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Kernel bootstrap (1)

How the kernel bootstraps itself appears in kernel building.
Example on ARM (pxa cpu) in Linux 2.6.36:

LD vmlinux

SYSMAP System.map

SYSMAP .tmp System.map

OBJCOPY arch/arm/boot/Image

Kernel: arch/arm/boot/Image is ready

AS arch/arm/boot/compressed/head.o

GZIP arch/arm/boot/compressed/piggy.gzip

AS arch/arm/boot/compressed/piggy.gzip.o
CC arch/arm/boot/compressed/misc.o

CcC arch/arm/boot/compressed/decompress.o
AS arch/arm/boot/compressed/head-xscale.o
SHIPPED arch/arm/boot/compressed/liblfuncs.S
AS arch/arm/boot/compressed/liblfuncs.o
LD arch/arm/boot/compressed/vmlinux

OBJCOPY arch/arm/boot/zImage
Kernel: arch/arm/boot/zImage is ready
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» head.o:
Architecture specific initialization code.
This is what is executed by the bootloader

» head-cpu.o (here head-xscale.o):
CPU specific initialization code

» decompress.o, misc.o:
Decompression code

» liblfuncs.o:
Optimized ARM division routines (ARM only)




Main work done by head. o:
» Check the architecture, processor and machine type.

» Configure the MMU, create page table entries
and enable virtual memory.

» Calls the start kernel function in init/main.c.
Same code for all architectures.
Anybody interesting in kernel startup should study this file!



http://lxr.free-electrons.com/ident?i=start_kernel
http://lxr.free-electrons.com/source/init/main.c

» Calls setup arch(&command line)
(function defined in arch/<arch>/kernel/setup.c), copying
the command line from where the bootloader left it.

» On arm, this function calls setup processor
(in which CPU information is displayed) and setup machine
(locating the machine in the list of supported machines).

» Initializes the console as early as possible
(to get error messages)

» Initializes many subsystems (see the code)

» Eventually calls rest init.
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Starting a new kernel thread which will later become the init process

{

static noinline void init refok rest init(void)

__releases(kernel lock)
int pid;

rcu_scheduler starting();

/*
* We need to spawn init first so that it obtains pid 1, however
* the init task will end up wanting to create kthreads, which, if
* we schedule it before we create kthreadd, will OOPS.
*/

kernel thread(kernel init, NULL, CLONE FS | CLONE_ SIGHAND);

numa_ default pOllCY(),

pid = kernel thread(kthreadd NULL, CLONE_FS | CLONE FILES);

rcu read lock(); .

kthreadd task = find task by pid ns(pid, &init pid ns);

rcu read _unlock();

complete(&kthreadd_done);

/*
* The boot idle thread must execute schedule()
* at least once to get things moving:
*/

init idle bootup task(current);

preempt enable - no_resched();

schedule();

preempt disable();

/* Call into cpu idle with preempt disabled */
cpu_idle();

Source: Linux 2.6.36
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kernel init does two main things:

» Calldo basic setup
Now that kernel services are ready, start device initialization:
(Linux 2.6.36 code excerpt):

static void _ init do basic_setup(void)
{

cpuset init smp();

usermodehelper init();

init tmpfs();

driver init();

init irqg proc();

do_ctors();

do initcalls();

}
» Call init post
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do initcalls

Calls pluggable hooks registered with the macros below.
Advantage: the generic code doesn't have to know about them.

/*

* A "pure" initcall has no dependencies on anything else, and purely
* initializes variables that couldn't be statically initialized.

*

* This only exists for built-in code, not for modules.

*/

#define pure initcall(fn) __define initcall("O0",£fn,1)
#define core initcall(fn) __define initcall("1",£fn,1)
#define core_initcall sync(fn) define initcall("1ls",fn,1s)
#define postcore initcall(fn) ~ define _initcall("2",£n,2)
#define postcore “initcall _sync(fn) ~ define initcall("2s",fn,2s)
tdefine arch 1n1tcall(fn) ::aeflne_lnltcall("3" fn,3)
#define arch_1n1tcall_sync(fn) __define initcall("3s",fn,3s)
#define subsys initcall(fn) __define initcall("4",£fn,4)
#define subsys initcall sync(fn) define initcall("4s",fn,4s)
#define fs_initcall(fn) __define initcall("5",£n,5)
#define fs_1n1tcall_sync(fn) ~ define _initcall("5s",fn,5s)
#define rootfs initcall(£fn) __deflne_lnltcall("rootfs",fn,rootfs)
#define device initcall(fn) __define initcall("6",£fn,6)
#define device initcall sync(fn) __define initcall("6s",fn,6s)
#define late initcall(fn) __define initcall("7",£fn,7)
#define late initcall sync(fn) __define_initcall("7s",£fn,7s)

Defined in include/linux/init.h
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From arch/arm/mach-pxa/1pd270.c (Linux 2.6.36)

static int __ init 1pd270 irq device_init(void)

{
int ret = -ENODEV;
if (machine is logicpd pxa270()) {
ret = sysdev_class register(&lpd270_irq sysclass);
if (ret == 0)
ret = sysdev_register(&lpd270_irq device);
}
return ret;
}

ldevice initcall(1lpd270_irq device_ init);
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The last step of Linux booting

» First tries to open a console

» Then tries to run the init process,
effectively turning the current kernel thread
Into the userspace init process.
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Istatic noinline int init post(void)
__releases(kernel_ lock)

{

async_ synchronize full();

free 1n1tmem(),

mark rodata ro();

system state = SYSTEM RUNNING;
numa_default policy();

current->signal->flags |= SIGNAL UNKILLABLE;

if (ramdisk_execute_command) ({
run 1n1t_process(ramdlsk execute_command) ;
printk (KERN_WARNING "Failed to execute %s\n",
ramdisk execute_command);

* We try each of these until one succeeds.

* The Bourne shell can be used instead of init if we are
* trying to recover a really broken machine.
*/
if (execute_command) {
run 1n1t_process(execute command) ;

}

run_init process("/sbin/init");
run_init process("/etc/init");
run 1n1t_process("/b1n/1n1t"),
run_init process("/bin/sh");

panic("No init found. Try passing init= option to kernel.
"See Linux Documentation/init.txt for guidance.");

/* need to finish all async ___init code before freeing the memory */

printk (KERN_WARNING "Failed to execute %s. Attempting "
"defaults...\n", execute_command) ;

Source:
init/main.c

In Linux 2.6.36
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» The bootloader executes » Initializes the console.
bootstrap code. » Initializes kernel services

» Bootstrap code initializes (memory allocation,
the processor and board, scheduling, file cache...)
and uncompresses the » Creates a new kernel thread
kernel code to RAM, and (future init process) and
calls the kernel's continues in the idle loop.

start kernel function. o ,
— » |nitializes devices and
» Copies the command line execute initcalls.

from the bootloader.

» Identifies the processor and
machine.
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You can help us to improve and maintain this document...
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» By asking your organization to order development, consulting
and training services performed by the authors of these
documents (see http://free-electrons.com/).

» By sharing this document with your friends, colleagues
and with the local Free Software community.

» By adding links on your website to our on-line materials,
to increase their visibility in search engine results.
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