Real-time In
embedded Linux

systems

Michael Opdenacker
Thomas Petazzoni
Gilles Chanteperdrix
Free Electrons

Free Electrons

Embedded Linux
Developers

© Copyright 2004-2011, Free Electrons.

Creative Commons BY-SA 3.0 license

Latest update: Feb 21, 2011,

Document sources, updates and translations:
http://free-electrons.com/docs/realtime

Corrections, suggestions, contributions and translations are welcome!

http://free-electrons.com/docs/realtime

Introduction

» Due to its advantages, Linux and the open-source softwares are
more and more commonly used in embedded applications

» However, some applications also have real-time constraints

» They, at the same time, want to

P Get all the nice advantages of Linux: hardware support,
components re-use, low cost, etc.

P Get their real-time constraints met

» Linux is an operating system part of the large Unix family

» It was originally designed as a time-sharing system

» The main goal is to get the best throughput from the available
hardware, by making the best possible usage of resources (CPU,
memory, 1/O)

P Time determinism is not taken into account

» On the opposite, real-time constraints imply time determinism,
even at the expense of lower global throughput

» Best throughput and time determinism are contradictory
requirements

» Over time, two major approaches have been taken to bring real-
time requirements into Linux

» Approach 1

P Improve the Linux kernel itself so that it matches real-time
requirements, by providing bounded latencies, real-time APls, etc.

» Approach taken by the mainline Linux kernel and the
PREEMPT_RT project.

» Approach 2

» Add a layer below the Linux kernel that will handle all the real-time
requirements, so that the behaviour of Linux doesn't affect real-time
tasks.

» Approach taken by RTLinux, RTAI and Xenomai

5

Approach 1
Improving the main Linux kernel with
PREEMPT_RT

» When developing real-time applications with a system such as
Linux, the typical scenario is the following

» An event from the physical world happens and gets notified to the
CPU by means of an interrupt

» The interrupt handler recognizes and handles the event, and then
wake-up the user-space task that will react to this event

» Some time later, the user-space task will run and be able to react to
the physical world event

» Real-time is about providing guaranteed worst case latencies for
this reaction time, called /latency

— Something not very important — Your important .
J y1mp real-time task !

- >
Interrupt ! T ?

Waiting Process
task Makes the context

task runnable

interrupt Interrupt Interrupt
latency handler Scheduler context
Interrupt — >t — — Pt — — - — — >
handler scheduler scheduler
]I duration latency duration
- — — — — — — — — — = — — — 1=
Scheduling latency
kernel latency = interrupt latency + handler duration
+ scheduler latency + scheduler duration
8

@

Waiting + + + +

task Makes the
task runnable |

| iiltterrupt Scheduler
atency
— >|<— —_ — >|<— — — —>|
scheduler scheduler
| latency duration |
I

_____________ .>
Scheduling latency

Time elapsed before executing the interrupt handler

» One of the concurrency prevention mechanism used in the kernel
IS the spinlock

» It has several variants, but one of the variant commonly used to
prevent concurrent accesses between a process context and an
interrupt context works by disabling interrupts

» Critical sections protected by spinlocks, or other section in which
interrupts are explictly disabled will delay the beginning of the
execution of the interrupt handler

P The duration of these critical sections is unbounded

» Other possible source: shared interrupts

Kernel Critical section Interrupt -
code protected by spinlock handler
ernt 2
44—
nterrup 10

@

Waiting + + | + +
| A :
|

task

. Interrupt
| inte handl eI; Scheduler
I
Interrupt - >|<_ o _>|
scheduler
]I | duration |
« — L = 1L _ __ 1L ___

Scheduling latency

Time taken to execute the interrupt handler

» In Linux, many interrupt handlers are split in two parts

P A top-half, started by the CPU as soon as interrupt are
enabled. It runs with the interrupt line disabled and is
supposed to complete as quickly as possible.

» A bottom-half, scheduled by the top-half, which starts after alll
pending top-half have completed their execution.

» Therefore, for real-time critical interrupts, bottom-half
shouldn't be used: their execution is delayed by all other
interrupts in the system.

Other interrupt

Top half handlers...

Bottom half

Interrupt ACK Schedule Exit Handle Wake up

bottom device waiting User space...
i half data... tasks

@

Waiting + + + | *
| .
|
|
|

task

interrupt
latency

Interrupt

scheduler

— - —>|
duration |
I

4+ - - - - - - - - - = — — — L
Scheduling latency

Time elapsed before executing the scheduler

» The Linux kernel is a preemptive operating system

» When a task runs in user-space mode and gets interrupted by an
interruption, if the interrupt handler wakes up another task, this
task can be scheduled as soon as we return from the interrupt

handler.
\J
Task A Task B
(running in user mode) (running in user mode)

Interrupt
14

» However, when the interrupt comes while the task is executing a
system call, this system call has to finish before another task can
be scheduled.

