Difference between Shared library and Static Library

Every different program that uses a static library has its own copy of the library built in. A shared library only has one copy and every program that uses it just references that copy. How you create them depends on the tool you're using, and how they're named depends on the platform. For example, on Windows it might be *.lib versus *.dll. On Linux it might be *.a versus *.so.

Static library is linked in at compile time.
Dynamic library is loaded at runtime on demand.
Shared library is a separate concept referring to whether multiple applications can access the library at the same time.

Static Libraries

Static libraries are simply a collection of ordinary object files; conventionally, static libraries end with the ``.a'' or “.lib” suffix. This collection is created using the ar (archiver) program. Static libraries aren't used as often as they once were, because of the advantages of shared libraries (described below). Still, they're sometimes created, they existed first historically, and they're simpler to explain.

Static libraries permit users to link to programs without having to recompile its code, saving recompilation time. Note that recompilation time is less important given today's faster compilers, so this reason is not as strong as it once was. Static libraries are often useful for developers if they wish to permit programmers to link to their library, but don't want to give the library source code (which is an advantage to the library vendor, but obviously not an advantage to the programmer trying to use the library). In theory, code in static ELF libraries that is linked into an executable should run slightly faster (by 1-5%) than a shared library or a dynamically loaded library, but in practice this rarely seems to be the case due to other confounding factors.
Shared Libraries

Shared libraries are libraries that are loaded by programs when they start. When a shared library is installed properly, all programs that start afterwards automatically use the new shared library. It's actually much more flexible and sophisticated than this, because the approach used by Linux permits you to:

· Update libraries and still support programs that want to use older, non-backward compatible versions of those libraries;

· Override specific libraries or even specific functions in a library when executing a particular program.

· Do all this while programs are running using existing libraries.

If you choose to link statically, your programs will be bigger and harder to upgrade, but probably easier to deploy. If you link dynamically, your programs will be smaller, easier to upgrade, but harder to deploy
How to create a static library (.a) in Linux?

To create a static library, or to add additional object files to an existing static library, use a command like this:

ar rcs my_library.a file1.o file2

How to create a shared library (.so) in Linux?

An example, which creates two object files (a.o and b.o) and then creates a shared library that contains both of them. Note that this compilation includes debugging information (-g) and will generate warnings (-Wall), which aren't required for shared libraries but are recommended. The compilation generates object files (using -c), and includes the required -fPIC option:

The -Wl (option of gcc) option passes options along to the linker (in this case the -soname linker option)

gcc -fPIC -g -c -Wall a.c

gcc -fPIC -g -c -Wall b.c

gcc -shared -Wl,-soname,libmystuff.so.1 -o libmystuff.so.1.0.1 a.o b.o -lc

How many types’ libraries do we have and what is the difference between?

Usually, two basic types of libraries are used in compilations: static libraries and shared object libraries. Static libraries are collection of object files that are unused during the linking phase of a program. Referenced code is extracted from the library and incorporated in the executable code. Shared libraries contain re-locatable object that can be shared by more than one application. During compilation, the object code from the library is not incorporated in the executable code, but only a reference to the object is made. When the executable that uses a shared object library is loaded into memory the appropriate shared object library is loaded and attached to the image.

How can we see the content of a library such as /use/lib/libc.a which is provided by system?

Please use this command: $ar t /usr/lib/libc.a | pr -4 -t
The unix archive utility, which creates, modifies and extracts members from an archive, is used above. pr is to display the output to the screen in a four-column format.

Additional information can be extracted from library files using the nm utility. For example,
 $ nm -C /usr/lib/libstdc++-3-libc6.2-2-2.10.0.a | grep 'bool operator==' will find all the c++ equality operator in the referenced library file. The -C option for nm demangles the complier-generated C++ function names and makes them a bit more readable.

Static library is linked during compilation (*.a-files), dynamic libraries are being linked by ld during execution (*.so-files).
Position-Independent Code (PIC)

PIC stands for position-independent code. The functions in a shared library may be loaded at different addresses in different programs, so the code in the shared object must not depend on the address (or position) at which it is loaded. This consideration has no impact on you, as the programmer, except that you must remember to use the -fPIC flag when compiling code that will be used in a shared library.
Dynamically Loaded (DL)

 Libraries In Linux, DL libraries aren't actually special from the point-of-view of their format; they are built as standard object files or standard shared libraries as discussed above. The main difference is that the libraries aren't automatically loaded at program link time or start-up; instead, there is an API for opening a library, looking up symbols, handling errors, and closing the library. C users will need to include the header file <dlfcn.h> to use this API.
dlopen()

The dlopen() function opens a library and prepares it for use. In C its prototype is

	 void * dlopen(const char *filename, int flag);

dlsym()

There's no point in loading a DL library if you can't use it. The main routine for using a DL library is dlsym(3), which looks up the value of a symbol in a given (opened) library. This function is defined as:

	 void * dlsym(void *handle, char *symbol);

dlerror()

Errors can be reported by calling dlerror(), which returns a string describing the error from the last call to dlopen(), dlsym(), or dlclose(). One oddity is that after calling dlerror(), future calls to dlerror() will return NULL until another error has been encountered.

dlclose()

The converse of dlopen() is dlclose(), which closes a DL library. The dl library maintains link counts for dynamic file handles, so a dynamic library is not actually de-allocated until dlclose has been called on it as many times as dlopen has succeeded on it.
Example :

void* handle = dlopen (“libtest.so”, RTLD_LAZY);

void (*test)() = dlsym (handle, “my_function”);

(*test)();

dlclose (handle);

Difference between memcpy and strcpy:
memcpy can copy null bytes also if the size of memory is given.

memcpy can be used to copy any type of data (void*). It terminates at the byte position specified by the third parameter. memcpy can copy any memory location. It is not bound by a null-terminated string. Since memcpy cannot determine the size of the data to be copied, it needs the programmer to provide that information.

strcpy stops after the first null byte.

strcpy ends copying of data when it reaches NULL character (Say, '\0' or 0) and then copies NULL at the end of destination data. It is specifically used to copy strings (char[]). strcpy is meant to copy only null-terminated strings. It is probably implemented to copy every byte until it encounters a ‘\0’.

