TOSHIBA euiweammzz

Leading Innovation >>> >

An examination of UBI

TOSHIBA CORPORATION

Core Technology Center

Embedded System Core Technology Development Dept.
Shinji Namihira

Aug 29, 2008

Copyright 2008, Toshiba Corporation.

Contents

e Current Flash File Systems & Driver
— Bare Flash Chips

— MTD
— Flash File Systems

 UBI
— UBI overview
— Block Management
— Unclean Reboot
— Boot Time

e Summary

TOSHIBA

Leading Innovation >>>

Current Flash File systems & Driver : Structure

« Bare Flash Chips
e« MTD
 Flash File Systems

JFFS2 character device (/dev/imtd0)

MTD device, MTD API

NAND || NOR || DataFlash | [AG-AND [OneNAND || ECC’'d NOR

TOSHIBA

Leading Innovation >>>

Bare Flash Chips

Differences from other storage devices

 Erase operation is required before rewriting
« 2 Types of Technologies

type access XIP speed
Erase R/W Erase | Read Write
NOR | sequential | random OK | Poor Good Poor
NAND | sequential | sequential | N/A | Good Fair Good
Problems
e Life-Time —) Wear Leveling
e Bit-Flips (NAND) —) ECC
e Bad Block (NAND) =) Management

TOSHIBA

Leading Innovation >>>

MTD

« MTD stands for “Memory Technology Devices”

e MTD is a Linux subsystem (drivers/mtd/)

« MTD provides uniform access to various flash devices
« MTD provides a generic API for that

e MTD provides an “MTD device” abstraction

JFFS2 character device (/dev/mtd0)

[MTD device, MTD API]

NAND [NOR || DataFlash || AG-AND || OneNAND | ECC’d NOR

TOSHIBA

Leading Innovation >>>

Flash File Systems : Features

« Bad Block Management
 Wear Leveling
e Journaling

[JFFS2 YAFFS2 LogFS | ...

=

MTD layer

Physical flash

— Flash File Systems call MTD I/F
— Flash File Systems handle the physical MTD Partitions & Blocks

TOSHIBA

Leading Innovation >>>

Flash File Systems : overview
« JFFS2 (Journaling Flash File System Ver.2)

— License : GPL

— How to get . Included in Vanilla Kernel since 2.4.10.
« YAFFS/YAFFS2 (Yet Another Flash File System)

— License : GPL

— How to get . http://www.yaffs.net
 LogFS (Log File System)

— License : GPL

— How to get . http://logfs.com/logfs/

-

- http://tree.celinuxforum.org/CelfPubWiki/JapanTechnicalJamboreel9
“The Comparison of Flash File system performance”

= http://tree.celinuxforum.org/CelfPubWiki/JapanTechnicalJamboree20
“Flash File system, current development status ”

TOSHIBA

Leading Innovation >>>

http://www.yaffs.net/
http://logfs.com/logfs/
http://tree.celinuxforum.org/CelfPubWiki/JapanTechnicalJamboree19
http://tree.celinuxforum.org/CelfPubWiki/JapanTechnicalJamboree20

Contents

e Current Flash File Systems & Driver
— Bare Flash Chips

— MTD
— Flash File Systems

 UBI
— UBI overview
— Block Management
— Unclean Reboot
— Boot Time

e Summary

TOSHIBA

Leading Innovation >>>

UBI overview . UBI Layer

e UBIis built on top of the MTD devices
 UBI stands for “Unsorted Block Images”

 UBI provides sequential Logical Blocks to UBI Clients

UBIFS JFFS2 YAFFS2 LogFS Ext2/VFAT
e FTL
[UBI layer]
++
MTD layer

|
| [..

Physical flash

TOSHIBA o

Leading Innovation >>>

UBI overview : vs. MTD

MTD partition UBI Volume

Consists of physical eraseblocks (PEB) | Consists of logical eraseblocks (LEB)

Does not implement wear-leveling Implements wear-leveling
Admits of bad PEBs Devoid of bad LEBs

J

Advantages of UBI

* Allows dynamic volume creation, deletion, and re-sizing
= more flexible

 Eliminates the “wear” problem = simpler software
 Eliminates bad eraseblocks problem = simpler software

TOSHIBA

Leading Innovation >>>

10

UBI overview : vs. Current Flash File Systems

Flash File Systems built on top of UBI

) journaling File System metadata on the
Current Flash File Systems flash

Bad Block Management UBI I/F or MTD I/F calling

logical UBI Volumes handling

Wear Leveling
(only the MTD Partition)

on the flash Bad Block Management
MTD I/F calling Wear Leveling whole the MTD Device
physical MTD Devices handling journaling UBI metadata on the flash
MTD I/F calling
physical MTD Devices handling