» By default, the Linux kernel does not do kernel preemption.

» This means that the time before which the scheduler will be
called to schedule another task is unbounded.

Task A Task A
A (kernel mode) (kernel mode)

- P> Return from syscall
? \
Task A Task B
(user mode) (user mode)

System call Interrupt

@

task Makes the

Waiting + + + *
| | task runnable
|
- Interrupt
| Interrupt handl P Scheduler
| latency anteligr
Interrupt _>|<___>|<__ < — —
handler schedulet scheduler
]I | duration latency duration
w _ | _ _ _1_ __ N
Scheduling latency

Time taken to execute the scheduler
and switch to the new task.

» Outside of the critical path detailed previously, other non-
deterministic mechanisms of Linux can affect the execution time
of real-time tasks

» Linux is highly based on virtual memory, as provided by an MMU,
so that memory is allocated on demand. Whenever an application
accesses code or data for the first time, it is loaded on demand,
which can creates huge delays.

» Many C library services or kernel services are not designed with
real-time constraints in mind.

A process with a low priority might hold a lock needed by a higher
priority process, effectively reducing the priority of this process.
Things can be even worse if a middle priority process uses the CPU.

A Priority ﬁ

Tries to get
the same

lock

5 T
Acquires
a lock

waits

A

preempted

Time

In Linux, interrupt handlers are executed directly by the CPU
interrupt mechanisms, and not under control of the Linux
scheduler. Therefore, all interrupt handlers have an higher
priority than all tasks running on the system.

Any interrupt Any interrupt...

top priority task top priority task

» Long-term project lead by Linux kernel developers Ingo Molnar,
Thomas Gleixner and Steven Rostedt

» https://rt.wiki.kernel.org

» The goal is to gradually improve the Linux kernel regarding real-
time requirements and to get these improvements merged into
the mainline kernel

» PREEMPT_RT development works very closely with the mainline
development

» Many of the improvements designed, developed and debugged
inside PREEMPT _RT over the years are now part of the mainline
Linux kernel

» The project is a long-term branch of the Linux kernel that ultimately
should disappear as everything will have been merged

20

https://rt.wiki.kernel.org/

» Coming from the
PREEMPT_RT project

» Since the beginning of 2.6
» O(1) scheduler

» Kernel preemption

P Better POSIX real-time API
support

» Since 2.6.18

» Priority inheritance support
for mutexes

» Since 2.6.21

» High-resolution timers

» Since 2.6.30

» Threaded interrupts

» Since 2.6.33

» Spinlock annotations

21

2 new preemption models offered by standard Linux 2.6:

dPreemption Model
oNo Forced Preemption (Server) PREEMPT_NONE
@Voluntary Kernel Preemption (Desktop) PREEMPT _VOLUNTARY

oPreemptible Kernel (Low-Latency Desktop) PREEMPT

CONFIG PREEMPT NONE

Kernel code (mterrupts exceptions, system calls) never preempted.
Default behavior in standard kernels.

P Best for systems making intense computations,
on which overall throughput is key.

» Best to reduce task switching to maximize CPU and cache usage
(by reducing context switching).

P Still benefits from some Linux 2.6 improvements:
O(1) scheduler, increased multiprocessor safety (work on RT
preemption was useful to identify hard to find SMP bugs).

» Can also benefit from a lower timer frequency
(100 Hz instead of 250 or 1000).

23

CONFIG PREEMPT VOLUNTARY
Kernel code can preempt itself

» Typically for desktop systems, for quicker application reaction to
user input.

» Adds explicit rescheduling points throughout kernel code.

» Minor impact on throughput.

CONFIG PREEMPT

Most kernel code can be involuntarily preempted at any time.
When a process becomes runnable, no more need to wait for
kernel code (typically a system call) to return before running the
scheduler.

» Exception: kernel critical sections (holding spinlocks), but a
rescheduling point occurs when exiting the outer critical section,
In case a preemption opportunity would have been signaled while
In the critical section.

» Typically for desktop or embedded systems with latency
requirements in the milliseconds range.

» Still a relatively minor impact on throughput.

25

» One classical solution to the priority inversion problem is called
priority inheritance

P The idea is that when a task of a low priority holds a lock requested
by an higher priority task, the priority of the first task gets temporarly
raised to the priority of the second task : it has inherited its priority.

» In Linux, since 2.6.18, mutexes support priority inheritance

» In userspace, priority inheritance must be explictly enabled on a
per-mutex basis.

