's%ﬁuide
|

|
1
il

Frank Ableson
Charlie Collins

Robi Sen

FOREWORD BY Dick WAL

1l
& £
1‘:|I|||| 'pé."f.c S
| " T
| | ETTTILY S

Unlocking Android

Download at Boykma.Com

Download at Boykma.Com

Unlocking Androvd

A DEVELOPER’S GUIDE

W. FRANK ABLESON
CHARLIE COLLINS
ROBI SEN

MANNING

Greenwich
(74° w. long.)

Download at Boykma.Com

To Nikki
—WEFA.

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department

Manning Publications Co.

Sound View Court 3B fax: (609) 877-8256
Greenwich, CT 06830 email: orders@manning.com

©2009 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper thatisatleast 15% recycled and processed without the use of elemental chlorine.

Development Editor Tom Cirtin

Manning Publications Co. Copyeditor: Linda Recktenwald
Sound View Court 3B Typesetter: Gordan Salinovic
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 978-1-933988-67-2
Printed in the United States of America

12345678910 - MAL- 14 13 12 11 10 09

Download at Boykma.Com

http://www.manning.com

brief contents

PART 1 WHAT IS ANDROID? — THE BIG PICTURE .cccteuteeeeencenccescesconses 1

1 = Targeting Android 3

2 wm Development environment 32

PART 2 EXERCISING THE ANDROID SDK ...cuuiieiieieiereerereecercerencescenes 57

3 wm Userinterfaces 59

m Intents and services 97

m Storing and retrieving data 126

m Networking and web services 167
Telephony 195

m Notifications and alarms 211

© 0 T S O A
[]

m Graphics and animation 226
10 = Multimedia 251

11 = Location, location, location 266

PART 3 ANDROID APPLICATIONS ¢uveeeseescescesscesocscessessoessescesssnssasssses 293

12 = Putting it all together—the Field Service Application 295
13 w Hacking Android 341

v

Download at Boykma.Com

Download at Boykma.Com

Sforeword xiii

preface xv

acknowledgments — xvii

about this book xx

about the cover illustration — xxiv

Targeting Android 3
1.1 Introducing Android 4

The Android platform 4 = In the market for an Android? 6
Licensing Android 10

1.2 Stacking up Android 11
Probing Android’s foundation 12

1.3 Booting Android development 14

Android’s good Intent-ions 14 = Activating Android 18
AndroidManifest.xml 25 = Mapping applications to processes 26

1.4 An Android application 27
1.5 Summary 30

Download at Boykma.Com

viii CONTENTS

Development environment 32

2.1 The Android SDK 33

The application programming interface 33 = Core Android packages 33
Optional packages 34

2.2 Fitting the pieces together 35
Java Perspective 36 = DDMS Perspective 38 = Command-Line tools 40

2.3 Building an Android application in Eclipse 42

Android Project Wizard 43 = Android sample application code 43
Building the application 48

2.4 The Android Emulator 50

Skins 50 = Network speed 51 = Emulator profiles 53
2.5 Debugging 55
2.6 Summary 56

User interfaces 59
3.1 Creating the Activity 60
Creating an Activity class 62 = Exploring Activity lifecycle 67
3.2 Working with views 70

LExploring common views 71 = Using a ListView 73 = Multitasking
with Handler and Message 77 = Creating custom views 78
Understanding layout 80 = Handling focus 82 = Grasping events 83

3.3 Using resources 84

Supported resource types 85 = Referencing resources in_Java 85
Defining views and layouts through XML resources 87
Externalizing values 89 = Providing animations 92

3.4 Understanding the AndroidManifest file 93
3.5 Summary 95

Intents and services 97
4.1 Working with Intent classes 98

Defining intents 99 = Intent resolution 102 = Malching a custom
URI 105 = Using Android-provided activities 109

4.2 Listening in with broadcast receivers 110

Overloading the Intent concept 110 = Creating a recetver 112

Download at Boykma.Com

CONTENTS

4.3 Building a Service 113

Dual-purpose nature of a Service 113 = Creating a background
task Service 114

4.4 Performing Inter-Process Communication 117

Andproid Interface Definition Language 117 = Exposing a
remote interface 120 = Binding to a Service 120 = Starting
versus binding 122 = Service lifecycle 123 = Binder and
Parcelable 124

4.5 Summary 125

Storing and retrieving data 126

5.1

Using preferences 127

Working with SharedPreferences 127 = Preference access
permissions 130

5.2 Using the filesystem 134

5.3

5.4

5.5

Creating files 134 = Accessing files 135 = Files as raw
resources 136 = XML file resources 137 = External storage via
an SD card 139

Persisting data to a database 143
Building and accessing a database 143 = Using the sqlite3 tool 148
Working with ContentProvider classes 149

Understanding URI representations and manipulating records 151
Creating a ContentProvider 158

Summary 165

Networking and web services 167

6.1

6.2
6.3
6.4

6.5

6.6

An overview of networking 169

Networking basics 169 = Clients and servers 171
Checking the network status 172
Communicating with a server socket 173
Working with HTTP 176

Simple HT'TP and java.net 177 = Robust HT'TP with HitpClient 179
Creating an HT'TP and HTTPS helper 181

Web services 186

POX—DPutting it together with HT'TP and XML 187 = REST 189
To SOAP or not to SOAP, that is the question 193

Summary 194

Download at Boykma.Com

ix

CONTENTS

Telephony 195
7.1 Telephony background and terms 197
7.2 Accessing telephony information 198

Retrieving telephony properties 198 = Obtaining phone state
information 200

7.3 Interacting with the phone 202

Using intents to make calls 202 = Helpful phone number—related
utilities 204 = Intercepting calls 205

7.4 Working with messaging: SMS 206
Sending SMS messages 207 = Receiving SMS messages 209
7.5 Summary 210

Notifications and alarms 211
8.1 Introducing Toast 212
8.2 Introducing notifications 215
8.3 Alarms 219
Alarm example 219

8.4 Summary 225

Graphics and animation 226
9.1 Drawing graphics in Android 226
Drawing with XML 228
9.2 Animations 231

Programmatically creating an animation 233 = Introducing
OpenGL for embedded systems 237

9.3 Summary 250

Multimedia 251

10.1 Introduction to multimedia and OpenCORE 252
10.2 Playing audio 253
10.3 Playing video 254
10.4 Capturing media 257

Understanding the camera 257 = Capturing audio 262
10.5 Summary 265

Download at Boykma.Com

CONTENTS

Location, location, location 266

11.1 Simulating your location within the emulator 268

Sending in your coordinates with the DDMS tool 268 = The GPS
Exchange Format 270 = The Google Earth Keyhole Markup
Language 273

11.2 Using LocationManager and LocationProvider 274

Accessing location data with LocationManager 275 = Using a
LocationProvider 277 = Receiving location updates with
LocationListener 279

11.3 Working with maps 281
Extending MapActivity 282 = Using a MapView 283 = Placing
data on a map with an Overlay 285
11.4 Converting places and addresses with Geocoder 289
11.5 Summary 291

Putting it all together—the Field Service Application 295
12.1 Field Service Application requirements 296

Basic requirements 297 = Data model 298 = Application
architecture and integration 299

12.2 Android application tour 300

Application flow 300 = Code road map 302
AndroidManifest.xml 303

12.3 Android code 304

Splash Activity 304 = FieldService Activity, part 1 306 = FieldService
Activity, part 2 308 = Settings 309 = Data structures 311

12.4 Digging deeper into the code 319
Refreshjobs 319 = ManageJobs 323 = ShowJob 325 = Closefob 329

12.5 Server code 336

Dispatcher user interface 336 = Database 337 = PHP dispatcher
code 337 = PHP mobile integration code 338

12.6 Summary 339

Download at Boykma.Com

CONTENTS

Hacking Android 341

13.1

13.2

13.3

13.4

13.5

appendix A
appendix B

The Android/Linux:;junction 342

Tool chain 342 = Building an application 343 = Installing and
running the application 344 = Build script 346

A better way 347

The static flag, revisited 347 = Linking 349 = Exit, not return 351
Startup code 352

What time is it? 355

Daytime Server application 355 = daytime.c 355 = The SQLite
database 358 = Building and running Daytime Server 360

Daytime Client 362
Activity 362 = Socket client 363 = Testing Daytime Client 364
Summary 365

Installing the Android SDK 367

Signing and installing applications on an Android device 375
index 383

Download at Boykma.Com

The mobile phone and portable device handset are currently undergoing a transfor-
mation caused by several different factors. For one, portable devices are getting more
powerful and capable of performing tasks that would have been hard to imagine a few
short years ago. Many of us carry a portable device that is capable of everything from
using the World Wide Web to watching movies to playing 3D games-and it can even
make phone calls! For another, consumers are becoming more savvy and demanding
about what they want such a device to do. A third part of the convergence is that por-
table devices now form a bigger market for software and applications developers than
larger computing platforms, and delivery of applications to those devices is often eas-
ier and more streamlined than to larger ones.

The next generation of phones already includes hardware graphics acceleration,
wireless connectivity, data access plans, GPS, hardware expansion and connectivity,
touch screens, and so on. Operating systems and applications are being written to take
advantage of these new capabilities and the delivery of these applications is undergo-
ing a quiet revolution by putting consumers in control of what their device will do,
and connecting developers and consumers with a minimum of fuss and overhead.
Consumers get the software they want, and developers get access to a potentially enor-
mous market for their products.

Underlying this transformation is a trend toward more openness. Openness in the
capabilities of the devices and how they can be harnessed, openness for the applica-
tions that can be developed and brought to market, openness in the collaboration
among handset manufacturers, network carriers and software providers. Granted,

xiii

Download at Boykma.Com

http://www.manning.com/UnlockingAndroid
http://www.manning.com/UnlockingAndroid
http://www.manning.com/ableson
http://www.manning.com/ableson

FOREWORD

there is still room for improvement, but I believe no next-generation mobile platform
embodies this spirit of openness more than Android.

Android is an operating system born of an alliance of 30 organizations from across
the mobile devices industry—hardware manufacturers, carriers, and software compa-
nies—committed to bringing a better mobile phone to market. The result is an oper-
ating system and application development environment capable of running on
multiple devices, providing a consistent and feature rich environment for developers.
The larger Android ecosystem will eventually include multiple handsets, myriad appli-
cations and components to harness or build on, and multiple distribution channels
(including the already available Android marketplace).

Writing applications for Android is in some ways akin to enterprise- or container-
based development. Instead of a view of the world where your application runs and at
some point quits, Android provides a way for your application to integrate itself into
the larger Android environment. This environment is based on Java tools and skills,
shortening the learning curve and bringing the ease and security of development in a
managed language. Android lets you run services in the background, and provides
components and data services that can share or be shared with other applications.

In short, Android is a great environment for application developers and this
book will help you take full advantage of it. The authors skillfully guide you—from
the development tools, through the architecture, basic and advanced APIs—and on
to advanced topics like native application development. Unlocking Android is a valu-
able and useful guide to developing your own applications for this new and exciting
open platform.

Dick WALL, SOFTWARE ENGINEER,
FORMER ANDROID ADVOCATE FOR GOOGLE,
AND JAVA POSSE CO-HOST

Download at Boykma.Com

The first mobile applications I had the opportunity to work with were inventory con-
trol programs used in retail and manufacturing settings. The “terminals,” as we called
them at the time, were heavy and expensive. They had big antennas, lots of clunky
keys, grayscale LCD displays, and they looked like they came straight from the set of a
science fiction movie.

From that austere beginning, my mobile horizons expanded when the Palm
Pilot™ became the craze in the mid to late 1990s. My first significant PalmOS™ proj-
ect was to develop an IrDA™ communications library for an application which printed
Calendars, Contacts, and Task-lists. Back then the “hip” printers had an IrDA™ port
and it was cool to “beam” your business card to someone. Ironically, I always enjoyed
designing and writing the software more than using the devices themselves.

Fast forward ten years, and I have had the privilege of working on some very chal-
lenging and engaging mobile software projects for numerous clients along the way.
Much of my career to date can be traced back to relationships stemming from my
early mobile development experiences—and what a blessing it has been for me. I just
love the question, “would it be possible to...?” And more often than not, the answer
has been “Yes!” What I particularly enjoy is helping change the way a business operates
or the way problems are solved through the application of mobile software. Mobile
technology can and will continue to change the way we live, work and play...and this
brings me to Android and this book.

In the fall of 2007 I was speaking with my friend Troy Mott, who happens to also be
an editor for Manning, the publisher of this book. Troy and I were discussing the

XV

Download at Boykma.Com

PREFACE

mobile marketplace, something we have done for years. We started kicking around
the idea of writing a book on Android. The challenge was that Android didn’t really
exist. Yet. We knew from some of the preliminary information that the platform prom-
ised to be open, capable, and popular. We felt that those ingredients could make for
an interesting and valuable topic, so we began thinking about what that book might
look like, taking it on faith that the platform would actually come to fruition.

Before long we convinced ourselves (and Manning) that this was a good idea and
the work began in early 2008. Beyond the usual challenges of putting a book together,
we had the additional obstacle that our subject matter has been in a steady, though
unpredictable, state of change over the past year. In essence we’ve written this book
two times because the SDK has been changed multiple times and Android-equipped
phones have become available, accelerating the interest and demand for the plat-
form. Every time a significant change occurred, we went back and revisited portions of
the book, sometimes rewriting entire chapters to accommodate the latest develop-
ments in the Android platform.

I say “we” because in the process of writing this book, Troy and I decided to share
the fun and brought in two experienced authors to contribute their expertise and
enthusiasm for this platform. It has been a pleasure getting to know and working with
both Charlie Collins and Robi Sen.

While I focused on the first and third parts of the book, Charlie and Robi wrote
part 2 which covers the important fundamentals of writing Android applications.
Thanks to their contributions I enjoyed the freedom to express my vision of what
Android means to the mobile space in the first part of the book and then to work on a
couple of more advanced applications at the end of the book.

We hope thatyou enjoy reading this book and that it proves to be a valuable resource
for years to come as together we contribute to the future of the Android platform.

FRrRANK ABLESON

Download at Boykma.Com

Naively, we thought this book would be completed a year ago. Boy, did we learn a
thing or two about what it takes to write a technical book! There were some tense
times during the writing of this book, particularly during the conference calls when
we were trying to decide how to navigate the numerous SDK updates and indefinite
timelines of Android releases. Thankfully those decisions were made, and made well,
by the team at Manning.

In particular we’d like to acknowledge and thank those at Manning who helped
bring this book about. First, Troy Mott, our acquisitions editor, who was there from
the beginning, from the “what if” stages, through helping push us over the goal line;
Tom Cirtin, our book editor, who provided input on structure and content; Karen
Tegtmeyer, who did all the big and little things to bring the project together; and Mar-
jan Bace, our publisher, whose influence is felt in many places in the book. Marjan
always wanted to hear what reviewers didn’t like in the book—so we could make it bet-
ter and satisfy our readers. It wasn’t easy, but together, we got it done.

Once the book was “done,” the next round of work began and special thanks need
to go to three individuals: Linda Recktenwald, our copyeditor who made our content
readable in cases where it went either “too geek” or where the geek in us tried to be
“too literary;” Elizabeth Martin, our proofreader who added the common sense to the
project as well as a terrific sense of humor and encouraging attitude; and Jesse Dailey,
our technical proofreader who jumped in and validated our technical work, balanced
out the xml indentations, and made the text more readable. Of course there were
many more folks behind the scenes at Manning who did the heavy lifting to bring this
book to print, and we are indebted to each and every one of them.

xvii

Download at Boykma.Com

ACKNOWLEDGMENTS

Thanks also to Dick Wall, who played the dual role of reviewing our work and writ-
ing the foreword. And special thanks to the other reviewers who took time out of their
busy schedules to read our manuscript at different times during its development:
Bruno Lowagie, Hannu Terdva, Maxim Yudin, Dierk Kénig, Michael Martin, Charles
Hudson, Gabor Paller, Scott Webster, Aleksey Nudelman, Horaci Macias, Andrew
Oswald, Kevin P. Galligan, Chris Gray, and Tyson S. Maxwell.

Lastly, we want to thank the thoughtful and encouraging MEAP subscribers who
provided feedback along the way; the book is better thanks to their contributions.

FRANK ABLESON

I would like to thank Charlie Collins, Robi Sen, and Troy Mott for their contributions,
collaboration, and endurance on this project! And to my wife Nikki and children,
Julia, Tristan, Natalie, Aidan and Liam—it’s done! In particular, I want to thank my
son Tristan who was a steady source of encouragement throughout this process,
enthusiastically asking how it was going and spurring me toward the finish. Lastly, I
would like to thank Barry Quiner and Michael Petrin for their consistent encourage-
ment and friendship.

CHARLIE COLLINS

To begin, I would like to thank my coauthors, Frank Ableson and Robi Sen, who
worked diligently on this project from the start, and who welcomed me into the fold.
It’s finally a book, guys; thanks, and congratulations. Additionally, I would like to reit-
erate my gratitude to everyone at Manning.

I would also like to thank the Open Handset Alliance, and the entire Android
team. Having an open, yet concise and focused, mobile platform such as Android is a
huge plus for the technological world, and for users. It’s not perfect, yet, but it’s a
long race and the approach and collaboration can’t be underestimated. Along the
same lines I would like to thank all of the other contributors to the open tools I used
to work on this project, including: Ubuntu Linux, OpenOffice, Eclipse, Subversion,
GIMP, and Java.

I also want to thank my friends and family, who once again put up with my taking
huge amounts of time away from our shared activities to work on a “tech” book. Many
of the people I care about the most will probably read this book up to about, well,
here—if they ever pick it up at all. If you are one of those people, thanks. Specifically,
my wife Erin, and my daughters Skylar and Delaney, were always supportive and even
feigned excitement at the right times to keep me going. My parents Earl and Margaret
Farmer were instrumental as always. My mountain biking/fishing/engine building
buddy Mike Beringson put up with more than his share of “Sorry, I can’t make it” phone
calls. And, my neighbors in the cul-de-sac crew also helped get me through it: the
Cheathams, the Thomspons, the Crowders, and the Haffs—thanks again to everyone.

Download at Boykma.Com

ACKNOWLEDGMENTS Xix

Rosr1 SEN

I would like to thank Troy Mott and the team—and everyone at Manning Publica-
tions—for their hard work making this book something worth reading. I would like to
thank my coauthors, Frank and Charlie, who were great to work with and very under-
standing when I was the one holding things up. I would also like to thank Jesse Dailey
for his technical edits on this book but for assistance with the OpenGL ES samples in
chapter 9.

Finally I would like to thank my family who, more of than I liked, had to do without
me while I worked on my chapters.

Download at Boykma.Com

Unlocking Android doesn’t fit nicely into the camp of “introductory text,” nor is it a
highly detailed reference manual. The text has something to offer for both the com-
plete Android novice and the experienced developer who is looking to sell his or her
application in the Android Market. This book covers important beginner topics such
as “What is Android” and installing and using the development environment. The text
then advances to practical working examples of core programming topics any devel-
oper will be happy to have at the ready on the reference shelf. The final part of the
book presents a pair of advanced application topics including a field service applica-
tion with a web-based server side. The final chapter presents an out-of- the-box Native
C application discussion and example.

The book is meant to be read from start to finish—and doing so will be of great
value, as the chapters are laid out to build upon one another. However, if you are look-
ing for a collection of practical, working samples, this title will also provide great value
to you, particularly in part 2, where major subsystems and topics are broken down with
practical examples.

Unlocking Android is written for professional programmers and hobbyists alike. Many
of the concepts can be absorbed without specific Java language knowledge, though
the most value will be found by readers with Java programming skills because Android
application programming requires them. A reader with C, C++, or C# programming
knowledge will be able to follow the examples.

Download at Boykma.Com

ABOUT THIS BOOK xxi

Prior Eclipse experience is helpful, but not required. There are a number of good
resources available on Java and Eclipse to augment the content of this book.

This book is divided into three parts. Part 1 contains introductory material about the
platform and development environment. Part 2 takes a close look at the fundamental
skills required for building Android applications. Part 3 presents a larger scope appli-
cation and a Native C Android application.

Part 1 introduces the Android platform including the architecture and setting up the
development environment.

Chapter 1 delves into the background and positioning of the Android platform,
including comparisons to other popular platforms such as BlackBerry, iPhone, and
Windows Mobile. After an introduction to the platform, the balance of the first chap-
ter introduces the high-level architecture of Android applications and the operating
system environment.

Chapter 2 takes you on a step-by-step development exercise teaching you the ropes
of using the Android development environment, including the key tools and concepts
for building an application. If you have never used Eclipse or have never written an
Android application, this chapter will prepare you for the next part of the book.

Part 2 includes an extensive survey of key programming topics in the Android envi-
ronment.

Chapter 3 covers the fundamental Android UI components, including View and
Layout. We also review the Activity in further detail. These are the basic building
blocks of screens and applications on the Android platform. Along the way we also
touch on other basic concepts such as handling external resources, dealing with
events, and the lifecycle of an Android application.

Chapter 4 expands on the concepts we learned in chapter 3 and we delve into the
Android Intent to demonstrate interaction between screens, activities, and entire
applications. Also we introduce and utilize the Service, which brings background
processes into the fold.

Chapter 5 incorporates methods and strategies for storing and retrieving data
locally. The chapter examines use of the filesystem, databases, the SD card, and
Android specific entities such as the SharedPreferences and ContentProvider
classes. At this point we begin combining fundamental concepts with more real-world
details, such as handling application state, using a database for persistent storage, and
working with SQL.

Chapter 6 deals with storing and retrieving data over the network. Here we include
a networking primer before delving into using raw networking concepts such as sock-
ets on Android. From there we progress to using HTTP, and even exploring web ser-
vices (such as REST and SOAP).

Download at Boykma.Com

xxii

ABOUT THIS BOOK

Chapter 7 covers telephony on the Android platform. We touch on basics such as
originating and receiving phone calls, as well as more involved topics such as working
with SMS. Along the way we also cover telephony properties and helper classes.

Chapter 8 looks at how to work with Notifications and Alarms. In this chapter we
look at how to notify users of various events such as receiving a SMS message as well as
how to manage and set alarms.

Chapter 9 deals with the basics of Androids Graphics API as well as more advanced
concepts such as working with the OpenGL ES library for creating sophisticated 2D
and 3D graphics. We will also touch upon animation.

Chapter 10 looks at Androids support for multimedia and we will cover both play-
ing multimedia as well as using the camera and microphone to record our own multi-
media files.

Chapter 11 introduces Location-based services as we look at an example that com-
bines many of the concepts from the earlier parts of the book in a mapping applica-
tion. Here we learn about using the mapping APIs on Android, including different
location providers and properties that are available, how to build and manipulate map
related screens, and how to work with location related concepts within the emulator.

Part 3 contains two chapters, both of which build upon knowledge from earlier in the
text with a focus on bringing a larger application to fruition.

Chapter 12 demonstrates an end-to-end Field Service Application. The application
includes server communications, persistent storage, multiple Activity navigation,
menus, and signature capture.

Chapter 13 explores the world of native C language applications. The Android SDK
is limited to the Java language although native applications may be written for
Android. This chapter walks you through examples of building C language applica-
tions for Android including the use of built-in libraries and TCP socket communica-
tions as a Java application connects to our C application.

The appendices contain additional information which didn’t fit with the flow of the
main text. Appendix A is a step-by-step guide to installing the development environ-
ment. This appendix, along with chapter 2, provides all the information needed to
build an Android application. Appendix B demonstrates how to create an applica-
tion for the Android Market—an important topic for anyone looking to sell an appli-
cation commercially.

All source code in the book is in a fixed-width font like this, which sets it off from
the surrounding text. For most listings, the code is annotated to point out the key con-
cepts, and numbered bullets are sometimes used in the text to provide additional
information about the code. We have tried to format the code so that it fits within the
available page space in the book by adding line breaks and using indentation care-
fully. Sometimes, however, very long lines will include line-continuation markers.

Download at Boykma.Com

ABOUT THIS BOOK xxiii

Source code for all the working examples is available from www.manning.com/

UnlockingAndroid or http://www.manning.com/ableson. A readme.txt file is pro-

vided in the root folder and also in each chapter folder; the files provide details on
how to install and run the code. Code examples appear throughout this book. Longer
listings will appear under clear listing headers while shorter listings will appear
between lines of text. All code is set in a special font to clearly differentiate it.

Developing applications for Android may be done from the Windows XP/Vista envi-
ronment, a Mac OS X (Intel only) environment or a Linux environment. Appendix A
includes a detailed description of setting up the Eclipse environment along with the
Android Developer Tools plug-in for Eclipse.

Purchase of Unlocking Android includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the authors and from other users. To access the forum
and subscribe to it, point your web browser to www.manning.com/UnlockingAndroid
or www.manning.com/ableson. This page provides information on how to get on the
forum once you’re registered, what kind of help is available, and the rules of conduct

on the forum.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the authors can take
place. It’s not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the AO remains voluntary (and unpaid). We suggest
you try asking the authors some challenging questions lest their interest stray!

The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

Download at Boykma.Com

http://www.manning.com/ableson
www.manning.com/UnlockingAndroid
www.manning.com/UnlockingAndroid
http://www.manning.com/UnlockingAndroid
www.manning.com/ableson

The illustration on the cover of Unlocking Android is taken from a French book of dress
customs, Encyclopedie des Voyages by J. G. St. Saveur, published in 1796. Travel for plea-
sure was a relatively new phenomenon at the time and illustrated guides such as this
one were popular, introducing both the tourist as well as the armchair traveler to the
inhabitants of other regions of the world, as well as to the regional costumes and uni-
forms of France.

The diversity of the drawings in the Encyclopedie des Voyages speaks vividly of the
uniqueness and individuality of the world’s countries and regions just 200 years ago.
This was a time when the dress codes of two regions separated by a few dozen miles
identified people uniquely as belonging to one or the other, and when members of a
social class or a trade or a tribe could be easily distinguished by what they were wear-
ing. This was also a time when people were fascinated by foreign lands and faraway
places, even though they could not travel to these exotic destinations themselves.

Dress codes have changed since then and the diversity by region and tribe, so rich
at the time, has faded away. It is now often hard to tell the inhabitant of one continent
from another. Perhaps, trying to view it optimistically, we have traded a world of cul-
tural and visual diversity for a more varied personal life. Or a more varied and interest-
ing intellectual and technical life.

We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on native and tribal costumes from two centu-
ries ago brought back to life by the pictures from this travel guide.

XXiv

Download at Boykma.Com

Part 1

What 1s Android?
—The Big Picture

Android promises to be a market-moving technology platform—not just
because of the functionality available in the platform but because of how the
platform has come to market. Part 1 of this book brings you into the picture as a
developer of the open source Android platform.

We begin with a look at the Android platform and the impact it has on each
of the major “stakeholders” in the mobile marketplace (chapter 1). We then
bring you on board to developing applications for Android with a hands-on tour
of the Android development environment (chapter 2).

Download at Boykma.Com

Download at Boykma.Com

You’ve heard about Android. You’ve read about Android. Now it is time to begin
Unlocking Android.

Android is the software platform from Google and the Open Handset Alliance
that has the potential to revolutionize the global cell phone market. This chapter
introduces Android—what it is, and importantly, what it is not. After reading this
chapter you will have an understanding of how Android is constructed, how it com-
pares with other offerings in the market and its foundational technologies, plus
you’ll get a preview of Android application architecture. The chapter concludes
with a simple Android application to get things started quickly.

This introductory chapter answers basic questions about what Android is and
where it fits. While there are code examples in this chapter, they are not very in-
depth—just enough to get a taste for Android application development and to con-
vey the key concepts introduced. Aside from some context-setting discussion in the
introductory chapter, this book is about understanding Android’s capabilities and

Download at Boykma.Com

http://www.Handango.com
http://www.Handango.com
http://www.Handango.com

CHAPTER 1 Targeting Android

will hopefully inspire you to join the effort to unlock the latent potential in the cell
phone of the future.

Android is the first open source mobile application platform that has the potential to
make significant inroads in many markets. When examining Android there are a
number of technical and marketrelated dimensions to consider. This first section
introduces the platform and provides context to help you better understand Android
and where it fits in the global cell phone scene.

Android is the product of primarily Google, but more appropriately the Open
Handset Alliance. Open Handset Alliance is an alliance of approximately 30 organiza-
tions committed to bringing a “better” and “open” mobile phone to market. A quote
taken from its website says it best: “Android was built from the ground up with the
explicit goal to be the first open, complete, and free platform created specifically for
mobile devices.” As discussed in this section, open is good, complete is good; “free”
may turn out to be an ambitious goal. There are many examples of “free” in the com-
puting market that are free from licensing, but there is a cost of ownership when tak-
ing support and hardware costs into account. And of course, “free” cell phones come
tethered to two-year contracts, plus tax. No matter the way some of the details play
out, the introduction of Android is a market-moving event, and Android is likely to
prove an important player in the mobile software landscape.

With this background of who is behind Android and the basic ambition of the
Open Handset Alliance, it is time to understand the platform itself and how it fits in
the mobile marketplace.

Android is a software environment built for mobile devices. It is not a hardware plat-
form. Android includes a Linux kernel-based OS, a rich Ul, end-user applications,
code libraries, application frameworks, multimedia support, and much more. And,
yes, even telephone functionality is included! While components of the underlying OS
are written in C or C++, user applications are built for Android in Java. Even the built-
in applications are written in Java. With the exception of some Linux exploratory
exercises in chapter 13, all of the code examples in this book are written in Java using
the Android SDK.

One feature of the Android platform is that there is no difference between the
built-in applications and applications created with the SDK. This means that powerful
applications can be written to tap into the resources available on the device. Figure 1.1
demonstrates the relationship between Android and the hardware it runs on. The
most notable feature of Android may be that it is an open source platform; missing
elements can and will be provided by the global developer community. Android’s
Linux kernel-based OS does not come with a sophisticated shell environment, but
because the platform is open, shells can be written and installed on a device. Likewise,

Download at Boykma.Com

http://www.Handango.com
http://www.manning.com/catalog/java
http://www.manning.com/catalog/java
http://www.manning.com/catalog/java

Introducing Android

multimedia codecs can be supplied by third-party
developers and do not need to rely on Google or
anyone else to provide new functionality. That is
the power of an open source platform brought to
the mobile market.

The mobile market is a rapidly changing land-
scape with many players with diverging goals.
Consider the often-at-odds relationship among
mobile operators, mobile device manufacturers,
and software vendors. Mobile operators want to
lock down their networks, controlling and meter-
ing traffic. Device manufacturers want to differen-
tiate themselves with features, reliability, and
price points. Software vendors want unfettered
access to the metal to deliver cutting-edge appli-
cations. Layer onto that a demanding user base,
both consumer and corporate, that has become
addicted to the “free phone” and operators who
reward churn but not customer loyalty. The
mobile market becomes not only a confusing
array of choices but also a dangerous fiscal exer-
cise for the participants, such as the cell phone

Android Software Environment

Custom & built-in
applications
written in Java

Dalvik virtual machine

Linux kernel

[+] 5] [¢]
[] [2]
[[} [+]

Figure 1.1 Android is software only.
Leveraging its Linux kernel to interface
with the hardware, you can expect
Android to run on many different devices
from multiple cell phone manufacturers.
Applications are written in Java.

retailer who sees the underbelly of the industry and just wants to stay alive in an end-

less sea of change. What users come to expect on a mobile phone has evolved rapidly.
Figure 1.2 provides a glimpse of the way we view mobile technology and how it has

matured in a few short years.

Throughout the book, wherever code must be tested or exercised on a device, a soft-
ware-based emulator is employed. See chapter 2 for information on how to set up

and use the Android Emulator.

The term platform refers to Android itself—the software—including all of the binaries,
code libraries, and tool chains. This book is focused on the Android platform. The An-
droid emulators available in the SDK are simply one of many components of the An-

droid platform.

With all of that as a backdrop, creating a successful mobile platform is clearly a non-
trivial task involving numerous players. Android is an ambitious undertaking, even for
Google, a company of seemingly boundless resources and moxie. If anyone has the
clout to move the mobile market, it is Google and its entrant into the mobile market-

place, Android.

Download at Boykma.Com

CHAPTER 1 Targeting Android

Pager Phone

Phone Organizer

Organizer I:> Laptop

Laptop Limited internet access
No internet access Portable music player
Portable music player

The maturing mobile experience

Figure 1.2 The mobile
worker can be pleased with
the reduction in the number of
devices that need to be toted.
Smartphone Mobile device functionality
Laptop R
Laptop optional <:|) has converged at a very rapid
Modest internet access pace. The laptop computer is
MP3 support becoming an optional piece
of travel equipment.

Phone

The next section begins and ends the “why and where of Android” to provide some
context and set the perspective for Android’s introduction to the marketplace. After
that, it’s on to exploring and exploiting the platform itself!

Android promises to have something for everyone. Android looks to support a variety
of hardware devices, not just high-end ones typically associated with expensive “smart-
phones.” Of course, Android will run better on a more powerful device, particularly
considering it is sporting a comprehensive set of computing features. The real ques-
tion is how well Android can scale up and down to a variety of markets and gain mar-
ket and mind share. This section provides conjecture on Android from the
perspective of a few existing players in the marketplace. When talking about the cellu-
lar market, the place to start is at the top, with the carriers, or as they are sometimes
referred to, mobile operators.

Mobile operators are in the business, first and foremost, of selling subscriptions to
their services. Shareholders want a return on their investment, and it is hard to imag-
ine an industry where there is a larger investment than in a network that spans such
broad geographic territory. To the mobile operator, cell phones are—at the same
time—a conduit for services, a drug to entice subscribers, and an annoyance to sup-
port and lock down.

The optimistic view of the mobile operator’s response to Android is that it is
embraced with open arms as a platform to drive new data services across the excess
capacity operators have built into their networks. Data services represent high pre-
mium services and high-margin revenues for the operator. If Android can help drive
those revenues for the mobile operator, all the better.

Download at Boykma.Com

Introducing Android 7

The pessimistic view of the mobile operator’s response to Android is that the oper-
ator feels threatened by Google and the potential of “free wireless,” driven by advertis-
ing revenues and an upheaval of the market. Another challenge with mobile
operators is that they want the final say on what services are enabled across their net-
work. Historically, one of the complaints of handset manufacturers is that their
devices are handicapped and not exercising all of the features designed into them
because of the mobile operator’s lack of capability or lack of willingness to support
those features. An encouraging sign is that there are mobile operators involved in the
Open Handset Alliance.

Enough conjecture; let’s move on to a comparison of Android and existing cell
phones on the market today.

The overwhelming majority of cell phones on the market are the consumer flip phones
and feature phones. These are the phones consumers get when they walk into the
retailer and ask what can be had for “free”; these are the “I just want a phone” custom-
ers. Their primary interest is a phone for voice communications and perhaps an
address book. They might even want a camera. Many of these phones have additional
capabilities such as mobile web browsing, but because of a relatively poor user experi-
ence, these features are not employed heav-
ily. The one exception is text messaging,
which is a dominant application no matter
the classification of device. Another increas-
ingly in-demand category is location-based @ .l 3 12394M
services, or as it is typically known, GPS. AAEnIGSGonEIE asatc

Android’s challenge is to scale down to
this market. Some of the bells and whistles in GO{)gle FE ol
Android can be left out to fit into lower-end

Web Images Maps News Shepping Gmail

. . . Web video Images Results 1 - 10 of athi-o-.&El;.-
hardware. One of the big functionality gaps
. . Android Platform Sponsored Link
on these lower-end phones is the web experi- code google.com/androld Learn about the platform and
et an early ook at the Android SDK
ence. Part of this is due to screen size, but s
equally challenging is the browser technol- e 2 ol okt documertation and ks 1o

. . code google.com/androld/ - 12k - Cached - Similar page
ogy itself, which often struggles to match the v '
What Is Android? - Android

rich web eXperience of the desktop com- Android is a software stack for mabile devices that incl

an operating system, middieware and key applications.

puter. Android features the marketleading cadegoogiecomsanrold whal s androld Nl - 17k
WebKit browser engine, which brings desk- '

top compatible browsing to the mobile i NSNS TONe
arena. Figure 1.3 demonstrates the WebKit e 'SLT;T;?::;;3_1--‘[Em1frn'ﬂ g

in action on Android. If this can be effec- MENU

tively scaled down to the feature phones, it

would go a long way toward penetrating this Figure1.3 Android’s built-in browser technol-
end of the market. ogy is based on Webkit’s browser engine.

Download at Boykma.Com

CHAPTER 1 Targeting Android

The WebKit (http://www.webkit.org) browser engine is an open source
project that powers the browser found in Macs (Safari) and is the engine
behind Mobile Safari, the browser found on the iPhone. It is not a stretch
to say that the browser experience is what makes the iPhone popular, so
its inclusion in Android is a strong plus for Android’s architecture.

Software at this end of the market generally falls into one of two camps:

= Qualcomm’s BREW environment—BREW stands for Binary Runtime Environment
for Wireless. For a high-volume example of BREW technology, consider Verizon’s
Get It Now—capable devices, which run on this platform. The challenge to the
software developer desiring to gain access to this market is that the bar to get an
application on this platform is very high because everything is managed by the
mobile operator, with expensive testing and revenue-sharing fee structures. The
upside to this platform is that the mobile operator collects the money and dis-
burses it to the developer after the sale, and often these sales are recurring
monthly. Just about everything else is a challenge to the software developer, how-
ever. Android’s open application environment is more accessible than BREW.

» J2ME, or Java Micro Edition, is a very popular platform for this class of device.
The barrier to entry is much lower for software developers. J2ME developers will
find a “same but different” environment in Android. Android is not strictly a
J2ME-compatible platform; however, the Java programming environment found
in Android is a plus for J2ME developers. Also, as Android matures, it is very
likely that J2ME support will be added in some fashion.

Gaming, a better browser, and anything to do with texting or social applications pres-
ent fertile territory for Android at this end of the market.

While the masses carry the feature phones described in this section, Android’s
capabilities will put Android-capable devices into the next market segment with the
higher-end devices, as discussed next.

The market leaders in the smartphone race are Windows Mobile/SmartPhone and
BlackBerry, with Symbian (huge in non-U.S. markets), iPhone, and Palm rounding out
the market. While we could focus on market share and pros versus cons of each of the
smartphone platforms, one of the major concerns of this market is a platform’s ability
to synchronize data and access Enterprise Information Systems for corporate users.
Device-management tools are also an important factor in the Enterprise market. The
browser experience is better than with the lower-end phones, mainly because of larger
displays and more intuitive input methods, such as a touch screen or a jog dial.
Android’s opportunity in this market is that it promises to deliver more perfor-
mance on the same hardware and at a lower software acquisition cost. The challenge
Android faces is the same challenge faced by Palm—scaling the Enterprise walls.
BlackBerry is dominant because of its intuitive email capabilities, and the Microsoft
platforms are compelling because of tight integration to the desktop experience and
overall familiarity for Windows users. Finally, the iPhone has enjoyed unprecedented

Download at Boykma.Com

http://www.webkit.org

Introducing Android 9

success as an intuitive yet capable consumer device with a tremendous wealth of avail-
able software applications.

The next section poses an interesting question: can Android, the open source
mobile platform, succeed as an open source project?

Perhaps the biggest challenge of all is Android’s commitment to open source. Coming
from the lineage of Google, Android will likely always be an open source project, but
in order to succeed in the mobile market, it must sell millions of units. Android is not
the first open source phone, but it is the first from a player with the market-moving
weight of Google leading the charge.

Open source is a double-edged sword. On one hand, the power of many talented
people and companies working around the globe and around the clock to push the ball
up the hill and deliver desirable features is a force to be reckoned with, particularly in
comparison with a traditional, commercial approach to software development. This is
a trite topic unto itself by now, because the benefits of open source development are
well documented. The other side of the open source equation is that, without a central-
ized code base that has some stability, Android could splinter and not gain the critical
mass it needs to penetrate the mobile market. Look at the Linux platform as an alter-
native to the “incumbent” Windows OS. As a kernel, Linux has enjoyed tremendous
success: it is found in many operating systems, appliances such as routers and switches,
and a host of embedded and mobile platforms such as Android. Numerous Linux dis-
tributions are available for the desktop, and ironically, the plethora of choices has held
it back as a desktop alternative to Windows. Linux is arguably the most successful open
source project; as a desktop alternative to Windows, it has become splintered and that
has hampered its market penetration from a product perspective. As an example of the
diluted Linux market, here is an abridged list of Linux distributions:

= Ubuntu

= openSUSE

= Fedora (Red Hat)

= Debian

» Mandriva (formerly Mandrake)

= PCLinuxOS

= MEPIS

= Slackware

= Gentoo

= Knoppix
The list contains a sampling of the most popular Linux desktop software distributions.
How many people do you know who use Linux as their primary desktop OS, and if so,
do they all use the same version? Open source alone is not enough; Android must stay
focused as a product and not get diluted in order to penetrate the market in a mean-
ingful way. This is the classic challenge of the intersection between commercialization

Download at Boykma.Com

10

CHAPTER 1 Targeting Android

and open source. This is Android’s challenge, among others, because Android needs
to demonstrate staying power and the ability scale from the mobile operator to the
software vendor, and even at the grass-roots level to the retailer. Becoming diluted
into many distributions is not a recipe for success for such a consumer product as a
cell phone.

The licensing model of open source projects can be sticky. Some software licenses
are more restrictive than others. Some of those restrictions pose a challenge to the
open source label. At the same time, Android licensees need to protect their invest-
ment, so licensing is an important topic for the commercialization of Android.

Android is released under two different open source licenses. The Linux kernel is
released under the GPL (GNU General Public License), as is required for anyone licens-
ing the open source OS kernel. The Android platform, excluding the kernel, is licensed
under the Apache Software License (ASL). While both licensing models are open
source—oriented, the major difference is that the Apache license is considered friend-
lier toward commercial use. Some open source purists may find fault with anything but
complete openness, source code sharing, and noncommercialization; the ASL attempts
to balance the open source goals with commercial market forces. If there is not a finan-
cial incentive to deliver Android-capable devices to the market, devices will never
appear in the meaningful volumes required to adequately launch Android.

A mobile platform is ultimately valuable only if there are applications to use and enjoy
on that platform. To that end, the topic of buying and selling applications for Android
is important and gives us an opportunity to highlight a key difference between Android
and the iPhone. The Apple AppStore contains software titles for the iPhone. However,
Apple’s somewhat draconian grip on the iPhone software market requires that all ap-
plications be sold through its venue. This results in a challenging environment for
software developers who might prefer to make their application available through mul-
tiple channels.

Contrast Apple’s approach to application distribution with the freedom an Android de-
veloper enjoys to ship applications via traditional venues such as freeware and share-
ware and commercially through various marketplaces, including a developer’s very
own website! For software publishers desiring the focus of an on-device shopping ex-
perience, Google has launched the Android Market. For software developers who al-
ready have titles for other platforms such as Windows Mobile, Palm, or BlackBerry,
traditional software markets such as Handango (http://www.Handango.com) also
support selling Android applications. This is important because consumers new to An-
droid will likely visit sites like Handango because that may be where they first pur-
chased one of their favorite applications for their prior device.

Download at Boykma.Com

http://www.Handango.com

Stacking up Android 11

The high-level, touchy-feely portion of the book has now concluded! The remainder
of this book is focused on Android application development. Any technical discussion
of a software environment must include a review of the layers that compose the envi-
ronment, sometimes referred to as a stack because of the layer-upon-layer construc-
tion. The next section begins a high-level breakdown of the components of the
Android stack.

The Android stack includes an impressive array of features for mobile applications.
In fact, looking at the architecture alone, without the context of Android being a
platform designed for mobile environments, it would be easy to confuse Android
with a general computing environment. All of the major components of a comput-
ing platform are here and read like a Who’s Who of the open source commu-
nity. Here is a quick run-down of some of the prominent components of the
Android stack:

» A Linux kernel provides a foundational hardware abstraction layer as well as
core services such as process, memory, and file-system management. The kernel
is where hardware-specific drivers are implemented—capabilities such as Wi-Fi
and Bluetooth are found here. The Android stack is designed to be flexible,
with many optional components which largely rely on the availability of specific
hardware on a given device. These include features like touch screens, cameras,
GPS receivers, and accelerometers.

= Prominent code libraries include:

— Browser technology from WebKit—the same open source engine powering
Mac’s Safari and the iPhone’s Mobile Safari browser
— Database support via SQLite an easy-to-use SQL database
— Advanced graphics support, including 2D, 3D, animation from SGL, and
OpenGL ES
— Audio and video media support from Packet Video’s OpenCore
— SSL capabilities from the Apache project
= An array of managers providing services for:
— Activities and views
Telephony
— Windows

— Resources
— Location-based services
= The Android runtime provides:
— Core Java packages for a nearly full-featured Java programming environ-
ment. Note that this is not a J2ME environment.
— The Dalvik virtual machine employs services of the Linux-based kernel to
provide an environment to host Android applications.

Download at Boykma.Com

12

CHAPTER 1 Targeting Android

Both core applicatiOHS and third—part}’ | User applications: Contacts, phone, browser, etc. |

apphcatlons (SUCh as the ones built in Application managers: windows, content, activities,
this book) run in the Dalvik virtual telephony, location, notifications, etc.

machine, atop the components just

| Android runtime: Java via Dalvik VM

introduced. The relationship among

. Libraries: graphics, media, database,
these 1aY€rS can be seen in ﬁgure 1.4. communications, browser engine, etc.

Android development requires |
]ava Programmlng Skllls’ without Hardware device with specific capabilities such as
question. To get the most out of GPS, camera, Bluetooth, etc.

this book, please be sure to
brush up on your Java program-
ming knowledge. There are
many Java references on the
internet, and there is no shortage of Java books on the market. An excellent
source of Java titles can be found at http://www.manning.com/ catalog/java.

Linux kernel, including device drivers |

Figure 1.4 The Android stack offers an impressive
array of technologies and capabilities.

Now that the obligatory stack diagram is shown and the layers introduced, let’s look
further at the runtime technology that underpins Android.

Android is built on a Linux kernel and an advanced, optimized virtual machine for its
Java applications. Both technologies are crucial to Android. The Linux kernel compo-
nent of the Android stack promises agility and portability to take advantage of numer-
ous hardware options for future Android-equipped phones. Android’s Java
environment is key: it makes Android very accessible to programmers because of both
the number of Java software developers and the rich environment that Java program-
ming has to offer. Mobile platforms that have relied on less-accessible programming
environments have seen stunted adoption because of a lack of applications as develop-
ers have shied away from the platform.

Why use Linux for a phone? Using a full-featured platform such as the Linux kernel
provides tremendous power and capabilities for Android. Using an open source foun-
dation unleashes the capabilities of talented individuals and companies to move the
platform forward. This is particularly important in the world of mobile devices, where
products change so rapidly. The rate of change in the mobile market makes the gen-
eral computer market look slow and plodding. And, of course, the Linux kernel is a
proven core platform. Reliability is more important than performance when it comes
to a mobile phone, because voice communication is the primary use of a phone. All
mobile phone users, whether buying for personal use or for a business, demand voice
reliability, but they still want cool data features and will purchase a device based on
those features. Linux can help meet this requirement.

Speaking to the rapid rate of phone turnover and accessories hitting the market,
another advantage of using Linux as the foundation of the Android platform stack is

Download at Boykma.Com

http://www.manning.com/catalog/java

Stacking up Android 13

that it provides a hardware abstraction layer, letting the upper levels remain
unchanged despite changes in the underlying hardware. Of course, good coding prac-
tices demand that user applications fail gracefully in the event a resource is not avail-
able, such as a camera not being present in a particular handset model. As new
accessories appear on the market, drivers can be written at the Linux level to provide
support, just as on other Linux platforms.

User applications, as well as core Android applications, are written in the Java pro-
gramming language and are compiled into byte codes. Byte codes are interpreted at
runtime by an interpreter known as a virtual machine.

The Dalvik virtual machine is an example of the needs of efficiency, the desire for a
rich programming environment, and even some intellectual property constraints col-
liding, with innovation as a result. Android’s Java environment provides a rich applica-
tion platform and is very accessible because of the popularity of the Java language
itself. Also, application performance, particularly in a low-memory setting such as is
found in a mobile phone, is paramount for the mobile market. However this is not the
only issue at hand.

Android is not a J2ME platform. Without commenting on whether this is ultimately
good or bad for Android, there are other forces at play here. There is a matter of Java
virtual machine licensing from Sun Microsystems. From a very high level, Android’s
code environment is Java. Applications are written in Java, which is compiled to Java
bytecodes and subsequently translated to a similar but different representation called
dex files. These files are logically equivalent to Java bytecodes, but they permit Android
to run its applications in its own virtual machine that is both (arguably) free from
Sun’s licensing clutches and an open platform upon which Google, and potentially
the open source community, can improve as necessary.

It is too early to tell whether there will be a big battle between the Open
Handset Alliance and Sun over the use of Java in Android. From the
mobile application developer’s perspective, Android is a Java environ-
ment; however, the runtime is not strictly a Java virtual machine. This
accounts for the incompatibilities between Android and “proper” Java
environments and libraries.

The important things to know about the Dalvik virtual machine are that Android
applications run inside it and that it relies on the Linux kernel for services such as
process, memory, and filesystem management.

After this discussion of the foundational technologies in Android, it is time to
focus on Android application development. The remainder of this chapter discusses
high-level Android application architecture and introduces a simple Android applica-
tion. If you are not comfortable or ready to begin coding, you might want to jump to
chapter 2, where we introduce the development environment step by step.

Download at Boykma.Com

14

CHAPTER 1 Targeting Android

This section jumps right into the fray of Android development to focus on an impor-
tant component of the Android platform, then expands to take a broader view of how
Android applications are constructed. An important and recurring theme of Android
development is the Intent. An Intent in Android describes what you want to do. This
may look like “I want to look up a contact record,” or “Please launch this website,” or
“Show the Order Confirmation Screen.” Intents are important because they not only
facilitate navigation in an innovative way as discussed next, but they also represent the
most important aspect of Android coding. Understand the Intent, understand Android.

Instructions for setting up the Eclipse development environment are
found in appendix A. This environment is used for all examples in this
book. Chapter 2 goes into more detail on setting up and using the devel-
opment tools.

The code examples in this chapter are primarily for illustrative pur-
poses. Classes are referenced and introduced without necessarily naming
specific Java packages. Subsequent chapters take a more rigorous
approach to introducing Android-specific packages and classes.

The next section provides foundational information about why Intents are impor-
tant, then describes how Intents work. Beyond the introduction of the Intent, the
remainder of this chapter describes the major elements of Android application devel-
opment leading up to and including the first complete application.

The power of Android’s application framework lies in the way in which it brings a
web mindset to mobile applications. This doesn’t mean the platform has a powerful
browser and is limited to clever JavaScript and serverside resources, but rather it
goes to the core of how the Android platform itself works and how the user of the
platform interacts with the mobile device. The power of the internet, should one be
so bold to reduce it to a single statement, is that everything is just a click away. Those
clicks are known to the user as Uniform Resource Locators (URLs), or alternatively,
Uniform Resource Identifiers (URIs). The use of effective URIs permits easy and
quick access to the information users need and want every day. “Send me the link”
says it all.

Beyond being an effective way to get access to data, why is this URI topic important,
and what does it have to do with Intents? The answer is a nontechnical but crucial
response: the way in which a mobile user navigates on the platform is crucial to its commercial
success. Platforms that replicate the desktop experience on a mobile device are accept-
able to only a small percentage of hard-core power users. Deep menus, multiple taps,
and clicks are generally not well received in the mobile market. The mobile application,
more than in any other market, demands intuitive ease of use. While a consumer may
purchase a device based on cool features enumerated in the marketing materials,
instruction manuals are almost never touched. The ease of use of the UI of a computing

Download at Boykma.Com

Booting Android development 15

environment is highly correlated with its market penetration. Uls are also a reflection
of the platform’s data access model, so if the navigation and data models are clean and
intuitive, the UI will follow suit. This section introduces the concept of Intents and
IntentFilters, Android’s innovative navigation and triggering mechanism. Intents
and IntentFilters bring the “click on it” paradigm to the core of mobile application
use (and development!) for the Android platform.

= An Intent is a declaration of need.

= An IntentFilter is a declaration of capability and interest in offering assis-
tance to those in need.

= An Intent is made up of a number of pieces of information describing the
desired action or service. This section examines the requested action and,
generically, the data that accompanies the requested action.

= An IntentFilter may be generic or specific with respect to which Intents it
offers to service.

The action attribute of an Intent is typically a verb, for example: VIEW, PICK, or EDIT.
A number of built-in Intent actions are defined as members of the Intent class.
Application developers can create new actions as well. To view a piece of information,
an application would employ the following Intent action:

android.content.Intent .ACTION_VIEW

The data component of an Intent is expressed in the form of a URI and can be virtu-
ally any piece of information, such as a contact record, a website location, or a refer-
ence to a media clip. Table 1.1 lists some URI examples.

Table 1.1 Intents employ URIs, and some of the commonly employed URIs in Android are listed here.

Contact lookup content://contacts/people
Map lookup/search Ge0:0,0?g=23+Route+206+Stanhope+NJ
Browser launch to a specific website http://www.google.com/

The IntentFilter defines the relationship between the Intent and the application.
IntentFilters can be specific to the data portion of the Intent, the action portion,
or both. IntentFilters also contain a field known as a category. A category helps clas-
sify the action. For example, the category named CATEGORY_LAUNCHER instructs
Android that the Activity containing this IntentFilter should be visible in the
main application launcher or home screen.

When an Intent is dispatched, the system evaluates the available Activitys, Ser-
vices, and registered BroadcastReceivers (more on these in the next section) and
dispatches the Intent to the most appropriate recipient. Figure 1.5 depicts this rela-
tionship among Intents, IntentFilters, and BroadcastReceivers.

Download at Boykma.Com

http://www.google.com/

16

CHAPTER 1 Targeting Android

For hire: Take a ride on the For hire: Find anything on
Internet (IntentFilter) the map! (IntentFilter)

/ Android application # 2 (BroadcastReceiver)

startActivity(Intent); For hire: View, Edit, Browse any Contacts (IntentFilter)

Or l——>| Android application # 3 (BroadcastReceiver)

startActivity(Intent,identifier);
Or

startService(Intent);

I

Help me: Find a Person Help me: Find an
(Intent) address on the map

(Intent) Figure 1.5 Intents are distributed to Android
applications, which register themselves by way of the
IntentFilter, typically in the AndroidManifest.xml file.

For hire: Custom action on custom data (IntentFilter)

*——— | Android application # 4 (BroadcastReceiver)

Android application # 1

IntentFilters are often defined in an application’s AndroidManifest.xml with the
<intent-filter> tag. The AndroidManfest.xml file is essentially an application
descriptor file, discussed later in this chapter.

A common task on a mobile device is the lookup of a specific contact record for
the purpose of initiating a call, sending an SMS (Short Message Service), or looking
up a snail-mail address when you are standing in line at the neighborhood pack-and-
ship store. A user may desire to view a specific piece of information, say a contact
record for user 1234. In this case, the action is ACTION_VIEW and the data is a specific
contact record identifier. This is accomplished by creating an Intent with the action
set to ACTION_VIEW and a URI that represents the specific person of interest.

Here is an example of the URI for use with the android.content.Intent.
ACTION_VIEW action:

content://contacts/people/1234

Here is an example of the URI for obtaining a list of all contacts, the more generalized
URI of

content://contacts/people

Here is a snippet of code demonstrating the PICKing of a contact record:

Intent myIntent = new Intent (Intent.ACTION PICK,Uri.parse("content://contacts/
people")) ;
startActivity (myIntent) ;

This Intent is evaluated and passed to the most appropriate handler. In this case, the
recipient would likely be a builtin Activity named com.google.android.phone.
Dialer. However, the best recipient of this Intent may be an Activity contained in the
same custom Android application (the one you build), a built-in application as in this
case, or a third-party application on the device. Applications can leverage existing

Download at Boykma.Com

Booting Android development 17

functionality in other applications by creating and dispatching an Intent requesting
existing code to handle the Intent rather than writing code from scratch. One of the
great benefits of employing Intents in this manner is thatitleads to the same Uls being
used frequently, creating familiarity for the user. This is particularly important for mobile
platforms where the user is often neither tech-savvy nor intevested in learning multiple ways to
accomplish the same task, such as looking up a contact on the phone.

The Intents we have discussed thus far are known as implicit Intents, which rely
on the IntentFilter and the Android environment to dispatch the Intent to the
appropriate recipient. There are also explicit Intents, where we can specify the exact
class we desire to handle the Intent. This is helpful when we know exactly which
Activity we want to handle the Intent and do not want to leave anything up to
chance in terms of what code is executed. To create an explicit Intent, use the over-
loaded Intent constructor, which takes a class as an argument, as shown here:

public void onClick (View v) {

try {
startActivityForResult (new Intent (v.getContext () ,RefreshJobs.class),0);
} catch (Exception e) {

}

}

These examples show how an Android application creates an Intent and asks for it to
be handled. Similarly, an Android application can be deployed with an IntentFilter,
indicating that it responds to Intents already created on the system, thereby publish-
ing new functionality for the platform. This facet alone should bring joy to indepen-
dent software vendors (ISVs) who have made a living by offering better contact
manager and to-do list management software titles for other mobile platforms.

Intent resolution, or dispatching, takes place at runtime, as opposed to when the
application is compiled, so specific Intent-handling features can be added to a
device, which may provide an upgraded or more desirable set of functionality than the
original shipping software. This runtime dispatching is also referred to as late binding.

