
Tower – the most powerful Git client for Mac

the most powerful Git client for Mac

Create

Clone an existing repository�	
$ git clone ssh://user@domain.com/repo.git

Create a new local repository� 	
$ git init

local Changes

Changed files in your working directory�
$ git status

Changes to tracked files �	
$ git diff

Add all current changes to the next
commit�
$ git add .

Add some changes in <file> to the next
commit�
$ git add -p <file>

Commit all local changes in tracked files�
$ git commit -a

Commit previously staged changes�
$ git commit

Change the last commit�
Don‘t amend published commits!

$ git commit --amend�	

Commit History

Show all commits, starting with newest�
$ git log

Show changes over time for a specific file�
$ git log -p <file>

Who changed what and when in <file>�
$ git blame <file>

Branches & Tags

List all existing branches
$ git branch

Switch HEAD branch
$ git checkout <branch>

Create a new branch based on your
current HEAD
$ git branch <new-branch>

Create a new tracking branch based on
a remote branch
$ git branch --track <new-branch>
 <remote-branch>

Delete a local branch
$ git branch -d <branch>

Mark the current commit with a tag
$ git tag <tag-name>

Update & Publish

List all currently configured remotes�
$ git remote -v

Show information about a remote�
$ git remote show <remote>

Add new remote repository, named
<remote> �
$ git remote add <remote> <url>

Download all changes from <remote>,
�but don‘t integrate into HEAD�
$ git fetch <remote>

Download changes and directly merge/
integrate �into HEAD�
$ git pull <remote> <branch>

Publish local changes on a remote�
$ git push <remote> <branch>

Delete a branch on the remote
$ git push <remote> :<branch>

Publish your tag�s
$ git push --tags

Merge & Rebase

Merge <branch> into your current HEAD�
$ git merge <branch>

Rebase your current HEAD onto <branch>�
Don‘t rebase published commits!

$ git rebase <branch>�

Abort a rebase�
$ git rebase --abort

Continue a rebase after resolving conflicts�
$ git rebase --continue

Use your configured merge tool to
solve conflicts�
$ git mergetool

Use your editor to manually solve con-
flicts and �(after resolving) mark file as
resolved�
$ git add <resolved-file>

$ git rm <resolved-file>

Undo

Discard all local changes in your working
directory�	
$ git reset --hard HEAD

Discard local changes in a specific file�
$ git checkout HEAD <file>

Revert a commit �(by producing a new
commit with contrary changes)�
$ git revert <commit>

Reset your HEAD pointer to a previous
commit�

…and discard all changes since then�
$ git reset --hard <commit>

…and preserve all changes as unstaged
changes�
$ git reset <commit>

…and preserve uncommitted local
changes�
$ git reset --keep <commit>

30-day free trial available at
www.git-tower.com

git cheat sheet
presented by

fournova

Commit Related Changes

A commit should be a wrapper for related
changes. For example, fixing two diffe-
rent bugs should produce two separate
commits. Small commits make it easier
for other developers to understand the
changes and roll them back if something
went wrong.
With tools like the staging area and the
ability to stage only parts of a file, Git
makes it easy to create very granular
commits.

Commit Often

Committing often keeps your commits
small and, again, helps you commit only
related changes. Moreover, it allows you
to share your code more frequently with
others. That way it‘s easier for everyone
to integrate changes regularly and avoid
having merge conflicts. Having few large
commits and sharing them rarely, in con-
trast, makes it hard to solve conflicts.

Don‘t Commit Half-Done Work

You should only commit code when
it‘s completed. This doesn‘t mean you
have to complete a whole, large feature
before committing. Quite the contrary:
split the feature‘s implementation into
logical chunks and remember to commit
early and often. But don‘t commit just to
have something in the repository before
leaving the office at the end of the day. If
you‘re tempted to commit just because
you need a clean working copy (to check
out a branch, pull in changes, etc.) consi-
der using Git‘s «Stash» feature instead.

Test Code Before You Commit

Resist the temptation to commit some-
thing that you «think» is completed. Test
it thoroughly to make sure it really is
completed and has no side effects (as far
as one can tell). While committing half-
baked things in your local repository only
requires you to forgive yourself, having
your code tested is even more important
when it comes to pushing/sharing your
code with others.

Write Good Commit Messages

Begin your message with a short sum-
mary of your changes (up to 50 charac-
ters as a guideline). Separate it from
the following body by including a blank
line. The body of your message should
provide detailed answers to the following
questions:

– �What was the motivation for the change?
– �How does it differ from the previous

implementation?
Use the imperative, present tense
(«change», not «changed» or «changes»)
to be consistent with generated messa-
ges from commands like git merge.

Version Control is not
a Backup System

Having your files backed up on a remote
server is a nice side effect of having a
version control system. But you should
not use your VCS like it was a backup
system. When doing version control, you
should pay attention to committing se-
mantically (see «related changes») - you
shouldn‘t just cram in files.

Use Branches

Branching is one of Git‘s most powerful
features - and this is not by accident:
quick and easy branching was a central
requirement from day one. Branches are
the perfect tool to help you avoid mixing
up different lines of development. You
should use branches extensively in your
development workflows: for new fea-
tures, bug fixes, ideas…

Agree on a Workflow

Git lets you pick from a lot of different
workflows: long-running branches, topic
branches, merge or rebase, git-flow…
Which one you choose depends on a
couple of factors: your project, your
overall development and deployment
workflows and (maybe most important-
ly) on your and your teammates‘ personal
preferences. However you choose to
work, just make sure to agree on a com-
mon workflow that everyone follows.

Help & Documentation

Get help on the command line
$ git help <command>

Official Git Website

http://www.git-scm.com/

Free online resources

http://progit.org

http://book.git-scm.org

http://gitref.org

fournova

best practices

version control

the most powerful Git client for Mac
30-day free trial available at
www.git-tower.com