» The resolution of the timers used to be bound to the resolution of
the regular system tick

» Usually 100 Hz or 250 Hz, depending on the architecture and the
configuration

» A resolution of only 10 ms or 4 ms.

P Increasing the regular system tick frequency is not an option as it
would consume too much resources

» The high-resolution timers infrastructure, merged in 2.6.21,
allows to use the available hardware timers to program interrupts
at the right moment.

» Hardware timers are multiplexed, so that a single hardware timer is
sufficient to handle a large number of software-programmed timers.

» Usable directly from user-space using the usual timer APIs

27

» To solve the interrupt inversion problem, PREEMPT_RT has
introduced the concept of threaded interrupts

» The interrupt handlers run in normal kernel threads, so that the
priorities of the different interrupt handlers can be configured

» The real interrupt handler, as executed by the CPU, is only in
charge of masking the interrupt and waking-up the corresponding
thread

» The idea of threaded interrupts also allows to use sleeping
spinlocks (see later)

» Merged since 2.6.30, the conversion of interrupt handlers to
threaded interrupts is not automatic : drivers must be modified

» In PREEMPT _RT, all interrupt handlers are switched to threaded
Interrupts

28

PREEMPT_RT specifics

» The PREEMPT_RT patch adds a new « level » of preemption,
called CONFIG_PREEMPT_RT

» This level of preemption replaces all kernel spinlocks by mutexes
(or so-called sleeping spinlocks)

» Instead of providing mutual exclusion by disabling interrupts and
preemption, they are just normal locks : when contention happens,
the process is blocked and another one is selected by the scheduler

» Works well with threaded interrupts, since threads can block, while
usual interrupt handlers could not

» Some core, carefully controlled, kernel spinlocks remain as normal
spinlocks

» With CONFIG_PREEMPT _RT, virtually all kernel code becomes
preemptible

» An interrupt can occur at any time, when returning from the interrupt
handler, the woken up process can start immediately

» This is the last big part of PREEMPT _RT that isn't fully in the
mainline kernel yet

» Part of it has been merged in 2.6.33 : the spinlock annotations. The
spinlocks that must remain as spinning spinlocks are now
differentiated from spinlocks that can be converted to sleeping
spinlocks. This has reduced a lot the PREEMPT_RT patch size !

» The mechanism of threaded interrupts in PREEMPT_RT is still
different from the one merged in mainline

» In PREEMPT_RT, all interrupt handlers are unconditionally
converted to threaded interrupts.

» This is a temporary solution, until interesting drivers in mainline
get gradually converted to the new threaded interrupt API that
has been merged in 2.6.30.

Setting up PREEMPT_RT

» PREEMPT_RT is delivered as a patch against the mainline
kernel

P Best to have a board supported by the mainline kernel, otherwise
the PREEMPT_RT patch may not apply and may require some
adaptations

» Many official kernel releases are supported, but not all. For
example, 2.6.31 and 2.6.33 are supported, but not 2.6.32.

» Quick set up

» Download and extract mainline kernel
» Download the corresponding PREEMPT_RT patch

» Apply it to the mainline kernel tree

34

» In the kernel configuration, be sure to enable
» CONFIG_PREEMPT_RT

» High-resolution timers
» Compile your kernel, and boot

» You are now running the real-time Linux kernel

» Of course, some system configuration remains to be done, in
particular setting appropriate priorities to the interrupt threads,
which depend on your application.

» No special library is needed, the POSIX realtime APl is part of
the standard C library

» The glibc or eglibc C libraries are recommended, as the support
of some real-time features is not available yet in uClibc

P Priority inheritance mutexes or NPTL on some architectures, for
example

» Compile a program

P ARCH-linux-gcc -0 myprog myprog.c -1lrt
» To get the documentation of the POSIX API

P Install the manpages-posix-dev package

» Run man functioname

37

» Confusion about the terms «process», «thread» and «task»

» In Unix, a process is created using fork () and is composed of

» An address space, which contains the program code, data, stack,
shared libraries, etc.

» One thread, that starts executing the main() function.

» Upon creation, a process contains one thread

» Additional threads can be created inside an existing process,
using pthread create()

» They run in the same address space as the initial thread of the
process

P They start executing a function passed as argument to
pthread create()

38

» The kernel represents each thread running in the system by a
structure of type task_struct

» From a scheduling point of view, it makes no difference between
the initial thread of a process and all additional threads created
dynamically using pthread_create()

Address space Address space
Same process after pthread create()

Process after fork ()

» Linux support the POSIX thread API

» To create a new thread

P pthread create(pthread t *thread,
pthread attr t *attr,
void *(*routine) (*void¥*),
void *argqg);

P The new thread will run in the same address space, but will be
scheduled independently

» Exiting from a thread

P pthread exit(void *value ptr);

» Waiting for a thread termination

P pthread join(pthread t *thread, void **value ptr);

40

» The Linux kernel scheduler support different scheduling classes

» The default class, in which processes are started by default is a
time-sharing class

P All processes, regardless of their priority, get some CPU time

» The proportion of CPU time they get is dynamic and affected by the
nice value, which ranges from -20 (highest) to 19 (lowest). Can be
set using the nice or renice commands

» The real-time classes SCHED FIFO and SCHED RR
P The highest priority process gets all the CPU time, until it blocks.