— UBI makes it simple to design a new Flash File System

— UBI provides MTD I/F emulator to Flash File Systems

« Kernel Config : MTD_UBI_GLUEBI
Emulate MTD Device for UBI Clients (default: off)

TOSHIBA 1

Leading Innovation >>>

UBI overview : vs. Current similar Modules

 vs. FTL (Flash Translation Layer)
FTL is similar as the layer between Device and File System but..
— FTL is a block device emulation layer
— FTL may be on the top of UBI for block device File Systems
mailing list : “Block Device Emulation over UBI”
http://lists.infradead.org/pipermail/linux-mtd/2008-January/020381.html
 vs. LVM (Logical Volume Manager)
LVM is similar as the layer of providing logical & flexible but..
— LVM s for block devices
 LVM doesn’t support Wear Leveling
 LVM doesn’t support Bad Block Management

e

UBI was designed for bare flashes which may be found in
Embedded Systems.

by. http://www.linux-mtd.infradead.org/ubi.ntml
TOSHIBA

12
Leading Innovation >>>

Contents

e Current Flash File Systems & Driver
— Bare Flash Chips

— MTD
— Flash File Systems

 UBI
— UBI overview
— Block Management
— Unclean Reboot
— Boot Time

e Summary

TOSHIBA

Leading Innovation >>>

13

Block Management : Logical Volume

« UBI provides Logical Volumes instead of Physical MTD
Partitions to UBI Clients

 User can create, delete & resize a UBI Volume on the fly

 Volume type
— Static : for Read Only data (protected by CRC checksum)
— Dynamic : for Read / Write data (not protected in UBI)

) for Wear Leveling

l | Volume A | | | Volume C ||

' Create UBI volume “A” — size 10 logical eraseblocks
Re-size volume “C” to 40 logical eraseblock

MTD device (physical flash)

. UBI layer

TOSHIBA 14

Leading Innovation >>>

Block Management : Logical Block to Physical Block

 UBI Clients handle Logical Volume & Blocks
« UBI managements the mapping of Logical to Physical

e User can reserve initial amount of Free Blocks for
Bad Block & Wear Leveling

— Kernel Config: MTD_UBI_BEB RESERVE

Reserved Block % for Bad Block
(default: 1, range: 0-25)

Volume A Volume B

A
— — — — —~

LEBO|LEB1|LEB2|LEB3 | LEB4 LEBO| LEB 1| LEB 2

' UBI layer

PEB 2| PEB 3

PEB 6| PEB 7 PEB 9|PEB 10

MTD device Free Block

TOSHIBA

Leading Innovation >>>

15

Block Management : Physical Block Structure

e Erase Counter Header & Volume ID Header

header store size where when

Volume ID | mapped Volume & LEB

 Data Alignment
— Read / Write size : Page (typically 512B - 2KB)

— Erase size . Block (typically 16KB - 128KB) Flash Chips that
support “Sub-
Erase Page” are better
UBI layer |
; PEB 0 PEB1 PEB 2 |
-] .
Page Q' Physical flash

TOSHIBA 16

Leading Innovation >>>

Block Management : Read & Write working

« UBI Clients appoint ..
— Logical Volume Number

— Logical Block Number
— Offset from the Block Start point
— Length

* In Write operation, even if UBI fails in MTD Write I/F, it
doesn’t return I/O error (it assigns another Free Block)

Write more data
The data have&%n successfully written!

<«— An UBI volume

Re-map the LEB to this PEB
Write newcoming data to this PEB

| —_—

rtiallyk(i led Mark this PEB s bad Bad Block Free Block

Write error! The enaseblock’s become bad!
TOSHIBA No panic! Rgcover the data to a good PEB

Leading Innovation >>>

17

Block Management : Bit-Flip handling

* In Read operation, if UBI detects corrected Bit-Flip, it
doesn’t keep using the Physical Block for reliability

-
“Scrubbing”

— UBI moves the correct data to another Free Block & do “Torturing”
— “Torturing” is done asynchronously by a Background Thread

Read data
The data h&ve been successfully read!

<«<—— An UBI volume

Re-map the LEB to this PEB

Bad Block Free Block
Move the data to another Free PEB

this PEB schedule Torturing
Torturing is failed
TOSHIBA Mark this PEB s bad

Leading Innovation >>>

18

Block Management : Erase working

« UBI supports a“unmap” operation that just releases the
mapping & returns success immediately
 UBI erases the Physical Block asynchronously by a

Background Thread
« UBI handles the erased Logical Block & return OxFFs

Immediately in Read operation
« If UBI failed to do MTD Erase I/F, the Physical Block

(Oxe]
WOUld be BAD Return OxFFs gg 8
(O} ()
Volume A \i l Volume B l
LEBO|LEB1|LEB2| LEB3 | LEB4 LEBO| LEB 1| LEB 2

