@

Embedded Linux
kernel and driver
development

Sebastien Jan
Michael Opdenacker
Thomas Petazzoni
Free Electrons

© Copyright 2004-2011, Free Electrons.

Creative Commons BY-SA 3.0 license

Latest update: Mar 2, 2011,

Document sources, updates and translations:
http://free-electrons.com/docs/kernel

Corrections, suggestions, contributions and translations are welcome!

Free Electrons

Embedded Linux
Developers

http://free-electrons.com/docs/kernel

Driver development

» Loadable kernel modules
» Memory management

» |/O memory and ports

» Character drivers

» Processes and scheduling

» Sleeping, Interrupt management
» Handling concurrency

» Debugging

» mmap

» Device and driver model

Driver development
Loadable kernel modules

@

/* hello.c */

#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>

static int _ init hello init(void)

{
printk (KERN ALERT "Good morrow");
printk (KERN ALERT "to this fair assembly.\n");
return 0;

}

static void _ exit hello exit(void)

{
printk (KERN_ALERT "Alas, poor world, what treasure");
printk (KERN_ALERT "hast thou lost!\n");

}

module init(hello init);

module exit(hello exit);

MODULE LICENSE ("GPL");

MODULE DESCRIPTION(" Greeting module");
MODULE AUTHOR("William Shakespeare");

Example available on http://free-electrons.com/doc/c/hello.c

__init:
removed after initialization
(static kernel or module).

__exit: discarded when
module compiled statically
into the kernel.

http://lxr.free-electrons.com/source/include/linux/init.h
http://lxr.free-electrons.com/source/include/linux/module.h
http://lxr.free-electrons.com/source/include/linux/kernel.h
http://lxr.free-electrons.com/ident?i=__init
http://lxr.free-electrons.com/ident?i=printk
http://lxr.free-electrons.com/ident?i=KERN_ALERT
http://lxr.free-electrons.com/ident?i=printk
http://lxr.free-electrons.com/ident?i=KERN_ALERT
http://lxr.free-electrons.com/ident?i=__exit
http://lxr.free-electrons.com/ident?i=printk
http://lxr.free-electrons.com/ident?i=KERN_ALERT
http://lxr.free-electrons.com/ident?i=printk
http://lxr.free-electrons.com/ident?i=KERN_ALERT
http://lxr.free-electrons.com/ident?i=module_init
http://lxr.free-electrons.com/ident?i=module_exit
http://lxr.free-electrons.com/ident?i=MODULE_LICENSE
http://lxr.free-electrons.com/ident?i=MODULE_DESCRIPTION
http://lxr.free-electrons.com/ident?i=MODULE_AUTHOR
http://lxr.free-electrons.com/ident?i=__init
http://lxr.free-electrons.com/ident?i=__exit
http://free-electrons.com/doc/c/hello.c

» Headers specific to the Linux kernel: <linux/xxx.h>
» No access to the usual C library, we're doing kernel programming
» An initialization function

» Called when the module is loaded, returns an error code (0 on
success, negative value on failure)

» Declared by the module init () macro: the name of the function
doesn't matter, even though modulename init () is a convention.

» A cleanup function
» Called when the module is unloaded
» Declared by the module exit () macro.

» Metadata informations declared using MODULE LICENSE(),
MODULE DESCRIPTION() and MODULE AUTHOR()

5

» From a kernel module,
only a limited number of kernel functions can be called

» Functions and variables have to be explicitly exported
by the kernel to be visible from a kernel module

» Two macros are used in the kernel
to export functions and variables:

» EXPORT SYMBOL(symbolname), which exports a
function or variable to all modules

» EXPORT SYMBOL GPL(symbolname), which exports a
function or variable only to GPL modules

» A normal driver should not need any non-exported function.

6

» Several usages

P Used to restrict the kernel functions that the module can use if it
isn't a GPL-licensed module

P Difference between EXPORT SYMBOL () and
EXPORT SYMBOL GPL()

» Used by kernel developers to identify issues coming from
proprietary drivers, which they can't do anything about
(“Tainted” kernel notice in kernel crashes and oopses).

» Useful for users to check that their system is 100% free
(check /proc/sys/kernel/tainted)

» Values

» GPL, GPL v2, GPL and additional rights, Dual MIT/GPL, Dual
BSD/GPL, Dual MPL/GPL, Proprietary

8

» Two solutions
» « Out of tree »

P When the code is outside of the kernel source tree, in a different
directory

P Advantage: Might be easier to handle than modifications to the kernel
itself

P Drawbacks: Not integrated to the kernel configuration/compilation
process, needs to be built separately, the driver cannot be built
statically

P Inside the kernel tree

P Well integrated into the kernel configuration/compilation process
» Driver can be built statically if needed

@

» The below Makefile should be reusable for any single-file

out-of-tree Linux 2.6 module
» The source fileis hello.c
» Just run make to build the hello.ko file

» Caution: make sure there is a [Tab] character at the

beginning of the $ (MAKE) line (make syntax)

ifneq ($(KERNELRELEASE),)

obj-m := hello.o /
else
[Tab]! KDIR := /path/to/kernel/source

(no spaces) all:
-5 S (MAKE) -C S$(KDIR) M= pwd modules

endif

Either

- full kernel
source directory
(configured and
compiled)

- or just kernel
headers directory
(minimum
needed)

Compiling an out-of-tree module (2)

Step 1: the module Makefile is interpreted with KERNELRELEASE undefined,
so it calls the kernel Makefile, passing the module directory in the M variable

Module source Kernel source
/path/to/module source /path/to/kernel source
hello.c drivers

hello.ko kernel
Makefile include
Makefile

|

Step 2: the kernel Makefile knows how to compile a module, and thanks to the
M variable, knows where the Makefile for our module is. The module Makefile
IS Interpreted with KERNELRELEASE defined, so the kernel sees the obj-m
definition.

11

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com

» To be compiled, a kernel module needs access to the kernel
headers, containing the functions, types and constants definitions

» Two solutions

» Full kernel sources

» Only kernel headers (1inux-headers-* packages in
Debian/Ubuntu distributions)

» The sources or headers must be configured
» Many macros or functions depend on the configuration

» A kernel module compiled against version X of kernel headers
will not load in kernel version Y

P modprobe/insmod will say « Invalid module format »

12

@

To add a new driver to the kernel sources:

» Add your new source file to the appropriate source directory.
Example: drivers/usb/serial/navman.c

» Single file drivers in the common case, even if the file is several
thousand lines of code. Only really big drivers are split in several
files or have their own directory.

» Describe the configuration interface for your new driver
by adding the following lines to the Kconfig file in this directory:

config USB SERIAL NAVMAN
tristate "USB Navman GPS device"
depends on USB SERIAL
help
To compile this driver as a module, choose M here: the
module will be called navman.

13

» Add a line in the Makefile file based on the Kconfig setting:
obj-$ (CONFIG USB SERIAL NAVMAN) += navman.o

It tells the kernel build system to build navman . c when the
USB_SERIAL NAVMAN option is enabled. It works both if compiled
statically or as a module.

» Run make xconfig and see your new options!

» Run make and your new files are compiled!

» See Documentation/kbuild/ for details and more elaborate
examples like drivers with several source files, or drivers in their
own subdirectory, etc.

@

» The old school way

P Before making your changes, make sure you have two kernel trees
cp -a linux-2.6.37/ linux-2.6.37-patch/

» Make your changes in 1inux-2.6.37-patch/
P Run make distclean to keep only source files.

P Create a patch file:
diff -Nur linux-2.6.37/ \
linux-2.6.37-patch/ > patchfile

P Not practical, does not scale to multiple patches

» The new school ways
P Use quilt (tool to manage a stack of patches)

P Use git (revision control system used by the Linux kernel developers)

Thanks to Nicolas Rougier (Copyright 2003,
http://webloria.loria.fr/~rougier/) for the Tux image 15

http://webloria.loria.fr/~rougier/

hello module with parameters

/* hello param.c */

#include <linux/init.h> Thanks to
#include <linux/module.h> Jonathan Corbet
#include <linux/moduleparam.h> for the example!

MODULE LICENSE("GPL");

/* A couple of parameters that can be passed in: how many times we say
hello, and to whom */

static char *whom = "world";
module param(whom, charp, 0);

static int howmany = 1;
module param(howmany, int,

static int init hello init(void)

L.
int 1;
for (i = 0; i < howmany; i++)
printk (KERN ALERT " (%d) Hello, %s\n", i, whom);
return 0;
}

static void _ exit hello exit(void)

printk (KERN_ALERT "Goodbye, cruel %s\n", whom);

module init(hello init);
module exit(hello exit);

Example available on http://free-electrons.com/doc/c/hello_param.c
16

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com

http://lxr.free-electrons.com/source/include/linux/init.h
http://lxr.free-electrons.com/source/include/linux/module.h
http://lxr.free-electrons.com/source/include/linux/moduleparam.h
http://lxr.free-electrons.com/ident?i=MODULE_LICENSE
http://lxr.free-electrons.com/ident?i=module_param
http://lxr.free-electrons.com/ident?i=module_param
http://lxr.free-electrons.com/ident?i=__init
http://lxr.free-electrons.com/ident?i=__printk
http://lxr.free-electrons.com/ident?i=KERN_ALERT
http://lxr.free-electrons.com/ident?i=__exit
http://lxr.free-electrons.com/ident?i=__printk
http://lxr.free-electrons.com/ident?i=KERN_ALERT
http://lxr.free-electrons.com/ident?i=module_init
http://lxr.free-electrons.com/ident?i=module_exit
http://free-electrons.com/doc/c/hello_param.c

@

#include <linux/moduleparam.h>

module param(
/* name of an already defined variable */

name,
type, /* either byte, short, ushort, int, uint, long,
ulong, charp, or bool.
(checked at compile time!) */
perm [* for /sys/module/<module name>/parameters/<param>
0: no such module parameter value file */
)i
Example

int irqg=5;
module param(irqg, int, S IRUGO);

Modules parameter arrays are also possible with
module param array (), butthey are less common.
17

» Write a kernel module with several
capabilities, including module
parameters.

» Access kernel internals from your
module.

» Setup the environment to compile it

Driver development
Memory management

B

Physical address space

OXFFFFFFFF

I/O memory 3

I/O memory 2

I/O memory 1

Flash

RAM 1

RAM 0

0x00000000

OXFFFFFFFFF

Memory
Management

Unit 0x00000000

All the processes have their
own virtual address space, and
run as if they had access to the
whole address space.

Virtual address spaces

OXFFFFFFFF

0xC0000000

Process|1

0x00000000

OXFFFFFFFF

0xC0000000

Process?2

0x00000000

Kernel

Kernel

OXFFFFFFFF

» 1GB reserved for kernel-space

Kernel P Contains kernel code and core data structures,
identical in all address spaces

0%C0000000 » Most memory can be a direct mapping of physical
memory at a fixed offset

P Complete 3GB exclusive mapping available for each
user-space process

P Process code and data (program, stack, ...)
Process n » Memory-mapped files

P Not necessarily mapped to physical memory
(demand fault paging used for dynamic mapping to
physical memory pages)

P Differs from one address space to the other

0x00000000

21

Physical address space

OXFFFFFFFF

0x00000000

I/O memory

Virtual address space

Kernel

Process n

OXFFFFFFFF

0xC0000000

OXOOOOOO%

» Only less than 1GB memory address-able directly through kernel
virtual address space

» If more physical memory is present on the platform:

» Part of the memory will not be access-able by kernel space, but can
be used by user-space

» To allow kernel to access to more physical memory:

P Change 1GB/3GB memory split (2GB/2GB) ? => but reduces total
memory available for each process

P Change for a 64bits architecture ;-)
P Activate the 'highmem' support if available for your architecture:

P Allows kernel to map parts of its non-directly access-able memory
P Mapping must be requested explicitly
P Limited addresses ranges reserved for this usage

23

» If your 32bits platform hosts more than 4GB, they just
cannot be mapped

» The PAE (Physical Address Expansion) may be supported
by your architecture

» Adds some address extension bits used to index memory
areas

» Allows accessing up to 64GB of physical memory by 4GB
pages

» Note that each user-space process is still limited to a 3GB
memory space

24

» New user-space memory is allocated either from the already
allocated process memory, or using the mmap system call

» Note that memory allocated may not be physically allocated:

> Kernel uses demand fault paging to allocate the physical page (the
physical page is allocated when access to the virtual address
generates a page fault)

» ... or may have been swapped out, which also induces a page fault

» User space memory allocation is allowed to over-commit memory
(more than available physical memory) => can lead to out of
memory

» OOM Kkiller enters in action and selects a process to kill to retrieve
some memory

25

» Kernel memory allocators (see following slides) allocate physical
pages, and kernel allocated memory cannot be swapped out, so
no fault handling required for kernel memory

» Most kernel memory allocation functions also return a kernel
virtual address to be used within the kernel space

» Kernel memory low-level allocator manages pages. This is the
finest granularity (usually 4kB, architecture dependent)

» However, the kernel memory management handles smaller
memory allocations through its allocator (see slabs / SLUB
allocator — used by kmalloc)

Allocators in the kernel

Some kernel code

' '

kmalloc() allocator vmalloc() allocator
Uses a set of anonymous Non-physically contiguous
SLAB caches. memory

Y

SLAB allocator

Allows to create caches, each cache storing objects of the same
size. Size can be lower or greater than a page size.