» In SCHED_ RR, round-robin scheduling between the processes of
the same priority. All must block before lower priority processes get
CPU time.

P Priorities ranging from 0 (lowest) to 99 (highest)
41

» An existing program can be started in a specific scheduling class
with a specific priority using the chrt command line tool

» Example: chrt -f 99 ./myprog

» The sched setscheduler () API can be used to change the
scheduling class and priority of a process

P int sched setscheduler(pid t pid, int policy,
const struct sched param *param);

» policy canbe SCHED OTHER, SCHED FIFO, SCHED RR, etc.

P param is a structure containing the priority

Scheduling classes (3)

» The priority can be set on a per-thread basis when a thread is
created :

struct sched param parm;
pthread attr t attr;

pthread attr init(&attr);
pthread attr setinheritsched(é&attr,

PTHREAD EXPLICIT SCHED);
pthread attr setschedpolicy(&attr, SCHED FIFO);
parm.sched priority = 42;
pthread attr setschedparam(&attr, &parm);

» Then the thread can be created using pthread create(),
passing the attr structure.

» Several other attributes can be defined this way: stack size, etc. 43

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com

» In order to solve the non-determinism introduced by virtual
memory, memory can be locked

» Guarantee that the system will keep it allocated

» Guarantee that the system has pre-loaded everything into memory
» mlockall (MCL CURRENT | MCL FUTURE);

» Locks all the memory of the current address space, for currently
mapped pages and pages mapped in the future

» Other, less useful parts of the APIl: munlockall, mock,
munlock.

» Watch out for non-currently mapped pages

» Stack pages
» Dynamically-allocated memory

44

@

» Allows mutual exclusion between two threads in the same
address space

» Initialization/destruction
pthread mutex init(pthread mutex t *mutex, const
pthread mutexattr t *mutexattr);
pthread mutex destroy(pthread mutex t *mutex);

» Lock/unlock
pthread mutex lock(pthread mutex t *mutex);
pthread mutex unlock(pthread mutex t *mutex);

» Priority inheritance must explictly be activated
pthread mutexattr t attr;
pthread mutexattr init (&attr);
pthread mutexattr getprotocol
(&attr, PTHREAD PRIO_ INHERIT);

45

» timer create(clockid t clockid,
struct sigevent *evp,
timer t *timerid)

» Create a timer. clockid is usually CLOCK_MONOTONIC.
sigevent defines what happens upon timer expiration : send a
signal or start a function in a new thread. timerid is the returned
timer identifier.

P timer settime(timer t timerid, int flags,
struct itimerspec *newvalue,
struct itimerspec *oldvalue)

» Configures the timer for expiration at a given time.

P timer delete(timer t timerid), delete atimer
» clock getres(), get the resolution of a clock

» Other functions: timer getoverrun(), timer gettime()
46

» Signals are an asynchronous notification mechanism

» Notification occurs either

» By the call of a signal handler. Be careful with the limitations of
signal handlers!

» By being unblocked from the sigwait (), sigtimedwait () or
sigwaitinfo () functions. Usually better.

» Signal behaviour can be configured using sigaction ()

» Mask of blocked signals can be changed with
pthread sigmask()

» Delivery of a signal using pthread kill() or tgkill()

» All signals between SIGRTMIN and SIGRTMAX, 32 signals under
Linux.

47

» Semaphores

P Usable between different processes using named semaphores

» sem open(), sem close(), sem unlink(), sem init(),
sem destroy(), sem wait(), sem post(), elcC.

» Message queues

P Allows processes to exchange data in the form of messages.

Pmg open(), mq close(), mq unlink(), mq send(),
mq receive(), elc.

» Shared memory

P Allows processes to communicate by sharing a segment of memory

> shm open(), ftruncate(), mmap(), munmap(),
close(), shm unlink()

48

Debugging real-time latencies

New infrastructure that can be used for debugging or analyzing
latencies and performance issues in the kernel.

» Developed by Steven Rostedt. Merged in 2.6.27.
For earlier kernels, can be found from the rt-preempt patches.

» Very well documented in Documentation/ftrace.txt

» Negligible overhead when tracing is not enabled at run-time.

» Can be used to trace any kernel function!

