@

Embedded Linux
kernel usage

Michael Opdenacker
Thomas Petazzoni
Free Electrons

© Copyright 2004-2009, Free Electrons.

Creative Commons BY-SA 3.0 license

Latest update: Feb 21, 2011,

Document sources, updates and translations:
http://free-electrons.com/docs/kernel-usage

Corrections, suggestions, contributions and translations are welcome!

Free Electrons

Embedded Linux
Developers

http://free-electrons.com/docs/kernel-usage

Compiling and booting
» Linux kernel sources
» Kernel configuration
» Compiling the kernel
» Overall system startup

» Linux device files

» Cross-compiling the kernel

Compiling and booting Linux
Linux kernel sources

» The official version of the Linux kernel, as released by Linus
Torvalds is available at http://www.kernel.org

P This version follows the well-defined development model of the
kernel

» However, it may not contain the latest development from a specific
area, due to the organization of the development model and
because features in development might not be ready for mainline
inclusion

» Many kernel sub-communities maintain their own kernel, with
usually newer but less stable features

P Architecture communities (ARM, MIPS, PowerPC, etc.), device
drivers communities (I12C, SPI, USB, PCI, network, etc.), other
communities (real-time, etc.)

P They generally don't release official versions, only development
trees are available 4

http://www.kernel.org/

» Linux 2.6.37 sources:
Raw size: 412 MB (37,300 files, approx 14,000,000 lines)
gzip compressed tar archive: 89 MB
bzip2 compressed tar archive: 71 MB (better)
1zma compressed tar archive: 61 MB (best)

» Minimum Linux 2.6.29 compiled kernel size with CONFIG_EMBEDDED,
for a kernel that boots a QEMU PC (IDE hard drive, ext2 filesystem,
ELF executable support):

932 KB (compressed), 1325 KB (raw)

» Why are these sources so big?
Because they include thousands of device drivers, many network
protocols, support many architectures and filesystems...

» The Linux core (scheduler, memory management...) is pretty small!

5

@

Size of Linux source directories (KB)

arch
block
crypto
Documentation
drivers
fs
include
init

ipc
kernel
lib

mm
net
scripts
security
sound
usr

50000

100000

150000

Linux 2.6.17

Measured with:
du -s --apparent-size

» Full tarballs

» Contain the complete kernel sources
» Long to download and uncompress, but must be done at least once

» Example:
http://kernel.org/pub/linux/kernel/v2.6/linux-2.6.14.7 .tar.bz2

» Incremental patches between versions

P It assumes you already have a base version and you apply the
correct patches in the right order

» Quick to download and apply

» Examples
http://kernel.org/pub/linux/kernel/v2.6/patch-2.6.14.bz2 (2.6.13 to0 2.6.14)
http://kernel.org/pub/linux/kernel/v2.6/patch-2.6.14.7.bz2 (2.6.14 t0 2.6.14.7)

» All previous kernel versions are available in
http://kernel.org/pub/linux/kernel/
7

http://kernel.org/pub/linux/kernel/

The patch command applies changes
to files in the current directory:

» Making changes to existing files You can reverse

a patch

» Creating or deleting files and directories with the -R @
option

patch usage examples: Z

P patch -p<n> < diff file

b cat diff file atch -p<n>
— | P P You can test a patch with

» bzcat diff file.bz2 | patch -p<n> the -—dry-run

» zcat diff file.gz | patch -p<n> option @

n: number of directory levels to skip in the file paths

8

A patch file is the output of the diff command

diff -Nru a/Makefile b/Makefile «— diff command line
_—— a/Makefile 2005-03-04 09:27:15 —08:00 | |
+++ b/Makefile 2005-03-04 09:27:15 —-08:00 <+ Filedateinfo

@ -1,7 +1,7 @@ <«— Line numbers in files
VERSTON = 2 Context info: 3 lines before the ch
_ ontext info: 3 lines before the change
PATCHLEVEL = 6 < Useful to apply a patch when line numbers
SUBLEVEL = 11 changed
—~-EXTRAVERSION = <«+— Removed line(s) if any

+EXTRAVERSION = .1 <— Added line(s) if any
NAME=Woozy Numbat

<«+— Context info: 3 lines after the change
DOCUMENTATION

@

Linux patches...

> Always to apply to the x.y.<z-1> version

Downloadable in gzip You can make patch 30%
and bzip2 (much smaller) compressed files. faster by using -sp1
instead of -p1
» Always produced for n=1 (silent) @
(that's what everybody does... do it too!) =

: . Tested on patch-2.6.23.bz2
P Linux patch command line example:

cd linux-2.6.13

bzcat ../patch-2.6.14.bz2 | patch -pl
bzcat ../patch-2.6.14.7.bz2 | patch -pl
cd ..; mv linux-2.6.13 linux-2.6.14.7

P Keep patch files compressed: useful to check their signature later.
You can still view (or even edit) the uncompressed data with vim:

vim patch-2.6.14.bz2 (on the fly (un)compression)

10

P Makes it easy to download a specific version.

» Example: downloading the latest kernel version

@

http://www.selenic.com/ketchup/

The -G option of ketchup
disables source signature
checking.