Page allocator

Allows to allocate contiguous areas of physical pages (4k, 8k, 16k, 32k, etc.)

27

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com

» Appropriate for large allocations

> A page is usually 4K, but can be made greater in some architectures
(sh, mips: 4, 8, 16 or 64K, but not configurable in 1386 or arm).

» Buddy allocator strategy, so only allocations of power of two number of
pages are possible: 1 page, 2 pages, 4 pages, 8 pages, 16 pages, etc.

» Typical maximum size is 8192 KB, but it might depend on the kernel
configuration.

» The allocated area is virtually contiguous (of course), but also
physically contiguous. It is allocated in the identity-mapped part of the
kernel memory space.

» This means that large areas may not be available or hard to retrieve
due to physical memory fragmentation.

28

P unsigned long get zeroed page(int flags);
Returns the virtual address of a free page, initialized to zero

P unsigned long get free page(int flags);
Same, but doesn't initialize the contents

P unsigned long get free pages(int flags,
R B B unsigned int order);
Returns the starting virtual address of an area of several contiguous
pages in physical RAM, with order being
log2 (<number of pages>).Can be computed from the size with
the get order () function.

P void free page(unsigned long addr);
Frees one page.

P void free pages(unsigned long addr,
unsigned int order);

Frees multiple pages. Need to use the same order as in allocation.
29

http://lxr.free-electrons.com/ident?i=get_zeroed_page
http://lxr.free-electrons.com/ident?i=__get_free_page
http://lxr.free-electrons.com/ident?i=__get_free_pages
http://lxr.free-electrons.com/ident?i=free_page
http://lxr.free-electrons.com/ident?i=free_pages

The most common ones are:

» GFP_KERNEL

Standard kernel memory allocation. The allocation may block in order
to find enough available memory. Fine for most needs, except in
interrupt handler context.

» GFP_ATOMIC
RAM allocated from code which is not allowed to block (interrupt
handlers or critical sections). Never blocks, allows to access emegency
pools, but can fail if no free memory is readily available.

» GFP_DMA

Allocates memory in an area of the physical memory usable for DMA
transfers.

P Others are defined in include/linux/gfp.h (GFP:
__get free pages).

30

http://lxr.free-electrons.com/ident?i=GFP_KERNEL
http://lxr.free-electrons.com/ident?i=GFP_ATOMIC
http://lxr.free-electrons.com/ident?i=GFP_DMA
http://lxr.free-electrons.com/source/include/linux/gfp.h
http://lxr.free-electrons.com/ident?i=__get_free_pages

» The SLAB allocator allows to create caches, which contains a
set of objects of the same size

» The object size can be smaller or greater than the page size

» The SLAB allocator takes care of growing or reducing the size
of the cache as needed, depending on the number of allocated
objects. It uses the page allocator to allocate and free pages.

» SLAB caches are used for data structures that are present in
many many instances in the kernel: directory entries, file
objects, network packet descriptors, process descriptors, etc.

» See /proc/slabinfo
» They are rarely used for individual drivers.
» See include/linux/slab.h for the API

31

] | I Cache 1
- = - - - Objects of 512 bytes
—> —
] L
\ 4 KB page Allocated 512 bytes object

Cache 2
. . Objects of 1024
B g ™ bytes

Free 1024 bytes object

32

There are three different, but APl compatible, implementations of a SLAB
allocator in the Linux kernel. A particular implementation is choosen at
configuration time.

» SLAB: original, well proven allocator in Linux 2.6.

» SLOB: much simpler. More space efficient but doesn't scale well. Saves
a few hundreds of KB in small systems (depends on
CONFIG_ EMBEDDED)

» SLUB: the new default allocator since 2.6.23, simpler than SLAB,
scaling much better (in particular for huge systems) and creating less

fragmentation.
= Choose SLAB allocator (NEW)
@ SLAB SLAB
@mSLUB (Unqueued Allocator) (NEW) SLUB
o SLOB (Simple Allocator) SLOB

33

» The kmalloc allocator is the general purpose memory allocator in
the Linux kernel, for objects from 8 bytes to 128 KB

» For small sizes, it relies on generic SLAB caches, named
kmalloc-XXXIn /proc/slabinfo

» For larger sizes, it relies on the page allocator
» The allocated area is guaranteed to be physically contiguous

» The allocated area size is rounded up to the next power of two
size (while using the SLAB allocator directly allows to have more
flexibility)

P It uses the same flags as the page allocator (GFP_KERNEL,
GFP_ATOMIC, GFP_DMA, etc.) with the same semantics.

» Should be used as the primary allocator unless there is a strong
reason to use another one.
34

P #include <linux/slab.h>

P void *kmalloc(size t size, int flags);
Allocate size bytes, and return a pointer to the area (virtual
address)
size: number of bytes to allocate
flags: same flags as the page allocator

» void kfree (const void *obijp);
Free an allocated area

P Example: (drivers/infiniband/core/cache.c)
struct ib update work *work;
work = kmalloc(sizeof *work, GFP_ATOMIC);

kfree(work);

35

» void *kzalloc(size t size, gfp t flags);
Allocates a zero-initialized buffer

» void *kcalloc(size t n, size t size,
gfp:t flags) ;_
Allocates memory for an array of n elements of size size,
and zeroes its contents.

» void *krealloc(const void *p, size t new size,
gfp t flags); B B
Changes the size of the buffer pointed by p to new size, by
reallocating a new buffer and copying the data, unless the
new size fits within the alignment of the existing buffer.

36

» The vmalloc allocator can be used to obtain virtually
contiguous memory zones, but not physically contiguous.
The requested memory size is rounded up to the next page.

» The allocated area is in the kernel space part of the address
space, but outside of the identically-mapped area

» Allocations of fairly large areas is possible, since physical
memory fragmentation is not an issue, but areas cannot be
used for DMA, as DMA usually requires physically
contiguous buffers.

» APl in <linux/vmalloc.h>

»void *vmalloc(unsigned long size);
Returns a virtual address

»void vfree(void *addr);

37

Debugging features available since 2.6.31

» Kmemcheck
Dynamic checker for access to uninitialized memory.
Only available on x86 so far, but will help to improve architecture

Independent code anyway.
See Documentation/kmemcheck.ixt for details.

» Kmemleak
Dynamic checker for memory leaks
This feature is available for all architectures.
See Documentation/kmemleak.ixt for details.

Both have a significant overhead. Only use them in development!

http://free-electrons.com/kerneldoc/latest/kmemcheck.txt
http://free-electrons.com/kerneldoc/latest/kmemleak.txt

Driver development
Useful general-purpose kernel APls

» In<linux/string.h>

» Memory-related: memset, memcpy, memmove,
memscan, memcmp, memchr

» String-related: strcpy, strcat, strcmp, strchr,
strrchr, strlen and variants

» Allocate and copy a string: kstrdup, kstrndup
P Allocate and copy a memory area: kmemdup
» In<linux/kernel.h>

» String to int conversion: simple strtoul,
simple strtol, simple strtoull,
simple strtoll

» Other string functions: sprintf, sscanf

40

» Convenient linked-list facility in <1inux/list.h>

P Used in thousands of places in the kernel

P Add a struct list head member to the structure whose instances
will be part of the linked list. It is usually named node when each
instance needs to only be part of a single list.

» Define the list with the LIST HEAD macro for a global list, or define a
struct list head element and initialize it with INIT LIST HEAD
for lists embedded in a structure.

P Then use the 1ist_* () APl to manipulate the list
P Add elements: 1ist add(), list add tail()

» Remove, move or replace elements: 1ist del(),
list move(), list move tail(), list replace()

P Test the list: 1ist empty()

P lterate over the list: 1ist for each * () family of macros
41

Linked lists example

From include/linux/atmel_tc.h

struct atmel tc
/* some members */ Definition of a list element, with a

1li h . .
s SRS AN nEet] neRE struct list head member

From drivers/misc/atmel tclib.c
static LIST HEAD(tc list); €«—— The g|oba| list

struct atmel tc *atmel tc alloc(unsigned block, const char *name) ({
struct atmel tc *tc;

list for each entry W
/* Do something with tc * lterate over the list elements

[ooo]
}

static int _ init tc_probe(struct platform device *pdev) ({
struct atmel tc *tc;
tc = kzalloc(sizeof(struct atmel tc), GFP_KERNEL);
list add tail(&tc->node, &tc_list);

Add an element to the list

42

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com

Driver development
/O memory and ports

MMIO PIO

» Same address bus to address P Different address spaces for
memory and I/O devices memory and I/O devices

» Access to the I/O devices » Uses a special class of CPU
using regular instructions instructions to access 1/0O

. devices

» Most widely used I/O method
across the different » Example on x86: IN and OUT
architectures supported by Instructions

Linux

RAM

Physical memory Separate I/O address space,
address space, accessed with normal accessed with specific CPU
load/store instructions instructions

@

/proc/ioports example (x86) » Tells the kernel which driver is using which
0000-001f : dmal /O ports

0020-0021 : picl
0040-0043 : timer0

0050-0053 iif,fiird » Allows to prevent other drivers from using the
0070-0077 : rtc same 1/O ports, but is purely voluntary.

0080-008f : dma page reg
00a0-00al : pic2

00c0-00df : dma2 P struct resource *request region(
00£f0-00ff : fpu >

0100-013f : pcmcia socket0 uns:!.gned long Start’

0170-0177 & idel g unsigned long len,

01£f0-01£f7 : ideO

0376-0376 : idel char *name);

0378-037a : t0 . . .

0360-03df : vami Tries to reserve the given region and returns
03f6-03f6 : ide0 1

oateoare . ool | NULL if unsuccgssful.

0800-087f : 0000:00:1£.0 request region(0x0170, 8, "idel");
0800-0803 : PMla EVT BLK —

0804-0805 : PMla CNT BLK . .

0808-080b : PM TMR » void release region(

0820-0820 : PM2 CNT BLK unsigned long start,

0828-082f : GPEO_BLK .
unsigned long len);

46

@

» Functions to read/write bytes (b), word (w) and longs (1) to I/O

ports:
unsigned in[bwl](unsigned long *addr);
void out[bwl] (unsigned port, unsigned long *addr);

» And the strings variants: often more efficient than the

corresponding C loop, if the processor supports such operations!
void ins[bwl](unsigned port, void *addr,

unsigned long count);
void outs[bwl](unsigned port, void *addr,

unsigned long count);

» Examples

» read 8 bits
oldlcr = inb(baseio + UART LCR);

P write 8 bits
outb (MOXA MUST ENTER ENCHANCE, baseio + UART LCR);

47

B

/proc/iomem example

00000000-0009efff
0009f000-0009ffff
000a0000-000bEffff
000c0000-000cffff
000f0000-000f£f£fff
00100000-3ffadfff

00100000-0030afff
0030b000-003b4bff

3ffae000-3ff£f£ffff
40000000-400003ff
40001000-40001fff

40001000-40001f£ff

40002000-40002fff

40002000-40002fff

40400000-407£f£f£fff
40800000-40bfffff
40c00000-40f£f£f£fff
41000000-413fffff
a0000000-a0000fff
a0001000-a0001fff
e0000000-e7£f£f£ffff
e8000000-efffffff

e8000000-effffff

Fh ee oo oo o0 oo o0 o0 oo

System RAM
reserved

Video RAM area
Video ROM
System ROM
System RAM

: Kernel code

: Kernel data
reserved
0000:00:1£f.1
0000:02:01.0

: yenta socket
0000:02:01.1

: yenta socket
PCI CardBus #03
PCI CardBus #03
PCI CardBus #07
PCI CardBus #07
pcmcia socketO0
pcmcia socketl
0000:00:00.0
PCI Bus #01

: 0000:01:00.0

» Functions equivalent to
request region() and
release region(), but for I/O memory.

P struct resource * request mem region(
unsigned long start,
unsigned long len,
char *name);

P void release mem region(
unsigned long start,
unsigned long len);

48

http://lxr.free-electrons.com/ident?i=request_mem_region
http://lxr.free-electrons.com/ident?i=release_mem_region

» Load/store instructions work with virtual addresses

» To access I/O memory, drivers need to have a virtual
address that the processor can handle, because |/O
memory is hot mapped by default in virtual memory.

» The ioremap functions satisty this need:

#include <asm/io.h>;

void *ioremap(unsigned long phys addr,
unsigned long size);
void iounmap(void *address);

» Caution: check that ioremap doesn't return a NULL
address!

49

http://lxr.free-electrons.com/ident?i=ioremap
http://lxr.free-electrons.com/source/include/asm-i386/io.h
http://lxr.free-electrons.com/ident?i=ioremap
http://lxr.free-electrons.com/ident?i=iounmap
http://lxr.free-electrons.com/ident?i=ioremap

@

RAM

Physical memory
address space

ioremap (0XFFEBCO0O,

OxXFFEBCO00O0

4096) =

OxCDEFAQ000

OxCDEFAQ000

RAM

Virtual
address space

Kernel

User

50

@

» Directly reading from or writing to addresses returned by
ioremap (“pointer dereferencing”) may not work on some
architectures.

