

Java Concurrency Guidelines

Fred Long
Dhruv Mohindra
Robert Seacord
David Svoboda

May 2010

TECHNICAL REPORT
CMU/SEI-2010-TR-015
ESC-TR-2010-015

CERT Program
Unlimited distribution subject to the copyright.

http://www.cert.org/

http://www.cert.org/

This report was prepared for the

SEI Administrative Agent
ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally
funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2010 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED
TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for
internal use is granted, provided the copyright and “No Warranty” statements are included with all reproductions
and derivative works.

External use. This document may be reproduced in its entirety, without modification, and freely distributed in
written or electronic form without requesting formal permission. Permission is required for any other external
and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 252.227-7013.

mailto:permission@sei.cmu.edu�

CMU/SEI-2010-TR-015 | i

Table of Contents

Acknowledgments xi

About This Report xiii

Abstract xv

1 Introduction 1
1.1.1 The volatile Keyword 4
1.1.2 Synchronization 5
1.1.3 The java.util.concurrent Classes 6

2 Visibility and Atomicity (VNA) Guidelines 9
2.1 VNA00-J. Ensure visibility when accessing shared primitive variables 9

2.1.1 Noncompliant Code Example (Non-Volatile Flag) 9
2.1.2 Compliant Solution (volatile) 10
2.1.3 Compliant Solution (java.util.concurrent.atomic.AtomicBoolean) 10
2.1.4 Compliant Solution (synchronized) 11
2.1.5 Exceptions 12
2.1.6 Risk Assessment 12
2.1.7 References 12

2.2 VNA01-J. Ensure visibility of shared references to immutable objects 13
2.2.1 Noncompliant Code Example 13
2.2.2 Compliant Solution (Synchronization) 14
2.2.3 Compliant Solution (volatile) 14
2.2.4 Compliant Solution (java.util.concurrent Utilities) 15
2.2.5 Risk Assessment 15
2.2.6 References 15

2.3 VNA02-J. Ensure that compound operations on shared variables are atomic 16
2.3.1 Noncompliant Code Example (Logical Negation) 16
2.3.2 Noncompliant Code Example (Bitwise Negation) 17
2.3.3 Noncompliant Code Example (volatile) 17
2.3.4 Compliant Solution (Synchronization) 18
2.3.5 Compliant Solution (Volatile-Read, Synchronized-Write) 18
2.3.6 Compliant Solution (Read-Write Lock) 19
2.3.7 Compliant Solution (AtomicBoolean) 20
2.3.8 Noncompliant Code Example (Addition of Primitives) 20
2.3.9 Noncompliant Code Example (Addition of Atomic Integers) 21
2.3.10 Compliant Solution (Addition) 21
2.3.11 Risk Assessment 22
2.3.12 References 22

2.4 VNA03-J. Do not assume that a group of calls to independently atomic methods is
atomic 23
2.4.1 Noncompliant Code Example (AtomicReference) 23
2.4.2 Compliant Solution (Method Synchronization) 24
2.4.3 Noncompliant Code Example (synchronizedList) 24
2.4.4 Compliant Solution (Synchronized Block) 25
2.4.5 Noncompliant Code Example (synchronizedMap) 25
2.4.6 Compliant Solution (Synchronization) 26
2.4.7 Compliant Solution (ConcurrentHashMap) 26
2.4.8 Risk Assessment 28

CMU/SEI-2010-TR-015 | ii

2.4.9 References 28
2.5 VNA04-J. Ensure that calls to chained methods are atomic 29

2.5.1 Noncompliant Code Example 29
2.5.2 Compliant Solution 30
2.5.3 Risk Assessment 32
2.5.4 References 32

2.6 VNA05-J. Ensure atomicity when reading and writing 64-bit values 33
2.6.1 Noncompliant Code Example 33
2.6.2 Compliant Solution (Volatile) 33
2.6.3 Exceptions 34
2.6.4 Risk Assessment 34
2.6.5 References 34

2.7 VNA06-J. Do not assume that declaring an object reference volatile guarantees visibility
of its members 35
2.7.1 Noncompliant Code Example (Arrays) 35
2.7.2 Compliant Solution (AtomicIntegerArray) 36
2.7.3 Compliant Solution (Synchronization) 36
2.7.4 Noncompliant Code Example (Mutable Object) 36
2.7.5 Noncompliant Code Example (Volatile-Read, Synchronized-Write) 37
2.7.6 Compliant Solution (Synchronization) 38
2.7.7 Noncompliant Code Example (Mutable Sub-Object) 39
2.7.8 Compliant Solution (Instance Per Call/Defensive Copying) 39
2.7.9 Compliant Solution (Synchronization) 39
2.7.10 Compliant Solution (ThreadLocal Storage) 40
2.7.11 Risk Assessment 40
2.7.12 References 40

3 Lock (LCK) Guidelines 41
3.1 LCK00-J. Use private final lock objects to synchronize classes that may interact with

untrusted code 41
3.1.1 Noncompliant Code Example (Method Synchronization) 42
3.1.2 Noncompliant Code Example (Public Non-Final Lock Object) 42
3.1.3 Noncompliant Code Example (Publicly Accessible Non-Final Lock Object) 43
3.1.4 Noncompliant Code Example (Public Final Lock Object) 43
3.1.5 Compliant Solution (Private Final Lock Object) 44
3.1.6 Noncompliant Code Example (Static) 44
3.1.7 Compliant Solution (Static) 45
3.1.8 Exceptions 46
3.1.9 Risk Assessment 46
3.1.10 References 46

3.2 LCK01-J. Do not synchronize on objects that may be reused 47
3.2.1 Noncompliant Code Example (Boolean Lock Object) 47
3.2.2 Noncompliant Code Example (Boxed Primitive) 47
3.2.3 Compliant Solution (Integer) 48
3.2.4 Noncompliant Code Example (Interned String Object) 48
3.2.5 Noncompliant Code Example (String Literal) 49
3.2.6 Compliant Solution (String Instance) 49
3.2.7 Compliant Solution (Private Final Lock Object) 49
3.2.8 Risk Assessment 50
3.2.9 References 50

3.3 LCK02-J. Do not synchronize on the class object returned by getClass() 51
3.3.1 Noncompliant Code Example (getClass() Lock Object) 51
3.3.2 Compliant Solution (Class Name Qualification) 52
3.3.3 Compliant Solution (Class.forName()) 52

CMU/SEI-2010-TR-015 | iii

3.3.4 Noncompliant Code Example (getClass() Lock Object, Inner Class) 53
3.3.5 Compliant Solution (Class Name Qualification) 54
3.3.6 Risk Assessment 54
3.3.7 References 54

3.4 LCK03-J. Do not synchronize on the intrinsic locks of high-level concurrency objects 55
3.4.1 Noncompliant Code Example (ReentrantLock Lock Object) 55
3.4.2 Compliant Solution (lock() and unlock()) 55
3.4.3 Risk Assessment 56
3.4.4 References 56

3.5 LCK04-J. Do not synchronize on a collection view if the backing collection is accessible 57
3.5.1 Noncompliant Code Example (Collection View) 57
3.5.2 Compliant Solution (Collection Lock Object) 58
3.5.3 Risk Assessment 58
3.5.4 References 58

3.6 LCK05-J. Synchronize access to static fields that may be modified by untrusted code 59
3.6.1 Noncompliant Code Example 59
3.6.2 Compliant Solution 60
3.6.3 Risk Assessment 60
3.6.4 References 60

3.7 LCK06-J. Do not use an instance lock to protect shared static data 61
3.7.1 Noncompliant Code Example (Non-Static Lock Object for Static Data) 61
3.7.2 Noncompliant Code Example (Method Synchronization for Static Data) 62
3.7.3 Compliant Solution (Static Lock Object) 62
3.7.4 Risk Assessment 62
3.7.5 References 62

3.8 LCK07-J. Avoid deadlock by requesting and releasing locks in the same order 63
3.8.1 Noncompliant Code Example (Different Lock Orders) 63
3.8.2 Compliant Solution (Private Static Final Lock Object) 64
3.8.3 Compliant Solution (Ordered Locks) 65
3.8.4 Compliant Solution (ReentrantLock) 67
3.8.5 Noncompliant Code Example (Different Lock Orders, Recursive) 68
3.8.6 Compliant Solution 71
3.8.7 Risk Assessment 72
3.8.8 References 72

3.9 LCK08-J. Ensure actively held locks are released on exceptional conditions 73
3.9.1 Noncompliant Code Example (Checked Exception) 73
3.9.2 Compliant Solution (finally Block) 73
3.9.3 Compliant Solution (Execute-Around Idiom) 74
3.9.4 Noncompliant Code Example (Unchecked Exception) 75
3.9.5 Compliant Solution (finally Block) 76
3.9.6 Risk Assessment 76
3.9.7 References 76

3.10 LCK09-J. Do not perform operations that may block while holding a lock 77
3.10.1 Noncompliant Code Example (Deferring a Thread) 77
3.10.2 Compliant Solution (Intrinsic Lock) 77
3.10.3 Noncompliant Code Example (Network I/O) 78
3.10.4 Compliant Solution 79
3.10.5 Exceptions 80
3.10.6 Risk Assessment 80
3.10.7 References 80

3.11 LCK10-J. Do not use incorrect forms of the double-checked locking idiom 81
3.11.1 Noncompliant Code Example 82
3.11.2 Compliant Solution (Volatile) 82

CMU/SEI-2010-TR-015 | iv

3.11.3 Compliant Solution (Static Initialization) 83
3.11.4 Compliant Solution (Initialize-On-Demand, Holder Class Idiom) 83
3.11.5 Compliant Solution (ThreadLocal Storage) 84
3.11.6 Compliant Solution (Immutable) 84
3.11.7 Exceptions 85
3.11.8 Risk Assessment 85
3.11.9 References 85

3.12 LCK11-J. Avoid client-side locking when using classes that do not commit to their locking
strategy 86
3.12.1 Noncompliant Code Example (Intrinsic Lock) 86
3.12.2 Compliant Solution (Private Final Lock Object) 88
3.12.3 Noncompliant Code Example (Class Extension and Accessible Member Lock) 88
3.12.4 Compliant Solution (Composition) 89
3.12.5 Risk Assessment 90
3.12.6 References 90

4 Thread APIs (THI) Guidelines 91
4.1 THI00-J. Do not assume that the sleep(), yield(), or getState() methods provide

synchronization semantics 91
4.1.1 Noncompliant Code Example (sleep()) 91
4.1.2 Compliant Solution (Volatile Flag) 92
4.1.3 Compliant Solution (Thread.interrupt()) 92
4.1.4 Noncompliant Code Example (getState()) 92
4.1.5 Compliant Solution 94
4.1.6 Risk Assessment 94
4.1.7 References 94

4.2 THI01-J. Do not invoke ThreadGroup methods 95
4.2.1 Noncompliant Code Example 95
4.2.2 Compliant Solution 97
4.2.3 Risk Assessment 98
4.2.4 References 98

4.3 THI02-J. Do not invoke Thread.run() 99
4.3.1 Noncompliant Code Example 99
4.3.2 Compliant Solution 99
4.3.3 Exceptions 100
4.3.4 Risk Assessment 100
4.3.5 References 100

4.4 THI03-J. Always invoke wait() and await() methods inside a loop 101
4.4.1 Noncompliant Code Example 102
4.4.2 Compliant Solution 103
4.4.3 Risk Assessment 103
4.4.4 References 103

4.5 THI04-J. Notify all waiting threads instead of a single thread 104
4.5.1 Noncompliant Code Example (notify()) 105
4.5.2 Compliant Solution (notifyAll()) 106
4.5.3 Noncompliant Code Example (Condition interface) 106
4.5.4 Compliant Solution (signalAll()) 107
4.5.5 Compliant Solution (Unique Condition Per Thread) 108
4.5.6 Risk Assessment 109
4.5.7 References 109

4.6 THI05-J. Do not use Thread.stop() to terminate threads 110
4.6.1 Noncompliant Code Example (Deprecated Thread.stop()) 110
4.6.2 Compliant Solution (Volatile Flag) 111
4.6.3 Compliant Solution (Interruptible) 112

CMU/SEI-2010-TR-015 | v

4.6.4 Compliant Solution (Runtime Permission stopThread) 113
4.6.5 Risk Assessment 113
4.6.6 References 113

4.7 THI06-J. Ensure that threads and tasks performing blocking operations can be
terminated 114
4.7.1 Noncompliant Code Example (Blocking I/O, Volatile Flag) 114
4.7.2 Noncompliant Code Example (Blocking I/O, Interruptible) 115
4.7.3 Compliant Solution (Close Socket Connection) 115
4.7.4 Compliant Solution (Interruptible Channel) 116
4.7.5 Noncompliant Code Example (Database Connection) 117
4.7.6 Compliant Solution (Statement.cancel()) 118
4.7.7 Risk Assessment 120
4.7.8 References 120

5 Thread Pools (TPS) Guidelines 121
5.1 TPS00-J. Use thread pools to enable graceful degradation of service during traffic

bursts 121
5.1.1 Noncompliant Code Example 121
5.1.2 Compliant Solution 122
5.1.3 Risk Assessment 124
5.1.4 References 124

5.2 TPS01-J. Do not execute interdependent tasks in a bounded thread pool 125
5.2.1 Noncompliant Code Example (Interdependent Subtasks) 125
5.2.2 Compliant Solution (No Interdependent Tasks) 127
5.2.3 Noncompliant Code Example (Subtasks) 128
5.2.4 Compliant Solution (CallerRunsPolicy) 130
5.2.5 Risk Assessment 131
5.2.6 References 131

5.3 TPS02-J. Ensure that tasks submitted to a thread pool are interruptible 132
5.3.1 Noncompliant Code Example (Shutting Down Thread Pools) 132
5.3.2 Compliant Solution (Submit Interruptible Tasks) 133
5.3.3 Exceptions 134
5.3.4 Risk Assessment 134
5.3.5 References 134

5.4 TPS03-J. Ensure that tasks executing in a thread pool do not fail silently 135
5.4.1 Noncompliant Code Example (Abnormal Task Termination) 135
5.4.2 Compliant Solution (ThreadPoolExecutor Hooks) 135
5.4.3 Compliant Solution (Uncaught Exception Handler) 136
5.4.4 Compliant Solution (Future<V> and submit()) 138
5.4.5 Exceptions 138
5.4.6 Risk Assessment 138
5.4.7 References 138

5.5 TPS04-J. Ensure ThreadLocal variables are reinitialized when using thread pools 139
5.5.1 Noncompliant Code Example 139
5.5.2 Noncompliant Code Example (Increase Thread Pool Size) 141
5.5.3 Compliant Solution (try-finally Clause) 141
5.5.4 Compliant Solution (beforeExecute()) 142
5.5.5 Exceptions 143
5.5.6 Risk Assessment 143
5.5.7 References 143

6 Thread-Safety Miscellaneous (TSM) Guidelines 145
6.1 TSM00-J. Do not override thread-safe methods with methods that are not thread-safe 145

6.1.1 Noncompliant Code Example (Synchronized Method) 145

CMU/SEI-2010-TR-015 | vi

6.1.2 Compliant Solution (Synchronized Method) 146
6.1.3 Compliant Solution (Private Final Lock Object) 146
6.1.4 Noncompliant Code Example (Private Lock) 147
6.1.5 Compliant Solution (Private Lock) 147
6.1.6 Risk Assessment 148
6.1.7 References 148

6.2 TSM01-J. Do not let the “this” reference escape during object construction 149
6.2.1 Noncompliant Code Example (Publish Before Initialization) 150
6.2.2 Noncompliant Code Example (Non-Volatile Public Static Field) 150
6.2.3 Compliant Solution (Volatile Field and Publish After Initialization) 151
6.2.4 Compliant Solution (Public Static Factory Method) 151
6.2.5 Noncompliant Code Example (Handlers) 152
6.2.6 Compliant Solution 153
6.2.7 Noncompliant Code Example (Inner Class) 154
6.2.8 Compliant Solution 154
6.2.9 Noncompliant Code Example (Thread) 155
6.2.10 Compliant Solution (Thread) 155
6.2.11 Exceptions 156
6.2.12 Risk Assessment 156
6.2.13 References 156

6.3 TSM02-J. Do not use background threads during class initialization 157
6.3.1 Noncompliant Code Example (Background Thread) 157
6.3.2 Compliant Solution (static Initializer, No Background Threads) 158
6.3.3 Compliant Solution (ThreadLocal) 159
6.3.4 Exceptions 160
6.3.5 Risk Assessment 161
6.3.6 References 161

6.4 TSM03-J. Do not publish partially initialized objects 162
6.4.1 Noncompliant Code Example 162
6.4.2 Compliant Solution (Synchronization) 163
6.4.3 Compliant Solution (Final Field) 164
6.4.4 Compliant Solution (Final Field and Thread-Safe Composition) 164
6.4.5 Compliant Solution (Static Initialization) 165
6.4.6 Compliant Solution (Immutable Object - Final Fields, Volatile Reference) 166
6.4.7 Compliant Solution (Mutable Thread-Safe Object, Volatile Reference) 166
6.4.8 Exceptions 168
6.4.9 Risk Assessment 168
6.4.10 References 168

6.5 TSM04-J. Document thread-safety and use annotations where applicable 169
6.5.1 Obtaining Concurrency Annotations 169
6.5.2 Documenting Intended Thread-Safety 169
6.5.3 Documenting Locking Policies 171
6.5.4 Construction of Mutable Objects 173
6.5.5 Documenting Thread-Confinement Policies 173
6.5.6 Documenting Wait-Notify Protocols 174
6.5.7 Risk Assessment 174
6.5.8 References 174

Appendix Definitions 175

Bibliography 181

CMU/SEI-2010-TR-015 | vii

List of Figures

Figure 1: Guideline Priorities xiv

Figure 2: Modern, Shared-Memory, Multiprocessor Architecture 1

Figure 3: Example Threads and Their Executing Statements 4

Figure 4: How Backing Collection Works in the Collection View, Noncompliant Code Example 57

CMU/SEI-2010-TR-015 | viii

CMU/SEI-2010-TR-015 | ix

List of Tables

Table 1: Example Thread Assignment #1 2

Table 2: Example #1 of Assignments in Order of Execution 2

Table 3: Example #2 of Assignments in Order of Execution 2

Table 4: Possible Reorderings Between Volatile and Non-Volatile Variables 5

Table 5: Example Thread Assignment #2 5

Table 6: Execution Order #1 5

Table 7: Execution Order #2 5

CMU/SEI-2010-TR-015 | x

CMU/SEI-2010-TR-015 | xi

Acknowledgments

We want to thank everyone who contributed their time and effort to the development of these
guidelines, including Siddarth Adukia, Lokesh Agarwal, Ron Bandes, Kalpana Chatnani, Jose
Sandoval Chaverri, Tim Halloran (SureLogic), Thomas Hawtin, Fei He, Ryan Hofler, Sam
Kaplan, Georgios Katsis, Lothar Kimmeringer, Bastian Marquis, Michael Kross, Christopher
Leonavicius, Bocong Liu, Efstathios Mertikas, David Neville, Justin Pincar, Michael Rosenman,
Eric Schwelm, Tamir Sen, Philip Shirey, Jagadish Shrinivasavadhani, Robin Steiger, John Tru-
elove, Theti Tsiampali, Tim Wilson, and Weam Abu Zaki.

We also want to thank the following people for their careful reviews of both this technical report
and the wiki on which it is based: Hans Boehm, Joseph Bowbeer, Klaus Havelund, David
Holmes, Bart Jacobs, Niklas Matthies, Bill Michell, Philip Miller, Nick Morrott, Attila Mravik,
Tim Peierls, Alex Snaps, Kenneth A. Williams.

We also thank our editors: Pamela Curtis and Pennie Walters.

This research was supported by the U.S. Department of Defense (DoD) and the U.S. Department
of Homeland Security (DHS) National Cyber Security Division (NCSD).

CMU/SEI-2010-TR-015 | xii

CMU/SEI-2010-TR-015 | xiii

About This Report

The Secure Coding Standard Described in This Report

The CERT Oracle Secure Coding Standard for Java is the result of a collaboration between the
CERT

www.securecoding.cert.org

 Program at the Carnegie Mellon Software Engineering Institute and Oracle. It is being
developed as a community effort on the CERT secure coding wiki located at

. This report contains a subset of those guidelines that deal with con-
currency and may undergo further revision before being published as part of the CERT Oracle
Secure Coding Standard for Java. The concurrency guidelines are divided into the following cate-
gories:
• visibility and atomicity (VNA)

• locks (LCK)

• thread APIs (THI)

• thread pools (TPS)

• thread-safety miscellaneous (TSM)

We welcome your feedback about these guidelines. To comment on the wiki, simply go to it and
sign up for a wiki account.

Guideline Priorities

Each guideline has a priority assigned using a metric based on Failure Mode, Effects, and Critical-
ity Analysis (FMECA) [IEC 2006]. A value for each of the following is assigned to each guide-
line:
• severity – If the guideline is ignored, how serious are the consequences?

1 = low (denial-of-service attack, abnormal termination)
2 = medium (data integrity violation, unintentional information disclosure)
3 = high (run arbitrary code, privilege escalation)

• likelihood – If the guideline is ignored and that results in the introduction of a flaw, how like-
ly is it for that flaw to lead to an exploitable vulnerability?
1 = unlikely
2 = probable
3 = likely

• remediation cost – How expensive is it to comply with the guideline?
1 = high (manual detection and correction)
2 = medium (automatic detection and manual correction)
3 = low (automatic detection and correction)

The three values are then multiplied for each guideline. The resulting value, which will be be-
tween 1 and 27, provides a measure that can be used to prioritize the application of the guidelines.

 CERT and Carnegie Mellon are registered in the U.S. Patent and Trademark Office by Carnegie Mellon Univer-

sity.

http://www.securecoding.cert.org/�
https://www.securecoding.cert.org/confluence/pages/createpage.action?spaceKey=java&title=AA.+C+References&linkCreation=true&fromPageId=34669103�

CMU/SEI-2010-TR-015 | xiv

Guidelines with a priority in the range of 1-4 are level-3 guidelines; those in the range of 6-9 are
level-2; and those in the range of 12-27 are level-1. As a result, it is possible to claim level-1, lev-
el-2, or complete compliance (level-3) with a standard by implementing all guidelines in a level,
as shown in Figure 1.

Figure 1: Guideline Priorities

This metric is designed primarily for remediation projects. New development efforts are expected
to conform to the entire standard.

CMU/SEI-2010-TR-015 | xv

Abstract

An essential element of secure coding in the Java programming language is well-documented and
enforceable coding standards. Coding standards encourage programmers to follow a uniform set
of guidelines determined by the requirements of the project and organization, rather than by the
programmer’s familiarity or preference. Once established, these standards can be used as a metric
to evaluate source code (using manual or automated processes).

The CERT Oracle Secure Coding Standard for Java provides guidelines for secure coding in the
Java programming language. The goal of these guidelines is to eliminate insecure coding practices
and undefined behaviors that can lead to exploitable vulnerabilities. Applying this standard will
lead to higher quality systems that are robust and more resistant to attack.

This report documents the portion of those Java guidelines that are related to concurrency.

CMU/SEI-2010-TR-015 | xvi

Introduction

CMU/SEI-2010-TR-015 | 1

1 Introduction

Memory that can be shared between threads is called shared memory or heap memory. The term
variable as used in this technical report refers to both fields and array elements [Gosling 2005].
Variables that are shared between threads are referred to as shared variables. All instance fields,
static fields, and array elements are shared variables allocated in heap memory. Local variables,
formal method parameters, and exception-handler parameters are never shared between threads
and are not affected by the memory model.

In a modern, shared-memory, multiprocessor architecture, each processor has one or more levels
of cache that are periodically reconciled with main memory as shown in Figure 2.

Figure 2: Modern, Shared-Memory, Multiprocessor Architecture

The visibility of writes to shared variables can be problematic because the value of a shared vari-
able may be cached and not written to main memory immediately. Consequently, another thread
may read a stale value of the variable.

A further concern is that concurrent executions of code are typically interleaved, and statements
may be reordered by the compiler or runtime system to optimize performance. This results in ex-
ecution orders that are not immediately obvious when the source code is examined. Failure to ac-
count for possible reorderings is a common source of data races.

Consider the following example in which a and b are (shared) global variables or instance fields,
but r1 and r2 are local variables that are not accessible to other threads.

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-JLS05�
https://www.securecoding.cert.org/confluence/display/java/BB.+Definitions#BB.Definitions-memorymodel�
https://www.securecoding.cert.org/confluence/display/java/BB.+Definitions#BB.Definitions-dataraces�

Introduction

CMU/SEI-2010-TR-015 | 2

Initially, let a = 0 and b = 0, as shown in Table 1:

Table 1: Example Thread Assignment #1

Thread 1 Thread 2

a = 10; b = 20;

r1 = b; r2 = a;

Because the two assignments in Thread 1 (a = 10; and r1 = b;) are unrelated, the compiler
or runtime system is free to reorder them. Similarly in Thread 2, the statements may be reordered
freely. Although it may seem counterintuitive, the Java Memory Model (JMM) allows a read to
see the value of a write that occurs later in the execution order.