Takes care of downloading and applying patches

See
http://kernel.org/signature.html
for details about enabling
kernel source
integrity checking.

> mkdir linux-2.6.31

> cd linux-2.6.31

> ketchup -G 2.6.31.6

None -> 2.6.31.6

Downloading linux-2.6.31.6.tar.bz2
Unpacking linux-2.6.31.6.tar.bz2

P Now getting back to an older version (from the same directory)
> ketchup -G 2.6.29

2.6.31.6 -> 2.6.29

Applying patch-2.6.31.6.bz2 -R

Applying patch-2.6.31.bz2 -R

Downloading patch-2.6.30.bz2

Applying patch-2.6.30.bz2 -R

11

http://www.selenic.com/ketchup/
http://kernel.org/signature.html

» Get the sources

» Apply patches

Compiling and booting Linux
Kernel configuration

» The kernel contains thousands of device drivers, filesystem
drivers, network protocols and other configurable items

» Thousands of options are available, that are used to selectively
compile parts of the kernel source code

» The kernel configuration is the process of defining the set of
options with which you want your kernel to be compiled

» The set of options depends

» On your hardware

» On the capabilities you would like to give to your kernel

» The configuration is stored in the .config file at the root of kernel
sources

» Simple text file, key=value style

» As options have dependencies, typically never edited by hand, but
through graphical interfaces :

P make [xconfig|gconfig|menuconfig|oldconfig]

P These are targets from the main kernel Makefile. Run make help to
get a list of all available targets.

» To modify a kernel in a GNU/Linux distribution:
the configuration files are usually released in /boot/, together with
kernel images: /boot/config-2.6.17-11-generic

15

make xconfig

» The most common graphical interface
to configure the kernel.

» Make sure you read
help -> introduction: useful options!

» File browser: easier to load configuration files

» New search interface to look for parameters

» Required Debian / Ubuntu packages:
libgt3-mt-dev, g++

bl aconf EE x
File Option Help
o EE |l E
Option | MName had |Opli0n | Name |
--Code maturity level options L
=-General setup - EliPAQ H2200 PCMCIA H2200_PCMCIA
5----Ccnfigure standard kernel features (for small systems) EMBEDDED i~ BiPAQ H2200 MediaQ 1178 LCD H2200_LCD
- oadable module support ~OiPAQ H2200 battery interface H2200_BATTERY
--System Type i~ [3liPAQ H2200 touchscreen driver H2200_T5
=-Intel PXA2xx Implementations - EiPAQ H2200 hardware audio control H2200_AUDIO
- [Toshiba e7xx | e8xx ARCH_ESERIES
- Asus 620/620BT MACH_AG20
- khp iPAQ h1910 ARCH_H1900
®Mhp iPAQ h2200 ARCH_H2200 N
- Ehp iPAQ h3900 ARCH_H3900
- khp iPAQ h4000 MACH_H4000
- lhp iPAQ h5400 ARCH_H5400
- O Dell Axim X5 ARCH_AXIMX5S 2
- Dell Axim X3 (non-functional) ARCH_AXIMX3 ’
- RoverPl (Mitac Mio 336) ARCH_ROVERP1 —
- RoverP5+ ARCH_ROVERPSP E o]
 Linant As Rootloader hp iPAQ h2200 (ARCH_H2200) —
- Compaq/iPAQ Options Do
ERE e) prompt: hp iPAQ h2200
g----PCM(;IN(Z.ardBus lsupport dep: ARCH_PXA
“-Generic Driver Options select: PXA25x%
- Parallel port support dep: ARCH_PXA
=-Memory Technology Devices (MTD)
é""RAMfROWHESh chip drivers defined at arch/arm/mach-pxafh2200fK config: 1
-Mapping drivers for chip access
i Self-contained MTD device drivers This enables support for HP iIPAQ H22xx series of handhelds.
“-NAND Flash Device Drivers There are a number of H22xx-specific drivers under this submenu:
-Plug and Play support [+|| | pemcia, lcd, battery, touchscreen =

17

Find: [pci || search |

' Option B
[#] Host AP driver for Prism2.5 PCl adaptors \\
[+] Yamaha YMF724/740/744/754

[#] ACPI PCI Hotplug driver IEM extensions
DIVA Server BRIJPCI support

PCI-WDTS01 features

3 MM Config

EISA, VLE, PCl and on board controllers

PCI IDE chipset support

[] Message Signaled Interrupts (M5l and MSI-X)

O DIVA Server PRIJPCI support
[#] Support for COM20020 on PCI
[Teles PCI

PCI MTD driver (MTD_PCI)

Mapping for accessing flash devices on add-in cards like the Intel X5cale
1080310 card, and the Intel EBSA285 card in blank ROM programming mode
[please see the manual for the link settings).

Looks for a keyword
in the description
string

Allows to select
or unselect found
parameters.