» To do PClI-style, little-endian accesses, conversion being done

automatically
unsigned read[bwl](void *addr);
void write[bwl] (unsigned val, void *addr);

» To do raw access, without endianess conversion
unsigned _ raw read[bwl](void *addr);
void raw write[bwl](unsigned val, void *addr);

» Example

P 32 bits write
__raw writel(l << KS8695 IRQ UART TX,
membase + KS8695 INTST);

51

» A new API allows to write drivers that can work on either devices
accessed over PIO or MMIO. A few drivers use it, but there doesn't
seem to be a consensus in the kernel community around it.

» Mapping

P For PIO: ioport map() and ioport unmap(). They don't really
map, but they return a special cookie.

» For MMIO: ioremap () and iounmap (). As usual.

» Access, works both on addresses returned by ioport map() and
ioremap()

P ioread[8/16/32]() and iowrite[8/16/32] for single access

P ioread rep[8/16/32]() and iowrite rep[8/16/32]() for
repea’[ed dCCesSses

52

» Caching on I/O ports or memory already disabled
» Use the macros, they do the right thing for your architecture

» The compiler and/or CPU can reorder memory accesses, which
might cause troubles for your devices is they expect one register
to be read/written before another one.

» Memory barriers are available to prevent this reordering

P rmb () is a read memory barrier, prevents reads to cross the
barrier

P wmb () is a write memory barrier
P mb () is a read-write memory barrier

P Starts to be a problem with CPU that reorder instructions and
SMP.

P See Documentation/memory-barriers.txt for details
53

» Used to provide user-space applications
with direct access to physical addresses.

» Usage: open /dev/mem and read or write at given offset.
What you read or write is the value
at the corresponding physical address.

» Used by applications such as the X server
to write directly to device memory.

» On x86, armand tile: CONFIG_STRICT DEVMEM option
to restrict /dev/mem non-RAM addresses, for security
reasons (2.6.37-rc2 status).

» Make a remote connection to your
board through ssh.

» Access the system console through
the network.

» Reserve the I/O memory addresses
used by the serial port.

» Read device registers and write data
to them, to send characters on the
serial port.

Driver development
Character drivers

» Except for storage device drivers, most drivers for devices with
iInput and output flows are implemented as character drivers.

» So, most drivers you will face will be character drivers

You will regret if you sleep during this part!

@

User-space
User-space needs
» The name of a device file in /dev to gzef%d Write
. . . . t
interact with the device driver through — string
regular file operations (open, read, write, o i
close...)
The kernel needs /dev/foo
» To know which driver is in charge of device 3 m:jor /mitor 5
files with a given major / minor number pair :
P =
] [14 [} Q —
» For a given driver, to have handlers (“file G / \ g
] ? - Read Write o
operat/onsci (6 e>.<ecute V\Ilhen uierdspa}ce ey N
opens, reads, writes or closes the device Deme driver
file.
Kernel space
58

» Four major steps

» Implement operations corresponding to the system calls an
application can apply to a file: file operations

P Define a file operations structure associating function pointers
to their implementation in your driver

P Reserve a set of major and minors for your driver

P Tell the kernel to associate the reserved major and minor to your
file operations

» This is a very common design scheme in the Linux kernel

» A common kernel infrastructure defines a set of operations to be
implemented by a driver and functions to register your driver

» Your driver only needs to implement this set of well-defined
operations

59

@

» Before registering character devices, you have to define
file operations (called fops) for the device files.

» The file_operations structure is generic to all files handled by the Linux
kernel. It contains many operations that aren't needed for character

drivers.

P Here are the most important operations for a character driver. All of
them are optional.

struct file operations {

[o..]

ssize t (*read) (struct file *, char user *, size t, loff t *);
ssize t (*write) (struct file *, const char _ user *, size t, loff t *);
long (*unlocked ioctl) (struct file *, unsigned int, unsigned long);

int (*mmap) (struct file *, struct vm area struct *);

int (*open) (struct inode *, struct file *);

int (*release) (struct inode *, struct file *);

[o..]
}i

60

http://lxr.free-electrons.com/ident?i=file_operations

» int foo open (struct inode *i, struct file *f)

» Called when user-space opens the device file.

P inode is a structure that uniquely represent a file in the system (be
it a regular file, a directory, a symbolic link, a character or block
device)

P file is a structure created every time a file is opened. Several file
structures can point to the same inode structure.

» Contains informations like the current position, the opening
mode, etc.

P Has avoid *private data pointer that one can freely use.
P A pointer to the file structure is passed to all other operations

P int foo release(struct inode *i, struct file *f)

» Called when user-space closes the file.

61

http://lxr.free-electrons.com/ident?i=inode
http://lxr.free-electrons.com/ident?i=file
http://lxr.free-electrons.com/ident?i=inode
http://lxr.free-electrons.com/ident?i=file

b ssize t foo read (struct file *f, user char *buf,
size t sz, loff t *off)
» Called when user-space uses the read () system call on the
device.

» Must read data from the device, write at most sz bytes in the
user-space buffer buf, and update the current position in the file
off. £ is a pointer to the same file structure that was passed in
the open () operation

» Must return the number of bytes read.

» On Unix, read() operations typically block when there isn't
enough data to read from the device

P ssize t foo write(struct file *f,
__user const char *buf,
size t sz ,loff t *off)

» Called when user-space uses the write () system call on the
device

» The opposite of read, must read at most sz bytes from buf,
write it to the device, update of £ and return the number of
bytes written.

@

» Kernel code isn't allowed to directly access
user-space memory, using memcpy oOr
direct pointer dereferencing

» Doing so does not work on some
architectures

» If the address passed by the application
was invalid, the application would
segfault

» To keep the kernel code portable and have
proper error handling, your driver must use
special kernel functions to exchange data
with user-space

@

» A single value

P get user(v, p);
The kernel variable v gets the value pointer by the user-space
pointer p

P put user(v, p);
The value pointed by the user-space pointer p is set to the contents

of the kernel variable v.
» A buffer

P unsigned long copy to user(void _ user *to,
const void *from, unsigned long n);

P unsigned long copy from user(void *to,
const void user *from, unsigned long n);

» The return value must be checked. Zero on success, non-zero on
failure. If non-zero, the convention is to return -EFAULT.

o

/
volid *to

copy from user()

void user *from

void *from

copy to user()

void user *to

- Buffer of data in the
userspace application

- Buffer of data in the
kernelspace driver

B

static ssize t

acme_read(st?uct file *file, char

user *buf, size t count, loff t *ppos)

{
/* The acme buf address corresponds to a device I/O memory area */
/* of size acme bufsize, obtained with ioremap() */
int remaining size, transfer size;
remaining size = acme bufsize - (int) (*ppos); // bytes left to transfer
if (remaining size == 0) { /* All read, returning 0 (End Of File) */
return 0;
}
/* Size of this transfer */
transfer size = min(remaining size, (int) count);
if (copy to user(buf /* to */, acme buf + *ppos /* from */, transfer size)) {
return -EFAULT;
} else { /* Increase the position in the open file */
*ppos += transfer size;
return transfer size;
}
}
Read method Piece of code available in

http://free-electrons.com/doc/c/acme.c

67

http://lxr.free-electrons.com/source/include/linux/types.h#071
http://lxr.free-electrons.com/source/include/linux/fs.h#632
http://lxr.free-electrons.com/source/include/linux/compiler.h#007
http://lxr.free-electrons.com/source/include/linux/types.h#066
http://lxr.free-electrons.com/source/include/linux/types.h#057
http://lxr.free-electrons.com/source/include/linux/kernel.h#256
http://lxr.free-electrons.com/ident?i=copy_to_user
http://lxr.free-electrons.com/source/include/asm-generic/errno-base.h#017
http://free-electrons.com/doc/c/acme.c

B

static ssize_t
acme write(struct file *file, const char _ user *buf, size t count, loff t *ppos)

{

int remaining bytes;

/* Number of bytes not written yet in the device */
remaining bytes = acme bufsize - (*ppos);

if (count > remaining bytes) {
/* Can't write beyond the end of the device */
return -EIO;

}

if (copy from user(acme buf + *ppos /* to */, buf /* from */, count)) ({
return -EFAULT;
} else {

/* Increase the position in the open file */
*ppos += count;
return count;

Write method Piece of code available in
http://free-electrons.com/doc/c/acme.c

68

http://lxr.free-electrons.com/source/include/linux/types.h#071
http://lxr.free-electrons.com/source/include/linux/fs.h#632
http://lxr.free-electrons.com/source/include/linux/compiler.h#007
http://lxr.free-electrons.com/source/include/linux/types.h#066
http://lxr.free-electrons.com/source/include/linux/types.h#057
http://lxr.free-electrons.com/source/include/asm-generic/errno-base.h#008
http://lxr.free-electrons.com/ident?i=copy_from_user
http://lxr.free-electrons.com/source/include/asm-generic/errno-base.h#017
http://free-electrons.com/doc/c/acme.c

long unlocked ioctl(struct file *f,
unsigned int cmd, unsigned long arg)

» Associated to the ioctl () system call
Called unlocked because it doesn't hold the Big Kernel Lock.

» Allows to extend the driver capabilities beyond the limited
read/write API

» For example: changing the speed of a serial port, setting video
output format, querying a device serial number...

» cmd is a number identifying the operation to perform

» arg is the optional argument passed as third argument of the
ioctl() system call. Can be an integer, an address, etc.

» The semantic of cmd and arg is driver-specific.

69

loctl() example: kernel side

static long phantom ioctl(struct file *file, unsigned int cmd,
unsigned long arg)

{
struct phm reg r;
void user *argp = (void _ user *)arg;
switch (cmd) {
case PHN SET REG:
if (copy from user(&r, argp, sizeof(r)))
return -EFAULT;
/* Do something */
break;
case PHN GET REG:
if (copy to user(argp, &r, sizeof(r)))
return -EFAULT;
/* Do something */
break;
default:
return -ENOTTY;
}
return 0;
}

Selected excerpt from drivers/misc/phantom.c 20

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com

http://lxr.free-electrons.com/source/drivers/misc/phantom.c

loctl() example: application side

int main(void)

{
int fd, ret;
struct phm reg reg;
fd = open(“/dev/phantom”);
assert(fd > 0);
reg.fieldl = 42;
reg.field2 = 67;
ret = ioctl(fd, PHN SET REG, & reg);
assert(ret == 0);
return O0;

}

71

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com

Defining a file operations structure:

#include <linux/fs.h>

static struct file operations acme fops =

{
.owner = THIS MODULE,

.read = acme read,
.write = acme write,

}i

You just need to supply the functions you implemented! Defaults for
other functions (such as open, release...) are fine if you do not
Implement anything special.

http://lxr.free-electrons.com/ident?i=file_operations
http://lxr.free-electrons.com/source/include/linux/fs.h
http://lxr.free-electrons.com/ident?i=file_operations

Kernel data type to represent a major / minor number pair
» Also called a device number.

» Defined in <linux/kdev t.h>
Linux 2.6: 32 bit size (major: 12 bits, minor: 20 bits)

» Macro to compose the device number:
MKDEV(int major, int minor);

» Macro to extract the minor and major numbers:
MAJOR(dev_t dev);
MINOR(dev_t dev);

http://lxr.free-electrons.com/source/include/linux/kdev_t.h
http://lxr.free-electrons.com/ident?i=MKDEV
http://lxr.free-electrons.com/ident?i=MAJOR
http://lxr.free-electrons.com/ident?i=dev_t
http://lxr.free-electrons.com/ident?i=MINOR
http://lxr.free-electrons.com/ident?i=dev_t

@

#include <linux/fs.h>

int register chrdev region(
dev t from, /* Starting device number */
unsigned count, /* Number of device numbers */
const char *name); /* Registered name */

Returns 0 if the allocation was successful.

Example

static dev_t acme _dev = MKDEV (202, 128);

if (register chrdev region(acme dev, acme count, “acme”)) {
printk (KERN _ERR “Failed to allocate device number\n”);

http://lxr.free-electrons.com/source/include/linux/fs.h
http://lxr.free-electrons.com/ident?i=register_chrdev_region
http://lxr.free-electrons.com/ident?i=dev_t
http://lxr.free-electrons.com/ident?i=dev_t
http://lxr.free-electrons.com/ident?i=register_chrdev_region
http://lxr.free-electrons.com/ident?i=printk
http://lxr.free-electrons.com/ident?i=KERN_ERR

If you don't have fixed device numbers assigned to your driver

» Better not to choose arbitrary ones.
There could be conflicts with other drivers.

» The kernel APl offers a alloc_chrdev_region function
to have the kernel allocate free ones for you. You can find the
allocated major number in /proc/devices.

http://lxr.free-electrons.com/ident?i=alloc_chrdev_region

@

Registered devices are visible in /proc/devices:

Character devices: Block devices:

1 mem 1 ramdisk

4 /dev/vc/0 3 ideO

4 tty 8 sd

4 ttys 9 md

5 /dev/tty 22 idel

5 /dev/console 65 sd

5 /dev/ptmx 66 sd

6 lp 67 sd

10 misc 68

sd
13 input
14 sound / \
S Major Registered
number name

76

» The kernel represents character drivers with a cdev structure

» Declare this structure globally (within your module):
#include <linux/cdev.h>
static struct cdev acme cdev;

» In the init function, initialize the structure:
cdev_init(&acme cdev, &acme_ fops);

http://lxr.free-electrons.com/ident?i=cdev
http://lxr.free-electrons.com/source/include/linux/cdev.h
http://lxr.free-electrons.com/ident?i=cdev
http://lxr.free-electrons.com/ident?i=cdev_init

» Then, now that your structure is ready, add it to the system:

int cdev_add(
struct cdev *p, /* Character device structure */
dev_t dev, /* Starting device major / minor number */
unsigned count); /*Number of devices */

» After this function call, the kernel knows the association between
the major/minor numbers and the file operations. Your device is
ready to be used!

