Kernel
initialization

Michael Opdenacker
Free Electrons

© Copyright 2007-2010, Free Electrons.

Creative Commons BY-SA 3.0 license

Latest update: Dec 20, 2010,

Document sources, updates and translations:
http://free-electrons.com/docs/kernel-init

Corrections, suggestions, contributions and translations are welcome!

Free Electrons

Embedded Linux
Developers


http://free-electrons.com/docs/kernel-init

Kernel
iInitialization




Kernel bootstrap (1)

How the kernel bootstraps itself appears in kernel building.
Example on ARM (pxa cpu) in Linux 2.6.36:

LD vmlinux

SYSMAP System.map

SYSMAP .tmp System.map

OBJCOPY arch/arm/boot/Image

Kernel: arch/arm/boot/Image is ready

AS arch/arm/boot/compressed/head.o

GZIP arch/arm/boot/compressed/piggy.gzip

AS arch/arm/boot/compressed/piggy.gzip.o
CC arch/arm/boot/compressed/misc.o

CcC arch/arm/boot/compressed/decompress.o
AS arch/arm/boot/compressed/head-xscale.o
SHIPPED arch/arm/boot/compressed/liblfuncs.S
AS arch/arm/boot/compressed/liblfuncs.o
LD arch/arm/boot/compressed/vmlinux

OBJCOPY arch/arm/boot/zImage
Kernel: arch/arm/boot/zImage is ready

3 1

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com



@

objcopy gzip as 1d objcopy
> iggy.gzip.S |—P» >
I D1gLY.gZ1P.C
mage
vmlinux = piggy.gz
: zImage
vmlinux
head.o
: misc.o
Stripped Compressed
« ». kernel head-cpu.o
Kernel proper”: ™ kernel .
Raw kernel ~ binary binary — .
executable (binary lib1funcs.o (in arch/<arch> Kernel image
(ELF object) ~ ©bject) boot/compressed) for hootloader

Details found by compiling
with make V=1

asm wrapper

around

piggy.gzip.gz
+ bootstrap

code

Composite

(binary object)

kernel image
(ELF object)



» head.o:
Architecture specific initialization code.
This is what is executed by the bootloader

» head-cpu.o (here head-xscale.o):
CPU specific initialization code

» decompress.o, misc.o:
Decompression code

» liblfuncs.o:
Optimized ARM division routines (ARM only)




Main work done by head. o:
» Check the architecture, processor and machine type.

» Configure the MMU, create page table entries
and enable virtual memory.

» Calls the start kernel function in init/main.c.
Same code for all architectures.
Anybody interesting in kernel startup should study this file!



http://lxr.free-electrons.com/ident?i=start_kernel
http://lxr.free-electrons.com/source/init/main.c

» Calls setup arch(&command line)
(function defined in arch/<arch>/kernel/setup.c), copying
the command line from where the bootloader left it.

» On arm, this function calls setup processor
(in which CPU information is displayed) and setup machine
(locating the machine in the list of supported machines).

» Initializes the console as early as possible
(to get error messages)

» Initializes many subsystems (see the code)

» Eventually calls rest init.



http://lxr.free-electrons.com/ident?i=setup_arch
http://lxr.free-electrons.com/source/arch/arm/kernel/setup.c
http://lxr.free-electrons.com/ident?i=setup_processor
http://lxr.free-electrons.com/ident?i=setup_machine
http://lxr.free-electrons.com/ident?i=rest_init

B

Starting a new kernel thread which will later become the init process

{

static noinline void init refok rest init(void)

__releases(kernel lock)
int pid;

rcu_scheduler starting();

/*
* We need to spawn init first so that it obtains pid 1, however
* the init task will end up wanting to create kthreads, which, if
* we schedule it before we create kthreadd, will OOPS.
*/

kernel thread(kernel init, NULL, CLONE FS | CLONE_ SIGHAND);

numa_ default pOllCY(),

pid = kernel thread(kthreadd NULL, CLONE_FS | CLONE FILES);

rcu read lock(); .