It is not hard to imagine that an absolutely unique user experience is possible with
Android because of the variety of Activitys with specific IntentFilters installed
on any given device. It is architecturally feasible to upgrade various aspects of an An-
droid installation to provide sophisticated functionality and customization. While this
may be a desirable characteristic for the user, it can be a bit troublesome for some-
one providing tech support and having to navigate a number of components and ap-
plications to troubleshoot a problem.

Because of this potential for added complexity, this approach of ad hoc system patch-
ing to upgrade specific functionality should be entertained cautiously and with one’s
eyes wide open to the potential pitfalls associated with this approach.

Download at Boykma.Com

18

CHAPTER 1 Targeting Android

Thus far this discussion of Intents has focused on the variety of Intents that cause UI
elements to be displayed. There are also Intents that are more event driven than task-
oriented, as the earlier contact record example described. For example, the Intent
class is also used to notify applications that a text message has arrived. Intents are a
very central element to Android and will be revisited on more than one occasion.

Now that Intents have been introduced as the catalyst for navigation and event
flow on Android, let’s jump to a broader view and discuss the Android application life-
cycle and the key components that make Android tick. The Intent will come into bet-
ter focus as we further explore Android throughout this book.

This section builds on the knowledge of the Intent and IntentFilter classes intro-
duced in the previous section and explores the four primary components of Android
applications as well as their relation to the Android process model. Code snippets are
included to provide a taste of Android application development. More in-depth exam-
ples and discussion are left for later chapters.

A particular Android application may not contain all of these elements,
but it will have at least one of these elements and could in fact have all of
them.

An application may or may not have a UL If it has a UI, it will have atleast one Activity.

The easiest way to think of an Android Activity is to relate a visible screen to an
Activity, as more often than not there is a one-to-one relationship between an Activ-
ity and a UIscreen. An Android application will often contain more than one Activity.
Each Activity displays a UI and responds to system- and user-initiated events. The
Activity employs one or more Views to present the actual UI elements to the user.
The Activity class is extended by user classes, as shown in listing 1.1.

package com.msi.manning.chapterl;

import android.app.Activity; <@ Activity class import
import android.os.Bundle;

public class activityl extends Activity {
@Override

public void onCreate (Bundle icicle) f{
super.onCreate (icicle) ;
setContentView (R.layout.main) ; <€) Setup the Ul

Activity class extension
implementation

}

The Activity class @ is part of the android.app Java package, found in the Android
runtime. The Android runtime is deployed in the android.jar file. The class
activityl @ extends the class Activity. For more examples of using an Activity,
please see chapter 3. One of the primary tasks an Activity performs is the display of

Download at Boykma.Com

Booting Android development 19

UI elements, which are implemented as Views and described in XML layout files @.
Chapter 3 goes into more detail on Views and Resources.

Moving from one Activity to another is accomplished with the startActivity()
method or the startActivityForResult () method when a synchronous call/result
paradigm is desired. The argument to these methods is the Intent.

The Intent class is used in similar sounding but very different scenarios.

There are Intents used to assist in navigation from one activity to the next, such as
the example given earlier of VIEWing a contact record. Activities are the targets of
these kinds of Intents used with the startActivity or startActivityForResult
methods.

Services can be started by passing an Intent to the startService method.

BroadcastReceivers receive Intents when responding to systemwide events such
as the phone ringing or an incoming text message.

The Activity represents a very visible application component within Android. With
assistance from the View class covered in chapter 3, the Activity is the most common
type of Android application. The next topic of interest is the Service, which runs in
the background and does not generally present a direct UL

If an application is to have a long lifecycle, it should be put into a Service. For exam-
ple, a background data synchronization utility running continuously should be imple-
mented as a Service.

Like the Activity, a Service is a class provided in the Android runtime that
should be extended, as seen in listing 1.2, which sends a message to the Android log
periodically.

package com.msi.manning.chapterl;

import android.app.Service; <+—@) Service import

import android.os.IBinder;

import android.util.Log; <1—0 Log import 3 Extending the
public class servicel extends Service implements Runnable { Service class

public static final String tag = "servicel";
private int counter = 0;
@Override 43 Initialization in the
protected void onCreate () { onCreate method
super.onCreate () ;

Thread aThread = new Thread (this) ;
aThread.start () ;
1

Download at Boykma.Com

20

CHAPTER 1 Targeting Android

public void run() {
while (true) {
try {
Log.1i(tag,"servicel firing : # " + counter++) ;
Thread.sleep(10000) ;
} catch(Exception ee) {
Log.e(tag,ee.getMessage()) ;

}
}
}

@Override
public IBinder onBind (Intent intent) { <4 Binding to the Service
return null;

}

}

This example requires that the package android.app.Service @ be imported. This
package contains the Service class. This example also demonstrates Android’s log-
ging mechanism @, which is useful for debugging purposes. Many of the examples in
the book include using the logging facility. Logging is discussed in chapter 2. The
servicel class @ extends the Service class. This class also implements the Runnable
interface to perform its main task on a separate thread. The onCreate O method of
the Service class permits the application to perform initialization-type tasks. The
onBind () method @ is discussed in further detail in chapter 4 when the topic of inter-
process communication in general is explored.

Services are started with the startService(Intent) method of the abstract
Context class. Note that, again, the Intent is used to initiate a desired result on the
platform.

Now that the application has a UI in an Activity and a means to have a long-
running task in a Service, itis time to explore the BroadcastReceiver, another form
of Android application that is dedicated to processing Intents.

If an application wants to receive and respond to a global event, such as the phone
ringing or an incoming text message, it must register as a BroadcastReceiver. An
application registers to receive Intents in either of two manners:

= The application may implement a <receiver> element in the AndroidMan-
fest.xml file, which describes the BroadcastReceiver’s class name and enumer-
ates its IntentFilters. Remember, the IntentFilter is a descriptor of the
Intent an application wants to process. If the receiver is registered in the
AndroidManifest.xml file, it does not have to be running in order to be trig-
gered. When the event occurs, the application is started automatically upon
notification of the triggering event. All of this housekeeping is managed by the
Android OS itself.

= An application may register at runtime via the Context class’s registerRe-
ceiver method.

Download at Boykma.Com

Booting Android development 21

Like Services, BroadcastReceivers do not have a Ul Of even more importance, the
code running in the onReceive method of a BroadcastReceiver should make no
assumptions about persistence or long-running operations. If the BroadcastReceiver
requires more than a trivial amount of code execution, it is recommended that the
code initiate a request to a Service to complete the requested functionality.

The familiar Intent class is used in the triggering of BroadcastReceiv-
ers; the use of these Intents is mutually exclusive from the Intents used
to start an Activity or a Service, as previously discussed.

A BroadcastReceiver implements the abstract method onReceive to process incom-
ing Intents. The arguments to the method are a Context and an Intent. The method
returns void, but a handful of methods are useful for passing back results, including
setResult, which passes back to the invoker an integer return code, a String return
value, and a Bundle value, which can contain any number of objects.

Listing 1.3 is an example of a BroadcastReceiver triggering upon an incoming
text message.

package com.msi.manning.unlockingandroid;

import android.content.Context;
import android.content.Intent;
import android.content.IntentReceiver;

import android.util.Log; J Extending
public class MySMSMailBox extends BroadcastReceiver { BroadcastReceiver
public static final String tag = "MySMSMailBox"; . .

Tag used in logging
@Override

public void onReceive (Context context, Intent intent) { .
, . onReceive method
Log.1i(tag, "onReceive") ;

if (intent.getAction() .equals("android.provider.Telephony.SMS RECEIVED")) {
Log.1i(tag, "Found our Event!") ;

} Write Check Intent’s

} to log action

Looking at listing 1.3 we find a few items to discuss. The class MySMSMailBox extends
the BroadcastReceiver class @. This subclass approach is the most straightforward
way to employ a BroadcastReceiver. Note the class name MySMSMailBox, as it will be
used in the AndroidManifest.xml file, shown in listing 1.4. The tag variable ® is used
in conjunction with the logging mechanism to assist in labeling messages sent to the
console log on the emulator. Using a tag in the log enables filtering and organizing
log messages in the console. Chapter 2 discusses the log mechanism in further detail.
The onReceive method € is where all of the work takes place in a BroadcastRe-
ceiver—this method must be implemented. Note that a given BroadcastReceiver
can register multiple IntentFilters and can therefore be instantiated for an arbitrary
number of Intents.

It is important to make sure to handle the appropriate Intent by checking the
action of the incoming Intent, as shown in 0. Once the desired Intent is received,

Download at Boykma.Com

22

CHAPTER 1 Targeting Android

carry out the specific functionality required. A common task in an SMS-receiving
application would be to parse the message and display it to the user via a Notification
Manager display. In this snippet, we simply record the action to the log 6.

In order for this BroadcastReceiver to fire and receive this Intent, it must be
listed in the AndroidManifest.xml file, as shown in listing 1.4. This listing contains the
elements required to respond to an incoming text message.

<?xml version="1.0" encoding="utf-8"?> Required permission
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.msi.manning.unlockingandroid">
<uses-permission android:name="android.permission.RECEIVE_SMS" />
<application android:icon="@drawable/icon">
<activity android:name=".chapterl" android:label="@string/app name">
<intent-filters>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<receiver android:name=".MySMSMailBox" >
<intent-filter>
<action android:name="android.provider.Telephony.SMS_ RECEIVED" />
</intent-filters>
</receivers>
</applications>
</manifest>

Receiver tag; IntentFilter
note the “.” definition

Certain tasks within the Android platform require the application to have a designated
privilege. To give an application the required permissions, the <uses-permission> tag
is used @. This is discussed in detail later in this chapter in the AndroidManifest.xml
section. The <receiver> tag contains the class name of the class implementing
the BroadcastReceiver. In this example the class name is MySMSMai1Box, from the pack-
age com.msi.manning.unlockingandroid. Be sure to note the dot that precedes the
name @. The dot is required. If your application is not behaving as expected, one of the
first places to check is your Android.xml file, and look for the dot! The IntentFilter
is defined in the <intent-filter> tag. The desired action in this example is
android.provider.Telephony.SMS RECEIVED @. The Android SDK enumerates the
available actions for the standard Intents. In addition, remember that user applications
can define their own Intents as well as listen for them.

Now that we have introduced Intents and the Android classes that process or
handle Intents, it’s time to explore the next major Android application topic, the
ContentProvider, Android’s preferred data-publishing mechanism.

If an application manages data and needs to expose that data to other applications
running in the Android environment, a ContentProvider should be implemented.
Alternatively, if an application component (Activity, Service, or Broadcast-
Receiver) needs to access data from another application, the other application’s

Download at Boykma.Com

Booting Android development 23

The emulator has a built-in set of tools for manipulating certain telephony behavior
to simulate a variety of conditions, such as in and out of network coverage and plac-
ing phone calls. This section’s example demonstrated another feature of the emula-
tor, the receipt of an SMS message.

To send an SMS message to the emulator, telnet to port 5554 (the port # may vary
on your system), which will connect to the emulator and issue the following command
at the prompt:

sms send <sender's phone number> <body of text message>

To learn more about available commands, type help from the prompt.

These tools are discussed in more detail in chapter 2.

ContentProvideris used. The ContentProvider implements a standard set of
methods to permit an application to access a data store. The access may be for read
and/or write operations. A ContentProvider may provide data to an Activity or
Service in the same containing application as well as an Activity or Service con-
tained in other applications.

A ContentProvider may use any form of data storage mechanism available on the
Android platform, including files, SQLite databases, or even a memory-based hash
map if data persistence is not required. In essence, the ContentProvider is a data
layer providing data abstraction for its clients and centralizing storage and retrieval
routines in a single place.

Directly sharing files or databases is discouraged on the Android platform and is
further enforced by the Linux security system, which prevents ad hoc file access from
one application space to another without explicitly granted permissions.

Data stored in a ContentProvider may be of traditional data types such as integers
and strings. Content providers can also manage binary data such as image data. When
binary data is retrieved, suggested practice is to return a string representing the file-
name containing the binary data. In the event a filename is returned as part of a
ContentProvider query, the file should not be accessed directly, but rather you
should use the helper class, ContentResolver’s openInputStream method, to access
the binary data. This approach negates Linux process/security hurdles as well as
keeps all data access normalized through the ContentProvider. Figure 1.6 outlines
the relationship among ContentProviders, data stores, and their clients.

A ContentProvider’s data is accessed through the familiar Content URI A
ContentProvider defines this as a public static final String. For example, an applica-
tion might have a data store managing material safety data sheets. The Content URI
for this ContentProvider might look like this:

public static final Uri CONTENT_URI =
Uri.parse("content://com.msi.manning.provider.unlockingandroid/datasheets") ;

Download at Boykma.Com

24

CHAPTER 1 Targeting Android

Android application #3

Activity 3.1

[
/

Android application #1 Android application #2

Activity 1.1

\
Activity 1.2 /
/'

<+ | Activity 2.1

ContentProvider A

SQLite Data file XML

Figure 1.6 The content provider is the data tier for Android applications and is the
prescribed manner in which data is accessed and shared on the device.

From this point, accessing a ContentProvider is similar to using Structured Query Lan-
guage (SQL) in other platforms, though a complete SQL statement is not employed. A
query is submitted to the ContentProvider, including the columns desired and
optional Where and Order By clauses. For those familiar with parameterized queries in
SQL, parameter substitution is even supported. Results are returned in the Cursor class,
of course. A detailed ContentProvider example is provided in chapter 5.

In many ways, a ContentProvider acts like a database server. While an
application could contain only a ContentProvider and in essence be a
database server, a ContentProvider is typically a component of a larger
Android application that hosts at least one Activity, Service, and/or
BroadcastReceiver.

This concludes the brief introduction to the major Android application classes.
Gaining an understanding of these classes and how they work together is an impor-
tant aspect of Android development. Getting application components to work
together can be a daunting task. For example, have you ever had a piece of software
that just didn’t work properly on your computer? Perhaps it was copied and not
installed properly. Every software platform has environmental concerns, though they
vary by platform. For example, when connecting to a remote resource such as a
database server or FTP server, which username and password should you use?
What about the necessary libraries to run your application? These are all topics
related to software deployment. Each Android application requires a file named

Download at Boykma.Com

Booting Android development 25

AndroidManifest.xml, which ties together the necessary pieces to run an Android
application on a device.

The previous sections introduced the common elements of an Android application.
To restate: an Android application will contain at least one Activity, Service, Broad-
castReceiver, or ContentProvider. Some of these elements will advertise the
Intents they are interested in processing via the IntentFilter mechanism. All of
these pieces of information need to be tied together in order for an Android applica-
tion to execute. The “glue” mechanism for this task of defining relationships is the
AndroidManifest.xml file.

The AndroidManifest.xml file exists in the root of an application directory and
contains all of the design-time relationships of a specific application and Intents.
AndroidManfest.xml files act as deployment descriptors for Android applications.
Listing 1.5 is an example of a very simple AndroidManifest.xml file.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.msi.manning.unlockingandroid"> <F‘i)
<application android:icon="@drawable/icon"> Package name
<activity android:name=".chapterl" android:label="@string/app name">
<intent-filters>
<action android:name="android.intent.action.MAIN" />
<category android:name="android. intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

IntentFilter definition

Application name

Looking at this simple AndroidManifest.xml, we see that the manifest element contains
the obligatory namespace as well as the Java package name @ containing this applica-
tion. This application contains a single Activity, with a class name of chapter1 @. Note
also the @string syntax. Anytime an @ symbol is used in an AndroidManifest.xml file, it
is referencing information stored in one of the resource files. In this case, the label
attribute is obtained from the app_name string resource defined elsewhere in the appli-
cation. Resources are discussed in further detail later in chapter 3. This application’s
lone Activity contains a single IntentFilter definition €. The IntentFilter used
here is the most common IntentFilter seen in Android applications. The action
android.intent.action.MAIN indicates that this is an entry point to the application.
The category android.intent.category.LAUNCHER places this Activity in the
launcher window, as shown in figure 1.7. It is possible to have multiple Activity ele-
ments in amanifestfile (and thereby an application), with more than one of them visible
in the launcher window.

In addition to the elements used in this sample manifest file, other common tags
include:

Download at Boykma.Com

26

CHAPTER 1 Targeting Android

» The <service>tag represents a Service.
The attributes of the service taginclude
its class and label. A Service may also

include the <intent-filters> tag. @ .l = s20am
= The <receiver> tag represents a Broad- Applications

castReceiver, which may or may not o | o

have an explicit <intent-filter> tag. APIDemos Browser Contacs DevTools

» The <uses-permission> tag tells An-

A
droid that this application requires cer- ﬂ .

Maps Recentcalls

tain security privileges. For example, if
an application requires access to the con-
tacts on a device, it requires the following
tag in its AndroidManifest.xml file:
<uses-permission android:name=
"android.permission.READ_CONTACTS" />
We revisit the AndroidManifest.xml file a num-
ber of times throughout the book because we
need to add more detail for certain elements. .
Now that you have a basic understanding of
the Android application and the AndroidMan-
ifest.xml file, which describes its components,
it’s time to discuss how and where it actually
executes. The next section discusses the rela-
tionship between an Android application and

its Linux and Dalvik virtual machine runtime. Figure 1.7 Applications are listed in the
launcher based on their IntentFilter.
In this example, the application “Where Do

. You Live” is available in the LAUNCHER
Android applications each runinasingle Linux category.

process. Android relies on Linux for process

management, and the application itself runs in an instance of the Dalvik virtual
machine. The OS may need to unload, or even kill, an application from time to time to
accommodate resource allocation demands. There is a hierarchy or sequence the sys-
tem uses to select the victim of a resource shortage. In general, the rules are as follows:

= Visible, running activities have top priority.

= Visible, nonrunning activities are important, because they are recently paused
and are likely to be resumed shortly.

= A running service is next in priority.

= The most likely candidates for termination are processes that are empty
(loaded perhaps for performance-caching purposes) or processes that have
dormant Activitys.

It’s time to wrap up this chapter with a simple Android application.

Download at Boykma.Com

1.4

An Android application 27

ps -a

The Linux environment is complete, including process management. It is possible to
launch and kill applications directly from the shell on the Android platform. However,
thisis largely a developer’s debugging task, not something the average Android handset
user is likely to be carrying out. It is nice to have for troubleshooting application issues.
It is unheard of on commercially available mobile phones to “touch the metal” in this
fashion. Formore in-depth exploration ofthe Linuxfoundations of Android, see chapter13.

An Android application

This section presents a simple Android application demonstrating a single Activity,
with one View. The Activity collects data, a street address to be specific, and creates
an Intent to find this address. The Intent is ultimately dispatched to Google Maps.
Figure 1.8 is a screen shot of the application running on the emulator. The name of
the application is Where Do You Live.

@ .l = 9:278m

- o —ep— -

.| White House, Washington, DC

See on the map

Directions to here
Show Map & Directions from here

Unlocking Android, Chapter 1. Save to Address Book

[white House

MENU
MENU

Figure 1.8 This Android application demonstrates a simple Activity and Intent.

Download at Boykma.Com

28

CHAPTER 1 Targeting Android

As previously introduced, the AndroidManifest.xml file contains the descriptors for
the high-level classes of the application. This application contains a single Activity

named AWhereDoYouLive. The application’s AndroidManifest.xml file is shown in list-
ing 1.6.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.msi.manning.unlockingandroid" >
<application android:icon="@drawable/icon">
<activity android:name=".AWhereDoYouLive" android:label="@string/
app_name" >
<intent-filters>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filters>
</activitys>
</applications>
</manifest>

The sole Activity is implemented in the file AWhereDoYoulLive java, presented in
listing 1.7.

package com.msi.manning.unlockingandroid;
// imports omitted for brevity

public class AWhereDoYoulive extends Activity {

@Override

public void onCreate (Bundle icicle) Re@rmme
super.onCreate (icicle) ; qgj’ Set up GUI Edit field
setContentView(R.layout.main) ;

final EditText addressfield = (EditText) findViewById(R.id.address) ;
final Button button = (Button) findviewById(R.id.launchmap) ;

button.setOnClickListener (new Button.OnClickListener () {
. Reference
public void onClick (View view) { button
try {

String address = addressfield.getText () .toString() ;
address = address.replace(' ', '"+');
Intent geoIntent = new Intent (android.content.Intent.ACTION_VIEW,
Uri.parse("geo:0,0?g=" + address)) ;
startActivity (geoIntent) ;
} catch (Exception e) { Prepare Get
Intent address

} Initiate lookup

)
}

In this example application, the setContentView method @ creates the primary UI,
which is a layout defined in main.xml in the /res/layout directory. The EditText view

Download at Boykma.Com

An Android application 29

collects information, which is in this case an address. The EditText view is a text box
or edit box in generic programming parlance. The findviewById method @ con-
nects the resource identified by R.1d.address to an instance of the EditText class.

A Button object is connected to the launchmap Ul element, again using the find-
ViewById method €. When this button is clicked, the application obtains the entered
address by invoking the getText method of the associated EditText @.

Once the address has been retrieved from the Ul, we need to create an Intent to
find the entered address. The Intent has a VIEW action, and the data portion repre-
sents a geographic search query, as seen in @.

Finally, the application asks Android to perform the Intent, which ultimately
results in the mapping application displaying the chosen address. This is accom-
plished with a call to the startActivity method @.

Resources are precompiled into a special class known as the R class, as shown in
listing 1.8. The final members of this class represent Ul elements. Note that you
should never modify the R java file manually, as it is automatically built every time the
underlying resources change.

/* AUTO-GENERATED FILE. DO NOT MODIFY.

*

* This class was automatically generated by the
* aapt tool from the resource data it found. It
* should not be modified by hand.

*/

package com.msi.manning.unlockingandroid;

public final class R {
public static final class attr {

}

public static final class drawable {
public static final int icon=0x7£020000;
}

public static final class id {
public static final int address=0x7£050000;
public static final int launchmap=0x7£050001;

}

public static final class layout {
public static final int main=0x7£030000;
}

public static final class string {
public static final int app_name=0x7£040000;
}

}

Android resources are covered in greater depth in chapter 3.

The primary screen of this application is defined as a LinearLayout view, as shown
in listing 1.9. It is a single layout containing one label, one text entry element, and
one button control.

Download at Boykma.Com

30

CHAPTER 1 Targeting Android

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical™"
android:layout width="fill parent"
android:layout height="fill parent"
>
<TextView
android:layout width="wrap_ content"
android:layout height="wrap_ content"
android:text="Please enter your home address."

/>
<EditText ID assignment
android:id="@+id/address" for EditText

android:layout width="fill parent"
android:layout height="wrap_ content"
android:autoText="true"
/>
<Button ID assignment
android:id="@+id/launchmap" for Button
android:layout width="wrap content"
android:layout height="wrap content"
android:text="Show Map"
/>
<TextView
android:layout_width="wrap content"
android:layout height="wrap content"
android:text="Unlocking Android, Chapter 1."
/>

</LinearLayout>
Note the use of the @ symbol in this resource’s id attribute @ and @. This causes the
appropriate entries to be made in the R class via the automatically generated R.java
file. These R class members are used in the calls to findViewById(), as shown previ-
ously, to tie the UI elements to an instance of the appropriate class.

A strings file and icon round out the resources in this simple application. The
strings.xml for this application is shown in listing 1.10. The strings.xml file is used to
localize string content.

<?xml version="1.0" encoding="utf-8"?>
<resources>

<string name="app name"s>Where Do You Live</strings>
</resources>

This concludes our first Android application.

This chapter has introduced the Android platform and briefly touched on market
positioning, including what Android is up against as a newcomer to the mobile mar-
ketplace. Android is such a new platform that there are sure to be changes and

Download at Boykma.Com

Summary 31

announcements as it matures and more and varied hardware hits the market. New
platforms need to be adopted and flexed to identify the strengths and expose the
weaknesses so they can be improved. Perhaps the biggest challenge for Android is to
navigate the world of the mobile operators and convince them that Android is good
for business. Fortunately with Google behind it, Android should have some ability to
flex its muscles, and we’ll see significant inroads with device manufacturers and carri-
ers alike.

In this chapter we examined the Android stack and discussed its relationship with
Linux and Java. With Linux at its core, Android is a formidable platform, especially
for the mobile space. While Android development is done in the Java programming
language, the runtime is executed in the Dalvik virtual machine, as an alternative to
the Java virtual machine from Sun. Regardless of the VM, Java coding skills are an
important aspect of Android development. The bigger issue is the degree to which
existing Java libraries can be leveraged.

We also examined the Android Intent class. The Intent is what makes Android
tick. It is responsible for how events flow and which code handles them, and it pro-
vides a mechanism for delivering specific functionality to the platform, enabling third-
party developers to deliver innovative solutions and products for Android. The main
application classes of Activity, Service, ContentProvider, and BroadcastReceiver
were all introduced with a simple code snippet example for each. Each of these appli-
cation classes interacts with Intents in a slightly different manner, but the core facility
of using Intents and using content URIs to access functionality and data combine to
create the innovative and flexible Android environment. Intents and their relation-
ship with these application classes are unpacked and unlocked as we progress through
this book.

The AndroidManifest.xml descriptor file ties all of the details together for an
Android application. It includes all of the information necessary for the application to
run, what Intents it can handle, and what permissions the application requires.
Throughout this book, the AndroidManifest.xml file will be a familiar companion as
new elements are added and explained.

Finally, this chapter provided a taste of Android application development with a
very simple example tying a simple Ul, an Intent, and Google Maps into one seamless
user experience. This is just scratching the surface of what Android can do. The next
chapter takes a deeper look into the Android SDK to learn more about what is in the
toolbox to assist in Unlocking Android.

Download at Boykma.Com

This chapter introduces the Android Development Tools chain and provides a
hands-on guide to using them as we walk through creating, testing, and debugging
a sample application. Upon completing this chapter, you will be familiar with using
Eclipse and the Android Development Tools plug-in, navigating the Android SDK
and its tools, running Android applications in the emulator, and debugging your
application. With these skills in hand, we will look at the Java packages provided in
the SDK to better equip you to embrace the development topics introduced later in
this book as you prepare to develop your own Android applications.

The core task for a developer when embracing a new platform is getting an
understanding of the SDK with its various components. Let’s start by examining the
core components of the Android SDK, then transition into using the included tools
to build and debug an application.

32

Download at Boykma.Com

The Android SDK 33

The Android SDK is a freely available download from Google. The first thing you
should do before going any further in this chapter is make sure you have the Android
SDK installed along with Eclipse and the Android plug-in for Eclipse, also known as
the Android Development Tools, or simply ADT. The Android SDK is required to build
Android applications, and Eclipse is the preferred development environment for this
book. You can download the Android SDK from http://code.google.com/android/
download.html.

The Android download page has instructions for installing the SDK, or
you can refer to appendix A of this book for detailed information on
installing the required development tools.

As in any development environment, becoming familiar with the class structures is
helpful, so having the documentation at hand as a reference is a good idea. The
Android SDK includes HTML-based documentation, which primarily consists of Java-
doc-formatted pages describing the available packages and classes. The Android SDK
documentation is found in the /doc directory under your SDK installation. Because of
the rapidly changing nature of this new platform, you may want to keep an eye out for
any changes to the SDK. The most up-to-date Android SDK documentation is available
at http://code.google.com/android/documentation.html.

The Java environment of Android can be broken down into a handful of key sections.
Once you have an understanding of each of these areas, the Javadoc reference mate-
rial that ships with the SDK becomes a real tool and not just a pile of seemingly unre-
lated material. You may recall that Android is not a strictly J2ME software
environment; however, there is some commonality between the Android platforms
and other Java development platforms. The next few sections review some of the Java
packages in the Android SDK and where they can be used. The remaining chapters
provide a deeper look into using many of these programming interfaces.

If you have developed in Java previously, you will recognize many familiar Java pack-
ages for core functionality. These include packages such as:

= java.lang—~Core Java language classes.

® java.io—Input/output capabilities.

®» java.net—Network connections.

» java.util—Utility classes. This package includes the Log class used to write to
the LogCat.

® java.text—Text-handling utilities.

® java.math—Math and number-manipulation classes.

®m javax.net—Network classes.

Download at Boykma.Com

http://code.google.com/android/download.html
http://code.google.com/android/download.html
http://code.google.com/android/documentation.html

34

CHAPTER 2 Development environment

® javax.security—Security-related classes.
= javax.xml—DOM-based XML classes.

® org.apache.*—HTTP-related classes.

®m org.xml—SAX-based XML classes.

There are additional Java classes. Generally speaking, there is minimal focus in this
book on core packages listed here, because our primary concern is Android develop-
ment. With that in mind, let’s look at the Android-specific functionality found in the
Android SDK.

Android-specific packages are very easy to identify because they start with android
in the package name. Some of the more important packages include:

» android.app—Android application model access

® android.content—Accessing and publishing data in Android

» android.net—Contains the Uri class, used for accessing various content
» android.graphics—Graphics primitives

® android.opengl—OpenGL classes

® android.os—System-level access to the Android environment

® android.provider—ContentProvider-related classes

» android.telephony—Telephony capability access

m android.text—Text layout

» android.util—Collection of utilities for text manipulation, including XML
® android.view—UI elements

» android.webkit—Browser functionality

®» android.widget—More Ul elements

Some of these packages are absolutely core to Android application development,
including android.app, android.view, and android.content. Other packages are
used to varying degrees depending on the type of applications being constructed.

Not every Android device will have the same hardware and mobile connectivity capa-
bilities, so some elements of the Android SDK are optional. Some devices will support
these features, and others not. It is important that an application degrade gracefully if
a feature is not available on a specific handset. Java packages to pay special attention
to include those that rely on specific, underlying hardware and network characteris-
tics, such as location-based services including GPS and wireless technologies such as
Bluetooth, IrDA, and Wi-Fi (802.11).

This quick introduction to the Android SDK’s programming interfaces is just
that—quick and at a glance. Upcoming chapters go into the class libraries in further
detail, so we’ll focus now on the tools required to build Android applications.

Before building an actual Android application, let’s examine how the Android SDK
and its components fit into the Eclipse environment.

Download at Boykma.Com

Fitting the pieces together 35

After installing the Android SDK along with the ADT plug-in for Eclipse, we’re ready to
explore the development environment. Figure 2.1 depicts the typical Android devel-
opment environment, including both real hardware and the useful Android Emula-
tor. While not the exclusive tool required for Android development, Eclipse can play
a big role in Android development not only because it provides a rich Java compila-
tion and debugging environment, but also because with the ADTs under Eclipse, we
can manage and control virtually all aspects of testing our Android applications
directly from the Eclipse IDE.

The key features of the Eclipse environment as it pertains to Android application
development include:

= Rich Java development environment including Java source compilation, class
autocompletion, and integrated Javadoc
= Source-level debugging
= Android Emulator profile management and launch
= The Dalvik Debug Monitoring Service (DDMS)
— Thread and heap views
— Emulator filesystem management
— Data and voice network control
— Emulator control
— System and application logging

Eclipse supports the concept of perspectives, where the layout of the screen has a set
of related windows and tools. The windows and tools included in an Eclipse perspec-
tive are known as views. When developing Android applications, there are two Eclipse

Development environment (laptop)

Command-Line tools

«File transfer tools

Eclipse open source IDE

-Coding *GSM simulation tester

*Debugging

Android Emulator
*Multiple skins

Android Development Tools (plug-in)
-SDK

«Emulator profile configuration

*Network connectivity options

«Integrated with Eclipse via
<Emulator launch Android Development Tools plug-
in

*Process & file system viewing

«Log viewing

Figure 2.1

Android Device The development
environment for
building Android

SDK documentation applications, including
the popular open
source Eclipse IDE

*Physical phone hardware

Download at Boykma.Com

36

CHAPTER 2 Development environment

perspectives of primary interest to us: the Java Perspective and the Dalvik Debug Mon-
itoring Service Perspective. Beyond those two, the Debug Perspective is also available

and useful when debugging an Android application. To switch between the available

perspectives in Eclipse, use the Open Perspective menu, found under the Window

menu in the Eclipse IDE. Let’s examine the features of the Java and DDMS Perspectives

and how they can be leveraged for Android development.

The Java Perspective is where you will spend most of
your time while developing Android applications. The
Java Perspective boasts a number of convenient views for
assisting in the development process. The Package
Explorer view allows us to see the Java projects in our
Eclipse Workspace. Figure 2.2 shows the Package Ex-
plorer listing some of the sample projects for this book.

The Java Perspective is where you will edit your Java
source code. Every time your source file is saved, it is
automatically compiled by Eclipse’s Java Developer
Tools (JDT) in the background. You need not worry
about the specifics of the JDT; the important thing to
know is thatitis functioning in the background to make
your Java experience as seamless as possible. If there is
an error in your source code, the details will show up in
the Problems view of the Java Perspective. Figure 2.3 has
an intentional error in the source code to demonstrate
the functionality of the Problems view. You can also put
your mouse over the red x to the left of the line contain-
ing the error for a tool-tip explanation of the problem.

One of the very powerful features of the Java Per-

—

-

Is Hlera'\:_hy:j-

D
1= AndroidChapter
=] L_: AndroidChapter 1Examples
3 src
= com.msi.manning.undockingandroid
=] AWhereDoYoulive.java
-1 ® wwhereDovoulive
= @ onCreatelBundie)
@GR new OnClickListerer() {...}
- |4] R.java
& 4 Android Library
= assets
B res
S Androidhanifest, xml
@12 AndroidChapter1Sample
=2 [Chapterz |
= src
= com.manning unlockingandroid
E-[1] ChapterTwo.java
=) ChapterTwa
@. onCreate(Bundle)
[1] R.java
| #-®@ Android Library
= assets
B res
& AndraidManifest. xml
= 'L:;lestproject

Figure 2.2 The Package
Explorer allows us to browse the
elements of our Android projects.

spective in Eclipse is the integration between the source code and the Javadoc view.
The Javadoc view updates automatically to provide any available documentation about
a currently selected Java class or method, as shown in figure 2.4, where the Javadoc

view displays information about the Activity class.

This chapter just scratches the surface in introducing the powerful
Eclipse environment. If you want to learn more about Eclipse, you might
consider reading Eclipse in Action A Guide for Java Developers, by David Gal-
lardo, Ed Burnette, and Robert McGovern, published by Manning and

available online at http://www.manning.com/.

It is easy to get the views in the current perspective into a layout that may
not be desirable. If this occurs, you have a couple of choices to restore
the perspective to a more useful state. The first option is to use the Show
View menu under the Window menu to display a specific view. Alterna-
tively, you can select the Reset Perspective menu to restore the perspec-

tive to its default settings.
Download at Boykma.Com

http://www.manning.com/

Fitting the pieces together 37

package ca mnning. unlockingandroid;

Fimport android.app.ictivicy:[]

public class ChapterTwo extends Activity {
/** Called when the activity is first created. */
= BOverride
- public void onCreate (Bundle icicle) {
super.onCreatce (icicle)
setContentView(R.1 hyout.main);

&

4

[2 Problems 22 @J-wadu:‘}
2 errars, 0 warnings, 0 infos

_Description + | Resource | path | tocation |
=k Errors (2 items)
@ R, cannct be resclved ChapterTw... Chapter2/srcfcomimanning,.. line 11

@ Syntax error on koken "ayout”, delete tl ChapterTw... Chapter2fsrcfcomimanning... line 11

Figure 2.3 The Problems view shows any errors in your source code.

package com.manning.unlockingandroid;
*import ancdroid.spp.letivity:[]

public class ChapterTwo extends Activity (
/** Called when the activicy is firsc creaced, */
Boverride
public void onCreate (Bundle icicle) |
guper.onCreate (icicle) »
SBLCONTENTView (R. layout .main) ;

An activity i 3 single, Focused thing that the user can do. Almost all activities interact with the user, so the Activity class takes care of creating & window For youin which you can place your Ul
windows, they can also be used in other ways: as Floating windows (via a theme with windowlsFlosting set) or embedded inside of another activity (using ActivityGroup), There are two method:

+ onCreake(Bundle) is where you initialize your ackivity, Most importankly, here you will usually call setConkentievdin) with a layout resource defining vour UL, and using findViewById{ink
» onPausel) is where you deal with the user leaving your activity. Most importantly, any changes made by the user should at this point be mtw(mmmmemma

Tobe of use with Context, startactivity(), all activity classes must have a corresponding <activity > declaration in their package's Androi dMani fest. xml,
The Activity class is an important part of an application's overall Wecvdle,

Topics covered here:

Bctivity Lifecycle

Savng Pers Shate

Perniss
. Process Lifecycle

o el D

Activity Lifecycle
Activities in the system are managed ¢ an schily stack. When & new activity is started, & ic placed on the top of the stack snd bacomes the running activity -- the pravious schivity always rer

Ar sekiibu ks szsankish Fraw skaras.

Figure 2.4 The Javadoc view provides context-sensitive documentation, in this case for the Activity

class. Download at Boykma.Com

38

222

CHAPTER 2 Development environment

In addition to the JDT, which compiles Java source files, the ADTs automatically com-
pile Android-specific files such as layout and resource files. We’ll learn more about the
underlying tools later in this chapter and again in chapter 3, but now it’s time to have
a look at the Android-specific perspective found in the DDMS.

DDMS Perspective

The DDMS Perspective provides a dashboard-like view into the heart of a running
Android device, or in our case, a running Android Emulator. Figure 2.5 shows the
emulator running the Chapter2 sample application.

We’ll walk through the details of the application, including how to build the appli-
cation and how to start it running in the Android Emulator, but first let’s see what we
can learn from the DDMS to continue the discussion of the tools available to us for
Android development. The Devices view shows a single emulator session, titled emula-
tor-tcp-5555. This means that there is a connection to the Android Emulator at
TCP/IP port 5555. Within this emulator session, five processes are running. The one
of interest to us is com.manning.unlockingandroid, with a process id of 616.

TIP Unless you are testing a peer-to-peer application, you will typically have
only a single Android Emulator session running at a time. It is possible to
have multiple instances of the Android Emulator running concurrently
on a single development machine.

Logging is an essential tool in software development, and that brings us to the LogCat
view of the DDMS Perspective. This view provides a glimpse at system and application

F- DOMS - Chapter2/src/comy/manning‘unlockingandroid,/ Chapter Two.java - Eclipse Platform] __N
Fia Ede Sourca Refactor Mavigats siect un Window Mab

B-0-Q-lov | del il e
® B 7 O theots [eop | @ Fie Explorer 1

| | | N |__sies | Date | Time | Perissions | 1
‘emudotor-ti-$955 e mETeld E Grdfta TR 20071212 17316 devpamx
System_process 508 = ﬁ BE00) /"' = anr \ 2008-02-25 I]li5] e
0. QOOGe. process. contert s B @ s SR \ 0071212 17:16 diwnrwniess
e goagle. andreid.home LY 2 8502 O ApiDamas.aph /,‘ 1325... 2007-12-12 17415 -wer—r—
___comgeegrarduiphone——_ 72 % @ eeo 0 ChoplerZ.anh 12907 20090225 0T T
{__q_‘can.mnrm.wmmmud___FD ey % @ amifeng S cwedincy e 27618 20030225 0243 rwerer
et T-daluicraca—" 200301-19 23:23 i
200801-19 23:23 drwnrwn—3t
- = — domrlod MPAAI18 3334 Arurvrarerace
| G Emudator Contral 2 (=
[- lostHound
Vot [roms =] spoes [Fd = it
pata; [hame =] Lokencys [wone B
umezone
Telepfony Actions # (5 cystom
Incomina number: | =
: T o Chapl:rTmSa

(St &5 o] ' $19.98

Log (110 Chapterz | T ——

Tine | pid | tag Calculate Ti
0247 1 €16 Chapter? =g P
07725 02.47... 1 616 Chabvest] -
(02-25 0247 I 616 Chapter? Total Meal price (unformatted) is [23 9761) Il Price i b2
\02-2502:47... 1 616 Chapterz onClick complete.
i - Q W
T e o R S e k S
7

PE®®@E

Figure 2.5 Perspective with an application running in the Android Emulator

Download at Boykma.Com

http://manning.com/ableson

Fitting the pieces together 39

logging taking place in the Android Emulator. In figure 2.5, a filter has been set up for
looking at entries with a tag of Chapter2. Using a filter on the LogCat is a helpful
practice, because it can reduce the noise of all the logging entries and allow us to
focus on our own application’s entries. In this case, there are four entries in the list
matching our filter criteria. We’ll look at the source code soon to see how we get our
messages into the log. Note that these log entries have a column showing the process
id, or PID, of the application contributing the log entry. As expected, the PID for our
log entries is 616, matching our running application instance in the emulator.

The File Explorer view is shown in the upper right of figure 2.5. User applications,
that is, the ones you and I write, are deployed with a file extension of .apk and are
stored in the /data/app directory of the Android device. The File Explorer view also
permits filesystem operations such as copying files to and from the Android Emulator
as well as removing files from the emulator’s filesystem. Figure 2.6 shows the process
of deleting a user application from the /data/app directory.

Obviously, being able to casually browse the filesystem of our mobile phone is a great
convenience. This is a nice feature to have for mobile development, where we are often
relying on cryptic pop-up messages to help us along in the application development
and debugging process. With easy access to the filesystem, we can work with files and
readily copy them to and from our development computer platform as necessary.

In addition to exploring a running application, the DDMS Perspective provides
tools for controlling the emulated environment. For example, the Emulator Control
view allows the testing of various connectivity characteristics for both voice and data
networks, such as simulating a phone call or receiving an incoming SMS. Figure 2.7
demonstrates sending an SMS message to the Android Emulator.

The DDMS provides quite a bit of visibility into, and control over, the Android
Emulator and is a handy tool for evaluating our Android applications. Before we move
on to building and testing Android applications, it is helpful to understand what is
happening behind the scenes and enabling the functionality of the DDMS.

%, Theeads [reep [0 il Explover 3. ?r@i-i“m
Hairs | size [Date | Time | permissionss | Info | Delete the selectio
E = data 2007-12-12 17:16 drenrwx--x \._]
E = anr 2008-02-25 0LISL drwsrwaarws —
B & app 2007-12-12 17:16 drencorwie-x

€l ApiDemos, apk 1325... 2007-12-12 17:15 -r

checkin.db 27643 Z2008-02-25 04:12 -rwer--r--

! (= dalvik-cache 2008-01-19 23:23 drwxrwxrwx
= data 2008-01-19 23:23 drenawx--x
& (= download 2008-01-19 23:23 dresrwarwx

] (= drm 2008-01-19 23123 drwnarwirwx
2008-01-19 23:23 drwxrwarwx
2008-02-25 04:17 drw-riv-nw-
= 2007-12-12 17:13 dresrwxrwx
= systern 2008-01-19 23123 drwncrwirin

-
-
O

-

=

=

@
+

timezone 3 2008-02-25 02:43 -rw-rw-rw-
® (& system 2008-02-12 0110 drwnerxrx
® & tmp 2008-02-25 04:17 drenawsrat

Figure 2.6 Deleting applications from the emulator by highlighting the application file and clicking the
delete button

Download at Boykma.Com

40

CHAPTER 2 Development environment

(@ Emudator Control 53 2 =0

Tedephony Stakus

Yoice: Ihome -"_l Speed: [Ful j

Data: m Latency: =

Telephony Actions -

Incoming number: [W:}MBDG?‘U

" Voice

5 5M5

Message: Hey, Android] Where are we gaing for lunch?

Send 1ol Figure 2.7 Sending a test
l SMS to the Android Emulator

The Android SDK ships with a collection of command-line tools, which are located in
the tools subdirectory of your Android SDK installation. While Eclipse and the ADTs
provide a great deal of control over our Android development environment, some-
times it is nice to exercise greater control, particularly when considering the power
and convenience that scripting can bring to a development platform. We are going to
explore two of the command-line tools found in the Android SDK.

Itis a good idea to add the tools directory to your search path. For exam-
ple, if your Android SDK is installed to c\software\google\androidsdk, you
can add the Android SDK to your path by performing the following oper-
ation in a command window on your Windows computer:

set path=%path%;c:\software\google\androidsdk\tools;
Or use the following command for Mac OS X and Linux:

export PATH=$PATH:/path to Android SDK directory/tools

You may be wondering just how files such as the layout file main.xml get processed
and exactly where the R java file comes from. Who zips up the application file for us
into the apk file? Well, you may have already guessed, but it is the Android Asset Pack-
aging Tool, or as it is called from the command line, aapt. This is a versatile tool that
combines the functionality of pkzip or jar along with an Android-specific resource
compiler. Depending on the command-line options provided to it, aapt wears a num-
ber of hats and assists with our design-time Android development tasks. To learn the
functionality available in aapt, simply run it from the command line with no argu-
ments. A detailed usage message is written to the screen.

While aapt helps with design-time tasks, another tool, the Android Debug Bridge,
assists us at runtime to interact with the Android Emulator.

Download at Boykma.Com

Fitting the pieces together 41

The Android Debug Bridge (adb) utility permits us to interact with the Android Emu-
lator directly from the command line or script. Have you ever wished you could navi-
gate the filesystem on your smartphone? Well, now you can with the adb! The adb
works as a client/server TCP-based application. While there are a couple of back-
ground processes that run on the development machine and the emulator to enable
our functionality, the important thing to understand is that when we run adb, we get
access to a running instance of the Android Emulator. Here are a couple of examples
of using adb. First, let’s look to see if we have any available Android Emulator sessions
running:

adb devices<returns>

This command will return a list of available ErETTTTEET———

Android Emulators; for example, figure 2.8

shows adb locating two running emulator § enulato E device
2 enulator— = device

sessions.

Let’s connect to the first Android Emu-
lator session and see if our application is
installed. We connect with the syntax adb
shell. This is how we would connect if we
had a single Android Emulator session active, but because there are two emulators
running, we need to specify an identifier to connect to the appropriate session:

Figure 2.8 The adb tool provides interaction
at runtime with the Android Emulator.

adb -d 1 shell

Figure 2.9 shows off the Android filesystem and demonstrates looking for a specific
installed application, namely our Chapter2 sample application, which we’ll be build-
ing in the next section.

This capability can be very handy when we want to remove a specific file from the
emulator’s filesystem, kill a process, or generally interact with the operating environ-
ment of the Android Emulator. If you download an application from the internet, for
example, you can use the adb command to install an application. For example,

adb shell install someapplication.apk

installs the application named someapplication to the Android Emulator. The file is cop-
ied to the /data/app directory and is accessible from the Android application

INDOWS\system32 . cmd.exe - adb -d 1 shell

device
device

Figure 2.9 Using the

J—ru— root root 28 hapter2 . apk
. n system 3 12-12 ApiDenos . apk shell command, we

can browse Android’s

filesystem.

Download at Boykma.Com

42

CHAPTER 2 Development environment

launcher. Similarly, if you desire to remove an application, you can run adb to remove
an application from the Android Emulator. For example, if you desire to remove the
Chapter2.apk sample application from a running emulator’s filesystem, you can exe-
cute the following command from a terminal or Windows command window:

adb shell rm /data/app/Chapter2.apk

Mastering the command-line tools in the Android SDK is certainly not a requirement
of Android application development, but having an understanding of what is available
and where to look for capabilities is a good skill to have in your toolbox. If you need
assistance with either the aapt or adb command, simply enter the command at the
terminal, and a fairly verbose usage/help page is displayed. Additional information
on the tools may be found in the Android SDK documentation.

The Android filesystem is a Linux filesystem. While the adb shell com-
mand does not provide a very rich shell programming environment as is
found on a desktop Linux or Mac OS X system, basic commands such as
1s, ps, kill, and rm are available. If you are new to Linux, you may bene-
fit from learning some very basic shell commands.

One other tool you will want to make sure you are familiar with is telnet. Telnet allows
you to connect to a remote system with a character-based UI In this case, the remote
system you connect to is the Android Emulator’s console. You can accomplish this
with the following command:

telnet localhost 5554

In this case, localhost represents your local development computer where the
Android Emulator has been started because the Android Emulator relies on your
computer’s loopback IP address of 127.0.0.1. Why port 55542 Recall when we
employed adb to find running emulator instances that the output of that command
included a name with a number at the end. The first Android Emulator can generally
be found at IP port 5555. No matter which port number the Android Emulator is
using, the Android Emulator’s console may be found at a port number equaling 1 less.
For example, if the Android Emulator is running and listed at port 5555, the console
is at port 5554.

Using a telnet connection to the emulator provides a command-line means for
configuring the emulator while it is running and testing telephony features such as
calls and text messages.

It is time to write an Android application to exercise the development environ-
ment we have been discussing.

We are going to build a simple application that gives us the opportunity to modify the
Ul, provides a little application logic, then executes the application in the Android
Emulator. More complex applications are left for later chapters—our focus here is on

Download at Boykma.Com

http://www.manning.com/hatcher/
http://www.manning.com/loughran/
http://www.manning.com/loughran/
http://www.manning.com/loughran/

Building an Android application in Eclipse 43

the development tools. Building an Android application is not too much different
from creating other types of Java applications in the Eclipse IDE. It all starts with
choosing File > New and selecting an Android application as the build target.

Like many development environments, Eclipse provides for a wizard interface to
ease the task of creating a new application. We’ll use the Android Project Wizard to
get off to a quick start in building an Android application.

The most straightforward manner to create an Android application is to utilize the ser-
vices of the Android Project Wizard, which is part of the ADT plug-in. The wizard pro-
vides a simple means to define the Eclipse project name and location, the Activity
name corresponding to the main UI class, as well as a name for the application. Of
importance also is the Java package name under which the application is created. Once
this application is created, it is easy to add new classes to the project.

In this example, we are creating a brand-new project in the Eclipse work-
space. This same wizard may be used to import source code from another
developer, such as the sample code for this book. Note also that the spe-
cific screens may vary over time as the Android tools mature.

Figure 2.10 demonstrates the creation of a e Arciroud PREIEE . e =k
new project named Chapter2 using the NewAndroidProject c
. d Creates a new Android Project resource.
wizard.
Projact name: | Chacterz
You will want the package name of Contzns
. . . = in workspace
your applications to be unique Rk
from one application to the next. Elbatpain
Clicking Finish creates our sample appli-
cation. At this point, the application e
compiles and is capable of running on Feasay. |
ctivity name: | ChapterTwo
the emulator—no further development e]
steps are required. Of course, what fun '
would an empty project be? Let’s flesh
out this sample application, our Android ¢ |

Tip Calculator. Figure 2.10 Using the Android Project Wizard,

it is easy to create an empty Android application,
ready for customization.

The Android Application Wizard takes

care of a number of important elements in the Android application structure, includ-
ing the Java source files, the default resource files, and the AndroidManifest.xml
file. Looking at the Package Explorer view in Eclipse we can see all of the elements
of this application. Here’s a quick description of the elements included in our sam-
ple application:

Download at Boykma.Com

44

CHAPTER 2 Development environment

The src folder contains two Java source files automatically created by the wizard.
ChapterTwo.java contains the main Activity for the application. We will mod-
ify this file to add our sample application’s tip calculator functionality.

R.java contains identifiers for each of the UI resource elements in the applica-
tion. It is important that you never modify this file directly, as it automatically
regenerates every time a resource is modified, and any manual changes you
make will be lost the next time the application is built.

Android.jar contains the Android runtime Java classes. This is a reference to
the android.jar file found in the Android SDK.

The res folder contains all of the Android resource files, including:

Drawables contains image files such as bitmaps and icons. The wizard includes a
default Android icon named icon.png.

Layout contains an xml file called main.xml. This file contains the UI elements
for the primary view of our Activity. We will modify this file but we will not be
making any significant or special changes—just enough to accomplish our mea-
ger UI goals for our Tip Calculator. UI elements such as Views are covered in
detail in chapter 3. It is not uncommon for an Android application to have mul-
tiple xml files in the Layout section.

Values contains the strings.xml file. This file is used for localizing string values
such as the application name and other strings used by your application. It con-
tains all of the applications in this book

AndroidManifest.xml represents the deployment information for this project.
While AndroidManifest.xml files can become somewhat complex, this chapter’s
manifest file can run without modification because no special permissions
are required.

Now that we know what is in the project, let’s review how we are going to modify the

application. Our goal with the Android Tip Calculator is to permit our user to enter
the price of a meal, then select a button to calculate the total cost of the meal, tip
included. To accomplish this, we need to modify two files, ChapterTwo.java and the UI
layout file, main.xml. Let’s start with the UI changes by adding a few new elements to
the primary View, as shown in listing 2.1.

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical™"
android:layout _width="fill parent"
android:layout height="fill parent"

>

<TextView
android:layout width="fill parent"

android:layout height="wrap_ content" 4} Static TextView
android:text="Chapter 2 Android Tip Calculator"

Download at Boykma.Com

Building an Android application in Eclipse 45

/>
<EditText <+—@) EditText definition

android:id="@+id/mealprice" 4‘442,
android:layout width="fill parent" Assign an id
android:layout height="wrap content"

android:autoText="true"
/> Button definition,

<Button including id

android:id="@+id/calculate"
android:layout_width="wrap_ content"
android:layout height="wrap content"
android:text="Calculate Tip"
/>

<TextView <@ TextView with an id
android:id="@+id/answer"
android:layout_width="fill parent"
android:layout height="wrap content"
android:text=""

/>
</LinearLayout>

The layout for this application is very straightforward. The overall layout is a vertical,
linear layout with only four elements. A static TextView displays the title of the appli-
cation @. An EditText collects the price of the meal for this Tip Calculator applica-
tion @. The EditText element has an attribute of type android:id, with a value of
mealprice €. When a Ul element contains the android:id attribute, it permits us to
manipulate this element from our code. We accomplish this by adding this element’s
id attribute to the R java file as a unique member of the R class. This identifying value
is used in the findviewById method, shown in listing 2.2. If a UI element is static,
such as the TextView @), and does not need to be set or read from our application
code, the android:id attribute is not required.

A button named calculate @ is added to the view. Note that this element also has
an android:id attribute because we will want to capture click events.

A TextView named answer @ is provided for displaying our total cost, including
tip. Again, this element has an id because we will need to update it during runtime.

When we save the file main.xml, the file is processed by the ADT plug-in, compiling
the resources and generating an updated R.java file. Try it for yourself. Modify one of
the id values in the main.xml file, save the file, then open R.java to have a look at the
constants generated there. Remember not to modify the R java file directly, because
all of your changes will be lost! If you conduct this experiment, be sure to change the
values back as they are listed here to make sure the rest of the project will compile as-
is. Provided we have not introduced any syntactical errors into our main.xml file, our
Ul file is complete.

Through the maturation of the still very young Android Development
Tools, the plug-ins for Eclipse have offered increasingly useful resource
editors for manipulating the layout xml files. This means that you do not
need to rely on editing the xml files directly.

Download at Boykma.Com

46

CHAPTER 2 Development environment

It is time to turn our attention to the file ChapterTwo java to implement the desired
Tip Calculator functionality. ChapterTwo.java is shown in listing 2.2. Note that we
omitted some imports for brevity. You can download the complete source code from
the Manning website at http://manning.com/ableson.

package com.manning.unlockingandroid; <1—o Package name
import com.manning.unlockingandroid.R;

import android.app.Activity; 4—0 Required imports
import java.text.NumberFormat;

import android.util.Log;

// some imports omitted

public class ChapterTwo extends Activity {
public static final String tag = "Chapter2";
@Override
public void onCreate (Bundle icicle)
super.onCreate (icicle) ;
setContentView (R.layout.main) ;

final EditText mealpricefield = Reference EditText
(EditText) findViewById(R.id.mealprice) ; for mealprice
final TextView answerfield =
(TextView) findvViewById(R.id.answer) ;

final Button button = (Button) findvViewById(R.id.calculate);
button.setOnClickListener (new Button.OnClickListener () {

; : - i Set up
public void onClick (View v) { onClick
Try { Listener
//Perform action on click
Log.1(tag, "onClick invoked.") ; 4—6 Log entry
// grab the meal price from the UI
String mealprice =
mealpricefield.getText () .toString() ; <@ Get meal price

Log.1i(tag, "mealprice is [" + mealprice + "]");
String answer = "";

// check to see if the meal price includes a "$"
if (mealprice.indexOf ("$") == -1) {
mealprice = "$" + mealprice;

}

float fmp = 0.0F;

// get currency formatter

NumberFormat nf =

java.text .NumberFormat.getCurrencyInstance() ;

// grab the input meal price
fmp = nf.parse(mealprice) .floatvValue() ;

// let's give a nice tip -> 20%

fmp *=1.2;

Log.1(tag, "Total Meal Price (unformatted) is [" + fmp + "1");
// format our result

Download at Boykma.Com

http://manning.com/ableson

Building an Android application in Eclipse 47

answer = "Full Price, Including 20% Tip: " + nf.format (fmp) ;

// display the answer

answerfield.setText (answer) ; W Display full price,
Log.i(tag, "onClick complete."); including tip

} catch (java.text.ParseException pe) { Qj
Log.1i(tag, "Parse exception caught") ; Catch parse error
answerfield.setText ("Failed to parse amount?")
} catch (Exception e) {
Log.e(tag, "Failed to Calculate Tip:" + e.getMessage()) ;

e.printStackTrace() ;
answerfield.setText (e.getMessage()) ;

}
)
}

Let’s examine this sample application, step-by-step. Like all but the most trivial Java
applications, this class contains a statement identifying which package it belongs to:
com.manning.unlockingandroid @. This line containing the package name was gen-
erated by the Application Wizard.

We import the com.manning.unlockingandroid.R class to gain access to the defi-
nitions used by the UI Note that this step is not actually required because the R class is
part of the same application package; however, it is helpful to include this import
because it makes our code easier to follow. Also note that there are some built-in UI
elements in the R class. Some are introduced later in the book as part of sample appli-
cations.

