Windows portability for

GNOME software

Tor Lillqvist

tml@iki.fi, tml@novell.com

February 27, 2006

mailto:tml@iki.fi

Why port GNOME software to N
Windows?

 “Because it's there”. It's an interesting challenge
e Some people want it

* Might make Windows users interested in running
such apps on the real thing instead

© Novell Inc

N

General

* Many applications written for GNOME can be built
and run on Windows

* Some simple portability rules must be followed

e Some applications it just wouldn't make sense to
port though, even if possible

* |gnore Win9x, please

I ———
Compiler and tools: MinGW

e "Minimalist GNU for Windows”, but that's a bit
misleading

* MinGW = gcc + binutils + reverse engineered
headers for the Win32 API and Microsoft C library

» gdb port a bit buggy, but usable

e MSYS = POSIX shell and utilities like make, awk,
sed, m4 and Perl needed to run auto® and configure
scripts, and as interactive shell

... - - ..rBGHhE :::R-z
Not MSVC?

e Can not use Microsoft's compiler because of deep
technical issues in how ORBIt2 and IDL-compiler
-compiled code imports variables from DLLSs.

* When linking to libORBIt2, or IDL-compiler
generated code, must the GNU linker with its

--enable-auto-import and
--enable-runtime-pseudo-reloc switches

* |ssue with C runtimes: Only MSVC6 supports the
bundled C runtime msvcrt.dll

© Novell Inc

C library N

e C library: The bundled msvcrt.dll. C89 + a few
POSIXish additions

e open() (but don't use, see File name character set),
read(), write(), dup()

* File descriptors (the small numbers returned by
open() and fileno()) are implemented in the C library.
They are not known by the kernel

o <dirent.h> (opendir() etc) is a MinGW extension, but
don't use, use GDir instead (see File name character
set)

C library, continued

wchar _tis 16 bits (one UTF-16 "word”)

all functions that take string arguments have wide
character string counterparts: _wfopen(), _wstat()
etc

wide character string functions wcslen(), wcschr(),
wcescpy() etc

multi-byte character (system codepage) string
functions _mbslen(), _mbschr(), _mbscpy() etc

ovell Inc

C library, continued 2

setlocale(LC_ALL, ™) does not look at any LC_* or
LANG environment variables

setlocale() uses "English_United States.1252" -style
locale names

GTK+ and GLib do look at LC _ALL, LC CTYPE and
LANG

To get the process's locale like on Unix, call
g_win32_getlocale(). Returns a "sv_FI” style string

ovell Inc

C library, continued 3

e Text file normally have CRLF line endings, but just
LF works, too

* Open files in binary mode in general.

g fopen(filename, “rb”)

#ifndef O BINARY
#define O BINARY 0
#endif

g open(filename, O RDONLY|O BINARY, 0)

© Novell Inc

... - - ..rBGHhE :::R-z
GLib

* Always use GLib functionality if available
* Prefer g file test() to stat() or access()

e g_mkdir_with _parents()

e g _get file contents()

e GmappedFile

e GDir

e UTF-8 collation functions

* Do add GLib feature requests to bugzilla

N

e —
POSIX functionality

e No fork()
* No link(), Istat(), symlink(), realpath()
e No fsync()

* exec() exists, but just spawns a child and exits once
the child has finished

... - - ..rBGHhE :::R-z
Win32 API

Documented online at msdn.microsoft.com

Also documented in the freely downloadable
Platform SDK, much quicker to read locally

Huge number of functions

Parallel APIs for system codepage ("TANSI”) and
wide character strings: GetUserNameA() vs.
GetUserName\W()

Most of the wide character API not implemented on
Win9x

Usually very few, if any, Win32 API calls needed

ovell Inc

e
Threading issues

Don't call GTK functions from several threads

Unlike the X11 protocol, the Win32 windowing and
graphics API is thread-aware

Windows knows what thread created a window, and
messages (“events”) for that window are delivered to
that thread's event queue, etc

This all means horrible breakage if you create
window or do windowing API calls randomly from
different threads

ovell Inc

I ———
pthread API

A Free POSIX thread implementation available from
SourceWare: pthreads-win32

A lightweight and efficient wrapper around the native
thread API. Works fine

Standard POSIX thread API

Portability: pthread t is a struct! One cannot
compare pthread_t values directly. No special
"NULL" pthread _t value. (Ditto on HP-UX.)