» See our video of Steven's tutorial at OLS 2008:
http://free-electrons.com/community/videos/conferences/

http://free-electrons.com/community/videos/conferences/

» Tracing information available through the debugfs virtual fs
(CONFIG DEBUG_FS inthe Kernel Hacking section)

» Mount this filesystem as follows:
mount -t debugfs nodev /debug

» When tracing is enabled (see the next slides),
tracing information is available in /debug/tracing.

» Check available tracers
In /debug/tracing/available tracers

CONFIG SCHED TRACER (Kernel Hacking section)

» Maximum recorded time between waking up a top priority task
and its scheduling on a CPU, expressed in ps.

» Check that wakeup is listed in
/debug/tracing/available tracers

P To select, reset and enable this tracer:
echo wakeup > /debug/tracing/current tracer
echo 0 > /debug/tracing/tracing max latency
echo 1 > /debug/tracing/tracing enabled

> Let your system run, in particular real-time tasks.
Example: chrt -f 5 sleep 1

» Disable tracing:
echo 0 > /debug/tracing/tracing enabled

» Read the maximum recorded latency and the corresponding trace:
cat /debug/tracing/tracing max latency
52

About real-time support in the standard Linux kernel

» Internals of the RT Patch, Steven Rostedt, Red Hat, June 2007
http://www.kernel.org/doc/ols/2007/0ls2007v2-pages-161-172.pdf
Definitely worth reading.

» The Real-Time Linux Wiki: http:/rt.wiki.kernel.org
“The Wiki Web for the CONFIG_PREEMPT RT community,
and real-time Linux in general.”
Contains nice and useful documents!

» See also our books page.

http://www.kernel.org/doc/ols/2007/ols2007v2-pages-161-172.pdf
http://rt.wiki.kernel.org/

Approach 2
Real-time extensions to the Linux kernel

@

Three generations

A common principle

» RTLinux » Add a extra layer between the
» RTAI hardware and the Linux kernel,
, to manage real-time tasks
P Xenomal separately.
| real-time ‘ Linux
tasks kernel

.

Micro-kernel

First real-time extension for Linux, created by Victor Yodaiken.

» Nice, but the author filed a software patent covering the addition of real-
time support to general operating systems as implemented in RTLinux!

» Its Open Patent License drew many developers away and frightened
users. Community projects like RTAI and Xenomai now attract most
developers and users.

» February, 2007: RTLinux rights sold to Wind River.
Now supported by Wind River as “Real-Time Core for Wind River Linux.”

» Free version still advertised by Wind River on http://www.rtlinuxfree.com,
but no longer a community project.

http://www.rtlinuxfree.com/

http://www.rtai.org/ - Real-Time Application Interface for Linux

» Created in 1999, by Prof. Paolo Montegazza (long time
contributor to RTLinux), Dipartimento di Ingegneria
Aerospaziale Politecnico di Milano (DIAPM).

» Community project. Significant user base.
Attracted contributors frustrated by the RTLinux legal issues.

» Only really actively maintained on x86

» May offer slightly better latencies than Xenomai, at the
expense of a less maintainable and less portable code base

» Since RTAIl is not really maintained on ARM and other
embedded architectures, our presentation is focused on
Xenomai.

57

http://www.rtai.org/

| HERDMAI
http://www.xenomai.org/

» Started in 2001 as a project aiming at emulating
traditional RTOS.

» Initial goals: facilitate the porting of programs to GNU / Linux.

» Initially related to the RTAI project (as the RTAI / fusion
branch), now independent.

» Skins mimicking the APIs of traditional
RTOS such as VxWorks, pSOS+, and VRTXsa as well as the
POSIX API, and a “native” API.

» Aims at working both as a co-kernel and on top of
PREEMPT_RT in the upcoming 3.0 branch.

» Will never be merged in the mainline kernel.
58

http://www.xenomai.org/

@

Linux application

VxWorks application

POSIX application

glibc glibc glibc
System calls
VES Network Xenomai RTOS Pieces addec.l
(nucleus) by Xenomai
kernel space

Adeos I-Pipe

@

» From Adeos point of view, guest OSes are prioritized domains.

» For each event (interrupts, exceptions, syscalls, etc...), the
various domains may handle the event or pass it down the
pipeline.

Per-CPU Adeos Pipeline

Interrupts

» Each domain may be “stalled”, meaning that it does not accept
for the domain

interrupts.
Stodols.
P’."_"Bl “'ﬁ")
leading the pipeline), Incoming I

instead the interrupts Interrupt
received during that L
time are logged and
replayed when the
domain is unstalled.

» Hardware interrupts
are not disabled
however (except

Domain X DomainY

» The Adeos I-pipe patch implement additional features, essential
for the implementation of the Xenomai real-time extension:

» Disables on-demand mapping of kernel-space vmalloc/ioremap
areas.