There is also a function called strncpy() which copies n bytes. It is almost identical to memcpy(), with the difference that it adds null termination at the end of the target string.
char *strcpy(char *dest, const char *src);
void *memcpy(void *dest, const void *src, size_t n);
What is the difference between "printf(...)" and "sprintf(...)"?

sprintf(...) writes data to the character array whereas printf(...) writes data to the standard output device.

Compilation How to reduce a final size of executable?

Size of the final executable can be reduced using dynamic linking for libraries.

Can you tell me how to check whether a linked list is circular?

Create two pointers, and set both to the start of the list. Update each as follows:
while (pointer1) {

pointer1 = pointer1->next;

pointer2 = pointer2->next;

if (pointer2)
pointer2=pointer2->next;

if (pointer1 == pointer2) {

print ("circular");

}
}

If a list is circular, at some point pointer2 will wrap around and be either at the item just before pointer1, or the item before that. Either way, its either 1 or 2 jumps until they meet.
What is Marshalling?
The process of packaging and sending interface method parameters across thread or process boundaries.

Find Number of ones in the input parameter X ?
int f(unsigned int x)
{
 int i;
 for (i=0; x!0; x>>=1)
 {
 if (x & 0X1)

 i++;
 }
 return i;
}

What is the difference between strings and character arrays?

A major difference is: string will have static storage duration, whereas as a character array will not, unless it is explicitly specified by using the static keyword. Two strings of same value may share same memory area.
char *s1 = “Calvin and Hobbes”; /Strings
char ca1[] = “Calvin and Hobbes”; //Character Arrays
What is the benefit of using an enum rather than a #define constant?

The use of an enumeration constant (enum) has many advantages over using the traditional symbolic constant style of #define. These advantages include a lower maintenance requirement, improved program readability, and better debugging capability.
· The first advantage is that enumerated constants are generated automatically by the compiler. Conversely, symbolic constants must be manually assigned values by the programmer.
· Another advantage of using the enumeration constant method is that your programs are more readable and thus can be understood better by others who might have to update your program later.

· A third advantage to using enumeration constants is that some symbolic debuggers can print the value of an enumeration constant. Conversely, most symbolic debuggers cannot print the value of a symbolic constant. This can be an enormous help in debugging your program, because if your program is stopped at a line that uses an enum, you can simply inspect that constant and instantly know its value. On the other hand, because most debuggers cannot print #define values; you would most likely have to search for that value by manually looking it up in a header file.
How do you override a defined macro?
You can use the #undef preprocessor directive to undefine (override) a previously defined macro.

When does the compiler not implicitly generate the address of the first element of an array?
Whenever an array name appears in an expression such as
- array as an operand of the sizeof operator
- array as an operand of & operator
- array as a string literal initializer for a character array
Then the compiler does not implicitly generate the address of the address of the first element of an array.

Is it possible to execute code even after the program exits the main () function?

The standard C library provides a function named atexit() that can be used to perform cleanup operations when your program terminates. You can set up a set of functions you want to perform automatically when your program exits by passing function pointers to the at exit() function.

Why n++ executes faster than n+1?

The expression n++ requires a single machine instruction such as INR to carry out the increment operation whereas; n+1 requires more instructions to carry out this operation.

What is the benefit of using const for declaring constants?

The benefit of using the const keyword is that the compiler might be able to make optimizations based on the knowledge that the value of the variable will not change. In addition, the compiler will try to ensure that the values won’t be changed inadvertently.
Of course, the same benefits apply to #defined constants. The reason to use const rather than #define to define a constant is that a const variable can be of any type (such as a struct, which can’t be represented by a #defined constant). Also, because a const variable is a real variable, it has an address that can be used, if needed, and it resides in only one place in memory.

What is a pragma?

The #pragma preprocessor directive allows each compiler to implement compiler-specific features that can be turned on and off with the #pragma statement. For instance, your compiler might support a feature called loop optimization. This feature can be invoked as a command-line option or as a #pragma directive.
To implement this option using the #pragma directive, you would put the following line into your code:

#pragma loop_opt(on)
Conversely, you can turn off loop optimization by inserting the following line into your code:
#pragma loop_opt(off)
What are the advantages of the functions?
- Debugging is easier
- It is easier to understand the logic involved in the program
- Testing is easier
- Recursive call is possible
- Irrelevant details in the user point of view are hidden in functions
- Functions are helpful in generalizing the program

Is using exit() the same as using return?

No. The exit() function is used to exit your program and return control to the operating system. The return statement is used to return from a function and return control to the calling function. If you issue a return from the main() function, you are essentially returning control to the calling function, which is the operating system. In this case, the return statement and exit() function are similar.

What is indirection?

If you declare a variable, its name is a direct reference to its value. If you have a pointer to a variable or any other object in memory, you have an indirect reference to its value.
What is an lvalue?

An lvalue is an expression to which a value can be assigned. The lvalue expression is located on the left side of an assignment statement, whereas an rvalue is located on the right side of an assignment statement. Each assignment statement must have an lvalue and an rvalue. The lvalue expression must reference a storable variable in memory. It cannot be a constant.

Array is an lvalue or not?

An lvalue was defined as an expression to which a value can be assigned. Is an array an expression to which we can assign a value? The answer to this question is no, because an array is composed of several separate array elements that cannot be treated as a whole for assignment purposes.
The following statement is therefore illegal:
int x[5], y[5]; x = y;
How does free() know how many bytes to free???

Upon malloc, the size of the buffer is stored somewhere, normally sizeof(ptrsize_t) bytes before the beginning of the allocated area, but this may largely differ by the implementation.

A ptr->buffer_length lookup table may be used as well.

Whenever memory is allocated through function like malloc(), a header in the heap is created to store information like the memory size which is immediately followed by the actual allocated memory. In other words, every memory allocation requires K + n bytes when K is the constant header size and n is the specified memory size to be allocated. As for pointer returned by malloc(), it is only pointing to the allocated memory and not the header.

--
| header | allocated memory | ... | header | allocated memory|
--

When free() is called, the pointer to the allocated memory is used as the parameter. In the free() function, pointer is subtracted by K bytes so that it pointers to the header. In this way, it can determine the actual size of the allocated memory. After that, the memory as well as the header can be released.

Difference between a system call and library call?

