@

Flash
filesystems

Michael Opdenacker
Thomas Petazzoni
Free Electrons

© Copyright 2004-2009, Free Electrons.

Creative Commons BY-SA 3.0 license

Latest update: Dec 20, 2010,

Document sources, updates and translations:
http://free-electrons.com/docs/flash-filesystems

Corrections, suggestions, contributions and translations are welcome!

Free Electrons

Embedded Linux
Developers

http://free-electrons.com/docs/flash-filesystems

@

MTD: Memory Technology Devices (flash, ROM, RAM)

Linux filesystem interface

,,, »
MTD “User” modules i R
Flash Translgtlon Layers
uBl jffs2 Char device Block deViCe Gaution: patonted algorithms!
_ C[FTL | [NFTL | [INFTL
yaffs2 Read-only block device @~ ————— ————
,,, >
MTD Chip drivers
NOR flash RAM chips 1 N E—
~ Block device Virtual memory
NAND flash DiskOnChip flash ROM chips Virtual devices appearing

as MTD devices

Memory devices
hardware

» MTD devices are visible in /proc/mtd

» The mtdchar driver creates a character device for each MTD
device of the system

» Usually named /dev/mtdX, major 90. Even minors for read-write
access, odd minors for read-only access

» Provide ioctl () to erase and manage the flash
» Used by the mtd-utils

» The mtdblock driver creates a block device for each MTD device
of the system

» Usually named /dev/mtdblockX, major 31. Minor is the number
of the MTD device

P Allows read/write block-level access. But bad blocks are not
handled, and no wear leveling is done for writes.
3

» MTD devices are usually partitioned

» It allows to use different areas of the flash for different purposes :
read-only filesystem, read-write filesystem, backup areas,
bootloader area, kernel area, etc.

» Unlike block devices, which contains their own partition table, the
partitioning of MTD devices is described externally

» Hard-coded into the kernel code
P Specified through the kernel command line

» Each partition becomes a separate MTD device
» Different from block device labeling (hda3, sda2)

» /dev/mtdl is either the second partition of the first flash device, or
the first partition of the second flash device

4

@

MTD partitions are defined in the kernel, in the board definitions:
arch/arm/mach-at91/board-usb-a9263.c example:

static struct mtd partition _ initdata ek nand partition[] = {

{
.name = "Linux Kernel",
.offset = 0,
.size = SZ 16M,

|

{
.hame = "Root FS",
.0offset = MTDPART OFS NXTBLK,
.size = 120 * SZ 1M,

Fo

{
.hame = "FS",
.0offset = MTDPART OFS NXTBLK,
.size = 120 * SZ 1M,

}

}i

» MTD partitions can fortunately be defined
through the kernel command line.

» First need to find the name of the MTD device.
Look at the kernel log at boot time:
NAND device: Manufacturer ID: Oxec, Chip ID:
Oxda (Samsung NAND 256MiB 3,3V 8-bit)
Scanning device for bad blocks
Bad eraseblock 2000 at 0x0£fa00000
Creating 3 MTD partitions on "atmel nand":
0x00000000-0x01000000 : "Linux Kernel"
0x01000000-0x08800000 : "Root FS"

0x08800000-0x10000000 : "FS™

» You can now use the mtdparts kernel boot parameter

» Example:

mtdparts=atmel nand:2m(kernel)ro,lm(rootfs)ro,-(data)

» We've just defined 3 partitions in the atmel nand device:
» kernel (2M)

P rootfs (1M)
P data

» Partition sizes must be multiple of the erase block size.
You can use sizes in hexadecimal too. Remember the below sizes:
0x20000 =128k, 0x100000 =1m, 0x1000000 = 16m

» ro lists the partition as read only

» - is used to use all the remaining space.

» A set of utilities to manipulate MTD devices
» mtdinfo to get detailed information about a MTD device
P flash eraseall to completely erase a given MTD device
P flashcp to write to NOR flash
P nandwrite to write to NAND flash
» UBI utilities

» Flash filesystem image creation tools: mkfs.jffs2,
mkfs.ubifs

» Usually available as the mtd-utils package in your distribution

» See http://www.linux-mtd.infradead.org/

http://www.linux-mtd.infradead.org/

» Supports both NAND and NOR flash
. Standard file
P Today's standard filesystem for MTD flash AP

» Nice features: on the fly compression (saves storage
space and reduces 1/O), power down reliable, wear-

leveling and ECC. JFFS2
filesystem

» Drawbacks: doesn't scale well

» Mount time depending on filesystem size:

the kernel has to scan the whole filesystem at MTD driver
mount time, to read which block belongs to each o
file.