P Disables copy-on-write when real-time processes are forking.

» Allow subscribing to event allowing to follow progress of the Linux
kernel, such as Linux system calls, context switches, process
destructions, POSIX signals, FPU faults.

» On the ARM architectures, integrates the FCSE patch, which allows
to reduce the latency induced by cache flushes during context
switches.

» Factored real-time core with skins implementing various real-time
APls

» Seamless support for hard real-time in user-space
» No second-class citizen, all ports are equivalent feature-wise

» Xenomai support is as much as possible independent from the
Linux kernel version (backward and forward compatible when
reasonable)

» Each Xenomai branch has a stable user/kernel ABI
» Timer system based on hardware high-resolution timers
» Per-skin time base which may be periodic

» RTDM skin allowing to write real-time drivers

63

» Xenomai supports real-time in user-space on 5 architectures,
iIncluding 32 and 64 bits variants.

» Two modes are defined for a thread

» the primary mode, where the thread is handled by Xenomai
scheduler

» the secondary mode, when it is handled by Linux scheduler.

» Thanks to the services of the Adeos |-pipe service, Xenomali
system calls are defined.

> A thread migrates from secondary mode to primary mode when
such a system call is issued

P It migrates from primary mode to secondary mode when a Linux
system call is issued, or to handle gracefully exceptional events
such as exceptions or Linux signals.

64

» Xenomai applications are started like normal Linux processes,
they are initially handled by the Linux scheduler and have access
to all Linux services

» After their initialization, they declare themselves as real-time
application, which migrates them to primary mode. In this mode:

» They are scheduled directly by the Xenomai scheduler, so they
have the real-time properties offered by Xenomai

» They don't have access to any Linux service, otherwise they get
migrated back to secondary mode and looses all real-time
properties

» They can only use device drivers that are implemented in Xenomai,
not the ones of the Linux kernel

» Need to implement device drivers in Xenomai, and to split real-

time and non real-time parts of your applications.
65

» An approach to unify the interfaces for developing device drivers
and associated applications under real-time Linux

» An API very similar to the native Linux kernel driver API
» Allows the development, in kernel space, of

» Character-style device drivers

» Network-style device drivers

» See the whitepaper on
http://www.xenomai.org/documentation/xenomai-2.4/pdf/RTDM-and-Applications.pdf

» Current notable RTDM based drivers:

P Serial port controllers;
» RTnet UDP/IP stack;
P RT socket CAN, drivers for CAN controllers;

P Analogy, fork of the Comedy project, drivers for acquisition cards.
66

http://www.xenomai.org/documentation/xenomai-2.4/pdf/RTDM-and-Applications.pdf

al
Setting up Xenom

» Download Xenomai sources at
http://download.gna.org/xenomai/stable/

» Download one of the Linux versions supported by this release
(see ksrc/arch/<arch>/patches/)

» Since version 2.0, split kernel/user building model.

» Kernel uses a script called script/prepare-kernel.sh which
iIntegrates Xenomai kernel-space support in the Linux sources.

» Run the kernel configuration menu.

http://download.gna.org/xenomai/stable/

B

Eile Edit Option Help

ol | Il E

Option =l Option
:.General setup é----}{anumai
~RCU Subsystem “-EmNucleus

é----DCuntrul Group support
é----I:lC:::unfigLJrE: standard kernel fea
~HAEnable loadable module suppor
--Enable the block layer (NEW)
10 Schedulers

--System Type
- Atmel AT91 System-on-Chip
--Bus support

~OPCCard (PCMCIA/CardBus) ¢
~Kernel Features
~Boot options
~CPU Power Management
~Floating point emulation

~Userspace binary formats
--Power management options -|

4| | b

+-EHPervasive real-time support in user-space
~HOptimize as pipeline head

~[OExtra scheduling classes

~(32) Number of pipe devices

~(512) Number of registry slots

~(258) Size of the system heap (Kb)

~(128) Size of the private stack pool (Kb)
~(12) Size of private semaphores heap (Kb)
~(12) Size of global semaphores heap (Kb)

~HStatistics collection

Xenomai (XENOMAI)

Xenomai is a real-time extension to the Linux kernel. Note

that Xenomai relies on Adeos interrupt pipeline (CONFIG_IPIPE
option) to be enabled. so enabling this option selects the
CONFIG_IPIPE option.

Xenomai user-space support
OChs

» User-space libraries are compiled using the traditional autotools

P ./configure --target=arm-linux && make &&
make DESTDIR=/your/rootfs/ install

» The xeno-config script, installed when installing Xenomai user-
space support helps you compiling your own programs.

