THE EXPERT’S VOICE® IN OPEN SOURCE

Foundations of

GTK+

Development

Build sophisticated graphical applications using one
of the world's most powerful cross-platform toolkits!

Andrew Krause

Apress:

Foundations of
GTK+
Development

Andrew Krause

Apress

Foundations of GTK+ Development
Copyright © 2007 by Andrew Krause

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-793-4
ISBN-10 (pbk): 1-59059-793-1
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editors: Jason Gilmore, Matt Wade

Technical Reviewers: Christiana Evelyn Johnson, Micah Carrick

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,
Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Jeff Pepper, Paul Sarknas,
Dominic Shakeshaft, Jim Sumser, Matt Wade

Project Manager: Richard Dal Porto

Copy Edit Manager: Nicole Flores

Copy Editor: Heather Lang

Assistant Production Director: Kari Brooks-Copony

Production Editor: Katie Stence

Compositor: Pat Christenson

Proofreader: Elizabeth Berry

Indexer: Ann Rogers

Artist: April Milne

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code/
Download section or at the official book site, http://www.gtkbook.com.

I dedicate this book to Mrs. Kaminsky, for never allowing me to settle for anything but my
best. I hope you can look at this book and see everything that you have done for me,
even though I have yet to broaden the scope of my writing beyond technology.

Contents at a Glance

About the AUthOr o Xvii
Acknowledgments. Xix
INtroduCtion XXi
CHAPTER 1 GettingStarted 1
CHAPTER 2 Your First GTK+ Applications 15
CHAPTER3 Container Widgets 43
CHAPTER4 BasicWidgets i .. 75
CHAPTERS Dialogs. ...t 111
CHAPTER6 UsingGLib............... 159
CHAPTER7 The TextViewWidget 219
CHAPTER8 The TreeViewWidget....................................... 261
CHAPTER9 MenusandToolbars .. 315
CHAPTER 10 Dynamic User Interfaces 355
CHAPTER 11 Creating Custom Widgets.................................... 381
CHAPTER 12 Additional GTK+ Widgets 431
CHAPTER 13 Putting It All Together....................................... 471
APPENDIXA GTK+Properties 481
APPENDIXB GTK+Signals................. i, 529
APPENDIXC GTK+Styles.........., 565
APPENDIXD GTK+ StockItems................ 583
APPENDIXE GError Typeso i, 587
APPENDIX F Exercise Solutionsand Hints................................. 595

Contents

About the Author .
Acknowledgments
Introduction

CHAPTER 1

CHAPTER 2

.. Xvii
.. Xix
.. XXi
Getting Started. ... 1
ABriefHistory of GTK+ ... 2
The XWindow System i 2
GTK+ and Supporting Libraries 3
GLib. .o 5
GObjeCt. ... 6
GDK .. 7
GAKPIXbUT 7
PaNgo ... 8
ATK 9
Language Bindings. 9
Installing GTK+ 10
SUMMANY .. 12
Your First GTK+ Applications 15
HelloWorld. 15
Initializing GTK+ 16
Widget Hierarchy........... 17
GTKHWINdOWS 19
The Main Loop Function. 20
Using GCC and pkg-configto Compile 21
Extending “HelloWorld” L 23
Signalsand Callbacks i 27
Connecting the Signal 27
Callback Functions i, 28
Emitting and Stopping Signals 29
EVeNtS. ... 29
Event Types ... 31
Using Specific Event Structures 31

vii

viii

CONTENTS

CHAPTER 3

CHAPTER 4

Further GTK+ Functions 32
GtkWidget Functions.o i 32
GtkWindow Functions. 33
Process Pending Events.................. 35

Buttons 36

Widget Properties. ... i 38

Test Your Understanding................ 40

SUMMANY ... 41

Container Widgets... 43

GtkContainer 43
Decorator Containers ... 43
Layout Containers. 44
Resizing Children. 44
Container Signalsco i 46

Horizontal and Vertical Boxes.................. ...t 46

Horizontal and Vertical Panes..................................... 50

TablesS. ... 53
Table Packing 55
TableSpacing 57

Fixed Containers...............co i 57

EXpanders ... 60

Handle BOXES. 62

NOTEDOOKS e 64
GtkNotebook Properties..............cc i 66
TabOperations i 67

EventBoXeS. 68

Test Your Understanding................... 72

SUMMANY .. 73

BasicWidgets... 75

Using Stock ltems. 75

Toggle Buttons 77
Managing WidgetFlags 78
CheckButtons......... ... i 80

Radio Buttons. ... 82

CHAPTER 5

CONTENTS

TextEntries ... 84
Entry Properties. i 86
Inserting Text into a GtkEntry Widget 87
Manipulating GtKEntry Text.................... 87

SpinButtons 88
Adjustments....... 88
ASpinButton Example............... 89

Horizontal and Vertical Scales 91

Widget Styles. ... 93
The GtkStyle Structure.............. 93
Resource Files............. i 94

Additional Buttons. 97
ColorButtons 97
File Chooser Buttons., 101
FontButtons........... 106

Test Your Understanding............. it 108

SUMMANY .. 110

Dialogs 111

Creating Your Own Dialogs...................c ... 11
Creatinga Message Dialogoiiit 112
Nonmodal Message Dialog 118
Another Dialog Example............... 119

Built-in Dialogs 122
Message Dialogs. ... 122
The About Dialog............... ... 126
File Chooser Dialogs.c oot 132
Color Selection Dialogscccoiiiiiii it 139
Font Selection Dialogs 143

Dialogs with Multiple Pages 146
Creating GtkAssistantPages........................ooit 151
GtkProgressBar 153
Page Forward Functions 154

Test Your Understanding................... ... it 156

SUMMANY .. 156

ix

X

CONTENTS

CHAPTER 6

Using GLib. ... 159
GLIDBASICS 160
BasicData Types.............coo i, 160
Standard Macros. i 161
Message Logging 164
Memory Management 165
Memory SIICES. . ..o 165
Memory Allocation 168
Memory Profiling. 169
Utility Functions. 171
Environment Variablesl 171
TiMers. ... 172
File Manipulation............., 174
DireCtories ...t 177
FileSystem. 178
The Main Loop. ... 179
Contexts and SOUrCES. ..ottt 179
Timeouts. 180
Idle Functions.co i 183
Data TYPeS. . ..o 184
StHNgS. ... 184
Linked LiStScoovi 186
Balanced Binary Trees.................coiiiiiiiiiia.. 188
N-ary TrBBS .. o 191
AITAYS . 194
HashTables.................. it 197
Quarks. 199
KeyedDatalLists................ 199
Input-Output Channels.o i, 201
GIOChannelsandFiles i il 201
GIOChannelsand Pipescco it 203
Spawning ProCesses.o.ovii i 210
Dynamic Modules. ... 212
TestYour Understanding....................... it 215

SUMMANY ... 217

CHAPTER 7

CHAPTER 8

CONTENTS

The Text View Widget 219
Scrolled Windows 219
TeXtVIEWS . .o 224
TextBuffers ... 225
Text View Properties................. i 226
Pango Tab Arraysci i 229
Textlteratorsand Marks............... ..., 231
Editing the TextBuffer 232
Cutting, Copying, and Pasting Text 238
Searchingthe TextBuffer 242
Scrolling TextBuffers.................o i, 245
TeXtTagS .. .o 246
Inserting Images.o i 252
Inserting Child Widgetso i, 254
GtkSourceView 256
Test Your Understanding................... ... it 258
SUMMANY ... 259
The Tree View Widget 261
PartsofaTreeView...... i 262
GtkTreeModel. 263
GtkTreeViewColumn and GtkCellRenderer 265
Using GtkListStore 266
Creatingthe Tree View................ ... il 270
Renderersand Columns.......................ooiiininnn.. 271
Creating the GtkListStore................................... 272
Using GtkTreeStore o, 274
Referencing ROWS.o 278
TreePaths 278
Tree Row References.co oot 280
Treelterators 281
Adding Rows and Handling Selections 282
Single Selections. 282
Multiple Selectionso i 283
Adding New ROWS. 284
Removing Multiple Rows 289

Handling Double-clicks 292

Xi

Xii

CONTENTS

CHAPTER 9

Editable TextRenderers.............. ... i, 292
CellDataFunctions ..., 295
Cell ReNEIerS. 299
Toggle Button Renderers. ...t 299
Pixouf Renderers. 301
SpinButtonRenderers.................c i 302
Combo Box Renderersccooiiiiiiiiiiaai.., 305
Progress Bar Renderers...................... 308
Keyboard Accelerator Renderers 309
TestYour Understanding................... ... it 313
SUMMANY ... 314
Menusand Toolbars....................................... 315
Pop-up Menus. 315
CreatingaPop-upMenut 316
Pop-up Menu Callback Functions. 319
Keyboard Accelerators. 321
StatusBarHints 323
The Status Bar Widget i, 324
Menu ltem Information., 325
MenultemsSo 328
SubmenUs ... 328
Image Menultemsl 329
Check Menultems i, 329
RadioMenultems............. o i, 330
MenuBars............. 330
To0IDArS . ..o 333
Toolbar ltems. 335
Toggle ToolButtonst 336
Radio ToolButtonscoi i 337
MenuToolButtons L. 337
Dynamic Menu Creation 339
CreatingUlFiles it 339
Loading Ul Files..............co i, 341
Additional Action Types i 345
Placeholders. 347

Custom STOCK HEMSo 348

CHAPTER 10

CHAPTER 11

CONTENTS

Test Your Understanding. ..., 352
SUMMANY ..o 352
Dynamic User Interfaces 355
User Interface Design. i 355
Know Your USers. ...t 356
Keep the Design Simple. ...t 356
Always Be Consistent.............., 357
KeeptheUserintheLoop.................. ... il 358
We All Make Mistakescoooiiiiiiin.. 358
The Glade User Interface Builder................................. 359
The Glade Interface. ..., 360
Creatingthe Window it 362
AddingaToolbar............ 364
Completing the File Browser................................ 367
Making Changest 369
Widget Signals. 370
CreatingaMenu i 371
Using Libglade.o o 372
Loading aUserInterface 374
Connecting Signals...................cc i 375
Test Your Understanding................... ... it 378
SUMMANY .. 378
Creating Custom Widgets 381
Deriving New Widgets i 381
Creating the MyIPAddress Header File 382
Creating the Source File............. 385
Testingthe Widget, 405
Creating a Widget from Scratch.................................. 407
Creating the MyMarquee HeaderFile 407
Creating the MyMarquee Widget 409
Realizing the Widget., 413
Specifying Size Requests and Allocations. 417
Exposingthe Widget. ..., 418
Drawing Functionsl 420
Implementing Public Functions. 41

Testingthe Widgeto i 424

xiii

Xiv

CONTENTS

CHAPTER 12

CHAPTER 13

Implementing Interfaces 425
Implementing the Interface 426
Usingthelnterface 428

Test Your Understanding................... ... it 429

SUMMANY ... 430

Additional GTK+ Widgets 431

Drawing Widgets. 431
ADrawing AreaExample................l 432
The LayoutWidget L. 436

Calendars. ... 437

Statuslcons. 439

Printing Support ... 441
Print Operations. i i, 443
Beginning the Print Operation............................... 448
RenderingPages................. o, 449
Finalizing the Print Operation 452

Cairo Drawing Context........... o i, 452
DrawingPaths.........l 453
Rendering Options.c i 454

RecentFiles...... ... i 455
Recent ChooserMenu ..., 459
AddingRecentFiles, 460
Recent ChooserDialog. ...t 463

Automatic Completion 466

Test Your Understanding. 468

SUMMANY ... 469

Putting It All Together..................................... 471

File Browser. ... 471

Calculator. 472

Hangman 473

Ping Utility 474

Calendar. 475
Markup Parser Functions., 476

Parsingthe XML File............... 477

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

CONTENTS

Further Resourcescco i, 477
SUMMANY ... 479
GTK+ Properties .. 481
GTK+ Properties 481
Child Widget Properties. ... 525
GTK+Signals .. 529
EVeNtS. . . 529
Widget Signals 533
GTK+ Styles........................... .. 565
Default RCFile Styles. 565
Pango Text Markup Languagecoovviiiiiininan... 567
GtkTextTag Styles. 569
Widget Style Properties................. .. L 572
GTK+ Stock ltems ... 583
GError Types ... 587
Exercise Solutionsand Hints 595
Exercise 2-1. Using Events and Properties 595
Exercise 2-2. GObject Property System 596
Exercise 3-1. Using Multiple Containers. 596
Exercise 3-2. Even More Containers.............................. 597
Exercise 4-1. Renaming Files................... 597
Exercise 4-2. Spin Buttonsand Scales. 598
Exercise 5-1. Implementing File Chooser Dialogs 598
Exercise 6-1. Workingwith Files................................. 598
Exercise 6-2. Timeout Functions................................. 599
Exercise 7-1. TextEditor. L. 599
Exercise 8-1. File Browser i, 600
Exercise 9-1.Toolbars. i 601

Exercise 9-2. Menu Bars. 601

Xv

Xvi CONTENTS

Exercise 10-1. Glade TextEditor 602
Exercise 10-2. Glade Text Editor withMenus 602
Exercise 11-1. Expanding MyMarquee............................ 603
Exercise 12-1. Full Text Editor. 604

About the Author

ANDREW KRAUSE is the creator of OpenLDev, an integrated develop-
ment environment that focuses on C, C++, and GTK+ projects. He is
currently attending Pennsylvania State University with a major in
computer engineering. Since 1998, Andrew has been developing with
many computer and web programming languages, including C, C++,
Perl, and PHP, as well as the graphical design libraries GTK+, Gtkmm,
and Qt. He also designed flight hardware for the Low Ionosphere
Measurement Satellite project at Penn State. More information about
Andrew can be found at www.andrewkrause.net.

Xvii

Acknowledgments

I would like to express my gratitude to the many people who have made this book possible.
Many thanks go to Josh Hoy and Aaron Sebold, whose assistance has certainly decreased the
number of errors in the book. I would also like to thank Christiana Johnson and Micah Carrick
for their fine technical reviewing skills. You were very tough on every paragraph I wrote and
every example I coded, but this book is better today because of the hard work you put into the
project.

In addition, I would like to thank the people at Apress who put so many hours of hard
work into the book. I could not imagine writing for any other publisher. It is a great organiza-
tion that makes the writing process enjoyable. I would especially like to thank Matt Wade,
Jason Gilmore, Richard Dal Porto, Heather Lang, and Katie Stence, who put up with all of my
questions and provided quick help whenever it was needed.

Finally, I need to acknowledge my family, who has supported me in every step of the
process. Without all of you, I would not be who I am today and for that I am forever grateful.

Xix

Introduction

One of the most important aspects of an application is the interface that is provided to
interact with the user. With the unprecedented popularity of computers in society today,
people have come to expect those user interfaces to be graphical, and the question of which
graphical toolkit to use quickly arises for any developer. For many, the cross-platform, feature-
rich GTK+ library is the obvious choice.

Learning GTK+ can be a daunting task, because many features lack documentation, and
even more are difficult to understand from only the API documentation. Foundations of GTK+
Development aims to decrease the learning curve and set you on your way to creating cross-
platform graphical user interfaces for your applications.

Each chapter in this book contains multiple examples that will help you further your
understanding. In addition to these examples, the final chapter of this book provides five
complete applications that incorporate topics from the previous chapters. These applications
will show you how to bring together what you have learned to accomplish various projects.

The beginning of each chapter provides an overview of what that chapter will cover, so that
you are able to skip around if you want. Most chapters also contain exercises to test your under-
standing of the material. I recommend that you complete all of the exercises before continuing,
because the best way to learn GTK+ is to use it.

At the end of this book, you will find multiple appendixes that can serve as references for
various aspects of GTK+. These appendixes include tables listing signals, styles, and properties
for every widget in GTK+ and a complete list of stock items and GError types. These appendixes
will remain a useful reference even after you have finished reading the book and begin creating
your own applications. In addition, Appendix F contains explanations of the solutions to all of
the exercises throughout the book.

Who Should Read This Book

Because this book begins with the basics and works up to more difficult concepts, you do not
need any previous knowledge of GTK+ development to use this book. This book does assume
that you have a decent grasp of the C programming language. You should also be comfortable
with running commands and terminating applications (Ctrl+C) in a Linux terminal.

In addition to a grasp of the C programming language, some parts of this book may be diffi-
cult to understand without some further knowledge about programming for Linux in general.
You will get more out of this book if you already comprehend basic object-oriented concepts. It
is also helpful to know how Linux handles processes.

You can still use this book if you do not already know how to implement object orienta-
tion or manage processes in Linux, but you may need to supplement this book with one or
more online resources. A list of helpful links and tutorials can be found on the book’s web

XXi

XXii

INTRODUCTION

site, which is located at www. gtkbook. com. You can also find more information about the book
at www.apress.com.

How This Book Is Organized

Foundations of GTK+ Development is composed of 13 chapters. Each chapter will give you a
broad understanding of its topic. For example, Chapter 3 covers container widgets and will
introduce many of the most important widgets derived from the GtkContainer class.

Because of this structure, some chapters can be somewhat lengthy. Do not feel as though
you have to complete a whole chapter in one sitting, because it can be difficult to remember all of
the information presented. Also, because many examples span multiple pages, consider focusing
on just a few examples at a time and really trying to understand their syntax and intent.

Each chapter provides important information and unique perspectives that will help you
to become a proficient GTK+ developer. They are as follows:

Chapter 1 teaches you how to install the GTK+ libraries and their dependencies on your
Linux system. It also gives an overview of each of the GTK+ libraries including GLib, GObject,
GDK, GdkPixbuf, Pango, and ATK.

Chapter 2 steps through two “Hello World” applications. The first shows you the basic
essentials that are required by every GTK+ application. The second expands on the first while
also covering signals, callback functions, events, and child widgets. You will then learn about
widget properties and the GtkButton widget.

Chapter 3 begins by introducing the GtkContainer structure. Next, it teaches you about
horizontal and vertical boxes, tables, fixed containers, horizontal and vertical panes, note-
books, and event boxes.

Chapter 4 covers basic widgets that provide a way for you to interact with users. These
include toggle buttons, specialized buttons, text entries, and spin buttons.

Chapter 5 introduces you to the vast array of built-in dialogs available to you. It also
teaches you how to create your own custom dialogs.

Chapter 6 is a general overview of the most useful features in GLib. It covers many of the
data types available to you. It also introduces idle functions, timeouts, spawning processes,
loading dynamic modules, file utility functions, timers, and other general utility functions.

Chapter 7 introduces you to scrolled windows. It also gives in-depth instructions on using
the text view widget. Other topics include the clipboard and the GtkSourceView library.

Chapter 8 covers two types of widgets that use the GtkTreeModel object. It gives an in-depth
overview of the tree view widget and shows you how to use combo boxes with tree models
or strings.

Chapter 9 provides two methods of menu creation: manual and dynamic. It covers menus,
toolbars, pop-up menus, keyboard accelerators, and the status bar widget.

Chapter 10is a short chapter about how to design user interfaces with the Glade User Interface
Builder. It also shows you how to dynamically load your user interfaces using Libglade.

Chapter 11 teaches you how to create your own custom GTK+ widgets by deriving them
from other widgets or creating them from scratch. It also introduces you to implementing and
using interfaces.

Chapter 12 covers many of the remaining widgets that do not quite fit into other chapters.
This includes several widgets that were introduced in GTK+ 2.10 including recent files and tray
icon support.

INTRODUCTION

Chapter 13 gives you a few longer, real-world examples. They take the concepts you have
learned throughout the book and show you how they can be used together.

In addition to the chapters, six appendixes are provided as references to widget properties,
signals, styles, stock items, GError types, and descriptions of exercise solutions.

Conventions

This book uses various typefaces to help you distinguish between GTK+ code and regular
English phrases. Actual code is typeset in amonospace font. This can include whole lines of code
or function names, signals, and properties in a paragraph.

There are other types of conventions used in this book, which follow.

Exercise 0-0. Sample Exercise

These boxes show exercises that test your understanding of the material in the section. They can include
questions, code challenges, or various other types of material.

You should complete each of these exercises before proceeding, because they will help you practice the
concepts you have learned throughout the current chapter and put them together with concepts from past
chapters.

Note These boxes give important notes, tips, and cautions. It is essential that you pay attention to them,
because they give you information that you will need when developing your own applications.

Textual output in the terminal is shown in a monospace font between these lines,
although most output will be in the form of an image, since GTK+ is graphical.

What You Need

Before proceeding, you will need a few things: a compiler, a text editor, a terminal emulator, the
GTK+ libraries, the pkg-config application, and this book.

All compiler commands provided by this book are for the GCC compiler available at
http://gcc.gnu.org or through your package manager. Most standard C or C++ compilers
will work, but if you use a compiler other than GCC, you will have to use a different set of
commands than those provided.

XXiii

XXiv

INTRODUCTION

Any text editor will do, so you should choose the one that suits you best. Some popular text
editors that you might consider include Vim, Emacs, Leafpad, and GEdit. Vim and Emacs are
terminal-based editors, while Leafpad and GEdit are graphical text editors.

Instructions on installing the GTK+ libraries and the pkg-config application are provided
in the last section of Chapter 1.

Official Web Site

You can find additional resources on the book’s official web site, found at www.gtkbook.com.
This web site includes up-to-date documentation, links to useful resources, and articles that will
supplement what you learn in this book. You can also find at this site a link to the downloadable
source code for every example in this book. The Apress web site, found at www.apress.com, is
another great place to find more information about this book.

When you unzip the source code from the web site, you will find a folder that contains the
examples in each chapter and an additional folder that holds exercise solutions. You can run
make to build all of the files within the current folder. It is also possible to make a single file by
using the compile command given in Chapter 2 or by running make sourcefile. For example,
to build exercise2-1.c, you should type make exercise2-1.

CHAPTER 1

Getting Started

Welcome to Foundations of GTK+ Development! In this book, you will acquire a comprehen-
sive understanding of GIMP Toolkit (GTK+) that can help you to become a proficient graphical
programmer. Before continuing, you should be aware that this book is aimed at C program-
mers, so we will jump right into using GTK+. Time will not be spent covering information you
already know.

To get the most out of this book, you should follow along with each of the examples and try
the exercises found at the end of most chapters. Getting started with GTK+ on Linux is quite
simple, because the majority of modern distributions are typically bundled with the necessary
libraries and tools.

Nevertheless, you need to make sure that you already have a few tools installed including
the GNU Compiler Collection (GCC), the GTK+ 2.0 libraries, and the associated development
packages. Later in this chapter, you will learn how to install these applications. If you do not
have a compiler, you can still use this book, but you will get more out of it if you do the exer-
cises. The best way to learn GTK+ is to use it!

Note The compiler of choice for this book is GCC, available for download at http://gcc.gnu.org. Any
standard C or C++ compiler will work, but you will have to use a different set of commands than those pro-
vided. Alternative compiler commands will not be covered in this book.

At the end of most chapters, you will find one or two exercises that illustrate what you have
learned up to that point. Make sure you complete each of the exercises before moving on to the
next chapter, because they will help reaffirm your knowledge. Each chapter builds on concepts
presented in previous chapters, so you will need a firm foundation in the basics to understand
more complex examples.

In this chapter, you will learn the following:

* The history of GTK+ and the X Window System, which will provide you with some con-
text regarding the tremendous impact these two technologies have had on developers

e What GTK+ and its supporting libraries provide to the graphical application developer
* What GTK+ language bindings are available and where to download them

e How to install GTK+ and its dependencies on your computer

CHAPTER 1 GETTING STARTED

A Brief History of GTK+

The GIMP Toolkit (GTK+) was originally designed for a raster graphics editor called the GNU
Image Manipulation Program (GIMP). Three individuals, Peter Mattis, Spencer Kimball, and
Josh MacDonald created GTK+ in 1997 while working in the eXperimental Computing Facility
at the University of California, Berkeley.

Licensed under the Lesser General Public License (LGPL), GTK+ was adopted as the
default graphical toolkit of GNOME and XFCE, two of the most popular Linux desktop environ-
ments. While it was originally used on the Linux operating system, GTK+ has since been
expanded to support other UNIX-like operating systems: Microsoft Windows, BeOS, Solaris,
Mac OS X, and others.

Note The LGPL is one of the things that distinguish GTK+ from other open source graphical toolkits. The
LGPL is easier to use alongside proprietary software, unlike many other popular open source licenses. This
makes the GNOME desktop environment, which utilizes GTK+, a popular choice throughout commercial
industry.

GTK+ is currently in its second stable release cycle, GTK+ 2. The original branch, GTK+ 1,
needed to be changed dramatically to include new features and its developers saw fit to break
API compatibility.

Since the two branches of GTK+ are not compatible, they can be installed in parallel. You
will need to make the distinction to the compiler that you want to use the second branch
instead of the first when building an application, which you will learn how to do with GCC in
the next chapter.

GTK+ 2 introduced a lot of new features including a font-rendering engine called Pango
and a newly enhanced theme engine. Furthermore, improved accessibility support was imple-
mented through the Accessibility Toolkit (ATK).

This book uses version 2 of GTK+ for all code examples. While GTK+ 2.10 has already been
released, most of the examples should work with any version in the second branch. GTK+ 2
maintains backward compatibility, which means that any application that works for an earlier
release of GTK+ 2 will work on later releases of version 2.

The X Window System

In 1984, Jim Gettys and Bob Scheifler created the X Window System (X11) at Massachusetts
Institute of Technology as a platform-independent display environment for debugging the
Argus system. Currently developed by The X.Org Foundation, X11 is the standard display man-
ager on Linux and other UNIX-like operating systems. In the most basic terms, X11 provides
windowing functionality for bitmap displays.

While the X Window System is used on Linux, many other operating systems such as
Microsoft Windows do not use it. Therefore, another advantage of GTK+ is that it masks the
need to interact with the underlying rendering system, regardless of what it is. Your code will
look the same whether you are writing it for Linux, Windows, or Mac OS X.

CHAPTER 1 GETTING STARTED

Returning to Linux, X11 manages windows in their most basic and abstract form. It draws
windows on the screen and handles their movements. X11 also controls input devices, such as
mice and keyboards, in graphical environments.

X11’s basic programming interface, Xlib, provides the tools necessary to create graphical
user interfaces. Although developing with Xlib is possible, most programmers prefer to use a
graphical toolkit such as GTK+, since all of the low-level calls are hidden and managed by the
library’s methods.

One of the major features that makes X11 unique among display managers is that it
assumes the client and server are treated independently of each other. This allows the client to
exist at a remote location independent of the server.

Note The definitions of client and server in the X Window System differ from their traditional ones. The
client is the machine where the application is run. The server refers to the user’s local display, rather than the
remote machine.

Another advantage of the X Window System is that it does not strictly mandate user
interfaces. This allows the graphical user interfaces (GUI) of window managers to be highly
customizable. It is also why window managers can provide such differing interfaces and
themes. This enables the freedom of choice Linux users enjoy today.

Ironically, this freedom is also one of the biggest criticisms of X11. Many people fear that it
will encourage fragmentation within the community of Linux developers. But for now, we can
continue to enjoy the ability to choose the window manager that best suits our own needs.

The GTK+ libraries were created so that you, as the programmer, do not need to interface
with the X Window System directly. You can create windows and widgets, and you can handle
interactions between those widgets and the user, but all direct rendering to the screen and Xlib
function calls are handled automatically.

Therefore, this book will not cover the X Window System any further and will focus on the
GTK+ libraries instead. You are welcome to find more information about X11 and the X.Org
Foundation at www.X.0rg.

GTK+ and Supporting Libraries

GTK+ relies on multiple libraries, each providing the graphical application developer a specific
class of functionality.

GTK+ is an object-oriented application programming interface (API) written in the
C programming language. It is implemented with the concept of classes in mind to create an
extensible system that builds upon itself. The object-oriented framework used was originally
developed as a part of the GTK+ library itself, but has since been split from GTK+ and added to
GLib as a separate supporting library called GObject. GObject enables full object-orientated
development in C, including object inheritance, polymorphism, and, to the extent permissible
in C, data hiding.

While making a great deal of functionality from the other libraries transparently available
through its own API, the GTK+ library focuses only on providing the necessities of building

CHAPTER 1 GETTING STARTED

graphical user interfaces. The elements implemented in GTK+ itself include widgets such as
buttons, labels, text boxes, and windows. It also provides more abstract components used for
application layout and extended event capturing functionality. For example, Figure 1-1 is a
screenshot of the GIMP application, which uses GTK+.

A - The GiMP [D QN IR Emsplash.png-3.0 (RGB, 1 layer) 402x226 = O X
File Xtns Help File Edit Select View Image Layer Tools Dialogs

. 2 \Eﬁt@gm |.|0.|.|.|.|.|1.mf.|.|.|.|2.mf.|.|.|.|3.mf.|.|.|.|41°v(f|5"=qi
ZPLA® /BHE
RAEHTAHD/
oz aos
&

2 °
my |
Paintbrush = ®

Opacity: _l{100.0

Mode: Normal

Brush: @ [Circle (11)

OpenLLCev

CODENAME ROCKHOPPER

1.0
[]%
px v || 100%|~ ||Background (805 Cancel

1 baong) oo o
'FI||||||||||||V|||||||||[B

&

A <« Layers | — & 3%

D Pressure sensitivit 1
Layers E®E

[]Fade out Mode: Normal [:l Il

[lIncremental Opacity: []100.0
[1Use color from gradi -] Background

D)oo/l

Figure 1-1. The GIMP

Other, less visible basics of GUI development, such as synchronous and asynchronous
event processing, are supported mainly by other libraries. Yet, GTK+ does give access to many
of them through its own API.

A 2-D vector graphics rendering library called Cairo has provided the rendering capabili-
ties to GTK+ since the release of version 2.8. Cairo was created to render vector graphics
consistently across all platforms and systems. It also allows the window manager to take
advantage of hardware acceleration where available.

Cairo itself will not be covered in this book, with the exception of how it relates to GTK+'s
printing AP], since its calls lie underneath the layers of GTK+ that you will be interacting with.
It is an important aspect you will want to explore if you later choose to hack the GTK+ source
code. You can visit waw. cairographics.org to find more information about Cairo.

CHAPTER 1 GETTING STARTED

GLib
GLib is a general-purpose utility library that is used to implement many useful nongraphical
features. While it is required by GTK+, it can also be used independently. Because of this, some
applications use GLib without the other GTK+ libraries for the many capabilities it provides.
One of the main benefits of using GLib is that it provides a cross-platform interface that
allows your code to be run on any of its supported operating systems with little to no rewriting
of code! Another advantageous aspect of GLib is the vast array of data types it provides to devel-
opers. A list of a few of the data types provided by GLib follows and will be covered in further
detail in Chapter 6:

* GLib provides a number of data types to C programmers that are usually included by
default in other languages, such as singly and doubly linked lists. Other basic data types
include double-ended queues, self-balancing binary trees, and unbalanced n-ary trees.

» Hash tables allow you to create lists of pointers to data. They differ from linked lists,
because, instead of accessing elements by an integer reference, you specify a second
pointer as the key.

* Strings in GLib are similar to strings in C++, because they are text buffers that grow auto-
matically as data is added. These are also easy to integrate with calls to the printf()
function family.

* Memory slices are an efficient way to create chunks of memory that are all of the same
size. They can be used to create arrays of evenly sized elements. This structure replaced
memory chunks when it was introduced in the release of GLib 2.10.

* Caches allow you to share large, complex data structures in an easy API, which helps you
to save space. These are used by GTK+ for styles and graphics contexts, since both of
these objects consume a lot of resources.

GLib provides other data types, many of which will be introduced in Chapter 6. Further-
more, GLib implements other features besides data types. It also provides you with numerous
types of utility functions. For instance, you'll find utility functions for file manipulation, inter-
nationalization support, strings, warnings, debugging flags, dynamic module loading, and
automatic string completion, just to name a few.

In Chapter 6, you will also learn about idle functions, time-out functions, and timers—all
of which open up a variety of interesting possibilities to developers. Idle functions allow you to
call a function when the processor is not doing anything else for the application. Timeouts are
used to call a function at a specified interval of time provided by you. A timer keeps track of
how much time has passed since it was initiated. These could be used to check for updates
when the application is idle, implement automatic save functionality, or track elapsed time,
respectively.

Because of the cross-platform characteristics of GLib, it makes a convenient library to use
for spawning processes, file manipulation, memory allocation, and threads. Any of these can
be a nightmare when trying to develop for multiple platforms. GLib takes care of the hassles, so
you do not have to worry about cross-platform compatibility issues.

CHAPTER 1 GETTING STARTED

GObject

The GLib Object System (GObject) was originally a part of the GTK+ 1 library in the form of the
GtkObject class. With the release of GTK+ 2.0, it was moved into its own library, distributed
along with GLib.

GObiject is often criticized for its complexity, since its APIs can seem extremely drawn out.
However, it was originally created to allow easy access to C objects from other programming lan-
guages. The ability to easily access C objects from other languages facilitates the large variety of
bindings available for other programming languages, even though it is implemented in C.

This is so difficult because each programming language provides a different approach to
data types, whether the differences appear on the surface or the internals of each language. For
example, in C, you have data types including char, long, and integer. Other languages, such as
Perl, do not have similar data types, since the type of each object is decided by how it is used.
GObject gets around these limitations, the drawback being that deriving new objects is a con-
voluted process.

GObiject also implements a fully featured object-oriented interface in C, which will be covered
in detail throughout this section and the rest of this book. This system is the base for the GTK+ wid-
get hierarchical structure as well as for many of the objects implemented in GTK+’s supporting
libraries. GObject’s object-oriented interface is implemented in part by a generic, dynamic type
system called GType. GType allows programmers to implement many different dynamic data types
through singly-inherited class structure. A singly-inherited class is an object hierarchy where each
child class can only be derived directly from a single parent class. This will be discussed in more
detail in Chapter 2, after you are introduced to GTK+ widgets.

Along with the ability to create extensible data types, GObject provides programmers with
many nonclassed (or fundamental) data types. A nonclassed data type is a root class from
which others are derived. It is important to note that the root class is not derived from any
other classes itself.

Table 1-1 provides a list of the most important nonclassed data types. The GType macro,
C variable descriptor, and a description is shown for each, along with its range if applicable.

Table 1-1. Standard GObject Nonclassed Data Types

GType C Type Description

G_TYPE_NONE An empty type that is equivalent to void.

G TYPE_CHAR gchar Equivalent to the standard C char type.

G TYPE_INT gint Equivalent to the standard C int type. Values must be within
the range of G_MININT to G_MAXINT.

G_TYPE_LONG glong Equivalent to the standard C long type. Values must be within
the range of G_MINLONG to G_MAXLONG.

G_TYPE_BOOLEAN gboolean A standard Boolean type that holds either TRUE or FALSE.

G _TYPE_ENUM GEnumClass A standard enumeration equivalent to the C enum type.

G TYPE_FLAGS GFlagsClass Bit fields holding Boolean flags.

G_TYPE_FLOAT gfloat Equivalent to the standard C float type. Values must be within
the range of negative G_MAXFLOAT to G_MAXFLOAT.

CHAPTER 1 GETTING STARTED

GType C Type Description

G _TYPE DOUBLE gdouble Equivalent to the standard C double type. Values must be
within the range of negative G_ MAXDOUBLE to G_MAXDOUBLE.

G_TYPE_STRING gchar* Equivalent to NULL-terminated C strings.
G_TYPE_POINTER gpointer An untyped pointer type similar to void*.

GObject provides GTK+ with two other vital data types: GValue and GObject. GValueis a
generic container that can hold any structure of which the system is already aware. This allows
functions to return a piece of data of an arbitrary type. Without GValue, the object-oriented
nature of GTK+ would not be possible.

G_TYPE_GOBJECT, or GObject, is the fundamental type that the widget class inheritance
structure of GTK+ is based on. It allows widgets to inherit the properties of their parents,
including style properties and signals.

GObject is a singly-inherited system, where each child class can only have one parent
class. The derived child inherits all characteristics of the parent, because in every way, the
child is the parent. You will learn how to use this system to derive custom GTK+ widgets in
Chapter 11.

GObject also provides widgets with a signal system, an object properties system, and
memory management. We will explore all of these concepts in the next chapter.

GDK

The GIMP Drawing Kit (GDK) is a computer graphics library originally designed for the
X Window System that wraps around low-level drawing and window functions. GDK acts as
the intermediary between Xlib and GTK+.

It renders drawings, raster graphics, cursors, and fonts in all GTK+ applications. Also,
since it is implemented in every GTK+ program, GDK provides drag-and-drop support and
window events.

GDK provides GTK+ widgets the ability to be drawn to the screen. To do this, every widget
has an associated GdkWindow object, except for a few widgets that will be discussed in a later
chapter. A GdkWindow is essentially a rectangular area located on the screen in which the widget
is drawn. GdkWindow objects also allow widgets to detect X Window System events, which will
be covered in the next chapter.

GDK has been ported to Windows and Mac OS X. It has also included support for Cairo
since the release of GTK+ 2.8.

GdkPixbuf

GdkPixbuf is a small library that provides client-side image manipulation functions. It was cre-
ated as a replacement for the GNOME Imaging Model (Imlib). Images can be loaded from files
or image data can be fed directly into the library functions. We will use this library when adding
images to tree views and when creating new GtkImage widgets in later chapters.

One advantage of GdkPixbuf images is that images can be reference-counted. This means
that a GdkPixbuf image can be displayed in multiple locations, while only being stored in
memory once. It will only be destroyed when all reference counts are decremented.

CHAPTER 1 GETTING STARTED

The GdkPixbuf library takes advantage of Libart, a 2-D drawing library distributed with
GNOME, to apply transformations to images. Because of this, you can shear, scale, and rotate
images to your heart’s delight. The images are then rendered using the GAkRGB library and
drawable areas. By using such a wide variety of specialized tools, GdkPixbuf can provide image
rendering of a very high class.

GdkPixbuf, while it is a small library, provides a wide variety of functions for manipulating
and displaying images. The library will be put to only the most basic of uses throughout this
book. For more information on advanced GdkPixbuf topics, you should reference its API
documentation.

Pango

While GDK handles rendering images and windows, Pango controls text and font output in
conjunction with Cairo or Xft, depending on your GTK+ version. It can also render directly to
an in-memory buffer without the use of any secondary libraries.

Note Pango originated from the Greek word pan, which means “all,” and the Japanese word go, which
means “language.” It was chosen because one of the design goals of Pango is to support all languages by
creating a fully internationalized font-rendering system.

On Linux, Pango uses the FreeType and fontconfig libraries for client-side fonts. The thing
that makes Pango stand out from the crowd is that it supports a vast array of languages. Virtu-
ally all of the world’s major scripts are supported, which makes rendering internationalized
text a nonissue in your applications.

All text within Pango is represented internally with UTF-8 encoding. UTF-8 is used
because it is compatible with 8-bit software, which is prevalent on UNIX platforms. Offsets in
UTE-8 are calculated based on characters, not bits, because each character can take up more
than one byte. This will be important in Chapter 7 when you learn how to use the GtkTextView
widget, because you will have to step by character offset, which may not always be one byte.

Pango supports a wide variety of text attributes. These include but are not limited to
language, font family, style, weight, stretch, size, foreground color, background color,
underline, strikethrough, rise, shape, and scale. Many of these attributes support multiple
options themselves.

For convenience, the Pango Text Markup Language provides a simple set of tags that rep-
resent the text attributes in a form similar to HTML. With this markup language, you can easily
change the font styles for arbitrary parts of text in a widget. This is especially useful when cre-
ating user interfaces with Glade User Interface Builder, because you can type tags directly into
a widget’s textual content field.

We will utilize Pango for many examples in later chapters when we need to change the font
of awidget to something other than the user’s default. Using the PangoFontDescription object
or the Pango Text Markup Language can do this.

CHAPTER 1 GETTING STARTED

ATK

When designing an application, it is important to take into consideration the disabilities that
some of your users may have. Therefore, the Accessibility Toolkit (ATK) provides all GTK+ wid-
gets with a built-in method of handling accessibility issues.

Some examples of things ATK adds support for are screen readers and high-contrast visual
themes for people who are visually impaired and keyboard behavior modifiers, such as sticky
keys, for those with diminished motor control.

Although this is an important part of designing an application for production use, this
book will not cover ATK. You need to learn how to use GTK+ widgets and how to create your
own custom widgets before you can use ATK. Therefore, I will focus on GTK+ and other essen-
tials for the remainder of this book.

It is important that you keep accessibility in the back of your mind and revisit the library
when you are ready to deal with ATK in your own applications.

Language Bindings

GTKH+, in its original form, can be used with the C programming language, but bindings have
been created for many others. The most popular language bindings are in the following list,
although a full list is available at waw.gtk.org/bindings.html:

e Gtkmm is the official set of C++ bindings. You can use GTK+ with C++ because of back-
ward compatibility, but Gtkmm provides all of the GTK+ features in a series of classes,
the style of which will be familiar to all C++ programmers. The sources for Gtkmm,
GLibmm, Libglademm, and other dependencies are available at waw.gtkmm.org.

* PyGTK, available at www.pygtk.org, provides Python bindings for the GTK+ libraries.
The advantage of using PyGTK is that it takes care of memory management and type
casting for you. This alleviates problems that can plague programmers using other lan-
guage bindings.

e Gtk2-perl, available at http://gtk2-perl.sf.net, provides all of the GTK+ libraries in
an object-oriented Perl toolkit. Each of the libraries is split into modules called G1ib,
Gtk2, and Gtk2: :GladeXML. Like most GTK+ bindings for scripting languages, memory
management is handled by the language’s facilities.

* PHP-GTK allows for handling PHP language bindings for GTK+. The PHP bindings allow
you to create client-side cross-platform GUI applications. PHP-GTK is available at
http://gtk.php.net. This topic is also covered in the Apress book Pro PHP-GTXK,
authored by Scott Mattocks (Berkeley, 2006).

¢ Java-Gnome, much like Gtkmm, provides a true object-oriented platform for the GTK+
libraries. Available at http://java-gnome.sf.net, it provides all of the essential librar-
ies for developing GTK+ applications in Java.

* Gtk# provides GTK+ bindings for C# applications on a wide variety of operating systems.
It is provided by the Mono Project at www.mono-project.com.

10

CHAPTER 1 GETTING STARTED

Installing GTK+

Before you can begin programming, you must install GTK+ and its dependencies on your sys-
tem. This section covers installing GTK+ on Linux and other UNIX-like operating systems.

It is important to note, if you are using a Linux distribution with a package manager
including Ubuntu, Debian, Fedora Core, or one of many others, you should install the precom-
piled binaries provided. You will need the GTK+ 2 libraries, pkg-config, and their
dependencies.

The development packages of GTK+ and each of its dependencies are also required. In
Debian and Debian-based distributions, these packages will end in -dev. In Fedora Core and
other distributions that use the RedHat Package Manager (RPM), they will end in -devel. If you
install the development package of GTK+, most modern package managers will take care of all
of the necessary dependencies automatically. You should reference your Linux distribution’s
documentation for more information on installing distributed packages.

If you are going to install GTK+ and its dependencies from the source archives, the rest of
this section is for you. GTK+ uses the standard GNU tools for compiling: autoconf is used for
configuration and dealing with portability issues, automake for building makefiles, libtool for
building shared libraries, and make for compiling and installing binaries.

The most recent GTK+ sources can be found at www. gtk.org/download. You will need to
download the latest versions of ATK, GLib, GTK+, and Pango. You will also need Cairo, JPEG,
libpng, pkg-config, and tiff from the dependencies directory.

If you are using an older version of Linux, you will need to install libiconv. Most systems
already have this package, so it is safe to continue without it and install the library in the future
if you run into any problems. You may also need to install libintl, fontconfig, and FreeType,
although these are packages provided as standard on most modern Linux distributions.

You should also note that these packages must be installed in a precise order for the
following procedure to work. After installing all of the packages from the dependencies
directory on the GTK+ FTP site, you will need to install GLib, Pango, ATK, and GTK+ in that
specific order.

The following procedure should be used on each source package, one at a time. Each
library must be successfully installed before continuing on to the next, or the procedure will
not work.

You are now ready to install GTK+, so let’s begin. Once you have downloaded a package
from the GTK+ FTP site, you can use one of the following commands to extract the file, depend-
ing on the type of archive you downloaded.

tar -xvzf package-name.tar.gz
tar -xvjf package-name.tar.bz2

By moving into the directory of the extracted archive, you will see a shell script called
configure. This script will recursively parse through each of the directories in the source dis-
tribution and create template makefiles that are customized for your operating system. Each
template file will be named Makefile. in. The following is a sample configure command that
you can use:

./configure --prefix=/usr

CHAPTER 1 GETTING STARTED

The configure script can be passed a number of options. By using --prefix=/usr, the pre-
ceding example tells make to install the package with /usr as the root directory. There are
many other options that can be passed to the GTK+ configure script.

Table 1-2 shows a short list of parameters that can be passed specifically to the GTK+ con-
figure. You can use . /configure --help to view a full list of parameters for any package.

Table 1-2. GTK+ Configuration Options

Option

Description

--enable-debug

--enable-shm

--enable-xkb

--disable-rebuilds

--enable-visibility

--with-xinput

--with-gdktarget=

--disable-shadowfb

--enable-fbmanager

--disable-modules

--with-included-loaders

If you set this to no, debugging and asserts are disabled. Setting it to
yes enables runtime debugging. The default is minimum, which
disables only cast checks.

Turns on shared memory if available; disable it with --disable-shm.

Supports X Window System keyboard extension; disable it with
--disable-xkb.

Disables all source autogeneration rules; enable it with --enable-
rebuilds.

Uses ELF visibility attributes; disable it with --disable-visibility.

Use yes to support XInput extension in your application or no to
disable it.

Selects a non-default GDK target. Options for this parameter are
x11, linux-fb, win32, quartz, and directfb.

Disable support for shadowfb in 1inux-fb or enable it with --enable-
shadowfb.

Enable frame buffer manager support through GtkFB.

This indicates that all image file format loaders for GdkPixbuf should
be built statically into the GTK+ library. You can build them as
shared libraries with --enable-modules.

This allows you to specify which image loaders to include such as
PNG and JPEG.

After configuring a package, you can build and install it using the following set of com-
mands; it is important to note thatmake install and ldconfig need to be run as the root user:

make
make install
ldconfig

The ldconfig command is not necessary on all systems, but you should run it to be on the
safe side. It will make sure your system recognizes the libraries you installed before compiling

the next package.

1

12

CHAPTER 1 GETTING STARTED

Exercise 1-1. Verifying Your Install

If you install the GTK+ libraries from the source packages, you are provided with a simple way to verify a successful
install. To do this, you have to run the gtk-demo application installed in /usx/bin. Run the following command
from a terminal or by double-clicking the executable file:

/usr/bin/gtk-demo

If your install was successful, you will be presented with a window with the title “GTK+ Code Demos”. In that win-
dow, you can view information and source code for each of the widgets listed. This also gives you a good opportunity
to sample many of the widgets that you will be learning about.

If you run into any problems launching the application, pay close attention to the errors shown in your terminal. They
will give you a good idea of which library is causing the problem.

Once you have all of the GTK+ libraries and their dependencies installed, you are ready to
continue on to the next chapter, which begins with a simple example showing the most basic
elements required by every GTK+ application.

Summary

In this chapter, you learned the history of the GTK+ libraries and the X Window System and for
what each can be used.

You were then introduced to GTK+ as a graphical widget library as well as its supporting
libraries. These libraries include the following:

e GLib is a general-purpose utility library that is used to implement many useful non-
graphical features including data types, file management, pipes, threads, and more.

¢ The GLib Object System (GObject) implements the object-oriented GType system. It also
provides signal and property systems.

¢ The GIMP Drawing Kit (GDK) is a computer graphics library originally designed for the
X Window System that wraps around low-level drawing and window functions.

¢ GdkPixbufis a small library that provides client-side image manipulation functions. It
was created as a replacement for Imlib.

¢ Pango is used for font rendering. It uses UTF-8 encoding, so it is able to support all forms
of internationalized text.

¢ The Accessibility Toolkit (ATK) provides all GTK+ widgets with a built-in method of han-
dling accessibility.

CHAPTER 1 GETTING STARTED

The last two sections of the chapter showed you all of the available language bindings that
implement GTK+ in other programming languages and how to install the GTK+ libraries. Lan-
guage bindings are possible because of the way GObject was originally designed.

In Chapter 2, you will be introduced to the widget hierarchy system as well as window,
label, and button widgets. You will learn how to use these widgets in basic GTK+ applications.

13

CHAPTER 2

Your First GTK+ Applications

In Chapter 1, you were given an overview of the things available to you in the GTK+ libraries as
a graphical application developer. In this chapter, you'll learn how to write your own GTK+
applications.

While we will begin with simple examples, there are many important concepts presented
in this chapter. We will cover the topics that every other GTK+ application you write will rely
on. Therefore, as with any chapter, make sure you understand the concepts presented to you
in the next few pages before continuing on.

In this chapter, you will learn the following:

* The basic function calls required by all GTK+ applications

¢ How to compile GTK+ code with GCC

* The object-oriented nature of the GTK+ widget system

* What role signals, callbacks, and events play in your applications

* How to alter textual styles with the Pango Text Markup Language

» Various other useful functions provided for the widgets presented in this chapter
* How to use the GtkButton widget to make a clickable GtkLabel

* How to get and set properties of objects using GObject methods

Hello World

Every programming book I have read in my lifetime has begun with a “Hello World” example
application. I do not want to be the one to break with tradition.

Before we get to the example, you should know that all of the source code for every exam-
ple is downloadable from this book’s web site, found at www. gtkbook. com. You can compile
each example with the method presented in a later section of this chapter or follow the instruc-
tions found in the base folder of the package.

Listing 2-1 is the first and most simple GTK+ application in this book. It initializes GTK+,
creates a window, displays it to the user, and waits for the program to be terminated. It is very
basic, but it shows the essential code that every GTK+ application you create must have!

15

16

CHAPTER 2 YOUR FIRST GTK+ APPLICATIONS

Note The application in Listing 2-1 does not provide a way for you to terminate it. If you click the X in the
corner of the window, the window will close, but the application will remain running. Therefore, you will have
to press Ctrl+C in your terminal window to force the application to exit!

Listing 2-1. Greeting the World (helloworld.c)
#include <gtk/gtk.h>

int main (int argc,
char *argv[])

{
GtkWidget *window;

/* Initialize GTK+ and all of its supporting libraries. */
gtk_init (8argc, &argv);

/* Create a new window, give it a title and display it to the user. */
window = gtk window new (GTK WINDOW TOPLEVEL);

gtk window_set title (GTK WINDOW (window), "Hello World");

gtk widget show (window);

/* Hand control over to the main loop. */
gtk _main ();
return O;

The <gtk/gtk.h> file includes all of the widgets, variables, functions, and structures
available in GTK+ as well as header files from other libraries that GTK+ depends on, such as
<glib/glib.h> and <gdk/gdk.h>. In most of your applications, <gtk/gtk.h> will be the only
GTK+ header file you will need to include for GTK+ development, although some more
advanced applications may require further inclusions.

Listing 2-1 is one of the simplest applications that you can create with GTK+. It produces a
top-level GtkiWindow widget with a default width and height of 200 pixels. There is no way of
exiting the application except to kill it in the terminal where it was launched. You will learn how
to use signals to exit the application when necessary in the next example.

This example is rather simple, but it shows the bare essentials you will need for every GTK+
application you create. The first step in understanding the “Hello World” application is to look
at the content of the main() function.

Initializing GTK+

Initializing the GTK+ libraries is extremely simple for most applications. By calling gtk _init(),
all initialization work is automatically performed for you.

It begins by setting up the GTK+ environment, including obtaining the GDK display and
preparing the GLib main event loop and basic signal handling. If gtk_init() does more than

CHAPTER 2 YOUR FIRST GTK+ APPLICATIONS

you need, you may create your own, small initialization function that calls fewer of the func-
tions, such as gdk_init() and g main loop new(), although this is not necessary for most
applications.

One of the great benefits of using open source libraries is the ability to read the code
yourself to see how things are done. You can easily view the GTK+ source code to figure out
everything that is called by gtk_init() and choose what needs to be performed by your appli-
cation. However, you should use gtk_init() for now until you learn more about how each of
the libraries are used and how they interrelate.

You will also notice that we passed the standard main() argument parameters argc and
argv to gtk_init(). The GTK+ initialization function parses through all of the arguments and
strips out any it recognizes. Any parameters it uses will be removed from the list, so you should
do any argument parsing of your own after calling gtk _init(). This means that a standard list
of parameters can be passed and parsed by all GTK+ applications without any extra work per-
formed by you, the developer.

It is important to call gtk_init() before any other function calls to the GTK+ libraries.
Otherwise, your application will not function properly and will likely crash.

The gtk_init() function will terminate your application if it is unable to initialize the GUI
or has any other significant problems that cannot be resolved. If you would like your applica-
tion to fall back on a text interface when GUI initialization fails, you need to use
gtk _init check().

gboolean gtk init check (int *argc,
char ***argv);

If the initialization fails, FALSE is returned. Otherwise, gtk_init check() will return TRUE.
You should only use this function if you have a textual interface to fall back on!

Widget Hierarchy

I consider widget hierarchy one of the most important topics of discussion when learning
GTK+. While it is not difficult to understand, without it, widgets would not be possible as they
exist today.

To understand this topic, we will look at gtk_window_new(), the function used to create a
new GtkWindow object. You will notice in the following line that, while we want to create a new
GtkWindow, gtk window new() returns a pointer to a GtkWidget. This is because every widget in
GTK+ is actually a GtkWidget itself.

GtkWidget* gtk window new (GtkWindowType type);

Widgets in GTK+ use the GObject hierarchy system, which allows you to derive new wid-
gets from those that already exist. Child widgets inherit properties, functions, and signals from
their parent, their grandparent, and so on, because they are actually implementations of their
ancestors themselves.

Widget hierarchy in GTK+ is a singly inherited system, which means that each child can
have only one direct parent. This creates a simple linear relationship that every widget imple-
ments. You will learn how to derive your own child widgets in Chapter 11. Until then, we will
use widget hierarchy to take advantage of inherited methods and properties.

In Figure 2-2, a simple outline of the widget hierarchy of the GtkWindow class is illustrated.

17

18

CHAPTER 2 YOUR FIRST GTK+ APPLICATIONS

W

W
Cas

Figure 2-1. The widget hierarchy of GtkWindow

Figure 2-1 may look daunting at first, butlet’s look at each class type one at a time to make
things easier to understand:

GObject is the fundamental type providing common attributes for all libraries based

on it including GTK+ and Pango. It allows objects derived from it to be constructed,
destroyed, referenced, and unreferenced. It also provides the signal system and object
property functions. You can cast an object as a GObject with G_OBJECT(). If you try to
cast an object with G_OBJECT () that is not a GObject or derived from it, GLib will throw a
critical error, and the cast will fail. This will occur with any other GTK+ casting function.

GInitiallyUnowned should never be accessed by the programmer, since all of its mem-
bers are private. It exists so that references can be floating. A floating reference is one
that is not owned by anyone.

GtkObject is the base class for all GTK+ objects. It was replaced as the absolute base
class of all objects in GTK+ 2.0, but GtkObject was kept for backward compatibility of
nonwidget classes like GtkAdjustment. You can cast an object as a GtkObject with
GTK_OBJECT().

GtkWidget is an abstract base class for all GTK+ widgets. It introduces style properties
and standard functions that are needed by all widgets. The standard practice is to store
all widgets as a GtkWidget, which can be seen in Listing 2-1. Therefore, you will rarely
need to use GTK_WIDGET() to cast an object.

GtkContainer is an abstract class that is used to contain one or more widgets. It is an
extremely important structure, since you could not add any other widgets to a window
without it. Therefore, the whole of Chapter 3 is dedicated to widgets derived from this
class. You can cast an object as a GtkContainer with GTK_CONTAINER().

GtkBin is another abstract class that allows a widget to contain only one child. It allows
multiple widgets to have this functionality without the need for reproduction of code.
You can cast an object as a GtkBin with GTK_BIN().

GtkWindow is the standard window object you saw in Listing 2-1. You can use
GTK_WINDOW() to cast an object.

CHAPTER 2 YOUR FIRST GTK+ APPLICATIONS

Every widget in this book will use a similar widget hierarchy. It is useful to have the API
documentation handy, so you can reference the hierarchy of the widgets you are using. The
API documentation is available at www.gtk.org/api, if you did not install it along with the
libraries.

For now, it is enough to know how to cast objects and what the basic abstract types are
used for. In Chapter 11, you will learn how to create your own widgets. At that point, we will
delve further into the workings of the GObject system.

GTK+ Windows

The code in Listing 2-1 creates a GtkWindow object that is set to the default width and height of
200 pixels. This default size was chosen because a window with a width and height of 0 pixels
cannot be resized. You should note that the title bar and window border are included in the
total size, so the working area of the window is smaller than 200 pixels by 200 pixels.

We passed GTK_WINDOW_TOPLEVEL to gtk _window_new(). This tells GTK+ to create a new
top-level window. Top-level windows use window manager decorations, have a border frame,
and allow themselves to be placed by the window manager. This means that you do not have
absolute control over your window position and should not assume that you do.

GtkWidget *window = gtk window new (GTK_WINDOW TOPLEVEL);

It is important to make the distinction between what GTK+ controls and what the window
manager controls. You are able to make recommendations and requests for the size and place-
ment of top-level widgets. However, the window manager has ultimate control of these
features.

Conversely, you can use GTK_WINDOW_POPUP to create a pop-up window, although its name
is somewhat misleading in GTK+. Pop-up windows are used for things that are not normally
thought of as windows, such as tooltips and menus.

Pop-up windows are ignored by the window manager, and therefore, they have no deco-
rations or border frame. There is no way to minimize or maximize a pop-up window, because
the window manager does not know about them. Resize grips are not shown, and default key
bindings will not work.

GTK_WINDOW TOPLEVEL and GTK_WINDOW_POPUP are the only two elements available in the
GtkWindowType enumeration. In most cases, you will want to use GTK_WINDOW_TOPLEVEL, unless
there is a compelling reason not to.

Note You should not use GTK_WINDOW_POPUP if you only want window manager decorations turned off
for the window. Instead, use gtk_window_set decorated (GtkWindow *window, gboolean show)
to turn off window decorations.

19

20

CHAPTER 2 YOUR FIRST GTK+ APPLICATIONS

The following function requests the title bar and taskbar to display “Hello World!” as the
title of the window. Since gtk_window_set title() requiresa GtkWindow object as it’s the first
parameter, we must cast our window using the GTK_WINDOW() function.

void gtk window set title (GtkWindow *window,
const gchar *title);

The second parameter of gtk window_set title() is the title that will be displayed by the
window. It uses GLib’s implementation of char, which is called gchar. When you see a param-
eter listed as gchar*, it will also accept const char*, because gchar* is defined as a typedef of
the standard C string object.

The last function of interest in this section is gtk_widget show(), which tells GTK+ to
set the specified widget as visible. The widget may not be immediately shown when you call
gtk widget show(), because GTK+ queues the widget until all preprocessing is complete
before it is drawn onto the screen.

It is important to note that gtk _widget show() will only show the widget it is called on. If
the widget has children that are not already set as visible, they will not be drawn on the screen.
Furthermore, if the widget’s parent is not visible, it will not be drawn on the screen. Instead, it
will be queued until its parent is set as visible as well.

In addition to showing a widget, it is also possible to use gtk _widget hide() tohide a wid-
get from the user’s view.

void gtk widget hide (GtkWidget *widget);

This will hide all child widgets from view, but you should be careful. This function only sets
the specified widget as hidden. If you show the widget at a later time, its children will be visible
as well, since they were never marked as hidden. This will become an important distinction to
make when you learn how to show and hide multiple widgets at once.

The Main Loop Function

After all initialization is complete and necessary signals are connected in a GTK+ application,
there will come a time when you want to let the GTK+ main loop take control and start process-
ing events. To do this, you will call gtk_main(), which will continue to run until you call

gtk _main_quit() or the application terminates. This should be the last GTK+ function called
inmain().

After you call gtk_main(), it is not possible to regain control of the program until a call-
back function is initialized. In GTK+, signals and callback functions are triggered by user
actions such as button clicks, asynchronous input-output events, programmable timeouts,
and others. We will start exploring signals, events, and callback functions in the next example.

CHAPTER 2 YOUR FIRST GTK+ APPLICATIONS

Note Itis also possible to create functions that are called at a specified interval of time; these are referred
to as timeouts. Another type of callback function, referred to as an idle function, is called when the operating
system is not busy processing other tasks. Both of these features are a part of GLib and will be explored in
detail in Chapter 6.

Other than those few situations, control of the application is managed by signals, timeout
functions, and various other callback functions once gtk_main() is called. Later in this chap-
ter, you will see how to use signals and callbacks in your own applications.

Using GCC and pkg-config to Compile

Now that you understand how Listing 2-1 works, it is time to compile the code into an execut-
able. To do this, you run the following command from a terminal:

gcc -Wall -g helloworld.c -o helloworld "pkg-config --cflags gtk+-2.07 \
“pkg-config --libs gtk+-2.0"

This command can be used for all of the examples in this book except those in Chapter 10,
which will require libglade as well. I decided to use the GCC compiler, because it is the stan-
dard C compiler on Linux, but most C and C++ compilers will work. To use another compiler,
you will need to reference its documentation.

The previous compile command is parsed with multiple provided options. The -Wall
option enables all types of compiler warnings. While this may not always be desirable, it can
help you detect simple programming errors as you begin programming with GTK+. Debugging
is enabled with -g, so that you will be able to use your compiled application with GDB or your
debugger of choice.

The next set of commands, helloworld.c -o helloworld, compiles the specified file and
outputs it to an executable file named helloworld. One or many source files may be specified
for compilation by GCC.

Caution The single, slanted quotation mark used in the compile command is a backquote, which is
found on the key in the top-left corner of most keyboards. This tells your terminal that the command between
the quotes should be run and replaced by the output before the rest of the line is executed.

In addition to the GCC compiler, you need to use the pkg-config application, which
returns a list of specified libraries or paths.

21

22

CHAPTER 2 YOUR FIRST GTK+ APPLICATIONS

The first instance, pkg-config --cflags gtk+-2.0, returns directory names to the com-
piler’s include path. This will make sure that the GTK+ header files are available to the
compiler. Try running pkg-config --cflags gtk+-2.0in your terminal to see an example
of what is being output to the compiler.

The second call, pkg-config --1ibs gtk+-2.0, appends options to the command line
used by the linker including library directory path extensions and a list of libraries needed for
linking to the executable. The libraries that are returned in a standard Linux environment
follow:

¢ GTK+ (-1gtk): Graphical widgets

¢ GDK (-1gdk): The standard graphics rendering library

¢ GdkPixbuf (-1gdk_pixbuf): Client-side image manipulation

¢ Pango (-1pango): Font rendering and output

¢ GObject (-1gobject): Object-oriented type system

¢ GModule (-1gmodule): Dynamically loading libraries

¢ GLib (-1glib): Data types and utility functions

¢ Xlib (-1X11): X Window System protocol library

¢ Xext (-1Xext): X extensions library routines

¢ GNU math library (-1m): The GNU library from which GTK+ uses many routines

As you can see, pkg-config provides a convenient way for you to avoid hard-coding a long
list of includes and libraries manually every time you compile a GTK+ application.

Listing 2-1 is one of the simplest applications that you can create with GTK+. It produces
a top-level GtkWindow widget with a default width and height of 200 pixels, as displayed in
Figure 2-2.

- L — O X

Figure 2-2. The Hello World window at the default size

Even though the window includes the standard X on the right side of the title bar, you'll
notice that clicking that X will only cause the window to disappear. The application continues
to wait for events, and control will not be returned to the launching terminal until you press
Ctrl+C. You will learn how to implement a shutdown callback with signals in the next example.

CHAPTER 2 YOUR FIRST GTK+ APPLICATIONS 23

Extending “Hello World”

Every GTK+ application you write requires the function calls shown in Listing 2-1, but the
example on its own is clearly not exceptionally useful. Now that you understand how to get
started, it is time for us to say “hello” to the world in a more useful manner.

Listing 2-2 expands upon our “Hello World” application in two ways. First, it connects call-
back functions to window signals, so the application can terminate itself. Secondly, this
example introduces the GtkContainer structure, which allows a widget to contain one or more
other widgets.

