
Copyright 2008, Toshiba Corporation.

An examination of UBI

TOSHIBA CORPORATION
Core Technology Center
Embedded System Core Technology Development Dept.
Shinji Namihira
Aug 29, 2008

2

Contents

• Current Flash File Systems & Driver
– Bare Flash Chips
– MTD
– Flash File Systems

• UBI
– UBI overview
– Block Management
– Unclean Reboot
– Boot Time

• Summary

3

Current Flash File systems & Driver : Structure

• Bare Flash Chips

NAND NOR DataFlash AG-AND OneNAND ECC’d NOR

MTD device, MTD API

JFFS2 character device (/dev/mtd0)

• MTD
• Flash File Systems

4

Bare Flash Chips

Differences from other storage devices

type access XIP speed
Erase R/W Erase Read Write

NOR sequential random OK Poor Good Poor
NAND sequential sequential N/A Good Fair Good

Wear Leveling
ECC
Management

• Life-Time
• Bit-Flips (NAND)
• Bad Block (NAND)

• Erase operation is required before rewriting
• 2 Types of Technologies

Problems

5

MTD

• MTD stands for “Memory Technology Devices”

NAND NOR DataFlash AG-AND OneNAND ECC’d NOR

MTD device, MTD API

JFFS2 character device (/dev/mtd0)

• MTD is a Linux subsystem (drivers/mtd/)
• MTD provides uniform access to various flash devices
• MTD provides a generic API for that
• MTD provides an “MTD device” abstraction

6

Flash File Systems : Features

• Bad Block Management

…
Physical flash

MTD layer

JFFS2 YAFFS2 LogFS ..…

– Flash File Systems call MTD I/F

– Flash File Systems handle the physical MTD Partitions & Blocks

• Wear Leveling
• Journaling

7

Flash File Systems : overview
• JFFS2 (Journaling Flash File System Ver.2)

– License : GPL
– How to get : Included in Vanilla Kernel since 2.4.10.

• YAFFS / YAFFS2 (Yet Another Flash File System)
– License : GPL
– How to get : http://www.yaffs.net

• LogFS (Log File System)
– License : GPL
– How to get : http://logfs.com/logfs/

・

http://tree.celinuxforum.org/CelfPubWiki/JapanTechnicalJamboree19
“The Comparison of Flash File system performance”

・

http://tree.celinuxforum.org/CelfPubWiki/JapanTechnicalJamboree20
“Flash File system, current development status ”

http://www.yaffs.net/
http://logfs.com/logfs/
http://tree.celinuxforum.org/CelfPubWiki/JapanTechnicalJamboree19
http://tree.celinuxforum.org/CelfPubWiki/JapanTechnicalJamboree20

8

Contents

• Current Flash File Systems & Driver
– Bare Flash Chips
– MTD
– Flash File Systems

• UBI
– UBI overview
– Block Management
– Unclean Reboot
– Boot Time

• Summary

9

UBI overview : UBI Layer

• UBI stands for “Unsorted Block Images”

…
Physical flash

MTD layer

UBI layer

UBIFS JFFS2 LogFS Ext2/VFAT

FTL
YAFFS2

• UBI is built on top of the MTD devices

• UBI provides sequential Logical Blocks to UBI Clients

10

UBI overview : vs. MTD

Advantages of UBIAdvantages of UBI
• Allows dynamic volume creation, deletion, and re-sizing

⇒⇒ more flexible
• Eliminates the “wear” problem ⇒⇒ simpler software
• Eliminates bad eraseblocks problem ⇒⇒ simpler software

⇓⇓

MTD partition UBI Volume
Consists of physical eraseblocks (PEBPEB) Consists of logical eraseblocks (LEBLEB)
Does not implement wear-leveling Implements wear-leveling

Admits of bad PEBs Devoid of bad LEBs

11

UBI overview : vs. Current Flash File Systems

Current Flash File Systems
Bad Block Management

Wear Leveling
(only the MTD Partition)

journaling File System metadata
on the flash
MTD I/F calling

physical MTD Devices handling

Flash File Systems built on top of UBI
journaling File System metadata on the
flash
UBI I/F or MTD I/F calling

logical UBI Volumes handling⇓⇓

– UBI makes it simple to design a new Flash File System

⇓⇓ UBI
Bad Block Management

Wear Leveling whole the MTD Device

journaling UBI metadata on the flash

MTD I/F calling
physical MTD Devices handling

– UBI provides MTD I/F emulator to Flash File Systems
• Kernel Config : MTD_UBI_GLUEBI

