
February 27, 2006

Windows portability for
GNOME software

Tor Lillqvist

tml@iki.fi, tml@novell.com

mailto:tml@iki.fi

© Novell Inc

2

Why port GNOME software to
Windows?
● “Because it's there”. It's an interesting challenge
● Some people want it
● Might make Windows users interested in running

such apps on the real thing instead

© Novell Inc

3

General

● Many applications written for GNOME can be built
and run on Windows

● Some simple portability rules must be followed
● Some applications it just wouldn't make sense to

port though, even if possible
● Ignore Win9x, please

© Novell Inc

4

Compiler and tools: MinGW

● ”Minimalist GNU for Windows”, but that's a bit
misleading

● MinGW = gcc + binutils + reverse engineered
headers for the Win32 API and Microsoft C library

● gdb port a bit buggy, but usable
● MSYS = POSIX shell and utilities like make, awk,

sed, m4 and Perl needed to run auto* and configure
scripts, and as interactive shell

© Novell Inc

5

Not MSVC?

● Can not use Microsoft's compiler because of deep
technical issues in how ORBit2 and IDL-compiler
-compiled code imports variables from DLLs.

● When linking to libORBit2, or IDL-compiler
generated code, must the GNU linker with its
enable-auto-import‑‑ and
enable runtime pseudo reloc‑‑ ‑ ‑ ‑ switches

● Issue with C runtimes: Only MSVC6 supports the
bundled C runtime msvcrt.dll

© Novell Inc

6

C library

● C library: The bundled msvcrt.dll. C89 + a few
POSIXish additions

● open() (but don't use, see File name character set),
read(), write(), dup()

● File descriptors (the small numbers returned by
open() and fileno()) are implemented in the C library.
They are not known by the kernel

● <dirent.h> (opendir() etc) is a MinGW extension, but
don't use, use GDir instead (see File name character
set)

© Novell Inc

7

C library, continued

● wchar_t is 16 bits (one UTF-16 ”word”)
● all functions that take string arguments have wide

character string counterparts: _wfopen(), _wstat()
etc

● wide character string functions wcslen(), wcschr(),
wcscpy() etc

● multi-byte character (system codepage) string
functions _mbslen(), _mbschr(), _mbscpy() etc

© Novell Inc

8

C library, continued 2

● setlocale(LC_ALL, ””) does not look at any LC_* or
LANG environment variables

● setlocale() uses ”English_United States.1252” -style
locale names

● GTK+ and GLib do look at LC_ALL, LC_CTYPE and
LANG

● To get the process's locale like on Unix, call
g_win32_getlocale(). Returns a ”sv_FI” style string

© Novell Inc

9

C library, continued 3

● Text file normally have CRLF line endings, but just
LF works, too

● Open files in binary mode in general.

g_fopen(filename, ”rb”)
#ifndef O_BINARY
#define O_BINARY 0
#endif
g_open(filename, O_RDONLY|O_BINARY, 0)

© Novell Inc

10

GLib

● Always use GLib functionality if available
● Prefer g_file_test() to stat() or access()
● g_mkdir_with_parents()
● g_get_file_contents()
● GmappedFile
● GDir
● UTF-8 collation functions
● Do add GLib feature requests to bugzilla

© Novell Inc

11

POSIX functionality

● No fork()
● No link(), lstat(), symlink(), realpath()
● No fsync()
● exec() exists, but just spawns a child and exits once

the child has finished

© Novell Inc

12

Win32 API

● Documented online at msdn.microsoft.com
● Also documented in the freely downloadable

Platform SDK, much quicker to read locally
● Huge number of functions
● Parallel APIs for system codepage (”ANSI”) and

wide character strings: GetUserNameA() vs.
GetUserNameW()

● Most of the wide character API not implemented on
Win9x

● Usually very few, if any, Win32 API calls needed

© Novell Inc

13

Threading issues

● Don't call GTK functions from several threads
● Unlike the X11 protocol, the Win32 windowing and

graphics API is thread-aware
● Windows knows what thread created a window, and

messages (“events”) for that window are delivered to
that thread's event queue, etc

● This all means horrible breakage if you create
window or do windowing API calls randomly from
different threads

© Novell Inc

14

pthread API

● A Free POSIX thread implementation available from
SourceWare: pthreads-win32

● A lightweight and efficient wrapper around the native
thread API. Works fine

● Standard POSIX thread API
● Portability: pthread_t is a struct! One cannot

compare pthread_t values directly. No special
”NULL” pthread_t value. (Ditto on HP-UX.)