A number of imports are necessary @ to resolve class names in use; most of the
import statements have been omitted from this code listing for the sake of brevity. One
import that is shown here contains the definition for the java.text.NumberFormat
class, which is used to format and parse currency values.

Another import shown is for the android.util.Log class, which is employed to
make entries to the log. Calling static methods of the Log class adds entries to the log.
Entries in the log may be viewed via the LogCat view of the DDMS Perspective. When
making entries to the log, it is helpful to put a consistent identifier on a group of
related entries using a common string, commonly referred to as the fag. We can filter
on this string value so we don’t have to sift through the hundreds and thousands of
LogCat entries to find our few debugging or informational messages.

We connect the UI element containing mealprice to a class-level variable of type
EditText @ by calling the findviewById method, passing in the identifier for the
mealprice, as defined by our automatically generated R class, found in R java. With
this reference, we can access the user’s input and manipulate the meal price data as
entered by the user. Similarly, we connect the UI element for displaying the calculated
answer back to the user, again by calling the £indviewById method.

To know when to calculate the tip amount, we need to obtain a reference to the
Button so we can add an event listener. We want to know when the button has been

Download at Boykma.Com

48

CHAPTER 2 Development environment

clicked. We accomplish this by adding a new OnClickListener method named
onClick @.

When the onClick method is invoked, we add the first of a few log entries using
the static i () method of the Log class @. This method adds an entry to the log with an
Information classification. The Log class contains methods for adding entries to the
log for different levels, including Verbose, Debug, Information, Warning, and Error.

Now that we have a reference to the mealprice Ul element, we can obtain the text
entered by our user with the get Text () method of the EditText class @. In preparation
for formatting the full meal price, we obtain a reference to the static currency formatter.

Let’s be somewhat generous and offer a 20 percent tip. Then, using the formatter,
let’s format the full meal cost, including tip. Next, using the setText () method of the
TextView UI element named answerfield, we update the UI to tell the user the total
meal cost @.

Because this code might have a problem with improperly formatted data, it is a
good practice to put code logic into Try/Catch blocks to keep our application behav-
ing when the unexpected occurs 0.

There are additional files in this sample project, but in this chapter we are con-
cerned only with modifying the application enough to get custom functionality work-
ing. You will notice that as soon as we save our source files, the Eclipse IDE compiles
the project source files in the background. If there are any errors, they are listed in
the Problems view of the Java Perspective as well as marked in the lefthand margin
with a small red x to draw our attention to them.

Using the command-line tools found in the Android SDK, you can create
batch builds of your applications without the use of the IDE. This
approach is useful for software shops with a specific configuration-
management function and a desire to conduct automated builds. In
addition to the Android-specific build tools found under the tools subdi-
rectory of your Android SDK installation, you will also require a Java
Developer Kit (JDK) version 5.0 or later in order to complete command-
line application builds. Automating builds of Android applications is
beyond the scope of this book; however, you can learn more about the
topic of build scripts by reading two Manning titles on the topic: Java
Development with Ant by Erik Hatcher and Steve Loughran found at http:
//www.manning.com/hatcher/ and Ant in Action, Second Edition of Java
Development with Ant, by Steve Loughran and Erik Hatcher, found at
http://www.manning.com/loughran/.

Assuming there are no errors in the source files, our classes and Ul files will compile
properly. But what needs to happen before our project can be run and tested in the
Android Emulator?

At this point, our application has compiled and is actually ready to be run on the
device. Let’s look deeper at what happens after the compilation step. We don’t need

Download at Boykma.Com

http://www.manning.com/hatcher/
http://www.manning.com/hatcher/
http://www.manning.com/loughran/

Building an Android application in Eclipse 49

to perform these steps because the ADTs handle these steps for us, but it is helpful to
understand what is happening behind the scenes.

Recall that despite the compile-time reliance upon Java, Android applications do
not run in a Java virtual machine. Instead, the Android SDK employs the Dalvik virtual
machine. This means that Java bytecodes created by the Eclipse compiler must be con-
verted to the .dex file format for use in the Android runtime. The Android SDK has
tools to perform these steps, but the ADT takes care of all of this for us transparently.

The Android SDK contains tools that convert the project files into a file ready to
run on the Android Emulator. Figure 2.11 depicts the generalized flow of source files
in the Android build process. If you recall from our earlier discussion of Android SDK
tools, the tool used at design time is aapt. Application resource xml files are processed
by aapt, with the R.java file created as a result—remember that we need to refer to the
R class for user-interface identifiers when connecting our code to the Ul Java source
files are first compiled to class files by our Java environment, typically Eclipse and the
JDT. Once compiled, they are then converted to dex files to be ready for use with
Android’s Dalvik virtual machine. Surprisingly, the project’s xml files are converted to
a binary representation, not text as you might expect. However, the files retain their
.xml extension on the device.

The converted xml files, a compiled form of the non-layout resources including
the Drawables and Values, and the dex file (classes.dex) are packaged by the aapt tool
into a file with a naming structure of projectname.apk. The resulting file can be read
with a pkzip-compatible reader, such as WinRAR or WinZip, or the Java archiver, jar.
Figure 2.12 show this chapter’s sample application in WinRAR.

We are finally ready to run our application on the Android Emulator! It is impor-
tant to become comfortable with working in an emulated environment when doing
any serious mobile software development. There are many good reasons to have a
quality emulator available for development and testing. One simple reason is that hav-
ing multiple real devices with requisite data plans is a very expensive proposition. A

layout.xml |:> R.java
— |—> *class |:> -dex

*java U

|:> application.apk
file

Android-
Manifest.xml

Figure 2.11 The ADT employs tools from the Android SDK to convert source files
to a package ready to run on an Android device or emulator.

Download at Boykma.Com

50

CHAPTER 2 Development environment

— 277 - WinRAR

File Commands Tools Favorites Options Help

AW L Mo & 4%

Extract To Test iew Delete Wizard Info | Wirusscan Comment SF
I m “EI Chapter2.apk - ZIP archive, unpacked size 15,220 bytes
Name < | Size | Packed | Type | Modified | creaz |
=.. Folder
Dires Folder 2]25/2008 12:45 AM
) Androidmanifest. xml 1,564 1,564 XML Document 2/25/2008 12:45 AM B8301D4C0D
o] classes. dex 4,835 2,011 File dex 2/25/2008 12:59 AM 55438889
ﬁ PESOUNCES.arsc 1,036 1,036 File arsc 2[25/2008 12:45 AM E1AFSS8E

Figure 2.12 The Android application file format is pzip compatible.

single device may be hundreds of dollars alone. If the Open Handset Alliance has its
way, Android will find its way onto multiple carriers with numerous devices, often with
varying capabilities. Having one of every device is impractical for all but the develop-
ment shops with the largest of budgets. For the rest of us, a device or two and the
Android Emulator will have to suffice. Let’s focus on the strengths of emulator-based
mobile development.

While the best test of an application is running it on the hardware for which it was
designed, an emulator often makes the job of the developer much easier. Working in an
emulated environment permits a more rapid compile, run, and debug iterative cycle
than is typically available when testing on a real hardware device. Taking the time to
sync, or copy, an application to a real device typically takes longer than starting an emu-
lator session. Also, it is easier to clean the filesystem of an emulator than performing the
same maintenance operation on a real device. When you add in the capability of script-
ing commands to/from the emulator, it becomes an option worthy of investigation.

Beyond being a faster tool than working with a real device, the emulator tool must
consider physical characteristics of a device, primarily the screen dimensions, input
devices, and network connectivity.

Not all mobile devices are equally equipped, so it is important to be able to accommo-
date and test varying device characteristics in an emulated environment. The Android
SDK comes with an emulator with distinct skins. The skins represent different hardware
layouts as well as portrait and landscape orientations. Figure 2.13 shows two emulator
views: one in portrait with a hidden QWERTY keypad, the other in landscape mode with
a visible keyboard. The skins found with your SDK may vary from those shown here.
Not only is it important to understand and accommodate how the device looks, it is
important to understand what connectivity options a device is able to offer. Have you
ever tested a mobile application in an area where there is excellent data coverage only
to find out that the location where the application is deployed in the field often has
only marginal data service? The ability to test this condition in the confines of our

Download at Boykma.Com

24.2

The Android Emulator 51

@ .l =2 41240

Browsers_

«-@?n>

Browser
-

E@®®E

Figure 2.13 The
Android SDK includes
multiple emulator
skins for testing a
variety of device
configurations.

development environment gives a real advantage to the application developer. Fortu-
nately, the Android Emulator permits this kind of testing, as shown in the next section.

Network speed

Network speed simulation is a key element of mobile software development. This fea-
ture is helpful because the actual user experience will vary during real-world use, and
it is important that mobile applications degrade gracefully in the absence of a reliable
network connection. The Android Emulator provides for a rich set of emulation tools
for testing various network conditions and speeds. Table 2.1 lists the available network
speed and latency conditions available in the Android Emulator.

Table 2.1 The Android Emulator supports a variety of network speed options.

Network Speed Network Latency
Full speed (Use the development environment’s full internet connection) | None—no latency introduced
GSM GPRS
HSCSD EDGE
GPRS UMTS
EDGE
UMTS
HSPDA

Download at Boykma.Com

52

CHAPTER 2 Development environment

The higherspeed network environment found in the Android Emulator is welcome
when testing core features of our applications. This is because functional test cases
are often run hundreds or even thousands of times before releasing a product. If we
had to compile the application, sync the application to the device, and run our
application over a wireless data network, the testing time would add up quickly,
reducing the number of tests performed in a given amount of time and elevating
the associated costs. Worse yet, the challenges of mobile data connectivity testing
may entice us to minimize application testing in the first place! Considering that
most software development timeframes are aggressive, every moment counts, so a
quality emulator environment is valuable for rapid and cost-effective mobile applica-
tion development activities. Also, it is important to consider that there may be usage
charges for voice and data consumption on a mobile communications plan. Imag-
ine paying by the kilobyte for every downloaded data packet when testing a new
streaming audio player!

The Android SDK contains a command-line program named, appropriately,
emulator, which runs the Android Emulator. There are many command-line switches
available in the Android Emulator, permitting us to customize the emulator’s envi-
ronment: how it looks and behaves. Some of these options are exposed in the
Eclipse IDE via the ADT plug-in. The majority of our focus is on employing the

You may hear the words emulator and simulator thrown about interchangeably.
While they have a similar purpose—testing applications without the requirement of
real hardware—those words should be used with care. A simulator tool works by
creating a testing environment that behaves as close to 100 percent of the same
manner as the real environment; however, it is just an approximation of the real
platform. But this does not mean that the code targeted for a simulator will run on a
real device, because it is compatible only at the source-code level. Simulator code
is often written to be run as a software program running on a desktop computer
with Windows DLLs or Linux libraries that mimic the application programming inter-
faces (APIs) available on the real device. In the build environment, you typically se-
lect the CPU type for a target, and that is often x86/Simulator. In an emulated
environment, the target of our projects is compatible at the binary level. The code
we write works on an emulator as well as the real device. Of course, some aspects
of the environment differ in terms of how certain functions are implemented on an
emulator. For example, a network connection on an emulator will run through your
development machine’s network interface card, whereas the network connection on
a real phone runs over the wireless connection such as a GPRS, EDGE or EVDO net-
work. Emulators are preferred because they more reliably prepare us for running our
code on real devices. Fortunately, the environment available to Android developers
is an emulator, not a simulator.

Download at Boykma.Com

The Android Emulator

53

Android Emulator from Eclipse, but you are encouraged to examine the command-

line options available in the emulator because they will undoubtedly be of value as

you progress to building more complex Android applications and your application

testing requirements grow.

At this point, our sample application, the Android Tip Calculator, has compiled suc-
cessfully. We now want to run our application in the Android Emulator.

If you have had any trouble building the sam-
ple application, now would be a good time to
go back and clear up any syntax errors pre-
venting the application from building. In
Eclipse you can easily see errors because they
are marked with a red x next to the project
source file and on the offendingline(s). If you
continue to have errors, make sure that your
build environment is set up correctly. Refer to
appendix A of this book for details on config-
uring the build environment.

Our approach is to create a new Android Emulator
profile so we can easily reuse our test environment
settings. Our starting place is the Open Run Dialog
menu in the Eclipse IDE, as shown in figure 2.14. As
new releases of Eclipse become available, these
screen shots may vary slightly from your personal
development environment.

We want to create a new launch configuration, as
shown in figure 2.15. To begin this process, highlight
the Android Application entry in the list to the left,
and click the New Launch Configuration button,
shown circled in red in figure 2.15.

We now want to give our launch configuration a
name that we can readily recognize. We are going to
have quite a few of these launch configurations on
the menu, so give the name something unique and
easy to identify. The sample is titled Android Tip
Calculator, as shown in figure 2.16. There are three
tabs with options to configure, the first allowing the
selection of the project and the first Activity in the
project to launch.

Download at Boykma.Com

Project | Run Window Help

o
&% @ Erw CtrHFLL
i o ©. Debug Fi11

Run History (3
Run As 3

¥ Open Run Didlog...

Debug History 13
Debug As 3
3,5 0pan Debug Didlog. ..

{3, Extermal Tools L4

© Toggle Breakpaint

© Toggle Line Breakpoint

© Toggle Method Breakpoint

7. Toggle Watchpoint

“w, Skip All Breakpoints

11 4idd Java Exception Breskpaint...
(S Add Class Load Breakpaint....

Chrh+Shift+8

Figure 2.14 Creating a new launch
configuration for testing our Android
application

Create, manage, and run configurations
Android Application

Ve e cor i)
jLas s B Ainvdroid Application
4 Java dpplet
{71 Java Application
Ju Junit
Juy Task Context Test

Figure 2.15 Select the Android
Application run template.

54

CHAPTER 2 Development environment

MName: | Android Tip Calculator|

(=) android B Target |) Common | B

| - Project: -
| lChq)telQ Browse... | ‘
| [Activity:

[jcom.manmng‘urlnckmgandrmd‘chapter'l'wo j

The next tab permits the selection of the desired
skin, which includes the screen layout, the net-
work speed, and the network latency. In addition,
any command-line parameters desired can be
passed through to the emulator, as shown in fig-
ure 2.17. When writing Android applications,
keep in mind that the application may be run on
different size screens, because not all devices
have the same physical characteristics. This set-
ting in the Android Emulator launch configura-
tion is a great way to test an application’s
handling of different screen sizes and layouts.

The third tab permits us to put this configura-
tion on the favorites menu in the Eclipse IDE for
easy access, as shown in figure 2.18. We can select
Run and/or Debug. Let’s make both selections,
since it makes for easier launching when we want
to test or debug the application.

We’re now ready to start the Android Emula-
tor to test our Tip Calculator application, so we
select our new launch configuration from the
favorites menu, as shown in figure 2.19.

The Android Tip Calculator should now
be running in the Android Emulator! Go ahead;
test it out. But wait, what if there is a prob-
lem with the code but we’re not sure where? It’s
time to have a brief look at debugging an An-
droid application.

& lava - Chapter2/src/com;manning/unlockingandroid/ChapterTwo.java -
Fle Edt Source Refactor Navigste Search Project Run Window Help

5=l 4 -0-Q- [B8e: |®c 7 |

[[# Packags Explorer 53 €1 1 Chapter] Sample
BB AndroidChapter] |l G EIXXEIL EXIDI0
w2 AndroidChapter1Ex: @ 3 Android Tip Calculator
7 AndroidChapteriSar

Run As L4

{2 Open Run Dialag. ..
Organize Favorites, .,

pher?

Download at Boykma.Com

Figure 2.16 Setting up the Android
Emulator launch configuration

Emulatar launch 5:
Screen Size: HVYGA =

Metwork Speed: |Full >
Metwork Latency: |None "f

Additional Emulator Command Line Options

Figure 2.17 Selecting the operating
characteristics of the Android Emulator

Name: [Android Tip Calculator

(oo 13 Tort [conmon
[Save as
| & Local fie

| € sharedfie: |

i~ Display in favorites menu — | [~ Conscole Encoding
B Ore ||| & Defauk(cpizs2)

M G |
[4 %5 Debug

[~ Standard Input and Qutput -
| ¥ Allocate Console (necessary for input)

irFu_g:l

I I™ append

W Launch in background

Figure 2.18 Adding this launch
configuration to the toolbar menu

Figure 2.19 Starting this chapter’s sample
application, Android Tip Calculator

Debugging 55

Debugging an application is a skill no programmer can survive without, and fortunately
itis a straightforward task to debug an Android application under Eclipse. The first step
to take is to switch to the Debug Perspective in the Eclipse IDE. Remember, switching
from one perspective to another takes place by using the Open Perspective submenu
found under the Window menu. Starting an Android application for debugging is just
as simple as running the application. Instead of selecting the application from the favor-
ites run menu, use the favorites debug menu instead. This is the menu item with a pic-
ture of an insect (thatis, a “bug”). Remember, when we set up the launch configuration,
we added this configuration to both the run and the favorites debug menus.

The Debug Perspective gives us debugging capabilities similar to other develop-
ment environments, including the ability to single step into, or over, method calls and
peer into variables to examine their value. Breakpoints can be set by double-clicking
in the left margin on the line of interest. Figure 2.20 demonstrates stepping through
the Android Tip Calculator project and the resulting values showing up in the LogCat
view. Note that full meal price, including tip, has not yet been displayed on the
Android Emulator, because that line has not yet been reached.

Now that we’ve gone through a complete cycle of building an Android applica-
tion and we have a good foundational understanding of using the Android develop-
ment tools, we’'re ready to move on to digging in and Unlocking Android application
development by learning about each of the fundamental aspects of building
Android applications.

I ova Lekpee et
¢ B-0-Q- =
B ooty » oan = i) 4 teraigort
0 vkl T Coor { st Bl) =] | s [
T ph— ¥ ¥ vt TokTet (200000 3000)
=5 DabtoMicc ot 5415 5 meskrics i
 Tresa | 3> o) urpantes) o e
BT bt

v
o
V] partormIe] o 1057 of attear o
B o ke thars] im0t Tatnst)
'
1

.l ¥
A ®
o gt Tl (8300001 TRI)

i fueten (o006
W 8 kg Lyl hgpeact (eI

2 gty |
Fise | Lpad Lean
ST 1 a0

| ¥ouzane

0301 20:23 - 1 600 x [813.38]
030372023, 1600 Chaptert Total Heal price (ustorastted) §a (23:976]

[T
String snawer = "7

fleat fxp = 0.0F;

@ L 826 PM

Chapter Two Sample

_ _ $19.98
Ineluding 20% Tipi = + BE.torsatifep)) caleulate Tip

lick complete.”):

me e

uateh |Evoeprion e}

Figure 2.20 The Debug Perspective permits line-by-line stepping through of an Android application.

Download at Boykma.Com

56

CHAPTER 2 Development environment

This chapter introduced the Android SDK and offered a glance at the Android SDK’s
Java packages in order to get you familiar with the contents of the SDK from a class
library perspective. We introduced the key development tools for Android application
development including the Eclipse IDE and the ADT plug-in as well as some of the
behind-the-scenes tools available in the SDK.

While building out the Android Tip Calculator, this chapter’s sample application,
we had the opportunity to navigate between the relevant perspectives in the Eclipse
IDE. We used the Java Perspective to develop our application and both the DDMS Per-
spective and the Debug Perspective to interact with the Android Emulator while our
application was running. A working knowledge of the Eclipse IDE’s perspectives will
be very helpful as you progress to build out the sample applications and study the
development topics in the remainder of this book.

We discussed the Android Emulator and some of its fundamental permutations
and characteristics. Employing the Android Emulator is a good practice because of
the benefits of using emulation for testing and validating mobile software applications
in a consistent and cost-effective manner.

From here, the book moves on to dive deeper into the core elements of the
Android SDK and Android application development. The next chapter continues this
journey with a discussion of the fundamentals of the Android UI.

Download at Boykma.Com

he Android SDK provides a rich set of functionality enabling developers to
create a wide range of applications. In part 2 we systematically examine the major
portions of the Android SDK, including practical examples in each chapter.

We start off with a look at the application lifecycle and user interfaces (chap-
ter 3), graduating to Intents and Services (chapter 4). No platform discussion is
complete without a thorough examination of the available persistence and stor-
age methods (chapter 5) and in today’s connected world, we cannot overlook
core networking and web services skills (chapter 6).

Because the Android platform is a telephone, among other things, we take a
look at the telephony capabilities of the platform (chapter 7). Next we move on
to notifications and alarms (chapter 8). Android graphics and animation are
covered (chapter 9) as well as multimedia (chapter 10).

Part 2 concludes with a look at the location-based services available to the
Android developer (chapter 11).

Download at Boykma.Com

Download at Boykma.Com

With our introductory tour of the main components of the Android platform and
development environment complete, it is time to look more closely at the funda-
mental Android concepts surrounding activities, views, and resources. Activities are
essential because, as you learned in chapter 1, they make up the screens of your
application and play a key role in the all-important Android application lifecycle.
Rather than allowing any one application to wrest control of the device away from
the user and from other applications, Android introduces a well-defined lifecycle to
manage processes as needed. This means it is essential to understand not only how
to start and stop an Android Activity but also how to suspend and resume one.
Activities themselves are made up of subcomponents called views.

Views are what your users will see and interact with. Views handle layout, pro-
vide text elements for labels and feedback, provide buttons and forms for user
input, and draw graphics to the screen. Views are also used to register interface

59

Download at Boykma.Com

60

CHAPTER 3 User interfaces

event listeners, such as those for touch-screen controls. A hierarchical collection of
views is used to “compose” an Activity. You are the conductor, an Activity is your
symphony, and View objects are your musicians.

Musicians need instruments, so we will stretch this analogy a bit further to bring
Android resources into the mix. Views and other Android components make use of
strings, colors, styles, and graphics, which are compiled into a binary form and made
available to applications as resources. The automatically generated R. java class, which
was introduced in chapter 1, provides a reference to individual resources and is the
bridge between binary references and source. The R class is used, for example, to grab
a string or a color and add it to a View. The relationship among activities, views, and
resources is depicted in figure 3.1.

Along with the components you use to build an application—views, resources, and
activities—Android includes the manifest file you were introduced to in chapter 1,
AndroidManifest. xml. This XML file
describeswhere your application begins,

what its permissions are, and what activ- —
.. . . . Activity
ities (and services and receivers, which

you will see in the next two chapters) it

includes. Because this file is central to

View (text label)

‘ View (text input)

every Android application, we are going Ll
to address it further in this chapter, and ‘ View (selection input)
we will come back toitfrequentlyinlater I

parts of the book. The manifest is the
one-stop shop for the platform to boot View (map) View (image)
and manage your application.

Overall, if you have done any devel-
opment involving UIs of any kind on any
platform, the concepts activities, views,
and resources represent may be some-
what familiar or intuitive, at least on a (Resources)
fundamental level. The way these con-

cepts are implemented in Android is,

nevertheless, somewhat unique—and Manifest
this is where we hope to shed some (application definition, activities, permissions, intents)
light. Here we will be introducing a sam-
ple application that we will use to walk

through these concepts, beginning with

Figure 3.1 High-level diagramof Activity,View,
]) resources, and manifest relationship showing that
getting past the theory and into the activities are made up of views, and views use

code to build an Activity. resources.

Over the course of this chapter and the next, we will be building a sample application
that allows the user to search for restaurant reviews based on location and cuisine. This
application, RestaurantFinder, will also allow the user to call, visit the website of, or map

Download at Boykma.Com

Creating the Activity 61

directions to a selected restaurant. We chose this application as a starting point because
it has a very clear and simple use case and because it involves many different parts of the
Android platform. This will allow us to cover a lot of ground fast—as well as, we hope,
having the side benefit of being actually useful on your phone!

To create this application we will need three basic screens to begin with:

= A criteria screen where a user enters parameters to search for restaurant reviews
= A list-of-reviews screen that shows paged results that match the specified criteria

» A detail page that shows the review details for a selected review item

Recall from chapter 1 that a screen is roughly analogous to an Activity, so that
means we will need three Activity classes. When complete, the three screens for our
RestaurantFinder application will look like what is shown in figure 3.2.

Our first step in exploring activities and views will be to build the RestaurantFinder
ReviewCritiera screen. From there, we will move on to the others. Along the way we
will highlight many aspects of designing and implementing your Android UL

|Restawrants |

B R e 1228 am

urantFinder - Reviews
Location (City, S

Chicago, IL

Cuisine:

Foodire
¢ [RestarAnEInaer-Review
Hot Doug's
A
Pizzeria Uno Chicago Bar and Grill

Naon O Kebab
Get reviews - —

Phoenix

Weber Grill Restaurant

The Wiener's Circle

MENU

& Charlie Trot

Map locatlon | Call restaurant

MENU

&

(g~]

Figure 3.2 RestaurantFinder application screen shots, showing three Activitys: ReviewCriteria,
ReviewList, and ReviewDetail

Download at Boykma.Com

62

CHAPTER 3 User interfaces

To create a screen we will be extending the android.app.Activity base class, as we
did in chapter 1, and overriding the key methods it defines. Listing 3.1 shows the first
portion of the RestaurantFinder ReviewCriteria class.

public class ReviewCriteria extends Activity { <1—0 Extend android.app.Activity

private static final int MENU GET REVIEWS = Menu.FIRST;

private Spinner cuisine;

private Button grabReviews; Define Views
private EditText location;

@Override
public void onCreate (Bundle savedInstanceState) { 4—9 Override onCreate()
super.onCreate (savedInstanceState) ;

this.setContentView (R.layout.review criteria); Define Iayout with

this.location = (EditText) setContentView
findviewById(R.id.location) ;
this.cuisine = (Spinner)
findViewById(R.id.cuisine) ; Inflate views
this.grabReviews = (Button) from XML

findviewById(R.id.get reviews button) ;

ArrayAdapter<String> cuisines =

new ArrayAdapter<Strings(this, R.layout.spinner view, Define
getResources () . .A"aYAdaPter
getStringArray (R.array.cuisines)) ; instance
cuisines.setDropDownViewResource (
R.layout.spinner view dropdown) ; ﬁ Set View for
this.cuisine.setAdapter (cuisines) ; 4—0 Use Adapter dropdown

this.grabReviews.setOnClickListener (
new OnClickListener () {

Add Button
public void onClick (View v) { OnClickListener
handleGetReviews () ;

1)
}
The ReviewCriteria class extends android.app.Activity @), which does a number
of very important things: it gives our application a context, because Activity itself
extends android.app.ApplicationContext; it brings the Android lifecycle methods
into play; it gives the framework a hook to start and run your application; and it pro-
vides a container into which view elements can be placed.

Because an Activityrepresents aninteraction with the user, it needs to provide com-
ponents on the screen. This is where views come into play. In our ReviewCriteria class
we have referenced three views in the code: location, cuisine, and grabReviews @.
Locationis a type of View known as an EditText, a basic text-entry component. Next,
cuisine is a fancy select list component, known in Android terms as a Spinner, and
grabReviews is a Button.

Download at Boykma.Com

http://code.google.com/android/reference/android/view/View.html
http://code.google.com/android/reference/android/view/View.html

Creating the Activity 63

View elements such as these are placed within an Activity using a particular lay-
out to create a screen. Layout and views can be defined directly in code or in a layout
XML resource file. You will learn more about views as we progress through this section,
and we will focus specifically on layout in section 3.2.5.

Why are we using an EditText View for the location field in the ReviewCriteria
Activity when Android includes technology that could be used to derive this value
from the current physical location of the device (or allow the user to select it using a
Map, rather than type it in)? Good eye, but we are doing this intentionally here. We
want this early example to be complete and nontrivial but not too complicated. You
will learn more about using the location support Android provides and MapViews in
later chapters.

After an Activity, complete with necessary views, is started, the lifecycle takes over
and the onCreate () method is invoked @. This is one of a series of important lifecy-
cle methods the Activity class provides. Every Activity will override onCreate (),
where component initialization steps are invoked, though not every Activity will
need to override other lifecycle methods. The Activity lifecycle is worthy of an in-
depth discussion of its own, and for that reason we will explore these methods further,
in section 3.1.2.

Once inside the onCreate () method, the setContentView () method is where you
will normally associate an XML layout file @. We say normally, because you do not have
to use an XML file at all; you can instead define all of your layout and View configura-
tion in code, as Java objects. Nevertheless, it is often easier, and better practice by
decoupling, to use an XML layout resource for each Activity. An XML layout file
defines View objects, which are laid out in a tree, and can then be set into the Activ-
ity for use.

Layout and view details, defined in XML or in code, are also topics we will address
in later sections of this chapter. Here we simply need to stress that views are typically
defined in XML and then are setinto the Activity and “inflated.” Views that need some
runtime manipulation, such as binding to data, can then be referenced in code and cast
to their respective subtypes @. Views that are static, those you don’t need to interact with
or update at runtime, like labels, do not need to be referenced in code (they show up
on the screen, because they are part of the View tree as defined in the XML, but need
no explicit setup in code). Going back to the screen shots in figure 3.1, you will notice
that the ReviewCriteriascreen has two labels as well as the three inputs we have already
discussed. These labels are not present in the code; they are defined in the
review_criteria.xml file that you will see when we discuss XML-defined resources.

The next area of our ReviewCriteria Activity is where we bind data to our select
list views, the Spinner objects. Android employs a handy “adapter” concept to link
views that contain collections with data. Basically an Adapter is a collection handler

Download at Boykma.Com

64

CHAPTER 3 User interfaces

that returns each item in the collection as a View. Android provides many basic adapt-
ers: ListAdapter, ArrayAdapter, GalleryAdapter, CursorAdapter, and more. You can
also easily create your own Adapter, a technique we will use when we discuss creating
custom views in section 3.2. Here we are using an ArrayAdapter that is populated with
our Context (this), a View element defined in an XML resource file, and an array
representing the data (also defined as a resource in XML—which you will learn more
about in section 3.3) @. When we create the ArrayAdapter we define the View to be
used for the element shown in the Spinner before it is selected; after it is selected it
uses the View defined in the drop-down @. Once our Adapter and its View elements
are defined, we set it into the Spinner object 0.

The last thing this initial Activity demonstrates is our first explicit use of event
handling. UTI elements in general support many types of events, which you will learn
more about in section 3.2.7. In this case we are using an OnClickListener with our
Button, in order to respond when the button is clicked 0.

After the onCreate () method is complete, with the binding of data to our Spinner
views, we have menu buttons (which are different than on-screen Button views, as you
shall see) and associated actions. We show how these are implemented in the last part
of ReviewCriteria in listing 3.2.

@Override
public boolean onCreateOptionsMenu (Menu menu) { Create options
super.onCreateOptionsMenu (menu) ; 2’ menu
menu.add (0, ReviewCriteria.MENU GET REVIEWS, O,
R.string.menu get reviews) .setIcon(
android.R.drawable.ic_menu more) ;
return true;

}

@Override
public boolean onMenultemSelected (int featurelId, Menultem item) {
switch (item.getItemId())
case MENU_GET REVIEWS: Respond when
handleGetReviews () ; menu item selected
return true;

}

return super.onMenultemSelected (featureld, item) ;

}

private void handleGetReviews () { Q} Define method to

if (lvalidate()) { process reviews
return;

}

RestaurantFinderApplication application =

(RestaurantFinderApplication) S’ US?AppHcaﬁon
getApplication() ; object for state

application.setReviewCriteriaCuisine (
this.cuisine.getSelectedItem() .toString()) ;

application.setReviewCriteriaLocation (
this.location.getText () .toString()) ;

Intent intent =

Download at Boykma.Com

http://code.google.com/android/reference/view-gallery.html
http://code.google.com/android/reference/view-gallery.html

Creating the Activity 65

new Intent (Constants.INTENT ACTION VIEW LIST) ; <@ Create Intent
startActivity (intent) ; L.
} Start Activity

private boolean validate () {
boolean valid = true;
StringBuilder validationText = new StringBuilder () ;
if ((this.location.getText () == null) |
this.location.getText () .toString() .equals("")) {
validationText .append (getResources () .getString(
R.string.location not_ supplied message)) ;
valid = false;
if (1valid) { Use AlertDialog

newAlertDialog.Builder (this) .
setTitle (getResources () .getString(R.string.alert label)) .
setMessage (validationText.toString()) .
SetPositiveButton ("Continue",
new android.content.DialogInterface.

OnClickListener () {‘ Respond to
public void onClick(
) |

s . . button click
DialogInterface dialog, int argl
// do nothing, show alert is enough

}) .show () ;
validationText = null;

}

return valid;

}
}

The menu items at the bottom of the Activity screens in figure 3.2 are all created
using the onCreateOptionsMenu() method @. Here we are using the Menu class
add () method to create a single MenuItem element @. We are passing a group ID, an
ID, an order, and a text resource reference to create the menu item. We are also
assigning to the menu item an icon with the setIcon method. The text and the
image are externalized from the code, again using Android’s concept of resources.
The MenuItem we have added duplicates the on-screen Button with the same label for
the “Get reviews” purpose.

We have chosen to use the Menu here, in addition to the on-screen buttons. Though
either (or both) can work in many scenarios, you need to consider whether the menu,
which is invoked by pressing the Menu button on the device and tapping a selection
(button and a tap) is appropriate for what you are doing, or whether an on-screen but-
ton (single tap) is more appropriate. Generally on-screen buttons should be tied to Ul
elements (a search button for a search form input, for example), and menu items
should be used for screen-wide actions (submitting a form, performing an action like
create, save, edit, or delete). Because all rules need an exception, if you have the
screen real estate, it may be more convenient for users to have on-screen buttons
for actions as well (as we have done here). The most important thing to keep in mind
with these types of Ul decisions is to be consistent. If you do it one way on one
screen, use that same approach on other screens.

Download at Boykma.Com

66

CHAPTER 3 User interfaces

In addition to creating the menu item, we add support to react and perform an action
when the item is selected. This is done in the onMenuItemSelected () event method @,
where we parse the ID of the multiple possible menu items with a case/switch state-
ment. When the MENU GET REVIEWS item is determined to have been selected, we then
call the handleGetReviews method €. This method puts the user’s selection state in the
Application object @ and sets up to call the nextscreen. We have moved this logic into
its own method because we are using it from multiple places, from our on-screen Button
and again from our MenuItem.

The Application object is used internally by Android for many purposes, and it
can be extended, as we have done with RestaurantFinderApplication (which
includes a few member variables in JavaBean style), to store global state information.
We will reference this object again in other activities to retrieve the information we are
storing here. There are several ways to pass objects back and forth between activities;
using Application is one of them. You can also use public static members and Intent
extras with Bundle objects. In addition, you can use the provided SQLite database, or
you can implement your own ContentProvider and store data there. We will cover
more about state, and data persistence in general, including all these concepts, in
chapter 5. The important thing to take away here is that at this point we are using the
Application object to pass state between activities.

After we store the criteria state we fire off an action in the form of an Android
Intent @. We touched on intents in chapter 1, and we will delve into them further in
the next chapter, but basically we are asking another Activity to respond to the
user’s selection of a menu item by calling startActivity (Intent intent) @.

The most common way to invoke an Activity is by using the startActivity ()
method, but there is also another method you will see used in specific instanc-
es—startActivityForResult (). Both pass control to a different Activity. The
difference with regard to startActivityforResult is that it returns a value to the
current Activity when the Activity being invoked is complete. It in effect allows
you to chain activities and expect callback-style responses (you get the response by
implementing the onActivityResult () method).

Also notable within the ReviewCriteria example is that we are using an Alert-
Dialog @. Before we allow the next Activity to be invoked, we call a simple vali-
date () method that we have created, where we display a pop-up-style alert dialog to
the user if the location has not been specified. Along with generally demonstrating
the use of AlertDialog, this demonstrates how a button can be made to respond to
a click event with an OnClickListener () @.

With that we have covered a good deal of material and have completed Review-
Criteria, our first Activity. Now that this class is fully implemented, we next need to

Download at Boykma.Com

Creating the Activity 67

You may have noticed the usage of the Builder pattern when we added parameters
to the AlertDialog we created in the ReviewCriteria class. If you are not familiar
with this approach, basically each of the methods invoked, such as AlertDia-
log.setMessage () and AlertDialog.setTitle(), returns a reference to itself
(this), which means we can continue chaining method calls. This avoids either an
extra-long constructor with many parameters or the repetition of the class reference
throughout the code. Intents make use of this handy pattern too; it is something you
will see time and time again in Android.

take a closer look at the all-important Android Activity lifecycle and how it relates to
processes on the platform.

Every process running on the Android platform is placed on a stack. When you use an
Activity in the foreground, the system process that hosts that Activity is placed at
the top of the stack, and the previous process (the one hosting whatever Activity was
previously in the foreground) is moved down one notch. This is a key point to under-
stand. Android tries to keep processes running as long as it can, but it can’t keep every
process running forever because, after all, system resources are finite. So what hap-
pens when memory starts to run low or the CPU gets too busy?

When the Android platform decides it needs to reclaim resources, it goes through a
series of steps to prune processes (and the activities they host). It decides which ones
to get rid of based on a simple set of priorities:

1 The process hosting the foreground Activity is the most important.

2 Any process hosting a visible but not foreground Activity is next in line.

3 Any process hosting a background Activity is nextin line.

4 Any process not hosting any Activity (or Service or BroadcastReceiver),
known as an empty process, is last in line.

A very useful tool for development and debugging, especially in the context of pro-
cess priority, is the Android Debug Bridge (adb), which you first met in chapter 1.
You can see the state of all the running processes in the emulator by issuing the fol-
lowing command:

adb shell dumpsys activity

This command will output a lot of information about all the running processes,
including the package name, PID, foreground or background status, the current pri-
ority, and more.

Because a user can elect to change directions at just about any time—make a
phone call, change the screen orientation, respond to an SMS message, decide to stop

Download at Boykma.Com

68

CHAPTER 3 User interfaces

using your wonderful stock market analysis application and start playing Android
Poker—which in turn can affect overall system resources, all Activity classes have to
be able to handle being stopped and shut down at any time. If the process your
Activity is in falls out of the foreground, it is eligible to be killed (it’s not up to you;
it’s up to the platform, based on resources and priorities).

To manage this environment, Android applications, and the Activity classes they
host, have to be designed a bit differently than what you may be used to. Using a series
of eventrelated callback type methods the Activity class defines, you can set up and
tear down state gracefully. The Activity subclasses that you implement (as you saw a
bit of with ReviewCriteria in the previous section) override a set of lifecycle methods
to make this happen. As we discussed in section 3.1.1, every Activity has to imple-
ment the onCreate () method. This is the starting point of the lifecycle. In addition to
onCreate (), most activities will also want to implement the onPause () method, where
data and state can be persisted before the hosting process potentially falls out
of scope.

The lifecycle methods that the Activity class provides are called in a specific
order by the platform as it decides to create and kill processes. Because you, as an
application developer, cannot control the processes, you have to rely on your use of
the callback lifecycle methods to control state in your Activity classes as they come
into the foreground, move into the background, and fall away altogether. This is a
very significant, and clever, part of the overall Android platform. As the user makes
choices, activities are created and paused in a defined order by the system as it starts
and stops processes.

Beyond onCreate() and on- onCreate()\ Entire lifecycle

Pause (), Android provides

other distinct stages, each of onRestart) Visible phase
which is a part of a particular

phase of the life of an Activ-
. onStart()

ity class. The most com- .
monly encountered methods

Foreground phase
onResume()

and the phases for each part
of the lifecycle are shown in

figure 3.3.
Each of the lifecycle meth- stop() /
onStop

ods Android provides has a
distinct purpose, and each onDestroy()

onPause()

happens during part of the
f.oreground, visible, or entire Figure 3.3 Android Activity lifecycle diagram, showing the
lifecycle phase. methods involved in the foreground and background phases

Download at Boykma.Com

Creating the Activity 69

= In the foreground phase, the Activity is viewable on the screen and on top of
everything else (when the userisinteracting with the Activity to perform atask).

= In the visible phase, the Activity is on the screen, but it may not be on top and
interacting with the user (when a dialog or floating window is on top of the
Activity, for example).

= The entire lifecycle phase refers to the methods that may be called when the
application is not on the screen, before it is created, and after it is gone prior to
being shut down.

Table 3.1 provides further information about the lifecycle phases and outlines the
main high-level related methods on the Activity class.

Table 3.1 Android Activity main lifecycle methods and purpose

onCreate () Called when the Activity is created. Setup is done here, Also provided is access
to any previously stored state in the form of a Bundle.

onRestart () Called ifthe Activityis being restarted, if it is still in the stack, rather than starting

new.
onStart () Called when the Activity is becoming visible on the screen to the user.
onResume () Called when the Activity starts interacting with the user. (This is always called,

whether starting or restarting.)

onPause () Called when the Activity is pausing or reclaiming CPU and other resources. This
method is where state should be saved so that when an Activity is restarted it
can start from the same state it had when it quit.

onStop () Called to stop the Activity and transition it to a nonvisible phase and subse-
quent lifecycle events.

onDestroy () | Called when an Activity is being completely removed from system memory. Hap-
pens either because onFinish () is directly invoked or the system decides to stop
the Activity to free up resources.

Beyond the main high-level lifecycle methods outlined in table 3.1, there are further
finer-grained methods that are available as well. Methods such as onPostCreate and
onPostResume aren’t normally needed, so we won’t go into detail on them, but be
aware that they exist if you need that level of control (see the Activity Javadoc for
full method details).

As for the main lifecycle methods that you will use the majority of the time, it is very
important to be aware that onPause () is the last opportunity you have to clean up and
save state information. The processes that host your Activity classes will not be killed
by the platform until after the onPause () method has completed, but they may be killed
thereafter. This means the system will attempt to run through all of the lifecycle methods
every time, butif resources are spiraling out of control (as determined by the platform),
afire alarm may be sounded and the processes that are hosting activities that are beyond
the onPause () method may be killed at any point. Any time your Activity is moved to
the background, onPause () is called. Before your Activity is completely removed,

Download at Boykma.Com

70

CHAPTER 3 User interfaces

onDestroy () is not guaranteed to have been called (it probably will be called, under
normal circumstances, but not always).

The onPause () method is definitely where you need to save persistent state.
Whether that persistent state is specific to your application (such as user preferences)
or global shared information (such as the contacts database), onPause () is where you
need to make sure all the loose ends are tied up—every time. We will discuss how to
save data in chapter 5, but here the important thing is to know when and where that
needs to happen.

NOTE In addition to persistent state there is one more aspect you should be
familiar with, and that is instance state. Instance state refers to the state of
the Ul itself. The onSave-InstanceState() Activity method is called
when an Activity may be destroyed, so that at a future time the inter-
face state can be restored. This method is used by the platform to handle
the view state processing in the vast majority of cases. This means you
normally don’t have to mess with it. Nevertheless, it is important to know
that it is there and that the Bundle it saves is handed back to the onCre-
ate() method when an Activity is restored. If you need to customize
the view state, you can, by overriding this method, but don’t confuse this
with the more common general lifecycle methods.

Managing activities with lifecycle events in this way, through parent processes the plat-
form controls, allows Android to do the heavy lifting, deciding when things come into
and out of scope, relieving applications of the burden themselves, and ensuring a
level playing field. This is a key aspect of the platform that varies somewhat from many
other application development environments. In order to build robust and responsive
Android applications you have to pay careful attention to the lifecycle.

Now that we have some background in place concerning the Activity lifecycle
and have created our first screen, we will next further investigate views and fill in some
more detail.

Thoughitisabitcliché, itis true thatviews are the building blocks of the Ul of an Android
application. Activities, as we have seen, contain views, and View objects represent ele-
ments on the screen and are responsible for interacting with users through events.

Every Android screen contains a hierarchical tree of View elements. These views
come in a variety of shapes and sizes. Many of the views you will need on a day-to-day
basis are provided for you as part of the platform—basic text elements, input ele-
ments, images, buttons, and the like. In addition, you can create your own composite
and/or custom views when the need arises. Views can be placed into an Activity
(and thus on the screen) either directly in code or through the use of an XML
resource that is later “inflated” at runtime.

In this section we will discuss fundamental aspects of views: the common views that
Android provides, custom views that can be created as needed, layout in relation to
views, and event handling. We won’t address views defined in XML here, because that
will be covered in section 3.3 as part of a larger resources discussion. Here we begin

with the common View elements Android provides by taking a short tour of the API
Download at Boykma.Com

Working with views 71

3.2.1 Exploring common views

Android provides a healthy set of View objects in the android.view package. These
objects range from familiar constructs like the EditText, Spinner, and TextView that
we have already seen in action to more specialized widgets such as AnalogClock, Gal-
lery, DatePicker, TimePicker, and VideoView. For a quick glance at some of the
more eye-catching views, check out the sample page in the Android documentation:
http://code.google.com/android/reference/view-gallery.html.

The class diagram in figure 3.4 provides a high-level snapshot of what the overall
View API looks like. This diagram shows how the specializations fan out and includes
many, but not all, of the View-derived classes.

AnalogClock ViewStub
View 4|

ProgressBar

TextView

ImageView

SurfaceView

7\' EditText
N
IImageButton I | VideoView l
| CompoundButton | | DigitalClock |
RadioButton

ViewGroup

| CheckBox | I CheckedTextView |

I LinearLayout | AbsoluteLayout

| RelativeLayout | FrameLayout

ScaleLayout

TableRow
M
RadioGroup
TabWidget
ZoomControls

Figure 3.4 A class diagram of the Android View API, showing the root View class and specializations
from there; notice that viewGroup classes, such as layouts, are also a type of View.

Download at Boykma.Com

http://code.google.com/android/reference/view-gallery.html

72

CHAPTER 3 User interfaces

As is evident from the diagram in figure 3.4 (which is not comprehensive), the View
API has quite a few classes. ViewGroup, a special subclass of View related to layout, is a
subclass of View, as are other elements such as TextView. Everything is ultimately a
View, even the layout classes (which extend ViewGroup).

Of course, everything that extends View has access to the base class methods. These
methods allow you to perform important Ul-related operations, such as setting the
background, setting the minimum height and width, setting padding, setting and
enabling events (like clickable and focusable), setting layout parameters, and more.
Table 3.2 includes an example of some of the methods available on the root View class.

Table 3.2 A subset of methods in the base Android View API

setBackgroundColor (int color) Set the background color.

setBackgroundDrawable (Drawable d) Set the background draw-
able (image).

setMinimumHeight (int minHeight) Set the minimum height (par-

ent may override).

setMinimumWidth (int minWidth) Set the minimum width (par-
ent may override).

setPadding (int left, int right, int top, int bottom) | Set the padding.

setClickable (boolean c) Set whether or not element
is clickable.

setFocusable (boolean f) Set whether or not element
is focusable.

setOnClickListener (OnClickListener 1) Set listener to fire when click

event occurs.

setOnFocusChangelListener (OnFocusChangeListener 1) | Set listener to fire when
focus event occurs.

setLayoutParams (ViewGroup.LayoutParams 1) Set the LayoutParams
(position, size, and more).

Beyond the base class, each View subclass typically adds a host of refined methods to
further manipulate its respective state, such as what is shown for TextView in table 3.3.
Using the combination of the base class methods with the subtype methods, you
can see that you can set layout, padding, focus, events, gravity, height, width, colors,
and basically everything you might need. Using these methods in code, or their coun-
terpart attributes in the android: namespace in XML when defining views in XML
(something you will see done in section 3.3), is how you manipulate a View element.
Each view element you use has its own path through the API and therefore a particu-
lar set of methods available; for details on all the methods see the Android Javadocs:
http://code.google.com/android /reference/android/view/View.html.

Download at Boykma.Com

http://code.google.com/android/reference/android/view/View.html

Working with views 73

Table 3.3 Further View methods for the TextView subclass

setGravity (int gravity) Set alignment gravity: top, bottom, left, right, and more.
setHeight (int height) Set height dimension.

setWidth (int width) Set width dimension.

setTypeFace (TypeFace face) Set typeface.

setText (CharSequence text) Set text.

When you couple the wide array of classes with the rich set of methods available from
the base View class on down, the Android View API can quickly seem intimidating.
Thankfully, despite the initial impression, many of the concepts involved quickly
become evident, and usage becomes more intuitive as you move from View to View
(because they all are specializations on the same object at the core). So even though
the “747 cockpit” analogy could be applied, once you start working with Android you
should be able to earn your wings fairly quickly.

Though our RestaurantFinder application will not use many of the views listed in
our whirlwind tour here, these are still useful to know about, and many of them will be
used in later examples throughout the book. The next thing we will focus on is a bit
more detail concerning one of the most common nontrivial View elements, specifi-
cally the ListView component.

On the ReviewList Activity of the RestaurantFinder application, shown in fig-
ure 3.2, you can see a different type of View than the simple user inputs and labels we
have used up to this point—this screen presents a scrollable list of choices for the user
to choose from.

This Activity is using a ListView component to display a list of review data that
is obtained from calling the Google Base Atom API using HTTP (we will refer to this
as a “web service,” even though it is not technically SOAP or any other formal stan-
dard). After we make the HTTP call, by appending the user’s criteria to the required
Google Base URL, we will then parse the results with the Simple API for XML (SAX)
and create a List of reviews. The details of XML parsing won’t be our focus
here—that will come in chapter 11—and neither will the use of the network itself,
which is covered in chapter 6, but the views we will build based on the data we get
back will be. The resulting List will be used to populate our screen’s list of items to
choose from.

The code in listing 3.3 shows how we create and use a ListView to represent this
list of items to choose from on an Activity screen.

Download at Boykma.Com

CHAPTER 3 User interfaces

public class ReviewList extends ListActivity { <—@) Extend ListActivity

private static final int MENU CHANGE CRITERIA = Menu.FIRST + 1;
private static final int MENU GET NEXT PAGE = Menu.FIRST;
private static final int NUM_RESULTS PER PAGE = 8;

private TextView empty;
private ProgressDialog progressDialog; 9 Use ReviewAdapter
private ReviewAdapter reviewAdapter;

private List<Review> reviews; <+—@€) Back Adapter with List
private final Handler handler = new Handler () Q“‘;
public void handleMessage (final Message msg) { Use Handler
progressDialog.dismiss () ; for messages
if ((reviews == null) || (reviews.size() == 0)) {
empty.setText ("No Data") ;
} else {

reviewAdapter = new ReviewAdapter (ReviewList.this, reviews) ;
setListAdapter (reviewAdapter) ;

}
}i

@Override

public void onCreate (Bundle savedInstanceState) { U d
? se resourcea-

super.onCreate (savedInstanceState) ;
defined layout

this.setContentView (R.layout.review list) ;

this.empty = (TextView)
findviewById(R.id.empty) ; W Define TextView

ListView listView = getListView() ; for empty

listView.setItemsCanFocus (false) ;

listView.setChoiceMode (ListView.CHOICE MODE SINGLE) ; z:fggzzxes
listView.setEmptyView (this.empty) ;

}

@Override

protected void onResume () {
super.onResume () ;
RestaurantFinderApplication application =
(RestaurantFinderApplication) getApplication() ;
String criteriaCuisine = application.getReviewCriteriaCuisine() ;
String criterialocation = application.getReviewCriteriaLocation() ;

Use Application
for global state

int startFrom = getIntent () .getIntExtra

(
Constants.STARTFROM EXTRA, 1) ; <+—@) Use Intent extra
loadReviews (criteriaLocation,
criteriaCuisine, startFrom) ; <+ Load review data

}

// onCreateOptionsMenu omitted for brevity

The ReviewList Activity extends ListActivity @), which is used to host a List-
View. The default layout of a ListActivity is a full screen, centered list of choices for
the user to select from. A ListView is similar in concept to a Spinner; in fact, they are
both subclasses of AdapterView, as you saw in the class diagram in figure 3.4. This
means that ListView, like Spinner, also uses an Adapter to bind to data. In this case

Download at Boykma.Com

Working with views 75

we are using a custom ReviewAdapter class @. You will learn more about Review-
Adapter in the next section, when we discuss custom views. The important part here is
that we are using an Adapter for our ListView (even though it’s a custom adapter),
and we use a List of Review objects to populate the Adapter @.

Because we don’t yet have the data to populate the list, which we will get from a
web service call in another Thread, we need to include a Handler to allow for fetching
data and updating the UI to occur in separate steps @. Don’t worry too much about
these concepts here, as they will make more sense shortly when we discuss them while
looking at the second half of ReviewList in listing 3.4.

After our ListView and its data are declared, we move on to the typical
onCreate () tasks we have already seen, including using a layout defined in a resources
XML file @. This is significant with respect to ListActivity because a ListView with
the ID name “list” is required if you want to customize the layout, as we have done (the
ID name is in the layout XML file, which you will see in section 3.3.3). If you don’t pro-
vide a layout, you can still use ListActivity and ListView; you just get the system
default. We are also defining an element that will be used to display the message “No
Data” if our List backing our View has no elements @. We also set several specific
properties on the ListView, using its customization methods, such as whether or not
the list items themselves are focusable, how many elements can be selected at a time,
and what View to use when the list is empty @.

After we set up the View elements needed on the Activity, we get the criteria to
make our web service call from the Review object we placed in the Application from
the ReviewCriteria Activity @. Here we also use an Intent extra to store a primitive
int for page number @. We pass all the criteria data (criterialocation, criteria-
Cuisine, and startFrom) into the loadReviews () method), which eventually makes
our web service call to populate our data list. This method, and several others that show
how we deal with items in the list being clicked on, are shown in the second half of the
ReviewList class, in listing 3.4.

) Override onMenultemSelected
@Override

public boolean onMenuItemSelected (int featureId, Menultem item) {
Intent intent = null;
switch (item.getItemId()) {
case MENU GET NEXT PAGE:
intent = new Intent (Constants. INTENT_ACTION_VIEW_LIST) ;
intent.putExtra (Constants.STARTFROM EXTRA,
getIntent () .getIntExtra (Constants.STARTFROM EXTRA, 1)
+ ReviewList .NUM RESULTS PER PAGE) ;
startActivity (intent) ; Increment startFrom
return true; Intent extra
case MENU CHANGE CRITERIA:
intent = new Intent (this, ReviewCriteria.class) ;
startActivity (intent) ;
return true;

Download at Boykma.Com

76

CHAPTER 3 User interfaces

return super.onMenultemSelected (featureId, item);

}

@Override .
protected void onListItemClick (ListView 1, View v, ? Overrlde .
int position, long id) { onListltemClick
RestaurantFinderApplication application =
(RestaurantFinderApplication) getApplication() ;
application.setCurrentReview(this.reviews.get (position)) ;

Intent intent = new Intent (Constants.INTENT ACTION VIEW DETAIL) ;
intent.putExtra (Constants.STARTFROM EXTRA, getIntent () .getIntExtra (

Constants.STARTFROM _EXTRA, 1)) ;
startActivity (intent); Pass startFrom Get Application
} extra value object and set
state

private void loadReviews (String location, String cuisine,

int startFrom) .
{ Create loadReviews
final ReviewFetcher rf = new ReviewFetcher (location, method

cuisine, “ALL”, startFrom,

ReviewList.NUM_RESULTS_PER PAGE) ; Instantiate
this.progressDialog = !leweertcher
ProgressDialog.show(this, " Working...", instance
" Retrieving reviews", true, false); % Show P Dial
oW Frogressbialog
new Thread() { Make web
public void run() { service call
reviews = rf.getReviews () ;
handler.sendEmptyMessage (0) ;
} Update handler

}.start () ;
}
}

This Activity has a menu item that allows the user to get the next page of results or
change the list criteria. To support this we have to implement the onMenulItemSe-
lected method @. If the MENU GET NEXT PAGE menu item is selected, we then define
a new intent to reload the screen with an incremented startFrom value (and we use
the getExtras () and putExtras () intent methods to do this) @.

After the menu-related methods, we see a special onListItemClick () method O.
This method is used to respond when one of the list items in a ListView is clicked.
Here we use the position of the clicked item to reference the particular Review item
the user chose, and we set this into the Application for later usage in the Review-
Detail Activity (which we will begin to implement in section 3.3) @. After we have
the data set, we then call the next Activity (including the startFrom extra) @.

Lastly in the ReviewList class we have the loadReviews() method, which,
strangely enough, loads reviews @. This method is significant for several reasons. First
it sets up the ReviewFetcher class instance, which will be used to call out to the
Google Base API over the network and return a List of Review objects @ (again, net-
working details are in chapter 6). Then it invokes the ProgressDialog.show ()
method to show the user we are retrieving data @. Finally it sets up a new Thread @,
within which the ReviewFetcher is used, and the earlier Handler we saw in the first
half of ReviewList is sent an empty message (0. If you refer back to when the Handler

Download at Boykma.Com

Working with views 77

was established, in listing 3.3, you can see that is where, when the message is received,
we dismiss the ProgressDialog, populate the Adapter our ListView is using, and call
setListAdapter () to update the UL The setListAdapter ()method will iterate the
Adapter it is handed and display a returned View for every item.

With the Activity created and set up and the Handler being used to update the
Adapter with data, we now have a second screen in our application. The next thing we
need to do is fill in some of the gaps surrounding working with handlers and different
threads. These concepts are not view-specific but are worth a small detour at this point
because you will want to use these classes when trying to perform tasks related to
retrieving and manipulating data needed for the UL

The Handler is the Swiss army knife of messaging and scheduling operations for
Android. This class allows you to queue tasks to be run on different threads and allows
you schedule tasks using Message and Runnable objects.