Use pthread equal() to compare pthread_t values
Preferrably, use GThread instead of pthreads

ovell Inc

File name character set

File system uses Unicode (UTF-16)

Each machine has a fixed "system codepage”: a
single- or variable-length (double-byte) character set

Single-byte codepages: CP1252 etc. For European,
Middle East languages, Thai, etc

Double-byte codepages: In East Asia

It's quite possible to have file names on a machine
that can't be represented in the system codepage.
Occurs in East Asia, and for Western Europeans
who exchange documents with Greece, Russia, etc

ovell Inc

N

e
File name character set, continued

N

e All file name APIs in the C library have two versions:
* normal one (fopen) uses system codepage,
* the wide character one (_wfopen) uses wchar _t

e But, forget all the above, just use UTF-8 and GLib
e GLib and GTK+ APIs use UTF-8

e gstdio wrappers for UTF-8 pathnames: g_open(),
_fopen(), g_dir_*(), g_stat() etc

17

e
File name character set, continued 2

e |llegal characters in file names: < > | * 2
e Case insensitivity: Hard if you want 100% emulation
of what the system would do:

e Each NTFS volume has a case-mapping table that maps
single wide characters to single upper case equivalents

* Cases like 3 ~ SS or precomposed ~ composing diacritic
sequences not handled

e Just don't bother

© Novell Inc

N

File name character set, continued 3

Other libraries like libxml2 and gettext don't expect
UTF-8 pathnames

Need to pass them system codepage filenames

~win32_locale filename from utf8() should work in
most cases for existing files. It looks up the short
(8.3) form of the name which always is in ASCI|

8.3 name generation might be off on a volume

g_locale from_utf8() only if representable in system
codepage

ovell Inc

N

I —————
Pathname manipulation

N

e Always use Glib functionality:
* g_path _get basename(), g_path _get dirname()
e g_build_filename()
e g _path_is_absolute(), g_path_skip root()
* G IS DIR_SEPARATOR()
e Search paths (PATH,

BONOBO ACTIVATION PATH etc) use semicolon
separator (G_. SEARCHPATH_SEPARATOR)

... - - ..rBGHhE :::R-z
file: URIs

Don't confuse URIs and file pathnames
file:///X:/some/where/foo.bar
file:////server/share/dir/sub/f.ext
Don't just prefix a filename with “£ile://”
Don't just strip offa “£ile: / /" prefix

Use g_filename_to uri(), g filename_from_uri()

A relative pathname is not a URI. There is no such
URI as file: foo.bar Just use the filename for

relative links

ovell Inc

00|
Socket API

#include <winsock2.h>

For IPv6 and misc other additional stuff:
#include <ws2tcpip.h>

Sockets are not file descriptors. Sockets and fds
even overlap! The same number can be both a
socket and fd

Cannot read(), write(), close() sockets. Those are C
library functions. C library knows nothing about
sockets

Use recv(), send(), closesocket(), ioctlsocket()

ovell Inc

Socket API, continued N

e Can select() only on sockets

e Functions return SOCKET_ ERROR on failure, but
that is -1, so just checking for <0 like on Unix works

e error code after socket API calls not set in errno!
errno is in the C library. Use WSAGetLastError() and
WSAE* codes

e No UNIX domain sockets

23

e
Socket API, continued 2

» Best to use simple wrapper macros to hide the

differences
#ifndef G _OS WIN32
define SOCKET ERROR CODE () errno
define SOCKET CLOSE (fd) close(£fd)
define SOCKET ERROR IS EINPROGRESS () (errno==EINPROGRESS)
define SOCKET ERROR IS EINTR() (errno==EINTR)
#else
define SOCKET ERROR CODE () WSAGetLastError ()
define SOCKET CLOSE (fd) closesocket (£d)
define SOCKET ERROR IS EINPROGRESS () \
(WSAGetLastError () ==WSAEWOULDBLOCK)
define SOCKET ERROR IS EINTR() O /* No WSAEINTR errors */
#endif