Emulate MTD Device for UBI Clients (default: off)

12

UBI overview : vs. Current similar Modules

UBI was designed for bare flashes which may be found in
Embedded Systems.

by. http://www.linux-mtd.infradead.org/ubi.html

• vs. LVM (Logical Volume Manager)
LVM is similar as the layer of providing logical & flexible but..
– LVM is for block devices

• LVM doesn’t support Wear Leveling
• LVM doesn’t support Bad Block Management

• vs. FTL (Flash Translation Layer)
FTL is similar as the layer between Device and File System but..
– FTL is a block device emulation layer
– FTL may be on the top of UBI for block device File Systems

mailing list : “Block Device Emulation over UBI”
http://lists.infradead.org/pipermail/linux-mtd/2008-January/020381.html

13

Contents

• Current Flash File Systems & Driver
– Bare Flash Chips
– MTD
– Flash File Systems

• UBI
– UBI overview
– Block Management
– Unclean Reboot
– Boot Time

• Summary

14

Block Management : Logical Volume

• UBI provides Logical Volumes instead of Physical MTD
Partitions to UBI Clients

Create UBI volume “A”

–

size 10 logical eraseblocks
Re-size volume “C”

to 40 logical eraseblock

MTD device (physical flash)

Volume A Volume B Volume CVolume B Volume C

for Wear Leveling

• User can create, delete & resize a UBI Volume on the fly
• Volume type

– Static : for Read Only data (protected by CRC checksum)
– Dynamic : for Read / Write data (not protected in UBI)

UBI layer

15

Block Management : Logical Block to Physical Block

• UBI Clients handle Logical Volume & Blocks

PEB 0 PEB 6 PEB 7PEB 1 PEB 2 PEB 3 PEB 4 PEB 5 PEB 8 PEB 9 PEB 10

MTD device

LEB 0 LEB 1 LEB 2 LEB 3 LEB 4 LEB 0 LEB 1 LEB 2

Volume A Volume B

UBI layer

PEB 1 PEB 4 PEB 8PEB 5PEB 0 PEB 3 PEB 7 PEB 10

• UBI managements the mapping of Logical to Physical
• User can reserve initial amount of Free Blocks for

Bad Block & Wear Leveling
– Kernel Config : MTD_UBI_BEB_RESERVE

Reserved Block % for Bad Block
(default : 1 , range: 0 - 25)

Free Block

16

Block Management : Physical Block Structure
• Erase Counter Header & Volume ID Header

…

Physical flash

PEB 0 PEB1 PEB 2

Page

Write Write Write

– Read / Write size : Page (typically 512B - 2KB)

Erase

Scale Issue

header store size where when
EC Erase Counter 64 bytes first page format
Volume ID mapped Volume & LEB 64 bytes 2nd page mapped

– Erase size : Block (typically 16KB - 128KB)

E
C

 +1

• Data Alignment

Flash Chips that
support “Sub-
Page” are better

UBI layer

17

Block Management : Read & Write working
• UBI Clients appoint ...

Bad Block Free BlockPartially filled

Write more data

Write error! The eraseblock’s

become bad!
No panic! Recover the data to a good PEB

Write newcoming

data to this PEB
Re-map the LEB to this PEB

Mark this PEB s bad

The data have been successfully written!

An UBI volume

– Logical Volume Number
– Logical Block Number
– Offset from the Block Start point
– Length

• In Write operation, even if UBI fails in MTD Write I/F, it
doesn’t return I/O error (it assigns another Free Block)

18

Block Management : Bit-Flip handling
• In Read operation, if UBI detects corrected Bit-Flip, it

doesn’t keep using the Physical Block for reliability

Bad Block Free Block

Read data

occurred Bit-flips!! Move the data to another Free PEB

Re-map the LEB to this PEB

Mark this PEB s bad

The data have been successfully read!

An UBI volume

this PEB schedule Torturing
Torturing is failed

Partially filled

“Scrubbing”
– UBI moves the correct data to another Free Block & do “Torturing”
– “Torturing” is done asynchronously by a Background Thread

19

Block Management : Erase working

PEB 0 PEB 6 PEB 7PEB 1 PEB 2 PEB 3 PEB 4 PEB 5 PEB 8 PEB 9 PEB 10

MTD device

LEB 0 LEB 1 LEB 2 LEB 3 LEB 4 LEB 0 LEB 1 LEB 2

Volume A Volume B

UBI layer

er
as

e
re

adReturn 0xFFs

PEB 10

er
as

e

PEB 3

• UBI supports a “unmap” operation that just releases the
mapping & returns success immediately