The Android platform monitors the responsiveness of applications and kills those
that are considered nonresponsive. An Application Not Responding (ANR) event is de-
fined as no response to a user input for five seconds. (A user touches the screen, or press-
es a key, or the like, and your application must respond). So does this mean your code
always has to complete within five seconds? No, of course not, but the main UI thread
does have to respond within that time frame. To keep the main UI thread snappy, any
long-running tasks, such as retrieving data over the network or getting a large amount
of data from a database or complicated calcula-

tions, should be performed in a separate thread. MainUIThread

Getting tasks into a separate thread, then (HandlerThread)
getting results back to the main UI thread is Handler myHandler = new Handler() {
public void handleMessage (Message m) {
where the Handler, and related classes, come updateUIHere();

. }
into play. When a Handler is created, it is associ- I3

ated with a Looper. A Looper is a class that con- new Thread() {

tains a MessageQueue and processes Message or puzgcsﬁfc(‘);mnm

Runnable objects that are sent via the Handler. “B”fﬁiligi 0 nzwsé':igﬂg{obtainMessageO;
In the Handler usage, shown in listings 3.3 2;,‘;“;%2{;%5”“ vl

and 3.4, we created a Handler with a no-argu- myHandler.sendMessage(m);

ment constructor. With this approach, the Han- hstart();

dler is automatically associated with the Looper Looper

of the current running thread, typically the main

Ul thread. The main Ul thread, which is created [MessageQueue]

by the process of the running application, is an
instance of a HandlerThread, which is basically an

Figure 3.5 Usage of the Handler
class with separate threads, and the
relationship of HandlerThread,
ment are depicted in the diagram in figure 3.5. Looper, and MessageQueue

Android Thread specialization that provides a
Looper. The key parts involved in this arrange-

Download at Boykma.Com

78

CHAPTER 3 User interfaces

When implementing a Handler you will have to provide a handleMessage (Message
m) method. This method is the hook that lets you pass messages. When you create a
new Thread, you can then call one of several sendMessage methods on Handler from
within that thread’s run method, as our examples and diagram demonstrate. Calling
sendMessage puts your message on the MessageQueue, which the Looper maintains.

Along with sending messages into handlers, you can also send Runnable objects
directly, and you can schedule things to be run at different times in the future. You
send messages and post runnables. Each of these concepts supports methods such as
sendEmptyMessage (int what), which we have already used, and the counterparts
sendEmptyMessageAtTime (int what, long time) and sendEmptyMessageDelayed (int
what, long delay). Once itis in the queue, your message is processed as soon as pos-
sible (unless you schedule or delay it using the respective send or post method).

You will see more of Handler and Message in other examples throughout the book,
and we will cover more detail in some instances, but the main point to remember
when you see these classes is that they are used to communicate between threads and
for scheduling.

Getting back to our RestaurantFinder application and more directly view-oriented
topics, we next need to elaborate on the ReviewAdapter our RestaurantFinder
ReviewList screen now uses, after it is populated with data from a Message. This
adapter returns a custom View object for each data element it processes.

Though you can often get away with simply using the views that are provided with
Android, there may also be situations, like the one we are now facing, where you need
a custom view to display your own object in a unique way.

In the ReviewList screen we used an Adapter of type ReviewAdapter to back our
ListView. This is a custom Adapter that contains a custom View object, ReviewList-
View. A ReviewListView is what our ReviewList Activity displays for every row of
data it contains. The Adapter and View are shown in listing 3.5.

public class ReviewAdapter extends BaseAdapter { <l—o Extend BaseAdapter

private final Context context; Include Contextand
private final List<Review> reviews; List <Review>

public ReviewAdapter (Context context, List<Reviews> reviews) {
this.context = context;
this.reviews = reviews;

}

@override ﬁ Override basic
public int getCount () { Adapter methods

return this.reviews.size() ;

@override £ Override Adapter
public Object getItem(int position) { getView

return this.reviews.get (position) ;

Download at Boykma.Com

Working with views 79

@Override

pubi.l;:]];ing g?tl.tin_lld(lnt position) { Override basic OAv;r”tde
eturn position; Adapter methods apter

1 getView

@Override

public View getView(int position, View convertView, ViewGroup parent) {
Review review = this.reviews.get (position) ;
return new ReviewListView(this.context, review.name, review.rating) ;

}

private final class ReviewListView extends LinearLayout { Define
private TextView name; custominner
private TextView rating; View class

public ReviewListView (Context context, String name, String rating) {

super (context) ;
setOrientation (LinearLayout.VERTICAL) ;

LinearLayout .LayoutParams params = new LinearLayout .LayoutParams (
ViewGroup.LayoutParams.WRAP CONTENT,
ViewGroup.LayoutParams . WRAP CONTENT) ; <1—G Set layout in code

params.setMargins (5, 3, 5, 0);

this.name = new TextView (context) ;
this.name.setText (name) ;
this.name.setTextSize (16f) ; Instantiate

this.name.setTextColor (Color.WHITE) ; TextView
this.addview(this.name, params) ; members
this.rating = new TextView (context) ;

this.rating.setText (rating) ;

this.rating.setTextSize (16f) ;

this.rating.setTextColor (Color.GRAY) ;
this.addview(this.rating, params) ; <@ Add TextView to tree

}

The first thing to note in ReviewAdapter is that it extends BaseAdapter @. Base-
Adapter is an Adapter implementation that provides basic event-handling support.
Adapter itself is an interface in the android.Widget package that provides a way to
bind data to a View with some common methods. This is often used with collections of
data, such as we saw with Spinner and ArrayAdapter in listing 3.1. Another common
usage is with a CursorAdapter, which returns results from a database (something we
will see in chapter 5). Here we are creating our own Adapter, because we want it to
return a custom View.

Our ReviewAdapter class accepts two parameters in the constructor and sets those
values to two simple member objects: Context and List<Review> @. Then this class
goes on to implement the straightforward required Adapter interface methods that re-
turn a count, an item, and an ID (we just use the position in the collection as the ID) ©.
The next Adapter method we have to implement is the important one, getView (). This
is where the Adapter will return any View we create for a particular item in the collection
of data it is supporting. Within this method we get a particular Review object based on
the position/ID, and then we create an instance of a custom ReviewListView object to
return as the View @.

Download at Boykma.Com

80

CHAPTER 3 User interfaces

ReviewListView itself, which extends LinearLayout (something you will learn
more about in section 3.2.4), is an inner class inside ReviewAdapter (since we will
never use it outside of returning a view from ReviewAdapter) @. Within it we see an
example of setting layout and View details in code, rather than in XML. Here we set
the orientation, parameters, and margin for our layout 0. Then we populate the sim-
ple TextView objects that will be children of our new View and represent data @.
Once these are set up via code, we add them to the parent container (in this case the
parent is our custom class ReviewListView) @. This is where the data binding hap-
pens—the bridge to the View from data. Another important thing to note about this is
that we have created not only a custom View but a composite one as well. That is, we
are using simple existing View objects in a particular layout to construct a new type of
reusable View, which shows the detail of a selected Review object on screen, as shown
in figure 3.2.

Our ReviewListView object, while custom, is admittedly (and intentionally) fairly
simple. In many cases you will be able to create custom views by combining existing
views in this manner. Nevertheless, you should also be aware that you can go deeper
and extend the View class itself. Then you can implement core methods as needed.
Using this approach you have access to the lifecycle methods of a View (notan Activ-
ity as we have already covered, but an individual View). These include onMeasure (),
onLayout (), onDraw (), onVisibilityChanged (), and others. Though we don’t need
that level of control here, you should be aware that extending View gives you a great
deal of power to create custom components.

Now that you have seen how we get the data for our reviews and what the Adapter
and custom View we are using look like, the next thing we need to do is take a closer
look at a few more aspects of views, including layout.

One of the most significant aspects of creating your UI and designing your screens is
understanding layout. In Android, screen layout is defined in terms of ViewGroup and
LayoutParams objects. ViewGroup is a View that contains other views (has children)
and also defines and provides access to the layout.

On every screen all the views are placed in a hierarchical tree, so every element has
children, and somewhere at the root is a ViewGroup. All the views on the screen sup-
port a host of attributes that pertain to background color, color, and so on. We
touched on many of these attributes in section 3.2.2 when we discussed the methods
on the View class. Dimensions—width and height—and other properties such as rela-
tive or absolute placement and margins are based on the LayoutParams a view
requests and what the parent—based on its type, its own dimensions, and the dimen-
sions of all of its children—can accommodate.

The main ViewGroup classes are shown in the class diagram you saw in figure 3.4.
The diagram in figure 3.6 expands on this class structure to show the specific Layout -
Params inner classes of the view groups and layout properties each type provides.

Download at Boykma.Com

Working with views 81

As figure 3.6 shows, the base ViewGroup.LayoutParams class are height and
width. From there an AbsoluteLayout type with AbsoluteLayout.LayoutParams
allows you to specify the exact X and Y coordinates of the child View objects
placed within.

As an alternative to absolute layout, you can use the FrameLayout, LinearLayout,
and RelativeLayout subtypes, which all support variations of LayoutParams that are
derived from ViewGroup.MarginLayoutParams. A FrameLayout is intended to simply
frame one child element, such as an image. A FrameLayout does support multiple
children, but all the items are pinned to the top left—meaning they will overlap each
other in a stack. A LinearLayout aligns child elements in either a horizontal or a ver-
tical line. Recall that we used a LinearLayout in code in our ReviewListView in list-
ing 3.5. There we created our View and its LayoutParams directly in code. And, in our
previous Activity examples, we used a RelativeLayout in our XML layout files that
was inflated into our code (again, we will cover XML resources in detail in section 3.3).
A RelativeLayout specifies child elements relative to each other (above, below,
toLeftOf, and so on).

ViewGroup

ViewGroup.LayoutParams

height
width \

ViewGroup.MarginLayoutParams
marginBottom

marginLeft
; marginRight

marginTop
FrameLayout AbsoluteLayout
FrameLayout.LayoutParams AbsoluteLayout.LayoutParams
gravity X (position)
y (position)

LinearLayout

LinearLayout.LayoutParams
gravity
weight

RelativeLayout

RelativeLayout.LayoutParams
above

below

alignLeft

alignRight

toLeftOf

toRightOf Figure3.6 CommonViewGroup
centerHorizontal .

centerVertical classes with LayoutParams and

properties provided

Download at Boykma.Com

82

CHAPTER 3 User interfaces

So the container is a ViewGroup, and a ViewGroup supports a particular type of Lay-
outParams. Child View elements are then added to the container and must fit into the
layout specified by their parents. A key concept to grasp is that even though a child
View has to lay itself out based on its parents’ LayoutParams, it can also specify a differ-
ent layout for its own children. This design creates a very flexible palette upon which
you can construct just about any type of screen you desire.

For each dimension of the layout a view needs to provide, based on the Layout-
Params of its parents, it specifies one of three values:

= An exact number
= FILL PARENT
u WRAP_CONTENT

The FILL_PARENT constant means take up as much space in that dimension as the par-
ent does (subtracting padding). WRAP_CONTENT means take up only as much space as is
needed for the content within (adding padding). A child View therefore requests a size,
and the parent makes a decision. In this case, unlike what happens sometimes with
actual kids, the children have to listen—they have no choice, and they can’t talk back.

Child elements do keep track of what size they initially asked to be, in case layout is
recalculated when things are added or removed, but they cannot force a particular
size. Because of this View elements have two sets of dimensions, the size and width
they want to take up (getMeasuredWidth() and getMeasuredHeight ()) and the
actual size they end up after a parent’s decision (getWidth () and getHeight ()).

Layout takes place in a two-step process: first measurements are taken, using the
LayoutParams, then items are placed on the screen. Components are drawn to the
screen in the order they are found in the layout tree: parents first, then children (par-
ents end up behind children, if they overlap in positioning).

Layout is a big part of understanding screen design with Android. Along with plac-
ing your View elements on the screen, you need to have a good grasp of focus and
event handling in order to build effective applications.

Focus is like a game of tag; one and only one component on the screen is always “it.”
All devices with Uls support this concept. When you are turning the pages of a book,
your focus is on one particular page (or even word or letter) at a time. Computer
interfaces are no different. Though there may be many different windows and widgets
on a particular screen, only one has the current focus and can respond to user input.
An event, such as movement of the mouse, a mouse click, or keyboard press, may trig-
ger the focus to shift to another component.

In Android focus is handled for you by the platform a majority of the time. When a
user selects an Activity, it is invoked and the focus is set to the foreground View.
Internal Android algorithms then determine where the focus should go next (who
should be tagged) based on events (buttons being clicked, menus selected, services
returning callbacks, and so on). You can override the default behavior and provide

Download at Boykma.Com

Working with views 83

hints about where specifically you want the focus to go using the following View class
methods (or their counterparts in XML):

® nextFocusDown
m nextFocusLeft
m nextFocusRight

® nextFocusUp

Views can also indicate a particular focus type, DEFAULT_FOCUS or WEAK_FOCUS, to set
the priority of focus they desire, themselves (default) versus their descendants (weak).
In addition to hints, such as UP, DOWN, and WEAK, you can use the View.requestFocus ()
method directly, if need be, to indicate that focus should be set to a particular View at
a given time. Manipulating the focus manually should be the exception rather than
the rule (the platform logic generally does what you would expect).

Focus gets changed based on event-handling logic using the OnFocusChange-
Listener object and related setOnFocusChangedListener () method. This takes us
into the world of event handling in general.

Events are used for changing the focus and for many other actions as well. We have
already implemented several onClickListener () methods for buttons in listing 3.2.
Those OnClickListener instances were connected to button presses. The events they
were indicating were “Hey, somebody pressed me.” This is exactly the same pro-
cess that focus events go through when announcing or responding to OnFocus-
Change events.

Events have two halves: the component raising the event and the component (or
components) that responds to the event. These two halves are variously known as
Observable and Observer in design pattern terms (or sometimes subject and
observer). Figure 3.7 is a class diagram of the relationships in this pattern.

An Observable component provides a way for Observer instances to register.
When an event occurs, the Observable notifies all the observers that something has
taken place. The observers can then respond to that notification however they see fit.
Interfaces are typically used for the various types of events in a particular API.

Observable (Source)

observerCollection : Collection<Observer> (Listeners) 1 Observer
registerObserver() : void 0.. (Listener)
unregisterObserver(): void notify() : void

notifyObserver(): void

Observerimpl
Observeablelmpl

Figure 3.7 A class diagram depicting the Observer design
pattern. Each Observable component has zero to many
Observers, which can be notified of changes when
necessary.

For observer in
observerCollection:
notifyObserver()

Download at Boykma.Com

84

CHAPTER 3 User interfaces

With regard to an Android Button the two halves are represented as follows:

m Observable—Button.setOnClickListener (OnClickListener listener)

m Observer—listener.onClick (View v)

This pattern comes into play in terms of Android View items in that many things are
Observable and allow other components to attach and listen for events. For example,
most of the View class methods that begin with on are related to events:
onFocusChanged (), onSizeChanged (), onLayout (), onTouchEvent (), and the like.
Similarly, the Activity lifecycle methods we have already discussed—onCreate (),
onFreeze (), and such—are also event-related (on a different level).

Events happen in the UI and all over the platform. For example, when an incom-
ing phone call occurs or a GPS-based location changes based on physical move-
ment, many different reactions may occur down the line; many components may
want to be notified when the phone rings or when the location changes (not just
one and not just the UI). Views support events on many levels. When an interface
event comes in (a user pressed a button, or scrolled, or selected a portion of a win-
dow), it is dispatched to the appropriate view. In general, click events, keyboard
events, touch events, and focus events are the main types of events you will deal with
in the UL

One very important aspect of the View in Android is that the interface is single-
threaded. If you are calling a method on a View, you have to be on the UI thread. This
is, again, why we used a Handler in listing 3.3—to get data outside of the UI thread
and notify the UI thread to update the View via the setMessage () event.

We are admittedly discussing events here on a fairly broad level, to make sure that
the overarching concepts are clear. We do this because we cannot cover all of the
event methods in the Android APIs in one chapter. Yet you will see events in examples
throughout the book and in your day-to-day experiences with the platform. We will
call out event examples when necessary, and we will cover them in more detail as we
come to specific examples.

Our coverage of events in general, and how they relate to layout, rounds out the
majority of our discussion of views, but we still have one notable related concept to
tackle, resources. Views are closely related to resources, but they also go beyond the
Ul In the next section we will address all the aspects of resources, including XML-
defined views.

We have mentioned Android resources in several areas up to now, and they were ini-
tially introduced in chapter 1. Here we will revisit resources with more depth in order
to expand on this important topic and to begin completing the third and final Activ-
ity in RestaurantFinder—the ReviewDetail screen.

When you begin working with Android you will quickly notice many references to
a class named R. This class was introduced in chapter 1, and we have used it in our pre-
vious Activity examples in this chapter. This is the Android resources reference

Download at Boykma.Com

Using resources 85

class. Resources are non-code items that are included with your project automatically
by the platform.

To begin looking at resources we will first discuss how they are classified into types
in Android, and then we will work on examples of each type.

In source, resources are kept in the res directory and can be one of several types:

= 7es/anim—XML representations of frame-by-frame animations

» res/drawable—.png, .9.png, and .jpg images

= 7yes/layout—XML representations of View objects

» res/values—XML representations of strings, colors, styles, dimensions, and arrays
m yes/xml—User-defined XML files (that are also compiled into a binary form)

= 7es/raw—Arbitrary and uncompiled files that can be added

Resources are treated specially in Android because they are typically compiled into an
efficient binary type (with the noted exception of items that are already binary and
the raw type, which is not compiled). Animations, layouts and views, string and color
values, and arrays can all be defined in an XML format on the platform. These XML
resources are then processed by the aapt tool, which we met in chapter 2, and com-
piled. Once resources are in compiled form they are accessible in Java through the
automatically generated R class.

The first portion of the ReviewDetail Activity, shown in listing 3.6, reuses many of
the Activity tenets we have already learned and uses several subcomponents that
come from R.java, the Android resources class.

public class ReviewDetail extends Activity {

private static final int MENU CALL REVIEW = Menu.FIRST + 2;
private static final int MENU MAP REVIEW = Menu.FIRST + 1;
private static final int MENU WEB REVIEW = Menu.FIRST;

private String imageLink;

private String link;

private TextView location;

private TextView name; Define inflatable
private TextView phone; View items
private TextView rating;

private TextView review;

private ImageView reviewImage; J Use Handler
private Handler handler = new Handler() { to get image
public void handleMessage (Message msg) {
if ((imageLink != null) && !imageLink.equals("")) {

try {
URL url = new URL (imageLink) ;
URLConnection conn = url.openConnection() ;
conn.connect () ;
BufferedInputStream bis = new
BufferedInputStream(conn.getInputStream()) ;

Download at Boykma.Com

86

CHAPTER 3 User interfaces

Bitmap bm = BitmapFactory.decodeStream(bis) ;
bis.close() ;
reviewImage.setImageBitmap (bm) ;

} catch (IOException e) {
// log and or handle here

} else {
reviewImage.setImageResource (R.drawable.no review_ image) ;

}
}i

@Override
public void onCreate (Bundle savedInstanceState) ({

super.onCreate (savedInstanceState) ; 43 Set Iayout using

this.setContentView (R.layout.review detail) ; setContentView()
this.name =

(TextView) findViewById(R.id.name detail) ;
this.rating =

(TextView)
this.location =

(TextView) findViewById(R.id.location detail); Inflate
this.phone = views using

(TextView) findViewById(R.id.phone detail) ; findViewByld()
this.review =

(TextView) findViewById(R.id.review detail) ;
this.reviewImage =

(ImageView) findviewById(R.id.review_ image) ;

findviewById(R.id.rating detail) ;

RestaurantFinderApplication application =
(RestaurantFinderApplication) getApplication() ;
Review currentReview = application.getCurrentReview() ;

this.link = currentReview.link;

this.imageLink = currentReview.imageLink;
this.name.setText (currentReview.name) ;
this.rating.setText (currentReview.rating) ;
this.location.setText (currentReview.location) ;
this.review.setText (currentReview.content) ;

if ((currentReview.phone != null) && !currentReview.phone.equals("")) {
this.phone.setText (currentReview.phone) ;

} else {
this.phone.setText ("NA") ;

}

}

@Override
public boolean onCreateOptionsMenu (Menu menu) {
super.onCreateOptionsMenu (menu) ;
menu.add (0, ReviewDetail.MENU WEB REVIEW, O,
R.string.menu web review) .setIcon (
android.R.drawable.ic menu info details) ;
menu.add (0, ReviewDetail .MENU MAP REVIEW, 1,
R.string.menu map review) .setIcon (
android.R.drawable.ic_menu mapmode) ; Use String
menu.add (0, ReviewDetail.MENU CALL REVIEW, 2, and Drawable
R.string.menu call_ review) .setIcon(resources
android.R.drawable.ic menu call) ;
return true;

. remainder of this class is in Chapter 4, when we discuss Intents

Download at Boykma.Com

Using resources 87

In the ReviewDetail class we are first defining View components that we will later ref-
erence from resources @. From there we see a Handler that is used to perform a net-
work call to populate an ImageView based on a URL. This doesn’t relate to resources but
is included here for completeness. Don’t worry too much about the details of this here,
as it will be covered more when we specifically discuss networking in chapter 5 @. After
the Handler, we set the layout and View tree using setContentView (R.layout.review_
detail) @. This maps to an XML layout file at src/res/layout/review_detail.xml. Next
we also reference some of the View objects in the layout file directly through resources
and corresponding IDs @.

Views that are defined in XML are inflated by parsing the XML and injecting the
corresponding code to create the objects for you. This is handled automatically by the
platform. All of the View and LayoutParams methods we have discussed previously
have counterpart attributes in the XML format. This inflation approach is one of the
most important aspects of View-related resources, and it makes them very convenient
to use and reuse. We will examine the layout file we are referring to here and the spe-
cific views it contains more closely in the next section.

You reference resources in code, such as we are here, through the automatically
generated R class. The R class is made up of static inner classes (one for each resource
type) that hold references to all of your resources in the form of an int value. This
value is a constant pointer to an object file through a resource table (which is con-
tained in a special file the aapt tool creates and the R file utilizes).

The last reference to resources in listing 3.6 is for the creation of our menu items 0.
For each of these we are referencing a String for text from our own local resources, and
we are also assigning an icon from the android.R.drawable resources namespace. You
can qualify resources in this way and reuse the platform drawables: icons, images, bor-
ders, backgrounds, and so on. You will likely want to customize much of your own appli-
cations and provide your own drawable resources, which you can do, but the platform
resources are also available if you need them (and they are arguably the better choice
in terms of consistency for the user, if you are calling out to well-defined actions as we
are here: map, phone call, and web page).

We will cover how all the different resource types are handled and where they are
placed in source in the next several sections. The first types of resources we will look at
more closely are those of layouts and views.

As we have noted in several earlier sections, views and layout can be, and often are,
defined in XML rather than in Java code. Defining views and layout as resources in this
way makes them easier to work with, decoupled from the code, and in some cases
reusable in different contexts.

View resource files are placed in the res/layout source directory. The root of these
XML files is usually one of the ViewGroup layout subclasses we have already discussed:
RelativeLayout, LinearLayout, FrameLayout, and so on. Within these root elements
are child XML elements that represent the view/layout tree.

Download at Boykma.Com

88

CHAPTER 3 User interfaces

An important thing to understand here is that resources in the res/layout direc-
tory don’t have to be layouts. You can define a single TextView in a layout file the same
way you might define an entire tree starting from an AbsoluteLayout. Yes, this makes
the layout name and path potentially confusing, but that is how it is set up. (It might
make more sense to have separate res/layout and res/view directories, but that might
be confusing too, so just keep in mind that res/layout is useful for more than layout.)

You can have as many XML layout/view files as needed, all defined in the res/lay-
out directory. Each View is then referenced in code based on the type and ID. Our lay-
out file for the ReviewDetail screen, review_detail.xml, which is shown in listing 3.7,
is referenced in the Activity code as R.layout.review_detail—which is a pointer
to the RelativeLayout parent View objectin the file.

<?xml version="1.0" encoding="utf-8"?> !. Define root View element
<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent" Define
android:layout height="fill parent" LayoutParams
android:gravity="center horizontal"
android:padding="10px" Define View
android.setVerticalScrollBarEnabled="true" a parameters in XML
>

<ImageView android:id="@+id/review_image" Include child
android:layout width="100px" element with ID

android:layout_height="100px"
android:layout marginLeft="10px"
android:layout_marginBottom="5px" />

<TextView android:id="@+id/name detail"

android:layout width="fill parent”
- — J Reference another

resource

android:layout height="wrap content"
android:layout below='"@id/review image"
android:layout marginLeft="10px"
android:layout marginBottom="5px"

=n / n
style="@style/intro blurb" /> <F44442’ Reference a
<TextView android:id="@+id/rating label detail" style for a View

android:layout width="wrap content”
android:layout height="wrap content"
android:layout_below="@id/name_detail"
android:layout marginLeft="10px"
android:layout_marginBottom="5px"
style="@style/label"
android:text="@string/rating label" />

remainder of file omitted for brevity
</RelativeLayout>

In this file we are using a RelativeLayout @. This is the ViewGroup at the root of the
View tree. LayoutParams are then also defined in XML using the android:
layout [attribute] convention (where [attribute] refers to a layout attribute) @.
Along with layout, other View-related attributes can also be defined in XML with

Download at Boykma.Com

Using resources 89

counterpart XML attributes to the methods available in code, such as android:
padding, which is analogous to setPadding () @.

After the RelativeLayout parent itself is defined, the child View elements are
added. Here we are using an ImageView and multiple TextView components. Each of
the components is given an ID using the form android:id="@+id/[name] " @. When
an ID is established in this manner, an int reference is defined in the resource table
and named with the specified name. This allows other components to reference the
ID by the friendly textual name.

Once views are defined as resources, the Activity method findviewById () can
be used to obtain a reference to a particular View using the name. That View can then
be manipulated in code. For example, in listing 3.6 we grabbed the rating TextView
as follows:

rating = (TextView) findViewById(R.id.rating detail) .

This inflates and hands off the rating detail element we saw in listing 3.7. Note that
child views of layout files end up as id type in R.java (they are not R.layout.name;
rather they are R.id.name, even though they are required to be placed in the res/lay-
out directory).

The properties for the View object are all defined in XML, and this includes the
layout. Because we are using a RelativeLayout we use attributes that place one View
relative to another, such as below or toRightOf. This is done with the android:
layout_below="@id/ [name] syntax @. The @id syntax is a way to reference other
resource items from within a current resource file. Using this approach you can refer-
ence other elements defined in the file you are currently working on or other ele-
ments defined in other resource files.

Some of our views represent labels, which are shown on the screen as is and are
not manipulated in code, such as rating label detail. Others we will populate at
runtime; these don’t have a text value set, such as name detail. The elements that
we do know the values of, the labels, are defined with references to external-
ized strings.

The same approach is applied with regard to styles, using the syntax
style="estyle/ [stylename] " @. Strings, styles, and colors are themselves defined as
resources in another type of resource file.

It is fairly common practice in the programming world to externalize string literals
from code. In Java this is done with a ResourceBundle or a properties file. Externaliz-
ing references to strings in this way allows the value of a component to be stored and
updated separately from the component itself, away from code.

Android includes support for values resources that are subdivided into several
groups: animations, arrays, styles, strings, dimensions, and colors. Each of these items
is defined in a specific XML format and made available in code as references from the

Download at Boykma.Com

90

CHAPTER 3 User interfaces

R class, just like layouts, views, and drawables. For the RestaurantFinder application we
are using externalized strings, as shown in listing 3.8, strings.xml.

<?xml version="1.0" encoding="utf-8"?>

<resources>
<string name="app name criteria"sRestaurantFinder - Criteria</strings>
<string name="app name reviews"s>RestaurantFinder - Reviews</strings>
<string name="app name review">RestaurantFinder - Review</strings
<string name="app short name ">Restaurants</string>

Using a string
element with a
name attribute

<string name="menu get_reviews">Get reviews</string>
<string name="menu web review">Get full review</strings>
<string name="menu map review"sMap location</string>
<string name="menu call review">Call restaurant</strings
<string name="menu_ change criteria">Change review criteria</string>
<string name="menu get next_ page">Get next page of results</strings>

<string name="intro blurb criteria"sEnter review criteria</strings>
<string name="intro blurb detail"s>Review details</strings>

. remainder omitted for brevity

</resources>

As is evident from the strings.xml example, this is very straightforward. This file uses a
<string> element with a name attribute @ for each string value you need. We have
used this file for the application name, menu buttons, labels, and alert validation mes-
sages. This format is known as simple value in Android terms. This file is placed in
source at the res/values/strings.xml location. In addition to strings, colors and dimen-
sions can be defined in the same way.

Dimensions are placed in dimens.xml and defined with the <dimen> element:
<dimen name=dimen name>dimen value</dimen>. Dimensions can be expressed in
any of the following units:

= pixels (px)

= inches (in)

= millimeters (mm)

= points (pt)

= density-independent pixels (dp)
= scale-independent pixels (sp)

Colors can be defined in colors.xml and are defined with the <color> element: <color
name=color_names>#color_value</colors>. Colors values are expressed in RGB codes.
Color and dimension files are also placed in the res/values source location.

Although we haven’t defined separate colors and dimensions for the Restaurant-
Finder application, we are using several styles, which we referenced in listing 3.7. The
style definitions are shown in listing 3.9. This is where we move beyond a simple value
layout to a specific style XML structure (although styles are still placed in source in the
res/values directory, which can be confusing).

Download at Boykma.Com

Using resources 91

<?xml version="1.0" encoding="utf-8"?>
<resources> J Use a <style> element
<style name="intro blurb">
<item name="android:textSize">22sp</item>
<item name="android:textColor">#ee7620</item>
<item name="android:textStyle"s>bold</item>
</style>

Use an
<item> element

<style name="label">
<item name="android:textSize">18sp</item>
<item name="android:textColor">#ffffff</item>
</style>

<style name="edit text"s
<item name="android:textSize">16sp</item>
<item name="android:textColor">#000000</item>
</style>

. remainder of file omitted for brevity

</resources>

The Android styles approach is a similar concept to using Cascading Style Sheets
(CSS) with HTML. Styles are defined in styles.xml and then referenced from other
resources or code. Each <style> element @ has one or more <items children that
define a single setting 0. Styles are made up of the various View settings: sizes, colors,
margins, and such. Styles are very helpful because they facilitate easy reuse and the
ability to make changes in one place. Styles are applied in layout XML files by associat-
ing a style name with a particular View component, such as style="@style/
intro blurb" (note that in this case style is not prefixed with the android:
namespace; it is a custom local style and not one provided by the platform).

Styles can be taken one step further and used as themes. While a style refers to a
set of attributes applied to a single View element, themes refer to a set of attributes
being applied to an entire screen. Themes can be defined in exactly the same <style>
and <item> structure as styles are. To apply a theme you simply associate a style with
an entire Activity, such as: android:theme="@android:style/ [stylename]".

Along with styles and themes, Android supports a specific XML structure for defin-
ing arrays as a resource as well. Arrays are placed in source in res/values/arrays.xml
and are helpful for defining collections of constant values, such as the cuisines we
used to pass to our ArrayAdapter back in listing 3.1. Listing 3.10 shows how these
arrays are defined in XML.

<?xml version="1.0" encoding="utf-8"?>

<resources>
<array name="cuisines"> <@ Define <array> elements
<item>ANY</item>

<item>American</item> % Define array <item> elements

<item>Barbeque</item>
<item>Chinese</item>
<item>French</item>

Download at Boykma.Com

92

CHAPTER 3 User interfaces

<item>German</item>
<item>Indian</items>
<item>Italian</item>
<itemsMexican</item>
<item>Thai</item>
<item>Vegetarian</item>
<item>Kosher</items>

</array>
</resources>
Arrays are defined as resources using an <array> element with a name attribute @ and
include any number of <item> child elements @ to define each array member. You
can access arrays in code using the syntax shown in listing 3.1: String[] ratings =
getResources () .getStringArray (R.array.ratings).

Raw files and XML are also supported through resources. Using the res/raw and
res/xml directories, respectively, you can package these file types with your applica-
tion and access them through either Resources.openRawResource (int id) or
Resources.getXml (int id).

Going past simple values for strings, colors, and dimensions and more involved but
still straightforward structures for styles, arrays, raw files, and raw XML, the next type

of resources we need to explore are animations.

Animations are more complicated than other Android resources but are also the most
visually impressive. Android allows you to define animations that can rotate, fade,
move, or stretch graphics or text. While you don’t want to go overboard with a con-
stantly blinking animated shovel, an initial splash or occasional subtle animated effect
can really enhance your UL

Animation XML files are placed in the res/anim source directory. There can be
more than one anim file, and, as with layouts, you reference the respective animation
you want by name/id. Android supports four types of animations:

® <alpha>—Defines fading, from 0.0 to 1.0 (0.0 being transparent)
® <scale>—Defines sizing, X and Y (1.0 being no change)

m <translate>—Defines motion, X and Y (percentage or absolute)
» <rotate>—Defines rotation, pivot from X and Y (degrees)

In addition, Android provides several attributes that can be used with any animation type:

» duration—Duration in milliseconds
m startOffset—Offset start time in milliseconds

m interpolator—Used to define a velocity curve for speed of animation

Listing 3.11 shows a very simple animation that can be used to scale a View.

<?xml version="1.0" encoding="utf-8"?> Use <scale> animatio:j
<scale xmlns:android="http://schemas.android.com/apk/res/android"

Download at Boykma.Com

Understanding the AndroidManifest file 93

android: fromXScale="0.5"
android:toXScale="2.0"
android: fromyYScale="0.5"
android:toYScale="2.0"
android:pivotX="50%"
android:pivotY="50%"
android:startOffset="700"
android:duration="400"
android:fillBefore="false" />
In code you can reference and use this animation with any View object (TextView, for

example) as follows:
view.startAnimation (AnimationUtils.loadAnimation (this, R.anim.scaler)) ;.

This will scale @ the view element up in size on both the Xand Y axes. Though we do
not have any animations in the RestaurantFinder sample application by default, to see
this work you can simply add the startAnimation method to any view element in the
code and reload the application. Animations can come in handy, so you should be aware
of them. We will cover animations and other graphics topics in detail in chapter 9.

With our journey through Android resources now complete, we next need to
address the final aspect of RestaurantFinder we have yet to cover, the AndroidMani-
fest.xml manifest file, which is required for every Android application.

As you learned in chapter 1, Android requires a manifest file for every applica-
tion—AndroidManifest.xml. This file, which is placed in the root directory of the proj-
ect source, describes the application context and any supported activities, services,
intent receivers, and/or content providers, as well as permissions. You will learn more
about services, intents, and intent receivers in the next chapter and about content
providers in chapter 5. For now the manifest for our RestaurantFinder sample applica-
tion, as shown in listing 3.11, contains only the <applications itself, an <activity>
element for each screen, and several <uses-permission> elements.

<?xml version="1.0" encoding="utf-8"?> Include <manifest> declaratio:j
<manifest xmlns:android="http://schemas.android.com/apk/res/android"”

<application android:icon="@drawable/restaurant_ icon trans"
android:label="@string/app short name"

android:name="RestaurantFinderApplication" Include RestaurantFinder-

android:allowClearUserData="true" Application declaration
android:theme="@android:style/Theme.Black">
<activity android:name="ReviewCriteria" <}Aj’ Dﬁﬁnﬁkew?W'
android:label="@string/app short name"s Criteria Activity

<intent-filters>
<action android:name="android.intent.action.MAIN" />
<category
android:name="android. intent.category.LAUNCHER" />
</intent-filters>

</activity> Define MAIN LAUNCHER Intent filter

Download at Boykma.Com

94

CHAPTER 3 User interfaces

<activity android:name="ReviewList" Define ReviewList Activity
android:label="@string/app name reviews"s
<intent-filter> <1—0 Define custom Intent filter
<category
android:name="android. intent.category.DEFAULT" />
<action

android:name="com.msi.manning.restaurant.VIEW LIST" />
</intent-filter>
</activitys>

<activity android:name="ReviewDetail"
android:label="@string/app name review">
<intent-filter>
<category
android:name="android.intent.category.DEFAULT" />
<action
android:name="com.msi.manning.restaurant.VIEW DETAIL" />
</intent-filters>
</activitys>

. . Add permissions
</applications>

<uses-permission android:name="android.permission.CALL PHONE" />

<uses-permission android:name="android.permission.INTERNET" />
</manifest>
In the RestaurantFinder descriptor file we first see the root <manifest> element dec-
laration, which includes the application’s package declaration and the Android
namespace @. Then we see the <application> element with both the name and icon
attributes defined @. You don’t have to include the name attribute here unless you
want to extend the default Android Application object to provide some global state
to your application (which we did to store the Review object each screen is operating
on). The icon is also optional; if not specified, a system default is used to represent
your application on the main menu.

After the application itself is defined, we see the child <activity> elements within.
These, obviously, define each Activity the application supports € (note that the mani-
fest file can use Android resources as well, such as with @string/app name). As was not-
ed when discussing activities in general, one Activityin every application is the starting
point; this Activity has the <intent-filter> action MAIN and category LAUNCHER des-
ignation @. This tells the Android platform how to start an application from the
Launcher, meaning this Activity will be placed in the main menu on the device.

Past the ReviewCriteria Activity we see another <activitys designation for
ReviewList @. This Activity also includes an <intent-filters, but for our own
action, com.msi.manning.chapter3.VIEW LIST @. This tells the platform that this
Activity should be invoked for this “intent.” You will learn more about exactly how
this works in the next chapter. Last in our manifest we have a <uses-permission> @
element. This also relates to intents and tells the platform that this application needs
the CALL PHONE permission. (We discussed several aspects of security in chapter 2, and
we will touch on this in various contexts throughout the book.)

The RestaurantFinder sample application uses a fairly basic manifest file with three
activities and a series of intents. This is not a comprehensive example, of course, but
all of the elements an Android manifest supports are shown in table 3.4 for reference.

Download at Boykma.Com

Summary

95

Table 3.4 Supported AndroidManifest.xml elements and their descriptions

<manifests>

<uses-permissions>
<permissions>
<instrumentations>

<applications>

<activitys>
<intent-filters>
<actions>
<category>

<data>

<meta-data>

root

root
root
root

root

child of <application>
child of <activity>

child of <intentfilter>
child of <intentfilter>

child of <intent-filter>

child of <activity>

Defines application package and Android
namespace

Requests a security permission
Declares a security permission
Declares a test instrumentation component

Defines an application, class name, label, icon, or
theme (one per manifest)

Defines an Activity class

Declares the Intents an Activity supports
Intent action

Intent category

Intent MIME type, URI scheme, URI authority, or
URI path

General metadata, accessible via Compo-

nentinfo.metaData

<receiver> root Defines an IntentReceiver, responds to
Intents (also supports <intent-filters>
children)

<service> root Defines a background Service (also supports
<intent-filter> children)

<providers root Defines a ContentProvider to manage persis-

tent data for access by other applications

Wrapping up the description of the manifest file completes our discussion of views,
activities, resources, and in general working with Uls in Android.

A big part of the Android platform revolves around the UI and the concepts of activi-
ties and views. In this chapter we explored these concepts in detail and worked on a
sample application to demonstrate them. In relation to activities we addressed the
concepts and methods involved, and we covered the all-important lifecycle events the
platform uses to manage them. With regard to views we looked at common and cus-
tom types, attributes that define layout and appearance, and focus and events.

In addition, we looked at how Android handles various types of resources, from
simple types to more involved layouts, arrays, and animations—and how these relate
to, and are used within, views and activities. We also explored the AndroidMani-
fest.xml application descriptor and how it brings all these pieces together to define an
Android application.

Download at Boykma.Com

96

CHAPTER 3 User interfaces

This chapter has provided a good foundation for general Android UI develop-
ment; next we need to go deeper into the concepts of Intent and IntentReceiver
classes, the communication layer that Android activities and other components use.
We will cover these items, along with longerrunning Service processes and the
Android Inter-Process Communication (IPC) system involving the Binder, in chapter
4, where we will also complete the RestaurantFinder application.

Download at Boykma.Com

The canonical Android application comprises Activity and View objects on the
front end and Intent and Service objects on the back end. As we discussed in
chapter 3, activities are roughly comparable to UI screens, and views are UI compo-
nents. When a user interacts with a screen, that screen usually represents a task,
such as display a list of choices and allow selection, gather information through
form input, or display graphics and data. Once each screen is finished with its indi-
vidual job, it usually hands off to another component to perform the next task.

In Android terms, “hand off to another component” is done with an Intent. We
introduced this concept and term in chapter 1, and we saw some limited amounts
of Intent-related code in our examples in chapter 3. In this chapter we are going
to expand on the details, including looking more closely at what exactly an Intent
is and how it is resolved and matched with an IntentFilter. Along the way we will
complete the RestaurantFinder application we started in chapter 3, finishing up

97

Download at Boykma.Com

98

CHAPTER 4 Intents and services

the code and elaborating on the Intent classes involved. RestaurantFinder uses
Intent objects internally, to go from Activity to Activity, and also calls on intents
from Android built-in applications—to phone a restaurant, map directions to a restau-
rant, and visit a restaurant review web page.

After we complete the RestaurantFinder application, we will move on to another
sample application in this chapter—WeatherReporter. WeatherReporter will make use
of the Yahoo! Weather API to retrieve weather data and display it, along with weather
alerts, to the user on the Android platform. Through the course of the Weather-
Reporter application we will exercise intents in a new way, using a BroadcastReceiver
and a Service.

A BroadcastReceiver, as the name implies, also deals with intents but is used to
catch broadcasts to any number of interested receivers, rather than to signal a particu-
lar action from an Activity. Services are background processes, rather than UI
screens, but they are also invoked with a call to action, an Intent.

Lastly in this chapter, in relation to services, we will examine the Android mecha-
nism for making Inter-Process Communication (IPC) possible using Binder objects
and the Android Interface Definition Language (AIDL). Android provides a high-
performance way for different processes to pass messages among themselves. This is
important because every application runs within its own isolated process (for security
and performance purposes, owing to the Linux heritage of the platform). To enable
communication between components in different processes, something services often
need to do, the platform provides a path via a specified IPC approach.

The first thing we need to cover is the basic means to perform an action from
within any component; this means focusing on Intent details.

Intent classes are the communications network of the applications on the Android
platform. In many ways the Android architecture is similar to larger Service-Oriented
Architecture (SOA) approaches in that each Activity makes a type of Intent call to
get something done, without knowing exactly what the receiver of the Intent may be.

In an ideal situation you don’t care how a particular task gets performed; rather,
you care that it is done and is completed to your requirements. That way, you can
divide up what you need to get done at a particular time—your infent—and concen-
trate on the problem you are trying to solve, rather than worrying about specific
underlying implementation details.

Intent classes are late binding, and this is one of the things that makes them a bit
different from what you might be used to. This means they are mapped and routed to
a component that can handle a specified task at runtime rather than at build or com-
pile time. One Activity tells the platform, “I need a map to Langtry, TX, US,” and
another component, one the platform determines is capable, handles the request and
returns the result. With this approach, individual components are decoupled and can
be modified, enhanced, and maintained without requiring changes to a larger appli-
cation or system.

Download at Boykma.Com

http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/

Working with Intent classes 99

With that concept and the advantages the design intends in mind, here we will
look at exactly how an Intent is defined in code, how an Intent is invoked by an
Activity, how Intent resolution takes place using IntentFilter classes, and some
intents that are built into the platform ready for you to take advantage of.

Intents are made up of three primary pieces of information—action, categories, and
data—and include an additional set of optional elements. An action is simply a String,
as is a category, and data is defined in the form of a Uri object. A Uri is a generic URI
(as defined by RFC 3986) which includes a scheme, an authority, and optionally a path
(you will find out more about these parts in the next section). Table 4.1 lays out all of
the components of an Intent object.

Table 4.1 Intent elements and description

Extras Extra data to pass to the Intent thatis in the form of a Bundle

Component Specifies an explicit package and class to use for Intent, optional, normally
inferred from action, type, and categories

Type Specifies an explicit MIME type (as opposed to being parsed from a URI)

Category Additional metadata about Intent (for example,
android.intent.category.LAUNCHER)

Data Data to work with expressed as a URI (for example, content : //contacts/1)

Action Fully qualified String indicating action (for example,
android.intent.action.MAIN)

Intent definitions typically express a combination of action, data, and attributes such
as category. This designation is used by the system as a sort of language to resolve
exactly which class should be used to fill the request.

When a component such as an Activity wants to call upon an Intent, it can do so
in one of two ways:

= Implicit Intent invocation

= Explicit Intent invocation

An implicit Intent invocation is one in which the platform determines which compo-
nentis the best to run the Intent. This happens through a process of Intent resolution
using the action, data, and categories. We will explore this resolution process in detail
in the next section. An explicit Intent invocation is one in which the code directly spec-
ifies which component should handle the Intent. Explicit invocation is done by spec-
ifying either the Class or ComponentName of the receiver (where ComponentName is a
String for the package and a String for the class).

Download at Boykma.Com

100

CHAPTER 4 Intents and services

To explicitlyinvoke an Intent, you can use the following form: Intent (Context ctx,
Class cls). With this approach you can short-circuit all the Android Intent-resolution
wiring and directly pass in an Activity or Service class reference to handle the Intent.
While thisapproachisconvenientandfast,and thereforesometimesarguablyappropriate,
it also introduces tight coupling that may be a disadvantage later.

In listing 4.1 we show the final portion of the ReviewDetail Activity from the
RestaurantFinder sample application. This listing shows several implicit Intent invo-
cations. (We began this application in chapter 3; the first half of this class is shown in
listing 3.6.)

@Override
public boolean onMenultemSelected (int featureId, Menultem item) {
Intent intent = null; 47
switch (item.getItemId() Declare an Intent
case MENU_WEB_REVIEW.
if ((this.link != null) && !this.link.equals("")) {
intent = new Intent (Intent.ACTION VIEW, Set Intent for
Uri.parse(this.link)) ; web menu item
startActivity (intent) ; Use
} else { & StartActivity(intent)

new AlertDialog.Builder (this)
setTitle (getResources ()
.getString(R.string.alert label))
.setMessage (R.string.no link message)
.setPositiveButton ("Continue",
new OnClickListener () {
public void onClick (DialogInterface dialog,
int argl) {

}) .show () ;

}

return true;

case MENU MAP_REVIEW:
if ((this.location.getText () != null)
&& !this.location.getText () .equals("")) {
intent = new Intent (Intent.ACTION VIEW,
Uri.parse("geo:0,0?g=" +

this.location.getText () .toString())) ; Set Intent for
startActivity (intent); map menu item
} else {

new AlertDialog.Builder (this)
.setTitle (getResources ()
.getString (R.string.alert label))
.setMessage (R.string.no location message)
.setPositiveButton ("Continue", new OnClickListener () {
public void onClick (DialogInterface dialog,
int argl) {
}

}) .show () ;

Download at Boykma.Com

http://code.google.com/android/reference/android/content/Intent.html

Working with Intent classes 101

return true;
case MENU CALL REVIEW:

if ((this.phone.getText () != null)
&& !this.phone.getText () .equals("")
&& !this.phone.getText () .equals ("NA")) {

String phoneString =
parsePhone (this.phone.getText () .toString()) ;
intent = new Intent (Intent.ACTION CALL,

Uri.parse("tel:" + phoneString)) ; Set Intent for
startActivity (intent) ; call menu item
} else {

new AlertDialog.Builder (this)
.setTitle (getResources ()
.getString(R.string.alert label))
.setMessage (R.string.no phone message)
.setPositiveButton ("Continue", new OnClickListener () {
public void onClick (DialogInterface dialog,
int argl) {
}

}) .show () ;

}

return true;

}

return super.onMenultemSelected (featureId, item) ;

}

The Review object that the ReviewDetail Activity displays to the user contains the
address and phone number for a restaurant and a link to the full online review. Using
this Activity the user can choose, through the menu, to display a map with direc-
tions to the restaurant, call the restaurant, or view the full review in a web browser. To
allow all of these actions to take place, ReviewDetail uses built-in Android applica-
tions, through implicit Intent calls.

First, an Intent class instance is initialized to null @, so it can later be used by the
various menu cases. Then, if the MENU_WEB_REVIEW menu button is selected by the user,
we create a new instance of the Intent variable by passing in an action and some data @.
For the action we are using the String constant Intent .ACTION VIEW. The value of this
constant is android.app.action.VIEW, a fully qualified String including the package
so as to be unique. The Intent class has a host of constants like this that represent com-
mon actions, for example, Intent .ACTION_EDIT, Intent.ACTION_INSERT, and Intent.
ACTION_DELETE. Various activities and services use these same values when they declare
they support a particular Intent (and you can reuse these constants, too, where appli-
cable; see the Android Javadocs for a complete list of what is available: http://
code.google.com/android/reference/android/content/Intent.html).

After the action is declared, the data comes into play. In this case we are using
Uri.parse (link) to specify a Uri (where link is an HTTP URL). The parse (String
s) method simply parses the parts of a URI and creates a Uri object. This Uri is used
in the resolution process we will cover next. Basically, the type can be derived from the
Uri, or else the scheme, authority, and path themselves can be used. This allows the
correct component to answer the startActivity(Intent i) request © and render

Download at Boykma.Com

http://code.google.com/android/reference/android/content/Intent.html
http://code.google.com/android/reference/android/content/Intent.html

102

CHAPTER 4 Intents and services

the resource identified by the Uri. As you can see, we haven’t directly declared any
particular Activity or Service for the Intent; we are simply saying we want to VIEW
http://somehost/somepath. This is the late-binding aspect in action. When it comes
to a web URL, it’s pretty obvious how this works, but the same concept is applied in
Android with many other built-in data types (and you can define your own when nec-
essary, as you shall see).

The next menu item ReviewDetail handles is for the MENU MAP REVIEW case,
where we see the Intent reinitialized to use the Intent.ACTION VIEW again, but this
time with a different type of Uri being parsed: "geo:0,0?g=" + street address @.
This combination of VIEW and geo scheme invokes a different Intent, this time within
the built-in maps application. And finally, we see the MENU_MAP_CALL case, where the
Intent is reinitialized again, this time to make a phone call using the Intent.
ACTION CALL and the tel: Uri scheme @.

Through those simple statements, our RestaurantFinder application is using implicit

Intent invocation to allow the user to phone or map the restaurant selected or to view
the full review web page. These menu buttons are shown in the screen shotin figure 4.1.

To get the menu buttons on the ReviewDetail activity of the RestaurantFinder sam-
ple application to work, we did not have to code all the functionality ourselves; we simply
had to leverage the existing applications Android provides by telling the platform our
intentions. Those last steps complete the
RestaurantFinder application, which

can now search for reviews, allow the i”?l "\.
user to select a particular review from a | L Map location | Call restaurant

list, display a detailed review, and use
additional builtin applications to find
out more about a selected restaurant.
You will learn more about all of the
builtin apps and action-data pairs in
section 4.1.3. Now we turn our focus to

more detail on the Intent-resolution

. Figure 4.1 The menu buttons on the
process, where we will uncover more RestaurantFinder sample application,

about Intent action and data. used for invoking respective intents

Three types of Android components can register to be Intent handlers: Activity,
BroadcastReceiver, and Service. These components typically register with the plat-
form to be the destination for particular intent types using the <intent-filters ele-
ment in the AndroidManifest.xml file, as we have seen.

Each <intent-filter> element is parsed into an IntentFilter object. When a
package is installed on the platform, the components within are registered, including
the Intent filters. Once the platform has a registry of Intent filters, it basically knows
how to map any Intent requests that come in to the correct installed Activity,
BroadcastReceiver, or Service.

Download at Boykma.Com

http://groups.google.com/group/android-developers/browse_thread/thread/fa2848e31636af70
http://groups.google.com/group/android-developers/browse_thread/thread/fa2848e31636af70
http://somehost/somepath

Working with Intent classes 103

When an Intent is requested, resolution takes place through the registered filters,
using the action, data, and categories of the Intent. There are two basic rules about
matching Intent to IntentFilter that you should be aware of:

= The action and category must match.
= If specified, the data #ype must match, or the combination of data scheme and
authority and path must match.

In the next few sections we will explore these aspects in greater detail, as they are par-
amount to understanding how Intent classes work.

The action and category parts are pretty simple. These boil down to String objects,
one for the action, potential multiples for the categories. If the action is not specified
in the IntentFilter, it will then match any action coming from an Intent (all actions
work). With categories, the IntentFilter is a superset. An IntentFilter can have
additional categories beyond what an Intent specifies to match but must have at least
what the Intent specifies. Also, unlike with an action, an IntentFilter with no cate-
gories will match only an Intent with no categories (it is not treated as a wildcard). So
first, action and category specifications have to match.

Before we move on to the next matching component, data, it’s important to under-
stand that data is optional. You can work with action and category alone, and in many
cases that suffices. This is, for example, the technique we used in the ReviewList
Activity we built in chapter 3. There the IntentFilter was defined (in the manifest
XML), as shown in listing 4.2.

<activity android:name="ReviewList" android:label="@string/app name">
<intent-filters
<category android:name="android. intent.category.DEFAULT" />
<action android:name="com.msi.manning.restaurant.VIEW LIST" />
</intent-filters>
</activitys>

To match the filter declared in listing 4.2, we used the following Intent in code

(where Constants.INTENT ACTION VIEW LIST is the String com.msi.manning.
restaurant .VIEW LIST):

Intent intent = new Intent (Constants.INTENT ACTION VIEW LIST) ;
startActivity (intent) ;

The DEFAULT category designation on an Activity means that the
Activity should be present as an option for the default action—center
button press—for a particular type of data. This is usually specified in an
IntentFilter, but it does not typically need to be present in an Intent
(the filter will still match; categories are a superset).

Download at Boykma.Com

104

CHAPTER 4 Intents and services

After the action and categories are resolved, weather:// com.msi.manning/loc?zip=12345
Intent data comes into play. The data can be
either an explicit MIME type or a combina-
tion of scheme, authority, and path. Eitherof = authority path

these data forms can be derived from a Uri.
Figure 4.2 The portions of a URI that are used

The Uri shown in ﬁgure 4.2isan example of in Android, showing scheme, authority, and path

using scheme, authority, and path.
As opposed to scheme, authority, and path, using an explicit MIME type within a
Uri looks like the following:

content://com.google.provider.NotePad/notes

You might reasonably ask how this is differentiated from scheme/authority/path,
because those elements are really still there. The answer is the content:// scheme.
That indicates a type override to the platform. The type itself is defined in the mani-
fest of the package supplying the content provider. We will look at more details con-
cerning content providers later in this chapter.

When IntentFilter classes are defined, they set the boundaries for what they will
match in terms of type, scheme, authority, and path. A somewhat convoluted resolu-
tion path follows:

1 If scheme is present and type is not present, intents with any type will match.

2 If type is present and scheme is not present, intents with any scheme will match.

3 If neither scheme nor type is present, only intents with neither scheme nor type
will match.

4 If an authority is specified, a scheme must also be specified.

5 If a path is specified, a scheme and authority must also be specified.

The majority of times what you are matching will be fairly straightforward, but as you
can see, with these rules and multiple levels of authorities and schemes, it can get
complicated. To boil down Intent resolution, think of Intent and IntentFilter as
separate pieces of the same puzzle. When you call an Intent in an Android applica-
tion, the system resolves the Activity or Service (or BroadcastReceiver) to handle
your request through this resolution process using the action, categories, and data
(type or scheme, authority, and path) provided. The system searches all the pieces of
the puzzle it has until it finds one that meshes with the one you have just handed it,
and then it snaps those pieces together to make the late-binding connection.

A more involved example of this matching is shown in figure 4.3. There you can
see that an IntentFilter is defined with an action, the default category, and a combi-
nation of scheme and authority (leaving out the path so that any path will match). An
example of an Intent that would match this filter is also shown, in this case using a
Uri thatis passed in by the next sample application we will build, WeatherReporter.

The IntentFilter shown in figure 4.3 matches with the action, category, and
data (extracted from the Uri passed in) of the Intent being used. This Intent and
filter come from the next sample application we are going to begin working on, a

Download at Boykma.Com

Working with Intent classes 105

IntentFilter

<intent-filter>

<action android:name="android.intent.action.VIEW" /> >
<category android:name="android.intent.category.DEFAULT" />
<data android:scheme="weather" android:host="com.msi.manning" />
<lintent-filter>
\
Intent
—>

intent = new Intent(Intent. ACTION_VIEW,
Uri.parse("weather://com.msi.manning/loc?zip=12345");

Figure 4.3 Example Intent and IntentFilter matching
using a filter defined in XML

weatherreporting and -alerting application.
This application will carry us through the

remaining concepts in this chapter and into Bafa .37 pm

Weather

the next.