A possible execution order showing actual assignments is shown in Table 2.

Table 2: Example #1 of Assignments in Order of Execution

Execution

Order (Time)

Thread# Assignment Assigned Value Notes

1 t1 a = 10; 10

2 t2 b = 20; 20

3 t1 r1 = b; 0 Reads initial value of b, that is 0

4 t2 r2 = a; 0 Reads initial value of a, that is 0

In this ordering, r1 and r2 read the original values of variables b and a, respectively, even
though they are expected to see the updated values, 20 and 10. Another possible execution order
showing actual assignments is shown in Table 3.

Table 3: Example #2 of Assignments in Order of Execution

Execution

Order (Time)

Thread# Assignment Assigned Value Notes

1 t1 r1 = b; 20 Reads later value (in Step 4) of

write, that is 20

2 t2 r2 = a; 10 Reads later value (in Step 3) of

write, that is 10

3 t1 a = 10; 10

4 t2 b = 20; 20

In this ordering, r1 and r2 read the values of a and b written from Steps 3 and 4, even before the
statements corresponding to these steps have executed.

Restricting the set of possible reorderings makes it easier to reason about the correctness of the
code.

Even if statements execute in the order of their appearance in a thread, caching can prevent the
latest values from being reflected in the main memory.

The Java Language Specification defines the JMM that provides certain guarantees to the Java
programmer. The JMM is specified in terms of actions, which include variable reads and writes;

Introduction

CMU/SEI-2010-TR-015 | 3

monitor locks and unlocks; and thread starts and joins. The JMM defines a partial ordering called
happens-before on all actions within the program. To guarantee that a thread executing action B
can see the results of action A, for example, a happens-before relationship must be defined such
that A happens-before B.

According to Section 17.4.5 “Happens-before Order” of the Java Language Specification [Gosl-
ing 2005]
1. An unlock on a monitor happens-before every subsequent lock on that monitor.
2. A write to a volatile field happens-before every subsequent read of that field.
3. A call to start() on a thread happens-before any actions in the started thread.
4. All actions in a thread happens-before any other thread successfully returns from a join() on

that thread.
5. The default initialization of any object happens-before any other actions (other than default-

writes) of a program.
6. A thread calling interrupt on another thread happens-before the interrupted thread detects

the interrupt.
7. The end of a constructor for an object happens-before the start of the finalizer for that ob-

ject.

If a happens-before relationship does not exist between two operations, the Java Virtual Machine
(JVM) is free to reorder them. A data race occurs when a variable is written to by at least one
thread and read by at least another thread, and the reads and writes are not ordered by a happens-
before relationship. A correctly synchronized program is one with no data races. The JMM guar-
antees sequential consistency for correctly synchronized programs. Sequential consistency means
that the result of any execution is the same as if the reads and writes by all threads on shared data
were executed in some sequential order and the operations of each individual thread appear in this
sequence in the order specified by its program [Tanenbaum 2002]—in other words
1. Take the read and write operations performed by each thread and put them in the order in

which the thread executes them (thread order).
2. Interleave the operations in some way allowed by the happens-before relationships to form

an execution order.
3. Read operations must return the most recently written data in the total program order for the

execution to be sequentially consistent.

If the program is sequentially consistent, all threads see the same total ordering of reads and
writes of shared variables.

The actual execution order of instructions and memory accesses can vary as long as
• the actions of the thread appear to that thread as if program order were followed

• all values read are allowed for by the memory model

These constraints allow the programmer to understand the semantics of the programs they write
and allow compiler writers and virtual machine implementers to perform various optimizations
[Arnold 2006].

https://www.securecoding.cert.org/confluence/display/java/BB.+Definitions#BB.Definitions-happensbeforeorder�
https://www.securecoding.cert.org/confluence/display/java/BB.+Definitions#BB.Definitions-datarace�
https://www.securecoding.cert.org/confluence/display/java/BB.+Definitions#BB.Definitions-programorder�
https://www.securecoding.cert.org/confluence/display/java/BB.+Definitions#BB.Definitions-programorder�

Introduction

CMU/SEI-2010-TR-015 | 4

Several concurrency primitives can help a programmer reason about the semantics of multi-
threaded programs.

1.1.1 The volatile Keyword

Declaring shared variables volatile ensures visibility and limits reordering of accesses. Volatile
accesses do not guarantee the atomicity of composite operations such as incrementing a variable.
Consequently, volatile is not applicable in cases where the atomicity of composite operations
must be guaranteed. (See guideline “VNA02-J. Ensure that compound operations on shared va-
riables are atomic” on page 16 for more information.)

Declaring variables volatile establishes a happens-before relationship such that a write to a vola-
tile variable is always seen by threads performing subsequent reads of the same variable. State-
ments that occur before the write to the volatile field also happens-before any reads of the volatile
field.

Consider two threads that are executing some statements as shown in Figure 3Figure 1.

Figure 3: Example Threads and Their Executing Statements

Thread 1 and Thread 2 have a happens-before relationship such that Thread 2 does not start before
Thread 1 finishes.

In this example, statement 3 writes to a volatile variable, and statement 4 (in Thread 2) reads the
same volatile variable. The read sees the most recent write (to the same variable v) from statement
3.

Volatile read and write operations cannot be reordered with respect to each other or to non-
volatile variables accesses. When Thread 2 reads the volatile variable, it sees the results of all the
writes occurring before the write to the volatile variable in Thread 1. Because of the relatively
strong guarantees of volatile read and write operations, the performance overhead is almost the
same as that of synchronization.

Introduction

CMU/SEI-2010-TR-015 | 5

In the previous example, there is no guarantee that statements 1 and 2 will be executed in the or-
der in which they appear in the program. They may be reordered freely by the compiler because
there is no happens-before relationship between these two statements.

The possible reorderings between volatile and non-volatile variables are summarized in Table 4.
Load and store operations are synonymous to read and write operations, respectively [Lea 2008].

Table 4: Possible Reorderings Between Volatile and Non-Volatile Variables

Can Reorder 2nd Operation

1st Operation Normal Load Normal Store Volatile Load Volatile Store

Normal load Yes Yes Yes No

Normal store Yes Yes Yes No

Volatile load No No No No

Volatile store Yes Yes No No

1.1.2 Synchronization

A correctly synchronized program is one whose sequentially consistent executions do not have
any data races. The example shown below uses a non-volatile variable x and a volatile variable y
and is not correctly synchronized.

Table 5: Example Thread Assignment #2

Thread 1 Thread 2

x = 1 r1 = y

y = 2 r2 = x

The two sequentially consistent execution orders of this example are shown in Table 6 and Table
7.

Table 6: Execution Order #1

Step (Time) Thread# Statement Comment

1 t1 x = 1 Write to non-volatile variable

2 t1 y = 2 Write to volatile variable

3 t2 r1 = y Read of volatile variable

4 t2 r2 = x Read of non-volatile variable

Table 7: Execution Order #2

Step (Time) Thread# Statement Comment

1 t2 r1 = y Read of volatile variable

2 t2 r2 = x Read of non-volatile variable

3 t1 x = 1 Write to non-volatile variable

4 t1 y = 2 Write to volatile variable

In the first case, a happens-before relationship exists between actions such that Steps 1 and 2 al-
ways occur before Steps 3 and 4. However, in the second case, no happens-before relationship
exists between any of the steps. Consequently, because there is a sequentially consistent execution
that has no happens-before relationship, this example contains data races.

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Lea08�

Introduction

CMU/SEI-2010-TR-015 | 6

Correct visibility guarantees that multiple threads accessing shared data can view each others’
results, but does not establish the order of when each thread reads or writes the data. Correct syn-
chronization guarantees that threads access data in a proper order. For example, the code shown
below ensures that there is only one sequentially consistent execution order that performs all the
actions of Thread 1 before Thread 2.

class Assign {
 public synchronized void doSomething() {
 // Perform Thread 1 actions
 x = 1;
 y = 2;
 // Perform Thread 2 actions
 r1 = y;
 r2 = x;
 }
}

When using synchronization, there is no need to declare the variable y volatile. Synchronization
involves acquiring a lock, performing operations, and then releasing the lock. In the above exam-
ple, the doSomething() method acquires the intrinsic lock of the class object (Assign). This
example can also be written to use block synchronization:

class Assign {
 public void doSomething() {
 synchronized (this) {
 // Perform Thread 1 actions
 x = 1;
 y = 2;
 // Perform Thread 2 actions
 r1 = y;
 r2 = x;
 }
 }
}

The intrinsic lock used in both examples is the same.

1.1.3 The java.util.concurrent Classes

1.1.3.1 Atomic Classes

Volatile variables are useful for guaranteeing visibility. However, they are insufficient for ensur-
ing atomicity. Synchronization fills this gap but incurs overheads of context switching and fre-
quently causes lock contention. The atomic classes of package
java.util.concurrent.atomic provide a mechanism for reducing contention in most prac-
tical environments while at the same time ensuring atomicity. According to Goetz and colleagues
[Goetz 2006]

With low to moderate contention, atomics offer better scalability; with high contention, locks
offer better contention avoidance.

The atomic classes consist of implementations that exploit the design of modern processors by
exposing commonly needed functionality to the programmer. For example, the
AtomicInteger.incrementAndGet() method can be used for atomically incrementing a
variable. The compare-and-swap instruction(s) provided by modern processors offer more fine-
grained control and can be used directly by invoking high-level methods such as

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Goetz06�

Introduction

CMU/SEI-2010-TR-015 | 7

java.util.concurrent.atomic.Atomic*.compareAndSet() where the asterisk can
be, for example, an Integer, Long, or Boolean.

1.1.3.2 The Executor Framework

The java.util.concurrent package provides the Executor framework that offers a me-
chanism for executing tasks concurrently. A task is a logical unit of work encapsulated by a class
that implements Runnable or Callable. The Executor framework allows task submission to
be decoupled from low-level scheduling and thread management details. It provides the thread
pool mechanism that allows a system to degrade gracefully when presented with more requests
than the system can handle simultaneously.

The Executor interface is the core interface of the framework and is extended by the
ExecutorService interface that provides facilities for thread pool termination and obtaining
return values of tasks (Futures). The ExecutorService interface is further extended by the
ScheduledExecutorService interface that provides a way to run tasks periodically or after
some delay. The Executors class provides several factory and utility methods that are preconfi-
gured with commonly used configurations of Executor, ExecutorService, and other related
interfaces. For example, the Executors.newFixedThreadPool() method returns a fixed
size thread pool with an upper limit on the number of concurrently executing tasks and maintains
an unbounded queue for holding tasks while the thread pool is full. The base (actual) implementa-
tion of the thread pool is provided by the ThreadPoolExecutor class. This class can be instan-
tiated to customize the task execution policy.

The java.util.concurrent utilities are preferred over traditional synchronization primitives
such as synchronization and volatile variables because the java.util.concurrent utilities
abstract the underlying details, provide a cleaner and less error-prone API, are easier to scale, and
can be enforced using policies.

1.1.3.3 Explicit Locking

The java.util.concurrent package provides the ReentrantLock class that has additional
features not provided by intrinsic locks. For example, the ReentrantLock.tryLock() me-
thod does not block waiting if another thread is already holding the lock. Acquiring and releasing
a ReentrantLock has the same semantics as acquiring and releasing an intrinsic lock.

Introduction

CMU/SEI-2010-TR-015 | 8

VNA00-J

CMU/SEI-2010-TR-015 | 9

2 Visibility and Atomicity (VNA) Guidelines

2.1 VNA00-J. Ensure visibility when accessing shared primitive variables

Reading a shared primitive variable in one thread may not yield the value of the most recent write
to the variable from another thread. Consequently, the thread may observe a stale value of the
shared variable. To ensure the visibility of the most recent update, either the variable must be de-
clared volatile or the reads and writes must be synchronized.

Declaring a shared variable volatile guarantees visibility in a thread-safe manner only when both
of the following conditions are met:
• A write to a variable does not depend on its current value.

• A write to a variable does not depend on the result of any non-atomic compound operations
involving reads and writes of other variables. (For more information, see guideline “VNA02-
J. Ensure that compound operations on shared variables are atomic” on page 16.)

The first condition can be relaxed when you can be sure that only one thread will ever update the
value of the variable [Goetz 2006]. However, code that relies on a single-thread confinement is
error-prone and difficult to maintain. This behavior is permissible under this guideline but not
recommended.

Synchronizing the code makes it easier to reason about its behavior and is frequently more secure
than simply using the volatile keyword. However, synchronization has a somewhat higher
performance overhead and can result in thread contention and deadlocks when used excessively.

Declaring a variable volatile or correctly synchronizing the code guarantees that 64-bit primitive
long and double variables are accessed atomically. (For more information on sharing those
variables among multiple threads, see guideline “VNA05-J. Ensure atomicity when reading and
writing 64-bit values” on page 33.)

2.1.1 Noncompliant Code Example (Non-Volatile Flag)

This noncompliant code example uses a shutdown() method to set a non-volatile done flag
that is checked in the run() method.

final class ControlledStop implements Runnable {

 private boolean done = false;

 @Override public void run() {

 while (!done) {

 try {

 // ...

 Thread.currentThread().sleep(1000); // Do something

 } catch(InterruptedException ie) {

 Thread.currentThread().interrupt(); // Reset interrupted status

 }

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Goetz06�

VNA00-J

CMU/SEI-2010-TR-015 | 10

 }

 }

 public void shutdown() {

 done = true;

 }

}

If one thread invokes the shutdown() method to set the flag, a second thread might not observe
that change. Consequently, the second thread may observe that done is still false and incorrectly
invoke the sleep() method. A compiler is allowed to optimize the code if it determines that the
value of done is never modified by the same thread, resulting in an infinite loop.

2.1.2 Compliant Solution (volatile)

In this compliant solution, the done flag is declared volatile to ensure that writes are visible to
other threads.

final class ControlledStop implements Runnable {

 private volatile boolean done = false;

 @Override public void run() {

 while (!done) {

 try {

 // ...

 Thread.currentThread().sleep(1000); // Do something

 } catch(InterruptedException ie) {

 Thread.currentThread().interrupt(); // Reset interrupted status

 }

 }

 }

 public void shutdown() {

 done = true;

 }

}

2.1.3 Compliant Solution (java.util.concurrent.atomic.AtomicBoolean)

In this compliant solution, the done flag is declared AtomicBoolean. Atomic types also guar-
antee that writes are visible to other threads.

final class ControlledStop implements Runnable {

 private final AtomicBoolean done = new AtomicBoolean(false);

 @Override public void run() {

 while (!done.get()) {

 try {

 // ...

 Thread.currentThread().sleep(1000); // Do something

VNA00-J

CMU/SEI-2010-TR-015 | 11

 } catch(InterruptedException ie) {

 Thread.currentThread().interrupt(); // Reset interrupted status

 }

 }

 }

 public void shutdown() {

 done.set(true);

 }

}

2.1.4 Compliant Solution (synchronized)

This compliant solution uses the intrinsic lock of the Class object to ensure that updates become
visible to other threads.

final class ControlledStop implements Runnable {

 private boolean done = false;

 @Override public void run() {

 while (!isDone()) {

 try {

 // ...

 Thread.currentThread().sleep(1000); // Do something

 } catch(InterruptedException ie) {

 Thread.currentThread().interrupt(); // Reset interrupted status

 }

 }

 }

 public synchronized boolean isDone() {

 return done;

 }

 public synchronized void shutdown() {

 done = true;

 }

}

While this is an acceptable compliant solution, intrinsic locks cause threads to block and may in-
troduce contention. On the other hand, volatile-qualified shared variables do not block. Excessive
synchronization can also make the program prone to deadlock.

Synchronization is a more secure alternative in situations where the volatile keyword or a
java.util.concurrent.atomic.Atomic* field is inappropriate, such as if a variable’s
new value depends on its current value. For more information, see guideline “VNA02-J. Ensure
that compound operations on shared variables are atomic” on page 16.

VNA00-J

CMU/SEI-2010-TR-015 | 12

Compliance with guideline “LCK00-J. Use private final lock objects to synchronize classes that
may interact with untrusted code” on page 41 can reduce the likelihood of misuse by ensuring that
untrusted callers cannot access the lock object.

2.1.5 Exceptions

VNA00-EX1: Class objects need not be made visible because they are created by the virtual
machine and their initialization always precedes any subsequent use.

2.1.6 Risk Assessment

Failing to ensure the visibility of a shared primitive variable may result in a thread observing a
stale value of the variable.

Guideline Severity Likelihood Remediation Cost Priority Level

VNA00-J medium probable medium P8 L2

2.1.7 References

[Arnold 2006] Section 14.10.3, “The Happens-Before Relationship”

[Bloch 2008] Item 66: “Synchronize access to shared mutable data”

[Gosling 2005] Chapter 17, Threads and Locks:

Section 17.4.5, “Happens-Before Order”

Section 17.4.3, “Programs and Program Order”

Section 17.4.8, “Executions and Causality Requirements”

[MITRE 2010] CWE ID 667, “Insufficient Locking”

CWE ID 413, “Insufficient Resource Locking”

CWE ID 567, “Unsynchronized Access to Shared Data”

http://java.sun.com/docs/books/jls/third_edition/html/memory.html�
http://cwe.mitre.org/data/definitions/667.html�
http://cwe.mitre.org/data/definitions/413.html�
http://cwe.mitre.org/data/definitions/567.html�

VNA01-J

CMU/SEI-2010-TR-015 | 13

2.2 VNA01-J. Ensure visibility of shared references to immutable objects

A common misconception is that shared references to immutable objects are visible across mul-
tiple threads as soon as they are updated. For example, a developer can mistakenly believe that a
class containing fields referring to only immutable objects is immutable and, consequently,
thread-safe.

Section 14.10.2, “Final Fields and Security” of Java Programming Language, Fourth Edition
states [Arnold 2006]

The problem is that, while the shared object is immutable, the reference used to access the
shared object is itself shared and often mutable. Consequently, a correctly synchronized
program must synchronize access to that shared reference, but often programs do not do
this, because programmers do not recognize the need to do it.

References to both immutable and mutable objects must be made visible to all the threads. Im-
mutable objects can be shared safely among multiple threads. However, mutable objects may not
be fully constructed when their references are made visible. Guideline “TSM03-J. Do not publish
partially initialized objects” on page 162 describes object construction and visibility issues specif-
ic to mutable objects.

2.2.1 Noncompliant Code Example

This noncompliant code example consists of the immutable Helper class:

// Immutable Helper

public final class Helper {

 private final int n;

 public Helper(int n) {

 this.n = n;

 }

 // ...

}

and a mutable Foo class:

final class Foo {

 private Helper helper;

 public Helper getHelper() {

 return helper;

 }

 public void setHelper(int num) {

 helper = new Helper(num);

 }

}

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-JPL06�

VNA01-J

CMU/SEI-2010-TR-015 | 14

The getHelper() method publishes the mutable helper field. Because the Helper class is
immutable, it cannot be changed after it is initialized. Furthermore, because Helper is immuta-
ble, it is always constructed properly before its reference is made visible in compliance with
guideline “TSM03-J. Do not publish partially initialized objects” on page 162. Unfortunately, a
separate thread could observe a stale reference in the helper field of the Foo class.

2.2.2 Compliant Solution (Synchronization)

This compliant solution synchronizes the methods of the Foo class to ensure that no thread sees a
stale Helper reference.

final class Foo {

 private Helper helper;

 public synchronized Helper getHelper() {

 return helper;

 }

 public synchronized void setHelper(int num) {

 helper = new Helper(num);

 }

}

The immutable Helper class remains unchanged.

2.2.3 Compliant Solution (volatile)

References to immutable member objects can be made visible by declaring them volatile.

final class Foo {

 private volatile Helper helper;

 public Helper getHelper() {

 return helper;

 }

 public void setHelper(int num) {

 helper = new Helper(num);

 }

}

The immutable Helper class remains unchanged.

https://www.securecoding.cert.org/confluence/display/java/BB.+Definitions#BB.Definitions-immutable�

VNA01-J

CMU/SEI-2010-TR-015 | 15

2.2.4 Compliant Solution (java.util.concurrent Utilities)

This compliant solution wraps the immutable Helper object within an AtomicReference
wrapper that can be updated atomically.

final class Foo {

 private final AtomicReference<Helper> helperRef =

 new AtomicReference<Helper>();

 public Helper getHelper() {

 return helperRef.get();

 }

 public void setHelper(int num) {

 helperRef.set(new Helper(num));

 }

}

The immutable Helper class remains unchanged.

2.2.5 Risk Assessment

The assumption that classes containing immutable objects are immutable is incorrect and can
cause serious thread-safety issues.

Guideline Severity Likelihood Remediation Cost Priority Level

VNA01-J low probable medium P4 L3

2.2.6 References

[Arnold 2006] Section 14.10.2, “Final Fields and Security”

[Goetz 2006] Section 3.4.2, “Example: Using Volatile to Publish Immutable Objects”

[Sun 2009b]

VNA02-J

CMU/SEI-2010-TR-015 | 16

2.3 VNA02-J. Ensure that compound operations on shared variables are atomic

Compound operations are operations that consist of more than one discrete operation. Expressions
that include postfix or prefix increment (++), postfix or prefix decrement (--), or compound
assignment operators always result in compound operations. Compound assignment expressions
use operators such as *=, /=, %=, +=, -=, <<=, >>=, >>>=, ^=, and |= [Gosling 2005].
Compound operations on shared variables must be performed atomically to prevent data races and
race conditions.

For information about the atomicity of a grouping of calls to independently atomic methods that
belong to thread-safe classes, see guideline “VNA03-J. Do not assume that a group of calls to in-
dependently atomic methods is atomic” on page 23.

The Java Language Specification also permits reads and writes of 64-bit values to be non-atomic.
For more information, see guideline “VNA05-J. Ensure atomicity when reading and writing 64-
bit values” on page 33.

2.3.1 Noncompliant Code Example (Logical Negation)

This noncompliant code example declares a shared boolean flag variable and provides a
toggle() method that negates the current value of flag.

final class Flag {

 private boolean flag = true;

 public void toggle() { // Unsafe

 flag = !flag;

 }

 public boolean getFlag() { // Unsafe

 return flag;

 }

}

Execution of this code may result in a data race because the value of flag is read, negated, and
written back.

https://www.securecoding.cert.org/confluence/display/java/BB.+Definitions#BB.Definitions-datarace�
https://www.securecoding.cert.org/confluence/display/java/BB.+Definitions#BB.Definitions-raceconditions�
https://www.securecoding.cert.org/confluence/display/java/BB.+Definitions#BB.Definitions-datarace�

VNA02-J

CMU/SEI-2010-TR-015 | 17

Consider, for example, two threads that call toggle(). The expected effect of toggling flag
twice is that it is restored to its original value. However, the following scenario leaves flag in the
incorrect state:

Time flag= Thread Action

1 true t1 reads the current value of flag, true, into a temporary variable

2 true t2 reads the current value of flag, (still) true, into a temporary variable

3 true t1 toggles the temporary variable to false

4 true t2 toggles the temporary variable to false

5 false t1 writes the temporary variable’s value to flag

6 false t2 writes the temporary variable’s value to flag

As a result, the effect of the call by t2 is not reflected in flag; the program behaves as if
toggle() was called only once, not twice.

2.3.2 Noncompliant Code Example (Bitwise Negation)

Similarly, the toggle() method can use the compound assignment operator ^= to negate the
current value of flag.

final class Flag {

 private boolean flag = true;

 public void toggle() { // Unsafe

 flag ^= true; // Same as flag = !flag;

 }

 public boolean getFlag() { // Unsafe

 return flag;

 }

}

This code is also not thread-safe. A data race exists because ^= is a non-atomic compound opera-
tion.

2.3.3 Noncompliant Code Example (volatile)

Declaring flag volatile does not help either:

final class Flag {

 private volatile boolean flag = true;

 public void toggle() { // Unsafe

 flag ^= true;

 }

 public boolean getFlag() { // Safe

VNA02-J

CMU/SEI-2010-TR-015 | 18

 return flag;

 }

}

This code remains unsuitable for multithreaded use because declaring a variable volatile does not
guarantee the atomicity of compound operations on it.

2.3.4 Compliant Solution (Synchronization)

This compliant solution declares both the toggle() and getFlag() methods as synchronized.

final class Flag {

 private boolean flag = true;

 public synchronized void toggle() {

 flag ^= true; // Same as flag = !flag;

 }

 public synchronized boolean getFlag() {

 return flag;

 }

}

This guards the reads and writes to the flag field with a lock on the instance, that is, this. This
compliant solution ensures that changes are visible to all the threads. Now, only two execution
orders are possible, one of which is shown below.