» Need to use the CONFIG JFFS2 SUMMARY kernel W

option to store such information in flash. This
dramatically reduces mount time (from 16 s to 0.8s
for a 128 MB partition).

Flash chip

9

On the Linux target

» Need either the mtd-utils from the MTD project, or their
embedded variants from Busybox

» Erase and format a partition with jffs2:
flash eraseall -j /dev/mtd2

Mount the partition:
mount -t jffs2 /dev/mtdblock2 /mnt/flash

Fill the contents by writing
(copying from NFS or from external storage)

» Other possibility: use a jffs2 image (see next page to produce it):
flash eraseall /dev/mtd2
nandwrite -p /dev/mtd2 rootfs.jffs2

10

P mkfs.jffs2 command available in the mtd-utils package.
Caution: unlike some mkfs commands, it doesn't create a
filesystem, but a filesystem image.

» First, find the erase block size from U-boot nand info:
Device 0: NAND 256MiB 3,3V 8-bit, sector size 128 KiB

» Then create the image on your workstation:
mkfs.jffs2 --pad --no-cleanmarkers
-—-eraseblock=128 -d rootfs/ -o rootfs.jffs2

» The —-pad option pads the jffs2 image contents
until the end of the final erase block.

» It is fine if the jffs2 image is smaller than the MTD patrtition.
The jffs2 file system will use the entire partition anyway.

» The —--no-cleanmarkers option is for NAND flash only.
11

Useful to edit j££s2 images on your development system
Mounting an MTD device as a loop device is a bit complex task.
Here's an example for j££s2, for your reference:

P First find the erase block size used to create the jffs2 image.
Let's assume it is 128KiB (131072 bytes).

» Create a block device from the image
losetup /dev/loop0 root.jffs2

» Emulate an MTD device from a block device,

using the block2mtd kernel module
modprobe block2mtd block2mtd=/dev/loop0,131072

» Finally, mount the filesystem (create /mnt/jf£s2 if needed)
mount -t jffs2 /dev/mtdblock0 /mnt/jffs2

12

You may not want to have mtd-utils on your target!
» Create a JFFS2 image on your workstation
» In the U-Boot prompt:

» Download the jffs2 image to RAM with tftp
Or copy this image to RAM from external storage
(U-boot understands FAT filesystems and supports USB storage)

P Flash it inside an MTD partition
(exact instructions depending on flash type, NOR or NAND,
reuse the instructions used to flash your kernel). Make sure to write only
the size of the image, not more!

P If you boot on a jffs2 root filesystem, add root=/dev/mtdblock<x> and
rootfstype=jf£fs2 to the Linux command line arguments.

P Limitation: need to split the jffs2 image in several chunks
if bigger than the RAM size.

13

http://www.yaffs.net/ Standard file

API
» Mainly supports NAND flash
» No compression
YAFFS2
» Wear leveling, ECC, power failure resistant filesystem
» Fast boot time _— - =
» Code available separately through git MTD driver

(Dual GPL / Proprietary license
for non Linux operating systems)

y

Flash chip

14

http://www.yaffs.net/

» Erase a partition:
flash eraseall /dev/mtd2

» The filesystem is automatically formatted at the first mount:
mount -t yaffs2 /dev/mtdblock2 /mnt/flash

» Images can be created with mkyaffs tool, from yaffs-utils
http://www.aleph1.co.uk/cgi-bin/viewvc.cgi/yaffs/utils/

http://www.aleph1.co.uk/cgi-bin/viewvc.cgi/yaffs/utils/

Unsorted Block Images
» http://www.linux-mtd.infradead.org/doc/ubi.html
» Volume management system on top of MTD devices.

» Allows to create multiple logical volumes
and spread writes across all physical blocks.