© Novell Inc

Socket API, continued 3 N

 \Would be best if the Unix/Winsock differences were
wrapped by a library and its headers

* There are several more or less generic networking
libraries, but unfortunately, none is ideal: GNet,
libsoup, linc2 (in ORBIt2), ...

* Use g_io_channel win32 new_socket()

* Win32 implementation of watches on GIOChannels
for sockets changed radically in 2.8

* g_io_add_watch()ed sockets automatically become
non-blocking!

I ———
Spawning processes

e Use g spawn_*() API instead of
pipe()/fork()/dup()/exec() acrobatics

* Internally C library uses CreateProcess() which
passes a command line, not an argument vector

e C library startup code reconstructs an argument
vector from command line

e Quoting funkiness: g_spawn_* tries its best, but if
possible avoid passing hairy arguments with spaces,
backslashes etc

GUI and console apps

An executable (EXE) is either GUI or console. This
s just a flag in the header

Console apps always run with a console window,
either the one started from (“Command Prompt”), or
open one automatically if started from Explorer or
the Start Menu

stdin/out/err normally attached to this console
window unless redirected

GUI apps normally have stdin/out/err pointing
nowhere, and no way to print to the console window
the were started from (if any). Redirect to a file or
pipe to see printf output

ovell Inc

DLLs and -no-undefined

DLLs (and EXEs) can not have undefined symbols

Always use -no-undefined when building shared
ibraries with libtool

Do use DLLs whenever you use shared libraries on
_iNuX

Don't build static libraries unnecessarily. DLLs work
fine and are very normal in Windows

No separate LD LIBRARY_ PATH. PATH is used to
search DLLs, too

ovell Inc

I —————
N

DLLs and -no-undefined, continued

e Evolution has a complex mess of even circularily
dependent shared libs

* The solution was to use separately built dummy
“bootstrap” import libraries as stand-ins for import

libraries for DLLs not yet built

© Novell Inc

Relocatability

Windows software should be installable by end-user
In any location

One can't assume anything about pathnames on
the end-user machine

Software might be installed on a server in a UNC
path that doesn't even have a drive letter

Machine might not have a C: drive

Pathnames might contain spaces or random
Unicode characters

ovell Inc

Relocatability, continued

DLLs and EXEs can look up their location at run-
time

Lots of examples of this in GNOME libs, e-d-s and
evo

Macros like FOOBAR GLADEDIR,
FOOBAR LOCALEDIR typically re-#defined in a
header as function calls for Win32

Paths to files needed at run-time then constructed at
run-time

ovell Inc

Relocatability, continued 2

In a DLL: DIlIMain() is called when the DLL is
attached to a process. Saves the DLL handle

When constructing a pathname at run-time, the
location of the DLL is looked up using its handle and
the pathname is constructed

Assume normal DLLs are in prefix/bin where prefix
is the end-user installation prefix

Strongly advice end-users never to copy DLLs
around as an attempt to fix problems

Never install anything in the system32 folder

ovell Inc

GNOME platform and desktop N
libraries

* All those required by Evolution have been ported
 Seem to work OK to the extent required by Evo
 GnomeVfs: just basic functionality

 ORBIt2: no Unix domain sockets

© Novell Inc

00|
Case: Evolution

N
e Port took 7—9 months
» Half of the effort spent on porting the dependencies
e Auvailable from ftp.gnome.org
* No installer generally available yet

* All Win32 changes in CVS and GNOME 2.13 etc
tarballs

Novell.