Time flag= Thread Action

1 true t1 reads the current value of flag, true, into a temporary variable

2 true t1 toggles the temporary variable to false

3 false t1 writes the temporary variable's value to flag

4 false t2 reads the current value of flag, false, into a temporary variable

5 false t2 toggles the temporary variable to true

6 true t2 writes the temporary variable's value to flag

The second execution order involves the same operations, but t2 starts and finishes before t1.

Compliance with guideline “LCK00-J. Use private final lock objects to synchronize classes that
may interact with untrusted code” on page 41 can reduce the likelihood of misuse by ensuring that
untrusted callers cannot access the lock object.

2.3.5 Compliant Solution (Volatile-Read, Synchronized-Write)

In this compliant solution, the getFlag() method is not synchronized, and flag is declared
volatile. This solution is compliant because the read of flag in the getFlag() method is an
atomic operation and the volatile qualification assures visibility. The toggle() method still re-
quires synchronization because it performs a non-atomic operation.

VNA02-J

CMU/SEI-2010-TR-015 | 19

final class Flag {

 private volatile boolean flag = true;

 public synchronized void toggle() {

 flag ^= true; // Same as flag = !flag;

 }

 public boolean getFlag() {

 return flag;

 }

}

This approach may not be used when a getter method performs operations other than just return-
ing the value of a volatile field without having to use any synchronization. Unless read perfor-
mance is critical, this technique may not offer significant advantages over synchronization [Goetz
2006].

Guideline “VNA06-J. Do not assume that declaring an object reference volatile guarantees visibil-
ity of its members” on page 35 also addresses the volatile-read, synchronized-write pattern.

2.3.6 Compliant Solution (Read-Write Lock)

This compliant solution uses a read-write lock to ensure atomicity and visibility.

final class Flag {

 private boolean flag = true;

 private final ReadWriteLock lock = new ReentrantReadWriteLock();

 private final Lock readLock = lock.readLock();

 private final Lock writeLock = lock.writeLock();

 public synchronized void toggle() {

 writeLock.lock();

 try {

 flag ^= true; // Same as flag = !flag;

 } finally {

 writeLock.unlock();

 }

 }

 public boolean getFlag() {

 readLock.lock();

 try {

 return flag;

 } finally {

 readLock.unlock();

 }

 }

}

VNA02-J

CMU/SEI-2010-TR-015 | 20

Read-write locks allow shared state to be accessed by multiple readers or a single writer but never
both. According to Goetz [Goetz 2006]

In practice, read-write locks can improve performance for frequently accessed read-mostly
data structures on multiprocessor systems; under other conditions they perform slightly
worse than exclusive locks due to their greater complexity.

Profiling the application can determine the suitability of read-write locks.

2.3.7 Compliant Solution (AtomicBoolean)

This compliant solution declares flag an AtomicBoolean type.

import java.util.concurrent.atomic.AtomicBoolean;

final class Flag {

 private AtomicBoolean flag = new AtomicBoolean(true);

 public void toggle() {

 boolean temp;

 do {

 temp = flag.get();

 } while (!flag.compareAndSet(temp, !temp));

 }

 public AtomicBoolean getFlag() {

 return flag;

 }

}

The flag variable is updated using the compareAndSet() method of the AtomicBoolean
class. All updates are visible to other threads.

2.3.8 Noncompliant Code Example (Addition of Primitives)

In this noncompliant code example, multiple threads can invoke the setValues() method to set
the a and b fields. Because this class does not test for integer overflow, a user of the Adder class
must ensure that the arguments to the setValues() method can be added without overflow.
(For more information, see guideline “INT00-J. Perform explicit range checking to ensure integer
operations do not overflow.1

”)

final class Adder {

 private int a;

 private int b;

 public int getSum() {

 return a + b;

 }

1 This guideline is described at https://www.securecoding.cert.org/confluence/display/java/.

https://www.securecoding.cert.org/confluence/x/gABhAQ�
https://www.securecoding.cert.org/confluence/x/gABhAQ�
https://www.securecoding.cert.org/confluence/display/java/

VNA02-J

CMU/SEI-2010-TR-015 | 21

 public void setValues(int a, int b) {

 this.a = a;

 this.b = b;

 }

}

The getSum() method contains a race condition. For example, if a and b currently have the val-
ues 0 and Integer.MAX_VALUE, respectively, and one thread calls getSum() while another
calls setValues(Integer.MAX_VALUE, 0), the getSum() method might return 0 or
Integer.MAX_VALUE, or it might overflow and wrap. Overflow will occur when the first thread
reads a and b after the second thread has set the value of a to Integer.MAX_VALUE, but before
it has set the value of b to 0.

Note that declaring the variables volatile does not resolve the issue because these compound oper-
ations involve reads and writes of multiple variables.

2.3.9 Noncompliant Code Example (Addition of Atomic Integers)

In this noncompliant code example, a and b are replaced with atomic integers.

final class Adder {

 private final AtomicInteger a = new AtomicInteger();

 private final AtomicInteger b = new AtomicInteger();

 public int getSum() {

 return a.get() + b.get();

 }

 public void setValues(int a, int b) {

 this.a.set(a);

 this.b.set(b);

 }

}

The simple replacement of the two int fields with atomic integers in this example does not elim-
inate the race condition because the compound operation a.get() + b.get() is still non-
atomic.

2.3.10 Compliant Solution (Addition)

This compliant solution synchronizes the setValues() and getSum() methods to ensure ato-
micity.

final class Adder {

 private int a;

 private int b;

 public synchronized int getSum() {

 return a + b;

VNA02-J

CMU/SEI-2010-TR-015 | 22

 }

 public synchronized void setValues(int a, int b) {

 this.a = a;

 this.b = b;

 }

}

Any operations within the synchronized methods are now atomic with respect to other synchro-
nized methods that lock on that object’s monitor (intrinsic lock). It is now possible, for example,
to add overflow checking to the synchronized getSum() method without introducing the possi-
bility of a race condition.

2.3.11 Risk Assessment

If operations on shared variables are non-atomic, unexpected results can be produced. For exam-
ple, information can be disclosed inadvertently because one user can receive information about
other users.

Guideline Severity Likelihood Remediation Cost Priority Level

VNA02-J medium probable medium P8 L2

2.3.12 References

[Bloch 2008] Item 66: Synchronize access to shared mutable data

[Goetz 2006] Section 2.3, “Locking”

[Gosling 2005] Chapter 17, “Threads and Locks”

Section 17.4.5, “Happens-Before Order”

Section 17.4.3, “Programs and Program Order”

Section 17.4.8, “Executions and Causality Requirements”

[Lea 2000a] Section 2.2.7, The Java Memory Model

Section 2.1.1.1, Objects and Locks

[MITRE 2010] CWE ID 667, “Insufficient Locking”

CWE ID 413, “Insufficient Resource Locking”

CWE ID 366, “Race Condition within a Thread”

CWE ID 567, “Unsynchronized Access to Shared Data”

[Sun 2009b] Class AtomicInteger

[Sun 2008a] Java Concurrency Tutorial

http://java.sun.com/docs/books/jls/third_edition/html/memory.html�
http://cwe.mitre.org/data/definitions/667.html�
http://cwe.mitre.org/data/definitions/413.html�
http://cwe.mitre.org/data/definitions/366.html�
http://cwe.mitre.org/data/definitions/567.html�
http://java.sun.com/docs/books/tutorial/essential/concurrency/index.html�

VNA03-J

CMU/SEI-2010-TR-015 | 23

2.4 VNA03-J. Do not assume that a group of calls to independently atomic
methods is atomic

A consistent locking policy guarantees that multiple threads cannot simultaneously access or
modify shared data. If two or more operations need to be performed as a single atomic operation,
a consistent locking policy must be implemented using either intrinsic synchronization or
java.util.concurrent utilities. In the absence of such a policy, the code is susceptible to
race conditions.

Given an invariant involving multiple objects, a programmer may incorrectly assume that indivi-
dually atomic operations require no additional locking. Similarly, programmers may incorrectly
assume that using a thread-safe Collection does not require explicit synchronization to pre-
serve an invariant that involves the collection’s elements. A thread-safe class can only guarantee
atomicity of its individual methods. A grouping of calls to such methods requires additional syn-
chronization.

Consider, for example, a scenario where the standard thread-safe API does not provide a single
method to both find a particular person’s record in a Hashtable and update the corresponding
payroll information. In such cases, the two method invocations must be performed atomically.

Enumerations and iterators also require explicit synchronization on the collection object (client-
side locking) or a private final lock object.

Compound operations on shared variables are also non-atomic. For more information, see guide-
line “VNA02-J. Ensure that compound operations on shared variables are atomic” on page 16.

Guideline “VNA04-J. Ensure that calls to chained methods are atomic” on page 29 describes a
specialized case of this guideline.

2.4.1 Noncompliant Code Example (AtomicReference)

This noncompliant code example wraps BigInteger objects within thread-safe
AtomicReference objects.

final class Adder {

 private final AtomicReference<BigInteger> first;

 private final AtomicReference<BigInteger> second;

 public Adder(BigInteger f, BigInteger s) {

 first = new AtomicReference<BigInteger>(f);

 second = new AtomicReference<BigInteger>(s);

 }

 public void update(BigInteger f, BigInteger s) { // Unsafe

 first.set(f);

 second.set(s);

 }

 public BigInteger add() { // Unsafe

VNA03-J

CMU/SEI-2010-TR-015 | 24

 return first.get().add(second.get());

 }

}

AtomicReference is an object reference that can be updated atomically. However, operations
that combine more than one atomic reference are non-atomic. In this noncompliant code example,
one thread may call update() while a second thread may call add(). This might cause the
add() method to add the new value of first to the old value of second, yielding an erroneous
result.

2.4.2 Compliant Solution (Method Synchronization)

This compliant solution declares the update() and add() methods synchronized to guarantee
atomicity.

final class Adder {

 // ...

 public synchronized void update(BigInteger f, BigInteger s){

 first.set(f);

 second.set(s);

 }

 public synchronized BigInteger add() {

 return first.get().add(second.get());

 }

}

2.4.3 Noncompliant Code Example (synchronizedList)

This noncompliant code example uses a java.util.ArrayList<E> collection, which is not
thread-safe. However, Collections.synchronizedList is used as a synchronization wrap-
per for ArrayList. An array, rather than an iterator, is used to iterate over ArrayList to avoid
a ConcurrentModificationException.

final class IPHolder {

 private final List<InetAddress> ips =

 Collections.synchronizedList(new ArrayList<InetAddress>());

 public void addAndPrintIPAddresses(InetAddress address) {

 ips.add(address);

 InetAddress[] addressCopy = (InetAddress[]) ips.toArray(new InetAddress[0]);

 // Iterate through array addressCopy ...

 }

}

Individually, the add() and toArray() collection methods are atomic. However, when they are
called in succession (for example, in the addAndPrintIPAddresses() method), there are no
guarantees that the combined operation is atomic. A race condition exists in the

VNA03-J

CMU/SEI-2010-TR-015 | 25

addAndPrintIPAddresses() method that allows one thread to add to the list and a second
thread to race in and modify the list before the first thread completes. Consequently, the
addressCopy array may contain more IP addresses than expected.

2.4.4 Compliant Solution (Synchronized Block)

The race condition can be eliminated by synchronizing on the underlying list’s lock. This com-
pliant solution encapsulates all references to the array list within synchronized blocks.

final class IPHolder {

 private final List<InetAddress> ips =

 Collections.synchronizedList(new ArrayList<InetAddress>());

 public void addAndPrintIPAddresses(InetAddress address) {

 synchronized (ips) {

 ips.add(address);

 InetAddress[] addressCopy = (InetAddress[]) ips.toArray(new InetAddress[0]);

 // Iterate through array addressCopy ...

 }

 }

}

This technique is also called client-side locking [Goetz 2006] because the class holds a lock on an
object that might be accessible to other classes. Client-side locking is not always an appropriate
strategy; see guideline “LCK11-J. Avoid client-side locking when using classes that do not com-
mit to their locking strategy” on page 86 for more information.

This code does not violate guideline “LCK04-J. Do not synchronize on a collection view if the
backing collection is accessible” on page 57 because, while it does synchronize on a collection
view (the synchronizedList), the backing collection is inaccessible and therefore cannot be
modified by any code.

2.4.5 Noncompliant Code Example (synchronizedMap)

This noncompliant code example defines the KeyedCounter class that is not thread-safe. Al-
though the HashMap is wrapped in a synchronizedMap, the overall increment operation is
non-atomic [Lee 2009].

final class KeyedCounter {

 private final Map<String, Integer> map =

 Collections.synchronizedMap(new HashMap<String, Integer>());

 public void increment(String key) {

 Integer old = map.get(key);

 int oldValue = (old == null) ? 0 : old.intValue();

 if (oldValue == Integer.MAX_VALUE) {

 throw new ArithmeticException("Out of range");

 }

 map.put(key, oldValue + 1);

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Goetz06�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Lee09�

VNA03-J

CMU/SEI-2010-TR-015 | 26

 }

 public Integer getCount(String key) {

 return map.get(key);

 }

}

2.4.6 Compliant Solution (Synchronization)

To ensure atomicity, this compliant solution uses an internal private lock object to synchronize the
statements of the increment() and getCount() methods.

final class KeyedCounter {

 private final Map<String, Integer> map = new HashMap<String, Integer>();

 private final Object lock = new Object();

 public void increment(String key) {

 synchronized (lock) {

 Integer old = map.get(key);

 int oldValue = (old == null) ? 0 : old.intValue();

 if (oldValue == Integer.MAX_VALUE) {

 throw new ArithmeticException("Out of range");

 }

 map.put(key, oldValue + 1);

 }

 }

 public Integer getCount(String key) {

 synchronized (lock) {

 return map.get(key);

 }

 }

}

This compliant solution does not use Collections.synchronizedMap() because locking
on the unsynchronized map provides sufficient thread-safety for this application. Guideline
“LCK04-J. Do not synchronize on a collection view if the backing collection is accessible” on
page 57 provides more information about synchronizing on synchronizedMap objects.

2.4.7 Compliant Solution (ConcurrentHashMap)

The previous compliant solution is safe for multithreaded use, but it does not scale well because
of excessive synchronization, which can lead to contention and deadlock.

The ConcurrentHashMap class used in this compliant solution provides several utility methods
for performing atomic operations and is often a good choice for algorithms that must scale [Lee
2009].

final class KeyedCounter {

 private final ConcurrentMap<String, AtomicInteger> map =

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Lee09�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Lee09�

VNA03-J

CMU/SEI-2010-TR-015 | 27

 new ConcurrentHashMap<String, AtomicInteger>();

 public void increment(String key) {

 AtomicInteger value = new AtomicInteger();

 AtomicInteger old = map.putIfAbsent(key, value);

 if (old != null) {

 value = old;

 }

 if (value.get() == Integer.MAX_VALUE) {

 throw new ArithmeticException("Out of range");

 }

 value.incrementAndGet(); // Increment the value atomically

 }

 public Integer getCount(String key) {

 AtomicInteger value = map.get(key);

 return (value == null) ? null : value.get();

 }

 // Other accessors ...

}

According to Section 5.2.1., “ConcurrentHashMap” of the work of Goetz and colleagues [Goetz
2006]

ConcurrentHashMap, along with the other concurrent collections, further improve on the
synchronized collection classes by providing iterators that do not throw ConcurrentMo-
dificationException, as a result eliminating the need to lock the collection during ite-
ration. The iterators returned by ConcurrentHashMap are weakly consistent instead of
fail-fast. A weakly consistent iterator can tolerate concurrent modification, traverses ele-
ments as they existed when the iterator was constructed, and may (but is not guaranteed to)
reflect modifications to the collection after the construction of the iterator.

Note that methods such as ConcurrentHashMap.size() and ConcurrentHash-
Map.isEmpty() are allowed to return an approximate result for performance reasons. Code
should not rely on these return values for deriving exact results.

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Goetz06�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Goetz06�

VNA03-J

CMU/SEI-2010-TR-015 | 28

2.4.8 Risk Assessment

Failing to ensure the atomicity of two or more operations that need to be performed as a single
atomic operation can result in race conditions in multithreaded applications.

Guideline Severity Likelihood Remediation Cost Priority Level

VNA03- J low probable medium P4 L3

2.4.9 References

[Goetz 2006] Section 4.4.1, “Client-side Locking”

Section 5.2.1, “ConcurrentHashMap”

[Lee 2009] “Map & Compound Operation”

[Oaks 2004] Section 8.2, “Synchronization and Collection Classes”

[Sun 2009c]

VNA04-J

CMU/SEI-2010-TR-015 | 29

2.5 VNA04-J. Ensure that calls to chained methods are atomic

Method chaining is a convenience mechanism that allows multiple method invocations on the
same object to occur in a single statement. A method-chaining implementation consists of a series
of methods that return the this reference. This implementation allows a caller to invoke methods
in a chain by performing the next method invocation on the return value of the previous method in
the chain.

While the methods used in method chaining can be atomic, the chain they comprise is inherently
non-atomic. Consequently, methods that are involved in method chaining should not be invoked
concurrently unless the caller provides sufficient locking as illustrated in guideline “VNA03-J. Do
not assume that a group of calls to independently atomic methods is atomic” on page 23.

2.5.1 Noncompliant Code Example

Method chaining is a useful design pattern for building an object and setting its optional fields. A
class that supports method chaining provides several setter methods that each return the this
reference. However, if accessed concurrently, a thread may observe shared fields to contain in-
consistent values. This noncompliant code example shows the JavaBeans pattern, which is not
thread-safe.

final class USCurrency {

 // Change requested, denomination (optional fields)

 private int quarters = 0;

 private int dimes = 0;

 private int nickels = 0;

 private int pennies = 0;

 public USCurrency() {}

 // Setter methods

 public USCurrency setQuarters(int quantity) {

 quarters = quantity;

 return this;

 }

 public USCurrency setDimes(int quantity) {

 dimes = quantity;

 return this;

 }

 public USCurrency setNickels(int quantity) {

 nickels = quantity;

 return this;

 }

 public USCurrency setPennies(int quantity) {

 pennies = quantity;

 return this;

 }

}

VNA04-J

CMU/SEI-2010-TR-015 | 30

// Client code:

private final USCurrency currency = new USCurrency();

// ...

new Thread(new Runnable() {

 @Override public void run() {

 currency.setQuarters(1).setDimes(1);

 }

}).start();

new Thread(new Runnable() {

 @Override public void run() {

 currency.setQuarters(2).setDimes(2);

 }

}).start();

The JavaBeans pattern uses a no-argument constructor and a series of parallel setter methods to
build an object. This pattern is not thread-safe and can lead to inconsistent object state if the ob-
ject is modified concurrently. In this noncompliant code example, the client constructs a
USCurrency object and starts two threads that use method chaining to set the optional values of
the USCurrency object. This example code might result in the USCurrency instance being left
in an inconsistent state, for example, with two quarters and one dime, or one quarter and two di-
mes.

2.5.2 Compliant Solution

This compliant solution uses a variant of the Builder pattern [Gamma 1995] suggested by Bloch
[Bloch 2008] to ensure the thread-safety and atomicity of object creation.

final class USCurrency {

 private final int quarters;

 private final int dimes;

 private final int nickels;

 private final int pennies;

 public USCurrency(Builder builder) {

 this.quarters = builder.quarters;

 this.dimes = builder.dimes;

 this.nickels = builder.nickels;

 this.pennies = builder.pennies;

 }

 // Static class member

 public static class Builder {

 private int quarters = 0;

 private int dimes = 0;

 private int nickels = 0;

 private int pennies = 0;

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Gamma95�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Bloch08�

VNA04-J

CMU/SEI-2010-TR-015 | 31

 public static Builder newInstance() {

 return new Builder();

 }

 private Builder() {}

 // Setter methods

 public Builder setQuarters(int quantity) {

 this.quarters = quantity;

 return this;

 }

 public Builder setDimes(int quantity) {

 this.dimes = quantity;

 return this;

 }

 public Builder setNickels(int quantity) {

 this.nickels = quantity;

 return this;

 }

 public Builder setPennies(int quantity) {

 this.pennies = quantity;

 return this;

 }

 public USCurrency build() {

 return new USCurrency(this);

 }

 }

}

 // Client code:

private volatile USCurrency currency;

// ...

new Thread(new Runnable() {

 @Override public void run() {

 currency = USCurrency.Builder.newInstance().setQuarters(1).setDimes(1).build();

 }

}).start();

new Thread(new Runnable() {

 @Override public void run() {

 currency = USCurrency.Builder.newInstance().setQuarters(2).setDimes(2).build();

 }

}).start();

The Builder.newInstance() factory method is called with any required arguments to obtain
a Builder instance. The optional parameters are set using the setter methods of the builder. The

VNA04-J

CMU/SEI-2010-TR-015 | 32

object construction concludes with the invocation of the build() method. This pattern makes
the USCurrency class immutable and, consequently, thread-safe.

Note that the currency field cannot be declared final because it is assigned a new immutable
object. It is, however, declared volatile in compliance with guideline “VNA01-J. Ensure visibility
of shared references to immutable objects” on page 13.

If input needs to be validated, ensure that the values are defensively copied prior to validation (see
guideline “FIO00-J. Defensively copy mutable inputs and mutable internal components2

SCP03-J. Do not expose sen-
sitive private members of the outer class from within a nested class

” for
more information). The builder class does not violate guideline “

2” because it maintains a copy
of the variables defined in the scope of the containing class. The private members within the
nested class take precedence, and as a result, do not break encapsulation.

2.5.3 Risk Assessment

Using method chaining in multithreaded environments without performing external locking can
lead to nondeterministic behavior.

Guideline Severity Likelihood Remediation Cost Priority Level

VNA04- J low probable medium P4 L3

2.5.4 References

[Bloch 2008] Item 2: “Consider a builder when faced with many constructor parameters”

[Sun 2009b]

2 This guideline is described at https://www.securecoding.cert.org/confluence/display/java/.

https://www.securecoding.cert.org/confluence/x/QIEVAQ�
https://www.securecoding.cert.org/confluence/x/0oAbAQ�
https://www.securecoding.cert.org/confluence/x/0oAbAQ�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Bloch08�
https://www.securecoding.cert.org/confluence/display/java/

VNA05-J

CMU/SEI-2010-TR-015 | 33

2.6 VNA05-J. Ensure atomicity when reading and writing 64-bit values

The Java Language Specification allows 64-bit long and double values to be treated as two 32-
bit values. For example, a 64-bit write operation may be performed as two separate, 32-bit opera-
tions.

According to the Java Language Specification, Section 17.7, “Non-atomic Treatment of double
and long” [Gosling 2005]

... this behavior is implementation specific; Java virtual machines are free to perform writes
to long and double values atomically or in two parts. For the purposes of the Java pro-
gramming language memory model, a single write to a non-volatile long or double value
is treated as two separate writes: one to each 32-bit half. This can result in a situation where
a thread sees the first 32 bits of a 64 bit value from one write, and the second 32 bits from
another write.

This behavior can result in indeterminate values being read in code that is required to be thread-
safe.

2.6.1 Noncompliant Code Example

In this noncompliant code example, if one thread repeatedly calls the assignValue() method
and another thread repeatedly calls the printLong() method, the printLong() method could
occasionally print a value of i that is neither zero nor the value of the j argument.

class LongContainer {

 private long i = 0;

 void assignValue(long j) {

 i = j;

 }

 void printLong() {

 System.out.println("i = " + i);

 }

}

A similar problem may occur if i is declared double.

2.6.2 Compliant Solution (Volatile)

This compliant solution declares i volatile. Writes and reads of long and double volatile values
are always atomic.

class LongContainer {

 private volatile long i = 0;

 void assignValue(long j) {

 i = j;

 }

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-JLS05�

VNA05-J

CMU/SEI-2010-TR-015 | 34

 void printLong() {

 System.out.println("i = " + i);

 }

}

It is important to ensure that the argument to the assignValue() method is obtained from a
volatile variable or as a result of explicitly passing an integer value. Otherwise, a read of the vari-
able argument can, itself, expose a vulnerability.

Semantics of volatile do not guarantee the atomicity of compound operations that involve
read-modify-write sequences such as incrementing a value. See guideline “VNA02-J. Ensure that
compound operations on shared variables are atomic” on page 16 for more information.

2.6.3 Exceptions

VNA05-EX1: If all reads and writes of 64-bit long and double values occur within a synchro-
nized region, the atomicity of the read/write is guaranteed. That guarantee requires that no unsyn-
chronized methods in the class expose the value and that the value is inaccessible (directly or indi-
rectly) from other code. (For more information, see guideline “VNA02-J. Ensure that compound
operations on shared variables are atomic” on page 16.)

VNA05-EX2: This guideline can be ignored for systems that guarantee that 64-bit, long and
double values are read and written as atomic operations.

2.6.4 Risk Assessment

Failure to ensure the atomicity of operations involving 64-bit values in multithreaded applications
can result in reading and writing indeterminate values. Many JVMs read and write 64-bit values
atomically, even though the specification does not require them to.