kthreadd task = find task by pid ns(pid, &init pid ns);

rcu read _unlock();

complete(&kthreadd_done);

/*
* The boot idle thread must execute schedule()
* at least once to get things moving:
*/

init idle bootup task(current);

preempt enable - no_resched();

schedule();

preempt disable();

/* Call into cpu idle with preempt disabled */
cpu_idle();

Source: Linux 2.6.36




@

kernel init does two main things:

» Calldo basic setup
Now that kernel services are ready, start device initialization:
(Linux 2.6.36 code excerpt):

static void _ init do basic_setup(void)
{

cpuset init smp();

usermodehelper init();

init tmpfs();

driver init();

init irqg proc();

do_ctors();

do initcalls();

}
» Call init post


http://lxr.free-electrons.com/ident?i=kernel_init
http://lxr.free-electrons.com/ident?i=do_basic_setup
http://lxr.free-electrons.com/ident?i=init_post

do initcalls

Calls pluggable hooks registered with the macros below.
Advantage: the generic code doesn't have to know about them.

/*

* A "pure" initcall has no dependencies on anything else, and purely
* initializes variables that couldn't be statically initialized.

*

* This only exists for built-in code, not for modules.

*/

#define pure initcall(fn) __define initcall("O0",£fn,1)
#define core initcall(fn) __define initcall("1",£fn,1)
#define core_initcall sync(fn) define initcall("1ls",fn,1s)
#define postcore initcall(fn) ~ define _initcall("2",£n,2)
#define postcore “initcall _sync(fn) ~ define initcall("2s",fn,2s)
tdefine arch 1n1tcall(fn) ::aeflne_lnltcall("3" fn,3)
#define arch_1n1tcall_sync(fn) __define initcall("3s",fn,3s)
#define subsys initcall(fn) __define initcall("4",£fn,4)
#define subsys initcall sync(fn) define initcall("4s",fn,4s)
#define fs_initcall(fn) __define initcall("5",£n,5)
#define fs_1n1tcall_sync(fn) ~ define _initcall("5s",fn,5s)
#define rootfs initcall(£fn) __deflne_lnltcall("rootfs",fn,rootfs)
#define device initcall(fn) __define initcall("6",£fn,6)
#define device initcall sync(fn) __define initcall("6s",fn,6s)
#define late initcall(fn) __define initcall("7",£fn,7)
#define late initcall sync(fn) __define_initcall("7s",£fn,7s)

Defined in include/linux/init.h
10

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com


http://lxr.free-electrons.com/source/include/linux/init.h

B

From arch/arm/mach-pxa/1pd270.c (Linux 2.6.36)

static int __ init 1pd270 irq device_init(void)

{
int ret = -ENODEV;
if (machine is logicpd pxa270()) {
ret = sysdev_class register(&lpd270_irq sysclass);
if (ret == 0)
ret = sysdev_register(&lpd270_irq device);
}
return ret;
}

ldevice initcall(1lpd270_irq device_ init);



http://lxr.free-electrons.com/source/arch/arm/mach-pxa/lpd270.c

The last step of Linux booting

» First tries to open a console

» Then tries to run the init process,
effectively turning the current kernel thread
Into the userspace init process.




B

Istatic noinline int init post(void)
__releases(kernel_ lock)

{

async_ synchronize full();

free 1n1tmem(),

mark rodata ro();

system state = SYSTEM RUNNING;
numa_default policy();

current->signal->flags |= SIGNAL UNKILLABLE;

if (ramdisk_execute_command) ({
run 1n1t_process(ramdlsk execute_command) ;
printk (KERN_WARNING "Failed to execute %s\n",
ramdisk execute_command);

* We try each of these until one succeeds.

