@

Linux kernel
iIntroduction

Michael Opdenacker
Thomas Petazzoni
Free Electrons

© Copyright 2004-2009, Free Electrons.

Creative Commons BY-SA 3.0 license

Latest update: Jan 19, 2011,

Document sources, updates and translations:
http://free-electrons.com/docs/kernel-intro

Corrections, suggestions, contributions and translations are welcome!

Free Electrons

Embedded Linux
Developers

http://free-electrons.com/docs/kernel-intro

Kernel overview
Linux features

\bbrary A [[UserappA | Userspace
A

Event notification,
iInformation exposition

0 LnuxKemel

A
Manage -
hardware Event notification

3

Call to services

» The Linux kernel is one component of a system, which also
requires libraries and applications to provide features to end
users.

» The Linux kernel was created as a hobby in 1991
by a Finnish student, Linus Torvalds.

P Linux quickly started to be used as the kernel for free software
operating systems

» Linus Torvalds has been able to create a large and dynamic
developer and user community around Linux.

» Nowadays, hundreds of people contribute to each kernel release,
individuals or companies big and small.

4

» The whole Linux sources are Free Software released
under the GNU General Public License version 2 (GPL v2).

» For the Linux kernel, this basically implies that:

» When you receive or buy a device with Linux on it,
you should receive the Linux sources, with the right to
study, modify and redistribute them.

» When you produce Linux based devices, you must
release the sources to the recipient, with the same rights,
with no restriction..

» Portability and hardware
support
Runs on most architectures.

» Scalability
Can run on super computers

as well as on tiny devices
(4 MB of RAM is enough).

» Compliance to standards and
interoperability.

» Exhaustive networking
support.

» Security
It can't hide its flaws. lts code
IS reviewed by many experts.

» Stability and reliability.

» Modularity
Can include only what a
system needs even at run
time.

» Easy to program
You can learn from existing
code. Many useful resources
on the net.

6

2.6.31 status
P See the arch/ directory in the kernel sources
» Minimum: 32 bit processors, with or without MMU, and gcc support

» 32 bit architectures (arch/ subdirectories)
arm, avr32, blackfin, cris, frv, h8300, m32r, m68Kk,

m68knommu, microblaze, mips, mnl10300, parisc, s390,
sparc, um, Xxtensa

» 64 bit architectures:
alpha, 1a64, sparcé64

» 32/64 bit architectures
powerpc, x86, sh

» Find details in kernel sources: arch/<arch>/Kconfig,
arch/<arch>/README, or Documentation/<arch>/

http://lxr.free-electrons.com/source/arch/
http://lxr.free-electrons.com/source/arch/
http://lxr.free-electrons.com/source/arch/arm/
http://lxr.free-electrons.com/source/arch/avr32/
http://lxr.free-electrons.com/source/arch/blackfin/
http://lxr.free-electrons.com/source/arch/cris/
http://lxr.free-electrons.com/source/arch/frv/
http://lxr.free-electrons.com/source/arch/h8300/
http://lxr.free-electrons.com/source/arch/m32r/
http://lxr.free-electrons.com/source/arch/m68k/
http://lxr.free-electrons.com/source/arch/m68knommu/
http://lxr.free-electrons.com/source/arch/microblaze/
http://lxr.free-electrons.com/source/arch/mips/
http://lxr.free-electrons.com/source/arch/mn10300/
http://lxr.free-electrons.com/source/arch/parisc/
http://lxr.free-electrons.com/source/arch/s390/
http://lxr.free-electrons.com/source/arch/sparc/
http://lxr.free-electrons.com/source/arch/um/
http://lxr.free-electrons.com/source/arch/xtensa/
http://lxr.free-electrons.com/source/arch/alpha/
http://lxr.free-electrons.com/source/arch/ia64/
http://lxr.free-electrons.com/source/arch/sparc64/
http://lxr.free-electrons.com/source/arch/powerpc/
http://lxr.free-electrons.com/source/arch/x86/
http://lxr.free-electrons.com/source/arch/s390/

» The main interface between the kernel and userspace is the set
of system calls

» About ~300 system calls that provides the main kernel services

P File and device operations, networking operations, inter-process
communication, process management, memory mapping, timers,
threads, synchronization primitives, etc.