Guideline Severity Likelihood Remediation Cost Priority Level

VNA05- J low unlikely medium P2 L3

2.6.5 References

[Goetz 2004c]

[Goetz 2006] Section 3.1.2, “Non-Atomic 64-Bit Operations”

[Gosling 2005] Section 17.7, “Non-Atomic Treatment of double and long”

[MITRE 2010] CWE ID 667, “Insufficient Locking”

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Goetz04c�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Goetz06�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-JLS05�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-MITRE09�
http://cwe.mitre.org/data/definitions/667.html�

VNA06-J

CMU/SEI-2010-TR-015 | 35

2.7 VNA06-J. Do not assume that declaring an object reference volatile guarantees
visibility of its members

According to the Java Language Specification, Section 8.3.1.4, “volatile Fields” [Gosling
2005]

A field may be declared volatile, in which case the Java memory model (§17) ensures
that all threads see a consistent value for the variable.

Notably, this applies only to primitive fields and immutable member objects. The visibility guar-
antee does not extend to non-thread-safe mutable objects, even if their references are declared
volatile. A thread may not observe a recent write from another thread to a member field of such an
object. Declaring an object volatile to ensure the visibility of its state does not work without the
use of synchronization, unless the object is immutable. If the object is mutable and not thread-
safe, other threads might see a partially constructed object or an object in a (temporarily) inconsis-
tent state [Goetz 2006c].

Technically, the object does not have to be strictly immutable to be used safely. If it can be de-
termined that a member object is thread-safe by design, the field that holds its reference may be
declared volatile. However, this approach to declaring elements volatile decreases maintainability
and should be avoided.

2.7.1 Noncompliant Code Example (Arrays)

This noncompliant code example shows an array object that is declared volatile.

final class Foo {

 private volatile int[] arr = new int[20];

 public int getFirst() {

 return arr[0];

 }

 public void setFirst(int n) {

 arr[0] = n;

 }

 // ...

}

Values assigned to an array element by one thread, for example, by calling setFirst(), might
not be visible to another thread calling getFirst() because the volatile keyword only
makes the array reference visible and does not affect the actual data contained within the array.

The problem occurs because there is no happens-before relationship between the thread that calls
setFirst() and the thread that calls getFirst(). A happens-before relationship exists be-
tween a thread that writes to a volatile variable and a thread that subsequently reads it. However,
this code is neither writing to nor reading from a volatile variable.

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-JLS05�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-JLS05�
https://www.securecoding.cert.org/confluence/display/java/BB.+Definitions#BB.Definitions-immutable�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Goetz07�
https://www.securecoding.cert.org/confluence/display/java/BB.+Definitions#BB.Definitions-happensbeforeorder�

VNA06-J

CMU/SEI-2010-TR-015 | 36

2.7.2 Compliant Solution (AtomicIntegerArray)

To ensure that the writes to array elements are atomic and the resulting values are visible to other
threads, this compliant solution uses the AtomicIntegerArray class defined in
java.util.concurrent.atomic.

final class Foo {

 private final AtomicIntegerArray atomicArray = new AtomicIntegerArray(20);

 public int getFirst() {

 return atomicArray.get(0);

 }

 public void setFirst(int n) {

 atomicArray.set(0, 10);

 }

 // ...

}

AtomicIntegerArray guarantees a happens-before relationship between a thread that calls
atomicArray.set() and a thread that subsequently calls atomicArray.get().

2.7.3 Compliant Solution (Synchronization)

To ensure visibility, accessor methods may synchronize access, while performing operations on
non-volatile elements of an array that is declared volatile. Note that the code is thread-safe, even
though the array reference is non-volatile.

final class Foo {

 private int[] arr = new int[20];

 public synchronized int getFirst() {

 return arr[0];

 }

 public synchronized void setFirst(int n) {

 arr[0] = n;

 }

}

Synchronization establishes a happens-before relationship between the thread that calls
setFirst() and the thread that subsequently calls getFirst(), guaranteeing visibility.

2.7.4 Noncompliant Code Example (Mutable Object)

This noncompliant code example declares the Properties instance field volatile. The instance
of the Properties object can be mutated using the put() method, and that makes the
properties field mutable.

https://www.securecoding.cert.org/confluence/display/java/BB.+Definitions#BB.Definitions-happensbeforeorder�
https://www.securecoding.cert.org/confluence/display/java/BB.+Definitions#BB.Definitions-happensbeforeorder�

VNA06-J

CMU/SEI-2010-TR-015 | 37

final class Foo {

 private volatile Properties properties;

 public Foo() {

 properties = new Properties();

 // Load some useful values into properties

 }

 public String get(String s) {

 return properties.getProperty(s);

 }

 public void put(String key, String value) {

 // Validate the values before inserting

 if (!value.matches("[\\w]*")) {

 throw new IllegalArgumentException();

 }

 properties.setProperty(key, value);

 }

Interleaved calls to get() and put() may result in internally inconsistent values being retrieved
from the Properties object because the operations within put() modify its state. Declaring
the object volatile does not eliminate this data race.

There is no time-of-check-to-time-of-use (TOCTOU) vulnerability in put(), despite the presence
of the validation logic because the validation is performed on the immutable value argument and
not the shared Properties instance.

2.7.5 Noncompliant Code Example (Volatile-Read, Synchronized-Write)

This noncompliant code example attempts to use the volatile-read, synchronized-write technique
described by Goetz [Goetz 2006c]. The properties field is declared volatile to synchronize its
reads and writes. The put() method is also synchronized to ensure that its statements are ex-
ecuted atomically.

final class Foo {

 private volatile Properties properties;

 public Foo() {

 properties = new Properties();

 // Load some useful values into properties

 }

 public String get(String s) {

 return properties.getProperty(s);

 }

 public synchronized void put(String key, String value) {

VNA06-J

CMU/SEI-2010-TR-015 | 38

 // Validate the values before inserting

 if (!value.matches("[\\w]*")) {

 throw new IllegalArgumentException();

 }

 properties.setProperty(key, value);

 }

}

The volatile-read, synchronized-write technique uses synchronization to preserve the atomicity of
compound operations, such as increment, and provides faster access times for atomic reads. How-
ever, it does not work with mutable objects because the visibility of volatile object references
does not extend to object members. Consequently, there is no happens-before relationship be-
tween the write and a subsequent read of the property.

This technique is also discussed in guideline “VNA02-J. Ensure that compound operations on
shared variables are atomic” on page 16.

2.7.6 Compliant Solution (Synchronization)

This compliant solution uses method synchronization to guarantee visibility.

final class Foo {

 private final Properties properties;

 public Foo() {

 properties = new Properties();

 // Load some useful values into properties

 }

 public synchronized String get(String s) {

 return properties.getProperty(s);

 }

 public synchronized void put(String key, String value) {

 // Validate the values before inserting

 if (!value.matches("[\\w]*")) {

 throw new IllegalArgumentException();

 }

 properties.setProperty(key, value);

 }

}

The properties field does not need to be volatile because the methods are synchronized. The
field is declared final so that its reference is not published when it is in a partially initialized state
(see guideline “TSM03-J. Do not publish partially initialized objects” on page 162 for more in-
formation).

https://www.securecoding.cert.org/confluence/display/java/BB.+Definitions#BB.Definitions-happensbeforeorder�

VNA06-J

CMU/SEI-2010-TR-015 | 39

2.7.7 Noncompliant Code Example (Mutable Sub-Object)

In this noncompliant code example, the volatile format field is used to store a reference to a
mutable object, java.text.DateFormat.

final class DateHandler {

 private static volatile DateFormat format =

 DateFormat.getDateInstance(DateFormat.MEDIUM);

 public static Date parse(String str) throws ParseException {

 return format.parse(str);

 }

}

Because DateFormat is not thread-safe [Sun 2009c], the parse() method might return a value
for Date that does not correspond to the str argument.

2.7.8 Compliant Solution (Instance Per Call/Defensive Copying)

This compliant solution creates and returns a new DateFormat instance for every invocation of
the parse() method [Sun 2009c].

final class DateHandler {

 public static Date parse(String str) throws ParseException {

 return DateFormat.getDateInstance(DateFormat.MEDIUM).parse(str);

 }

}

This solution does not violate guideline “OBJ11-J. Defensively copy private mutable class mem-
bers before returning their references”3

2.7.9 Compliant Solution (Synchronization)

 because the class no longer contains internal mutable
state.

This compliant solution synchronizes statements within the parse() method, making
DateHandler thread-safe [Sun 2009c].

final class DateHandler {

 private static DateFormat format=

 DateFormat.getDateInstance(DateFormat.MEDIUM);

 public static Date parse(String str) throws ParseException {

 synchronized (format) {

 return format.parse(str);

 }

 }

}

3 This guideline is described at https://www.securecoding.cert.org/confluence/display/java/.

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-API06�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-API06�
https://www.securecoding.cert.org/confluence/x/zQCuAQ�
https://www.securecoding.cert.org/confluence/x/zQCuAQ�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-API06�
https://www.securecoding.cert.org/confluence/display/java/

VNA06-J

CMU/SEI-2010-TR-015 | 40

2.7.10 Compliant Solution (ThreadLocal Storage)

This compliant solution uses a ThreadLocal object to create a separate DateFormat instance
per thread.

final class DateHandler {

 private static final ThreadLocal<DateFormat> format =

 new ThreadLocal<DateFormat>() {

 @Override protected DateFormat initialValue() {

 return DateFormat.getDateInstance(DateFormat.MEDIUM);

 }

 };

 // ...

}

2.7.11 Risk Assessment

Incorrectly assuming that declaring a field volatile guarantees that the visibility of a referenced
object’s members can cause threads to observe stale values.

Guideline Severity Likelihood Remediation Cost Priority Level

VNA06-J medium probable medium P8 L2

2.7.12 References

[Goetz 2006c] Pattern #2: “one-time safe publication”

[Gosling 2005]

[Miller 2009] Mutable Statics

[Sun 2009c] Class java.text.DateFormat

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-JLS05�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Miller09�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-API06�

LCK00-J

CMU/SEI-2010-TR-015 | 41

3 Lock (LCK) Guidelines

3.1 LCK00-J. Use private final lock objects to synchronize classes that may
interact with untrusted code

The synchronized keyword is used to acquire a mutual-exclusion lock so that no other thread
can acquire the lock while it is being held by the executing thread. There are two ways to syn-
chronize access to shared mutable variables: method synchronization and block synchronization.

A method declared as synchronized always uses the object’s monitor (intrinsic lock), as does code
that synchronizes on the this reference using a synchronized block. Poorly synchronized code is
prone to contention and deadlock. An attacker can manipulate the system to trigger these condi-
tions and cause a denial of service by obtaining and indefinitely holding the intrinsic lock of an
accessible class.

This vulnerability can be prevented using a java.lang.Object declared private and final
within the class. The object must be used explicitly for locking purposes in synchronized blocks
within the class’s methods. This intrinsic lock is associated with the instance of the private object
and not the class. Consequently, there is no lock contention between this class’s methods and the
methods of a hostile class. Bloch refers to this technique as the “private lock object” idiom [Bloch
2001].

Static state has the same potential problem. If a static method is declared synchronized, the intrin-
sic lock of the class object is acquired before any statements in its body are executed, and the lock
is released when the method completes. Any untrusted code that can access an object of the class,
or a subclass, can use the getClass() method to gain access to the class lock. Static data can be
protected by locking on a private static final Object. Reducing the accessibility of the class to
package-private adds further protection against untrusted callers.

This idiom is also suitable for classes designed for inheritance. If a superclass thread requests a
lock on the object’s monitor, a subclass thread can interfere with its operation. For example, a
subclass may use the superclass object’s intrinsic lock for performing unrelated operations, caus-
ing significant lock contention and deadlock. Separating the locking strategy of the superclass
from that of the subclass ensures that they do not share a common lock. It also permits fine-
grained locking because multiple lock objects can be used for unrelated operations, increasing the
overall responsiveness of the application.

An object should use a private final lock object rather than its own intrinsic lock unless the class
can guarantee that untrusted code cannot
• subclass the class or its superclass (trusted code is allowed to subclass the class)

• create an object of the class, its superclass, or subclass

• access or acquire an object instance of the class, its superclass, or subclass

If a class uses a private final lock to synchronize shared data, subclasses must also use a private
final lock. However, if a class uses intrinsic synchronization over the class object without docu-
menting its locking policy, subclasses may not use intrinsic synchronization over their own class

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Bloch01�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Bloch01�

LCK00-J

CMU/SEI-2010-TR-015 | 42

object, unless they explicitly document their locking policy. If the superclass documents its policy
by stating that client-side locking is supported, the subclasses have the option of choosing be-
tween intrinsic locking over the class object and a private lock. Regardless of which is chosen,
subclasses must document their locking policy. See guideline “TSM00-J. Do not override thread-
safe methods with methods that are not thread-safe” on page 145 for related information.

If all of these restrictions are not met, the object’s intrinsic lock is not trustworthy. If they are met,
the object gains no significant security from using a private final lock object and may synchronize
using its own intrinsic lock. However, it is still best to use block synchronization with a private
final lock object instead of method synchronization when the method contains non-atomic opera-
tions that either do not require any synchronization or can use a more fine-grained locking scheme
involving multiple private final lock objects. Non-atomic operations can be decoupled from those
that require synchronization and executed outside the synchronized block. For this reason and
maintainability reasons, block synchronization using a private final lock object is generally rec-
ommended.

3.1.1 Noncompliant Code Example (Method Synchronization)

This noncompliant code example exposes instances of the SomeObject class to untrusted code.

public class SomeObject {

 public synchronized void changeValue() { // Locks on the object's monitor

 // ...

 }

}

// Untrusted code

SomeObject someObject = new SomeObject();

synchronized (someObject) {

 while (true) {

 Thread.sleep(Integer.MAX_VALUE); // Indefinitely delay someObject

 }

}

The untrusted code attempts to acquire a lock on the object’s monitor and, upon succeeding, in-
troduces an indefinite delay that prevents the synchronized changeValue() method from
acquiring the same lock. Note that in the untrusted code, the attacker intentionally violates guide-
line “LCK09-J. Do not perform operations that may block while holding a lock” on page 77.

3.1.2 Noncompliant Code Example (Public Non-Final Lock Object)

This noncompliant code example locks on a public non-final object in an attempt to use a lock
other than SomeObject’s intrinsic lock.

public class SomeObject {

 public Object lock = new Object();

 public void changeValue() {

 synchronized (lock) {

LCK00-J

CMU/SEI-2010-TR-015 | 43

 // ...

 }

 }

}

However, it is possible for untrusted code to change the value of the lock object and disrupt prop-
er synchronization.

3.1.3 Noncompliant Code Example (Publicly Accessible Non-Final Lock Object)

This noncompliant code example synchronizes on a private but non-final field.

public class SomeObject {

 private volatile Object lock = new Object();

 public void changeValue() {

 synchronized (lock) {

 // ...

 }

 }

 public void setLock(Object lockValue) {

 lock = lockValue;

 }

}

Any thread can modify the field’s value to refer to a different object in the presence of an accessor
such as setLock(). That modification might cause two threads that intend to lock on the same
object to lock on different objects, thereby enabling them to execute the two critical sections in an
unsafe manner. For example, if one thread is in its critical section and the lock is changed, a
second thread will lock on the new object instead of the old one.

A class that does not provide any accessible methods to change the lock is secure against un-
trusted manipulation. However, it is susceptible to inadvertent modification by the programmer.
For maintainability reasons, eliminating the accessor method (which is presumably needed for
other reasons) is not the preferred solution.

3.1.4 Noncompliant Code Example (Public Final Lock Object)

This noncompliant code example uses a public final lock object.

public class SomeObject {

 public final Object lock = new Object();

 public void changeValue() {

 synchronized (lock) {

 // ...

 }

 }

}

LCK00-J

CMU/SEI-2010-TR-015 | 44

// Untrusted code

SomeObject someObject = new SomeObject();

someObject.lock.wait()

Untrusted code that has the ability to create an instance of the class or has access to an already
created instance can invoke the wait() method on the publicly accessible lock, causing the
lock in the changeValue() method to be released immediately. Furthermore, if the method
invokes lock.wait() from its body and does not test a condition predicate, it will be vulnerable
to malicious notifications. (See guideline “THI03-J. Always invoke wait() and await() methods
inside a loop” on page 101 for more information.)

3.1.5 Compliant Solution (Private Final Lock Object)

Thread-safe public classes that may interact with untrusted code must use a private final lock ob-
ject. Existing classes that use intrinsic synchronization must be refactored to use block synchroni-
zation on such an object. In this compliant solution, calling changeValue() obtains a lock on a
private final Object instance that is inaccessible from callers outside the class’s scope.

public class SomeObject {

 private final Object lock = new Object(); // private final lock object

 public void changeValue() {

 synchronized (lock) { // Locks on the private Object

 // ...

 }

 }

}

A private final lock object can only be used with block synchronization. Block synchronization is
preferred over method synchronization, because operations that do not require synchronization
can be moved outside the synchronized region, reducing lock contention and blocking. Note that
there is no need to declare lock volatile because of the strong visibility semantics of final fields.
Instead of using setter methods to change the lock, declare and use multiple, private final lock
objects to satisfy the granularity requirements.

3.1.6 Noncompliant Code Example (Static)

This noncompliant code example exposes the class object of SomeObject to untrusted code.

public class SomeObject {

 // changeValue locks on the class object's monitor

 public static synchronized void changeValue() {

 // ...

 }

}

// Untrusted code

synchronized (SomeObject.class) {

LCK00-J

CMU/SEI-2010-TR-015 | 45

 while (true) {

 Thread.sleep(Integer.MAX_VALUE); // Indefinitely delay someObject

 }

}

The untrusted code attempts to acquire a lock on the class object’s monitor and, upon succeeding,
introduces an indefinite delay that prevents the synchronized changeValue() method from ac-
quiring the same lock.

A compliant solution must comply with guideline “LCK05-J. Synchronize access to static fields
that may be modified by untrusted code” on page 59. However, in the untrusted code, the attacker
intentionally violates guideline “LCK09-J. Do not perform operations that may block while hold-
ing a lock” on page 77.

3.1.7 Compliant Solution (Static)

Thread-safe public classes that may interact with untrusted code and use intrinsic synchronization
over the class object must be refactored to use a static private final lock object and block synchro-
nization.

public class SomeObject {

 private static final Object lock = new Object(); // private final lock object

 public static void changeValue() {

 synchronized (lock) { // Locks on the private Object

 // ...

 }

 }

}

In this compliant solution, changeValue() obtains a lock on a static private Object that is
inaccessible to the caller.

LCK00-J

CMU/SEI-2010-TR-015 | 46

3.1.8 Exceptions

LCK00-EX1: A class may violate this guideline, if all the following conditions are met:
• It sufficiently documents that callers must not pass objects of this class to untrusted code.

• The class does not invoke methods on objects of any untrusted classes that violate this guide-
line directly or indirectly.

• The synchronization policy of the class is documented properly.

A client may use a class that violates this guideline, if all the following conditions are met:
• The class does not pass objects of this class to untrusted code.

• The class does not use any untrusted classes that violate this guideline directly or indirectly.

LCK00-EX2: If a superclass of the class documents that it supports client-side locking and syn-
chronizes on its class object, the class can support client-side locking in the same way and docu-
ment this policy.

LCK00-EX3: A package-private class may violate this guideline because its accessibility protects
against untrusted callers. However, this condition should be documented explicitly so that trusted
code within the same package does not reuse or change the lock object inadvertently.

3.1.9 Risk Assessment

Exposing the class object to untrusted code can result in a denial of service.

Guideline Severity Likelihood Remediation Cost Priority Level

LCK00-J low probable medium P4 L3

3.1.10 References

[Bloch 2001] Item 52: “Document Thread Safety”

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Bloch01�

LCK01-J

CMU/SEI-2010-TR-015 | 47

3.2 LCK01-J. Do not synchronize on objects that may be reused

Misuse of synchronization primitives is a common source of concurrency issues. Synchronizing
on objects that may be reused can result in deadlock and nondeterministic behavior.

3.2.1 Noncompliant Code Example (Boolean Lock Object)

This noncompliant code example synchronizes on a Boolean lock object.

private final Boolean initialized = Boolean.FALSE;

public void doSomething() {

 synchronized (initialized) {

 // ...

 }

}

The Boolean type is unsuitable for locking purposes because it allows only two values: true and
false. Boolean literals containing the same value share unique instances of the Boolean class in
the JVM. In this example, initialized references the instance corresponding to the value
false. If any other code inadvertently synchronizes on a Boolean literal with the value false, the
lock instance is reused and the system can become unresponsiveness or deadlocked.

3.2.2 Noncompliant Code Example (Boxed Primitive)

This noncompliant code example locks on a boxed Integer object.

int lock = 0;

private final Integer Lock = lock; // Boxed primitive Lock is shared

public void doSomething() {

 synchronized (Lock) {

 // ...

 }

}

Boxed types may use the same instance for a range of integer values and consequently suffer from
the same problem as Boolean constants. If the value of the primitive can be represented as a
byte, the wrapper object is reused. Note that the use of the boxed Integer wrapper object is in-
secure; instances of the Integer object constructed using the new operator (new Integ-
er(value)) are unique and not reused. In general, holding a lock on any data type that contains
a boxed value is insecure.

LCK01-J

CMU/SEI-2010-TR-015 | 48

3.2.3 Compliant Solution (Integer)

This compliant solution recommends locking on a non-boxed Integer. The doSomething()
method synchronizes using the intrinsic lock of the Integer instance, Lock.

int lock = 0;

private final Integer Lock = new Integer(lock);

public void doSomething() {

 synchronized (Lock) {

 // ...

 }

}

When explicitly constructed, an Integer object has a unique reference and its own intrinsic lock
that is not shared with other Integer objects or boxed integers having the same value. While
this is an acceptable solution, it can cause maintenance problems because developers can incor-
rectly assume that boxed integers are appropriate lock objects. A more appropriate solution is to
synchronize on a private final lock object as described in the compliant solution in Section 3.2.7.

3.2.4 Noncompliant Code Example (Interned String Object)

This noncompliant code example locks on an interned String object.

private final String lock = new String("LOCK").intern();

public void doSomething() {

 synchronized (lock) {

 // ...

 }

}

According to the Java API class java.lang.String documentation [Sun 2009c]
When the intern() method is invoked, if the pool already contains a string equal to this
String object as determined by the equals(Object) method, then the string from the
pool is returned. Otherwise, this String object is added to the pool and a reference to this
String object is returned.

Consequently, an interned String object behaves like a global variable in the JVM. As demon-
strated in this noncompliant code example, even if every instance of an object maintains its own
lock field, the field references a common String constant. Locking on String constants has
the same problem as locking on Boolean constants.

Additionally, hostile code from any other package can exploit this vulnerability, if the class is
accessible. (For more information, see guideline “LCK00-J. Use private final lock objects to syn-
chronize classes that may interact with untrusted code” on page 41.)

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-API06�

LCK01-J

CMU/SEI-2010-TR-015 | 49

3.2.5 Noncompliant Code Example (String Literal)

This noncompliant code example locks on a final String literal.

// This bug was found in jetty-6.1.3 BoundedThreadPool

private final String lock = "LOCK";

// ...

 synchronized (lock) {

 // ...

 }

// ...

A String literal is a constant and interned. Consequently, it suffers from the same pitfalls as the
preceding noncompliant code example.

3.2.6 Compliant Solution (String Instance)

This compliant solution locks on a String instance that is not interned.

private final String lock = new String("LOCK");

public void doSomething() {

 synchronized (lock) {

 // ...

 }

}

A String instance differs from a String literal. The instance has a unique reference and its
own intrinsic lock that is not shared by other String object instances or literals. A better ap-
proach is to synchronize on a private final lock object as shown in the following compliant solu-
tion.

3.2.7 Compliant Solution (Private Final Lock Object)

This compliant solution synchronizes on a private final lock object. This is one of the few cases
where a java.lang.Object instance is useful.

private final Object lock = new Object();

public void doSomething() {

 synchronized (lock) {

 // ...

 }

}

For more information on using an Object as a lock, see guideline “LCK00-J. Use private final
lock objects to synchronize classes that may interact with untrusted code” on page 41.

LCK01-J

CMU/SEI-2010-TR-015 | 50

3.2.8 Risk Assessment

A significant number of concurrency vulnerabilities arise from locking on the wrong kind of ob-
ject. It is important to consider the properties of the lock object rather than indiscreetly scaveng-
ing for objects to synchronize on.