» Takes care of managing the erase blocks and wear
leveling. Makes filesystem easier to implement.

http://www.linux-mtd.infradead.org/doc/ubi.html

™ Volume1 Volume?2
Logical - LEB| [LEB][LEB

Erase Blocks

<>\
i

MTD -
Physical PEB PEB||PEB

Erase Blocks

PEB PEB

Free block Free block

http://www.linux-mtd.infradead.org/doc/ubifs.html Standard file

» The next generation of the jffs2 filesystem, API
from the same linux-mtd developers. T

UBIFS
» Available in Linux 2.6.27 - - =
» Works on top of UBI volumes _ UBl
» Has a noticeable metadata overhead on very MTD driver

o

Flash chip

small partitions (4M, 8M)

http://www.linux-mtd.infradead.org/doc/ubifs.html

» Erase your flash partition while preserving your erase counters
ubiformat /dev/mtdl

See http://www.linux-mtd.infradead.org/fag/ubi.ntml if you face problems
» Need to create a /dev/ubi ctrl char device (if you don't have udev)

P This special character device is used by other UBI utilities

» Major and minor number allocated in the kernel. Find these numbers
In /sys/class/misc/ubi ctrl/dev (e.g.: 10:63)

» Or run ubinfo:

UBI version: 1
Count of UBI devices: 1
UBI control device major/minor: 10:63
Present UBI devices: ubiO

» These steps are done once for all

19

» Attach UBI to one (of several) of the MTD partitions:
ubiattach /dev/ubi ctrl -m 1

» This command creates the ubiO device, which represent the full
UBI space stored on MTD device 1

» Find the major and minor numbers used by UBI:
cat /sys/class/ubi/ubi0O/dev (e.g. 253:0)

P Create the UBI device file:
mknod /dev/ubi0 ¢ 253 0

» This UBI space can contain several volumes

» Volume creation with ubimkvol
P ubimkvol /dev/ubi0 -N test -s 116MiB
P ubimkvol /dev/ubi0 -N test -m (max available size)

» The volume is then identified as ubi0: test for the mount/umount
commands

» Volume removal with ubirmvol

P ubirmvol /dev/ubi0 -N test

» When a UBI volume is created, creating an empty UBIFS
filesystem is just a matter of mounting it

P mount -t ubifs ubilO:test /mnt/flash

» Images of UBIFS filesystems can be created using the
mkfs.ubifs utility

P mkfs.ubifs -m 512 -e 128KiB -c 100 -r /opt/img
ubifs.img

» Can be written to a UBI volume using ubiupdatevol and the
/dev/ubiX Y devices

» Images of a full UBI space, containing several volumes can be
created using the ubinize utility

» Can be written to a raw MTD using nandwrite

22

http://squashfs.sourceforge.net/
» Filesystem for block storage, so it doesn't support the MTD API.

» However, as it is read-only, it works fine with mtdblock, as long
as the flash doesn't have any bad blocks

» You can use it for the read-only sections in your filesystem.

http://squashfs.sourceforge.net/

Very simple!

» On your workstation, create your filesystem image:
mksquashfs rootdir rootdir.sqgfs

» Caution: if the image already exists remove it first,
or use the -noappend option.

» Erase your flash partition:
flash eraseall /dev/mtd2

» Make your filesystem image available to your device

(NFS, copy, etc.) and flash your partition:
dd if=rootdir.sqfs of=/dev/mtdblock?2

» Mount your filesystem:
mount -t squashfs /dev/mtdblock2 /mnt/flash

24

@

jffs2 ubifs

P Dramatically outperformed by ubifs in

P Great performance in all corner
most aspects.

cases.

P Huge mount / boot time unless SquashFS
CONFIG SUMMARY is used.

P Best or near best performance

in all read-only scenarios.
yaffs2

P Also outperformed by ubifs.
P May not fit all your data

P Ugly file removal time
(poor directory update Full benchmark details on
performance?) http://free-electrons.com/pub/conferences/2008/elce/flash-filesystems.pdf

P Memory usage not scaling

> ubifs leaves no reason
to stick to yaffs2.

25

http://free-electrons.com/pub/conferences/2008/elce/flash-filesystems.pdf

» Convert your jffs2 partitions to ubifs!

| SquashFS
» It may only make sense to keep jffs2 o

for MTD partitions smaller than 10 MB, MTD block
In case size Is critical. —— = =

» No reason left to use yaffs2 instead of jffs2? E/”;Df‘Fj
» You may also use SquashFS to squeeze more UBI
stuff on your flash storage. Advisable to use it on - T T =
MTD driver

top of UBI, to let all flash sectors participate to

wear leveling. m

Flash chip

» Flash storage made available only through a block interface.

» Hence, no way to access a low level flash interface
and use the Linux filesystems doing wear leveling.

» No details about the layer (Flash Translation Layer) they use.
Details are kept as trade secrets, and may hide poor
Implementations.