Compiled as a module (separate file)
CONFIG IS09660 FS=m

Driver options EEEISD 9660 CDROM file system support
CONFIG JOLIET=y —-b}-Micrnsnﬁ Joliet CDROM extensions
CONFIG_ZISOFS=y —-=Transparent decompression extension
-aUDF file system support

/

Compiled statically into the kernel
CONFIG UDF FS=y

9o

Section name

z CD-ROM/DVD Filesystems o|ns to locate settings in the interface)

CONFIG_IS09660_ FS=m
CONFIG_JOLIET=y

CONFIG_ZISOFS=y _
CONFIG UDF FS=y All parameters are prefixed

CONFIG_UDF_NLS=y with CONFIG_

i

DOS/FAT/NT Filesystems

i

CONFIG MSDOS FS is not set

CONFIG VFAT FS is not set
CONFIG NTFS FS=m

CONFIG NTFS DEBUG is not set
CONFIG NTFS RW=y

20

» There are dependencies between kernel options

» For example, enabling a network driver requires the network
stack to be enabled

» Two types of dependencies

» depends on dependencies. In this case, option A that depends on
option B is not visible until option B is enabled

P select dependencies. In this case, with option A depending on
option B, when option A is enabled, option B is automatically
enabled

» make xconfig allows to see all options, even those that cannot be
selected because of missing dependencies. In this case, they are
displayed in gray

21

make gconfig

New GTK based
graphical configuration
interface. Functionality
similar to that of make
xconfig.

Just lacking a search
functionality.

Required Debian

packages:
libglade2-dev

File Qptions Help

9 B & I Il E

Bach Load Save Single Split Full

= 4

Cal

lapse Expand

Optians

-

Options

v

Code maturity level options
General setup
[[] canfigure standard kernel features (for small systems)
Loadable module support
Block layer
Processor type and features
Firmware Drivers
Power management aptions (ACPI, APM)
ACPI (Advanced Configuration and Power Interface) Suppo
A4PM (Adwvanced Power Management) BIOS Support
CPU Frequency scaling
Bus aptians (PCI, PCMCIA, EISA, MCA, 154)
PCCARD (PCMEIANC ardBus) support
PCl Hotplug Support

Executable file formats

Metwarking

=

[~

Local version - append to kernel release (NEW)
[] Autematically append version infarmation to the version
E Supportfar paging of anonymaus memary (swap) (NEW)
¥ system v IPC (NEW)

D IPC Mamespaces
[POSIX Message Queues (NEW)
E BSD Process Accounting (NEW)

E BSD Pracess Accounting wersian 3 file farmat (NEW)
[] Export task/pracess statistics thraugh netlink (EXPERIME
D UTS Mamespaces

(]

[]

(4]

Local version - append to kernel release LOCALVERSION

Append an extra string to the end of your kernel version.

This will shaw up when you type uname, for example.

The string you set here will be appended after the contents of
any files with a filename matching localversion® in your
object and source tree, in that order. Your tetal string can

be a maximum of 64 characters.

[+

(4]

1]l

22

Linux Kernel v2.6.128 Configuration

make menuconfig
Processor type and features
Arrow keys navigate the menu. <=Enter> selects submenus ---=. Highlighted

letters are hotkeys. Pressing <Y= includes, <=N= excludes, =M= modularizes LJS;EBflJI \A/r]ear] no g}FEiF)f]I(}EB

features. Press <Esc=<Esc> to exit, =<?= for Help, =</= for Search.

Legend: [*] built-in [] excluded <M= module <= = module capable are ava”able Pretty
[] Symmetric multi-processing support (:c)r1\/ear]iear]t t()()|

Subarchitecture Type (PC-compatible)
Processor family (Pentium-Pro) ---=

[*] Ceneric x86 support . .
] HFET Timer Support E;EirT]EB Ir1tEBFfEi(3E3 f()lJf](j N

Preemption Model (Mo Forced Preemption (Server))

Local APIC support on uniprocessors - ()tf]EBF t()()'f;: E3LJES)/E3())(,

Machine Check Exception .

Toshiba Laptop support t)lj||(jr()()t___

Cell laptop support

Enable X886 board specific fixups for reboot

Jdev/cpu/microcode - Intel IA32 CPU microcode support I I

Jdev/cpu/*/msr - Model-specific register support F%EB(]LJIFEBCj [)Eak)IEir]
- fdev/cpu/*/cpuid - CPU information support

Firmware Drivers --- F)Ei(:k(éig)EBE;:
libncurses-dev

< Exit = < Help =

23
Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com

make oldconfig
» Needed very often!

» Useful to upgrade a .config file from an earlier kernel
release

» Issues warnings for configuration parameters
that no longer exist in the new kernel.

» Asks for values for new parameters

If you edit a .config file by hand, it's strongly
recommended to run make oldconfig afterwards!

make allnoconfig

» Only sets strongly recommended settings to y.

» Sets all other settings to n.

» Very useful in embedded systems to select only the
minimum required set of features and drivers.

» Much more convenient than unselecting hundreds of
features one by one!

A frequent problem:

» After changing several kernel configuration settings,
your kernel no longer works.

» If you don't remember all the changes you made,
you can get back to your previous configuration:
=

> cp .config.old .config

» All the configuration interfaces of the kernel
(xconfig, menuconfig, allnoconfig...)
keep this .config.old backup copy.