• UBI handles the erased Logical Block & return 0xFFs
immediately in Read operation

• If UBI failed to do MTD Erase I/F, the Physical Block
would be BAD

• UBI erases the Physical Block asynchronously by a
Background Thread

20

Block Management : Wear Leveling

• UBI can do Wear Leveling across whole the flash chip
(MTD Device)

This will extend the Life Time

This will provide more effective
Wear Leveling

– Dynamic : applies to Blocks whose Erase Counter increases frequently
– Static : applies to Blocks whose Erase Counter doesn’t increase

for a long time

• User gives information of the Data Term in Write operation
to UBI
– long
– short
– unknown

• Wear Leveling Type

21

Block Management : Dynamic Wear Leveling

PEB 0 PEB 6 PEB 7PEB 1 PEB 2 PEB 3 PEB 4 PEB 5 PEB 8 PEB 9 PEB 10

MTD device

LEB 0 LEB 1 LEB 2 LEB 3 LEB 4 LEB 0 LEB 1 LEB 2

Volume A Volume B

UBI layer

PEB 3 PEB 7 PEB 10

E
C

=3000

E
C

=1500

E
C

=2500

E
C

=100

E
C

=4500

E
C

=4000

PEB 5PEB 2 PEB 4PEB 0 PEB 9

In Volume create, resize, Write operation, or Scrubbing

• What?
UBI selects a Free Block that has lower Erase Counter

• When?

22

Block Management : Static Wear Leveling

Static read-only data

PEB 0 PEB 6PEB 6 PEB 7PEB 1 PEB 2 PEB 3 PEB 4 PEB 5 PEB 8 PEB 9 PEB 10

MTD device

LEB 0 LEB 1 LEB 2 LEB 3 LEB 4 LEB 0 LEB 1 LEB 2

Volume A Volume B

UBI layer

Lowest erase counter Highest erase counter
Move data
Re-map LEB

– Kernel Config : MTD_UBI_WL_THRESHOLD
(default: 4096, Range: 2 – 65536)

• What?
UBI unmaps the lowest Erase Counter Block & makes it Free Block

Erase Counter MAX – MIN exceeds “Threshold”
in Volume delete or Erase operation
(Wear Leveling is done by a Background Thread asynchronously)

• When?

23

Contents

• Current Flash File Systems & Driver
– Bare Flash Chips
– MTD
– Flash File Systems

• UBI
– UBI overview
– Block Management
– Unclean Reboot
– Boot Time

• Summary

24

Unclean Reboot : Issue of Corrupt Volume
(Case.1)
If an Unclean Reboot (like a power down) happened
while creating a Volume ...

PEB 0 PEB 6 PEB 7PEB 1 PEB 2 PEB 3 PEB 4 PEB 5 PEB 8 PEB 9 PEB 10

MTD device

LEB 0 LEB 1 LEB 2 LEB 3 LEB 4

Volume A

UBI layer

PEB 1 PEB 4

LEB 2 LEB 3 LEB 4

25

PEB 8 PEB 9PEB 9

Unclean Reboot : Solution to Corrupt Volume
(Solution.1)
• UBI stores duplicated “Volume Table” on the flash (2

Blocks)
• Even if LEB0 is interrupted on updating the new Volume

Table, LEB1 keeps a normal previous Table
• UBI knows the interruption by “upd_marker” in the Table
• UBI reports the interruption to UBI Clients & wait for the

clients to do Volume Update

PEB 0 PEB 6 PEB 7PEB 1 PEB 2 PEB 3 PEB 4 PEB 5 PEB 10

MTD device

LEB 0 LEB 1

inner Volume “upd-layout”

UBI layer

PEB 1 PEB 4

“Volume Table” on RAM

set upd_marker

PEB 7

clear upd_marker

PEB 3

“Volume Table” on ROM

update Volume Table

26

Unclean Reboot : Issue of Corrupt Mapping
(Case.2)
If an Unclean Reboot (like a power down) happened
while moving a Physical Block in Wear Leveling or
Scrubbing ...

Bad Block Free Block

Read data

occurred Bit-flips!!

Re-map the LEB to this PEB

An UBI volume

Partially filled

The data have been successfully read!

27

Unclean Reboot : Solution to Corrupt Mapping

(Solution.2)

“UBI is designed to be tolerant of power failures and
unclean reboots.”

by. http://www.linux-mtd.infradead.org/faq/ubi.html

UBI provides “atomic logical eraseblock change”
operation to UBI Clients (since 2.6.25)

and..