System call is a subroutine which internally interacts with the kernel which is operated by the O/S. System calls are provided by the system and are executed in the system kernel. They are entry points into the kernel. System call provides the interface between process and kernel.
The basic difference is that when a system call is used, this will generate a "context switch" (interrupt) which can be expensive in terms of execution time (in RT systems).
It is worth noting that, because system calls are part of the O/S. The program has to make a context switch to the kernel when they are called and because of this, they have a high startup overhead. The upside is that the time executing these routines is assigned to the OS and not the user program.
· System calls are part of operating system, whereas library functions are part of application software.
· System calls cannot be modified but library functions can be modified. Whenever a program requires system resources, a system call is initiated.
· System calls are executed in kernel address space, library routines are executed in user address space.
· System calls are not linked into you program. Whereas library functions are linked into your program.
· Library calls include the ANSI C standard library and are therefore portable, whereas system calls are not portable.

What's the difference between "Process" and "Thread"?

· A process is usually defined to consist of "memory" and something that "executes" within that memory. Each process has its own memory that it "does it's stuff" within. Threads are also a set of instructions, but unlike processes several threads can coexist within the same memory.
· If one thread modifies a variable, all threads within that process "see" the new value of the variable. Several different processes can be running the same program"(executable), but since they each have their own memory, when they modify a variable it does not affect other processes that are running that program.
· Creation of new process requires new resources and Address space whereas the thread can be created in the same address space of the process which not only saves space and resources but are also easy to create and delete, and many threads can exists in a process.

· Parent & child process have different process_context+Code, Data & stack segments. But two threads of the same process share the Code & Data segments and have separate stacks.
· A thread is a stream of instructions which can be scheduled independently (i.e it has its own program counter and stack).But a thread shares its resources like program code, directories and global data with the calling process. A process on the other hand has its own copy of both resources and scheduling information. A process can have many threads; basically threads are called light weight processes.
· Threads can directly communicate with other threads of its process; processes must use inter-process communication to communicate with sibling processes.
· Threads have almost no overhead; processes have considerable overhead.
· New threads are easily created; new processes require duplication of the parent process.
· Threads can exercise considerable control over threads of the same process; processes can only exercise control over child processes.
· Changes to the main thread (cancellation, priority change, etc.) may affect the behavior of the other threads of the process, changes to the parent process does not affect child processes.
· And most importantly if there is no process there can not be any thread.

· The typical difference is that threads (of the same process) run in a shared memory space, while processes run in separate memory spaces.

· Both have an id, set of registers, state, priority, and scheduling policy.
· Both have attributes that describe the entity to the OS.
· Both have an information block.
· Both share resources with the parent process.
· Both function as independent entities from the parent process.
· The creator can exercise some control over the thread or process.
· Both can change their attributes.
· Both can create new resources.
· Neither can access the resources of another process.
Traditional view of process

[image: image1]
· A thread represents an abstract entity that executes a sequence of instructions

· It has its own set of CPU registers

· It has its own stack

· There is no thread-specific heap or data segment (unlike process)
A process with multiple threads
[image: image2]
What is the difference between a MUTEX and semaphore?
· Mutex has ownership while semaphore doesn’t have the ownership.

· Mutex can be unlocked by that process only which locks it, where as in Semaphore any process can unlock a locked semaphore.

· Mutex by default is initialized by 1, where as Semaphore by default initialized by 0.
· Mutexes are typically used to serialize access to a section of re-entrant code that cannot be executed concurrently by more than one thread. A mutex object only allows one thread into a controlled section, forcing other threads which attempt to gain access to that section to wait until the first thread has exited from that section. A semaphore restricts the number of simultaneous users of a shared resource up to a maximum number. Threads can request access to the resource (decrementing the semaphore), and can signal that they have finished using the resource (incrementing the semaphore).
· A mutex comes at a surprisingly high cost. You might sacrifice up to 5-10% of performance to the locking overhead.
· You can make a mutex from a semaphore but not a semaphore from a mutex.
· A semaphore is a generalization of a mutex. While a mutex can only be locked once, it's possible to acquire a semaphore multiple times. Semaphores are typically used to protect a certain number of identical resources.
Difference between binary semaphore and mutex?

1. A mutex can only be released by the thread which has ownership, i.e. the thread which previously called the Wait function, (or which took ownership when creating it). A semaphore can be released by any thread.

2. A thread can call a wait function repeatedly on a mutex without blocking. However, if you call a wait function twice on a binary semaphore without releasing the semaphore in between, the thread will block.

3. Priority inversion is possible with a mutex semaphore in RTOS. The same is not applicable in case of binary semaphore

Semaphores are usually more expensive to use than mutex, but they provide you sometimes more reliability. For example, let’s say you have two threads, thread A and thread B trying to serialize access to resource R.

The mutex way would be;
step 00 - create a lock object
step 01 - A request the lock
step 02 - B request the lock
step 03 - A grab the lock
step 04 - A uses R
step 05 - A release the lock
step 06 - B grab the lock
step 07 - B uses R
step 08 - A request the lock
step 09 - B release the lock
step 10 - A grab the lock

Serializing access using a semaphore
Note that when using a binary semaphore to serialize access to a resource, you need to initialize it with the value 1, meaning resource available.
Requesting the lock is done by calling sem_wait() on it, and releasing the lock is done by calling sem_post():

// thirst get a semaphore and initialize it with the value 1
sem_init(…)
…
// lock the resource
sem_wait(…)

… do some stuff …

// release the resource
sem_post(…)

If you initialize the semaphore withe the value 0 and call sem_wait on it, the semantic is different; you are waiting for some one to signal you that there is some job to do.
A mutex has two possible states: unlocked (not owned by any thread), and locked (owned by one thread). A mutex can never be owned by two different threads simultaneously. A thread attempting to lock a mutex that is already locked by another thread is suspended until the owning thread unlocks the mutex first.
Example -
A shared global variable x can be protected by a mutex as follows:

int x;

pthread_mutex_t mut = PTHREAD_MUTEX_INITIALIZER;
All accesses and modifications to x should be bracketed by calls to pthread_mutex_lock and pthread_mutex_unlock as follows:

pthread_mutex_lock(&mut);

/* operate on x */

pthread_mutex_unlock(&mut);
Difference between a Spin Lock and Semaphore

Spin lock refers to an implementation of inter-thread locking using machine dependent assembly instructions (such as test-and-set). It is called a spinlock because the thread simply waits in a loop ("spins") repeatedly checking until the lock becomes available (busy wait). Spinlocks are used as a substitute for mutexes, which are a facility supplied by operating systems (not the CPU), because spinlocks perform better, if locked for a short period of time.