Guideline Severity Likelihood Remediation Cost Priority Level

LCK01- J medium probable medium P8 L2

3.2.9 References

[Findbugs 2008]

[Miller 2009] Locking

[Pugh 2008] “Synchronization”

[Sun 2009c] Class String, Collections

[Sun 2008a] Wrapper Implementations

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Findbugs08�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Miller09�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Pugh08�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-API06�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Tutorials08�
http://java.sun.com/docs/books/tutorial/collections/implementations/wrapper.html�

LCK02-J

CMU/SEI-2010-TR-015 | 51

3.3 LCK02-J. Do not synchronize on the class object returned by getClass()

Synchronizing on the return value of the Object.getClass() method can lead to unexpected
behavior. Whenever the implementing class is subclassed, the subclass locks on the subclass’s
type, which is a completely different Class object.

Section 4.3.2, “The Class Object” of the Java Language Specification describes how method syn-
chronization works [Gosling 2005]:

A class method that is declared synchronized synchronizes on the lock associated with
the Class object of the class.

This does not mean that a subclass using getClass() can only synchronize on the Class ob-
ject of the base class. In fact, it will lock on its own Class object, which may or may not be what
the programmer intended. The intent should be clearly documented or annotated. Note that if a
subclass does not override an accessible noncompliant superclass’s method, it inherits the method,
which may lead to the false conclusion that the superclass’s intrinsic lock is available in the sub-
class.

When synchronizing on a class literal, the corresponding lock object should not be accessible to
untrusted code. If the class is package-private, callers from other packages may not access the
class object, ensuring its trustworthiness as an intrinsic lock object. For more information, see
guideline “LCK00-J. Use private final lock objects to synchronize classes that may interact with
untrusted code” on page 41.

3.3.1 Noncompliant Code Example (getClass() Lock Object)

In this noncompliant code example, the parse() method of the Base class parses a date and
synchronizes on the class object returned by getClass(). The Derived class also inherits the
parse() method. However, this inherited method synchronizes on Derived’s class object be-
cause of the particular return value of getClass().

The Derived class also adds a doSomethingAndParse()method that locks on the class ob-
ject of the Base class because the developer misconstrued that the parse() method in Base
always obtains a lock on the Base class object, and doSomethingAndParse() must follow
the same locking policy. Consequently, the Derived class has two different locking strategies
and is not thread-safe.

class Base {

 static DateFormat format =

 DateFormat.getDateInstance(DateFormat.MEDIUM);

 public Date parse(String str) throws ParseException {

 synchronized (getClass()) {

 return format.parse(str);

 }

 }

}

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-JLS05�

LCK02-J

CMU/SEI-2010-TR-015 | 52

class Derived extends Base {

 public Date doSomethingAndParse(String str) throws ParseException {

 synchronized(Base.class) {

 // ...

 return format.parse(str);

 }

 }

}

3.3.2 Compliant Solution (Class Name Qualification)

In this compliant solution, the class name providing the lock (Base) is fully qualified.

class Base {

 static DateFormat format =

 DateFormat.getDateInstance(DateFormat.MEDIUM);

 public Date parse(String str) throws ParseException {

 synchronized (Base.class) {

 return format.parse(str);

 }

 }

}

// ...

This code example always synchronizes on the Base.class object, even if it is called from a
Derived object.

3.3.3 Compliant Solution (Class.forName())

This compliant solution uses the Class.forName() method to synchronize on the Base class’s
Class object.

class Base {

 static DateFormat format =

 DateFormat.getDateInstance(DateFormat.MEDIUM);

 public Date parse(String str) throws ParseException {

 synchronized (Class.forName("Base")) {

 return format.parse(str);

 }

 }

}

// ...

LCK02-J

CMU/SEI-2010-TR-015 | 53

It is important that untrusted inputs are not accepted as arguments while loading classes using
Class.forName(). See guideline “SEC05-J. Do not expose standard APIs that use the imme-
diate caller’s class loader instance to untrusted code4

3.3.4 Noncompliant Code Example (getClass() Lock Object, Inner Class)

” for more information.

This noncompliant code example synchronizes on the class object returned by getClass() in
the parse() method of the Base class. The Base class also has a nested Helper class whose
doSomethingAndParse() method incorrectly synchronizes on the value returned by
getClass().

class Base {

 static DateFormat format =

 DateFormat.getDateInstance(DateFormat.MEDIUM);

 public Date parse(String str) throws ParseException {

 synchronized (getClass()) {

 return format.parse(str);

 }

 }

 public Date doSomething(String str) throws ParseException {

 return new Helper().doSomethingAndParse(str);

 }

 private class Helper {

 public Date doSomethingAndParse(String str) throws ParseException {

 synchronized(getClass()) { // Synchronizes on getClass()

 // ...

 return format.parse(str);

 }

 }

 }

}

The call to getClass() in the Helper class returns a Helper class object instead of the Base
class object. Consequently, a thread that calls Base.parse() locks on a different object than a
thread that calls Base.doSomething(). It is easy to overlook concurrency errors in inner
classes because they exist within the body of the containing outer class. A reviewer might incor-
rectly assume that the two classes have the same locking strategy.

4 This guideline is described at https://www.securecoding.cert.org/confluence/display/java/.

https://www.securecoding.cert.org/confluence/x/xYEVAQ�
https://www.securecoding.cert.org/confluence/x/xYEVAQ�
https://www.securecoding.cert.org/confluence/display/java/

LCK02-J

CMU/SEI-2010-TR-015 | 54

3.3.5 Compliant Solution (Class Name Qualification)

This compliant solution synchronizes using a Base class literal in the parse() and doSome-
thingAndParse() methods.

class Base {

 // ...

 public Date parse(String str) throws ParseException {

 synchronized (Base.class) {

 return format.parse(str);

 }

 }

 private class Helper {

 public Date doSomethingAndParse(String str) throws ParseException {

 synchronized(Base.class) { // Synchronizes on Base class literal

 // ...

 return format.parse(str);

 }

 }

 }

}

Consequently, both Base and Helper lock on Base’s intrinsic lock. Similarly, the
Class.forname() method can be used instead of a class literal.

3.3.6 Risk Assessment

Synchronizing on the class object returned by getClass() can result in nondeterministic beha-
vior.

Guideline Severity Likelihood Remediation Cost Priority Level

LCK02- J medium probable medium P8 L2

3.3.7 References

[Findbugs 2008]

[Miller 2009] Locking

[Pugh 2008] “Synchronization”

[Sun 2009b]

LCK03-J

CMU/SEI-2010-TR-015 | 55

3.4 LCK03-J. Do not synchronize on the intrinsic locks of high-level concurrency
objects

It is inappropriate to lock on an object of a class that implements one or both of the following in-
terfaces of the java.util.concurrent.locks package: Lock and Condition. Using the
intrinsic locks of these classes is a questionable practice even though the code may appear to
function correctly. This problem is commonly discovered when code is refactored from intrinsic
locking to the java.util.concurrent dynamic-locking utilities.

3.4.1 Noncompliant Code Example (ReentrantLock Lock Object)

The doSomething() method in this noncompliant code example synchronizes on the intrinsic
lock of an instance of ReentrantLock instead of the reentrant mutual exclusion Lock encapsu-
lated by ReentrantLock.

private final Lock lock = new ReentrantLock();

public void doSomething() {

 synchronized(lock) {

 // ...

 }

}

3.4.2 Compliant Solution (lock() and unlock())

Instead of using the intrinsic locks of objects that implement the Lock interface, such as Reen-
trantLock, use the lock() and unlock() methods provided by the Lock interface.

private final Lock lock = new ReentrantLock();

public void doSomething() {

 lock.lock();

 try {

 // ...

 } finally {

 lock.unlock();

 }

}

If there is no requirement for using the advanced functionality of the java.util.concurrent
package’s dynamic-locking utilities, it is better to use the Executor framework or other concur-
rency primitives such as synchronization and atomic classes.

LCK03-J

CMU/SEI-2010-TR-015 | 56

3.4.3 Risk Assessment

Synchronizing on the intrinsic lock of high-level concurrency utilities can cause nondeterministic
behavior because the class can end up with two different locking policies.

Guideline Severity Likelihood Remediation Cost Priority Level

LCK03-J medium probable medium P8 L2

3.4.4 References

[Findbugs 2008]

[Miller 2009] Locking

[Pugh 2008] “Synchronization”

[Sun 2009b]

[Sun 2008a] Wrapper Implementations

http://java.sun.com/docs/books/tutorial/collections/implementations/wrapper.html�

LCK04-J

CMU/SEI-2010-TR-015 | 57

3.5 LCK04-J. Do not synchronize on a collection view if the backing collection is
accessible

The java.util.Collections interface’s documentation [Sun 2009b] warns about the conse-
quences of failing to synchronize on an accessible collection object when iterating over its view:

It is imperative that the user manually synchronize on the returned map when iterating over
any of its collection views. . . Failure to follow this advice may result in non-deterministic
behavior.

A class that uses a collection view instead of the backing collection as the lock object may end up
with two different locking strategies. In this case, if the backing collection is accessible to mul-
tiple threads, the class is not thread-safe.

3.5.1 Noncompliant Code Example (Collection View)

This noncompliant code example creates two views: a synchronized view of an empty HashMap
encapsulated by the map field and a set view of the map’s keys encapsulated by the set field.
This example synchronizes on the set view [Sun 2008a].

// map has package-private accessibility

final Map<Integer, String> map =

 Collections.synchronizedMap(new HashMap<Integer, String>());

private final Set<Integer> set = map.keySet();

public void doSomething() {

 synchronized(set) { // Incorrectly synchronizes on set

 for (Integer k : set) {

 // ...

 }

 }

}

In this example, HashMap provides the backing collection for Map, which provides the backing
collection for Set, as shown in Figure 4:

Figure 4: How Backing Collection Works in the Collection View, Noncompliant Code Example

HashMap is not accessible, but the map view is. Because the set view is synchronized instead of
the map view, another thread can modify the contents of map and invalidate the k iterator.

LCK04-J

CMU/SEI-2010-TR-015 | 58

3.5.2 Compliant Solution (Collection Lock Object)

This compliant solution synchronizes on the map view instead of the set view.

// map has package-private accessibility

final Map<Integer, String> map =

 Collections.synchronizedMap(new HashMap<Integer, String>());

private final Set<Integer> set = map.keySet();

public void doSomething() {

 synchronized(map) { // Synchronize on map, not set

 for (Integer k : set) {

 // ...

 }

 }

}

This code is compliant because the map’s underlying structure cannot be changed when an itera-
tion is in progress.

3.5.3 Risk Assessment

Synchronizing on a collection view instead of the collection object can cause nondeterministic
behavior.

Guideline Severity Likelihood Remediation Cost Priority Level

LCK04-J low probable medium P8 L2

3.5.4 References

[Sun 2009b] Class Collections

[Sun 2008a] Wrapper Implementations

http://java.sun.com/docs/books/tutorial/collections/implementations/wrapper.html�

LCK05-J

CMU/SEI-2010-TR-015 | 59

3.6 LCK05-J. Synchronize access to static fields that may be modified by untrusted
code

Methods that can be invoked from untrusted code to modify a static field must synchronize access
to that field. That is necessary because there is no guarantee that untrusted clients will externally
synchronize when accessing the field. Because a static field is shared by all clients, untrusted
clients may violate the contract by failing to provide suitable locking.

According to Bloch [Bloch 2008]
If a method modifies a static field, you must synchronize access to this field, even if the me-
thod is typically used only by a single thread. It is not possible for clients to perform external
synchronization on such a method because there can be no guarantee that unrelated clients
will do likewise.

Documented design intent is irrelevant when dealing with untrusted code because an attacker can
always choose to ignore the documentation.

3.6.1 Noncompliant Code Example

This noncompliant code example does not synchronize access to the static counter field.

/** This class is not thread-safe */

public final class CountHits {

 private static int counter;

 public void incrementCounter() {

 counter++;

 }

}

This class definition does not violate guideline “VNA02-J. Ensure that compound operations on
shared variables are atomic” on page 16, which only applies to classes that promise thread-safety.
However, this class has a mutable static counter field that is modified by the publicly accessible
incrementCounter() method. Consequently, this class cannot be used securely by trusted
client code, if untrusted code can purposely fail to externally synchronize access to the field.

LCK05-J

CMU/SEI-2010-TR-015 | 60

3.6.2 Compliant Solution

This compliant solution uses a static private final lock to protect the counter field and, conse-
quently, does not depend on any external synchronization. This solution also complies with guide-
line “LCK00-J. Use private final lock objects to synchronize classes that may interact with un-
trusted code” on page 41.

/** This class is thread-safe */

public final class CountHits {

 private static int counter;

 private static final Object lock = new Object();

 public void incrementCounter() {

 synchronized (lock) {

 counter++;

 }

 }

}

3.6.3 Risk Assessment

Failing to internally synchronize access to static fields that may be modified by untrusted code
will result in incorrectly synchronized code, if the author of the untrusted code chooses to ignore
the synchronization policy.

Guideline Severity Likelihood Remediation Cost Priority Level

LCK05- J low probable medium P4 L3

3.6.4 References

[Bloch 2008] Item 67: “Avoid excessive synchronization”

[Sun 2009b]

LCK06-J

CMU/SEI-2010-TR-015 | 61

3.7 LCK06-J. Do not use an instance lock to protect shared static data

Shared static data should not be protected using instance locks because they are ineffective when
two or more instances of the class are created. Consequently, shared state is not safe for concur-
rent access unless a static lock object is used. If the class can interact with untrusted code, the lock
must also be private and final, as per guideline “LCK00-J. Use private final lock objects to syn-
chronize classes that may interact with untrusted code” on page 41.

3.7.1 Noncompliant Code Example (Non-Static Lock Object for Static Data)

This noncompliant code example uses a non-static lock object to guard access to a static
counter field. If two Runnable tasks are started, they will create two instances of the lock ob-
ject and lock on each one separately.

public final class CountBoxes implements Runnable {

 private static volatile int counter;

 // ...

 private final Object lock = new Object();

 @Override public void run() {

 synchronized(lock) {

 counter++;

 // ...

 }

 }

 public static void main(String[] args) {

 for(int i = 0; i < 2; i++) {

 new Thread(new CountBoxes()).start();

 }

 }

}

This example does not prevent either thread from observing an inconsistent value of counter
because the increment operation on volatile fields is non-atomic in the absence of proper synchro-
nization (see guideline “VNA02-J. Ensure that compound operations on shared variables are
atomic” on page 16).

LCK06-J

CMU/SEI-2010-TR-015 | 62

3.7.2 Noncompliant Code Example (Method Synchronization for Static Data)

This noncompliant code example uses method synchronization to protect access to the static class
counter field.

public final class CountBoxes implements Runnable {

 private static volatile int counter;

 // ...

 public synchronized void run() {

 counter++;

 // ...

 }

 // ...

}

In this case, the intrinsic lock is associated with each instance of the class and not with the class
itself. Consequently, threads constructed using different Runnable instances may observe incon-
sistent values of counter.

3.7.3 Compliant Solution (Static Lock Object)

This compliant solution declares the lock object static and consequently ensures the atomicity of
the increment operation.

public class CountBoxes implements Runnable {

 private static int counter;

 // ...

 private static final Object lock = new Object();

 public void run() {

 synchronized(lock) {

 counter++;

 // ...

 }

 // ...

}

There is no need to declare the counter variable volatile when using synchronization.

3.7.4 Risk Assessment

Using an instance lock to protect shared static data can result in nondeterministic behavior.

Guideline Severity Likelihood Remediation Cost Priority Level

LCK06- J medium probable medium P8 L2

3.7.5 References

[Sun 2009b]

LCK07-J

CMU/SEI-2010-TR-015 | 63

3.8 LCK07-J. Avoid deadlock by requesting and releasing locks in the same order

To avoid data corruption in multithreaded Java programs, shared data must be protected from
concurrent modifications and accesses. Locking can be performed at the object level using syn-
chronized methods, synchronized blocks, or the java.util.concurrent dynamic, lock ob-
jects. However, excessive use of locking can result in deadlock.

Java does not prevent deadlock or require its detection [Gosling 2005]. Deadlock can occur when
two or more threads request and release locks in different orders. Consequently, it can be avoided
by acquiring and releasing locks in the same order.

Additionally, synchronization should be limited to cases where it is absolutely necessary. For ex-
ample, the paint(), dispose(), stop(), and destroy() methods should never be syn-
chronized in an applet because they are always called and used from dedicated threads. The
Thread.stop() and Thread.destroy() methods are deprecated. For more information, see
guideline “THI05-J. Do not use Thread.stop() to terminate threads” on page 110.

This guideline also applies to programs that need to work with a limited set of resources. For ex-
ample, liveness issues can arise when two or more threads are waiting for each other to release
resources such as database connections. These issues can be resolved by letting each waiting
thread retry the operation at random intervals, until they succeed in acquiring the resource suc-
cessfully.

3.8.1 Noncompliant Code Example (Different Lock Orders)

This noncompliant code example can deadlock because of excessive synchronization. The
balanceAmount field represents the total balance amount available for a particular
BankAccount object. A user is allowed to initiate an operation that atomically transfers a speci-
fied amount from one account to another.

final class BankAccount {

 private double balanceAmount; // Total amount in bank account

 BankAccount(double balance) {

 this.balanceAmount = balance;

 }

 // Deposits the amount from this object instance to BankAccount instance argument ba

 private void depositAmount(BankAccount ba, double amount) {

 synchronized (this) {

 synchronized(ba) {

 if(amount > balanceAmount) {

 throw new IllegalArgumentException("Transfer cannot be completed");

 }

 ba.balanceAmount += amount;

 this.balanceAmount -= amount;

 }

 }

 }

LCK07-J

CMU/SEI-2010-TR-015 | 64

 public static void initiateTransfer(final BankAccount first,

 final BankAccount second, final double amount) {

 Thread transfer = new Thread(new Runnable() {

 public void run() {

 first.depositAmount(second, amount);

 }

 });

 transfer.start();

 }

}

Objects of this class are prone to deadlock. An attacker that has two bank accounts can construct
two threads that initiate balance transfers from two different BankAccount object instances, a
and b. For example, consider the following code:

BankAccount a = new BankAccount(5000);

BankAccount b = new BankAccount(6000);

initiateTransfer(a, b, 1000); // starts thread 1

initiateTransfer(b, a, 1000); // starts thread 2

Each transfer is performed in its own thread. The first thread atomically transfers the amount from
a to b by depositing it in account b and then withdrawing the same amount from a. The second
thread performs the reverse operation; that is, it transfers the amount from b to a. When executing
depositAmount(), the first thread acquires a lock on object a. The second thread could acquire
a lock on object b before the first thread can. Subsequently, the first thread would request a lock
on b, which is already held by the second thread. The second thread would request a lock on a,
which is already held by the first thread. This constitutes a deadlock condition, because neither
thread can proceed.

This noncompliant code example may or may not cause deadlock, depending on the scheduling
details of the platform. Deadlock will occur when two threads request the same two locks in dif-
ferent orders and each thread obtains a lock that prevents the other thread from completing its
transfer. Deadlock will not occur when two threads request the same two locks but one thread
completes its transfer before the other thread begins. Similarly, deadlock will not occur if the two
threads request the same two locks in the same order (which would happen if they both transfer
money from one account to a second account) or if two transfers involving distinct accounts occur
concurrently.

3.8.2 Compliant Solution (Private Static Final Lock Object)

Deadlock can be avoided by synchronizing on a private static final lock object before performing
any account transfers.

final class BankAccount {

 private double balanceAmount; // Total amount in bank account

 private static final Object lock = new Object();

 BankAccount(double balance) {

LCK07-J

CMU/SEI-2010-TR-015 | 65

 this.balanceAmount = balance;

 }

 // Deposits the amount from this object instance to BankAccount instance argument ba

 private void depositAmount(BankAccount ba, double amount) {

 synchronized (lock) {

 if (amount > balanceAmount) {

 throw new IllegalArgumentException("Transfer cannot be completed");

 }

 ba.balanceAmount += amount;

 this.balanceAmount -= amount;

 }

 }

 public static void initiateTransfer(final BankAccount first,

 final BankAccount second, final double amount) {

 Thread transfer = new Thread(new Runnable() {

 @Override public void run() {

 first.depositAmount(second, amount);

 }

 });

 transfer.start();

 }

}

In this scenario, deadlock cannot occur when two threads with two different BankAccount ob-
jects try to transfer to each others’ accounts simultaneously. One thread will acquire the private
lock, complete its transfer, and release the lock before the other thread can proceed.

This solution comes with a performance penalty because a private static lock restricts the
system to performing only one transfer at a time. Two transfers involving four distinct accounts
(with distinct target accounts) cannot be performed concurrently. This penalty increases consider-
ably as the number of BankAccount objects increase. Consequently, this solution does not scale
well.

3.8.3 Compliant Solution (Ordered Locks)

This compliant solution ensures that multiple locks are acquired and released in the same order. It
requires that an ordering over BankAccount objects is available. The ordering is enforced by
having the BankAccount class implement the java.lang.Comparable interface and over-
ride the compareTo() method.

final class BankAccount implements Comparable<BankAccount> {

 private double balanceAmount; // Total amount in bank account

 private final Object lock;

 private final long id; // Unique for each BankAccount

 private static long NextID = 0; // Next unused ID

LCK07-J

CMU/SEI-2010-TR-015 | 66

 BankAccount(double balance) {

 this.balanceAmount = balance;

 this.lock = new Object();

 this.id = this.NextID++;

 }

 @Override public int compareTo(BankAccount ba) {

 return (this.id > ba.id) ? 1 : (this.id < ba.id) ? -1 : 0;

 }

 // Deposits the amount from this object instance to BankAccount instance argument ba

 public void depositAmount(BankAccount ba, double amount) {

 BankAccount former, latter;

 if (compareTo(ba) < 0) {

 former = this;

 latter = ba;

 } else {

 former = ba;

 latter = this;

 }

 synchronized (former) {

 synchronized (latter) {

 if (amount > balanceAmount) {

 throw new IllegalArgumentException("Transfer cannot be completed");

 }

 ba.balanceAmount += amount;

 this.balanceAmount -= amount;

 }

 }

 }

 public static void initiateTransfer(final BankAccount first,

 final BankAccount second, final double amount) {

 Thread transfer = new Thread(new Runnable() {

 @Override public void run() {

 first.depositAmount(second, amount);

 }

 });

 transfer.start();

 }

}

Whenever a transfer occurs, the two BankAccount objects are ordered so that the first ob-
ject’s lock is acquired before the second object’s lock. Consequently, if two threads attempt
transfers between the same two accounts, they will both try to acquire the first account’s lock be-
fore the second’s. As a result, one thread will acquire both locks, complete the transfer, and re-
lease both locks before the other thread can proceed.

LCK07-J

CMU/SEI-2010-TR-015 | 67

Unlike in the previous compliant solution, multiple transfers can happen concurrently, as long as
they involve distinct target accounts.

3.8.4 Compliant Solution (ReentrantLock)

In this compliant solution, each BankAccount has an associated
java.util.concurrent.locks.ReentrantLock. This design permits the
depositAmount() method to try to acquire the locks of both accounts and to release the locks
if it fails and try again later.

final class BankAccount {

 private double balanceAmount; // Total amount in bank account

 private final Lock lock = new ReentrantLock();

 private final Random number = new Random(123L);

 BankAccount(double balance) {

 this.balanceAmount = balance;

 }

 // Deposits amount from this object instance to BankAccount instance argument ba

 private void depositAmount(BankAccount ba, double amount)

 throws InterruptedException {

 while (true) {

 if (this.lock.tryLock()) {

 try {

 if (ba.lock.tryLock()) {

 try {

 if (amount > balanceAmount) {

 throw new IllegalArgumentException("Transfer cannot be completed");

 }

 ba.balanceAmount += amount;

 this.balanceAmount -= amount;

 break;

 } finally {

 ba.lock.unlock();

 }

 }

 } finally {

 this.lock.unlock();

 }

 }

 int n = number.nextInt(1000);

 int TIME = 1000 + n; // 1 second + random delay to prevent livelock

 Thread.sleep(TIME);

 }

 }

 public static void initiateTransfer(final BankAccount first,

 final BankAccount second, final double amount) {

LCK07-J

CMU/SEI-2010-TR-015 | 68

 Thread transfer = new Thread(new Runnable() {

 public void run() {

 try {

 first.depositAmount(second, amount);

 } catch (InterruptedException e) {

 Thread.currentThread().interrupt(); // Reset interrupted status

 }

 }

 });

 transfer.start();

 }

}

Deadlock is impossible in this compliant solution because no method grabs a lock and holds it
indefinitely. If the current object’s lock is acquired but the second lock is unavailable, the first
lock is released and the thread sleeps for some specified amount of time before attempting to
reacquire the lock.

Code that uses this lock has behavior similar to that of synchronized code that uses the traditional
monitor lock. ReentrantLock provides several other capabilities. For example, the
tryLock() method does not block waiting, if another thread is already holding the lock. The
java.util.concurrent.locks.ReentrantReadWriteLock class can be used when
some threads require a lock to write information, while other threads require the lock to concur-
rently read the information.