● Use pthread_equal() to compare pthread_t values
● Preferrably, use GThread instead of pthreads

© Novell Inc

15

File name character set

● File system uses Unicode (UTF-16)
● Each machine has a fixed ”system codepage”: a

single- or variable-length (double-byte) character set
● Single-byte codepages: CP1252 etc. For European,

Middle East languages, Thai, etc
● Double-byte codepages: In East Asia
● It's quite possible to have file names on a machine

that can't be represented in the system codepage.
Occurs in East Asia, and for Western Europeans
who exchange documents with Greece, Russia, etc

© Novell Inc

16

File name character set, continued

● All file name APIs in the C library have two versions:
● normal one (fopen) uses system codepage,
● the wide character one (_wfopen) uses wchar_t

● But, forget all the above, just use UTF-8 and GLib
● GLib and GTK+ APIs use UTF-8
● gstdio wrappers for UTF-8 pathnames: g_open(),

g_fopen(), g_dir_*(), g_stat() etc

© Novell Inc

17

File name character set, continued 2

● Illegal characters in file names: < > | * ? :
● Case insensitivity: Hard if you want 100% emulation

of what the system would do:
● Each NTFS volume has a case-mapping table that maps

single wide characters to single upper case equivalents
● Cases like ß ~ SS or precomposed ~ composing diacritic

sequences not handled
● Just don't bother

© Novell Inc

18

File name character set, continued 3

● Other libraries like libxml2 and gettext don't expect
UTF-8 pathnames

● Need to pass them system codepage filenames
● g_win32_locale_filename_from_utf8() should work in

most cases for existing files. It looks up the short
(8.3) form of the name which always is in ASCII

● 8.3 name generation might be off on a volume
● g_locale_from_utf8() only if representable in system

codepage

© Novell Inc

19

Pathname manipulation

● Always use Glib functionality:
● g_path_get_basename(), g_path_get_dirname()
● g_build_filename()
● g_path_is_absolute(), g_path_skip_root()
● G_IS_DIR_SEPARATOR()

● Search paths (PATH,
BONOBO_ACTIVATION_PATH etc) use semicolon
separator (G_SEARCHPATH_SEPARATOR)

© Novell Inc

20

file: URIs

● Don't confuse URIs and file pathnames
● file:///X:/some/where/foo.bar
● file:////server/share/dir/sub/f.ext
● Don't just prefix a filename with ”file://”
● Don't just strip off a ”file://” prefix
● Use g_filename_to_uri(), g_filename_from_uri()
● A relative pathname is not a URI. There is no such

URI as file:foo.bar. Just use the filename for
relative links

© Novell Inc

21

Socket API

● #include <winsock2.h>
● For IPv6 and misc other additional stuff:

 #include <ws2tcpip.h>
● Sockets are not file descriptors. Sockets and fds

even overlap! The same number can be both a
socket and fd

● Cannot read(), write(), close() sockets. Those are C
library functions. C library knows nothing about
sockets

● Use recv(), send(), closesocket(), ioctlsocket()

© Novell Inc

22

Socket API, continued

● Can select() only on sockets
● Functions return SOCKET_ERROR on failure, but

that is -1, so just checking for <0 like on Unix works
● error code after socket API calls not set in errno!