• UBI knows which is newer by a sequence number,
“sqnum” in the Volume ID Header

• UBI tries to use the newer one at first & if it is
corrupted, UBI uses another one

28

Contents

• Current Flash File Systems & Driver
– Bare Flash Chips
– MTD
– Flash File Systems

• UBI
– UBI overview
– Block Management
– Unclean Reboot
– Boot Time

• Summary

29

Boot Time : Issue

Boot Time linearly depends on the flash size

• In addition, UBI has to calculate CRC32 checksum
of each headers, too

• UBI needs to scan all Physical Blocks to re-build
EAT & ECT on RAM
– EAT : Eraseblock Association Table
– ECT : Erase Counter Table

When UBI attached the MTD Device ..

30

Boot Time : Performance of UBI+UBIFS (2.6.24)

- The mounting time of LogFS and
UBIFS are independent of the size of a
including file.

- The time of JFFS2 is much longer than
LogFS/UBIFS.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

JFFS2 LOGFS UBIFS JFFS2 LOGFS UBIFS JFFS2 LOGFS UBIFS

0MB 8MB 16MB

ls

mount

0

100

200

300

400

500

600

700

800

900

1000

JFFS2 LOGFS UBIFS JFFS2 LOGFS UBIFS JFFS2 LOGFS UBIFS

0MB 8MB 16MB

ls

mount

msecmsec

msecmsec

by http://tree.celinuxforum.org/CelfPubWiki/JapanTechnicalJamboree20
“Flash File system, current development status ”

http://tree.celinuxforum.org/CelfPubWiki/JapanTechnicalJamboree20

31

Boot Time : Solution

Nontheless, it is always possible to create UBI2 which
would maintain the table in separate flash areas.

by. http://www.linux-mtd.infradead.org/ubi.html

UBI may store EAT & ECT on the flash, too. But..
those Tables are updated very frequently. So..
UBI doesn’t do that for simplicity & robustness.

・

“UBI2” is in Patch-2.6.27-rc4 & may be included in 2.6.27

・

Select a flash chip which supports “Sub-Page”
(access only 1 Page per Block to re-build Tables)

(Solution)

32

Contents

• Current Flash File Systems & Driver
– Bare Flash Chips
– MTD
– Flash File Systems

• UBI
– UBI overview
– Block Management
– Unclean Reboot
– Boot Time

• Summary

33

Summary :

item point UBI is..

Block Management flexible & more effective

Unclean Reboot tolerant

Boot Time scan all physical blocks

Good

Excellent

No Good

expect UBI2

depend on User
but..

34

UBI information
• License : GPL
• How to get : Include in Vanilla Kernel since 2.6.22
• Documents : http://www.linux-mtd.infradead.org/doc/

This PPT quoted from below:
– ubi.html : basic information
– faq/ubi.html : FAQ
– ubi.ppt : guidance
– ubidesign/ubidesign.pdf : detailed information

• Source Code : git://git.infradead.org/~dedekind/ubi-2.6.git

• Mailing list : linux-mtd@lists.infradead.org
– Archive : http://lists.infradead.org/mailman/listinfo/linux-mtd/

UBI had been incorporated into the Vanilla Kernel already (since 2.6.22)
& UBIFS will be soon (on 2.6.27)

http://www.linux-mtd.infradead.org/doc/
mailto:linux-mtd@lists.infradead.org

35

	An examination of UBI
	Contents
	Current Flash File systems & Driver : Structure
	Bare Flash Chips
	MTD
	Flash File Systems : Features
	Flash File Systems : overview
	Contents
	UBI overview : UBI Layer
	UBI overview : vs. MTD
	UBI overview : vs. Current Flash File Systems
	UBI overview : vs. Current similar Modules
	Contents
	Block Management : Logical Volume
	Block Management : Logical Block to Physical Block
	Block Management : Physical Block Structure
	Block Management : Read & Write working
	Block Management : Bit-Flip handling
	Block Management : Erase working
	Block Management : Wear Leveling
	Block Management : Dynamic Wear Leveling
	Block Management : Static Wear Leveling
	Contents
	Unclean Reboot : Issue of Corrupt Volume
	Unclean Reboot : Solution to Corrupt Volume
	Unclean Reboot : Issue of Corrupt Mapping
	Unclean Reboot : Solution to Corrupt Mapping
	Contents
	Boot Time : Issue
	Boot Time : Performance of UBI+UBIFS (2.6.24)
	Boot Time : Solution
	Contents
	Summary :
	UBI information
	スライド番号 35