A Semaphore is a facility supplied by operating systems for IPC; therefore its main purpose is inter-process-communication. Being a facility supplied by the operating system it's performance will not be as good as that of a spinlock for inter-thread locking (although possible). Semaphores are better for locking for longer periods of time.

That said - implementing splinlocks in assembly is tricky, and not portable. Never use a spin-lock on a single-CPU machine, whereas a semaphore would make sense on such a machine.
Difference between Spin locks and Mutex

Spin locks are a type of mutex. The difference between spin locks and ordinary mutex locks is in their locking routines. When a mutex is already locked, the locking routine (mutex_lock(3synch)) will block the caller until the lock is available. When a spin lock is already locked, the locking routine (_spin_lock(3synch)) will busy-wait, or ``spin'', in a loop, testing if the lock has become available. Such spinning wastes processor cycles and can slow processors doing useful work, including the processor holding the lock, by consuming communication bandwidth.

Because spin locks waste system resources, most applications should use mutexes instead of spin locks for mutual exclusion. However, spin locks are useful when:

· sleep is not permitted

· the critical section is small, so that the expected spin is less costly than blocking and resuming the thread

· no other work is available

Spin locks should only be used when there is a guarantee that the thread will not be preempted or blocked while holding a spin lock. It is the responsibility of each application to unlock all spin locks before calling sleep or blocking routines.

Spin locks must not be used on a single processor system. In the best case, a spin lock on a single processor system will waste resources, slowing down the owner of the lock; in the worst case, it will deadlock the processor.

What is 'inode'?

When a file system is created, data structures that contain information about files are created. Each file has an inode and is identified by an inode number (often "i-number" or even shorter, "ino") in the file system where it resides. Inodes store information on files such as user and group ownership, access mode (read, write, execute permissions) and type of file. There is a fixed number of inodes, which indicates the maximum number of files each file system can hold.

A file's inode number can be found using the ls -i command, while the ls -l command will retrieve inode information. This is description of inode information which it contains:

· The length of the file in bytes.
· Device ID (this identifies the device containing the file).
· The User ID of the file's owner.
· The Group ID of the file.
· The file mode, which determines what users can read, write, and execute the file.
· Timestamps telling when the inode itself was last modified (ctime, change time), the file content last modified (mtime, modification time), and last accessed (atime, access time).
· A reference count telling how many hard links point to the inode.
· Pointers to the disk blocks that store the file's content.

Real-time systems & real-time operating systems

What is a real-time system? Different definitions of real-time systems exist. Here we give just a few:

– Real-time computing is computing where system correctness depends not only on the correctness of the logical result of the computation but also on the result delivery time.

–The real-time operating mode is the operating mode of a computer system in which the programs for the processing of data arriving from the outside are always ready, so that their results will be available within predetermined periods of time. The arrival times of the data may be randomly distributed or may already be determined depending on the different applications.

– Real-time (software) (IEEE 610.12 -1990): Pertaining a system or mode of operation in which computation is performed during the actual time that an external process occurs, in order that the computation results may be used to control, monitor, or respond in a timely manner to the external process.

– A real-time system responds in a (timely) predictable way to unpredictable external stimuli arrivals.

Various types of real-time systems:

– Hard real-time: missing a deadline has catastrophic results for the system;

– Firm real-time: missing a deadline entails an unacceptable quality reduction as a consequence;

– Soft real-time: deadlines may be missed and can be recovered from. The reduction in system quality is acceptable;

– Non real-time: no deadlines have to be met.

RTOSs vs. general-purpose operating systems

Many non-real-time operating systems also provide similar kernel services. The key difference between general-computing operating systems and real-time operating systems is the need for “deterministic” timing behavior in the real-time operating systems. Formally, "deterministic" timing means that operating system services consume only known and expected amounts of time.
Formula is as simple as: T(message_send) = constant , irrespective of the length of the message to be sent, or other factors such as the numbers of tasks and queues and messages being managed by the RTOS. But in case of normal operating systems, we don’t take care of this.
 Basic Services Provided by a Real-Time Operating System Kernel
 [image: image3.png]Intertask
Communication &
Synchronization

Task
Memory Manage-

. Timers
Allocation -ment

Device
0
Supervisor

Task Management

This set of services allows application software developers to design their software as a number of separate "chunks" of software -- each handling a distinct topic, a distinct goal, and perhaps its own real-time deadline. Each separate "chunk" of software is called a "task." Services in this category include the ability to launch tasks and assign priorities to them. The main RTOS service in this category is the scheduling of tasks as the embedded system is in operation. The Task Scheduler controls the execution of application software tasks, and can make them run in a very timely and responsive fashion.

Most RTOSs do their scheduling of tasks using a scheme called "priority-based preemptive scheduling." Each task in a software application must be assigned a priority, with higher priority values representing the need for quicker responsiveness. Very quick responsiveness is made possible by the "preemptive" nature of the task scheduling. "Preemptive" means that the scheduler is allowed to stop any task at any point in its execution, if it determines that another task needs to run immediately.
Intertask Communication and Synchronization.

These services make it possible for tasks to pass information from one to another, without danger of that information ever being damaged. They also make it possible for tasks to coordinate, so that they can productively cooperate with one another. Without the help of these RTOS services, tasks might well communicate corrupted information or otherwise interfere with each other.
Timers

Since many embedded systems have stringent timing requirements, most RTOS kernels also provide some basic Timer services, such as task delays and time-outs.
Dynamic Memory Allocation services

Many (but not all) RTOS kernels provide Dynamic Memory Allocation services. This category of services allows tasks to "borrow" chunks of RAM memory for temporary use in application software. Often these chunks of memory are then passed from task to task, as a means of quickly communicating large amounts of data between tasks. Some very small RTOS kernels that are intended for tightly memory-limited environments, do not offer Dynamic Memory Allocation services.
Device I/O Supervisor

Many (but not all) RTOS kernels also provide a "Device I/O Supervisor" category of services. These services, if available, provide a uniform framework for organizing and accessing the many hardware device drivers that are typical of an embedded system.

