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U-Boot is a typical free software project
» Freely available at http://www.denx.de/wiki/U-Boot

» Documentation available at
http://www.denx.de/wiki/U-Boot/Documentation

» The latest development source code is available in a Git
repository:
http://git.denx.de/cgi-bin/gitweb.cgi?p=u-boot.git;a=summary

» Development and discussions happen around an open mailing-
list http://lists.denx.de/pipermail/u-boot/

» Since the end of 2008, it follows a fixed-interval release schedule.
Every two months, a new version is released. Versions are
named YYYY.MM.
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» Get the source code from the website, and uncompress it

» The include/configs/ directory contains one configuration
file for each supported board

P It defines the CPU type, the peripherals and their configuration, the
memory mapping, the U-Boot features that should be compiled in,
etc.

P It is a simple .h file that sets pre-processor constants. See the
README file for the documentation of these constants.

» Assuming that your board is already supported by U-Boot, there
should be one file corresponding to your board, for example
include/configs/omap2420h4.h.
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» U-Boot must be configured before being compiled
» make BOARDNAME config

» Where BOARDNAME is the name of the configuration file in
include/configs/, without the .h

» Make sure that the cross-compiler is available in PATH
export PATH=/usr/local/uclibc-0.9.29-2/arm/bin/:S$SPATH

» Compile U-Boot, by specifying the cross-compiler prefix.
Example, if your cross-compiler executable is arm-1inux-gcc:
make CROSS COMPILE=arm-linux-




» U-Boot must usually be installed in flash memory to be executed
by the hardware. Depending on the hardware, the installation of
U-Boot is done in a different way:

» The board provides some kind of specific boot monitor, which
allows to flash the second stage bootloader. In this case, refer to
the board documentation and tools

» U-Boot is already installed, and can be used to flash a new version
of U-Boot. However, be careful: if the new version of U-Boot doesn't
work, the board is unusable

» The board provides a JTAG interface, which allows to write to the
flash memory remotely, without any system running on the board. It
also allows to rescue a board if the bootloader doesn't work.
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» Connect the target to the host through a serial console

» Power-up the board. On the serial console, you will see
something like:

U-Boot 1.1.2 (Aug 3 2004 - 17:31:20)
RAM Configuration:

Bank #0: 00000000 8 MB

Flash: 2 MB

In: serial
Out: serial
Err: serial
u-boot #

» The U-Boot shell offers a set of commands. We will study
the most important ones, see the documentation for a
complete reference or the help command.
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A U-Boot> flinfo
DataFlash:AT45DB021

Nb pages: 1024

Flash Page Size: 264

Logical address: 0xC0000000

Area 0: C0000000 to COOO1lFFF (RO) Bootstrap
Area 1: C0002000 to COOO3FFF Environment
Y Area 2: C0004000 to COO41FFF (RO) U-Boot

NAND ﬂaShi U-Boot> nand info

information Device 0: NAND 256MiB 3,3V 8-bit, sector size 128 KiB

U-Boot U-Boot> version
information U-Boot 2009.08 (Nov 15 2009 - 14:48:35)

Can vary from one board to the other
(according to the U-Boot compile configuration)
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» U-Boot can be configured through environment variables, which
affect the behavior of the different commands.

» See the documentation for the complete list of environment
variables.

» The printenv command also to display all variables or one :

u-boot # printenv

baudrate=19200

ethaddr=00:40:95:36:35:33

netmask=255.255.255.0 _ _
ipaddr=10.0.0.11 Network Conflguratlon
serverip=10.0.0.1

stdin=serial

stdout=serial

stderr=serial

u-boot # printenv serverip
serverip=10.0.0.2



» The value of the environment variables can be changed using
the setenv command :

u-boot # setenv serverip 10.0.0.2

» Environment variable changes can be stored to flash using the

saveenv command. The location in flash is defined at compile
time in the U-Boot configuration file.

» You can even create small scripts stored in environment
variables:

setenv mmc-boot 'mmc init 0; if fatload mmc O
80000000 boot.ini; then source; else if

fatload mmc 0 80000000 uImage; then run mmc-
bootargs; bootm; fi; fi'

» You can then execute the script:
run mmc-boot
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» U-Boot is mostly used to load and boot a kernel image, but it also
allows to change the kernel image and the root filesystem stored
in flash.

» Files must be exchanged between the target and the
development workstation. This is possible :

» Through the network if the target has an Ethernet connection, and
U-Boot contains a driver for the Ethernet chip. If so, the TFTP
protocol can be used to exchange files

» Through the serial line if no Ethernet connection is available.

Ethernet connection

U-Boot TFTP TFTP
client server



On GNU/Linux systems based on Debian: Ubuntu, Knoppix

» Install the tftpd-hpa package (iftp server):
apt-get install tftpd-hpa

» Copy files to the root directory of the tftp server. Example:
cp arch/arm/boot/uImage /var/lib/tftpboot

» To test the server, install a tftp client on your workstation:
apt-get install tftp-hpa

» Use it to download a file (-4 to force the use of IPv4)
tftp -4 localhost
> get ulmage




» The kernel image that U-Boot loads and boots must be prepared,
so that an U-Boot specific header is added in front of the image

» This is done with a tool that comes in U-Boot, mkimage
» Debian / Ubuntu: just install the uboot-mkimage package.

» Or, compile it by yourself: simply configure U-Boot for any board

of any architecture and compile it. Then install mkimage:
cp tools/mkimage /usr/local/bin/

» The special target uImage of the kernel Makefile can then be
used to generate a kernel image suitable for U-Boot.




» Compile your kernel and generate the U-Boot header
running make ulImage

» Copy the kernel image to the directory exported by the TFTP server

» On the board, in U-Boot, download the kernel image to memory :
u-boot # tftp 8000 uImage

» Unprotect NOR flash
u-boot # protect off 1:0-4

» Erase NOR flash

u-boot # erase 1:0-4

» Copy to NOR flash (0x01000000: first sector)
u-boot # cp.b ${fileaddr} 1000000 S{filesize}

» Restore NOR flash sector protection:
u-boot # protect on 1:0-4

See our practical labs for details handling NAND flash.
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» Specify kernel boot parameters:
u-boot # setenv bootargs mem=64M \
console=ttyS0,115200 init=/sbin/init \
root=/dev/mtdblock0

Continues on
the same line

» Execute the kernel from a given physical address

(RAM or flash):
bootm 0x01030000
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You can help us to improve and maintain this document...

» By sending corrections, suggestions, contributions and
translations

» By asking your organization to order development, consulting
and training services performed by the authors of these
documents (see http://free-electrons.com/).

» By sharing this document with your friends, colleagues
and with the local Free Software community.

» By adding links on your website to our on-line materials,
to increase their visibility in search engine results.
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