MTD device
TOSHIBA 19

Leading Innovation >>>

Block Management : Wear Leveling

 UBI can do Wear Leveling across whole the flash chip

(MTD Device)
- This will extend the Life Time

 Wear Leveling Type
— Dynamic : applies to Blocks whose Erase Counter increases frequently

— Static . applies to Blocks whose Erase Counter doesn’t increase
for a long time

e User gives information of the Data Term in Write operation
to UBI

— long
— short mm) This will provide more effective
— unknown Wear Leveling

TOSHIBA 20

Leading Innovation >>>

Block Management : Dynamic Wear Leveling

e What?
‘ UBI selects a Free Block that has lower Erase Counter

e When?
‘ In Volume create, resize, Write operation, or Scrubbing
Volume A Volume B
LEBO| LEB 1| LEB 2| LEB 3 | LEB 4 LEBO| LEB 1| LEB 2

MTD device

000€=04
00ST=04
00S¢=04
00St=04
000t=04

TOSHIBA 21

Leading Innovation >>>

Block Management : Static Wear Leveling

« What?

ﬂ UBI unmaps the lowest Erase Counter Block & makes it Free Block
e When?

mm) Erase Counter MAX — MIN exceeds “Threshold”

In Volume delete or Erase operation
(Wear Leveling is done by a Background Thread asynchronously)

— Kernel Config : MTD_UBI WL_THRESHOLD
(default: 4096, Range: 2 — 65536)

Static read-only data

Vo/luge A Volgr\ne B
LEBO|LEB1|LEB2|LEB3 | LEB 4 LEBO| LEB 1| LEB 2

S’

PEBO| PEB 1| PEB 2| PEB 3 | PEB 4| PEB 5 PEB 7 | PEB 8| PEB 9(PEB 10

A

Move data |
Lowest erase counter Re-map LEB Highest erase counter

TOSHIBA MTD device 99

Leading Innovation >>>

Contents

e Current Flash File Systems & Driver
— Bare Flash Chips

— MTD
— Flash File Systems

 UBI
— UBI overview
— Block Management
— Unclean Reboot
— Boot Time

e Summary

TOSHIBA

Leading Innovation >>>

23

Unclean Reboot : Issue of Corrupt Volume

(Case.l)
If an Unclean Reboot (like a power down) happened

while creating a Volume ...

Volume A

A
B

LEBO|LEB1|LEB2 | LEB 3 | LEB 4

| UBI layer \

PEB 5 [PEB 6| PEB 7 | PEB 8| PEB 9|PEB 10

MTD device

TOSHIBA 24

Leading Innovation >>>

Unclean Reboot : Solution to Corrupt Volume

(Solution.1)
 UBI stores duplicated “Volume Table” on the flash (2

Blocks)
« Even if LEBO is interrupted on updating the new Volume

Table, LEB1 keeps a normal previous Table
 UBI knows the interruption by “upd_marker” in the Table

 UBI reports the interruption to UBI Clients & wait for the

clients to do Volume Update
“VYolume Table” on RAM

inner Volume “upd-layout” Gj

A
— —~

L LEB 1 update Volume Table

- e = = = e e = e e e e e e e e e e e e e e e e e = = - e e e e = e

PEBO| P PEB 2| P P PEB 5 |PEB 6| PEB 7 | PEB 8 [|PEB 9|PEB 10

- 3

MTD device ggt ypd 'marker clear upd_marker
TOSHIBA “Volume Table” on ROM 25

Leading Innovation >>>

Unclean Reboot : Issue of Corrupt Mapping

(Case.2)

If an Unclean Reboot (like a power down) happened
while moving a Physical Block in Wear Leveling or
Scrubbing ...

Read data

The data hﬁve been successfully read!

<«—— An UBI volume

Re-map the LEB to this PEB

\ 4 q4

|
: , SR o
rtlall)k{l led Bad Block Free Block
occurred Bit-flipg/!

TOSHIBA 2

Leading Innovation >>>

Unclean Reboot : Solution to Corrupt Mapping

(Solution.2)

« UBI knows which is newer by a sequence number,
“sgnum” in the Volume ID Header

e UBI tries to use the newer one at first & if it Is
corrupted, UBI uses another one

A4 L

UBI provides “atomic logical eraseblock change”
operation to UBI Clients (since 2.6.25)
and..
“UBI Is designed to be tolerant of power failures and
unclean reboots.”
by. http://www.linux-mtd.infradead.org/fag/ubi.html

TOSHIBA 7

Leading Innovation >>>

Contents

e Current Flash File Systems & Driver
— Bare Flash Chips

— MTD
— Flash File Systems

 UBI
— UBI overview
— Block Management
— Unclean Reboot
— Boot Time

e Summary

TOSHIBA

Leading Innovation >>>

28

Boot Time : Issue

When UBI attached the MTD Device ..