» The set of configuration options is architecture dependent

P Some configuration options are very architecture-specific

» Most of the configuration options (global kernel options, network
subsystem, filesystems, most of the device drivers) are visible in all-
architecture

» By default, the kernel build system assumes that the kernel is
being built for the host architecture, i.e native compilation

» The architecture is not defined inside the configuration, but at an
higher level

» We will see later how to override this behaviour, to allow the
configuration of kernels for a different architecture

27

» General setup

» Prompt for development/incomplete code allows to be able to
enable drivers or features that are not considered as completely
stable yet

» Local version - append to kernel release allows to concatenate an
arbitrary string to the kernel version that an user can get using
uname -r. Very useful for support!

» Support for swap, can usually be disabled on most embedded
devices

» Configure standard kernel features (for small systems) allows to
remove features from the kernel to reduce its size. Powerful, use
with care!

28

» Loadable module support

P> Allows to enable or completely disable module support. If your
system doesn't need kernel modules, best to disable since it saves
a significant amount of space and memory

» Enable the block layer

» If CONFIG_EMBEDDED is enabled, the block layer can be
completely removed. Embedded systems using only Flash storage
can safely disable the block layer

» Processor type and features (x86) or System type (ARM) or CPU
selection (MIPS)

> Allows to select the CPU or machine for which the kernel must be
compiled

» On x86, only optimization-related, on other architectures very

important since there's no compatibility
29

» Kernel features

P Tickless system, which allows to disable the regular timer tick and
use on-demand ticks instead. Improves power savings

» High resolution timer support. By default, the resolution of timer is
the tick resolution. With high resolution timers, the resolution is as
precise as the hardware can give

» Preemptible kernel enables the preemption inside the kernel code
(the userspace code is always preemptible). See our real-time
presentation for details

» Power management

» Global power management option needed for all power
management related features

» Suspend to RAM, CPU frequency scaling, CPU idle control,
suspend to disk
30

» Networking support

» The network stack
» Networking options

P Unix sockets, needed for a form of inter-process communication

P TCP/IP protocol with options for multicast, routing, tunneling, Ipsec,
lpv6, congestion algorithms, etc.

B Other protocols such as DCCP, SCTP, TIPC, ATM
P Ethernet bridging, QoS, etc.
» Support for other types of network

P CAN bus, Infrared, Bluetooth, Wireless stack, WiMax stack, etc.

» Device drivers

» MTD is the subsystem for Flash (NOR, NAND, OneNand, battery-
backed memory, etc.)

» Parallel port support

P Block devices, a few misc block drivers such as loopback, NBD,
etc.

» ATA/ATAPI, support for IDE disk, CD-ROM and tapes. A new stack
exists

» SCSI

P The SCSI core, needed not only for SCSI devices but also for USB
mass storage devices, SATA and PATA hard drives, etc.

P SCSI controller drivers

32

» Device drivers (cont)

» SATA and PATA, the new stack for hard disks, relies on SCSI
» RAID and LVM, to aggregate hard drivers and do replication

» Network device support, with the network controller drivers.
Ethernet, Wireless but also PPP

» Input device support, for all types of input devices: keyboards,
mices, joysticks, touchscreens, tablets, etc.

» Character devices, contains various device drivers, amongst them

P serial port controller drivers
P PTY driver, needed for things like SSH or telnet

» 12C, SPI, 1-wire, support for the popular embedded buses

» Hardware monitoring support, infrastructure and drivers for thermal

Sensors
33

» Device drivers (cont)

» Watchdog support

» Multifunction drivers are drivers that do not fit in any other category
because the device offers multiple functionality at the same time

» Multimedia support, contains the V4L and DVB subsystems, for
video capture, webcams, AM/FM cards, DVB adapters

» Graphics support, infrastructure and drivers for framebuffers

» Sound card support, the OSS and ALSA sound infrastructures and
the corresponding drivers

P HID devices, support for the devices that conform to the HID
specification (Human Input Devices)

34

» Device drivers (cont)
» USB support

» Infrastructure

P Host controller drivers

P Device drivers, for devices connected to the embedded system
» Gadget controller drivers

P Gadget drivers, to let the embedded system act as a mass-storage
device, a serial port or an Ethernet adapter

» MMC/SD/SDIO support

» LED support

» Real Time Clock drivers

» Voltage and current regulators

P Staging drivers, crappy drivers being cleaned up
35

» For some categories of devices the driver is not implemented
inside the kernel

» Printers

» Scanners

» Graphics drivers used by X.org
» Some USB devices

» For these devices, the kernel only provides a mechanism to
access the hardware, the driver is implemented in userspace

» File systems

» The common Linux filesystems for block devices: ext2, ext3, ext4

P Less common filesystems: XFS, JFS, ReiserFS, GFS2, OCFS2,
Btrfs

» CD-ROM filesystems: 1ISO9660, UDF
» DOS/Windows filesystems: FAT and NTFS
» Pseudo filesystems: proc and sysfs

P Miscellanous filesystems, with amongst other Flash filesystems
such as JFFS2, UBIFS, SquashFS, cramfs

P Network filesystems, with mainly NFS and SMB/CIFS
» Kernel hacking

» Debugging features useful for kernel developers

37

Compiling and installing the kernel
for the host system

» make

» in the main kernel source directory

» Remember to run make -j 4 if you have multiple CPU cores to
speed up the compilation process

» No need to run as root !
» Generates

» vmlinux, the raw uncompressed kernel image, at the ELF format,
useful for debugging purposes, but cannot be booted

P arch/<arch>/boot/*Image, the final, usually compressed,
kernel image that can be booted

P bzImage for x86, zImage for ARM, vmImage. gz for Blackfin, etc.
> All kernel modules, spread over the kernel source tree, as . ko files.