San Francisco, CA US

Tue, 14 Oct 2008 6:56 am PDT

The concept behind WeatherReporter, the
next sample application we will build, is that Fair (night)
it will make use of the Yahoo! Weather API to 5
retrieve weather data and display it to the
user on the Android platform. Optionally
this application will also alert users of severe Stniny HIGH:74 F < Low: 36
weather for locations they have indicated ‘S"Lfﬂ.jmg,mF,L,_‘wjgF
they are interested in (based on either the —
current location of the device or the speci-
fied postal code). Savedlocinns
Within this project you will see how a cus- —
tom URI can be defined and registered with a @ &
matching Intent filter to allow any other
application to invoke a weather report
through an Intent. (Defining and publish-

ing an Intent in this way allows other applica-

tions to easily use our application.) When Figure 4.4 The main screen in the sample
WeatherReporter application showing the

. weather forecast for the current location
porter application will look like what is shown apq 5 check box to indicate whether alerts

complete, the main screen of the WeatherRe-

in figure 4.4. should be enabled

Download at Boykma.Com

106 CHAPTER 4 Intents and services

To begin this application we first have to cover basics, such as the manifest file.
Although we have already explored manifest files in previous chapters, here we will fill
in details for this application, and we will further reinforce how Intent filters are
defined in XML. The manifest for WeatherReporter is shown in listing 4.3.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.msi.manning.weather">
<application android:icon="@drawable/weather sun clouds 120"
android:label="@string/app name"
android:theme="@android:style/Theme.Black"
android:allowClearUserData="true">

<activity android:name="ReportViewSavedLocations"
android:label="@string/app name view saved locations" />

<activity android:name="ReportSpecifyLocation"
android:label=
"@string/app name specify location" />

Define
activities
<activity android:name="ReportViewDetail"

android:label="@string/app name view detail"-

<intent-filter>

<action android:name="android.intent.action.VIEW" />

<category android:name="android.intent.category.DEFAULT" />

<data android:scheme="weather"
android:host="com.msi.manning" />

</intent-filter>

<intent-filter>

<action android:name="android.intent.action.VIEW" />
<data android:scheme="weather"
android:host="com.msi.manning" />

</intent-filters>

<intent-filters>

<action android:name="android. intent.action.MAIN" />
<category android:name=
"android.intent.category.LAUNCHER" />

</intent-filters> .
. Define a receiver
</activitys>

<receiver android:name=".service.WeatherAlertServiceReceiver"s
<intent-filter>
<action android:name=
"android.intent.action.BOOT COMPLETED" />
</intent-filters>

</receivers> ﬁ Define a
<service android:name=".service.WeatherAlertService" /> service
</application> A
Include necessary permissions
<uses-permission
android:name="android.permission.RECEIVE BOOT COMPLETED" />
<uses-permission
android:name="android.permission.ACCESS COARSE LOCATION" />

<uses-permission android:name=

Download at Boykma.Com

Working with Intent classes 107

"android.permission.ACCESS FINE LOCATION" />
<uses-permission
android:name=

"android.permission.ACCESS LOCATION EXTRA COMMANDS" />
<uses-permission android:name="android.permission.INTERNET" />

Include necessary permissions Q

</manifest>

In the WeatherReporter manifest we have three activities defined @. The most inter-
esting is the ReportViewDetail Activity, which we will show a portion of in listing 4.4.
This Activity has multiple Intent filters defined that match it, including one denoting
it is the MAIN LAUNCHER, and one with the weather://com.msi.manning scheme and
authority shown in figures 4.2 and 4.3. This is the custom URI our application supports.

You can use any combination of scheme, authority, and path—as we have here—or
you can use an explicit MIME type. We will find out more about MIME types and how
they are processed in chapter 5, where will look specifically at how to work with data
sources and use an Android concept known as a ContentProvider.

After these activities we use the <receivers> element in the manifest file to refer to
a BroadcastReceiver class @. We will uncover what a BroadcastReceiver is all about
in section 4.2, but the important part for now is that an <intent-filters is also used
here to associate an Intent—in this case for the BOOT COMPLETED action. With this
association we are telling the platform to invoke the WeatherAlertServiceReceiver
class after the boot-up sequence is completed.

In our manifest we also have a Service definition €. You will see how this Service
is built, and how it is used with our WeatherReporter application to poll for severe
weather alerts in the background, in section 4.3. The last thing in our manifest is a
series of permissions the application requires @.

With the foundation for our sample application in place via the manifest, the next
thing we need to look at is the onStart method of main Activity WeatherReporter
will use, which is shown in listing 4.4. This is where data from the Uri that matches the
Intent filter is parsed and used to display a weather report.

@Override
public void onStart () { Establish .
super.onStart () ; database helper Get device
this.dbHelper = new DBHelper (this) ; location
this.deviceZip = WeatherAlertService.deviceLocationZIP; postal code
if ((getIntent().getData() != null)
&& (getIntent () .getData () .getEncodedQuery () != null)

&& (getIntent () .getData() .getEncodedQuery () .length() > 8)) {

String queryString =
getIntent () .getData () .getEncodedQuery () ; <F‘2, Parse
this.reportZip = queryString.substring(4, 9); Intent data
this.useDeviceLocation = false;
} else {

this.reportZip = this.deviceZip;
this.useDeviceLocation = true;

Download at Boykma.Com

108

CHAPTER 4 Intents and services

}

this.savedLocation = this.dbHelper.get (this.reportZip) ;
this.deviceAlertEnabledLocation =
this.dbHelper.get (DBHelper.DEVICE ALERT ENABLED ZIP);

if (this.useDeviceLocation) {
this.currentCheck.setText (R.string.view checkbox current) ;
if (this.deviceAlertEnabledLocation != null) {

this.currentCheck.setChecked (true) ; Set status of
} else { E alert-enabled
this.currentCheck.setChecked (false) ; check box
}
} else {
this.currentCheck.setText (R.string.view checkbox specific);
if (this.savedLocation != null) {
if (this.savedLocation.alertenabled == 1) {
this.currentCheck.setChecked (true) ; Set status of
} else { :} alert-enabled
this.currentCheck.setChecked (false) ; check box
}
}
}
loadReport (this.reportZip) ; <@ Load weather report

}

The complete ReportViewDetail Activity can be obtained by grabbing the source
code in its entirety from http://www.manning.com/UnlockingAndroid. In the por-
tion of the class shown in listing 4.4, the onStart method, we are focusing on parsing

data from the Uri passed in as part of the Intent that invokes the Activity.

First in this class snippet we are establishing a database helper object @. This will
be used to query a local SQLite database that stores user-specified location data. We
will show more about how data is handled in general, and the details of this helper
class, in chapter 5.

In this method we are also obtaining the postal code of the current device location
from a LocationManager in the WeatherAlertService class (defaulting to 94102, San
Francisco, CA) @. This is significant because it’s important to understand that we
want our application to be location-aware. We want the location of the device (wher-
ever it is) to be the default weather report and alert location. As the user travels with
the phone, this location should automatically be updated. We will cover more about
location and LocationManager in chapter 11. For now, note that the device location is
returned to us here as a postal code.

After obtaining the device location, we move on to the key aspect of obtaining Uri
data from an Intent. We are parsing the Uri passed in to obtain the queryString and
embedded postal code to use for the user’s specified location @. if this location is
present, we use it; if not, we default to the device location postal code.

Once we have determined the postal code to use, we move on to set the status
of the check box that indicates whether or not alerts should be enabled for the loca-
tion being displayed @. We have two kinds of alerts: one for the device location
(wherever that location may be at a given time) and another for the user’s specified
saved locations.

Download at Boykma.Com

http://www.manning.com/UnlockingAndroid

Working with Intent classes 109

Finally, we call the loadReport method, which is used to make the call out to the
Yahoo! Weather API to obtain data, and then we use a Handler to send a Message to
update the needed UI View elements ©. These details are not shown in this code por-
tion, because we are focusing on Intent handling in this section, but the pattern is
the same one used in previous listings.

The key with this Activity is the way it is registered in the manifest to receive
weather://com.msi.manning intents and then parses the path of the URI for data.
This allows any application to invoke this Activity without knowing any details other
than the URL This is the separation-of-responsibilities pattern the Android platform
design encourages at work (the late binding).

Now that you’ve seen the manifest and pertinent details of the main Activity class
for the WeatherReporter application we will be building in the next few sections, and
we have covered a good bit about how Intent and IntentFilter classes work
together to wire up calls between components in general, we will take a look at some
of the builtin Android applications that work the same way. These enable you to
launch activities by simply passing in the correct URI.

Another way to get a feel for how Intent resolution works in Android and how URIs
are used is to explore the built-in Activity support. Android ships with a very useful
set of core applications that provide access via the formats shown in table 4.2.

Table 4.2 Common Android application Intent action and Uri combinations and the purpose of each

Intent .ACTION_VIEW geo:latitude,longitude Opens the maps application to the
specified latitude and longitude

Intent .ACTION_VIEW geo:0,0?qg=street+address | Opens the maps application to the
specified address

Intent .ACTION_ CALL tel:phone_number Opens the phone application and
calls the specified number

Intent .ACTION_ DIAL tel:phone_number Opens the phone application and
dials (but does not call) the speci-
fied number

Intent .ACTION DIAL voicemail: Opens the phone application and
dials (but does not call) the voice-
mail number

Intent .ACTION VIEW http://web_address Opens the browser application to

the specified URL

Intent .ACTION_VIEW https://web_address Opens the browser application to
the specified URL

Intent .ACTION WEB SEARCH | plain_text Opens the browser application and
use Google Search

Download at Boykma.Com

110

CHAPTER 4 Intents and services

Using the actions and URIs shown in table 4.2, you can hook into the built-in maps
application, phone application, or browser application. These powerful applications
are very easy to invoke using the correct Intent. We used several of these in the last
chapter with our RestaurantFinder application. Android also includes support for
another construct, the ContentProvider, which also uses a form of a URI to provide
access to data. You will learn more about this system, which is what exposes the con-
tacts and media parts of the Android system, in chapter 5.

By comparing the actions and URIs for the built-in Android applications, you can
get a feel for the fact that some applications use a Uri that is parsed into a type (con-
tacts, media), and others use the scheme, or scheme and authority, or scheme and
authority and path—the various ways to match data discussed in section 4.1.2.

With a handle on the basics of resolution and a quick look at built-in intents out of
the way, we need to get back to our WeatherReporter sample application. The next
thing we will discuss is another usage for the Intent concept, namely, using a
BroadcastReceiver.

Another way to use an Intent involves sending a broadcast to any interested receiver.
There are many reasons an application may want to broadcast an event; for example,
when an incoming phone call or text message is received. In this section we will take a
look athow events are broadcast and how they are captured using a BroadcastReceiver.
Here we will continue working through the WeatherReporter sample application
we began in the previous section. One of the most important parts of the Weather-
Reporter application will be its ability to display alerts to the user when severe weather
is in the forecast for a location where the user has indicated interest. We will need a
background process that checks the weather and sends any needed alerts. This is
where the Android Service concept will come into play. We won’t be creating the
actual Service class until section 4.3, but we need a way to get the platform running
the Service as soon as it boots up, and this is where we will use an Intent broadcast.

As you have seen, Intent objects are used to go from Activity to Activity in an
Android application. While this is the main use of intents in Android, it is not the only
one. Intents are also used to broadcast events to any configured receiver using one of
several methods available from the Context class, as shown in table 4.3.

Table 4.3 Methods for broadcasting intents

sendBroadcast (Intent intent) Simple form for broadcasting an Intent.

sendBroadcast (Intent intent, String | Broadcasts an Intent with a permission String
receiverPermission) that receivers must declare to receive the broadcast.

Download at Boykma.Com

Listening in with broadcast receivers 111

Table 4.3 Methods for broadcasting intents (continued)

sendStickyBroadcast (Intent intent)

sendOrderedBroadcast (Intent
intent, String receiverPermission)

sendOrderedBroadcast (Intent
intent, String receiverPermission,
BroadcastReceiver resultReceiver,
Handler scheduler, int initialCode,
String initialData, Bundle
initialExtras)

Broadcasts an Intent that hangs around a short
time after it is sent so that receivers can retrieve
data. Applications using this must declare the
BROADCAST STICKY permission.

Broadcasts an Intent call to the receivers one-
by-one serially.

Broadcasts an Intent and gets a response back
by implementing your own BroadcastReceiver
for the broadcast (and passing it in). All receivers
can append data that will be returned in the
BroadcastReceiver. When using this method,
the receivers are called serially.

When broadcasting intents you are basically reusing the Intent conceptto send an event
in the background. Though the Intent class is used, it is used differently than when
invoking foreground Activity paths. A broadcast Intent does notinvoke an Activity
(though a BroadcastReceiver can do so after the event is received, if necessary).
Another important aspect with Intent broadcasts is how permissions are handled.
When you broadcastan Intent,you can optionally specify a permission. Permissions are
something we addressed in chapter 1. They basically are String declarations that can
be used when making a broadcast that require receivers to declare the same permission.
Broadcasting an Intent itself is fairly straightforward; you use the Context object
to throw it on the wire, and interested receivers will catch it. Android provides a set of
platform-related Intent broadcasts that use this approach. When the time zone on
the platform changes, when the device completes booting, or when a package is
added or removed, for example, the system broadcasts an event using an Intent.
Some of the specific Intent broadcasts the platform provides are shown in table 4.4.

Table 4.4 Provided Android platform broadcast actions

ACTION_TIME_TICK Sent every minute to indicate that time is ticking

ACTION_TIME_CHANGED Sent when the user changes the time on the device
ACTION_TIMEZONE CHANGED Sent when the user changes the time zone on the device
ACTION_BOOT_ COMPLETED Sent when the platform completes booting
ACTION_PACKAGE_ADDED Sent when a package is added to the platform
ACTION_PACKAGE_REMOVED Sent when a package is removed from the platform

Sent when the battery charge level or charging state changes

ACTION_BATTERY CHANGED

Download at Boykma.Com

112

CHAPTER 4 Intents and services

The other half of broadcasting events is the receiving end. To register to receive an
Intent broadcast, you implement a BroadcastReceiver. This is where we are going
to implement a receiver that will catch the platform-provided BOOT COMPLETED
Intent in order to start the weather alert service we will create for the Weather-
Reporter application.

Because the weather alert Service we want to create needs to be running in the back-
ground whenever the platform itself is running, we need a way to start it when the
platform boots. To do this, we will create a BroadcastReceiver that listens for the
BOOT COMPLETED Intent broadcast.

The BroadcastReceiver base class provides a series of methods that allow for get-
ting and setting a result code, result data (in the form of a String), and an extras Bun-
dle. In addition, there are a series of lifecycle-related methods that correspond to the
lifecycle events of a receiver; you will learn more about these as we progress through
this section.

Associating a BroadcastReceiver with an IntentFilter can be done in code or in
the manifest XML file. Once again the XML usage is often easier and thus more com-
mon. This is the way we did it for WeatherReporter in listing 4.3, where we associated
the BOOT COMPLETED broadcast with the WeatherAlertServiceReceiver class. This
class is shown in listing 4.5.

public class WeatherAlertServiceReceiver extends BroadcastReceiver {

@Override
public void onReceive (Context context, Intent intent){
if (intent.getAction() .equals (Intent.ACTION BOOT COMPLETED)) {

context.startService (new Intent (context, .
Override

} WeatherAlertService.class)) ; onReceive

} Start WeatherAIertServicn Extend BroadcastReceiver

}

When creating your own Intent broadcast receiver you extend the BroadcastRe-
ceiver class Android provides @ and implement the abstract onReceive (Context c,
Intent i) method @. Within this method we are starting the WeatherAlertService.
This Service class, which we will create next, is started using the Context.start-
Service (Intent i, Bundle b) method @.

Keep in mind that receiver class instances have a very short, specific lifecycle. When
the onReceive (Context ¢, Intent i) method is complete, the instance and process
thatinvoked the receiver are no longer needed and may be killed by the system. Because
of this, you can’t perform any asynchronous operations in a BroadcastReceiver, such
as binding to a Service or showing a dialog. Alternatively, you can start a Service, as
we have done here, and leave it running in the background. (Binding to a Service is
different than starting one; we will cover this distinction in the next section.)

Download at Boykma.Com

4.3

4.3.1

Building a Service 113

Now that our receiver is starting the WeatherAlertService, which will run in the
background and warn users of severe weather in the forecast with a Notification-
based alert, we need to delve into the realm of the Android Service concept itself.

Building a Service

In the typical Android application you create Activity classes and move from screen
to screen using Intent calls. This is the approach we introduced in chapter 1 and
used in other previous chapters. This works for the canonical Android screen-to-
screen foreground application but is not applicable for a longer-running background
process—for that you need a Service.

The Service we will work with here is the WeatherAlertService we sent an
Intent request for in the WeatherAlertServiceReceiver in listing 4.4. This Service
sends an alert to the user when there is severe weather in a location in which the user
has indicated an interest. This alert will be displayed in any application, in the form of
aNotification, by the background Service if severe weather is detected. The notifi-
cations we will send are shown in the screen shot in figure 4.5.

October 14, 2008 3 SNl @& 1:37 PMm

Android Clear notifications

79 Severe Weather Alert!
San Francisco, CA

Figure 4.5

The Notification-based alert the
WeatherAlertService displays
to the user when severe weather is
detected in the forecast

2:46 PM

One key aspect of Android Service classes we need to cover prior to jumping in and
implementing one is their dual-purpose nature. Something like the duality of man
(you know, the “Jungian Thing”); services lead a double life.

Dual-purpose nature of a Service

In Android a Service is intended to serve two purposes: running a background task
or exposing a remotable object for Inter-Process Communication (IPC). We will
explore both of these purposes for a Service in turn. Although we are going to build
separate Service instances for each purpose, you can also build one Service that
serves both purposes, if needed.

Download at Boykma.Com

114

CHAPTER 4 Intents and services

A background task is typically a process that does not involve direct user interac-
tion or any type of UL This of course is a perfect fit for polling for severe weather. As
far as exposing a remotable object for IPC, we will see how that works, and why it is
necessary, in section 4.4.1. There we will build another Service that walks through
creating and exposing a remotable object.

As we have already discussed briefly, and we will explain more about here as we go,
a Service can either be started or bound or both. Starting a Service relates to the
background task aspect. Once started, a Service runs until it is explicitly stopped
(you will learn more about this in section 4.4, where we discuss the overall lifecycle of
a Service). Binding to a Service involves using a ServiceConnection object to con-
nect and get a remotable reference.

Creating the WeatherAlertService itself, which serves the first type of Service
purpose and enables our background weather checks, is where we will focus next.

The WeatherAlertService background task-focused Service, whichis started when the
device is booted via the BroadcastReceiver previously discussed, is shown in listing 4.6.

public class WeatherAlertService extends Service { <+—@) Extend Service

private static final String LOC = "LOC";

private static final String ZIP = "ZIP"; Define
private static final long ALERT QUIET PERIOD = 10000; constants for
private static final long ALERT POLL INTERVAL = 15000; polling intervals

public static String deviceLocationZIP = "94102";

private Timer timer;
private DBHelper dbHelper;

private NotificationManager nm; . .
Get locations with
private TimerTask task = new TimerTask () { alerts enabled

public void run() {
List<Location> locations = dbHelper.getAllAlertEnabled() ;
for (Location loc : locations) {
WeatherRecord record = loadRecord(loc.zip) ;
if (record.isSevere()) {
if ((loc.lastalert +
WeatherAlertService.ALERT QUIET PERIOD)
< System.currentTimeMillis()) {
loc.lastalert = System.currentTimeMillis() ;
dbHelper.update (loc) ;

sendNotification(loc.zip, record) ; Fire alert
} if severe

}

. device location alert block omitted for brevity

}
}i

private Handler handler = new Handler () {
public void handleMessage (Message msg) {

Download at Boykma.Com

Building a Service 115

notifyFromHandler ((String) msg.getData ()
.get (WeatherAlertService.LOC), (String) msg.getData()
.get (WeatherAlertService.ZIP)) ;

} Call notify method
}i from handler
@Override
public void onCreate () {

this.dbHelper = new DBHelper (this) ; @ Set up database

this.timer = new Timer () ;
this.timer.schedule(this.task, 5000,
WeatherAlertService.ALERT POLL INTERVAL) ;
this.nm = (NotificationManager) J Set up notification
getSystemService (Context .NOTIFICATION SERVICE) ; manager

. onStart with LocationManager and LocationListener \
omitted for brevity

@Override
public void onDestroy () {
super.onDestroy () ; ﬁ Clean up database
this.dbHelper.cleanup () ; connection
1
@Override
public IBinder onBind (Intent intent) {qj Return null
return null; from onBind
} Load a
private WeatherRecord loadRecord (String zip) { weather
final YWeatherFetcher ywh = new YWeatherFetcher (zip, true) ; record

return ywh.getWeather () ;

} Include helper for handlerﬁ
private void notifyFromHandler (String location, String zip) {
Uri uri = Uri.parse("weather://com.msi.manning/loc?zip=" + zip) ;
Intent intent = new Intent (Intent.ACTION VIEW, uri) ;
PendingIntent pendingIntent =
PendingIntent.getActivity(this, Intent.FLAG ACTIVITY NEW_TASK,
intent, PendingIntent.FLAG ONE_SHOT) ;
final Notification n =
new Notification(R.drawable.severe weather 24,
"Severe Weather Alert!",
System.currentTimeMillis()) ;
n.setLatestEventInfo(this, "Severe Weather Alert!",
location, pendingIntent) ;
this.nm.notify(Integer.parseInt(zip), n); Include helper for
} notification

private void sendNotification(String zip, WeatherRecord record) f{
Message message = Message.obtain() ;
Bundle bundle = new Bundle () ;
bundle.putString(WeatherAlertService.ZIP, zip) ;
bundle.putString (WeatherAlertService.LOC, record.getCity ()

+ ", " + record.getRegion()) ;

message.setData (bundle) ;
this.handler.sendMessage (message) ;

Download at Boykma.Com

116

CHAPTER 4 Intents and services

The first thing of note in the WeatherAlertService class is the fact that it extends
Service @. This is the same approach we have seen with activities and receivers:
extend the base class, implement the abstract methods, and override the lifecycle
methods as needed.

After the initial class declaration a series of member variables is defined. The first of
these are constants that represent intervals for polling for severe weather and a quiet
period @. These are significant because we have set a very low threshold for polling dur-
ing development—severe weather alerts will spam the emulator often because of this
setting. In production this would be throttled back to once every 6 or 12 hours or such.

Next is a TimerTask variable that we will use to do the polling and get all of the
user’s saved locations that have alerting enabled, through a database call ©. We will
learn the specifics of using a database in Android in the next chapter, where we will
finish out the WeatherReporter application and focus on data; here we are going to
stay on track with our Service discussion.

Once we have the saved locations, we parse each one and load the weather report.
If the report shows severe weather in the forecast, we update the time of the last alert
field and call a helper method to initiate a Notification being sent @. After we pro-
cess the user’s saved locations, we get the device’s alert location from the database using
a special postal code designation. The process of polling and sending an alert is
repeated for the device currentlocation—as opposed to saved specific locations—if the
user has this feature enabled. The device location itself is obtained via a LocationMan-
ager. We have omitted the device location-related details here to stay focused, but com-
plete details on Android location-related facilities are covered in chapter 11.

After our TimerTask is set up, we have a Handler member variable. This variable will
be used later, using the same technique as in previous listings, to receive a Message object
that s fired from a non-Ul-related thread and then react. In this case, when the message
is received, we call a helper method that instantiates and displays a Notification @.

Beyond our member variables we come to the Service lifecycle methods that we have
overridden, starting with onCreate. Inside this method we set up our database helper
object @ and aNotificationManager @.Again, we will cover data in the next chapter.
(Alert and notification details are specifically addressed in chapter 8.) After onCreate
we see onDestroy, which is where we clean up our database connection ©.service class-
es have these lifecycle methods so we can control how resources are allocated and deal-
located, similarly to Activity classes; in section 4.4.5 we will address this in more depth.

After the lifecycle-related methods we implement the required onBind method @.
This method returns an IBinder, which is generally what other components that call
into Service methods use for communication. Service classes, as we discussed in sec-
tion 4.3.1, can serve two purposes: first to run background processes and second for
binding to enable IPC. Our weather alert Service is only performing a background
task, not enabling IBinder/Binder-based IPC. Therefore, this class returns a null for
onBind. We will delve into the binding and IPC aspect of a Service in section 4.4.

Next we see the implementations of our own helper type methods. First we have
loadRecord, which is where we call out to the Yahoo! Weather API via YWeather-
Fetcher @). (How this works in terms of networking specifics will be covered in

Download at Boykma.Com

Performing Inter-Process Communication 117

chapter 6.) Then we have sendNotification, which sets up a Message with location
details to pass into our earlier declared Handler @. The way this method uses the han-
dler ensures that processing time to get weather data doesn’t hang the main UI thread.
Lastly we see the notifyFromHandler method thatisinvoked from the Handler; this fires
off a Notification with Intent objects that will call back into WeatherReporter if the
user clicks on the Notification @®.

We are starting a Service for our sample application here and then leaving it run-
ning in the background. Our service is designed to have a minimal footprint (when
the polling is tuned), but in general long-running services are strongly discouraged.
If your use case doesn’t require it, you should make sure to stop any services you
have started when your application exits. If you do require a long-running service,
you may want to give the user the option of using it or not (a preference). Services
are a bit of a paradox in this sense; they are for background tasks, but background
is not intended to mean forever. For more discussion on this topic see the Android
developers forum: http://groups.google.com/group/android-developers/browse_
thread/thread/fa2848e31636af70.

Now that we have discussed what services are for, have created a Service class, and
have previously seen a service started via a BroadcastReceiver, we need to cover a bit
more detail about the IPC process in Android and other Service details related to it,
such as starting versus binding and lifecycle.

Communication between application components in different processes is made pos-
sible in Android by a specific IPC approach. This, again, is necessary because each
application on the platform runs in its own process, and processes are intentionally
separated from one another. In order to pass messages and objects between processes,
you have to use the Android IPC path.

To begin exploring this path we are first going to build a small, focused sample
application to examine the means to generate a remote interface using AIDL, and
then we will connect to that interface through a proxy that we will expose using a Ser-
vice (the other Service purpose). Along the way we will expand on the IBinder and
Binder concepts Android uses to pass messages and types during IPC.

Android provides its own Interface Definition Language that you can use to create
IDL files. These files then become the input to the aidl tool, which Android also
includes. This tool is used to generate a Java interface and inner Stub class that you
can, in turn, use to create a remotely accessible object.

AIDL files have a specific syntax that allows you to define methods, with return types
and parameters (you cannot define static fields, unlike with a typical Java interface). In

Download at Boykma.Com

http://groups.google.com/group/android-developers/browse_thread/thread/fa2848e31636af70
http://groups.google.com/group/android-developers/browse_thread/thread/fa2848e31636af70

118

CHAPTER 4 Intents and services

the basic AIDL syntax you define your package, imports, and interface just like you would
in Java, as shown in listing 4.7.

package com.msi.manning.binder; <+—@) Define the package

interface ISimpleMathService { <) Declare the interface name

int add(int a, int b);
int subtract (int a, int b); P Describe a method
)i

String echo(in String input

The package (1} import statements (of which we have none here), and interface (2)
constructs in AIDL are straightforward—they are analogous to regular Java. When you
define methods, you must specify a directional tag for all nonprimitive types with each
parameter (in, out, or inout). Primitives are allowed only as in and are therefore
treated as in by default (and thus don’t need the tag). This directional tag is used by
the platform to generate the necessary code for marshaling and unmarshaling
instances of your interface across IPC boundaries. It’s better to go in only one direc-
tion where you can, for performance reasons, so try to use only what you really need.

In this case we have declared an interface named ISimpleMathService that
includes methods @ that perform addition, subtraction, and echoing a String. This
is an oversimplified example, of course, but it does demonstrate the approach.

When using AIDL you also have to be aware that only certain types are allowed;
these types are shown in table 4.5.

Once you have defined your interface methods with return types and parameters
with directional tags in the AIDL format, you then invoke the aidl tool to generate a

Table 4.5 Android IDL allowed types

Java primitives boolean, byte, short, int, float, double, No
long, char.

String java.lang.String. No
CharSequence java.lang.CharSequence. No
List Can be generic; all types used in collection must be one of IDL | No

allowed. Ultimately implemented as an ArrayList.

Map Can be generic, all types used in collection must be one of IDL | No
allowed. Ultimately implemented as a HashMap.

Other AIDL interfaces | Any other AIDL-generated interface type. Yes

Parcelable objects Objects that implement the Android Parcelable interface (more | Yes
about this in section 4.4.3).

Download at Boykma.Com

Performing Inter-Process Communication 119

Java interface that represents your AIDL specification. From the command line you
can invoke [ANDROID HOME]/tools/aidl to see the options and syntax for this tool.
Generally you just need to point it at your .aidl file, and it will emit a Java interface of
the same name. If you use the Eclipse plug-in, it will automatically invoke the aidl tool
for you (it recognizes .aidl files and invokes the tool).

The interface that gets generated through AIDL includes an inner static abstract
class named Stub that extends Binder and implements the outer class interface. This
Stub class represents the local side of your remotable interface. Stub also includes an
asInterface (IBinder binder) method that returns a remote version of your interface
type. Callers can use this method to get a handle on the remote object and from there
invoke remote methods. The AIDL process generates a Proxy class (another inner
class, this time inside Stub) that is used to wire up the plumbing and return to callers
from the asInterface method. The diagram in figure 4.6 depicts this IPC local/
remote relationship.

Once you have all of the generated parts involved, create a concrete class that
extends from Stub and implements your interface. You then expose this interface to
callers through a Service.

AIDL file

IWeatherAlertService.aidl

AIDL
tool

Generated Java interface
IWeatherAlertService.java

Generated inner static abstract Stub
IWeatherAlertService.Stub

Generated inner static Proxy
IWeatherAlertService.Stub.Proxy

[1WeatherAlertService |
['addAlertLocation(String zip) |

7
/
/
, -
LOCAL obiject REMOTE object
Stub Y
Caller uses "aslnterface" to
Sé%?\;gjpé?;gg()(g‘;gjxm)s get reference to a remote
) Y object - Proxy is returned
onTransact() transact()
IWeatherAlertService.Stub IWeatherAlertService.Stub.Proxy
IWeatherAlertService aslnterface(IBinder b) IWeatherAlertService asInterface(IBinder b) . .
IBinder asBinder() IBinder asBinder() Figure4.6 Diagram
boolean onTransact(int code, Parcel data, boolean onTransact(int code, Parcel data, of the Android AIDL
Parcel reply, int flags) Parcel reply, int flags)

process

Download at Boykma.Com

120

CHAPTER 4 Intents and services

The glue in all of the moving parts of AIDL that we have discussed up to now is the
point where a remote interface is exposed—via a Service. In Android parlance,
exposing a remote interface through a Service is known as publishing.

To publish a remote interface you create a class that extends Service and returns
an IBinder through the onBind(Intent intent) method within. The IBinder that
you return here is what clients will use to access a particular remote object. As we dis-
cussed in the previous section, the AIDL-generated Stub class (which itself extends
Binder) is usually used to extend from and return an implementation of a remotable
interface. This is usually what is returned from a Service class’s onBind method—and
hence this is how a remote interface is exposed to any other process that can bind to a
Service. All of this is shown in listing 4.8, where we implement and publish the
ISimpleMathService we created in the previous section.

public class SimpleMathService extends Service {

private final ISimpleMathService.Stub binder =
new ISimpleMathService.Stub() { Implement the
public int add(int a, int b) { remote interface
return a + b;
}

public int subtract (int a, int b) {
return a - b;
}

public String echo (String input) {
return "echo " + input;
}

bi Return an IBinder

@Override j representing the

public IBinder onBind (Intent intent) { remotable object
return this.binder;

1
}

A concrete instance of the generated AIDL Java interface is required to return an
IBinder to any caller than binds to a Service. The way to create an implementation is
to implement the Stub class that the aidl tool generates @. This class, again, imple-
ments the AIDL interface and extends Binder. Once the IBinder is established, it is
then simply returned from the onBind method 0.

Now that we have seen where a caller can hook into a Service and get a reference
to a remotable object, we need to walk through finishing that connection by binding
to a Service from an Activity.

When an Activity class binds to a Service, which is done using the Context.
bindService (Intent i, ServiceConnection connection, int flags) method, the

Download at Boykma.Com

Performing Inter-Process Communication 121

ServiceConnection object that is passed in is used to send several callbacks, from the
Service back to the Activity. One significant callback happens when the binding pro-
cess completes. This callback comes in the form of the onServiceConnected (Compo-
nentName className, IBinder binder) method. The platform automatically injects
the IBinder onBind result (from the Service being bound to) into this method, mak-
ing this object available to the caller. We show how this works in code in listing 4.9.

public class ActivityExample extends Activity {J Define remote interface type variable

private ISimpleMathService service; Include 9
private boolean bound; 4—0 Define bound state boolean ServiceConnection

. View element declarations omitted for brevity implementation

private ServiceConnection connection = new ServiceConnection() { 94—
public void onServiceConnected (ComponentName className,
IBinder iservice) { <@ React to onServiceConnected callback
service = ISimpleMathService.Stub.asInterface(iservice) ; <
Toast .makeText (ActivityExample.this,
"connected to Service", Toast.LENGTH_ SHORT) .show () ;
bound = true;
}
public void onServiceDisconnected (ComponentName className) { D —
service = null;
Toast .makeText (ActivityExample.this,
"disconnected from Service", Toast.LENGTH SHORT) .show () ;
bound = false;
} React to onServiceDisconnected callback @
}i
@Override

public void onCreate (Bundle icicle) {
. View element inflation omitted for brevity

Establish remote interface type @

this.addButton.setOnClickListener (new OnClickListener () {
public void onClick (View v) {
try {
int result = service.add(
Integer.parselnt (inputa.getText () .toString()),
Integer.parselnt (inputb.getText () .toString())) ;
output.setText (String.valueOf (result)) ;
} catch (DeadObjectException e) {

Log.e("ActivityExample", "error", e); Use remote object
} catch (RemoteException e) { for operations
Log.e("ActivityExample", "error", e);

1
I3

. subtractButton, similar to addButton, omitted for brevity

}

@Override
public void onStart () {
super.onStart () ;

Download at Boykma.Com

122

CHAPTER 4 Intents and services

if (!bound) {
this.bindService (
new Intent (ActivityExample.this,
SimpleMathService.class),
connection,
Context .BIND AUTO_CREATE) ; <+—@) Perform binding

}

@Override
public void onPause () f{
super.onPause () ;
if (bound) {
bound = false;
this.unbindService (connection) ; <+—@) Perform unbinding

}

In order to use the remotable ISimpleMathService we defined in AIDL, we declare a
variable of the generated Java interface type 0. Along with this service variable, we
include a boolean to keep track of the current state of the binding @.

We next see the ServiceConnection object ©, which is essential to the binding
process. This object is used with Context methods to bind and unbind. When a Ser-
vice is bound, the onServiceConnected callback is fired @. Within this callback the
remote IBinder reference is returned and can be assigned to the remotable type @.
After the connection-related callback there is a similar onServiceDisconnected call-
back that is fired when a Service is unbound @.

Once the connection is established and the remote IBinder is in place, it can be
used to perform the operations it defines @. Here we are using the add, subtract,
and echo methods we created in AIDL in listing 4.7.

With this class we see the Activity lifecycle methods that are now familiar. In
onStart we establish the binding using bindService ©, and in onPause we use
unbindService @. A Service that is bound but not started can itself be cleaned up by
the system to free up resources. If we don’t unbind these, resources might unnecessar-
ily hang around.

A Service, as you have seen and will learn more about next, is invoked using
an Intent. Here again, explicit or implicit Intent invocation can be used. Signifi-
cantly, any application (with the correct permissions) can call into a Service and
bind to it, returning the IBinder to perform operations—it need not be an Activ-
ity in the same application as the Service (this is how applications in different pro-
cesses communicate).

That brings us to the difference between starting a Service and binding to one
and what the implications are for each usage.

Again, Services serve two purposes in Android, and you can use them as you have
now seen in two corresponding ways:

Download at Boykma.Com

Performing Inter-Process Communication 123

» Starting—Context .startService (Intent service, Bundle b)

= Binding—Context .bindService (Intent service, ServiceConnection ¢, int
flag)

Starting a Service tells the platform to launch it in the background and keep it run-
ning, without any particular connection to any other Activity or application. We
used the WeatherReportService in this manner to run in the background and issue
severe weather alerts.

Binding to a Service, as we did with our sample SimpleMathService, is how you
get a handle to a remote object and call methods defined there from an Activity. As
we have discussed, because every Android application is running in its own process,
using a bound Service (which returns an IBinder through ServiceConnection) is
how you pass data between processes.

Marshaling and unmarshaling remotable objects across process boundaries is fairly
complicated. This is the reason the AIDL process has so many moving parts. Fortu-
nately you don’t generally have to deal with all of the internals; you can instead stick
to a simple recipe that will enable you to create and use remotable objects:

1 Define your interface using AIDL, in the form of an [INTERFACE_NAME].aidl
file; see listing 4.7.

2 Generate a Java interface for your .aidl file (automatic in Eclipse).

3 Extend from the generated [INTERFACE NAME] .Stub class and implement your
interface methods; see listing 4.8.

4 Expose your interface to clients through a Service and the Service
onBind (Intent i) method; see listing 4.8.

5 Bind to your Service with a ServiceConnection to get a handle to the remot-
able object, and use it; see listing 4.9.

Another important aspect of the Service concept to be aware of, and one that is
affected by whether or not a Service is bound or started or both, is the lifecycle.

Along with overall application lifecycle that we introduced in chapter 2 and the
Activity lifecycle that we discussed in detail in chapter 3, services also have their own
well-defined process phases. Which parts of the Service lifecycle are invoked is
affected by how the Service is being used: started, bound, or both.

If a Service is started by Context.startService (Intent service, Bundle D), as
shown in listing 4.5, it runs in the background whether or not anything is bound to it.
In this case, if it is needed, the Service onCreate () method will be called, and then
the onStart (int id, Bundle args) method will be called. If a Service is started
more than once, the onStart (int id, Bundle args) method will be called multiple
times, but additional instances of the Service will not be created (still needs only one
stop call).

Download at Boykma.Com

124

CHAPTER 4 Intents and services

The Service will continue to run in the background until it is explicitly stopped by
the Context.stopService () method or its own stopSelf () method. You should also
keep in mind that the platform may kill services if resources are running low, so your
application needs to be able to react accordingly (restart a service automatically, func-
tion without it, and the like).

If a Service is bound by an Activity calling Context .bindService (Intent service,
ServiceConnection connection, int flags), as shown in listing 4.9, it will run as
long as the connection is established. An Activity establishes the connection using
the Context and is responsible for closing it as well.

When a Service is only bound in this manner and not also started, its onCreate ()
method is invoked, but onStart (int id, Bundle args) is nof used. In these cases the
Serviceis eligible to be stopped and cleaned up by the platform when no longer bound.

If a Service is both started and bound, which is allowable, it will basically keep run-
ning in the background, similarly to the started lifecycle. The only real difference is
the lifecycle itself. Because of the starting and binding, both onStart (int id, Bundle
args) and onCreate () will be called.

When a Service is stopped, either explicitly after having been started or implicitly
when there are no more bound connections (and it was not started), the onDestroy ()
method is invoked. Inside onDestroy () every Service should perform final cleanup,
stopping any spawned threads and the like.

Now that we have shown how a Service is implemented, how one can be used
both in terms of starting and binding, and what the lifecycle looks like, we need to
take a closer look at details of remotable data types when using Android IPC and IDL.

The IBinder interface is the base of the remoting protocol in Android. As you have
seen, you don’t implement this interface directly; rather you typically use AIDL to gen-
erate an interface that contains a Stub Binder implementation.

The key to the IBinder and Binder—enabling IPC, once the interfaces are defined
and implemented, is the IBinder.transact () method and corresponding Binder.
onTransact () method. Though you don’t typically work with these internal methods
directly, they are the backbone of the remoting process. Each method you define
using AIDL is handled synchronously through the transaction process (enabling the
same semantics as if the method were local).

All of the objects you pass in and out, through the interface methods you define
using AIDL, use the transact process. These objects must be Parcelable in order to be
able to be placed inside a Parcel and moved across the local/remote process barrier
in the Binder transaction methods.

The only time you need to worry about something being Parcelable is when you
want to send a custom object through Android IPC. If you use the default allowable

Download at Boykma.Com

Summary 125

types in your interface definition files—primitives, String, CharSequence, List, and
Map—everything is automatically handled. If you need to use something beyond those,
only then do you need to implement Parcelable.

The Android documentation describes what methods you need to implement to
create a Parcelable class. The only tricky part of doing this is remembering to create
an .aidl file for each Parcelable interface. These .aidl files are different from those
you use to define Binder classes themselves; for these you need to remember not to
generate from the aidl tool. Trying to use the aidl tool won’t work, and it isn’t
intended to work. The documentation states these files are used “like a header in C,”
and so they are not intended to be processed by the aidl tool.

Also, when considering creation of your own Parcelable types, make sure you
really need them. Passing complex objects across the IPC boundary in an embedded
environment is an expensive operation and should be avoided if possible (not to men-
tion that manually creating these types is fairly tedious).

Rounding out our IPC discussion with a quick overview of Parcelable completes
our tour of Android Intent and Service usage.

In this chapter we covered a broad swath of Android territory. We first focused on the
Intent abstraction, defining what intents are, how they are resolved using Intent-
Filter objects, and what some built-in platform-provided Intent handlers are. We
also addressed explicit Intent invocation versus implicit Intent invocation and the
reasons you might choose one type over another. In that discussion we completed the
RestaurantFinder sample application.

After we covered the basics of Intent classes, we moved on to a new sample appli-
cation, WeatherReporter. Within the scope of this application, we explored the con-
cept of a BroadcastReceiver and an Android Service. We used the receiver to start
the Service, and we designed the Service to send notification alerts for severe
weather events. Along with Service implementation details we covered the difference
between starting and binding services and the moving parts behind the Android IPC
system, which uses the Android IDL process.

Through looking at all these components in several complete examples, you
should now have a good idea of the basic foundation of these concepts. In the next
chapter we will build on this foundation a bit further by looking at the various means
Android provides to retrieve and store data, including using preferences, the file sys-
tem, databases, and creating a ContentProvider.

Download at Boykma.Com

Anytime you are developing software, one of the most common and basic con-
structs you have to deal with is the means to store and retrieve data. It’s all about
the data after all. Though there are many ways to pipe data into and out of various
languages and technologies, there are typically only a few ways to persist it: in mem-
ory structures, the filesystem, databases, and network services.

Like other technologies, Android has its own concepts for getting and sharing
data in applications, yet these concepts are ultimately implemented using famil-
iar approaches (for the most part). Android provides access to the filesystem, has
support for a local relational database through SQLite, and includes a Shared-
Preferences object and preferences system that allows you to store simple key-
value pairs within applications.

126

Download at Boykma.Com

Using preferences 127

In this chapter we are going to take a tour of each of the local data-related mecha-
nisms (we will examine the network possibilities in chapter 6). We will start with pref-
erences and create a small sample application to exercise those concepts. From there
we will create another sample application to examine using the filesystem to store
data, both internal to our application and external using the platform’s SD card sup-
port. Then we will look at creating and accessing a database. To do this we will take a
closer look at some of the code and concepts from the WeatherReporter application
we created in chapter 4, which uses SQLite.

Beyond the basics, Android also includes its own construct that allows applications
to share data through a clever URI-based approach called a ContentProvider. This
technique combines several other Android concepts, such as the URI-based style of
intents and the Cursor result set seen in SQLite, to make data accessible across differ-
ent applications. To demonstrate how this works we will create another small sample
application that uses built-in providers, then we will walk through the steps required
to create a ContentProvider on our own.

We begin with the easiest form of data storage and retrieval Android provides,
preferences.

When moving from Activity to Activity in Android it is very handy to be able to
save some global application state in a SharedPreferences object. Here we will discuss
how you can set data into a preferences object and how you can later retrieve it. Also,
we will discuss how to make preferences private to your application or accessible to
other applications on the same device.

You access a SharedPreferences object through the Context you are working in.
Many Android classes have a reference to, or themselves extend from, Context. For
example, Activity and Service both extend Context.

Context includes a getSharedPreferences (Stringname, int accessMode) method
that allows you to get a preferences handle. The name you specify indicates the file that
backs the preferences you are interested in. If no such file exists when you try to get pref-
erences, one is automatically created using the passed-in name. The access mode refers
to what permissions you want to allow.

Listing 5.1 is an example Activity that demonstrates allowing the user to enter
input and then storing that data through SharedPreferences objects with different
access modes.

package com.msi.manning.chapter5.prefs;
// imports omitted for brevity

public class SharedPrefTestInput extends Activity {

Download at Boykma.Com

128 CHAPTER 5 Storing and retrieving data

public static final String PREFS PRIVATE = "PREFS PRIVATE";
public static final String PREFS WORLD READ = "PREFS WORLD READABLE";
public static final String PREFS WORLD WRITE = "PREFS_WORLD WRITABLE";
public static final String PREFS WORLD READ WRITE =

"PREFS WORLD READABLE WRITABLE";

public static final String KEY PRIVATE = "KEY PRIVATE";

public static final String KEY WORLD READ = "KEY WORLD_READ";

public static final String KEY WORLD WRITE = "KEY WORLD WRITE";

public static final String KEY WORLD READ WRITE =
"KEY_WORLD_READ WRITE";

. view element variable declarations omitted for brevity

private SharedPreferences prefsPrivate; Declare

private SharedPreferences prefsWorldRead; SharedPreferences
private SharedPreferences prefsWorldwWrite; variables
private SharedPreferences prefsWorldReadWrite;

@Override
public void onCreate (Bundle icicle)

. view inflation omitted for brevity

this.button.setOnClickListener (new OnClickListener () {
public void onClick (final View v) {
boolean valid = validate() ;
if (valid) {
prefsPrivate =
getSharedPreferences (
SharedPrefTestInput.PREFS PRIVATE, <5
Context .MODE PRIVATE) ; <
prefsWorldRead =
getSharedPreferences (
SharedPrefTestInput.PREFS WORLD READ, <

Context . MODE_WORLD_READABLE) ; . <
prefsWorldWrite = Use different @) @ Use Context.

modes getShared-
| Preferences
for
references

getSharedPreferences (
SharedPrefTestInput.PREFS WORLD WRITE,
Context .MODE WORLD WRITEABLE) ; <+

prefsWorldReadWrite =

getSharedPreferences (
SharedPrefTestInput . PREFS WORLD READ WRITE, <
Context .MODE WORLD READABLE
+ Context.MODE WORLD WRITEABLE) ; <+

Editor prefsPrivateEditor =
prefsPrivate.edit () ;

Editor prefsWorldReadEditor =
prefsWorldRead.edit () ;

Editor prefsWorldWriteEditor = Get SharedPreferences
prefsWorldWrite.edit () ; Editor

Editor prefsWorldReadWriteEditor =
prefsWorldReadWrite.edit () ;

prefsPrivateEditor.putString(
SharedPrefTestInput.KEY PRIVATE,

Download at Boykma.Com

Using preferences 129

inputPrivate.getText.toString()) ; <
prefsWorldReadEditor.putString(
SharedPrefTestInput.KEY WORLD READ,

inputWorldRead.getText () .toString()) ; <
prefsWorldWriteEditor.putString(o Store values
SharedPrefTestInput.KEY WORLD WRITE, with editor

inputWorldWrite.getText () .toString()) ; <+

prefsWorldReadWriteEditor.putString(
SharedPrefTestInput.KEY WORLD READ WRITE,
inputWorldReadWrite.getText () .toString()) ; <

prefsPrivateEditor.commit () ; Commit changes
prefsWorldReadEditor.commit () ; with editoreferences
prefsWorldWriteEditor.commit () ; variables
prefsWorldReadWriteEditor.commit () ;

Intent intent =
new Intent (SharedPrefTestInput.this,
SharedPrefTestOutput.class) ;
startActivity (intent) ;

I3

. validate omitted for brevity
}
Once you have a SharedPreferences variable @), you may assign a reference through
the Context @. Note that for each SharedPreferences object we are getting, we are
using a different constant value for the access mode, and in some cases we are even
adding modes (modes are of int type) €. Modes specify whether or not the prefer-
ences should be private, world readable, world writable, or a combination.

After you have preferences, you can then get an Editor handle in order to start
manipulating values 0. With the Editor you can set String, boolean, float, int, and
long types as key-value pairs @. This limited set of types can be restrictive, and it is why
we extended the Context in chapter 3 to store some application state in the form of a
complex object rather than using preferences. Even with this restriction, though,
often preferences are adequate, and as you can see they are simple to use.

After you have stored data with an Editor, which creates an in-memory Map, you
have to remember to call commit () to persist it to the preferences backing file @.
After data is committed, you can get it from a SharedPreferences object even easier
than storing it. Listing 5.2 is an example Activity from the same application (same
package) that gets and displays the data that was stored in listing 5.1.

package com.msi.manning.chapter5.prefs;

// imports omitted for brevity

Download at Boykma.Com

130 CHAPTER 5 Storing and retrieving data

public class SharedPrefTestOutput extends Activity {

. view element variable declarations omitted for brevity

private SharedPreferences prefsPrivate; Declare
private SharedPreferences prefsWorldRead; SharedPreferences
private SharedPreferences prefsWorldWrite; variables

private SharedPreferences prefsWorldReadWrite;
. onCreate omitted for brevity

@Override
public void onStart () {
super.onStart () ;
this.prefsPrivate =
getSharedPreferences (SharedPrefTestInput.PREFS PRIVATE,
Context .MODE PRIVATE) ; <
this.prefsWorldRead =
getSharedPreferences (SharedPrefTestInput.PREFS WORLD READ,
Context .MODE_WORLD READABLE) ; <
this.prefsWorldWrite =
getSharedPreferences (SharedPrefTestInput.PREFS WORLD WRITE,

Context .MODE WORLD WRITEABLE) ; <+
this.prefsWorldReadWrite = ASﬂgn t)
SharedPreferences
getSharedPreferences (variables

SharedPrefTestInput.PREFS WORLD READ WRITE,
Context .MODE WORLD READABLE
+ Context.MODE WORLD WRITEABLE) ; <

this.outputPrivate.setText (this.prefsPrivate.getString(
SharedPrefTestInput.KEY PRIVATE, "NA"));
this.outputWorldRead.setText (this.prefsWorldRead.getString(Get values
SharedPrefTestInput.KEY WORLD READ, "NA"));
this.outputWorldWrite.setText (this.prefsWorldWrite.getString(
SharedPrefTestInput.KEY WORLD WRITE, "NA"));
this.outputWorldReadWrite.setText (this.prefsWorldReadWrite.getString(
SharedPrefTestInput.KEY WORLD READ WRITE,
"NA")) ;

}

To get SharedPreferences values that we have previously stored, we again declare
variables @ and assign references ®. Once these are in place, we can simply get val-
ues using methods such as getString (String key, String default) @.

So, as you can see, setting and getting preferences is very straightforward. The only
potential flies in the ointment are the access modes, which we will focus on next.

SharedPreferences can be opened or created with any combination of several Con-
text mode constants. Because these values are int types, they can be added together,
as we did in listings 5.1 and 5.2, to combine permissions. The supported mode con-
stants are as follows:

Download at Boykma.Com

Using preferences 131

m Context.MODE PRIVATE (value 0)
m Context.MODE WORLD READABLE (value I)
» Context.MODE_WORLD WRITEABLE (value 2)

These modes allow you to finely tune who has access to what preference. If we take a
look at the filesystem on the emulator, after having created SharedPreferences
objects (which themselves create XML files to persist the data), we can see how this
works using a Linux-based filesystem.

Figure 5.1 is a screen shot of the Android Eclipse plug-in File Explorer view; it shows
the Linux-level permissions for the SharedPreferences XML files that were created in
listing 5.1 (these were automatically created for us when we used SharedPreferences).

The quick and dirty version of how Linux file permissions work is that each file (or
directory) has a type and three sets of permissions represented by a drwxrwxrwx nota-
tion. The first character indicates the type (d means directory, - means regular file type,
and symbolic links and other things can be represented using the type as well). After the
type, the three sets of rwx represent read, write, and/or execute permissions for user,
group, and other, in that order. So looking at this notation we can tell which files are
accessible by the user they are owned by, or by the group they belong to, or by other.

Directory permissions can be confusing. The important thing to remember with regard
to Android, though, is that each package directory is created with the other x permis-
sion. This means anyone can search and list the files in the directory. This, in turn,
means that Android packages have directory-level access to one another’s
files—from there the file-level access determines file permissions.

SharedPreferences XML files are placed in the /data/data/PACKAGE_NAME/
shared_prefs path on the filesystem. Every application or package (each .apk file) has
its own user ID (unless you use sharedUserId in the manifest, which allows you to
share the user ID, but that’s a special exception). When an application creates files
(including SharedPreferences), they are owned by that application’s user ID. To
allow other applications to access these files, the other permissions have to be set (as

Vv = com.msi.manning.chapter5.prefs 2008-03-12 13:40 drwxrwx==-x
= shared_prefs 2008-03-12 13141 drwxrwx--x

| PREFS_PRIVATE.xml 114 2008-03-12 13:41 -rw-rw---—-

.| PREFS_WORLD_READABLE.xml 117 2008-03-12 13141 -rw-rw-r==

.= PREFS_WORLD_READABLE_WRITABLE.xml| 126 2008-03-12 13:41 -rw-rw-rw-

\=| PREFS_WORLD_WRITABLE.xml 119 2008-03-12 13:41 -rw-rw--w-

= com.other.manning.chapter5.prefs 2008-03-12 13:42 drwxrwx--x

= download 2008-03-12 13:37 drwxrwxrwx

Figure 5.1 The Android File Explorer view showing preferences file permissions

Download at Boykma.Com

132 CHAPTER 5 Storing and retrieving data

shown in figure 5.2, where one of our preferences files has no outside permissions,
one of our files is world-readable, one is world-readable and -writable, and one is
world-writable).

The tricky part with getting access to the files of one application from another,
even when they have accessible permissions, is the starting path. The path is built
from the Context. So, to get files from another application you have to know and use
that application’s Context. An example of this is shown in listing 5.3, where we get the
SharedPreferences we set in listing 5.1 again, this time from a different application
(different .apk and different package).

package com.other.manning.chapter5.prefs; 4—0 Use a different package

. imports omitted for brevity
public class SharedPrefTestOtherOutput extends Activity {
. constants and variable declarations omitted for brevity
. onCreate omitted for brevity

@Override

public void onStart () {
super.onStart () ;
Context otherAppsContext = null;

try {
otherAppsContext =
createPackageContext ("com.msi.manning.chapter5.prefs",
Context .MODE WORLD WRITEABLE) ;
} catch (NameNotFoundException e) { Geteno?her
// log and or handle ; application’s context

}

this.prefsPrivate =
otherAppsContext.getSharedPreferences (
SharedPrefTestOtherOutput . PREFS PRIVATE, 0) ; <t
this.prefsWorldRead =
otherAppsContext.getSharedPreferences (
SharedPrefTestOtherOutput . PREFS WORLD READ, 0);

this.prefsWorldWrite = Use
otherAppsContext .getSharedPreferences (otherAppsContext
SharedPrefTestOtherOutput . PREFS WORLD WRITE, 0) ; <

this.prefsWorldReadWrite =
otherAppsContext .getSharedPreferences (
SharedPrefTestOtherOutput . PREFS WORLD READ WRITE, 0); <

this.outputPrivate.setText (
this.prefsPrivate.getString(
SharedPrefTestOtherOutput.KEY PRIVATE, "NA"));
this.outputWorldRead.setText (
this.prefsWorldRead.getString(
SharedPrefTestOtherOutput.KEY WORLD READ, "NA")) ;
this.outputWorldWrite.setText (
this.prefsWorldWrite.getString(
SharedPrefTestOtherOutput.KEY WORLD WRITE, "NA"));

Download at Boykma.Com

Using preferences 133

this.outputWorldReadWrite.setText (
this.prefsWorldReadWrite.getString
SharedPrefTestOtherOutput.KEY WORLD READ WRITE,"NA"));

}

To get to the SharedPreferences one application has defined from another application
in a different package @, we must use the createPackageContext (String context-
Name, int mode) method @. Once we have a reference to the other application’s
Context, we can use the same names for the SharedPreferences objects the other appli-
cation created (we do have to know the names) to access those preferences @.

With these examples we now have one application that sets and gets Shared-
Preferences and a second application (in a different package, with a different .apk
file) that gets the preferences set by the first. The composite screen shot shown in fig-
ure 5.2 demonstrates what this looks like (where NA is the preferences we could not
access from the second application, due to permissions).

£ Gl @ 9:37 PM

PrefsTest

Ml @ o:37PM
PrefsTest

PrefsOther

£ RNl @ 9:37pPm

Figure 5.2 Two
separate applications
getting and setting
SharedPreferences

Download at Boykma.Com

134

CHAPTER 5 Storing and retrieving data

The way SharedPreferences are backed by XML files on the Android filesystem and
use permission modes leads us to the next method of storing and retrieving data, the
filesystem itself.

As you have seen, Android has a filesystem that is based on Linux and supports mode-
based permissions. There are several ways you can access this filesystem. You can cre-
ate and read files from within applications, you can access raw files that are included
as resources, and you can work with specially compiled custom XML files. In this sec-
tion we will take a tour of each approach.