Listing 2-2. Greeting the World Again (helloworld2.c)
#include <gtk/gtk.h>

static void destroy (GtkWidget*, gpointer);
static gboolean delete event (GtkWidget*, GdkEvent*, gpointer);

int main (int argc,
char *argv[])

{
GtkWidget *window, *label;

gtk_init (8argc, &argv);

window = gtk window new (GTK _WINDOW TOPLEVEL);
gtk window _set title (GTK_WINDOW (window), "Hello World!");
gtk _container set border width (GTK_CONTAINER (window), 10);
gtk widget set size request (window, 200, 100);

/* Connect the main window to the destroy and delete-event signals. */
g_signal connect (G OBJECT (window), "destroy",

G_CALLBACK (destroy), NULL);
g _signal connect (G OBJECT (window), "delete event",

G CALLBACK (delete event), NULL);

/* Create a new GtkLabel widget that is selectable. */
label = gtk label new ("Hello World");
gtk label set selectable (GTK_LABEL (label), TRUE);

/* Add the label as a child widget of the window. */
gtk _container add (GTK_CONTAINER (window), label);
gtk widget show all (window);

gtk _main ();
return O;

24

CHAPTER 2 YOUR FIRST GTK+ APPLICATIONS

/* Stop the GTK+ main loop function when the window is destroyed. */
static void
destroy (GtkWidget *window,
gpointer data)
{
gtk _main_quit ();
}

/* Return FALSE to destroy the widget. By returning TRUE, you can cancel
* a delete-event. This can be used to confirm quitting the application. */
static gboolean
delete event (GtkWidget *window,
GdkEvent *event,
gpointer data)

return FALSE;

In Figure 2-3, you can see a screenshot of Listing 2-2 in action. It shows the GtkLabel con-
tained by a GtkWindow. Let us now take a look at the new features presented by this example.

2 = et vioria [PR=pG

Hello World

Figure 2-3. The extended Hello World window

The GtkLabel Widget

In Listing 2-2, a new type of widget called GtkLabel was created. As the name implies, GtkLabel
widgets are normally used to label other widgets. However, they can also be used for such
things as creating large blocks of noneditable, formatted, or wrapped text.

You can create a new label widget by calling gtk _label new().Passing NULL to
gtk label new() is equivalent to passing an empty string. This will cause the label to be
displayed without any text.

GtkWidget* gtk label new (const gchar *str);

It is not possible for users to edit a normal GtkLabel with the keyboard or mouse (without
some extra work by the programmer, that is), but by using gtk _label set selectable(), the
user will be able to select and copy the text. The widget will also be able to accept cursor focus,
so you can use the Tab key to move between the label and other widgets.

void gtk label set selectable (GtklLabel *label,
gboolean selectable);

CHAPTER 2 YOUR FIRST GTK+ APPLICATIONS

The ability to select labels is turned off by default, because this feature should only be used
when there is a need for the user to retain the information. For example, error messages should
be set as selectable, so they can easily be copied into other applications such as a web browser.

The text in a GtkLabel does not have to remain in the same state as the text string you
specified during creation. You can easily change it with gtk label set text().Any text cur-
rently contained by the label will be overwritten as well as any mnemonics.

void gtk label set text (GtkLabel *label,
const gchar *str);

Note A mnemonic is a combination of keys that, when pressed by the user, will perform some type of
action. It is possible to add a mnemonic to a GtkLabel that will activate a designated widget when pressed.

The string currently being displayed by the label can be retrieved with gtk _label get text().
The returned string will not include any markup or mnemonic information. The label also uses it
internally, so you should never modify the returned string!

The last GtkLabel method you should know about is gtk_label set markup(), which
allows you to define custom styles for the displayed text. There are a number of tags provided by
the Pango Text Markup Language, which can be found in Appendix C in the back of this book.

void gtk label set markup (GtklLabel *1abel,
const gchar *str);

The Pango Text Markup Language provides two types of style methods. You can use the
 tag with some attributes such as the font type, size, weight, foreground color, and oth-
ers. It also provides various other tags such as , <tt>, and <i>, which make the enclosed text
bold, monospace, or italic.

Container Widgets and Layout

Recall from the first example in this chapter that the GtkWindow structure is derived indirectly
from GtkContainer. This indicates that GtkWindow is a GtkContainer and inherits all of the
GtkContainer functions, signals, and properties.

By using gtk _container add(), you can add a widget as the child of the container. It fol-
lows that the container is now the widget’s parent. The language popularly used to describe
this container and contained relationship is “parent and child,” where the parent is the con-
taining widget, and the child is contained in the parent.

void gtk container add (GtkContainer *container,
Gtkwidget *child);

This language unfortunately often causes confusion, because GTK+ is object oriented in
every sense. Because of this, when using and talking about GTK+, one must be aware of the
context in which “parent” and “child” is used. They are used to talk about both container wid-
get relationships and about widget derivation relationships.

25

26

CHAPTER 2 YOUR FIRST GTK+ APPLICATIONS

The purpose of the GtkContainer class is to allow a parent widget to contain one or more
children. GtkWindow is derived from a type of container called GtkBin. GtkBin allows the parent
to contain only one child. Windows, as containers, are therefore limited to directly containing
a single child. Fortunately, that single child may be a more complex container widget itself,
which, in turn, may contain more than one child widget.

It is important to notice that our window is no longer the default 200 by 200 pixels in size
and that the square aspect ratio is not retained. This is because GTK+ uses, primarily, an auto-
matic and dynamically sized layout system. This dynamic sizing is the reason behind the
existence of container objects. The sizing system will be discussed in more detail in the next
chapter, which covers container widgets.

Because our window is a GtkContainer, we can also use the function gtk_container
set_border width() to place a 10-pixel border around the inside edge of the window. The
border is set on all four sides of the child widget.

void gtk container set border width (GtkContainer *container,
guint border width);

Without adding the border, the layout manager would allow the window to shrink to the
default size of the GtkLabel widget. In Listing 2-1, the window is set to a width of 200 pixels and
a height of 100 pixels. With this size, there will be more than a 10-pixel border around the label
on most systems. The border will prevent the user from resizing the window to a smaller size
than allocated by the widget and the border.

We then call gtk widget show_all() on the window. This function recursively draws the
window, its children, its children’s children and so on. Without this function, you would have to
callgtk widget show() on every single child widget. Instead, by using gtk_widget show all(),
GTK+ does all of the work for you by showing each widget until they are all visible on the screen.

void gtk widget show all (GtkWidget *widget);

Like the nonrecursive gtk widget show(), if you call this function on a widget whose par-
ent is not set as visible, it will not be shown. The widget will be queued until its parent is set as
visible.

GTK+ also provides gtk_widget hide_all(), which will set the specified widget and all of
its children as hidden. Because contained widgets are invisible when their container is hidden,
it will appear that gtk widget hide(), when called on the containing object, does the same
thing as gtk widget hide all(), because both will hide the container and all of its children.
However, there is an important difference. Calling gtk _widget hide() setsthe visible property
to FALSE on only one widget, while gtk widget hide all() changes that property on the
passed widget and recursively on all contained widgets.

void gtk widget hide all (GtkWidget *widget);

The gtk widget show() and gtk widget show all() set of functions have the same
relationship. So, if you use gtk_widget hide all() butcall gtk widget show() on the
same widget, all of its children will remain invisible.

Container widgets and managing the application layout will be covered in more detail
in the next chapter. Since you have enough information to understand the GtkContainer in
Listing 2-2, we will continue on to signals and callback functions.

CHAPTER 2 YOUR FIRST GTK+ APPLICATIONS

Signals and Callbacks

GTK+ is a system that relies on signals and callback functions. A signal is a notification to your
application that the user has performed some action. You can tell GTK+ to run a function when
the signal is emitted. These are named callback functions.

Caution GTK+ signals are not the same thing as POSIX signals! Signals in GTK+ are propagated by
events from the X Window System. Each provides separate methods, and these two signal types should not
be used interchangeably.

After you initialize your user interface, control is given to the gtk_main() function, which
sleeps until a signal is emitted. At this point, control is passed to other functions called callback
functions.

You, as the programmer, connect signals to their callback functions before calling
gtk_main(). The callback function will be called when the action has occurred and the signal is
emitted or when you have explicitly emitted the signal. You also have the capability of stopping
signals from being emitted at all.

Note Itis possible to connect signals at any point within your applications. For example, new signals can
be connected within callback functions. However, you should try to initialize mission-critical callbacks before
calling gtk_main().

There are many types of signals, and just like functions, they are inherited from parent
structures. Many signals are generic to all widgets such as hide and grab-focus or specific to
the widget such as the GtkRadioButton signal group-changed. In either case, widgets derived
from a class can use all of the signals available to all of its ancestors.

Connecting the Signal

The first instance of a signal you have encountered was in Listing 2-2. The GtkWindow was con-
nected to the destroy() callback function. This function will be called when the destroy signal
is emitted.

g signal connect (G OBJECT (window), "destroy",
G_CALLBACK (destroy), NULL);

GTK+ emits the destroy signal when gtk _widget destroy() is called on the widget or
when FALSE is returned from a delete_event() callback function. If you reference the API doc-
umentation, you will see that the destroy signal belongs to the GtkObject class. This means
that every class in GTK+ inherits the signal, and you can be notified of the destruction of any
GTK+ structure.

27

28

CHAPTER 2 YOUR FIRST GTK+ APPLICATIONS

There are four parameters to every g_signal connect() call. The first is the widget that is
to be monitored for the signal. Next, you specify the name of the signal you want to track. Each
widget has many possible signals, all of which can be found in the API documentation.
Remember that widgets are free to use the signals of their ancestors, since each widget is actu-
ally an implementation of each of its ancestors. You can use the “Object Hierarchy” section of
the API to reference parent classes.

gulong g signal connect (gpointer object,
const gchar *signal name,
GCallback handler,
gpointer data);

When typing the signal name, the underscore and dash characters are interchangeable.
They will be parsed as the same character, so it does not make any difference which one you
choose. I will use the underscore character for all of the examples in this book.

The third parameter in g_signal connect() is the callback function that will be called
when the signal is emitted, cast with G_CALLBACK(). The format of the callback function
depends on the function prototype requirements of each specific signal. An example callback
function is shown in the next section.

The last parameter in g_signal connect() allows you to send a pointer to the callback
function. In Listing 2-2, we passed NULL, so the pointer was void, but let us assume for a
moment that we wanted to pass the GtkLabel to the callback function.

In this instance of g_signal connect(), the GtkLabel was cast as a gpointer, which will
be passed to the callback function. A gpointer is simply a type definition of a void pointer. You
can recast this in the callback function, but g_signal connect() requires a gpointer type.

g signal connect (G OBJECT (window), "destroy",
G _CALLBACK (destroy),
(gpointer) label);

The return value for g_signal connect() is the handler identifier of the signal. You
can use this with g_signal handler block(),g signal hander unblock(), and
g _signal handler disconnect(). These functions will stop a callback function from
being called, re-enable the callback function, and remove the signal handler from memory,
respectively. More information can be found in the API documentation.

Callback Functions

Callback functions specified in g_signal connect() will be called when the signal is emitted
on the widget to which it was connected. For all signals, with the exception of events, which will
be covered in the next section, callback functions are in the following form.

static void

callback function (GtkWidget *widget,
... /* Other Possible Arguments */ ...,
gpointer data);

You can find an example format of a callback function for each signal in the API documenta-
tion, but this is the generic format. The first parameter is the object from g_signal connect(),

CHAPTER 2 YOUR FIRST GTK+ APPLICATIONS 29

except it must always be cast as the widget type for which the signal was created. If you need access
to a widget type from which the widget was derived, you can use the built-in casting functions.
There are other possible arguments that may appear in the middle as well, although this is
not always the case. For these parameters, you need to reference the documentation of the sig-
nal you are utilizing.
The last parameter of your callback function corresponds to the last parameter of
g signal connect(). Since the data is passed as a void pointer, you can place the data type
you want it cast to as the last parameter of the callback function. Let us assume that you passed
a GtkLabel to the fourth parameter of g_signal connect().

static void
destroy (GtkWidget *window,
GtkLabel *1abel)

In this example, we were sure that the object was of the type GtkLabel, so we used
GtkLabel as the last parameter of the callback function. This will avoid having to recast the
object from a gpointer to the desired data type.

In Chapter 11, you will be covering how to create your own signals when you are taught
how to create custom widgets.

Emitting and Stopping Signals

Before we move onto events, there are two interesting functions that you should know about
thatrelate to signals. By usingg signal emit by name(), youcan emita signal on an object by
using its textual name. You can use the signal identifier to emit a signal as well, but it is much
more likely that you will have access to the signal’s name. If you have the signal identifier, you
can emit the signal with g_signal emit().

void g signal emit by name (gponter instance,
const gchar *signal name,

)5

The last parameters of g_signal emit by name() are a list of parameters that should be
passed to the signal and the location to store the return value. The return value can safely be
ignored if it is a void function.

You can also use g_signal stop emission by name() to stop the current emission of a
signal. This allows you to temporarily disable a signal that will be emitting because of some
action performed by your code.

void g signal stop emission by name (gpointer instance,
const gchar *signal name);

Events

Events are special types of signals that are emitted by the X Window System. They are initially
emitted by the X Window System and then sent from the window manager to your application
to be interpreted by the signal system provided by GLib. For example, the destroy signal is
emitted on the widget, but the delete-event event is first recognized by the underlying
GdkWindow of the widget and then emitted as a signal of the widget.

30

CHAPTER 2 YOUR FIRST GTK+ APPLICATIONS

The first instance of an event you encountered was delete-event in Listing 2-2. The
delete-event signal is emitted when the user tries to close the window. The window can be
exited by clicking the close button on the title bar, using the close pop-up menu item in the
taskbar, or by any other means provided by the window manager.

Connecting events to a callback function is done in the same manner with
g_signal connect() as with other GTK+ signals. However, your callback function will
be set up slightly differently.

static gboolean

callback function (GtkWidget *widget,
GdkEvent *event,
gpointer data);

The first difference in the callback function is the ghoolean return value. If TRUE is returned
from an event callback, GTK+ assumes the event has already been handled and will not con-
tinue. By returning FALSE, you are telling GTK+ to continue handling the event. FALSE is the
default return value for the function, so you do not need to use the delete-event signal in most
cases. This is only useful if you want to override the default signal handler.

For example, in many applications, you may want to confirm the exit of the program. By
using the following code, you can prevent the application from exiting if the user does not want
to quit.

static gboolean

delete event (GtkWidget *window,
GdkEvent *event,
gpointer data)

{

gboolean answer = /* Ask the user if exiting is desired. */

if (answer)
return FALSE;
else
return TRUE;

By returning FALSE from the delete-event callback function, gtk widget destroy() is
automatically called on the widget. As stated before, this signal will automatically continue
with the action, so there is no need to connect to it unless you want to override the default.

In addition, the callback function includes the GdkEvent parameter. GdkEvent is a C union
of the GdkEventType enumeration and all of the available event structures. Let’s first look at the
GdkEventType enumeration.

CHAPTER 2 YOUR FIRST GTK+ APPLICATIONS 31

Event Types

The GdkEventType enumeration provides a list of available event types. These can be used to
determine the type of event that has occurred, since you may not always know what has
happened.

For example, if you connect the button-press-event signal to a widget, there are three differ-
ent types of events that can cause the signal’s callback function to be run: GDK_BUTTON_PRESS,
GDK_2BUTTON_PRESS, and GDK_3BUTTON_PRESS. Double-clicks and triple-clicks emit the
GDK_BUTTON_PRESS as a second event as well, so being able to distinguish between different types
of events is necessary.

In Appendix B, you can see a complete list of the events available to you. It shows the signal
name that is passed to g_signal connect(), the GdkEventType enumeration value, and a
description of the event.

Let’s look at the delete-event callback function from Listing 2-2. We already know that
delete-event is of the type GDK_DELETE, but let us assume for a moment that we did not know
that. We can easily test this by using the following conditional statement:

static gboolean
delete event (GtkWidget *window,
GdkEvent *event,
gpointer data)
{
if (event->type == GDK DELETE)
return FALSE;

return TRUE;
}

In this example, if the event type is GDK_DELETE, FALSE is returned, and gtk _widget destroy()
will be called on the widget. Otherwise, TRUE is returned, and no further action is taken.

Using Specific Event Structures

Sometimes, you may already know what type of event has been emitted. In the following exam-
ple, we know that a key-press-event will always be emitted:

g signal connect (G OBJECT (widget), "key-press-event"
G_CALLBACK (key_press), NULL);

In this case, it is safe to assume that the type of event will always be GDK_KEY PRESS, and
the callback function can be declared as such.

static gboolean

key press (GtkWidget *widget,
GdkEventKey *event,
gpointer data)

32

CHAPTER 2 YOUR FIRST GTK+ APPLICATIONS

Since we know that the type of event is a GDK_KEY_PRESS, we will not need access to all of
the structures in GdkEvent. We will only have a use for GdkEventKey, which we can use instead
of GdkEvent in the callback function. Since the event is already cast as GdkEventKey, we will
have direct access to only the elements in that structure.

typedef struct

{
GdkEventType type; // GDK_KEY_PRESS or GDK_KEY_RELEASE
GdkWindow *window; // The window that received the event
gint8 send_event; // TRUE if the event used XSendEvent
guint32 time; // The length of the event in milliseconds
guint state; // The state of Control, Shift, and Alt
guint keyval; // The key that was pressed <gdk/gdkkeysyms.h>
gint length; // The length of string
gchar *string; // A string approximating the entered text
guint16 hardware_keycode; // Raw code of the key that was pressed or released
guint8 group; // The keyboard group
guint is modifier : 1; // Whether hardware keycode was mapped (since 2.10)

} GdkEventKey;

There are many useful properties in the GdkEventKey structure that we will use throughout
the book. At some point it would be useful for you to browse some of the GdkEvent structures
in the API documentation. We will cover a few of the most important structures in this book,
including GdkEventKey and GdkEventButton.

The only variable that is available in all of the event structures is the event type, which
defines the type of event that has occurred. It is a good idea to always check the event type to
avoid handling it in the wrong way.

Further GTK+ Functions

Before continuing on to further examples, I would like to draw your attention to a few functions
that will come in handy in later chapters and when you create your own GTK+ applications.

GtkWidget Functions

The GtkWidget structure contains many useful functions that you can use with any widget.
This section outlines a few that you will need in a lot of your applications.

Itis possible to destroy a widget by explicitly calling gtk widget destroy() on the object.
When invoked, gtk _widget destroy() will drop the reference count on the widget and all of
its children recursively. The widget, along with its children, will then be destroyed, and all
memory freed.

void gtk widget destroy (GtkWidget *widget);

CHAPTER 2 YOUR FIRST GTK+ APPLICATIONS

Generally, this is only called on top-level widgets. It is usually only used to destroy dialog
windows and to implement menu items that quit the application. It will be used in the next
example in this chapter to quit the application when a button is clicked

You can use gtk _widget set size request() to set the minimum size of a widget. It will
force the widget to be either smaller or larger than it would normally be. It will not, however,
resize the widget so that it is too small to be functional or able to draw itself on the screen.

void gtk widget set size request (GtkWidget *widget,
gint width,
gint height);

By passing -1 to either parameter, you are telling GTK+ to use its natural size, or the size
that the widget would normally be allocated to if you do not define a custom size. This can be
used if you want to specify either only the height or only the width parameter. It will also allow
you to reset the widget to its original size.

There is no way to set a widget with a width or height of less than 1 pixel, but by passing 0
to either parameter, GTK+ will make the widget as small as possible. Again, it will not be resized
so small that it’s nonfunctional or unable to draw itself.

Because of internationalization, there is a danger by setting the size of any widget. The text
may look great on your computer, but on a computer using a German translation of your appli-
cation, the widget may be too small or large for the text. Themes also present issues with widget
sizing, because widgets are defaulted to different sizes depending on the theme. Therefore, it is
best to allow GTK+ to choose the size of widgets and windows in most cases.

You can use gtk _widget grab focus() to force a widget to grab keyboard focus. This
will only work on widgets that can handle keyboard interaction. One example of a use for
gtk widget grab focus() is sending the cursor to a text entry when the search toolbar is
shown in Firefox. This could also be used to give focus to a GtkLabel that is selectable.

void gtk widget grab focus (GtkWidget *widget);

Often, you will want to set a widget as inactive. By calling gtk _widget set sensitive(),
the specified widget and all of its children are disabled or enabled. By setting a widget as inac-
tive, the user will be prevented from interacting with the widget. Most widgets will also be
grayed out when set as inactive.

void gtk widget set sensitive (GtkWidget *widget,
gboolean sensitive);

If you want to re-enable a widget and its children, you need only to call this function on the
same widget. Children are affected by the sensitivity of their parents, but they only reflect the
parent’s setting instead of changing their properties.

GtkWindow Functions

You have now seen two examples using the GtkWindow structure. You have learned how to add
border padding between the inner edge of the window and its child. You have also learned how
to set the title of a window and add a child widget. Now, let us explore a few more functions that
will allow you to further customize windows.

34

CHAPTER 2 YOUR FIRST GTK+ APPLICATIONS

All windows are set as resizable by default. This is desirable in most applications, because
each user will have different size preferences. However, if there is a specific reason for doing so,
you can use gtk window_set resizable() to prevent the user from resizing the window.

void gtk window set resizable (GtkWindow *window,
gboolean resizable);

Gaution You should note that the ability to resize is controlled by the window manager, so this setting
may not be honored in all cases!

The note directly above brings up an important point. Much of what GTK+ does interacts
with the functionality provided by the window manager. Because of this, not all of your win-
dow settings may be followed on all window managers. This is because your settings are merely
hints given that are then either used or ignored. You should keep in mind that your requests
may or may not be honored when designing applications with GTK+.

The default size of a GtkWindow can be set with gtk_window set default size(), but
there are a few things to watch out for when using this function. If the minimum size of the
window is larger than the size you specity, this function will be ignored by GTK+. It will also be
ignored if you have previously set a larger size request.

void gtk window_set default size (GtkWindow *window,
gint width,
gint height);

Unlike gtk _widget set size request(), gtk window set default size() only sets
the initial size of the window—it does not prevent the user from resizing it to alarger or smaller
size. If you set a height or width parameter to 0, the window’s height or width will be set to
the minimum possible size. If you pass -1 to either parameter, the window will be set to its nat-
ural size.

You can request that the window manager move the window to the specified location with
gtk _window_move(). However, the window manager is free to ignore this request. This is true
of all “request” functions that require action from the window manager.

void gtk window _move (GtkWindow *window,
gint x,
gint y);
By default, the position of the window on the screen is calculated with respect to the

top-left corner of the screen, but you can use gtk_window_set gravity() to change this
assumption.

void gtk window set gravity (GtkWindow *window,
GdkGravity gravity);

CHAPTER 2 YOUR FIRST GTK+ APPLICATIONS 35

This function defines the gravity of the widget, which is the point that layout calcu-
lations will consider (0, 0). Possible values for the GdkGravity enumeration include
GDK_GRAVITY NORTH_WEST,GDK_GRAVITY NORTH,GDK GRAVITY_NORTH_ EAST,GDK GRAVITY WEST,
GDK_GRAVITY CENTER, GDK_GRAVITY EAST, GDK_GRAVITY SOUTH WEST, GDK_GRAVITY_ SOUTH,
GDK_GRAVITY SOUTH_EAST, and GDK_GRAVITY STATIC.

North, south, east, and west refer to the top, bottom, right, and left edges of the screen.
They are used to construct multiple gravity types. GDK_GRAVITY STATIC refers to the top-left
corner of the window itself, ignoring window decorations.

If your application has more than one window, you can set one as the parent with
gtk window set transient for(). This allows the window manager to do things such as
center the child above the parent or make sure one window is always on top of the other. We
will explore the idea of multiple windows and transient relationships in Chapter 5 when dis-
cussing dialogs.

void gtk window_set transient for (GtkWindow *window,
GtkWindow *parent);

You can set the icon that will appear in the task bar and title bar of the window by calling
gtk window set icon from file(). The size of the icon does not matter, because it will
be resized when the desired size is known. This allows for the best quality possible of the
scaled icon.

gboolean gtk window set icon from file (GtkWindow *window,
const gchar *filename,
GError **err); // NULL

TRUE is returned if the icon was successfully loaded and set. Therefore, unless you want
in-depth information on why the icon loading failed, it is safe to pass NULL to the third param-
eter for now. We will discuss the GError structure in Chapter 4.

Process Pending Events

At times, you may want to process all pending events in an application. This is extremely useful
when you are running a piece of code that will take a long time to process. This will cause your
application to appear frozen, because widgets will not be redrawn if the CPU is taken up by
another process. For example, in an integrated development environment that I have created
called OpenLDeyv, I have to update the user interface while a build command is being pro-
cessed. Otherwise, the window would lock up, and no build output would be shown until the
build was complete.

The following loop is the solution for this problem. It is the answer to a great number of
questions presented by new GTK+ programmers.

while (gtk events pending ())
gtk _main_iteration ();

The loop calls gtk_main_iteration(), which will process the first pending event for your
application. This is continued while gtk_events_pending() returns TRUE, which tells you
whether there are events waiting to be processed.

36

CHAPTER 2 YOUR FIRST GTK+ APPLICATIONS

Using this loop is an easy solution to the freezing problem, but a better solution would be
to use coding strategies that avoid the problem altogether. For example, you can use idle func-
tions, which will be covered in Chapter 6, to call a function only when there are no actions of
greater importance to process.

Buttons

The GtkButton widget is a special type of container that turns its child into a clickable entity. It
is only capable of holding one child. However, that child can be a container itself, so the button
can theoretically be the ancestor of large amounts of children. This allows the button to hold,
for example, a label and an image at the same time.

Because the purpose of a GtkButton widget is to make the child clickable, you will almost
always need to use the clicked signal to get notification of when the button is activated. You
will use this signal in the following example.

The GtkButton widget is usually initialized with gtk _button new with label(), which
creates a new button with a GtkLabel as its child. If you want to create an empty GtkButton and
add your own child at a later time, you can use gtk_button_new(), although this is not what
you will want to do in most cases.

Figure 2-4 shows a button with mnemonic capabilities. You can recognize a mnemonic
label by the underlined character. In the case of the button below, when Alt+C is pressed, the
button will be clicked.

Ml = Buttons [mIPY

Close

Figure 2-4. A GtkButton widget with a mneumonic label

The function gtk_button new with mnemonic() will initialize a new button with mne-
monic label support. When the user presses the Alt key along with the specified accelerator key,
the button will be activated. An accelerator is a key or set of keys that can be used to activate a
predefined action.

Note Wnen the mnemonic option is available for a widget that provides some type of user interaction, it
is recommended that you take advantage of that capability. Even if you do not use keyboard shortcuts, some
users prefer to navigate user interfaces using a keyboard instead of a mouse.

Listing 2-3 is a simple demonstration of GtkButton capabilities using the clicked signal.
When the button is pressed, the window will be destroyed, and the application will quit. The
button in this example also takes advantage of the mnemonic and keyboard accelerator fea-
tures. You saw a screenshot of this example in Figure 2-4.

CHAPTER 2 YOUR FIRST GTK+ APPLICATIONS 37

Listing 2-3. The GtkButton Widget (buttons.c)

#include <gtk/gtk.h>
static void destroy (GtkWidget*, gpointer);

int main (int argc,
char *argv[])

{
GtkWidget *window, *button;

gtk_init (8argc, 8argv);

window = gtk window new (GTK WINDOW TOPLEVEL);

gtk window_set title (GTK WINDOW (window), "Buttons");

gtk _container set border width (GTK _CONTAINER (window), 25);
gtk widget set size request (window, 200, 100);

g signal connect (G OBJECT (window), "destroy",
G_CALLBACK (destroy), NULL);

/* Create a new button that has a mnemonic key of Alt+C. */
button = gtk button new with mnemonic (" Close");
gtk button set relief (GTK BUTTON (button), GTK RELIEF NONE);

/* Connect the button to the clicked signal. The callback function recieves the
* window followed by the button because the arguments are swapped. */
g signal connect swapped (G OBJECT (button), "clicked",

G CALLBACK (gtk widget destroy),

(gpointer) window);

gtk _container add (GTK CONTAINER (window), button);
gtk widget show all (window);

gtk _main ();
return O;

}

/* Stop the GTK+ main loop function. */
static void
destroy (GtkWidget *window,

gpointer data)

{
gtk _main_quit ();
}

In Listing 2-3, gtk _widget destroy() is called on the main window when the button
is clicked. This is a very simple example, but it has a practical use in most applications.

38

CHAPTER 2 YOUR FIRST GTK+ APPLICATIONS

The GNOME Human Interface Guidelines, which can be viewed or downloaded at
http://developer.gnome.org/projects/gup/hig, state that preferences dialogs should apply
settings immediately after a setting is changed.

Therefore, if you create a preferences dialog, there is a good chance that you will only need
one button. The purpose of the button would be to destroy the window that contains the but-
ton and save the changes.

After creating the button, gtk _button set relief() can be used to add a certain magni-
tude of relief around the GtkButton. Reliefis a type of 3-D border that distinguishes the button
from surrounding widgets. Values of the GtkReliefStyle enumeration follow:

e GTK _RELIEF_NORMAL: Add relief around all edges of the button.
e GTK RELIEF_HALF: Add relief around only half of the button.
e GTK _RELIEF_NONE: Add no relief around the button.

Listing 2-3 introduces g_signal connect swapped(), a new signal connection function.
This function swaps the position of the object on which the signal is being emitted and the data
parameter when running the callback function.

g signal connect swapped (G OBJECT (button), "clicked",
G CALLBACK (gtk widget destroy),
(gpointer) window);

This allows you to use gtk _widget destroy() on the callback function, which will call
gtk widget destroy (window).If the callback function only receives one parameter, the
object will be ignored.

Widget Properties

GObject provides a property system, which allows you to customize how widgets interact with
the user and how they are drawn on the screen. In this section, you will learn how to use styles,
resource files and GObject’s property system.

Every class derived from the GObject class can install any number of properties. In GTK+,
these properties store information about how the widget will act. For example, GtkButton has
a property called relief that defines the relief style used by the button.

In the following code, g_object get() is used to retrieve the current value stored by the
button’s relief property. This function accepts a NULL-terminated list of properties and vari-
ables to store the returned value.

g object get (button, "relief", 8value, NULL);

Each object can have many properties, so a full list will not be found in this book. For
more information on properties available for a specific widget, you should reference the API
documentation.

CHAPTER 2 YOUR FIRST GTK+ APPLICATIONS 39

Setting Widget Properties

Setting a new value for a property is easily done with g_object_set(). In this example, the
relief property of the button was set to GTK_RELIEF _NORMAL:

g object_set (button, "relief", GTK_RELIEF_NORMAL, NULL);

Functions are provided to set and retrieve many of the properties of each widget. How-
ever, not every property has that option. These functions will become extremely important
when you learn about the GtkTreeView widget in Chapter 8, because many objects used in that
chapter do not provide get or set functions for any properties.

It is also possible to monitor a specific property with GObject’s notify signal. You can
monitor a property by connecting to the notify::property-name signal. The example in
Listing 2-4 calls property changed() when the relief property is changed.

Listing 2-4. Using the Notify Property

g signal connect (G_OBJECT (button), "notify::relief",
G_CALLBACK (property changed), NULL);

static void
property changed (GObject *button,
GParamSpec *property,
gpointer data)
{
/* Handle the property change ... */

}

Caution While itis acceptable to use either a dash or an underscore when typing signal names, you must
always use dashes when using the notify signal. For example, if you need to monitor GtkWidget's can-focus
property, notify::can_focus is not acceptable! Remember that notify is the signal name, and can-focus
is the name of the widget property.

The callback function receives a new type of object called GParamSpec, which holds infor-
mation about the property that was changed. For now, all you need to know is that you can
retrieve the name of the property that was changed with property->name. You will learn more
about the GParamSpec structure in Chapter 11 when you learn how to add properties to your
own custom widgets.

40

CHAPTER 2 YOUR FIRST GTK+ APPLICATIONS

In addition to the property system, every GObject has a table that associates a list of strings
to a list of pointers. This allows you to add data to an object that can easily be accessed, which
is useful when you need to pass additional data to a signal handler. To add a new data field to
an object, allyouhave to dois callg_object set data().This function accepts a unique string
that will be used to point to data. If an association already exists with the same key name, the
new data will replace the old.

void g object set data (GObject *object,
const gchar *key,
gpointer data);

When you need to access the data, you can call g_object get data(), which returns the
pointer associated with key. You should use this method of passing data instead of trying to
pass arbitrary pieces of data with g_signal connect().

Test Your Understanding

In Chapter 2, you have learned about the window and label widgets. It is time to put that
knowledge into practice. In the following two exercises, you will employ your knowledge of the
structure of GTK+ applications, signals, and the GObject property system.

Exercise 2-1. Using Events and Properties

This exercise will expand on the first two examples in this chapter by creating a GtkWindow that has the ability to
destroy itself. You should set your first name as the title of the window. A selectable GtkLabel with your last name
as its default text string should be added as the child of the window.

Other properties of this window are that it should not be resizable and the minimum size should be 300 pixels by
100 pixels. Functions to perform these tasks can be found in this chapter.

Next, by looking at the APl documentation, connect the key-press-event signal to the window. In the skey-
press-event callback function, switch the window title and the label text. For example, the first time the callback
function is called, the window title should be set to your last name and the label text to your first.

You may also find this function useful:
gint g ascii strcasecmp (const gchar *stri, const gchar *str2);

When the two stringsing_ascii strcasesmp() are the same, O is returned. If str1 is less than str2, a neg-
ative number is returned. Otherwise, a positive number is returned.

Once you have completed Exercise 2-1, you can find a description of the solution in
Appendix F, or the solution’s complete source code is downloadable at www. gtkbook . com.

CHAPTER 2 YOUR FIRST GTK+ APPLICATIONS 4

Exercise 2-2. GObject Property System

In this exercise, you will expand on Exercise 2-1, but the title, height, and width of the window should be set by
using the functions provided by GObject. Also, within the callback function, all operations involving the window title
and label text should be performed with the functions provided by GObject. Additionally, you should monitor the win-
dow’s title with the notify signal. When the title is changed, you should notify the user in the terminal output.

Hint: You can use a function provided by GLib, g_message(), to output a message to the terminal. This function
follows the same formatting supported by printf().

Once you have completed both of these exercises, you are ready to move on to the next
chapter, which covers container widgets. These widgets allow your main window to contain
more than just a single widget, which was the case in all of the examples in this chapter.

However, before you continue, you should know about www. gtkbook. com, which can be
used to supplement the content of Foundations of GTK+ Development. This web site is filled
with downloads, links to further GTK+ information, C refresher tutorials, API documentation,
and more. You can use it as you go through this book to aid in your quest to learn GTK+.

Summary

In this chapter, you learned about the most basic GTK+ widget and applications. The first
application was a simple “Hello World” example that showed the fundamental calls required
by all GTK+ applications. These include the following:

* Initialize GTK+ with gtk_init().

¢ Create your top-level GtkWindow.

* Show the GtkWindow.

» Move into the main loop with gtk_main().

In the second example, you learned the purpose of signals, events, and callback functions
within GTK+ applications. The GtkContainer structure was introduced as it relates to
GtkWindow. You also saw the purpose of the widget hierarchy system implemented by the
GObject library.

You then saw useful functions that relate to GtkWidget, GtkWindow, and GtkLabel. Many of
these will be used throughout the book. In fact, both of the exercises required that you put a
few of them into practice.

The last example introduced you to the GtkButton widget. GtkButton is a type of container
that makes its child widget a clickable button. It can be used to display labels, mnemonics, or
arbitrary widgets. Buttons will be covered in further detail in Chapter 4.

In the next chapter, you will learn more about the GtkContainer structure and how it
relates to the vast array of container widgets at your disposal.

CHAPTER 3

Container Widgets

Chapter 2 showed you the basic essentials you will need in every GTK+ application you
create. It also introduced you to signals, events, callback functions, the GtkLabel widget, the
GtkButton widget, and the GtkContainer class.

In this chapter, you will cover the two types of container widgets: decorators and layout
containers. Then you will gain knowledge of many important container widgets including
boxes, notebooks, handle boxes, and event boxes.

The last widget covered, GtkEventBox, allows all widgets that would otherwise be unable to
do so to take advantage of GDK events.

In this chapter, you will learn the following:

e The purpose of the GtkContainer class and its descendents

* How to use layout containers including boxes, panes, and tables
* The pros and cons of using fixed containers

* How to create multipaged notebook containers

* How to provide events to all widgets using event boxes

GtkContainer

The GtkContainer class has briefly been covered in past sections, but more in-depth coverage
of the class is required for you to become a competent GTK+ developer. Therefore, this section
covers all of the important aspects of this abstract class.

The main purpose of a container class is to allow a parent widget to contain one or more
children. There are two types of container widgets in GTK+, those used for laying out children
and decorators and those that add some sort of functionality beyond positioning to a child.

Decorator Containers

In Chapter 2, you were introduced to GtkWindow, a widget derived from GtkBin. GtkBin is a type
of container class that has the capability of holding only one child widget. Widgets derived
from this class are called decorator containers, because they add some type of functionality to
the child widget.

43

44

CHAPTER 3 CONTAINER WIDGETS

For example, a GtkWindow provides its child with the extra functionality of being placed in
a top-level widget. Other examples of decorators include the GtkFrame widget, which draws a
frame around its child, a GtkButton, which makes its child into a clickable button, and a
GtkExpander, which can hide or show its child from the user. All of these widgets use
gtk _container add() for adding a child widget.

The GtkBin class only provides one function, gtk_bin get child(), which allows you to
retrieve a pointer to the container’s child widget. The actual purpose of the GtkBin class is
to provide an instantiable widget from which all subclasses that only require one child widget
can be derived. It is a central class used for a common base.

GtkWidget* gtk bin get child (GtkBin *bin);

Widgets that derive from GtkBin include windows, alignments, frames, buttons, items,
combo boxes, event boxes, expanders, handle boxes, scrolled windows, and tool items. Many
of these containers will be covered in this chapter and later chapters.

Layout Containers

Another type of container widget provided by GTK+ is called a layout container. These are wid-
gets that are used to arrange multiple widgets. Layout containers can be recognized by the fact
that they are derived directly from GtkContainer.

As the name implies, the purpose of layout containers is to correctly arrange their children
according to the user’s preferences, your instructions, and built-in rules. User preferences
include the use of themes and font preferences. These can be overridden, but in most cases,
you should honor the user’s preferences. There are also resizing rules that govern all container
widgets, which will be covered in the next section.

Layout containers include boxes, fixed containers, paned widgets, icon views, layouts,
menu shells, notebooks, sockets, tables, text views, toolbars, and tree views. We will be cover-
ing most of the layout widgets throughout this chapter and the rest of the book. More
information on those we do not cover is available in the API documentation.

Resizing Children

In addition to arranging and decorating children, containers are tasked with resizing child wid-
gets. Resizing is performed in two phases: size requisition and size allocation. In short, these
two steps negotiate the size that is available to a widget. This is a recursive process of commu-
nication between the widget, its ancestors, and its children.

Size requisition refers to the desired size of the child. The process begins at the top-level
widget, which asks its children for their preferred sizes. The children ask their children and so
on, until the last child is reached.

CHAPTER 3 CONTAINER WIDGETS 45

At this point, the last child decides what size it wants to be based on the space it needs to
be shown correctly on the screen and any size requests from the programmer. For example, a
GtkLabel widget will ask for enough space to fully display its text on the screen or more space if
you requested it to have a larger size.

The child then passes this size to its ancestors until the top-level widget receives the
amount of space needed based on its children’s requisitions.

typedef struct

{
gint width;
gint height;

} GtkRequisition;

Each widget stores its size preferences as width and height values in a GtkRequisition
object. Keep in mind that a requisition is only a request; it does not have to be honored by the
parent widget.

When the top-level widget has determined the amount of space it wants, size allocation
begins. If you have set the top-level widget as nonresizable, the widget will never be resized; no
further action will occur and requisitions will be ignored. Otherwise, the top-level widget will
resize itself to the desired size. It will then pass the amount of available space to its child wid-
get. This process is repeated until all widgets have resized themselves.

typedef struct
{
gint x;
gint y;
gint width;
gint height;
} GtkAllocation;

Size allocations for every widget are stored in one instance of the GtkAllocation structure for
each child. This structure is passed to child widgets for resizing with gtk widget size allocate().
This function can be called explicitly by the programmer as well, but doing so is not a good idea in
the majority of cases.

In most situations, children will be given the space they request, but there are certain cir-
cumstances when this cannot happen. For example, a requisition will not be honored when
the top-level widget cannot be resized.

Conversely, once a widget has been given a size allocation by its parent, the widget has no
choice but to redraw itself with the new size. Therefore, you should be careful where you call
gtk widget size allocate().In most cases, gtk widget set size request() is best to use for
resizing widgets.

46

CHAPTER 3 CONTAINER WIDGETS

Container Signals

The GtkContainer class currently provides four signals. These are add, check_resize, remove,
and set_focus_child:

* add: A child widget was added or packed into the container. This signal will be emitted
even if you do not explicitly call gtk_container add() but use the widget’s built-in pack-
ing functions instead.

e check resize: The container is checking whether it needs to resize for its children before
taking further action.

e remove: A child has been removed from the container.
e set focus_child: A child of the container has received focus from the window manager.

Now that you know the purpose of the GtkContainer class, we will progress onto other
types of container widgets. You have already learned about windows, a type of GtkBin widget,
so we will begin this chapter with a layout container called GtkBox.

Horizontal and Vertical Boxes

GtkBox is an abstract container widget that allows multiple children to be packed in a one-
dimensional, rectangular area. There are two types of boxes: GtkVBox packs children into a
single column, and GtkHBox packs them into a single row.

Note For the rest of the book, code listings will only include portions of text significant to the section.
Therefore, you will need to download the source code to view the full examples. For example, the destroy
callback function will not be included in any further examples, because you should know how to use it by this
point. It will, however, be included in the source code downloadable from www. gtkbook . com.

Listing 3-1. Vertical Boxes with Default Packing (boxes.c)

#include <gtk/gtk.h>

#define NUM_NAMES 4
const gchar* names[] = { "Andrew", "Joe", "Samantha", "Jonathan" };

int main (int argc,
char *argv[])
{
gint 1i;
GtkWidget *window, *vbox;

gtk_init (8argc, &argv);

CHAPTER 3 CONTAINER WIDGETS 47

window = gtk window new (GTK WINDOW TOPLEVEL);

gtk window _set title (GTK WINDOW (window), "Boxes");

gtk _container set border width (GTK_CONTAINER (window), 10);
gtk widget set size request (window, 200, -1);

vbox = gtk vbox _new (TRUE, 5);

/* Add four buttons to the vertical box. */

for (i = 0; i < NUM_NAMES; i++)

{
GtkWidget *button = gtk button new with label (names[i]);
gtk box_pack_start defaults (GTK BOX (vbox), button);

g signal connect swapped (G _OBJECT (button), "clicked",
G CALLBACK (gtk widget destroy),
(gpointer) button);
}

gtk _container add (GTK CONTAINER (window), vbox);
gtk widget show all (window);

gtk _main ();
return O;

Listing 3-1 shows a simple illustration of a GtkVBox widget. The graphical output of the
application is shown in Figure 3-1. Notice that the names are shown in the same order as they
were added to the array, even though each was packed at the start position.

2 =0 [P

Andrew

Joe

Samantha

Jonathan

Figure 3-1. A vertical box packed from the start position

In analyzing Listing 3-1, you should note that the GtkVBox and GtkHBox widgets use the
same set of functions, because they are both derived from the GtkBox class. The only difference
is that vertical boxes are created with gtk_vbox_new() and horizontal boxes with
gtk_hbox_new(), although the parameters of each function are the same.

48

CHAPTER 3 CONTAINER WIDGETS

As with every widget, you need to initialize GtkVBox before using the object. The first
parameter in gtk _vbox_new() indicates whether all of the children in the box should be homo-
geneous. If it is set to TRUE, all of the children will be given the smallest amount of space that
can fit every widget.

GtkWidget* gtk vbox new (gboolean homogeneous,
gint spacing);

The second parameter places a default number of pixels of spacing between each child
and its neighbor. This value can be changed for individual cells as children are added, if the box
is not set as equally spaced.

Since you do not need further access to the labels in Listing 3-1 after they are added to the
GtkBox widget, the application does not store individual pointers to each object. They will all be
cleaned up automatically when the parent is destroyed. Each button is then added to the box
using a method called packing.

By adding widgets to the box with gtk _box_pack_start defaults(), the child has three
properties automatically set: Expanding is set to TRUE, which will automatically provide the cell
with the extra space allocated to the box. This space is distributed evenly to all of the cells that
request it. The fill property is also set to TRUE, which means the widget will expand into all of the
extra space provided instead of filling it with padding. Lastly, the amount of padding placed
between the cell and its neighbors is set to zero pixels.

void gtk box pack start defaults (GtkBox *box,
Gtkwidget *widget);

Packing boxes can be slightly unintuitive because of the naming of functions. The best way
to think about it is in terms of where the packing begins. If you pack at the start position, chil-
dren will be added with the first child appearing at the top or left. If you pack at the end
position, the first child will appear at the bottom or right of the box.

In other words, the reference position for start moves as you add widgets. When adding wid-
gets to the end position, the same process occurs. Therefore, you should use gtk_box_pack_end() or
gtk box pack end defaults() to add elements in reverse order. An example of this can be seen in
the code excerpt in Listing 3-2.

Listing 3-2. Specifying Packing Parameters (boxes2.c)

vbox = gtk vbox new (TRUE, 5);

/* Add four buttons to the vertical box, packing at the end. */
for (i = 0; i < NUM_NAMES; i++)
{
GtkWidget *button = gtk button new with label (names[i]);
gtk box_pack end (GTK BOX (vbox), button, FALSE, FALSE, 5);

g signal connect swapped (G OBJECT (button), "clicked",
G CALLBACK (gtk widget destroy),
(gpointer) button);

CHAPTER 3 CONTAINER WIDGETS

Figure 3-2 shows the graphical output of Listing 3-2. Since we packed each of the widgets
starting at the end, they are shown in reverse order. The packing began at the end of the box
and packed each child before the previous one. You are free to intersperse calls to start and end
packing functions. GTK+ keeps track of both reference positions.

& =50 2> PP

Jonathan |

Samantha |

Joe |

Andrew |

Figure 3-2. A vertical box packed from the end position

If you do not want to use the default values for expanding, filling, and spacing, you can use
gtk _box_pack_end() or gtk box pack start() to specify different values for each packing
property.

By setting the expand property to TRUE, the cell will expand so that it takes up additional
space allocated to the box that is not needed by the widgets. By setting the fill property to
TRUE, the widget itself will expand to fill extra space available to the cell. Table 3-1 offers a brief
description of all possible combinations of the expand and fill properties.

Table 3-1. expand and fill Properties

expand fill Result

TRUE TRUE The cell will expand so that it takes up additional space allocated to the box,
and the child widget will expand to fill that space.

TRUE FALSE The cell will expand so that it takes up additional space, but the widget will
not expand. Instead, the extra space will be empty.

FALSE TRUE Neither the cell nor the widget will expand to fill extra space. This is the same
thing as setting both properties to FALSE.

FALSE FALSE Neither the cell nor the widget will expand to fill extra space. If you resize the
window, the cell will not resize itself.

In the previous gtk _box_pack_end() call, each cell is told to place five pixels of spacing
between itself and any neighbor cells. Also, according to Table 3-1, neither the cell nor its child
widget will expand to take up additional space provided to the box.

49

50

CHAPTER 3 CONTAINER WIDGETS

void gtk box pack end (GtkBox *box,
GtkWidget *child,
gboolean expand,
gboolean fill,
guint padding);

Note If you have experience programming with other graphical toolkits, the size negotiation system pro-
vided by GTK+ may seem odd. However, you will quickly learn its benefits. GTK+ automatically takes care of
resizing everything if you change a user interface, instead of requiring you to reposition everything program-
matically. You will come to view this as a great benefit as you continue learning GTK+.

While you should try to finalize the order of elements in a GtkBox widget before displaying
it to the user, it is possible to reorder child widgets in a box with gtk_box_reorder child().

void gtk box reorder child (GtkBox *box,
GtkWidget *child,
gint position);

By using this function, you can move a child widget to a new position in the GtkBox. The
position of the first widget in a GtkBox container is indexed from zero. The widget will be placed
in the last position of the box if you specify a position value of -1 or a value greater than the
number of children.

Horizontal and Vertical Panes

GtkPaned is a special type of container widget that holds exactly two widgets. A resize bar is
placed between them, which allows the user to resize the two widgets by dragging the bar in
one direction or the other. When the bar is moved, either by user interaction or programmatic
calls, one of the two widgets will shrink while the other expands.

There are two types of paned widgets: GtkHPaned for horizontal resizing and GtkVPaned for
vertical resizing. As with boxes, the horizontal and vertical pane classes only provide functions
to create the widget. All other functionality is defined in the common parent class, GtkPaned.
Listing 3-3 shows a simple example where two GtkButton widgets are placed as the children of
a horizontal pane.

CHAPTER 3

Listing 3-3. Horizontal Pane (panes.c)

#include <gtk/gtk.h>

int main (int argc,
char *argv[])

{
GtkWidget *window, *hpaned, *buttoni, *buttonz;

gtk_init (8argc, 8argv);

window = gtk window new (GTK WINDOW TOPLEVEL);
gtk window_set title (GTK WINDOW (window), "Panes");

gtk _container set border width (GTK_CONTAINER (window), 10);
gtk widget set size request (window, 225, 150);

hpaned = gtk _hpaned new ();
button1l = gtk button new with label ("Resize");
button2 = gtk button new with label ("Me!");

g signal connect swapped (G _OBJECT (button1), "clicked",
G CALLBACK (gtk widget destroy),
(gpointer) window);

g signal connect swapped (G _OBJECT (button2), "clicked",
G CALLBACK (gtk widget destroy),
(gpointer) window);

/* Pack both buttons as the two children of the GtkHPaned widget.

gtk paned add1 (GTK PANED (hpaned), button1);
gtk paned add2 (GTK PANED (hpaned), button2);

gtk _container add (GTK _CONTAINER (window), hpaned);
gtk widget show all (window);

gtk _main ();
return O;

CONTAINER WIDGETS

*/

51

52

CHAPTER 3 CONTAINER WIDGETS

As you can see in Figure 3-3, the GtkHPaned widget places a vertical bar between its two
children. By dragging the bar, one widget will shrink while the other expands. In fact, it is pos-
sible to move the bar so that one child is completely hidden from the user’s view. You will learn
how to prevent this with gtk _paned _pack1() and gtk_paned pack2().

Ml =ranes [

Resize Mel!

Figure 3-3. The graphical output of Listing 3-3

In Listing 3-3, we created a GtkHPaned object with gtk_hpaned_new(). If you want to use a
vertical paned widget instead, you need only to call gtk_vpaned new(). All of the GtkPaned func-
tions will then work with either type of paned widget.

Since GtkPaned can only handle two children, GTK+ provides a function for packing each
child. In the example below, gtk paned _addi() and gtk paned add2() were used to add both
children to hpaned. These functions use the default values for the resize and shrink properties
of the GtkPaned widget.

gtk paned_add1 (GTK_PANED (hpaned), label1);
gtk _paned_add2 (GTK_PANED (hpaned), label2);

The preceding gtk _paned add1() and gtk_paned_add2() calls are from Listing 3-3 and are
equivalent to the following:

gtk _paned packl (GTK_PANED (hpaned), labeli, FALSE, TRUE);
gtk _paned pack2 (GTK_PANED (hpaned), label2, TRUE, TRUE);

The third parameter in gtk_paned pack1() and gtk _paned pack2() specifies whether the
child widget should expand when the pane is resized. If you set this to FALSE, no matter how
much larger you make the available area, the child widget will not be expanded.

The last parameter specifies whether the child can be made smaller than its size requisi-
tion. In most cases, you will want to set this to TRUE so that a widget can be completely hidden
by the user by dragging the resize bar. If you want to prevent the user from doing this, set the
fourth parameter to FALSE. Table 3-2 illustrates how the resize and shrink properties
interrelate.

Table 3-2. resize and shrink Properties

resize shrink Result

TRUE TRUE The widget will take up all available space when the pane is resized, and the
user will be able to make it smaller than its size requisition.

TRUE FALSE The widget will take up all available space when the pane is resized, but
available space must be greater than or equal to the widget’s size requisition.

CHAPTER 3 CONTAINER WIDGETS

resize shrink Result

FALSE ~ TRUE The widget will not resize itself to take up additional space available in the
pane, but the user will be able to make it smaller than its size requisition.

FALSE FALSE The widget will not resize itself to take up additional space available in the
pane, and the available space must be greater than or equal to the widget's size
requisition.

You can easily set the exact position of the resize bar with gtk_paned_set_position(). The
position is calculated in pixels with respect to the top or left side of the container. If you set the
position of the bar to zero, it will be moved all the way to the top or left if the widget allows
shrinking.

void gtk paned set position (GtkPaned *paned,
gint position);

Most applications will want to remember the position of the resize bar, so it can be
restored to the same location when the user next loads the application. The current position
of the resize bar can be retrieved with gtk_paned get position().

gint gtk_paned_get position (GtkPaned *paned);

GtkPaned provides multiple signals, but one of the most useful is move-handle, which will
tell you when the resizing bar has been moved. If you want to remember the position of the
resize bar, this will tell you when you need to retrieve a new value. A full list of GtkPaned signals
can be found in Appendix B.

Tables

So far, all of the layout container widgets I have covered only allow children to be packed in one
dimension. The GtkTable widget, however, allows you to pack children in two-dimensional space.

One advantage of using the GtkTable widget over using multiple GtkHBox and GtkVBox wid-
gets is that children in adjacent rows and columns are automatically aligned with each other,
which is not the case with boxes within boxes. However, this is also a disadvantage, because
you will not always want everything to be lined up in this way.

Figure 3-4 shows a simple table that contains three widgets. Notice that the single label
spans two columns. This illustrates the fact that tables allow one widget to span multiple col-
umns and/or rows as long as the region is rectangular.

Ml mTables [ERmip

Enter the following information ...

Name: IAndrew Krause

Figure 3-4. A table containing a label widget that spans multiple columns

53

54

CHAPTER 3 CONTAINER WIDGETS

Listing 3-4 creates the GtkTable widget shown in Figure 3-4, inserting two GtkLabel wid-

gets and a GtkEntry widget into the two-by-two area (you will learn how to use the GtkEntry
widget in Chapter 4, but this gives you a taste of what is to come).

Listing 3-4. GtkTable Displaying Name (tables.c)

#include <gtk/gtk.h>

int main (int argc,

{

char *argv[])
GtkWidget *window, *table, *label, *1label2, *name;
gtk_init (8argc, &argv);

window = gtk window new (GTK WINDOW TOPLEVEL);

gtk window_set title (GTK WINDOW (window), "Tables");

gtk container_set border width (GTK_CONTAINER (window), 10);
gtk widget set size request (window, 150, 100);

table = gtk table new (2, 2, TRUE);

label = gtk label new ("Enter the following information ...");
label2 = gtk label new ("Name: ");

name = gtk entry new ();

/* Attach the two labels and entry widget to their parent container. */
gtk table attach (GTK TABLE (table), label, o, 2, 0, 1,
GTK_EXPAND, GTK_SHRINK, 0, 0);
gtk table attach (GTK TABLE (table), label2, o, 1, 1, 2,
GTK_EXPAND, GTK_SHRINK, 0, 0);
gtk table attach (GTK TABLE (table), name, 1, 2, 1, 2,
GTK_EXPAND, GTK_SHRINK, 0, 0);

/* Add five pixels of spacing between every row and every column. */
gtk table set row spacings (GTK TABLE (table), 5);
gtk table set col spacings (GTK TABLE (table), 5);

gtk container add (GTK_CONTAINER (window), table);
gtk widget show_all (window);

gtk _main ();
return O;

CHAPTER 3 CONTAINER WIDGETS

Table Packing

When creating a table with gtk_table new(), you must specify the number of columns, the
number of rows, and whether table cells should be homogeneous.

GtkWidget* gtk table new (guint rows,

g gLK_ | g
guint columns,
gboolean homogeneous);

The number of columns and rows can be changed after creating the table with
gtk table resize(), but you should use the correct numbers initially, if possible, to avoid
confusion on the part of the user. You do not want to get in the habit of liberally changing
user interfaces when it is not completely necessary.

void gtk table resize (GtkTable *table,
guint rows,
guint columns);

The function gtk_table set homogeneous() can also be used to reset the homogeneous
property after creation, but you should use the desired value initially here as well. The user
should have control of resizing after the initial user interface is set.

void gtk table set homogeneous (GtkTable *table,
gboolean homogeneous);

Packing a new widget is performed with gtk_table attach(). The second parameter,
child, refers to the child widget that you are adding to the table.

void gtk table attach (GtkTable *table,
GtkWidget *child,
guint left,
guint right,
guint top,
guint bottom,
GtkAttachOptions xoptions,
GtkAttachOptions yoptions,
guint xpadding,
guint ypadding);

The left, right, top, and bottom variables describe the location where the child widget

should be placed within the table. For example, the first GtkLabel in Listing 3-4 was attached
with the following command:

gtk table attach (GTK TABLE (table), label, o, 2, 0, 1,
GTK_EXPAND, GTK SHRINK, 0, 0);

55

56

CHAPTER 3 CONTAINER WIDGETS

The GtkLabel widget is attached directly to the first column and row of the table, because
x coordinates are added, followed by y coordinates. It is then attached to the second row on the
bottom and the third column on the right. The packing from the example in Listing 3-4 is
shown in Figure 3-5.

0 1 2
00 O O
Enter the following ...
10 O O
Name: GtkEntry
20 O O

Figure 3-5. Table packing

If you choose to have two columns, there will be three zero-indexed column attach points
labeled. The same logic applies to row attach points if there are two columns.

As previously stated, if a widget spans multiple cells, it must take up a rectangular area. A
widget could span two rows and one column with (0,1,0,2) or the whole table with (0,2,0,2).
The best way to remember the order in which the attach points are specified is that both x coor-
dinates come first, followed by the y coordinates. After specifying attach points, you need to
give attach options for the horizontal and vertical directions. In our example, children are set
to expand in the x direction and shrink in the y direction. There are three values in the
GtkAttachOptions enumeration:

e GTK_EXPAND: The widget should take up extra space allocated to it by the table. This space
is allocated evenly between all children that specify this option.

e GTK_SHRINK: The widget should shrink so that it will only take up enough space to be ren-
dered. This is often used so that extra space is taken up by other widgets.

e GTK _FILL: The widget should fill all allocated space instead of filling the extra space with
padding.

It is possible to give multiple attach option parameters by using a bitwise or operator. For
example, you can use GTK_EXPAND | GTK_FILL, so the child will take up extra space and fill it
instead of adding padding.

CHAPTER 3 CONTAINER WIDGETS 57

The last two parameters of gtk_table attach() specify pixels of horizontal and vertical
padding that should be added between the child and its neighbor cells.

void gtk table attach defaults (GtkTable *table,
Gtkwidget *child,
guint left,
guint right,
guint top,
guint bottom);

As with boxes, you do not need to specify the full set of parameters when adding a child.
You can use gtk_table attach defaults() to add a child without specifying attach and pad-
ding options. When using this function, GTK_EXPAND | GTK FILL will be used for each attach
option, and no padding will be added.

Table Spacing

You can specify the spacing between columns or rows with gtk_table attach(), but GTK+
provides four methods for changing these after adding a child.

If you want to set the spacing for every column in a table, you can use
gtk table set col spacings(). This function was used in Listing 3-4 to add five pixels
of spacing. GTK+ also provides gtk table set row spacings() to add padding between
rows. These functions will override any previous settings of the table.

void gtk table set col spacings (GtkTable *table,
guint spacing);

You may also set the spacing of one specific column or rowwith gtk _table set col spacing()
or gtk table set row spacing().These functions will add spacing between the child and its neigh-
bors to the left and right of the widget or above and below it.

void gtk table set col spacing (GtkTable *table,
guint column,
guint spacing);

Fixed Containers

The GtkFixed widget is a type of layout container that allows you to place widgets by the pixel.
There are many problems that can arise when using this widget, but before we explore the
drawbacks, let us look at a simple example.

Listing 3-5 creates a GtkFixed widget that contains two buttons, one found at each of the
locations (0,0) and (20, 30), with respect to the top-left corner of the widget.

58

CHAPTER 3 CONTAINER WIDGETS

Listing 3-5. Specifying Exact Locations (fixed.c)
#include <gtk/gtk.h>

int main (int argc,
char *argv[])

{

GtkWidget *window, *fixed, *buttoni, *button2;
gtk_init (8argc, &argv);

window = gtk window new (GTK WINDOW TOPLEVEL);
gtk window_set title (GTK WINDOW (window), "Fixed");
gtk _container_set border width (GTK_CONTAINER (window), 10);

fixed = gtk _fixed new ();
button1 = gtk button new with label ("Pixel by pixel ...");
button2 = gtk button new with label ("you choose my fate.");

g signal connect swapped (G _OBJECT (button1), "clicked",
G CALLBACK (gtk widget destroy),
(gpointer) window);

g signal connect swapped (G _OBJECT (button2), "clicked",
G CALLBACK (gtk widget destroy),
(gpointer) window);

/* Place two buttons on the GtkFixed container. */
gtk fixed put (GTK_FIXED (fixed), buttoni, 0, 0);
gtk fixed put (GTK _FIXED (fixed), button2, 20, 30);

gtk _container add (GTK_CONTAINER (window), fixed);
gtk widget show_all (window);

gtk _main ();
return O;

The GtkFixed widget, initialized with gtk_fixed new(), allows you to place widgets with a
specific size in a specific location. Placing widgets is performed with gtk _fixed put(), at spec-
ified horizontal and vertical positions.

void gtk fixed put (GtkFixed *fixed,
GtkWidget *child,
gint x,
gint y);

CHAPTER 3 CONTAINER WIDGETS

The top-left corner of the fixed container is referred to by location (0,0). You should only
be able to specify real locations for widgets or locations in positive space. The fixed container
will resize itself, so every widget is completely visible.

If you need to move a widget after it has been placed within a GtkFixed container, you can
use gtk _fixed move(). You need to be careful not to overlap a widget that has already been
placed. The GtkFixed widget will not provide notification in the case of overlap. Instead, it will
try to render the window with unpredictable results.

void gtk fixed move (GtkFixed *fixed,
GtkWidget *child,
gint x_position,
gint y position);

This brings us to the inherent problems with using the GtkFixed widget. The first problem
is that your users are free to use whatever theme they want. This means that the size of text on
the user’s machine may differ from the size of text on your machine unless you explicitly set the
font. The sizes of widgets vary among different user themes as well. This can cause misalign-
ment and overlap. This is illustrated in Figure 3-6, which shows two screenshots of Listing 3-5,
one with a small font size and one with a larger font size.

2 = RN =i [P

pixel by pixel .. [Pixel by pixel ...}
you choose my fate-l you choose my fate.l

Figure 3-6. Problems caused by different font sizes in a GtkFixed container

You can explicitly set the size and font of text to avoid overlap, but this is not advised in
most cases. Accessibility options are provided for users with low vision. If you change their
fonts, some users may not be able to read the text on the screen.

Another problem with using GtkFixed arises when your application is translated into other
languages. A user interface may look great in English, but the displayed strings in other lan-
guages may cause display problems, because the width will not be constant. Furthermore,
languages that are read right to left, such as Hebrew and Arabic, cannot be properly mirrored
with the GtkFixed widget. It is best to use a variable-sized container such as GtkBox or GtkTable
in this case.

Finally, it can be quite a pain adding and removing widgets from your graphical interface
when using a GtkFixed container. Changing the user interface will require you to reposition all
of your widgets. If you have an application with a lot of widgets, this presents a long-term
maintenance problem.

On the other hand, you have tables, boxes, and various other automatically formatting
containers. If you need to add or remove a widget from the user interface, it is as easy as adding
or removing a cell. This makes maintenance much more efficient, which is something you
should consider in large applications.

59

60

CHAPTER 3 CONTAINER WIDGETS

Therefore, unless you know that none of the presented problems will plague your applica-
tion, you should use variable-sized containers instead of GtkFixed. This container was presented
only so you know it is available if a suitable situation arises. Even in suitable situations, flexible
containers are almost always a better solution and are the proper way of doing things.

Expanders

The GtkExpander container can handle only one child. The child can be shown or hidden by
clicking the triangle to the left of the expander’s label. A before-and-after screenshot of this
action can be viewed in Figure 3-7.

Ml =Expander (R Ml =Expander [P
b Click Me For More!! < [Click Me For Moreli

Hide me or show me,
that is your choice.

Figure 3-7. A GtkExpander container

Listing 3-6 was used to create Figure 3-7. The example introduces you to the most impor-
tant GtkExpander methods.