errno is in the C library. Use WSAGetLastError() and
WSAE* codes

● No UNIX domain sockets

© Novell Inc

23

Socket API, continued 2

● Best to use simple wrapper macros to hide the
differences

#ifndef G_OS_WIN32
define SOCKET_ERROR_CODE() errno
define SOCKET_CLOSE(fd) close(fd)
define SOCKET_ERROR_IS_EINPROGRESS() (errno==EINPROGRESS)
define SOCKET_ERROR_IS_EINTR() (errno==EINTR)
#else
define SOCKET_ERROR_CODE() WSAGetLastError()
define SOCKET_CLOSE(fd) closesocket(fd)
define SOCKET_ERROR_IS_EINPROGRESS() \
 (WSAGetLastError()==WSAEWOULDBLOCK)
define SOCKET_ERROR_IS_EINTR() 0 /* No WSAEINTR errors */
#endif

© Novell Inc

24

Socket API, continued 3

● Would be best if the Unix/Winsock differences were
wrapped by a library and its headers

● There are several more or less generic networking
libraries, but unfortunately, none is ideal: GNet,
libsoup, linc2 (in ORBit2), ...

● Use g_io_channel_win32_new_socket()
● Win32 implementation of watches on GIOChannels

for sockets changed radically in 2.8
● g_io_add_watch()ed sockets automatically become

non-blocking!

© Novell Inc

25

Spawning processes

● Use g_spawn_*() API instead of
pipe()/fork()/dup()/exec() acrobatics

● Internally C library uses CreateProcess() which
passes a command line, not an argument vector

● C library startup code reconstructs an argument
vector from command line

● Quoting funkiness: g_spawn_* tries its best, but if
possible avoid passing hairy arguments with spaces,
backslashes etc

© Novell Inc

26

GUI and console apps

● An executable (EXE) is either GUI or console. This
is just a flag in the header

● Console apps always run with a console window,
either the one started from (“Command Prompt”), or
open one automatically if started from Explorer or
the Start Menu

● stdin/out/err normally attached to this console
window unless redirected

● GUI apps normally have stdin/out/err pointing
nowhere, and no way to print to the console window
the were started from (if any). Redirect to a file or
pipe to see printf output

© Novell Inc

27

DLLs and -no-undefined

● DLLs (and EXEs) can not have undefined symbols
● Always use -no-undefined when building shared

libraries with libtool
● Do use DLLs whenever you use shared libraries on

Linux
● Don't build static libraries unnecessarily. DLLs work

fine and are very normal in Windows
● No separate LD_LIBRARY_PATH. PATH is used to

search DLLs, too

© Novell Inc

28

DLLs and -no-undefined, continued

● Evolution has a complex mess of even circularily
dependent shared libs

● The solution was to use separately built dummy
“bootstrap” import libraries as stand-ins for import
libraries for DLLs not yet built

© Novell Inc

29

Relocatability

● Windows software should be installable by end-user
in any location

● One can't assume anything about pathnames on
the end-user machine

● Software might be installed on a server in a UNC
path that doesn't even have a drive letter

● Machine might not have a C: drive
● Pathnames might contain spaces or random

Unicode characters

© Novell Inc

30

Relocatability, continued

● DLLs and EXEs can look up their location at run-
time

● Lots of examples of this in GNOME libs, e-d-s and
evo

● Macros like FOOBAR_GLADEDIR,
FOOBAR_LOCALEDIR typically re-#defined in a
header as function calls for Win32

● Paths to files needed at run-time then constructed at
run-time

© Novell Inc

31

Relocatability, continued 2

● In a DLL: DllMain() is called when the DLL is
attached to a process. Saves the DLL handle

● When constructing a pathname at run-time, the
location of the DLL is looked up using its handle and
the pathname is constructed

● Assume normal DLLs are in prefix/bin where prefix
is the end-user installation prefix

● Strongly advice end-users never to copy DLLs
around as an attempt to fix problems

● Never install anything in the system32 folder

© Novell Inc

32

GNOME platform and desktop
libraries
● All those required by Evolution have been ported
● Seem to work OK to the extent required by Evo
● GnomeVfs: just basic functionality
● ORBit2: no Unix domain sockets

© Novell Inc

33

Case: Evolution

● Port took 7—9 months
● Half of the effort spent on porting the dependencies
● Available from ftp.gnome.org
● No installer generally available yet
● All Win32 changes in CVS and GNOME 2.13 etc

tarballs