» Example (continued):
if (cdev_add(&acme cdev, acme dev, acme count)) {
printk (KERN _ERR “Char driver registration failed\n”);

http://lxr.free-electrons.com/ident?i=cdev_add
http://lxr.free-electrons.com/ident?i=cdev
http://lxr.free-electrons.com/ident?i=dev_t
http://lxr.free-electrons.com/ident?i=cdev_add
http://lxr.free-electrons.com/ident?i=printk
http://lxr.free-electrons.com/ident?i=KERN_ERR

» First delete your character device:
void cdev _del(struct cdev *p);

» Then, and only then, free the device number:
void unregister chrdev region(dev_t from,
unsigned count);

» Example (continued):
cdev_del(&acme cdev);
unregister chrdev region(acme dev, acme count);

http://lxr.free-electrons.com/ident?i=cdev_del
http://lxr.free-electrons.com/ident?i=cdev
http://lxr.free-electrons.com/ident?i=unregister_chrdev_region
http://lxr.free-electrons.com/ident?i=dev_t
http://lxr.free-electrons.com/ident?i=cdev_del
http://lxr.free-electrons.com/ident?i=unregister_chrdev_region

» The kernel convention for error management is

» Return O on success
return 0;

» Return a negative error code on failure
return -EFAULT;

» Error codes

» include/asm-generic/errno-base.h

» include/asm-generic/errno.h

http://lxr.free-electrons.com/source/include/asm-generic/errno-base.h
http://lxr.free-electrons.com/source/include/asm-generic/errno.h

B

static void *acme buf;
static int acme bufsize=8192;

static int acme count=1;
static dev_t acme dev = MKDEV(202,128);

static struct cdev acme cdev;
static ssize t acme write(...) {...}
static ssize t acme read(...) {...}

static struct file operations acme fops

{

.owner = THIS MODULE,
.read = acme_read,
.write = acme write

http://lxr.free-electrons.com/source/include/linux/types.h#023
http://lxr.free-electrons.com/source/include/linux/cdev.h#005
http://lxr.free-electrons.com/source/include/linux/types.h#071
http://lxr.free-electrons.com/source/include/linux/types.h#071
http://lxr.free-electrons.com/source/include/linux/fs.h#1015

B

Shows how to handle errors and deallocate resources in the right order!

static int _ init acme_init(void)
{ .
int err;
acme buf = ioremap (ACME_PHYS,
acme bufsize);

if (lacme buf) ({
err = -ENOMEM;
goto err exit;

}

if (register chrdev region(acme_dev,
acme_count, “acme”)) { }

err=-ENODEV;
goto err free buf;

} {
cdev_init(&acme_cdev, &acme fops);

if (cdev_add(&acme_cdev, acme dev,
acme count)) { }
err=-ENODEV;
goto err dev_unregister;

}

static void

return 0;

err dev_unregister:
unregister chrdev region(
acme dev, acme count);
err free buf:
iounmap(acme buf);
err exit:
return err;

__exit acme exit(void)

cdev_del(&acme_cdev);

unregister chrdev_region(acme dev,
acme count);

iounmap(acme buf);

Complete example code available on http://free-electrons.com/doc/c/acme.c

82

http://lxr.free-electrons.com/ident?i=__init
http://lxr.free-electrons.com/ident?i=ioremap
http://lxr.free-electrons.com/ident?i=ENOMEM
http://lxr.free-electrons.com/ident?i=register_chrdev_region
http://lxr.free-electrons.com/ident?i=ENODEV
http://lxr.free-electrons.com/ident?i=cdev_init
http://lxr.free-electrons.com/ident?i=cdev_add
http://lxr.free-electrons.com/ident?i=ENODEV
http://lxr.free-electrons.com/ident?i=unregister_chrdev_region
http://lxr.free-electrons.com/ident?i=iounmap
http://lxr.free-electrons.com/ident?i=__exit
http://lxr.free-electrons.com/ident?i=cdev_del
http://lxr.free-electrons.com/ident?i=unregister_chrdev_region
http://lxr.free-electrons.com/ident?i=iounmap
http://free-electrons.com/doc/c/acme.c

B

Character driver writer

- Define the file operations callbacks for the device file: read, write, ioctl...

- In the module init function, reserve major and minor numbers with

register chrdev region(), init a cdev structure with your file operations and add it to
the system with cdev_add ().

- In the module exit function, call cdev_del() and unregister chrdev region()

System administration

- Load the character driver module

- Create device files with matching major and minor numbers if needed
The device file is ready to use!

System user
- Open the device file, read, write, or send ioctl's to it.

Kernel
- Executes the corresponding file operations

Kernel

User-space

Kernel

» Writing a simple character driver, to
write data to the serial port.

» On your workstation, checking that
transmitted data is received correctly.

» Exchanging data between userspace
and kernel space.

» Practicing with the character device
driver API.

» Using kernel standard error codes.

Driver development
Processes and scheduling

» Confusion about the terms «process», «thread» and «task»

» In Unix, a process is created using fork () and is composed of

» An address space, which contains the program code, data, stack,
shared libraries, etc.

» One thread, that starts executing the main () function.
» Upon creation, a process contains one thread

» Additional threads can be created inside an existing process,
using pthread create()

P They run in the same address space as the initial thread of the
process

P They start executing a function passed as argument to
pthread create()

86

» The kernel represents each thread running in the system by a
structure of type task_struct

» From a scheduling point of view, it makes no difference between
the initial thread of a process and all additional threads created
dynamically using pthread_create()

Address space Address space
Same process after pthread create()

Process after fork ()

@

Thread created

by fork () or
pthread create()

The thread 1s elected

-

EXIT ZOMBIE
Task terminated but its
resources are not freed yet.
Waiting for its parent
to acknowledge its death.

~

J

!

TASK RUNNING
Actually running

\

by the scheduler
r—)
4) 4
TASK_ RUNNING
n%(te?'ﬂ%]uglrlltg The thread is preempted
by the scheduler to run
(N j a higher priority task A
\—_

The event occurs

or the process receives

a signal. Thread becomes
runnable again

-

o

TASK INTERRUPTIBLE
TASK UNINTERRUPTIBLE
or TASK KILLABLE
Waiting

~

J

Decides to sleep
on a wait queue
for a specific event

http://lxr.free-electrons.com/ident?i=TASK_RUNNING
http://lxr.free-electrons.com/ident?i=TASK_RUNNING
http://lxr.free-electrons.com/ident?i=TASK_INTERRUPTIBLE
http://lxr.free-electrons.com/ident?i=TASK_UNINTERRUPTIBLE
http://lxr.free-electrons.com/ident?i=TASK_KILLABLE
http://lxr.free-electrons.com/ident?i=EXIT_ZOMBIE

@

The execution of system calls takes place in the
context of the thread requesting them.

Process executing in user space...
(can be preempted)

System call
or exception

Process continuing in user space...
(or replaced by a higher priority process)
(can be preempted)

Kernel code executed
on behalf of user space
(can be preempted too!)

Still has access to process
data (open files...)

Driver development
Sleeping

@

Sleeping is needed when a process (user space or kernel space)
Is waiting for data.

I I
User space process... I Other I ...User space
| processes | A
read device file] are]
return
\i | scheduled |
System call... I ... System call
| I
ask for sleep wake up
data I
Y Interrupt
handler

=

data ready notification

Must declare a wait queue

A wait queue will be used to store the list of threads waliting
for an event.

» Static queue declaration
useful to declare as a global variable

DECLARE WAIT QUEUE HEAD (module queue);

» Or dynamic queue declaration
useful to embed the wait queue inside another data

structure

wait queue head t queue;
init waitqueue head(&queue);

92

http://lxr.free-electrons.com/ident?i=DECLARE_WAIT_QUEUE_HEAD
http://lxr.free-electrons.com/ident?i=wait_queue_head_t
http://lxr.free-electrons.com/ident?i=init_waitqueue_head

Several ways to make a kernel process sleep

» wait event(queue, condition);
Sleeps until the task is woken up and the given C expression is true.
Caution: can't be interrupted (can't kill the user-space process!)

P int wait event killable(queue, condition); (Since Linux 2.6.25)
Can be interrupted, but only by a “fatal” signal (SIGKILL). Returns
-ERESTARSYS if interrupted.

b int wait event interruptible(queue, condition);

Can be interrupted by any signal. Returns -ERESTARTSYS if interrupted.

P int wait event timeout(queue, condition, timeout);
Also stops sleeping when the task is woken up and the timeout expired. Returns 0
if the timeout elapsed, non-zero if the condition was met.

P int wait event interruptible timeout(queue, condition,
timeout);

Same as above, interruptible. Returns 0 if the timeout elapsed, -ERESTARTSYS
If interrupted, positive value if the condition was met

93

http://lxr.free-electrons.com/ident?i=wait_event
http://lxr.free-electrons.com/ident?i=wait_event_killable
http://lxr.free-electrons.com/ident?i=wait_event_interruptible
http://lxr.free-electrons.com/ident?i=wait_event_timeout
http://lxr.free-electrons.com/ident?i=wait_event_interruptible_timeout

ret = wait event interruptible
(sonypi device.fifo proc list,
kfifo len(sonypi device.fifo) != 0);

1f (ret)
return ret;

Typically done by interrupt handlers when data sleeping processes
are waiting for becomes available.

» wake up(&queue);
Wakes up all processes in the wait queue

» wake up interruptible(&queue);
Wakes up all processes waiting in an interruptible sleep on the
given queue

P wait event interruptible() puts ataskin a non-exclusive
walit

» All non-exclusive tasks are woken up by wake up() /
wake up interruptible()

P wait event interruptible exclusive() puts ataskin
an exclusive wait

P wake up() / wake up interruptible() wakes up all non-
exclusive tasks and only one exclusive task

P wake up all() / wake up interruptible all() wakes
up all non-exclusive and all exclusive tasks

» Exclusive sleeps are useful to avoid waking up multiple tasks
when only one will be able to “consume” the event

» Non-exclusive sleeps are useful when the event can “benefit” to

multiple tasks
96

@

The scheduler doesn't keep evaluating the sleeping condition!

~

#define _ wait event(wqg, condition)

do { \
DEFINE WAIT(_ wait); \
\
for (;;) { \
prepare to wait(&wq, & wait, TASK UNINTERRUPTIBLE) ; \
if (condition) \
break; \
schedule(); \
} \
finish wait(&wqg, & wait); \
} while (0)

P wait event interruptible(&queue, condition);
The process is put in the TASK_INTERRUPTIBLE state.

» wake up interruptible(&queue);
All processes waiting in queue are woken up, so they get

scheduled later and have the opportunity to reavalute the
condition.

97

Driver development
Interrupt management

@

Defined in include/linux/interrupt.h

P int request irq(Returns 0 if successful
unsigned int irq, Requested irg channel
irg handler t handler, Interrupt handler
unsigned long irqg flags, Option mask (see next page)
const char * devname, Registered name
void *dev_id); Pointer to some handler data

Cannot be NULL and must be unique for shared irgs!

P void free irqg(unsigned int irqg, void *dev_id);

P dev id cannot be NULL and must be unique for shared irgs.
Otherwise, on a shared interrupt line,
free irqg wouldn't know which handler to free.

http://lxr.free-electrons.com/source/include/linux/interrupt.h
http://lxr.free-electrons.com/ident?i=request_irq
http://lxr.free-electrons.com/ident?i=irq_handler_t
http://lxr.free-electrons.com/ident?i=free_irq
http://lxr.free-electrons.com/ident?i=free_irq

irg flags bit values (can be combined, none is fine too)

» IRQF DISABLED

"Quick" interrupt handler. Run with all interrupts disabled on the current cpu

(instead of just the current line). For latency reasons, should only be used
when needed!

» IRQF SHARED

Run with interrupts disabled only on the current irg line and on the local cpu.
The interrupt channel can be shared by several devices. Requires a
hardware status register telling whether an IRQ was raised or not.

100

http://lxr.free-electrons.com/ident?i=IRQF_DISABLED
http://lxr.free-electrons.com/ident?i=IRQF_SHARED

» No guarantee on which address space the system will
be in when the interrupt occurs: can't transfer data to
and from user space

» Interrupt handler execution is managed by the CPU, not
by the scheduler. Handlers can't run actions that may
sleep, because there is nothing to resume their
execution. In particular, need to allocate memory with
GFP_ATOMIC.

» Have to complete their job quickly enough:
they shouldn't block their interrupt line for too long.