» See Xenomai's examples directory.
» Installation details may be found in the README.INSTALL guide.

» For an introduction on programming with the native API, see:
http://www.xenomai.org/documentation/branches/v2.3.x/pdf/Native-API-Tour-rev-C.pdf

» For an introduction on programming with the POSIX API, see:
http://www.xenomai.org/index.php/Porting_ POSIX_applications_to_Xenomai

70

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com

http://www.xenomai.org/documentation/branches/v2.3.x/pdf/Native-API-Tour-rev-C.pdf
http://www.xenomai.org/index.php/Porting_POSIX_applications_to_Xenomai

' Xenomal
loping applications on
Develo

@

» The POSIX skin allows to recompile without changes a traditional
POSIX application so that instead of using Linux real-time
services, it uses Xenomai services

» Clocks and timers, condition variables, message queues, mutexes,
semaphores, shared memory, signals, thread management

» Good for existing code or programmers familiar with the POSIX API

» Of course, if the application uses any Linux service that isn't
available in Xenomai, it will switch back to secondary mode

» To link an application against the POSIX skin

DESTDIR=/path/to/xenomai/

export DESTDIR

CFL="S$DESTDIR/bin/xeno-config --posix-cflags"
LDF="S$DESTDIR/bin/xeno-config --posix-1ldflags"
ARCH-gcc SCFL -0 rttest rttest.c SLDF

72

@

» If a Xenomai real-time application using the POSIX skin wishes to
communicate with a separate non-real-time application, it must
use the rtipc mechanism

» In the Xenomai application, create an IPCPROTO XDDP socket

socket(AF_RTIPC, SOCK_DGRAM, IPCPROTO XDDP);
setsockopt (s, SOL RTIPC, XDDP SETLOCALPOOL, &poolsz,

sizeof (poolsz));

memset (&saddr, 0, sizeof(saddr));

saddr.sipc_family = AF RTIPC;

Saddr.sipc_port = MYAPPIDENTIFIER;

ret = bind(s, (struct sockaddr *)&saddr, sizeof(saddr));

» And then the normal socket APl sendto() / recvfrom()

» In the Linux application
» Open /dev/rtpX, where X is the XDDP port

P Use read() and write()
73

@

» A Xenomai-specific APl for developing real-time tasks

P Usable both in user-space and kernel space. Development of tasks
In user-space is the preferred way.

» More coherent and more flexible APl than the POSIX API. Easier to
learn and understand. Certainly the way to go for new applications.

» Applications should include <native/service.h>, where

service can be alarm, buffer, cond, event, heap,
intr, misc, mutex, pipe, queue, sem, task, timer

» To compile applications :
DESTDIR=/path/to/xenomai/
export DESTDIR
CFL="$DESTDIR/bin/xeno-config --xeno-cflags"
LDF="$DESTDIR/bin/xeno-config --xeno-ldflags"
ARCH-gcc SCFL -o rttest rttest.c SLDF -lnative

74

@

» Task management services

[rt task create(), rt task start(),
rt task suspend(), rt task resume(),
rt task delete(), rt task join(), etc.

» Counting semaphore services

[rt sem create(), rt sem delete(), rt sem p(),
rt sem v(), etc.

» Message queue services

P rt queue create(), rt queue delete(),
rt queue alloc(), rt queue free(),
rt queue send(), rt queue receive(), etc.

» Mutex services

P rt mutex create(), rt mutex delete(),
rt mutex acquire(), rt mutex release(), etc.

75

» Alarm services

P rt alarm create(), rt alarm delete(),
rt alarm start(), rt alarm stop(),
rt alarm wait(), etc.

» Memory heap services

P Allows to share memory between processes and/or to pre-allocate
a pool of memory

P rt heap create(), rt heap delete(),
rt heap alloc(), rt heap bind()

» Condition variable services

P rt cond create(), rt cond delete(),
rt cond signal(), rt cond broadcast(),
rt cond wait(), etc.

76

» Using rt_pipes
» In the native Xenomai application, use the Pipe API

P rt pipe create(), rt pipe delete(),
rt pipe receive(), rt pipe send(),
rt pipe alloc(), rt pipe free()

» In the normal Linux application

» Open the corresponding /dev/rtpX file, the minor is specified at
rt pipe create() time

P Then, just read () and write () to the opened file

Xenomai application G— -INUX Application
Uses the rt pipe *() API open(“/dev/rtpX"”)

77

B

The following table is Paul Mac Kenney's summary of his own
article describing the various approaches for real-time on Linux:

Fault HW/SW
Approach Quality Inspection API Complexity isolation |Configs
10s of ms
Vanilla Linux all services (All POSIX + RT |N/A None All
100s of us |preempt or
PREEMPT Schd, Int irg disable POSIX + RT |N/A None All
Nested OS ~10us RTOS, RTOS (can
(co-kernel) RTOS svcs |hw irq disable be POSIX RT) |Dual env. Good All
Dual-OS/Dual-Core <1us RTOS (can
(ASMP) RTOS sves RTOS be POSIX RT) |Dual env. Excellent Specialized
preempt and irq
disable (most All (except
10s of us |ints in process ctx), "Modest" patch some
PREEMPT_RT Schd, Int |(mostly drivers) |POSIX + RT (careful tuning) None drivers)
Migration between OSes |? us RTOS, RTOS (can Dual env. (easy
RTOS svcs |hw irq disable be POSIX RT) |mix) OK All
? us Sched,
Migration within OS RTOS svcs RTOS svcs POSIX + RT |Small patch None All?

(additions in blue)

Full story at http://lwn.net/Articles/143323

78

http://lwn.net/Articles/143323

- P Building Embedded Linux Systems, O'Reilly V¢
By Karim Yaghmour, Jon Masters,

Gilad Ben-Yossef, Philippe Gerum and others

(including Michael Opdenacker), August 2008

A nice coverage of Xenomai (Philippe Gerum)
and the RT patch (Steven Rostedt)
http://oreilly.com/catalog/9780596529680/

http://oreilly.com/catalog/9780596529680/

» hitp://www.realtimelinuxfoundation.org/
Community portal for real-time Linux.
Organizes a yearly workshop.

» http://www.osadl.org
Open Source Automation Development Lab (OSADL)
Created as an equivalent of OSDL for machine and plant control
systems. Member companies are German so far (Thomas Gleixner
IS on board). One of their goals is to supports the development of
RT preempt patches in the mainline Linux kernel (HOWTOs, live
CD, patches).

http://www.realtimelinuxfoundation.org/
http://www.osadl.org/

Free Electrons

Embedded Freedom

Recent blog posts

ELC Europe in Grenohle Maost of the below documents are presentations used in our t

conferences.

s, ar in technical

Free Electrons at ELC
License
Linux kernel 2.6.29 - New

features for embedded ShareAlike 3.0 license. This essentially means that you are free to download, distribute

@ All our documents are available under the terms of the Creative Commaons Attribution-

and even modify

them, provided you mention us as the original authors and that you

users -
share these documents under the same conditions.

The Buildroot project Linux kernel

begins a new life

Embedded Linux kernel and driver development
6 (since 2.6.10)

New features in Linux 2

FOSDEM 2009 videos

« Kernel initialization
USE-Ethernet device for . hardware
» Power management in Linux

Linusx

Frogram far Embedded Block device drivers

Linux Conference 2008

documents

announced

Public session changes

Real hardware in our
Embedded Linux system development
training sessions
« Embedded Linux system development
Call for presentations for = Real time in embedded Linux systems
Elack filesystems

the LSM embedded track

Free software development tools
r
+ The GRUE hootloader
+ The biok boatloader

Introduction to uClinux

Embedded Linux aptimizations
= Audio in embedded Linux systems

= Multimedia in embedded Linux systems
= Embedded Linux From Scratch... in 40 minutes!

. embedded Linux systams with Buildroot
Developing embedded distributions with OpenEmbedded
= The Scratchbox development environment

Miscellaneous

= Introduction to the Unix command line

wirtualization solutions (with an embedded perspectivel
= Advantages of Free Software and Open Source in embedded systems
= Introduction to GNU/Linux and Free Software

All our technical presentations
on http://free-electrons.com/docs

» Linux kernel

» Device drivers

» Architecture specifics

» Embedded Linux system development

http://free-electrons.com/docs

You can help us to improve and maintain this document...

» By sending corrections, suggestions, contributions and
translations

» By asking your organization to order development, consulting
and training services performed by the authors of these
documents (see http://free-electrons.com/).

» By sharing this document with your friends, colleagues
and with the local Free Software community.

» By adding links on your website to our on-line materials,
to increase their visibility in search engine results.

http://free-electrons.com/

Linux kernel

Linux device drivers

Board support code
Mainstreaming kernel code
Kernel debugging

Embedded Linux Training
All materials released with a free license!

Unix and GNU/Linux basics

Linux kernel and drivers development
Real-time Linux, uClinux

Development and profiling tools
Lightweight tools for embedded systems
Root filesystem creation

Audio and multimedia

System optimization

Free Electrons

Our services

Custom Development

System integration

Embedded Linux demos and prototypes
System optimization

Application and interface development

Consulting and technical support

Help in decision making

System architecture

System design and performance review
Development tool and application support
Investigating issues and fixing tool bugs

. .’ Free Electrons

Embedded Linux Experts