3.8.5 Noncompliant Code Example (Different Lock Orders, Recursive)

The following immutable WebRequest class encapsulates a web request received by a server:

// Immutable WebRequest

public final class WebRequest {

 private final long bandwidth;

 private final long responseTime;

 public WebRequest(long bandwidth, long responseTime) {

 this.bandwidth = bandwidth;

 this.responseTime = responseTime;

 }

 public long getBandwidth() {

 return bandwidth;

 }

 public long getResponseTime() {

 return responseTime;

 }

}

LCK07-J

CMU/SEI-2010-TR-015 | 69

Each request has a response time associated with it, along with a measurement of the network
bandwidth required to fulfill the request.

This noncompliant code example monitors web requests and provides routines for calculating the
average bandwidth and response time required to service incoming requests.

public final class WebRequestAnalyzer {

 private final Vector<WebRequest> requests = new Vector<WebRequest>();

 public boolean addWebRequest(WebRequest request) {

 return requests.add(new WebRequest(request.getBandwidth(),

 request.getResponseTime()));

 }

 public double getAverageBandwidth() {

 if (requests.size() == 0) {

 throw new IllegalStateException("The vector is empty!");

 }

 return calculateAverageBandwidth(0, 0);

 }

 public double getAverageResponseTime() {

 if (requests.size() == 0) {

 throw new IllegalStateException("The vector is empty!");

 }

 return calculateAverageResponseTime(requests.size() - 1, 0);

 }

 private double calculateAverageBandwidth(int i, long bandwidth) {

 if (i == requests.size()) {

 return bandwidth / requests.size();

 }

 synchronized (requests.elementAt(i)) {

 bandwidth += requests.get(i).getBandwidth();

 // Acquires locks in increasing order

 return calculateAverageBandwidth(++i, bandwidth);

 }

 }

 private double calculateAverageResponseTime(int i, long responseTime) {

 if (i <= -1) {

 return responseTime / requests.size();

 }

LCK07-J

CMU/SEI-2010-TR-015 | 70

 synchronized (requests.elementAt(i)) {

 responseTime += requests.get(i).getResponseTime();

 // Acquires locks in decreasing order

 return calculateAverageResponseTime(--i, responseTime);

 }

 }

}

The monitoring application is built around the WebRequestAnalyzer class that maintains a list
of web requests using the requests vector and includes the addWebRequest() setter method.
Any thread can request the average bandwidth or average response time of all web requests by
invoking the getAverageBandwidth() and getAverageResponseTime() methods.

These methods use fine-grained locking by holding locks on individual elements (web requests)
of the vector. These locks permit new requests to be added while the computations are still un-
derway. Consequently, the statistics reported by the methods are accurate when they return the
results.

Unfortunately, this noncompliant code example is prone to deadlock because the recursive calls
within the synchronized regions of these methods acquire the intrinsic locks in opposite numerical
orders. That is, calculateAverageBandwidth() requests locks from index 0 up to
requests.size() - 1, whereas calculateAverageResponseTime() requests them from
index requests.size() - 1 down to 0. Because of recursion, no previously acquired locks are
released by either method. Deadlock occurs when two threads call these methods out of order,
because one thread calls calculateAverageBandwidth(), while the other calls
calculateAverageResponseTime() before either method has finished executing.

For example, if there are 20 requests in the vector and one thread calls
getAverageBandwidth(), the thread acquires the intrinsic lock of WebRequest 0, the first
element in the vector. Meanwhile, if a second thread calls getAverageResponseTime(), it
acquires the intrinsic lock of web request 19, the last element in the vector. Consequently, dead-
lock results because neither thread can acquire all of the locks and proceed with the calculations.

Note that the addWebRequest() method also has a race condition with
calculateAverageResponseTime(). While iterating over the vector, new elements can be
added to the vector, invalidating the results of the previous computation. This race condition can
be prevented by locking on the last element of the vector (when it contains at least one element)
before inserting the element.

LCK07-J

CMU/SEI-2010-TR-015 | 71

3.8.6 Compliant Solution

In this compliant solution, the two calculation methods acquire and release locks in the same or-
der, beginning with the first web request in the vector.

public final class WebRequestAnalyzer {

 private final Vector<WebRequest> requests = new Vector<WebRequest>();

 public boolean addWebRequest(WebRequest request) {

 return requests.add(new WebRequest(request.getBandwidth(),

 request.getResponseTime()));

 }

 public double getAverageBandwidth() {

 if (requests.size() == 0) {

 throw new IllegalStateException("The vector is empty!");

 }

 return calculateAverageBandwidth(0, 0);

 }

 public double getAverageResponseTime() {

 if (requests.size() == 0) {

 throw new IllegalStateException("The vector is empty!");

 }

 return calculateAverageResponseTime(0, 0);

 }

 private double calculateAverageBandwidth(int i, long bandwidth) {

 if (i == requests.size()) {

 return bandwidth / requests.size();

 }

 synchronized (requests.elementAt(i)) { // Acquires locks in increasing order

 bandwidth += requests.get(i).getBandwidth();

 return calculateAverageBandwidth(++i, bandwidth);

 }

 }

 private double calculateAverageResponseTime(int i, long responseTime) {

 if (i == requests.size()) {

 return responseTime / requests.size();

 }

 synchronized (requests.elementAt(i)) {

 responseTime += requests.get(i).getResponseTime();

 // Acquires locks in increasing order

 return calculateAverageResponseTime(++i, responseTime);

 }

 }

}

LCK07-J

CMU/SEI-2010-TR-015 | 72

Consequently, while one thread is calculating the average bandwidth or response time, another
thread cannot interfere or induce deadlock. That is because the other thread first needs to syn-
chronize on the first web request, which cannot happen before the first calculation completes.

There is no need to lock on the last element of the vector in addWebRequest() for two reasons:
(1) because locks are acquired in increasing order in all the methods and (2) because updates to
the vector are reflected in the results of the computations.

3.8.7 Risk Assessment

Acquiring and releasing locks in the wrong order can result in deadlock.

Guideline Severity Likelihood Remediation Cost Priority Level

LCK07- J low likely high P3 L3

3.8.8 References

[Gosling 2005] Chapter 17, “Threads and Locks”

[Halloway 2000]

[MITRE 2010] CWE ID 412, “Unrestricted Lock on Critical Resource”

http://java.sun.com/docs/books/jls/third_edition/html/memory.html�
http://cwe.mitre.org/data/definitions/412.html�

LCK08-J

CMU/SEI-2010-TR-015 | 73

3.9 LCK08-J. Ensure actively held locks are released on exceptional conditions

An exceptional condition can circumvent the release of a lock, leading to deadlock. According to
the Java API [Sun 2009b]

A ReentrantLock is owned by the thread last successfully locking, but not yet unlocking
it. A thread invoking lock will return, successfully acquiring the lock, when the lock is not
owned by another thread.

Consequently, an unreleased lock in any thread will stop other threads from acquiring the same
lock. Intrinsic locks of class objects used for method and block synchronization are automatically
released on exceptional conditions (such as abnormal thread termination).

3.9.1 Noncompliant Code Example (Checked Exception)

This noncompliant code example protects a resource using a ReentrantLock but fails to release
the lock if an exception occurs while performing operations on the open file. If an exception is
thrown, control transfers to the catch block, and the call to unlock() is not executed.

public final class Client {

 public void doSomething(File file) {

 final Lock lock = new ReentrantLock();

 try {

 lock.lock();

 InputStream in = new FileInputStream(file);

 // Perform operations on the open file

 lock.unlock();

 } catch (FileNotFoundException fnf) {

 // Handle the exception

 }

 }

}

Note that the lock is not released, even when the doSomething() method returns.

This noncompliant code example does not close the input stream and, consequently, also violates
guideline “FIO06-J. Ensure all resources are properly closed when they are no longer needed.”5

3.9.2 Compliant Solution (finally Block)

This compliant solution encapsulates operations that may throw an exception in a try block im-
mediately after acquiring the lock. The lock is acquired just before the try block, which guaran-
tees that the lock is held when the finally block executes. Invoking Lock.unlock() in the
finally block ensures that the lock is released, regardless of whether an exception occurred.

public final class Client {

 public void doSomething(File file) {

 final Lock lock = new ReentrantLock();

5 This guideline is described at https://www.securecoding.cert.org/confluence/display/java/.

https://www.securecoding.cert.org/confluence/x/9gFqAQ�
https://www.securecoding.cert.org/confluence/display/java/

LCK08-J

CMU/SEI-2010-TR-015 | 74

 InputStream in = null;

 lock.lock();

 try {

 in = new FileInputStream(file);

 // Perform operations on the open file

 } catch(FileNotFoundException fnf) {

 // Forward to handler

 } finally {

 lock.unlock();

 if(in != null) {

 try {

 in.close();

 } catch (IOException e) {

 // Forward to handler

 }

 }

 }

 }

}

3.9.3 Compliant Solution (Execute-Around Idiom)

The execute-around idiom provides a generic mechanism for performing resource allocation and
clean-up operations so that the client can focus on specifying only the required functionality. This
idiom reduces clutter in client code and provides a secure mechanism for resource management.

In this compliant solution, the client’s doSomething() method provides only the required func-
tionality by implementing the doSomethingWithFile() method of the LockAction inter-
face, without having to manage the acquisition and release of locks or the open and close opera-
tions of files. The ReentrantLockAction class encapsulates all resource management actions.

public interface LockAction {

 void doSomethingWithFile(InputStream in);

}

public final class ReentrantLockAction {

 public static void doSomething(File file, LockAction action) {

 Lock lock = new ReentrantLock();

 InputStream in = null;

 lock.lock();

 try {

 in = new FileInputStream(file);

 action.doSomethingWithFile(in);

 } catch (FileNotFoundException fnf) {

 // Forward to handler

 } finally {

 lock.unlock();

LCK08-J

CMU/SEI-2010-TR-015 | 75

 if (in != null) {

 try {

 in.close();

 } catch (IOException e) {

 // Forward to handler

 }

 }

 }

 }

}

public final class Client {

 public void doSomething(File file) {

 ReentrantLockAction.doSomething(file, new LockAction() {

 public void doSomethingWithFile(InputStream in) {

 // Perform operations on the open file

 }

 });

 }

}

3.9.4 Noncompliant Code Example (Unchecked Exception)

This noncompliant code example uses a ReentrantLock to protect a java.util.Date in-
stance, which is not thread-safe by design. The doSomethingSafely() method must catch
Throwable to comply with guideline “EXC06-J. Do not allow exceptions to transmit sensitive
information.”6

final class DateHandler {

 private final Date date = new Date();

 final Lock lock = new ReentrantLock();

 public void doSomethingSafely(String str) {

 try {

 doSomething(str);

 } catch(Throwable t) {

 // Forward to handler

 }

 }

 public void doSomething(String str) {

 lock.lock();

 String dateString = date.toString();

 if (str.equals(dateString)) {

 // ...

 }

 lock.unlock();

 }

}

6 This guideline is described at https://www.securecoding.cert.org/confluence/display/java/.

https://www.securecoding.cert.org/confluence/display/java/EXC06-J.+Do+not+allow+exceptions+to+transmit+sensitive+information�
https://www.securecoding.cert.org/confluence/display/java/EXC06-J.+Do+not+allow+exceptions+to+transmit+sensitive+information�
https://www.securecoding.cert.org/confluence/display/java/

LCK08-J

CMU/SEI-2010-TR-015 | 76

Because the doSomething() method fails to check if str is null, a runtime exception can oc-
cur, preventing the lock from being released.

3.9.5 Compliant Solution (finally Block)

This compliant solution encapsulates all operations that can throw an exception in a try block
and releases the lock in the associated finally block.

final class DateHandler {

 private final Date date = new Date();

 final Lock lock = new ReentrantLock();

 public void doSomethingSafely(String str) {

 try {

 doSomething(str);

 } catch(Throwable t) {

 // Forward to handler

 }

 }

 public void doSomething(String str) {

 lock.lock();

 try {

 String dateString = date.toString();

 if (str != null && str.equals(dateString)) {

 // ...

 }

 } finally {

 lock.unlock();

 }

 }

}

Consequently, the lock is released even in the event of a runtime exception. The
doSomething() method also ensures that the string is not null to avoid throwing a
NullPointerException.

3.9.6 Risk Assessment

Failing to release locks on exceptional conditions may lead to thread starvation and deadlock.

Guideline Severity Likelihood Remediation Cost Priority Level

LCK08- J low likely low P9 L2

3.9.7 References

[Sun 2009b] Class ReentrantLock

LCK09-J

CMU/SEI-2010-TR-015 | 77

3.10 LCK09-J. Do not perform operations that may block while holding a lock

Holding locks while performing time-consuming or blocking operations can severely degrade
system performance and result in starvation. Furthermore, deadlock can result if interdependent
threads block indefinitely. Blocking operations include network, file, and console I/O (for exam-
ple, Console.readLine()) and object serialization. Deferring a thread indefinitely also consti-
tutes a blocking operation.

If the JVM interacts with a file system that operates over an unreliable network, file I/O might
incur a large performance penalty. In such cases, avoid file I/O over the network when holding a
lock. File operations (such as logging) that may block waiting for the output stream lock or for
I/O to complete may be performed in a dedicated thread to speed up task processing. Logging
requests can be added to a queue, given that the queue’s put() operation incurs little overhead as
compared to file I/O [Goetz 2006].

3.10.1 Noncompliant Code Example (Deferring a Thread)

This noncompliant code example defines a utility method that accepts a time argument.

public synchronized void doSomething(long time)

 throws InterruptedException {

 // ...

 Thread.sleep(time);

}

Because the method is synchronized, if the thread is suspended, other threads are unable to use the
synchronized methods of the class. The current object’s monitor is not released because the
Thread.sleep() method does not have any synchronization semantics, as detailed in guideline
“THI00-J. Do not assume that the sleep(), yield(), or getState() methods provide syn-
chronization semantics” on page 91.

3.10.2 Compliant Solution (Intrinsic Lock)

This compliant solution defines the doSomething() method with a timeout parameter instead
of the time value. Using the Object.wait() rather than the Thread.sleep() method al-
lows setting a timeout period during which a notification may awaken the thread.

public synchronized void doSomething(long timeout)

 throws InterruptedException {

 while (<condition does not hold>) {

 wait(timeout); // Immediately leaves current monitor

 }

}

The current object’s monitor is released immediately upon entering the wait state. After the time-
out period has elapsed, the thread resumes execution after reacquiring the current object’s moni-
tor.

LCK09-J

CMU/SEI-2010-TR-015 | 78

According to the Java API class Object documentation [Sun 2009b]
Note that the wait method, as it places the current thread into the wait set for this object,
unlocks only this object; any other objects on which the current thread may be synchronized
remain locked while the thread waits. This method should only be called by a thread that is
the owner of this object's monitor.

Ensure that a thread that holds locks on other objects releases them appropriately, before entering
the wait state. Additional guidance on waiting and notification is available in guidelines “THI03-
J. Always invoke wait() and await() methods inside a loop” on page 101 and “THI04-J. Notify all
waiting threads instead of a single thread” on page 104.

3.10.3 Noncompliant Code Example (Network I/O)

This noncompliant code example shows the sendPage()method that sends a Page object from
a server to a client. The method is synchronized so that the pageBuff array is accessed safely
when multiple threads request concurrent access.

// Class Page is defined separately. It stores and returns the Page name via getName()

Page[] pageBuff = new Page[MAX_PAGE_SIZE];

public synchronized boolean sendPage(Socket socket, String pageName)

 throws IOException {

 // Get the output stream to write the Page to

 ObjectOutputStream out = new ObjectOutputStream(socket.getOutputStream());

 // Find the Page requested by the client (this operation requires synchronization)

 Page targetPage = null;

 for (Page p : pageBuff) {

 if (p.getName().compareTo(pageName) == 0) {

 targetPage = p;

 }

 }

 // Requested Page does not exist

 if (targetPage == null) {

 return false;

 }

 // Send the Page to the client (does not require any synchronization)

 out.writeObject(targetPage);

 out.flush();

 out.close();

 return true;

}

Calling writeObject() within the synchronized sendPage() method can result in delays and
deadlock-like conditions in high-latency networks or when network connections are inherently
lossy.

LCK09-J

CMU/SEI-2010-TR-015 | 79

3.10.4 Compliant Solution

This compliant solution separates the process into a sequence of steps:
1. Perform actions on data structures requiring synchronization.
2. Create copies of the objects to be sent.
3. Perform network calls in a separate method that does not require any synchronization.

In this compliant solution, the synchronized getPage()method is called from the unsynchro-
nized sendPage() method to retrieve the requested Page in the pageBuff array. After the
Page is retrieved, sendPage() calls the unsynchronized deliverPage()method to deliver
the Page to the client.

public boolean sendPage(Socket socket, String pageName) { // No synchronization

 Page targetPage = getPage(pageName);

 if (targetPage == null)

 return false;

 return deliverPage(socket, targetPage);

}

private synchronized Page getPage(String pageName) { // Requires synchronization

 Page targetPage = null;

 for (Page p : pageBuff) {

 if (p.getName().equals(pageName)) {

 targetPage = p;

 }

 }

 return targetPage;

}

// Return false if an error occurs, true if successful

public boolean deliverPage(Socket socket, Page page) {

 ObjectOutputStream out = null;

 boolean result = true;

 try {

 // Get the output stream to write the Page to

 out = new ObjectOutputStream(socket.getOutputStream());

 // Send the Page to the client

 out.writeObject(page);

 } catch (IOException io) {

 result = false;

 } finally {

 if (out != null) {

 try {

 out.flush();

LCK09-J

CMU/SEI-2010-TR-015 | 80

 out.close();

 } catch (IOException e) {

 result = false;

 }

 }

 }

 return result;

}

3.10.5 Exceptions

LCK09-EX1: Classes that provide an appropriate termination mechanism to callers are allowed
to violate this guideline (see guideline “THI06-J. Ensure that threads and tasks performing block-
ing operations can be terminated” on page 114).

LCK09-EX2: A method that requires multiple locks may hold several locks while waiting for the
remaining locks to become available. This constitutes a valid exception, although the programmer
must follow other applicable guidelines to avoid deadlock. See guideline “LCK07-J. Avoid dead-
lock by requesting and releasing locks in the same order” on page 63 for more information.

3.10.6 Risk Assessment

Blocking or lengthy operations performed within synchronized regions may result in a deadlocked
or unresponsive system.

Guideline Severity Likelihood Remediation Cost Priority Level

LCK09-J low probable high P2 L3

3.10.7 References

[Gosling 2005] Chapter 17, “Threads and Locks”

[Grosso 2001] Chapter 10, “Serialization”

[Rotem-Gal-Oz 2008] “Falacies of Distributed Computing Explained”

[Sun 2009b] Class Object

http://java.sun.com/docs/books/jls/third_edition/html/memory.html�
http://oreilly.com/catalog/javarmi/chapter/ch10.html�
http://www.rgoarchitects.com/Files/fallacies.pdf�

LCK10-J

CMU/SEI-2010-TR-015 | 81

3.11 LCK10-J. Do not use incorrect forms of the double-checked locking idiom

Instead of initializing a member object using a constructor, lazy initialization can be used to defer
the construction of the member object until an instance is actually required. Lazy initialization
also helps in breaking harmful circularities in class and instance initialization, and performing
other optimizations [Bloch 2005a].

A class or an instance method is used for lazy initialization, depending on whether the member
object is static. The method checks whether the instance has already been created and, if not,
creates it. If the instance already exists, it simply returns it:

// Correct single threaded version using lazy initialization

final class Foo {

 private Helper helper = null;

 public Helper getHelper() {

 if (helper == null) {

 helper = new Helper();

 }

 return helper;

 }

 // ...

}

In a multithreaded application, initialization must be synchronized so that multiple threads do not
create extraneous instances of the member object:

// Correct multithreaded version using synchronization

final class Foo {

 private Helper helper = null;

 public synchronized Helper getHelper() {

 if (helper == null) {

 helper = new Helper();

 }

 return helper;

 }

 // ...

}

The double-checked locking idiom improves performance by limiting synchronization to the rare
case of new instance creation and foregoing it during the common case of retrieving an already
created instance.

Incorrect forms of the double-checked idiom include those that allow an uninitialized or partially
initialized object to be published.

LCK10-J

CMU/SEI-2010-TR-015 | 82

3.11.1 Noncompliant Code Example

The double-checked locking pattern uses block synchronization instead of method synchroniza-
tion and installs an additional null check before attempting synchronization. This noncompliant
code example uses the incorrect form of the double-checked locking idiom.

// "Double-Checked Locking" idiom

final class Foo {

 private Helper helper = null;

 public Helper getHelper() {

 if (helper == null) {

 synchronized (this) {

 if (helper == null) {

 helper = new Helper();

 }

 }

 }

 return helper;

 }

 // Other methods and members...

}

According to Pugh [Pugh 2004]
. . . writes that initialize the Helper object and the write to the helper field can be done or
perceived out of order. As a result, a thread which invokes getHelper() could see a non-
null reference to a helper object, but see the default values for fields of the helper object,
rather than the values set in the constructor.
Even if the compiler does not reorder those writes, on a multiprocessor the processor or the
memory system may reorder those writes, as perceived by a thread running on another pro-
cessor.

Also see guideline “TSM03-J. Do not publish partially initialized objects” on page 162.

3.11.2 Compliant Solution (Volatile)

This compliant solution declares the helper field volatile.

// Works with acquire/release semantics for volatile

// Broken under JDK 1.4 and earlier

final class Foo {

 private volatile Helper helper = null;

 public Helper getHelper() {

 if (helper == null) {

 synchronized (this) {

 if (helper == null) {

 helper = new Helper(); // If the helper is null, create a new instance

 }

 }

LCK10-J

CMU/SEI-2010-TR-015 | 83

 }

 return helper; // If helper is non-null, return its instance

 }

}

If a thread initializes the Helper object, a happens-before relationship is established between this
thread and another that retrieves and returns the instance [Pugh 2004, Manson 2004].

3.11.3 Compliant Solution (Static Initialization)

This compliant solution initializes the helper field in the declaration of the static variable.7

final class Foo {

 private static final Helper helper = new Helper();

 public static Helper getHelper() {

 return helper;

 }

}

Variables that are declared static and initialized at declaration, or from a static initializer, are
guaranteed to be fully constructed before being made visible to other threads.

3.11.4 Compliant Solution (Initialize-On-Demand, Holder Class Idiom)

This compliant solution uses the initialize-on-demand, holder class idiom that implicitly incorpo-
rates lazy initialization by declaring a static variable within the static Holder inner class.

final class Foo {

 // Lazy initialization

 private static class Holder {

 static Helper helper = new Helper();

 }

 public static Helper getInstance() {

 return Holder.helper;

 }

}

Initialization of the static helper field is deferred until the getInstance() method is called.
This idiom is a better choice than the double-checked, locking idiom for lazily initializing static
fields [Bloch 2008]. However, this idiom cannot be used to lazily initialize instance fields [Bloch
2001].

7 The Java Memory Model: the building block of concurrency, by Jeremy Manson. Java Developer Connection

Tech Tips, by Glen McCluskey, April 10, 2001.

LCK10-J

CMU/SEI-2010-TR-015 | 84

3.11.5 Compliant Solution (ThreadLocal Storage)

This compliant solution (originally suggested by Terekhov [Pugh 2004]) uses a ThreadLocal
object to lazily create a Helper instance.

final class Foo {

 private final ThreadLocal<Foo> perThreadInstance = new ThreadLocal<Foo>();

 private Helper helper = null;

 public Helper getHelper() {

 if (perThreadInstance.get() == null) {

 createHelper();

 }

 return helper;

 }

 private synchronized void createHelper() {

 if (helper == null) {

 helper = new Helper();

 }

 // Any non-null value can be used as an argument to set()

 perThreadInstance.set(this);

 }

}

3.11.6 Compliant Solution (Immutable)

In this compliant solution, the Helper class is immutable and consequently guaranteed to be ful-
ly constructed before becoming visible. In this case, there are no further requirements to ensure
that the double-checked locking idiom does not result in the publication of an uninitialized or par-
tially initialized field.

public final class Helper {

 private final int n;

 public Helper(int n) {

 this.n = n;

 }

 // Other fields and methods, all fields are final

}

final class Foo {

 private Helper helper = null;

 public Helper getHelper() {

 if (helper == null) {

 synchronized (this) {

 if (helper == null) {

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Pugh04�

LCK10-J

CMU/SEI-2010-TR-015 | 85

 helper = new Helper(42); // If the helper is null, create a new instance

 }

 }

 }

 return helper; // If helper is non-null, return its instance

 }

}

3.11.7 Exceptions

LCK10-EX1: The noncompliant form of the double-checked locking idiom can be used for 32-bit
primitive values (for example, int or float) [Pugh 2004]. Note that it does not work for values
of type long or double because unsynchronized reads/writes of 64-bit primitives are not guar-
anteed to be atomic (see guideline “VNA05-J. Ensure atomicity when reading and writing 64-bit
values” on page 33).