101

B

/proc/interrupts
CPUO
7 2 INTC
11: 0 INTC
12: 6946564 INTC
25: 2 INTC
37: 50993360 INTC
56 598 INTC
61: 0 INTC
72: 1 INTC
73: 1 INTC
74: 35 INTC
77 8792082 INTC
83: 5421922 INTC
86: 126 INTC
92: 1 INTC
93: 0 INTC
336: 11781580 GPIO
376: 0 twl4 030
378 2 tw14030
379: 0 twl4 030
384+ 0 tw14030
Err: 0

IGEPv2 (OMAP3 ARM)
example on Linux 2.6.33

TWL4030-PIH

prcm

DMA

OMAP DSS

gp timer

i2c_omap

i2c_omap

serial idle
serial idle
serial idle, serial
ehci hcd:usbl
mmc 0

mmc 1

musb hdrc

musb hdrc

ethO

twld4030 pwrbutton
twld4030 usb

rtcoO

mmc 0

Registered name

Spurious interrupt count
102

irgreturn t foo interrupt
(int irqgq, void *dev id)

Arguments

» irqg, the IRQ number

» dev id, the opaque pointer passed at request irq()
Return value

» IRQ HANDLED: recognized and handled interrupt

» IRQ NONE: not on a device managed by the module. Useful to
share interrupt channels and/or report spurious interrupts to
the kernel.

103

» Acknowledge the interrupt to the device
(otherwise no more interrupts will be generated, or the
interrupt will keep firing over and over again)

» Read/write data from/to the device

» Wake up any waiting process waiting for the completion

of this read/write operation:
wake up interruptible(&module queue);

104

http://lxr.free-electrons.com/ident?i=wake_up_interruptible

Splitting the execution of interrupt handlers in 2 parts

» Top half. the interrupt handler must complete as quickly
as possible. Once it acknowledged the interrupt, it just
schedules the lengthy rest of the job taking care of the
data, for a later execution.

» Bottom half. completing the rest of the interrupt handler
job. Handles data, and then wakes up any waiting user
process.

Can be implemented using tasklets or workqueues.

105

» Declare the tasklet in the module source file:

DECLARE TASKLET (module tasklet, /* name */
module do tasklet, /* function */
data /* params */

)

» Schedule the tasklet in the top half part (interrupt handler):
tasklet schedule(&module tasklet);

» Note that a tasklet hi schedule function is available to
define high priority tasklets to run before ordinary ones.

» Tasklets are executed with all interrupts enabled, but in
interrupt context, so sleeping is not allowed.

106

http://lxr.free-electrons.com/ident?i=DECLARE_TASKLET
http://lxr.free-electrons.com/ident?i=tasklet_schedule
http://lxr.free-electrons.com/ident?i=tasklet_hi_schedule

Device driver Tasklet

» When the device file is first » Process the data
opened, register an interrupt
handler for the device's
interrupt channel.

» Wake up processes waiting
for the data

Device driver

Interrupt handler

» When the device is no longer
opened by any process,
unregister the interrupt

» Acknowledge the interrupt handler.

» Called when an interrupt is
raised.

» If needed, schedule a tasklet
taking care of handling data.
Otherwise, wake up processes
waiting for the data.

107

» Adding read capability to the
character driver developed earlier.

» Register an interrupt handler.

» Waiting for data to be available in the
read file operation.

» Waking up the code when data is
available from the device.

108

Driver development
Concurrent access to resources

109

The same resources can be accessed by several kernel
processes in parallel, causing potential concurrency issues

P Several user-space programs accessing the same device data
or hardware. Several kernel processes could execute the same
code on behalf of user processes running in parallel.

» Multiprocessing: the same driver code can be running on
another processor. This can also happen with single CPUs with
hyperthreading.

» Kernel preemption, interrupts: kernel code can be interrupted at
any time (just a few exceptions), and the same data may be
access by another process before the execution continues.

110

» Avoid using global variables and shared data whenever
possible
(cannot be done with hardware resources).

» Use technigues to manage concurrent access to
resources.

See Rusty Russell's Unreliable Guide To Locking
Documentation/DocBook/kernel-locking/

In the kernel sources.

111

http://free-electrons.com/kerneldoc/latest/DocBook/kernel-locking/

@

Process 1

N

ﬁ Acquire lock

1t1 10N
Success Critical code sectio

Yvy

Shared resource

>
>

k& Release lock

Process 2
Failed
i
— Wait lock release
Try again
Success

112

» The main locking primitive since Linux 2.6.16.

» Better than counting semaphores when binary ones are
enough.

» The process requesting the lock blocks when the lock is
already held. Mutexes can therefore only be used in
contexts where sleeping is allowed.

» Mutex definition:
#include <linux/mutex.h>

» Initializing a mutex statically:
DEFINE MUTEX(name) ;

» Or initializing a mutex dynamically:

void mutex init(struct mutex *lock);

113

http://lxr.free-electrons.com/source/include/linux/mutex.h
http://lxr.free-electrons.com/ident?i=DEFINE_MUTEX
http://lxr.free-electrons.com/ident?i=mutex_init
http://lxr.free-electrons.com/ident?i=mutex

@

P void mutex lock (struct mutex *lock);
Tries to lock the mutex, sleeps otherwise.
Caution: can't be interrupted, resulting in processes you cannot Kill!

P int mutex lock killable (struct mutex *lock);
Same, but can be interrupted by a fatal (SIGKILL) signal. If interrupted, returns
a non zero value and doesn't hold the lock. Test the return value!!!

P int mutex lock interruptible (struct mutex *lock);
Same, but can be interrupted by any signal.

P int mutex trylock (struct mutex *lock);
Never waits. Returns a non zero value if the mutex is not available.

P int mutex is locked(struct mutex *lock);
Just tells whether the mutex is locked or not.

P void mutex unlock (struct mutex *lock);
Releases the lock. Do it as soon as you leave the critical section.

114

http://lxr.free-electrons.com/ident?i=mutex_lock
http://lxr.free-electrons.com/ident?i=mutex
http://lxr.free-electrons.com/ident?i=mutex_lock_killable
http://lxr.free-electrons.com/ident?i=mutex
http://lxr.free-electrons.com/ident?i=mutex_lock_interruptible
http://lxr.free-electrons.com/ident?i=mutex
http://lxr.free-electrons.com/ident?i=mutex_trylock
http://lxr.free-electrons.com/ident?i=mutex
http://lxr.free-electrons.com/ident?i=mutex_is_locked
http://lxr.free-electrons.com/ident?i=mutex
http://lxr.free-electrons.com/ident?i=mutex_unlock
http://lxr.free-electrons.com/ident?i=mutex

» Locks to be used for code that is not allowed to sleep
(interrupt handlers), or that doesn't want to sleep (critical
sections). Be very careful not to call functions which can
sleep!

» Originally intended for multiprocessor systems Still locked?
» Spinlocks never sleep and keep spinning

In a loop until the lock is available.
» Spinlocks cause kernel preemption to be disabled

on the CPU executing them.

» The critical section protected by a spinlock is not allowed to
sleep.

115

» Static
spinlock t my lock = SPIN LOCK UNLOCKED;

» Dynamic
void spin lock init (spinlock t *lock);

116

http://lxr.free-electrons.com/ident?i=spinlock_t
http://lxr.free-electrons.com/ident?i=SPIN_LOCK_UNLOCKED
http://lxr.free-electrons.com/ident?i=spin_lock_init
http://lxr.free-electrons.com/ident?i=spinlock_t

Several variants, depending on where the spinlock is called:

» void spin [un]lock (spinlock t *lock);
Doesn't disable interrupts. Used for locking in process context
(critical sections in which you do not want to sleep).

» void spin lock irgsave / spin unlock irqgrestore
(éﬁinléék_t *lock, ungigned fang flags);
Disables / restores IRQs on the local CPU.
Typically used when the lock can be accessed in both process
and interrupt context, to prevent preemption by interrupts.

» void spin [un]lock bh (spinlock t *lock);
Disables software interrupts, but not hardware ones.
Useful to protect shared data accessed in process context
and in a soft interrupt (“bottom half”). No need to disable
hardware interrupts in this case.

Note that reader / writer spinlocks also exist. 117

http://lxr.free-electrons.com/ident?i=spin_lock
http://lxr.free-electrons.com/ident?i=spin_lock_irqsave
http://lxr.free-electrons.com/ident?i=spin_unlock_irqrestore
http://lxr.free-electrons.com/ident?i=spinlock_t
http://lxr.free-electrons.com/ident?i=spin_lock_bh
http://lxr.free-electrons.com/ident?i=spinlock_t

Spinlock structure embedded into uart_port

Spinlock taken/released with protection against interrupts

They can lock up your system. Make sure they never happen!

Don't call a function that can Holding multiple locks is risky!
try to get access to the same l l

lock
l (Get lockl J [Get lock2 J
[Get lockl1 J ~all . l l
l Dead
(Get lock?2 J (Get lockl J
(Wait for locklj

Dead
Lock!

119

From Ingo Molnar and Arjan van de Ven
» Adds instrumentation to kernel locking code
P Detect violations of locking rules during system life, such as:

» Locks acquired in different order
(keeps track of locking sequences and compares them).

» Spinlocks acquired in interrupt handlers and also in process
context when interrupts are enabled.

» Not suitable for production systems but acceptable overhead in
development.

See Documentation/lockdep-design.ixt for details

120

http://free-electrons.com/kerneldoc/latest/lockdep-design.txt

As we have just seen, locking can have a strong negative
Impact on system performance. In some situations, you could
do without it.

» By using lock-free algorithms like Read Copy Update (RCU).
RCU APl available in the kernel
(See http://en.wikipedia.org/wiki/RCU).

» When available, use atomic operations.

121

http://en.wikipedia.org/wiki/RCU

@

P Useful when the shared resource is an
integer value

P Operations without return value:
void atomic_inc (atomic_t *v);
void atomic_dec (atomic_t *v);
void atomic_add (int i, atomic_t *v);

B Even an instruction like n++ is not

guaranteed to be atomic on alll void atomic_sub (int i, atomic t *v);
processors! _ _ .
» Simular functions testing the result:
Header int atomic_inc_and test (...);
int atomic dec and test (...);
P #include <asm/atomic.h> int atomlc_sub_and_test (o0.);
Type P Functions returning the new value:
. int atomic _inc_and return (...);
b atomlc_t int atomlc_dec_and_return (ees)3
contains a signed integer (at least 24 int atomic_add and return (...);
bitS) int atomic_sub and return (...);

Atomic operations (main ones)

P Set or read the counter:
atomic_set (atomic_t *v, int 1i);
int atomic_read (atomic t *v);

122

http://lxr.free-electrons.com/source/include/asm-i386/atomic.h
http://lxr.free-electrons.com/ident?i=atomic_t
http://lxr.free-electrons.com/ident?i=atomic_set
http://lxr.free-electrons.com/ident?i=atomic_t
http://lxr.free-electrons.com/ident?i=atomic_read
http://lxr.free-electrons.com/ident?i=atomic_t
http://lxr.free-electrons.com/ident?i=atomic_inc
http://lxr.free-electrons.com/ident?i=atomic_t
http://lxr.free-electrons.com/ident?i=atomic_dec
http://lxr.free-electrons.com/ident?i=atomic_t
http://lxr.free-electrons.com/ident?i=atomic_add
http://lxr.free-electrons.com/ident?i=atomic_t
http://lxr.free-electrons.com/ident?i=atomic_sub
http://lxr.free-electrons.com/ident?i=atomic_t
http://lxr.free-electrons.com/ident?i=atomic_inc_and_test
http://lxr.free-electrons.com/ident?i=atomic_dec_and_test
http://lxr.free-electrons.com/ident?i=atomic_sub_and_test
http://lxr.free-electrons.com/ident?i=atomic_inc_and_return
http://lxr.free-electrons.com/ident?i=atomic_dec_and_return
http://lxr.free-electrons.com/ident?i=atomic_add_and_return
http://lxr.free-electrons.com/ident?i=atomic_sub_and_return

@

» Supply very fast, atomic operations

» On most platforms, apply to an unsigned long type.
Apply to a void type on a few others.

P Set, clear, toggle a given bit:
void set bit(int nr, unsigned long * addr);
void clear bit(int nr, unsigned long * addr);
void change bit(int nr, unsigned long * addr);

P Test bit value:
int test bit(int nr, unsigned long *addr);

P Test and modify (return the previous value):
int test and set bit (...);
int test and clear bit (...);
int test and change bit (...);

123

http://lxr.free-electrons.com/ident?i=set_bit
http://lxr.free-electrons.com/ident?i=clear_bit
http://lxr.free-electrons.com/ident?i=change_bit
http://lxr.free-electrons.com/ident?i=test_bit
http://lxr.free-electrons.com/ident?i=test_and_set_bit
http://lxr.free-electrons.com/ident?i=test_and_clear_bit
http://lxr.free-electrons.com/ident?i=test_and_change_bit

» Add locking to the driver to prevent
concurrent accesses to shared
ressources

124

PAF Driver development
Debugging and tracing

125

@

» Universal debugging technique used since the beginning of
programming (first found in cavemen drawings)

» Printed or not in the console according to the priority.
This is controlled by the 1loglevel kernel parameter, or
through /proc/sys/kernel/printk
(see Documentation/sysctl/kernel.txt)

» Available priorities (include/linux/kernel.h):

#define
#define
#define
#define
#define
#define
#define
#define

KERN EMERG
KERN ALERT
KERN CRIT
KERN ERR
KERN WARNING
KERN NOTICE
KERN INFO
KERN DEBUG

ll<0>ll
"<1>"
n<2>n
ll<3>ll
"<4>"
ll<5>ll
ll<6>ll
"< >n

/*
/*
/*
/*
/ *
/*
/*
/*

system is unusable */

action must be taken immediately */
critical conditions */

error conditions */

warning conditions */

normal but significant condition */
informational */

debug-level messages */

126

http://free-electrons.com/kerneldoc/latest/sysctl/kernel.txt
http://lxr.free-electrons.com/source/include/linux/kernel.h
http://lxr.free-electrons.com/ident?i=KERN_EMERG
http://lxr.free-electrons.com/ident?i=KERN_ALERT
http://lxr.free-electrons.com/ident?i=KERN_CRIT
http://lxr.free-electrons.com/ident?i=KERN_ERR
http://lxr.free-electrons.com/ident?i=KERN_WARNING
http://lxr.free-electrons.com/ident?i=KERN_NOTICE
http://lxr.free-electrons.com/ident?i=KERN_INFO
http://lxr.free-electrons.com/ident?i=KERN_DEBUG

Instead of dumping messages in the kernel log, you can have your
drivers make information available to user space

» Through a file in /proc or /sys, which contents are handled by
callbacks defined and registered by your driver.