You can easily create files in Android and have them stored in the filesystem under the
data path for the application in which you are working. Listing 5.4 demonstrates how
you get a FileOutputStream handle and how you write to it to create a file.

public class CreateFile extends Activity {

private EditText createlInput;
private Button createButton;

@Override

public void onCreate (Bundle icicle)
super.onCreate (icicle) ;
this.setContentView (R.layout.create file);

this.createInput =

(EditText) this.findViewById(R.id.create input) ;
this.createButton =

(Button) this.findViewById(R.id.create button) ;

this.createButton.setOnClickListener (new OnClickListener () {
public void onClick (final View v) {
FileOutputStream fos = null;
try { Use
fos = openFileOutput ("filename.txt", openFileOutput
Context .MODE PRIVATE) ;
fos.write (createInput.getText () .toString() .getBytes()) ;
} catch (FileNotFoundException e) {

Log.e("CreateFile", e.getLocalizedMessage()) ; Write data
} catch (IOException e) to stream
{
Log.e("CreateFile", e.getLocalizedMessage()) ;
} finally {
if (fos !=null) {
try {
fos.flush() ; Flush and
fos.close() ; close stream

} catch (IOException e) {
// swallow

Download at Boykma.Com

Using the filesystem 135

}
}

startActivity(
new Intent (CreateFile.this, ReadFile.class)) ;

I3
}

Android provides a convenience method on Context to get a FileOutputStream
reference, openFileOutput (String name, int mode) @. Using this method you
can create a stream to a file. That file will ultimately be stored at the data/data/
[PACKAGE_NAME] /files/file.name path on the platform. Once you have the stream,
you can write to it as you would with typical Java @. After you have finished with a
stream you have to remember to flush it and close it to cleanup @.

Reading from a file within an application context (that is, within the package path
of the application) is also very simple; in the next section we will show how this can be
done.

Similarly to openFileOutput, the Context also has a convenience openFileInput
method. This method can be used to access a file on the filesystem and read it in, as
shown in listing 5.5.

public class ReadFile extends Activity {

private TextView readOutput;
private Button gotoReadResource;

@Override

public void onCreate (Bundle icicle) {
super.onCreate (icicle) ;
this.setContentView (R.layout.read file);

this.readOutput =
(TextView) this.findViewById(R.id.read output) ;

FileInputStream fis = null;

try { J Use openFilelnput
fis = this.openFileInput ("filename.txt") ; for stream
byte[] reader = new byte[fis.available()];
while (fis.read(reader) != -1) {} Read data
this.readOutput.setText (new String (reader)) ; from stream

} catch (IOException e) {

Log.e("ReadFile", e.getMessage (), e);
} finally {
if (fis != null) {
try { ﬁ Clean up when
fis.close() ; finished

} catch (IOException e) {

Download at Boykma.Com

136

CHAPTER 5 Storing and retrieving data

// swallow

. goto next Activity via startActivity omitted for brevity

}

Getting a FileInputStream, in order to read in a file from the filesystem, is the mirror
opposite of getting a FileOutputStream. For input you use openFileInput (String
name, int mode) to get the stream @), and then you read in the file as with standard
Java @ (in this case we are filling the byte reader byte array). Once you have finished,
you need to close the stream properly to avoid hanging onto resources €.

With openFileOutput and openFileInput you can write to and read from any file
within the files directory of the application package within which you are working.
Also, much like the access modes and permissions we discussed in the previous sec-
tions, you can access files across different applications if the permissions allow it and if
you know the full path to the file (you know the package to establish the path from
the other application’s context).

Though it is the exception rather than rule, there are times when setting the user ID
your application runs as can be extremely useful (most of the time it's fine to allow
the platformto select a unique ID foryou). Forinstance, if you have multiple applications
that need to store data among one another, but you also want that data to not be ac-
cessible outside that group of applications, you may want to set the permissions to
private and share the UID to allow access. You can allow a shared UID by using the
sharedUserld attribute in your manifest: android: sharedUserId="YourFancyID".

Along with creating files from within your application, you can push and pull files to the
platform, using the adb (Android Debug Bridge) tool (which you met in chapters 1
and 2). You can optionally put such files in the directory for your application; once they
are there you can read these files just like you would any other file. Keep in mind,
though, outside of developmentrelated use you won’t usually be pushing and pulling
files. Rather you will be creating and reading files from within the application or work-
ing with files that are included with an application as a raw resource, as you will see next.

If you want to include raw files with your application of any form, you can do so using
the res/raw resources location. We discussed resources in general in chapter 3, but we
did not drill down into raw files there, so we could group this data storage and access
approach with others here. When you place a file in the res/raw location, it is not
compiled by the platform but is available as a raw resource, as shown in listing 5.6.

Download at Boykma.Com

Using the filesystem 137

public class ReadRawResourceFile extends Activity {

private TextView readOutput;
private Button gotoReadXMLResource;

@Override

public void onCreate (Bundle icicle) {
super.onCreate (icicle) ;
this.setContentView(R.layout.read rawresource file);

this.readOutput =
(TextView) this.findViewById(R.id.readrawres output) ;

Resources resources = this.getResources () ; q} Hold raw resource

InputStream is = null; with InputStream

try {
is = resources .openRawReslource (.R. raw.people) ; Use getResources().
byte[] reader = new byte[is.available()]; openRawResource()
while (is.read(reader) != -1) {}

this.readOutput.setText (new String (reader)) ;
} catch (IOException e) {
Log. e ("ReadRawResourceFile", e.getMessage(), e);
} finally {
if (is != null) {
try {
is.close() ;
} catch (IOException e) {
// swallow
1

. goto next Activity via startActivity omitted for brevity

}

Getting raw resources is very similar to getting files. You get a handle to an Input-
Stream, and you can use that stream to assign to a raw reference later @. You call
Context .getResources () to get the Resources reference for your current applica-
tion’s context, and then you call openRawResource (int id) to link to the particular
item you want @. The id will automatically be available from the R class if you place
your asset in the res/raw directory. Raw resources don’t have to be text files, even
though that’s what we are using here. They can be images, documents—you name it.

The significance with raw resources is that they are not precompiled by the plat-
form, and they can refer to any type of raw file. The last type of file resource we need
to discuss is the res/xml type—which is compiled by the platform into an efficient
binary type that you need to access in a special manner.

The terms can get confusing when talking about XML resources in Android circles. This
is because XML resources can mean resources in general that are defined in XML, such as
layout files, styles, arrays, and the like, or it can specifically mean res/xml XML files.

Download at Boykma.Com

138

CHAPTER 5 Storing and retrieving data

In this section we will be dealing with res/xml XML files. These files are treated a
bit differently than other Android resources. They are different from raw files in that
you don’t use a stream to access them because they are compiled into an efficient
binary form when deployed, and they are different from other resources in that they
can be of any custom XML structure
that you desire.

To demonstrate this concept we are
going to use an XML file that defines
multiple <person> elements and uses FileStorage
attributes for firstname and last-
name—people.xml. We will then grab
this resource and display the elements
within it on screen in last-name, first-
name order, as shown in figure 5.3.

Our data file for this process, which

Figure 5.3 The example ReadXMLResource-
we will place in res/xml in source, is File Activity created in listing 5.8, which

shown in listing 5.7. reads a res/xml resource file

<people>

<person firstname="John" lastname="Ford" />

<person firstname="Alfred" lastname="Hitchcock" />

<person firstname="Stanley" lastname="Kubrick" />

<person firstname="Wes" lastname="Anderson" />
</people>
Once afile is in the res/xml path, it will be automatically picked up by the platform (if
you are using Eclipse) and compiled into a resource asset. This asset can then be
accessed in code by parsing the binary XML format Android supports, as shown in list-
ing 5.8.

public class ReadXMLResourceFile extends Activity {
private TextView readOutput;

@Override
public void onCreate (Bundle icicle)
super.onCreate (icicle) ;
this.setContentView (R.layout.read xmlresource file);

this.readOutput = (TextView) Parse XML with
this.findViewById (R.1id.readxmlres_output) ; XMLPullParser

XmlPullParser parser = this.getResources () .getXml (R.xml.people) ;
StringBuffer sb = new StringBuffer () ;

try { Walking the
while (parser.next () != XmlPullParser.END DOCUMENT) { XML tree

Download at Boykma.Com

Using the filesystem 139

String name = parser.getName () ;

String first = null;

String last = null;

if ((name != null) && name.equals ("person")) { Get attributeCount

int size = parser.getAttributeCount () ; for element
for (int i = 0; i < size; i++) {
String attrName =
parser.getAttributeName (1) ; .
String attrValue = E Get attribute
parser.getAttributeValue (i) ; name and value
if ((attrName != null)
&& attrName.equals ("firstname")) {
first = attrvalue;
} else if ((attrName != null)
&& attrName.equals ("lastname")) {

last = attrValue;
1
1
if ((first != null) && (last !=null)) {
sb.append(last + ", " + first + "\n");
1

}
}

this.readOutput.setText (sb.toString()) ;
} catch (Exception e) {
Log. e (“ReadXMLResourceFile”, e.getMessage (), e);

}

. goto next Activity via startActivity omitted for brevity

}

To process a binary XML resource you use an XmlPullParser @. This class can walk
though the XML tree SAX style. The parser provides an event type represented by an
int for each element it encounters, such as DOCDECL, COMMENT, START DOCUMENT,
START TAG, END_TAG, END DOCUMENT, and so on. Using the next () method you can
retrieve the current event type value and compare it to event constants in the class @.
Each element encountered has a name, a text value, and an optional set of attributes.
You can walk through the document as we are here by getting the attributeCount €
for each item and grabbing the name and value @. We are traversing the nodes of a
resource-based XML file here with a pull parser; you will see more types of XML pars-
ing in later examples. (SAX is specifically covered in chapter 13.)

Apart from local file storage on the device filesystem, you have another option that
is more appropriate for certain types of content, writing to an external SD card
filesystem.

One of the advantages the Android platform provides over some other similar device
competitors is that it offers access to an available Secure Digital (SD) flash memory
card. Ultimately, it is possible that not every Android device will have an SD card, but

Download at Boykma.Com

140

CHAPTER 5 Storing and retrieving data

the good news is that if the device does have it, the platform supports it and provides
an easy way for you to use it.

In order to work with an SD card image in the Android Emulator, you will first need to
use the mksdcard tool provided to set up your SD image file (you will find this execut-
able in the tools directory of the SDK). After you have created the file, you will need
to start the emulator with the -sdcard <path to files option in order to have the
SD image mounted.

Using the SD card makes a lot of sense if you are dealing with large files or when you
don’t necessarily need to have permanent secure access to certain files. Obviously, if
you are working with image data, audio files, or the like, you will want to store these
on the SD card. The builtin internal filesystem is stored on the system memory, which
is limited on a small mobile device—you don’t typically want to throw snapshots of
Grandma on the device itself if you have other options (like an SD card). On the other
hand, for application-specialized data that you do need to be permanent and for
which you are concerned about secure access, you should use the internal filesystem
(or an internal database).

The SD card is impermanent (the user can remove it), and SD card support on
most devices, including Android-powered devices, supports the FAT (File Allocation
Table) filesystem. That’s important to remember because it will help you keep in mind
that the SD card doesn’t have the access modes and permissions that come from the
Linux filesystem.

Using the SD card when you need it is fairly basic. The standard java.io.File and
related objects can be used to create and read (and remove) files on the /sdcard path
(assuming that path is available, which you do need to check, also using the standard
File methods). Listing 5.9 is an example of checking that the /sdcard path is present,
creating another subdirectory therein, then writing and subsequently reading file data
at that location.

public class ReadWriteSDCardFile extends Activity {
private TextView readOutput;

@Override
public void onCreate (Bundle icicle) f{
super.onCreate (icicle) ;
this.setContentView (R.layout.read write sdcard file);

this.readOutput = (TextView)
this.findViewById(R.id.readwritesd output) ;

String fileName = "testfile-"
+ System.currentTimeMillis() + ".txt"; Q——" Establish filename

Download at Boykma.Com

Using the filesystem 141

File sdDir = new File("/sdcard/") ; 4} Get /sdcard directory
if (sdDir.exists() && sdDir.canWrite()) { reference
File uadDir = new File (sdDir.getAbsolutePath ()
+ "/unlocking android") ; <+—@) Instantiate File for path
uvuadDir.mkdir () ;
if (uadDir.exists() && uadDir.canWrite()) { Use
File file = new File (uadDir.getAbsolutePath () mkdir()
+ "/" 4+ fileName) ; to create
try { Get directory
file.createNewFile () ; <1 Create reference
} catch (IOException e) { file to File
// log and or handle
1
if (file.exists() && file.canWrite()) {
FileOutputStream fos = null;
try {
fos = new FileOutputStream(file) ;
fos.write ("I fear you speak upon the rack,"
Write with

+ "where men enforced do speak "
+ "anything.".getBytes()) ;
} catch (FileNotFoundException e) {
Log.e(ReadWriteSDCardFile.LOGTAG, "ERROR", e);
} catch (IOException e) {
Log.e(ReadWriteSDCardFile.LOGTAG, "ERROR", e);

FilelnputStream

} finally {
if (fos != null) ({

try {
fos.flush() ;

fos.close() ;
} catch (IOException e) {
// swallow
1
1
1
} else {
// log and or handle - error writing to file
1

} else {
// log and or handle -
// unable to write to /sdcard/unlocking android
1
} else {
Log.e("ReadWriteSDCardFile.LOGTAG",
"ERROR /sdcard path not available (did you create "
+ " an SD image with the mksdcard tool,"
+ " and start emulator with -sdcard "
+ <path_to_file> option?");
} Use new File
object for

File rFile = .
reading

new File ("/sdcard/unlocking android/" + fileName) ;
if (rFile.exists() && rFile.canRead()) ({
FileInputStream fis = null;

try {
fis = new FileInputStream(rFile) ;

Download at Boykma.Com

142

CHAPTER 5 Storing and retrieving data

byte[] reader = new byte[fis.available()]; Read with
while (fis.read(reader) != -1) { FileOutputStream

}
this.readOutput.setText (new String(reader)) ;
} catch (IOException e) {
// log and or handle
} finally {
if (fis !=null) {
try {
fis.close();
} catch (IOException e) {
// swallow
}

}
}
} else {

this.readOutput.setText (
"Unable to read/write sdcard file, see logcat output") ;

}

The first thing we need to do in the ReadWriteSDCardFile class is to establish a file-
name for the file we want to create @. We have done this by appending a timestamp so
as to create a unique file each time this example application is run. After we have the
filename, we create a File object reference to the /sdcard directory @. From there we
create a File reference to a new subdirectory, /sdcard/unlocking_android (3] (in Java
both files and directories can be represented by the File object). After we have the sub-
directory reference we callmkdir () to ensure itis created if it does not already exist @.

With the structure we need in place, we follow a similar pattern for the actual file.
We instantiate a reference File object ©, and we call createFile() to create a file on
the filesystem 0. Once we have the File, and we know it exists and we are allowed to
write to it (recall files on the sdcard will be world writable by default because it’s using
a FAT filesystem), we then use a FileInputStream to write some data into the file @.

After we create the file and have data in it, we create another File object with the
full path to read the data back 0. Yes, we could use the same File object handle that
we had when creating the file, but for the purposes of the example we wanted to
explicitly demonstrate starting with a fresh File. With the File reference we then cre-
ate a FileOutputStream and read back the data that was earlier stored in the file @.

As you can see, working with files on the SD card is pretty much standard
java.io.File fare. This does entail a good bit of boilerplate Java code to make a
robust solution, with permissions and error checking every step of the way and log-
ging about what is happening, but it is still simple and powerful. If you need to do a
lot of File handling, you will probably want to create some simple local utilities for
wrapping the mundane tasks so you don’t have to repeat them over and over again
(opening files, writing to them, creating them, and so on). You may want to look at
using or porting something like the Apache commons.io package, which includes a
FileUtils class that handles these types of tasks and more.

Download at Boykma.Com

Persisting data to a database 143

The SD card example completes our exploration in this section, where we have
seen that there are various ways to store different types of file data on the Android
platform. If you have static elements that are predefined you can use res/raw, if you
have XML files you can use res/xml. You can also work directly with the filesystem by
creating, modifying, and retrieving data in files (either in the local internal filesystem
or on the SD card if available.

Another way to deal with data, one that may be more appropriate for many situa-
tions (such as when you need to share relational data across applications), is through
the use of a database.

B mile 1:37rm

One nice convenience that the Android platform e Caved [oeadine

provides is the fact that a relational database is built
in. SQLite doesn’t have all of the features of larger
client/server database products, but it does cover
just about anything you might need for local data 33523 Dade City, FL
storage, while being easy to deal with and quick.
In this section we are going to cover working
with the built-in SQLite database system, from cre- 44444 Newton Falls, OH

32424 Blountstown, FL

32060 Live Oak, FL

43844 Warsaw, OH

ating and querying a database to upgrading and
working with the sqlite3 tool that is available in the
Android Debug Bridge (adb) shell. Once again we 78871 Langhy, TX
will do this in the context of the WeatherReporter
application we began in chapter 4. This application
uses a database to store the user’s saved locations

55555 Young America, MN

MENU

and persists user preferences for each location. The
screen shot shown in figure 5.4 displays this saved
data for the user to select from; when the user
selects a location, data is retrieved from the data-
base and a location weather report is shown.

To see how this comes together we will begin

)) Figure 5.4 The WeatherReporter
with what it takes to create the database Weather- saved Locations screen, which pulls

Reporter uses. data from a SQLite database

To use SQLite you have to know a bit about SQL usage in general. If you need to brush
up on the background of the basic commands—CREATE, INSERT, UPDATE, DELETE, and
SELECT—then you may want to take a quick look at the SQLite documentation (http:
/ /www.sqlite.org/lang.html).

For our purposes we are going to jump rightin and build a database helper class that

our application will use. We are creating a helper class so that the details concerning cre-
ating and upgrading our database, opening and closing connections, and running

Download at Boykma.Com

http://www.sqlite.org/lang.html
http://www.sqlite.org/lang.html

144

CHAPTER 5 Storing and retrieving data

through specific queries are all encapsulated in one place and not otherwise exposed
or repeated in our application code. This is so our Activity and Service classes can

later use simple get and insert methods, with specific bean objects representing our

model, or Collections rather than database-specific abstractions (such as the Android

Cursor object thatrepresentsa queryresultset). You can think of this class as a miniature
Data Access Layer (DAL).

The first part of our DBHelper class, which includes a few inner classes you will
learn about, is shown in listing 5.10.

public class

DBHelper {

public static final String DEVICE ALERT ENABLED ZIP = "DAEZ99";
public static final String DB NAME = "w_alert";

public static final String DB TABLE = "w_alert loc"; Use constants for 1
public static final int DB _VERSION = 3; database properties
private static final String CLASSNAME = DBHelper.class.getSimpleName () ;
private static final String[] COLS = new Stringl]
{ " id", "zip", "city", "region", "lastalert", "alertenabled" };
private SQLiteDatabase db;
private final DBOpenHelper dbOpenHelper;
public sltatic cllass Location { Define inner
public long id; Location bean
public long lastalert;
public int alertenabled;
public String zip;
public String city;
public String region;
. Location constructors and toString omitted for brevity
}
private static class DBOpenHelper extends Define inner
SQLiteOpenHelper { 4 DBOpenHelper class
private static final String DB CREATE = "CREATE TABLE "
+ DBHelper.DB TABLE Define SQL
+ " (_id INTEGER PRIMARY KEY, zip TEXT UNIQUE NOT NULL,” query for
+ “city TEXT, region TEXT, lastalert INTEGER, * database
+ “alertenabled INTEGER);"; creation

public DBOpenHelper (Context context, String dbName, int version) {
super (context, DBHelper.DB NAME, null, DBHelper.DB VERSION) ;

}

@override Override helper
public void onCreate (SQLiteDatabase db) { callbacks
try {

db.execSQL (DBOpenHelper.DB CREATE) ;
} catch (SQLException e) {

Download at Boykma.Com

Persisting data to a database 145

Log.e(Constants.LOGTAG, DBHelper.CLASSNAME, e) ;

}

@Override
public void onOpen (SQLiteDatabase db) {
super.onOpen (db) ;

} Override
@Override helper
public void onUpgrade (SQLiteDatabase db, int oldVersion, callbacks
int newVersion) {
db.execSQL ("DROP TABLE IF EXISTS " + DBHelper.DB TABLE) ;
this.onCreate (db) ;

}

Within our DBHelper class we first have a series of constants that define important
static values relating to the database we want to work with, such as database name,
database version, and table name @. Then we show several of the most important
parts of the database helper class that we have created for the WeatherReporter appli-
cation, the inner classes.

The first inner class is a simple Location bean that is used to represent a user’s
selected location to save @. This class intentionally does not have accessors and muta-
tors, because these add overhead and we don’t really need them when we will use this
bean only within our application (we won’t expose it). The second inner class is a
SQLiteOpenHelper implementation €.

Our DBOpenHelper inner class extends SQLiteOpenHelper, which is a class that
Android provides to help with creating, upgrading, and opening databases. Within
this class we are including a String that represents the CREATE query we will use to
build our database table; this shows the exact columns and types our table will have
0. The data types we are using are fairly self-explanatory; most of the time you will
use INTEGER and TEXT types, as we have (if you need more information about the
other types SQLite supports, please see the documentation: http://www.sqlite.org/
datatype3.html). Also within DBOpenHelper we are implementing several key SQLite-

OpenHelper callback methods, notably onCreate and onUpgrade (onOpen is also sup-
ported, but we aren’t using it) @. We will explain how these callbacks come into play
and why this class is so helpful in the second part of our DBHelper (the outer class),
which is shown in listing 5.11.

public DBHelper (Context context) {
this.dbOpenHelper = new DBOpenHelper (context, "WR _DATA", 1);
this.establishDb() ;

} Provide Create
. . . establishDb DBOpenHelper
private void establishDb () { instance

if (this.db == null) {

Download at Boykma.Com

http://www.sqlite.org/datatype3.html
http://www.sqlite.org/datatype3.html

146

CHAPTER 5 Storing and retrieving data

this.db = this.dbOpenHelper.getWritableDatabase () ;

}

public void cleanup () { Provide cleanup
if (this.db != null) { method

this.db.close() ;
this.db = null;

1
public void insert (Location location) { <+
ContentValues values = new ContentValues() ;
values.put ("zip", location.zip);
values.put ("city", location.city) ;
values.put ("region", location.region) ;
values.put ("lastalert", location.lastalert);
values.put ("alertenabled", location.alertenabled) ;
this.db.insert (DBHelper.DB TABLE, null, values) ;
1
public void update (Location location) { D —
ContentValues values = new ContentValues() ; .

- ; - Provide @)
values.put ("zip", location.zip); .

i) i convenience
values.put ("Clt}lf" , locatlorll.c1ty) , insert, update,
values.put ("region", location.region) ; delete, get
values.put ("lastalert", location.lastalert);
values.put ("alertenabled", location.alertenabled) ;
this.db.update (DBHelper.DB TABLE, values, " _id=" + location.id, null);

1

public void delete(long id) { S Em—
this.db.delete (DBHelper.DB TABLE, " id=" + id, null);

1

public void delete (String zip) { e
this.db.delete(DBHelper.DBﬁTABLE, "zip='" + zip + "'", null);

1

public Location get (String zip) { <t

Cursor ¢ = null;
Location location = null;

try {
c = this.db.query (true, DBHelper.DB TABLE, DBHelper.COLS,
"zip='" 4+ zip + "'", null, null, null, null,
null) ;

if (c.getCount () > 0) {
c.moveToFirst () ;
location = new Location() ;
location.id = c.getLong (0) ;
location.zip = c.getString (1) ;
location.city = c.getString(2) ;
location.region = c.getString(3) ;
location.lastalert = c.getLong(4) ;
location.alertenabled = c.getInt (5);

}

} catch (SQLException e) {

Download at Boykma.Com

}

Persisting data to a database 147

Log.v(Constants.LOGTAG, DBHelper.CLASSNAME, e) ;
} finally {
if (c != null && !c.isClosed()) {
c.close() ;
}

}

return location;

} Provide additional
get methods
public List<Locations> getAll () {

ArrayList<Location> ret = new ArrayList<Locations> () ;
Cursor ¢ = null;
try {
c = this.db.query (DBHelper.DB TABLE, DBHelper.COLS, null,
null, null, null, null);
int numRows = c.getCount () ;
c.moveToFirst () ;
for (int i = 0; i < numRows; ++1) {
Location location = new Location() ;
location.id = c.getLong(0) ;
location.zip = c.getString(1) ;
location.city = c.getString(2) ;
location.region = c.getString(3) ;
location.lastalert = c.getLong(4) ;
location.alertenabled = c.getInt (5);
if (!location.zip.equals (DBHelper.DEVICE ALERT ENABLED ZIP)) {
ret.add (location) ;
1

c.moveToNext () ;

}
} catch (SQLException e) {
Log.v(Constants.LOGTAG, DBHelper.CLASSNAME, e) ;
} finally {
if (c != null && !c.isClosed()) {
c.close() ;
}

}

return ret;

. getAllAlertEnabled omitted for brevity

Our DBHelper class contains a member-level variable reference to a SQLiteDatabase
object, as we saw in listing 5.10 (the first half of this class). This object is the Android
database workhorse. It is used to open database connections, to execute SQL state-
ments, and more.

Then the DBOpenHelper inner class we also saw in the first part of the DBHelper

class listing is instantiated inside the constructor @. From there the dbOpenHelper is
used, inside the establishDb method if the db reference is null, to call openDatabase
with the current Context, database name, and database version @. This establishes db
as an instance of SQLiteDatabase through DBOpenHelper.

Download at Boykma.Com

148

CHAPTER 5 Storing and retrieving data

Although you can also just open a database connection directly on your own, using
the open helper in this way invokes the provided callbacks and makes the process easier.
With this technique, when we try to open our database connection, it is automatically
created or upgraded (or just returned), if necessary, through our DBOpenHelper. While
using a DBOpenHelper entails extra steps up front, once you have it in place it is
extremely handy when you need to modify your table structure (you can simply incre-
ment your version and do what you need to do in the onUpgrade callback—without this
you would have to manually alter and/or remove and re-create your existing structure).

Another important thing to provide in a helper class like this is a cleanup
method €. This method is used by callers who can invoke it when they pause, in
order to close connections and free up resources.

After the cleanup method we then see the raw SQL convenience methods that
encapsulate the operations our helper provides. In this class we have methods to
insert, update, delete and get data 0. We also have a few additional specialized get
and get all methods @. Within these methods you get a feel for how the db object is
used to run queries. The SQLiteDatabase class itself has many convenience methods,
such as insert, update, and delete—which we are wrapping—and it provides direct
query access that returns a Cursor over a result set.

Unlike the SharedPreferences we saw earlier, you can't make a database
WORLD READABLE. Each database is accessible only by the package in which it was
created—this means accessible only to the process that created it. If you need to
pass data across processes, you can use AIDL/Binder (as in chapter 4) or create a
ContentProvider (as we will discuss next), but you can’t use a database directly
across the process/package boundary.

Typically you can get a lot of mileage and utility from basic steps relating to the
SQLiteDatabase class, as we have here, and by using it you can create a very useful and
fast data-storage mechanism for your Android applications. The final thing we need to
discuss with regard to databases is the sqlite3 tool, which you can use to manipulate
data outside your application.

When you create a database for an application in Android, the files for that database
are created on the device in the /data/data/[PACKAGE_NAME]/database/db.name
location. These files are SQLite proprietary, but there is a way to manipulate, dump,
restore, and otherwise work with your databases through these files in the ADB
shell—the sqlite3 tool.

This tool is accessible through the shell; you can get to it by issuing the following
commands on the command line (remember to use your own package name; here we
are using the package name for the WeatherReporter sample application):

Download at Boykma.Com

Working with ContentProvider classes 149

cd [ANDROID HOME]/tools

adb shell

sqlite3 /data/data/com.msi.manning.chapter4/databases/w_alert.db

Once you are in the shell prompt (you have the #), you can then issue sqlite3 com-
mands; .help should get you started (if you need more, see the tool’s documentation:
http:/ /www.sqlite.org/sqlite.html). From the tool you can issue basic commands,
such as SELECT or INSERT, or you can go further and CREATE or ALTER tables. This tool
comes in handy for basic poking around and troubleshooting and to .dump and .load

data. As with many command-line SQL tools, it takes some time to get used to the for-
mat, but there is no better way to back up or load your data. (If you need that facil-
ity—in most cases with mobile development you really shouldn’t have a huge
database. Keep in mind that this tool is available only through the development shell;
it’s not something you will be able to use to load a real application with data.)

Now that we have shown how to use the SQLite support provided in Android, from
creating and accessing tables to store data, to investigating databases with the pro-
vided tools in the shell, the next thing we need to cover is the last aspect of handling
data on the platform, and that is building and using a ContentProvider.

A ContentProvider is used in Android to share data between different applications.
We have already discussed the fact that each application runs in its own process (nor-
mally), and data and files stored there are not accessible by other applications by
default. We have explained that you can make preferences and files available across
application boundaries with the correct permissions and if each application knows the
context/path. Nevertheless, that is a limited solution for related applications that
already know details about one another. In contrast, with a ContentProvider you can
publish and expose a particular data type for other applications to use to query, add,
update, and delete, and those applications don’t need to have any prior knowledge of
paths or resources or even know who or what is providing the content.

The canonical ContentProvider example in Android is the contacts list—the list
of name, address, and phone information stored in the phone. You can access this
data from any application using a specific URI, content://contacts/people/, and a
series of methods provided by the Activity and ContentResolver classes to retrieve
and store data. You will learn more about ContentResolver as we explore provider
details. One other data-related concept that a ContentProvider brings along with it
is the Cursor, the same object we used previously when dealing with SQLite data-
base result sets. Cursor is also returned by the provider query methods you will learn
about shortly.

In this section we are going to build several small sample applications to help us look
at all of the ContentProvider angles. First we will build a single Activity-based appli-
cation, which we are calling ProviderExplorer, that will work with the built-in contacts
database to query, add, update, and delete data. Then we will create another applica-
tion that implements its own ContentProvider and includes a similar explorer-type

Download at Boykma.Com

http://www.sqlite.org/sqlite.html

150 CHAPTER 5 Storing and retrieving data

Returning a Cursor is one of the quirks of a ContentProvider. Exposing a Cursor
from a ContentProvider is a fairly “leaky” abstraction, and it makes for an incon-
sistent API, as you shall learn. Cursor is part of the android.database package, which
implies you are working with database records and binds you to certain database con-
cepts whenyou getresults. Yet the entire idea behind a ContentProvider is supposed
to be that it is backend agnostic. That is to say you should be able to implement a
ContentProvider and not use a database to get and store data within it if the situation
warrants (the current Android documentation contradicts itself on this point; in one
place it says not using a database is possible, and in another it says it is not). Currently,
regardless of the merits or demerits, you will need to learn to deal with Cursor-based
results and SQL constructs when working with ContentProvider calls.

Activity to manipulate that data as well. Along with covering these fundamentals, we
will discuss other built-in providers on the platform beyond contacts.

The ProviderExplorer application we are going to build here will ultimately have one
large scrollable screen, which is depicted in figure 5.5. Keep in mind that we are focus-
ing on covering all the bases in one Activity—exposing all of the ContentProvider

@ (I 8:10 PM

ProviderExplorer
) fill in edit form)

Dianne Hackborn
210-999-9999 al <D 8:11PM

ProviderExplorer

Dan Morrill
310-999-9999

Dick wall
410-999-9999

Dan Morrill

d@ (3 8:13PM

Delete Dianne Hackbg

Delete Dan Morrill

310-999-9999

Edit phone Number: ProviderExplorer
Delete Dick Wall \

Figure 5.5 ProviderExplorer sample application that uses the contact’s ContentProvider

Download at Boykma.Com

Working with ContentProvider classes 151

operations in a single place—rather than on aesthetics or usability (this application is
downright ugly, but that’s intentional—at least this time).

To begin we will explore the syntax of URIs and the combinations and paths used
to perform different types of operations with the ContentProvider and Content-
Resolver classes.

Each ContentProvider is required to expose a unique CONTENT URI that is used to
identify the content type it will handle. This URI is used in one of two forms, singular
or plural, as shown in table 5.1, to query data.

Table 5.1 ContentProvider URI variations for different purposes

content://contacts/people/ Return List of all people from provider registered to
handle content://contacts

content://contacts/people/1 Return or manipulate single person with ID 1 from
provider registered to handle content://contacts

The URI concept comes into play whether or not you are querying data or adding or
deleting it, as you shall see. To get familiar with this process we will take a look at the
basic CRUD data-manipulation methods and see how they are carried out with the
contacts database and respective URIs.

We will step through each task to highlight the details: create, read, update, and
delete. To do this concisely we will build one Activity in the ProviderExplorer exam-
ple application that performs all of these actions. In the next few sections we will take
alook at different parts of this Activity to focus on each task.

The first thing we need to do is set up a bit of scaffolding for the contacts provider
we will be using; this is done in the first portion of listing 5.12, the start of the Provi-
derExplorer class.

public class ProviderExplorer extends Activity {

private EditText addName;

private EditText addPhoneNumber;
private EditText editName;
private EditText editPhoneNumber;
private Button addContact;
private Button editContact;

private long contactId; Include inner

private class Contact { Contact bean

public long id;

public String name;

public String phoneNumber;

public Contact (long id, String name, String phoneNumber) {

Download at Boykma.Com

152 CHAPTER 5 Storing and retrieving data

this.id = id;
this.name = name;
this.phoneNumber = phoneNumber;

}

@Override
public String toString() {

return this.name + "\n" + this.phoneNumber;
}

} Extend Button with

private class ContactButton extends Button { ContactButton

public Contact contact;

public ContactButton (Context ctx, Contact contact) ({
super (ctx) ;
this.contact = contact;

}

@Override
public void onCreate (Bundle icicle)
super.onCreate (icicle) ;
this.setContentView (R.layout.provider explorer) ;

this.addName = (EditText) this.findViewById(R.id.add name) ;
this.addPhoneNumber =

(EditText) this.findViewById(R.id.add phone number) ;
this.editName =

(EditText) this.findViewById(R.id.edit name) ;
this.editPhoneNumber =

(EditText) this.findViewById(R.id.edit phone number) ;

this.addContact =
(Button) this.findviewById(R.id.add contact button) ;
this.addContact.setOnClickListener (new OnClickListener () {
public void onClick (final View v) {
ProviderExplorer.this.addContact () ;

} Create
1 Call addContact anonymous
i and editContact click

this.editContact =
(Button) this.findvViewById(R.id.edit contact button) ;
this.editContact.setOnClickListener (new OnClickListener () {
public void onClick (final View v) {
ProviderExplorer.this.editContact () ;

listeners

1)

}
To start out the ProviderExplorer Activity we are creating a simple inner bean class
to represent a Contact record (this is not a comprehensive representation, but it does
capture the fields we are interested in here) @. Then we include another inner class
to represent a ContactButton @. This class extends Button and includes a reference
to a particular Contact.

After we have the add and edit buttons established, we create anonymous
onClickListener implementations € that call the respective add and edit methods
when a button is clicked @.

Download at Boykma.Com

Working with ContentProvider classes 153

That rounds out the setup-related tasks for ProviderExplorer. The next thing we
need to implement is the onStart method, which adds more buttons dynamically for
populating edit data and deleting data. This is shown in listing 5.13.

@Override
public void onStart () {
super.onStart () ; Get list of
contacts

List<Contact> contacts = this.getContacts() ;

LinearLayout .LayoutParams params =
new LinearLayout.LayoutParams (200,
android.view.ViewGroup.LayoutParams.WRAP CONTENT) ;

if (contacts != null) {
LinearLayout editLayout =
(LinearLayout)
this.findViewById(R.1id.edit buttons layout) ;
LinearLayout deletelLayout = Create.
) dynamic
(LinearLayout)
layouts

this.findViewById(R.1id.delete buttons layout) ;
params.setMargins (10, 0, 0, 0);

for (Contact c : contacts) {

ContactButton contactEditButton =
new ContactButton (this, c¢); <G
contactEditButton.setText (c.toString()) ;
editLayout.addView (contactEditButton, params) ;
contactEditButton.setOnClickListener (new OnClickListener () {
public void onClick (final View v) {
ContactButton view = (ContactButton) v;
editName.setText (view.contact.name) ;
editPhoneNumber.setText (view.contact .phoneNumber) ;

contactId = view.contact.id;
} Create dynamic
1) buttons

ContactButton contactDeleteButton =
new ContactButton (this, c¢); <G+

contactDeleteButton.setText ("Delete " + c.name) ;

deleteLayout.addView (contactDeleteButton, params) ;

contactDeleteButton.setOnClickListener (new OnClickListener () {
public void onClick (final View v) {

ContactButton view = (ContactButton) v;
contactId = view.contact.id;
deleteContact () ;
1
I3
1
} else {
LinearLayout layout =
(LinearLayout)

this.findvViewById(R.id.edit buttons layout) ;
TextView empty = new TextView(this) ;
empty.setText ("No current contacts") ;

Download at Boykma.Com

154

CHAPTER 5 Storing and retrieving data

layout.addView (empty, params) ;

}

The onStart method makes a call to the getContacts method @. This method,
which you will see in listing 5.14, returns a List of current Contact objects from the
Android contacts database. Once we have the current contacts, we loop through them
and dynamically create a layout in code for edit and delete, respectively @. After we
have the layout within it, we create a few view objects, including a ContactButton to
populate an edit form and a button to delete a record €. Each button is then manu-
ally added to its respective LinearLayout we have referenced through R.java.

Once our onStart method is in place, we have a View to display all the current con-
tacts and all of the buttons, static and dynamic, that we need in order to be able to add,
edit, and delete contact data. From there we need to implement the methods to perform
these actions—this is where we will use a ContentResolver and other related classes.

Initially we need to populate our display of current contacts, and to do that we
need to query for (read) data.

The Activity class has a managedQuery method that is used to make calls into regis-
tered ContentProvider classes. When we create our own ContentProvider in sec-
tion 5.5.3, we will show how a provider is registered with the platform; for now we are
going to focus on calling existing providers. Each provider is required to advertise (or
publish, in Android terms) the CONTENT URI it supports. To query the contacts pro-
vider, as we are doing in listing 5.14, we have to know this URI and then get a Cursor
by calling managedQuery.

private List<Contacts> getContacts () {
List<Contact> results = null;
long id = 0L;
String name = null;
String phoneNumber = null;
String[] projection = new Stringl[]

{ contacts.pPeople. ID, Make Get
Contacts.People.NAME, projection ContentResolver
Contacts.People.NUMBER }; reference

ContentResolver resolver = this.getContentResolver() ;
Cursor cur = resolver.query (Contacts.People.CONTENT URI, Get Cursor
projection, null, null, from

Contacts.People.DEFAULT SORT ORDER) ; resolver
while (cur.moveToNext ()) {
if (results == null) { Walk results and

results = new ArrayList<Contact>() ; populate data

}
id = cur.getLong (cur.getColumnIndex (BaseColumns. ID)) ;
name = cur.getString(cur.getColumnIndex (PeopleColumns.NAME)) ;
phoneNumber =
cur.getString (cur.getColumnIndex (PhonesColumns.NUMBER)) ;

Download at Boykma.Com

Working with ContentProvider classes 155

results.add (new Contact (id, name, phoneNumber)) ;

}

return results;

}

The Android contacts database is really a composite of several types of data. A contact
includes details of a person (name, company, photo, and the like), one or more
phone numbers (each of which has a number, type, label, and such), and other infor-
mation. A ContentProvider typically supplies all the details of the URI and the types it
supports as constants in a class. In the android.provider package, there is Contacts
class that corresponds to the contacts provider. This class has nested inner classes that
represent People and Phones. In additional inner classes in those, there are constants
that represent fields or columns of data for each type. This structure with all the inner
classes can be mind bending at times, but the bottom line is that Contacts data ends
up in multiple tables, and the values you need to query and manipulate this data come
from the inner classes for each type.

The columns we will be using to get and set data are defined in these classes. Here
we are going to work with only the people and phones parts of contacts. We start by
creating a projection of the columns we want to return as a String array @. Then we
get a reference to the ContentResolver we will use @. Using the resolver, we obtain a
Cursor object ©. Once we have the Cursor, which represents the rows in the data we
have returned, we iterate over it to create our contact objects 0.

To obtain a Cursor reference you can also use the managedQuery method of the
Activity class. A managed Cursor is automatically cleaned up when your Activity
pauses, and it is also restarted when it starts. It is a Cursor instance that has its
state maintained by the platform in conjunction with the Activity lifecycle. This is
very helpful, in most cases. If you just need to retrieve data within an Activity, you
will want to use a managed Cursor as opposed to a ContentResolver. (We are not
using one in the last example, because there we need to do more than retrieve data,
and we want to focus on the provider/resolver components.)

The query method on the ContentResolver class also lets you pass in additional argu-
ments to narrow the results. Specifically, where we passed null, null in listing 5.14,
you can alternatively pass in a filter to narrow the rows you want to return in the form
of an SQL WHERE clause and optional replacement tokens for that Where clause
(injected at each ?). This is somewhat typical SQL usage, so it’s easy to work with. The
downside comes when you aren’t using a database to back your ContentProvider.
This is where the abstraction leaks like a sieve—though it might be possible to not use
a database for a data source, you still have to handle SQL statements in your provider
implementation, and you must require that anyone who uses your provider also has to
deal with SQL constructs.

Download at Boykma.Com

156

CHAPTER 5 Storing and retrieving data

Now that we have covered how to query for data to return results, we look at insert-
ing new data—adding a row.

In listing 5.15 we show the next part of the ProviderExplorer class, the addContact
method. This is used with the add form elements in our Activity to insert a new row
of data into the contacts-related tables.

private void addContact () {
ContentResolver resolver = this.getContentResolver() ; Get
ContentValues values = new ContentValues () ; ContentResolver

values.put (Contacts.People.NAME, handle

this.addName.getText () .toString()) ; Use ContentValues
Uri personUri = for query values
Contacts.People.createPersonInMyContactsGroup (
resolver, values); Use Contacts helper

values.clear () ; to create person

Uri phoneUri = Uri.withAppendedPath (personUri,
Contacts.People.Phones.CONTENT DIRECTORY) ; Append person
values.put (Contacts.Phones.TYPE, Phones.TYPE MOBILE) ; Uri for phone Uri

values.put (Contacts.Phones . NUMBER,
this.addPhoneNumber.getText () .toString()) ;

resolver.insert (phoneUri, values) ; +—@ Insert data using resolver

this.startActivity (new Intent (this, ProviderExplorer.class)) ;

}

The first thing to see in the addContact method is that we are getting a ContentRe-
solver reference @ and using a ContentValues object to map column names with
values @. This is an Android-specific type of map object. After we have our variables
in place, we use the special createPersonInMyContactsGroup helper method on the
Contacts.People class to both insert a record and return the Uri €. This method
uses the resolver for us, under the covers, and performs an insert. The Contacts class
structure has a few helper methods sprinkled throughout (see the Javadocs). These
are used to cut down on the amount of code you have to know and write to perform
common tasks, such as adding a contact to the My Contacts group (the built-in group
that the phone displays by default in the contacts app).

After we have created a new contact People record, we append new data to that
existing Uri in order to create a phone record associated with the same person @.
This is a nice touch that the API provides. You can often append and/or build onto
an existing Uri in order to access different aspects of the data structure. After we
have the Uri and have reset and updated the values object, we directly insert a
phone record this time, using the ContentResolver insert method (no helper for
this one) @.

After adding data, we need to look at how to update or edit existing data.

Download at Boykma.Com

Working with ContentProvider classes 157

To update a row of data you first obtain a Cursor row reference to it and then use the
update-related Cursor methods. This is shown in listing 5.16.

private void editContact () {
ContentResolver resolver = this.getContentResolver() ;
ContentValues values = new ContentValues() ;

Uri personUri = Contacts.People.CONTENT URI.buildUpon () Ap.pe.nd to ?n
.appendPath (Long. toString(this.contactId)) .build() ; existing Ur
values.put (Contacts.People.NAME, Update values
this.editName.getText () .toString()) ; to change data
resolver.update (personUri, values, null, null); <F42, Call
values.clear () ; resolver.update

Uri phoneUri = Uri.withAppendedPath (personUri,

Contacts.People.Phones.CONTENT DIRECTORY + "/1"); 4@ After updated,

values.put (Contacts.Phones.NUMBER, get Uri
this.editPhoneNumber.getText () .toString()) ;

resolver.update (phoneUri, values, null, null);

this.startActivity (new Intent (this, ProviderExplorer.class)) ;

}

In updating data, we start with the standard People.CONTENT URI and append a spe-
cific ID path to it using UriBuilder @. UriBuilder is a very helpful class that uses the
builder pattern to allow you to construct and access the components of a Uri object.
After we have the URI ready, we update the values data @ and call resolver.update
to make the update happen @. As you can see, the update process when using a
ContentResolver is pretty much the same as the create process—with the noted
exception that the update method allows you to again pass in a WHERE clause and
replacement tokens (SQL style).

For this example, after we have updated the person’s name, we need to once again
obtain the correct Uri to also update the associated phone record. We do this by again
appending additional Uri path data to an object we already have, and we slap on the
specific ID we want @. Outside of example purposes there would be more work to do
here in order to determine which phone record for the contact needs to be updated
(here we are using ID 1 as a shortcut).

Although we are updating only single records based on a specific URI, keep in
mind that you can update a set of records using the nonspecific form of the URI and
the WHERE clause.

Lastly, in our look at manipulating data through a ContentProvider, we need to
implement our delete method.

To delete data we will return to the ContentResolver object we used to insert data.
This time we will call the delete method, as seen in listing 5.17.

Download at Boykma.Com

158

CHAPTER 5 Storing and retrieving data

private void deleteContact () {
Uri personUri = Contacts.People.CONTENT URI;
personUri = personUri.buildUpon () . Use UriBuilder
appendPath (Long. toString(contactId)) .build() ; to append path
getContentResolver () .delete (personUri, null, null) ;

startActivity (new Intent (this, ProviderExplorer.class)) ;

} Call getContentResolver.delete

The delete concept is pretty simple, once you have the rest of the process in hand.
Again we use the UriBuilder approach to set up a Uri for a specific record 0, and
then we obtain a ContentResolver reference, this time inline with our delete

method call @.

When you use a ContentProvider, which by definition is accessible by any applica-
tion on the system, and you make a query, you are getting only the current state
of the data back. The data could change after your call, so how do you stay up to
date? To be notified when a Cursor changes, you can use the ContentObserver API.
ContentObserver supports a set of callbacks that are invoked when data changes.
Cursor has register and unregister methods for ContentObserver objects.

After having seen how the built-in contacts provider works, you may also want to
check out the android.provider package in the Javadocs, as it lists more built-in pro-
viders. Now that we have covered a bit about using a built-in provider and have the
CRUD fundamentals under our belt, we will look at the other side of the coin—creat-
ing a ContentProvider.

In this section we are going to build a provider that will handle data responsibilities
for a generic Widget object we will define. This object is simple, with a name, type, cat-
egory, and other members, and intentionally generic, so we can focus on the how here
and not the why. (The reasons why you might implement a provider in real life are
many; for the purposes of this example, our type will be the mythical widget.)

To create a ContentProvider extend that class and implement the required
abstract methods. We will show how this is done specifically in a moment. Before get-
ting to that, it is a good idea to first define a provider constants class that defines the
CONTENT_URI and MIME_TYPE your provider will support. In addition, you can place
the column names your provider will handle here in one class (or you can use multi-
ple nested inner classes as the builtin contacts system does—we find a flatter
approach to be easier to understand).

Download at Boykma.Com

Working with ContentProvider classes 159

In listing 5.18, as a prerequisite to extending the ContentProvider class for a custom
provider, we have defined needed constants for our Widget type.

public final class Widget implements BaseColumns { <1—0 Extend BaseColumns

public static final String MIME DIR PREFIX =
"vnd.android.cursor.dir"; Define MIME preﬁx

public static final String MIME ITEM PREFIX =
"vnd.android.cursor.item"; Define

public static final String MIME ITEM = "vnd.msi.widget"; MIME

for multiple items

public static final String MIME TYPE SINGLE = prefix
MIME ITEM PREFIX + "/" + MIME ITEM; Define MIME for

public static final String MIME TYPE MULTIPLE = type single
MIME DIR PREFIX + LAY MIME ITEM; item

public static final String AUTHORITY = Define authority ? Define path for
"com.msi.manning.chapter5.Widget"; single item

public static final String PATH SINGLE = "widgets/#";

public static final String PATH MULTIPLE = "widgets"; Define path for

public static final Uri CONTENT URI = multiple items
Uri.parse("content://" + AUTHORITY + "/" + PATH MULTIPLE) ;

public static final String DEFAULT SORT ORDER = "updated DESC";

public static final String NAME = "name"; Define T Define

public static final String TYPE = "type"; columns ultimate

public static final String CATEGORY = "category"; CONTENT URI

public static final String CREATED = "created"; -

public static final String UPDATED = "updated";

}

In our widget-related provider constants class we first extend the BaseColumns class
from Android @. This gives our class a few base constants such as _ID. Next we define
the MIME_TYPE prefix for a set of multiple items ® and a single item ©. This is out-
lined in the Android documentation; the convention is that vnd.android.cursor.dir
represents multiple items, and vnd.android.cursor.item represents a single item.
Thereafter we define a specific MIME item and combine it with the single and multi-
ple paths to create two MIME_TYPE representations @.

Once we have the MIME details out of the way, we define the authority @ and path
for both single 0 and multiple @ items that will be used in the CONTENT URI callers
we will pass in to use our provider. The multiple-item URI is ultimately the one that
callers will start from and the one we publish (they can append specific items from
there) ©.

After taking care of all the other details, we define column names that represent
the variable types in our Widget object, which are also going to fields in the database
table we will use @. Callers will use these constants to get and set specific fields. That
leads us to the next part of the process, extending ContentProvider.

Download at Boykma.Com

160

CHAPTER 5 Storing and retrieving data

In listing 5.19 we show the beginning of our ContentProvider implementation class,
WidgetProvider. In this part of the class we do some housekeeping relating to the
database we will use and the URI we are supporting.

public class WidgetProvider extends ContentProvider

Extend
ContentProvider

Define database
constants

private static final String CLASSNAME =
WidgetProvider.class.getSimpleName () ;

private static final int WIDGETS = 1;

private static final int WIDGET = 2;

public static final String DB NAME = "widgets_db";

public static final String DB TABLE = "widget";

public static final int DB VERSION = 1;

private static UriMatcher URI_MATCHER = null;
private static HashMap<String, String> PROJECTION MAP;

<€) Use UriMatcher

Include

private SQLiteDatabase db; projection Map

Use SQLiteDatabase

statie { reference

WidgetProvider.URI_MATCHER = new UriMatcher (UriMatcher.NO MATCH) ;
WidgetProvider. URI_MATCHER.addURI (Widget .AUTHORITY,
Widget.PATH MULTIPLE, WidgetProvider.WIDGETS) ;
WidgetProvider. URI_MATCHER. addURI (Widget . AUTHORITY,
Widget. PATH SINGLE, WidgetProvider.WIDGET) ;

}

WidgetProvider.
WidgetProvider.
WidgetProvider.
WidgetProvider.

WidgetProvider
WidgetProvider
WidgetProvider

PROJECTION MAP

PROJECTION MAP.
PROJECTION MAP.
PROJECTION MAP.
. PROJECTION_ MAP.
. PROJECTION_ MAP.
. PROJECTION MAP.

= new HashMap<String, Strings>() ;
put (BaseColumns._ ID, "_id");

put (Widget .NAME, "name") ;

put (Widget.TYPE, "type") ;

put (Widget.CATEGORY, "category") ;
put (Widget.CREATED, "created");
put (Widget .UPDATED, "updated") ;

private static class DBOpenHelper extends SQLiteOpenHelper ({
private static final String DB CREATE = "CREATE TABLE "
+ WidgetProvider.DB_ TABLE

+ " (_id INTEGER PRIMARY KEY, name TEXT UNIQUE NOT NULL, ”
+ "type TEXT, category TEXT, updated INTEGER, created”
+ "INTEGER) ;" ;
) Create and

public DBOpenHelper (Context context) ({

open database

super (context, WidgetProvider.DB NAME, null,
WidgetProvider.DB VERSION) ;

}

@Override

public void onCreate (SQLiteDatabase db){

try {

db.execSQL (DBOpenHelper.DB CREATE) ;
} catch (SQLException e) {
// log and or handle

Download at Boykma.Com

Working with ContentProvider classes 161

}

@Override
public void onOpen (SQLiteDatabase db) {

}

@Override
public void onUpgrade (SQLiteDatabase db, int oldversion,
int newVersion) {
db.execSQL ("DROP TABLE IF EXISTS
+ WidgetProvider.DB TABLE) ;
this.onCreate (db) ;

}

@Override Qj Override onCreate
public boolean onCreate () {

DBOpenHelper dbHelper = new DBOpenHelper (this.getContext ()) ;
this.db = dbHelper.getWritableDatabase () ;

if (this.db == null)
return false;

} else {
return true;

}

}

@override ﬁ Implement
public String getType (Uri uri) { getType method

switch (WidgetProvider.URI MATCHER.match(uri)) {
case WIDGETS:
return Widget .MIME TYPE MULTIPLE;
case WIDGET:
return Widget. MIME_TYPE_SINGLE;
default:
throw new IllegalArgumentException ("Unknown URI " + uri);

}

Our provider extends ContentProvider, which defines the methods we will need to
implement @. Then we use several database-related constants to define the database
name and table we will use @. After that we include a UriMatcher €, which we will
use when matching types in a moment, and a projection Map for field names @.

We include a reference to a SQLiteDatabase object; this is what we will use to store
and retrieve the data that our provider handles ©. This database is created, opened,
and upgraded using a SQLiteOpenHelper in an inner class @. We have used this
helper pattern before, when we worked directly with the database in listing 5.14. The
onCreate method of our provider is where the open helper is used to set up the data-
base reference @.

After our setup-related steps we come to the first method a ContentProvider
requires us to implement, getType @. This method is used by the provider to resolve
each passed-in Uri to determine if it is supported and if so which type of data the cur-
rent call is requesting (a single item or the entire set). The MIME_TYPE String we
return here is based on the constants we defined in our Widget class.

Download at Boykma.Com

162 CHAPTER 5 Storing and retrieving data

The next steps we need to cover are the remaining required methods to imple-
ment to satisfy the ContentProvider contract. These methods, which are shown in list-
ing 5.20, correspond to the CRUD-related activities used with the contacts provider in
the previous section: query, insert, update, and delete.

@Override
public Cursor query (Uri uri, String[] projection,

String selection, String[] selectionArgs, Use query builder
String sortOrder) { <}‘r
SQLiteQueryBuilder queryBuilder = new SQLiteQueryBuilder () ;

String orderBy = null;
switch (WidgetProvider.URI MATCHER.match (uri)) { <F‘2A Set up query
case WIDGETS: based on URI

queryBuilder.setTables (WidgetProvider.DB TABLE) ;
queryBuilder.setProjectionMap (WidgetProvider . PROJECTION MAP) ;
break;
case WIDGET:
queryBuilder.setTables (WidgetProvider.DB TABLE) ;
queryBuilder.appendWhere ("_id="
+ uri.getPathSegments () .get (1)) ;
break;
default:
throw new IllegalArgumentException ("Unknown URI " + uri) ;
}

if (TextUtils.isEmpty (sortOrder)) {
orderBy = Widget.DEFAULT SORT ORDER;
} else {
orderBy = sortOrder;
}

Cursor ¢ = queryBuilder.query(this.db, projection,
selection, selectionArgs, null, null, Perform query
orderBy) ; to get Cursor

c.setNotificationUri (

this.getContext () .getContentResolver (), uri); Set notification
return c; Uri on Cursor

}

@Override
public Uri insert (Uri uri, ContentValues initialValues) ({
long rowId = OL;

ContentValues values = null; Use ContentValues

if (initialValues != null) { in insert method
values = new ContentValues (initialVvalues) ;

} else {

values = new ContentValues() ;

}

if (WidgetProvider.URI_MATCHER.match (uri) !=
WidgetProvider.WIDGETS) {
throw new IllegalArgumentException ("Unknown URI " + uri) ;

Download at Boykma.Com

Working with ContentProvider classes 163

}

Long now = System.currentTimeMillis() ;
. omit defaulting of values for brevity

rowId = this.db.insert (WidgetProvider.DB TABLE, "widget hack",

values) ;
Call database insert Get Uri to return
if (rowId > 0) {

Uri result = ContentUris.withAppendedId(Widget.CONTENT URI,
rowId) ;
this.getContext () .getContentResolver () .notifyChange (result,
null) ;
return result; % Notify listeners data was inserted
1

throw new SQLException("Failed to insert row into " + uri);

}

@Override
public int update (Uri uri, ContentValues values, String selection,
String[] selectionArgs) .
. J gs) { Provide update
int count = 0;
method

switch (WidgetProvider.URI_MATCHER.match (uri)) {
case WIDGETS:
count = this.db.update (WidgetProvider.DB TABLE, values,
selection, selectionArgs) ;
break;
case WIDGET:
String segment = uri.getPathSegments () .get (1) ;
String where = "";
if (!TextUtils.isEmpty(selection)) {
where = " AND (" + selection + ")";
}
count = this.db.update (WidgetProvider.DB TABLE, values,
" _id=" + segment + where, selectionArgs) ;
break;
default:
throw new IllegalArgumentException ("Unknown URI " + uri);
1
this.getContext () .getContentResolver () .notifyChange (uri, null) ;
return count;

}

@Override

public int delete(

Uri uri, String selection, String[] selectionArgs) f{
int count;

Provide delete
method

switch (WidgetProvider.URI MATCHER.match(uri)) {
case WIDGETS:
count = this.db.delete(WidgetProvider.DB TABLE, selection,
selectionArgs) ;
break;
case WIDGET:
String segment = uri.getPathSegments () .get (1) ;
String where = "";
if (!TextUtils.isEmpty(selection)) {

Download at Boykma.Com

164

CHAPTER 5 Storing and retrieving data

where = " AND (" + selection + ")";

}
count = this.db.delete (WidgetProvider.DB TABLE,
" id=" + segment + where, selectionArgs) ;
break;
default:
throw new IllegalArgumentException ("Unknown URI " + uri);

}

this.getContext () .getContentResolver () .notifyChange (uri, null) ;
return count;

}

In the last part of our WidgetProvider class we show how the ContentProvider meth-
ods are implemented. These are the same methods but a different provider that we
called earlier in our ProviderExplorer example.