39

» make install

P Does the installation for the host system by default, so needs to be
run as root

» Installs

» /boot/vmlinuz-<version>

Compressed kernel image. Same as the one in
arch/<arch>/boot

» /boot/System.map-<version>
Stores kernel symbol addresses

» /boot/config-<version>
Kernel configuration for this version

» Typically re-runs the bootloader configuration utility to take into
account the new kernel.

40

» make modules install

P Does the installation for the host system by default, so needs to be
run as root

» Installs all modules in /lib/modules/<version>/

» kernel/
Module . ko (Kernel Object) files, in the same directory
structure as in the sources.

P modules.alias

Module aliases for module loading utilities. Example line:
alias sound-service-?-0 snd mixer oOss

» modules.dep
Module dependencies

P modules.symbols

Tells which module a given symbol belongs to.
41

» Clean-up generated files
(to force re-compiling drivers):
make clean

» Remove all generated files. Needed when switching
from one architecture to another

Caution: also removes your .config file!
make mrproper

» Also remove editor backup and patch reject files:

(mainly to generate patches):
make distclean

Compiling and booting Linux
Linux device files

» Accessed through a sequential flow of individual

characters
» Character devices can be identified by their ¢ type

(1s -1):
crw-rw---- 1 root uucp 4, 64 Feb 23 2004 /dev/ttySO
crw--w---- 1 jdoe tty 136, 1 Feb 23 2004 /dev/pts/1
Crw——————— 1 root root 13, 32 Feb 23 2004 /dev/input/mouse0

crw-rw-rw—- 1 root root 1, 3 Feb 23 2004 /dev/null

» Example devices: keyboards, mice, parallel port, IrDA,
Bluetooth port, consoles, terminals, sound, video...

» Accessed through data blocks of a given size.
Blocks can be accessed in any order.

» Block devices can be identified by their b type (1s -1):

brw-rw——-—- 1
brw-rw——-—- 1
brw-rw——--—- 1
brw-rw——-—- 1
brw——————- 1

root
jdoe
root
root
root

disk
floppy
disk
disk
root

3,

4

(ool N\
N~ =~

4

1

R kL O O

Feb
Feb
Feb
Feb
Feb

23
23
23
23
23

2004
2004
2004
2004
2004

hdal
£dO
loop0
raml
sdal

» Example devices: hard or floppy disks, ram disks, loop
devices...

As you could see in the previous examples,
device files have 2 numbers associated to them:

» First number: major number
» Second number: minor number

» Major and minor numbers are used by the kernel to bind a

driver to the device file. Device file names don't matter to the
kernel!

» To find out which driver a device file corresponds to,
or when the device name is too cryptic,
see Documentation/devices.txt.

46

http://free-electrons.com/kerneldoc/latest/devices.txt

» Device files are not created when a driver is loaded.

» They have to be created in advance:
sudo mknod /dev/<device> [c|b] <major> <minor>

» Examples:
sudo mknod /dev/ttyS0 c 4 64
sudo mknod /dev/hdal b 3 1

» Configure your kernel
» Compile it
» Boot it on a virtual PC

» Modify a root filesystem image by
adding entries to the /dev/
directory

Compiling and booting Linux
Overall system startup

@

Bootloader

- Executed by the hardware at a fixed location in ROM / Flash

- Initializes support for the device where the kernel image is found (local storage,
network, removable media)

- Loads the kernel image in RAM

- Executes the kernel image (with a specified command line)

Kernel

- Uncompresses itself

- Initializes the kernel core and statically compiled drivers (needed to access the root
filesystem)

- Mounts the root filesystem (specified by the root kernel parameter)

- Executes the first userspace program (specified by the init kernel parameter)

First userspace program
- Configures userspace and starts up system services

The Linux kernel can be given parameters at boot time

» Kernel command line arguments are part of the bootloader
configuration settings.

» They are copied to RAM by the bootloader,
to a location where the kernel expects them.

» Useful to modify the behavior of the kernel
at boot time, without having to recompile it.

» Useful to perform advanced kernel and driver initialization,
without having to use complex user-space scripts.