» Can be used to show any piece of information
about your device or driver.

» Can also be used to send data to the driver or to control it.

» Caution: anybody can use these files.
You should remove your debugging interface in production!

» Since the arrival of debugfs, no longer the preferred debugging
mechanism

127

A virtual filesystem to export debugging information to user-space.

» Kernel configuration: DEBUG_FS
Kernel hacking -> Debug Filesystem

» Much simpler to code than an interface in /proc or /sys.

The debugging interface disappears when Debugfs is configured
out.

» You can mount it as follows:
sudo mount -t debugfs none /mnt/debugfs

» First described on http://lwn.net/Articles/115405/

» APl documented in the Linux Kernel Filesystem API:
http://free-electrons.com/kerneldoc/latest/DocBook/filesystems/index.html

128

http://lwn.net/Articles/115405/
http://free-electrons.com/kerneldoc/latest/DocBook/filesystems/index.html

B

#include <linux/debugfs.h>

static char *acme buf; // module buffer
static unsigned long acme bufsize;

static struct debugfs blob wrapper acme blob;

static struct dentry *acme buf dentry;

static u32 acme_state; // module variable
static struct dentry *acme state dentry;

/* Module init */
acme blob.data = acme buf;
acme blob.size = acme bufsize;
acme buf dentry = debugfs create blob("acme buf", S IRUGO, /I Create
NULL, &acme blob); /I new files
acme state dentry = debugfs create bool("acme state", S IRUGO, //in debugfs
- - NULL, &acme_state);

/* Module exit */
debugfs remove (acme buf dentry); // removing the files from debugfs
debugfs remove (acme state dentry);

129

http://lxr.free-electrons.com/source/include/linux/debugfs.h
http://lxr.free-electrons.com/ident?i=debugfs_blob_wrapper
http://lxr.free-electrons.com/ident?i=dentry
http://lxr.free-electrons.com/ident?i=dentry
http://lxr.free-electrons.com/ident?i=debugfs_create_blob
http://lxr.free-electrons.com/ident?i=debugfs_create_bool
http://lxr.free-electrons.com/ident?i=debugfs_remove
http://lxr.free-electrons.com/ident?i=debugfs_remove

» Can use the ioctl () system call to query information
about your driver (or device) or send commands to it.

» This calls the unlocked ioctl file operation that you can
register in your driver.

» Advantage: your debugging interface is not public.
You could even leave it when your system (or its driver) is in
the hands of its users.

130

» Allows to run multiple debug / rescue commands even when the
kernel seems to be in deep trouble

» On PC: Alt + SysRq + <character>

» On embedded: break character on the serial line + <character>
» . Example commands:

» n: makes RT processes nice-able.

P t: shows the kernel stack of all sleeping processes

P w: shows the kernel stack of all running processes

» b: reboot the system

» You can even register your own!

» Detailed in Documentation/sysrq.txt

131

http://free-electrons.com/kerneldoc/latest/sysrq.txt

» The execution of the kernel is fully controlled by gdb from
another machine, connected through a serial line.

» Can do almost everything, including inserting breakpoints in
interrupt handlers.

» Feature included in standard Linux since 2.6.26 (x86 and
sparc). arm, mips and ppc support merged in 2.6.27.

132

» Details available in the kernel documentation:
http://free-electrons.com/kerneldoc/latest/DocBook/kgdb/

» Recommended to turn on CONFIG _FRAME POINTER to aid
In producing more reliable stack backtraces in gdb.

» You must include a kgdb I/O driver. One of them is kgdb
over serial console (kgdboc: kgdb over console, enabled
by CONFIG_KGDB_SERIAL CONSOLE)

» Configure kgdboc at boot time by passing to the kernel:

kgdboc=<tty-device>, [baud]. For example:
kgdboc=ttyS0,115200

133

http://free-electrons.com/kerneldoc/latest/DocBook/kgdb/

» Then also pass kgdbwait to the kernel:
It makes kgdb walit for a debugger connection.

» Boot your kernel, and when the console is initialized, interrupt the
kernel with [A1t][SyrRgq][9g].

» On your workstation, start gdb as follows:
$ gdb ./vmlinux

(gdb) set remotebaud 115200
(gdb) target remote /dev/ttySO

» Once connected, you can debug a kernel the way you would
debug an application program.

134

» Two types of JTAG dongles

P Those offering a gdb compatible interface, over a serial port or an Ethernet
connexion. Gdb can directly connect to them.

P Those not offering a gdb compatible interface are generally supported by
OpenOCD (Open On Chip Debugger)

P OpenOCD is the bridge between the gdb debugging language and the
JTAG-dongle specific language

P http://openocd.berlios.de/web/
P See the very complete documentation: http://openocd.berlios.de/doc/

P For each board, you'll need an OpenOCD configuration file (ask your
supplier)

P See very useful details on using Eclipse / gcc / gdb / OpenOCD on Windows:
http://www2.amontec.com/sdk4arm/ext/jlynch-tutorial-20061124.pdf and
http://www.yagarto.de/howto/yagarto2/

135

http://openocd.berlios.de/web/
http://openocd.berlios.de/doc/
http://www2.amontec.com/sdk4arm/ext/jlynch-tutorial-20061124.pdf
http://www.yagarto.de/howto/yagarto2/

» Enable CONFIG_KALLSYMS ALL
(General Setup ->Configure standard kernel features)
to get oops messages with symbol names instead of raw addresses
(this obsoletes the ksymoops tool).

» If your kernel doesn't boot yet or hangs without any message, you can
activate Low Level debugging (Kernel Hacking section, only available on
arm):

CONFIG DEBUG LL=y

P Techniques to locate the C instruction which caused an oops:
http://kerneltrap.org/node/3648

» More about kernel debugging in the free Linux Device Drivers book:
http://lwn.net/images/pdf/LDD3/ch04.pdf

136

http://kerneltrap.org/node/3648
http://lwn.net/images/pdf/LDD3/ch04.pdf

http://sourceware.org/systemtap/ SYSTEM

P Infrastructure to add instrumentation to a running kernel:
trace functions, read and write variables, follow pointers, gather statistics...

P Eliminates the need to modify the kernel sources to add one's own
instrumentation to investigated a functional or performance problem.

P Uses a simple scripting language.
Several example scripts and probe points are available.

P Based on the Kprobes instrumentation infrastructure.
See Documentation/kprobes.txt in kernel sources.
Linux 2.6.26: supported on most popular CPUs (arm included in 2.6.25).
However, lack of recent support for mips (2.6.16 only!).

137

http://sourceware.org/systemtap/
http://free-electrons.com/kerneldoc/latest/kprobes.txt

B

#! /usr/bin/env stap
Using statistics and maps to examine kernel memory allocations

global kmalloc

probe kernel.function("_ kmalloc") ({
kmalloc[execname()] <<< $size

}

Exit after 10 seconds
probe timer.ms(10000) { exit () }

probe end {
foreach ([name] in kmalloc) {
printf("Allocations for %s\n", name)

printf ("Count: 2d allocations\n", @count(kmalloc[name]))
printf ("Sum: 2d Kbytes\n", @sum(kmalloc[name])/1024)
printf("Average: %d bytes\n", Qavg(kmalloc[name]))

printf ("Min: 2d bytes\n", @min(kmalloc[name]))

printf ("Max: 2d bytes\n", @max(kmalloc[name]))

print("\nAllocations by size in bytes\n")
print(@hist log(kmalloc[name]))
printf("--——————— - - \n\n");

138

@

#! /usr/bin/env stap
Logs each file read performed by each process

probe kernel.function ("vfs read")

{
dev nr = $file->f dentry->d inode->i sb->s dev
inode nr = $file->f dentry->d inode->i ino
printf ("%s(%d) %s 0x%x/%d\n",
execname(), pid(), probefunc(), dev nr, inode nr)

Nice tutorial on http://sources.redhat.com/systemtap/tutorial.pdf

139

http://sources.redhat.com/systemtap/tutorial.pdf

@

P kexec system call: makes it possible to
call a new kernel, without rebooting and
going through the BIOS / firmware.

» Idea: after a kernel panic, make the
kernel automatically execute a new,
clean kernel from a reserved location in
RAM, to perform post-mortem analysis
of the memory of the crashed kernel.

» See Documentation/kdump/kdump.txt
in the kernel sources for details.

1. Copy debug Standard kernel

kernel to

reserved 2. kernel

RAM panic, kexec
debug kernel

3. Analyze

crashed Debug kernel

kernel RAM

Regular RAM

http://free-electrons.com/kerneldoc/latest/kdump/kdump.txt

» Capability to add static markers to kernel code,
merged in Linux 2.6.24 by Matthieu Desnoyers.

» Almost no impact on performance, until the marker is dynamically
enabled, by inserting a probe kernel module.

» Useful to insert trace points that won't be impacted by changes in
the Linux kernel sources.

» See marker and probe example
INn samples/markers in the kernel sources.

See http://en.wikipedia.org/wiki/Kernel_marker

141

http://en.wikipedia.org/wiki/Kernel_marker

http://Ittng.org
» The successor of the Linux Trace Toolkit (LTT)

» Toolkit allowing to collect and analyze tracing information from
the kernel, based on kernel markers and kernel tracepoints.

» So far, based on kernel patches, but doing its best to use in-tree
solutions, and to be merged in the future.

» Very precise timestamps, very little overhead.

» Useful documentation on http://lttng.org/?g=node/2#manuals

142

http://lttng.org/
http://lttng.org/?q=node/2#manuals

Viewer for LTTng traces

» Support for huge traces (tested with 15 GB ones)
» Can combine multiple tracefiles in a single view.
» Graphical or text interface

See http://lttng.org/files/lttv-doc/user_guide/

143

http://lttng.org/files/lttv-doc/user_guide/

» Load a broken driver and see it crash

» Analyze the error information
dumped by the kernel.

» Disassemble the code and locate
the exact C instruction which caused
the failure.

» Use the JTAG and OpenOCD to
remotely control the kernel execution

144

Driver development
mmap

145

B

Possibility to have parts of the virtual address space of a program
mapped to the contents of a file!

> cat /proc/1/maps (init process)

start end perm offset major:minor inode mapped file name
00771000-0077£000 r-xp 00000000 03:05 1165839 /lib/libselinux.so.1l
0077£000-00781000 rw-p 00004000 03:05 1165839 /lib/libselinux.so.1l
0097d000-00992000 r-xp 00000000 03:05 1158767 /1lib/1d-2.3.3.s0
00992000-00993000 r--p 00014000 03:05 1158767 /1lib/1d-2.3.3.s0
00993000-00994000 rw-p 00015000 03:05 1158767 /1lib/1d-2.3.3.s0
00996000-00aac000 r-xp 00000000 03:05 1158770 /lib/tls/libc-2.3.3.s0
00aac000-00aad000 r--p 00116000 03:05 1158770 /1lib/tls/libc-2.3.3.s0
00aad000-00ab0000 rw-p 00117000 03:05 1158770 /lib/tls/1libc-2.3.3.s0
00ab0000-00ab2000 rw-p 00ab0000 00:00 O

08048000-08050000 r-xp 00000000 03:05 571452 /sbin/init (text)
08050000-08051000 rw-p 00008000 03:05 571452 /sbin/init (data, stack)

08b43000-08b64000 rw-p 08b43000 00:00 O
f6£df000-£f6£fe0000 rw-p £6£df000 00:00 O
fefd4000-££000000 rw-p fefd4000 00:00 O
ffffe000-£f£f££ff000 ---p 00000000 00:00 O

146

@

Particularly useful when the file is a device file!
Allows to access device I/O memory and ports without having to
go through (expensive) read, write or ioctl calls!