Function Pointers and Advantages
· Function Pointers are pointers, i.e. variables, which point to the address of a function. Both, the executable compiled program code and the used variables, are put inside this memory. Thus a function in the program code is, like e.g. a character field, nothing else than an address. It is only important how you, or better your compiler/processor, interpret the memory a pointer points to.
· The principal advantage of a function pointer is that it allows you to select the called function at run time instead of at compile time.

· Function pointers allow you to pass functions as parameters to other functions (read up on qsort and bsearch), implement function lookup tables (e.g., call a function based on a name or other criteria), etc.

· A function pointer is very unlikely to optimize code, since the function has to be called indirectly, which implies a few extra machine operations to load the pointer and do the jump.
· Function Pointers provide the concept of callback functions. You can use them to replace switch/if-statements, to realize your own late-binding or to implement callbacks. They are less error prone than normal pointers cause you will never allocate or deallocate memory with them.
VFS IN LINUX

· Manages kernel level file abstractions in one format for all file systems

· Receives system call requests from user level (e.g. write, open, stat, link)

· Interacts with a specific file system based on mount point traversal

· Receives requests from other parts of the kernel, mostly from memory management.
Palindrome Number checking in c program.

Single word like (civic, level, racecar, rotator, Malayalam), or a phrase or sentence ("Was it a rat I saw?", "Wasilla: All I saw", "Mr. Owl ate my metal worm", "Sit on a potato pan, Otis", "Neil, a trap! Sid is part alien!”)
#include “stdio.h”
#define size 26

int main(void)
{
 char strsrc[size];
 char strtmp[size];
 printf("\n Enter String:= ");
 gets(strsrc);
 strcpy(strtmp,strsrc);
 strrev(strtmp);
 if(strcmp(strsrc,strtmp)==0)
 printf("\n Entered string \"%s\" ispalindrome",strsrc);
 else
 printf("\n Entered string \"%s\" is not palindrome",strsrc);
 return 0;
}

Here is simple program for int palindrome numbers

int main()
{
 int i,j,k=0 ;

 i = 122223;
 printf("i=%d\n",i);
 while(i>0)
 {
 j = i % 10;
 i = i/10;
 k = k*10 + j ;
 }
 return 0;
}

Swap two integers in a one step
#include<stdio.h>

int main()

{

 int a,b;

 printf("Enter two numbers\n");

 scanf("%d%d",&a,&b);

 printf("a=%d, b=%d\n",a,b);

 b = a + b - (a = b);

 printf("after swap a=%d b=%d\n",a,b);

 return 0;

}
What is a null pointer?

There are times when it’s necessary to have a pointer that doesn’t point to anything. The macro NULL, defined in, has a value that’s guaranteed to be different from any valid pointer. NULL is a literal zero, possibly cast to void* or char*. Some people, notably C++ programmers, prefer to use 0 rather than NULL.
The null pointer is used in three ways:
1) To stop indirection in a recursive data structure
2) As an error value
3) As a sentinel value

Storage Qualifiers: const and volatile

The keywords const and volatile can be applied to any declaration, including those of structures, unions, enumerated types or typedef names. Applying them to a declaration is called qualifying the declaration—that's why const and volatile are called type qualifiers, rather than type specifiers (char, long, float, short, signed, double, void, int, unsigned).

The const qualifier guarantees that the value of an object cannot be changed directly by the program. However, it may be altered asynchronously--that is, by a way unknown to the compiler. For example, the current bit rate of a modem can be read directly from its port and stored in a const variable. However, it can have different values during the execution of the program, due to the varying line conditions. The compiler can mistakenly assume that the value is immutable and store it in a machine register as an optimization measure, rather than read it from the modem's port. The volatile qualifier instructs the compiler to read the value of the variable from its source (in this case, the modem port) every time it is accessed, instead of storing it in a faster processor register. The generated code may be less efficient in this case, but it is correct.
Const

The const qualifier places the assigned variable in the constant data area of memory which makes the particular variable unmodifiable (technically it still is though). Volatile is used less frequently and tells the compiler that this value can be modified outside the control of the program.

The qualifier 'const' is most often used in modern programs, and probably best understood. The addition of a 'const' qualifier indicates that the (relevant part of the) program may not modify the variable.
const int i = 5;

int const i = 5;

An alternate form is also acceptable; order becomes important when composite types with pointers are used:

int * const cp = &i;
/*const pointer to int */ The pointer cannot be modified, variable can.

const int * ptci;
/*pointer to const int */
int const * ptci;
/* pointer to const int */ The pointer ptci can be modified, variable it points to cannot be.
Using typedef complicates the placement issue even more:

typedef int * ip_t;

const ip_t cp1 = &i; /* const pointer to int */

ip_t const cp2 = &i; /* const pointer to int!! */

Casting away 'const-ness' is possible, but considered dangerous. Modifying a const-qualified variable in that way is not only dangerous, but may even lead to run-time errors, if the values are placed in read-only storage
const int volatile

int volatile const

volatile const int

all mean the same thing
Volatile

It indicates to the compiler, that a variable may be modified outside the scope of the program. Such situations may occur for example in multitasking/-threading systems, when writing drivers with interrupt service routines, or in embedded systems, where the peripheral registers may also be modified by hardware alone.

When do you need to use 'volatile'?

The basic principle is simple: Every time when a variable is used in more than one context, qualify it with 'volatile': for any object likely to be subject to modification either by hardware or asynchronous interrupt service routines, the volatile type qualifier is important.
Whenever you use a common variable in more than one task or thread;
Whenever you use a variable both in a task and one or more interrupt service routines;
Whenever a variable corresponds to processor-internal registers configured as input (consider the processor or external hardware to be an extra context).

When should the volatile modifier be used?

The volatile modifier is a directive to the compiler’s optimizer that operations involving this variable should not be optimized in certain ways. There are two special cases in which use of the volatile modifier is desirable. The first case involves memory-mapped hardware (a device such as a graphics adaptor that appears to the computer’s hardware as if it were part of the computer’s memory), and the second involves shared memory (memory used by two or more programs running simultaneously).
Difference between const and #define?