HP iPAQ h2200 PDA booting example:

root=/dev/ram0 \ Root filesystem (first ramdisk)
rw \ Root filesystem mounting mode
init=/linuxrc \ First userspace program
console=ttyS0,115200n8 \ Console (serial)
console=tty0 \ Other console (framebuffer)
ramdisk size=8192 \ Misc parameters...

cachepolicy=writethrough

Hundreds of command line parameters described on
Documentation/kernel-parameters.txt

http://free-electrons.com/kerneldoc/latest/kernel-parameters.txt

» Assumption that all device drivers needed to mount the root
filesystem (storage and filesystem drivers) are statically compiled
iInside the kernel.

» Assumption can be correct for most embedded systems, where
the hardware is known and the kernel can be fine-tuned for the
system.

» Assumption is mostly wrong for desktop and servers, since a
single kernel image should support a wide range of devices and
filesystems

» More flexibility was needed

» Modules have this flexibility, but they are not available before
mounting the root filesystem

» Need to handle complex setups (RAID, NFS, etc.)

53

» A solution is to include a small temporary root filesystem with
modules, in the kernel itself. This small filesystem is called the
initramfs.

» This initramfs is a gzipped cpio archive of this basic root filesystem
» A gzipped cpio archive is a kind of zip file, with a much simpler format

» The initramfs scripts will detect the hardware, load the
corresponding kernel modules, and mount the real root filesystem.

» Finally the initramfs scripts will run the init application in the real root
filesystem and the system can boot as usual.

» The initramfs technique completely replaces init ramdisks (initrds).
Initrds were used in Linux 2.4, but are no longer needed.

54

Booting sequence with initramfs

>

Bootloader

- Executed by the hardware at a fixed location in ROM / Flash

- Initializes support for the device where the images are found (local storage, network, removable media)
- Loads the kernel image in RAM

- Executes the kernel image (with a specified command line)

unchanged

Kernel
- Uncompresses itself v
- Initializes the kernel core and statically compiled drivers — === === === == == e— e— e - —

- Uncompresses an initramfs cpio archive (if existing, in the kernel image or copied to memory by the

bootloader) and extracts it to the kernel file cache (no mounting, no filesystem).

- If found in the initramfs, executes the first userspace program: /init

Userspace: /init script (what follows is just a typical scenario)
- Runs userspace commands to configure the device

(such as network setup, mounting /proc and /sys...)

- Mounts a new root filesystem. Switch to it (switch root)

- Runs /sbin/init

Userspace: /sbin/init
- Runs commands to configure the device (if not done yet in the initramfs)
- Starts up system services (daemons, servers) and user programs

55

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com

» Root filesystem directly embedded in the kernel image, or copied
to RAM by the bootloader, simple solution.

» Just a plain compressed cpio archive extracted in the file cache.
Neither needs a block nor a filesystem driver.

» Simpler to mount complex filesystems from flexible userspace
scripts rather than from rigid kernel code. More complexity
moved out to user-space!

» Possible to add non GPL files (firmware, proprietary drivers)
in the filesystem. This is not linking, just file aggregation
(not considered as a derived work by the GPL).

Using CONFIG INITRAMFS SOURCE
In kernel configuration (General Setup section)

» Either give an existing cpio archive
(file name ending with .cpio)

» Or give a directory to be archived.

» Any other regular file will be taken as a text specification file
(see next page).

see Documentation/filesystems/ramfs-rootfs-initramfs.txt
and Documentation/early-userspace/README in kernel sources.

See also http://www.linuxdevices.com/articles/AT4017834659.html for a nice
overview of initramfs (by Rob Landley).

57

http://free-electrons.com/kerneldoc/latest/filesystems/ramfs-rootfs-initramfs.txt
http://free-electrons.com/kerneldoc/latest/early-userspace/README
http://www.linuxdevices.com/articles/AT4017834659.html

major minor
dir /dev 755 0 0 4 v

nod /dev/console 644 0 0 ¢ 5 1
nod /dev/loop0 644 0 0 b 7 0
dir /bin 755 1000 1000 +

file /bin/busybox /stuff/initramfs/busybox 755 0 0
slink /bin/sh busybox 777 0 0

dir /proc 755 0 O

dir /sys 755 0 0

dir /mnt 755 0 0

file /init /stuff/initramfs/init.sh 755 0 0

permissions

No need for root user access! ? \ _
user id group id

» For embedded systems, two interesting solutions

» No initramfs: all needed drivers are included inside the kernel,
and the final root filesystem is mounted directly

» Everything inside the initramfs

Compiling and booting Linux
Root filesystem over NFS

Once networking works, your root filesystem could be a directory
on your GNU/Linux development host, exported by NFS (Network
File System). This is very convenient for system development:

» Makes it very easy to update files (driver modules in particular)
on the root filesystem, without rebooting. Much faster than
through the serial port.

» Can have a big root filesystem even if you don't have support
for internal or external storage yet.

» The root filesystem can be huge. You can even build native
compiler tools and build all the tools you need on the target
itself (better to cross-compile though).