Listing 3-6. Showing and Hiding Widgets (expanders.c)
#include <gtk/gtk.h>

int main (int argc,
char *argv[])

{

GtkWidget *window, *expander, *label;
gtk_init (8argc, &argv);

window = gtk_window_new (GTK_WINDOW TOPLEVEL);
gtk_window_set title (GTK_WINDOW (window), "Expander");
gtk_container_set border width (GTK_CONTAINER (window), 10);
gtk_widget set size request (window, 200, 100);

expander = gtk_expander new_with_mnemonic ("Click _Me For More!");
label = gtk label new ("Hide me or show me,\nthat is your choice.");

CHAPTER 3 CONTAINER WIDGETS

gtk _container add (GTK CONTAINER (expander), label);
gtk_expander_set expanded (GTK_EXPANDER (expander), TRUE);
gtk _container add (GTK_CONTAINER (window), expander);

gtk widget show all (window);

gtk _main ();
return O;

Listing 3-6 uses gtk_expander new with mnemonic() to initialize the GtkExpander. If you
place an underscore in the initialization string of this function, a keyboard accelerator will be
created. For example, whenever the user presses Alt+M on the keyboard in Listing 3-6, the wid-
get will be activated. Activating a GtkExpander widget will cause it to be expanded or retracted
depending on its current state.

Tip Mnemonics are available in almost every widget that displays a label. Where available, you should
always use this feature, because some users prefer to navigate through applications with the keyboard.

If you wish to include an underscore character in the expander label, you should prefix it
with a second underscore. If you do not want to take advantage of the mnemonic feature, you
can use gtk_expander new() to initialize the GtkExpander with a standard string as the label, but
providing mnemonics as an option to the user is always a good idea. In normal expander
labels, underscore characters will not be parsed but will be treated as just another character.

The GtkExpander widget itself is derived from GtkBin, which means that it can only contain
one child. As with other containers that hold one child, you need to use gtk _container add()
to add the child widget.

In Listing 3-6, I wanted the child widget to be visible by default, so I set the GtkExpander
widget to be expanded. The child widget of a GtkExpander container can be shown or hidden by
calling gtk_expander_set_expanded().

void gtk expander set expanded (GtkExpander *expander,
gboolean expanded);

By default, GTK+ does not add any spacing between the expander label and the child wid-
get. To add pixels of spacing, you can use gtk_expander_set spacing() to add padding.

void gtk expander set spacing (GtkExpander *expander,
gint spacing);

62

CHAPTER 3 CONTAINER WIDGETS

Handle Boxes

The GtkHandleBox widget is another type of GtkBin container that allows its child to be removed
from the parent window by dragging it with the mouse.

When removed, the child is placed in its own window that is without decorations. A ghost
is placed where the widget was originally located. If there are other widgets in the window, they
will be resized to fill the void of space if possible.

This widget is most commonly used to contain toolbars and other toolkit displays. An
example of a GtkHandleBox widget is shown in Figure 3-8. It shows the handle box attached to
the window and then removed. The handle box can be reattached by aligning it with the origi-
nal location.

@ = onic ox [PONEDAIRAE = vondle oox [Pl

Detach Me

_|Detach Me

Figure 3-8. A handle box attached and then detached

In Listing 3-7, we create a GtkHandleBox widget that contains a GtkLabel child. The exam-
ple shows all of the properties available to you through the GtkHandleBox class.

Listing 3-7. Detachable Widgets (handleboxes.c)

#include <gtk/gtk.h>

int main (int argc,
char *argv[])

{
GtkWidget *window, *handle, *1label;

gtk_init (8argc, &argv);

window = gtk window_new (GTK_WINDOW TOPLEVEL);
gtk_window_set_title (GTK_WINDOW (window), "Handle Box");
gtk_container_set border width (GTK_CONTAINER (window), 10);
gtk_widget set size request (window, 200, 100);

CHAPTER 3 CONTAINER WIDGETS 63

handle = gtk handle box new ();
label = gtk label new ("Detach Me");

/* Add a shadow to the handle box, set the handle position on the left and
* set the snap edge to the top of the widget. */

gtk _handle box set shadow type (GTK HANDLE BOX (handle), GTK SHADOW IN);
gtk_handle box set handle position (GTK _HANDLE BOX (handle), GTK POS LEFT);
gtk _handle box set snap edge (GTK HANDLE BOX (handle), GTK POS TOP);

gtk _container add (GTK_CONTAINER (handle), label);
gtk _container add (GTK CONTAINER (window), handle);
gtk widget show all (window);

gtk _main ();
return O;

When you create a GtkHandleBox widget, you need to decide where the handle and the
snap edge will be placed. The handle is the area on the side of the child widget that you grab
onto in order to detach the GtkHandleBox child from its parent. When the handle box is
detached from the parent, a slim ghost is drawn in the original location.

The function gtk_handle box set handle position() is used to set the position of the
handle. The GtkPositionType enumeration provides four options for the placement of the han-
dle. By default, the handle position is set to GTK_POS_LEFT, but you can place it on any side with
GTK_POS_RIGHT, GTK_POS_TOP, or GTK_POS_BOTTOM.

void gtk handle box set handle position (GtkHandleBox *handle box,
GtkPositionType position);

Based on the handle position, GTK+ chooses the position for the snap edge, which is
where the handle box must realign itself for it to be reattached to its parent. The snap edge
is where the ghost will appear after detachment.

You can specify a new GtkPositionType value for the snap edge with
gtk handle box set snap edge().Itis important for you to pay attention to where
you place the snap edge with respect to the handle to avoid confusing the user.

void gtk handle box set snap edge (GtkHandleBox *handle box,
GtkPositionType position);

For example, if the handle box is at the top of a GtkVBox widget and the handle is on the left
side, you should set the snap edge position as GTK_POS_TOP. This way, the ghost is in the same
position as the snap edge without the need for resizing.

64 CHAPTER 3 CONTAINER WIDGETS

GtkHandleBox also provides gtk _handle box set shadow_type(), which allows you to set
the type of border to place around the child widget. Values for the GtkShadowType enumeration
follow.

e GTK_SHADOW NONE: No border will be placed around the child.

e GTK_SHADOW_IN: The border will be skewed inwards.

e GTK_SHADOW OUT: The border will be skewed outwards, like a button.

e GTK_SHADOW ETCHED IN: The border will have a sunken 3-D appearance.

e GTK_SHADOW ETCHED OUT: The border will have a raised 3-D appearance.

Notebooks

The GtkNotebook widget organizes child widgets into a number of pages. The user can switch
between these pages by clicking the tabs that appear along one edge of the widget.

You are able to specify the location of the tabs, although they appear along the top by
default. You can also hide the tabs altogether. Figure 3-9 shows a GtkNotebook widget with two
tabs that was created with the code in Listing 3-8.

2 =rocboo [PPX

Go to page 1 to find the answer.

Page One Page Two

Figure 3-9. A notebook container with two pages

When creating a notebook container, you must specify a tab label widget and a child wid-
get for each tab. Tabs can be added to the front or back, inserted, reordered, and removed.

Listing 3-8. Container with Multiple Pages (notebooks.c)

#include <gtk/gtk.h>
static void switch_page (GtkButton*, GtkNotebook*);

int main (int argc,
char *argv[])
{
GtkWidget *window, *notebook;
GtkWwidget *label1, *label2, *child1l, *child2;

CHAPTER 3 CONTAINER WIDGETS 65

gtk_init (8argc, 8argv);

window = gtk window new (GTK WINDOW TOPLEVEL);

gtk window _set title (GTK_WINDOW (window), "Notebook");

gtk _container set border width (GTK _CONTAINER (window), 10);
gtk widget set size request (window, 250, 100);

notebook = gtk notebook new ();

label1 = gtk label new ("Page One");

label2 = gtk label new ("Page Two");

child1l = gtk label new ("Go to page 2 to find the answer.");
child2 = gtk label new ("Go to page 1 to find the answer.");

/* Notice that two widgets were connected to the same callback function! */
g signal connect (G OBJECT (child1), "clicked",

G _CALLBACK (switch_page),

(gpointer) notebook);
g signal connect (G OBJECT (child2), "clicked",

G _CALLBACK (switch_page),

(gpointer) notebook);

/* Append to pages to the notebook container. */
gtk _notebook_append page (GTK NOTEBOOK (notebook), childi, labell);
gtk _notebook_append page (GTK NOTEBOOK (notebook), child2, label2);

gtk notebook set tab pos (GTK NOTEBOOK (notebook), GTK POS BOTTOM);

gtk _container add (GTK_CONTAINER (window), notebook);
gtk widget show all (window);

gtk _main ();
return O;

}

/* Switch to the next or previous GtkNotebook page. */
static void
switch page (GtkButton *button,

GtkNotebook *notebook)

{
gint page = gtk notebook get current page (notebook);
if (page == 0)
gtk notebook set current page (notebook, 1);
else

gtk notebook set current page (notebook, 0);

66

CHAPTER 3 CONTAINER WIDGETS

After you create a GtkNotebook, it is not very useful until you add tabs to it. To add a
tab to the end or beginning of the list of tabs, you can use gtk_notebook_append_page() or
gtk notebook prepend page(), respectively. Each of these functions accepts GtkNotebook, a
child widget, and a widget to display in the tab as shown below.

gint gtk notebook append page (GtkNotebook *notebook,
GtkWidget *child,
sGtkWidget *tab label);

Tip The tab label does not have to be a GtkLabel widget. For example, you could use a GtkHBox widget
that contains a label and a close button. This allows you to embed other useful widgets such as buttons and
images into the tab label.

Each notebook page can only display one child widget. However, each of the children can
be another container, so each page can display many widgets. In fact, it is possible to use
GtkNotebook as the child widget of another GtkNotebook tab.

Gaution Placing notebooks within notebooks is possible but should be done with caution, because it can
easily confuse the user. If you must do this, make sure that you place the child notebook’s tabs on a different
side of the notebook than its parent’s tabs. By doing this, the user will be able to figure out what tabs belong
to which notebook.

If you want to insert a tab in a specific location, you can use gtk_notebook_insert page().
This function will allow you to specify the integer location of the tab. The index of all tabs
located after the inserted tab will increase by one.

gint gtk notebook insert page (GtkNotebook *notebook,
GtkWidget *child,
GtkWidget *tab label,
gint position);

All three of the functions used to add tabs to a GtkNotebook will return the integer location
of the tab you added or -1 if the action has failed.

GtkNotebook Properties

In Listing 3-8, the tab-position property was set for the GtkNotebook, which was done with the
following call.

void gtk notebook set tab pos (GtkNotebook *notebook,
GtkPositionType position);

CHAPTER 3 CONTAINER WIDGETS 67

Tab position can be set in gtk _notebook tab_pos() by using the GtkPositionType enumer-
ation you used to set the handle and snap edge locations of a GtkHandleBox. These include
GTK_POS_TOP, GTK_POS_BOTTOM, GTK_POS_LEFT, and GTK_POS_RIGHT.

Notebooks are useful if you want to give the user multiple options, but you want
to show them in multiple stages. If you place a few in each tab and hide the tabs with
gtk notebook set show tabs(), you can progress the user back and forth through the options.
An example of this concept would be many of the wizards you see throughout your operating
system, similar to the functionality provided by the GtkAssistant widget.

void gtk notebook set show tabs (GtkNotebook *notebook,
gboolean show tabs);

At some point, the GtkNotebook will run out of room to store tabs in the allocated
space. In order to remedy this problem, you can set notebook tabs as scrollable with
gtk notebook set scrollable().

void gtk notebook set scrollable (GtkNotebook *notebook,
gboolean scrollable);

This property will force tabs to be hidden from the user. Arrows will be provided so that the
user will be able to scroll through the list of tabs. This is necessary because tabs are only shown
in one row or column.

If you resize the window so that all of the tabs cannot be shown, the tabs will be made
scrollable. Scrolling will also occur if you make the font size large enough that the tabs cannot
all be drawn. You should always set this property to TRUE if there is any chance that the tabs will
take up more than the allotted space.

Tab Operations

GTK+ provides multiple functions that allow you to interact with tabs that already exist. Before
learning about these methods, it is useful to know that most of these will cause the change-
current-page signal to be emitted. This signal is emitted when the current tab that is in focus is
changed.

If you can add tabs, there has to be a method to remove tabs as well. By using
gtk _notebook remove page(), you can remove a tab based on its index reference. If you
did not increase the reference count before adding the widget to the GtkNotebook, this function
will release the last reference and destroy the child.

void gtk notebook remove page (GtkNotebook *notebook,
gint page number);

You can manually reorder the tabs by calling gtk _notebook reorder child().You must
specify the child widget of the page you want to move and the location to where it should be
moved. If you specify a number that is greater than the number of tabs or a negative number,
the tab will be moved to the end of the list.

void gtk notebook reorder child (GtkNotebook *notebook,
GtkWidget *child,
gint position);

68

CHAPTER 3 CONTAINER WIDGETS

There are three methods provided for changing the current page. If you know the specific
index of the page you want to view, you can use gtk_notebook set current page() to move to
that page.

void gtk notebook set current page (GtkNotebook *notebook,
gint page number);

At times, you may also want switch to the next or previous tab, which can be done with call
gtk notebook next page() or gtk notebook prev page().If a call to either of these functions
would cause the current tab to drop below zero or go above the current number of tabs, noth-
ing will occur; the call will be ignored.

When deciding what page to move to, it is often useful to know the current page and the
total number of tabs. These values can be obtained with gtk notebook get current page()
and gtk notebook get n pages() respectively.

Event Boxes

Various widgets including GtkLabel do not respond to GDK events, because they do not have

an associated GDK window. To fix this, GTK+ provides a container widget called GtkEventBox.

Event boxes catch events for the child widget by providing a GDK window for the object.
Listing 3-9 connects the button-press-event signal to a GtkLabel by using an event box.

The text in the label is changed based on its current state when the label is double-clicked.

Nothing visible happens when a single click occurs, although the signal is still emitted in

that case.

Listing 3-9. Adding Events to a GtkLabel (eventboxes.c)
#include <gtk/gtk.h>

static ghoolean button pressed (GtkWidget*, GdkEventButton*, GtkLabel*);

int main (int argc,
char *argv[])

{

GtkWidget *window, *eventbox, *label;
gtk_init (8argc, &argv);

window = gtk window new (GTK_WINDOW TOPLEVEL);

gtk window_set title (GTK_WINDOW (window), "Event Box");
gtk _container_set border width (GTK_CONTAINER (window), 10);
gtk widget set size request (window, 200, 50);

CHAPTER 3 CONTAINER WIDGETS 69

eventbox = gtk event box new ();
label = gtk label new ("Double-Click Me!");

/* Set the order in which widgets will receive notification of events. */
gtk_event box_set above child (GTK_EVENT BOX (eventbox), FALSE);

g signal connect (G OBJECT (eventbox), "button press event",
G CALLBACK (button_pressed), (gpointer) label);

gtk _container add (GTK CONTAINER (eventbox), label);
gtk _container add (GTK_CONTAINER (window), eventbox);

/* Allow the event box to catch button presses, realize the widget, and set the
* cursor that will be displayed when the mouse is over the event box. */

gtk widget set events (eventbox, GDK BUTTON PRESS MASK);

gtk widget realize (eventbox);

gdk window_set cursor (eventbox->window, gdk cursor new (GDK HAND1));

gtk widget show all (window);

gtk _main ();
return O;

}

/* This is called every time a button-press event occurs on the GtkEventBox. */
static gboolean
button pressed (GtkWidget *eventbox,

GdkEventButton *event,

GtkLabel *1label)

{
if (event->type == GDK 2BUTTON PRESS)
{
const gchar *text = gtk label get text (label);
if (text[o] == 'D")
gtk label set text (label, "I Was Double-Clicked!");
else
gtk label set text (label, "Double-Click Me Again!");
}

return FALSE;
}

70

CHAPTER 3 CONTAINER WIDGETS

When using an event box, you need to decide whether the event box’s GdkWindow should be
positioned above the windows of its child or below them. If the event box window is above, all
events inside the event box will go to the event box. If the window is below, events in windows
of child widgets will first go to that widget and then to its parents.

Note If you set the window’s position as below, events do go to child widgets first. However, this is
only the case for widgets that have associated GDK windows. If the child is a GtkLabel widget, it does not
have the ability to detect events on its own. Therefore, it does not matter whether you set the window’s posi-
tion as above or below in Listing 3-9.

The location of the event box window can be moved above or below its children with
gtk _event box set above child(). By default, this property is set to FALSE for all event boxes.
This means that all events will be handled by the widget for which the signal was first emitted.
The event will then be passed to its parent after the widget is finished.

void gtk event box set above child (GtkEventBox *event box,
gboolean above child);

Next, you need to add an event mask to the event box so that it knows what type of events
the widget will receive. Values for the GdkEventMask enumeration that specify event masks are
shown in Table 3-3. A bitwise list of GdkEventMask values can be passed to
gtk widget set events() if you need to set more than one.

Table 3-3. GdkEventMask Values

Value Description
GDK_EXPOSURE_MASK Accept events when a widget is exposed.
GDK_POINTER_MOTION MASK Accept all pointer motion events.

GDK_POINTER_MOTION HINT MASK Limit the number of GDK_MOTION NOTIFY events, so they are not
emitted every time the mouse moves.

GDK_BUTTON_MOTION MASK Accept pointer motion events while any button is pressed.
GDK_BUTTON1_MOTION MASK Accept pointer motion events while button 1 is pressed.
GDK_BUTTON2_MOTION MASK Accept pointer motion events while button 2 is pressed.
GDK_BUTTON3_MOTION_MASK Accept pointer motion events while button 3 is pressed.
GDK_BUTTON_PRESS_MASK Accept mouse button press events.
GDK_BUTTON_RELEASE_MASK Accept mouse button release events.

GDK_KEY_PRESS_MASK Accept key press events from a keyboard.

GDK_KEY RELEASE_MASK Accept key release events from a keyboard.

CHAPTER 3 CONTAINER WIDGETS I

Value

Description

GDK_ENTER_NOTIFY MASK

GDK_LEAVE_NOTIFY MASK
GDK_FOCUS_CHANGE_MASK
GDK_STRUCTURE_MASK

GDK_PROPERTY_CHANGE_MASK
GDK_VISIBILITY NOTIFY_MASK
GDK_PROXIMITY IN MASK

GDK_PROXIMITY_OUT_MASK

GDK_SUBSTRUCTURE_MASK
GDK_SCROLL_MASK
GDK_ALL_EVENTS_MASK

Accept events emitted when the proximity of the window is
entered.

Accept events emitted when the proximity of the window is left.
Accept change of focus events.

Accept events emitted when changes to window configura-
tions occur.

Accept changes to object properties.
Accept change of visibility events.

Accept events emitted when the mouse cursor enters the
proximity of the widget.

Accept events emitted when the mouse cursor leaves the
proximity of the widget.

Accept events that change the configuration of child windows.
Accept all scroll events.

Accept all types of events.

You mustcall gtk widget set events() beforeyoucallgtk widget realize() on thewidget.If
awidget has already been realized by GTK+, you will have to instead use gtk _widget add_events()

to add event masks.

Before calling gtk widget realize(), your GtkEventBox does not yet have an associated
GdkWindow or any other GDK widget resources. Normally, realization occurs when the
parent is realized, but event boxes are an exception. When you call gtk _widget show() on
a widget, it is automatically realized by GTK+. Event boxes are not realized when you call
gtk widget show all(), because they are set as invisible. Calling gtk widget realize() on the
event box is an easy way to work around this problem.

When you realize your event box, you need to make sure that it is already added as a child
to a top-level widget, or it will not work. This is because, when you realize a widget, it will
automatically realize its ancestors. If it has no ancestors, GTK+ will not be happy and realiza-

tion will fail.

After the event box is realized, it will have an associated GdkWindow. GdkWindow is a class that

refers to arectangular region on the screen where a widget is drawn. It is not the same thing as
a GtkWindow, which refers to a top-level window with a title bar and so on. A GtkiWindow will con-
tain many GdkWindow objects, one for each child widget. They are used for drawing widgets on

the screen.

Since we are allowing the GtkLabel widget to be clicked, it makes sense to change the cur-
sor to a hand when it is hovering over the label, which is done with gdk_window_set cursor()
and gdk_cursor_new(). There are many cursor types available in GDK. To see a full list of avail-
able cursors, view the GdkCursorType enumeration in the API documentation.

gdk_window_set cursor (eventbox->window, gdk cursor new (GDK HAND1));

72

CHAPTER 3 CONTAINER WIDGETS

Note The GtkWidget structure includes multiple public members. One of them is window, which is the
GdkWindow associated with the given widget. In the preceding code, the new cursor was associated with
the event box’s GdkWindow.

Test Your Understanding

This chapter has introduced you to a number of container widgets that are included in GTK+.
The following two exercises will allow you to practice what you have learned about a few of
these new widgets.

Exercise 3-1. Using Multiple Containers

One important characteristic of containers is that each container can hold other containers. To really drive this point
home, in this example, you will use a large number of containers. The main window will show a GtkNotebook and
two buttons along the bottom.

The notebook should have four pages. Each notebook page should hold a GtkButton that moves to the next page
(The GtkButton on the last page should wrap around to the first page.)

Create two buttons along the bottom of the window. The first should move to the previous page in the
GtkNotebook, wrapping to the last page if necessary. The second button should close the window and exit
the application when clicked.

Exercise 3-1 is a simple application to implement, but it illustrates a few important points.
First, it shows the usefulness of GtkVBox and GtkHBox, and how they can be used together to cre-
ate complex user interfaces.

It is true that this same application could be implemented with a GtkTable as the direct
child of the window, but it is significantly easier to align the buttons along the bottom with a
horizontal box. You will notice that the buttons were packed at the end of the box, which aligns
them to the right side of the box, and this is easier to implement with boxes.

Also, you saw that containers can, and should, be used to hold other containers. For exam-
ple, in Exercise 3-1, a GtkWindow holds a GtkVBox, which holds a GtkHBox and a GtkNotebook. This
structure can become even more complex as your application grows in size.

Once you have completed Exercise 3-1, move on to Exercise 3-2. In the next problem, you
will use the paned container instead of a vertical box.

CHAPTER 3 CONTAINER WIDGETS

Exercise 3-2. Even More Gontainers

In this exercise, you will expand upon the code you wrote in Exercise 3-1. Instead of using a GtkVBox to hold the
notebook and horizontal box of buttons, create a GtkVPaned widget.

In addition to this change, you should hide the GtkNotebook tabs, so the user is not able to switch between pages
without pressing buttons. In this case, you will not be able to know when a page is being changed. Therefore, each
button that is in a GtkNotebook page should be contained by its own expander. The expander labels will allow you
to differentiate between notebook pages.

Once you have completed Exercise 3-2, you will have had practice with GtkBox, GtkPaned,
GtkNotebook, and GtkExpander— four important containers that will be used throughout the
rest of this book.

Before continuing on to the next chapter, you may want to test out a few of the containers
covered in this chapter that you did not need for Exercises 3-1 and 3-2. This will give you prac-
tice using all of the containers, because later chapters will not review past information.

Summary

In this chapter, you learned about the two types of container widgets: decorators and layout
containers. Types of decorators covered were expanders, handle boxes, and event boxes. Types
of layout containers covered were boxes, panes, tables, fixed containers, and notebooks.

The event box container will be seen in later chapters, because there are other widgets
besides GtkLabel that cannot handle GDK events. This will be specified when you learn about
these widgets. You will see most of the containers covered in this chapter in later chapters
as well.

While these containers are necessary for GTK+ application development, merely display-
ing GtkLabel and GtkButton widgets in containers is not very useful (or interesting) in most
applications. This type of application does little to accommodate anything beyond basic user
interaction.

Therefore, in the next chapter, you are going to learn about many widgets that allow you to
interact with the user. These widgets include types of buttons, toggles, text entries, and spin
buttons.

As mentioned before, make sure you understand container widgets before continuing on
to Chapter 4. Later chapters will assume that you have a decent grasp of the most important
container widgets and other concepts covered in this chapter.

73

CHAPTER 4

Basic Widgets

SO far, you have notlearned about any widgets that are designed to facilitate user interaction
except GtkButton. That changes in this chapter, as we will cover many types of widgets that
allow the user to make choices, change settings, or input information.

These widgets include stock buttons, toggle buttons, check buttons, radio buttons, color
selection buttons, file chooser buttons, font selection buttons, text entries, and number selec-
tion buttons.

The exercise at the end of the chapter will give you the opportunity to combine many of
these widgets into larger applications.

In this chapter, you will learn the following:

* How to use clickable buttons with stock items

* How to use types of toggle buttons, including check buttons and radio buttons

* How to use the entry widget for one-line, free-form text input

* How to use the spin button widget for integer or floating-point number selection

¢ What sort of specialized buttons are available

Using Stock Items

When you create applications in GTK+, you will begin to notice that you are using the same
buttons and menu items across many applications. Because of this, GTK+ includes stock items,
which are pairs of images and strings that accommodate often-used menu items and buttons.

GTK+ provides gtk_button_new from stock(), which will create a new button using a pre-
defined stock item. Each stock item contains an image and a mnemonic label that are applied
to the button. A full list of stock items can be found in Appendix D. Each item is included in
GTK+, because each is used by a wide number of applications.

While Appendix D includes all of the stock icons available in GTK+ 2.10, you may notice
when running applications that the icons are not the same on your system. This is because,
while you will always have these stock items available, the default image may be replaced by
the user’s theme of choice or by the developer.

75

76

CHAPTER 4 BASIC WIDGETS

Note I the stock item provided to gtk_button new_from stock() or any other stock retrieval function
in GTK+ is not found, it will be treated as a mnemonic label. This prevents buttons from being rendered in an
unpredictable way.

It is possible for you to define your own stock icons, but this will not be covered
until Chapter 9, which covers menus and toolbars. An example of a button using the
GTK_STOCK CLOSE stock item can be seen in Figure 4-1.

L m Stock Buttons [m R

X Close

Figure 4-1. A GTK_STOCK_CLOSE stock item

Each stock item can be referred to by its string value or its macro definition. For example,
the close stock item used in Listing 4-1 can be referred to as gtk-close or GTK_STOCK_CLOSE.
However, the preprocessor directives are merely convenient aliases of the string values, so
there is no reason to learn both identifiers.

Tip You should always use the preprocessor directives, because unsupported items will be flagged when
you compile the code. If you use the stock item’s string, the compiler will not flag the error, and the invalid
icon will be displayed.

Listing 4-1. Stock Items (stockitems.c)

button = gtk button _new from_stock (GTK_STOCK CLOSE);

g signal_connect_swapped (G_OBJECT (button), "clicked",
G CALLBACK (gtk widget destroy),
(gpointer) window);

There are 98 stock items provided by GTK+ as of the release of 2.10. A list of these items can
be viewed in Appendix D. We will use stock items again when covering menus and toolbars in
Chapter 9.

It is important to note that some stock items have been added since the release of GTK+
2.0, so a few items may not be available to you if you are not running the most current version
of GTK+. This is essential to keep in mind when creating new applications. Your users may not
have the most current version of GTK+!

CHAPTER 4 BASIC WIDGETS

Toggle Buttons

The GtkToggleButton widget is a type of GtkButton that holds its active or inactive state after it
is clicked. It is shown as pressed down when active. Clicking an active toggle button will cause
it to return to its normal state. There are two widgets derived from GtkToggleButton:
GtkCheckButton and GtkRadioButton.

You can create a new GtkToggleButton with one of three functions. To create an empty tog-
gle button, use gtk_toggle button_new().If you want the toggle button to include a label by
default, use gtk_toggle button new with label().Lastly, GtkToggleButton also supports mne-
monic labels with gtk _toggle button new with mnemonic().

Figure 4-2 shows two GtkToggleButton widgets that were created with two mnemonic
labels by calling the gtk_toggle button new with mnemonic() initializer. The widgets in the
screenshot were created with the code in Listing 4-2.

2 = oogic buttons [PR=

Deactivate the other one! |

I No! Deactivate that one!

Figure 4-2. Two GtkToggleButton widgets

In the example in Listing 4-2, when one toggle button is activated, the other is disabled.
The only way to make it sensitive is to deactivate the original toggle button.

Listing 4-2. Using Toggle Buttons (togglebuttons.c)

#include <gtk/gtk.h>
static void button toggled (GtkToggleButton*, GtkWidget*);

int main (int argc,
char *argv([])

{
GtkWidget *window, *vbox, *togglel, *toggle2;

gtk_init (8argc, &argv);

window = gtk _window_new (GTK_WINDOW_TOPLEVEL);
gtk_window_set title (GTK_WINDOW (window), "Toggle Buttons");
gtk_container_set_border width (GTK_CONTAINER (window), 10);

vbox = gtk_vbox_new (TRUE, 5);
togglel = gtk toggle button new with mnemonic (" Deactivate the other one!");
toggle2 = gtk toggle button_new with mnemonic (" _No! Deactivate that one!");

77

78 CHAPTER 4 BASIC WIDGETS

g signal connect (G OBJECT (toggle1l), "toggled",
G_CALLBACK (button toggled),
(gpointer) toggle2);

g signal connect (G OBJECT (toggle2), "toggled",
G_CALLBACK (button toggled),
(gpointer) toggle1);

gtk box_pack start defaults (GTK BOX (vbox), togglel);
gtk box_pack start defaults (GTK BOX (vbox), toggle2);

gtk _container add (GTK_CONTAINER (window), vbox);
gtk widget show_all (window);

gtk _main ();
return O;

}

/* If the toggle button was activated, set the other as disabled. Otherwise,
* enable the other toggle button. */
static void
button toggled (GtkToggleButton *toggle,
Gtkwidget *other toggle)
{
if (gtk toggle button get active (toggle))
gtk widget set sensitive (other toggle, FALSE);
else
gtk widget set sensitive (other toggle, TRUE);

The only signal added by the GtkToggleButton class is toggled, which is emitted when the
user activates or deactivates the button. This signal was triggered in Listing 4-2 by one toggle
button in order to disable the other.

In Listing 4-2, another important piece of information was shown: multiple widgets can
use the same callback function. We did not need to create a separate callback function for each
toggle button, since each required the same functionality. It is also possible to connect one sig-
nal to multiple callback functions, although this is not recommended. Instead, you should just
implement the whole functionality in a single callback function.

Managing Widget Flags

One important property of a widget is its ability to become disabled or inactive. This is
managed by the sensitive property, which will disable the widget when set to FALSE with
gtk widget set sensitive().

gtk widget set sensitive (other toggle, FALSE);

CHAPTER 4 BASIC WIDGETS 79

Sensitivity is actually only one of many widget flags provided by the GtkWidgetFlags enu-
meration. Widget flags, which are in the following list, can be set with GTK_WIDGET SET FLAGS()
or disabled with GTK_WIDGET UNSET FLAGS().You can also get a list of the flags that are set for a
widget with GTK_WIDGET FLAGS().

GTK_TOPLEVEL: The widget does not have a parent widget. This is usually set for widgets
such as windows and menus. This flag should always be set throughout a top-level wid-
get’s lifetime.

GTK_NO_WINDOW: The widget does not have its own GdkWindow, so drawing is done with the
GdkWindow of the parent. You can use this flag to test whether a widget needs a
GtkEventBox to catch GDK events.

GTK_REALIZED: The widget was realized with gtk widget realize(). This flag will be
automatically unset when you unrealize the widget.

GTK_MAPPED: The widget was mapped with gtk widget map(). This basically means that
the widget was shown to the user if its parent is visible.

GTK_VISIBLE: This flag does not mean that the user is able to see the widget, but that the
widget will only be visible if its parent is also visible to the user.

GTK_SENSITIVE: The widget is able to interact with the user and receive certain events
such as button and key-press events.

GTK_PARENT SENSITIVE: A widget’'s parent must be sensitive for the widget itself to be set
as sensitive. Therefore, GTK_SENSITIVE is dependent on this property.

GTK_CAN_FOCUS: The widget is able to grab focus if requested.

GTK_HAS_FOCUS: The widget has focus, which can be set with gtk _widget grab focus().
This property depends on GTK_CAN_FOCUS.

GTK_CAN_DEFAULT: The widget is able to become the default widget of the window.

GTK_HAS DEFAULT: The widget is the default widget of the window. You can set the default
widget with gtk widget grab default().

GTK_HAS GRAB: The widget is in the stack of grab widgets, which shows preference for
receiving events.

GTK_RC_STYLE: GTK+ searched for a style for the widget in a resource (RC) definition. This
can be set even if no style was found for the widget.

GTK_COMPOSITE CHILD: The widget exists to give details about the implementation of its
parent widget and should not be shown to the user.

GTK_APP_PAINTABLE: If set, the application should be able to draw on the widget. This pre-
vents GTK+ from overwriting the current content.

GTK_RECEIVES DEFAULT: If set, the widget will automatically receive the default action
even if it is not the default widget of the window.

80

CHAPTER 4 BASIC WIDGETS

e GTK _DOUBLE_BUFFERED: When the widget is exposed to the user, it should be double-
buffered. This helps the window to be updated for the user in one step, which is
smoother to the eye.

e GTK_NO_SHOW_ALL: If you set this flag, calls to gtk _widget show all() will not affect the
widget. You will need to manually show the widget yourself. This allows you to prevent
a widget from being shown with the rest of the application.

When the toggled signal is emitted, you will most often want to check whether a toggle
button is active, because it is emitted both when the widget is activated and deactivated. This
can be performed with gtk _toggle button get active(). TRUE is returned if the button is
active or FALSE if it is inactive. The current state of a toggle button can also be set with
gtk toggle button set active().

void gtk toggle button set active (GtkToggleButton *toggle,
gboolean active);

Check Buttons

In most cases, you will not want to use the GtkToggleButton widget, because it looks exactly like
anormal GtkButton. Instead, GTK+ provides the GtkCheckButton widget, which places a dis-
crete toggle next to the display text. GtkCheckButton is derived from the GtkToggleButton class.
Two instances of this widget can be viewed in Figure 4-3.

2 = checi puttons (PRI

[11 am the main option.

[11 rely on the other guy:.
X Close

Figure 4-3. Check buttons

As with toggle buttons, three functions are provided for GtkCheckButton initialization.
These include gtk_check_button new(), gtk check button new with label(), and
gtk _check_button_new with_mnemonic().GtkCheckButton also inherits the important toggled
signal, which is used in Listing 4-3.

Listing 4-3. Check Button Interaction (checkbuttons.c)

#include <gtk/gtk.h>
static void check toggled (GtkToggleButton*, GtkWidget*);

int main (int argc,
char *argv[])

CHAPTER 4 BASIC WIDGETS 81

GtkWidget *window, *vbox, *check1, *check2, *close;

gtk_init (8argc, 8argv);

window = gtk window new (GTK WINDOW TOPLEVEL);

gtk window_set title (GTK WINDOW (window), "Check Buttons");

gtk _container set border width (GTK _CONTAINER (window), 10);

check1l = gtk check button new with label ("I am the main option.");
check2 = gtk check button new with label ("I rely on the other guy.");

/* Only enable the second check button when the first is enabled. */
gtk widget set sensitive (check2, FALSE);
g signal connect (G OBJECT (check), "toggled",

G _CALLBACK (check toggled),

(gpointer) check2);

close = gtk button _new from stock (GTK_STOCK CLOSE);

g signal connect swapped (G OBJECT (close), "clicked",
G CALLBACK (gtk widget destroy),
(gpointer) window);

vbox = gtk vbox _new (FALSE, 5);

gtk box_pack start (GTK BOX (vbox), check1, FALSE, TRUE, 0);
gtk box_pack start (GTK BOX (vbox), check2, FALSE, TRUE, 0);
gtk box_pack start (GTK BOX (vbox), close, FALSE, TRUE, 0);

gtk _container add (GTK_CONTAINER (window), table);
gtk widget show all (window);

gtk _main ();
return O;

}

/* If the main check button is active, enable the other. Otherwise, disable
* the supplementary check button. */
static void
check toggled (GtkToggleButton *checki,
Gtkwidget *check2)
{
if (gtk _toggle button get active (check1))
gtk widget set sensitive (check2, TRUE);
else
gtk widget set sensitive (check2, FALSE);

82

CHAPTER 4 BASIC WIDGETS

Excluding the initialization methods, all functionality for check boxes is implemented in
the GtkToggleButton class and its ancestors. GtkCheckButton is merely a convenience widget,
which provides the graphical differences from standard GtkButton widgets.

Radio Buttons

The second type of widget derived from GtkToggleButton is the radio button widget. In fact,
GtkRadioButton is actually derived from GtkCheckButton. Radio buttons are toggles that are
generally grouped together.

In a group, when one radio button is selected, all others will be deselected. The group for-
bids selecting multiple radio buttons at once. This allows you to provide multiple options to
the user where only one should be selected.

Note There is no way provided by GTK+ to deselect a radio button, so a group of one radio button is not
desirable. The user will not be able to deselect the option! In the case that you only need one button, you
should use a GtkCheckButton or GtkToggleButton widget.

Radio buttons are drawn as a discrete circular toggle to the side of the label widget, so they
can be differentiated from other types of toggle buttons. It is possible to draw radio buttons
with the same toggle as GtkCheckButton, but this should not be done, because it can confuse
and frustrate the user. A group of four radio buttons in a vertical box is shown in Figure 4-4.

2 = redio buttons [RR=I%

(O| want to be clicked!
(® Click me instead!

(O No! Click me!

(O No! Click me instead!

Figure 4-4. Radio buttons

For radio buttons to work correctly, they must all be referenced to another radio button in
the group. Otherwise, all of the buttons would act as independent toggle buttons. An example
of how to use multiple radio buttons is shown in Listing 4-4.

CHAPTER 4 BASIC WIDGETS

Listing 4-4. Selfish Toggle Buttons (radiobuttons.c)
#include <gtk/gtk.h>

int main (int argc,
char *argv[])

{

GtkWidget *window, *vbox, *radiol, *radio2, *radio3;
gtk_init (8argc, 8argv);

window = gtk window new (GTK WINDOW TOPLEVEL);
gtk window_set title (GTK WINDOW (window), "Radio Buttons");
gtk _container set border width (GTK_CONTAINER (window), 10);

/* Create three radio buttons where the second two join radiol's group. */

radiol = gtk radio button new with label (NULL, "I want to be clicked!");

radio2 = gtk radio button new with label from widget (GTK _RADIO BUTTON (radiol),
"Click me instead!");

radio3 = gtk radio button new with label from widget (GTK _RADIO BUTTON (radiol),
"No! Click me!");

/* Note: The radio button you create the new widget from does not matter as

* long as it is already a member of the group! */

radio4 = gtk radio button new with label from widget (GTK _RADIO BUTTON (radio3),
"No! Click me instead!");

vbox = gtk vbox new (FALSE, 5);

gtk box_pack start defaults (GTK BOX (vbox), radiol);
gtk box_pack start defaults (GTK BOX (vbox), radio2);
gtk box_pack start defaults (GTK BOX (vbox), radio3);
gtk _box_pack start defaults (GTK BOX (vbox), radio4);

gtk _container add (GTK CONTAINER (window), vbox);
gtk widget show all (window);

gtk _main ();
return O;

83

84

CHAPTER 4 BASIC WIDGETS

The first radio button in a group can be created with any of the following three functions.
However, if you want to use a GtkLabel widget as the child, it is also possible to use a mnemonic
widget, so the toggle can be activated from the keyboard.

GtkWidget* gtk radio button new (GSList *group);

GtkWidget* gtk radio button new with label (GSList *group,
const gchar *label);

GtkWidget* gtk radio button new with mnemonic (GSList *group,
const gchar *label);

You will notice that NULL is specified for the radio group in each call. This is because the sim-
plest way to create a group of radio buttons is to associate them to another widget in the group.
By using this method, you avoid having to use the GLib with singly linked lists, since the list will
be created and managed for you automatically. (GSList data structures will be covered later in
Chapters 5 and 6.)

You can create any type of toggle button, including radio buttons, without alabel, in which
case you would add your own child widget with gtk_container add().You can also create radio
buttons with a programmatically defined label or a mnemonic label.

The easiest way to create the rest of the radio buttons is with one of the following three
_from widget() functions. Similar to creating the first radio button, these can be created with a
label, a mnemonic label, or without an initial child widget.

GtkWidget* gtk radio button new from widget (GtkRadioButton *group);

GtkWidget* gtk radio button new with label from widget (GtkRadioButton *group,
const gchar *label);

GtkWidget* gtk radio button new with mnemonic from widget (GtkRadioButton *group,
const gchar *label);

Referring the initialization function to a radio button that already exists creates each of
these. GTK+ will add the new radio button to the group from the specified widget. Because
of this, you need only refer to any widget that already exists within the desired radio group.
Lastly, every radio button in the group must be connected to the toggled signal. When a
radio button is selected, only two radio buttons will emit the toggled signal, because one will
be selected, and another will be deselected. You will not be able to catch all radio button signals
if you do not connect every radio button to toggled.

Text Entries

The GtkEntry widget is a single line, free-form text entry widget. It is implemented in a general
manner, so that it can be molded to fit many types of solutions. It can be used for text entry,
password entry, and even number selections.

GtkEntry also implements the GtkEditable interface, which provides a large number of
functions that are created to handle selections of text. An example GtkEntry widget is shown in
Figure 4-5. This text entry is used for password entry.

CHAPTER 4 BASIC WIDGETS

Ml mPassword? [mIp

What is the password for user?

Password: I""""""""""""

Figure 4-5. A password text entry

Note GtkEditable is a special type of object called an interface. An interface is a set of APIs that are
implemented by multiple widgets and used for consistency. You will learn how to implement and utilize inter-
faces in your own widgets in Chapter 11.

The GtkEntry widget considers all text to be standard strings. The only way it differentiates
between normal text and passwords is that a special character called an invisibility character is
shown instead of password content. Listing 4-5 shows you how to use a GtkEntry widget for
password entry. If you want to use a GtkEntry widget for normal text entry, you need only to
turn visibility on.

Listing 4-5. Retrieving User Information (entries.c)

#include <gtk/gtk.h>

int main (int argc,
char *argv([])

{

GtkWidget *window, *vbox, *hbox, *question, *label, *pass;
gtk_init (8argc, &argv);

window = gtk _window_new (GTK_WINDOW_TOPLEVEL);
gtk_window_set title (GTK_WINDOW (window), "Password?");
gtk_container_set border width (GTK_CONTAINER (window), 10);
str = g strconcat ("What is the password for "
question = gtk label new (str);

label = gtk label new ("Password:");

, g get user name(), "?", NULL);

/* Create a new GtkEntry widget and hide its content from view. */
pass = gtk_entry new ();

gtk _entry set visibility (GTK_ENTRY (pass), FALSE);

gtk _entry set invisible char (GTK _ENTRY (pass), '*');

85

86

CHAPTER 4 BASIC WIDGETS

hbox = gtk hbox new (FALSE, 5);
gtk box_pack start defaults (GTK BOX (hbox), label);
gtk box_pack start defaults (GTK BOX (hbox), pass);

vbox = gtk vbox new (FALSE, 5);
gtk box_pack start defaults (GTK BOX (vbox), question);
gtk box_pack start defaults (GTK BOX (vbox), hbox);

gtk container add (GTK_CONTAINER (window), vbox);
gtk widget show_all (window);

gtk _main ();
return O;

Entry Properties

The GtkEntry widget is a highly flexible widget, because it was designed to be employed in the
maximum number of instances. This can be seen from the wide array of properties provided by
the class. A sampling of the most important of those is included in this section. For a full list of
properties, you should reference Appendix A.

Text does not always have to be editable in a GtkEntry widget. If you set the entry as non-
editable with gtk_editable set editable(), the user will not be able to edit the text. However,
the user will still be able to use the selection and copy functionality of the GtkEntry widget,
because this property is not the same thing as setting the widget as insensitive.

void gtk editable set editable (GtkEditable *editable,
gboolean is editable);

Oftentimes, you will want to restrict the length of the free-form text entered into an
entry widget because of string limitations of the value. In the following function prototype,
gtk_entry set max_length() limits the text of the entry to max_length characters. This can be
useful when you want to limit the length of user names, passwords, or other length-sensitive
information.

void gtk entry set max_length (GtkEntry *entry,
gint max_length);

Invisibility characters facilitate password entries in GTK+. The invisibility character is the
character that will replace the actual password content in the entry, which can be set with
gtk _entry set invisible char(). The default character for the entry is an asterisk.

void gtk entry set invisible char (GtkEntry *entry,
gunichar inv_char);

void gtk entry set visibility (GtkEntry *entry,
gboolean visible);

After specifying the invisibility character, you can hide all entered text by setting visibility
to FALSE with gtk _entry set visiblity().You will still be able to retrieve the actual content of
the entry programmatically even though it is hidden from view.

CHAPTER 4 BASIC WIDGETS

Inserting Text into a GtkEntry Widget

There are multiple ways to insert text to a GtkEntry widget. The simplest way is to use

gtk _entry set text(), which will overwrite the whole content of the text entry with the

given string. However, this is only useful if you no longer care about the current text displayed
by the widget.

void gtk entry set text (GtkEntry *entry,
const gchar *text);

The current text displayed by GtkEntry can be retrieved with gtk_entry get text(). This
string is used internally by the widget and must never be freed or modified in any way.

It is also possible to use gtk_editable insert text() to insert text into a GtkEntry widget.
This function accepts the text to insert, the length of the text in bytes, and the position where
the text should be inserted.

void gtk editable insert text (GtkEditable *editable,
const gchar *text,
gint length of text,
gint *position);

There are also functions provided for prepending and appending text, but these are not
needed, since you can perform these functions by providing positions of 0 and - 1, respectively,
to gtk editable insert text().

Manipulating GtkEntry Text

Deleting specific content from a text entry is easy with gtk_editable delete text(). It will
remove all of the text between the two positions specified but not the character at the end
position.

void gtk_editable delete text (GtkEditable *editable,
gint start pos,
gint end pos);

When using gtk_editable delete text(), the order of the positions that you specify does
not matter. Also, if you specify -1 as the end position, the characters from the start position to
the end of the text will be deleted.

If you need a specific region of text to be selected automatically, this can be done with
gtk _editable_select region().As with deleting text, an end position of -1 will select all of the
text from the start position to the end of the content. Manual and automatic selections are
what facilitate the following few functions.

void gtk_editable select region (GtkEditable *editable,
gint start pos,
gint end pos);

Once you are able to select text, it would be useful to be able to delete the selection. This is
very easy to do with gtk_editable delete selection(). This function will delete all of the
selected text, leaving any nonselected text.

87

88

CHAPTER 4 BASIC WIDGETS

void gtk editable delete selection (GtkEditable *editable);

In addition to retrieving the whole textual content of the widget, it is possible to retrieve
only a section of the text with gtk_editable get chars(). This will return a copy of the speci-
fied string, which must be freed with g_free() when you are finished with it.

gchar* gtk editable get chars (GtkEditable *editable,
gint start pos,
gint end pos);

The following three functions perform various clipboard functions. There are keyboard
accelerators for cutting (Ctrl+X), copying (Ctrl+C), and pasting (Ctrl+V) built into entries by
default. Therefore, you will not usually need to implement clipboard functionality when using
a GtkEntry widget.

void gtk editable cut clipboard (GtkEditable *editable);
void gtk editable copy clipboard (GtkEditable *editable);
void gtk editable paste clipboard (GtkEditable *editable);

Spin Buttons

The GtkSpinButton widgetis a number selection widget that is capable of handling integers and
floating-point numbers. It is derived from GtkEntry, so GtkSpinButton inherits all of its func-
tions and signals.

Adjustments

Before covering the GtkSpinButton widget, you must understand the GtkAdjustment class.
GtkAdjustment is one of the few classes in GTK+ that is not considered a widget, because it is
derived directly from GtkObject. It is used for several widgets including spin buttons, view
ports, and the multiple widgets derived from GtkRange.

New adjustments are created with gtk _adjustment_new(), although they are usually cast
with GTK_ADJUSTMENT() upon initialization, because storage as a GtkObject is not practical.
Once added to a widget, memory management of the adjustment is handled by the widget, so
you do not have to worry about this aspect of the object.

GtkObject* gtk_adjustment_new (gdouble initial value,
gdouble lower range,
gdouble upper_range,
gdouble step_increment,
gdouble page increment,
gdouble page size);

CHAPTER 4 BASIC WIDGETS 89

New adjustments are initialized with six parameters. A list of these parameters follows.

e initial value: The value stored by the adjustment when it is initialized. This corre-
sponds to the value property of the GtkAdjustment class.

* lower range: The minimum value the adjustment will be allowed to hold. This corre-
sponds to the lower property of the GtkAdjustment class.

* upper_range: The maximum value the adjustment will be allowed to hold. This corre-
sponds to the upper property of the GtkAdjustment class.

e step increment: The increment to make the smallest change possible. If you want to
count all integers between 1 and 10, the increment would be set to 1.

* page_increment: The increment to make when Page Up or Page Down is pressed. This is
almost always larger than the step _increment.

* page_size: The size of a page. This value does not have much use in a GtkSpinButton, so
it should be set to the same value as page_increment or to 0.

There are two useful signals provided by the GtkAdjustment class: changed and value-
changed. The changed signal is emitted when one or more properties of the adjustment have
been altered, excluding the value property. The value-changed signal is emitted when the cur-
rent value of the adjustment has been altered.

A Spin Button Example

The spin button widget allows the user to select an integer or floating-point number by incre-
menting or decrementing with the up or down arrows. The user can still type in a value with the
keyboard, and it will be displayed as the nearest acceptable value if it is out of range. Figure 4-6
shows two spin buttons in action that display an integer and a floating-point number.

S = svin cuttons RR
E B
0.9 B

Figure 4-6. Spin buttons

As previously stated, spin buttons can be used to show integer or floating-point numbers.
In actuality, numbers are stored as gdouble values. The spin button handles rounding the num-
ber to the correct number of decimal places. Listing 4-6 is a simple example that creates both
integer and floating-point number spin buttons.

90

CHAPTER 4 BASIC WIDGETS

Listing 4-6. Integer and Floating-point Number Selection (spinbuttons.c)

#include <gtk/gtk.h>

int main (int argc,
char *argv[])
{
GtkWidget *window, *spin_int, *spin float, *vbox;
GtkAdjustment *integer, *float pt;

gtk_init (8argc, &argv);

window = gtk window new (GTK WINDOW TOPLEVEL);
gtk window _set title (GTK_WINDOW (window), "Spin Buttons");
gtk container_set border width (GTK_CONTAINER (window), 10);
gtk widget set size request (window, 150, 100);

/* Create two new adjustments. The first spans between 0 and 10, starting at 5 and
* moves in increments of 1. The second spans between 0 and 1, starting at 0.5 and
* moves in increments of 0.1. */

integer = GTK ADJUSTMENT (gtk adjustment new (5.0, 0.0, 10.0, 1.0, 2.0, 2.0));
float pt = GTK ADJUSTMENT (gtk adjustment new (0.5, 0.0, 1.0, 0.1, 0.5, 0.5));

/* Create two new spin buttons. The first will display no decimal places and the
* second will display one decimal place. */

spin_int = gtk spin button new (integer, 1.0, 0);

spin _float = gtk spin button new (float pt, 0.1, 1);

vbox = gtk vbox new (FALSE, 5);
gtk box_pack start defaults (GTK BOX (vbox), spin_int);
gtk box_pack start defaults (GTK BOX (vbox), spin float);

gtk container add (GTK_CONTAINER (window), vbox);
gtk widget show_all (window);

gtk _main ();
return O;

Before creating the spin buttons, you should create the adjustments. You can also
initialize the spin button with a NULL adjustment, but it will be set as insensitive.

After your adjustments are initialized, you can create new spin buttons with
gtk _spin button new(). The other two parameters in the initialization function specify
the climb rate of the spin button and the number of decimal places to display. The climb

CHAPTER 4 BASIC WIDGETS

rate is how much the value should be incremented or decremented when an arrow button
is pressed.

tkWidget *gtk spin button new (GtkAdjustment *adjustment,
GtkWidget *gtk spin b N GtkAdj *adj
gdouble climb rate,
guint digits);

Alternatively, you can create a new spin button with gtk_spin button new with range(),
which will automatically create a new adjustment based on the minimum, maximum, and step
values you specify. The initial value is set to the minimum value plus a page increment of ten
times the step_increment by default. The precision of the widget is automatically set to the
value of step_increment.

GtkWidget* gtk spin button new with range (gdouble minimum value,
gdouble maximum_value,
gdouble step increment);

You can call gtk_spin button set digits() to set a new precision of the spin button and
gtk spin button set value() to set a new value. The value will automatically be altered if it is
out of bounds of the spin button.

void gtk spin button set value (GtkSpinButton *spin button,
gdouble value);

Horizontal and Vertical Scales

Another type of widget called a scale allows you to provide a horizontal or vertical slider that
can choose an integer or a floating-point number. GtkHScale is a horizontal scale widget, and
GtkVScale is a vertical scale widget. Both of these classes are derived from GtkScale, which pro-
vides properties, signals, and functions.

The functionality of the GtkScale widget is not much different from GtkSpinButton. It is
often used when you want to restrict the user from entering values, since the value is chosen by
moving the slider. Figure 4-7 shows a screenshot of two horizontal scale widgets.

Ml mscales [gmp

0.5] L]

Figure 4-7. Horizontal scale widgets

Scales provide essentially the same functionality as spin buttons, except using a slider
chooses the number. To show the similarities between the widgets, Listing 4-7 implements
the same functionality as Listing 4-6: two sliders allow the user to select an integer and a
floating-point number.

91

CHAPTER 4 BASIC WIDGETS

Listing 4-7. Integer and Floating-point Number Selection with Scales (scales.c)

#include <gtk/gtk.h>

int main (int argc,
char *argv[])

{

GtkWidget *window, *scale int, *scale float, *vbox;
gtk_init (8argc, &argv);

window = gtk window new (GTK WINDOW TOPLEVEL);

gtk window_set title (GTK WINDOW (window), "Scales");

gtk container_set border width (GTK_CONTAINER (window), 10);
gtk widget set size request (window, 250, -1);

/* Create a scale that scrolls integers and one that scrolls floating point. */
scale int = gtk hscale new with range (0.0, 10.0, 1.0);
scale float = gtk hscale new with range (0.0, 1.0, 0.1);

/* Set the number of decimal places to display for each widget. */
gtk scale set digits (GTK SCALE (scale int), 0);
gtk scale set digits (GTK SCALE (scale float), 1);

/* Set the position of the value with respect to the widget. */
gtk scale set value pos (GTK SCALE (scale int), GTK POS RIGHT);
gtk scale set value pos (GTK SCALE (scale float), GTK _POS_LEFT);

vbox = gtk vbox new (FALSE, 5);
gtk box_pack start defaults (GTK BOX (vbox), scale int);
gtk box_pack_start defaults (GTK BOX (vbox), scale float);

gtk container add (GTK_CONTAINER (window), vbox);
gtk widget show _all (window);

gtk _main ();
return O;

There are two ways to create new scale widgets. The first is with gtk _hscale new() or
gtk vscale new(), which accepts a GtkAdjustment that defines how the scale will work.

GtkWidget *gtk hscale new (GtkAdjustment *adjustment);

Alternatively, you can create scales with gtk _hscale new with range() or
gtk vscale new with range(). This function accepts the minimum value, the maximum
value, and the step increment of the scale.

CHAPTER 4 BASIC WIDGETS 93

Gtkwidget *gtk hscale new with range (gdouble minimum,
gdouble maximum,
gdouble step);

Since the value of the scale is always stored as a gdouble, you will need to define the num-
ber of decimal places to show with gtk_scale set digits() if the default value is not what you
want. The default number of decimal places is calculated based on the number of decimal
places provided for the step increment. For example, if you provide a step increment of 0.01,
two decimal places will be displayed by default.

void gtk scale set digits (GtkScale *scale,
gint digits);

Depending on what type of scale widget you are using, you may want to change where the
value is displayed with gtk_scale set value pos(). Positions are defined by the GtkPositionType
enumeration, and they are GTK_POS_LEFT, GTK_POS_RIGHT, GTK POS TOP, and GTK POS_BOTTOM. You
can also use gtk_scale set draw value() to hide the value from the user’s view altogether.

void gtk scale set value pos (GtkScale *scale,
GtkPositionType pos);

GtkScaleis derived from a widget called GtkRange. This widget is an abstract type that provides
the ability to handle an adjustment. Because of this, you should use gtk range get value() to
retrieve the current value of the scale. GtkRange also provides the value-changed signal, which is
emitted when the user changes the position of the scale.

Widget Styles

In the next few sections, you will be editing widget style properties, so it is time to learn about
the GtkStyle structure and resource files. Resource files are external collections of style settings
that can be loaded and applied to your application during runtime to allow for further
customization.

The GtkStyle Structure

Every GtkWidget has five public members, which are shown in the following code snippet.
These are style information, size requisition, size allocation, a GdkWindow that is used to draw
the widget on the screen, and a pointer to the parent widget.

typedef struct

{
GtkStyle *style;
GtkRequisition requisition;
GtkAllocation allocation;
GdkWindow *window;
GtkWidget *parent;

} GtkWidget;

94

CHAPTER 4 BASIC WIDGETS

The GtkStyle structure stores drawing information about the widget. The content of the
structure follows:

typedef struct

{
GdkColor fg[5] /* The foreground color for most widgets. */
GdkColor bg[5s] /* The background color for most widgets. */
GdkColor light[5] /* Lighter colors used for creating widget shadows. */
GdkColor dark[5] /* Darker colors used for creating widget shadows. */
GdkColor mid[5] /* The color midway between light and dark. */
GdkColor text[5] /* The text color for most text widgets. */
GdkColor base[5] /* The background color used for text-editing widgets. */

GdkColor text aa[5]; /* Used for anti-aliased text colors. */
GdkColor black, white; /* Colors that represent "Black" and "White". */

PangoFontDescription *font desc; /* The default text font. */
gint xthickness, ythickness; /* Thickness of lines. */
GdkPixmap *bg pixmap[5]; /* Background image to use for a widget. */

/* Graphics contexts that hold drawing properties for each color and state. */
GdkGC *fg gc [5], *bg gc [5], *light gc[5], *dark gc[5], *mid gc[5], *text gc[s],
*base gc[5], *text aa gc[5];
GdkGC *black gc, *white gc;
} GtkStyle;

There are many objects in the GtkStyle structure. Each of these will have a default value
set by the user’s style, so overriding them may not always be a good idea. However, if it is nec-
essary, editing a widget’s GtkStyle is a simple way to change how it is displayed.

You will notice that many of the style properties are arrays of file elements. This is
because each of these elements can have different values for one of the following five possible
widget states:

e GTK_STATE_NORMAL: The widget during normal operation.
e GTK_STATE_ACTIVE: An active widget, such as when a toggle is depressed.

e GTK_STATE_PRELIGHT: Awidget when the mouse pointer is over the widget; it will respond
to button clicks.

e GTK_STATE_SELECTED: A widget when the widget or its text has been selected.

e GTK_STATE_INSENSITIVE: A widget is deactivated and will not respond to the user.

Resource Files

GTK+ provides a way for applications to use user-defined styles called resource files (RC files).
RC files allow the user to define styles for widget types or individual widgets, which can be
changed to fit the user’s preferences. These are usually stored in the user’s home directory
along with other application data, so that the user has permissions to alter the settings.

CHAPTER 4 BASIC WIDGETS

To load a resource file, you should call gtk_rc_parse() when loading your application.
This will automatically apply the styles on all appropriate widgets.

void gtk rc_parse (const gchar *filename);

Also, if you want to directly reference a widget from an RC file, you need to use
gtk widget set name() to set a unique name for the widget. This name will be used in the
RC file to set the widget’s style and/or the styles of its children.

In Listing 4-8, a simple example RC file is shown. In this example, multiple widget styles
are created, each style containing a number of properties.

Listing 4-8. Defining Widget Styles (.gtkrc)

style "widgets"

{
xthickness = 2
ythickness = 2
ACTIVE] = "#FFFFFF"
SELECTED] = "#003366"
= "#ccceee”

PRELIGHT] = "#FFFFFF"

fel
fel
fg[NORMAL]
fel
fg[INSENSITIVE] = "#999999"

ACTIVE] = "#003366"
SELECTED] = "#FFFFFF"
= "#666666"

bg[

bg[

bg [NORMAL]
bg[PRELIGHT] = "#003366"
bg[INSENSITIVE] = "#666666"

}

style "labels" = "widgets" {
font_name = "Sans Bold 14"

}

style "buttons" = "widgets" {
GtkButton::inner-border = { 10, 10, 10, 10 }

}

style "checks" = "buttons" {
GtkCheckButton::indicator-size = 25

}

class "GtkWindow" style "widgets"
class "GtkLabel" style "labels"
class "GtkCheckButton" style "checks"
class "Gtk*Button" style "buttons"

95

96

CHAPTER 4 BASIC WIDGETS

Figure 4-8 shows an application that is taking advantage of the RC file shown in Listing 4-8.
The colors and font are different from the examples found in the past few chapters.

RC Files

GtkLabel

GtkButton

GtkCheckButton

GtkToggleButton

Figure 4-8. An example application using .gtkrc

If you would like to explore the standard styles available to all widgets in RC files, you
should read Appendix C. This section will teach you how to apply those styles in your own
applications.

Styles can be applied by the widget type with the class directive as shown in the preceding
example. In this example, the buttons style is applied to all Gtk*Button* widgets, where the
asterisk is used as a wildcard. This is applied to every widget in the application that has a
matching class name.

class "Gtk*Button" style "buttons"

The second method for applying a widget style is based on a hierarchy pattern with the
widget directive. This example applies the stylename style to all direct and indirect children of
widgetname that are of the type GtkButton.

widget "widgetname.*.GtkButton" style "stylename"

In addition to the asterisk wildcard that matches zero or more of any character, you can
use a question mark wildcard to match one or more of any character. Also, widget hierarchy is
shown by using a period, where the widget to the right of the period is the child of the widget to
the left.

The problem with the widget directive is that if a name is specified for the widget, it must
be used instead of the class name. If you only want to use widget classes, you can use the
widget class directive. This allows you to ignore all widget names and apply a style to all wid-
gets that follow the specified pattern.

CHAPTER 4 BASIC WIDGETS

widget class "GtkWindow.*.GtkLabel" style "stylename"

In addition to basic style directives, the following list shows other top-level directives sup-
ported in RC files:

¢ include: Include another resource file. You can specify either an absolute or relative
filename.

e module path: Alist of paths separated by colons that will be searched for theme engines
referenced by the RC file.

e *pixmap path: Alist of paths separated by colons that will be searched for theme engines
referenced by the RC file.

Ifyou are planning on using RC files in an application, you should make sure to provide an
example file to the user. You can use the pound (#) symbol to add comments to an RC file to
give the user help in editing the content.

This section only gave you a very basic introduction to RC files. For more information, you
should reference Appendix C. There are also a lot of resources for learning about RC files and
themes with GTK+ found at http://art.gnome.org.

Additional Buttons

While the GtkButton widget allows you to create your own custom buttons, GTK+ provides
three additional button widgets that are at your disposal: the color selection button, file
chooser button, and font selection button.

Each of the sections covering these three widgets will also cover other important concepts
such as the GdkColor structure, file filters, and Pango fonts. These concepts will be used in later
chapters, so it is a good idea to get a grasp of them now.

Color Buttons

The GtkColorButton widget provides a simple way for you to allow your users to select a specific
color. These colors can be specified as six-digit hexadecimal values or the RGB value. The color
button itself displays the selected color in a rectangular block set as the child widget of the but-
ton. An example of this can be viewed in Figure 4-9.

97

98 CHAPTER 4 BASIC WIDGETS

v [cColor Button | — 0O X

BEE | Look at my color!

-

m Select a Color | 3%

Hue: |210|§| Red: IO EI
Saturation: IlOOEI Green: |51 EI
Value: |40 EI Blue: |102 EI

Color name: |#003366

\
N |

& Cancel

Figure 4-9. A color selection dialog

A GtkColorButton Example

When clicked, the color button opens a dialog that allows the user to enter in the color value or
browse for a choice on the color wheel. The color wheel is provided so the user is not required
to know the numeric values of the colors. Listing 4-9 shows how to use the GtkColorButton wid-
get in an application.

Listing 4-9. Color Buttons and GdkColors (colorbuttons.c)

#include <gtk/gtk.h>
static void color changed (GtkColorButton*, GtkWidget*);

int main (int argc,
char *argv[])
{
GtkWidget *window, *button, *label, *hbox;
GdkColor color;

gtk_init (8argc, &argv);

CHAPTER 4 BASIC WIDGETS

window = gtk window new (GTK WINDOW TOPLEVEL);
gtk window set title (GTK _WINDOW (window), "Color Button");
gtk _container set border width (GTK_CONTAINER (window), 10);

/* Set the initial color as #003366 and set the dialog title. */

gdk _color parse ("#003366", &color);

button = gtk color button new with color (&color);

gtk _color button set title (GTK _COLOR BUTTON (button), "Select a Color");

label = gtk label new ("Look at my color!");
gtk widget modify fg (label, GTK STATE NORMAL, &color);

g signal connect (G OBJECT (button), "color set",
G _CALLBACK (color changed),
(gpointer) label);

hbox = gtk _hbox new (FALSE, 5);
gtk _box_pack_start defaults (GTK BOX (hbox), button);
gtk box_pack start defaults (GTK BOX (hbox), label);

gtk_container add (GTK CONTAINER (window), hbox);
gtk widget show all (window);

gtk _main ();
return O;

}

/* Retrieve the selected color and set it as the GtklLabel's foreground color.

static void
color changed (GtkColorButton *button,
GtkWwidget *label)
{
GdkColor color;
gtk _color button get color (button, &color);
gtk widget modify fg (label, GTK STATE NORMAL, &color);

}

In most cases, you will want to create a GtkColorButton with an initial color value, which is
done by specifying a GdkColor object to gtk _color button new with color().The default

color, if none is provided, is opaque black with the alpha option disabled.