First we use a SQLQueryBuilder inside the query method to append the projection
map passed in @ and any SQL clauses, along with the correct URI based on our match-
er @, before we make the actual query and get a handle on a Cursor to return €.

At the end of the query method we use the setNotificationUri method to set the
returned Uri to be watched for changes O. This is an event-based mechanism that
can be used to keep track of when Cursor data items are changed, regardless of how
changes are made.

Next we see the insert method, where the passed-in ContentValues object is vali-
dated and populated with default values if not present @. After the values are ready,
we call the database insert method @ and get the resulting Uri to return with the
appended ID of the new record @. After the insert is complete, another notification
system 1is in use, this time for ContentResolver. Here, since we have made a data
change, we are informing the ContentResolver what happened so that any registered
listeners can be updated @.

After the insert method is complete, we come to the update @ and delete meth-
ods @. These repeat many of the concepts we have already used. First they match
the Uri passed in to a single element or the set, then they call the respective update
and delete methods on the database object. Again, at the end of these methods we
notify listeners that the data has changed.

Implementing the needed provider methods completes our class. This provider,
which now serves the Widget data type, can be used from any application to query,
insert, update, or delete data, once we have registered it as a provider with the plat-
form. This is done using the application manifest, which we will look at next.

In order for the platform to be aware of the content providers that are available
and what data types they represent, they must be defined in an application manifest
file and installed on the platform. The manifest for our provider is shown in list-
ing 5.21.

Download at Boykma.Com

Summary 165

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.msi.manning.chapter5.widget">
<application android:icon="@drawable/icon"
android:label="@string/app_ short name">
<activity android:name=".WidgetExplorer"
android:label="@string/app name">
<intent-filters>
<action android:name="android.intent.action.MAIN" />
<category android:name="android. intent.category.LAUNCHER" />
</intent-filters>
</activity>

<provider android:name="WidgetProvider"

android:authorities= Use provider element to
"com.msi.manning.chapter5.Widget" /> define class and authority
</applications>
</manifests>

The significant part of the manifest concerning content provider support is the <pro-
viders> element @. This is used to define the class that implements the provider and
associate a particular authority with that class.

The properties of a ContentProvider, which are configurable in the manifest, are
capable of configuring several important settings beyond the basics, such as specific
permissions, initialization order, multiprocess capability, and more. While most Con-
tentProvider implementations won’t be required to delve into these details, they
are still good to be aware of. For complete and up-to-date ContentProvider proper-
ties, see the following Android documentation page: http://code.google.com/an-
droid/reference/android/R.styleable.html - AndroidManifestProvider.

A completed project that is capable of inserting, retrieving, updating, and deleting
records rounds out our exploration of using and building ContentProvider classes.
And with that, we have also now demonstrated many of the ways to store and retrieve
data on the Android platform.

From a simple SharedPreferences mechanism that saves data backed by files to file
storage itself, databases, and finally the concept of a ContentProvider, Android pro-
vides myriad ways for applications to retrieve and store data.

Aswe discussed in this chapter, several of these means are intended to be used across
application and process boundaries, and several aren’t. Here we showed that Shared-
Preferences can be created with a permissions mode, allowing the flexibility to keep
things private, or can be shared globally with read-only or read-write permissions.

Download at Boykma.Com

http://code.google.com/android/reference/android/R.styleable.html - AndroidManifestProvider
http://code.google.com/android/reference/android/R.styleable.html - AndroidManifestProvider

166

CHAPTER 5 Storing and retrieving data

Preferences are stored as simple XML files in a specific path on the device per applica-
tion, as are other file resources you can create and read yourself. The filesystem, which
we also looked at in this chapter, is good for handling some levels of application-local
state and data persistence but not appropriate for more broad-reaching goals.

After filesystem access, the next level of storage Android provides is a relational
database system based on SQLite. This system is lightweight, speedy, and very capable,
but again, as you saw here, it is intended only for local data persistence within a single
application. Beyond storing and retrieving data locally you can still use a database, but
you need to expose an interface through a Service (as we explained in chapter 4) or
a ContentProvider. Providers, which we covered in this chapter, expose data types
and operations through a URI-based approach.

In this chapter we examined each of the data paths available to an Android appli-
cation. We did this by using several small, focused sample applications to utilize pref-
erences and the filesystem, and we looked at more of the WeatherReporter sample
application that we began in the last chapter. This Android application uses a SQLite
database to access and persist data.

Expanding our Android horizons beyond data and beyond foundational concepts
we have already looked at in earlier chapters, such as views, intents, and services, we
will move on to general networking in the next chapter. There we will cover network-
ing basics and the networking APIs Android provides, and we will expand on the data
concepts we have covered here to include the network itself as a data source.

Download at Boykma.Com

Every mobile provider supports voice and data networks of one or more types. The
interesting part with an Android-enabled device is really the data network, along
with the power to link the data available on the network to interesting applications.
Those applications can then be built with the open Intent- and Service-based
approach you learned about in previous chapters. That approach combines built-in
(or custom) intents, such as fully capable web browsing, with access to hardware
components, such as a 3D graphics subsystem, a GPS receiver, a camera, removable
storage, and more. This combination of open platform, hardware capability, soft-
ware architecture, and access to network data makes Android so compelling.

167

Download at Boykma.Com

168

CHAPTER 6 Networking and web services

This is not to say that the voice network is not also important (and we will cover
telephony explicitly in chapter 7), but rather it is simply an admittance that voice is
almost a commodity, and data is where we will focus when talk about the network.

In terms of the data network, Android provides access in several ways: mobile
Internet Protocol (IP) networks, Wi-Fi, and Bluetooth. Here we are going to concen-
trate on getting our Android applications to communicate using IP network data, with
several different approaches. We will cover a bit of networking background, and then
we will deal with Android specifics as we explore communication with the network
using sockets and higher-level protocols such as Hypertext Transfer Protocol (HTTP).

Android provides a portion of the java.net package and the org.apache.http-
client package to support basic networking. Other related packages such as
android.net address internal networking details and general connectivity properties.
We will encounter all of these packages as we progress though networking scenarios in
this chapter.

In terms of connectivity properties, we will look at using the ConnectivityManager
class to determine when the network connection is active and what type of connection
it is (mobile or Wi-Fi). From there we will make use of the network in various ways
with sample applications.

One caveat to this networking chapter is that we won’t be digging into the details con-
cerning the Android Wi-Fi or Bluetooth APIs. Bluetooth is an important technology for
close-range wireless networking between devices, but the related Android APIs are not
yet finalized (even in the 1.0 SDK). Bluetooth is supported on Android devices, but in
alimited capacity at present, and is not available in the Android Emulator. Wi-Fi, on the
other hand, does have a good existing API but also doesn’t have an emulation layer.
Because the emulator doesn’t distinguish the type of network you are using and doesn’t
know anything about either Bluetooth or Wi-Fi, and because we think the importance
lies more in how you use the network, we are not going to cover these APIs. If you want
more information on the Wi-Fi APIs please see the Android documentation (http://
code.google.com/android/reference/android/net/wifi/package-summary.html).

Getting back to what we will address here, the aptly named sample application for
this chapter, NetworkExplorer, will look at ways to communicate with the network in
Android and will include some handy utilities. Ultimately this application will have
multiple screens that exercise different networking techniques, as shown in figure 6.1.

After we cover general IP networking with regard to Android, we will discuss turn-
ing the server side into a more robust API itself by using web services. On this topic we
will work with Plain Old XML over HTTP (POX) and Representational State Transfer
(REST). And, we will discuss the Simple Object Access Protocol (SOAP). We will
address the pros and cons of the various approaches and why you might want to
choose one method over another for an Android client.

Before we delve into the details of networked Android applications, we will begin
with an overview of networking basics. If you are already well versed in general net-
working, you can certainly skip ahead to section 6.2, but it is important to have this
foundation if you think you need it, and we promise to keep it short.

Download at Boykma.Com

http://code.google.com/android/reference/android/net/wifi/package-summary.html
http://code.google.com/android/reference/android/net/wifi/package-summary.html

An overview of networking 169

£ Nl & s:23pm
NetworkExplorer

SIMPLE HTTP JAVA.NET

ANl @ s:23PM

NetworkExplorer

APACHE HTTPCLIENT

APACHE VIA HELPER

HTTP HELPER FORM

DEL.ICIO.US LOGIN and POSTS

8889

nE a
Androiod Rocks]

http://192.168.0. %

POST
Param1Name:

mi

| charlie.collins@gmail.com

MENU

GET TOKEN
CLEAR TOKEN
“ GET CONTACTS

"are ne:

MENU

Figure 6.1 The NetworkExplorer
application we will build to cover
networking topics

A group of interconnected computers is a network. Over time, networking has grown
from something that was once available only to governments and large organizations
to the almost ubiquitous and truly amazing internet. Though the concept is sim-
ple—allow computers to communicate—networking does involve some advanced
technology. We won’t get into great detail here, though we will cover the core tenets as
a background to the general networking we will do in the remainder of this chapter.

A large percentage of the time the APIs you will use to program Android applications
will abstract the underlying network details. This is good. The APIs and the network
protocols themselves are designed so that you can focus on your application and not
worry about routing and reliable packet delivery and so on.

Download at Boykma.Com

170

CHAPTER 6 Networking and web services

Nevertheless, it helps to have some understanding of the way a network works so
that you can better design and troubleshoot your applications. To that end, here we
are going to blaze through some general networking concepts, with a Transmission
Control Protocol/Internet Protocol (TCP/IP) bent. We will begin with nodes, layers,
and protocols.

The basic idea behind a network is that data is sent between connected devices with
particular addresses. Connections can be made over wire, over radio waves, and so on.
Each addressed device is known as a node. A node can be a mainframe, a PC, a fancy
toaster, or any other device with a network stack and connectivity, such as an Android-
enabled handheld.

Protocols are a predefined and agreed-upon set of rules for communication. Proto-
cols are often layered on top of one another because they handle different levels of
responsibility. For example, in the TCP/IP stack, which is used for the majority of web
traffic of all kinds and with Android, the main layers are:

= The Link Layer (including physical device address resolution protocols such as
ARP and RARP and more)

= The Internet Layer (including IP itself, which has multiple versions, and the
ping protocol, ICMP, among others)

» The Transport Layer (where different types of delivery protocols such as TCP
and UDP are found)

= The Application Layer (which includes familiar protocols such as HTTP, FTP,
SMTP, IMAP, POP, DNS, SSH, and SOAP)

Layers are an abstraction of the different levels of a network protocol stack. The low-
est level, the Link Layer, is concerned with physical devices and physical addresses.
The next level, the Internet Layer, is concerned with addressing and general data
details. After that, the Transport Layer is concerned with delivery details. And, finally,
the top-level Application Layer protocols, which make use of the stack beneath them,
are application specific for sending files or email or viewing web pages.

IP is in charge of the addressing system and delivering data in small chunks known as
packets. Packets, known in IP terms as datagrams, define how much data can go in
each chunk, where the boundaries for payload versus header information are, and
the like. IP addresses tell where each packet is from (its source) and where it’s going
(its destination).

IP addresses come in different sizes depending on the version of the protocol
being used, but by far the most common at present is the 32-bit address. 32-bit IP
addresses (IPv4) are typically written using a decimal notation that separates the 32
bits into four sections, each representing 8 bits (an octet), such as 74.125.45.100.

Certain IP address classes have special roles and meaning. For example, 127 always
identifies a loopback or local address on every machine; this class does not communicate

Download at Boykma.Com

http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://code.google.com/apis/gdata/auth.html
http://code.google.com/apis/gdata/auth.html

An overview of networking 171

with any other devices (it can be used internally, on a single machine only). Addresses
that begin with 10 or 192 are not routable, meaning they can communicate with other
devices on the same local network segment but cannot connect to other segments.
Every address on a particular network segment must be unique or collisions may occur
and it gets ugly.

The routing of packets on an IP network—how packets traverse the network and
go from one segment to another—is handled by routers. Routers speak to each other
using IP addresses and other IP-related information.

TCP and UDP are different types of delivery protocols that are commonly used with TCP/
IP. TCP is reliable, and UDP is fire and forget. What does this mean? It means that TCP
includes extra data to guarantee the order of packets and to send back an acknowledg-
ment once a packet is received (the common analogy is certified mail: the sender gets
a receipt that shows the letter was delivered and signed for and therefore knows the
recipient got the message). UDP, on the other hand, doesn’t provide any ordering or
acknowledgment (it’s more like a regular letter: it’s cheaper and faster to send, but you
basically hope the recipient gets it—you don’t know for sure).

Once a packet is sent and delivered, an application takes over. To send an email mes-
sage, for example, SMTP defines a rigorous set of procedures that have to take place.
You have to say hello in a particular way and introduce yourself; then you have to sup-
ply from and to information, followed by a message body in a particular format. Simi-
larly, HTTP defines the set of rules for the internet—which methods are allowed (GET,
POST, PUT, DELETE) and how the overall request/response system works between a cli-
ent and a server.

When working with Android, and Java-related APIs in general, you won’t typically
need to delve into the details of any of the lower-level protocols, but you may need to
know the major differences we have outlined here for troubleshooting, and you will
need to be well versed in IP addressing. In addition, you should also know a bit more
about clients and servers and how connections are established using ports.

Anyone who has ever used a web browser is familiar with the client/server computing
model. Data, in one format or another, is stored on a centralized, powerful server. Cli-
ents then connect to that server using a designated protocol (such as HTTP) to
retrieve the data and work with it.

This pattern is of course much older than the web, and it has been applied for
everything from completely dumb terminals connecting to mainframes to modern
desktop applications that connect to a server for only a portion of their purpose (such
as with iTunes, which is primarily a media organizer and player but also has a store
where customers can connect to the server to get new content). In any case, the con-
cept is the same: the client makes a type of request to the server and the server
responds. This is the same model that the majority of Android applications, at least

Download at Boykma.Com

172

CHAPTER 6 Networking and web services

those that use a server side at all, generally follow (Android applications typically end
up as the client).

In order to handle many client requests, often for different purposes, coming in
nearly simultaneously to a single IP address, modern server operating systems use the
concept of ports. Ports are not physical; they are simply a representation of a particular
area of the computer’s memory. A server can “listen” on multiple designated ports at a
single address; for example, one port for sending email, one port for web traffic, two
ports for file transfer, and so on. Every computer with an IP address also supports arange
of thousands of ports to enable multiple “conversations” to happen at the same time.

Ports are divided into three ranges:

n Well Known Ports—0 through 1023
= Registered Ports—1024 through 49151
» Dynamic and/or Private Ports—49152 through 65535

The Well Known Ports are all published and are just that, well known. HTTP is port 80
(and HTTP Secure, or HTTPS, is port 443), FTP is ports 20 (control) and 21 (data),
SSH is port 22, SMTP is port 25, and so on.

Beyond the Well Known Ports, the Registered Ports are still controlled and pub-
lished but for more specific purposes. Often these ports are used for a particular
application or company; for example, MySQL is port 3306 (by default). For a complete
list of Well Known and Registered Ports, see the ICANN port-numbers document:
http://www.iana.org/assignments/port-numbers.

The Dynamic or Private Ports are intentionally unregistered because they are used
by the TCP/IP stack to facilitate communication. These ports are dynamically regis-
tered on each computer and used in the conversation. Dynamic port 49500, for exam-
ple, might be used to handle sending a request to a web server and dealing with the
response. Once the conversation is over, the port is reclaimed and can be reused,
locally, for any other data transfer.

Clients and servers therefore communicate as nodes with addresses, using ports,
on a network that supports various protocols. The protocols involved with Android
are based on the IP network the platform is designed to participate in and involve the
TCP/IP family. Before we can build a full-on client/server Android application using
the network, we need to handle the prerequisite task of determining the state of
the connection.

Android provides a host of utilities to determine the device configuration and
the status of various services, including the network. You will typically use the
ConnectivityManager class to determine whether there is network connectivity
and to get notifications of network changes. Listing 6.1, a portion of the main
Activity in the NetworkExplorer application, demonstrates basic usage of the
ConnectivityManager.

Download at Boykma.Com

http://www.iana.org/assignments/port-numbers

Communicating with a server socket 173

@Override
public void onStart () {
super.onStart () ;

ConnectivityManager cMgr = (ConnectivityManager) Obtain manager
this.getSystemService (Context .CONNECTIVITY SERVICE) ; from Context

NetworkInfo netInfo = cMgr.getActiveNetworkInfo () ; 4% Get

this.status.setText (netInfo.toString()) ; Networkinfo

}

This short and sweet example shows that you can get a handle to the Connectivity-
Manager through the context’s getSystemService method by passing the
CONNECTIVITY SERVICE constant @. Once you have the manager, you can obtain net-
work information via the NetworkInfo
object @. The tostring method of the
NetworkInfo object returns the output
shown in figure 6.2.

Of course you won’t normally just
display the String output from Network-
Info, but this does give you a quick glance
at what is available. More often you will
use the isAvailable or isConnected

Figure 6.2 The output of the Networkinfo
toString method.

methods (which return a boolean value),
or you will directly query the NetworkInfo.State using the getState method.
NetworkInfo.State is an enum that defines the coarse state of the connection, the pos-
sible values are: CONNECTED, CONNECTING, DISCONNECTED, and DISCONNECTING. The
NetworkInfo object also provides access to more detailed information but you won’t
normally need more than the basic state (unless of course you have a special use case,
such as if you are writing a network state management application).

Once you know that you are connected, either via mobile or Wi-Fi, you can use the
IP network. For the purposes of our NetworkExplorer application, we are going to
start with the most rudimentary IP connection, a raw socket, and work our way up to
HTTP and web services.

A server socket is a stream that you can read or write raw bytes to, at a specified IP
address and port. This lets you deal with data and not worry about media types, packet
sizes, and so on. This is yet another network abstraction intended to make the job of
the programmer a bit easier. The philosophy that sockets take on, that everything
should look like file I/O to the developer, comes from the POSIX family of standards
and has been adopted by most major operating systems in use today.

We will move on to higher levels of network communication in a bit, but first we
will start with a raw socket. For that we need a server listening on a particular port.
The EchoServer code shown in listing 6.2 fits the bill. This isn’t an Android-specific

Download at Boykma.Com

174 CHAPTER 6 Networking and web services

class; rather it’s just an oversimplified server that can run on any host machine with
Java. We’ll later connect to it from an Android client.

public final class EchoServer extends Thread {
private static final int PORT = 8889;

private EchoServer () {}

public static void main(String args[]) {
EchoServer echoServer = new EchoServer () ;
if (echoServer != null) {

echoServer.start () ;
}

} Implement

public void run() { run to start

try { !jse
java.net.ServerSocket

ServerSocket server = new ServerSocket (PORT, 1) ;

while (true) {

Socket client = server.accept () ; Use java.net.Socket
System.out.println("Client connected") ; for each client

while (true) {

BufferedReader reader =
new Buf feredReader (new InputStreamReader (Read input with
client.getInputStream())) ; BufferedReader
System.out.println("Read from client") ;
String textLine = reader.readLine () + "\n";

if (textLine.equalsIgnoreCase ("EXIT\n")) {
System.out.println ("EXIT invoked, closing client");

b k;
} res EXIT, break the loop

BufferedWriter writer = new BufferedWriter (
new OutputStreamWriter (

client.getOutputStream())) ; Send echo with
System.out.println("Echo input to client"); BufferedWriter

writer.write ("ECHO from server: "
+ textLine, 0, textLine.length() + 18);
writer.flush() ;

}

client.close() ;

}

} catch (IOException e) {
System.err.println(e) ;

}
}

The EchoServer class we are using is fairly basic Java I/0. It extends Thread and
implements run @, so that each client that connects can be handled in its own con-
text. Then we use a ServerSocket @ to listen on a defined port. Each client is then

Download at Boykma.Com

http://code.google.com/apis/gdata/
http://code.google.com/apis/gdata/

Communicating with a server socket 175

an implementation of a Socket @. The client input is fed into a BufferedReader
that each line is read from @. The only special consideration this simple server has
is that if the input is EXIT, it breaks the loops and exits @. If the input does not
prompt an exit, the server echoes the input back to the client’s OuputStream with a
Bufferediriter @.

This is a good, albeit intentionally very basic, representation of what a server does.
It handles input, usually in a separate thread, then responds to the client based on the
input. To try out this server before using Android, you can telnet to the specified port
(after the server is running, of course) and type some input; if all is well it will echo
the output.

To run the server you need to invoke it locally with Java. It has a main method, so it
will run on its own; start it from the command line or from your IDE. Be aware that
when you connect to a server from the emulator, this or any other, you need to con-
nect to the IP address of the host you run the server process on, not the loopback
(not 127.0.0.1). The emulator thinks of itself as 127.0.0.1, so use the non-loopback
address of the server host when you attempt to connect from Android. (You can find
out the IP address of the machine you are on from the command line by entering
ifconfig on Linux or Mac and ipconfig on Windows.)

The client portion of this example is where NetworkExplorer itself begins, with the
callSocket method of the SimpleSocket Activity shown in listing 6.3.

public class SimpleSocket extends Activity {
. View variable declarations omitted for brevity

@Override

public void onCreate (final Bundle icicle) ({
super.onCreate (icicle) ;
this.setContentView(R.layout.simple socket) ;

. View inflation omitted for brevity
this.socketButton.setOnClickListener (new OnClickListener () {

public void onClick (final View v) {
socketOutput.setText ("") ;
String output = callSocket (
ipAddress.getText () .toString(),

port.getText () .toString(), Use callSocket
socketInput.getText () .toString()) ; method
socketOutput.setText (output) ;
} 43 Set view output

)
}

private String callSocket (String ip, String port, String socketData) {
Socket socket = null;
BufferedWriter writer = null;
BufferedReader reader = null;
String output = null;

Download at Boykma.Com

176

CHAPTER 6 Networking and web services

try {
socket = new Socket (ip, Integer.parselnt (port)) ; Create client
writer = new BufferedWriter (Socket
new OutputStreamWriter (

socket .getOutputStream())) ; <+—@) Establish BufferedWriter for input
reader = new BufferedReader (
new InputStreamReader (

socket.getInputStream())) ; <+—@) Establish BufferedReader for output
String input = socketData;
writer.write (input + "\n", 0, input.length() + 1); Write to
writer.flush(); socket
output = reader.readLine () ; Get socket
this.socketOutput.setText (output) ; output

// send EXIT and close
writer.write ("EXIT\n", 0, 5);
writer.flush() ;

. catches and reader, writer, and socket closes omitted for brevity
. onCreate omitted for brevity

return output;
1
Here we use the onCreate method to call a private helper callSocket method @
and set the output to a TextView ®. Within the callSocket method we create a
Socket to represent the client side of our connection ©, and we establish a writer
for the input @ and a reader for the output @. With the housekeeping taken care
of, we then write to the socket @, which communicates with the server, and get the
output value to return @.

A socket is probably the lowest-level networking usage in Android you will encoun-
ter. Using a raw socket, while abstracted a great deal, still leaves many of the details up
to you (especially server-side details, threading, and queuing). Although you may run
up against situations in which either you have to use a raw socket (the server side is
already built) or you elect to use one for one reason or another, higher-level solutions
such as leveraging HTTP normally have decided advantages.

As we discussed in the previous section, you can use a raw socket to transfer IP data to
and from a server with Android. This is an important approach to be aware of so that
you know you have that option and so that you understand a bit about the underlying
details. Nevertheless, you may want to avoid this technique where possible and instead
take advantage of existing server products to send your data. The most common way
to do this is to use a web server and leverage HTTP.

Here we are going to take a look at making HTTP requests from an Android client
and sending them to an HTTP server. We will let the HTTP server handle all the socket
details, and we will focus on our client Android application.

The HTTP protocol itself is fairly involved. If you are unfamiliar with it and or want
the complete details, they are readily available via RFCs (such as for version 1.1:

Download at Boykma.Com

Working with HTTP 177

http://www.w3.org/Protocols/rfc2616/rfc2616.html). The short story is that the pro-
tocol is stateless and involves several different methods that allow users to make

requests to servers, and those servers return responses. The entire web is, of course,
based on HTTP. Beyond the most basic concepts, there are ways to pass data into and
out of requests and responses and to authenticate with servers. Here we are going to
use some of the most common methods and concepts to talk to network resources
from Android applications.

To begin we will retrieve data using HTTP GET requests to a simple HTML page
using the standard java.net API. From there we will look at using the Android-included
Apache HttpClient API. After we use HttpClient directly to get a feel for it, we will also
make a helper class, Ht tpRequestHelper, that we can use to simplify the process and
encapsulate the details. This class—and the Apache networking API in general—has a
few advantages over rolling your own networking with java.net, as we shall see. Once
the helper class is in place, we will use it to make additional HTTP and HTTPS
requests, both GET and POST, and we will look at basic authentication.

Our first HTTP request will be an HTTP GET call using a HttpUrlConnection.

The most basic HTTP request method is a GET. In this type of request any data that is sent
is embedded in the URL using the query string. The next class in our NetworkExplorer
application, which is shown in listing 6.4, has an Activity that demonstrates this.

public class SimpleGet extends Activity {
. other portions of onCreate omitted for brevity

this.getButton.setOnClickListener (new OnClickListener () {
public void onClick (View v) {
getOutput.setText ("") ;
String output =
getHttpResponse (getInput.getText () .toString()) ;
if (output != null) {

getOutput.setText (output) ; Invoke
} getHttpResponse

} method

I3
}i

private String getHttpResponse (String location) {
String result = null;
URL url = null;

try { Copstruct URL
url = new URL (location) ; object

} catch (MalformedURLException e) {
// log and or handle

}

Download at Boykma.Com

http://www.w3.org/Protocols/rfc2616/rfc2616.html

178

CHAPTER 6 Networking and web services

if (url != null) {

ery { Open .
HttpURLConnection urlConn = connection usmg
(HttpURLConnection) url.openConnection() ; HttpURLConnection
BufferedReader in =
new BufferedReader (
new InputStreamReader (Create BufferedReader
urlConn.getInputStream())) ; for output
String inputLine;
int lineCount = 0; // limit lines for example
while ((lineCount < 10)
&& ((inputLine = in.readLine()) != null)) { <1—o Read data

lineCount++;
result += "\n" + inputLine; <) Append to result
}

in.close() ; Close reader
urlConn.disconnect () ; and connection

} catch (IOException e) {
// log and or handle
}

} else {
// log and or handle
}

return result;

}

In order to get an HTTP response and show the first few lines of it in our SimpleGet
class, we are calling a getHttpResponse method that we have built @. Within this
method we construct a java.net . URL object @, which takes care of many of the details
for us, and then we open a connection to a server using an HttpURLConnection @.

We then use a BufferedReader @ to read data from the connection one line at a
time @. Keep in mind that as we are doing this, we are using the same thread as the UI
and therefore blocking the UL This isn’t a good idea. We are doing this here only to
demonstrate the network operation; we will explain more about how to use a separate
thread for this shortly. Once we have the data, we append it to the result String that
our method returns @, and we close the reader and the connection @. Using the
plain and simple java.net support that has been ported to Android this way provides
quick and dirty access to HTTP network resources.

Communicating with HTTP this way is fairly easy, but it can quickly get cumber-
some when you need to do more than just retrieve simple data, and, as noted, the
blocking nature of the call is bad form. We could get around some of the problems
with this approach on our own by spawning separate threads and keeping track of
them and by writing our own small framework/API structure around that concept for
each HTTP request, but we don’t have to. Fortunately, Android provides another set of
APIs in the form of the Apache HttpClient library that abstract the java.net classes fur-
ther and that are designed to offer more robust HTTP support and help handle the
separate-thread issue.

Download at Boykma.Com

Working with HTTP 179

To get started with HttpClient we are going to look at using core classes to perform
HTTP GET and POST method requests. Here we will concentrate on making network
requests in a Thread separate from the Ul, using a combination of the Apache
ResponseHandler and Android Handler (for different but related purposes, as we
shall see). Listing 6.5 shows our first example of using the HttpClient AP

Create Android
private final Handler handler = new Handler () { Handler
public void handleMessage (Message msg) {
progressDialog.dismiss () ;
String bundleResult =
msg.getData () .getString ("RESPONSE") ; Use Handler
output .setText (bundleResult) ; to update Ul
}
}i
. onCreate omitted for brevity Create
private void performRequest () { ResponseHandler
final ResponseHandler<Strings> responseHandler = {?_;_'Tapsyncmonous

new ResponseHandler<Strings () {
public String handleResponse (HttpResponse response) {
StatusLine status = response.getStatusLine() ;

HttpEntity entity = response.getEntity () ; Implement
String result = null; onResponse
try { callback
result = StringUtils. inputStreamToString (
entity.getContent ()) ; Get HTTP response
Message message = handler.obtainMessage () ; payload

Bundle bundle = new Bundle() ;
bundle.putString ("RESPONSE", result) ;
message.setData (bundle) ;
handler.sendMessage (message) ;

} catch (IOException e) {
// log and or handle

1

return result;

}
}i

this.progressDialog =
ProgressDialog.show(this, "working . . .",
"performing HTTP request") ;

new Thread () {

public void run() { Use a separate

Thread for HTTP call
try {
DefaultHttpClient client = new DefaultHttpClient () ;
HttpGet httpMethod = Create
new HttpGet (HttpGet
urlChooser.getSelectedItem() .toString()) ; object

Download at Boykma.Com

180

CHAPTER 6 Networking and web services

client.execute (
httpMethod, responseHandler) ;
} catch (ClientProtocolException e) {
// log and or handle
} catch (IOException e) {
// log and or handle
}

Execute HTTP
with HttpClient

}

}.start () ;

}
The first thing we do in our initial HttpClient example is create a Handler that we can
send messages to from other threads @. This is the same technique we have used in
previous examples, and it is used to allow background tasks to send Message objects to
hook back into the main UI thread @. After we create an Android Handler, we also cre-
ate an Apache ResponseHandler ©. This class can be used with HttpClient HTTP
requests to pass in as a callback point. When an HTTP request that is fired by HttpCli-
ent completes, it will call the onResponse method (if a ResponseHandler is used) @.
When the response does come in, we then get the payload using the HttpEntity the
API returns @. This in effect allows the HTTP call to be made in an asynchronous man-
ner—we don’t have to block and wait the entire time between when the request is fired
and when it completes. The relationship of the request, response, Handler, Response-
Handler, and separate threads is diagrammed in figure 6.3.

Now that you have seen HttpClient at work and understand the basic approach,
the next thing we will do is encapsulate a few of the details into a convenient helper
class so that we can call it over and over without having to repeat a lot of the setup.

Non Ul Thread - network request

Apache HttpClient
HTTP request

execute(method, responseHandler)

HTTP
server

Apache ResponseHandler

<«—— HTTP response
handleResponse(httpResponse)

'

Android Handler

sendMessage(message)
onMessage(message)

Ul Thread - Ul updates Figure 6.3 HttpClient,
ResponseHandler, and Android

Handler relationship diagram

Download at Boykma.Com

Working with HITP 181

The next Activity in our NetworkExplorer application, which is shown in listing 6.6,
is a lot more straightforward and pure Android focused than our other HTTP-related
classes up to this point. This is made possible by the helper class we mentioned previ-
ously, which hides some of the complexity (we will examine the helper class itself after
we look at this first class that uses it).

public class ApacheHTTPViaHelper extends Activity {
. other member variables omitted for brevity Create a
private final Handler handler = new Handler () { Handler
public void handleMessage (Message msg) {
progressDialog.dismiss () ;
String bundleResult = msg.getData() .getString ("RESPONSE") ;

output.setText (bundleResult) ;
} Update Ul
from Handler

}i

@Override

public void onCreate (final Bundle icicle) {
super.onCreate (icicle) ;

. view inflation and setup omitted for brevity

this.button.setOnClickListener (new OnClickListener () {
public void onClick (final View v) {
output.setText ("") ;
performRequest (Call local
urlChooser.getSelectedItem() .toString()) ; performRequest

P i
}i
. onPause omitted for brevity
private void performRequest (String url) {

final ResponseHandler<String> responseHandler =
HTTPRequestHelper.getResponseHandlerInstance (Get ResponseHandler
this.handler) ; from RequestHelper

this.progressDialog =
ProgressDialog. show(this, "working . . .",
"performing HTTP request") ;

new Thread () {
public void run() {

HTTPRequestHelper helper = new Instantiate RequestHelper
HTTPRequestHelper (responseHandler) ; with ResponseHandler
helper.performGet (url, null, null, null);
} Perform HTTP
}.start () ; via helper

Download at Boykma.Com

182

CHAPTER 6 Networking and web services

First in this class we create another Handler @), and from within it we simply update a
Ul TextView based on data in the Message @. Further in the code, in the onCreate
method, we call a local performRequest method when the “go” button is clicked, and
we pass a selected String representing a URL .

Inside the performRequest method we use a static convenience method to return an
HttpClient ResponseHandler, passing in our Android Handler, which it will use 0. We
will examine the helper class next to get a look at exactly how this works, but the impor-
tant part for nowis that the ResponseHandler is created for us by the static method. With
the ResponseHandler instance taken care of, we instantiate an HttpRequestHelper
instance @ and use it to make a simple HTTP GET call (passing in only the String
URL) @. Similar to our previous example, when the request completes, the Response-
Handler will fire the onResponse method, and therein our Handler will be sent a Mes-
sage completing the process.

The example Activity in listing 6.6 is fairly clean and simple, and it’s asynchro-
nous and doesn’t block the UI thread. The heavy lifting is taken care of by HttpClient
itself and by the setup our custom HttpRequestHelper makes possible. The first part
of the all-important HttpRequestHelper, which we will explore in three sections, is
shown in listing 6.7.

public class HTTPRequestHelper {

private static final int POST TYPE = 1;

private static final int GET TYPE = 2;

private static final String CONTENT TYPE = "Content-Type";

public static final String MIME FORM ENCODED =
"application/x-www-form-urlencoded";

public static final String MIME TEXT PLAIN = "text/plain"; Require

ResponseHandler

to construct

private final ResponseHandler<String> responseHandler;

public HTTPRequestHelper (ResponseHandler<String> responseHandler) {
this.responseHandler = responseHandler;

}

public void performGet (String url, String user, String pass,
final Map<String, String> additionalHeaders) {

Provide
performRequest (null, url, user, pass, simple GET
additionalHeaders, null, HTTPRequestHelper.GET TYPE) ; method

}

public void performPost (String contentType, String url,
String user, String pass,
Map<String, String> additionalHeaders, Provide simple
Map<String, String> params) { POST methods
performRequest (contentType, url, user, pass,
additionalHeaders, params, HTTPRequestHelper.POST TYPE) ;

}

public void performPost (String url, String user, String pass,
Map<String, String> additionalHeaders,

Download at Boykma.Com

Working with HITP 183

Map<String, Strings> params) { Provide simple
performRequest (HTTPRequestHelper.MIME FORM ENCODED, POST methods
url, user, pass,
additionalHeaders, params, HTTPRequestHelper.POST TYPE) ;

}

private void performRequest (
String contentType,
String url,
String user,
String pass,
Map<String, String> headers,

Map<String, Strings> params, Handle Combil:‘atcilons
; in private metho
int requestType) { p Instantiate
DefaultHttpClient client = new DefaultHttpClient () ; DefaultHttpClient
if ((user != null) && (pass != null)) {

client.getCredentialsProvider () .setCredentials(

AuthScope . ANY, Add credentials
if needed

new UsernamePasswordCredentials (user, pass)) ;

}

final Map<String, String> sendHeaders =
new HashMap<String, String>();
if ((headers != null) && (headers.size() > 0)) {
sendHeaders.putAll (headers) ;
}
if (requestType == HTTPRequestHelper.POST TYPE) {
sendHeaders.put (HTTPRequestHelper . CONTENT TYPE, contentType) ;
}
if (sendHeaders.size() > 0) {
client.addRequestInterceptor (Use Interceptor for
new HttpRequestInterceptor () { request headers
public void process (
final HttpRequest request, final HttpContext context)
throws HttpException, IOException {
for (String key : sendHeaders.keySet ()) {
if (!request.containsHeader (key)) {
request .addHeader (key,
sendHeaders.get (key)) ;

13N

. POST and GET execution in listing 6.8

}

The first thing of note in the HttpRequestHelper class is that a ResponseHandler is
required to be passed in as part of the constructor @. This ResponseHandler will be

used when the HttpClient request is ultimately invoked. After the constructor, we see
a public HTTP GET-related method @ and several different public HTTP POSTrelated
methods @. Each of these methods is a wrapper around the private performRequest
method that can handle all the HTTP options @. The performRequest method

Download at Boykma.Com

184

CHAPTER 6 Networking and web services

supports a content-type header value, URL, username, password, Map of additional
headers, similar Map of request parameters, and request method type.

Inside the performRequest method a DefaultHttpClient is instantiated @. Next,
we check to see if the user and pass method parameters are present, and if so we set
the request credentials with a UsernamePasswordCredentials type (HttpClient sup-
ports several types of credentials, see the Javadocs for details) @. At the same time we
set the credentials, we also set an AuthScope. The scope represents which server, port,
authentication realm, and authentication scheme the credentials supplied are appli-
cable for.

You can set these as fine or coarse grained as you want; we are using the default
ANY scope that matches anything. What we notably have not set in all of this is the spe-
cific authentication scheme to use. HttpClient supports various schemes, including
basic authentication, digest authentication, and a Windows-specific NTLM scheme.
Basic authentication, meaning simple username/password challenge from the server,
is the default. (Also, if you need to, you can use a preemptive form login for form-
based authentication—just submit the form you need and get the token or session ID
and so on.)

After the security is out of the way, we use an HttpRequestInterceptor to add
HTTP headers @. Headers are name/value pairs, so this is pretty easy. Once we have
all of these properties that apply regardless of our request method type, we then add
further settings that are specific to the method. Listing 6.8, the second part of our
helper class, shows the POST- and GET-specific settings and the execute method.

Handle POST
if (requestType == HTTPRequestHelper.POST TYPE) { requests

HttpPost method = new HttpPost (url) ;
List<NameValuePair> nvps = null; ; Crgate HttpPost
if ((params != null) && (params.size() > 0)) { object

nvps = new ArrayList<NameValuePairs>() ;

for (String key : params.keySet ()) {

nvps.add (new BasicNameValuePair (key,
params.get (key))) ; Add name/value

| } parameters
if (nvps != null) {

try {

method.setEntity(
new UrlEncodedFormEntity (nvps, HTTP.UTF _8)) ;
} catch (UnsupportedEncodingException e) {
// log and or handle

} Call execute
execute (client, method) ; method

} else if (requestType == HTTPRequestHelper.GET TYPE)
HttpGet method = new HttpGet (url) ;
execute (client, method) ;

Download at Boykma.Com

Working with HITP 185

private void execute (HttpClient client, HttpRequestBase method) {
BasicHttpResponse errorResponse =
new BasicHttpResponse (

new ProtocolVersion ("HTTP_ERROR", 1, 1), Set up an
500, "ERROR") ; error handler
try {
client.execute (method, this.responseHandler) ; Call HttpClient
} catch (Exception e) { execute
errorResponse.setReasonPhrase (e.getMessage ()) ;
try {

this.responseHandler.handleResponse (errorResponse) ;
} catch (Exception ex) {
// log and or handle

}

}

When the specified request is a POST type @), we create an HttpPost object to deal
with it @. Then we add POST request parameters, which are another set of name/
value pairs and are built with the BasicNameValuePair object @. After adding the
parameters we are ready to perform the request, which we do with our local private
execute method using the method object and the client @.

Our execute method sets up an error response handler (we want to return a
response, error or not, so we set this up in case) @ and wraps the HttpClient execute
method, which requires a method object (either POST or GET in our case, preestab-
lished) and a ResponseHandler as input @. If we don’t get an exception when we
invoke HttpClient execute, all is well and the response details are placed into the
ResponseHandler. If we do get an exception, we populate the error handler and pass
it through to the ResponseHandler.

We call the local private execute method with the established details for either a
POST or a GET request. The GET method is handled similarly to the POST, but we don’t
set parameters (with GET requests we expect parameters encoded in the URL itself).
Right now our class supports only POST and GET (which cover 98 percent of the
requests we generally need), but it certainly could be easily expanded to support
other HTTP method types.

The final part of the request helper class, shown in listing 6.9, takes us back to the
first example that used the helper, as it outlines exactly what the convenience getRe-
sponseHandlerInstance method returns (constructing our helper requires a Respon-
seHandler, and this method returns a default one).

public static ResponseHandler<String>
getResponseHandlerInstance (final Handler handler) { Require Handler
final ResponseHandler<String> responseHandler = parameter
new ResponseHandler<String> () {

Download at Boykma.Com

186

CHAPTER 6 Networking and web services

public String handleResponse (final HttpResponse response)
Message message = handler.obtainMessage () ;
Bundle bundle = new Bundle () ;
StatusLine status = response.getStatusLine() ;
HttpEntity entity = response.getEntity () ;
String result = null;
if (entity != null) {

try {
result = StringUtils.inputStreamToString(Getresponse'
entity.getContent ()) ; content as String
bundle.putString(

"RESPONSE", result); < Put result value into Bundle
message.setData (bundle) ;
handler.sendMessage (message) ;

} catch (IOException e) {
bundle.putString ("
RESPONSE", "Error - " + e.getMessage()) ;
message.setData (bundle) ;
handler.sendMessage (message) ;

Set Bundle as data
into Message

}

} else {
bundle.putString ("RESPONSE", "Error - "
+ response.getStatusLine () .getReasonPhrase()) ;
message.setData (bundle) ;

handler.sendMessage (message) ; Send Message

via Handler

}

return result;

}
}i

return responseHandler;

}

As we discuss the getResponseHandlerInstance method of our helper, we should
note that although we find it helpful, it’s entirely optional. You can still make use of
the helper class without using this method. To do so, construct your own Response-
Handler and pass it in to the helper constructor—which is a perfectly plausible case.
The getResponseHandlerInstance method builds a convenient default Response-
Handler that hooks in a Handler via a parameter @ and parses the response as a
string @. The response String is sent back to the caller using the Handler Bundle
and Message pattern we have seen used time and time again to pass messages between
threads in our Android screens.

With the gory HttpRequestHelper details out of the way, and having already
explored basic usage, we will next turn to more involved uses of this class in the con-
text of web service calls.

The term web services means many different things depending on the source and the
audience. To some it’s a nebulous marketing term that is never pinned down; to oth-
ers it’s a very rigid and specific set of protocols and standards. We are going to tackle it

Download at Boykma.Com

Web services 187

as a general concept, without defining it to death, but not leaving it entirely unde-
fined either.

Web services is a means of exposing an API over a technology-neutral network end-
point. It’s a means to call a remote method or operation not tied to a specific platform
or vendor and get a result. By this definition POX over the network POX is included,
so is REST, and so is SOAP—and really so is any other method of exposing operations
and data on the wire in a neutral manner.

POX, REST, and SOAP are by far the most common web services around, so they are
where we will focus in this section. Each provides a general guideline for accessing
data and exposing operations, each in a more rigorous manner than the previous,
respectively. POX basically exposes chunks of XML over the wire, usually over HTTP.
REST is a bit more detailed in that it uses the concept of resources to define data and
then manipulates them with different HTTP methods using a URL-style approach
(much like the Android Intent system in general, which we have explored in previous
chapters). SOAP is the most formal of them all, imposing strict rules about types of
data, transport mechanisms, and security.

All of these approaches have advantages

and disadvantages, and these differences are

amplified on a mobile platform like Android. B Bl @ s23prm

NetworkExplorer

Though we can’t possibly cover all the details
here, we will touch on the differences as we
discuss each of these concepts. We will exam-
ine the use of a POX approach to return
recent posts from the del.icio.us API, and we
will then look at using REST with the Google
Data AtomPub API. Up first is what is proba-
bly the most ubiquitous type of web service in
use on the internet today, and therefore one
you will come across again and again when
connecting Android applications—POX.

To work with POX we are going to make net- —
work calls to the popular del.icio.us online
social bookmarking site. We will specify a
username and password to log in to an
HTTPS resource and return a list of recent

posts, or bookmarks. This service returns raw

XML data, and we will then parse it into a Jav-

aBean-style class and display it as shown in Figure 6.4 The del.icio.us recent posts
figure 6.4. screen from the NetworkExplorer application

Download at Boykma.Com

188 CHAPTER 6 Networking and web services

Listing 6.10 shows the del.icio.us login and HTTPS POST Activity code from our
NetworkExplorer application.

public class DeliciousRecentPosts extends Activity {

private static final String CLASSTAG =
DeliciousRecentPosts.class.getSimpleName () ;

private static final String URL GET POSTS RECENT = Include
"https://api.del.icio .us/vl/p_osts_/rece;t? ", del.icio.us URL

. member var declarations for user, pass, output,
and button (Views) omitted for brevity, Provide Handler

private final Handler handler = new Handler () to update Ul
public void handleMessage (final Message msg) {
progressDialog.dismiss () ;
String bundleResult = msg.getData () .getString ("RESPONSE") ;
output.setText (parseXMLResult (bundleResult)) ;
}
}i

@Override

public void onCreate (final Bundle icicle) {
super.onCreate (icicle) ;
this.setContentView(R.layout.delicious posts) ;

inflate views omitted for brevity

this.button.setOnClickListener (new OnClickListener () {
public void onClick (final View v) {
output.setText ("") ;

performRequest (user.getText () .toString(),
pass.getText () .toString()); Call local performRequest
} with user and passttpClient
P i execute

}i
. onPause omitted for brevity

private void performRequest (String user, String pass) {
this.progressDialog = ProgressDialog.show(this,
"working . . .", "performing HTTP post to del.icio.us");

final ResponseHandler<String> responseHandler =
HTTPRequestHelper.getResponseHandlerInstance (this.handler) ;

new Thread () {
public void run() {
HTTPRequestHelper helper =
new HTTPRequestHelper (responseHandler) ;
helper.performPost (URL GET POSTS RECENT, Use helper
user, pass, null, nulﬂ; B B for HTTP
}
}.start () ;
} Parse XML

private String parseXMLResult (String xmlString) { String result

StringBuilder result = new StringBuilder () ;

Download at Boykma.Com

Web services 189

try {

SAXParserFactory spf = SAXParserFactory.newInstance() ;
SAXParser sp = spf.newSAXParser () ;

XMLReader xr = sp.getXMLReader() ;

DeliciousHandler handler = new DeliciousHandler () ;
xr.setContentHandler (handler) ;

xr.parse (new InputSource (new StringReader (xmlString))) ;

List<DeliciousPost> posts = handler.getPosts() ;
for (DeliciousPost p : posts) {
result.append ("\n" + p.getHref ()) ;

}

} catch (Exception e) {
// log and or handle

}

return result.toString() ;
}

To utilize a POX service we need to know a little bit about it, beginning with the URL
endpoint @. To call the del.icio.us service we will again use a Handler to update the
UI @, and we will use the HttpRequestHelper we previously built and walked through
in the last section. In this example we again have many fewer lines of code than if we
did not use the helper (lines of code we would likely be repeating in different Activ-
ity classes). With the helper instantiated we call the performRequest method with a
username and password ©. This method, via the helper, will log in to del.icio.us and
return an XML chunk representing the most recently bookmarked items @. To turn
the raw XML into useful types we then also include a parseXMLResult method @.
Parsing XML is a subject in its own right, and therefore we will cover it in more detail
in chapter 13, but the short takeaway with this method is that we walk the XML struc-
ture with a parser and return our own DeliciousPost data beans for each record.
That’s it—that’s using POX to read data over HTTPS.

Building on the addition of XML to HTTP, above and beyond POX, is the REST
architectural principle, which we will explore next.

While we look at REST, we will also try to pull in another useful concept in terms of
Android development: working with the various Google Data APIs (http://
code.google.com/apis/gdata/). We used the GDATA APIs for our RestaurantFinder
review information in chapter 3, but there we didn’t authenticate, and we didn’t get
into the details of networking or REST. Here we will uncover the details as we perform
two distinct tasks: authenticate and retrieve a Google ClientLogin token and retrieve
the Google Contacts data for a specified user. Keep in mind that as we work with the
GDATA APIs in any capacity, we will be using a REST-style API.

The main concepts with REST are that you specify resources in a URI form and you
use different protocol methods to perform different actions. The Atom Publishing
Protocol (AtomPub) defines a REST-style protocol, and the GDATA APIs are an imple-
mentation of AtomPub (with some Google extensions). As noted, the entire Intent

Download at Boykma.Com

http://code.google.com/apis/gdata/
http://code.google.com/apis/gdata/

190

CHAPTER 6 Networking and web services

approach of the Android platform is a lot like REST. A URI such as content://
contacts/1 is in the REST style. It includes a path that identifies the type of data and a
particular resource (contact number 1).

That URI does not say what to do with contact 1, however. In REST terms that’s
where the method of the protocol comes into the picture. For HTTP purposes REST
utilizes various methods to perform different tasks: POST (create, update, or in special
cases delete), GET (read), PUT (create, replace), and DELETE (delete). True HTTP REST
implementations use all the HTTP method types and resources to construct APIs.

In the real world you will find very few true REST implementations. It is much more
common to see a REST-style API. That means an API that doesn’t typically use the HTTP
DELETE method (many servers, proxies, and so on have trouble with DELETE) and over-
loads the more common GET and POST methods with different URLs for different tasks
(by encoding a bit about what is to be done in the URL, or as a header or parameter,
rather than relying strictly on the method). In fact, though many people refer to the
GDATA APIs as REST, they are technically only REST-like, not true REST. That’s not nec-
essarily a bad thing; the idea is ease of use of the API rather than pattern purity. All in
all, REST is a very popular architecture or style, because it’s easy yet powerful.

Listing 6.11 is a quick example that focuses on the network aspects of authentica-
tion with GDATA to obtain a ClientLogin token and using that token with a subse-
quent REST-style request to obtain Contacts data by including an email address as a
resource.

public class GoogleClientLogin extends Activity {

private static final String URL GET GTOKEN =
"https://www.google.com/accounts/ClientLogin";

private static final String URL GET CONTACTS_ PREFIX
"http://www.google.com/m8/feeds/contacts/";

private static final String URL GET CONTACTS SUFFIX = "/full";

private static final String GTOKEN AUTH HEADER NAME = "Authorization";

private static final String GTOKEN AUTH HEADER VALUE PREFIX =
"GoogleLogin auth=";

private static final String PARAM ACCOUNT TYPE = "accountType";

private static final String PARAM ACCOUNT TYPE VALUE =
"HOSTED_OR_GOOGLE";

private static final String PARAM EMAIL = "Email";

private static final String PARAM PASSWD = "Passwd";

private static final String PARAM SERVICE = "service";

private static final String PARAM SERVICE VALUE = "cp";

private static final String PARAM SOURCE = "source";

private static final String PARAM SOURCE VALUE =
"manning-unlockingAndroid-1.0";

private String tokenValue;

. View member declarations omitted for brevity Create Handler

private final Handler tokenHandler = new Handler () { token request

Download at Boykma.Com

Web services 191

public void handleMessage (final Message msg) {
progressDialog.dismiss () ;
String bundleResult = msg.getData() .getString ("RESPONSE") ;
String authToken = bundleResult;
authToken = authToken.substring (authToken.indexOf ("Auth=")

+ 5, authToken.length()) .trim() ;
tokenValue = authToken; Set
GtokenText .setText (authToken) ; tokenValue
}
}i
private final Handler contactsHandler = Create Handler for
new Handler () { contacts request

public void handleMessage (final Message msg) {
progressDialog.dismiss () ;
String bundleResult = msg.getData () .getString ("RESPONSE") ;
output.setText (bundleResult) ;
}
i

. onCreate and onPause omitted for brevity Implement

private void getToken (String email, String pass) { getToken
final ResponseHandler<Strings> responseHandler =
HTTPRequestHelper.getResponseHandlerInstance (
this.tokenHandler) ;

this.progressDialog = ProgressDialog.show(this,
"working . . .", "getting Google ClientLogin token") ;

new Thread () {
public void run() {

HashMap<String, String> params =
new HashMap<String, Strings>();

params.put (GoogleClientLogin.PARAM ACCOUNT TYPE,
GoogleClientLogin.PARAM ACCOUNT TYPE VALUE) ;

params.put (GoogleClientLogin.PARAM EMAIL, email) ; Include

params.put (GoogleClientLogin.PARAM PASSWD, pass) ; necessary

params.put (GoogleClientLogin.PARAM SERVICE, parameters
GoogleClientLogin.PARAM SERVICE VALUE) ; for

params.put (GoogleClientLogin.PARAM SOURCE, ClientLogin

GoogleClientLogin.PARAM SOURCE VALUE) ;

HTTPRequestHelper helper =
new HTTPRequestHelper (responseHandler) ;
helper.performPost (HTTPRequestHelper.MIME FORM ENCODED,
GoogleClientLogin.URL GET GTOKEN,

null, null, null, params) ; PerformPOST
} to get token
}.start () ;
}
private void getContacts (String email, String token) Implement
final ResponseHandler<String> responseHandler = getcontacts

HTTPRequestHelper.getResponseHandlerInstance (
this.contactsHandler) ;

this.progressDialog = ProgressDialog.show(this,

Download at Boykma.Com

192

CHAPTER 6 Networking and web services

"working . . .", "getting Google Contacts") ;

new Thread () {
public void run() {
HashMap<String, String> headers =
new HashMap<String, Strings>() ;
headers.put (GoogleClientLogin.GTOKEN AUTH HEADER NAME,
GoogleClientLogin.GTOKEN AUTH HEADER VALUE PREFIX

+ token) ;
Add token
String encEmail = email; as header

try {
encEmail = URLEncoder.encode (encEmail, Encode e.mall
"UTF-8") ; address in URL

} catch (UnsupportedEncodingException e) {
// log and or handle
}

String url =
GoogleClientLogin.URL GET CONTACTS PREFIX + encEmail
+ GoogleClientLogin.URL GET_CONTACTS_ SUFFIX;

HTTPRequestHelper helper = new
HTTPRequestHelper (responseHandler) ; Make GET request
helper.performGet (url, null, null, headers) ; for Contacts

}

}.start () ;

}

After a host of constants that represent various String values we will use with the
GDATA services, we have several Handler instances in this class, beginning with
a tokenHandler @. This handler updates a UI TextView when it receives a message,
like the previous similar examples we have seen, and updates a non-UI member
tokenValue variable that other portions of our code will use @. The next Handler we
have is the contactsHandler that will be used to update the UI after the contacts
request ©.

Beyond the handlers we have the getToken method @. This method includes all
the required parameters for obtaining a ClientLogin token from the GDATA servers
(http://code.google.com/apis/gdata/auth.html) ©. After the setup to obtain the
token, we make a POST request via the request helper @.

Once the token details are taken care of, we have the getContacts method @.
This method uses the token obtained via the previous method as a header @. After
you have the token you can cache it and use it with all subsequent requests (you don’t
need to re-obtain the token every time). Next we encode the email address portion of
the Contacts API URL @), and we make a GET request for the data—again using the
HttpRequestHelper .

With this approach we are making several network calls (one as HTTPS to get the
token and another as HTTP to get data) using our previously defined helper class.
When the results are returned from the GDATA API, we parse the XML block and
update the UL

Download at Boykma.Com

http://code.google.com/apis/gdata/auth.html

Web services 193

While we have included a working ClientLogin example here, we have also skipped
over an important part—CAPTCHA. Google may optionally require a CAPTCHA with the
ClientLogin approach. To fully support ClientLogin you need to handle that re-
sponse and display the CAPTCHA to the user, then resend a token request with the
user’s entered CAPTCHA value. For details see the GDATA documentation.

Now that we have explored some REST-style networking, the last thing we need to dis-
cuss with regard to HTTP and Android is SOAP. This topic comes up frequently in dis-
cussions of networking mobile devices, but sometimes the forest gets in the way of the
trees in terms of framing the real question.

SOAP is a powerful protocol that has many uses. We would be remiss if we didn’t at
least mention that while it’s possible, it’s not generally recommended on a small,
embedded device like a smartphone, regardless of the platform. The question within
the limited resources environment Android inhabits is really more one of should it be
done rather than can it be done.

Surely some experienced developers, who may have been using SOAP for years on
other devices, are snarling at this sentiment right now. To those of you in that camp
we would ask you to bear with us as we try to explain. The things that make SOAP great
are its support for strong types (via XML Schema), its support for transactions, its secu-
rity and encryption, its support for message orchestration and choreography, and all
the related WS-* standards. These things are invaluable in many server-oriented com-
puting environments, whether or not they involve the enterprise. And these things
add a great deal of overhead, especially on a small, embedded device. In fact, in many
situations where people use SOAP on embedded devices, they often don’t bother with
the advanced features—and they use plain XML with the overhead of an envelope at
the end of the day anyway. On an embedded device you will often get better perfor-
mance, and a simpler design, by using a REST- or POX-style architecture and avoiding
the overhead of SOAP.