» This interface is stable over time: only new system calls can be
added by the kernel developers

» This system call interface is wrapped by the C library, and
userspace applications usually never make a system call directly
but rather use the corresponding C library function

8

» Linux makes system and kernel information available in
user-space through virtual filesystems (virtual files not
existing on any real storage). No need to know kernel
programming to access such information!

» Mounting /proc:
sudo mount -t proc none /proc

» Mounting /sys:
sudo mount -t sysfs none /sys

/ booX

Filesystem type Raw device Mount point

or filesystem image
_Inthe case of virtual
filesystems, any string is fine

A few examples:

» /proc/cpuinfo: processor information

» /proc/meminfo: memory status

» /proc/version: kernel version and build information
» /proc/cmdline: kernel command line

» /proc/<pid>/environ: calling environment

» /proc/<pid>/cmdline: process command line

... and many more! See by yourself!

Lots of details about the /proc interface are available in
Documentation/filesystems/proc.txt

(almost 2000 lines) in the kernel sources.

10

http://free-electrons.com/kerneldoc/latest/filesystems/proc.txt

Kernel overview
Linux versioning scheme and development process

» One stable major branch every 2 or 3 years
» Identified by an even middle number
» Examples: 1.0, 2.0, 2.2, 2.4

» One development branch to integrate new functionalities and
major changes

» [dentified by an odd middle number
» Examples: 2.1, 2.3, 2.5

> After some time, a development version becomes the new
base version for the stable branch

» Minor releases once in while: 2.2.23, 2.5.12, etc.

Stable version m

240 241 242 243 244 245 24.6 2.4.7 2438
— v v — v Y >
¥ >

250 251 252 253 254 260 2.6.1

Development > Stable >

Note: in reality, many more minor
versions exist inside the stable and
development branches

13

» Since 2.6.0, kernel developers have been able to
introduce lots of new features one by one on a steady pace,
without having to make major changes in existing
subsystems.

» Opening a new Linux 2.7 (or 2.9) development branch will
be required only when Linux 2.6 is no longer able to
accommodate key features without undergoing traumatic
changes.

o Thanks to this, more features are released to users at a
faster pace.

Since 2.6.14, the kernel developers agreed
on the following development model:

> After the release of a 2.6 .x version, a two-weeks merge window
opens, during which major additions are merged.

» The merge window is closed
by the release of test version 2.6. (x+1)-rcl

» The bug fixing period opens, for 6 to 10 weeks.

P At regular intervals during the bug fixing period,
2.6.(x+1)-rcY test versions are released.

» When considered sufficiently stable,
kernel 2.6. (x+1) Is released, and the process starts again.

2 weeks 6 to 10 weeks

- >« >
2.6.21 2.6.22-rcl T 2.6.22-1c3 T 2.6.22-1c5 T
2.6.22-1c2 2.6.22-rc4 2.6.22
: : : : :
2.621.1 26212 26213 26214 26215
| .
2.6.22.1
Bug fix updates
16

@

P Issue: bug and security fixes only released for
most recent stable kernel versions.

» Some people need to have a recent kernel, but
with long term support for security updates.

» You could get long term support from a
commercial embedded Linux provider.

» You could reuse sources for the kernel used in
Ubuntu Long Term Support releases (5 years of
free security updates).