*/

99

100

CHAPTER 4 BASIC WIDGETS

Storing Colors in GdkColor

GdkColor is a structure that stores red, green, and blue values for a color as shown in the follow-
ing code snippet. The pixel object automatically stores the index of the color when it is
allocated in a color map, so there is usually no need for you to alter this value.

struct GdkColor
{
guint32 pixel;
guint16 red;
guint16 green;
guint16 blue;
};

After creating a new GdkColor object, if you already know the red, green, and blue values of
the color, you can specify them in the following manner. Red, green, and blue values are stored
as unsigned integer values ranging from 0 to 65,535, where 65,535 indicates full color intensity.
For example, the following color refers to white:

color.red = 65535;
color.green = 65535;
color.blue = 65535;

In most cases, you will be more familiar with the six-digit hexadecimal value for the color,
such as #FFFFFF that refers to the color white. Therefore, GDK provides gdk_color_parse(),
which parses the hexadecimal color into the correct RGB values. This function was used in
Listing 4-9.

gboolean gdk color parse (const gchar *color string,
GdkColor *color);

Using the Color Button

After setting your initial color, you can choose the title that will be given to the color selection
dialog with gtk_color button set title().By default, the title is “Pick a Color”, so it is not
necessary to set this value if you are content with this title.

void gtk color button set title (GtkColorButton *button,
const gchar *title);

The color selection dialog, covered in the next chapter in more detail, is shown when the
user clicks the button. It allows the user to change the selected color. You can view the color
selection dialog in Figure 4-9.

When the color value is changed, the color-set signal is emitted for the widget. In Listing 4-5,
the signal is caught and the foreground color of a GtkLabel changed with gtk widget modify fg()
as follows:

gtk _color button get color (button, &color);
gtk widget modify fg (label, GTK STATE NORMAL, &color);

CHAPTER 4 BASIC WIDGETS

In Listing 4-9, the foreground color was set in the normal widget state, which is what state
all labels will be in, by and large, unless they are selectable. There are five options for the
GtkStateType enumeration that can be used in gtk_widget modify fg(), which were presented
in the “Widget Styles” section. You can reset the widget’s foreground color to the default value
by passing a NULL color.

File Chooser Buttons

The GtkFileChooserButton widget provides an easy method for you to ask users to choose a file
or a folder. It implements the functionality of the GtkFileChooser interface, the file selection
framework provided by GTK+. Figure 4-10 shows a file chooser button set to select a folder and
a button set to select a file.

- m File Chooser Button [N m b4

(.| File System

-

" minix_stagel_5 ’B

{lib/grub/i386-pc/minix_stagel_5

Figure 4-10. File chooser buttons

When the user clicks a GtkFileChooserButton, an instance of GtkFileChooserDialog is
opened that allows the user to browse and select one file or one folder, depending on the type
of button you created.

Note You will not learn how to use the GtkFileChooserDialog widget until Chapter 5, but you do not
need to directly interface with it at this point, because GtkFileChooserButton will handle all interactions
with the dialog.

A GtkFileChooserButton Example

You are able to change basic settings such as the currently selected file, the current folder, and
the title of the file selection window. Listing 4-10 shows you how to use both types of file
chooser buttons.

101

102

CHAPTER 4 BASIC WIDGETS

Listing 4-10. Using the File Chooser Button (filechooserbuttons.c)

#include <gtk/gtk.h>

static void folder changed (GtkFileChooser*, GtkFileChooser*);
static void file changed (GtkFileChooser*, GtklLabel*);

int main (int argc,
char *argv[])
{
GtkWidget *window, *chooseri, *chooser2, label, *vbox;
GtkFileFilter *filter;

gtk_init (8argc, &argv);

window = gtk window new (GTK WINDOW TOPLEVEL);
gtk window_set title (GTK WINDOW (window), "File Chooser Button");
gtk _container_set border width (GTK_CONTAINER (window), 10);

label = gtk label new ("");

/* Create two buttons, one to select a folder and one to select a file. */
chooser1 = gtk file chooser button new ("Chooser a Folder",
GTK_FILE CHOOSER ACTION SELECT FOLDER);
chooser2 = gtk file chooser button new ("Chooser a Folder",
GTK_FILE_CHOOSER ACTION OPEN);

/* Monitor when the selected folder or file are changed. */
g signal connect (G OBJECT (chooser1), "selection changed",
G_CALLBACK (folder changed),
(gpointer) chooser2);
g signal connect (G OBJECT (chooser2), "selection changed",
G _CALLBACK (file changed),
(gpointer) label);

/* Set both file chooser buttons to the location of the user's home directory.
gtk _file chooser set current folder (GTK _FILE CHOOSER (chooseri),

g get home dir());
gtk file chooser set current folder (GTK _FILE CHOOSER (chooser2),

g get home dir());

*/

CHAPTER 4 BASIC WIDGETS 103

/* Provide a filter to show all files and one to show only 3 types of images. */
filter1 = gtk file filter new ();

filter2 = gtk file filter new ();

gtk _file filter set name (filter1i, "Image Files");

gtk _file filter set name (filter2, "All Files");

gtk _file filter add pattern (filter1, "*.png");

gtk file filter add pattern (filteri, "*.jpg");

gtk file filter add pattern (filteri, "*.gif");

gtk file filter add pattern (filter2, "*");

/* Add both the filters to the file chooser button that selects files. */
gtk _file chooser add filter (GTK FILE CHOOSER (chooser2), filteri);
gtk _file chooser add filter (GTK FILE CHOOSER (chooser2), filter2);

vbox = gtk vbox _new (FALSE, 5);

gtk box_pack start defaults (GTK BOX (vbox), chooseri);
gtk box_pack start defaults (GTK BOX (vbox), chooser2);
gtk box_pack start defaults (GTK BOX (vbox), label);

gtk _container add (GTK CONTAINER (window), vbox);
gtk widget show all (window);

gtk _main ();
return O;

}

/* When a folder is selected, use that as the new location of the other chooser. */
static void
folder changed (GtkFileChooser *chooseri,
GtkFileChooser *chooser2)
{
gchar *folder = gtk file chooser get filename (GTK FILE CHOOSER (chooser1));
gtk _file chooser set current folder (GTK FILE CHOOSER (chooser2), folder);

}

/* When a file is selected, display the full path in the GtkLabel widget. */
static void
file changed (GtkFileChooser *chooser2,
GtkLabel *1label)
{
gchar *file = gtk file chooser get filename (GTK _FILE CHOOSER (chooser2));
gtk label set text (label, file);

}

104

CHAPTER 4 BASIC WIDGETS

File chooser button widgets are created with gtk file chooser button new().This widget
is able to serve two purposes: selecting a single file or a single folder. There are four types of file
choosers that can be created (the remaining two are covered in Chapter 5), but file chooser
buttons support only GTK_FILE CHOOSER_ACTION OPEN and GTK FILE CHOOSER ACTION SELECT
FOLDER.

e GTK _FILE CHOOSER ACTION OPEN: The user will be able to select a single file that already
exists on the system. You are able to provide filters to this type of action so that only spe-
cific file patterns are shown to the user.

e GTK _FILE CHOOSER ACTION SELECT FOLDER: The user will be able to select a single folder
that already exists on the system.

The other parameter in gtk _file chooser button new() allows you to set the title of the
file chooser dialog that is shown when the user clicks the button. By default, the title is “Select
A File,” so you will want to make sure to reset the title if you use GTK_FILE CHOOSER ACTION
SELECT_FOLDER.

GtkFileChooser

The GtkFileChooserButton widget is an implementation of the functionality provided by the
GtkFileChooser interface. This means that, while the button is not derived from GtkFileChooser,
it can be treated as a file chooser if you cast it with GTK_FILE_CHOOSER (). You will notice that quite
a few of the functions in Listing 4-10 utilize functions provided by GtkFileChooser.

InListing 4-10, gtk_file chooser_set_current_folder() was used to set the current folder
of each file chooser button to the user’s home directory. The contents of this folder will be
shown when the user initially clicks a file chooser button unless it is changed through some
other means. This function will return TRUE if the folder was successfully changed.

gboolean gtk file chooser set current folder (GtkFileChooser *chooser,
const gchar *filename);

The g_get_home_dir() function is a utility function provided by GLib that returns the cur-
rent user’s home directory. As with most features in GLib, this function is cross platform.

This brings up a useful characteristic of the file chooser interface; it can be used to browse
many types of file structures, whether it is on a UNIX or Windows machine. This is especially
useful if you want your application to be compiled for multiple operating systems.

Since the file chooser button only allows one file to be selected at a time, you can use
gtk _file chooser get filename() to retrieve the currently selected file or folder, depending
on the type of file chooser button. If no file is selected, this function will return NULL. The
returned string should be freed with g_free() when you are finished with it.

gchar* gtk file chooser get filename (GtkFileChooser *chooser);

At this point, you have enough information about the GtkFileChooser interface to imple-
ment file chooser buttons. GtkFileChooser will be covered in more depth in the next chapter
when you learn about the GtkFileChooserDialog widget.

CHAPTER 4 BASIC WIDGETS 105

File Filters

GtkFileFilter objects allow you to restrict the files shown in the file chooser. For example, in
Listing 4-10, only PNG, JPG, and GIF files could be viewed and chosen by the user when the
Image Files filter was selected.

File filters are created with gtk_file filter new(). Therefore, you need to use
gtk _file filter set name() to set a displayed name for the filter type. If you provide more
than one filter, this name will allow the user to switch between them.

GtkFileFilter* gtk file filter new ();
void gtk _file filter set name (GtkFileFilter *filter,
const gchar *name);

Lastly, for a filter to be complete you need to add types of files to show. The standard way
of doing this is with gtk_file filter add_pattern() as shown in the following code snippet.
This function allows you to specify a format for the filenames that are to be shown. Usually
identifying file extensions that should be shown does this. You can use the asterisk character as
awildcard for any type of filtering function.

void gtk file filter add pattern (GtkFileFilter *filter,
const gchar *pattern);

Tip Asin Listing 4-10, you may want to provide an A11 Files filter that shows every file in the directory.
To do this, you should create a filter with only one pattern set to the wildcard character. If you do not provide
this filter, the user will never be able to view any files that do not match a pattern provided by another filter.

You can also specify filter patterns with gtk _file filter add mime_ type() by specifying
the Multipurpose Internet Mail Extensions (MIME) type. For example, image/* will show all
files that are an image MIME type. The problem with this function is that you need to be famil-
iar with MIME types. However, the advantage of using MIME types is that you do not need to
specify every file extension for a filter. It allows you to generalize to all files in a specific MIME
category.

void gtk file filter add mime type (GtkFileFilter *filter,
const char *mime_type);

After you create the filter, it needs to be added to the file chooser, which can be done with
gtk file chooser add filter().Once you supply the filters, the first specified filters will be
used by default in the file chooser. The user will be able to switch between types if you have
specified multiple filters.

void gtk file chooser add filter (GtkFileChooser *chooser,
GtkFileFilter *filter);

106

CHAPTER 4 BASIC WIDGETS

Font Buttons

GtkFontButton is another type of specialized button that allows the user to select font parame-
ters that correspond to fonts currently residing on the user’s system. Font options are chosen
in a font selection dialog that is displayed when the user clicks the button. These options
include the font name, style options, and font size. An example GtkFontButton widget is dis-
played in Figure 4-11.

- = Font Button | — & 3%

Samanata 14 |

Font: Samanata 14

Figure 4-11. Font selection buttons

Font button widgets are initialized with gtk_font_button_new_with_font(), which allows
you to specify the initial font. The font is provided as a string in the following format: Family
Style Size. Each of the parameters is optional; the default font for GtkFontButton is Sans 12,
which provides no style parameters.

“Family” refers to the formal font name such as "Sans", "Serif" or "Arial". Style options
can vary between fonts, but they normally include "Italic", "Bold" and "Bold Italic".Ifyou
choose a font style of Regular, no font style will be specified. The size is point size of the text to
be shown, such as "12" or "12.5".

A GtkFontButton Example

Listing 4-11 creates a GtkFontButton widget that is initialized with a font of "Sans Bold 12".
When the chosen font in the button is changed, the new font is applied to a GtkLabel widget
packed below the font button.

Listing 4-11. Using the Font Selection Button (fontbuttons.c)

#include <gtk/gtk.h>
static void font changed (GtkFontButton*, GtkWidget*);

int main (int argc,
char *argv[])

{
GtkWidget *window, *vbox, *button, *1label;
PangoFontDescription *initial font;

gtk_init (argc, &argv);

CHAPTER 4 BASIC WIDGETS 107

window = gtk window new (GTK WINDOW TOPLEVEL);
gtk window_set title (GTK_WINDOW (window), "Font Button");
gtk _container set border width (GTK_CONTAINER (window), 10);

label = gtk label new ("Look at the font!");
initial font = pango_font description from string ("Sans Bold 12");
gtk widget modify font (label, initial font);

/* Create a new font selection button with the given default font. */
button = gtk font button new with font ("Sans Bold 12");
gtk _font button set title (GTK _FONT BUTTON (button), "Choose a Font");

/* Monitor for changes to the font chosen in the font button. */
g signal connect (G OBJECT (button), "font set”,

G _CALLBACK (font_changed),

(gpointer) label);

vbox= gtk vbox new (FALSE, 5);
gtk _box_pack start defaults (GTK BOX (vbox), button);
gtk box_pack start defaults (GTK BOX (vbox), label);

gtk _container add (GTK CONTAINER (window), vbox);
gtk widget show all (window);

gtk _main ();
return O;

}

/* When the font is changed, display the font both as the text of a label and as
* the label's physical font. */
static void
font_changed (GtkFontButton *button,
Gtkwidget *1abel)

{

const gchar *font, buffer[512];

PangoFontDescription *desc;

font
desc

gtk font button get font name (button);
pango_font description from string (font);

g snprintf (buffer, sizeof (buffer), "Font: %s", font);
gtk label set text (GTK LABEL (label), buffer);
gtk widget modify font (label, desc);

108

CHAPTER 4 BASIC WIDGETS

Using Font Selection Buttons

The code in Listing 4-11 gives the first sampling of the PangoFontDescription type that you
have run across. The PangoFontDescription structure is used to parse font style strings. You
can create a new font description from a font string such as "Sans Bold 12" by calling
pango_font description from string() as follows:

initial font = pango_font_description_from_string ("Sans Bold 12");
gtk widget modify font (label, initial font);

After creating a font description, gtk_widget modify font() canbe called to set the font of
the widget’s text. This function will edit the font description object stored by the widget’s
GtkStyle property.

In Listing 4-11, the label’s text was set to the font stored by the GtkFontButton when the
font-set signal was emitted. You can retrieve the whole font description string stored by
the font button with gtk_font_button_get font name(), which was used to retrieve the font
string displayed by the label. The returned string should never be modified or freed.

const gchar* gtk font button get font name (GtkFontButton *button);

In Listing 4-11, the new font style was applied to the GtkLabel. However, if you set
gtk font button set use font() and gtk font button set use size() to TRUE, the font but-
ton will use the font family and size when rendering its text. This allows the user to preview the
text in the font button. This is turned off for font buttons by default.

void gtk_font button_set_use font (GtkFontButton *button,
gboolean use_font);

void gtk font button_set_use size (GtkFontButton *button,
gboolean use size);

Test Your Understanding

In this chapter, you learned about a number of basic widgets such as GtkEntry, GtkSpinButton,
and various types of toggles and buttons. In the following two exercises, you will be creating
two applications to practice using these widgets.

CHAPTER 4 BASIC WIDGETS

Exercise 4-1. Renaming Files

In this exercise, use a GtkFileChooserButton widget to allow the user to choose a file on the system. Next, use
a GtkEntry widget that allows the user to specify a new name for the file. (Note that you can find functions for the
file utilities required by this exercise in the GLib API documentation.)

If the file was successfully renamed, you should disable the GtkEntry widget and button until the user chooses
a new file. If the user does not have permission to rename the file that is selected, then the GtkEntry widget
and button should be set as insensitive as well. When you complete this exercise, you can find the solution in
Appendix F.

This exercise makes use of two widgets covered in this chapter: GtkEntry and
GtkFileChooserButton. It also requires you to use multiple utility functions provided by
GLib, including functions to rename a file and retrieve information about the permissions
of an existing file.

While you will not be learning about GLib until Chapter 6, you may also want to experi-
ment with some other file-related utility functions such as the ability to create directories,
change file permissions, and move throughout a directory structure. GLib provides a lot of
functionality, and it is worth your while to explore the API documentation in your free time.

Exercise 4-2. Spin Buttons and Scales

In this exercise, create three widgets: a spin button, a horizontal scale, and a check button. The spin button and
horizontal scale should be set with the same initial value and bounds. If the check button is selected, the two adjust-
ment widgets should be synchronized to the same value. This means that when the user changes the value of one
widget, the other will be changed to the same value.

Since both widgets support integers and floating-point numbers, you should implement this exercise with various
numbers of decimal places. You should also practice creating spin buttons and scales both with adjustments and
by using the convenience initializers.

109

110

CHAPTER 4 BASIC WIDGETS

Since there were a large number of widgets introduced in this chapter, the exercises do not
require you to use every one. However, after you have completed both exercises, you should
make sure that you understand each of the widgets covered thus far.

I encourage you to continue to experiment with these basic widgets, since you will use
many of them throughout the rest of this book and in your future applications. You should also
visit the API documentation to learn about features provided by these widgets that were not
covered in this chapter.

Summary

In this chapter, you have learned about the following nine new widgets that provide you with a
meaningful way to interact with your users:

* GtkToggleButton: A type of GtkButton widget that holds its active or inactive state after it
is clicked. It is shown as pressed down when it is active.

e GtkCheckButton: Derived from GtkToggleButton, this widget is drawn as a discrete toggle
next to the displayed text. This allows it to be differentiated from a GtkButton.

e GtkRadioButton: You can group multiple radio button widgets together so that only one
toggle can be activated at once.

e GtkEntry: This widget allows the user to enter free-form text on a single line. It also facil-
itates password entry.

e GtkSpinButton: Derived from GtkEntry, spin buttons allow the user to select or enter an
integer or floating-point number within a predefined range.

e GtkScale: Similar to the spin button, this widget allows the user to select an integer or
floating-point number by moving a vertical or horizontal slider.

* GtkColorButton: This special type of button allows the user to select a specific color
along with an optional alpha value.

e GtkFileChooserButton: This special type of button allows the user to select a single file or
folder that already exists on the system.

* GtkFontButton: This special type of button allows the user to select a font family, style,
and size.

In the next chapter, you will learn how to create your own custom dialogs using the
GtkDialog class and about a number of dialogs that are built into GTK+. By the end of Chapter 5,
you will have a decent grasp of the most important simple widgets available to you in GTK+.
From there, we will continue on to more complex topics.

CHAPTER 5

Dialogs

This chapter introduces you to a special type of window called a dialog. Dialogs are windows
that supplement the top-level window. The dialog is provided by GtkDialog, a child class of
GtkWindow, extended with additional functionality. This means it is possible to implement your
entire interface in one or more dialogs, while leaving the main window hidden.

You can do anything with a dialog, such as display a message or prompt the user to select
an option. Their purpose is to enhance user experience by providing some type of transient
functionality.

In the first part of the chapter, you will learn how to use GtkDialog to create your own
custom dialogs. The next section will introduce you to the large number of built-in dialogs pro-
vided by GTK+. Lastly, you will learn about a widget called GtkAssistant that allows you to
create dialogs with multiple pages; assistants are meant to help the user through a multistage
process.

In this chapter, you will learn the following:

* How to create your own custom dialogs using the GtkDialog widget

* How to give general information, error messages, and warnings to the user with the
GtkMessageDialog widget

* How to provide information about your application with GtkAboutDialog
* What types of file chooser dialogs are available
* The ways to collect information with font and color selection dialogs

* How to create dialogs with multiple pages using the GtkAssistant widget

Creating Your Own Dialogs

A dialog is a special type of GtkiWindow that is used to supplement the top-level window. It can
be used to give the user a message, retrieve information from the user, or provide some other
transient type of action.

Dialog widgets are split in half by a horizontal separator. The top part is where you place
the main part of the dialog’s user interface. The bottom half is called the action area, and it
holds a collection of buttons. When clicked, each button will emit a unique response identifier
that tells the programmer which button was clicked.

11

112

CHAPTER 5 DIALOGS

In most ways, the dialog widget can be treated as a window, because it is derived from the
GtkWindow class. However, when you have multiple windows, a parent-child relationship
should be established between the dialog and the top-level window when the dialog is meant
to supplement the top-level window.

typedef struct
{
GtkWidget *vbox;
GtkWidget *action_area;
} GtkDialog;

GtkDialog provides two public members that include a horizontal button box called the
action area and a vertical box. The action area holds all of the buttons along the bottom of the
dialog. You can manually add buttons to this with GtkHButtonBox, but you should usually use
the functions provided by GtkDialog for adding action area widgets.

Note Itis possible to manually implement the functionality of GtkDialog by creating a GtkiWindow with
all of the same widgets and establishing window relationships with gtk window set transient for()in
addition to other functions provided by GtkWindow. GtkDialog is simply a convenience widget that provides
standard methods.

Both the action area and a separator are packed at the end of the dialog’s vertical box. The
GtkVBox (vbox) is used to hold all of the dialog content. Because the action area is packed at the
end, you should use gtk _box pack start() or gtk box pack start defaults() to add widgets
to a GtkDialog as follows:

gtk box_pack start defaults (GTK BOX (dialog->vbox), child);

By packing widgets at the start of the box, the action area and the separator will always
remain at the bottom of the dialog.

Creating a Message Dialog

One advantage of GtkDialog is that, no matter how complex the content of your dialog is, the
same basic concepts can be applied to every dialog. To illustrate this, we will begin by creating
a very simple dialog that gives the user a message. Figure 5-1 is a screenshot of this dialog.

- m Information | 3%

0 The button was clicked!

f oK

Figure 5-1. A message dialog created programmatically

CHAPTER 5

DIALOGS 113

Listing 5-1 creates a simple dialog that notifies the user when the clicked signal is emitted
by the button. This functionality is provided by the GtkMessageDialog widget, which will be

covered in a later section of this chapter.

Listing 5-1. Your First Custom Dialog (dialogs.c)
#include <gtk/gtk.h>

static void button clicked (GtkButton*, GtkWindow*);

int main (int argc,
char *argv[])

{
GtkWidget *window, *button;

gtk_init (8argc, 8argv);

window = gtk window new (GTK WINDOW TOPLEVEL);
gtk window_set title (GTK WINDOW (window), "Dialogs");
gtk _container set border width (GTK _CONTAINER (window), 10);

button = gtk button new with mnemonic (" Click Me");

g signal connect (G OBJECT (button), "clicked",
G_CALLBACK (button clicked),
(gpointer) window);

gtk _container add (GTK CONTAINER (window), button);
gtk widget show all (window);

gtk _main ();
return O;

}

/* Create a new GtkDialog that will tell the user that the button was clicked.

static void
button clicked (GtkButton *button,
GtkWindow *parent)

{
GtkWidget *dialog, *label, *image, *hbox;

/* Create a new dialog with one OK button. */

dialog = gtk dialog new with buttons ("Information", parent,
GTK_DIALOG_MODAL,
GTK_STOCK_OK, GTK_RESPONSE OK,
NULL);

*/

114

CHAPTER 5 DIALOGS

gtk dialog set has separator (GTK DIALOG (dialog), FALSE);

label = gtk label new ("The button was clicked!");
image = gtk image new from stock (GTK STOCK DIALOG INFO,
GTK_ICON_SIZE DIALOG);

hbox = gtk hbox new (FALSE, 5);

gtk container set border width (GTK_CONTAINER (hbox), 10);
gtk box_pack start defaults (GTK BOX (hbox), image);

gtk box_pack start defaults (GTK BOX (hbox), label);

/* Pack the dialog content into the dialog's GtkVBox. */
gtk box_pack_start defaults (GTK BOX (GTK DIALOG (dialog)->vbox), hbox);
gtk widget show_all (dialog);

/* Create the dialog as modal and destroy it when a button is clicked. */
gtk _dialog run (GTK DIALOG (dialog));
gtk widget destroy (dialog);

Creating the Dialog

The first thing you need to do when the button in the main window is clicked is create the
GtkDialog widget with gtk_dialog_new_with_buttons(). The first two parameters of this func-
tion specify the title of the dialog and a pointer to the parent window.

GtkWidget* gtk dialog new with buttons (const gchar *title,
GtkWindow *parent,
GtkDialogFlags flags,
const gchar *first button_text,

K

The dialog will be set as the transient window of the parent window, which allows the win-
dow manager to center the dialog over the main window and keep it on top if necessary. This
can be achieved for arbitrary windows by calling gtk_window_set transient for().Youcan
also provide NULL if you do not want the dialog to have or recognize a parent window.

Next, you can specify one or more dialog flags. Options for this parameter are given by the
GtkDialogFlags enumeration. There are three available values, which are shown in the follow-
ing list:

e GTK_DIALOG_MODAL: Force the dialog to remain in focus on top of the parent window until

closed. The user will be prevented from interacting with the parent.

e GTK _DIALOG DESTROY_WITH_PARENT: Destroy the dialog when the parent is destroyed, but
do not force the dialog to be in focus. This will create a nonmodal dialog unless you call
gtk dialog run().

e GTK _DIALOG_NO_SEPARATOR: If set, a separator will not be placed between the action area
and the dialog content.

CHAPTER 5 DIALOGS 115

In Listing 5-1, specifying GTK_DIALOG_MODAL created a modal dialog. It is not necessary to
specify a title or parent window; the values can be set to NULL. However, you should always set
the title, so it can be drawn in the window manager. Otherwise, the user will have difficulties
choosing the desired window.

Lastly, a NULL-terminated list of action area buttons and their response identifiers should
be specified. In Listing 5-1, an OK button with a response of GTK_RESPONSE_OK was added to the
dialog.

Alternatively, you can create an empty dialog with gtk dialog new(), but in that case, you
will need to manually add buttons with gtk dialog add button() orgtk dialog add buttons().
In most cases, it is easier to create dialogs in the same manner as shown in Listing 5-1.

By default, all dialogs place a horizontal separator between the main content and the
action area of the dialog. However, in some cases, as shown in this example, it is desirable to
hide the separator. This can be done with gtk dialog set has separator().

void gtk dialog set has separator (GtkDialog *dialog,
gboolean has_separator);

After the child widgets are created, they need to be added to the dialog. As I previously
stated, child widgets are added to the dialog by calling gtk box_pack start defaults() or
gtk box_pack_start(). The dialog has a public member called vbox into which child widgets
are packed as follows:

gtk box_pack_start defaults (GTK BOX (GTK DIALOG (dialog)->vbox), hbox);
gtk widget show all (dialog);

At this point, you need to show the dialog and its child widgets, because gtk _dialog run()
will only call gtk widget show() on the dialog itself. To do this, call gtk widget show all() on
the dialog or its GtkVBox. If you do not show the widgets, only the separator and action area will
be visible when gtk dialog run() is called.

Response ldentifiers

When a dialog is fully constructed, one method of showing the dialog is by calling
gtk_dialog run(). This function will return an integer called a response identifier when
complete. It will also prevent the user from interacting with anything outside of the dialog
until it is destroyed or an action area button is clicked.

gint gtk_dialog run (GtkDialog *dialog);

Internally, gtk_dialog run() creates a new main loop for the dialog, which prevents you
from interacting with its parent window until a response identifier is emitted or the user closes
the dialog. Regardless of what dialog flags you set, the dialog will always be modal when you
call this function, because it calls gtk_window_set modal().

If the dialog is manually destroyed by using a method provided by the window manager,
GTK_RESPONSE_NONE is returned. Otherwise, gtk _dialog run() returns the response identifier
referring to the button that was clicked. A full list of available response identifiers from the
GtkResponseType enumeration is shown in Table 5-1. You should always use the identifier’s
preprocessor directive instead of random integer values, since they could change in future ver-
sions of GTK+.

116

CHAPTER 5 DIALOGS

Table 5-1. GtkResponseType Enumeration Values

Identifier Value Description

GTK_RESPONSE_NONE -1 The dialog was destroyed by the window manager or
programmatically destroyed with gtk _widget destroy().
This is also returned if a response widget does not have a
response identifier set.

GTK_RESPONSE_REJECT -2 This identifier is not associated with buttons in built-in
dialogs, but you are free to use it yourself.

GTK_RESPONSE_ACCEPT -3 This identifier is not associated with buttons in built-in
dialogs, but you are free to use it yourself.

GTK_RESPONSE DELETE_EVENT -4 Each dialog is automatically connected to the delete-
event signal. While gtk_dialog run() is running, this
identifier will be returned, and delete-event will be
stopped from destroying the window as usual.

GTK_RESPONSE_OK -5 A GTK_STOCK_OK button was clicked in a built-in dialog.
You are free to use this button or any of the following in
your own dialogs.

GTK_RESPONSE_CANCEL -6 A GTK_STOCK CANCEL button was clicked in a built-in
dialog.

GTK_RESPONSE_CLOSE -7 A GTK_STOCK_CLOSE button was clicked in a built-in dialog.

GTK_RESPONSE_YES -8 A GTK_STOCK_YES button was clicked in a built-in dialog.

GTK_RESPONSE_NO -9 A GTK_STOCK_NO button was clicked in a built-in dialog.

GTK_RESPONSE_APPLY -10 A GTK_STOCK_APPLY button was clicked in a built-in dialog.

GTK_RESPONSE_HELP -11 A GTK_STOCK_HELP button was clicked in a built-in dialog.

Of course, when you create your own dialogs and when using many of the built-in dialogs
that will be covered in the next few pages, you are free to choose which response identifier to
use. However, you should try to resist the urge to apply a GTK_RESPONSE_CANCEL identifier to an
OK button, or some other type of absurdity along those lines.

Note You are free to create your own response identifiers, but you should use positive numbers, since all
of the built-in identifiers are negative. This will allow you to avoid conflicts when more identifiers are added
in future versions of GTK+.

After the dialog returns a response identifier, you need to make sure to call
gtk widget destroy(), or it will cause a memory leak. GTK+ will make sure all of the
dialog’s children are destroyed, but you need to remember to initiate the process.

By calling gtk_widget_destroy(), all of the parent’s children will be destroyed and its
reference count will drop. When an object’s reference count reaches zero, the object is
finalized, and its memory freed.

CHAPTER 5 DIALOGS

The Gtkimage Widget

Listing 5-1 introduces another new widget called GtkImage. Images can be loaded in a wide vari-
ety of ways, but one advantage of GtkImage is that it will display the GTK_STOCK_MISSING IMAGE
icon if the loading has failed. It is also derived from GtkWidget, so it can be added as a child of a
container unlike other image objects, such as GdkPixbuf.

In our example, gtk_image new_from stock() created the GtkImage widget from a stock item.

GtkWidget* gtk image new from stock (const gchar *stock id,
GtkIconSize size);

When loading an image, you also need to specify a size for the image. GTK+ will automat-
ically look for a stock icon for the given size and resize the image to that size if none is found.
Available size parameters are specified by the GtkIconSize enumeration and can be viewed in
the following list:

e GTK_ICON_SIZE INVALID: Unspecified size

e GTK_ICON SIZE MENU: 16 x16 pixels

e GTK_ICON SIZE SMALL TOOLBAR: 18 x18 pixels
e GTK ICON_SIZE LARGE TOOLBAR: 24 x 24 pixels
e GTK_ICON SIZE BUTTON: 24 x 24 pixels

e GTK_ICON SIZE DND: 32 x 32 pixels

e GTK_ICON SIZE DIALOG: 48 x 48 pixels

Asyou can see, stock GtkImage objects are usually used for smaller images, such as those that
appear in buttons, menus, and dialogs, since stock images are provided in a discrete number of
standard sizes. In Listing 5-1, the image was set to GTK_ICON_SIZE DIALOG or 48 x 48 pixels.

Multiple initialization functions for GtkImage are provided, which can be viewed in the API
documentation, but gtk_image new from file() and gtk image new from pixbuf() are espe-
cially important to future examples in this book.

GtkWidget *gtk_image new from file (const gchar *filename);

GtkImage will automatically detect the image type of the file specified to gtk_image new_
from file().If the image cannot be loaded, it will display a broken-image icon. Therefore, this
function will never return a NULL object. GtkImage also supports animations that occur within
the image file.

Calling gtk_image new_from pixbuf() creates a new GtkImage widget out of a previously
initialized GdkPixbuf. Unlike gtk image new from file(), you can use this function to easily
figure out whether the image is successfully loaded since you first have to create a GdkPixbuf.

GtkWidget *gtk_image new_from pixbuf (GdkPixbuf *pixbuf);

You need to note that the GtkImage will create its own references to the GdkPixbuf, so you
will need to release your reference to the object if it should be destroyed with the GtkImage.

117

118

CHAPTER 5 DIALOGS

Nonmodal Message Dialog

By calling gtk _dialog run(), your dialog will always be set as modal, which is not always desir-
able. In order to create a nonmodal dialog, you need to connect to GtkDialog’s response signal.

In Listing 5-2, the message dialog from Figure 5-1 is reimplemented as a nonmodal dialog.
You should try clicking the button in the main window multiple times in a row. This will show
how you can not only create multiple instances of the same dialog but also access the main
window from a nonmodal dialog.

Listing 5-2. A Nonmodal Message Dialog (dialogs2.c)

static void
button clicked (GtkButton *button,
GtkWindow *parent)

{
GtkWidget *dialog, *label, *image, *hbox;

/* Create a nonmodal dialog with one OK button. */

dialog = gtk dialog new with buttons ("Information", parent,
GTK_DIALOG _DESTROY_WITH PARENT,
GTK_STOCK_OK, GTK_RESPONSE_OK,
NULL);

gtk dialog set has_separator (GTK DIALOG (dialog), FALSE);

label = gtk label new ("The button was clicked!");
image = gtk image new from stock (GTK_STOCK DIALOG INFO,
GTK_ICON_SIZE DIALOG);

hbox = gtk hbox new (FALSE, 5);

gtk _container_set border width (GTK_CONTAINER (hbox), 10);
gtk box_pack start defaults (GTK BOX (hbox), image);

gtk box_pack start defaults (GTK BOX (hbox), label);

gtk box_pack_start defaults (GTK BOX (GTK DIALOG (dialog)->vbox), hbox);
gtk widget show all (dialog);

/* Call gtk widget destroy() when the dialog emits the response signal. */
g signal connect (G OBJECT (dialog), "response",
G CALLBACK (gtk widget destroy), NULL);

Creating a nonmodal dialog is very similar to the previous example, except you do not
want to call gtk _dialog run(). By calling this function, a modal dialog is created by blocking
the parent window’s main loop regardless of the dialog flags.

CHAPTER 5 DIALOGS 119

Tip You can still create a modal dialog without using gtk_dialog run() by setting the GTK_DIALOG_ MODAL
flag. You can then connect to the response signal. This function simply provides a convenient way to create modal
dialogs and handle response identifiers within one function.

By connecting to GtkDialog’s response signal, you can wait for a response identifier to be
emitted. By using this method, the dialog will not automatically be unreferenced when a
response identifier is emitted. The response callback function receives the dialog, the response
identifier that was emitted, and the optional data parameter.

One of the most important decisions you have to make when designing a dialog is whether
it will be modal or nonmodal. As a rule of thumb, if the action needs to be completed before the
user can continue working with the application, the dialog should be modal. Examples of this
would be message dialogs, dialogs that ask the user a question, and dialogs to open a file.

If there is no reason why the user cannot continue working while the dialog is open, you
should use a nonmodal dialog. You also need to remember that multiple instances of non-
modal dialogs can be created unless you prevent this programmatically, so dialogs that must
have only one instance should be created as modal.

Another Dialog Example

Now that you have created a simple message dialog from scratch, it is time to produce a more
complex dialog. In Listing 5-3, a few pieces of basic information about the user are propagated
using GLib’s utility functions. A dialog, which is shown in Figure 5-2, allows you to edit each
piece of information.

- m Edit User Information |4

User Name: Iuser

Real Name: IAndrew Krause

Home Dir: Ifhomefuser

Host Name: Ichewy

VQI(& Cancel

Figure 5-2. A simple GtkDialog widget

This information is, of course, not actually changed within the user’s system; the new text
is simply output to the screen. This example illustrates the fact that, regardless of the complex-
ity of the dialog, the basic principles of how to handle response identifiers are still the only ones
that are necessary.

120 CHAPTER 5 DIALOGS

You could easily implement this as a nonmodal dialog as well, although this would not be
of much use since the dialog itself is the application’s top-level window.

Listing 5-3. Editing Information in a Dialog (dialogs3.c)
#include <gtk/gtk.h>

int main (int argc,
char *argv[])
{
GtkWidget *dialog, *table, *user, *real, *home, *host;
GtkWidget *1bl1, *1bl2, *1bl3, *1bl4;
gint result;

gtk_init (8argc, &argv);

dialog = gtk dialog new with buttons ("Edit User Information", NULL
GTK_DIALOG_MODAL,
GTK_STOCK_OK, GTK_RESPONSE OK,
GTK_STOCK_CANCEL, GTK RESPONSE_CANCEL,
NULL);

gtk dialog set default response (GTK DIALOG (dialog), GTK RESPONSE OK);

/* Create four entries that will tell the user what data to enter. */
1bl1 = gtk label new ("User Name:");
1bl2 = gtk label new ("Real Name:");
1b13 = gtk label new ("Home Dir:");
1bl4 = gtk label new ("Host Name:");

user = gtk entry new ();
real = gtk _entry new ();
home = gtk entry new ();
host = gtk entry new ();

/* Retrieve the user's information for the default values. */
gtk _entry set text (GTK_ENTRY (user), g get user name());
gtk _entry set text (GTK ENTRY (real), g get real name());
gtk _entry set text (GTK_ENTRY (home), g get home dir());
gtk _entry set text (GTK_ENTRY (host), g get host name());

table = gtk table new (4, 2, FALSE);

gtk table attach defaults (GTK TABLE (table), 1lbli, o, 1, 0, 1);
gtk table attach defaults (GTK TABLE (table), 1bl2, o, 1, 1, 2);
gtk table attach defaults (GTK TABLE (table), 1bl3, 0, 1, 2, 3);
gtk table attach defaults (GTK TABLE (table), 1bla, o, 1, 3, 4);

gtk table attach defaults (GTK TABLE (table), user,
gtk table attach defaults (GTK TABLE (table), real,
gtk table attach defaults (GTK TABLE (table)

gtk table attach defaults (GTK TABLE (table), host,

CHAPTER 5 DIALOGS 121

» 0, 1);
2);
» 3);
> 3, 4);

-

-
=
-

-

, home,

-
N

-

N e

-

gtk table set row spacings (GTK TABLE (table), 5);
gtk table set col spacings (GTK TABLE (table), 5);
gtk _container set border width (GTK _CONTAINER (table), 5);

gtk box_pack start defaults (GTK BOX (GTK DIALOG (dialog)->vbox), table);

gtk widget show all (dialog);

/* Run the dialog and output the data if the user clicks the OK button. */
result = gtk dialog run (GTK DIALOG (dialog));

if (result == GTK RESPONSE OK)

{

g print ("User Name: %s\n", gtk entry get text (GTK ENTRY (user)));
g print ("Real Name: %s\n", gtk entry get text (GTK ENTRY (real)));
g print ("Home Folder: %s\n", gtk entry get text (GTK_ENTRY (home)));
g print ("Host Name: %s\n", gtk entry get text (GTK ENTRY (host)));

}

gtk widget destroy (dialog);
return O;

}

The proper way to handle any modal dialog is to use the response identifiers, deriving the
correct response based on the clicked button. Since there was only one response that needed
to be deliberately detected, a conditional if statement was used in Listing 5-3.

However, let us assume that you need to handle multiple response identifiers. In this case,
a switch() statement would be a better solution, since it was created to compare a single vari-
able to multiple selections, as shown in the following code snippet.

result = gtk dialog run (GTK DIALOG (dialog));

switch (result)

{
case (GTK RESPONSE OK):

/* ... Handle the response ...

break;
case (GTK RESPONSE APPLY):

/* ... Handle the response ...

break;
default:
break;

}

gtk widget destroy (dialog);

*/

*/

122

CHAPTER 5 DIALOGS

Since the dialog will need to be destroyed in each case, you can break from the switch()
statement. If you only needed to check one case with a switch() statement, you could fall
through to the default case, which would be set to destroy the dialog no matter what response
identifier is emitted.

Built-in Dialogs

There are many types of dialogs already built into GTK+. Although not all of the available dia-
logs will be covered in this chapter, you will be given a strong understanding of the concepts
needed to use any built-in dialog. This section will cover GtkMessageDialog, GtkAboutDialog,
GtkFileChooserDialog, GtkFontSelectionDialog, and GtkColorSelectionDialog.

Message Dialogs

Message dialogs are used to give one of four types of informational messages: general informa-
tion, error messages, warnings, and questions. The type of dialog is used to decide the icon to
display, the title of the dialog, and the buttons to add.

There is also a general type provided that makes no assumption as to the content of the
message. In most cases, you will not want to use this, since the four provided types will fill most
of your needs.

It is very simple to re-create the GtkMessageDialog widget. The first two examples imple-
mented a simple message dialog, but GtkMessageDialog already provides this functionality, so
you should not need to re-create the widget. Using GtkMessageDialog saves on typing and
avoids the need to recreate this widget many times, since most applications make heavy use of
GtkMessageDialog. It also provides a uniform look for message dialogs across all GTK+
applications.

Figure 5-3 shows an example of a GtkMessageDialog (compare this to Figure 5-1) that is
being used to give the user visual notification of a button’s clicked signal.

- m Information [<

0 The button was clicked!

f oK

Figure 5-3. A GtkMessageDialog widget

Since the content of the message is not critical, its type is set to a general message. This
message dialog can be produced using the code shown in Listing 5-4.

CHAPTER 5 DIALOGS

Listing 5-4. Using a GtkMessageDialog (messagedialogs.c)
#include <gtk/gtk.h>

static void button clicked (GtkButton*, GtkWindow*);

int main (int argc,
char *argv[])

{
GtkWidget *window, *button;

gtk_init (8argc, 8argv);

window = gtk window new (GTK WINDOW TOPLEVEL);
gtk window_set title (GTK WINDOW (window), "Message Dialogs");
gtk _container set border width (GTK _CONTAINER (window), 10);

button = gtk button new with mnemonic (" Click Me");

g signal connect (G OBJECT (button), "clicked",
G _CALLBACK (button clicked),
(gpointer) window);

gtk _container add (GTK CONTAINER (window), button);
gtk widget show all (window);

gtk _main ();
return O;

}

/* Create a new message dialog that tells the user that the button was clicked.

static void
button clicked (GtkButton *button,
GtkWindow *parent)

{
GtkWidget *dialog;

dialog = gtk message dialog new (parent, GTK DIALOG MODAL,
GTK_MESSAGE_INFO, GTK BUTTONS OK,
"The button was clicked!");

gtk window set title (GTK WINDOW (dialog), "Information");

gtk dialog run (GTK DIALOG (dialog));
gtk widget destroy (dialog);
}

*/

123

124

CHAPTER 5 DIALOGS

After the button in the main window is clicked, this example creates a new GtkMessageDialog
with gtk_message dialog new(). The first parameter in this function is the dialog’s parent
GtkWindow.

The parent window can be set to NULL if necessary, but in most cases, a parent-child rela-
tionship should be established. If you do not set a parent widget, the message dialog will not be
centered above the parent window.

Message dialogs are meant to be addressed by the user immediately, because they present
some type of important message or critical question that needs the user’s attention. By not set-
ting a parent window, the message dialog can be easily ignored, which is not the desired action
in most cases.

GtkWidget* gtk message dialog new (GtkWindow *parent,
GtkDialogFlags flags,
GtkMessageType type,
GtkButtonsType buttons,
const gchar *message format,

eel);

Next, you can specify one or more dialog flags. Options for this parameter are given by the
GtkDialogFlags enumeration that was used when creating custom dialogs in the previous three
examples.

The third parameter of gtk_message dialog new() is used to specify what type of message
dialog you want to create. The title and image shown in the dialog are set based on the type you
choose. For instance, in Listing 5-4 a GTK_MESSAGE _INFO dialog was created. Therefore, a light-
bulb image (GTK_STOCK DIALOG_INFO) is placed in the dialog and the title is set to “Information”.
The five available types of messages from the GtkMessageType enumeration follow:

* GTK_MESSAGE_INFO: General message that provides information to the user.
e GTK_MESSAGE_WARNING: A warning that a nonfatal error has happened.

e GTK_MESSAGE QUESTION: Asks the user a question that requires a choice. You need to pro-
vide multiple buttons for this type of message.

e GTK_MESSAGE_ERROR: A warning that a fatal error has happened.

e GTK _MESSAGE_OTHER: Generic type of message that makes no assumptions as to the con-
tent of the message.

CHAPTER 5 DIALOGS 125

The next decision you need to make is what type of button or buttons will appear in the
dialog. This decision is based on the type of message dialog you have created. For example, if
you choose GTK_MESSAGE_QUESTION as the type, it is logical to choose either GTK_BUTTONS_YES NO
or GTK_BUTTONS_OK_CANCEL so that the user will be able to provide a response for the question. A
list of the six available GtkButtonsType values follows:

e GTK BUTTONS NONE: No buttons will be added.

GTK_BUTTONS_OK: Add the button GTK_STOCK_OK.

GTK_BUTTONS_CLOSE: Add the button GTK_STOCK_CLOSE.

GTK_BUTTONS_CANCEL: Add the button GTK_STOCK_CANCEL.

GTK_BUTTONS_YES_NO: Add the buttons GTK_STOCK_YES and GTK_STOCK_NO.

GTK_BUTTONS_OK_CANCEL: Add the buttons GTK_STOCK_OK and GTK_STOCK_CANCEL.

Note While dialog flags can be a bitwise list, in addition to many enumeration parameters in GTK+, it is
not possible to do the same with the buttons you choose for a GTK_MESSAGE_DIALOG. If you are not happy
with the available button selection, you can remove the buttons from the dialog’s GtkHButtonBox container
and add your own with the functions provided by GtkDialog.

The last parameter (or parameters depending on your needs) of gtk message dialog new() is
the message that will be displayed by the dialog. The string should be formatted similarly to those
supported by printf(). For more information on the available printf() options, you should refer-
ence your preferred C language manual or book.

You have no control over the visual formatting of the message provided to gtk _message
dialog_new().If you would like to use the Pango Text Markup Language to format the message
dialog’s text, you can use gtk message dialog new with markup() to create the dialog. This is
the same as creating the dialog with gtk _message dialog new() and setting its text with
gtk _message dialog set markup().

void gtk message dialog set format secondary text (GtkMessageDialog *dialog,
const gchar *message format,

eed);

126

CHAPTER 5 DIALOGS

It is possible to add a secondary text to the message dialog, which will cause the first mes-
sage to be set as bold with gtk _message dialog set format secondary text().The text string
provided to this function should be similar to the format supported by printf().

This feature is very useful, because it allows you to give a quick summary in the
primary text and go into detail with the secondary text. You can also set the markup of the
secondary text with gtk message dialog set format secondary markup().

The About Dialog

The GtkAboutDialog widget provides you with a simple way to provide the user with informa-
tion about an application. This dialog is usually displayed when the GTK_STOCK_ABOUT item in
the Help menu is chosen. However, since menus will not be covered until Chapter 9, our exam-
ple dialog will be used as the top-level window.

There are many types of information that can be shown with the GtkAboutDialog. These
include the name of the application, copyright, current version, license content, authors, doc-
umenters, artists, and translators. Because every application will not have all of these, every
property is optional. The main window displays only the basic information, which can be
viewed along with the author credits in Figure 5-4.

@ =mouctabowdios (DA mcedt B
E: Written byl Documented by|TransIated by
Author #1
Author #2
GTK.

Development

GtkAboutDialog 1.0

All About GtkAboutDialog
(C) 2007 Andrew Krause
http://book.andrewkrause.net

ggC[edits| License X Close |

Figure 5-4. An About dialog and author credits

By clicking the Credits button, the user will be presented with any authors, documenters,
translators, and artists that are provided. Each category of contributors is shown in a separate tab.

The License button will pop up a new dialog that shows the given license content.
Listing 5-5 is a simple example that shows you how to use every available property of the
GtkAboutDialog widget.

CHAPTER 5 DIALOGS 127

Listing 5-5. Using a GtkAboutDialog (aboutdialogs.c)
#include <gtk/gtk.h>

int main (int argc,
char *argv[])
{
GtkWidget *dialog;
GdkPixbuf *logo;
GError *error = NULL;

gtk_init (8argc, 8argv);

const gchar *authors[] = {
"Author #1",
"Author #2",
NULL

};

const gchar *documenters[] = {
"Documenter #1",
"Documenter #2",
NULL

};
dialog = gtk about dialog new ();

/* You should edit '/path/to/logo.png' to point to the location of logo.png
* from the chapter 5 source directory on your system. */
logo = gdk_pixbuf new from file ("/path/to/logo.png", &error);

/* Set the application logo or handle the error. */
if (error == NULL)
gtk about dialog set logo (GTK_ABOUT DIALOG (dialog), logo);
else
{
if (error->domain == GDK_PIXBUF ERROR)
g_print ("GdkPixbufError: %s\n", error->message);
else if (error->domain == G _FILE ERROR)
g_print ("GFileError: %s\n", error->message);
else
g print ("An error in the domain: %d has occurred!\n", error->domain);

g error free (error);

}

128

CHAPTER 5 DIALOGS

/* Set application data that will be displayed in the main dialog. */
gtk about dialog set name (GTK ABOUT DIALOG (dialog), "GtkAboutDialog");
gtk about dialog set version (GTK ABOUT DIALOG (dialog), "1.0");
gtk about dialog set copyright (GTK ABOUT DIALOG (dialog),

"(C) 2007 Andrew Krause");
gtk about dialog set comments (GTK ABOUT DIALOG (dialog),

"All About GtkAboutDialog");

/* Set the license text, which is usually loaded from a file. Also, set the
* web site address and label. */
gtk about dialog set license (GTK ABOUT DIALOG (dialog), "Free to alll");
gtk about dialog set website (GTK ABOUT DIALOG (dialog),
"http://book.andrewkrause.net");
gtk _about dialog set website label (GTK ABOUT DIALOG (dialog),
"book.andrewkrause.net");

/* Set the application authors, documenters and translators. */

gtk about dialog set authors (GTK ABOUT DIALOG (dialog), authors);

gtk _about dialog set documenters (GTK ABOUT DIALOG (dialog), documenters);

gtk about dialog set translator credits (GTK_ABOUT DIALOG (dialog),
"Translator #1\nTranslator #2");

gtk dialog run (GTK DIALOG (dialog));
gtk widget destroy (dialog);
return O;

}

Many properties are available for you to set when creating your own GtkAboutDialog
instance. Table 5-2 summarizes those options that were used in Listing 5-5. If the license is not
specified, the License button will not be visible. The Credits button will not be visible if there
are no credits.

Table 5-2. GtkAboutDialog Options

Option Description

Name The application’s name.

Version The current version of the application the user is running.

Copyright A short copyright string that should not span more than one or two lines.
Comments A short description of the application that should not span more than one

or two lines.

CHAPTER 5 DIALOGS 129

Option Description

License License information that is displayed in a secondary dialog. Setting this to
NULL hides the License button.

Web Site The homepage URL of the application.
Web Site Label Alabel that is displayed instead of the URL.

Authors A NULL-terminated array of authors who have contributed code to the
project.

Artists A NULL-terminated array of artists who have created graphics for the
project.

Documenters ANULL-terminated array of documenters who have written documentation.

Translator Credits A string that specifies the translator(s) of the current language.

Logo Usually loaded from a file, this GdkPixbuf object is the application’s logo.

Unlike author, artist, and documenter credits, the translator credits are only a single
string. The reason for this is because the translator string should be set to the person that trans-
lated the language currently in use. Internationalization and gettext are not topics for this
book. For more information, you should visit waw.gnu.org/software/gettext.

GdkPixbuf

GdkPixbuf is a class that contains information about an image stored in memory. It allows you
to build images manually by placing shapes or pixels or to load a prebuilt image from a file. The
latter is preferred in most cases, so that is what will be covered in this book.

Since GdkPixbuf is derived from GObject, it supports referencing. This means that the same
image can be used in multiple locations in a program by increasing the reference count with
g object_ref(). Dereferencing GdkPixbuf objects (pixbufs) is performed automatically in
almost all cases.

To load a pixbuf from a file, you can use gdk_pixbuf new from file(), which was used
in Listing 5-5. This function will load the image with an initial size set to the actual size of
the image.

GdkPixbuf* gdk pixbuf new from file (const char *filename,
GError **error);

After you load the image, you can resize it with gdk_pixbuf scale simple().This function
accepts the new size parameters of the GdkPixbuf and the interpolation mode to use for the
scaling.

GdkPixbuf* gdk pixbuf scale simple (const GdkPixbuf *src,
int destination width,
int destination_height,
GdkInterpType interpolation);

130 CHAPTER 5 DIALOGS

The four GdkInterpType modes follow:

e GDK_INTERP_NEAREST: Sampling is performed on the nearest neighboring pixel. This
mode is very fast, but it produces the lowest quality of scaling. It should never be used for
scaling an image to a smaller size!

e GDK_INTERP_TILES: This mode renders every pixel as a shape of color and uses anti-
aliasing for the edges. This is similar to using GDK_INTERP_NEAREST for making an image
larger or GDK_INTERP_BILINEAR for reducing its size.

e GDK_INTERP_BILINEAR: This mode is the best mode for resizing images in both directions,
because it has a balance between its speed and the quality of the image.

e GDK_INTERP_HYPER: While it is very high quality, this method is also very slow. It should
only be used when speed is not a concern. Therefore, it should never be used for any
application that the user would expect a fast display time. For your convenience,
gtk _pixbuf new from file at size() can be used to resize the image to the new size
immediately after it is loaded from the file in one function call.

Many other features are provided in the GdkPixbuf library, but only a few of these will be
covered, as needed. For further information on GdkPixbuf, you should reference the API
documentation.

GError

Runtime errors are something that every programmer has to contend with. To make your life
easier, GLib provides a standard method for error propagation called the GError structure,
which follows:

struct GError

{
GQuark domain;
gchar *message;
gint code;

};

The GError structure contains three values. The domain is a group that encompasses simi-
lar types of errors. In Listing 5-5, we check for errors in the GDK_PIXBUF_ERROR and G_FILE_ERROR
domains.

Caution You may be tempted to check the domain of an error in a switch() statement. However, you
should not do so, because it will not work. The error domains are resolved at runtime, so this will not compile,
because case statements must already be determined at this time.

CHAPTER 5 DIALOGS

The message is a human-readable string that describes the specific error that has occurred.
If the error requires you to give visual feedback to the user, this message should be used. This
string is freed when you call g_error free().

The last element, code, is an error code that falls under the specified domain. For example,
Table 5-3 shows the six types of errors that can occur under the GDK_PIXBUF_ERROR domain. This
is a full list of possible errors, but not all of the errors can occur in every GdkPixbuf function.

Table 5-3. GdkPixbufError Enumeration Values

Error Value Description

GDK_PIXBUF_ERROR_CORRUPT IMAGE The image file is broken in some way.
GDK_PIXBUF_ERROR_INSUFFICIENT MEMORY Not enough memory is available to store the image.

GDK_PIXBUF_ERROR_BAD_OPTION A bad option was passed. This error can occur
while saving an image.

GDK_PIXBUF_ERROR_UNKNOWN_TYPE GdkPixbuf was unable to detect the image type.

GDK_PIXBUF_ERROR_UNSUPPORTED OPERATION GdkPixbuf does not know how to perform the
operation on the specified image.

GDK_PIXBUF_ERROR_FAILED A generic failure code for all other errors.

GLib uses a standard type of naming for error elements. The error domain is always for-
matted <NAMESPACE> <MODULE>_ERROR, where the namespace is the library containing the
function and the module is the widget or object type.

Appending the error type to the end of the domain’s name creates the error code. Every
error code enumeration also includes <NAMESPACE> <MODULE>_ ERROR_FAILED, a generic fail code
called. This will be returned if a specific error is not available.

If you are checking error codes, you should pick and choose the most likely to occur,
because checking every error type is neither efficient nor sensible. You should only check the
types of errors that you can recover from. In all other cases, the human-readable message is
provided for more precise user feedback.

There is one pitfall with the GError structure called piling up. If you use the same GError
structure in two consecutive functions, the second error will replace the first. The original error
will be forever lost.

To prevent this problem, you should handle errors immediately after the first function call.
Then use g_clear_error() to reset the GError structure values to their initial states. At that
point, you can reuse the GError structure for the next function.

if (error &% * error)

{

g _error free (*error);
*error = NULL;

}

131

132

CHAPTER 5 DIALOGS

You should note that g_clear error() is simply a convenience function, which performs
the functionality shown in the preceding code snippet. If the error is set, call g_error free(),
which frees first the message string and then the slice allocated by the GError object. It then
points the error to NULL.

A complete list of error domains in GTK+ and its supporting libraries, along with the cor-
responding error types, can be found in Appendix E.

File Chooser Dialogs

In the last chapter, you learned about GtkFileChooser and the GtkFileChooserButton widget.
Recall that GtkFileChooser is not a widget, but an interface. Interfaces differ from classes,
because you cannot derive from them, and they do not implement the functionality they
declare.

GTK+ provides the following three widgets that implement the GtkFileChooser interface:

¢ GtkFileChooserButton: The file chooser button was covered in the previous chapter. It
allows the user to choose one file or folder by displaying a GtkFileChooser dialog when
clicked.

e GtkFileChooserDialog: This widget is simply a dialog that uses a GtkFileChooserhWidget
as its child. Since it implements the GtkFileChooser interface, you do not ever have to
directly access its child widget.

e GtkFileChooserWidget: This is the actual widget that allows the user to choose a file or
folder. It can also facilitate the creation of a folder or saving of a file. When you use a
GtkFileChooserDialog, you are actually using a file chooser widget packed into a
GtkDialog.

You have already learned about GtkFileChooserButton and have used a file chooser to
open one file and to select a directory. There are three other abilities provided by the file
chooser widget. In the next three examples, you will learn how to use a file chooser dialog to
save a file, create a directory, and choose multiple files.

Saving Files

Figure 5-5 shows a GtkFileChooserDialog widget that is being used to save a file. You will notice
that it is similar to the next two figures as well, because all types of file chooser dialogs have a
consistent look so that it is minimally confusing to new users and maximally efficient to all. The
widget also uses the same code to implement each dialog type to minimize the amount of nec-
essary code.

CHAPTER 5 DIALOGS 133

- JSave a File | = & 2%

[home/user/newfile.ext | ‘

i T O .
Name: |newfile.exﬂ
Save in folder: [T Jchapter_5 |v|

P Browse for other folders

X Qancel| Eiave |

Figure 5-5. A file chooser dialog for saving

File chooser dialogs are used in the same way as the previous two dialogs covered in this
chapter, except you need to handle the response code returned by gtk _dialog new(). Listing 5-6
allows the user to choose a file name and sets the button’s text to that file name if the correct
response identifier is returned.

Listing 5-6. Using a GtkFileChooserDialog to Save a File (savefile.c)
#include <gtk/gtk.h>
static void button clicked (GtkButton*, GtkWindow*);
int main (int argc,
char *argv[])
{
GtkWidget *window, *button;
gtk_init (8argc, &argv);
window = gtk _window_new (GTK_WINDOW_TOPLEVEL);
gtk_window_set title (GTK_WINDOW (window), "Save a File");
gtk_container_set_border width (GTK_CONTAINER (window), 10);

gtk widget set size request (window, 200, 100);

button = gtk button new with label ("Save As ...");

134

CHAPTER 5 DIALOGS

g signal connect (G OBJECT (button), "clicked",
G _CALLBACK (button clicked),
(gpointer) window);

gtk container add (GTK_CONTAINER (window), button);
gtk widget show_all (window);

gtk _main ();
return O;

}

/* Allow the user to enter a new file name and location for the file and
* set the button to the text of the location. */
static void
button clicked (GtkButton *button,
GtkWindow *window)

{

GtkWidget *dialog;

gchar *filename;

dialog = gtk file chooser dialog new ("Save File As ...", window,
GTK_FILE CHOOSER ACTION SAVE,
GTK_STOCK_CANCEL, GTK RESPONSE_CANCEL,
GTK_STOCK_SAVE, GTK_RESPONSE_ACCEPT,
NULL);

gint result = gtk dialog run (GTK DIALOG (dialog));
if (result == GTK_RESPONSE_ACCEPT)

{
filename = gtk file chooser get filename (GTK FILE CHOOSER (dialog));

gtk button set label (button, filename);
}

gtk widget destroy (dialog);

CHAPTER 5 DIALOGS 135

All file chooser dialogs are created with the gtk _file chooser dialog new() regardless of
what options you choose. As with other dialogs, you begin by setting the title of the dialog and
the parent window. The parent window should always be set, because file chooser dialogs
should be modal.

Gtkwidget* gtk file chooser dialog new (const gchar *title,
GtkWindow *parent,
GtkFileChooserAction action,
const gchar *first button text,

eea);

Next, as with file chooser buttons, you have to choose the action of file chooser that will
be created. All four action types provided by the GtkFileChooser interface are available to
GtkFileChooserDialog. These can be viewed in the following list:

e GTK FILE CHOOSER ACTION SAVE:The user is prompted to enter a file name and browse
throughout the file system for a location. The returned file will be the chosen path with
the new file name appended to the end. GtkFileChooser provides methods that allow
you to ask for confirmation if the user enters a file name that already exists.

e GTK FILE CHOOSER ACTION OPEN: The file chooser will only allow the user to select one
or more files that already exist on the user’s system. The user will be able to browse
throughout the file system or choose a bookmarked location.

e GTK FILE CHOOSER ACTION SELECT FOLDER: The file chooser will only allow the user to
select a folder that already exists. Since the user can only select a folder, other files on the
file system will not be displayed.

e GTK FILE CHOOSER ACTION CREATE_FOLDER: This is very similar to the save action, because
it allows the user to choose a location and specify a new folder name. The user can enter
anew folder name that will be created when the file chooser returns or click the Create
Folder button, shown in Figure 5-6, which will create a new folder in the current
directory.

Lastly, you have to provide a NULL-terminated list of buttons along with their response identifi-
ers that will be added to the action area. In Listing 5-6, when the Cancel button is clicked,
GTK_RESPONSE_CANCEL is emitted, and when the Save button is clicked, GTK_RESPONSE_ACCEPT is
emitted.

136 CHAPTER 5 DIALOGS

Creating a Folder

GTK+ allows you not only to select a folder but also to create a folder. A GtkFileChooserDialog
widget using this type can be seen in Figure 5-6, which is a screenshot of Listing 5-7.

- M Create a Folder ... [>

Name: |NewFoIderName

Create in folder ser Iv |

<> Browse for other folders

4 Iuser Create Folder

Places — |Name o | Modified |ﬂ
.AbiSuite 10/13/2006
Desktop .config 10/09/2006
() File System | B3 .gaim Today
() Windows : F .gconf Today
() Share F .gconfd Today
oo Add | - Bemovq B oftp 10/12/2006
| TP I Y Tardas: =]
¥ Cancel | VQK |

Figure 5-6. A file chooser dialog for creating a folder

The dialog in Listing 5-7 will handle creating the new folder when accepted by the user, so
you do not need to take any further action beyond destroying the dialog.

Listing 5-7. Using a GtkFileChooserDialog to Create a Folder (createfolder.c)

#include <gtk/gtk.h>

int main (int argc,
char *argv[])
{
GtkWidget *dialog;
gchar *filename;
gint result;

gtk_init (8argc, &argv);

CHAPTER 5 DIALOGS

/* Create a new GtkFileChooserDialog that will be used to create a new folder. */
dialog = gtk file chooser dialog new ("Create a Folder ...", NULL,
GTK_FILE CHOOSER ACTION CREATE FOLDER,
GTK_STOCK_CANCEL, GTK RESPONSE CANCEL,
GTK_STOCK_OK, GTK_RESPONSE OK,
NULL);

result = gtk dialog run (GTK DIALOG (dialog));

if (result == GTK RESPONSE OK)

{
filename = gtk file chooser get filename (GTK _FILE CHOOSER (dialog));
g print ("Creating directory: %s\n", filename);

}

gtk widget destroy (dialog);
return O;

}

The full folder name of the dialog can be retrieved by using the same function that
retrieved the file name in the previous example, gtk file chooser get filename().The stan-
dard GLib function g_mkdir() will create a folder in the specified location on all supported
operating systems.