3.11.8 Risk Assessment

Using incorrect forms of the double-checked, locking idiom can lead to synchronization prob-
lems.

Guideline Severity Likelihood Remediation Cost Priority Level

LCK10- J low probable medium P4 L3

3.11.9 References

[Bloch 2001] Item 48: “Synchronize access to shared mutable data”

[Bloch 2008] Item 71: “Use lazy initialization judiciously”

[Gosling 2005] Section 12.4, “Initialization of Classes and Interfaces”

[MITRE 2010] CWE ID 609 “Double-Checked Locking”

[Pugh 2004]

[Sun 2009b]

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Pugh04�
http://cwe.mitre.org/data/definitions/609.html�

LCK11-J

CMU/SEI-2010-TR-015 | 86

3.12 LCK11-J. Avoid client-side locking when using classes that do not commit to
their locking strategy

According to Goetz and colleagues [Goetz 2006]
Client-side locking entails guarding client code that uses some object X with the lock X uses
to guard its own state. In order to use client-side locking, you must know what lock X uses.

While client-side locking is acceptable if the thread-safe class commits to its locking strategy and
clearly documents it, Goetz and colleagues caution against its misuse [Goetz 2006]:

If extending a class to add another atomic operation is fragile because it distributes the lock-
ing code for a class over multiple classes in an object hierarchy, client-side locking is even
more fragile because it entails putting locking code for class C into classes that are totally
unrelated to C. Exercise care when using client-side locking on classes that do not commit to
their locking strategy.

The documentation of a class that supports client-side locking should explicitly state its applica-
bility. For example, the java.util.concurrent.ConcurrentHashMap<K,V> class should
not be used for client-side locking because its documentation states [Sun 2009b]

. . . even though all operations are thread-safe, retrieval operations do not entail locking,
and there is not any support for locking the entire table in a way that prevents all access.
This class is fully interoperable with Hashtable in programs that rely on its thread safety
but not on its synchronization details.

In general, use client-side locking only when the documentation of the class recommends it. For
example, the documentation of the synchronizedList()wrapper method of the
java.util.Collections class states [Sun 2009b]

In order to guarantee serial access, it is critical that all access to the backing list is accom-
plished through the returned list. It is imperative that the user manually synchronize on the
returned list when iterating over it. Failure to follow this advice may result in non-
deterministic behavior.

When the backing list is inaccessible to an untrusted client, note that this advice is consistent with
guideline “LCK04-J. Do not synchronize on a collection view if the backing collection is accessi-
ble” on page 57.

3.12.1 Noncompliant Code Example (Intrinsic Lock)

This noncompliant code example uses the thread-safe Book class that cannot be refactored. Re-
factoring might be impossible, for example, if the source code is not available for review or the
class is part of a general library that cannot be extended.

final class Book {

 // May change its locking policy in the future to use private final locks

 private final String title;

 private Calendar dateIssued;

 private Calendar dateDue;

 Book(String title) {

 this.title = title;

LCK11-J

CMU/SEI-2010-TR-015 | 87

 }

 public synchronized void issue(int days) {

 dateIssued = Calendar.getInstance();

 dateDue = Calendar.getInstance();

 dateDue.add(dateIssued.DATE, days);

 }

 public synchronized Calendar getDueDate() {

 return dateDue;

 }

}

This class does not commit to its locking strategy (that is, it reserves the right to change its lock-
ing strategy without notice). Furthermore, it does not document that callers can use client-side
locking safely. The BookWrapper client class uses client-side locking in the renew() method
by synchronizing on a Book instance.

// Client

public class BookWrapper {

 private final Book book;

 BookWrapper(Book book) {

 this.book = book;

 }

 public void issue(int days) {

 book.issue(days);

 }

 public Calendar getDueDate() {

 return book.getDueDate();

 }

 public void renew() {

 synchronized(book) {

 if (book.getDueDate().before(Calendar.getInstance())) {

 throw new IllegalStateException("Book overdue");

 } else {

 book.issue(14); // Issue book for 14 days

 }

 }

 }

}

If the Book class changes its synchronization policy in the future, the BookWrapper class’s
locking strategy might silently break. For instance, the BookWrapper class’s locking strategy
breaks if Book is modified to use a private final lock object, as recommended by guideline
“LCK00-J. Use private final lock objects to synchronize classes that may interact with untrusted

LCK11-J

CMU/SEI-2010-TR-015 | 88

code” on page 41. The BookWrapper class’s locking strategy breaks because threads that call
BookWrapper.getDueDate() may perform operations on the thread-safe Book using its new
locking policy. However, threads that call the renew()method will always synchronize on the
intrinsic lock of the Book instance. Consequently, the implementation will use two different
locks.

3.12.2 Compliant Solution (Private Final Lock Object)

This compliant solution uses a private final lock object and synchronizes the methods of the
BookWrapper class using this lock.

public final class BookWrapper {

 private final Book book;

 private final Object lock = new Object();

 BookWrapper(Book book) {

 this.book = book;

 }

 public void issue(int days) {

 synchronized(lock) {

 book.issue(days);

 }

 }

 public Calendar getDueDate() {

 synchronized(lock) {

 return book.getDueDate();

 }

 }

 public void renew() {

 synchronized(lock) {

 if (book.getDueDate().before(Calendar.getInstance())) {

 throw new IllegalStateException("Book overdue");

 } else {

 book.issue(14); // Issue book for 14 days

 }

 }

 }

}

The BookWrapper class’s locking strategy is now independent of the locking policy of the Book
instance.

3.12.3 Noncompliant Code Example (Class Extension and Accessible Member Lock)

Goetz and colleagues describe the fragility of class extension for adding functionality to thread-
safe classes [Goetz 2006]:

LCK11-J

CMU/SEI-2010-TR-015 | 89

Extension is more fragile than adding code directly to a class, because the implementation of
the synchronization policy is now distributed over multiple, separately maintained source
files. If the underlying class were to change its synchronization policy by choosing a differ-
ent lock to guard its state variables, the subclass would subtly and silently break, because it
no longer used the right lock to control concurrent access to the base class’s state.

In this noncompliant code example, the PrintableIPAddressList class extends the
thread-safe IPAddressList class. PrintableIPAddressList locks on
IPAddressList.ips in the addAndPrintIPAddresses()method. This is another example
of client-side locking because a subclass is using an object owned and locked by its superclass.

// This class may change its locking policy in the future, for example,

// if new non-atomic methods are added

class IPAddressList {

 private final List<InetAddress> ips =

 Collections.synchronizedList(new ArrayList<InetAddress>());

 public List<InetAddress> getList() {

 return ips; // No defensive copies required as package-private visibility

 }

 public void addIPAddress(InetAddress address) {

 ips.add(address);

 }

}

class PrintableIPAddressList extends IPAddressList {

 public void addAndPrintIPAddresses(InetAddress address) {

 synchronized(getList()) {

 addIPAddress(address);

 InetAddress[] ia = (InetAddress[]) getList().toArray(new InetAddress[0]);

 // ...

 }

 }

}

If the IPAddressList class is modified to use block synchronization on a private final lock
object (as recommended by guideline “LCK00-J. Use private final lock objects to synchronize
classes that may interact with untrusted code” on page 41), the PrintableIPAddressList
subclass will silently break. Moreover, if a wrapper such as
Collections.synchronizedList() is used, it is difficult for a client to determine the type
of the class being wrapped in order to extend it [Goetz 2006].

3.12.4 Compliant Solution (Composition)

This compliant solution wraps an object of the IPAddressList class and provides synchronized
accessors that can be used to manipulate the state of the object.

LCK11-J

CMU/SEI-2010-TR-015 | 90

Composition offers encapsulation benefits, usually with minimal overhead. Refer to guideline
“OBJ07-J. Understand how a superclass can affect a subclass for more information on composi-
tion.”8

// Class IPAddressList remains unchanged

class PrintableIPAddressList {

 private final IPAddressList ips;

 public PrintableIPAddressList(IPAddressList list) {

 this.ips = list;

 }

 public synchronized void addIPAddress(InetAddress address) {

 ips.addIPAddress(address);

 }

 public synchronized void addAndPrintIPAddresses(InetAddress address) {

 addIPAddress(address);

 InetAddress[] ia = (InetAddress[]) ips.getList().toArray(new InetAddress[0]);

 // ...

 }

}

In this case, composition allows the PrintableIPAddressList class to use its own intrinsic
lock independent of the underlying list class’s lock. The underlying collection does not need to be
thread-safe because the PrintableIPAddressList wrapper prevents direct access to its me-
thods by publishing its own synchronized equivalents. This approach provides consistent locking
even if the underlying class changes its locking policy in the future [Goetz 2006].

3.12.5 Risk Assessment

Using client-side locking when the thread-safe class does not commit to its locking strategy can
cause data inconsistencies and deadlock.

Guideline Severity Likelihood Remediation Cost Priority Level

LCK11- J low probable medium P4 L3

3.12.6 References

[Goetz 2006] Section 4.4.1, “Client-side Locking”

Section 4.4.2, “Composition”

Section 5.2.1, “ConcurrentHashMap”

[Lee 2009] “Map & Compound Operation”

[Oaks 2004] Section 8.2, “Synchronization and Collection Classes”

[Sun 2009b] Class Vector, Class WeakReference, Class ConcurrentHashMap<K,V>

8 This guideline is described at https://www.securecoding.cert.org/confluence/display/java/.

https://www.securecoding.cert.org/confluence/display/java/OBJ07-J.+Understand+how+a+superclass+can+affect+a+subclass�
https://www.securecoding.cert.org/confluence/display/java/OBJ07-J.+Understand+how+a+superclass+can+affect+a+subclass�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Goetz06�
https://www.securecoding.cert.org/confluence/display/java/

THI00-J

CMU/SEI-2010-TR-015 | 91

4 Thread APIs (THI) Guidelines

4.1 THI00-J. Do not assume that the sleep(), yield(), or getState() methods provide
synchronization semantics

According to Section 17.9, “Sleep and Yield” of the Java Language Specification [Gosling 2005]
It is important to note that neither Thread.sleep nor Thread.yield have any synchro-
nization semantics. In particular, the compiler does not have to flush writes cached in regis-
ters out to shared memory before a call to Thread.sleep or Thread.yield, nor does
the compiler have to reload values cached in registers after a call to Thread.sleep or
Thread.yield.

Incorrectly assuming that thread suspension and yielding do any of the following can result in
unexpected behavior:
• flush the cached registers

• reload any values

• provide any happens-before relationships when execution resumes

4.1.1 Noncompliant Code Example (sleep())

This noncompliant code example attempts to use a non-volatile Boolean done as a flag to termi-
nate the execution of a thread. A separate thread sets done to true by calling the shutdown()
method.

final class ControlledStop implements Runnable {

 private boolean done = false;

 @Override public void run() {

 while (!done) {

 try {

 Thread.sleep(1000);

 } catch (InterruptedException e) {

 Thread.currentThread().interrupt(); // Reset interrupted status

 }

 }

 }

 public void shutdown() {

 this.done = true;

 }

}

However, the compiler is free to read the field this.done once and reuse the cached value in
each execution of the loop. Consequently, the while loop might not terminate, even if another
thread calls the shutdown() method to change the value of this.done [Gosling 2005]. This

https://www.securecoding.cert.org/confluence/display/java/BB.+Definitions#BB.Definitions-happensbeforeorder�

THI00-J

CMU/SEI-2010-TR-015 | 92

error could have resulted from the programmer incorrectly assuming that the call to
Thread.sleep() would cause cached values to be reloaded.

4.1.2 Compliant Solution (Volatile Flag)

This compliant solution declares the flag volatile to ensure that updates to it are made visible
across multiple threads.

final class ControlledStop implements Runnable {

 private volatile boolean done = false;

 // ...

}

The volatile flag establishes a happens-before relationship between this thread and any other
thread that sets done.

4.1.3 Compliant Solution (Thread.interrupt())

A better solution for methods that call sleep() is to use thread interruption, which causes the
sleeping thread to wake up immediately and handle the interruption.

final class ControlledStop implements Runnable {

 @Override public void run() {

 while (!Thread.interrupted()) {

 try {

 Thread.sleep(1000);

 } catch (InterruptedException e) {

 Thread.currentThread().interrupt();

 }

 }

 }

 public void shutdown() {

 Thread.currentThread().interrupt();

 }

}

4.1.4 Noncompliant Code Example (getState())

This noncompliant code example starts a thread in the doSomething() method. The thread
supports interruption by checking the volatile flag and blocks waiting until notified. The stop()
method notifies the thread if it is blocked on the wait and sets the flag to true so that the thread
can terminate.

public class Waiter {

 private Thread thread;

 private volatile boolean flag;

 private final Object lock = new Object();

THI00-J

CMU/SEI-2010-TR-015 | 93

 public void doSomething() {

 thread = new Thread(new Runnable() {

 @Override public void run() {

 synchronized(lock) {

 while (!flag) {

 try {

 lock.wait();

 // ...

 } catch (InterruptedException e) {

 // Forward to handler

 }

 }

 }

 }

 });

 thread.start();

 }

 public boolean stop() {

 if (thread != null) {

 if (thread.getState() == Thread.State.WAITING) {

 flag = true;

 synchronized (lock) {

 lock.notifyAll();

 }

 return true;

 }

 }

 return false;

 }

}

Unfortunately, the stop() method incorrectly uses the Thread.getState() method to check
whether the thread is blocked and has not terminated before delivering the notification. Using the
Thread.getState() method for synchronization control such as checking whether a thread is
blocked on a wait is inappropriate. This is true because a blocked thread is not always required to
enter the WAITING or TIMED_WAITING state in cases where the JVM implements blocking us-
ing spin-waiting [Goetz 2006]. Because the thread may never enter the WAITING state, the
stop() method may not terminate the thread.

THI00-J

CMU/SEI-2010-TR-015 | 94

4.1.5 Compliant Solution

This compliant solution removes the check for determining whether the thread is in the WAITING
state. This check is unnecessary because invoking notifyAll() on a thread that is not blocked
on a wait() invocation has no effect.

public class Waiter {

 // ...

 public boolean stop() {

 if (thread != null) {

 flag = true;

 synchronized (lock) {

 lock.notifyAll();

 }

 return true;

 }

 return false;

 }

}

4.1.6 Risk Assessment

Relying on the Thread class’s sleep(), yield(), and getState() methods for synchroniza-
tion control can cause unexpected behavior.

Guideline Severity Likelihood Remediation Cost Priority Level

THI00- J low probable medium P4 L3

4.1.7 References

[Gosling 2005] Section 17.9, “Sleep and Yield”

THI01-J

CMU/SEI-2010-TR-015 | 95

4.2 THI01-J. Do not invoke ThreadGroup methods

Each thread in Java is assigned to a thread group upon the thread’s creation. These groups are im-
plemented by the java.lang.ThreadGroup class. If the thread group name is not specified
explicitly, the main default group is assigned by the JVM [Sun 2008a]. The convenience methods
of the ThreadGroup class can be used to operate on all threads belonging to a thread group at
once. For example, the ThreadGroup.interrupt() method interrupts all threads in the
thread group. Thread groups also help reinforce layered security by confining threads into groups
so that they do not interfere with threads in other groups [Oaks 2004].

Even though thread groups are useful for keeping threads organized, programmers seldom benefit
from their use because many of the ThreadGroup class methods are deprecated (for example,
allowThreadSuspension(), resume(), stop(), and suspend()). Furthermore, many
non-deprecated methods are obsolete in that they offer little desirable functionality. Ironically, a
few ThreadGroup methods are not even thread-safe [Bloch 2001].

The insecure yet non-deprecated methods include
• ThreadGroup.activeCount()

According to the Java API, the activeCount() method [Sun 2009b]
Returns an estimate of the number of active threads in this thread group

This method is often used as a precursor to thread enumeration. If a thread is not started, it
continues to reside in the thread group and is considered to be active. Furthermore, the active
count is affected by the presence of certain system threads [Sun 2009b]. Consequently, the
activeCount() method may not reflect the actual number of running tasks in the thread group.

• ThreadGroup.enumerate()
According to the Java API, ThreadGroup class documentation [Sun 2009b]

[The enumerate() method] Copies into the specified array every active thread in this
thread group and its subgroups. An application should use the activeCount method to
get an estimate of how big the array should be. If the array is too short to hold all the
threads, the extra threads are silently ignored.

Using the ThreadGroup APIs to shut down threads also has pitfalls. Because the stop() me-
thod is deprecated, alternative ways are required to stop threads. According to the Java Program-
ming Language [Arnold 2006]

One way is for the thread initiating the termination to join the other threads and so know
when those threads have terminated. However, an application may have to maintain its own
list of the threads it creates because simply inspecting the ThreadGroup may return library
threads that do not terminate and for which join will not return.

The Executor framework provides a better API for managing a logical grouping of threads and
offers secure facilities for handling shutdown and thread exceptions [Bloch 2008].

4.2.1 Noncompliant Code Example

This noncompliant code example contains a NetworkHandler class that maintains a
controller thread. This thread delegates a new request to a worker thread. To demonstrate the
race condition in this example, the controller thread services three requests by starting three

THI01-J

CMU/SEI-2010-TR-015 | 96

threads in succession from its run() method. All threads are defined to belong to the Chief
thread group.

final class HandleRequest implements Runnable {

 public void run() {

 // Do something

 }

}

public final class NetworkHandler implements Runnable {

 private static ThreadGroup tg = new ThreadGroup("Chief");

 @Override public void run() {

 new Thread(tg, new HandleRequest(), "thread1").start(); // Start thread 1

 new Thread(tg, new HandleRequest(), "thread2").start(); // Start thread 2

 new Thread(tg, new HandleRequest(), "thread3").start(); // Start thread 3

 }

 public static void printActiveCount(int point) {

 System.out.println("Active Threads in Thread Group " + tg.getName() +

 " at point(" + point + "):" + " " + tg.activeCount());

 }

 public static void printEnumeratedThreads(Thread[] ta, int len) {

 System.out.println("Enumerating all threads...");

 for(int i = 0; i < len; i++) {

 System.out.println("Thread " + i + " = " + ta[i].getName());

 }

 }

 public static void main(String[] args) throws InterruptedException {

 // Start thread controller

 Thread thread = new Thread(tg, new NetworkHandler(), "controller");

 thread.start();

 Thread[] ta = new Thread[tg.activeCount()]; // Gets the active count (insecure)

 printActiveCount(1); // P1

 Thread.sleep(1000); // Delay to demonstrate TOCTOU condition (race window)

 printActiveCount(2); // P2: the thread count changes as new threads are initiated

 // Incorrectly uses the (now stale) thread count obtained at P1

 int n = tg.enumerate(ta);

 printEnumeratedThreads(ta, n); // Silently ignores newly initiated threads

 // (between P1 and P2)

 // This code destroys the thread group if it does not have any alive threads

 for (Thread thr : ta) {

 thr.interrupt();

 while(thr.isAlive());

THI01-J

CMU/SEI-2010-TR-015 | 97

 }

 tg.destroy();

 }

}

There is a time-of-check-to-time-of-use (TOCTOU) vulnerability in this implementation because
obtaining the count and enumerating the list do not constitute an atomic operation. If new requests
occur after the call to activeCount() and before the call to enumerate() in the main()
method, the total number of threads in the group will increase but the enumerated list ta will con-
tain only the initial number, that is, two thread references (main and controller). Consequent-
ly, the program will fail to account for the newly started threads in the Chief thread group.

Any subsequent use of the ta array is insecure. For example, calling the destroy() method to
destroy the thread group and its subgroups will not work as expected. The precondition to calling
destroy() is that the thread group is empty with no executing threads. The code attempts to
accomplish this by interrupting every thread in the thread group. However, when the destroy()
method is called, the thread group is not empty, which causes a
java.lang.IllegalThreadStateException to be thrown.

4.2.2 Compliant Solution

This compliant solution uses a fixed thread pool, rather than a ThreadGroup, to group its three
tasks. The java.util.concurrent.ExecutorService interface provides methods to man-
age the thread pool. Note that there are no methods for finding the number of actively executing
threads or for enumerating through them. However, the logical grouping can help control the be-
havior of the group as a whole. For instance, all threads belonging to a particular thread pool can
be terminated by calling the shutdownPool() method.

public final class NetworkHandler {

 private final ExecutorService executor;

 NetworkHandler(int poolSize) {

 this.executor = Executors.newFixedThreadPool(poolSize);

 }

 public void startThreads() {

 for(int i = 0; i < 3; i++) {

 executor.execute(new HandleRequest());

 }

 }

 public void shutdownPool() {

 executor.shutdown();

 }

THI01-J

CMU/SEI-2010-TR-015 | 98

 public static void main(String[] args) {

 NetworkHandler nh = new NetworkHandler(3);

 nh.startThreads();

 nh.shutdownPool();

 }

}

Before Java SE 5.0, the ThreadGroup class had to be extended because there was no other di-
rect way to catch an uncaught exception in a separate thread. If the application had installed an
UncaughtExceptionHandler, it could only be controlled by subclassing ThreadGroup. In
recent versions, UncaughtExceptionHandler is maintained on a per-thread basis using an
interface enclosed by the Thread class, which leaves little to no functionality for the Thread-
Group class [Goetz 2006, Bloch 2008].

Refer to guideline “TPS03-J. Ensure that tasks executing in a thread pool do not fail silently” on
page 135 for more information on using uncaught exception handlers in thread pools.

4.2.3 Risk Assessment

Using the ThreadGroup APIs may result in race conditions, memory leaks, and inconsistent
object state.

Guideline Severity Likelihood Remediation Cost Priority Level

THI01- J low probable medium P4 L3

4.2.4 References

[Arnold 2006] Section 23.3.3, “Shutdown Strategies”

[Bloch 2001] “Item 53: Avoid thread groups”

[Bloch 2008] “Item 73: Avoid thread groups”

[Goetz 2006] Section 7.3.1, “Uncaught Exception Handlers”

[Oaks 2004] Section 13.1, “ThreadGroups”

[Sun 2009b] Methods activeCount and enumerate, Classes ThreadGroup and Thread

[Sun 2008a]

[Sun 2008b] Bug ID: 4089701 and 4229558

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-SDN06�

THI02-J

CMU/SEI-2010-TR-015 | 99

4.3 THI02-J. Do not invoke Thread.run()

It is critical to ensure that threads are started correctly. Thread start-up can be misleading because
sometimes the code appears to be performing the function correctly, when it is actually executing
in the wrong thread.

The Thread.start() method starts executing a thread’s run() method in the respective
thread. It is a mistake to directly invoke the run() method on a Thread object. When invoked
directly, the statements in the run() method execute in the current thread instead of the newly
created thread. Furthermore, if the Thread object is not constructed from a Runnable object but
rather by instantiating a subclass of Thread that does not override the run() method, a call to
the subclass’s run() method invokes Thread.run(), which does nothing.

4.3.1 Noncompliant Code Example

This noncompliant code example explicitly invokes the run() method in the context of the cur-
rent thread.

public final class Foo implements Runnable {

 @Override public void run() {

 // ...

 }

 public static void main(String[] args) {

 Foo foo = new Foo();

 new Thread(foo).run();

 }

}

The start() method is not invoked on the new thread because of the incorrect assumption that
run() starts the new thread. Consequently, the statements in the run() method execute in the
same thread instead of the new one.

4.3.2 Compliant Solution

This compliant solution correctly uses the start() method to start a new thread. Then, that me-
thod internally invokes the run() method in the new thread.

public final class Foo implements Runnable {

 @Override public void run() {

 // ...

 }

 public static void main(String[] args) {

 Foo foo = new Foo();

 new Thread(foo).start();

 }

}

THI02-J

CMU/SEI-2010-TR-015 | 100

4.3.3 Exceptions

THI02-EX1: The run() method may be invoked when unit testing functionality. Note that this
method cannot be used to test a class for multithreaded use.

Given a Thread object that has been constructed with a runnable argument, when invoking the
Thread.run()method, the Thread object may be cast to Runnable to eliminate analyzer di-
agnostics.

Thread thread = new Thread(new Runnable() {

 @Override public void run() {

 // ...

 }

});

((Runnable) thread).run(); // Exception: This does not start a new thread

Casting a thread to Runnable before calling the run() method documents that the explicit call
to Thread.run() is intentional. Adding an explanatory comment alongside the invocation is
highly recommended.

4.3.4 Risk Assessment

Failing to start threads correctly can cause unexpected behavior.