For example, after writing

const double pi = 3.14159265358979323846;

One can use pi in expressions but not assign to it. One could achieve the same effect in this simple case by writing

#define PI 3.14159265358979323846

However, these two methods of defining constants are not at all the same. In the first case, pi is like a normal variable except that it is read-only. In the second case, PI is replaced by the actual numeric literal. One can construct a reference to pi but not to PI. Thus, &pi is a reference to pi, whereas &PI results in a syntax error. The type of &pi is “reference to a variable of type const double”. A pointer variable q suitable for storing this reference could be declared

const double * q;

q = π

· In #define every instance of "PI" will be replaced by the actual number in your code, and this means the final compiled program will have the “PI” as many times as u substituted. On the other hand, when you use const and the application runs, memory is allocated for the constant and the value gets replaced when the application is ran.

· #define macro does not take any space on stack, but it gets replaced in the code by its definition thereby increasing the size of exe. Constant variable occupies space on stack and does not increase the size of the exe.
· Type checking in const that is not a part of #define.

· Scope of the const variable can be determined but not with #define. const variable can be localized whereas #define variable cannot be done so.

· Debugging is possible with const not with #define.

When should a type cast not be used?

We should not cast the big data type to smaller one. Like from double to float long to integer. TIn these cases there will be chance of loosing the valuable data itself.

A type cast should not be used to override a const or volatile declaration. Overriding these type modifiers can cause the program to fail to run correctly. A type cast should not be used to turn a pointer to one type of structure or data type into another.
When should a type cast be used?

There are two situations in which to use a type cast. The first use is to change the type of an operand to an arithmetic operation so that the operation will be performed properly. The second case is to cast pointer types to and from void * in order to interface with functions that expect or return void pointers. For example, the following line type casts the return value of the call to malloc() to be a pointer to a foo structure.

struct foo *p = (struct foo *) malloc(sizeof(struct foo));

Type cast should be used in case of if we want to assign a void pointer to a pointer of some data type.

eg:

void *ptr; int *c;

c=(int *)ptr;

Type casting must be done whenever the data type of the variable to which you are going to assign some values is diff from the data type of the variable on the right side.

float f;

int i = 10 , j = 5 ;

f = (float)(i)/j;

Always make sure that the size of the var on the left is greater than that of the right. else there will be data loss.
What is difference between #define and typedef in c?
	typedef
	#define

	Handled by compiler
	Handled by preprocessor

	Definition of a new type.
	Works like replace, AS IT IS

	typedef only allows you to redefine types
	define will let you define anything like lengthof(exp) ((sizeof((exp)))/sizeof((*(exp))))

	typedefs can correctly encode pointer types
	#DEFINES are just replacements

	typedef also allows to delcare arrays,
	Difficult to create arrays

Example, Pointer types

1. typedef char *String_t;

2. #define String_d char *

3. String_t s1, s2;
4. String_d s3, s4;

s1, s2, and s3 are all declared as char *, but s4 is declared as a char, which is probably not the intention.

Example, Arrays
1. typedef char char_arr[];

2. char_arr my_arr = "Hello World!\n";
3. above line equal to char my_arr[] = "Hello World!\n";
If you wanted to do that with #define it would be messy and irratating:

#define ARRAY(name) float name[3]

ARRAY(my_array);

Example,

The type defined with a typedef is exactly like its counterpart as far as its type declaring power is concerned BUT it cannot be modified like its counterpart.

typedef int MYINT

Now you can declare an int variable either with

int a;

 or

MYINT a;

But you cannot declare an unsigned int (using the unsigned modifier) with

unsigned MYINT a;

What is difference between inline functions and macros?
· Inline follows strict parameter type checking, macros do not. Inline functions follow all the protocols of type safety enforced on normal functions.
· Macros are always expanded by preprocessor, whereas compiler may or may not replace the inline definitions. It is the compiler’s decision whether to expand the function inline or not.

· Error can be checked in inline function during compilation, but in macro no error checking does not occur during compilation.

· Expressions passed as argument to inline functions are evaluated once. In some cases, expressions passed as arguments to macros can be evaluated more than once.

· Macro is expanded by preprocessor while inline function is parsed by compiler.
· In INLINE functions, the control replaces the code where it is called that function AND it follows strict type checking. In MACROS, control is transferred to place where macro is present AND it doesn't follow strict type checking.
· Preprocessor Macro – good for declaring constants eg. #define PI 3.14 Provide textual substitution. Each time the macro name is encountered with arguments, the arguments used in its definition are replaced by the actual arguments found.
· Macros don’t pass by value, i.e

#define square(x) x*x

b=square(4.5+7.5)

This will be replaced by : b=4.5+7.5*4.5+7.5
 Inline functions pass arguments by value, just like regular functions do. If the argument is an expression such as 4.5 +7.5 then the function passes the value of the expression 12 in this case.
Virtual Memory

Memory is called "virtual" due to an analogy with optics: virtual images in optics (such as the image in a mirror) appear to be real but actually don't exist. Simulating more random access memory (RAM) than actually exists, allowing the computer to run larger programs and multiple programs concurrently. A common function in most every OS and hardware platform, virtual memory uses the hard disk to temporarily hold what was in real memory.

Virtual memory allows multiple programs to load in memory at the same time. Each application addresses memory starting at zero, but virtual memory takes control of the memory addressing and lets each application function as if it had unlimited memory.

Technically, virtual memory is an addressing scheme implemented in hardware and software that allows non-contiguous memory to be addressed as if it were contiguous. All current implementations of virtual memory support two operating system features:

1. Residency on reference - A memory location can be addressed that does not currently reside in physical memory. The hardware and operating system will load the required data from auxiliary storage automatically, in a manner completely invisible to the program addressing the memory. This allows a program to naturally reference more main memory than actually exists in the computer.

2. Isolation - A multi-tasking system can provide multiple virtual address spaces with total memory isolation between them. Every task (except the lowest level operating system) can have its own private address space and thus can be naturally isolated from other tasks altering the memory contents. Isolation increases reliability by isolating faults within a specific task and preventing a task from interrupting other tasks.
Virtual Memory Pages

The computer's real memory is broken up into smaller segments, called "pages," typically 4KB in size. When real memory fills up, pages not currently in use by open applications are written to a virtual memory "swap file" on the disk for temporary storage. When any swapped out page is required again, once again a page in real memory is written to the disk to make room, and the disk page is retrieved.