Selecting Multiple Files

Figure 5-7 shows a standard file chooser dialog that will allow the user to choose a file. The
difference between GtkFileChooserDialog and GtkFileChooserButton using the GTK_FILE_
CHOOSER_ACTION_ OPEN type is that dialogs are capable of selecting multiple files while buttons
are restricted to one file.

- homelmuser

Places Name ~ | Modified =
I AbiSuite 10/13/2006

Desktop I .config 10/09/2006
() File System B .gaim Today
() Windows
() Share . I .gconfd Today
() usbdisk B oftp 10/12/2006
1 .gimp-2.2 Today
+Add | -BemoVE| D .ghome 10/11/2006

=

X Qancel| =open |

Figure 5-7. A file chooser dialog for selecting multiple files

137

138 CHAPTER 5 DIALOGS

Listing 5-8 shows you how to handle multiple file selections. It is very similar to single file
selections except for the fact that selections are returned in a singly linked list.

Listing 5-8. Using a GtkFileChooserDialog to Select Multiple Files (multiplefiles.c)

static void
button clicked (GtkButton *button,
GtkWindow *window)
{
GtkWidget *dialog;
GSList *filenames;

dialog = gtk file chooser dialog new ("Open File(s) ...", window,
GTK_FILE_CHOOSER ACTION OPEN,
GTK_STOCK_CANCEL, GTK_RESPONSE_ CANCEL,
GTK_STOCK_OPEN, GTK_RESPONSE_ACCEPT,
NULL);

/* Allow the user to choose more than one file at a time. */
gtk _file chooser set select multiple (GTK FILE CHOOSER (dialog), TRUE);

gint result

gtk dialog run (GTK DIALOG (dialog));

if (result =
{
filenames = gtk file chooser get filenames (GTK FILE CHOOSER (dialog));

GTK_RESPONSE_ACCEPT)

while (filenames != NULL)

{
gchar *file = (gchar*) filenames->data;
g print ("%s was selected.\n", file);
filenames = filenames->next;

}
}

gtk widget destroy (dialog);
}

The gtk _file chooser get filenames() function returns a new GLib data type called
GSList, a singly linked list. These are linked lists that can only iterate in one direction. Each ele-
ment in the list contains a piece of data and a link to the next element.

gchar *file = (gchar*) filenames->data;

CHAPTER 5 DIALOGS

Linked lists in GLib store data as gpointers, so that all types of data can be stored. Because
of this, data returned from g slist nth data() has to be cast as its original data type. The first
element in the list is indexed as zero.

The GSList structure also provides functions for retrieving the length, appending,
prepending, inserting, and removing elements. More information on singly and doubly linked
lists can be found in the next chapter.

Color Selection Dialogs

In the previous chapter, you learned about the GtkColorButton widget, which allowed the user
to select a color. After clicking that button, the user was presented with a dialog. Although not
specified at the time, that dialog was a GtkColorSelectionDialog widget.

Similar to GtkFileChooserDialog, the color selection dialog is actually a GtkDialog con-
tainer with a GtkColorSelection widget packed as its child widget. GtkColorSelection can
easily be used on its own. However, since a dialog is a natural way of presenting the widget,
GTK+ provides GtkColorSelectionDialog. A color selection dialog is shown in Figure 5-8.

- m Choose Color -- Modal [

Hue: IO EI Red: IO EI

. Saturation: IO EI Green: IO EI
Value: IO EI Blue: IO EI
Opacity: | BN |255

Color name: |#000000

] Help ¥ Cancel q/QK

Figure 5-8. A color selection dialog

Listing 5-9 contains a top-level window that has two buttons. When the first button is
clicked, a modal GtkColorSelectionDialog is created. The other button will create a nonmodal
GtkColorSelectionDialog. Each is used to choose global color and opacity values.

This example also loops through program arguments, setting the initial color value if pro-
vided. This allows you to pass an initial color when launching the application.

139

140

CHAPTER 5 DIALOGS

Listing 5-9. Using a GtkColorSelectionDialog (colorselection.c)

#include <gtk/gtk.h>

static
static
static
static

static
static

void run_color selection dialog (GtkButton*, GtkWindow*, gboolean);
void modal clicked (GtkButton*, GtkWindow*);

void nonmodal clicked (GtkButton*, GtkWindow*);

void dialog response (GtkDialog*, gint, gpointer);

GdkColor global color;
guint global alpha = 65535;

int main (int argc,

{

char *argv[])

GtkWidget *window, *hbox, *modal, *nonmodal;

gint

i

gtk_init (8argc, &argv);

/* Loop through the parameters.

for (i=1; i < argc; i++)

if

(gdk_color parse (argv[i], &global color))

break;

window = gtk window new (GTK WINDOW TOPLEVEL);

gtk window_set title (GTK WINDOW (window), "Color Selection Dialogs");
gtk container_set border width (GTK_CONTAINER (window), 10);

gtk widget set size request (window, 200, 75);

modal = gtk button new with label ("Modal");
nonmodal = gtk button new with label ("Non-Modal");

g signal connect (G OBJECT (modal), "clicked",

G CALLBACK (modal clicked),
(gpointer) window);

g signal connect (G OBJECT (nonmodal), "clicked",

hbox

G_CALLBACK (nonmodal clicked),
(gpointer) window);

= gtk _hbox_new (TRUE, 10);

gtk box_pack start defaults (GTK BOX (hbox), modal);
gtk box_pack start defaults (GTK BOX (hbox), nonmodal);

The first color name that is specified and
* successfully parsed, it will be used as the initial color of the selection.

*/

CHAPTER 5

gtk _container add (GvtTK CONTAINER (window), hbox);
gtk widget show all (window);

gtk _main ();
return O;

}

/* Create a new color selection dialog that is modal. */
static void
modal clicked (GtkButton *button,

GtkWindow *window)

{

run_color selection dialog (button, window, TRUE);

}

/* Create a new color selection dialog that is nonmodal. */
static void
nonmodal clicked (GtkButton *button,

GtkWindow *window)

{

run_color selection dialog (button, window, FALSE);

}

/* Create a new color selection dialog and allow the user to choose a color

* and an opacity value. */

static void

run_color selection dialog (GtkButton *button,
GtkWindow *window,
gboolean domodal)

GtkWidget *dialog, *colorsel;
gchar *title;

if (domodal)

title = "Choose Color -- Modal";
else

title = "Choose Color -- Non-Modal";

dialog = gtk color selection dialog new (title);
gtk window _set modal (GTK WINDOW (dialog), domodal);

colorsel = GTK COLOR_SELECTION DIALOG (dialog)->colorsel;

DIALOGS 141

gtk _color selection set has opacity control (GTK COLOR SELECTION (colorsel),

TRUE);

142 CHAPTER 5 DIALOGS

gtk color selection set current color (GTK COLOR _SELECTION (colorsel),
&global color);

gtk color selection set current alpha (GTK COLOR _SELECTION (colorsel),
global alpha);

g signal connect (G OBJECT (dialog), "response",
G _CALLBACK (dialog response), NULL);
gtk widget show_all (dialog);
}

/* Handle the response identifier from the assistant. Either tell the user to
* read the manual, retrieve the new color value or destroy the dialog. */
static void
dialog response (GtkDialog *dialog,

gint result,

gpointer data)

GtkWidget *colorsel;
GdkColor color = { 0, };
guint16 alpha = 0;

switch (result)

{

case GTK _RESPONSE HELP:
g print("Read the GTK+ API documentation.\n");
break;

case GTK_RESPONSE OK:
colorsel = GTK COLOR_SELECTION DIALOG (dialog)->colorsel;
alpha = gtk color selection get current alpha (GTK COLOR SELECTION (colorsel));
gtk color selection get current color (GTK COLOR _SELECTION (colorsel), &color);

g print ("#%04X%04X%04X%04X\n", color.red, color.green, color.blue, alpha);

global color = color;
global alpha = alpha;

default:
gtk widget destroy (GTK WIDGET(dialog));
}
}

CHAPTER 5 DIALOGS 143

The only function provided by the GtkColorSelectionDialog class is gtk color
selection_dialog new(), which will return a new color selection dialog with the specified title.

struct GtkColorSelectionDialog
{
GtkWidget *colorsel;
GtkWidget *ok button;
GtkWidget *cancel button;
GtkWidget *help button;

};

GtkColorSelectionDialog provides direct access to its four available child widgets. The
first, colorsel is the GtkColorSelection widget that facilitates color selection. The other three
are GTK_STOCK_OK, GTK_STOCK CANCEL, and GTK_STOCK_HELP buttons. By default, the Help button
is hidden. You can use gtk_widget show() to set it as visible.

As with Listing 5-2, this example connects to the response signal, which is used to receive
all of the response identifiers regardless of whether the dialog is modal or nonmodal. The dia-
log is set as modal or nonmodal with gtk window_set modal().

Listing 5-9 shows a fourth color property apart from its RGB values, its opacity (alpha value).
Ranging between 0 and 65,535, this value regulates how transparent the color will be drawn, where
0is fully transparent and 65,535 is opaque. By default, the opacity control is turned off within color
selection widgets. You can call the function gtk_color selection set has opacity control() to
enable the feature.

void gtk color selection set has opacity control (GtkColorSelection *colorsel,
gboolean has_opacity);

When opacity is turned on, the hexadecimal color value is sixteen digits long, four digits
for each of the values: red, green, blue, and alpha. The opacity is not stored in the GdkColor
structure, so you must use gtk _color selection get current alpha() to retrieve its value
from the color selection widget.

g print ("#%04X%04X%04X%04X\n", color.red, color.green, color.blue, alpha);

Font Selection Dialogs

The font selection dialog is a dialog that allows the user to select a font and is the dialog shown
when a GtkFontButton button is clicked. As with GtkColorSelectionDialog, direct access to the
action area buttons is provided through the GtkFontSelectionDialog structure. An example
font selection dialog can be viewed in Figure 5-9, which should look similar to the one you saw
in the last chapter.

144

CHAPTER 5 DIALOGS

Ml mcChooseaFont [P
Family: Style: Size:
>alem Regular = |14
Samanata .
Italic 11
Bold 12
Serif Bold Italic 13
Shado hd
q [wafl 14 |
Preview:

Foundations of GTK+ Development

& Cancel

f oK

Figure 5-9. A font selection dialog

Listing 5-10 uses GtkFontSelectionDialog as the top-level widget. You should note that
this dialog is used as a top-level window in this example, which is possible for any dialog. How-
ever, you should not get in the habit of doing this, because while it is possible, it is poor
programming practice.

Listing 5-10. Using GtkFontSelectionDialog (fontselection.c)
#include <gtk/gtk.h>

static void ok clicked (GtkButton*, GtkWidget*);
static void font dialog response (GtkFontSelectionDialog*, gint, gpointer);

int main (int argc,
char *argv[])

{
GtkWidget *dialog;

gtk_init (Rargc, &argv);

/* Use the font selection dialog as the top-level widget. */

dialog = gtk font selection dialog new ("Choose a Font");

gtk_font_selection dialog set font name (GTK_FONT SELECTION DIALOG (dialog),
"Sans Bold Italic 12");

CHAPTER 5 DIALOGS

gtk font selection dialog set preview text (GTK FONT SELECTION DIALOG (dialog),
"Foundations of GTK+ Development");

g signal connect (G OBJECT (dialog), "response”,
G _CALLBACK (font dialog response), NULL);

gtk widget show all (dialog);

gtk _main ();
return O;

}

/* If the user clicks "Apply", display the font, but do not destroy the dialog. If
* "OK" is pressed, display the font and destroy the dialog. Otherwise, just destroy
* the dialog. */
static void
font_dialog response (GtkFontSelectionDialog *dialog,
gint response,
gpointer data)

gchar *font;
GtkWidget *message;

switch (response)

{

case (GTK RESPONSE APPLY):

case (GTK RESPONSE OK):
font = gtk font selection dialog get font name (dialog);
message = gtk message dialog new (NULL, GTK DIALOG MODAL,

GTK_MESSAGE_INFO, GTK BUTTONS OK, font);

gtk window_set title (GTK WINDOW (message), "Selected Font");

gtk dialog run (GTK DIALOG (message));
gtk widget destroy (message);
g free (font);
break;
default:
gtk widget destroy (GTK WIDGET (dialog));
}

if (response == GTK_RESPONSE_OK)
gtk widget destroy (GTK WIDGET (dialog));

145

146

CHAPTER 5 DIALOGS

The font selection dialog initialization function, gtk_font selection dialog new(),
returns a new GtkFontSelectionDialog widget with the specified title.

struct GtkFontSelectionDialog
{
GtkWidget *ok button;
GtkWidget *apply button;
GtkWidget *cancel button;
};

The dialog itself contains three buttons: GTK_STOCK 0K, GTK_STOCK _APPLY, and
GTK_STOCK_CANCEL.

There is no need to create a modal dialog, because the font selection dialog is already the
top-level widget. Therefore, the dialog is connected to the response signal.

If the user clicks the OK button, the user is presented with the selected font, and the dialog
is destroyed. By clicking Apply, the selected font will be presented to the user, but the dialog is
not destroyed. This will allow you to apply the new font so the user can view the changes with-
out closing the dialog.

The font selection widget contains a GtkEntry widget that allows the user to preview the
font. By default, the preview text is set to “abcdefghijk ABCDEFGHIJK”. This is somewhat bor-
ing, so I decided to reset it to “Foundations of GTK+ Development,” the title of this book.

The last functions provided by GtkFontSelectionDialog allow you to set and retrieve the
current font string. The font string used by gtk_font _selection dialog set font name() and
gtk font selection dialog get font name() is in the same format that we parsed with
PangoFontDescription in the previous chapter.

Dialogs with Multiple Pages

With the release of GTK+ 2.10, a widget called GtkAssistant was introduced, which makes it
easier to create dialogs with multiple stages, because you do not have to programmatically cre-
ate the whole dialog. This allows you to split otherwise complex dialogs, into steps that guide
the user. This functionality is implemented in what are often referred to as wizards throughout
various applications.

- m GtkAssistant Example [= 8 X

Introduction

This is an example of a GtkAssistant. By
clicking the forward button, you can continue
to the next section!

X Cancel | ® Forward

Figure 5-10. The first page of a GtkAssistant widget

CHAPTER 5 DIALOGS

Figure 5-10 shows the first page of a simple GtkAssistant widget, which was created
using the code in Listing 5-11. This example begins by giving the user general information.
The next page will not allow the user to proceed until text is entered in a GtkEntry widget. The
third page will not allow the user to proceed until a GtkCheckButton button is activated. The
fourth page will not let you do anything until the progress bar is filled, and the last page gives
a summary of what has happened. This is the general flow that every GtkAssistant widget
should follow.

Listing 5-11. The GtkAssistant Widget (assistant.c)

#include <gtk/gtk.h>
#include <string.h>

static void entry changed (GtkEditable*, GtkAssistant*);
static void button toggled (GtkCheckButton*, GtkAssistant*);
static void button clicked (GtkButton*, GtkAssistant*);
static void assistant cancel (GtkAssistant*, gpointer);
static void assistant close (GtkAssistant*, gpointer);

typedef struct {
GtkWidget *widget;
gint index;
const gchar *title;
GtkAssistantPageType type;
gboolean complete;

} Pagelnfo;

int main (int argc,
char *argv[])
{
GtkWidget *assistant, *entry, *label, *button, *progress, *hbox;
guint i;
PageInfo page[5] = {

{ NULL, -1, "Introduction", GTK_ASSISTANT PAGE_INTRO, TRUE},

{ NULL, -1, NULL, GTK_ASSISTANT PAGE_CONTENT, FALSE},
{ NULL, -1, "Click the Check Button", GTK ASSISTANT PAGE CONTENT, FALSE},
{ NULL, -1, "Click the Button", GTK_ASSISTANT PAGE_PROGRESS, FALSE},
{ NULL, -1, "Confirmation", GTK_ASSISTANT PAGE_CONFIRM, TRUE},

};

gtk_init (8argc, 8argv);

147

148 CHAPTER 5 DIALOGS

/* Create a new assistant widget with no pages. */

assistant = gtk assistant new ();

gtk widget set size request (assistant, 450, 300);

gtk window_set title (GTK WINDOW (assistant), "GtkAssistant Example");

g signal connect (G OBJECT (assistant), "destroy",
G CALLBACK (gtk main quit), NULL);

page[0].widget = gtk label new ("This is an example of a GtkAssistant. By\n"\
"clicking the forward button, you can continue\n"\
"to the next section!");

page[1].widget = gtk hbox new (FALSE, 5);

page[2].widget = gtk check button new with label ("Click Me To Continue!");
page[3].widget = gtk alignment new (0.5, 0.5, 0.0, 0.0);

page[4].widget = gtk_label new ("Text has been entered in the label and the\n"\

"combo box is clicked. If you are done, then\n"\
"it is time to leave!");

/* Create the necessary widgets for the second page. */

label = gtk label new ("Your Name: ");

entry = gtk entry new ();

gtk box_pack start (GTK BOX (page[1].widget), label, FALSE, FALSE, 5);
gtk box_pack start (GTK BOX (page[1].widget), entry, FALSE, FALSE, 5);

/* Create the necessary widgets for the fourth page. The, Attach the progress bar
* to the GtkAlignment widget for later access.*/

button = gtk button new with label ("Click me!");

progress = gtk progress bar new ();

hbox = gtk hbox new (FALSE, 5);

gtk box_pack start (GTK BOX (hbox), progress, TRUE, FALSE, 5);

gtk box_pack_start (GTK BOX (hbox), button, FALSE, FALSE, 5);

gtk _container add (GTK_CONTAINER (page[3].widget), hbox);

g object set data (G OBJECT (page[3].widget), "pbar", (gpointer) progress);

/* Add five pages to the GtkAssistant dialog. */
for (i = 0; 1 < 5; i++)
{
page[i].index = gtk assistant append page (GTK ASSISTANT (assistant),
page[i].widget);
gtk assistant set page title (GTK ASSISTANT (assistant),
page[i].widget, page[i].title);
gtk assistant set page type (GTK ASSISTANT (assistant),
page[i].widget, page[i].type);

CHAPTER 5 DIALOGS 149

/* Set the introduction and conclusion pages as complete so they can be
* incremented or closed. */
gtk assistant _set page complete (GTK ASSISTANT (assistant),
page[i].widget, page[i].complete);
}

/* Update whether pages 2 through 4 are complete based upon whether there is
* text in the GtkEntry, the check button is active, or the progress bar
* is completely filled. */
g_signal connect (G_OBJECT (entry), "changed",
G _CALLBACK (entry changed), (gpointer) assistant);
g signal connect (G OBJECT (page[2].widget), "toggled",
G CALLBACK (button_toggled), (gpointer) assistant);
g signal connect (G OBJECT (button), "clicked",
G CALLBACK (button_clicked), (gpointer) assistant);

g signal connect (G OBJECT (assistant), "cancel",

G CALLBACK (assistant cancel), NULL);
g signal connect (G OBJECT (assistant), "close",

G CALLBACK (assistant close), NULL);

gtk widget show all (assistant);

gtk _main ();
return O;

}

/* If there is text in the GtkEntry, set the page as complete. Otherwise,
* stop the user from progressing the next page. */
static void
entry changed (GtkEditable *entry,
GtkAssistant *assistant)

{

const gchar *text = gtk entry get text (GTK_ENTRY (entry));

gint num = gtk assistant get current page (assistant);

GtkWidget *page = gtk assistant get nth page (assistant, num);

gtk assistant set page complete (assistant, page, (strlen (text) > 0));
}

/* If the check button is toggled, set the page as complete. Otherwise,
* stop the user from progressing the next page. */
static void
button toggled (GtkCheckButton *toggle,
GtkAssistant *assistant)

150

CHAPTER 5 DIALOGS

{
gboolean active = gtk toggle button get active (GTK TOGGLE BUTTON (toggle));
gtk assistant set page complete (assistant, GTK WIDGET (toggle), active);

}

/* Fill up the progress bar, 10% every second when the button is clicked. Then,
* set the page as complete when the progress bar is filled. */
static void
button clicked (GtkButton *button,
GtkAssistant *assistant)

{

GtkProgressBar *progress;

GtkWidget *page;

gdouble percent = 0.0;

gtk widget set sensitive (GTK WIDGET (button), FALSE);
page = gtk assistant get nth page (assistant, 3);
progress = GTK_PROGRESS BAR (g object get data (G OBJECT (page), "pbar"));

while (percent <= 100.0)

{
gchar *message = g strdup_printf ("%.0f%% Complete", percent);
gtk progress bar set fraction (progress, percent / 100.0);
gtk progress bar set text (progress, message);

while (gtk events pending ())
gtk _main_iteration ();

g usleep (500000);
percent += 5.0;

}

gtk assistant set page complete (assistant, page, TRUE);
}

/* If the dialog is cancelled, delete it from memory and then clean up after
* the Assistant structure. */
static void
assistant cancel (GtkAssistant *assistant,
gpointer data)

CHAPTER 5 DIALOGS 151

{
gtk widget destroy (GTK WIDGET (assistant));

}

/* This function is where you would apply the changes and destroy the assistant. */
static void
assistant close (GtkAssistant *assistant,
gpointer data)
{
g_print ("You would apply your changes now!\n");
gtk widget destroy (GTK WIDGET (assistant));

}

Creating GtkAssistant Pages

A GtkAssistant widget is a dialog with multiple pages, although it is actually not derived from
GtkDialog. By calling gtk assistant new(), you create a new GtkAssistant widget with no ini-
tial pages.

index = gtk _assistant append page (GTK_ASSISTANT (assistant), widget);

There is no actual page widget for assistants, because each page is actually a child
widget that is added with gtk_assistant prepend page(), gtk assistant append page(), or
gtk assistant_insert page(). Each of these functions accepts the child widget that is added
as the content of the page and returns the new page’s index. Each page has a number of prop-
erties that can be set, each of which is optional. A list of these options follows:

» Page title: Every page should have a title, so the user knows what it is for. Your first page
should be an introductory page that tells the user information about the assistant. The
last page must be a summary or confirmation page that makes sure the user is ready to
apply the previous changes.

* Header image: In the top panel, you can display an optional image to the left of the title.
This is often the application’s logo or an image that complements the assistant’s
purpose.

* Side image: This optional image is placed along the left side of the assistant beside the
main page content. It is meant to be used for aesthetic appeal.

» Page type: The page type must always be set, or it will default to GTK_ASSISTANT _
PAGE_CONTENT. The last page must always be a confirmation or summary page. You
should also make the first page an introductory page that gives the user information
about what task the assistant performs.

152

CHAPTER 5 DIALOGS

After you have set the page’s properties, you must choose what type of page it is. There are
five types of pages. The first page should always be GTK_ASSISTANT PAGE_INTRO. The last page
should always be GTK_ASSISTANT PAGE CONFIRM or GTK ASSISTANT PAGE SUMMARY—if your assis-
tant does not end with one of those two types of pages, it will not work correctly. All of the
available page types can be viewed in the following list:

GTK_ASSISTANT PAGE CONTENT: This type of page has general content, which means it will
be used for almost every page in the assistant. It should never be used for the last page in
an assistant.

GTK_ASSISTANT PAGE_INTRO: This type of page has introductory information for the user.
This should only be set for the first page in the assistant. While not required, introduc-
tory pages give the user direction and should be used in most assistants.

GTK_ASSISTANT PAGE_CONFIRM: The page allows the user to confirm or deny a set of
changes. This is usually used for changes that cannot be undone or may cause some-
thing to break if not set correctly. This should only be set for the last page of the assistant.

GTK_ASSISTANT PAGE SUMMARY: The page gives a summary of the changes that have
occurred. This should only be set for the last page of the assistant.

GTK_ASSISTANT PAGE PROGRESS: When a task takes a long time to complete, this will block
the assistant until the page is marked as complete. The difference between this page and
anormal content page is that all of the buttons are disabled and the user is prevented
from closing the assistant.

Caution If you do not set the last page type as GTK_ASSISTANT PAGE_CONFIRM or GTK_ASSISTANT
PAGE_SUMMARY, your application will abort with a GTK+ error when computing the last button state.

Since GtkAssistant is not derived from GtkDialog, you cannot use gtk_dialog run() (or
any other GtkDialog function) on this widget. Instead, the following four signals are provided
for you to handle button clicked signals:

apply: This signal is emitted when the Apply button or Forward button is clicked on any
assistant page.

cancel: This signal is emitted when the Cancel button is clicked on any assistant page.

close: This signal is emitted when the Close button or Apply button on the last page in
the assistant is clicked.

prepare: Before making a new page visible, this signal is emitted so that you can do any
preparation work before it is visible to the user.

You can connect to all GtkAssistant signals with g_signal connect() or any other signal
connection function provided by GLib. Excluding prepare, the callback functions for
GtkAssistant signals receive the assistant and the user data parameter. The callback function
for the prepare signal also accepts the child widget of the current page.

CHAPTER 5 DIALOGS 153

By default, every page is set as incomplete. You have to manually set each page as com-
plete when the time is right with gtk_assistant set page complete() or the GtkAssistant will
not be able to progress to the next page.

void gtk assistant set page complete (GtkAssistant *assistant,
GtkWidget *page,
gboolean complete);

On every page, a Cancel button is displayed in addition to a few others. On pages other
than the first one, a Back button is displayed that is always sensitive. This allows you to visit the
previously displayed page and make changes.

Note The page that is visited when the user clicks the Back button is not always the previous page
according to the page index. It is the previously displayed page, which may be different based on how you
defined the page flow of your assistant.

On every page except the last page, a Forward button is placed, which allows the user to
move to the next page. On the last page an Apply button is displayed that allows the user to
apply the changes. However, until the page is set as complete, the assistant will set the Forward
or Apply button as insensitive. This allows you to prevent the user from proceeding until some
action is taken.

In Listing 5-11, the first and last pages of the assistant were set as complete, because they
were merely informative pages. This is the case in most assistants since they should begin with
an introduction page and end with a confirmation or summary page.

The other two pages are where it becomes interesting. On the second page, we want to
make sure that the user cannot proceed until text is entered in the GtkEntry widget. It would
seem that that we should just check when text has been inserted and be done with it.

However, what happens if the user deletes all of the text? In this case, the forward button
should be disabled yet again. To handle both of these actions, you can use GtkEditable’s
changed signal. This will allow you to check the current state of the text in the entry upon every
change, as in Listing 5-11.

On the third page, we want to enable the forward button only when the check button is
active. To do this, we used the toggled signal of GtkToggleButton to check the current state of
the check button. Based on this state, the forward button’s sensitivity was set.

The fourth page has a type of GTK_ASSISTANT PAGE_PROGRESS, which disables all actions
until the page is set as complete. The user is instructed to click a button, which begins the pro-
cess of filling a GtkProgressBar widget 10 percent every second. When the progress bar is filled,
the page is set as complete.

GtkProgressBar

The GtkAssistant example introduced another new widget called GtkProgressBar. Progress
bars are a simple way to show how much of a process has been completed and is useful for pro-
cesses that take a long time to handle. Progress bars give the user a visual cue that progress is
being made, so they do not think the program has frozen.

154

CHAPTER 5 DIALOGS

New progress bars are created with gtk _progress bar new().The implementation of
GtkProgressBar was made a lot simpler with the release of GTK+ 2.0, so be careful when using
the API documentation, because a number of the displayed functions and properties are
depreciated. The two examples following show you how to correctly use the GtkProgressBar
widget.

There are two ways to use the GtkProgressBar widget. If you are sure of how much progress
a process has made, you should use gtk_progress bar set fraction() to set a discrete value.
This function accepts values between 0.0 and 1.0, where 1.0 sets the progress bar as 100 percent
complete.

while (percent <= 100.0)

{
gchar *message = g strdup printf ("%.0f%% Complete", percent);
gtk progress bar set fraction (progress, percent / 100.0);
gtk progress bar set text (progress, message);

while (gtk events pending ())
gtk _main_iteration ();

g usleep (500000);
percent += 5.0;

You may also want to display text that can be used to complement the progress bar. In the
preceding example, gtk _progress bar set text() was used to display the percent complete
statistic, which is superimposed on the progress bar widget.

If you are not able to detect the progress of the process, you can use pulses. In the preceding
example, gtk progress bar pulse() was used to move the progress bar one step for every pending
event that was processed. You can set the pulse step with gtk progress bar set pulse step().

gtk progress bar set pulse step (GTK PROGRESS BAR (bar), 0.1);
while (gtk events pending ())
{
gtk _main_iteration ();
gtk progress bar pulse ();
}

By setting the pulse step to 0.1, the progress bar will fill itself up in the first ten steps and
clear itself out in the next ten. This process will continue for as long as you continue pulsing the
progress bar.

Page Forward Functions

There are times that you may want to skip to specific assistant pages if conditions are correct.
For example, let us assume your application is creating a new project. Depending on the cho-
sen language, you want to jump to either the third or fourth page. In this case, you will want to
define your own GtkAssistantPageFunc function for forward motion.

CHAPTER 5 DIALOGS

You can use gtk _assistant set forward page func() to define a new page forward func-
tion for the assistant. By default, GTK+ will increment directly through the pages in order, one
page at a time. By defining a new forward function, you can define the flow.

void gtk assistant set forward page func (GtkAssistant *assistant,
GtkAssistantPageFunc page func,
gpointer data,
GDestroyNotify destroy func);

For example, assistant_forward() is a simple GtkAssistantPageFunc implementation
that moves from page two to either three or four depending on the condition returned by
decide next_page().

static gint

assistant forward (gint current page,
gpointer data)

{

gint next_page = 0;

switch (current page)
{
case 0:
next_page
break;
case 1:
next page = (decide next page() ? 2 : 3);
break;
case 2:
case 3:
next_page
break;
default:
next_page

n
[N
-

4;

_1;

return next_page;

}

Note By returning -1 from a page forward function, the user will be presented with a critical error and
the assistant will not move to another page. The critical error message will tell the user that the page flow
is broken.

Intheassistant forward() function, flowis changed based on the Boolean value returned
by the fictional function decide next page(). In either case, the last page will be page 4. If the
current page is not within bounds, -1 is returned, so an exception is thrown by GTK+.

155

156

CHAPTER 5 DIALOGS

While this GtkAssistant example is very simple, implementations of this widget can
become very complex as they expand in number of pages. This widget could be re-created with
a dialog, a GtkNotebook with hidden tabs, and a few buttons (I have had to do that very thing
multiple times!), but it makes the process a lot easier.

Test Your Understanding

In the exercise for this chapter, you will be creating custom dialogs of your own. Each of the
dialogs will be implementations of different types of file chooser dialogs. However, you will be
embedding a GtkFileChooserWidget into a GtkDialog to recreate the functionality of the built-
in dialogs.

Exercise 5-1. Implementing File Chooser Dialogs

In this exercise, create a window with four buttons. Each button will open a different dialog when clicked that imple-
ments one of the four GtkFileChooser actions. You should use GtkFileChooserWidget added to a
GtkDialog instead of the prebuilt GtkFileChooserDialog.

1. Your dialog will implement a GTK_FILE CHOOSER_ACTION_SAVE file chooser dialog. The chosen file
name should be printed to the screen.

2. Your dialog will implement a GTK_FILE_CHOOSER_ACTION_CREATE_FOLDER file chooser dialog. The
new folder name should be printed to the screen. You will have to manually create the new folder with
g mkdir().

3. Your dialog will implementa GTK_FILE_CHOOSER_ACTION_OPEN file chooser dialog. The chosen file
names should be printed to the screen.

4. Your dialog will implementa GTK_FILE _CHOOSER _ACTION SELECT FOLDER file chooser dialog. The
chosen folder path should be printed to the screen.

For each of the dialogs, you need to make sure to set it to a decent size so that the whole content can be visible to
the user. If you get stuck on this exercise, you can find one possible solution in Appendix F.

Summary

In this chapter, you learned how to create your own custom dialogs. To do this, you need to
first initialize the dialog. Then, action area buttons need to be added as well as the main con-
tent to the dialog’s GtkVBox.

Dialogs can be created as modal or nonmodal. A modal dialog created with gtk_dialog
run() blocks the user from interacting with the parent window until it is destroyed by creating
a main loop for the dialog. It also centers the dialog above its parent window. Nonmodal dia-
logs allow the user to interact with any other window in the application and will not force focus
on the dialog.

CHAPTER 5 DIALOGS 157

After learning about the built-in dialogs, you learned about multiple types of built-in
dialogs provided by GTK+:

* Message dialog (GtkMessageDialog): Provide a general message, error message, warning,
or simple yes-no question to the user.

* About dialog (GtkAboutDialog): Show information about the application including ver-
sion, copyright, license, authors, and others.

* File chooser dialog (GtkFileChooserDialog): Allow the user to choose a file, choose mul-
tiple files, save a file, choose a directory, or create a directory.

* Color selection dialog (GtkColorSelectionDialog): Allow the user to choose a color along
with an optional opacity value.

» Font selection dialog (GtkFontSelectionDialog): Allow the user to choose a font and its
size and style properties.

The last section of this chapter showed you a widget called GtkAssistant, which was intro-
duced in GTK+ 2.10. It allows you to create dialogs with multiple stages. It is important to note
that assistants are not actually a type of GtkDialog widget but are directly derived from the
GtkWindow class. This means that you have to handle these by connecting signals in the main
loop instead of calling gtk_dialog run().

You now have a firm understanding of many important aspects of GTK+. Before we con-
tinue on to more advanced widgets, the next chapter will give you a thorough understanding of
GLib. Chapter 6 will cover many GLib data types, idle functions, timeouts, process spawning,
threads, dynamic modules, file utilities, and timers, as well as other important topics.

CHAPTER 6

Using GLib

N ow that you have a reasonable grasp of GTK+ and a number of simple widgets, it is time to
move to another library. GTK+ depends on GLib, a general-purpose library that provides many
kinds of utility functions, data types, and wrapper functions. In fact, you have already used
some aspects of GLib in previous chapters.

GLib can be run independently of any other library, which means that some of the exam-
ples in this chapter do not require the GTK+, GDK, and Pango libraries. However, GTK+ does
depend on GLib.

Not all of the topics throughout this chapter will be used in later chapters, but all are useful
in many GTK+ applications in the real world. Many of the topics are used for very specific tasks.
For example, GModule can be used to create a plug-in system for your application or open a
binary’s symbol table.

The goal of Chapter 6 is not to be a comprehensive guide to everything in GLib. When
using a feature shown in this chapter, you should reference the GLib API documentation for
more information. However, this chapter will introduce you to a wide array of important fea-
tures so that you have a general understanding of what GLib provides.

In this chapter, you will learn the following:

* The basic data types, macros, and utility functions provided by GLib

* How to give textual feedback to the user about errors and warnings that occur within
your application

e Memory management schemes provided by GLib such as memory slices, g malloc(),
and friends

 Various utility functions provided by GLib for timing, file manipulation, reading direc-
tory contents, and working with the file system

¢ How the main loop is implemented in GLib and how it implements timeout and idle
functions

* Datastructures provided by GLib including strings, linked lists, binary trees, arrays, hash
tables, quarks, keyed data lists, and n-ary trees

* How to us GIOChannel to manipulate files and create pipes as well as how to spawn asyn-
chronous and synchronous processes

* How to dynamically load shared libraries with GModule

159

160

CHAPTER 6 USING GLIB

GLib Basics

GLib is a general-purpose utility library that is used to implement many useful nongraphical
features. While it is required by GTK+, it can also be used independently. Because of this, some
applications use GLib without GTK+ and other supporting libraries for the many capabilities it
provides.

One of the main benefits of using GLib is that it provides a cross-platform interface that
allows your code to be run on any of its supported operating systems with little to no rewriting
of code. You will see this illustrated in the examples throughout the rest of this chapter.

Basic Data Types

You have been using many data types in previous chapters that originate in GLib. These data
types provide a set of common data types that are portable to not only other platforms, but also
other programming languages wrapping GTK+.

Table 6-1 is a list of the basic data types provided by GLib. You can find all of the type def-
initions in the gtypes.h header file. More advanced data structures will be covered later, in the
“Data Types” section.

Table 6-1. GLib Data Types

Type Description

gboolean Since C does not provide a Boolean data type, GLib provides gboolean, which
is set to either TRUE or FALSE.

gchar (guchar) Signed and unsigned data types corresponding to the standard C character type.

gconstpointer A pointer to constant data that is untyped. The data that this type points to
should not be changed. Therefore, it is typically used in function prototypes
to indicate that the function will not alter the data to which it points.

gdouble A data type corresponding to the standard C double type. Possible values are
within the range from -G_MAXDOUBLE to G_MAXDOUBLE. G_MINDOUBLE refers to the
minimum positive value that gdouble can hold.

gfloat A data type corresponding to the standard C float type. Possible values are
within the range from -G_MAXFLOAT to G_MAXFLOAT. G_MINFLOAT refers to the
minimum positive value that gfloat can hold.

gint (guint) Signed and unsigned data types corresponding to the standard C int
type. Signed gint values must be within the range from G_MININT to
G_MAXINT. The maximum guint value is given by G_MAXUINT.

gint8 (guintd) Signed and unsigned integers that are designed to be 8 bits on all
platforms. Signed values are within the range from -128 to 127 (G_MININT8
to G_MAXINT8) and unsigned values from 0 to 255 (G_MAXUINTS).

gint16 (guint16) Signed and unsigned integers that are designed to be 16 bits on all
platforms. Signed values are within the range from -32,768 to 32,767
(G_MININT16 to G_MAXINT16) and unsigned values from 0 to 65,535
(G_MAXUINT16).

CHAPTER 6 USING GLIB

Type Description

gint32 (guint32) Signed and unsigned integers that are designed to be 32 bits on all
platforms. Signed values are within the range from -2,147,483,648 to
2,147,483,647 (G_MININT32 to G_MAXINT32) and unsigned values from 0 to
4,294,967,295 (G_MAXUINT32).

gint64 (guint64) Signed and unsigned integers that are designed to be 64 bits on all
platforms. Signed values are within the range from -263 to 263-1
(G_MININT64 to G_MAXINT64) and unsigned values from 0 to 264-1
(G_MAXUINT64).

glong (gulong) Signed and unsigned data types corresponding to the standard C long
type. Signed glong values must be within the range from G_MINLONG to
G_MAXLONG. The maximum gulong value is given by G_MAXULONG.

gpointer A generic, untyped pointer that is defined as void*. It is simply meant to look
more appealing than the standard void* type.

gshort (gushort) Signed and unsigned data types corresponding to the standard C short
type. Signed gshort values must be within the range from G_MINSHORT to
G_MAXSHORT. The maximum gushort value is given by G_MAXUSHORT.

gsize (gssize) Unsigned and signed 32-bit integers that are used by many data structures
to represent sizes. The gsize data type is defined as unsigned int and gssize
as signed int.

You used to be able to check whether gint64 and guint64 were supported on the platform by
using the G HAVE_GINT64 macro. However, since the release of GLib 2.0, 64-bit integers have been
required, so this macro is always defined, as well as both data types. These two types have the fol-
lowing definitions:

G_GNUC_EXTENSION typedef signed long long gint64;
G_GNUC_EXTENSION typedef unsigned long long guint64;

Note Some options such as -pedantic cause warnings for extensions in GNU C. Typing __extension__
before the expression can prevent this. G_GNUC_EXTENSION is equivalentto __extension .

GLib also provides G_GINT64 CONSTANT() and G_GUINT64 CONSTANT(), which can be
used to insert 64-bit literals into the source code. For example, G_MAXINT64 is defined as
G_GINT64 CONSTANT (Ox7fff I ff).

Standard Macros

In addition to the basic data types, GLib provides a number of predefined values and standard
macros that you can use throughout your applications. While most applications will not make
wide use of every macro, they are here to make your life easier. For instance, there are macros
for checking the GLib version and various type conversions.

161

162

CHAPTER 6 USING GLIB

At times, you may want to check the user’s version of GLib to decide whether or not to
compile a certain feature. GLib provides version information for use during compile time and
runtime, shown in Table 6-2.

Table 6-2. GLib Version Information

Value Description

GLIB_MAJOR_VERSION The major version of the GLib headers that is included. To get the
major version of the library that you linked against, you can use
glib major_version.In GLib 2.12.1, “2” indicates the major version.

GLIB_MINOR_VERSION The minor version of the GLib headers that is included. To get the
minor version of the library that you linked against, you can use
glib_minor version.In GLib 2.12.1, “12” indicates the minor version.

GLIB_MICRO_VERSION The micro version of the GLib headers that is included. To get the
micro version of the library that you linked against, you can use
glib_micro_version.In GLib 2.12.1, “1” indicates the micro version.

GLIB_CHECK_VERSION Returns TRUE if the version of the GLib header files that you are using

(major, minor, micro) isthe same or a newer version than specified. You can use this to
make sure that the user has a compatible version of GLib when
compiling a specific feature.

In addition to the version information presented in Table 6-2, you can also use
glib check version() to check the version of GLib currently in use at runtime. This function
returns NULL, if the library is compatible, or a string that gives more information about the
incompatibility. This function makes sure that the runtime version is the same or a more
recent release.

const gchar* glib_check_version (guint major,
guint minor,
guint micro);

GLib also provides a number of additional macros that do everything from numerical
operations, type conversions, and memory referencing to simply defining Boolean values for
TRUE and FALSE. A list of some of the most useful macros can be found in Table 6-3.

Table 6-3. Standard GLib Macros

Macro Description

ABS (a) Return the absolute value of argument a. This function simply
returns any negative number without the negative sign and does
nothing to positive numbers.

CLAMP (a, low, high) Make sure that a is between low and high. If a is not between low
and high, the returned value will be the closest of the two.
Otherwise, the returned value will be left unchanged.

G _DIR_SEPARATOR On UNIX machines, directories are separated by a slash (/), and

G DIR_SEPARATOR S on Windows machines, they are separated by a backslash (\).
G_DIR_SEPARATOR will return the appropriate separator as a character,
and G_DIR_SEPARATOR_S will return the separator as a string.

CHAPTER 6 USING GLIB

Macro

Description

GINT TO_POINTER (i)
GPOINTER TO_INT (p)

GSIZE_TO POINTER (s)
GPOINTER TO_SIZE (p)

GUINT TO_POINTER (u)
GPOINTER_TO_UINT (p)

G_0S_WIN32
G_0S_BEOS
G_0S_UNIX

G_STRUCT MEMBER
(type, struct p, offset)

G_STRUCT MEMBER_P
(struct_p, offset)

G_STRUCT_OFFSET
(type, member)

MIN (a, b)
MAX (a, b)

TRUE and FALSE

Convert an integer to a gpointer or a gpointer to an integer. Only
32 bits of the integer will be stored, so you should avoid using
integers that will take up more than that amount of space when
using these macros. Remember that you cannot store pointers in
integers. This only allows you to store an integer as a pointer.

Convert a gsize value to a gpointer or a gpointer to gsize value.
The gsize data type must have been stored as a pointer with
GSIZE_TO _POINTER() to convert it back. See GINT_TO_POINTER() for
more information.

Convert an unsigned integer to a gpointer or a gpointer to an
unsigned integer. The integer must have been stored as a pointer
with GUINT_TO_POINTER() to convert it back. See GINT _TO POINTER()
for more information.

These three macros allow you to define code that will only be run
on a specific platform. Only the macro corresponding to the user’s
system will be defined, so you can bracket code specific to the
user’s operating system with #ifdef G _0S_*.

Returns the member of the structure located at the specified
offset. This offset must be within struct_p. type defines the data
type of the field you are retrieving.

Returns an untyped pointer to the member of the structure located
at the specified offset. The offset must be within struct p.

Returns the byte offset of a member within a structure. The
structure type is defined by type.

Calculates the minimum or maximum value of the two arguments
a and b respectively.

FALSE is defined as zero, and TRUE is set to the logical not of FALSE.
These values are used for the ghoolean type.

GLib also provides a number of macros for standard mathematical units, with precision
up to 50 decimal places in some cases. Those included in GLib 2.12 follow:

* G_E: The base of the natural logarithm with a precision of 49 decimal places

* G_LN2: The natural logarithm of 2 with a precision of 50 decimal places

G_LN10: The natural logarithm of 10 with a precision of 49 decimal places

* G_PI: The value of pi with a precision of 49 decimal places

* G_PI _2: The value of pi divided by 2 with a precision of 49 decimal places

* G_PI_4:The value of pi divided by 4 with a precision of 50 decimal places

G_SOQRT2: The square root of 2 with a precision of 49 decimal places

* G_LOG 2 BASE_10: The logarithm of 2 with base 10 with a precision of 20 decimal places

163

164

CHAPTER 6 USING GLIB

Message Logging

Throughout this chapter and later chapters, you will need a way to report textual errors, infor-
mation, and warnings to the user. It is possible to use g_print() for all of these messages, but
GLib provides a logging system with some useful features.

Any type of textual message can be conveyed using g_log(). The first parameter of this
function allows you to define a custom log domain. The log domain is a string that is passed to
GLogFunc that is used to help the user to differentiate messages that were output by your appli-
cation from those outputted by other libraries.

void g log (const gchar *log domain,
GLoglevelFlags log level,
const gchar *message,

cel);

Unless you are creating a library, you should use G_LOG_DOMAIN as the domain. Any text
specified to the log domain parameter will be prepended to the beginning of messages before
they are output. If you do not specify alog domain, G_LOG_DOMAIN will be used. For example, the
GTK+ library specifies "Gtk" as the domain so the user will know from where the messages have
been emitted.

The second parameter of g_log() allows you to specify what type of message is being
reported. For example, if you are reporting an error message that should cause the application
to be terminated, you should use G_LOG_LEVEL_ERROR. A list of GLogLevelFlags follows:

* G_LOG_FLAG_RECURSION: A flag used for recursive messages.

* G_LOG_FLAG_FATAL: Log levels that are set with this flag will cause the application to quit
and the core to be dumped when called.

e G_LOG_LEVEL_ERROR: A type of error that is always fatal.

e G_LOG_LEVEL CRITICAL: A nonfatal error thatis more important than a warning but does
not need the application to quit.

e G_LOG_LEVEL_WARNING: A warning of something that will not cause the application to be
unable to continue.

* G_LOG_LEVEL_MESSAGE: Used to log normal messages that are not critical.

e G_LOG_LEVEL_INFO: Any other type of message not covered by the other levels, such as
general information.

G_LOG_LEVEL_DEBUG: A general message used for debugging purposes.

G_LOG_LEVEL MASK: Equal to (G_LOG_FLAG_RECURSION | G_LOG_FLAG FATAL).

Note Asan example, g_malloc() terminates the application when memory allocation fails, because
G _LOG_LEVEL_ERROR is used. On the other hand, g_try malloc() will not output any message when allo-
cation fails. Instead, it returns a NULL pointer.

CHAPTER 6 USING GLIB 165

The actual error message reported to g_log() should be in the same format reported to
g print().

For the sake of convenience, GLib also provides five functions that allow you to bypass the
domain and flag parameters of g_log(). The message reported by these functions should also
be formatted in the same manner as g print().

These functions correspond directly to the specified log flags and will be emitted under the
G_LOG_DOMAIN domain. The functions, along with their associated log flags, follow:

void g message (...); /* G_LOG_LEVEL MESSAGE */
void g warning (...); /* G_LOG_LEVEL WARNING */
void g critical (...); /* G_LOG _LEVEL CRITICAL */
void g error (...); /* G_LOG_LEVEL ERROR */
void g debug (...); /* G_LOG_LEVEL DEBUG */

Lastly, depending on how your application handles messages, you may want to make
other types of messages fatal. By default, only the G_LOG_LEVEL ERROR flag will cause the appli-
cation to be terminated. No matter what, this level is always fatal.

To make another type of message fatal, you can callg_log set always fatal(). This will
associate the G_LOG_FLAG_FATAL flag with the specified level.

g log set always fatal (G_LOG LEVEL DEBUG | G _LOG LEVEL WARNING);

For example, the preceding example command will force the application to terminate
when you report debugging and warning messages to the user. This feature should be used
sparingly, because not all errors or warnings should cause the application to terminate!

Memory Management

Memory management is an extremely important aspect of any application and becomes
increasingly significant as your application grows in size and complexity. While there are a
large number of functions provided for memory management in GLib, this section will cover
only those that are used most often.

Memory Slices

Prior to GLib 2.10 memory allocators and memory chunks were used for the allocation of
pieces of memory. However, a much more efficient method has been introduced in the current
release in the form of memory slices. Therefore, memory slices are the only type of allocator
that will be covered in this section. If you are using an older version of GLib for any reason, you
should check out GCMemChunk in the API documentation.

The advantage of using memory slices is that they avoid excessive memory waste and fix
scalability and performance problems that plagued memory chunks. This is achieved by using
slab allocation.

Memory slices very efficiently allocate memory as equally sized chunks. This means that
they can be used to allocate individual objects as small as two pointers or many objects of the
same size.

166

CHAPTER 6 USING GLIB

SLAB ALLOCATION OF MEMORY

The slab allocator was originally designed by Jeff Bonwick of Sun Microsystems. It is a memory management
scheme that helps reduce the problem of fragmentation of internal memory, which is caused by the system
allocating a larger block of memory than was originally requested.

To understand slab allocation, you need to know the meaning of slab and cache in context. A slab is one
contiguous chunk of memory that represents one memory allocation. A cache is a very efficient chunk of
memory that is used to hold only one type of data. Each cache is made out of one or more slabs.

Each object is initially marked as free, which means that the slab is empty. When a process requests a
new object from the kernel, the system will attempt to find a location on a partially filled slab, which will be
used to place the object. If a partial slab is not found that will fit the object, a new slab is allocated from con-
tiguous physical memory and that slab is added to the cache. When a slab becomes full, it is then marked
as used.

Slab allocation has many benefits, but one major benefit is that the requested memory allocation size is
the same as the actual allocation. This avoids fragmentation of memory and makes allocation very efficient.
For more information, you should read Jeff Bonwick’s paper on the slab allocator, which is available online.

When you need to allocate large blocks of memory, the system’s implementation of
malloc() will automatically be used. Although we will briefly discuss using g malloc() and its
related functions in the next section, you should use memory slices for memory allocation in
new code as long as you do not plan on resizing objects after allocation. One constraint of
memory slices is that the size of the object must be the same size when it was allocated and
when it is freed.

There are two ways to use slice allocators: to allocate a single object of any size greater than
two pointers or to allocate multiple objects of the same size. The code in Listing 6-1 shows you
how to allocate multiple objects; it allocates an array of one hundred objects with the slice allo-
cator and then frees them.

Listing 6-1. Allocating Multiple Objects

#define SLICE_SIZE 10

gchar *strings[100];
gint 1i;
for (i = 0; i < 100; i++)
strings[i] = g slice alloc (SLICE_SIZE);

/* ... Use the strings in some way ... */

/* Free all of the memory after you are done using it. */
for (i = 0; i < 100; i++)
g slice free1l (SLICE SIZE, strings[i]);

CHAPTER 6 USING GLIB

In Listing 6-1, g _slice alloc() was used to allocate 100 strings of length SLICE_SIZE. Slice
allocation is very simple—all you need to do is supply the size of memory that the slice should
be. Similar tomalloc(), this function returns a gpointer to the memory instead of an object that
is cast.

Internally, GLib decides whether to use slab allocation or delegate the memory allocation
to g _malloc(). Memory allocation is performed by g_malloc() when the desired memory slice
is very large. GLib also provides g_slice alloco(), which will initialize the returned memory
chunk to 0.

Note Memory slices will choose the most efficient method of memory allocation for the current case dur-
ing runtime, whether that is slab allocation, g_malloc(), or some other method. However, you can force it to
always use g_malloc() by setting the G_SLICE environment variable to always-malloc.

When you are finished using the memory, you should free it with g_slice free1() so that
it can be used by another part of your application. This function frees a memory block of size
SLICE SIZE,located at strings[i].

g slice free1l (SLICE SIZE, strings[i]);

Internally, memory will be freed using the same method as it was allocated. Therefore, to use
this function, you must have allocated the memory with g_slice alloc() org slice alloco().

When you need to allocate only a single instance of an object, g_slice new() is available.
An example of using this function to allocate one object is shown in Listing 6-2.

Listing 6-2. Allocating a Single Object

typedef struct

{
GtkWidget *window;
GtkWidget *label;
} Widgets;

Widgets *w = g slice new (Widgets);

/* Use the structure just as you would any other structure. */
w->window = gtk window new (GTK_WINDOW TOPLEVEL);

w->label = gtk label new ("I belong to widgets!");

/* Free the block of memory of size "Widgets" so it can be reused. */
g slice free (Widgets, w);

167

168

CHAPTER 6 USING GLIB

If you need to allocate a single block of memory with a slice allocation, instead of using the
method presented in Listing 6-1, you can callg_slice new(). This function is defined as fol-
lows; it casts the value returned by g_slice alloc() as the desired type.

#define g slice new(type) ((type*) g slice alloc (sizeof (type))

Inadditiontog_slice new(), GLib providesg slice new0(),whichusesg slice alloco()
to initialize the returned slice to 0.

After you are finished with the memory, you need to free it. Since we only allocated one
piece of memory in Listing 6-2, we can use g_slice free(), which freed one piece of memory
of the size Widgets and at the location w.

Memory Allocation

GLib provides a number of functions that wrap functionality provided by the standard C
library. A description of a few of these functions is presented in this section.

Note Itisimportant to note that you do not need to verify that any of the following calls were successful.
If any call to allocate memory fails, the application will automatically be terminated by Glib, and a message
will be printed to standard error, displaying the error that has occurred.

To allocate one or more new structures, you should use g_new(). This function receives the
type of data and the number of structures to allocate. It then returns a pointer to the new
memory.

struct_type* g new (struct type, number of structs);

The returned data is already cast to the correct type, so there is no need to recast the
object. If you want all of the structures to be initialized to 0 by default, you should use g_new0()
instead.

A method most C programmers are familiar with is malloc(). GLib provides a portable
wrapped version of this function called g_malloc(). This function receives the number of bytes
to allocate and returns a pointer to the allocated memory.

gpointer g malloc (gulong number of bytes);

The easiest way to calculate the number of bytes of memory to allocate is to use the
sizeof() function on the data type. The returned object is not automatically cast, so you will
want to immediately take care of casting in most cases. The g_malloco() function is also pro-
vided if you want the newly allocated memory to be initialized with a value of 0.

CHAPTER 6 USING GLIB

When memory allocation with g malloc() fails, the application will abort. Alternatively,
you can use g_try malloc(), which will return NULL instead of aborting when memory alloca-
tion fails. This should only be used when your application can recover from an unsuccessful
memory allocation. When using g try malloc(), it is important to handle the NULL case.

gpointer g try malloc (gulong number of bytes);

After you are finished with a piece of memory, you should always free it so it can be used
again. If not, it will cause a memory leak in your application, which is never a good thing. To
free a piece of memory, you can call g_free(). This is needed to free strings returned from
many functions available in the GTK+ APIL

void g free (gpointer memory);

This function should be used on objects that you explicitly allocated memory for or objects
that do not provide their own destroy or free function calls. For example, you should never use
g free() on a chunk of memory that was allocated with memory slices. If the piece of data pro-
vides its own free function, you should always use that function. If NULL memory is sent to
g free(), it will be ignored, and the function will return.

One more important memory function is g_memmove(), which is used to move pieces of
memory. For example, the following call to g memmove() can be used to remove a section of a
string beginning at pos and continuing on len characters.

g memmove (str + pos, str + pos + len, strlen(str) - (pos + len));
str[strlen(str) - len] = 0;

With the exception of g_memmove (), I would like to reiterate one last time that you should
always use memory slices when allocating one object or multiple objects of the same size
instead of g malloc() and friends.

Memory Profiling

GLib provides a simple way to output a summary of memory usage within your application.
This can be done by calling g_mem profile() at any point within your application.

Before using memory profiling, you must always set the GMemVTable. Listing 6-3 shows you
how to set up the default GMemVTable and output memory profiling information on application
termination.

169

170

CHAPTER 6 USING GLIB

Note By using the default GMemvTable, only calls to g_malloc(), g_free(), and friends will be
counted. Calls to malloc() and free() will not be counted. Also, to profile memory slices, you need to set
the G_SLICE environment variable to always-malloc to force it to always use g_malloc(). GLib’s memory
profiler will not count allocations with the slab allocator. To monitor all memory, you should use an external
tool such as Valgrind.

Listing 6-3. Memory Profiling (memprofile.c)

#include <glib.h>

int main (int argc,
char *argv[])

{
GSList *1ist = NULL;

/* Set the GMemVTable to the default table. This needs to be called before
* any other call to a GLib function. */
g mem_set_vtable (glib_mem profiler table);

/* Call g mem _profile() when the application exits. */
g atexit (g_mem profile);

list = (GSList*) g malloc (sizeof (GSList));
list->next = (GSList*) g malloc (sizeof (GSList));

/* Only free one of the GSList objects to see the memory profiler output. */
g free (list->next);

return 0;

Before you can output a memory usage summary, you have to set the GMemVTable with
g_mem_set_vtable().The GMemVTable defines new versions of memory allocation functions
with profiling enabled, so they can be tracked by GLib. These include malloc(), realloc(),
free(), calloc(), try malloc(), and try realloc().

Although it is possible to create your own GMemVTable, GLib provides a prebuilt version
named glib mem profiler table.In almost every case, the default memory table should
be used.

After defining the GMemVTable, Listing 6-3 uses g_atexit() so g_mem profile() will be
called when the application is exiting. Functions specified to g_atexit() must accept no
parameters and return no value.

CHAPTER 6 USING GLIB

The output of the application in Listing 6-3 follows. This output will vary depending on
your GLib version, your system type, and various other factors.

GLib Memory statistics (successful operations):

blocks of | allocated | freed | allocated | freed | n_bytes
n_bytes | n_times by | n_times by | n_times by | n_times by | remaining
| malloc() | free() | realloc() | realloc()
8 | 2 | 1| 0 | 0 | +8
GLib Memory statistics (failing operations):
--- none ---

Total bytes: allocated=16, zero-initialized=0 (0.00%), freed=8 (50.00%), remaining=8

The preceding table shows the size of memory that is allocated, followed by how many
times malloc() was called on it. It shows that two blocks of 8 bytes that represent the two
GSList objects were allocated. It then shows how many blocks of memory were freed with
free(), allocated with realloc(), and freed with realloc(). The last column shows the number
of bytes of memory that are not freed. Since only one GSList object was freed, it shows that 8
bytes were leaked.

The table illustrates only successful operations, because nothing failed within the applica-
tion. If some type of failure in memory allocation or deallocation had occurred, there would be
a second table to show those operations.

A summary is given at the end of the output that shows totals of all of the information
shown in the tables.

Utility Functions

As you may have already noticed, GLib provides you with a very wide array of functionality.
This section should further show you that it is an indispensable library when developing GTK+
applications.

In this section, you will learn about many types of functionality provided by GLib includ-
ing access to environment variables, timers, directory functions, and file manipulation.

Environment Variables

If you create an application that is going to be run on multiple platforms, it can be quite a chore
to deal with environment-dependent values such as the user’s home directory or the host
name. Table 6-4 offers a short list of functions that return important environment variables.

17

172 CHAPTER 6 USING GLIB

Table 6-4. Environment Utility Functions

Function Description

g get current dir() Get the current working directory. The returned string should be freed
when it is no longer needed.

g get home_dir() Get the home directory of the current user. On Windows, the HOME or
USERPROFILE environment variable is used, or the root Windows
directory is used if neither is set. On UNIX-like systems, the user’s entry
in passwd will be used.

g_get _host_name() Get the host name of the system. If the name of the system cannot be
determined, localhost is returned. You should not rely on this variable
being consistent across systems, because administrators have the option
of setting this to whatever they want in some systems.

g get real name() Get the real name of the user. On UNIX-like machines, this usually
comes from the user’s information in the passwd file. The string
"Unknown" is returned if the real name cannot be determined.

g get tmp dir() Get the directory used to store temporary files. The environment
variables TMPDIR, TMP, and TEMP will be checked. If none of those are
defined, "/tmp" will be returned on UNIX and "c:\" on Windows.

g get user name() Get the user name of the current user. On Windows, the returned string
will always be UTF-8. On UNIX-like systems, it depends on the preferred
encoding for file names and will differ depending on the system.

In addition to the functions in Table 6-4, it is possible to retrieve the value of any environ-
ment variable with g_getenv(). If the environment variable is not found, NULL is returned.
You should note that the returned string may be overwritten by calling g_getenv() again,
so you should store a new copy of the string if it needs to stay around.

gboolean g setenv (const gchar *variable,
const gchar *value,
gboolean overwrite);

It is also possible to give a new value to an environment variable with g_setenv(). You
should provide TRUE to the function if you want the value to be overwritten if it already exists.
FALSE will be returned by g_setenv() if the environment variable could not be set. You can also
unset an environment variable with g_unsetenv(), which accepts the name of the variable.

Timers

In many applications, you will want to keep track of elapsed time. An example of this would be
applications that download files from the Internet or process a complex task. For this, GLib
provides the GTimer structure.

GTimer objects keep track of elapsed time in microseconds and fractions of seconds. To
retrieve the number of seconds, you can use the returned gdouble value. This value can then be
used to calculate the elapsed minutes. Higher precision is also available since time is counted
in microseconds.

CHAPTER 6 USING GLIB

Listing 6-4 offers a simple timer example that counts the elapsed time between two button
clicks. Since the timer is always counting, it works by storing the starting and ending times
when the button is clicked.

Listing 6-4. Elapsed Time Between Toggling (timers.c)
#include <gtk/gtk.h>

static void button clicked (GtkButton*, GTimer*);

int main (int argc,
char *argv[])
{
GtkWidget *window, *button;
GTimer *timer;

gtk_init (8argc, 8argv);

window = gtk window new (GTK WINDOW TOPLEVEL);

gtk window_set title (GTK_WINDOW (window), "Timers");

gtk _container set border width (GTK_CONTAINER (window), 10);
gtk widget set size request (window, 150, 75);

/* Initialize the timer. */
timer = g timer new ();
button = gtk button new with label ("Start Timer");

g signal connect (G OBJECT (button), "clicked",
G CALLBACK (button clicked),
(gpointer) timer);

gtk _container add (GTK CONTAINER (window), button);
gtk widget show all (window);

gtk _main ();
return O;

}

/* Count the amount of elapsed time between two button clicks. */
static void
button clicked (GtkButton *button,
GTimer *timer)

{

static gdouble start time = 0.0;

static gdouble end time = 0.0;

static gboolean running = FALSE;

173

174

CHAPTER 6 USING GLIB

if (!running)
{
start time = g timer elapsed (timer, NULL);
gtk button set label (button, "Stop Timer");
}
else
{
end time = g timer elapsed (timer, NULL);
gtk button set label (button, "Start Timer");
g print ("Elapsed Time: %.2f\n", end time - start time);

}

running = l!running;

Timers are a relatively easy topic to digest. They are handled differently on different
platforms, but GLib provides a portable interface for dealing with them. New timers are created
with g_timer new(). When you create a new timer, it will automatically start by calling
g timer start() foryou.

You can stop or continue a stopped timer with g_timer stop() or g _timer continue()
respectively. At any point in your application, you can use g timer elapsed() to retrieve the
elapsed time.

gdouble g timer elapsed (GTimer *timer,
gulong *microseconds);

If the timer has been started but not stopped, then the time elapsed will be calculated
based on the start time. However, if g timer continue() was used to restart the timer, the two
times will be added together to calculate the total time elapsed.

The return value of g_timer elapsed() is the number of seconds that have elapsed along
with any fractional time. There is also a microseconds parameter that returns the number of
elapsed microseconds, which is essentially useless since you can already retrieve the number
of seconds as a floating-point value.

Youcanuse g timer reset() to set the timer back to 0 seconds. You can also reset the
timer with g timer start(), but the timer will continue to count automatically.

If you are finished using a timer object before you exit your application, you can call
g timer destroy()to destroy the timer and deallocate any associated resources.

File Manipulation

Reading and writing from files are very important aspects of almost every application. There
are two ways in GTK+ to work with files: with IO channels and with file utility functions.

Listing 6-5 illustrates how to use file utility functions to read and write data to a file. You
should note that the functions presented read the whole contents of a file and overwrite the
whole contents of a file. Therefore, this method is not the solution for all applications. This
example also introduces a way to perform file tests.

