@

The U-boot
bootloader

Michael Opdenacker
Thomas Petazzoni
Free Electrons

© Copyright 2004-2009, Free Electrons.

Creative Commons BY-SA 3.0 license

Latest update: Jan 19, 2011,

Document sources, updates and translations:
http://free-electrons.com/docs/u-boot

Corrections, suggestions, contributions and translations are welcome!

Free Electrons

Embedded Linux
Developers

http://free-electrons.com/docs/u-boot

U-Boot is a typical free software project
» Freely available at http://www.denx.de/wiki/U-Boot

» Documentation available at
http://www.denx.de/wiki/U-Boot/Documentation

» The latest development source code is available in a Git
repository:
http://git.denx.de/cgi-bin/gitweb.cgi?p=u-boot.git;a=summary

» Development and discussions happen around an open mailing-
list http://lists.denx.de/pipermail/u-boot/

» Since the end of 2008, it follows a fixed-interval release schedule.
Every two months, a new version is released. Versions are
named YYYY.MM.

2

http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot/Documentation
http://git.denx.de/cgi-bin/gitweb.cgi?p=u-boot.git;a=summary
http://lists.denx.de/pipermail/u-boot/

» Get the source code from the website, and uncompress it

» The include/configs/ directory contains one configuration
file for each supported board

P It defines the CPU type, the peripherals and their configuration, the
memory mapping, the U-Boot features that should be compiled in,
etc.

P It is a simple .h file that sets pre-processor constants. See the
README file for the documentation of these constants.

» Assuming that your board is already supported by U-Boot, there
should be one file corresponding to your board, for example
include/configs/omap2420h4.h.

3

» U-Boot must be configured before being compiled
» make BOARDNAME config

» Where BOARDNAME is the name of the configuration file in
include/configs/, without the .h

» Make sure that the cross-compiler is available in PATH
export PATH=/usr/local/uclibc-0.9.29-2/arm/bin/:S$SPATH

» Compile U-Boot, by specifying the cross-compiler prefix.
Example, if your cross-compiler executable is arm-1inux-gcc:
make CROSS COMPILE=arm-linux-

» U-Boot must usually be installed in flash memory to be executed
by the hardware. Depending on the hardware, the installation of
U-Boot is done in a different way:

» The board provides some kind of specific boot monitor, which
allows to flash the second stage bootloader. In this case, refer to
the board documentation and tools

» U-Boot is already installed, and can be used to flash a new version
of U-Boot. However, be careful: if the new version of U-Boot doesn't
work, the board is unusable

» The board provides a JTAG interface, which allows to write to the
flash memory remotely, without any system running on the board. It
also allows to rescue a board if the bootloader doesn't work.

5

» Connect the target to the host through a serial console

» Power-up the board. On the serial console, you will see
something like:

U-Boot 1.1.2 (Aug 3 2004 - 17:31:20)
RAM Configuration:

Bank #0: 00000000 8 MB

Flash: 2 MB

In: serial
Out: serial
Err: serial
u-boot #

» The U-Boot shell offers a set of commands. We will study
the most important ones, see the documentation for a
complete reference or the help command.

6

A U-Boot> flinfo
DataFlash:AT45DB021

Nb pages: 1024

Flash Page Size: 264

Logical address: 0xC0000000

Area 0: C0000000 to COOO1lFFF (RO) Bootstrap
Area 1: C0002000 to COOO3FFF Environment
Y Area 2: C0004000 to COO41FFF (RO) U-Boot

NAND ﬂaShi U-Boot> nand info

information Device 0: NAND 256MiB 3,3V 8-bit, sector size 128 KiB

U-Boot U-Boot> version
information U-Boot 2009.08 (Nov 15 2009 - 14:48:35)

Can vary from one board to the other
(according to the U-Boot compile configuration)

@

» U-Boot can be configured through environment variables, which
affect the behavior of the different commands.

» See the documentation for the complete list of environment
variables.

» The printenv command also to display all variables or one :

u-boot # printenv

baudrate=19200

ethaddr=00:40:95:36:35:33

netmask=255.255.255.0 _ _
ipaddr=10.0.0.11 Network Conflguratlon
serverip=10.0.0.1

stdin=serial

stdout=serial

stderr=serial

u-boot # printenv serverip
serverip=10.0.0.2

» The value of the environment variables can be changed using
the setenv command :

u-boot # setenv serverip 10.0.0.2

» Environment variable changes can be stored to flash using the

saveenv command. The location in flash is defined at compile
time in the U-Boot configuration file.

» You can even create small scripts stored in environment
variables:

setenv mmc-boot 'mmc init 0; if fatload mmc O
80000000 boot.ini; then source; else if

fatload mmc 0 80000000 uImage; then run mmc-
bootargs; bootm; fi; fi'

» You can then execute the script:
run mmc-boot

v SRR s e

» U-Boot is mostly used to load and boot a kernel image, but it also
allows to change the kernel image and the root filesystem stored
in flash.