 [image: image4.png]Virtual address space Physical address space

0x00000000
0x00010000
text \ 0x00000000
0x10000000
data
v
s
oxo0fttttt
stack
page belonging to process
oxHttt page not belonging to process

Translating the memory addresses

To minimize the performance penalty of address translation, most modern CPUs include an on-chip memory management unit (MMU) and maintain a table of recently used virtual-to-physical translations, called a Translation Look aside Buffer (TLB). Translating an address that has an entry in the TLB requires no additional memory reference (and therefore time). However, the TLB can only contain a limited number of mappings between virtual and physical addresses. When the translation for the requested address is not resident in the TLB, the hardware will have to perform the translation and load the result into the TLB.

On some processors, address translation is performed entirely in hardware; the MMU has to make additional memory references to load the required translations from the translation tables, but no other action is needed. In other processors, assistance from the operating system is needed: the hardware raises an exception, and the operating system handles it by replacing a TLB entry with an entry from the primary translation table, and the instruction that made the original memory reference is restarted.
Memory layout of C Program

Memory Layout consists following segments where data/text are managed:

1) Text Segment : Consists serial of instruction.

2) Data Segment : Consists, Data default or defined class specifier

 i) Stack Segment : Area where the current function data is managed.

 ii) Heap Segment : Area where dynamically allocated data stored.

3) BSS Segment: For uninitialized data.

Data segment is actually contains the static data which is decided on the compile time. Rest of Area is used by Stack and Heap which is actually modified run time. Stack grows from higher address to lower Address. Heap grow just opposite to the stack.

Historically, a C program has been composed of the following pieces:

· Text segment, the machine instructions that the CPU executes. Usually, the text segment is sharable so that only a single copy needs to be in memory for frequently executed programs, such as text editors, the C compiler, the shells, and so on. Also, the text segment is often read-only, to prevent a program from accidentally modifying its instructions.

· Initialized data segment, usually called simply the data segment, containing variables that are specifically initialized in the program. For example, the C declaration

 int maxcount = 99;

appearing outside any function causes this variable to be stored in the initialized data segment with its initial value.

· Uninitialized data segment, often called the "bss" segment, named after an ancient assembler operator that stood for "block started by symbol." Data in this segment is initialized by the kernel to arithmetic 0 or null pointers before the program starts executing. The C declaration

 long sum[1000];

appearing outside any function causes this variable to be stored in the uninitialized data segment.

· Stack, where automatic variables are stored, along with information that is saved each time a function is called. Each time a function is called, the address of where to return to and certain information about the caller's environment, such as some of the machine registers, are saved on the stack. The newly called function then allocates room on the stack for its automatic and temporary variables. This is how recursive functions in C can work. Each time a recursive function calls itself, a new stack frame is used, so one set of variables doesn't interfere with the variables from another instance of the function.

· Heap, where dynamic memory allocation usually takes place. Historically, the heap has been located between the uninitialized data and the stack.

Figure shows the typical arrangement of these segments. This is a logical picture of how a program looks; there is no requirement that a given implementation arrange its memory in this fashion. Nevertheless, this gives us a typical arrangement to describe. With Linux on an Intel x86 processor, the text segment starts at location 0x08048000, and the bottom of the stack starts just below 0xC0000000. (The stack grows from higher-numbered addresses to lower-numbered addresses on this particular architecture.) The unused virtual address space between the top of the heap and the top of the stack is large.

Figure 7.6. Typical memory arrangement

[image: image5.png]high address

low address

uninitialized data
(bss)

initialized data

text

J

}

command-line arguments
and environment variables

initialized to
zeroby exec

read from
program file
by exec

Several more segment types exist in an a.out, containing the symbol table, debugging information, linkage tables for dynamic shared libraries, and the like. These additional sections don't get loaded as part of the program's image executed by a process.

Note from figure that the contents of the uninitialized data segment are not stored in the program file on disk. This is because the kernel sets it to 0 before the program starts running. The only portions of the program that need to be saved in the program file are the text segment and the initialized data.

The size(1) command reports the sizes (in bytes) of the text, data, and bss segments. For example:

 $ size /usr/bin/cc /bin/sh
 text data bss dec hex filename

 79606 1536 916 82058 1408a /usr/bin/cc

 619234 21120 18260 658614 a0cb6 /bin/sh

The fourth and fifth columns are the total of the three sizes, displayed in decimal and hexadecimal, respectively.

Every running program (process) occupies some memory for its code and data. Linux follows a particular methodology for assigning memory addresses to various parts of a program. Linux assigns a “segment” to each of the following, where a segment can be defined as a single memory block of variable size:

1. TEXT
This is the code segment and contains only the executable code of the program. In Linux, this is a read-only segment, implying that it’s contents can never be overwritten by the program. Thus, Linux does not support self-modifying code.

2. DATA
This segment contains all the data that is required throughout program execution. In C terms, this includes all extern and static variables. This is split into two physical parts:

1. Initialized Data Segment
This contains all the extern and static variables of the program that been explicitly initialized in the program

2. Uninitialized Data Segment (Also called BSS: Block Started by Symbol, a historial and outdated term!)
This contains all the extern and static variables of the program that not been explicitly initialized in the program, and hence have to be automatically initialized to 0.

3. STACK
This segment contains all local variables that are created when control enters a function. Note that these also include function parameters.

4. HEAP
This segment is internally kept track via a linked list, and is used by dynamic variables (memory allocated using malloc and calloc). Frequent memory allocations and deallocations result in fragmentation here.

The memory layout of a typical C program is shown below:

Memory Layout for C Programs in Linux

There is a strong reason for this arrangement. Note these points:

1. The TEXT segment is loaded from the executable file

2. The DATA segment is also blindly loaded from the executable file
These points mean that the first part of the memory is a copy of data from the executable

3. The BSS segment is NOT stored in the executable!
This saves space, as the whole block is anyway full of zeros.

4. The HEAP and the STACK grow towards each other.
This ensures that both have enough space, and you would not get problems like too much stack space and too little heap space or vice-versa

5. The Command Line Arguments and the Environment are dumped at the far end of the accessible memory block.

What should be keep precautions while using the recursion method?