Listing 6-5. Write and Read a File (files.c)

#include <glib.h>
static void handle error (GError*);

int main (int argc,
char *argv[])
{
gchar *filename, *content;
gsize bytes;
GError *error = NULL;

/* Build a filename in the user's home directory. */

CHAPTER 6 USING GLIB

filename = g build filename (g_get home dir(), "temp", NULL);

/* Set the contents of the given file and report any errors.

g file set contents (filename, "Hello World!", -1, &error);
handle error (error);

if (lg_file test (filename, G _FILE TEST EXISTS))
g error ("Error: File does not exist!");

/* Get the contents of the given file and report any errors.

g file get contents (filename, &content, 8bytes, &error);
handle error (error);
g print ("%s\n", content);

g free (content);
g free (filename);

return O;

}

static void
handle error (GError *error)

{
if (error != NULL)
{
g_printf (error->message);
g clear error (8error);
}

}

*/

*/

175

176

CHAPTER 6 USING GLIB

Before using any of the file utility functions, g_build filename() was used to build the
path to the desired file. This function uses a NULL-terminated list of strings to build a path to a
file name. No effort is made by the function to force the path to be absolute, so relative paths
can be built as well. It will also use the correct type of slashes for the user’s platform.

In Listing 6-5, g_file set contents() was called to write the string "Hello World!" toa
file. The whole contents of a file, if it already exists, will be overwritten. The function requires
you to specify the length of the text string unless it is NULL-terminated. In that case, you can use
-1 as the length of the string.

gboolean g file set contents (const gchar *filename,
const gchar *contents,
gssize length,
GError **error);

Two methods of error checking are provided by g file set contents(). TRUE is returned if
the action was successful and FALSE if it failed. Also, errors under the G_FILE ERROR domain will
be returned through the GError parameter. A full list of possible errors under this error domain
can be found in Appendix E.

Reading the contents of a file is performed, in a similar manner as writing, by calling the
g file get contents() function. This function returns TRUE if the action was successful and
FALSE if it failed. The length of the text string read from the file is also set by the function. Errors
under the G_FILE ERROR domain will be reported.

gboolean g file get contents (const gchar *filename,
gchar **contents,
gsize *length,
GError **error);

Before reading a file, it is a good idea to do some sort of testing to make sure that it already
exists. For this, GLib provides file testing with g file test(). This function receives a file or
directory name as well as the type of test to perform. It returns TRUE if the test was successful
and FALSE if it was not. Test parameters are provided by the following GFileTest enumeration:

e G _FILE TEST IS REGULAR: The file is not a symbolic link or a directory, which means that
itis a regular file.

G _FILE TEST IS SYMLINK: The file you specified is actually a symbolic link.

G _FILE_TEST IS DIR:The path points to the location of a directory.

G FILE TEST IS EXECUTABLE: The specified file is executable.

G FILE TEST EXISTS: Some type of object exists at the specified location. However, this
test does not determine whether it is a symbolic link, a directory, or a regular file.

It is possible to perform multiple tests at the same time by using a bitwise operation. For
example, (G FILE TEST IS DIR | G _FILE TEST_IS REGULAR) will return TRUE if the path points
to a directory or a regular file.

CHAPTER 6 USING GLIB

There are a few cases with symbolic links in which you need to take caution. First, all tests
will follow through symbolic links. So, G_FILE_TEST IS REGULAR will return TRUE if a symbolic
link points to a regular file.

You should be careful when using g file test() to test whether it is safe to perform some
type of action on a file or directory. The state of the file may change before you perform the
action, so you can never be sure whether the action was acceptable until after it has been per-
formed. This is why it is a good idea to check G_FILE ERROR_EXIST in the returned GError.

Directories

In some applications, you may need to retrieve the contents of a directory. There are functions
provided by C that can do this, but a much easier method is to use GLib’s GDir structure.
Listing 6-6 shows you how to read the full contents of the user’s home directory and print them
to the screen.

Listing 6-6. Get the Contents of a Directory (directories.c)

#include <glib.h>

int main (int argc,
char *argv[])
{
/* Open the user's home directory for reading. */
GDir *dir = g dir open (g_get home dir (), 0, NULL);
const gchar *file;

if (lg_file test (g_get home dir (), G _FILE TEST IS DIR))
g error ("Error: You do not have a home directory!");

while ((file = g dir read name (dir)))
g print ("%s\n", file);

g dir close (dir);

return 0O;

}

Directories are opened withg_dir open(). The first parameter of the function specifies the
directory to open. The second parameter of g_dir open() is reserved for future use and should
be set to 0 at this time. The last parameter returns a GError, although you will know if the func-
tion fails, because NULL is returned if the directory was not successfully loaded.

while ((file = g dir read name (dir)))
g print ("%s\n", file);

177

178

CHAPTER 6 USING GLIB

A simple while loop can be used to retrieve all of the files and folders in the directory. This
list is returned one element at a time with g_dir read name() in the order the elements appear
on the disk. NULL is returned when no more entries exist. You must not free the returned string,
because it is owned by GLib.

Note Whenusingg dir read name(),the"." and ".." file entries will not be returned, since they are
assumed to exist if the directory exists.

If you need to return to the first entry in the list in order to loop through the entries
again, g dir rewind() should be called on the GDir object. This will reset the structure so that
it again points to the first file or folder.

When you are finished with the GDir object, you should always call g_dir close() to
deallocate the GDir and free all of its related resources.

File System

GLib provides a few other utility functions that wrap the functionality of UNIX operating sys-
tems. You need to include <glib/gstdio.h> for any of these functions to work. Many of the
most important functions are shown in this section. For a full list, you should reference the
“File Utilities” section of the GLib API documentation.

For all of the functions in this section, 0 is returned if the action was successful or -1 if it
was unsuccessful.

Note All of the functions covered in this section were introduced in GLib 2.6, so if you are using an older
version of GLib, this section is irrelevant.

Useg_rename() to move a file or a folder to a new location. If the old and new filenames are
both the same string, 0 will be returned with no further action. If a file already exists in the loca-
tion of the new filename, the file will be replaced on UNIX machines. Filenames for directories
and files cannot be mixed.

int g rename (const gchar *old filename,
const gchar *new_filename);

There are a few permissions issues surrounding g_rename() as well. The user owns the file
and the directory containing the file. The user must also be able to write to the file.

Removing a file or directory is as easy as calling g_remove() org_rmdir(). It is actually possi-
ble to remove a directory with g_remove (), because it will make a call to the directory removal
function. However, for the sake or portability to other operating systems, you should always use
g_rmdir() to remove directories. Both of these functions will fail if the directory is not empty.

CHAPTER 6 USING GLIB

int g remove (const gchar *filename);
int g rmdir (const gchar *filename);

You canuse g _mkdir() to create a new directory. You should specify permissions in a four-
digit integer. For example, acceptable permissions would be 0755, 0700, and so on.

int g mkdir (const gchar *filename,
int permissions);

When using many of these file utility functions, you can use relative paths as well as abso-
lute paths. However, to use relative paths, you will need to ensure that you are in the correct
directory. You can use g_chdir() to move throughout the directory structure of your hard
drive. This function will accept relative and absolute paths as well.

int g_chdir (const gchar *path);

You may need to change the permissions of a file or a folder from within your application.
This can be done with g_chmod(). Permissions integers should be specified with four digits, as
they were to g_mkdir().

int g chmod (const gchar *filename,
int permissions);

The Main Loop

In past chapters, we have used GTK+’s main loop without any thought of the fact that GLib has
its own main loop. It could be ignored in all other examples, because gtk_init() will automat-
ically create a GLib main loop for you.

In fact, most of the main loop functionality is actually implemented in GLib; GTK+ simply
provides widget signals to the system. The GTK+ main loop also connects GDK’s X server
events to the GLib system.

The purpose of the main loop is to sleep until some event has occurred. At that point, a
callback function will be invoked, if available. GLib’s main loop is implemented in Linux using
the pol1() system call. Events and signals are associated with file descriptors, which are
watched using poll1().

The advantage of using pol1() is that GLib does not need to continuously check for new
events. Rather, it can sleep until some signal or event is emitted. By doing this, your application
will take up almost no processor time until it is needed.

The GTK+ main loop is invoked with gtk_main(). This function can actually be called mul-
tiple times; the call on the top of the stack is removed when you call gtk_main _quit().You can
retrieve the current main loop stack level with gtk _main_level().

Contexts and Sources

The GLib main loop is implemented as a number of structures, which allow multiple instances
to be run concurrently. GMainContext is used to represent a number of event sources. Each
thread has its own context, which can be retrieved with g main_context get(). You can also
retrieve the default context with g main_context get default().

179

180

CHAPTER 6 USING GLIB

Each event source in the context is given a priority, defaulting to G_PRIORITY DEFAULT or
zero. Sources with a higher priority will be given precedence over those with a negative prior-
ity. Examples of event sources are timeouts and idle functions.

GLib also provides GMainLoop, which represents one instance of the main loop. A new main
loop can be created with g main_loop new(), where a NULL context will use the default. Setting
is_running to TRUE states that the main loop is running, although this will automatically be set
when you call g main_loop run().

GMainLoop* main loop new (GMainContext *context,
p* 8| — p_
gboolean is Iunning);

Tip The gtk dialog run() function blocks the main loop from continuing by creating its own GLib main
loop with g main_loop new(). It will continue to run until g_main loop quit() is called on the loop.

The GTK+ main loop implements the GLib main loop by creating a GMainLoop with the
default context in gtk_main(). In short, the main loop functionality provided by functions in
GTK+ is implemented in GLib.

GLib supports the ability to create new event sources. Deriving from GSource creates
new sources. GLib provides the ability to create new timeout and idle function sources with
g_timeout source new() and g_idle source new().These can be associated with your
contexts.

It is also possible to create a custom source with g_source_new(). This function accepts a
table of functions and the structure size of the new source. These functions are used to define
the behavior of the new source type.

GSource* g source new (GSourceFuncs *source funcs,
guint struct size);

You should then associate the source with a GMainContext by calling g_source_attach().
This will return a unique integer identifier of the source within the context.

For the scope of this book, you have learned enough about the main loop to understand
the examples in the rest of this section. There is much more to the complexities of the main
loop that will not be covered in this book. Therefore, if you have a need to create your own
sources and contexts, you should reference the GLib API documentation.

Timeouts

Timeout functions are methods that are called at a certain interval of time until FALSE is
returned. They are added to the main loop with g timeout add full() org timeout add().

Listing 6-7 is a simple example that pulses a progress bar every tenth of a second. Since
the progress bar is set to have a pulse step of 0.1, it will take approximately one second for the
progress indicator to travel from one end of the progress bar to the other. The timeout is
removed after 25 calls.

CHAPTER 6 USING GLIB

Listing 6-7. Adding a Timeout (timeouts.c)

#include <gtk/gtk.h>
static gboolean pulse progress (GtkProgressBar*);

int main (int argc,
char *argv[])

{

GtkWidget *window, *progress;
gtk_init (8argc, 8argv);

window = gtk window new (GTK WINDOW TOPLEVEL);

gtk window_set title (GTK_WINDOW (window), "Timeouts");

gtk _container set border width (GTK _CONTAINER (window), 10);
gtk widget set size request (window, 200, -1);

progress = gtk progress bar new ();
gtk progress bar set pulse step (GTK _PROGRESS BAR (progress), 0.1);

g timeout add (100, (GSourceFunc) pulse progress, (gpointer) progress);

gtk _container add (GTK_CONTAINER (window), progress);
gtk widget show all (window);

gtk _main ();
return O;

}

/* Pulse the progress bar and return TRUE so the timeout is called again. */
static gboolean
pulse progress (GtkProgressBar *progress)

{

static gint count = 0;

gtk _progress bar pulse (progress);
i++;

return (i < 25);

}

Timeout functions are added with g_timeout add() org timeout add full().The only
difference between these two functions is that the latter allows you to specify a GDestroyNotify
function, which will be called when you return FALSE to remove the timeout function.

181

182 CHAPTER 6 USING GLIB

guint g timeout add full (gint priority,
guint interval in milliseconds,
GSourceFunc timeout function,
gpointer data,
GDestroyNotify destroy function);

The first parameter of g timeout add full() allows you to define the priority of the time-
out. In most cases, you will want to use G_PRIORITY DEFAULT as the timeout function’s priority.
Alist of the available priorities follows:

* G _PRIORITY_HIGCH: This priority is not used anywhere within GLib or GTK+, so this type of
function will take precedence over all others. Therefore, it should not be used in most
cases, because CPU-intensive computations could cause the user interface to be tempo-
rarily unresponsive.

e G _PRIORITY DEFAULT: This priority is used for most timeouts and X events in GDK. It
should not be used with idle functions, because they could disrupt more important
function calls needed by the application.

e G _PRIORITY HIGH IDLE: High priority idle functions use this. Redrawing widgets has a
slightly higher priority, so this will not interfere with or slow most GTK+ actions.

e G_PRIORITY DEFAULT IDLE: You should use this priority for most idle functions.

e G _PRIORITY_LOW: This is not used anywhere within GLib or GTK+, so everything will take
precedence over these actions.

The second parameter of g timeout add full() defines the interval of time in millisec-
onds between every call to the function. In Listing 6-7, the timeout was called every tenth of a
second, or 100 milliseconds.

There is no reason to worry about the overlapping of timeout function calls, because the
next interval is calculated based on when the previous call returns. Therefore, if the timeout
function takes 3 seconds to return, that time will be added to the interval.

Caution Timeout functions can be delayed by function calls with a higher priority and how long it takes to
run the callback function. Therefore, it cannot be relied on as a source of precise timing. If a timeout gets behind
in time, the next call will recalculate the interval. The function will not try to make up lost time from delays.

The third parameter in g_timeout _add full() is the actual timeout function. Timeout
functions receive a gpointer and return a gboolean value. By returning FALSE from the timeout
function, it will be removed. The gpointer parameter is defined by the fourth parameter of
g_timeout add full().

The last parameter defines a destroy function that should be called when the idle function
is removed, which occurs when FALSE is returned from the idle function. It is safe to set this
parameter as NULL.

CHAPTER 6 USING GLIB

Destroy functions defined in g_timeout_add full() should not return any value, but do
receive a gpointer as their parameter. This gpointer is the same value originally received by the
timeout function, which gives you an opportunity to free it from memory if necessary.

Idle Functions

As mentioned in Chapter 1, GLib provides a special type of function called an idle function that
will be called when there are no events pending with a higher priority. They run over and over
when there is nothing else to do in the main loop.

Idle functions are added with g_idle add() org idle add full().The only difference
between these two functions is that the latter allows you to specify a destroy function and a pri-
ority instead of using the default of G PRIORITY DEFAULT IDLE.

The first parameter of this function is the priority of the idle function. The idle function is
only called when there are no events pending with a higher priority. Therefore, the higher the
priority, the more often the function will be called. In almost all cases, idle functions should
have a priority of G_PRIORITY_HIGH_IDLE or G_PRIORITY DEFAULT IDLE.

guint g idle add full (gint priority,
GSourceFunc idle function,
gpointer data,
GDestroyNotify destroy function);

The second parameter in g idle add full() is the actual idle function. Similar to time-
outs, idle functions receive a gpointer and return a ghoolean value. By returning FALSE from the
idle function, it will be removed. The gpointer parameter is defined by the third parameter of
g idle add full().

The last parameter defines a destroy function that will be called when the idle function is
removed, which occurs when FALSE is returned from the idle function. It is safe to set this
parameter as NULL.

Destroy functions defined ing_idle add full() should not return any value, but do
receive a gpointer as their parameter. This gpointer is the same value originally received by the
idle function, which gives you an opportunity to free it from memory.

While you can remove an idle function be returning FALSE from the callback, you can also
remove it from any place in your application withg_idle remove data().This function accepts
the data that was used for the idle function’s callback and will return TRUE if it was successfully
removed.

gboolean g idle remove by data (gpointer data);

Caution You should never call g_idle_remove by data() on an idle function within its callback.
This can cause corruption in the idle function list. Instead, return FALSE to remove the idle function within
the callback.

183

184

CHAPTER 6 USING GLIB

Data Types

One of the most useful features provided by GLib is the vast collection of data types. This chap-
ter will introduce you to the most important data types, many of which are used in concurrence
with GTK+ widgets. You should pay special attention to singly and doubly linked lists, since
these are widely used throughout GTK+.

You will notice as you go through the rest of this section that each of the data types pre-
sented is used in a similar way. This uniform API reduces the number of design patterns you
need to learn. In doing this, many of the types were endowed with similar functions. However,
each of these types has specific advantages and disadvantages that you should pay close atten-
tion to when deciding what type to use.

Strings

Strings are nothing new to most programmers, but the GString structure can be very useful to
the C programmer. It provides an easy way to create strings that automatically grow in size
when text is added. This helps you avoid problems such as buffer overflows and other runtime
errors that plague standard C strings.

GLib strings also provide some memory management, easy access to the current state of
the Cstring, and useful functions for manipulating the string. This makes dealing with C strings
a lot easier for the programmer than doing so without GString.

The GString structure consists of three members: the C string that holds the current state
of the string, the length of str excluding the terminating byte, and the amount of memory cur-
rently allocated for the string. If the string needs to grow beyond this allocated length, GString
will automatically allocate more memory.

typedef struct
{

gchar *str;

gsize len;

gsize allocated_len;
} GString;

Gaution You should not make a permanent reference to the str member of a GString. It may be moved
to a different location as text is added or inserted or removed from the string because of a change in the allo-
cated length of the string!

CHAPTER 6 USING GLIB

There are three ways to create a new GString object. Calling g_string new(), you can cre-
ate anew GString out of an initial string. GString will copy the content of initial str, so you
can free the string afterwards if it is no longer needed. If you specify NULL as the initial string,
g string new() will automatically create an empty GString.

GString* g string new (const gchar *initial str);

GString* g string new len (const gchar *initial str,
gssize length);

GString* g string sized new (gsize default size);

Another way to create a new GString iswith g_string new_len(), which will initialize the
GString with length characters of initial str or the whole string if length is -1. Another
advantage of using GString is that it can handle embedded null bytes.

The last GString initialization functionis g _string sized new(), which will create a new
string with a length of default_size. You can use this function to allocate a large string so that
it will not have to be reallocated very often.

One very useful function is g_string printf(), which allows you to use a sprintf()-style
format to construct the content of a GString. The only difference is that the GString will auto-
matically expand if necessary. Any previous contents contained by the GString buffer are
destroyed.

void g string printf (GString *string,
const gchar *format,

eed);

Youcanalsouseg string append printf(), which will append the formatted string to the
end of the GString, leaving its current contents unchanged. There are a large number of func-
tions for appending text to a GString, shown in the following example. These functions allow
you to append the whole content of val, the first 1en characters of val, a single character, or a
single UCS-4 character respectively.

GString* g string append (GString *string,
const gchar *val);
GString* g string append len (GString *string,
const gchar *str,
gssize len);
GString* g string append c (GString *string,
gchar c);
GString* g string append unichar (GString *string,
gunichar wc);

185

186

CHAPTER 6 USING GLIB

In addition to these four functions, there are versions of these functions for prepending
and inserting into a GString. For example, g_string prepend c() will add a character to the
beginning of a GString, and g_string insert() will insert a string into a specified position in
the GString. For more information on these functions, you should visit the “Strings” section
of the GLib API documentation.

It is useful to be able to insert text into a GString, but it is just as important to be able to
remove text. You can remove a number of characters from a GString, starting at a given posi-
tion by calling g string erase(). This function will shift the end of the string to fill the void,
place a terminating character at the new end position, and update the length of the string.

GString* g string erase (GString *string,
gssize pos,
gssize len);

When you are finished with the GString, you should free the memory withg_string free().
If you set free_segment to TRUE, it will also free the C string and return NULL. Otherwise, it will
return the C string, which you must later free yourself.

gchar* g string free (GString *string,
gboolean free segment);

You should note that, while GString does provide a number of useful functions, you would
still have to use the standard string functions provided by GLib to search through a string.
GString implements functions that are not already available on your system to avoid reinvent-
ing the wheel. Therefore, you will still need to be comfortable with interacting with C strings
directly.

Linked Lists

You have already seen instances of GLib linked lists in examples from past chapters. There are
two types of linked lists provided by GLib: singly linked and doubly linked lists. GLib provides
functions for these two data types with the prefixes of g_slist foo() andg list foo()
respectively.

Singly linked lists (GSList) are the simplest kind of linked list, where each node has a piece
of data and a pointer to the next node. A pointer to NULL designates the last node. The GSList
structure, which follows, represents one node within the list.

typedef struct
{
gpointer data;
GSList *next;
} GSList;

Doubly linked lists (GList) provide the same functionality as singly linked lists except a
pointer is provided that points to the previous element in the list. This allows them to be tra-
versed in either direction. A previous pointer to NULL designates the first element in the list.

CHAPTER 6 USING GLIB

typedef struct

{
gpointer data;
GList *next;
GList *prev;

} GList;

Except for the ability to traverse a doubly linked list in reverse, both types of lists provide the
same functionality. Therefore, while the rest of the information in this section will be given about
doubly linked lists, it applies to singly linked lists as long as you first change the function prefix.

In addition, most of the functions in this section return a new GList pointer. This value
should be stored, because the location of the beginning of the list may have changed because
of some action performed by the function.

To add a new element to the beginning of the list, you can use g_1list prepend().Itis also
possible to append an element with g 1ist append(), but this function should not be used,
because it has to traverse the list to find where to insert the element. Instead, you should
prepend all of the elements and then callg list reverse() to reverse the order of the list.

GList* g list prepend (GList *list,
gointer data);

In addition to appending and prepending new nodes, you can insert a node at an arbitrary
position of the list with g_list insert().If the position is negative or it is larger than the
number of nodes in the list, it willact as g 1ist append(). You can also insert a new node
immediately before another with g list insert before().You can get the length of the list
with g _list length(), which returns an unsigned integer.

GList* g list insert (GList *1ist,
gpointer data,
gint position);

It is possible to remove an element from the list with g 1ist remove(). The first node
encountered that contains the same data will be removed, unless a matching node is not found.

GList* g list remove (GList *1ist,
gconstgpointer data);

If you would like to remove a node without freeing its data, you should call
g list remove link(), which accepts a pointer to the element you want to remove. The
previous and next pointers are set to NULL, so the node becomes a list of one element.

Whileg list remove() will only remove the first occurrence of a node with matching data,
g list remove all() can be used to remove every node that has a matching data member. If
no matching node is found, nothing will be done to the list.

When you are finished with a linked lists, you should free it with g 1list free().You
should note that only the linked list is freed. Therefore, you will need to make sure to free any
dynamically allocated data before you call this function, or it will cause a memory leak.

void g list free (GList *list);

187

188

CHAPTER 6 USING GLIB

Sorting a linked list is very easy because of g list sort().You need only to specify a
GCompareFunc. Comparison functions receive two constant pointers (gconstpointer), which
refer to the two nodes currently being compared. You need to compare the two, returning a
negative number if the first should be sorted before the second, a positive number to sort the
second before the first, and zero if they are equal.

GList* g list sort (GList *1list,
GCompareFunc compare func);

There are two functions provided for searching through a linked list. The default function
isg list find(), which will find the first element in the list with the given data. If a matching
node was not found, then this function returns NULL.

GList* g list find (GList *1list,
gconstpointer data);

It is also possible to specify your own find function through g list find custom() if each
item contains a complex data type. This method uses the same format of comparison function
asg list sort() and will return the corresponding GList node when you return 0 from the
GCompareFunc. This function will also return NULL if no match is found.

One big problem with linked lists has already been alluded to—many actions are very inef-
ficient when dealing with large lists, including sorting. The problem is that many functions
require a traversal of the linked list, which can take a long time when there are many nodes in
the list. Therefore, they should only be used when you know there will not be alot of nodes nec-
essary, which is why they are used for radio groups.

However, it is possible to use linked lists efficiently if you know how to avoid traversing the
list as much as possible. One possible solution is to save your last list position, or those that are
going to be commonly used. This can reduce the amount of time it takes to find certain
elements.

Itis impossible to completely avoid traversing a linked list. If you need to perform an oper-
ation on every element in the list, you should use g_list foreach(), which will call your
instance of GFunc for every node in the list.

void g list foreach (GList *1ist,
GFunc func,
gpointer data);

The GFunc prototype accepts the data member of the node and the data parameter in
g list foreach(). By avoiding traversing linked lists many times, they can be effectively uti-
lized for many different applications.

Balanced Binary Trees

Abalanced binary tree is a tree that tries to automatically keep its height as low as possible. By
doing this, the distance between any two elements is minimized. This keeps average times for
lookup, traversal, insertion, and removal at a minimum.

Unlike linked lists and strings, the GTree structure does not have any public members.
Instead, you should use the provided functions for performing operations on the tree. The
functions will automatically handle balancing the binary tree if you perform an operation that
alters the tree.

CHAPTER 6 USING GLIB

Each node in a binary tree consists of a key and a value. The key is used to calculate the
position of the node within the tree and the value to hold the associated data. Each node can
also have a maximum of two children. If a node does not have any children, it is called a leaf.

There are three functions provided for creating a new GTree. The simplest function is
g tree new(), which will create a new empty tree with the specified comparison function. This
function will be used to compare keys when inserting an element into the tree or reordering
nodes. This function returns a negative integer if the first element is less than the second, a
positive integer if the second element is less than the first, and zero if they are the same.

GTree* g tree new (GCompareFunc key compare func);

If you need to send data to the comparison function, you can create the binary tree with
g tree new with data().Thekey compare data pointer will be sent as a third parameter to the
comparison function, defined by GCompareDataFunc.

GTree* g tree new with data (GCompareDataFunc key compare func,
gpointer key compare data);

Furthermore, you can create a new tree with g tree new full(), which accepts two addi-
tional parameters. Each is a GDestroyNotify function that will be called to destroy a key or
value when necessary. You should specify these functions if you are using dynamically allo-
cated keys and/or values. Otherwise, the memory will be lost when the tree is destroyed.

GTree* g tree new full (GCompareDataFunc key compare func,
gpointer key compare data,
GDestroyNotify key destroy func,
GDestroyNotify value destroy func);

Since GTree automatically calculates the position of new key-value pairs, GLib only pro-
vides two functions for adding new nodes into a tree including g tree insert().If they key
already exists within the tree, the old data will be freed with the destroy function if provided
and replaced with the new value. The tree is then automatically balanced after the new node is
inserted.

void g tree insert (GTree *tree,
gpointer key,
gpointer value);

You can also use g_tree replace() to add a node to a binary tree. The only difference
between this function and g_tree insert() is that if the key already exists within the tree, the
key itself will also be replaced. If the key does not already exist, it will be inserted into a new
position in the tree, and the tree will automatically be balanced.

At times, you may need to know basic information about the structure of the tree. For
example, you can get the number of nodes with g tree nnodes() and the current height of the
tree with g_tree height(). With these two pieces of information, you should be able to figure
out the general structure of the tree.

To retrieve the value associated with a key in a binary tree, youneed to callg_tree lookup().If
the key is found, the associated value will be returned. Otherwise, this function will return NULL.

gpointer g tree lookup (GTree *tree,
gconstpointer key);

189

190

CHAPTER 6 USING GLIB

Alternatively, you can use g_tree lookup extended(), which will also return pointers to
the original key and its associated value by reference. This function will return TRUE if the key
was found.

This brings us to one big advantage of binary trees. Since the tree is automatically balanced,
finding a key is very fast, even if there are a large number of elements in the list. In the worst case,
it will take the number of comparisons equal to the height of the tree to find the node.

If you need to perform some operation on every node in a binary tree, you need to specify a
traversal function to g_tree foreach(). The GTraverseFunc prototype accepts three gpointer
parameters corresponding to a key, its associated value, and the user data from g_tree foreach().
In order to stop the traversal, you should return TRUE from the function. The nodes of the tree are
traversed in sorted order.

void g tree foreach (GTree *tree,
GTraverseFunc func,
gpointer data);

As with linked lists, it is possible to search through a binary tree with g_tree search().
However, there is a major advantage of using the binary tree over the linked list when you need
to search.

gpointer g tree search (GTree *tree,
GCompareFunc search func,
gconstpointer value);

When you search for an element in a linked list, every element will be visited until the
match is found. If the match is the last node in the list, the value will be compared with every
element in the list.

Since balanced binary trees in GList are automatically sorted, the maximum number of
comparisons will be equal to the height of the tree if the match is a leaf that is as far from the
root node as possible. Even if your tree has over 32,000 nodes, there will only be a maximum of
16 comparisons! This is why balanced binary trees should be used if you need to be able to
quickly search through the data structure for a match.

The disadvantage of using binary trees is that you must know the key value of a node in
order to directly reference an element. If you need to get instant access to a specific node, you
should use a data structure that uses index referencing.

If you need to remove an item from the list, you should callg_tree remove().This function
will return TRUE if the key was found in the list. The tree will be rebalanced if a node was
removed.

gboolean g tree remove (GTree *tree,
gconstpointer key);

After you are finished with the tree, you should call g_tree destroy(). This function will
destroy the tree along with all of its elements. There is no need to free any of the keys or values
after this is called.

CHAPTER 6 USING GLIB

N-ary Trees

The other type of tree data type provided by GLib is the n-ary tree, which allows a node to have
any number of children. This data type is not balanced automatically; you perform manage-
ment of its structure.

N-ary trees are actually a collection of GNode structures. Each structure contains five
objects. The first, data, is a pointer to the actual piece data stored by the node. As with most of
the data types provided by GLib, you can store any type of pointer data type.

typedef struct

{
gpointer data;
GNode *next;
GNode *prev;
GNode *parent;
GNode *children;

} GNode;

The other members point to other nodes within the tree. These include the next node on
the same level, the previous node on the same level, the parent node, and the first child. To
help you understand this relationship, Figure 6-1 shows a simple association.

>
parent

children

prev | next

prev | next

Figure 6-1. GNode relationships

There is one root element in the figure, which has three children. The first child also has
two children of its own. The root node points only to the first child. To access its other children,
each child points to the next and previous child. Each child will also point to its parent node.

You should notice that there is no pointer between the root child and its second and third
children, because the parent node only points to its first child. You will need to use the next and
prev pointer to access the rest of the children of a node.

191

192 CHAPTER 6 USING GLIB

Anew n-ary tree is created with g node_new(), which creates a tree with a single root node.
Initially, all of the GNode pointers will be set to NULL for the new tree. You will need to use the
function to create every node for the tree.

GNode* g node new (gpointer data);
After you create the nodes, you can use the functions shown in Table 6-5 to construct the

tree with the desired structure.

Table 6-5. N-ary Tree Construction Functions

Function Description

g _node_append() Insert a node as the last child of the parent node. This is the
same thing as calling g_node_insert before() with a sibling
node of NULL.

g_node_append_data() This is the same thing as calling g_node_append(), except a new
node is created with the specified data.

g node_insert() Insert a node as the child of the parent node at the specified
position. If the position is -1, the node will be appended as the
last child.

g node_insert_after() Insert a node as the child of the parent node immediately after

a sibling. If the sibling is set to NULL, the node will be prepended
as the first child of the parent.

g node_insert before() Insert a node as the child of the parent node immediately
before a sibling. If the sibling is set to NULL, the node will be
appended as the last child of the parent.

g_node_insert data() This is the same thing as calling g_node_insert(), except a new
node is created with the specified data.

g node_insert data_before() This is the same thing as calling g node_insert before(),
except a new node is created with the specified data.

g_node_prepend() Insert a node as the first child of the parent node.

g _node_prepend data() This is the same thing as calling g node_prepend(), except a new
node is created with the specified data.

The structure of an n-ary tree can become quite complex. Therefore, GLib provides
g_node_traverse(), which allows you to visit the nodes of a tree and call a function for each node.

void g node traverse (GNode *root,
GTraverseType order,
GTraverseFlags flags,
gint max_depth,
GNodeTraverseFunc func,
gpointer data);

CHAPTER 6 USING GLIB

When you call g_node_traverse(), you first need to specify the root node to begin search-
ing from. This node does not necessarily have to be the root node of the tree. You next need to
specify what type of traversal will occur, defined by the GTraverseType enumeration shown in
the following list:

e G_IN ORDER: Visit the leftmost child of the node first, moving from left to right. This is the
order that nodes should be visited if you want to traverse the tree in sorted order after
using a comparison function.

e G_PRE_ORDER: Visit the root node before visiting the left and right subtrees. The subtrees
are then visited from left to right in that order.

e G _POST ORDER: Visit the children of a node followed by the root node itself. This will visit
all of the nodes, ending at the root node.

e G_LEVEL ORDER: Visit a node and then all of its children, followed by its grandchildren,
and so on. This traversal type is much more inefficient than the others, since it will not
follow a natural recursive approach to traversal.

The next parameter in g_node_traverse() specifies what types of child nodes will be vis-
ited, as defined by the following GTraverseFlags enumeration:

e G_TRAVERSE_LEAVES: Visit all of the leaves, which are the nodes with no children. This is
identical to the G_TRAVERSE LEAFS flag.

e G_TRAVERSE_NON_LEAVES: Visit all of the nodes that have children. This is identical to
the G_TRAVERSE_NON_LEAFS flag.

e G_TRAVERSE_ALL: Traverse all of the nodes. This is identical to the bitwise mask of
(G_TRAVERSE_LEAVES | G TRAVERSE NON_LEAVES).

e G_TRAVERSE_MASK: Include all of the traversal flags.

The fourth parameter of g node traverse() gives the maximum depth of children from
the root node that will be visited. For example, a depth of three would only visit the root node,
its children, and its grandchildren. You can set the maximum depth to -1 to visit all children.

You then need to specify a GNodeTraverseFunc callback that will be run for every traversed
node. This function accepts a GNode corresponding to the current node and the pointer data
parameter from g _node_traverse().Byreturning TRUE from the traversal function, the traversal
will stop. If you return FALSE, the traversal will continue if a node has not yet been visited.

As with binary trees, after you are finished with the n-ary tree, you should call
g node_destroy() on the root node. This will recursively destroy all of the elements in the tree,
including every child of a child and so on.

g node_destroy (node root);

GLib provides a number of other functions for interacting with trees of GNode objects. If you
have a need for this object, you should reference the API documentation on the GNode data type.

193

194

CHAPTER 6 USING GLIB

Arrays

There are three types of array data types provided by GLib, which are used to store pointers,
bytes, or arbitrary types of data. There are multiple advantages of using arrays in GLib. First,
they provide very fast memory access, because direct indexing is supported. This is because of
the fact that the CArray structure holds data in an internal array.

Another advantage of GLib array types is that they will automatically expand in size if a
new element will not fit. However, you do need to keep in mind that every time you change the
number of elements in the array, it can call g_memmove () and memcpy (), which can be expensive
if you do this too often. Therefore, GLib arrays are not optimal for applications that will need to
constantly add and remove elements.

GArray

Each of the three types of arrays provided by GLib has similar APIs. Therefore, only GArray will
be covered in detail. For more information on GPtrArray and GByteArray, you should supple-
ment the instructions given in this section with the API documentation of each data type.

The GArray structure contains two public members: a pointer to the element data stored
by the array and the current length of the array in elements. You should note that, as you
change change the number of elements stored by the array, data might not stay in a constant
position. Therefore, you should not make a permanent reference to this pointer. Also, every
element in the array must always be the same length.

typedef struct
{
gchar *data;
guint len;
} GArray;

GLib provides two functions for creating a new GArray. g array sized new() allows youto
create an array with an initial number of elements (reserved size) already allocated. This
allows you to avoid reallocating the array too many times.

GArray* g array sized new (gboolean zero terminated,
gboolean set to zero,
guint element_size
guint reserved size);

If you set zero_terminated to TRUE, one extra element will be added to the array where
every bit is set to zero. Setting set_to_zero to TRUE will clear all bits in the array to zero when
allocated. You also need to specify the size that every element will be allocated. Every element
must always have a size that is less than or equal to element size.

Alternatively, you can create a new GArray with g_array new(), which simply calls
g array sized new() with an initial allocated size of zero elements. You should only use this
initialization function if the array will not be adding too many elements to the array, because
adding a large number of elements will cause it to be reallocated many times.

GArray* g array new (gboolean zero terminated,
gboolean set to zero,
guint element size);

CHAPTER 6 USING GLIB

In order to append multiple new elements to a GArray, youshould callg_array append vals().
This function will add 1len number of elements out of data to the end of the array. If you need to
append one element to the array, you can use g_array append val().Itis defined by the following
macro, so there is no difference between calling this function and g array append vals() with a
length of 1.

GArray* g array append vals (CGArray *array,
gconstpointer data,
guint len);

Caution You cannot add literal values such as 13 to a GArray with g_array append val(), because
it references the value parameter. You must always use variables when adding elements to an array!

In addition to appending values, GLib provides function for prepending and inserting a
single value or multiple values in the same way as g_array append val() and
g array append vals().

#tdefine g array append val(a,v) g array append vals (a, &(v), 1)

You can remove an element with the given index with g_array remove_index(). This
function will then shift all of the elements that are located after the removed element one place
forward. You should then store the new location of the GArray object.

GArray* g array remove_index (GArray *array,
guint index);

You can also use g_array remove_index_fast(), which will shift the last element into the
position of the removed element. This is considerably faster than g_array remove index(), but
it will not preserve the order of the array. Therefore, it may not always be the optimal solution.

If you need to remove a block of elements in one call, you should use g_array remove range().
This function will remove length elements beginning at index and shift the following elements into
the empty spaces. You should use this function when removing elements if possible, because it will
require far fewer memory shifts than g_array remove_index().

GArray* g array remove range (CArray *array,
guint index);
guint length);

When using GArray, you will most likely need to access elements by their index. One
advantage of this data structure is that indexing is performed very quickly, since elements are
evenly sized. You can index an element with g_array index(), which accepts the GArray object,
the data type that will be used to cast the return value, and the element index. The returned
value will automatically be cast to the data type you provided to the second parameter.

As with other data types in GLib, you are able to sort a GArray with g_array sort(). This
function accepts a standard GCompareFunc callback that is used to compare two elements. In
addition, you can use g_array sort data(), which allows you to send an additional pointer
data parameter to the comparison function.

195

196

CHAPTER 6 USING GLIB

void g array sort (GArray *array,
GCompareFunc compare func);

When you are finished with the GArray object, you should free it with g array free(). As
with other data structures, if the array contains dynamically allocated memory, you should free
it before calling this function.

gchar* g array free (GArray *array,
gboolean free segment);

Ifyouset free_segment to true, the element memory will also be freed and the function will
return NULL. Otherwise, the function will return the internal element array. This allows you to
continue to use the array elsewhere, even after the GArray object is freed.

Pointer Arrays

GPtrArray is very similar to GArray in the API except the structure stores an array of pointers.
This means that it does not matter what type of data is held by each element in the array; they
do not have to be evenly sized. The GPtrArray structure holds an internal array of pointers and
the current length of the array.

typedef struct

{
gpointer *pdata;
guint len;

} GPtrArray;

Only one function is provided for inserting an element into a GPtrArray, g ptr array add().
This function appends the array element to the end of the list.

Removing elements is also very similar except two additional functions are provided:
g _ptr array remove()and g ptr array remove fast().Instead of removing an element by
its index, each of these functions removes an element that matches the given data. TRUE is
returned if an element was successfully found and removed.

gboolean g ptr array remove (GPtrArray *array,
gpointer data);

GPtrArray provides an additional function, g_ptr array foreach(), which will call
foreach_func() for every element within the array. This function accepts the pointer
associated with the current element and the g_ptr array foreach() user data parameter.

void g ptr array foreach (GPtrArray *array,
GFunc foreach_func,
gpointer data);

When you are finished with a pointer array, you should free it with g_ptr array free().
This function also gives you the option of whether to free the internal element array or to
return it.

CHAPTER 6 USING GLIB

Byte Arrays

Byte arrays are simply a type of GArray that stores a guint8. Functions are provided for
appending and prepending a single element. While, unlike GArray, GByteArray does not
provide a function for inserting an element, it does allow you to append and prepend new
elements.

typedef struct
{
guint8 *data;
guint len;
} GByteArray;

With the exception of the absence of insert functions and those that allow you to prepend
or append multiple elements, GByteArray is exactly the same as GArray. In fact, GByteArray uses
the GArray functions internally for its implementation.

When you are finished using a byte array, you should free it with g_byte array free().You
have the option of whether to free the internal byte array or for it to be returned by the
function. If you specify for it to be freed, g_byte _array free() will return NULL.

Hash Tables

Ahash table is a data type that is optimized so that its elements can be found very quickly. Data
is stored as a number of key-value pairs. Neither the key nor the value is actually stored by
GHashTable in GLib, so the pair must exist for the lifetime of the hash table itself.

That means you should not use temporary strings such as those returned from GTK+ wid-
gets. If you need to use a temporary string, you should call g strdup() to make a permanent
copy of the string.

Hash tables are useful when you are storing a large number of elements, because they pro-
vide constant lookup time on average. This average is independent of the number of elements.
The lookup time can be longer in some cases, but that is rare.

New hash tables are created in GLib with g_hash_table new(), which accepts two
functions. The hash function is used to create a new hash value out of a key, which can be NULL.
The second function is used to check whether two keys are equal to each other.

GHashTable* g hash table new (CHashFunc hash func,
GEqualFunc key equal func);

Hash functions are defined by the function prototype for CHashFunc, shown previously.
It accepts the key value and returns the corresponding hash value. You are free to write your
own hash functions, but GLib already provides three for commonly used values. These are
g direct hash(), g _int_hash(),and g str hash(), which can be used when the key is a
gpointer, gint, and a string respectively.

guint (*GHashFunc) (gconstpointer key);

197

198

CHAPTER 6 USING GLIB

The key comparison function is defined by the following GEqualFunc prototype. These
functions should return TRUE if a and b are equal and FALSE if they are not. GLib already
provides three functions: g direct equal(), g int equal(),and g str equal(), which act
as comparison functions for gpointer, gint, and string type keys.

gboolean (*GEqualFunc) (gconstpointer a,
gconstpointer b);

In addition to g_hash_table new(), GLib provides g _hash table new full(), which allows
you to supply destroy callback functions for keys and values when they are removed from the
hash table.

There are two ways to insert a new key-value pair into a hash table. The first is by calling
g hash table insert().If the key already exists within the table, value will replace its current
value. You can also call g_hash_table replace(), which provides the same functionality.
However, if the key already exists within the table, both the key and value objects will be
replaced.

void g hash table insert (GHashTable *hash table,
gpointer key,
gpointer value);

Removing a key-value pair from a hash table is done with g _hash_table remove(). If you
supplied destroy functions for the key and value, they will be called at this time. Otherwise, you
will have to make sure to destroy any dynamically allocated data yourself. This function will
return TRUE if the key was successfully removed. You can also remove every key-value pair from
a hash table with g_hash_table remove all().

gboolean g hash table remove (CHashTable *hash table,
gconstpointer key);

As previously stated, one advantage of hash tables is that looking up a value occurs in
constant time, regardless of the number of elements in the hash table. You can search for a
value corresponding to the key given to g_hash table lookup(). The associated value will be
returned, or NULL will be returned if the key could not be found.

gpointer g hash table lookup (CHashTable *hash table,
gconstpointer key);

Additionally, you can call g_hash table lookup extended(). This function returns TRUE if
the key was found within the GHashTable. It will then set the original key and the value, which
are two additional parameters sent to the function.

When you are finished with the hash table, it should be freed with g_hash table destroy().
If you supplied destroy functions for the keys and values, they will be called on every object at
this time.

void g hash table destroy (GHashTable *hash table);

CHAPTER 6 USING GLIB

One thing that makes this function unique is that, in addition to destroying all keys
and values, it decrements its reference count by one. It is possible to increase and decrease
the reference count of a hash table with g_hash table ref() and g hash table unref()
respectively. So, the hash table may still exist as an object if the reference count did not
reach zero.

Quarks

A quark s a two-way association between a 32-bit integer and a string. This means that you can
access the string by using the integer and vice versa. Quarks are calculated at runtime and are
available globally throughout the application. You can set a new quark at any point in your pro-
gram, and it will be available in any other aspect of the application.

Internally, quarks are implemented as a hash table and an array of strings. The quark itself
is a 32-bit integer that is used as the index of the array, which is used to look up the associated
string. The string is used to find the quark in the hash table. This means that all strings and inte-
gers must be unique.

typedef guint32 GQuark;

To get the GQuark of the given string, use g_quark _from_string().If the string is not already
associated with a GQuark, using a copy of the string will create one. If you are sure that the string
will always exist, you can use g_quark_from string static(), which will use the string itself
instead of a copy.

GQuark g quark from string (const gchar *string);

To test whether a string already has an associated quark, you can use g_quark try string().
This function accepts a string and returns the associated GQuark. If the string has not been added,
it will return 0.

If a string already exists within the global table, you can retrieve it from the quark with
g quark to string().If the quark does not already exist, then this function will return NULL.

const gchar* g quark to string (GQuark quark);

Keyed Data Lists

Akeyed datalist is a special type of linked list that uses quarks for indexing. CData does not have
any public members. Its private members include a quark, a data pointer, an optional destroy
function to call when the node is removed, and a pointer to the next node.

Data lists use the quark relationship to store another arbitrary data type, which can be
retrieved by specifying either the string or the quark. Keyed data lists are initialized as an empty
list with g_datalist_init(). This function will fail if the GData object is not NULL.

void g datalist init (GData **datalist);

199

200

CHAPTER 6 USING GLIB

GLib provides a large number of functions for adding and removing elements from a data
list, but most of them are simply defined as calls to g_datalist id set data full().Ifthe
key id already exists within the data list, then the previous data will be removed and replaced
by the new pointer.

void g datalist id set data full (GData **datalist,
GQuark key id,
gpointer data,
GDestroyNotify destroy func);

This function also allows you to specify a GDestroyNotify callback function that will be
called when the node is removed. GDestroyNotify callback functions accept a pointer to the
data member of the node.

Youcan also use g_datalist id set data full() to remove an element from the data list
by specifying NULL to the data parameter. A number of other functions are provided that wrap
the functionality provided by g_datalist id set data_ full() with multiple different
prototypes.

When you remove an item with g_datalist id set data full(), the destroy-notify call-
back will be run if it was set. However, if you would like to prevent this, you can remove a node
with g _datalist id remove no_notify(). This function will the node and return the data
stored that was specified at that location.

gpointer g datalist id remove no notify (GData **datalist,
GQuark key id);

If you need to traverse through all of the nodes in a data list, you should use
g datalist foreach(). The GDataForeachFunc prototype accepts the quark and element
data of one node along with the data pointer specified in g_datalist foreach().

void g datalist foreach (GData **datalist,
GDataForeachFunc func,
gpointer user data);

After you are finished with the keyed data list, you need to clear all of its elements with
g datalist clear(). This will make the list ready for the next use. There is no need to call a
destroy function on the data list itself, since it will now take up no memory.

void g datalist clear (GData **datalist);

When the elements are being removed, a destroy function will be called on the data
parameter if it was specified.

CHAPTER 6 USING GLIB 201

Input-Output Channels

The GIOChannel structure allows you to handle files, pipes, and sockets. The following sections
will cover how to use the structure with files and pipes. You should only use the method
covered in the pipes section when working on a UNIX-like operating system, because file
descriptor and socket domains overlap in Windows.

You will be given an alternative for spawning processes in the “Spawning Processes” part
of this section, which will cover both synchronous and asynchronous processes.

GIOChannels and Files

One way to create a new input-output (I0) channel is to use g_io_channel new_file(). This
method removes the need for UNIX file descriptors, so it can be safely used on non-UNIX oper-
ating systems.

This function opens a new file or pipe as a GIOChannel. Listing 6-8 uses g_io_channel
new_file() function twice. First, a file is created with some initial text. A second channel then
opens the file, reads its contents, and prints the text to standard output. Contrast this with
Listing 6-5, which implements the same functionality with file utility functions.

Listing 6-8. Using IO Channels for Files (files2.c)

#include <glib.h>
static void handle error (GError*);

int main (int argc,
char *argv[])
{
gchar *filename, *content;
GIOChannel *write, *read;
GError *error = NULL;
gsize bytes;

/* Build a filename in the user's home directory. */
filename = g build filename (g_get home dir(), "temp", NULL);

/* Set the contents of the given file and report any errors. */
write = g_io_channel new file (filename, "w", &error);
handle_error (error);

g io channel write chars (write, "Hello World!", -1, &bytes, NULL);

g _io channel close (write);

CHAPTER 6 USING GLIB

if (!g_file test (filename, G _FILE TEST EXISTS))
g error ("Error: File does not exist!\n");

/* Get the contents of the given file and report any errors.

read = g io channel new file (filename, "r", &error);
handle error (error);

g io channel read to end (read, &content, 8bytes, NULL);
g print ("%s\n", content);

g io channel close (read);
g free (content);
g free (filename);

return O;

static void
handle error (GError *error)
{
if (error != NULL)
{
g print (error->message);
g clear error (&error);

}

*/

}

The second parameter of g io _channel new file() specifies the mode. This mode is a

string in the same format as specified to fopen(). Table 6-6 shows the possible modes that
g io channel new file() accepts. Files opened with g io channel new file() can have an
error under the domain G_FILE ERROR.

Table 6-6. GIOChannel File Modes

Mode Description

r

W

I+

W+

a+

Open the file for reading only and place the pointer at the beginning of the file.

Open the file for writing only and place the pointer at the beginning of the file. The file is
also erased, so its length is zero characters, or created if it does not exist.

Open the file for writing only and place the pointer at the end of the file so that new text
is appended. If the file does not exist, attempt to create it.

Open the file for reading and writing and place the pointer at the beginning of the file.

Open the file for reading and writing and place the pointer at the beginning of the file.
The file is also erased, so its length is zero characters, or created if it does not exist.

Open the file for reading and writing and place the pointer at the end of the file so that
new text is appended. If the file does not exist, attempt to create it.

CHAPTER 6 USING GLIB

If you specified w, a, T+, w+, or a+ as the mode, you can use g_io channel write chars() to
write text to the file.

GIOStatus g io channel write chars (GIOChannel *channel,
const gchar *text,
gssize size of buffer,
gsize *bytes written,
GError **error);

This function takes five parameters: the opened IO channel, text to write or append to the
file, the size of the text, an integer to store the number of bytes written, and a GError structure.
The size of the buffer can be set to -1 if the text string is NULL-terminated. The number of bytes
written to the file is set by the function itself.

After you are finished with an IO channel, it needs to be closed with g_io_channel shutdown().
By setting the second parameter to TRUE, any pending data will be flushed. Otherwise, GLib will
continue the current action and close when it is completed. The third parameter will catch any
errors of type GIOChannelError that occur.

GIOStatus g io channel shutdown (GIOChannel *channel,
gboolean flush,
GError **error);

GIOChannel provides functions for reading a single character, a whole line, or a whole file.
When dealing with files, g io_channel read to end() can be used to read the entire contents
of the file. This function also sets the length of the text that is returned. Errors can be of type
GIOChannelError or GConvertError.

GIOStatus g io channel read to end (GIOChannel *channel,
gchar **text,
gsize *length,
GError **error);

GIOChannels and Pipes

Since most objects on UNIX systems are treated as files, it is possible to use the same method
covered in the previous section to open pipes. Pipes allow communication between applica-
tions. The only difference is that you would need to add watches so that you will know when
data is ready to be read from or written to the pipe.

Note While this book does provide an introduction to UNIX pipes, this is by no means an in-depth tutorial.
After reading this section, you are encouraged to learn more about pipes from the C programming language
tutorial of your choice.

203

204

CHAPTER 6 USING GLIB

INTERPROCESS COMMUNICATION USING PIPES

A process in UNIX is, fundamentally, a single, running application that has its own stack, memory pages, and
file descriptors table. When the process is run, it is given a unique identifier called a process ID (pid). New pro-
cesses can be created with a wide array of functions, but they all make calls to the fork() command.

A process is not a program, because multiple processes can be run as an instance of the same applica-
tion at the same time. For example, you can open up multiple instances of your web browser at the same time.

Forking turns a single process into two identical processes: the parent and the child. Various UNIX com-
mands can then be used to run another application from the forked process, although in our example, we want
the same application to be created twice.

switch (fork())
{
case -1:
g error ("Error: The fork() failed!");
exit (1);
case 0:
g message ("We are currently running the child process!");
exit (0);
default:
gint status_of child;
wait (8status of child);

After a process has been forked, it returns a process identifier. If this identifier is -1, it means that the
function has failed. An identifier of 0 lets you know that you are currently in the child process. You can perform
the desired functionality for the child. The default case catches the main application, which waits for the child
to exit.

Usually when you fork your application, you want a way to communicate with the child process, which
is provided by pipes. Pipes are set up by calling the pipe() command. pipe() accepts an array of two integers
and returns 0 on success or —1 on failure. After it’s initialized, the first integer in the array refers to the read
pipe and the second to the write pipe.

If you need to communicate in both directions between the child and the parent, you will need to set up
two sets of pipes. You are able to write data to one pipe, which be read by the other instance of the application
and vice versa. Our example will use the UNIX method for forking processes and creating pipes, but will use
GLib’s functions for interacting with the pipes.

Listing 6-9 uses UNIX’s method of pipe creation in conjunction with the functions pro-

vided by the GIOChannel structure. To do this, watches are created.

A watch is like a signal, because it waits for an event to occur by integrating itself into
GLib’s main loop. It then invokes a callback function. Types of watch events include when
the pipe has data that is ready to read and when it can accept data to be written.

Listing 6-9 creates a parent and child process, both with a GtkEntry widget. When you type
into either entry widget, the new content is written to the pipe. The other entry is then set to
have the same content as the first.

CHAPTER 6 USING GLIB

Note You will notice that the pipes were set up and the application forked in a UNIX-specific way. The
next section will show you a way to set up pipes and fork your application that is supported across platforms.

Listing 6-9. Using IO Channels for Pipes (iochannels.c)

#include <gtk/gtk.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <unistd.h>
#include <string.h>

static void entry changed (GtkEditable*, GIOChannel*);
static void setup app (gint input[], gint output[], gint pid);
static gboolean iochannel read (GIOChannel*, GIOCondition, GtkEntry*);

gulong signal id = 0;

int main (int argc,
char* argv[])

{
gint child to parent[2], parent to child[2], pid, ret value;

/* Set up read and write pipes for the child and parent processes. */
ret value = pipe (parent to child);

if (ret_value == -1)
{
g error ("Error: %s\n", g strerror (errno));
exit (1);
}
ret value = pipe (child to_parent);
if (ret_value == -1)
{
g error ("Error: %s\n", g strerror (errno));
exit (1);
}

/* Fork the application, setting up both instances accordingly. */
pid = fork ();
switch (pid)
{
case -1:
g error ("Error: %s\n", g strerror (errno));
exit (1);

205

CHAPTER 6 USING GLIB

case 0:
gtk_init (8argc, &argv);
setup app (parent to child, child to parent, pid);
break;
default:
gtk_init (8argc, &argv);
setup app (child to parent, parent to child, pid);
}

gtk _main ();
return O;

}

/* Set up the GUI aspects of each window and setup IO channel watches. */
static void
setup_app (gint input[],

gint output[],

gint pid)

GtkWidget *window, *entry;
GIOChannel *channel read, *channel write;

window = gtk window new (GTK WINDOW TOPLEVEL);
entry = gtk entry new ();

gtk _container add (GTK_CONTAINER (window), entry);

gtk _container_set border width (GTK_CONTAINER (window), 10);
gtk widget set size request (window, 200, -1);

gtk widget show_all (window);

/* Close the unnecessary pipes for the given process. */
close (input[1]);
close (output[0]);

/* Create read and write channels out of the remaining pipes. */
channel read = g io channel unix _new (input[0]);
channel write = g io channel unix_new (output[1]);

if (channel read == NULL || channel write == NULL)
g error ("Error: The GIOChannels could not be created!\n");

/* Watch the read channel for changes. This will send the appropriate data.

if (!g_io add watch (channel read, G IO IN | G IO HUP,
iochannel read, (gpointer) entry))
g error ("Error: Read watch could not be added to the GIOChannel!\n");

*/

CHAPTER 6 USING GLIB

signal id = g signal connect (G OBJECT (entry), "changed",
G CALLBACK (entry changed),
(gpointer) channel write);

/* Set the window title depending on the process identifier. */
if (pid == 0)

gtk window_set title (GTK WINDOW (window), "Child Process");
else

gtk window_set title (GTK WINDOW (window), "Parent Process");

}

/* Read the message from the pipe and set the text to the GtkEntry. */
static gboolean
iochannel read (GIOChannel *channel,

GIOCondition condition,

GtkEntry *entry)

GIOStatus ret value;
gchar *message;
gsize length;

/* The pipe has died unexpectedly, so exit the application. */
if (condition & G_IO HUP)
g error ("Error: The pipe has died!\n");

/* Read the data that has been sent through the pipe. */
ret value = g io channel read line (channel, 8message, 8length, NULL, NULL);
if (ret value == G_IO STATUS ERROR)

g error ("Error: The line could not be read!\n");

/* Synchronize the GtkEntry text, blocking the changed signal. Otherwise, an
* infinite loop of communication would ensue. */

g signal handler block ((gpointer) entry, signal id);

message[length-1] = 0;

gtk entry set text (entry, message);

g signal handler unblock ((gpointer) entry, signal id);

return TRUE;
}

/* Write the new contents of the GtkEntry to the write IO channel. */
static void
entry changed (GtkEditable *entry,

GIOChannel *channel)

207

208

CHAPTER 6 USING GLIB

gchar *text;
gsize length;
GIOStatus ret value;

text = g strconcat (gtk entry get text (GTK ENTRY (entry)), "\n", NULL);

/* Write the text to the channel so that the other process will get it. */
ret value = g io channel write chars (channel, text, -1, &length, NULL);
if (ret _value = G IO STATUS ERROR)

g error ("Error: The changes could not be written to the pipe!\n");
else

g io channel flush (channel, NULL);

Setting Up 10 Channels

If you are working on a UNIX-like machine, you can use the pipe() function to create new file
descriptors. In Listing 6-9, two pairs of pipes are set up: one for sending messages from the par-
ent to the child and one for sending messages in the other direction. Two GIOChannels can then
be created from these file descriptors by calling the following function on each.

After the pipes are created, the application is forked with fork(). If the fork is successful,
the application is set up for both the child and the parent process.

Within setup_app(), we begin by closing the pipes that are not needed by the child or par-
ent applications with close(). Each process will only need one read and one write pipe in order
to send and receive messages.

Next, we use the two remaining pipes in each application and set up a GI0Channel for each.
We will use channel_read to receive data from the other process and channel write to send the
new content of the GtkEntry.

channel_read = g_io_channel unix_new (input[0]);
channel write = g io_channel unix_new (output[1]);

After initializing your IO channels, you need to set up a watch on channel _read. The watch
will monitor the channel for the specified events, which is setup with g_io_add_watch().

guint g io add watch (GIOChannel *channel,
GIOCondition condition,
GIOFunc func,
gpointer data);

CHAPTER 6 USING GLIB

The second parameter of g io_add watch() adds one or more events that should be
watched. You need to make sure to set up the correct conditions with each channel. You will
never getaG_IO IN event from a channel used for writing data, so monitoring for that event is
useless. Possible values for the GI0Condition enumeration follow; these can be piped to the
condition parameter of g io add watch():

e G IO IN:Read datais pending.

e G_I0 OUT: Data can be written without the worry of blocking.

G_I0 PRI: Read data is pending and urgent.

G_I0 _ERR: An error has occurred.

G_I0 HUP: The connection has been hung up or broken.
e G_I0 NVAL: An invalid request has occurred because the file descriptor is not open.

When one of the specified conditions occurs, the GIOFunc callback function is called. The
last parameter gives data that will be passed to the callback function. IO channel callback func-
tions receive three parameters: the GIOChannel, the condition that occurred, and the data
passed from g io add watch(). TRUE should always be returned from the callback function
unless you want it to be removed. The function prototype follows:

gboolean (*GIOFunc) (GIOChannel *source, GIOCondition condition, gpointer data);

Reading from and writing to a GI0Channel is done in the same manner regardless of whether
itis a file or a pipe. Therefore, the g io channel read (*) and g io channel write *() func-
tions covered in the previous section can still be used.

Many of the GIOChannel functions provide two ways to check for errors. The first is the
GError structure that we have used in past chapters. Secondly, many functions return a
GIOStatus value, which will report one of the following four values:

e G IO STATUS_ERROR: Some type of error has occurred. You should still track errors even if
you are checking for this value.

e G IO STATUS NORMAL: The action was successfully completed.
e G IO STATUS EOF: The end of the file has been reached.

e G IO STATUS AGAIN: Resources are temporarily unavailable. You should try again later.

209

210

CHAPTER 6 USING GLIB

Depending on the GI0Status value, you should either continue or give an error message.
The only exception is G_I0 STATUS AGAIN, in which case you should return to poll() in the
main loop and wait for the file descriptor to become ready.

To send the data to the read buffer, you need to flush the write buffer of the GI0OChannel
with g_io _channel flush(). This function, along with all of the functions in this section, can
cause an error of the type GIOChannelError.

GIOStatus g io channel flush (GIOChannel *channel,
GError **error);

Spawning Processes

The GI0Channel example in the previous section used pipe() and fork() to set up the commu-
nication between the applications. However, this example is not cross-platform, because some
commands will not be supported on Microsoft Windows.

To spawn processes in a way supported by multiple platforms, GLib provides three func-
tions. Since all three work in a similar way, we will only talk about the following function,
g_spawn_async_with pipes():

gboolean g _spawn async_with pipes (const gchar *working directory,
gchar **argv,
gchar **envp,
GSpawnFlags flags,
GSpawnChildSetupFunc child setup,
gpointer data,
GPid *child pid,
gint *standard_input,
gint *standard output,
gint *standard error,
GError **error);

This function asynchronously runs a child program, which means that the program will
continue to run even if the child has not exited. The first parameter specifies the working direc-
tory for the child process or NULL to set it as the parent’s working directory.

The argv listis aNULL-terminated array of strings. The first string in this list is the name of the
application, followed by any additional parameters. This application must be a full path unless
you use the G_SPAWN_SEARCH_PATH flag, which will be shown later. Another NULL-terminated array
of strings is envp, each in the form KEY=VALUE. These will be set as the child’s environment
variables.

CHAPTER 6 USING GLIB

You can then specify one or more of the following GSpawnFlags:

e G_SPAWN LEAVE DESCRIPTORS OPEN: The child will inherit the open file descriptors of the
parent. If this flag is not set, all file descriptors except the standard input, output, and
error will be closed.

* G _SPAWN DO NOT_REAP_CHILD: Stop the child from automatically becoming reaped. If you
do not call waitpid() or handle SIGCHLD, it will become a zombie.

e G_SPAWN SEARCH PATH: If this flag is set, argv[0] will be searched for in the user’s path if it
is not an absolute location.

e G_SPAWN_STDOUT TO DEV NULL: Discard the standard output from the child. If this flag is
not set, it will go to the same location as the parent’s standard output.

e G _SPAWN STDERR TO DEV_NULL: Discard the standard error from the child.

e G _SPAWN CHILD INHERITS STDIN: If this flagis not set, the standard input for the child is
attached to /dev/null. You can use this flag so the child will inherit the standard input of
the parent.

e G _SPAWN FILE AND ARGV_ZERO: Use the first argument as the executable and only pass the
remaining strings as the actual arguments. If this flag is not set, argv[0] will also be
passed to the executable.

The next parameter of g_spawn_async_with_pipes() is the GSpawnChildSetupFunc callback
function that will be run after GLib sets up pipes but before calling exec(). This function
accepts the data parameter from g_spawn_async_with pipes().

The next four parameters allow you to retrieve information about the new child process.
These are the child’s process identifier, standard input, standard output, and standard error.
Any of these four parameters can be set to NULL if you want to ignore it.

If the application was successfully launched, g_spawn_async_with pipes() will return
TRUE. Otherwise, the error will be set under the GSpawnError domain, and it will return FALSE.

When you are finished with a GPid, you should use g_spawn_close pid() to close it. This is
especially important when spawning processes on Microsoft Windows.

void g spawn close pid (GPid pid);

211

212

CHAPTER 6 USING GLIB

Dynamic Modules

One extremely useful feature provided by GLib is the ability to dynamically load libraries and
explicitly call functions from those libraries using the GModule structure. This functionality is
not performed in the same way across platforms, so a cross-platform solution for dynamic
libraries makes things much easier. This functionality facilitates, for one, the creation of a
plug-in system. In Listing 6-10, a simple theoretical plug-in system will be created.

The example is split into two separate files: one for the plug-in and one for the main appli-
cation. To run this application, you first need to compile and linkmodules-plugin.c as alibrary.
You can use the following two commands to create the library and install it into the standard
location.

gcc -shared modules-plugin.c -o plugin.so “pkg-config --libs glib-2.0" \
“pkg-config --cflags glib-2.0"
sudo mv plugin.so /usr/lib

Library creation is generally performed by the GNU linker (1d), but by using the -shared
flag, GCC can create shared libraries. Also, on some systems it is necessary to run ldconfig after
you move the plug-in library so it will be registered. You will need to do this if you want to use
the library for purposes other than loading with GModule.