X server example (maps excerpt)

start end
08047000-081be000
081be000-081£0000

f4e08000-£4£09000
£4£09000-£4£f0b00O0
f4£f0b000-£6£0b000
f6£0b000-£6£8b000

perm
r-xp
rw-p

rw-s
rw-s
rw-s
rw-s

offset major:minor inode

00000000
00176000

e0000000
4281a000
e8000000
fcf£0000

03:
03:

03:
03:
03:
03:

05
05

05
05
05
05

310295
310295

655295
655295
652822
652822

mapped file name
/usr/X11R6/bin/Xorg
/usr/X11R6/bin/Xorg

/dev/dri/card0
/dev/dri/card0
/dev/mem
/dev/mem

A more user friendly way to get such information: pmap <pid>

147

mmap
system
call (once)

access
virtual
address

f

\

Device driver
mmap fop called

initializes the mapping

\

_/

— MMU

Process virtual address space

\J

access
physical
address

Physical address space

148

» Open the device file

» Call the mmap system call (see man mmap for details):
void * mmap (
void *start, /* Often 0, preferred starting address */
size t length, /*Length of the mapped area */

int prot , /* Permissions: read, write, execute */

int flags, /* Options: shared mapping, private copy...
*/

int f£d, /* Open file descriptor */

off t offset /* Offset in the file */
) ;

» You get a virtual address you can write to or read from.

149

» Character driver: implement a mmap file operation
and add it to the driver file operations:
int (*mmap) (
struct file ¥, /* Open file structure */
struct vm area struct * /* Kernel VMA structure */

) ;

» Initialize the mapping.
Can be done in most cases with the remap pfn range()
function, which takes care of most of the job.

150

http://lxr.free-electrons.com/ident?i=file
http://lxr.free-electrons.com/ident?i=vm_area_struct
http://lxr.free-electrons.com/ident?i=remap_fn_range

» pfn: page frame number
The most significant bits of the page address

(without the bits corresponding to the page size).

» #include <linux/mm.h>

int remap pfn range(
struct vm area struct *, /* VMA struct */
unsigned long virt addr, /* Starting user virtual address */
unsigned long pfn, /* pfn of the starting physical address */
unsigned long size, /* Mapping size */
pgprot t /* Page permissions */

) ;

151

http://lxr.free-electrons.com/source/include/linux/mm.h
http://lxr.free-electrons.com/ident?i=remap_pfn_range
http://lxr.free-electrons.com/ident?i=vm_area_struct
http://lxr.free-electrons.com/ident?i=pgprot_t

@

static int acme mmap (
struct file * file, struct vm area struct * vma)

{
size = vma->vm end - vma->vm start;
if (size > ACME SIZE)
return -EINVAL;
if (remap pfn range(vma,
vma->vm_start,
ACME PHYS >> PAGE SHIFT,
size,
vma->vm page prot))
return -EAGAIN;
return 0;
}

152

http://lxr.free-electrons.com/ident?i=file
http://lxr.free-electrons.com/ident?i=vm_area_struct
http://lxr.free-electrons.com/ident?i=EINVAL
http://lxr.free-electrons.com/ident?i=remap_pfn_range
http://lxr.free-electrons.com/ident?i=EAGAIN

http://free-electrons.com/pub/mirror/devmem?2.c, by Jan-Derk Bakker

Very useful tool to directly peek (read) or poke (write) I/O addresses
mapped in physical address space from a shell command line!

» Very useful for early interaction experiments with a device, without
having to code and compile a driver.

» Uses mmap to /dev/mem.

» Examples (b: byte, h: half, w: word)
devmem2 0x000c0004 h (reading)
devmem2 0x000c0008 w Oxffffffff (writing)

» devmem is now available in BusyBox, making it even easier to use.

153

http://free-electrons.com/pub/mirror/devmem2.c

» The device driver is loaded.
It defines an mmap file operation.

P A user space process calls the mmap system call.

» The mmap file operation is called.
It initializes the mapping using the device physical address.

P The process gets a starting address to read from and write to
(depending on permissions).

» The MMU automatically takes care of converting the process
virtual addresses into physical ones.

Direct access to the hardware!
No expensive read or write system calls!

154

Driver development
Kernel architecture for device drivers

155

Userspace

System call interface

|

Framework
Kernel i

Driver

|

Bus infrastructure

» Many device drivers are not implemented directly as character
drivers

» They are implemented under a « framework », specific to a given
device type (framebuffer, V4L, serial, etc.)

» The framework allows to factorize the common parts of drivers for
the same type of devices

P From userspace, they are still seen as character devices by the
applications

» The framework allows to provide a coherent userspace interface
(ioctl, etc.) for every type of device, regardless of the driver

» The device drivers rely on the « bus infrastructure » to enumerate
the devices and communicate with them.

157

Kernel frameworks

158

Application

core

core

Application Application
Framebuffer V4L TTY Block
core core core core
v v v v
Serial IDE SCSI

core

y v
s e

» Kernel option CONFIG FB

menuconfig FB
tristate "Support for frame buffer devices"

» Implemented in drivers/video/

» fb.c, fbmem.c, fbmon.c, fbcmap.c, fbsysfs.c,
modedb.c, fbcvt.c

» Implements a single character driver and defines the user/kernel
API

P First part of include/linux/fb.h

» Defines the set of operations a framebuffer driver must implement
and helper functions for the drivers

P struct fb ops

» Second part of include/linux/fb.h
(in #ifdef KERNEL) 160

http://lxr.free-electrons.com/source/drivers/video/
http://lxr.free-electrons.com/source/include/linux/fb.h
http://lxr.free-electrons.com/ident?i=fb_ops
http://lxr.free-electrons.com/source/include/linux/fb.h

» Skeleton driver in drivers/video/skeletonfb.c

» Implements the set of framebuffer specific operations defined
by the struct fb ops structure

P xxxfb open|() P xxxfb fillrect()
P xxxfb read() P xxxfb_copyarea()
P xxxfb write() P xxxfb_imageblit()
P xxxfb release() P xxxfb cursor()

P xxxfb checkvar() P xxxfb rotate()

P xxxfb setpar() P xxxfb sync()

P xxxfb setcolreg() P xxxfb ioctl()

P xxxfb blank() P xxxfb mmap()

P xxxfb pan display()

161

http://lxr.free-electrons.com/source/drivers/video/skeletonfb.c

B

» After the implementation of the operations, definition of a struct
fb ops structure

static struct fb_ops xxxfb ops = {

.owner = THIS_ MODULE,
.fb open = xxxfb open,
.fb read = xxxfb read,
.fb write = xxxfb write,
.fb release = xxxXfb release,

.fb check var xxxfb check var,

.fb_set par = xxxfb set par,

.fb_setcolreg = xxxfb setcolreg,

.fb blank = xxxfb blank,

.fb pan display = xxxfb pan display,

.fb fillrect = xxxfb fillrect, /* Needed !!! */
.fb _copyarea = xxxfb copyarea, /* Needed !!! */
.fb_imageblit = xxxfb imageblit, /* Needed !!! */
.fb cursor = xxxfb cursor, /* Optional !!! *x/
.fb rotate = xxxfb rotate,

.fb sync = xxxfb sync,

.fb ioctl = xxxfb ioctl,

.fb mmap = xxxXfb mmap,

162

@

» In the probe () function, registration of the framebuffer device
and operations

static int _ devinit xxxfb probe
(struct pci dev *dev,
const struct pci device id *ent)

struct fb_info *info;

[on.]

info = framebuffer alloc(sizeof(struct xxx par), device);

[e..]

info->fbops = &xxxfb ops;

[e..]

if (register framebuffer(info) < 0)
return -EINVAL;

[+..]

» register framebuffer () will create the character device
that can be used by userspace application with the generic
framebuffer API

163

Device Model and Bus Infrastructure

164

» Th 2.6 kernel included a significant new feature: a unified device
model

» Instead of having different ad-hoc mechanisms in the various
subsystems, the device model unifies the description of the
devices and their topology

» Minimization of code duplication

» Common facilities (reference counting, event notification, power
management, etc.)

P Enumerate the devices view their interconnections, link the devices
to their buses and drivers, etc.

» Understand the device model is necessary to understand how
device drivers fit into the Linux kernel architecture.

165

» The first component of the device model is the bus driver
» One bus driver for each type of bus: USB, PCI, SPI, MMC, I12C, etc.
» It is responsible for

» Registering the bus type (struct bus_type)

» Allowing the registration of adapter drivers (USB controllers, 12C
adapters, etc.), able of detecting the connected devices, and
providing a communication mechanism with the devices

P Allowing the registration of device drivers (USB devices, 12C
devices, PCI devices, etc.), managing the devices

» Matching the device drivers against the devices detected by the
adapter drivers.

» Provides an API to both adapter drivers and device drivers

» Defining driver and device specific structure, typically xxx driver
and xxx_device 166

167

USB device
driver 3

DEV3 |DEV4| DEV5

USB2

System

» Core infrastructure (bus driver)
P drivers/usb/core

P The bus_type is defined in drivers/usb/core/driver.c and
registered in drivers/usb/core/usb.c

» Adapter drivers
P drivers/usb/host

» For EHCI, UHCI, OHCI, XHCI, and their implementations on various
systems (Atmel, IXP, Xilinx, OMAP, Samsung, PXA, etc.)

» Device drivers

P Everywhere in the kernel tree, classified by their type

168

» To illustrate how drivers are implemented to work with the device
model, we will study the source code of a driver for a USB
network card

> It is USB device, so it has to be a USB device driver
P |t is a network device, so it has to be a network device

» Most drivers rely on a bus infrastructure (here, USB) and register
themselves in a framework (here, network)

» We will only look at the device driver side, and not the adapter
driver side

» The driver we will look atis drivers/net/usb/rtl18150.c

169

Device identifiers

» Defines the set of devices that this driver can manage, so that the
USB core knows for which devices this driver should be used

» The MODULE DEVICE TABLE macro allows depmod to extract at
compile time the relation between device identifiers and drivers,

so that drivers can be loaded automatically by udev. See
/lib/modules/S$ (uname -r)/modules.{alias,usbmap}

static struct usb _device id rtl8150 table[] = {

{ USB_DEVICE(VENDOR ID REALTEK, PRODUCT ID RTL8150) Yo
{ USB_DEVICE(VENDOR ID MELCO, PRODUCT ID LUAKTX) o
{ USB_DEVICE(VENDOR ID MICRONET, PRODUCT_ID_SP128AR) b
{ USB_DEVICE (VENDOR ID LONGSHINE, PRODUCT_ID_LC88138TX) o
{ USB DEVICE(VENDOR ID 0QO, PRODUCT ID RTL8150) Yo
{ USB_DEVICE (VENDOR ID ZYXEL, PRODUCT ID PRESTIGE) o
{}

}i

MODULE_DEVICE TABLE(usb, rtl18150 table);

170

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com

» struct usb_driver is a structure defined by the USB core.
Each USB device driver must instantiate it, and register itself to
the USB core using this structure

» This structure inherits from struct driver, which is defined by
the device model.

171

» When the driver is loaded or unloaded, it must register or
unregister itself from the USB core

» Done using usb _register() and usb_deregister(),
provided by the USB core.

172

» The USB adapter driver that corresponds to the USB controller of
the system reqisters itself to the USB core

» The rtl8150 USB device driver registers itself to the USB core

A A

usb add hcd() usb register|()

» The USB core now knows the association between the
vendor/product IDs of rtl8150 and the usb driver structure of
this driver 173

@

Step 3

The USB core calls the
->probe () method of
the usb _driver

structure registered by
rtl8150

Step 1
« | have detected a new
USB device of ID X:Y »

174

» The probe () method receives as argument a structure
describing the device, usually specialized by the bus
infrastructure (pci dev, usb _interface, efc.)

» This function is responsible for

» Initializing the device, mapping I/O memory, registering the
interrupt handlers. The bus infrastructure provides methods to
get the addresses, interrupts numbers and other device-
specific information.

P Registering the device to the proper kernel framework, for
example the network infrastructure.

175

Probe method example

static int rtl8150 probe(struct usb_interface *intf,
const struct usb device id *id)

{
rtl8150 t *dev;
struct net device *netdev;
netdev = alloc_etherdev(sizeof(rtl8150 t));
[«..]
dev = netdev_priv(netdev);
tasklet init(&dev->tl, rx fixup, (unsigned long)dev);
spin_lock init(&dev->rx pool lock);
[«..]
netdev->netdev_ops = &rtl8150 netdev _ops;
alloc _all urbs(dev);
[«..]
usb set intfdata(intf, dev);
SET NETDEV DEV(netdev, &intf->dev);
register netdev(netdev);
return O0;
}

176

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com

ALSA Network | Char driver
stack infrastructure
A A
T System
f
12C core
Network driver
USB device driver USB ctrl
$ $
USB core
12C ctrl
USB
N .
20 et device
thermometer

PCI core

 Polagmeramer

177

» The bus, device, drivers, etc. structures are internal to the
kernel

P The sysfs virtual filesystem offers a mechanism to export such
iInformation to userspace

» Used for example by udev to provide automatic module loading,
firmware loading, device file creation, etc.

P sysfs is usually mounted in /sys

P /sys/bus/ contains the list of buses
P /sys/devices/ contains the list of devices

P /sys/class enumerates devices by class (net, input,
block...), whatever the bus they are connected to. Very useful!

P Take your time to explore /sys on your workstation.

178

» On embedded systems, devices are often not connected
through a bus allowing enumeration, hotplugging, and providing
unique identifiers for devices.

» However, we still want the devices to be part of the device
model.

» The solution to this is the platform driver / platform device
infrastructure.

» The platform devices are the devices that are directly connected
to the CPU, without any kind of bus.