1) There should not be any un initialized pointer.

2) Always allocated memory should be deal locate at the end of recursion function or object.

3) Always declare one End point condition.

Difference between definition and declaration
Declaration means we are just creating a variable or method.

Defination means we are assigning some value for a variable & doing some functions in method

During declaration we just specify the type and no memory is allocated to the variable. But during the definition an initial value is assigned and memory is allocated to the variable.

 A [image: image7.wmf]

declaration introduces a name – an identifier – to the compiler. It tells the compiler “This function or this variable exists somewhere, and here is what it should look like.”

A [image: image8.wmf]

definition, on the other hand, says: “Make this variable here” or “Make this function here.” It allocates storage for the name. This meaning works whether
you’re talking about a variable or a function; in either case, at the point of [image: image9.wmf]

definition the compiler allocates storage.

extern const int x = 1; /* Initialization */
This initialization establishes this as a [image: image10.wmf]

definition, not a [image: image11.wmf]

declaration.

extern const int x; /* [image: image12.wmf]

Declaration */This [image: image13.wmf]

declaration in C++ means that the [image: image14.wmf]

definition exists elsewhere.
Scratchbox
Scratchbox is a cross compilation toolkit designed to make embedded Linux application development easier. It also provides a full set of tools to integrate and cross compile an entire Linux distribution. The toolkit supports ARM architecture and x86 and few more are under development. Scratchbox supports multiple configurations for each developer in the same host machine.

Scratchbox comes with ARM emulator QEMU that we use with our target in these examples. Scratchbox needs a device or emulator that can run the target architecture programs. By being able to run the target architecture binaries we can have a cross-compilation environment where we don’t have to know everything about the target system and somehow tweak that information into the build environment but we can let the tools find out the information like in the native compilation.
Add User

/scratchbox/sbin/sbox_adduser vmankine
Login

/scratchbox/login

Explain Recursion ?

What is a Dangling pointer ?

Explain Ternery operator ? Advantages & disadvantages with ‘if else’ statement?
string reverse ?

GDB: Debugger
The purpose of a debugger such as GDB is to allow you to see what is going on “inside”' another program while it executes—or what another program was doing at the moment it crashed.

GDB can do four main kinds of things (plus other things in support of these) to help you catch bugs in the act:
· Start your program, specifying anything that might affect its behavior.
· Make your program stop on specified conditions.
· Examine what has happened, when your program has stopped.
· Change things in your program, so you can experiment with correcting the effects of one bug and go on to learn about another.
Here are some of the most frequently needed GDB commands:

break[file:] function
Set a breakpoint at function (in file).

Run [arglist]
Start your program (with arglist, if specified).
bt Backtrace:

Display the program stack.
print expr

Display the value of an expression.
c
Continue running your program (after stopping, e.g. at a breakpoint).

next
Execute next program line (after stopping); step over any function calls in the line.

edit[file:]function

Look at the program line where it is presently stopped.

list[file:]function
Type the text of the program in the vicinity of where it is presently stopped.
step
Execute next program line (after stopping); step into any function calls in the line.

help [name]
Show information about GDB command name, or general information about using GDB.

quit
Exit from GDB.
What is GTK+?

GTK+ is a highly usable, feature rich toolkit for creating graphical user interfaces which boasts cross platform compatibility and an easy to use API. GTK+ it is written in C, but has bindings to many other popular programming languages such as C++, Python and C# among others.

Over time GTK+ has been built up to be based on four libraries, also developed by the GTK+ team:

GLib, a low-level core library that forms the basis of GTK+. It provides data structure handling for C, portability wrappers and interfaces for such run-time functionality as an event loop, threads, dynamic loading and an object system.

Pango, a library for layout and rendering of text with an emphasis on internationalization. It forms the core of text and font handling for GTK+ 2.0.

Cairo, a library for 2D graphics with support for multiple output devices (including the X Window System, Win32) while producing a consistent output on all media while taking advantage of display hardware acceleration when available.
ATK, a library for a set of interfaces providing accessibility. By supporting the ATK interfaces, an application or toolkit can be used with tools such as screen readers, magnifiers, and alternative input devices.
Software framework
A software framework, in computer programming, is an abstraction in which common code providing generic functionality can be selectively overridden or specialized by user code providing specific functionality.
Frameworks are similar to software libraries in that they are reusable abstractions of code wrapped in a well-defined API. Unlike libraries, however, the overall program's flow of control is not dictated by the caller, but by the framework. This inversion of control is the distinguishing feature of software frameworks.
A multimedia framework (MMF) is a software framework that handles media on a computer and through a network. A good multimedia framework offers an intuitive API and a modular architecture to easily add support for new codec’s, container formats and transmission protocols. It is meant to be used by applications such as media players and audio or video editors, but can also be used to build Videoconferencing applications, media converters and other multimedia tools.
GStreamer is a pipeline based multimedia framework written in the C programming language with the type system based on GObject. GStreamer allows you to create a variety of media-handling components, including simple audio playback, audio and video playback, recording, streaming, and editing. The pipeline design serves as a base to create many types of multimedia applications such as video editors, streaming media broadcasters, and media players.[image: image15.png]

Process context

Stack

Read-only code/data

Read/write data

Run-time heap

Shared libraries

Program context:

 Data registers

 Condition codes

 Stack pointer (SP)

 Program counter (PC)

Kernel context:

 VM structures

 Descriptor table

 brk pointer

brk

PC

SP

Code, data, and stack

Thread 2 �(peer thread)

stack 2

Thread 2 context:

 Data registers

 Condition codes

 SP2

 PC2

Kernel context:

 VM structures

 Descriptor table

 brk pointer

Thread 1 �(main thread)

stack 1

Thread 1 context:

 Data registers

 Condition codes

 SP1

 PC1

Read-only code/data

Read/write data

run-time heap

Shared libraries

 Shared code and data

_1320085846.unknown

_1320085848.unknown

_1320085849.unknown

_1320085847.unknown

_1320085844.unknown

_1320085845.unknown

_1320085843.unknown

_1320085842.unknown