Listing 6-10. The Plug-in (modules-plugin.c)

#include <glib.h>
#include <gmodule.h>

G_MODULE_EXPORT gboolean
print the message (gpointer data)
{
g printf ("%s\n", (gchar*) data);
return TRUE;
}

G_MODULE_EXPORT gboolean
print_another one (gpointer data)
{
g printf ("%s\n", (gchar*) data);
return TRUE;
}

The plug-in source only contains one or more functions that will be loaded by the main
application. Therefore, there is no need to include amain() function within the plug-in’s
source file.

The only important aspect of the plug-in file is that you should include G_MODULE_EXPORT
before any function you want to export. If you do not use this macro, GModule will be unable to
load the function from the library.

CHAPTER 6 USING GLIB

Functions dynamically loaded from a library are called symbols. A symbol is merely a
pointer to a function in the library. You call symbol functions in the same way you would call
any other function. The only difference is that, when called, GLib searches out the actual func-
tion in the library and executes it from there.

The advantage of this method is that multiple applications can load a library at the same
time. A library that allows itself to be loaded by multiple applications is called a shared library.
Most libraries compiled on Linux are shared libraries.

When compiling the main file of Listing 6-11, you will need to use an altered compile line
as well, because you need to link against the CModule library.

gcc modules.c -o modules "pkg-config --cflags --1libs glib-2.0" \
“pkg-config --cflags --1libs gmodule-2.0°

GModule can easily be included by adding " pkg-config --cflags --1ibs gmodule-2.0" to
the compile command. The following example illustrates how to load the library that we have
just created and installed. Listing 6-11 is an application that takes advantage of the dynamic
module from Listing 6-10.

Listing 6-11. Loading the Plug-in (modules.c)

#include <gmodule.h>
#include <glib.h>

typedef gboolean (* PrintMessageFunc) (gpointer data);
typedef gboolean (* PrintAnotherFunc) (gpointer data);

int main (int argc,
char *argv[])
{
GModule *module;
PrintMessageFunc print_the message;
PrintAnotherFunc print _another one;
gchar *text = "This is some text";

/* Make sure module loading is supported on the user's machine. */
g assert (g module supported ());

/* Open the library and resolve symbols only when necessary. Libraries on
* Windows will have a .dll appendix. */
module = g module open ("/usr/1ib/plugin.so", G MODULE BIND LAZY);

if (!module)

{
g error ("Error: %s\n", (gchar*) g module error ());
return -1;

}

213

214 CHAPTER 6 USING GLIB

/* Load the print the message() function. */
if (!g_module symbol (module, "print the message",
(gpointer*) &print the message))
{
g error ("Error: %s\n", (gchar*) g module error ());
return -1;

}

/* Load the destroy the evidence() function. */
if (!g_module symbol (module, "print another one",
(gpointer*) &print another one))
{
g error ("Error: %s\n", (gchar*) g module error ());
return -1;

}

/* Run both loaded functions since there were no errors reported loading
* neither the module nor the symbols. */

print_the message ((gpointer) text);

print_another one ("Another Message!");

/* Close the module and free allocated resources. */
if (!g_module close (module))
g error ("Error: %s\n", (gchar*) g module error ());

return O;

}

Not all platforms support the GModule structure. Therefore, if you are creating an applica-
tion that will be compiled for multiple platforms, it is a good idea to make sure support is
available.

Support for GCModule can be checked with g module supported(), which will return TRUE if
the feature is available. By using g_assert(), you can ensure that the application will terminate
if CModule is not supported.

Once you are sure GModule is supported on the user’s system, you can open a library with
g module_open(). If opening a module fails, NULL is returned by the function. However, before
failing, the function will attempt multiple formats of the given library name to find a library
that will load. This includes appending G MODULE_SUFFIX, the system’s default library suffix, to
the specified path.

GModule* g module open (const gchar *library,
GModuleFlags flags);

CHAPTER 6 USING GLIB

The second parameter in g module_open() specified one or more module flags, which
instruct GModule how to deal with symbols. There are currently three available GModuleFlags
enumeration values:

e G _MODULE_BIND LAZY:Symbols should all be bound when the module is loaded by
default. However, this tells GLib to only resolve symbols when needed.

e G_MODULE_BIND LOCAL: Do not place symbols on the global namespace, which is the
default on most systems.

e G_MODULE_BIND MASK: Mask for all GCModule flags.

At any point within your application, you can call g module_error(), which will return a
human-readable string describing the last error that has occurred. If any function returns an
unexpected value, it is a good idea to output this message to the screen.

If the module was successfully loaded, g module_symbol() can then be used to load any
functions in the library that were made available with G_ MODULE _EXPORT. If the symbol is suc-
cessfully loaded, the function will return TRUE.

gboolean g module symbol (GModule *module,
const gchar *symbol name,
gpointer *symbol);

The second parameter of g module_symbol() should be the full name of the function you
want to load from the library. The last parameter is a pointer that will store where to find the
function in memory. It is essential that you specify the same parameter and return values for
both the loaded function and the pointer, or problems will arise.

After you are finished with the GModule object, which is usually when the application is
closing or the plug-in is being unloaded, g_module close() should be called. TRUE is returned
upon a successful destruction of the object.

If you are sure that the module should never be unloaded, you can ignore all calls to
g module close() by callingg module make resident().Be careful with this function, because
it will be impossible to unload the module after this is called!

Test Your Understanding

Since this chapter covers such a wide array of topics, it would be too time consuming to pro-
vide exercises for each thing you have learned. Therefore, in addition to doing the following
two exercises, you should create your own applications using various other topics you learned
in this chapter to practice.

Making your own examples, in addition to the following two exercises, should give you
enough experience to easily be able to use what you have learned in future chapters. The fol-
lowing two exercises will allow you to practice file management, error handling, message
reporting, and timeout functions.

215

216

CHAPTER 6 USING GLIB

Exercise 6-1. Working With Files

For this exercise, create a window that contains a GtkEntry widget. The entry can contain any text that the user
wants. The window will also contain a GtkFileChooserButton that will allow the user to choose a folder.

Athird widget, a button, should be placed within the window. Upon clicking that button, the text from the GtkEntry
should be written to an arbitrary file in the folder chosen by the GtkFileChooserButton. You should handle all
errors that can occur in this exercise.

Exercise 6-1 is straightforward. You need to create a normal GTK+ application as always. In
the main window, the entry, file chooser button, and Save button should be added and packed
by a GtkVBox. The exercise solution can be found in Appendix F.

When the button is pressed, you need to save the text in the entry to a file. That file should
be created in the specified location under whatever name you choose. Then, you need to use
the GError structure to make sure the file was successfully created.

Exercise 6-2. Timeout Functions

For this exercise, create a window that contains a GtkLabel and a button. The label should initially display the
number “0”. The timeout function should be called every second, incrementing the label up one digit. When the but-
ton is pressed, the counter should be reset and begin counting again.

As stated before, you should never use timeouts to count time if you need accuracy. Therefore, you should reimple-
ment this example using timers. Consider placing two labels in the window, one using a timeout function for
counting and one using a timer. What can you conclude from this example?

Exercise 6-2 is a little more difficult than the previous one, because you need to figure out
how to get both the GtkLabel and the current count to the timeout function. Of course, you
could use a global variable, but this is not the preferred method in most cases.

In the solution in Appendix F, both elements were stored in a structure that could easily be
passed to the timeout function. This is the method that you should use in most of your appli-
cations, because it will make them easier to manage when they grow in size.

The purpose of the application was to count the number of seconds that have gone by
using a timeout function. Whenever the Clear button is clicked, the count should be reset to 0
seconds for each button.

Both of these exercises are meant to stimulate your imagination. You have learned a great
deal in this chapter as well as previous chapters. You should experiment with integrating your
previous knowledge of GTK+ with the topics in this chapter.

CHAPTER 6 USING GLIB

Summary

Congratulations! You have made it through the longest chapter in the book. This chapter has
given you a thorough understanding of many of the most important features provided by GLib.

Of course, there were topics that were not covered, and those that provide options not
shown in this chapter’s examples. Therefore, when you need one of these features in an appli-
cation, you should reference the API documentation for further information.

The beginning of this chapter gave a quick overview of GLib basics including data types,
macros, message logging, environment variables, timers, file manipulation, directory manage-
ment, and file system work. You then learned about memory management in GLib. In addition
to wrappingmalloc() and friends, you can also use the slab allocator provided by GS1ice. GLib
provides a method for profiling memory usage within an application as well.

Another important topic in this chapter was the main loop. You learned that the main loop
is actually implemented in GLib by GCMainLoop, GMainContext, and GSource. Two types of sources
already built-in are timeouts and idle functions. Timeout functions are called at a predefined
interval of time and idle functions are called when there are no more actions with a higher pri-
ority to perform.

GLib provides a wide array of data types. You learned about ten different data types,
including the following:

» Strings provide character arrays that automatically grow as text is added. These are sim-
ilar to the string class provided by C++’s Standard Template Library.

* Linked lists allow you to traverse, search, and sort a large list of data of an arbitrary type.
Both doubly and singly linked variations are provided by GLib.

* Balanced binary trees are tree structures that are optimized for traversing and searching.
N-ary trees allow each node to have as many branches as you want. They can very
quickly become complex.

* Arrays, byte arrays, and pointer arrays provide lists of elements that automatically grow
when items are added.

* Quarks provide an integer pointer to an associated string. Keyed data lists use them as a
reference to stored data of an arbitrary type.

» Hash tables are similar to linked lists, except items are accessed through a pointer of an
arbitrary type. They are optimized so data can be found very quickly.

GLib provides many file and directory utility functions. These can read or write files, read
the contents of a directory, or wrap UNIX file system functionality. The GIOChannel structure is
used to deal with files or pipes, which provide interprocess communication.

An easy way to create a plug-in system is to use GLib’s GModule structure. This structure
allows you to dynamically load libraries and retrieve symbols from the files. This can also be
used to make an application more modular.

217

218 CHAPTER 6 USING GLIB

At this point, you should have a decent grasp of many important GTK+ widgets and GLib
features. Many of these features are going to be used in the next few chapters, which will cover
more advanced widgets.

Chapter 7 will explain the multiline text entry widget called GtkTextView. Other topics
include the clipboard and the GtkSourceView library.

CHAPTER 7

The Text View Widget

In Chapter 6, you learned about a large number of utilities, data structures, and other types of
functionality provided by GLib, so there are very few further things about GLib that you will
learn throughout the book. Instead, you will apply the knowledge that you have gained in
Chapter 6 to future examples and exercises.

Chapter 7 will teach you how to use the GtkTextView widget. The text view widget is similar
to a GtkEntry widget, except it is capable of holding text that spans multiple lines. Scrolled win-
dows will be used to allow the document to exist beyond the bounds of the screen.

Before you learn about GtkTextView, Chapter 7 begins by introducing a few new widgets.
The first two widgets are scrolled windows and viewports. Scrolled windows are composed
of two scrollbars that are used to scroll the child widget. A few widgets support scrolling
already, including GtkLayout, GtkTreeView, and GtkTextView. For all other widgets that you
want to scroll, you will need to add them first to a GtkViewport widget, which gives its child wid-
get scrolling abilities.

In this chapter, you will learn the following:

¢ How to use scrolled windows and viewports

* How to use the GtkTextView widget and apply text buffers

* What function text iterators and text marks perform when dealing with buffers
* Methods for applying styles to the whole or part of a document

* How to cut, copy, and paste to and from the clipboard

* How to insert images and child widgets into a text view

Scrolled Windows

Before you can learn about the GtkTextView widget, you need to learn about two container
widgets called GtkScrolledWindow and GtkViewport. Scrolled windows use two scrollbars to
allow a widget to take up more space than is visible on the screen. This widget will allow the
GtkTextView widget to contain documents that expand beyond the bounds of the window.

219

220

CHAPTER 7 THE TEXT VIEW WIDGET

Both scrollbars in the scrolled window have associated GtkAdjustment objects. These
adjustments are used to track the current position and range of a scrollbar. However, you will
not need to directly access the adjustments in most cases.

typedef struct

{
gdouble value;
gdouble upper;
gdouble lower;
gdouble step increment;
gdouble page increment;
gdouble page size;

} GtkAdjustment;

A scrollbar’s GtkAdjustment holds information about scroll bounds, steps, and its current
position. The value variable is the current position of the scrollbar between the bounds. This
variable must always be between the lower and upper values, which are the bounds of the
adjustment. The page size is the area that can be visible on the screen at one time, depending
on the size of the widget. The step_increment and page increment variables are used for step-
ping when an arrow is pressed or when the Page Down key is pressed.

Figure 7-1 is a screenshot of the window created with the code in Listing 7-1. Both scroll-
bars are enabled, because the table containing the buttons is larger than the visible area.

- m Scrolled Windows & Viewports [= O X

X Close X Close X Close X Close & Clos

X Close X Close X Close X Close & Clos
X Close X Close X Close X Close ¢ Clos

X Close ¥ Close ¥ Close ¥ Close ¥ Clos

X Close X Close X Close X Close ¥ Qj

X Close X Close X Close X Close ¥ C

X Close X Close X Close X Close ¥ C

K| | I

Figure 7-1. A scrolled window and viewport that are synchronized

Listing 7-1 shows how to use scrolled windows and viewports. As a scrollbar is moved, the
viewport will scroll as well, because the adjustments are synchronized. Try to resize the win-
dow to see how the scrollbars react to becoming larger and smaller than the child widget.

CHAPTER 7 THE TEXT VIEW WIDGET

Listing 7-1. Using Scrolled Windows (scrolledwindows.c)
#include <gtk/gtk.h>

int main (int argc,
char *argv[])
{
GtkWidget *window, *swin, *viewport, *tablel, *table2, *vbox;
GtkAdjustment *horizontal, *vertical;
GtkWidget *buttonsi[10][10], *buttons2[10][10];
unsigned int i, j;

gtk_init (8argc, 8argv);

window = gtk window new (GTK WINDOW TOPLEVEL);

gtk window_set title (GTK WINDOW (window), "Scrolled Windows & Viewports");
gtk _container set border width (GTK_CONTAINER (window), 10);

gtk widget set size request (window, 500, 400);

g signal connect (G OBJECT (window), "destroy",
G CALLBACK (gtk main quit), NULL);

tablel = gtk table new (10, 10, TRUE);
table2 = gtk table new (10, 10, TRUE);
gtk table set row spacings (GTK TABLE (table1), 5);
gtk table set row spacings (GTK TABLE (table2), 5);
gtk table set col spacings (GTK TABLE (table1), 5);
gtk table set col spacings (GTK TABLE (table2), 5);

/* Pack each table with 100 buttons. */
for (i = 0; i < 10; i++)

{
for (j = 0; j < 10; j++)
{
buttons1[i][j] = gtk button new from stock (GTK_STOCK CLOSE);
buttons2[i][j] =

gtk button set relief (GTK BUTTON (buttonsi[i][j]), GTK RELIEF NONE);
gtk button set relief (GTK BUTTON (buttons2[i][j]), GTK RELIEF NONE);

He

(

gtk _button new from stock (GTK _STOCK CLOSE);
[
[

gtk table attach defaults (GTK TABLE (table1), buttonsi[i][j],
i, i+1, 3, j+1);

gtk table attach defaults (GTK TABLE (table2), buttons2[i][j],
i, i+1, 3, j+1);

221

222 CHAPTER 7 THE TEXT VIEW WIDGET

/* Create a scrolled window and a viewport, each with one table. Use the

* adjustments in the scrolled window to synchronize both containers. */

swin = gtk scrolled window new (NULL, NULL);

horizontal = gtk scrolled window get hadjustment (GTK SCROLLED WINDOW (swin));
vertical = gtk scrolled window get vadjustment (GTK SCROLLED WINDOW (swin));
viewport = gtk viewport new (horizontal, vertical);

gtk _container set border width (GTK_CONTAINER (swin), 5);
gtk _container_set border width (GTK_CONTAINER (viewport), 5);

gtk scrolled window_set policy (GTK SCROLLED WINDOW (swin),

GTK_POLICY AUTOMATIC, GTK POLICY AUTOMATIC);
gtk scrolled window add with viewport (GTK SCROLLED WINDOW (swin), table1);
gtk _container add (GTK_CONTAINER (viewport), table2);

/* Pack the widgets into a GtkVBox and then into the window. */
vbox = gtk vbox new (TRUE, 5);

gtk box_pack start defaults (GTK BOX (vbox), viewport);

gtk box_pack start defaults (GTK BOX (vbox), swin);

gtk container add (GTK_CONTAINER (window), vbox);
gtk widget show_all (window);

gtk _main();
return O;

New scrolled windows are created with gtk scrolled window new().In Listing 7-1, each
parameter is set to NULL, which will cause the scrolled window to create two default adjust-
ments for you. In most cases, you will want to use the default adjustments, but it is also
possible to specify your own horizontal and vertical adjustments for the scroll bars.

The adjustments are used in this example when the new viewport is created with
gtk viewport new().The viewport adjustments are initialized with those from the scrolled
window, which makes sure that both containers will be scrolled at the same time.

The first decision you need to make when setting up a scrolled window is when the scroll-
bars will be visible. In this example, GTK_POLICY AUTOMATIC was used for both scrollbars so that
each will only be shown when needed. GTK_POLICY ALWAYS is the default policy for both scroll-
bars. The three enumeration values provided by GtkPolicyType follow:

e GTK_POLICY_ ALWAYS: The scrollbar will always be visible. It will be displayed as disabled or
grayed out if scrolling is not possible.

e GTK_POLICY AUTOMATIC: The scrollbar will only be visible if scrolling is possible. If it is not
needed, the scrollbar will temporarily disappear.

e GTK_POLICY NEVER: The scrollbar will never be shown.

CHAPTER 7 THE TEXT VIEW WIDGET

Another property, although not used by very many applications, is the placement of the
scrollbars. In most applications, you will want the scrollbars to appear along the bottom and
the right side of the widget, which is the default functionality.

However, if you want to change this, you can call gtk_scrolled window set placement().
This function receives a GtkCornerType value, which defines where the content is placed with
respect to the scrollbars. For example, the default value is GTK_CORNER_TOP_LEFT, because the
content normally appears above and to the left of the scrollbars.

void gtk scrolled window_set placement (GtkScrolledWindow *swin
GtkCornerType window_placement);

Available GtkCornerType values include GTK_CORNER_TOP_LEFT, GTK_CORNER BOTTOM LEFT,
GTK_CORNER _TOP_RIGHT, and GTK_CORNER_BOTTOM RICHT, which define where the content is
placed with respect to the scrollbars.

Caution Itis a very rare occasion when gtk_scrolled window set placement() should be used! In
almost every possible case, you should not use this function, because it can confuse the user. Unless you
have a good reason for changing the placement, use the default value.

Itis possible to set the shadow type of the widget with respect to the child widget by calling
gtk scrolled window set shadow type().

void gtk scrolled window_set shadow type (GtkScrolledwindow *swin,
GtkShadowType type);

In Chapter 3, you learned how to use the GtkShadowType enumeration along with handle
boxes to set the type of border to place around the child widget. The same values as before are
used to set the shadow type of a scrolled window.

After you have set up a scrolled window, you should add a child widget for it to be of any
use. There are two possible ways to do this, and the method is chosen based on the type of
child widget. If you are using a GtkTextView, GtkTreeView, GtkIconView, GtkViewport, or
GtkLayout widget, you should use the default gtk_container add() function, since all five of
these widgets include native scrolling support.

All other GTK+ widgets do not have native scrolling support. For those widgets,
gtk scrolled window add with viewport() should be used. This function will give the child
scrolling support by first packing it into a container widget called a GtkViewport. This widget
implements scrolling ability for the child widget that lacks its own support. The viewport is
then automatically added to the scrolled window.

Caution You should never pack GtkTextView, GtkTreeView, GtkIconView, GtkViewport, or
GtkLayout widgets into a scrolled window with gtk scrolled window add with viewport(),
because scrolling may not be performed correctly on the widget!

223

224

CHAPTER 7 THE TEXT VIEW WIDGET

It is possible to manually add a widget to a new GtkViewport and then add that viewport to
a scrolled window with gtk _container add(), but the convenience function allows you to
ignore the viewport completely.

The scrolled window is simply a container with scrollbars. Neither the container nor
the scrollbars perform any action by themselves. Scrolling is handled by the child widget,
which is why the child must already have native scrolling support to work correctly with the
GtkScrolledWindow widget.

When you add a child widget that has scrolling support, a function is called to add adjust-
ments for each axis. Nothing will be done unless the child widget has scrolling support, which
is why a viewport is required by most widgets. When the scrollbar is clicked and dragged by the
user, the value in the adjustment changes, which causes the value-changed signal to be emit-
ted. This action will also cause the child widget to render itself accordingly.

Because the GtkViewport widget did not have any scrollbars of its own, it relied completely
on the adjustments to define its current position on the screen. The scrollbars are used in the
GtkScrolledWindow widget as an easy mechanism for adjusting the current value of the
adjustment.

Text Views

The GtkTextView widget is used to display multiple lines of text of a document. It provides
many ways to customize the whole of a document or individual portions of it. It is even possi-
ble to insert GdkPixbuf objects and child widgets into a document. GtkTextView is the first
reasonably involved widget you have encountered up to this point, so the rest of this chapter is
dedicated to many aspects of the widget. It is a very versatile widget that you will need to use in
many GTK+ applications.

The first few examples of this chapter may lead you to believe that GtkTextView can only be
used to display simple documents, but that is not the case. It can also be used to display many
types of rich text, word-processing, and interactive documents that are used by a wide variety
of applications. You will learn how to do this in the sections that follow.

Figure 7-2 shows a simple GtkTextView widget contained by a GtkScrolledWindow widget.

A =rocvews [IPX
Your 1st GtkTextView widget!

Figure 7-2. A GtkTextView widget

Text views are used in every type of text and document editing application that uses GTK+.
If you have ever used AbiWord, Gedit, or most other text editors created for GNOME, you have
used the GtkTextView widget. It is also used in the Gaim application in instant message win-
dows. (In fact, all of the examples in this book were created in the OpenLDev application,
which uses GtkTextView for source code editing!)

CHAPTER 7 THE TEXT VIEW WIDGET

Text Buffers

Each text view is used to display the contents of a class called GtkTextBuffer. Text buffers are
used to store the current state of the content within a text view. They hold text, images, child
widgets, text tags, and all other information necessary for rendering the document.

A single text buffer is capable of being displayed by multiple text views, but each text view
has only one associated buffer. Most programmers do not take advantage of this feature, but it
will become important when you learn how to embed child widgets into a text buffer in a later
section.

Aswith all text widgets in GTK+, text is stored as UTF-8 strings. UTF-8 is a type of character
encoding that uses from 1 byte to 4 bytes for every character. In order to differentiate how
many bytes a character will take up, “0” always precedes a character that is 1 byte, “110” pre-
cedes 2-byte characters, “1110” comes before 3-byte sequences, and so on. UTF-8 characters
that span multiple bytes have “10” in the two most significant bits of the rest of the bytes.

By doing this, the basic 128 ASCII characters are still supported, because an additional
7 bits are available in a single-byte character after the initial “0”. UTF-8 also provides support
for characters in many other languages. This method also avoids small byte sequences occur-
ring within larger byte sequences.

When handling text buffers, you need to know two terms: offset and index. The word “off-
set” refers to one character. UTF-8 characters may span one or more bytes within the buffer, so
a character offset in a GtkTextBuffer may not be a single byte long.

Caution The word “index” refers to an individual byte. You need to be careful when stepping through a
text buffer in later examples, because you cannot refer to an index that is between two character offsets.

Listing 7-2 illustrates one of the simplest text view examples you could create. A new
GtkTextView widget is created. Its buffer is retrieved, and text is inserted into the buffer. A
scrolled window is then used to contain the text view.

Listing 7-2. A Simple GtkTextView Example (textview.c)

#include <gtk/gtk.h>

int main (int argc,
char *argv([])
{
GtkWidget *window, *scrolled win, *textview;
GtkTextBuffer *buffer,

gtk_init (8argc, &argv);

window = gtk _window_new (GTK_WINDOW_TOPLEVEL);
gtk_window_set title (GTK_WINDOW (window), "Text Views");
gtk_container_set border width (GTK_CONTAINER (window), 10);
gtk widget set size request (window, 250, 150);

225

226

CHAPTER 7 THE TEXT VIEW WIDGET

textview = gtk text view new ();
buffer = gtk text view get buffer (GTK TEXT VIEW (textview));
gtk text buffer set text (buffer, "Your 1st GtkTextView widget!", -1);

scrolled win = gtk scrolled window new (NULL, NULL);

gtk container add (GTK_CONTAINER (scrolled win), textview);
gtk _container add (GTK_CONTAINER (window), scrolled win);
gtk widget show_all (window);

gtk _main();
return O;

Most new GtkTextView widgets are created with gtk text view new(). By using this func-
tion, an empty buffer will be created for you. This default buffer can be replaced at a later time
with gtk _text view set buffer() orretrieved with gtk text view get buffer().

If you want to set the initial buffer to one that you have already created, you can create the
text view with gtk text view new with buffer().In most cases, it will be easier to simply use
the default text buffer.

Once you have access to a GtkTextBuffer object, there are many ways to add content, but
the easiest method is to call gtk_text buffer set text().This function receives a text buffer,
a UTF-8 text string to set as the buffer’s new text, and the length of the text.

void gtk text buffer set text (GtkTextBuffer *buffer,
const gchar *text,
gint length);

If the text string is NULL-terminated, you can use -1 as the length of the string. This function
will silently fail if a null character is found before the specified length of text.

The current contents of the buffer will be completely replaced by the new text string. In the
“Text Iterators and Marks” section, you will be introduced to functions that allow you to insert
text into a buffer without overwriting the current content that are more suitable for inserting
large amounts of text.

Recall from the previous section that there are five widgets that have native scrolling
abilities, including the GtkTextView widget. Because text views already have the facilities to
manage adjustments, gtk _container add() should always be used to add them to scrolled
windows.

Text View Properties

GtkTextView was created to be a very versatile widget. Because of this, many properties are pro-
vided for the widget. In this section, you will learn about a number of these widget properties.

One feature that makes the text view widget extremely useful is that you are able to apply
changes to the whole or only an individual part of the widget. Text tags are used to change the
properties of a segment of text. Customizing only a part of the document will be covered in a
later section of this chapter.

CHAPTER 7 THE TEXT VIEW WIDGET

Listing 7-3 shows many of the properties that can be used to customize the whole content
of a GtkTextBuffer. You should note that many of these properties could be overridden in indi-
vidual sections of a document with text tags.

Listing 7-3. Using GtkTextView Properties (textview2.c)

#include <gtk/gtk.h>

int main (int argc,
char *argv([])
{
GtkWidget *window, *scrolled win, *textview;
GtkTextBuffer *buffer;
PangoFontDescription *font;

gtk_init (8argc, 8argv);

window = gtk window new (GTK WINDOW TOPLEVEL);

gtk window_set title (GTK WINDOW (window), "Text Views Properties");
gtk _container set border width (GTK_CONTAINER (window), 10);

gtk widget set size request (window, 250, 150);

font = pango_font description from string ("Monospace Bold 10");
textview = gtk text view new ();
gtk widget modify font (textview, font);

gtk _text view set wrap mode (GTK TEXT VIEW (textview), GTK_WRAP_WORD);
gtk text view set justification (GTK TEXT VIEW (textview), GTK JUSTIFY RIGHT);

gtk text view set editable (GTK TEXT VIEW (textview), TRUE);
gtk text view set cursor visible (GTK TEXT VIEW (textview), TRUE);

gtk text view set pixels above lines (GTK TEXT VIEW (textview), 5);
gtk text view set pixels below lines (GTK TEXT VIEW (textview), 5);
gtk text view set pixels inside wrap (GTK TEXT VIEW (textview), 5);

gtk text view set left margin (GTK TEXT VIEW (textview), 10);
gtk text view set right margin (GTK TEXT VIEW (textview), 10);

buffer = gtk text view get buffer (GTK TEXT VIEW (textview));
gtk_text buffer set text (buffer, "This is some text!\nChange me!\nPlease!", -1);

scrolled win = gtk scrolled window new (NULL, NULL);
gtk scrolled window_set policy (GTK SCROLLED WINDOW (scrolled win),
GTK_POLICY AUTOMATIC, GTK POLICY ALWAYS);

227

228

CHAPTER 7 THE TEXT VIEW WIDGET

gtk container add (GTK_CONTAINER (scrolled win), textview);
gtk _container add (GTK_CONTAINER (window), scrolled win);
gtk widget show_all (window);

gtk _main();
return O;

The best way to explain what each of GtkTextView’s properties does is to show you a
screenshot of the result, which can be viewed in Figure 7-3. You should compile the application
on your own machine and try changing the values used in Listing 7-3 to get a feel for what they
do as well.

b m Text Views Properties |[Rmi

This is some text!
Change me!

Please!

Figure 7-3. GtkTextView with nondefault properties

Itis possible to change the font and colors of individual parts of the text view content, but
as shown in Listing 7-3, it is still possible to use the functions from past chapters to change the
content of the whole widget. This is useful when editing documents that have a consistent
style, such as text files.

When dealing with a widget that displays text on multiple lines, you need to decide if
and how text will be wrapped. In Listing 7-3, the wrap mode was set to GTK_WRAP_WORD with
gtk text view set wrap mode(). This setting wraps the text but does not split a word over two
lines. There are four types of wrap modes available in the GtkWrapMode enumeration:

e GTK_WRAP_NONE: No wrapping will occur. If a scrolled window contains the view, the
scrollbar will expand. Otherwise, the text view will expand on the screen. If a scrolled
window does not contain the GtkTextView widget, it will expand the widget horizontally.

e GTK_WRAP_CHAR: Wrap to the character, even if the wrap point occurs in the middle of a
word. This is usually not a good choice for a text editor, since it will split words over
two lines.

e GTK_WRAP_WORD: Fill up the line with the largest number of words possible but do not
break a word to wrap. Instead, bring the whole word onto the next line.

e GTK_WRAP_WORD_ CHAR: Wrap in the same way as GTK_WRAP_WORD, but if a whole word takes
up more than one visible width of the text view, wrap it by the character.

CHAPTER 7 THE TEXT VIEW WIDGET

At times, you may want to prevent the user from editing the document. The editable
property can be changed for the whole text view with gtk _text view set editable().Itis
worth noting that with text tags, you can override this for certain sections of the document, so
this is not always an end-all solution.

Contrast this with gtk widget set sensitive(), which is used to prevent the user from
interacting with the widget at all. If a text view is set as not editable, the user will still be able to
perform operations on the text that do not require the text buffer to be edited, such as selecting
text. Setting a text view as insensitive will prevent the user from performing any of these
actions.

When you disable editing within a document, it is also useful to stop the cursor from being
visible with gtk _text view set cursor visible().By default, both of these properties are set
to TRUE, so both will need to be changed to keep them in sync.

By default, there is no extra spacing placed between lines, but Listing 7-3 shows you how
to add spacing above a line, below a line, and between wrapped lines. These functions add
extra space between lines, so you can assume that there will already be enough spacing
between lines. In most cases, you should not use this feature, because spacing may not look
correct to the user.

Justification is another important property of text views, especially when dealing with rich text
documents. There are four default justification values: GTK_JUSTIFY LEFT, GTK JUSTIFY RIGHT,
GTK_JUSTIFY CENTER,and GTK_JUSTIFY FILL.

Justification can be set for the whole text view with gtk text view set justification(),
but it can be overridden for specific sections of text with text tags. In most cases, you will want
to use the default GTK_JUSTIFY_ LEFT justification unless the user wants it to be changed. Text is
aligned to the left of the view by default.

void gtk text view set justification (GtkTextView *textview,
GtkJustification justification);

The last properties set by Listing 7-3 were the left and right margins. By default, there is no
extra margin space added to either the left or right side, but you can add a certain number of
pixels to the left with gtk text view set left margin() or to the right with gtk text view
set right margin().

Pango Tab Arrays

Tabs added to a text view are set to a default width, but there are times when you will want to
change that. For example, in a source code editor, one user may want to indent two spaces
while another may want to indent five spaces. GTK+ provides the PangoTabArray object, which
defines a new tab size.

When changing the default tab size, you first calculate the number of horizontal pixels the
tab will take up based on the current font. The following make_tab array() function can be
used to calculate a new tab size. The function begins by creating a string out of the desired
number of spaces. That string is then translated into a PangoLayout object, which is used to
retrieve the pixel width of the displayed string. Lastly, the PangoLayout is translated into a
PangoTabArray, which can be applied to a text view.

229

230

CHAPTER 7 THE TEXT VIEW WIDGET

static void

make tab_array (PangoFontDescription *fd,
gsize tab_size,
Gtkwidget *textview)

PangoTabArray *tab_array;
PangolLayout *layout;
gchar *tab_string;

gint width, height;

g return if fail (tab_size < 100);

tab_string = g strnfill (tab size, ' ');

layout = gtk widget create pango layout (textview, tab string);
pango_layout set font description (layout, fd);
pango_layout get pixel size (layout, &width, &height);

tab_array = pango_tab array new (1, TRUE);
pango_tab array set tab (tab_array, 0, PANGO TAB LEFT, width);
gtk text view set tabs (GTK TEXT VIEW (textview), tab_array);

g free (tab string);

The PangoLayout object is used to represent a whole paragraph of text. Normally, Pango
uses it internally for laying out text within a widget. However, it can be employed by this exam-
ple to calculate the width of the tab string.

We begin by creating a new PangoLayout object from the GtkTextView and creating the tab
string with gtk _widget create pango layout(). This uses the default font description of the
text view. This is fine if the whole document will have the same font applied to it. PangoLayout
is used to describe how to render a paragraph of text.

PangolLayout* gtk widget create pango layout (GtkWidget *textview,
const gchar *text);

If the font varies within the document or is not already applied to the text view, you will
want to specify the font to use for the calculations. You can set the font of a Pango layout with
pango layout set font description(). This uses a PangoFontDescription object to describe
the layout’s font.

void pango layout set font description (PangolLayout *layout,
const PangoFontDescription *fd);

Once you have correctly configured your PangoLayout, the width of the string can be
retrieved with pango layout get pixel size().This is the calculated space that the string will
take up within the buffer, which should be added when the user presses the Tab key within
the widget.

CHAPTER 7 THE TEXT VIEW WIDGET

void pango layout get pixel size (Pangolayout *layout,
int *width,
int *height);

Now that you have retrieved the width of the tab, you need to create a new PangoTabArray
with pango_tab_array new(). This function receives the number of elements that should be
added to the array and notification of whether the size of each element is going to be specified
in pixels.

void pango tab array new (gint initial size,
gboolean positions in pixels);

You should always create the tab array with only one element, because there is only one
tab type supported at this time. If TRUE is not specified for the second parameter, tabs will be
stored as Pango units; 1 pixel is equal to 1,024 Pango units.

Before applying the tab array, you need to add the width. This is done with pango_tab_
array_set tab().The integer “0” refers to the first element in the PangoTabArray, the only one
that should ever exist. PANGO_TAB_LEFT must always be specified for the third parameter,
because it is currently the only supported value. The last parameter is the width of the tab
in pixels.

void pango tab array set tab (PangoTabArray *tabarray,
gint tab_index,
PangoTabAlign alignment,
gint location);

When you receive the tab array back from the function, you need to apply it to the whole
of the text view with gtk text view set tabs().This will make sure that all tabs within the text
view are set to the same width. However, as with all other text view properties, this value can be
overridden for individual paragraphs or sections of text.

void gtk text view set tabs (GtkTextView *textview,
PangoTabArray *tabs);

When you are finished with the tab array, it can be freed with pango_tab_array free() ifit
is no longer needed.

Text Iterators and Marks

When manipulating text within a GtkTextBuffer, there are two objects that can be used to keep
track of a position within the buffer: GtkTextIter and GtkTextMark. Functions are provided by
GTK+ to translate between these two types of objects.

Text iterators are used to represent a position between two characters in a buffer. They are
utilized when manipulating text within a buffer. The problem presented by text iterators is that
they automatically become invalidated when a text buffer is edited. Even if the same text is
inserted and then removed from the buffer, the text iterator will still become invalidated,
because iterators are meant to be allocated on the stack and used immediately.

231

232

CHAPTER 7 THE TEXT VIEW WIDGET

For keeping track of a position throughout changes within a text buffer, the GtkTextMark
object is provided. Text marks remain intact while buffers are manipulated and will move posi-
tion based on how the buffer is manipulated. You can retrieve an iterator pointing to a text
mark with gtk text buffer get iter at mark(), which makes marks ideal for tracking a posi-
tion in the document.

void gtk text buffer get iter at mark (GtkTextBuffer *buffer,
GtkTextIter *iter,
GtkTextMark *mark);

Text marks act as though they are invisible cursors within the text, changing position
depending on how the text is edited. If text is added before the mark, it will move to the right so
that it will remain in the same textual position.

By default, text marks have a gravity set to the right. This means that it moves to the right
as text is added. Let us assume that the text surrounding a mark is deleted. The mark will move
to the position between the two pieces of text on either side of the deleted text. Then, if text is
inserted at the text mark, because of its right gravity setting, it will remain on the right side of
the inserted text. This is similar to the cursor, because as text is inserted, the cursor remains
to the right of the inserted text.

Tip By default, text marks are invisible within the text. However, you can set a text mark as visible by
calling gtk _text mark set visible(), which will place a vertical bar to indicate where it is located.

Text marks can be accessed in two ways. You can retrieve a text mark at a specific
GtkTextIter location. It is also possible to set up a text mark with a string as its name, which
makes marks easy to keep track of.

Two default text marks are always provided by GTK+ for every GtkTextBuffer: insert and
selection_bound. The insert text mark refers to the current cursor position within the buffer.
The selection_bound text mark refers to the boundary of selected text if there is any selected
text. If no text is selected, these two marks will point to the same position.

The insert and selection_bound text marks are extremely useful when manipulating buff-
ers. They can be manipulated to automatically select or deselect text within a buffer and help
you figure out where text should logically be inserted within a buffer.

Editing the Text Buffer

GTK+ provides a wide array of functions for retrieving text iterators as well as manipulating text
buffers. In this section, you will see a few of the most important of these methods in use in
Listing 7-4 and then be introduced to many more. Figure 7-4 displays an application that will
insert and retrieve the text with a GtkTextBuffer.

CHAPTER 7 THE TEXT VIEW WIDGET

Ml mTextiterators [EmIpK
Insert Text ...

Kl [*]
IInsert Text ... Insert Textl Get Textl

Figure 7-4. Screenshot of an application using a GtkTextView widget

Listing 7-4 is a simple example that performs two functions. When the Insert Text button
shown in Figure 7-4 is clicked, the string shown in the GtkEntry widget is inserted at the current
cursor position. When the Get Text button is clicked, any selected text is output with g_print().

Listing 7-4. Using Text Iterators (iterators.c)

#include <gtk/gtk.h>

typedef struct
{

GtkWidget *entry, *textview;
} Widgets;

static void insert text (GtkButton*, Widgets*);
static void retrieve text (GtkButton*, Widgets*);

int main (int argc,
char *argv[])
{
GtkWidget *window, *scrolled win, *hbox, *vbox, *insert, *retrieve;
Widgets *w = g slice new (Widgets);

gtk_init (8argc, &argv);

window = gtk window new (GTK WINDOW TOPLEVEL);
gtk window_set title (GTK WINDOW (window), "Text Iterators");
gtk container set border width (GTK_CONTAINER (window), 10);
gtk widget set size request (window, -1, 200);

w->textview = gtk text view new ();

w->entry = gtk entry new ();

insert = gtk button new with label ("Insert Text");
retrieve = gtk button new with label ("Get Text");

233

234 CHAPTER 7 THE TEXT VIEW WIDGET

g signal connect (G OBJECT (insert), "clicked",
G CALLBACK (insert text),
(gpointer) w);

g signal connect (G OBJECT (retrieve), "clicked",
G CALLBACK (retrieve text),
(gpointer) w);

scrolled win = gtk scrolled window new (NULL, NULL);
gtk _container add (GTK_CONTAINER (scrolled win), w->textview);

hbox = gtk hbox new (FALSE, 5);

gtk box_pack start defaults (GTK BOX (hbox), w->entry);
gtk box_pack_start defaults (GTK BOX (hbox), insert);
gtk box_pack start defaults (GTK BOX (hbox), retrieve);

vbox = gtk vbox new (FALSE, 5);
gtk box_pack_start (GTK BOX (vbox), scrolled win, TRUE, TRUE, 0);
gtk box_pack_start (GTK BOX (vbox), hbox, FALSE, TRUE, 0);

gtk container add (GTK_CONTAINER (window), vbox);
gtk widget show_all (window);

gtk _main();
return O;

}

/* Insert the text from the GtkEntry into the GtkTextView. */
static void
insert text (GtkButton *button,
Widgets *w)

{

GtkTextBuffer *buffer;

GtkTextMark *mark;

GtkTextIter iter;

const gchar *text;

buffer = gtk text view get buffer (GTK TEXT VIEW (w->textview));
text = gtk_entry get text (GTK_ENTRY (w->entry));

mark = gtk text buffer get insert (buffer);
gtk text buffer get iter at mark (buffer, 8iter, mark);
gtk text buffer insert (buffer, &iter, text, -1);

CHAPTER 7 THE TEXT VIEW WIDGET

/* Retrieve the selected text from the GtkTextView and display it
* to the user. */
static void
retrieve text (GtkButton *button,
Widgets *w)

{

GtkTextBuffer *buffer;

GtkTextIter start, end;

gchar *text;

buffer = gtk text view get buffer (GTK TEXT VIEW (w->textview));
gtk _text buffer get selection bounds (buffer, 8start, &end);
text = gtk text buffer get text (buffer, &start, &end, FALSE);

g print ("%s\n", text);

You should notice from Listing 7-4 that, unlike most objects in GTK+, text iterators are
stored as nonpointer objects. This means that they are allocated directly on the stack. Pointers
to the iterators are then passed to functions using the address operator.

Another important property of iterators is that the same iterator can be used over and
over, because iterators become invalidated every time you edit a text buffer. In this way, you
can continue to reuse the same GtkTextIter object instead of creating a huge number of
variables.

Retrieving Text Iterators and Marks

As stated before, there are quite a number of functions available for retrieving text iterators and
text marks, many of which will be used throughout this chapter.

Listing 7-4 begins by retrieving the insert mark with gtk_text buffer get insert().Itis
also possible to use gtk_text buffer get selection_bound() to retrieve the selection bound
text mark.

mark = gtk text buffer get insert (buffer);
gtk _text buffer get iter at mark (buffer, &iter, mark);

Once you have retrieved a mark, you can translate it into a text iterator with
gtk _text buffer get iter at mark(), so that it can be used to manipulate the buffer.

The other function presented by Listing 7-4 for retrieving text iterators is
gtk text buffer get selection bounds(), which returns the iterators located at the insert
and selection_bound marks. You can set one or both of the text iterator parameters to NULL,
which will prevent the value from returning, although it would make more sense to use the
functions for the specific mark if you only need one or the other.

235

236

CHAPTER 7 THE TEXT VIEW WIDGET

When retrieving the contents of a buffer, you will need to specify a start and end iterator
for the slice of text. If you want to get the whole contents of the document, you will need
iterators pointing to the beginning and end of the document, which can be retrieved with
gtk _text buffer get bounds().

void gtk text buffer get bounds (GtkTextBuffer *buffer,
GtkTextIter *start,
GtkTextIter *end);

It is also possible to retrieve only the beginning or end iterator for the text buffer
independently of the other with gtk text buffer get start iter() orgtk text buffer_
get end iter().

Text within a buffer can be retrieved with gtk text buffer get text().Itreturnsall of the
text between the start and end iterators. If the last parameter is set to TRUE, then invisible text
will also be returned.

gchar* gtk text buffer get text (GtkTextBuffer *buffer,
const GtkTextIter *start,
const GtkTextIter *end,
gboolean include hidden chars);

Caution You should only use gtk_text buffer get text() for retrieving the whole contents of a
buffer. It ignores any image or widget objects embedded in the text buffer, so character indexes may not
correspond to the correct location. For retrieving individual parts of a text buffer, use gtk_text_buffer_
get slice() instead.

Recall that the offset refers to the number of individual characters within the buffer. These
characters can be one or more bytes long. The gtk _text buffer get iter at offset() func-
tion allows you to retrieve the iterator at the location of a specific offset from the beginning of
the buffer.

void gtk text buffer get iter at offset (GtkTextBuffer *buffer,
GtkTextIter *iter,
gint character offset);

GTK+ also provides gtk_text buffer get iter at line index(), which will choose a
position of an individual byte on the specified line. You should be extremely careful when
using this function, because the index must always point to the beginning of a UTF-8 charac-
ter. Remember that characters in UTF-8 may not be only a single byte!

CHAPTER 7 THE TEXT VIEW WIDGET

Rather than choosing a character offset, you can retrieve the first iterator on a specified
line with gtk_text buffer get iter at line().

void gtk text buffer get iter at line (GtkTextBuffer *buffer,
GtkTextIter *iter,
gint character offset);

If you want to retrieve the iterator at an offset from the first character of a specific line,
gtk text buffer get iter at line offset() will do the trick.

Changing Text Buffer Contents

You have already learned how to reset the contents of a whole text buffer, but it is also useful to
edit only a portion of a document. There are a number of functions provided for this purpose.
Listing 7-4 shows you how to insert text into a buffer.

If you need to insert text in an arbitrary position of the buffer, you should use gtk_text
buffer_insert(). To do this, you will need a GtkTextIter pointing to the insertion point, the
text string to insert into the buffer that must be UTF-8, and the length of the text. If the text
string is NULL-terminated, you can specify -1 as its length.

GtkTextMark* gtk text buffer get insert (GtkTextBuffer *buffer);

When this function is called, the text buffer will emit the insert-text signal, and the text
iterator will be invalidated. However, the text iterator will then be reinitialized to the end of the
inserted text.

A convenience function named gtk _text buffer insert at cursor() can be used to call
gtk_text buffer insert() at the cursor’s current position. This can easily be implemented by
using the insert text mark, but it helps you avoid repetitive calls.

void gtk text buffer insert at cursor (GtkTextBuffer *buffer,
const gchar *text,
gint length);

You can delete the text between two text iterators with gtk_text_buffer_delete(). The
order in which you specify the iterators is irrelevant, because the function will automatically
place them in the correct order.

void gtk text buffer delete (GtkTextBuffer *buffer,
GtkTextIter *start,
GtkTextIter *end);

This function will emit the delete-range signal, and both iterators will be invalidated. How-
ever, the start and end iterators will both be reinitialized to the start location of the deleted text.

237

238

CHAPTER 7 THE TEXT VIEW WIDGET

Cutting, Copying, and Pasting Text

When you right-click a GtkTextView widget, you are presented with a pop-up menu containing
multiple options. An example of this menu is shown in Figure 7-5, although the content may
vary depending on your system.

=5| Select All

Input Methods >
Insert Unicode Control Character p

Figure 7-5. A GtkTextView menu displayed on a right-click

Three of these options are cut, copy, and paste, which are standard to almost all text edi-
tors. They are built into every GtkTextView widget. However, there are times that you will want
to implement your own versions of these functions to include in an application menu or
toolbar.

Listing 7-5 gives an example of each of these methods. When one of the three GtkButton
widgets is clicked, some action is initialized. Try using the buttons and the right-click menu to
show that both use the same GtkClipboard object. These functions can also be called by using
the built-in keyboard accelerators, which are Ctrl+C, Ctrl+X, and Ctrl+V.

Listing 7-5. Using the Cut, Copy, and Paste Operations (cutcopypaste.c)
#include <gtk/gtk.h>
static void cut clicked (GtkButton*, GtkTextView*);

static void copy clicked (GtkButton*, GtkTextView*);
static void paste clicked (GtkButton*, GtkTextView*);

int main (int argc,
char *argv[])

CHAPTER 7 THE TEXT VIEW WIDGET

GtkWidget *window, *scrolled win, *textview, *cut, *copy, *paste, *hbox, *vbox;
gtk_init (8argc, 8argv);

window = gtk window new (GTK WINDOW TOPLEVEL);
gtk window_set title (GTK_WINDOW (window), "Cut, Copy & Paste");
gtk _container set border width (GTK _CONTAINER (window), 10);

textview = gtk text view new ();

cut = gtk button new from stock (GTK STOCK CUT);
copy = gtk button new from stock (GTK_STOCK COPY);
paste = gtk button new from stock (GTK_STOCK PASTE);

g signal connect (G OBJECT (cut), "clicked",
G CALLBACK (cut_clicked),
(gpointer) textview);

g signal connect (G OBJECT (copy), "clicked",
G _CALLBACK (copy clicked),
(gpointer) textview);

g signal connect (G OBJECT (paste), "clicked",
G CALLBACK (paste clicked),
(gpointer) textview);

scrolled win = gtk scrolled window new (NULL, NULL);
gtk widget set size request (scrolled win, 300, 200);
gtk _container add (GTK CONTAINER (scrolled win), textview);

hbox = gtk hbox new (TRUE, 5);

gtk box_pack start (GTK BOX (hbox), cut, TRUE, TRUE, 0);
gtk box_pack start (GTK BOX (hbox), copy, TRUE, TRUE, 0);
gtk box_pack start (GTK BOX (hbox), paste, TRUE, TRUE, 0);

vbox = gtk vbox new (FALSE, 5);
gtk box_pack_start (GTK BOX (vbox), scrolled win, TRUE, TRUE, 0);
gtk box_pack_start (GTK BOX (vbox), hbox, FALSE, TRUE, 0);

gtk _container add (GTK CONTAINER (window), vbox);
gtk widget show all (window);

gtk _main();
return O;

239

240 CHAPTER 7 THE TEXT VIEW WIDGET

/* Copy the selected text to the clipboard and remove it from the buffer. */
static void
cut_clicked (GtkButton *cut,
GtkTextView *textview)
{
GtkClipboard *clipboard = gtk clipboard get (GDK_SELECTION CLIPBOARD);
GtkTextBuffer *buffer = gtk text view get buffer (textview);

gtk text buffer cut clipboard (buffer, clipboard, TRUE);
}

/* Copy the selected text to the clipboard. */
static void
copy clicked (GtkButton *copy,
GtkTextView *textview)
{
GtkClipboard *clipboard = gtk clipboard get (GDK_SELECTION CLIPBOARD);
GtkTextBuffer *buffer = gtk text view get buffer (textview);

gtk text buffer copy clipboard (buffer, clipboard);
}

/* Insert the text from the clipboard into the text buffer. */
static void
paste clicked (GtkButton *paste,
GtkTextView *textview)
{
GtkClipboard *clipboard = gtk clipboard get (GDK_SELECTION CLIPBOARD);
GtkTextBuffer *buffer = gtk text view get buffer (textview);

gtk text buffer paste clipboard (buffer, clipboard, NULL, TRUE);
}

GtkClipboard is a central class where data can be transferred easily between applications.
To retrieve a clipboard that has already been created, you should use gtk clipboard get().
Since a default clipboard is provided, this book will not teach you how to create your own clip-
board object.

CHAPTER 7 THE TEXT VIEW WIDGET

Note While it is possible to create your own GtkClipboard objects, when performing basic tasks,
you should use the default clipboard. You can retrieve it by passing GDK_SELECTION_CLIPBOARD to
gtk _clipboard get().

Itis feasible to directly interact with the GtkClipboard object that you have created, adding
and removing data from it. However, when performing simple tasks including copying and
retrieving text strings for a GtkTextView widget, it makes more sense to use GtkTextBuffer’s
built-in functions.

The simplest of GtkTextBuffer’s three clipboard actions is copying text, which can be done
with the following:

void gtk text buffer copy clipboard (GtkTextBuffer *buffer,
GtkClipboard *clipboard);

The second clipboard function, gtk_text buffer cut clipboard() copies the selection to
the clipboard as well as removing it from the buffer. If any of the selected text does not have the
editable flag set, it will be set to the third parameter of this function. This function will copy not
only text but also embedded objects such as images and text tags.

void gtk text buffer cut clipboard (GtkTextBuffer *buffer,
GtkClipboard *clipboard,
gboolean default editable);

The last clipboard function, gtk _text buffer paste clipboard() first retrieves the con-
tent of the clipboard. Next, the function will do one of two things. If the third parameter, which
accepts a GtkTextIter, has been specified, the content will be inserted at the point of that iter-
ator. If you specify NULL for the third parameter, the content will be inserted at the cursor.

void gtk text buffer paste clipboard (GtkTextBuffer *buffer,
GtkClipboard *clipboard,
GtkTextIter *override location,
gboolean default editable);

If any of the content that is going to be pasted does not have the editable flag set, then it
will be set automatically to default_editable.In most cases, you will want to set this parameter
to TRUE, because it will allow the pasted content to be edited. You should also note that the
paste operation is asynchronous.

24

242

CHAPTER 7 THE TEXT VIEW WIDGET

Searching the Text Buffer

In most applications that use the GtkTextView widget, you will need to search through a text
buffer in one or more instances. GTK+ provides two functions for finding text in a buffer:
gtk text iter forward search() and gtk text iter backward search().

The following example shows you how to use the first of these functions to search for a text
string in a GtkTextBuffer; a screenshot of the example is shown in Figure 7-6. The example
begins when the user clicks the GTK_STOCK_FIND button.

» [JSearching Buffers | _ [
|

text =

- [X
text S e
texttext The string 'text' was found 5 times!
text

W/ oK

4I
Itext @Eind|

Figure 7-6. Screenshot of an application that searches a text buffer

The application in Listing 7-6 searches for all instances of the specified string within the
text buffer. A dialog is presented to the user, displaying how many times the string was found
in the document.

Listing 7-6. Using the GtkTextIter Find Function (find.c)

#include <gtk/gtk.h>

typedef struct

{
GtkWidget *entry, *textview;

} Widgets;
static void search (GtkButton*, Widgets*);

int main (int argc,
char *argv[])
{
GtkWidget *window, *scrolled win, *vbox, *hbox, *find;
Widgets *w = g slice new (Widgets);

gtk_init (8argc, &argv);

CHAPTER 7 THE TEXT VIEW WIDGET

window = gtk window new (GTK WINDOW TOPLEVEL);
gtk window_set title (GTK_WINDOW (window), "Searching Buffers");
gtk _container set border width (GTK_CONTAINER (window), 10);

w->textview = gtk text view new ();

w->entry = gtk_entry new ();

gtk _entry set text (GTK ENTRY (w->entry), "Search for ...");
find = gtk button new from stock (GTK STOCK FIND);

g signal connect (G OBJECT (find), "clicked",
G_CALLBACK (search),
(gpointer) w);

scrolled win = gtk scrolled window new (NULL, NULL);
gtk widget set size request (scrolled win, 250, 200);
gtk _container add (GTK_CONTAINER (scrolled win), w->textview);

hbox = gtk _hbox new (FALSE, 5);
gtk box_pack start (GTK BOX (hbox), w->entry, TRUE, TRUE, 0);
gtk box_pack start (GTK BOX (hbox), find, FALSE, TRUE, 0);

vbox = gtk vbox _new (FALSE, 5);
gtk box_pack_start (GTK BOX (vbox), scrolled win, TRUE, TRUE, 0);
gtk box_pack start (GTK BOX (vbox), hbox, FALSE, TRUE, 0);

gtk_container add (GTK CONTAINER (window), vbox);
gtk widget show all (window);

gtk _main();
return O;

}

/* Search for the entered string within the GtkTextView. Then tell the user
* how many times it was found. */
static void
search (GtkButton *button,
Widgets *w)
{
const gchar *find;
gchar *output;
GtkWidget *dialog;
GtkTextBuffer *buffer;
GtkTextIter start, begin, end;
gboolean success;
gint 1 = 0;

243

CHAPTER 7 THE TEXT VIEW WIDGET

find = gtk_entry get text (GTK_ENTRY (w->entry));
buffer = gtk text view get buffer (GTK TEXT VIEW (w->textview));

gtk text buffer get start iter (buffer, &start);
success = gtk text iter forward search (8start, (gchar*) find, o,
8begin, &end, NULL);

while (success)
{
gtk text iter forward char (&start);
success = gtk text iter forward search (8start, (gchar*) find, o,
&begin, &end, NULL);
start = begin;

i++;
}
output = g strdup printf ("The string '%s' was found %i times!", find, i);
dialog = gtk message dialog new (NULL, GTK DIALOG MODAL, GTK MESSAGE_INFO,

GTK_BUTTONS_OK, output, NULL);

gtk dialog run (GTK DIALOG (dialog));
gtk widget destroy (dialog);
g free (output);

}

The first thing the search function needs to do is retrieve the lower search bound of the
document with gtk_text buffer get start iter().We do not need the bounding position of
the buffer, because by leaving the search unbounded, it will automatically set the end of the
document as the limit of the search.

Forward searching through a buffer is performed with gtk _text iter forward search(),
where TRUE is returned if the text is found. Otherwise, FALSE is returned by the function.

success = gtk text iter forward search (&start, find, 0, &begin, &end, NULL);

You must begin by specifying the start position iterator. Only text after that position will be
searched. Next, you specify the text that is being searched for. The third parameter allows you
to specify a GtkTextSearchFlags enumeration value if you want; the enumeration value is com-
prised of the following:

e GTK_TEXT_SEARCH VISIBLE ONLY: Do not search hidden elements within the buffer.

e GTK TEXT_SEARCH TEXT ONLY:Ignore images, child widgets, or any other type of nontex-
tual objects when searching.

If you do not specify the GTK_TEXT_SEARCH_TEXT_ONLY flag, you will need to use the special
OXFFFC character to represent child widgets and embedded pixbufs. Matches must be exact, so
ignoring nontextual elements with a flag is usually a good idea. By default, all searching is case
sensitive, although a flag may be introduced in the future that supports case-insensitive
searches.

CHAPTER 7 THE TEXT VIEW WIDGET

The next two iterators specify the start and end positions of the first match, if one is found.
If you do not want to track the position of the match, you have the option to specify NULL for
both iterators.

The last parameter allows you to specify a bounding iterator for the search. The function
will only search up to the limit for matches. If your program must deal with large buffers, lim-
iting searches is a good idea. Otherwise, you could risk locking up the screen until the search is
complete. If you want to search until the end of the buffer, use NULL for the bounding iterator.

Searching with gtk _text iter backward search() will work in the same way as gtk_text
iter forward search(), except limit must occur before start pos. If you do not set a limiting
iterator, the function will assume it is the start of the buffer. You should be careful when doing
this, because searching the whole buffer repeatedly, or searching a large buffer, can take
some time.

gboolean gtk text iter backward search (const GtkTextIter *start pos,
const gchar *text string,
GtkTextSearchFlags flags,
GtkTextIter *match_start,
GtkTextIter *match _end,
const GtkTextIter *1limit);

When searching in most applications, you will want to mark a match by selecting it.
You can do this with gtk_text buffer select range(). This function moves the insert and
selection_bound marks at the same time to the locations of the two iterators.

void gtk text buffer select range (GtkTextBuffer *buffer,
const GtkTextIter *ins,
const GtkTextIter *sel bound);

If you manually move the marks in two steps, you will cause commotion on the screen as
the selected text is changed multiple times. This function avoids the confusion by forcing the
selection to be recalculated only once.

Scrolling Text Buffers

GTK+ will not automatically scroll to search matches that you select. To do this, you need to
first call gtk _text buffer create mark() to create a temporary GtkTextMark at the location of
the found text.

GtkTextMark* gtk text buffer create mark (GtkTextBuffer *buffer,
const gchar *name,
const GtkTextIter *location,
ghoolean left gravity);

The second parameter of gtk_text buffer create mark() allows you to specify a text
string as a name for the mark. This name can be used to reference the mark at a later time with-
out the actual mark object. The mark is created at the location of the specified text iterator. The
last parameter will create a mark with left gravity if set to TRUE.

245

246

CHAPTER 7 THE TEXT VIEW WIDGET

Then, use gtk_text view scroll mark onscreen() to scroll the buffer, so the mark is
on the screen. After you are finished with the mark, you can remove it from the buffer with
gtk text buffer delete mark().

void gtk text view scroll mark onscreen (GtkTextView *textview,
GtkTextMark *mark);

The problem with gtk text view scroll mark onscreen() is that it will only scroll the
minimum distance to show the mark on the screen. For example, you may want the mark to be
centered within the buffer. To specify alignment parameters for where the mark appears
within the visible buffer, call gtk text view scroll to mark().

void gtk text view scroll to mark (GtkTextView *textview,
GtkTextMark *mark,
gdouble margin,
gboolean use_align,
gdouble xalign,
gdouble yalign);

You begin by placing a margin, which will reduce the scrollable area. The margin must be
specified as a floating-point number, which will reduce the area by that factor. In most cases,
you will want to use 0.0 as the margin so the area is not reduced at all.

If you specify FALSE for the use_align parameter, the function will scroll the minimal dis-
tance to get the mark onscreen. Otherwise, the function will use the two alignment parameters
as guides, which allows you to specify horizontal and vertical alignment of the mark within the
visible area.

An alignment of 0.0 refers to the left or top of the visible area, 1.0 refers to the right or bot-
tom and 0.5 refers to the center. The function will scroll as far as possible, but it may not be able
to scroll the mark to the specified position. For example, it is impossible to scroll the last line in
a buffer to the top if the buffer is larger than one character tall.

There is another function, gtk text view scroll to iter(), which behaves in the
same manner as gtk_text view scroll to mark().The only difference is that it receives a
GtkTextIter instead of a GtkTextMark for the location, although in most cases, you should use
text marks.

Text Tags

There are many functions provided for changing properties of all of the text within a GtkTextBuffer,
which have been covered in previous sections. But, as previously mentioned, it is also possible to
change the display properties of only an individual section of text with the GtkTextTag object.

Text tags allow you to create documents where the text style varies among different parts
of the text, which is commonly called rich text editing. A screenshot of a GtkTextView that uses
multiple text styles is shown in Figure 7-7.

CHAPTER 7 THE TEXT VIEW WIDGET 247

~ G S T - O <

Bold Text [«]
Bold, Italic, Underline [A]Bold

. g | Alltalic
Small + Double 4]
Bold + Extra Large [A]underline
A little bit soter now [Astrikethrough
aittle bit louder nOW ! [vl

- b Clear

Figure 7-7. Formatted text within a text buffer

Text tags are actually a very simple concept to apply. In Listing 7-7, an application is cre-
ated that allows the user to apply multiple styles or remove all of the tags from the selection.
After reading the rest of this section, you might want to try out other text properties by altering
Listing 7-7 to include different style options.