« UBI needs to scan all Physical Blocks to re-build
EAT & ECT on RAM
— EAT : Eraseblock Association Table
— ECT : Erase Counter Table

 |n addition, UBI has to calculate CRC32 checksum
of each headers, too

Aok

Boot Time linearly depends on the flash size

TOSHIBA

Leading Innovation >>>

29

Boot Time : Performance of UBI+UBIFS (2.6.24)

msec
10000
9000 Mis l
O mount
8000 [
7000
6000
5000
4000
3000
2000
1000 | |:|
0 — — —
JFFS2 ‘ LOGFS‘ UBIFS | JFFS2 ‘LOGFS‘ UBIFS | JFFS2 ‘LOGFS‘ UBIFS
oMB 8MB 16MB
msec
1000
900 FF—— His =
800 — O mount | |
- The mounting time of LogFS and 700 |
UBIFS are independent of the size of a 600
including file. 500 —
400 [
- i i 300 [
The time of JFFS2 is much longer than | — ——
LogFS/UBIFS. 200 3~
100 (—
0 e S = = ”
JFFS2 m UBIFS |JFFSZTE JFFS2 |LOGFS| UBIFS
oMB 8MB 16MB

TOSHIBA by http://tree.celinuxforum.org/CelfPubWiki/JapanTechnicalJamboree20
L Lot P s “Flash File system, current development status ”

30

http://tree.celinuxforum.org/CelfPubWiki/JapanTechnicalJamboree20

Boot Time : Solution

(Solution)

UBI may store EAT & ECT on the flash, too. But..
those Tables are updated very frequently. So..
UBI doesn’t do that for simplicity & robustness.

e

- Select a flash chip which supports “Sub-Page”
(access only 1 Page per Block to re-build Tables)

- “UBI2” Is In Patch-2.6.27-rc4 & may be included in 2.6.27

Nontheless, it is always possible to create UBI2 which
would maintain the table in separate flash areas.

by. http://www.linux-mtd.infradead.org/ubi.html

TOSHIBA a1

Leading Innovation >>>

Contents

e Current Flash File Systems & Driver
— Bare Flash Chips

— MTD
— Flash File Systems

 UBI
— UBI overview
— Block Management
— Unclean Reboot
— Boot Time

e Summary

TOSHIBA

Leading Innovation >>>

32

Summary :

item point UBI is..
Block Management |[flexible & more effective
Good
Unclean Reboot tolerant
Excellent
Boot Time scan all physical blocks
No Good

TOSHIBA

Leading Innovation >>>

—]
—

g

depend on User
but..
expect UBI2

33

UBI information

* License . GPL
« How to get . Include in Vanilla Kernel since 2.6.22
e Documents . http://www.linux-mtd.infradead.org/doc/
This PPT quoted from below:
— ubi.html . basic information
— fag/ubi.html . FAQ
— ubi.ppt . guidance
— ubidesign/ubidesign.pdf : detailed information
e« Source Code . git://git.infradead.org/~dedekind/ubi-2.6.git
e Mailing list . linux-mtd@lists.infradead.org
— Archive . http://lists.infradead.org/mailman/listinfo/linux-mtd/

UBI had been incorporated into the Vanilla Kernel already (since 2.6.22)
& UBIFS will be soon (on 2.6.27)

TOSHIBA 34

Leading Innovation >>>

http://www.linux-mtd.infradead.org/doc/
mailto:linux-mtd@lists.infradead.org

TOSHIBA

Leading Innovation >>>

	An examination of UBI
	Contents
	Current Flash File systems & Driver : Structure
	Bare Flash Chips
	MTD
	Flash File Systems : Features
	Flash File Systems : overview
	Contents
	UBI overview : UBI Layer
	UBI overview : vs. MTD
	UBI overview : vs. Current Flash File Systems
	UBI overview : vs. Current similar Modules
	Contents
	Block Management : Logical Volume
	Block Management : Logical Block to Physical Block
	Block Management : Physical Block Structure
	Block Management : Read & Write working
	Block Management : Bit-Flip handling
	Block Management : Erase working
	Block Management : Wear Leveling
	Block Management : Dynamic Wear Leveling
	Block Management : Static Wear Leveling
	Contents
	Unclean Reboot : Issue of Corrupt Volume
	Unclean Reboot : Solution to Corrupt Volume
	Unclean Reboot : Issue of Corrupt Mapping
	Unclean Reboot : Solution to Corrupt Mapping
	Contents
	Boot Time : Issue
	Boot Time : Performance of UBI+UBIFS (2.6.24)
	Boot Time : Solution
	Contents
	Summary :
	UBI information
	スライド番号 35