» Hence, it is highly recommended to limit the number of writes to
these devices.

» Of course, do not use your flash storage as swap area
(rare in embedded systems anyway)

» Mount your filesystems as read-only, or use read-only filesystems
(SquashFS), whenever possible.

» Keep volatile files in RAM (tmpfs)

» Use the noatime mount option, to avoid updating the filesystem
every time you access a file. Or at least, if you need to know whether
files were read after their last change, use the relatime option
(default setting since Linux 2.6.30).

» Don't use the sync mount option (commits writes immediately). Use
the £sync () system call for per-file synchronization.

» You may decide to do without journaled filesystems. They cause more
writes, but are also much more power down resistant (trade-off).

28

» Introduction to JFFS2 and LogFS:
http://lwn.net/Articles/234441/

» Nice UBI presentation from Toshiba:
http://free-electrons.com/redirect/celf-ubi.html

» Documentation on the linux-mtd website:
http://www.linux-mtd.infradead.org/

http://lwn.net/Articles/234441/
http://free-electrons.com/redirect/celf-ubi.html
http://www.linux-mtd.infradead.org/

MTD

Yes choose ext2
choose squashfs : :
noatime OpthIl
4

y

\4
[Choose tmpfs J
choose UBIFS Choose ext3 or ext4

or JFFS2

See Documentation/filesystems/ in kernel sources for details
about all available filesystems. -

http://free-electrons.com/kerneldoc/latest/filesystems/

» Creating partitions in your
internal flash storage.

» Formating the main partition with
SquashFS on mtdblock.

» Using jffs2 for system data.

Free Electrons

Embedded Freedom

Recent blog posts

ELC Europe in Grenohle Maost of the below documents are presentations used in our t

conferences.

s, ar in technical

Free Electrons at ELC
License
Linux kernel 2.6.29 - New

features for embedded ShareAlike 3.0 license. This essentially means that you are free to download, distribute

@ All our documents are available under the terms of the Creative Commaons Attribution-

and even modify

them, provided you mention us as the original authors and that you

users -
share these documents under the same conditions.

The Buildroot project Linux kernel

begins a new life

Embedded Linux kernel and driver development
6 (since 2.6.10)

New features in Linux 2

FOSDEM 2009 videos

« Kernel initialization
USE-Ethernet device for . hardware
» Power management in Linux

Linusx

Frogram far Embedded Block device drivers

Linux Conference 2008

documents

announced

Public session changes

Real hardware in our
Embedded Linux system development
training sessions
« Embedded Linux system development
Call for presentations for = Real time in embedded Linux systems
Elack filesystems

the LSM embedded track

Free software development tools
r
+ The GRUE hootloader
+ The biok boatloader

Introduction to uClinux

Embedded Linux aptimizations
= Audio in embedded Linux systems

= Multimedia in embedded Linux systems
= Embedded Linux From Scratch... in 40 minutes!

. embedded Linux systams with Buildroot
Developing embedded distributions with OpenEmbedded
= The Scratchbox development environment

Miscellaneous

= Introduction to the Unix command line

wirtualization solutions (with an embedded perspectivel
= Advantages of Free Software and Open Source in embedded systems
= Introduction to GNU/Linux and Free Software

All our technical presentations
on http://free-electrons.com/docs

» Linux kernel

» Device drivers

» Architecture specifics

» Embedded Linux system development

http://free-electrons.com/docs

You can help us to improve and maintain this document...

» By sending corrections, suggestions, contributions and
translations

» By asking your organization to order development, consulting
and training services performed by the authors of these
documents (see http://free-electrons.com/).

» By sharing this document with your friends, colleagues
and with the local Free Software community.

» By adding links on your website to our on-line materials,
to increase their visibility in search engine results.

http://free-electrons.com/

Linux kernel

Linux device drivers

Board support code
Mainstreaming kernel code
Kernel debugging

Embedded Linux Training
All materials released with a free license!

Unix and GNU/Linux basics

Linux kernel and drivers development
Real-time Linux, uClinux

Development and profiling tools
Lightweight tools for embedded systems
Root filesystem creation

Audio and multimedia

System optimization

Free Electrons

Our services

Custom Development

System integration

Embedded Linux demos and prototypes
System optimization

Application and interface development

Consulting and technical support

Help in decision making

System architecture

System design and performance review
Development tool and application support
Investigating issues and fixing tool bugs

. .’ Free Electrons

Embedded Linux Experts