* The Bourne shell can be used instead of init if we are
* trying to recover a really broken machine.
*/
if (execute_command) {
run 1n1t_process(execute command) ;

}

run_init process("/sbin/init");
run_init process("/etc/init");
run 1n1t_process("/b1n/1n1t"),
run_init process("/bin/sh");

panic("No init found. Try passing init= option to kernel.
"See Linux Documentation/init.txt for guidance.");

/* need to finish all async ___init code before freeing the memory */

printk (KERN_WARNING "Failed to execute %s. Attempting "
"defaults...\n", execute_command) ;

Source:
init/main.c

In Linux 2.6.36

13


http://lxr.free-electrons.com/source/init/main.c

@

Bootloader

;

head.o
(bootstrap code)

;

System
initialization

start_kernel

kerne l_init

'

I

rest_init

init post

I
I System
I operation
I
I
I
I
) cpu_idle
! (idle loop)
I
I
—1 init process




» The bootloader executes » Initializes the console.
bootstrap code. » Initializes kernel services

» Bootstrap code initializes (memory allocation,
the processor and board, scheduling, file cache...)
and uncompresses the » Creates a new kernel thread
kernel code to RAM, and (future init process) and
calls the kernel's continues in the idle loop.

start kernel function. o ,
— » |nitializes devices and
» Copies the command line execute initcalls.

from the bootloader.

» Identifies the processor and
machine.

15


http://lxr.free-electrons.com/ident?i=start_kernel

Free Electrons

Embedded Freedom

Recent blog posts

ELC Europe in Grenohle Maost of the below documents are presentations used in our t

conferences.

s, ar in technical

Free Electrons at ELC
License
Linux kernel 2.6.29 - New

features for embedded ShareAlike 3.0 license. This essentially means that you are free to download, distribute

@ All our documents are available under the terms of the Creative Commaons Attribution-

and even modify

them, provided you mention us as the original authors and that you

users -
share these documents under the same conditions.

The Buildroot project Linux kernel

begins a new life

Embedded Linux kernel and driver development
6 (since 2.6.10)

New features in Linux 2

FOSDEM 2009 videos

« Kernel initialization
USE-Ethernet device for . hardware
» Power management in Linux

Linusx

Frogram far Embedded Block device drivers

Linux Conference 2008

documents

announced

Public session changes

Real hardware in our
Embedded Linux system development
training sessions
« Embedded Linux system development
Call for presentations for = Real time in embedded Linux systems
Elack filesystems

the LSM embedded track

Free software development tools
r
+ The GRUE hootloader
+ The biok boatloader

Introduction to uClinux

Embedded Linux aptimizations
= Audio in embedded Linux systems

= Multimedia in embedded Linux systems
= Embedded Linux From Scratch... in 40 minutes!

. embedded Linux systams with Buildroot
Developing embedded distributions with OpenEmbedded
= The Scratchbox development environment

Miscellaneous

= Introduction to the Unix command line

wirtualization solutions (with an embedded perspectivel
= Advantages of Free Software and Open Source in embedded systems
= Introduction to GNU/Linux and Free Software

All our technical presentations
on http://free-electrons.com/docs

» Linux kernel

» Device drivers

» Architecture specifics

» Embedded Linux system development



http://free-electrons.com/docs

You can help us to improve and maintain this document...

» By sending corrections, suggestions, contributions and
translations

» By asking your organization to order development, consulting
and training services performed by the authors of these
documents (see http://free-electrons.com/).

» By sharing this document with your friends, colleagues
and with the local Free Software community.

» By adding links on your website to our on-line materials,
to increase their visibility in search engine results.



http://free-electrons.com/

Linux kernel

Linux device drivers

Board support code
Mainstreaming kernel code
Kernel debugging

Embedded Linux Training
All materials released with a free license!

Unix and GNU/Linux basics

Linux kernel and drivers development
Real-time Linux, uClinux

Development and profiling tools
Lightweight tools for embedded systems
Root filesystem creation

Audio and multimedia

System optimization

Free Electrons

Our services

Custom Development

System integration

Embedded Linux demos and prototypes
System optimization

Application and interface development

Consulting and technical support

Help in decision making

System architecture

System design and performance review
Development tool and application support
Investigating issues and fixing tool bugs

. .’ Free Electrons

Embedded Linux Experts