» Files must be exchanged between the target and the
development workstation. This is possible :

» Through the network if the target has an Ethernet connection, and
U-Boot contains a driver for the Ethernet chip. If so, the TFTP
protocol can be used to exchange files

» Through the serial line if no Ethernet connection is available.

Ethernet connection

U-Boot TFTP TFTP
client server

On GNU/Linux systems based on Debian: Ubuntu, Knoppix

» Install the tftpd-hpa package (iftp server):
apt-get install tftpd-hpa

» Copy files to the root directory of the tftp server. Example:
cp arch/arm/boot/uImage /var/lib/tftpboot

» To test the server, install a tftp client on your workstation:
apt-get install tftp-hpa

» Use it to download a file (-4 to force the use of IPv4)
tftp -4 localhost
> get ulmage

» The kernel image that U-Boot loads and boots must be prepared,
so that an U-Boot specific header is added in front of the image

» This is done with a tool that comes in U-Boot, mkimage
» Debian / Ubuntu: just install the uboot-mkimage package.

» Or, compile it by yourself: simply configure U-Boot for any board

of any architecture and compile it. Then install mkimage:
cp tools/mkimage /usr/local/bin/

» The special target uImage of the kernel Makefile can then be
used to generate a kernel image suitable for U-Boot.

» Compile your kernel and generate the U-Boot header
running make ulImage

» Copy the kernel image to the directory exported by the TFTP server

» On the board, in U-Boot, download the kernel image to memory :
u-boot # tftp 8000 uImage

» Unprotect NOR flash
u-boot # protect off 1:0-4

» Erase NOR flash

u-boot # erase 1:0-4

» Copy to NOR flash (0x01000000: first sector)
u-boot # cp.b ${fileaddr} 1000000 S{filesize}

» Restore NOR flash sector protection:
u-boot # protect on 1:0-4

See our practical labs for details handling NAND flash.
13

» Specify kernel boot parameters:
u-boot # setenv bootargs mem=64M \
console=ttyS0,115200 init=/sbin/init \
root=/dev/mtdblock0

Continues on
the same line

» Execute the kernel from a given physical address

(RAM or flash):
bootm 0x01030000

Free Electrons

Embedded Freedom

Recent blog posts

ELC Europe in Grenohle Maost of the below documents are presentations used in our t

conferences.

s, ar in technical

Free Electrons at ELC
License
Linux kernel 2.6.29 - New

features for embedded ShareAlike 3.0 license. This essentially means that you are free to download, distribute

@ All our documents are available under the terms of the Creative Commaons Attribution-

and even modify

them, provided you mention us as the original authors and that you

users -
share these documents under the same conditions.

The Buildroot project Linux kernel

begins a new life

Embedded Linux kernel and driver development
6 (since 2.6.10)

New features in Linux 2

FOSDEM 2009 videos

« Kernel initialization
USE-Ethernet device for . hardware
» Power management in Linux

Linusx

Frogram far Embedded Block device drivers

Linux Conference 2008

documents

announced

Public session changes

Real hardware in our
Embedded Linux system development
training sessions
« Embedded Linux system development
Call for presentations for = Real time in embedded Linux systems
Elack filesystems

the LSM embedded track

Free software development tools
r
+ The GRUE hootloader
+ The biok boatloader

Introduction to uClinux

Embedded Linux aptimizations
= Audio in embedded Linux systems

= Multimedia in embedded Linux systems
= Embedded Linux From Scratch... in 40 minutes!

. embedded Linux systams with Buildroot
Developing embedded distributions with OpenEmbedded
= The Scratchbox development environment

Miscellaneous

= Introduction to the Unix command line

wirtualization solutions (with an embedded perspectivel
= Advantages of Free Software and Open Source in embedded systems
= Introduction to GNU/Linux and Free Software

All our technical presentations
on http://free-electrons.com/docs

» Linux kernel

» Device drivers

» Architecture specifics

» Embedded Linux system development

http://free-electrons.com/docs

You can help us to improve and maintain this document...

» By sending corrections, suggestions, contributions and
translations

» By asking your organization to order development, consulting
and training services performed by the authors of these
documents (see http://free-electrons.com/).

» By sharing this document with your friends, colleagues
and with the local Free Software community.

» By adding links on your website to our on-line materials,
to increase their visibility in search engine results.

http://free-electrons.com/

Linux kernel

Linux device drivers

Board support code
Mainstreaming kernel code
Kernel debugging

Embedded Linux Training
All materials released with a free license!

Unix and GNU/Linux basics

Linux kernel and drivers development
Real-time Linux, uClinux

Development and profiling tools
Lightweight tools for embedded systems
Root filesystem creation

Audio and multimedia

System optimization

Free Electrons

Our services

Custom Development

System integration

Embedded Linux demos and prototypes
System optimization

Application and interface development

Consulting and technical support

Help in decision making

System architecture

System design and performance review
Development tool and application support
Investigating issues and fixing tool bugs

. .’ Free Electrons

Embedded Linux Experts