Listing 7-7. Using Text Tags (texttags.c)
#include <gtk/gtk.h>

typedef struct

{
gchar *str;
double scale;

} text to_double;

const text to double text scales[] =

{

{ "Quarter Sized", (double) 0.25 },

{ "Double Extra Small", PANGO SCALE XX SMALL},
{ "Extra Small", PANGO SCALE X SMALL},

{ "Small", PANGO SCALE SMALL },

{ "Medium", PANGO SCALE_MEDIUM },

{ "Large", PANGO SCALE LARGE},

{ "Extra Large", PANGO SCALE X LARGE},

{ "Double Extra Large", PANGO SCALE XX LARGE},
{ "Double Sized", (double) 2.0 },

{ NULL, 0 }

15

248

CHAPTER 7 THE TEXT VIEW WIDGET

static void format (GtkWidget*, GtkTextView*);
static void scale changed (GtkComboBox*, GtkTextView*);
static void clear clicked (GtkButton*, GtkTextView*);

int main (int argc,
char *argv[])
{
GtkWidget *window, *scrolled win, *textview, *hbox, *vbox;
GtkWidget *bold, *italic, *underline, *strike, *scale, *clear;
GtkTextBuffer *buffer;
gint 1 = 0;

gtk_init (8argc, &argv);

window = gtk window new (GTK WINDOW TOPLEVEL);

gtk window set title (GTK_WINDOW (window), "Text Tags");

gtk container_set border width (GTK_CONTAINER (window), 10);
gtk widget set size request (window, 500, -1);

textview = gtk text view new ();
buffer = gtk text view get buffer (GTK TEXT VIEW (textview));

gtk text buffer create tag
gtk text buffer create tag
gtk text buffer create tag
gtk text buffer create tag

buffer, "bold", "weight", PANGO WEIGHT BOLD, NULL);
buffer, "italic", "style", PANGO STYLE ITALIC, NULL);
buffer, "strike", "strikethrough", TRUE, NULL);
buffer, "underline", "underline",

PANGO UNDERLINE SINGLE, NULL);

~ o~~~

bold = gtk button new from stock (GTK_STOCK BOLD);

italic = gtk button new from stock (GTK STOCK ITALIC);
underline = gtk button new from stock (GTK _STOCK UNDERLINE);
strike = gtk button new from stock (GTK STOCK STRIKETHROUGH);
clear = gtk button_new from stock (GTK STOCK CLEAR);

scale = gtk _combo_box new_text();

/* Add choices to the GtkComboBox widget. */
for (i = 0; text scales[i].str != NULL; i++)
{
gtk _combo_box_append text (GTK COMBO BOX (scale), text scales[i].str);
gtk text buffer create tag (buffer, text scales[i].str, "scale",
text scales[i].scale, NULL);

CHAPTER 7 THE TEXT VIEW WIDGET

/* Add the name of the text tag as a data parameter of the object. */
g object set data (G OBJECT (bold), "tag", "bold");
g object set data (G OBJECT (italic), "tag", "italic");
g object set data (G OBJECT (underline), "tag", "underline");
g object set data (G OBJECT (strike), "tag", "strike");
/* Connect each of the buttons and the combo box to the necessary signals. */
g signal connect (G OBJECT (bold), "clicked",
G CALLBACK (format), (gpointer) textview);
g signal connect (G OBJECT (italic), "clicked",
G CALLBACK (format), (gpointer) textview);
g signal connect (G OBJECT (underline), "clicked",
G CALLBACK (format), (gpointer) textview);
g signal connect (G OBJECT (strike), "clicked",
G CALLBACK (format), (gpointer) textview);
g signal connect (G OBJECT (scale), "changed",
G _CALLBACK (scale changed),
(gpointer) textview);
g signal connect (G OBJECT (clear), "clicked",
G CALLBACK (clear clicked),
(gpointer) textview);

/* Pack the widgets into a GtkVBox, GtkHBox, and then into the window. */
vbox = gtk vbox _new (TRUE, 5);

gtk box_pack start (GTK BOX (vbox), bold, FALSE, FALSE, 0);

gtk box_pack start (GTK BOX (vbox), italic, FALSE, FALSE, 0);

gtk box_pack start (GTK BOX (vbox), underline, FALSE, FALSE, 0);

gtk box pack start (GTK BOX (vbox), strike, FALSE, FALSE, 0);

gtk box_pack start (GTK BOX (vbox), scale, FALSE, FALSE, 0);

gtk box_pack start (GTK BOX (vbox), clear, FALSE, FALSE, 0);

scrolled win = gtk scrolled window new (NULL, NULL);

gtk container add (GTK CONTAINER (scrolled win), textview);

gtk scrolled window set policy (GTK SCROLLED WINDOW (scrolled win),
GTK_POLICY AUTOMATIC, GTK POLICY ALWAYS);

hbox = gtk _hbox new (FALSE, 5);
gtk box_pack start (GTK BOX (hbox), scrolled win, TRUE, TRUE, 0);
gtk box_pack start (GTK BOX (hbox), vbox, FALSE, TRUE, 0);

gtk _container add (GTK CONTAINER (window), hbox);
gtk widget show all (window);

249

250

CHAPTER 7 THE TEXT VIEW WIDGET

gtk _main();
return O;

}

/* Retrieve the tag from the "tag" object data and apply it to the selection.

static void
format (GtkWidget *widget,
GtkTextView *textview)
{
GtkTextIter start, end;
GtkTextBuffer *buffer;
gchar *tagname;

tagname = (gchar*) g object get data (G OBJECT (widget), "tag");
buffer = gtk text view get buffer (textview);

gtk text buffer get selection bounds (buffer, &start, &end);

gtk text buffer apply tag by name (buffer, tagname, &start, &end);

}

/* Apply the selected text size property as the tag. */
static void
scale changed (GtkComboBox *combo,

GtkTextView *textview)

{

const gchar *text;

if (gtk _combo box get active (combo) == -1)
return;

text = gtk combo box get active text (combo);

g object set data (G OBJECT (combo), "tag", (gpointer) text);
format (GTK WIDGET (combo), textview);

gtk _combo_box_set active (combo, -1);

}

/* Remove all of the tags from the selected text. */
static void
clear clicked (GtkButton *button,
GtkTextView *textview)
{
GtkTextIter start, end;
GtkTextBuffer *buffer;

*/

CHAPTER 7 THE TEXT VIEW WIDGET

buffer = gtk text view get buffer (textview);
gtk text buffer get selection bounds (buffer, 8start, &end);
gtk text buffer remove all tags (buffer, &start, &end);

}

When you create a text tag, you normally have to add it to a GtkTextBuffer’s tag table, an
object that holds all of the tags available to a text buffer. You can create anew GtkTextTag object
with gtk text tag new() and then add it to the tag table. However, you can do this all in one
step with gtk text buffer create tag().

GtkTextTag* gtk text buffer create tag (GtkTextBuffer *buffer,
const gchar *tag name,
const gchar *first property name,

eel);

The first two parameters of the function allow you to specify the text buffer to whose tag
table the GtkTextTag will be added and a name to give the text tag. This name can be used to
reference a tag for which you do not have the GtkTextTag object anymore. The next set of
parameters is a NULL-terminated list of GtkTextTag style properties and their values.

For example, if you wanted to create a text tag that sets the background and foreground
colors as black and white respectively, you could use the following function. This function
returns the text tag that was created, although it will have already been added to the text
buffer’s tag table.

tag = gtk text buffer create tag (buffer, "colors", "background", "#000000",
"foreground", "#FFFFFF", NULL);

There are a large number of style properties available in GTK+. A full list of GtkTextTag
styles is shown in Appendix C. The table shows the name of each property, a short description
of its use, and what type of value it accepts.

Once you have created a text tag and added it to a GtkTextBuffer’s tag table, you can apply
it to ranges of text. In Listing 7-7, the tag is applied to selected text when a button is clicked. If
there is no selected text, the cursor position will be set to the style. All text typed at that position
would have the tag applied as well.

Tags are generally applied to text with gtk text buffer apply tag by name().The tagis
applied to the text between the start and end iterators. If you still have access to the GtkTextTag
object, you can also apply a tag with gtk text buffer apply tag().

void gtk text buffer apply tag by name (GtkTextBuffer *buffer,
const gchar *tag name,
const GtkTextIter *start,
const GtkTextIter *end);

251

252

CHAPTER 7 THE TEXT VIEW WIDGET

Although not used in Listing 7-7, it is possible to remove a tag from an area of text with
gtk text buffer remove tag by name().This function will remove all instances of the tag
between the two iterators if they exist.

void gtk text buffer remove tag by name (GtkTextBuffer *buffer,
const gchar *name,
const GtkTextIter *start,
const GtkTextIter *end);

Note These functions only remove tags from a certain range of text. If the tag was added to a larger range
of text than the range specified, the tag will be removed for the smaller range, and new bounds will be created
on either side of the selection. You can test this with the application in Listing 7-7.

If you have access to the GtkTextTag object, you can remove the tag with gtk text buffer
remove_tag(). It is also possible to remove every tag within a range with gtk _text buffer remove
all tags().

Inserting Images

In some applications, you may want to insert images into a text buffer. This can easily be done
with GdkPixbuf objects. In Figure 7-8, two images were inserted into a text buffer as GdkPixbuf
objects.

S = vocour: R
2 Undo

@ Redo

Kl [*]

Figure 7-8. GdkPixbuf objects in a text buffer

Adding a pixbuf to a GtkTextBuffer is performed in three steps. First, you must create
the pixbuf object and retrieve the GtkTextIter where it will be inserted. Then, you can use
gtk text buffer insert pixbuf() to add it to the buffer. Listing 7-8 shows the process of cre-
ating a GdkPixbuf object from a file and adding it to a text buffer.

CHAPTER 7 THE TEXT VIEW WIDGET

Listing 7-8. Inserting Images into Text Buffers (images.c)

#include <gtk/gtk.h>

#define IMAGE_UNDO "/path/to/undo.png"
#define IMAGE REDO "/path/to/redo.png"

int main (int argc,
char *argv[])
{
GtkWidget *window, *scrolled win, *textview;
GdkPixbuf *undo, *redo;
GtkTextIter line;
GtkTextBuffer *buffer;

gtk_init (8argc, 8argv);

window = gtk window new (GTK WINDOW TOPLEVEL);

gtk window_set title (GTK WINDOW (window), "Pixbufs");

gtk _container set border width (GTK_CONTAINER (window), 10);
gtk widget set size request (window, 200, 150);

textview = gtk text view new ();
buffer = gtk text view get buffer (GTK TEXT VIEW (textview));
gtk_text buffer set text (buffer, " Undo\n Redo", -1);

/* Create two images and insert them into the text buffer. */
undo = gdk pixbuf new from file (IMAGE_UNDO, NULL);
gtk text buffer get iter at line (buffer, &line, 0);
gtk text buffer insert pixbuf (buffer, &line, undo);

redo = gdk _pixbuf new from file (IMAGE REDO, NULL);
gtk text buffer get iter at line (buffer, &line, 1);
gtk text buffer insert pixbuf (buffer, &line, redo);

scrolled win = gtk scrolled window new (NULL, NULL);

gtk container add (GTK CONTAINER (scrolled win), textview);
gtk _container add (GTK CONTAINER (window), scrolled win);
gtk widget show all (window);

gtk _main();
return O;

253

254

CHAPTER 7 THE TEXT VIEW WIDGET

Inserting a GdkPixbuf object into a text buffer is done with gtk text buffer insert pixbuf().
The GdkPixbuf object is inserted at the specified location, which can be any valid text iterator in
the buffer.

void gtk text buffer insert pixbuf (GtkTextBuffer *buffer,
GtkTextIter *iter,
GdkPixbuf *pixbuf);

Pixbufs are handled differently by various functions. For example, gtk_text _buffer
get slice() will place the 0xFFFC character where a pixbuf is located. However, the 0xFFFC
character can occur as an actual character in the buffer, so that is not a reliable indicator of the
location of a pixbuf.

Anotherexampleis gtk text buffer get text(), whichwill completely ignore nontextual
elements, so there is no way to check for pixbufs within the text using this function.

Therefore, if you are using pixbufs in a GtkTextBuffer, it is best to retrieve text from the
buffer with gtk_text buffer get slice().You can then use gtk text iter get pixbuf() to
check whether the 0xFFFC character represents a GdkPixbuf object; it will return NULL if a pixbuf
is not found at that location.

GdkPixbuf* gtk text iter get pixbuf (const GtktTextIter *iter);

Inserting Child Widgets

Inserting widgets into a text buffer is a little more complicated than pixbufs, because you must
notify both the text buffer and the text view to embed the widget. You begin by creating a
GtkTextChildAnchor object, which will be used to mark the placement of the widget within the
GtkTextBuffer. Then, you add the widget to the GtkTextView widget.

- m Child Widgets | — & 3

Click he button|, , it

Figure 7-9. A child widget inserted into a text buffer

Figure 7-9 shows a GtkTextView widget that contains a child GtkButton widget. Listing 7-9
can be used to create this window. When the button is pressed, gtk_main_quit() is called,
which terminates the application.

CHAPTER 7 THE TEXT VIEW WIDGET

Listing 7-9. Inserting Child Widgets into a Text Buffer (childwidgets.c)

#include <gtk/gtk.h>

int main (int argc,
char *argv[])
{
GtkWidget *window, *scrolled win, *textview, *button;
GtkTextChildAnchor *anchor;
GtkTextIter iter;
GtkTextBuffer *buffer;

gtk_init (8argc, 8argv);

window = gtk window new (GTK WINDOW TOPLEVEL);
gtk window_set title (GTK WINDOW (window), "Child Widgets");
gtk _container set border width (GTK _CONTAINER (window), 10);
gtk widget set size request (window, 250, 100);

textview = gtk text view new ();
buffer = gtk text view get buffer (GTK TEXT VIEW (textview));
gtk text buffer set text (buffer, "\n Click to exit!", -1);

/* Create a new child widget anchor at the specified iterator. */
gtk_text buffer get iter at offset (buffer, &iter, 8);
anchor = gtk text buffer create child anchor (buffer, &iter);

/* Insert a GtkButton widget at the child anchor. */
button = gtk button new with label ("the button");
gtk text view add child at anchor (GTK TEXT VIEW (textview), button, anchor);

g signal connect swapped (G OBJECT (button), "clicked",
G CALLBACK (gtk widget destroy),
(gpointer) window);

scrolled win = gtk scrolled window new (NULL, NULL);

gtk container add (GTK CONTAINER (scrolled win), textview);

gtk scrolled window_set policy (GTK SCROLLED WINDOW (scrolled win),
GTK_POLICY AUTOMATIC, GTK POLICY ALWAYS);

gtk _container add (GTK CONTAINER (window), scrolled win);
gtk widget show all (window);

gtk _main();
return O;

255

256

CHAPTER 7 THE TEXT VIEW WIDGET

When creating a GtkTextChildAnchor, you need to initialize it and insert it into a
GtkTextBuffer. You can do this by calling gtk_text buffer create child anchor().

GtkTextChildAnchor* gtk text buffer create child anchor (GtkTextBuffer *buffer,
GtkTextIter *iter);

A child anchor is created at the location of the specified text iterator. This child anchor is
simply a mark that tells GTK+ that a child widget can be added to that point within the text
buffer.

Next, you need to use gtk_text view add child at anchor() to add a child widget to the
anchor point. As with GdkPixbuf objects, child widgets appear as the 0xFFFC character. This
means that, if you see that character, you need to check whether it is a child widget or a pixbuf,
because they will be indistinguishable otherwise.

void gtk text view add child at anchor (GtkTextView *textview,
GtkWidget *child,
GtkTextChildAnchor *anchor);

To check whether a child widget is at the location of an 0xFFFC character, you should call
gtk text iter get child anchor(), which will return NULL if a child anchor is not located at
that position.

GtkTextChildAnchor* gtk text iter get child anchor (const GtkTextIter *iter);

You can then retrieve a list of the widgets added at the anchor point with gtk_text
child anchor get widgets().You need to note that only one child widget can be added ata
single anchor, so the returned list will usually contain only one element.

GList* gtk text child anchor get widgets (GtkTextChildAnchor *anchor);

The exception is when you are using the same buffer for multiple text views. In this case,
multiple widgets can be added to the same anchor in the text views, as long as no text view con-
tains more than one widget. This is because of the fact that the child widget is attached to an
anchor handled by the text view instead of the text buffer. When you are finished with the list
of widgets, you need to free it with g_list free().

GtkSourceView

GtkSourceViewis awidget thatis not actually a part of the GTK+ libraries. It is an external library
used to extend the GtkTextView widget. If you have ever used GEdit, you will have experienced
the GtkSourceView widget.

CHAPTER 7 THE TEXT VIEW WIDGET

There is a large list of features that the GtkSourceView widget adds to text views. A few of the
most notable ones follow:

Line numbering

Syntax highlighting for many programming and scripting languages
Printing support for documents containing syntax highlighting
Automatic indentation

Bracket matching

Undo/Redo support

Source markers for denoting locations in source code

Highlighting the current line

Figure 7-10 shows a screenshot of GEdit using the GtkSourceView widget. It has line num-
bering, syntax highlighting, bracket matching, and line highlighting turned on.

2

4
{

5
6
7
8

1 #include =gtk/gtk.h=

3int main (int argc,

char *argv[])

GtkWidget *window, *scrolled win, *textview;
GtkTextBuffer *buffer;

gtk_init (&argc, &argv);

window = gtk _window new (GTK_WINDOW_TOPLEVEL) ;
gtk_window_set title (GTK_WINDOW (window), "Text Views");
gtk_container_set_border_width (GTK_CONTAINER (window), 10);
gtk_widget set size request (window, 250, 150);

g_signal_connect (G _OBJECT (window), "destroy",
G_CALLBACK (gtk_main_gquit), NULL};

textview = gtk_text_wview new ();
buffer = gtk_text view get buffer (GTK_TEXT_VIEW (textview));

gtk_text buffer_set text (buffer, "Your lst GtkTextView widget!", -1);

scrolled win = gtk_scrolled window new (NULL, MNULL);

gtk_container_add (GTK_CONTAIMER (scrolled win), textview);

gtk_scrolled window set policy (GTK_SCROLLED WINDOW (scrolled win),
GTK_POLICY_AUTOMATIC, GTK_POLICY ALWAYS);

Figure 7-10. Screenshot of a GtkSourceView widget

257

258

CHAPTER 7 THE TEXT VIEW WIDGET

The GtkSourceView library has a whole separate API documentation, which can be viewed
athttp://gtksourceview.sourceforge.net. If youneed to compile an application that uses this
library, you need to add ~pkg-config --cflags --1ibs gtksourceview-1.0" to the compile
command.

If you need syntax highlighting in a GTK+ application, the GtkSourceView library is one
viable option, rather than creating your own widget from scratch.

Test Your Understanding

The following exercise instructs you to create a text editing application with basic functional-
ity. It will give you practice on interacting with a GtkTextView widget.

Exercise 7-1. Text Editor

Use the GtkTextView widget to create a simple text editor. You should provide the ability to perform multiple text
editing functions, including creating a new document, opening a file, saving a file, searching the document, cutting
text, copying text, and pasting text.

When creating a new document, you should make sure the user actually wants to continue, because all changes will
be lost. When the Save button is pressed, it should always ask where to save the file. Once you have finished this
exercise, one possible solution is shown in Appendix F.

Hint: This is a much larger GTK+ application than any that has previously been created in this book, so you may want
to take a few minutes to plan out your solution on paper before diving right into the code. Then, implement one func-
tion at a time, making sure it works before continuing on to the next feature. We will expand on this exercise in later
chapters as well, so keep your solution handy!

This is the first instance of the Text Editor application that you will be creating throughout
this book. In the last few chapters of this book, you will learn new elements that will help you
create a fully featured text editor.

The application will first be expanded in Chapter 9; you will add a menu and toolbar. In
Chapter 12, you will add printing support and the ability to remember past open files and
searches.

You can view one possible solution to Exercise 7-1 in Appendix F. Much of the functional-
ity of the text editor solution has been implemented by other examples in this chapter.
Therefore, most of the solution should look familiar to you. The solution is also a bare mini-
mum solution, and I encourage you to expand on the basic requirements of the exercise for
more practice.

CHAPTER 7 THE TEXT VIEW WIDGET

Summary

In this chapter, you learned all about the GtkTextView widget, which allows you to display mul-
tiple lines of text. Text views are usually contained by a special type of GtkBin container called
GtkScrolledWindow that gives scrollbars to the child widget to implement scrolling abilities.

A GtkTextBuffer handles text within a view. Text buffers allow you to change many differ-
ent properties of the whole or portions of the text using text tags. They also provide cut, copy,
and paste functions.

You can move throughout a text buffer by using GtkTextIter objects, but text iterators
become invalid once the text buffer is changed. Text iterators can be used to search forward or
backward throughout a document. To keep alocation over changes of a buffer, you need to use
text marks. Text views are capable of displaying not only text but also images and child widgets.
Child widgets are added at anchor points throughout a text buffer.

The last section of the chapter briefly introduced the GtkSourceView widget, which extends
the functionality of the GtkTextView widget. It can be used when you need features such as syn-
tax highlighting and line numbering.

In Chapter 8, you will be introduced to two new widgets: combo boxes and tree views.
Combo boxes allow you to select one option from a drop-down list. Tree views allow you to
select one or more options from a list usually contained by a scrolled window. GtkTreeView is
the most difficult widget that will be covered in this book, so take your time with the next
chapter.

259

CHAPTER 8

The Tree View Widget

This chapter will show you how to use the GtkScrolledwindow widget in combination with
another powerful widget known as GtkTreeView. The tree view widget can be used to display
data in lists or trees that span one or many columns. For example, a GtkTreeView can be used
to implement a file browser or display the build the output of an integrated development
environment.

GtkTreeViewis an involved widget, because it provides a wide variety of features, so be sure
to carefully read through each section of this chapter. However, once you learn this powerful
widget, you will be able to apply it in many applications.

This chapter will introduce you to alarge number of features provided by GtkTreeView. The
information presented in this chapter will enable you to mold the tree view widget to meet your
needs. Specifically, in this chapter, you will learn the following:

What objects are used to create a GtkTreeView and how its model-view-controller design
makes it unique

How to create lists and tree structures with the GtkTreeView widget

When to use GtkTreePath, GtkTreeIter, or GtkTreeRowReference to reference rows within
aGtkTreeView

How to handle double-clicks, single row selections, and multiple row selections

How to create editable tree view cells or customize individual cells with cell renderer
functions

The widgets you can embed within a cell, including toggle buttons, pixbufs, spin but-
tons, combo boxes, progress bars, and keyboard accelerator strings

261

262 CHAPTER 8 THE TREE VIEW WIDGET

Parts of a Tree View

The GtkTreeView widget is used to display data organized as a list or a tree. The data displayed
in the view is organized into columns and rows. The user is able to select one or multiple rows
within the tree view using the mouse or keyboard. A screenshot of the Nautilus application
using GtkTreeView can be viewed in Figure 8-1.

- El usr - File Browser | — O X
File Edit View Go Bookmarks Help
Location: Ifusr Q 50% Q View as List ['
Name v|Size |Typ4
b B bin 1178 items fold
b B3 games 16 items fold
p include 234 items fold
v lib 1251 items fold
v [ao 1 item fold
~ [plugins-2 5 items fold
[] libalsa09.so 10.0 KB sha
[7 libarts.so 4.1 KB sha
[] libesd.so 4.4 KB sha
[7 libnas.so 5.5 KB sha
[] liboss.so 5.8 KB sha
P B3 apt 1 item fold/~|
4 0
S items, Free space: 2.7 GB Y

Figure 8-1. Nautilus using the GtkTreeView widget

GtkTreeView is a difficult widget to use and an even more difficult widget to understand,
so this whole chapter is dedicated to using it. However, once you understand how the widget
works, you will be able to apply it to a wide variety of applications, because it is possible to cus-
tomize almost every aspect of the way the widget is displayed to the user.

What makes GtkTreeView unique is that it follows a design concept that is commonly
referred to as model-view-controller (MVC) design. MVC is a design method where the infor-
mation and the way it is rendered are completely independent of each other, similar to the
relationship between GtkTextView and GtkTextBuffer.

CHAPTER 8 THE TREE VIEW WIDGET

GtkTreeModel

Data itself is stored within classes that implement the GtkTreeModel interface. GTK+ provides
four types of built-in tree model classes, but only GtkListStore and GtkTreeStore will be cov-
ered in this chapter.

The GtkTreeModel interface provides a standard set of methods for retrieving general infor-
mation about the data that is stored. For example, it allows you to get the number of rows in the
tree and the number of children of a certain row. GtkTreeModel also gives you a way to retrieve
the data that is stored in a specific row of the store.

Note Models, renderers, and columns are referred to as objects instead of widgets, even though they are
a part of the GTK+ library. This is an important distinction—since they are not derived from GtkWidget, they
do not have the same set of functions, properties, and signals that are available to GTK+ widgets.

GtkListStore allows you to create a list of elements with multiple columns. Each row is a
child of the root node, so only one level of rows is displayed. Basically, GtkListStore is a tree
structure that has no hierarchy. It is only provided because faster algorithms exist for interact-
ing with models that do not have any child items.

GtkTreeStore provides the same functionality as GtkListStore, except the data can be
organized into a multilayered tree. GTK+ provides a method for creating your own custom
model types as well, but the two available types should be suitable in most cases.

While GtkListStore and GtkTreeStore should fit most applications, a time may come
when you need to implement your own store object. For example, if it needs to hold a huge
number of rows, you should create a new model that will be more efficient. In Chapter 11, you
will learn how to create new classes derived from GObject, which can be used as a guide to get
you started deriving a new class that implements the GtkTreeModel interface.

After you have created the tree model, the view is used to display the data. By separating
the tree view and its model, you are able to display the same set of data in multiple views. These
views can be exact copies of each other, or the data can be displayed in varying ways. All of
the views will be updated simultaneously as you make alterations to a model.

Tip While it may not immediately seem beneficial to display the same set of data in multiple tree views,
consider the case of a file browser. If you need to display the same set of files in multiple file browsers, using
the same model for each view would save memory as well as make your program run considerably faster.
This is also useful when you want to provide multiple display options for the file browser. When switching
between display modes, you will not need to alter the data itself.

263

264

CHAPTER 8 THE TREE VIEW WIDGET

Models are composed of columns that contain the same data type and rows that hold each
set of data. Each model column can hold a single type of data. A tree model column should not
be confused with a tree view column, which is composed of a single header but may be ren-
dered with data from multiple model columns. For example, a tree column may display a text
string that has a foreground color defined by a model column that is not visible to the user.
Figure 8-2 illustrates the difference between model columns and tree columns.

Text Color Column Header
Red #FF0000 Red

Blue #0000FF Blue

Green | #006600 < »| Green

Purple | #9900FF Purple

Black | #000000 Black

Brown | #660000 Brown

Model Column ~ Model Column Tree Column
(gchar*) (GdkColor)

Figure 8-2. The relationship between model and tree columns

Each row within a model contains one piece of data corresponding to each model column.
In Figure 8-2, each row contains a text string and a GdkColor value. These two values are used
to display the text with the corresponding color in the tree column. You will learn how to
implement this in code later in this chapter. For now, you should simply understand the differ-
ences between the two types of columns and how they relate.

New list and tree stores are created with a number of columns, each defined by an existing
GType. Usually, you will need to use only those already implemented in GLib. For example, if
you want to display text you can use G_TYPE_STRING, G_TYPE_BOOLEAN, and a few of the number
types like G_TYPE_INT.

Tip Since itis possible to store an arbitrary data type with G_TYPE_POINTER, one or more tree model col-
umns can be used to simply store information about every row. You just need to be careful when there are a
large number of rows, because memory usage will quickly escalate. You will also have to take care of freeing
the pointers yourself.

CHAPTER 8 THE TREE VIEW WIDGET

GtkTreeViewColumn and GtkCellRenderer

As previously mentioned, a tree view displays one or more GtkTreeViewColumn objects. Tree
columns are composed of a header and cells of data that are organized into one column. Each
tree view column also contains one or more visible columns of data. For example, in a file
browser, a tree view column may contain one column of images and one column of file names.

The header of the GtkTreeViewColumn widget contains a title that describes what data is
held in the cells below. If you make the column sortable, the rows will be sorted when one of
the column headers is clicked.

Tree view columns do not actually render anything to the screen. This is done with an object
derived from GtkCellRenderer. Cell renderers are packed into tree view columns similar to how
you add widgets into a horizontal box. Each tree view column can contain one or more cell ren-
derers, which are used to render the data. For example, in a file browser, the image column would
be rendered with GtkCellRendererPixbuf and the file name with GtkCellRendererText. An exam-
ple of this was shown in Figure 8-1.

Each cell renderer is responsible for rendering a column of cells, one for every row in the
tree view. It begins with the first row, rendering its cell and then proceeding to the next row
down until the whole column, or part of the column, is rendered.

Cell renderers are composed of properties that define how each cell of data is rendered to
the screen. There are a number of ways to set cell renderer properties. The easiest is to use
g object_set(), which will apply the setting to every cell in the column that the cell renderer is
acting on. This is very fast, but often you will need to set attributes for specific cells.

Another way is to add attributes to the renderer. Column attributes correspond to tree
model columns and are associated with cell renderer properties, as shown in Figure 8-3. These
properties are applied to each cell as it is rendered.

Model Column Model Column
(G_TYPE_STRING) (GDK_TYPE_COLOR)
|—> Text Color <—| Column Header
Red #FF0000 Red
Blue #0000FF Blue
Green | #006600 Green
Purple | #9900FF Purple
Black | #000000 Black
Brown | #660000 Brown
Properties l l T
|—>| “text” | “foreground” | ;I GtkCeIIRenderText‘

Figure 8-3. Applying Cell Renderer Properties

265

266

CHAPTER 8 THE TREE VIEW WIDGET

In Figure 8-3, there are two tree model columns with the types G TYPE_STRING and
GDK_TYPE_COLOR. These are applied to GtkCellRendererText’s text and foreground properties
and used to render the tree view column accordingly.

An additional way to change cell renderer properties is by defining a cell data function.
This function will be called for every row in the tree view before it is rendered. This allows you
to customize how every cell is rendered without the need for the data to be stored in a tree
model. For example, a cell data function can be used to define how many decimal places of a
floating point number to display. Cell data functions will be covered in detail in the “Cell Data
Functions” section of this chapter.

Later on, this chapter also covers cell renderers that are used to display text (strings, num-
bers, and Boolean values), toggle buttons, spin buttons, progress bars, pixbufs, combo boxes,
and keyboard accelerators. In addition, you can create custom cell renderer types, but this is
usually not needed, since GTK+ now provides such a wide variety of types.

This section has taught you what objects are needed to use the GtkTreeView widget, what
they do, and how they interrelate. Now that you have a basic understanding of the GtkTreeView
widget, the next section will give a simple example using the GtkListStore tree model.

Using GtkListStore

Recall from the previous section that GtkTreeModel is simply an interface implemented by data
stores such as GtkListStore. GtkListStore is used to create lists of data that have no hierarchi-
cal relationship among rows.

In this section, a simple Grocery List application will be implemented that contains three
columns, all of which use GtkCellRendererText. A screenshot of this application can be viewed
in Figure 8-4. The first column is a gboolean value displaying TRUE or FALSE that defines whether
or not the product should be purchased.

Tip You usually do not want to display Boolean values as text, because if you have many Boolean col-
umns, it will become unmanageable for the user. Instead, you will want to use toggle buttons. You will learn
how to do this with GtkCellRendererToggle in a later section. Boolean values are often also used as
column attributes in order to define cell renderer properties.

The second column displays the quantity of the product to buy as an integer and the third
a text string describing the product. All of the columns use GtkCellRendererText for rendering;
GtkCellRendererText is a cell renderer capable of displaying Boolean values and various num-
ber formats (int, double, and float) as text strings.

TRUE 2
FALSE 1
TRUE 1
FALSE 3
TRUE 4

A =cocon s [P

Count |Product

Paper Towels
Bread

Butter

Milk

Chips

Soda

CHAPTER 8

Figure 8-4. A tree view widget using a GtkListStore tree model

THE TREE VIEW WIDGET

Listing 8-1 creates a GtkListStore object, which displays a list of groceries. In addition to
displaying the products, the list store also displays whether to buy the product and how many

of them to buy.

This Grocery List application will be used for many examples throughout the rest of the
chapter. Therefore, the content of some functions may be excluded later on if it is presented in
previous examples. Also, to keep things organized, in every example setup_tree view() will be
used to set up columns and renderers. Full code listings for every example can be downloaded
at www. gtkbook. com.

Listing 8-1. Creating a GtkTreeView (liststore.c)

#include <gtk/gtk.h>

enum

{
BUY IT = 0,
QUANTITY,
PRODUCT,
COLUMNS

};

typedef struct

{
gboolean buy;
gint quantity;
gchar *product;

} GroceryItem;

267

268 CHAPTER 8 THE TREE VIEW WIDGET

const GroceryItem list[] =
{
{ TRUE, 1, "Paper Towels" },
{ TRUE, 2, "Bread" },
{ FALSE, 1, "Butter" },
{ TRUE, 1, "Milk" },
{ FALSE, 3, "Chips" },
{ TRUE, 4, "Soda" },
{ FALSE, 0, NULL }
b

static void setup tree view (GtkWidget*);

int main (int argc,
char *argv[])
{
GtkWidget *window, *treeview, *scrolled win;
GtkListStore *store;
GtkTreelter iter;
guint 1 = 0;

gtk_init (8argc, &argv);

window = gtk window new (GTK WINDOW TOPLEVEL);
gtk window _set title (GTK_WINDOW (window), "Grocery List");
gtk container_set border width (GTK_CONTAINER (window), 10);
gtk widget set size request (window, 250, 175);

treeview = gtk tree view new ();
setup tree view (treeview);

/* Create a new tree model with three columns, as string, gint and guint. */
store = gtk list store new (COLUMNS, G TYPE BOOLEAN, G TYPE INT, G TYPE STRING);

/* Add all of the products to the GtkListStore. */
while (list[i].product != NULL)
{
gtk list store append (store, &iter);
gtk list store set (store, &iter, BUY IT, list[i].buy,
QUANTITY, list[i].quantity, PRODUCT, list[i].product, -1);
it++;

}

CHAPTER 8 THE TREE VIEW WIDGET

/* Add the tree model to the tree view and unreference it so that the model will
* be destroyed along with the tree view. */

gtk tree view set model (GTK TREE VIEW (treeview), GTK TREE MODEL (store));

g object unref (store);

scrolled win = gtk scrolled window new (NULL, NULL);
gtk scrolled window set policy (GTK SCROLLED WINDOW (scrolled win),
GTK_POLICY AUTOMATIC, GTK POLICY AUTOMATIC);

gtk container add (GTK CONTAINER (scrolled win), treeview);
gtk _container add (GTK CONTAINER (window), scrolled win);
gtk widget show all (window);

gtk _main ();
return O;

/* Add three columns to the GtkTreeView. All three of the columns will be
* displayed as text, although one is a gboolean value and another is
* an integer. */
static void
setup_tree view (GtkWidget *treeview)
{
GtkCellRenderer *renderer;
GtkTreeViewColumn *column;

/* Create a new GtkCellRendererText, add it to the tree view column and
* append the column to the tree view. */
renderer = gtk cell renderer text new ();
column = gtk tree view column_new with attributes
("Buy", renderer, "text", BUY_IT, NULL);
gtk tree view append column (GTK TREE VIEW (treeview), column);

renderer = gtk cell renderer text new ();
column = gtk tree view column_new with attributes

("Count", renderer, "text", QUANTITY, NULL);
gtk tree view append column (GTK TREE VIEW (treeview), column);

renderer = gtk cell renderer text new ();
column = gtk tree view column_new with attributes

("Product", renderer, "text", PRODUCT, NULL);
gtk tree view append column (GTK TREE VIEW (treeview), column);

269

270

CHAPTER 8 THE TREE VIEW WIDGET

Creating the Tree View

Creating the GtkTreeView widget is the easiest part of the process. You need only to call

gtk _tree view new().If you want to add the default tree model on initialization, you can

use gtk _tree view new with model(), but a tree model can easily be applied to a GtkTreeView
after initialization with gtk tree view set model().The gtk tree view new with model()
function is simply a convenience function.

There are many functions that allow you to customize a GtkTreeView to fit your needs. For
example, above each GtkTreeViewColumn, a header label is rendered that tells the user more
about the column contents. You can set gtk_tree view set headers visible() to FALSE in
order to hide them.

void gtk tree view set headers visible (GtkTreeView *treeview,
gboolean visible);

Note You should be careful when hiding tree view headers, because they help the user know the contents
of each column. They should only be hidden if there is no more than one column or the contents of each col-
umn are clearly explained in some other manner.

GtkTreeViewColumn headers provide more functionality beyond column titles for some tree
views. In sortable tree models, clicking the column header can initiate sorting of all of the rows
according to the data held in the corresponding column. It also gives a visual indication of the
sort order of the column if applicable. You should not hide the headers if the user will need
them to sort the tree view rows.

Another GtkTreeView function, gtk _tree view set rules hint() requests a GTK+ theme
to differentiate between alternating rows. This is often done by changing the background color
of adjacent rows. However, as the function name suggests, this property is only a hint for the
theme engine and may not be honored. Also, some theme engines alternate background colors
automatically regardless of this setting.

void gtk tree view set rules hint (GtkTreeView *treeview,
gboolean alternate colors);

This property should only be used if it is a necessity. For example, if your tree view con-
tains many rows, it could help the user navigate throughout its contents. In contrast, it should
not be used for aesthetic purposes, because those settings should always be dictated by the
user’s theme.

As a GTK+ developer, you should be very careful about changing visual properties. Users
have the ability to choose themes that fit their needs, and you can make your application unus-
able by changing how widgets are displayed.

CHAPTER 8 THE TREE VIEW WIDGET

Renderers and Columns

After creating the GtkTreeView, you need to add one or more columns to the view for it to be of
any use. Each GtkTreeViewColumn is composed of a header, which displays a short description
of its content, and at least one cell renderer. Tree view columns do not actually render any
content. Tree view columns hold one or more cell renderers that are used to draw the data on
the screen.

All cell renderers are derived from the GtkCellRenderer class and are referred to as
objects in this chapter, because GtkCellRenderer is derived directly from GtkObject, not from
GtkWidget. Each cell renderer contains a number of properties that determine how the data
will be drawn within a cell.

The GtkCellRenderer class provides common properties to all derivative renderers
including background color, size parameters, alignments, visibility, sensitivity, and padding.
A full list of GtkCellRenderer properties can be found in Appendix A. It also provides the
editing-canceled and editing-started signals, which allow you to implement editing in
custom cell renderers.

In Listing 8-1, you were introduced to GtkCel1RendererText, which is capable of rendering
strings, numbers, and gboolean values as text. Textual cell renderers are initialized with
gtk _cell renderer text new().

GtkCellRendererText provides a number of additional properties that dictate how each
cell will be rendered. You should always set the text property, which is the string that will be
displayed in the cell. The rest of the properties are similar to those used with text tags.

GtkCellRendererText contains a large number of properties that dictate how every row will
be rendered. g object_set() was used in the following example to set the foreground color of
every piece of text in the renderer to orange. Some properties have a corresponding set prop-
erty as well, which must be set to TRUE if you want the value to be used. For example, you should
set foreground-set to TRUE for the changes will take effect.

g object set (G OBJECT (renderer), "foreground", "Orange",
"foreground-set", TRUE, NULL);

After you create a cell renderer, it needs to be added to a GtkTreeViewColumn. Tree view col-
umns can be created with gtk _tree view column new with attributes() if you only want the
column to display one cell renderer. In the following code, a tree view column is created with
the title “Buy” and a renderer with one attribute. This attribute will be referred to as BUY_IT
when the GtkListStore is populated.

column = gtk tree view column _new with attributes ("Buy", renderer,
"text", BUY_IT, NULL);

The preceding function accepts a string to display in the column header, a cell renderer,
and a NULL-terminated list of attributes. Each attribute contains a string that refers to the ren-
derer property and the tree view column number. The important thing to realize is that the
column number provided to gtk tree view column new with attributes() refers to the tree
model column, which may not be the same as the number of tree model columns or cell
renderers used by the tree view.

2N

272

CHAPTER 8 THE TREE VIEW WIDGET

The following four lines of code implement the same functionality that is provided
by gtk tree view column _new with attributes().An empty column is created with
gtk tree view column_new(), and the column title is set to “Buy”.

column = gtk tree view column new ();

gtk tree view column set title (column, "Buy");

gtk tree view column pack start (column, renderer, FALSE);

gtk tree view column set attributes (column, renderer, "text", BUY IT, NULL);

Next, a cell renderer is added to the column. gtk tree view column pack start() accepts
a third Boolean parameter, which instructs the column to expand horizontally to fill extra
space if set to TRUE. The last function, gtk_tree view column set attributes() adds the
NULL-terminated list of attributes that will be customized for every row you add to the tree view.
These attributes are applied to the specified renderer.

Calling gtk _tree view column pack start() will remove all attributes previously associ-
ated with the specified cell renderer. To circumvent this, you can use gtk_tree view column_
add_attribute() to add attributes to a column for a specific cell renderer one at a time. Both
of these functions are useful when a GtkTreeViewColumn will contain more than one cell
renderer.

void gtk tree view column add attribute (GtkTreeViewColumn *column,
GtkCellRenderer *renderer,
const gchar *attribute,
gint column);

If you want to add multiple renderers to the tree view column, you will need to pack each
renderer and set its attributes separately. For example, in a file manager, you might want to
include a text and an image renderer in the same column. However, if every column only needs
one cell renderer, it is easiest to use gtk tree view column new with attributes().

Note If you want a property, such as the foreground color, set to the same value for every row in the
column, you should apply that property directly to the cell renderer with g_object_set(). However, if the
property will vary depending on the row, you should add it as an attribute of the column for the given renderer.

After you have finished setting up a tree view column, it needs to be added to the tree
view with gtk_tree view append column(). Columns may also be added into an arbitrary
position of the tree view with gtk_tree view insert column() or removed from the view with
gtk tree view remove column().

Creating the GtkListStore

The tree view columns are now set up with the desired cell renderers, so it is time to create the
tree model that will interface between the renderers and the tree view. For the example found
in Listing 8-1, we used GtkListStore so that the items would be shown as a list of elements.

CHAPTER 8 THE TREE VIEW WIDGET 273

New list stores are created with gtk 1ist store new(). This function accepts the number
of columns and the type of the data each column will hold. In Listing 8-1, the list store has three
columns that store gboolean, integer, and string data types.

GtkListStore* gtk list store new (gint n_columns,
/* List of column types */);

After creating the list store, you need to add rows with gtk _1ist store append() foritto be
of any use. This function will append a new row to the list store, and the iterator will be set to
point to the new row. You will learn more about tree iterators in a later section of this chapter.
For now, it is adequate for you to know that it points to the new tree view row.

void gtk list store append (GtkListStore *store,
GtkTreelter *iter);

There are multiple other functions for adding rows to a list store including gtk list
store prepend() and gtk list store insert(). A fulllist of available functions can be found
in the GtkListStore API documentation.

In addition to adding rows, you can also remove them with gtk 1ist store remove().This
function will remove the row that GtkTreeIter refers to. After the row is removed, the iterator
will point to the next row in the list store, and the function will return TRUE. If the last row was
just removed, the iterator will become invalid, and the function will return FALSE.

gboolean gtk list store remove (GtkListStore *store,
GtkTreelter *iter);

In addition, gtk list store clear() is provided, which can be used to remove all rows
from a list store. You will be left with a GtkListStore that contains no data. If the object will not
be used beyond this point, it should then be unreferenced.

Now that you have a row, you need to add data to it with gtk 1ist store set().The
gtk list store set() function receives a list of pairs of column numbers and value parame-
ters. For example, the first column in the following function call, referenced with BUY_IT,
accepts a Boolean value that defines whether the product should be purchased. These values
correspond to those set by gtk list store new().

gtk list store set (store, &iter, BUY IT, list[i].buy,
QUANTITY, list[i].quantity, PRODUCT, list[i].product, -1);

The last element of gtk 1ist store set() mustbe setto -1 so that GTK+ knows that there
are no more parameters. Otherwise, your users will be presented with an endless list of warn-
ings and errors in the terminal output.

Note GtkCellRendererText automatically converts Boolean values and numbers into text strings that
can be rendered on the screen. Therefore, the type of data applied to a text attribute column does not have
to be text itself, but just has to be consistent with the list store column type that was defined during initializa-
tion of the GtkListStore.

274

CHAPTER 8 THE TREE VIEW WIDGET

After the list store is created, you need to call gtk tree view set model() to add it to the
tree view. By calling this function, the reference count of the tree model will be incremented by
one. Therefore, if you want the tree model to be destroyed when the tree view is destroyed, you
will need to call g_object_unref() on the list store.

Using GtkTreeStore

There is one other type of built-in tree model called GtkTreeStore, which organizes rows into a
multilevel tree structure. It is possible to implement a list with a GtkTreeStore tree model as
well, but this is not recommended because some overhead is added when the object assumes
that the row may have one or more children.

Figure 8-5 shows an example tree store, which contains two root elements, each with chil-
dren of its own. By clicking the expander to the left of a row with children, you can show or hide
its children. This is similar to the functionality provided by the GtkExpander widget.

Cleaning Supplies
TRUE 1 Paper Towels
TRUE 3 Toilet Paper
¥ TRUE 7 Food
TRUE 2 Bread
FALSE 1 Butter
TRUE 1 Milk
FALSE 3 Chips
TRUE 4 Soda

Figure 8-5. A tree view widget using a GtkTreeStore tree model

The only difference between a GtkTreeView implemented with a GtkTreeStore instead of a
GtkListStoreis in the creation of the store. Adding columns and renderers is performed in the
same manner with both models, because columns are a part of the view not the model, so
Listing 8-2 excludes the implementation of setup tree view().

Listing 8-2 revises the original Grocery List application, splitting the products into catego-
ries. This list includes two categories: Cleaning Supplies and Food, which both have children of
their own. The quantity of each category is set initially to zero, because this is calculated during
runtime.

Listing 8-2. Creating a GtkTreeStore (treestore.c)

#include <gtk/gtk.h>

enum

{
BUY IT = o,
QUANTITY,
PRODUCT,
COLUMNS

};

enum

{
PRODUCT _CATEGORY,
PRODUCT _CHILD

};

typedef struct

{
gint product_type;
gboolean buy;
gint quantity;
gchar *product;

} GroceryItem;

GroceryItem list[] =
{

PRODUCT CHILD, TRUE, 1, "Paper Towels" },
PRODUCT CHILD, TRUE, 3, "Toilet Paper" },
PRODUCT CATEGORY, TRUE, 0, "Food" },
PRODUCT CHILD, TRUE, 2, "Bread" },
PRODUCT CHILD, FALSE, 1, "Butter" },
PRODUCT CHILD, TRUE, 1, "Milk" },

PRODUCT CHILD, FALSE, 3, "Chips" },
PRODUCT CHILD, TRUE, 4, "Soda" },

PRODUCT CATEGORY, FALSE, 0, NULL }

e Nt N atn T et Wt W e Wt W st W auten W s

};

PRODUCT CATEGORY, TRUE, 0, "Cleaning Supplies"

CHAPTER 8

1

THE TREE VIEW WIDGET

/* The implementation of this function is the same as in Listing 8-1. */

static void setup tree view (GtkWidget*);

275

276

CHAPTER 8 THE TREE VIEW WIDGET

int main (int argc,

{

char *argv[])

GtkWidget *window, *treeview, *scrolled win;
GtkTreeStore *store;

GtkTreelter iter, child;

guint 1 = 0, j;

gtk_init (8argc, &argv);

window = gtk window new (GTK WINDOW TOPLEVEL);
gtk window _set title (GTK_WINDOW (window), "Grocery List");
gtk _container_set border width (GTK_CONTAINER (window), 10);
gtk widget set size request (window, 275, 300);

treeview = gtk tree view new ();
setup tree view (treeview);

store = gtk tree store new (COLUMNS, G TYPE BOOLEAN, G TYPE INT, G TYPE STRING);

while (1list[i].product != NULL)
{
/* If the product type is a category, count the quantity of all of the products
* in the category that are going to be bought. */
if (list[i].product type == PRODUCT CATEGORY)
{

j=1+1;

/* Calculate how many products will be bought in the category. */
while (list[j].product != NULL && list[j].product type != PRODUCT CATEGORY)
{
if (list[j].buy)
list[i].quantity += list[j].quantity;
J++;

}

/* Add the category as a new root element. */
gtk tree store append (store, &iter, NULL);
gtk tree store set (store, &iter, BUY IT, list[i].buy,
QUANTITY, list[i].quantity, PRODUCT, list[i].product, -1);

CHAPTER 8 THE TREE VIEW WIDGET

/* Otherwise, add the product as a child of the category. */
else
{
gtk tree store append (store, &child, &iter);
gtk tree store set (store, &child, BUY IT, list[i].buy,
QUANTITY, list[i].quantity, PRODUCT, list[i].product, -1);

i++;

}

gtk tree view set model (GTK TREE VIEW (treeview), GTK TREE MODEL (store));
gtk tree view expand all (GTK TREE VIEW (treeview));
g object unref (store);

scrolled win = gtk scrolled window new (NULL, NULL);
gtk scrolled window _set policy (GTK SCROLLED WINDOW (scrolled win),
GTK_POLICY AUTOMATIC, GTK POLICY AUTOMATIC);

gtk container add (GTK CONTAINER (scrolled win), treeview);
gtk _container add (GTK CONTAINER (window), scrolled win);
gtk widget show all (window);

gtk _main ();
return O;

Tree stores are initialized with gtk tree store new(), which accepts the same parameters
asgtk list store new().These include the number of columns of data followed by a list of the
data types corresponding to each tree model column.

Adding rows to a tree store is a little different than adding rows to alist store. You add rows
to a tree store with gtk_tree store append(), which accepts two iterators instead of one. The
first iterator will point to the inserted row when the function returns, and the second iterator
should point to the parent row of the new row.

gtk tree store append (store, &iter, NULL);

In the preceding call to gtk _tree store append(), a root element was appended to the list
by passing NULL as the parent iterator. The iter tree iterator was set to the location of the new
row. The first iterator does not need to already be initialized, because its current contents will
be overwritten when the function returns.

277

278

CHAPTER 8 THE TREE VIEW WIDGET

In the second call to gtk_tree store append(), which follows, the row will be added as
a child of iter. Next, the child tree iterator will be set to the current location of the new row
within the tree store when the function returns.

gtk tree store append (store, &child, &iter);

As with list stores, there are many functions available for adding rows to a tree store. These
include gtk tree store insert(), gtk tree store prepend(),and gtk tree store insert
before() to name a few. For a full list of functions, you should reference the GtkTreeStore API
documentation.

After you add a row to the tree store, it is simply an empty row with no data. To add data to the
row, call gtk tree store set().This function works in the same way as gtk _list store set().It
accepts the tree store, a tree iterator pointing to the location of the row, and a list of column-data
pairs terminated by -1. These column numbers correspond to those you used when setting up the
cell renderer attributes.

gtk tree store set (store, &8child, BUY IT, list[i].buy, QUANTITY, list[i].quantity,
PRODUCT, list[i].product, -1);

In addition to adding rows to a tree store, you can also remove them with gtk _tree_
store_remove(). This function will remove the row that is referred to by GtkTreeIter. After
the row is removed, iter will point to the next row in the tree store, and the function will return
TRUE. If the row that you removed was the last in the tree store, the iterator will become invalid,
and the function will return FALSE.

gboolean gtk tree store remove (GtkTreeStore *store,
GtkTreelter *iter);

In addition, gtk tree store clear() is provided, which can be used to remove all rows
from a tree store. You will be left with a GtkTreeStore that contains no data. If the object will not
be used beyond this point, it should then be unreferenced.

Before gtk main() is called in Listing 8-2, gtk tree view expand all() is called to expand
all of the rows. This is a recursive function that will expand every possible row, although it will
only affect tree models that have child-parent row relationships. In addition, you can collapse
all of the rows with gtk tree view collapse all(). By default, all rows will be collapsed.

Referencing Rows

Three objects are available for referring to a specific row within a tree model; each has its own
unique advantages. They are GtkTreePath, GtkTreeIter, and GtkTreeRowReference. In the fol-
lowing sections, you will learn how each object works and how to use them within your own
programs.

Tree Paths

GtkTreePath is a very convenient object for referring to rows within a tree model, because it can
be easily represented as a human-readable string. It can also be represented as an array of
unsigned integers.

CHAPTER 8 THE TREE VIEW WIDGET

For example, if you are presented with the string 3:7:5, you would start at the fourth root
element (recall that indexing begins at zero, so element three is actually the fourth element in
the level). You would next proceed to the eighth child of that root element. The row in question
is that child’s sixth child.

To illustrate this graphically, Figure 8-6 shows the tree view created in Listing 8-2 with the
tree paths labeled. Each root element is referred to as only one element, 0 and 1. The first root
element has two children, referred toas 0:0and 0: 1.

"""""" 4 Cleaning Supplies §(lY)
TRUE 1 Paper Towels 0:0
TRUE 3 Toilet Paper 0:1

¥ TRUE 7 Food 1
TRUE 2 Bread 1:0
FALSE 1 Butter 1:1
TRUE 1 Milk 1:2
FALSE 3 Chips 1:3
TRUE 4 Soda 1:4

Figure 8-6. Tree paths for a tree view using GtkTreeStore

Two functions are provided that allow you to convert back and forth between a path and
its equivalent string: gtk_tree path to string() and gtk tree path new from string().You
usually will not have to deal with the string path directly unless you are trying to save the state
of a tree view, but using it helps in understanding the way tree paths work.

Listing 8-3 gives a short example of using tree paths. It begins by creating a new path that
points to the Bread product row. Next, gtk_tree path up() moves up one level in the path.
When you convert the path back into a string, you will see that the resulting output is 1, point-
ing to the Food row.

Listing 8-3. Converting Between Paths and Strings

GtkTreePath *path;
gchar *str;

path = gtk tree path new from string ("1:0"); /* Point to bread */
gtk tree path up (path);

str = gtk tree path to string (path);

g print (str);

g free (str);

279

280

CHAPTER 8 THE TREE VIEW WIDGET

Tip Ifyou need to get a tree iterator and only have the path string available, you can convert the string into
a GtkTreePath and then to a GtkTreeIter. However, a better solution would be to skip the intermediate
step with gtk_tree model get iter from_string(), which converts a tree path string directly into a
tree iterator.

In addition to gtk_tree path_up(), there are other functions that allow you to navigate
throughout a tree model. You can use gtk_tree path down() to move to the child row and
gtk tree path next() or gtk tree path prev() to move to the next or previous row in the
same level. When you move to the previous row or parent row, FALSE will be returned if it was
not successful.

At times, you may need to have a tree path as a list of integers instead of a string. The
gtk tree path get indices() function will return the integers that compose the path string.

gint* gtk tree path get indices (GtkTreePath *path);

Problems can arise with tree paths when a row is added or removed from the tree model.
The path could end up pointing to a different row within the tree or, worse, a row that does not
exist anymore! For example, if a tree path points to the last element of a tree and you remove
that row, it will now point beyond the limits of the tree. To get around this problem, you can
convert the tree path into a tree row reference.

Tree Row References

GtkTreeRowReference objects are used to watch a tree model for changes. Internally, they con-
nect to the row-inserted, row-deleted, and rows-reordered signals, updating the stored path
based on the changes.

New tree row references are created with gtk_tree row reference new() from an existing
GtkTreeModel and GtkTreePath. The tree path copied into the row reference will be updated as
changes occur within the model.

GtkTreeRowReference* gtk tree row reference new (GtkTreeModel *model,
GtkTreePath *path);

When you need to retrieve the path, you can use gtk_tree row reference get path(),
which will return NULL if the row no longer exists within the model. Tree row references are able
to update the tree path based on changes within the tree model, but if you remove all elements
from the same level as the tree path’s row, it will no longer have a row to point to.

The returned tree path should be freed with gtk _tree path free() when you are finished
with it. The tree row reference can be freed with gtk _tree row reference free().

You should be aware that tree row references do add a small bit of overhead processing
when adding, removing, or sorting rows within a tree model, since the references will have
to handle all of the signals emitted by these actions. This overhead does not matter for most
applications, because there will not be enough rows for the user to notice. However, if your
application contains a large number of rows, you should use tree row references wisely.

CHAPTER 8 THE TREE VIEW WIDGET

Tree Iterators

GTK+ provides the GtkTreeIter object, which can be used to reference a specific row within a
GtkTreeModel. These iterators are used internally by models, which means that you should
never directly alter the content of a tree iterator.

You have already seen multiple instances of GtkTreeIter, from which you can discern that
tree iterators are used in a similar way to GtkTextIter. Tree iterators are used for manipulation
of tree models. Tree paths, however, are used to point to rows within a tree model in a way that
provides a human-readable interface. Tree row references can be used to make sure that tree
paths adjust where they point throughout changes of a tree model.

GTK+ provides a number of built-in functions to perform operations on the tree iterators.
Typically, iterators are used to add rows to a model, set the content of a row, and retrieve the
content of amodel. In Listings 8-1 and 8-2, tree iterators were used to add rows to GtkListStore
and GtkTreeStore models and then set the initial content of each row.

GtkTreeModel provides a number of gtk_tree model iter *() functions, which can be
used to move iterators and retrieve information about them. For example, to move to the
next iterator position, you could use gtk_tree model iter next(), which returns TRUE if the
action was successful. A full list of available functions can be found in the GtkTreeModel API
documentation.

It is easy to convert between tree iterators and tree paths with the use of gtk tree model
get path() andgtk tree model get iter().The tree path oriterator must be valid for either of
these functions to work correctly. Listing 8-4 gives a short example of how to convert between
GtkTreeIter and GtkTreePath.

Listing 8-4. Converting Between Paths and Iterators

path = gtk tree model get path (model, &iter);
gtk _tree model get iter (model, &iter, path);
gtk tree path free (path);

The first function in Listing 8-4, gtk_tree model get path() converts a valid tree iterator
into a tree path. That path is then sent to gtk_tree model get iter(), which convertsitbackinto
an iterator. Notice that the second function accepts three parameters, because the tree iterator
must be treated as a pointer.

One problem presented by GtkTreeIter is that the iterator is not guaranteed to exist after
amodel is edited. This is not true in all cases, and you can use gtk_tree model get flags() to
check the GTK_TREE_MODEL_ITERS PERSIST flag, which is turned on by default for GtkListStore
and GtkTreeStore. If this flag is set, the tree iterator will always be valid as long as the row exists.

GtkTreeModelFlags gtk tree model get flags (GtkTreeModel *model);

Even if the iterator is set to persist, it is not a good idea to store tree iterator objects, since
they are used internally by tree models. Instead, you should use tree row references to keep
track of rows over time, since references will not become invalidated when the tree model
changes.

281

282

CHAPTER 8 THE TREE VIEW WIDGET

Adding Rows and Handling Selections

Both of the examples that you have been given up to this point define the tree model during
startup. The content does not change after it is initially set. In this section, the Grocery List
application will be expanded to allow the user to add and remove products. Before the example
is introduced, you will learn how to handle single and multiple selections.

Single Selections

Selection information is held for each tree view by a GtkTreeSelection object. You can retrieve
this object with gtk tree view get selection().AGtkTreeSelection object will automatically
be created for you for every GtkTreeView, so there is never a need to create your own tree
selection.

Caution GtkTreeSelection provides one signal, changed, which is emitted when the selection has
changed. You should be careful when using this signal, because it is not always reliable. It can be emitted
when no changes occur by the user selecting a row that is already selected. Therefore, it is best to use the
signals provided by GtkTreeView for selection handling, which can be found in Appendix B.

Tree views support multiple types of selections. You can change the selection type with
gtk tree selection_set mode().Selection types are defined by the GtkSelectionMode enumer-
ation, which includes the following values:

e GTK_SELECTION NONE: The user will be prohibited from selecting any rows.

e GTK SELECTION SINGLE: The user may select up to one row, though it is possible that no row
will be selected. By default, tree selections are initialized with GTK_SELECTION SINGLE.

e GTK_SELECTION BROWSE: The user will be able to select exactly one row. In some rare
cases, there may not be a selected row. This option actually prohibits the user from
deselecting a row except when the selection is moved to another row.

e GTK _SELECTION MULTIPLE: The user may select any number of rows. The user will be able
to use the Ctrl and Shift keys to select additional elements or ranges of elements.

If you have defined the selection type as GTK_SELECTION SINGLE or GTK SELECTION BROWSE,
you can be sure that only one row will be selected. For tree views with one selection, you can
use gtk_tree selection get selected() to retrieve the selected row.

gboolean gtk tree selection get selected (GtkTreeSelection *selection,
GtkTreeModel **model,
GtkTreelter *iter);

CHAPTER 8 THE TREE VIEW WIDGET 283

The gtk_tree selection get selected() function can be used to retrieve the tree model
associated with the GtkTreeSelection object and a tree iterator pointing to the selected row.
TRUE is returned if the model and iterator were successfully set. This function will not work with
a selection mode of GTK_SELECTION MULTIPLE!

If no row has been selected, the tree iterator will be set to NULL, and FALSE will be returned
from the function. Therefore, gtk _tree selection get selected() can also beused as a test to
check whether or not there is a selected row.

Multiple Selections

If your tree selection allows multiple rows to be selected (GTK_SELECTION MULTIPLE), you have
two options for handling selections, calling a function for every row or retrieving all of the
selected rows as a GList. Your first option is to call a function for every selected row with

gtk tree selection selected foreach().

gtk tree selection selected foreach (selection, foreach func, NULL);

This function allows you to call foreach_func() for every selected row, passing an optional
gpointer data parameter. In the preceding example, NULL was passed to the function. The func-
tion must be of the type GtkTreeSelectionForeachFunc, an example of which can be viewed in
Listing 8-5. The following GtkTreeSelectionForeachFunc retrieves the product string and prints
it to the screen.

Listing 8-5. Selected For-Each Function

static gboolean

foreach func (GtkTreeModel *model,
GtkTreePath *path,
GtkTreelter *iter,
gpointer data)

{

gchar *text;

gtk tree model get (model, iter, PRODUCT, &text, -1);
g print ("Selected Product: %s\n", text);
g free (text);

}

Note You should not modify the tree model or selection from within a GtkTreeSelectionForeachFunc
implementation! GTK+ will give critical errors to the user if you do so, because invalid tree paths and iterators
may result.

284

CHAPTER 8 THE TREE VIEW WIDGET

One problem with using tree selection foreach functions is that you are not able to manip-
ulate the selection from within the function. To remedy this problem, a better solu-
tion would be to use gtk _tree selection get selected rows(), which returns aGList of
GtkTreePath objects, each pointing to a selected row.

GList* gtk tree selection get selected rows (GtkTreeSelection *selection,
GtkTreeModel **model);

You can then perform some operation on each row within the list. However, you need to
be careful. If you need to edit the tree model within the GList foreach function, you will want
to first convert all of the tree paths to tree row references, so they will continue to be valid
throughout the duration of your actions.

If you want to loop through all of the rows manually, you are also able to use
gtk tree selection count selected rows(), which will return the number of rows that
are currently selected. After you are finished with the list, you need to make sure to iterate
through it and free all of the tree paths before freeing the list itself.

Adding New Rows

Now that you have been introduced to selections, it is time to add the ability to add new prod-
ucts to the list. Much of the application has been excluded from the following three listings,
because it is the same as Listing 8-2.

The only difference in the main() function in this example in comparison to the pre-
vious Grocery List application is visible in Figure 8-7, which shows that GTK_STOCK_ADD and
GTK_STOCK_REMOVE buttons were added along the bottom of the tree view. Also, the selection
mode was changed to allow the user to select multiple rows at a time.

- CGrocery List = 0O X
Buy |Count|Product
¥ TRUE 4 Cleaning Supplies
TRUE 1 Paper Towels
TRUE 3 Toilet Paper
¥ TRUE 7 Food
TRUE 2 Rroad
W =rdaopoduct [BY
FALSE] (moe—————
TRUE 1 Category: Cleaning Supplies ['l
FALSE 3 || Product: IShampoo
TRUE 4 || Quantity: i B
Buy the Product
"= Add
— "= Add | ¥ Cancel

Figure 8-7. Editing an item in the grocery list

CHAPTER 8 THE TREE VIEW WIDGET

Listing 8-6 is the implementation of the callback function that will be run when the user
clicks on the Add button. It presents the user with a GtkDialog that asks the user to choose a
category, enter a product name and quantity of products to buy, and select whether or not to
purchase the product.

If all of the fields are valid, the row is added under the chosen category. Also, if the user
specified that the product should be purchased, the quantity is added to the total quantity of
the category.

Listing 8-6. Adding a New Product (selections.c)

static void
add product (GtkButton *add,
GtkTreeView *treeview)
{
GtkWidget *dialog, *table, *combobox, *entry, *spin, *check;
GtkTreelter iter, child;
GtkTreePath *path;
GtkTreeModel *model;
const gchar *product;
gchar *category, *name;
gint quantity, i = 0;
gboolean buy;

/* Create a dialog that will be used to create a new product. */

dialog = gtk dialog new with buttons ("Add a Product", NULL,
GTK_DIALOG_MODAL,
GTK_STOCK_ADD, GTK_RESPONSE_OK,
GTK_STOCK_CANCEL, GTK RESPONSE CANCEL,
NULL);

/* Create widgets that will be packed into the dialog. */
combobox = gtk combo box new text ();

entry = gtk entry new ();

spin = gtk spin button new with range (0, 100, 1);

check = gtk check button new with mnemonic (" Buy the Product");
gtk spin button set digits (GTK _SPIN BUTTON (spin), 0);

/* Add all of the categories to the combo box. */
while (1list[i].product != NULL)
{
if (list[i].product type == PRODUCT CATEGORY)
gtk _combo _box_append text (GTK COMBO BOX (combobox), list[i].product);
i++;

}

285

286 CHAPTER 8 THE TREE VIEW WIDGET

table = gtk table new (4, 2, FALSE);

gtk table set row spacings (GTK TABLE (table), 5);

gtk table set col spacings (GTK TABLE (table), 5);

gtk container set border width (GTK_CONTAINER (table), 5);

/* Pack the table that will hold the dialog widgets. */

gtk table attach (GTK TABLE (table), gtk label new ("Category:"), o, 1, 0, 1,
GTK_SHRINK | GTK FILL, GTK_SHRINK | GTK FILL, 0, 0);

gtk table attach (GTK TABLE (table), combobox, 1, 2, 0, 1, GTK_EXPAND | GTK FILL,
GTK_SHRINK | GTK FILL, 0, 0);

gtk _table attach (GTK TABLE (table), gtk label new ("Product:"), o, 1, 1, 2,
GTK_SHRINK | GTK FILL, GTK_SHRINK | GTK FILL, 0, 0);

gtk table attach (GTK TABLE (table), entry, 1, 2, 1, 2, GTK EXPAND | GTK FILL,
GTK_SHRINK | GTK FILL, 0, 0);

gtk table attach (GTK TABLE (table), gtk label