@

On the host (NFS server)

» Install an NFS server (example: Debian, Ubuntu)
sudo apt-get install nfs-kernel-server

» Add the exported directory to your /etc/exports file:

/home/rootfs 192.168.1.111(rw,no _root squash,no subtree check)

client address NFS server options

» Start or restart your NFS server (example: Debian, Ubuntu)
sudo /etc/init.d/nfs-kernel-server restart

On the target (NFS client)

» Compile your kernel with CONFIG NFS FS=y,
CONFIG IP PNP=y (configure |IP at boot time)
and CONFIG ROOT NFS=y

» Boot the kernel with the below command line options:
root=/dev/nfs

virtual device
ip=192.168.1.111

local IP address
nfsroot=192.168.1.110:/home/nfsroot

NFS server IP address Directory on the NFS server

Compiling and booting Linux
Cross-compiling the kernel

When you compile a Linux kernel for another CPU architecture

» Much faster than compiling natively, when the target system is
much slower than your GNU/Linux workstation.

» Much easier as development tools for your GNU/Linux
workstation are much easier to find.

» To make the difference with a native compiler, cross-compiler
executables are prefixed by the name of the target system,
architecture and sometimes library. Examples:
mips-linux-gcc
m68k-linux-uclibc-gcc
arm-linux-gnueabi-gcc

The CPU architecture and cross-compiler prefix are defined through
the ARCH and CROSS_COMPILE variables in the toplevel Makefile.

» The Makefile defines CC = $(CROSS COMPILE)gcc
See comments in Makefile for details

» The easiest solution is to modify the Makefile.

Example, ARM platform, cross-compiler: arm-1inux-gcc
ARCH 7= arm
CROSS COMPILE ?= arm-linux-

» Other solutions
» Pass ARCH and CROSS_COMPILE on the make command line
» Define ARCH and CROSS_COMPILE as environment variables

» Don't forget to have the values properly set at all steps, otherwise the
kernel configuration and build system gets confused

66

make xconfig
» Same as in native compiling

» The set of available options will be different

» Don't forget to set the right board / machine type!

@

assabet defconfig
badge4 defconfig
bast defconfig
cerfcube defconfig
clps7500 defconfig
ebsall0 defconfig
edb7211 defconfig
enp2611 defconfig
ep80219 defconfig
epxalOdb defconfig
footbridge defconfig
fortunet defconfig
h3600 defconfig
h7201 defconfig
h7202 defconfig
hackkit defconfig

integrator defconfig
1g31244 defconfig
1980321 defconfig
1980331 defconfig
1980332 defconfig
ixdp2400 defconfig
ixdp2401 defconfig
ixdp2800 defconfig
ixdp2801 defconfig
ixp4xx defconfig
jornada720 defconfig
lart defconfig
1pd7a400 defconfig
lpd7a404 defconfig
lubbock defconfig
lus1l7200 defconfig

arch/arm/configs example

mainstone defconfig
mxlads defconfig
neponset defconfig
netwinder defconfig
omap h2 1610 defconfig
omnimeter defconfig
pleb defconfig
pxa255-idp defconfig
rpc_defconfig
s3c2410 defconfig
shannon defconfig
shark defconfig
simpad defconfig
smdk2410 defconfig
versatile defconfig

68

http://lxr.free-electrons.com/source/arch/arm/configs/

@

» Default configuration files available for many boards / machines!
Check if one exists in arch/<arch>/configs/ for your target.

» Example: if you found an acme defconfig file, you can run:
make acme defconfig

» Using arch/<arch>/configs/ is a very good good way of
releasing a default configuration file for a group of users or
developers.

Like all make commands, you must
run make <machine> defconfig
In the toplevel source directory.

» Run

make

» Copy

arch/<arch>/boot/zImage
to the target storage

» You can customize arch/<arch>/boot/install.sh SO
that make install does this automatically for you.

» make INSTALL MOD PATH=<dir>/ modules install
and copy <dir>/lib/modules/ t0o /1lib/modules/ on
the target storage.

» Set up a cross-compiling
environment

» Configure the kernel Makefile
accordingly

» Cross-compile the kernel for an arm
target platform

» On this platform, interact with the
bootloader and boot your kernel.

Using kernel modules

» Modules: add a given functionality to the kernel (drivers,
filesystem support, and many others).

» Can be loaded and unloaded at any time, only when their
functionality is need.

» Modules make it easy to develop drivers without rebooting:
load, test, unload, rebuild, load...

» Useful to keep the kernel image size to the minimum (essential
in GNU/Linux distributions for PCs).

» Also useful to reduce boot time: you don't spend time initializing
devices and kernel features that you only need later.

» Caution: once loaded, have full access to the whole kernel
address space. No particular protection.

73

» Some kernel modules can depend on other modules,
which need to be loaded first.

» Example: the usb-storage module depends on the scsi mod,
libusual and usbcore modules.

» Dependencies are described
IN /1lib/modules/<kernel-version>/modules.dep
This file is generated when you run make modules install.

When a new module is loaded,
related information is available in the kernel log.

» The kernel keeps its messages in a circular buffer
(so that it doesn't consume more memory with many messages)

» Kernel log messages are available through the dmesg command.
(“diagnostic message”)

» Kernel log messages are also displayed in the system console
(console messages can be filtered by level using the 1loglevel
kernel, or completely disabled with the quiet parameter).