179

@

» The driver implements a platform_driver structure
(example taken from drivers/serial/imx.c)

static struct platform driver serial imx driver = {
.probe serial imx probe,

.remove = serial imx remove,
.driver = {

.name = "imx-uart",

.owner = THIS MODULE,
o

}i

» And registers its driver to the platform driver infrastructure

static int init imx serial init(void)

{
ret = platform driver register(&serial imx driver);
}
static void exit imx serial cleanup(void)
{
platform driver unregister(&serial imx driver);
}

180

@

» As platform devices cannot be detected dynamically, they are
defined statically

» By direct instantiation of platform device structures, as done on
ARM. Definition done in the board-specific or SoC-specific code.

P By using a device tree, as done on Power PC, from which
platform device structures are created

» Example on ARM, where the instantiation is done in
arch/arm/mach-imx/mxlads.c

static struct platform device imx uartl device = {
.name "imx-uart",
.id 0,

.num_resources

.resource

.dev = {
.platform data = &uart pdata,

ARRAY SIZE(imx uartl resources),
imx uartl resources,

}i

181

@

» The device is part of a list

static struct platform device *devices[] _ initdata = {
&cs89x0 device,
&imx uartl device,
&imx uart2 device,

}i

» And the list of devices is added to the system
during board initialization

static void _ init mxlads init(void)
{

[o]
platform add devices(devices, ARRAY SIZE(devices));

}

MACHINE_START(MXlADS, "Freescale MX1ADS")
[e o o]
.init machine = mxlads init,
MACHINE_END

182

.. The resource mechanism
BV

» Each device managed by a particular driver typically uses
different hardware resources: addresses for the 1/O registers,
DMA channels, IRQ lines, etc.

P These informations can be represented using the struct
resource, and an array of struct resource is associated to
aplatform device

» Allows a driver to be instantiated for multiple devices functioning
similarly, but with different addresses, IRQs, etc.

static struct resource imx uartl resources[] = {
[0] = {
.start = 0x00206000,
.end = 0x002060FF,
.flags = IORESOURCE_MEM,
|
[1] = {
.start = (UART1 MINT RX),
.end = (UART1 MINT RX),
.flags = IORESOURCE TIRQ,
|

& 183

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com

» When a platform_device is added to the system using
platform add device(), the probe () method of the platform
driver gets called

» This method is responsible for initializing the hardware,
registering the device to the proper framework (in our case, the
serial driver framework)

» The platform driver has access to the I/O resources:

res = platform get resource(pdev, IORESOURCE MEM, 0);
base = ioremap(res->start, PAGE SIZE);
sport->rxirq = platform get irqg(pdev, 0);

184

» In addition to the well-defined resources, many drivers require
driver-specific informations for each platform device

» These informations can be passed using the platform data
field of the struct device (from which struct
platform device inherits)

P Asitis avoid * pointer, it can be used to pass any type of
information.

P Typically, each driver defines a structure to pass information
through platform_data

185

@

» The i.MX serial port driver defines the following structure to be
passed through platform data

struct imxuart platform data {
int (*init) (struct platform device *pdev);
void (*exit) (struct platform device *pdev);
unsigned int flags;
void (*irda enable) (int enable);
unsigned int irda inv rx:1;
unsigned int irda inv_ tx:1;
unsigned short transceiver delay;

}i

» The MX1ADS board code instantiates such a structure

static struct imxuart platform data uartl pdata = {
.flags = IMXUART HAVE RTSCTS,

}i

186

platform data example (2)

» The uart_pdata structure is associated to the platform_device in
the MX1ADS board file (the real code is slightly more
complicated)

struct platform device mxlads uartl = {
.name = “imx-uart”,
.dev {
.platform data = &uartl pdata,

b

.resource = imx uartl resources,
[...]
}i

» The driver can access the platform data:

static int serial imx probe(struct platform device *pdev)

{
struct imxuart platform data *pdata;
pdata = pdev->dev.platform data;
if (pdata && (pdata->flags & IMXUART HAVE RTSCTS))
sport->have rtscts = 1;
[...]
}

|87‘

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com

» Each « framework » defines a structure that a device driver must
register to be recognized as a device in this framework

P uart_port for serial port, netdev for network devices, fb_info for
framebuffers, etc.

» In addition to this structure, the driver usually needs to store
additional informations about its device

» This is typically done

P By subclassing the « framework » structure

» Or by storing a reference to the « framework » structure

188

Driver-specific data structure examples

I.MX serial driver: imx port is a subclass of uart port

struct imx port {

struct uart port port;

struct timer list timer;

unsigned int old status;

int txirq,rxirq,rtsirq;
unsigned int have rtscts:1;

[...]
}i

rtl8150 network driver: rt18150 has a reference to net device

struct rtl8150 {

unsigned long flags;
struct usb device *udev;
struct tasklet struct tl;
struct net device *netdev;

[...]
}i

189

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com

» The « framework » typically contains a struct device *
pointer that the driver must point to the corresponding struct
device

P It's the relation between the logical device (for example a network
interface) and the physical device (for example the USB network
adapter)

» The device structure also contains a void * pointer that the
driver can freely use.

P It's often use to link back the device to the higher-level structure
from the framework.

» It allows, for example, from the platform device structure, to
find the structure describing the logical device

190

http://lxr.free-electrons.com/ident?i=device
http://lxr.free-electrons.com/ident?i=platform_device

B

static int serial imx probe(struct platform device *pdev)

{

}

struct imx port *sport;

[..]

/* setup the link between uart port and the struct
device inside the platform device */

sport->port.dev = &pdev->dev;

[.]

/* setup the link between the struct device inside
the platform device to the imx port structure */

platform set drvdata(pdev, &sport->port);

[..]
uart add one port(&imx reg, &sport->port);

static int serial imx remove(struct platform device *pdev)

{

/* retrive the imx port from the platform device */
struct imx port *sport = platform get drvdata(pdev);
[..]

uart remove one port(&imx reg, &sport->port);

[..]

device

void *driver data

191

B

static int rtl8150 probe(struct usb interface *intf,
const struct usb device id *id)

{
rt1l8150 t *dev;

struct net device *netdev;

netdev = alloc_etherdev(sizeof(rtl8150 t));
dev = netdev priv(netdev);

usb_set intfdata(intf, dev);
SET NETDEV DEV(netdev, &intf->dev);

[.]
}

static void rtl8150 disconnect(struct usb interface *intf)

{
rtl8150 t *dev = usb get intfdata(intf);

[.]

device

void *driver data

192

@

» SPl is called non-dynamic as it doesn't support runtime enumeration of
devices: the system needs to know which devices are on which SPI
bus, and at which location

» The SPI infrastructure in the kernel is in drivers/spi
P drivers/spi/spi.c is the core, which implements the struct
bus_type for spi

P It allows registration of adapter drivers using spi_register master(), and
registration of device drivers using spi register driver()

P drivers/spi/ contains many adapter drivers, for various
platforms: Atmel, OMAP, Xilinx, Samsung, etc.

P Most of them are platform_drivers or of _platform_drivers, one
pci_driver, one amba_driver, one partport_driver

P drivers/spi/spidev.c provides an infrastructure to access SPI
bus from userspace

P SPI device drivers are present all over the kernel tree
193

SP| components

RTC
framework

framework

MTD

GPIO

framework

CAN
framework

char driver
framework

Kernel frameworks

SPI devide drivers

SPI core
drivers/spi/spi.c

f

A\ J

f

A\ J

f

A\ J

atmel_spi.c amba-pl022.c mpc52xx_spi.c spi_imx.c
drivers/spi drivers/spi drivers/spi drivers/spi
SPI adapter driver SPI adapter driver SPI adapter driver SPI adapter driver
platform_driver amba_driver of platform_driver platform_driver

f

A\ J

SPI adapter drivers
194

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com

SPI AT91 SoC code

static struct resource spi0 resources[] = {
[0] = {
.start = AT91SAM9260 BASE SPIO,
.end = AT91SAM9260 BASE SPIO + SZ_ 16K - 1,
.flags = IORESOURCE MEM,
i
[1] = {
.start = AT91SAM9260 ID SPIO,
.end = AT91SAM9260 ID SPIO,
.flags = IORESOURCE IRQ,
i
}i
static struct platform device at91sam9260 spi0 device = {
.name = "atmel spi",
.id = 0,
.dev = {
.dma mask = &spi_dmamask,
.coherent dma mask = DMA BIT MASK(32),
i
.resource = spi0_resources,

-lulm_resources

}i

ARRAY SIZE(spiO_resources),

arch/arm/mach-at91/at91sam9260 devices.c
195

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com

SPI AT91 SoC code (2)

Registration of SPI devices with spi register board info(), registration of SPI
adapter with platform device register()

void _ init at91 add device spi(struct spi board info *devices,
int nr devices)

{
[...]
spi_register board info(devices, nr devices);
/* Configure SPI bus(es) */
if (enable spi0) {
at91 set A periph(AT91 PIN PAO, 0); /* SPI0 _MISO */
at91 set A periph(AT91 PIN PAl, 0); /* SPI0 MOSI */
at91 set A periph(AT91 PIN PA2, 0); /* SPI1 SPCK */
at91 clock associate("spi0 clk", &at91sam9260 spiO device.dev,
"spi clk");
platform device register(&at91sam9260 spiO device);
}
[..]
}

arch/arm/mach-at91/at91sam9260 devices.c
196

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com

AT91RM9200DK board code for SPI

One spi_board info structure for each SPI device connected to the system.

static struct spi board info dk spi devices[] = {
{ /* DataFlash chip */
.modalias = "mtd dataflash",
.chip select = 0,
.max speed hz = 15 * 1000 * 1000,
Fo
{ /* URGHCPS2-SP40 PS2-to-SPI adapter */
.modalias = "ur6hcps2",
.chip select = 1,
.max speed hz = 250 * 1000,
Fo
[...]
}i
static void _ init dk board init(void)
{
[...]
at91 add device spi(dk spi devices, ARRAY SIZE(dk spi devices));
[...]
}

arch/arm/mach-at91/board-dk.c
197

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com

» Kernel documentation
Documentation/driver-model/
Documentation/filesystems/sysfs.txt

» Linux 2.6 Device Model
http://www.bravegnu.org/device-model/device-model.html

» Linux Device Drivers, chapter 14 «The Linux Device Model»
http://lwn.net/images/pdf/LDD3/ch14.pdf

» The kernel source code
Full of examples of other drivers!

198

http://free-electrons.com/kerneldoc/latest/driver-model/
http://free-electrons.com/kerneldoc/latest/filesystems/sysfs.txt
http://www.bravegnu.org/device-model/device-model.html
http://lwn.net/images/pdf/LDD3/ch14.pdf

Free Electrons

Embedded Freedom

Recent blog posts

ELC Europe in Grenohle Maost of the below documents are presentations used in our t

conferences.

s, ar in technical

Free Electrons at ELC
License
Linux kernel 2.6.29 - New

features for embedded ShareAlike 3.0 license. This essentially means that you are free to download, distribute

@ All our documents are available under the terms of the Creative Commaons Attribution-

and even modify

them, provided you mention us as the original authors and that you

users -
share these documents under the same conditions.

The Buildroot project Linux kernel

begins a new life

Embedded Linux kernel and driver development
6 (since 2.6.10)

New features in Linux 2

FOSDEM 2009 videos

« Kernel initialization
USE-Ethernet device for . hardware
» Power management in Linux

Linusx

Frogram far Embedded Block device drivers

Linux Conference 2008

documents

announced

Public session changes

Real hardware in our
Embedded Linux system development
training sessions
« Embedded Linux system development
Call for presentations for = Real time in embedded Linux systems
Elack filesystems

the LSM embedded track

Free software development tools
r
+ The GRUE hootloader
+ The biok boatloader

Introduction to uClinux

Embedded Linux aptimizations
= Audio in embedded Linux systems

= Multimedia in embedded Linux systems
= Embedded Linux From Scratch... in 40 minutes!

. embedded Linux systams with Buildroot
Developing embedded distributions with OpenEmbedded
= The Scratchbox development environment

Miscellaneous

= Introduction to the Unix command line

wirtualization solutions (with an embedded perspectivel
= Advantages of Free Software and Open Source in embedded systems
= Introduction to GNU/Linux and Free Software

All our technical presentations
on http://free-electrons.com/docs

» Linux kernel

» Device drivers

» Architecture specifics

» Embedded Linux system development

http://free-electrons.com/docs

You can help us to improve and maintain this document...

» By sending corrections, suggestions, contributions and
translations

» By asking your organization to order development, consulting
and training services performed by the authors of these
documents (see http://free-electrons.com/).

» By sharing this document with your friends, colleagues
and with the local Free Software community.

» By adding links on your website to our on-line materials,
to increase their visibility in search engine results.

http://free-electrons.com/

Linux kernel

Linux device drivers

Board support code
Mainstreaming kernel code
Kernel debugging

Embedded Linux Training
All materials released with a free license!

Unix and GNU/Linux basics

Linux kernel and drivers development
Real-time Linux, uClinux

Development and profiling tools
Lightweight tools for embedded systems
Root filesystem creation

Audio and multimedia

System optimization

Free Electrons

Our services

Custom Development

System integration

Embedded Linux demos and prototypes
System optimization

Application and interface development

Consulting and technical support

Help in decision making

System architecture

System design and performance review
Development tool and application support
Investigating issues and fixing tool bugs

. .’ Free Electrons

Embedded Linux Experts