There are, of course, some situations where it makes sense to investigate using
SOAP directly with Android. In the case where you need to talk to existing SOAP ser-
vices that you have no control over, SOAP might make sense. Also, if you already have
J2ME clients for existing SOAP services, you may be able to port those in a limited set
of cases. Yet, either of these approaches makes it easier on only you, the developer,
and has either no effect or a negative one in terms of performance on the user. Even
when you are working with existing SOAP services, remember that you can often write
a POX/REST-style proxy for SOAP services on the server side and call that from
Android, rather than using SOAP directly from Android.

If you feel like SOAP is still the right choice, you can use one of several ports of the
KkSOAP toolkit (http://ksoap2.sourceforge.net/), which is specially designed exactly

Download at Boykma.Com

http://ksoap2.sourceforge.net/

194

CHAPTER 6 Networking and web services

for SOAP on an embedded Java device. Keep in mind, though, even the kSOAP docu-
mentation states, “SOAP introduces some significant overhead for web services that
may be problematic for mobile devices. If you have full control over the client and the
server, a REST-based architecture may be more adequate.” In addition, you may be
able to write your own parser for simple SOAP services that don’t use fancy SOAP fea-
tures and just use a POX approach that includes the SOAP XML portions you require
(you can always roll your own, even with SOAP).

All in all, in our minds the answer to the question is not to use SOAP on Android,
even though you can. Our discussion of SOAP, even though we don’t advocate it,
rounds out our more general web services discussion, and that wraps up our network-
ing coverage.

In this chapter we started with a brieflesson on the background of basic networking con-
cepts, from nodes and addresses to layers and protocols. With that general background
in place, we covered details concerning obtaining network status information and
showed several different ways to work with the IP networking capabilities of the platform.

In terms of networking we looked at using basic sockets and the java.net package.
Then we also examined the included Apache HttpClient API. HTTP is one of the most
common, and most important, networking resources available to the Android plat-
form. Using HttpClient we covered a lot of territory in terms of different request
types, parameters, headers, authentication, and more. Beyond basic HTTP we also
extended into the concepts of POX and REST, and we discussed a bit of SOAP—all of
which use HTTP as the transport mechanism.

Now that we have covered a good deal of the networking possibilities, and hope-
fully given you at least a glint of an idea of what you can do with serverside APIs and
integration with Android, we are going to turn to another very important part of the
Android world—telephony.

Download at Boykma.Com

With an Android device you can surf the web, store and retrieve data locally, access
networks, access location information, use many types of applications, and—get
this— actually make phone calls.

After all is said and done, one of the most fundamental components of the plat-
form is the mobile phone. Dialing out, receiving calls, sending and receiving text and
multimedia messages, and other related telephony services are all available. The add-
ed bonus with Android is that all of these items are accessible to developers through
simple-to-use APIs and built-in applications that make use of intents and services. You
can use the telephony support Android provides quite easily, and you can combine
it and embed it in your own applications (as you have seen in previous examples).

In this chapter we will examine a bit of telephony background and cover terms
involved with a mobile device. We will move on to basic Android telephony pack-
ages, which will take us through handling calls using builtin Intent actions and

195

Download at Boykma.Com

http://code.google.com/android/devel/security.html
http://code.google.com/android/devel/security.html
http://code.google.com/android/devel/security.html

196

CHAPTER 7 Telephony

examining the TelephonyManager and PhoneStateListener classes. The Intent
actions are what you will use on a day-to-day basis to initiate phone calls in your appli-
cations. TelephonyManager is, on the other hand, not related to making calls but
rather is used to retrieve all kinds of telephony-related data, such as the state of the
voice network, the device’s own phone number, and Subscriber Identity Module (SIM)
card details. Using TelephonyManager is also how you attach a PhoneStateListener,
which can alert you when call or phone network states change.

Once we have basic telephony APIs in hand, we will move on to working with
another very common mobile phone feature—sending and receiving SMS messages.
Android provides intents and built-in applications for handling SMS messages as well
as APIs that allow you to send SMS messages and be notified when SMS messages are
received.

We will also touch on emulator features that allow you to send in test calls and/or
messages to exercise your applications.

We are once again going to use a sample application to carry us through the con-
cepts related to the material in this chapter. We will be building a TelephonyExplorer
application to demonstrate dialing the phone, obtaining phone and service state
information, adding listeners to the phone state, and working with SMS. Our Telepho-
nyExplorer application will have several basic screens, as shown in figure 7.1.

Reboot! Let's hope this &5 just

text message now|

Chanpe focus to here to
format previous field

Figure 7.1 TelephonyExplorer main screen, showing all the related activities the sample application
performs

Download at Boykma.Com

Telephony background and terms 197

TelephonyExplorer, as you can see from the screen shot, is not pretty, nor is it very prac-
tical outside of learning the concepts and API details involved. This application is fo-
cused on touching the telephony-related APIs while remaining simple and uncluttered.

Before we begin to build TelephonyExplorer, the first thing we first need to clarify
what telephony is and learn the terminology.

This basic information about telephony may not be new to experienced mobile devel-
opers (if that describes you, feel free to skip to the next section), but it’s important to
clarify terms and set out some background for those who are new to these concepts.

First, telephony is a general term that refers to the details surrounding electronic
voice communications over telephone networks. Our scope is, of course, the mobile
telephone network that Android devices will participate in, specifically the Global Sys-
tem for Mobile Communications (GSM) network.

Telephone The term telephone means “speech over a distance.” The Greek
roots are tele, which means “distant,” and phone, which means “speech.”

GSM is a cellular telephone network. Devices communicate over radio waves and spec-
ified frequencies using the cell towers that are common across the landscape. This
means the GSM standard has to define a few important things, such as identities for
devices and “cells,” along with all of the rules for making communications possible.

We won’t delve into the underlying details of GSM, but it’s important to know that
it’s the standard that the Android stack currently uses to support voice calls—and
it’s the most widely used standard in the world across carriers and devices, Android
or otherwise. All GSM devices use a SIM card to store all the important network and
user settings.

A SIM card is a small, removable, and secure smart card. Every device that operates
on a GSM network has specific unique identifiers, which are stored on the SIM card:

» Integrated Circuit Card ID (ICCID)—Identifies a SIM card (also known as a SIM
Serial Number, or SSN).

= International Mobile Equipment Identity (IMEI)—Ildentifies a physical device. (The
number is usually printed underneath the battery).

» International Mobile Subscriber Identity (IMSI)—Identifies a subscriber (and the
network that subscriber is on).

» Location Avea Identity (LAI)—ldentifies the region the device is in within a pro-
vider network.

» Authentication Key (Ki)—A 128-bit key used to authenticate a SIM card on this
provider network. A 128-bit key.

These numbers are important for the obvious reasons that they are used to validate
and authenticate a SIM card itself, the device it is in, and the subscriber on the net-
work (and across networks if need be).

Download at Boykma.Com

198

CHAPTER 7 Telephony

Along with storing unique identifiers and authentication keys, SIM cards often are
capable of storing user contacts and SMS messages. This is convenient for users
because they can move their SIM card to a new device and carry along contact and
message data easily. At present there are no public APIs for interacting with the SIM
card on an Android device directly, though this may become possible in the future.
(At present, the platform handles the SIM interaction, and developers can get read-
only access via the telephony APIs).

The basic background for working with the Android telephony packages really is
that short and simple. You need to know that you are working with a GSM network,
and then you need to be aware that you may come across terms like IMSI and IMEI,
which are stored on the SIM. Getting at this information, and more, is done with the
TelephonyManager class.

Android provides a very informative manager class that supplies information about
many telephony-related details on the device. Using this class, TelephonyManager, you
can access many of the GSM/SIM properties we have already discussed, and you can
obtain phone network state information and updates.

Attaching an event listener to the phone, in the form of a PhoneStateListener,
which is done via the manager, is how you can make your applications aware of when
phone service is and is not available and when calls are started, in progress, or ending,
and more.

Here we are going to examine several

parts of the TelephonyExplorer example £ Ml @ 1:05AM

application to look atboth of these classes FET= .

and concepts, starting with obtaining a

Telephony Manager Information:

TelephonyManager instance and using it
to query useful telephony information.

The android.telephony package con-
tains the TelephonyManager class, and it
has details on all of the information you
can obtain using it. Here we are going to
getand display a small subset of that infor-
mation to demonstrate the approach.
The first Activity, beyond the main
screen, our TelephonyExplorer applica-
tion will have is a simple screen that shows

some of the information we can obtain via
Figure 7.2 Displaying device and phone

network metainformation obtained from
ure 7.2. the TelephonyManager class

TelephonyManager, as shown in fig-

Download at Boykma.Com

Accessing telephony information 199

The TelephonyManager class is the information hub for telephony-related data in
Android. Listing 7.1 demonstrates how you obtain a reference to this class and use it
to retrieve data (such as the data shown in figure 7.2).

// . . . start of class omitted for brevity

final TelephonyManager telMgr =
(TelephonyManager) this.getSystemService (Get TelephonyManager
Context . TELEPHONY SERVICE) ; from Context

// . . . onCreate method and others omitted for brevity

public String getTelephonyOverview (Implement information
TelephonyManager telMgr) { helper method

int callState = telMgr.getCallState(); Obtain call state
String callStateString = "NA"; information

switch (callState) {

case TelephonyManager.CALL STATE IDLE:
callStateString = "IDLE";
break;

case TelephonyManager.CALL STATE OFFHOOK:
callStateString = "OFFHOOK";
break;

case TelephonyManager.CALL STATE RINGING:
callStateString = "RINGING";
break;

}

GsmCellLocation cellLocation =
(GsmCellLocation) telMgr.getCellLocation() ;
String celllLocationString =
cellLocation.getLac() + " " + cellLocation.getCid() ;

String deviceld = telMgr.getDeviceId() ;
String deviceSoftwareVersion = J
telMgr.getDeviceSoftwareVersion() ;

Get cell location
information

String linelNumber = telMgr.getLinelNumber () ;

String networkCountryIso = telMgr.getNetworkCountryIsol() ;

String networkOperator = telMgr.getNetworkOperator () ;
String networkOperatorName = telMgr.getNetworkOperatorName () ;

int phoneType = telMgr.getPhoneType () ; Get device
String phoneTypeString = "NA"; information
switch (phoneType) {
case TelephonyManager.PHONE TYPE GSM:

phoneTypeString = "GSM";

break;
case TelephonyManager.PHONE TYPE NONE:

phoneTypeString = "NONE";

break;

Download at Boykma.Com

200

CHAPTER 7 Telephony

String simCountryIso = telMgr.getSimCountryIso() ; Q Get cellGet
String simOperator = telMgr.getSimOperator () ; / phone number
String simOperatorName = telMgr.getSimOperatorName () ; of device
String simSerialNumber = telMgr.getSimSerialNumber () ; location
String simSubscriberId = telMgr.getSubscriberId() ; information

int simState = telMgr.getSimState () ;
String simStateString = "NA";

switch (simState) { Obtain SIM
case TelephonyManager.SIM STATE ABSENT: information
simStateString = "ABSENT";
break;

case TelephonyManager.SIM STATE NETWORK LOCKED:
simStateString = "NETWORK_ LOCKED";
break;

// . . . other SIM states omitted for brevity

}

StringBuilder sb = new StringBuilder () ;
sb.append("telMgr - ") ;
sb.append (" \ncallState = " + callStateString) ;

// . . . remainder of appends omitted for brevity

return sb.toString() ;

}

The Android Context is used, through the getSystemService method with a con-
stant, to obtain an instance of the TelephonyManager class @. Once you have a handle
to the manager, you can use it as needed to obtain information. In this case we have
created a helper method to get data from the manager and return it as a String we
later display on the screen @.

The manager allows you to access phone state data, such as whether or not a call is
in progress ©, cell location information @, the device ID and software version @, the
phone number registered to the current user/SIM @, and many other SIM details
such as the subscriber ID (IMSI) @. There are additional properties that we are not
using in this example (see the Javadocs for complete details).

Note one more detail here not shown in the listing. In order for this class to work,
the READ_PHONE_STATE permission has to be set in the manifest (without it security
exceptions will be thrown when you try to read data from the manager). We have con-
solidated the phone-related permissions into table 7.1, in section 7.3.1.

This handle to the telephony-related information, including metadata about
the device, network, and SIM card, is one of the main purposes of the Telephony-
Manager class. The other main purpose of TelephonyManager is to allow you to
attach a PhoneStateListener.

Obviously a phone has various states that it as a device can be in. The most basic
phone states are idle, in a call, or in the process of initiating a call. When building
applications on a mobile device, there are times when you not only need to know the
current phone state but also want to be alerted anytime the state changes.

Download at Boykma.Com

Accessing telephony information 201

In these cases you want to attach a listener to the phone and “subscribe” so that you
can be notified of “published” changes. With Android this is done using a PhoneState-
Listener, which is attached to the phone through TelephonyManager. Listing 7.2 dem-
onstrates a sample usage of both of these classes.

@Override
public void onStart () {
super.onStart () ;

final TelephonyManager telMgr =

(TelephonyManager)
this.getSystemService (Obtain TelephonyManager
Context . TELEPHONY SERVICE) ; from Context
PhoneStateListener phoneStateListener = Create .
new PhoneStateListener () { PhoneStateListener

public void onCallStateChanged (
int state, String incomingNumber) {
telMgrOutput .setText (getTelephonyOverview (telMgr)) ;
}

Implement

bi onCaliStateChanged method

telMgr.listen (phoneStateListener,
PhoneStateListener.LISTEN CALL STATE) ;

String telephonyOverview = this.getTelephonyOverview (telMgr) ;

this.telMgrOutput.setText (telephonyOverview) ; L
} Assign listener

to manager
To start working with a PhoneStateListener you need an instance of Telephony-
Manager, so you can later assign the listener @. PhoneStateListener itself is an inter-
face, so you need to create an implementation 0, including the onCallStateChanged
required method, in order to use it €. Once you have a PhoneStateListener
instance (your own implementation that implements the interface), you attach it by
assigning it to the manager with the listen method @.

In the example in listing 7.2 we are listening for any PhoneStateListener.
LISTEN_CALL_STATE change in the phone state. This is a constant value from a list of
available states that can be seen on the PhoneStateListener class. You can use a sin-
gle value when assigning a listener with the 1isten method, as we have done here, or
you can combine multiple values.

If a call state change does occur, we reset the details on the screen using the
getTelephonyOverview method we used for setting the initial status in listing 7.1. The
action you take is defined in the onCallStateChanged method of your PhoneState-
Listener. You can filter further in this method too (apart from the types of events you
are listening for), based on the passed-in int state, if you need to.

To see the values in this example change while working with the emulator, you can
use the SDK tools to send incoming calls or text messages and change the state of the
voice connection. The emulator includes a mock GSM modem that you can manipulate
using the gsm command from the console. Figure 7.3 shows an example session from the

Download at Boykma.Com

http://code.google.com/android/reference/emulator.html#telephony
http://code.google.com/android/reference/emulator.html#telephony

202

CHAPTER 7 Telephony

ccollins@crotalus: /opt/android/toolss telnet localhost 5554

Trying 127.6.0.1...

Connected to localhost.

Escape character is '*]".

Android Console: type 'help' for a list of commands

0K

gsm

allows you to change GSM-related settings, or to make a new inbound phone call

available sub-commands:

list list current phone calls

call create inbound phone call

busy close waiting outbound call as busy

hold change the state of an oubtound call to 'held’
accept change the state of an outbound call to 'active'
cancel disconnect an inbound or outbound phone call
data modify data connection state

voice modify voice connection state

status display GSM status

Figure 7.3 An Android console session demonstrating the gsm command and
available subcommands

console that demonstrates this. For complete details see the emulator telephony docu-
mentation (http://code.google.com/android/reference/emulator.html - telephony).
With many of the larger telephony background details now complete, in the next

few sections of this chapter we’re going to cover basic uses of the telephony APIs and
other related facilities. We will examine intercepting calls, using some of the tele-
phony utility classes, and making calls from your applications.

In your day-to-day development you will often want to interact with the phone. This
interaction may be as simple as dialing outbound calls through built-in intents, or it
may involve intercepting calls to modify them in some way. In this section we are
going to cover these basic tasks, and we will examine some of the phone number utili-
ties Android provides for you out of the box.

One of the more common things you will do with the Android telephony support
doesn’t involve the telephony APIs directly, and that is making calls using the built-in
intents.

As we demonstrated in chapter 4, using the Intent .ACTION CALL action and the tel:
Uri is all you need to invoke the builtin dialer application and make a call. This
approach will invoke the dialer application, populate the dialer with the provided
telephone number (taken from the Uri), and initiate the call.

Along with this action you can also invoke the dialer application with the
Intent .ACTION DIAL action, which will again populate the dialer with the supplied
phone number but stop short of initiating the call. Listing 7.3 demonstrates both tech-
niques using the respective actions.

Download at Boykma.Com

http://code.google.com/android/reference/emulator.html

Interacting with the phone 203

dialintent = (Button) findViewById(R.id.dialintent button) ;
dialintent.setOnClickListener (new OnClickListener () {
public void onClick (View v) {
Intent intent =

new Intent (Intent.DIAL ACTION, +—@ Usage of DIAL_ACTION

Uri.parse("tel:" + NUMBER)) ;
startActivity (intent) ; Including the

tel:number Uri

}
K

callintent = (Button) findViewById(R.id.callintent button) ;
callintent.setOnClickListener (new OnClickListener () {
public void onClick (View v) {
Intent intent =

new Intent (Intent. CALL ACTION, Usage of
Uri .parse ("tel:" + NUMBER)) ; CALL ACTION

startActivity (intent) ;
}
I3
At this point we have covered the usage of intents and the Android platform design
quite a bit. In listing 7.3 we are once again leveraging this design, to make outgoing
calls to specified numbers.

Making calls using the built-in intents through the dialer application is very simple,
as we have already shown in previous examples. Basically you need to set the action
you want to take place, either populating the dialer with ACTION DIAL @ or populat-
ing the dialer and initiating a call with ACTION CALL @. In either case you also need to
specify the telephone number you want to use with the Intent Uri @.

The only other aspect of dialing calls you need to be aware of is permissions. The
correct permissions are required in your application manifest in order to be able to
access and modify phone state, dial the phone, or intercept phone calls (which we will
examine in section 7.3.3). Table 7.1 lists the relevant phone-related permissions and
their purposes (for more detailed information see the security section of the Android
documentation: http://code.google.com/android/devel/security.html).

Table 7.1 Phone-related manifest permissions and their purpose

android.permission.READ_PHONE_STATE Allow application to read phone state
android.permission.MODIFY_PHONE_STATE Allow application to modify phone state
android.permission.CALL_PHONE Initiate a phone call without user confir-

mation in dialer

android.permission.CALL_PRIVILEGED Call any number, including emergency,
without confirmation in dialer

android.permission.PROCESS_OUTGOING_CALLS | Allow application to receive broadcast for
outgoing calls and modify

Download at Boykma.Com

http://code.google.com/android/devel/security.html

204

CHAPTER 7 Telephony

Dialing from an Android application is very straightforward. The built-in handling via
intents and the dialer application make it almost trivial. Helping even more in terms
of “making it nice for the people” is the additional PhoneNumberUtils class, which you
can use to parse and validate phone number strings.

Applications running on mobile devices that support telephony get to experience the
joy of dealing with a good deal of String formatting for phone numbers. Fortunately,
in the Android SDK there is a handy utility class that helps to mitigate the risks associ-
ated with this task and standardize the way it’s done—PhoneNumberUtils.

The PhoneNumberUtils class can be used to parse String data into phone num-
bers, parse alphabetical keypad digits into numbers, and determine other properties
of phone numbers (such as whether or not they are global or localized). An example
usage of this class is shown in listing 7.4.

private TextView pnOutput;
private EditText pnInput;
private EditText pnInPlaceInput;
private Button pnFormat;

this.pnFormat.setOnClickListener (new OnClickListener ()
public void onClick (View v) { Format as
String phoneNumber = PhoneNumberUtils. formatNumber (qj’ phone number
pnInput.getText () .toString()) ;
phoneNumber = PhoneNumberUtils.convertKeypadLettersToDigits (

pnInput.getText () .toString()) ;
Convert alpha
StringBuilder result = new StringBuilder () ; characters to digits

result.append (phoneNumber) ;
result.append ("\nisGlobal - '

+ PhoneNumberUtils. isGlobalPhoneNumber (phoneNumber)) ;
result.append ("\nisEmergency - '

+ PhoneNumberUtils. isEmergencyNumber (phoneNumber)) ;

pnOutput .setText (result.toString()) ;

Use additional phone
pnInput.setText ("") ;

number utilities

}
1
The PhoneNumberUtils class has a number of static helper methods for parsing phone
numbers, the simplest of which is formatNumber. This method takes a single String as
input and uses the default locale settings to return a formatted phone number @
(there are additional methods to format a number using a locale you specify, to parse
different segments of a number, and so on). Parsing a number can be combined with
another helpful method, convertKeypadLettersToDigits, to further convert any

Download at Boykma.Com

Interacting with the phone 205

alphabetic keypad letter characters into digits @. The conversion method won’t work
unless it already recognizes the format of a phone number, so in this case it’s impor-
tant to run the format method first.

Along with these basic methods you can also check properties of a number string,
such as whether the number is global and whether it represents an emergency call .

An additional way to format a phone number that is useful for any Editable, such
as the very common EditText (or TextView), is the formatNumber overload that edits
these in place. This method updates an EditText that is passed in when it is invoked.
An example of using this is shown in listing 7.5.

this.pnInPlaceInput.setOnFocusChangeListener (Use OnFocusChangeListener
new OnFocusChangeListener () { for update
public void onFocusChange (View v, boolean b) {
if (v.equals(pnInPlacelnput) && (b == false)) {
PhoneNumberUtils. formatNumber (
pnInPlacelnput.getText (), Call formatNumber
PhoneNumberUtils.FORMAT NANP) ; method

}
)
The in-place editor can be combined with a dynamic update step using various tech-
niques; one way is to make the update happen automatically when the focus changes
away from a phone number field (curiously though, the in-place edit does not also
provide the keypad alphabetic character-to-number conversion automatically). To do
this we have implemented an OnFocusChangeListener @. Inside the onFocusChange
method, which filters for the correct View item, we call the formatNumber overload,
passing in the respective Editable and the formatting style we want to use @. The
NANP here stands for North American Numbering Plan, which includes an optional
country and area code and a seven-digit phone number.

Apart from using the phone number utilities and making calls, you may also need
to intercept calls.

There are many reasons you may want to intercept calls. For example, you may want
to write an application that is aware of incoming phone calls and changes the ringer
or uses other different alerts based on the caller. In addition, you may want to write
an application that catches outgoing calls and decorates or aborts them, based on
certain criteria.

Intercepting outgoing calls is supported in the current Android SDK release, but
unfortunately the same is not true of incoming calls. Currently incoming calls cannot
be intercepted. Users can still change the ringer and other options for their contacts,
but all of that is based on the built-in applications and is not something that’s available
to you as a developer through the APIs.

Download at Boykma.Com

206 CHAPTER 7 Telephony

Because of the limitations in the API, we will focus on what an intercept for an out-
going call looks like, which is shown in listing 7.6.

public class OutgoingCallReceiver extends BroadcastReceiver { Create

public static final String ABORT PHONE NUMBER = "1231231234"; broadcast

receiver
private static final String OUTGOING CALL ACTION =

"android.intent.action.NEW_OUTGOING_ CALL"; 4} Define constant for
private static final String INTENT PHONE NUMBER = NEW OUTGOING CALL
"android.intent.extra.PHONE_NUMBER"; =
@Override .
public void onReceive (Context context, Intent intent) { over“d.e
:) i onReceive
if (intent.getAction() .equals (
OutgoingCallReceiver.OUTGOING CALL ACTION))
String phoneNumber = Filter Intent for action%
intent.getExtras () .getString (INTENT PHONE NUMBER) ;
if ((phoneNumber != null) Get Intent extras dat:%
&& phoneNumber.equals (
OutgoingCallReceiver.ABORT PHONE NUMBER)) {
Toast . makeText (context, Define constant for
"NEW_OUTGOING CALL intercepted to number “ PHONE_NUMBER o
+ “123-123-1234 - aborting call",
Toast .LENGTH LONG) . Show)i Show
this.abortBroadcast (Ql quick
} message
} Abort Intent

}

The first thing we do to intercept an outgoing call is to extend BroadcastReceiver 0.
Our receiver defines several constants, one for the NEW OUTGOING CALL action @ and
one for the phone number data key, PHONE NUMBER @).

For a BroadcastReceiver we have to implement the onReceive method 0.
Within this method we filter on the Intent action we want, android.intent.
action.NEW_OUTGOING CALL @, then we get the Intent data using the phone number
key @. If the phone number matches, we send a Toast alert to the Ul @ and abort
the outgoing call by calling the abortBroadcast method @.

Beyond dialing out, formatting numbers, and intercepting calls, another important
area of the telephony support in Android is the support for sending and receiving SMS.

SMS is a hugely popular and important means of communication for mobile devices.
SMS is used to send simple text messages and small amounts of data. Android includes
a built-in SMS application that allows users to view received SMS messages and send mes-
sages (including replying to received messages). Along with the built-in user-facing sup-
port and the related ContentProvider for interacting with the built-in system, the SDK
provides APIs for developers to be able to send and receive messages programmatically.

Download at Boykma.Com

Working with messaging: SMS

To explore this support we are going to look
atboth sides of the coin, sending and receiving.
The unadorned screen in figure 7.4 shows the
SMS-related Activity we will build in the Tele-
phonyExplorer application.

To get started working with SMS, we will
send SMS messages using the support provided
by the SmsManager.

The android. telephony.gsmsubpackage con-
tains the SmsManager and SmsMessage classes.
These are our SMS friends. The SmsManager is
used to define many important SMS-related
constants, and it contains the sendData-
Message, sendMultipartTextMessage, and
sendTextMessage methods.

In listing 7.7 we have an example from our
TelephonyExplorer application of using the
SMS manager to send a simple text message.

// . . . start of class omitted for brevity

private Button smsSend;
private SmsManager smsManager;

@Override
public void onCreate (Bundle icicle) {

super.onCreate (icicle) ;

207

1231231234 woot!

TelExplore

SMS Ed

555-212-1234

Telcos charge WAAAY too much
for these messages, but we all
still use the heck out of them ;)!

send SMS

SMS RECEIVED - body - woot!

Figure 7.4 An Activity that sends SMS
messages and an example of an alert based
on a received SMS message

this.setContentView (R.layout.smsexample) ;

// . . . other onCreate view item inflation omitted for brevity

this.smsSend = (Button) findViewById(R.id.smssend button) ;

this.smsManager = SmsManager.getDefault () ; <F‘;$ Get SmsManager

final PendingIntent sentIntent =
PendingIntent.getActivity(
this, 0, new Intent (this,
SmsSendCheck.class), 0) ;

handle

Create Pendingintent
for post action

this.smsSend.setOnClickListener (new OnClickListener () f{

public void onClick (View v) {

String dest = smsInputDest.getText ().toString() ;

if (PhoneNumberUtils.

isWellFormedSmsAddress (dest)) { <F41’ Check destination

smsManager.sendTextMessage (

is valid

smsInputDest.getText () .toString, null,
smsInputText.getText () .toString(),

Download at Boykma.Com

208

CHAPTER 7 Telephony

sentIntent, null); @) Send message
Toast .makeText (SmsExample.this,
"SMS message sent",
Toast .LENGTH LONG) .show () ;
} else {
Toast .makeText (SmsExample.this,
"SMS destination invalid - try again",
Toast . LENGTH_LONG) .show () ;

)
}
The first thing we need to do in regard to working with SMS messages is obtain an
instance of the SmsManager, which is done with the static getDefault method @. The
manager will be used later to send the message. Before we can do that, though, we
need to create a PendingIntent (which will be used as a parameter in the send
method coming up).

A PendingIntent is a specification of a future intent. It is basically a way for you to
pass a future Intent to another application and allow that application to execute that
Intent as if it had the same permissions as your application, whether or not your
application is still around when the Intent is eventually invoked. Remember the Ac-
tivity lifecycle and the separate process logic that the platform uses. A Pendin-
gIntent provides a means for applications to, in essence, work “beyond the grave”
for a particular Intent. Even after an owning application that creates a PendingIn-
tent has been killed, that Intent can still be run later.

A PendingIntent can specify an Activity, Broadcast, or Service that it requires. In
our case we are using the getActivity method, which denotes an Activity, and then
we are specifying the context, request code (which is unused), the Intent, and addi-
tional flags @. The flags indicate whether or not a new instance of the referenced
Activity (or Broadcast or Service) should be created if one does not already exist.

Once we have a PendingIntent, we check that the destination address is valid for
SMS (using another method from PhoneNumberUtils) ©, and we send the message
using the manager’s sendTextMessage method @.

This send method takes in several parameters, one of which can be confusing. The
signature of this method is as follows:

sendDataMessage (String destinationAddress, String scAddress, short
destinationPort, byte[] data, PendingIntent sentIntent, PendingIntent
deliveryIntent)

The destinationAddress is simple; this is the phone number you want to send the

message to. The scAddress is the tricky one. This is not meant to be the source

address, but rather it indicates the internal service center address on the network; this

Download at Boykma.Com

Working with messaging: SMS 209

should be left null in most cases (which uses the default). The destinationPort is
also simple; it’s the port. The data is the payload of the message. Finally, the sent-
Intent and deliveryIntent are separate PendingIntent instances that are fired
when the message is successfully sent and received, respectively.

Much like the permissions we listed in table 7.1 in reference to phone permissions,
SMS-related tasks also require manifest permissions. The SMS-related permissions are
shown in table 7.2.

Table 7.2 SMS-related manifest permissions and their purpose

android.permission.RECEIVE_SMS | Allow application to monitor incoming SMS messages

android.permission.READ_SMS Allow application to read SMS messages
android.permission.SEND_SMS Allow application to send SMS messages
android.permission.WRITE_SMS Write SMS messages to the built-in SMS provider (not

related to sending messages directly)

Along with sending text and data messages using this basic pattern, you can create an
SMS-related BroadcastReceiver to receive incoming SMS messages.

Receiving an SMS message programmatically is done through receiving a broadcast on
the Android platform. To demonstrate this with our TelephonyExplorer application,
we are again going to implement a receiver, as shown in listing 7.8.

public class SmsReceiver extends BroadcastReceiver { Extend
public static final String SMSRECEIVED = "SMSR";
private static final String SMS REC ACTION =

BroadcastReceiver

"android.provider.Telephony.SMS RECEIVED"; Define constant
@override SM.S_RECEWED
action

public void onReceive (fContext context, Intent intent) {

if (intent.getAction() .

equals (SmsReceiver.SMS REC ACTION)) { Filter for action
StringBuilder sb = new StringBuilder () ; in receiver

Bundle bundle = intent.getExtras() ;

if (bundle != null) { Get pdus from
Object [] pdus = (Object[]) bundle.get ("pdus") ; Intent Bundle
for (Object pdu : pdus) {

SmsMessage smsMessage = Create SmsMessage
SmsMessage. createFromPdu ((byte[]1) pdu) ; from pdus
sb.append ("body - "
+ smsMessage.getDisplayMessageBody ()) ; 4} Get message
} body for display

Download at Boykma.Com

210

CHAPTER 7 Telephony

Toast .makeText (context, "SMS RECEIVED - "
+ sb.toString (), Toast.LENGTH LONG) .show () ;

}

To react to an incoming SMS message we once again are creating a BroadcastReceiver
by extending that class @. Our receiver defines a local constant for the Intent action
it wants to catch, in this case android.provider.Telephony.SMS RECEIVED @.

Once the class setup is ready, we filter for the action we want in the onReceive
method @, and we get the SMS data from the Intent “extras” Bundle using the key
pdus @. PDU, or Protocol Data Unit, is the term that describes the data packet in SMS
messages. In this case the platform is using the String key pdus (we discovered this by
trial and error, by getting the key Set from the Bundle and iterating it). For every pdu
Object we then construct an SmsMessage by casting the data to a byte array @. Once
this is in SmsMessage form, we can work with the methods on that class, such as get-
DisplayMessageBody @.

Sending and receiving messages in SMS form completes our exploration of the
telephony APIs.

In our trip through the Android telephony-related APIs we covered several important
topics. We began with a brief overview of some of the telephony terms, and then we
moved on to the Android-specific APIs.

With the APIs we looked at accessing telephony information with the Telephony-
Manager, including device and SIM card data and phone state. From there we also
addressed hooking in a PhoneStateListener to get updates when the phone state
changed and reacting to such events.

Beyond retrieving the data we also looked at dialing the phone using built-in
intents and actions, intercepting outgoing phone calls, and using the PhoneNumber-
Utils class in several ways. After we covered the standard voice usages, we addressed
SMS messaging. Here we looked at how to send and receive SMS messages using the
SmsManager and SmsMessage classes.

In the next chapter we turn to the specifics of dealing with notifications and alerts
on the Android platform.

Download at Boykma.Com

Today’s cell phones are expected to be not only phones but personal assistants,
cameras, music and video players, instant-messaging clients, as well as just about
everything else a computer might do. With all these applications running on
phones, applications need a way to notify users to get their attention or to take
some sort of action whether in response to a SMS, to a new voicemail, or to an
Alarm reminding them of a new appointment.

In this chapter we are going to look at how to use the Android Broadcast-
Receiver and the AlarmManager to notify users of just these sorts of events. You will
learn what a Toast is, what a Notification is, how to use the NotificationManager,
and how to display a Notification to the user or trigger some other action. You
will also learn how to create an Alarm and use the AlarmManager to schedule your
Alarm events. Before we go too deeply into how notifications work, let us first create
a simple example application.

211

Download at Boykma.Com

http://www.manning.com/ableson/
http://www.manning.com/ableson/
http://www.manning.com/ableson/

212

CHAPTER 8 Notifications and alarms

For our example we will create a simple Receiver class that listens for an SMS text mes-
sage and when a message arrives briefly pops up a message, called a Toast, to the user
with the content of the message. A Toast is a simple, nonpersistent message designed
to alert the user of some occurring event. Toasts are a great way to let a user know that
a callis coming in, an SMS or email has arrived, or some other event has just happened.
To look at how we can use a Toast, let’s create a simple example. To build the
example, first create a new project called SMSNotifyExample in Eclipse. You can use
whatever package name you like, but for this chapter we will use com.msi.man-
ning.chapters. Now that we have created the project, let’s edit AndroidManifest.xml.
You will need to add tags so that your AndroidManifest.xml file looks like listing 8.1.

<?xml version="1.0" encoding="utf-gu?> Define user permissions to allow SMS messages

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.msi.manning.chapters8">
<uses-permission android:name="android.permission.RECEIVE SMS" />
<application android:icon="@drawable/chat">
<activity android:name=".SMSNotifyActivity"
android:label="@string/app name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filters>
</activity>
<receiver android:name=".SMSNotifyExample">
<intent-filter>
<action android:name="android.provider.Telephony.SMS_RECEIVED" />
</intent-filters>

Define a receiver, SMSNotify,
with an Intent filter

</receiver> SMSNotifyExample
</applications> acts as receiver
</manifest>

The AndroidManifest.xml file needs to have specific user permissions @ added to it
to allow incoming SMS messages. The Android security model default is to have no
permissions associated with applications, meaning applications can essentially do
nothing that might harm the device or the data on the device. To provide Android
permission you need to use one or more permissions. In chapter 9 we will go into
greater detail about Android’s security model.

In the next part @ of the AndroidManifest.xml file we define SMSNotifyActivity,
which is simply our Activity, and the next class is the SMSNotifyExample class €,
which will act as our receiver. Then we will create a simple Activity class called
SMSNotifyActivity, asin listing 8.2.

public class SMSNotifyExampleActivity extends Activity {

@Override

Download at Boykma.Com

http://www.manning.com/ableson/
http://www.manning.com/ableson/

Introducing Toast 213

public void onCreate (Bundle icicle) ({
super.onCreate (icicle) ;
setContentView (R.layout.main) ;

}

As you can see there is very little to listing 8.2, in part because for this first example we
will be doing little with the Activity. Later in this chapter, we will build on this class.
Now let us create our Receiver class (see chapter 5 for more about Intent receivers),
which will listen for the SMS message and fire off an action. Listing 8.3 shows the code
for our SMSNotifyExample class.

public class SMSNotifyExample extends BroadcastReceiver { Extendtheclassasa
private static final String LOG TAG = "SMSReceiver"; BroadcastReceiver
public static final int NOTIFICATION ID RECEIVED = 0x1221;
static final String ACTION = "android.provider.Telephony.SMS RECEIVED";

public void onReceivelIntent (Context context, Intent intent) {

if (intent.getAction() .equals (SMSNotifyExample.ACTION)) {
StringBuilder sb = new StringBuilder() ;
Action fired by Android

Bundle bundle = intent.getExtras () ; when a SMS is received

if (bundle != null) {

Object [] pdusObj = (Object[]) bundle.get ("pdus") ;
SmsMessage [] messages = new SmsMessage [pdusObj.length] ;

for (SmsMessage currentMessage : messages) {
sb.append ("Received SMS\nFrom: ") ;
sb.append (currentMessage.getDisplayOriginatingAddress()) ;
sb.append ("\n----Message----\n") ;
sb.append (currentMessage.getDisplayMessageBody ()) ;

} Build message to
} share to the user

Log. i (SMSNotifyExample.LOG TAG, " [SMSAppl] onReceiveIntent: " + sb);
Toast .makeText (context, sb.toString(), Toast.LENGTH LONG) .show () ;

} Create a Toast

@Override
public void onReceive (Context context, Intent intent) ({

}
}
Listing 8.3 should be very easy to follow. Extend the SMSNotifyExample class using
BroadcastReceiver, which allows the class to receive Intent classes @. Then we cre-
ate a String @ to hold the action that will be fired by the system when an SMS is
received. After that we create a simple method to notify the user that an SMS message
has been received, and we parse the SMS message to show who it was from and the

Download at Boykma.Com

214

CHAPTER 8 Notifications and alarms

content of the message @. Finally we use a Toast to provide a quick message to the
user @.

Toast classes are transient little messages—they pop up and provide the user with
quick information without interrupting what the user is doing. In our code we chain
two methods together using the form makeText (Context context, CharSquence
text, int duration) .show (), where the first method contains a text view for the user
and the second method, show (), shows the message to the user. Toast allows you to
set a specific view using setView, but for our example we allow it to show the default,
which is the Android status bar.

Once you have finished cutting and pasting the code, everything should automati-
cally compile, and you should be able to run the application. The application should
come up and look like figure 8.1.

To test our application, select the DDMS option in Eclipse. Now in the Telephony
Actions field, type a telephone number, for example, 17035551429. Select SMS and
type a message in the Message field; then click Send. Your message should be sent to
the emulator, and you should be able to see the emulator responding in the Eclipse
console. A message should appear in the Android status bar on the very top of the
Android screen representation, as shown in figure 8.2.

So now that we have created our simple example, know how to display a short mes-
sage upon receiving an SMS, and know how to use the emulator to create an SMS, let’s

i DOMS -
File Edit Source Refactor MNavigate Search Project
E 17035551515: Hello Android how are g {id A,
SMSNotifyExample = iR
B Devices & ; S H”=0
Mame =
@ emulator-5554 Online 09,
system_process 5 £ 860K _
eom.andreid.phene 04 k% 8601 =
android.process.shared 58 E:Y 860:
com.googlepracesssh 132 B 8517
corm.msi.manning.chag 166 -3 8614
comandroidmms 172§ 82 .

. f
@ Emulstar Contrel ©1 e
Telephony Status
Voice: [hame o) speect [Fun w
Dats: |home »| Latency: [None =
Telephony Actions
Incoming number: 17033551515

MENU

Vaice
@ SMS

Mescage: Hello Andreid how are
you?

MENU

[sena]

Figure 8.1 A simple Toast, the Figure 8.2 Example of a Toast message
SMSNotifyExample, shown being generated from an SMS message
running in the emulator

Download at Boykma.Com

Introducing notifications 215

look at how to create a more persistent message that can also be used to set LEDs, play
a sound, or something of that nature, to let the user know an event has occurred.

In the previous section we showed how simple it is to create a quick, unobtrusive mes-
sage to let the user know an SMS message has arrived. In this next section we are going
to look at how to create a persistent notification that not only shows up in the status
bar but stays in a notification area until the user deletes it. To do that we need to use
the class Notification since we want to do something more complex than Toast can
offer us.

A notification on Android can be many things, ranging from a pop-up message, a
flashing LED, to a vibration, but all of these actions start with and are represented by
the Notification class. The Notification class defines how you want to represent a
notification to a user and has three constructors, one public method, and a number of
fields. Table 8.1 summarizes the class.

Table 8.1 Notification fields

public int 1edARGB The color of the LED notification.

public int ledOffMS The number of milliseconds for LED to
be off between flashes.

public int ledOnMS The number of milliseconds for LED to
be on between flashes.

public ContentURI sound The sound to play.

public RemoteViews contentView View to displaywhenthe statusBar-
Icon is selected in the status bar.

public CharSequence statusBarBalloonText | Textto display whenthe statusBar-
Icon is selected in the status bar.

public PendingIntent | contentIntent The Intent to execute when the icon
is clicked.
public int icon The resource id of a drawable to use

as the icon in the status bar.

public CharSequence tickerText Text to scroll across the screen when
this item is added to the status bar.

public long[] vibrate The pattern with which to vibrate.

As you can see, the Notification class has numerous fields since it has to describe
every way you can notify a user. Using a Notification is as simple as running this
code:

Download at Boykma.Com

http://lampwww.epfl.ch/%7Elinuxsoft/android/android-m3-rc37a/docs/reference/android/app/Notification.html#ledARGB
http://lampwww.epfl.ch/%7Elinuxsoft/android/android-m3-rc37a/docs/reference/android/app/Notification.html#ledOffMS
http://lampwww.epfl.ch/%7Elinuxsoft/android/android-m3-rc37a/docs/reference/android/app/Notification.html#ledOnMS
http://lampwww.epfl.ch/%7Elinuxsoft/android/android-m3-rc37a/docs/reference/android/net/ContentURI.html
http://lampwww.epfl.ch/%7Elinuxsoft/android/android-m3-rc37a/docs/reference/android/app/Notification.html#sound
http://lampwww.epfl.ch/%7Elinuxsoft/android/android-m3-rc37a/docs/reference/android/widget/RemoteViews.html
http://lampwww.epfl.ch/%7Elinuxsoft/android/android-m3-rc37a/docs/reference/android/app/Notification.html#statusBarIcon
http://lampwww.epfl.ch/%7Elinuxsoft/android/android-m3-rc37a/docs/reference/android/app/Notification.html#statusBarIcon
http://lampwww.epfl.ch/%7Elinuxsoft/android/android-m3-rc37a/docs/reference/java/lang/CharSequence.html
http://lampwww.epfl.ch/%7Elinuxsoft/android/android-m3-rc37a/docs/reference/android/app/Notification.html#statusBarBalloonText
http://lampwww.epfl.ch/%7Elinuxsoft/android/android-m3-rc37a/docs/reference/android/app/Notification.html#statusBarIcon
http://lampwww.epfl.ch/%7Elinuxsoft/android/android-m3-rc37a/docs/reference/android/app/Notification.html#statusBarIcon
http://lampwww.epfl.ch/%7Elinuxsoft/android/android-m3-rc37a/docs/reference/android/content/Intent.html
http://lampwww.epfl.ch/%7Elinuxsoft/android/android-m3-rc37a/docs/reference/android/app/Notification.html#statusBarIcon
http://lampwww.epfl.ch/%7Elinuxsoft/android/android-m3-rc37a/docs/reference/java/lang/CharSequence.html
http://lampwww.epfl.ch/%7Elinuxsoft/android/android-m3-rc37a/docs/reference/android/app/Notification.html#statusBarTickerText
http://lampwww.epfl.ch/%7Elinuxsoft/android/android-m3-rc37a/docs/reference/android/app/Notification.html#vibrate

216

CHAPTER 8 Notifications and alarms

Notification notif = new Notification (

context, // the application context

icon, // the icon for the status bar

ticketText, // the text to display in the ticker

when, // the timestamp for the notification

Title, // the title for the notification

TextBody, // the details to display in the notification
contentIntent, // the contentIntent

appIntent) ; // the application intent

To send the Notification all you have to do is enter the following:
nm.notify (String, Notification) ;

where nm is the reference to the NotificationManager. Now let’s take our previous
example and edit to change it from a Toast notification to a notification in the status
bar. Before we do that, we’ll make the application more interesting by adding icons
to our resources directory. For this example we’re going to use the chat.png icon and
the incoming.png icon. You can find these files in the downloaded code for this
book, or you can get them from http://www.manning.com/ableson/. Simply drop
them in the res/drawable directory to have Eclipse automatically register them for
you in the R class.

Now let’s edit our code. First we’ll edit the SMSNotifyActivity class so that when
the Activity is called it can find the Notification passed to it from the Notification-

Manager. After the Activity has run, SMSNotifyActivity can cancel it. Listing 8.4
provides the code you need for new SMSNotifyActivity class.

public class SMSNotifyActivity extends Activity {

public void onCreate (Bundle icicle)
super.onCreate (icicle) ;
setContentView (R.layout.main) ;

Set up the
NotificationManager nm = (NotificationManager) NotificationManager
getSystemService (NOTIFICATION SERVICE) ;
nm.cancel (R.string.app name) ; Cancel the

Notification

}

As you can see, all we did was to use the NotificationManager @ to look up the
Notification and then used the cancel () @ method to cancel it. We could do more
here, such as set up a custom view, but for now we will leave it as is.

Next we need to edit the SMSNotifyExample to remove the Toast Notification and
support a Notification to the status bar. Listing 8.5 shows the edits we need to make.

public class SMSNotifyExample extends BroadcastReceiver {

private static final String LOG TAG = "SMSReceiver";

Download at Boykma.Com

http://www.manning.com/ableson/

Introducing notifications 217

public static final int NOTIFICATION ID RECEIVED = 0x1221;
static final String ACTION = "android.provider.Telephony.SMS RECEIVED";
private CharSequence tickerMessage = null;

public void onReceivelIntent (Context context, Intent intent) {

NotificationManager nm = (NotificationManager)
context.getSystemService (Context . NOTIFICATION SERVICE) ;
if (intent.getAction() .equals (SMSNotifyExample.ACTION)) {

StringBuilder sb = new StringBuilder () ; Create the

Bundle bundle = intent.getExtras() ; Application Intent

if (bundle != null)
Object [] pdusObj = (Object[]) bundle.get ("pdus") ;
SmsMessage [] messages = new SmsMessage [pdusObj.length] ;

for (SmsMessage currentMessage : messages) {

"Received compressed SMS\nFrom: ") ;
currentMessage.getDisplayOriginatingAddress()) ;
"\n----Message----\n") ;
currentMessage.getDisplayMessageBody ()) ;

sb.append
sb.append
sb.append
sb.append

}

}

Log. i (SMSNotifyExample.LOG TAG, " [SMSApp] onReceiveIntent: " + sb);
abortBroadcast () ;

Intent i = new Intent (context, SMSNotifyActivity.class);
context.startActivity (i) ;

CharSequence appName = "SMSNotifyExample";
this.tickerMessage = sb.toString() ;
Long theWhen = System.currentTimeMillis() ;

PendingIntent.getBroadcast ((Context) appName, 0, i, 0);
Notification notif = new Notification (
R.drawable. incoming, é Build the
this.tickerMessage, Notification

theWhen) ;
notif.vibrate = new long[] { 100, 250, 100, 500};
nm.notify(R.string.alert message, notif) ; Broadcast the
} Notification
}
@Override

public void onReceive (Context context, Intent intent){

}
}

Notice that the first change we made was to add a called tickerMessage. The ticker-
Message will hold the SMS message that we want to scroll in the notification bar. We
add these fields right after our Action variable, like this:

private CharSequence tickerMessage = null;

Next we create an Application Intent @. The Application Intent will be the
Intent shown when we click on the SMS inbox. For this example it won’t do anything,

Download at Boykma.Com

218

CHAPTER 8 Notifications and alarms

but it is required for building the Notification. You could have it pop up in an editor
or some other screen with a little more effort.

Once the Application Intent is set, we can generate the Notification @. To
make the code easier to understand, we have added some comments next to each
attribute of Notification from listing 8.5:

Notification notif = new Notification (
R.drawable. incoming, // the icon for the status bar
tickerMessage, // the text to display in the ticker
theWhen
)i

nm.notify(R.string.app name, notif) ;

On the last line we use the notify() method € from the NotificationManager to
broadcast our Notification to the application.

Now if you run the application, then open the DDMS and pass an SMS message as
you did earlier, you should see the new Notification appear in the status bar. The
message displays each line for a short interval until the message is fully displayed. You
should also see a new icon pop up in the status bar indicating a new SMS message, as
shown in figure 8.3.

When you have sent the message, you can click the New Messages icon, and a bar
should drop down from it. Click on the bar and drag it down to the bottom of the screen.
This opens the default view of the SMS inbox for Android, as shown in figure 8.4.

[5] B @ s:19rm

Messaging

4 DOMS - MyEclipse Enterprise Workbench 7035551454
Fie Edt Mavgate Semch Project Duta MyEcipse Fun Window Help
-] ™ @ - St tlicn 05:19 PM
2 28849 4 &~
September 14, 2008 Igh e S Eeell- =5

Mime

7035551455
Android l how are

3.4 05:19 PM
8600 / 8700
B850

] 7035551429 (3)

(] New messages

2 unread messages. 05:18 PM

1 gk gt gt gth gk gk gl
g

17035551515 (5)

1703551429

Voice: [heme = Speet [Pl =
Otz [hame =| Latency: [Hane =
Telepheny Actions

Incoming number: T035S51429

Voice
Cr

Message Hello Andreid how are you deing?

frend

Recation Controls
Mamisd [Gpx kML

Figure 8.3 Using the Android DDMS to Figure 8.4 The expanded SMS inbox
send an SMS message to the application displaying the contentIntent and

appIntent

Download at Boykma.Com

Alarms 219

There is a lot more you could do with this demo, such as creating a better UI or mak-
ing the SMS inbox more feature rich. You could even have the application play a
sound when a message arrives, but for this example we have looked at everything you
need to know to start working with notifications. In the next section we are going to
look at Notification’s close relative, the Alarm.

In Android, alarms allow you to schedule your application to run at some point in the
future. Alarms can be used for a wide range of applications, from notifying a user of
an appointment to something more sophisticated, such as having an application start
up, check for software updates, and then shut down. An Alarm works by registering an
Intent with the Alarm, and then at the time scheduled the Alarm will broadcast the
Intent. Android will automatically start the targeted application even if the Android
handset is asleep.

Android manages all alarms somewhat like the NotificationManager—via an Alarm-
Manager class. The AlarmManager has four methods: cancel, set, setRepeating, and
setTimeZone as shown in table 8.2.

Table 8.2 AlarmManager public methods

void cancel (PendingIntent intent)
Remove alarms with matching Intent

void set (int type, long triggerAtTime, PendingIntent operation)
Setan Alarm

void setRepeating(int type, long triggerAtTime, long interval,
PendingIntent operation)
Set a repeating Alarm

void setTimeZone (String TimeZone)
Set the time zone for the Alarm

You instantiate the AlarmManager indirectly as you do the NotificationManager by
using Context.getSystemService (Context.ALARM SERVICE).

Setting alarms is very easy, like most things in Android. In the next example we will
create a simple application that sets an Alarm when a button is pushed; when the
Alarm is triggered, it will pass back a simple Toast to inform us that the Alarm has
been fired.

In this next example we are going to create an Android project called SimpleAlarm
with the package com.msi.manning.chapter8.simpleAlarm, an application name of
SimpleAlarm and an Activity name of GenerateAlarm. In this project we will use

Download at Boykma.Com

http://code.google.com/android/reference/android/app/AlarmManager.html#cancel%28android.content.Intent%29
http://code.google.com/android/reference/android/content/Intent.html
http://code.google.com/android/reference/android/content/Intent.html
http://code.google.com/android/reference/android/app/AlarmManager.html#set%28int, long, android.content.Intent%29
http://code.google.com/android/reference/android/content/Intent.html
http://code.google.com/android/reference/android/app/AlarmManager.html#setRepeating%28int, long, long, android.content.Intent%29
http://code.google.com/android/reference/android/content/Intent.html

220

CHAPTER 8 Notifications and alarms

another open source icon, which you can find at http://www.manning.com/ableson/
or in the download for this chapter. Change the name of the icon to clock, and add it

to the res/drawable directory of the project when you create it.
Next we need to edit the AndroidManifest.xml to have a receiver @, which we will
create soon, called AlarmReceiver, as shown in listing 8.6.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.msi.manning.chapter8.simpleAlarm">
<application android:icon="@drawable/clock">
<activity android:name=".GenerateAlarm"
android:label="@string/app name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filters>

</activitys>
<receiver android:name=".AlarmReceiver" android:process=":remote" />
</applications> <;&
</manifest> Define the receiver

Now we edit the string.xml file in the values directory and add two new strings:

<string name="set alarm text">Set Alarm</string>

<string name="alarm message">Alarm Fired</string>

We will use this string as the value of the button in our layout. Next we need to add a
new button to our layout, so edit the main.xml file to add a new button, like this:

<Button android:id="@+id/set_alarm button"
android:layout width="wrap_ content"
android:layout height="wrap content"
android:text="@string/set alarm text"s
<requestFocus />
</Button>

We are ready to create a new class that will act as the Receiver for the Notification the
Alarmwill generate. In this case we are going to be generating a Toast-style Notifica-
tion to let the user know that the Alarm has been triggered. Now create a new class as
shown in listing 8.7, which waits for the Alarm to broadcast to the AlarmReceiver and
will then generate a Toast.

onReceivelntent met|
public void onReceivelIntent (Context context, Intent intent){
Toast .makeText (context, R.string.app name, Toast.LENGTH SHORT) .show () ;

public class AlarmReceiver extends BroadcastReceiver ({ Crane;hs
0

}
_ Broadcast a Toast when
@Override the Intent is received

Download at Boykma.Com

http://www.manning.com/ableson/

Alarms 221

public void onReceive (Context context, Intent intent) ({

}
}

Next we need to edit the SimpleAlarm class to create a button widget (as discussed in
chapter 3) that calls the inner class setAlarm. In setAlarm we create an onClick
method that will schedule our Alarm, call our Intent, and fire off our Toast. Listing 8.8
shows what the finished class should look like.

public class GenerateAlarm extends Activity {

Toast mToast;

@Override

protected void onCreate (Bundle icicle) {
super.onCreate (icicle) ;

Set up Button to call
mOneShotListener

setContentView(R.layout.main) ;
Button button = (Button)findViewById(R.id.set_alarm button) ;
button.setOnClickListener (this.mOneShotListener) ;

}

private OnClickListener mOneShotListener = new OnClickListener () {

public void onClick (View v) { Create Intent to fire when Alarm goes off

}
}i

}

Intent intent = new Intent (GenerateAlarm.this, AlarmReceiver.class) ;

PendingIntent appIntent =
PendingIntent.getBroadcast (GenerateAlarm.this, 0, intent, 0);

Calendar calendar = Calendar.getInstance() ; Set the time
calendar.setTimeInMillis (System.currentTimeMillis()) ; for Alarm to
calendar.add (Calendar.SECOND, 30) ; go off

AlarmManager am = (AlarmManager)getSystemService (ALARM SERVICE) ;
am.set (AlarmManager.RTC WAKEUP, calendar.getTimeInMillis(),

appIntent) ;
% Set the Alarm

if (GenerateAlarm.this.mToast != null) {

GenerateAlarm.this.mToast.cancel () ; Create the AlarmManager

}

GenerateAlarm.this.mToast = Toast.makeText (GenerateAlarm. this,
R.string.alarm message, Toast.LENGTH LONG) ;
GenerateAlarm.this.mToast.show() ;

As you can see, this is a pretty simple class. We first create a Button to trigger our
Alarm @. Next we create an inner class for our mOneShotListener. We then create the
Intent to be trigged when the Alarm actually goes off @. In the next section of code
we use the Calendar class @ to help us calculate the number of milliseconds from the
time the button is pressed, which we will use to set the Alarm.

Download at Boykma.Com

222

CHAPTER 8 Notifications and alarms

Now we have done everything necessary beforehand in order to create and set the
Alarm. To do this we first create the AlarmManager @ and then call its set () method
to set the Alarm @. To see a little more detail of what’s going on in the application,
take a look at these lines of code:

AlarmManager am = (AlarmManager)getSystemService (ALARM SERVICE) ;

am.set (AlarmManager .RTC WAKEUP, calendar.getTimeInMillis (), intent);
This is where we actually create and set the Alarm by first using getSystemService to
create the AlarmManager. The first parameter we pass to the set() method is
RTC_WAKEUP, which is an integer representing the Alarm type we want to set. The
AlarmManager currently supports four Alarm types, as shown in table 8.3.

Table 8.3 AlarmManager Alarm types

ELAPSED_REALTIME Alarm time in SystemClock.elapsedRealtime () (time
since boot, including sleep)

ELAPSED_REALTIME_WAKEUP | Alarmtimein SystemClock.elapsedRealtime () (time since
boot, including sleep), which will wake up the device when it goes off

RTC Alarm time in System.currentTimeMillis () (wall clock
time in UTC)
RTC_WAKEUP Alarm time in System.currentTimeMillis () (wall clock

time in UTC), which will wake up the device when it goes off

As you can see, there are multiple types of alarms that you can use depending on your
requirements. The RTC_WAKEUP, for example, sets the Alarm time in milliseconds, and
when the Alarm goes off it will wake up the device from sleep mode for you, as
opposed to RTC, which will not.