» Note that you can write to the kernel log from userspace too:
echo “Debug info” > /dev/kmsg

75

» modinfo <module name>
modinfo <module path>.ko

Gets information about a module: parameters, license,
description and dependencies.
Very useful before deciding to load a module or not.

» sudo insmod <module path>.ko
Tries to load the given module. The full path to the module
object file must be given.

» When loading a module fails,
insmod often doesn't give you enough details!

» Details are often available in the kernel log.

» Example:
> sudo insmod ./intr monitor.ko
insmod: error inserting './intr monitor.ko': -1
Device or resource busy
> dmesg

[17549774.552000] Failed to register handler for
irqg channel 2

» sudo modprobe <module name>
Most common usage of modprobe: tries to load all the
modules the given module depends on, and then this
module. Lots of other options are available. Modprobe
automatically looks in /1ib/modules/<version>/ for the
object file corresponding to the given module name.

» 1smod
Displays the list of loaded modules
Compare its output with the contents of
/proc/modules!

» sudo rmmod <module name>
Tries to remove the given module.
Will only be allowed if the module is no longer in use
(for example, no more processes opening a device file)

» sudo modprobe -r <module name>
Tries to remove the given module and all dependent
modules (which are no longer needed after
the module removal)

@

P Find available parameters:
modinfo snd-intel8x0m

» Through insmod:
sudo insmod ./snd-intel8x0m.ko index=-2

» Through modprobe:
Set parameters in /etc/modprobe.conf orin any file in

/etc/modprobe.d/:
options snd-intel8x0m index=-2

P Through the kernel command line,

when the driver is built statically into the kernel:
snd-intel8x0m. index=-2

} T !
driver name

driver parameter name
driver parameter value

80

Linux Kernel in a Nutshell, Dec 2006

» By Greg Kroah-Hartman, O'Reilly
http://www.kroah.com/lkn/

» A good reference book and guide on configuring,
compiling and managing the Linux kernel sources.

» Freely available on-line!
Great companion to the printed book
for easy electronic searches!
Available as single PDF file on
http://free-electrons.com/community/kernel/lkn/

KERNEL

IN A NUTSHELL
A Oxsleioge Quidcd Refirerioe

O'REILLY" T

http://www.kroah.com/lkn/
http://free-electrons.com/community/kernel/lkn/

Free Electrons

Embedded Freedom

Recent blog posts

ELC Europe in Grenohle Maost of the below documents are presentations used in our t

conferences.

s, ar in technical

Free Electrons at ELC
License
Linux kernel 2.6.29 - New

features for embedded ShareAlike 3.0 license. This essentially means that you are free to download, distribute

@ All our documents are available under the terms of the Creative Commaons Attribution-

and even modify

them, provided you mention us as the original authors and that you

users -
share these documents under the same conditions.

The Buildroot project Linux kernel

begins a new life

Embedded Linux kernel and driver development
6 (since 2.6.10)

New features in Linux 2

FOSDEM 2009 videos

« Kernel initialization
USE-Ethernet device for . hardware
» Power management in Linux

Linusx

Frogram far Embedded Block device drivers

Linux Conference 2008

documents

announced

Public session changes

Real hardware in our
Embedded Linux system development
training sessions
« Embedded Linux system development
Call for presentations for = Real time in embedded Linux systems
Elack filesystems

the LSM embedded track

Free software development tools
r
+ The GRUE hootloader
+ The biok boatloader

Introduction to uClinux

Embedded Linux aptimizations
= Audio in embedded Linux systems

= Multimedia in embedded Linux systems
= Embedded Linux From Scratch... in 40 minutes!

. embedded Linux systams with Buildroot
Developing embedded distributions with OpenEmbedded
= The Scratchbox development environment

Miscellaneous

= Introduction to the Unix command line

wirtualization solutions (with an embedded perspectivel
= Advantages of Free Software and Open Source in embedded systems
= Introduction to GNU/Linux and Free Software

All our technical presentations
on http://free-electrons.com/docs

» Linux kernel

» Device drivers

» Architecture specifics

» Embedded Linux system development

http://free-electrons.com/docs

You can help us to improve and maintain this document...

» By sending corrections, suggestions, contributions and
translations

» By asking your organization to order development, consulting
and training services performed by the authors of these
documents (see http://free-electrons.com/).

» By sharing this document with your friends, colleagues
and with the local Free Software community.

» By adding links on your website to our on-line materials,
to increase their visibility in search engine results.

http://free-electrons.com/

Linux kernel

Linux device drivers

Board support code
Mainstreaming kernel code
Kernel debugging

Embedded Linux Training
All materials released with a free license!

Unix and GNU/Linux basics

Linux kernel and drivers development
Real-time Linux, uClinux

Development and profiling tools
Lightweight tools for embedded systems
Root filesystem creation

Audio and multimedia

System optimization

Free Electrons

Our services

Custom Development

System integration

Embedded Linux demos and prototypes
System optimization

Application and interface development

Consulting and technical support

Help in decision making

System architecture

System design and performance review
Development tool and application support
Investigating issues and fixing tool bugs

. .’ Free Electrons

Embedded Linux Experts