» You could choose one of the versions advertised
as “long term” in the kernel.org front page. They
will be maintained longer (2 or 3 years), unlike
other versions.

linux-next: next-20110118
snapshot: 2.6.37-gitls

mainline:
stable:
stable:

longterm:

stable:

longterm:

stable:
stable:

longterm:

stable:

longterm:

stable:

stable:

2.6.37
2.6.37
2.6.36.3
2.6.35.10
2.6.35.9
2.6.34.8
2.6.34.7
2.6.33.7
2.6.32.28
2.6.32.28
2.6.27.57
2.6.27.57
2.4.37.11

@

commit 3¢92c2ba33cd7d666c5f83cc32aa590e794e91b0
Author: Andi Kleen <ak@suse.de>
Date: Tue Oct 11 01:28:33 2005 +0200

[PATCH] i386: Don't discard upper 32bits of HWCR on K8
Need to use long long, not long when RMWing a MSR. | think

it's harmless right now, but still should be better fixed
if AMD adds any bits in the upper 32bit of HWCR.

Bug was introduced with the TLB flush filter fix for i386

Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>

» The official list of changes for each Linux release is just a
huge list of individual patches!

» Very difficult to find out the key changes and to get the
global picture out of individual changes.

» Fortunately, a summary of key changes
with enough details is available on
http://wiki.kernelnewbies.org/LinuxChanges 8

http://wiki.kernelnewbies.org/LinuxChanges

Free Electrons

Embedded Freedom

Recent blog posts

ELC Europe in Grenohle Maost of the below documents are presentations used in our t

conferences.

s, ar in technical

Free Electrons at ELC
License
Linux kernel 2.6.29 - New

features for embedded ShareAlike 3.0 license. This essentially means that you are free to download, distribute

@ All our documents are available under the terms of the Creative Commaons Attribution-

and even modify

them, provided you mention us as the original authors and that you

users -
share these documents under the same conditions.

The Buildroot project Linux kernel

begins a new life

Embedded Linux kernel and driver development
6 (since 2.6.10)

New features in Linux 2

FOSDEM 2009 videos

« Kernel initialization
USE-Ethernet device for . hardware
» Power management in Linux

Linusx

Frogram far Embedded Block device drivers

Linux Conference 2008

documents

announced

Public session changes

Real hardware in our
Embedded Linux system development
training sessions
« Embedded Linux system development
Call for presentations for = Real time in embedded Linux systems
Elack filesystems

the LSM embedded track

Free software development tools
r
+ The GRUE hootloader
+ The biok boatloader

Introduction to uClinux

Embedded Linux aptimizations
= Audio in embedded Linux systems

= Multimedia in embedded Linux systems
= Embedded Linux From Scratch... in 40 minutes!

. embedded Linux systams with Buildroot
Developing embedded distributions with OpenEmbedded
= The Scratchbox development environment

Miscellaneous

= Introduction to the Unix command line

wirtualization solutions (with an embedded perspectivel
= Advantages of Free Software and Open Source in embedded systems
= Introduction to GNU/Linux and Free Software

All our technical presentations
on http://free-electrons.com/docs

» Linux kernel

» Device drivers

» Architecture specifics

» Embedded Linux system development

http://free-electrons.com/docs

You can help us to improve and maintain this document...

» By sending corrections, suggestions, contributions and
translations

» By asking your organization to order development, consulting
and training services performed by the authors of these
documents (see http://free-electrons.com/).

» By sharing this document with your friends, colleagues
and with the local Free Software community.

» By adding links on your website to our on-line materials,
to increase their visibility in search engine results.

http://free-electrons.com/

Linux kernel

Linux device drivers

Board support code
Mainstreaming kernel code
Kernel debugging

Embedded Linux Training
All materials released with a free license!

Unix and GNU/Linux basics

Linux kernel and drivers development
Real-time Linux, uClinux

Development and profiling tools
Lightweight tools for embedded systems
Root filesystem creation

Audio and multimedia

System optimization

Free Electrons

Our services

Custom Development

System integration

Embedded Linux demos and prototypes
System optimization

Application and interface development

Consulting and technical support

Help in decision making

System architecture

System design and performance review
Development tool and application support
Investigating issues and fixing tool bugs

. .’ Free Electrons

Embedded Linux Experts