Guideline Severity Likelihood Remediation Cost Priority Level

THI02- J low probable medium P4 L3

4.3.5 References

[Sun 2009b] Interface Runnable and class Thread

THI03-J

CMU/SEI-2010-TR-015 | 101

4.4 THI03-J. Always invoke wait() and await() methods inside a loop

The Object.wait() method temporarily cedes possession of a lock so that another thread that
is requesting the lock can proceed. Object.wait() must always be called from a synchronized
block or method. To resume the waiting thread, the requesting thread must invoke the notify()
method to notify it. Furthermore, the wait() method should be invoked in a loop that checks if a
condition predicate holds. Note that a condition predicate is the negation of the condition expres-
sion in the loop. For example, the condition predicate for removing an element from a vector is
!isEmpty(), whereas the condition expression for the while loop condition is isEmpty(). The
correct way to invoke the wait() method when the vector is empty is shown below.

public void consumeElement() throws InterruptedException {

 synchronized (vector) {

 while (vector.isEmpty()) {

 vector.wait();

 }

 // Consume when condition holds

 }

}

The notification mechanism notifies the waiting thread and lets it check its condition predicate.
The invocation of the notify() or notifyAll() methods in another thread cannot precisely
determine which waiting thread is resumed. A condition predicate statement is provided so that
only the correct thread will resume upon receiving the notification. A condition predicate also
helps when a thread is required to block until a condition becomes true, such as reading data from
an input stream before proceeding.

Safety and liveness are both concerns when using the wait/notify mechanism. Safety requires all
objects to maintain consistent states in a multithreaded environment [Lea 2000a]. Liveness re-
quires that every operation or method invocation execute to completion without interruption.

To guarantee liveness, the while loop condition must be tested before the wait() method is
invoked. This is done in case another thread has already satisfied the condition predicate and sent
a notification. Invoking the wait() method after the notification has been sent results in indefi-
nite blocking.

To guarantee safety, the while loop condition must be tested even after the wait() method is
invoked. While wait() is meant to block indefinitely until a notification is received, it must still
be encased within a loop to prevent the following vulnerabilities [Bloch 2001]:
• thread in the middle - A third thread can acquire the lock on the shared object during the in-

terval between a notification being sent and the receiving thread resuming execution. This
thread can change the state of the object, leaving it inconsistent. This is a time-of-check-to-
time-of-use (TOCTOU) condition.

• malicious notification - There is no guarantee that a random notification will not be received
when the condition predicate is false. This means that the invocation of wait() may be nul-
lified by the notification.

THI03-J

CMU/SEI-2010-TR-015 | 102

• misdelivered notification - Sometimes on receipt of a notifyAll() signal, an unrelated
thread can start executing, and it is possible for its condition predicate to be true. Consequent-
ly, it may resume execution although it was required to remain dormant.

• spurious wake-ups - Certain JVM implementations are vulnerable to spurious wake-ups that
result in waiting threads waking up even without a notification [Sun 2009b].

For these reasons, the condition predicate must be checked after the wait() method is invoked.
A while loop is the best choice for checking the condition predicate before and after invoking
wait().

Similarly, the await() method of the Condition interface must also be invoked inside a loop.
According to the Java API [Sun 2009b], Interface Condition

When waiting upon a Condition, a “spurious wakeup” is permitted to occur, in general, as a
concession to the underlying platform semantics. This has little practical impact on most ap-
plication programs as a Condition should always be waited upon in a loop, testing the state
predicate that is being waited for. An implementation is free to remove the possibility of spu-
rious wakeups but it is recommended that applications programmers always assume that
they can occur and so always wait in a loop.

New code should use the java.util.concurrent concurrency utilities instead of the
wait/notify mechanism. However, legacy code may depend on the wait/notify mechanism.

4.4.1 Noncompliant Code Example

This noncompliant code example invokes the wait() method inside a traditional if block and
fails to check the post-condition after the notification is received. If the notification is accidental
or malicious, the thread can wake up prematurely.

synchronized (object) {

 if (<condition does not hold>) {

 object.wait();

 }

 // Proceed when condition holds

}

THI03-J

CMU/SEI-2010-TR-015 | 103

4.4.2 Compliant Solution

This compliant solution calls the wait() method from within a while loop to check the condi-
tion before and after wait() is called.

synchronized (object) {

 while (<condition does not hold>) {

 object.wait();

 }

 // Proceed when condition holds

}

Similarly, invocations of the await() method of the
java.util.concurrent.locks.Condition interface must be enclosed in a loop.

4.4.3 Risk Assessment

To guarantee liveness and safety, the wait() and await() methods must always be invoked
inside a while loop.

Guideline Severity Likelihood Remediation Cost Priority Level

THI03- J low unlikely medium P2 L3

4.4.4 References

[Bloch 2001] Item 50: “Never invoke wait outside a loop”

[Goetz 2006] Section 14.2, “Using Condition Queues”

[Lea 2000a] Section 3.2.2, “Monitor Mechanics”

Section 1.3.2, “Liveness”

[Sun 2009b] Class Object

http://java.sun.com/javase/6/docs/api/java/lang/Object.html�

THI04-J

CMU/SEI-2010-TR-015 | 104

4.5 THI04-J. Notify all waiting threads instead of a single thread

A thread that invokes wait() expects to wake up and resume execution when its condition pre-
dicate becomes true. Waiting threads must test their condition predicates upon receiving notifica-
tions and resume waiting if the predicates are false, to be compliant with guideline “THI03-J. Al-
ways invoke wait() and await() methods inside a loop” on page 101.

The notify() and notifyAll() methods of the java.lang.Object package are used to
wake up waiting thread(s). These methods must be invoked from code that holds the same object
lock as the waiting thread(s). An IllegalMonitorStateException is thrown if the current
thread does not acquire this object’s intrinsic lock before invoking these methods. The
notifyAll() method wakes up all threads and allows threads whose condition predicate is true
to resume execution. Furthermore, if all the threads whose condition predicate evaluates to true
previously held a specific lock before going into the wait state, only one of them will reacquire
the lock upon being notified. Presumably, the other threads will resume waiting. The notify()
method wakes up only one thread and makes no guarantees as to which thread is notified. If the
thread’s condition predicate doesn’t allow the thread to proceed, the chosen thread may resume
waiting, defeating the purpose of the notification.

The notify() method may only be invoked if all of the following conditions are met:
• The condition predicate is identical for each waiting thread.

• All threads must perform the same set of operations after waking up. This means that any one
thread can be selected to wake up and resume for a single invocation of notify().

• Only one thread is required to wake upon the notification.

These conditions are satisfied by threads that are identical and provide a stateless service or
utility.

The java.util.concurrent utilities (Condition interface) provide the signal() and
signalAll() methods to awaken threads that are blocked on an await() call. Condition
objects are required when using Lock objects. A Lock object allows the use of the wait() and
notify() methods. However, code that synchronizes using a Lock object does not use its own
intrinsic lock. Instead, one or more Condition objects are associated with the Lock object.
These objects interact directly with the locking policy enforced by the Lock object. Consequent-
ly, the Condition.await(), Condition.signal(), and Condition.signalAll() me-
thods are used instead of Object.wait(), Object.notify(), and Object.notifyAll().

The use of the signal() method is insecure when multiple threads await the same Condition
object unless all of the following conditions are met:
• The Condition object is identical for each waiting thread.

• All threads must perform the same set of operations after waking up. This means that any one
thread can be selected to wake up and resume for a single invocation of signal().

• Only one thread is required to wake upon receiving the signal.

The signal() method may also be invoked when both of the following conditions are met:
• Each thread uses a unique Condition object.

THI04-J

CMU/SEI-2010-TR-015 | 105

• Each Condition object is associated with a common Lock object.

The signal() method, if used securely, has better performance than signalAll().

4.5.1 Noncompliant Code Example (notify())

This noncompliant code example shows a complex multistep process being undertaken by several
threads. Each thread executes the step identified by the time field. Each thread waits for the
time field to indicate that it is time to perform the corresponding thread’s step. After performing
the step, each thread increments time and then notifies the thread that is responsible for perform-
ing the next step.

public final class ProcessStep implements Runnable {

 private static final Object lock = new Object();

 private static int time = 0;

 private final int step; // Do operations when field time reaches this value

 public ProcessStep(int step) {

 this.step = step;

 }

 @Override public void run() {

 try {

 synchronized (lock) {

 while (time != step) {

 lock.wait();

 }

 // Perform operations

 time++;

 lock.notify();

 }

 } catch (InterruptedException ie) {

 Thread.currentThread().interrupt(); // Reset interrupted status

 }

 }

 public static void main(String[] args) {

 for (int i = 4; i >= 0; i--) {

 new Thread(new ProcessStep(i)).start();

 }

 }

}

This noncompliant code example violates the liveness property. Each thread has a different condi-
tion predicate, as each requires step to have a different value before proceeding. The
Object.notify() method wakes up only one thread at a time. Unless it happens to wake up
the thread that is required to perform the next step, the program will deadlock.

THI04-J

CMU/SEI-2010-TR-015 | 106

4.5.2 Compliant Solution (notifyAll())

In this compliant solution, each thread completes its step and then calls notifyAll() to notify
the waiting threads. The thread that is ready can then perform its task, while all the threads whose
condition predicates are false (loop condition expression is true) promptly resume waiting.

Only the run() method from the noncompliant code example is modified, as follows:

@Override public void run() {

 try {

 synchronized (lock) {

 while (time != step) {

 lock.wait();

 }

 // Perform operations

 time++;

 lock.notifyAll(); // Use notifyAll() instead of notify()

 }

 } catch (InterruptedException ie) {

 Thread.currentThread().interrupt(); // Reset interrupted status

 }

}

4.5.3 Noncompliant Code Example (Condition interface)

This noncompliant code example is similar to the noncompliant code example for notify() but
uses the Condition interface for waiting and notification.

public class ProcessStep implements Runnable {

 private static final Lock lock = new ReentrantLock();

 private static final Condition condition = lock.newCondition();

 private static int time = 0;

 private final int step; // Do operations when field time reaches this value

 public ProcessStep(int step) {

 this.step = step;

 }

 @Override public void run() {

 lock.lock();

 try {

 while (time != step) {

 condition.await();

 }

 // Perform operations

THI04-J

CMU/SEI-2010-TR-015 | 107

 time++;

 condition.signal();

 } catch (InterruptedException ie) {

 Thread.currentThread().interrupt(); // Reset interrupted status

 } finally {

 lock.unlock();

 }

 }

 public static void main(String[] args) {

 for (int i = 4; i >= 0; i--) {

 new Thread(new ProcessStep(i)).start();

 }

 }

}

As with Object.notify(), the signal() method may awaken an arbitrary thread.

4.5.4 Compliant Solution (signalAll())

This compliant solution uses the signalAll() method to notify all waiting threads. Before
await() returns, the current thread reacquires the lock associated with this condition. When the
thread returns, it is guaranteed to hold this lock [Sun 2009b]. The thread that is ready can perform
its task, while all the threads whose condition predicates are false resume waiting.

Only the run() method from the noncompliant code example is modified, as follows:

 @Override public void run() {

 lock.lock();

 try {

 while (time != step) {

 condition.await();

 }

 // Perform operations

 time++;

 condition.signalAll();

 } catch (InterruptedException ie) {

 Thread.currentThread().interrupt(); // Reset interrupted status

 } finally {

 lock.unlock();

 }

 }

THI04-J

CMU/SEI-2010-TR-015 | 108

4.5.5 Compliant Solution (Unique Condition Per Thread)

This compliant solution assigns each thread its own condition. All the Condition objects are
accessible to all the threads.

// Declare class as final because its constructor throws an exception

public final class ProcessStep implements Runnable {

 private static final Lock lock = new ReentrantLock();

 private static int time = 0;

 private final int step; // Do operations when field time reaches this value

 private static final int MAX_STEPS = 5;

 private static final Condition[] conditions = new Condition[MAX_STEPS];

 public ProcessStep(int step) {

 if (step <= MAX_STEPS) {

 this.step = step;

 conditions[step] = lock.newCondition();

 } else {

 throw new IllegalArgumentException("Too many threads");

 }

 }

 @Override public void run() {

 lock.lock();

 try {

 while (time != step) {

 conditions[step].await();

 }

 // Perform operations

 time++;

 if (step + 1 < conditions.length) {

 conditions[step + 1].signal();

 }

 } catch (InterruptedException ie) {

 Thread.currentThread().interrupt(); // Reset interrupted status

 } finally {

 lock.unlock();

 }

 }

 public static void main(String[] args) {

 for (int i = MAX_STEPS - 1; i >= 0; i--) {

 ProcessStep ps = new ProcessStep(i);

 new Thread(ps).start();

 }

 }

}

THI04-J

CMU/SEI-2010-TR-015 | 109

Even though the signal() method is used, only the thread whose condition predicate corres-
ponds to the unique Condition variable will awaken.

This compliant solution is safe only if untrusted code cannot create a thread with an instance of
this class.

4.5.6 Risk Assessment

Notifying a single thread instead of all waiting threads can pose a threat to the liveness property of
the system.

Guideline Severity Likelihood Remediation Cost Priority Level

THI04- J low unlikely medium P2 L3

4.5.7 References

[Bloch 2001] Item 50: “Never invoke wait outside a loop”

[Goetz 2006] Section 14.2.4, “Notification”

[Gosling 2005] Chapter 17, “Threads and Locks”

[Sun 2009b] java.util.concurrent.locks.Condition interface

http://java.sun.com/docs/books/jls/third_edition/html/memory.html�

THI05-J

CMU/SEI-2010-TR-015 | 110

4.6 THI05-J. Do not use Thread.stop() to terminate threads

Threads always preserve class invariants when they are allowed to exit normally. Programmers
often try to terminate threads abruptly when they believe that the task is accomplished, the request
has been canceled, or the program or the JVM needs to shut down quickly.

A few thread APIs were introduced to facilitate thread suspension, resumption, and termination
but were later deprecated because of inherent design weaknesses. For example, the
Thread.stop() method causes the thread to immediately throw a ThreadDeath exception,
which usually stops the thread.

Invoking Thread.stop() results in the release of all the locks a thread has acquired, which
may corrupt the state of the object. The thread could catch the ThreadDeath exception and use a
finally block in an attempt to repair the inconsistent object. However, that requires careful in-
spection of all the synchronized methods and blocks because a ThreadDeath exception can be
thrown at any point during the thread’s execution. Furthermore, code must be protected from
ThreadDeath exceptions that may result when executing catch or finally blocks [Sun
1999a].

More information about deprecated methods is available in guideline “MET15-J. Do not use de-
precated or obsolete methods.”9 EXC09-J. Prevent inadvertent calls to
System.exit() or forced shutdown

 Also, refer to guideline “
”8 for information on preventing data corruption when the

JVM is shut down abruptly.

4.6.1 Noncompliant Code Example (Deprecated Thread.stop())

This noncompliant code example shows a thread that fills a vector with pseudo-random numbers.
The thread is forcefully stopped after a given amount of time.

public final class Container implements Runnable {

 private final Vector<Integer> vector = new Vector<Integer>(1000);

 public Vector<Integer> getVector() {

 return vector;

 }

 @Override public synchronized void run() {

 Random number = new Random(123L);

 int i = vector.capacity();

 while (i > 0) {

 vector.add(number.nextInt(100));

 i--;

 }

 }

 public static void main(String[] args) throws InterruptedException {

 Thread thread = new Thread(new Container());

9 This guideline is described at https://www.securecoding.cert.org/confluence/display/java/.

https://www.securecoding.cert.org/confluence/x/KgAVAg�
https://www.securecoding.cert.org/confluence/x/KgAVAg�
https://www.securecoding.cert.org/confluence/x/PoYbAQ�
https://www.securecoding.cert.org/confluence/x/PoYbAQ�
https://www.securecoding.cert.org/confluence/display/java/

THI05-J

CMU/SEI-2010-TR-015 | 111

 thread.start();

 Thread.sleep(5000);

 thread.stop();

 }

}

Because the Vector class is thread-safe, operations performed by multiple threads on its shared
instance are expected to leave it in a consistent state. For instance, the Vector.size() method
always returns the correct number of elements in the vector even in the face of concurrent changes
to the vector. This is because the vector instance uses its own intrinsic lock to prevent other
threads from accessing it while its state is temporarily inconsistent.

However, the Thread.stop() method causes the thread to stop what it is doing and throw a
ThreadDeath exception. All acquired locks are subsequently released [Sun 2009b]. If the thread
is in the process of adding a new integer to the vector when it is stopped, the vector may become
accessible while it is in an inconsistent state. This can result in Vector.size() returning an
incorrect element count, for example, because the element count is incremented after adding the
element.

4.6.2 Compliant Solution (Volatile Flag)

This compliant solution uses a volatile flag to terminate the thread. The shutdown()accessor
method is used to set the flag to true. The thread’s run() method polls the done flag and termi-
nates when it becomes true.

public final class Container implements Runnable {

 private final Vector<Integer> vector = new Vector<Integer>(1000);

 private volatile boolean done = false;

 public Vector<Integer> getVector() {

 return vector;

 }

 public void shutdown() {

 done = true;

 }

 @Override public synchronized void run() {

 Random number = new Random(123L);

 int i = vector.capacity();

 while (!done && i > 0) {

 vector.add(number.nextInt(100));

 i--;

 }

 }

 public static void main(String[] args) throws InterruptedException {

 Container container = new Container();

 Thread thread = new Thread(container);

THI05-J

CMU/SEI-2010-TR-015 | 112

 thread.start();

 Thread.sleep(5000);

 container.shutdown();

 }

}

4.6.3 Compliant Solution (Interruptible)

In this compliant solution, the Thread.interrupt() method is called from main() to termi-
nate the thread. Invoking Thread.interrupt() sets an internal interrupt status flag. The
thread polls that flag using the Thread.interrupted() method, which returns true if the cur-
rent thread has been interrupted and clears the interrupt status.

public final class Container implements Runnable {

 private final Vector<Integer> vector = new Vector<Integer>(1000);

 public Vector<Integer> getVector() {

 return vector;

 }

 @Override public synchronized void run() {

 Random number = new Random(123L);

 int i = vector.capacity();

 while (!Thread.interrupted() && i > 0) {

 vector.add(number.nextInt(100));

 i--;

 }

 }

 public static void main(String[] args) throws InterruptedException {

 Container c = new Container();

 Thread thread = new Thread(c);

 thread.start();

 Thread.sleep(5000);

 thread.interrupt();

 }

}

A thread may use interruption for performing tasks other than cancellation and shutdown. Conse-
quently, a thread should not be interrupted unless its interruption policy is known in advance.
Failure to do so can result in failed interruption requests.

THI05-J

CMU/SEI-2010-TR-015 | 113

4.6.4 Compliant Solution (Runtime Permission stopThread)

Removing the default java.lang.RuntimePermission stopThread permission from the
security policy file prevents threads from being stopped using the Thread.stop() method. This
approach is not recommended for trusted, custom-developed code that uses that method because
the existing design presumably depends on the ability of the system to perform this action. Fur-
thermore, the system may not be designed to properly handle the resulting exception. In these cas-
es, it is preferable to implement an alternate design approach corresponding to another compliant
solution described in this guideline.

4.6.5 Risk Assessment

Forcing a thread to stop can result in inconsistent object state. Critical resources may also leak if
clean-up operations are not carried out as required.

Guideline Severity Likelihood Remediation Cost Priority Level

THI05- J low probable medium P4 L3

4.6.6 References

[Arnold 2006] Section 14.12.1, “Don’t stop”

Section 23.3.3, “Shutdown Strategies”

[Darwin 2004] Section 24.3, “Stopping a Thread”

[Goetz 2006] Chapter 7, “Cancellation and shutdown”

[Oaks 2004] Section 2.4, “Two Approaches to Stopping a Thread”

[Sun 2009b] Class Thread, method stop, interface ExecutorService

[Sun 2008c] Concurrency Utilities, More information: Java Thread Primitive Deprecation

[Sun 99]

THI06-J

CMU/SEI-2010-TR-015 | 114

4.7 THI06-J. Ensure that threads and tasks performing blocking operations can be
terminated

Threads and tasks that block on operations involving network or file input/output (I/O) must pro-
vide callers with an explicit termination mechanism to prevent denial-of-service vulnerabilities.

4.7.1 Noncompliant Code Example (Blocking I/O, Volatile Flag)

This noncompliant code example uses a volatile done flag to indicate that it is safe to shut down
the thread, as suggested in guideline “THI05-J. Do not use Thread.stop() to terminate
threads” on page 110. However, setting the flag does not terminate the thread if it is blocked on
network I/O as a consequence of invoking the readLine() method.

public final class SocketReader implements Runnable { // Thread-safe class

 private final Socket socket;

 private final BufferedReader in;

 private volatile boolean done = false;

 private final Object lock = new Object();

 public SocketReader(String host, int port) throws IOException {

 this.socket = new Socket(host, port);

 this.in = new BufferedReader(new InputStreamReader(this.socket.getInputStream()));

 }

 // Only one thread can use the socket at a particular time

 @Override public void run() {

 try {

 synchronized (lock) {

 readData();

 }

 } catch (IOException ie) {

 // Forward to handler

 }

 }

 public void readData() throws IOException {

 String string;

 while (!done && (string = in.readLine()) != null) {

 // Blocks until end of stream (null)

 }

 }

 public void shutdown() {

 done = true;

 }

 public static void main(String[] args) throws IOException, InterruptedException {

 SocketReader reader = new SocketReader("somehost", 25);

 Thread thread = new Thread(reader);

https://www.securecoding.cert.org/confluence/display/java/CON13-J.+Do+not+use+Thread.stop%28%29+to+terminate+threads�
https://www.securecoding.cert.org/confluence/display/java/CON13-J.+Do+not+use+Thread.stop%28%29+to+terminate+threads�
https://www.securecoding.cert.org/confluence/display/java/CON13-J.+Do+not+use+Thread.stop%28%29+to+terminate+threads�
https://www.securecoding.cert.org/confluence/display/java/CON13-J.+Do+not+use+Thread.stop%28%29+to+terminate+threads�

THI06-J

CMU/SEI-2010-TR-015 | 115

 thread.start();

 Thread.sleep(1000);

 reader.shutdown(); // Shutdown the thread

 }

}

4.7.2 Noncompliant Code Example (Blocking I/O, Interruptible)

This noncompliant code example is similar to the preceding one but uses thread interruption to
shut down the thread. Network I/O is not responsive to thread interruption when a
java.net.Socket is being used. The readData() and main() methods are modified as
follows:

public final class SocketReader implements Runnable { // Thread-safe class

 // ...

 public void readData() throws IOException {

 String string;

 while (!Thread.interrupted() && (string = in.readLine()) != null) {

 // Blocks until end of stream (null)

 }

 }

 public static void main(String[] args) throws IOException, InterruptedException {

 SocketReader reader = new SocketReader("somehost", 25);

 Thread thread = new Thread(reader);

 thread.start();

 Thread.sleep(1000);

 thread.interrupt(); // Interrupt the thread

 }

}

4.7.3 Compliant Solution (Close Socket Connection)

This compliant solution resumes the thread by having the shutdown() method close the socket.
The readLine() method throws a SocketException when the socket is closed, which lets
the thread proceed. Note that there is no way to keep the connection alive if the thread is to be
halted cleanly and immediately.

public final class SocketReader implements Runnable {

 // ...

 public void readData() throws IOException {

 String string;

 try {

 while ((string = in.readLine()) != null) {

 // Blocks until end of stream (null)

 }

 } finally {

THI06-J

CMU/SEI-2010-TR-015 | 116

 shutdown();

 }

 }

 public void shutdown() throws IOException {

 socket.close();

 }

 public static void main(String[] args) throws IOException, InterruptedException {

 SocketReader reader = new SocketReader("somehost", 25);

 Thread thread = new Thread(reader);

 thread.start();

 Thread.sleep(1000);

 reader.shutdown();

 }

}

After the shutdown() method is called from main(), the finally block in readData()
executes and calls shutdown() again, closing the socket for a second time. However, this
second call has no effect if the socket has already been closed.

When performing asynchronous I/O, a java.nio.channels.Selector may also be brought
out of the blocked state by invoking either its close() or wakeup() method.

A boolean flag can be used if additional operations need to be performed after emerging from
the blocked state. When supplementing the code with such a flag, the shutdown() method
should also set the flag to false so that the thread can exit cleanly from the while loop.

4.7.4 Compliant Solution (Interruptible Channel)

This compliant solution uses an interruptible channel,
java.nio.channels.SocketChannel, instead of a Socket connection. If the thread per-
forming the network I/O is interrupted using the Thread.interrupt() method while it is
reading the data, the thread receives a ClosedByInterruptException, and the channel is
closed immediately. The thread’s interrupted status is also set.

public final class SocketReader implements Runnable {

 private final SocketChannel sc;

 private final Object lock = new Object();

 public SocketReader(String host, int port) throws IOException {

 sc = SocketChannel.open(new InetSocketAddress(host, port));

 }

 @Override public void run() {

 ByteBuffer buf = ByteBuffer.allocate(1024);

 try {

 synchronized (lock) {

 while (!Thread.interrupted()) {

 sc.read(buf);

THI06-J

CMU/SEI-2010-TR-015 | 117

 // ...

 }

 }

 } catch (IOException ie) {

 // Forward to handler

 }

 }

 public static void main(String[] args) throws IOException, InterruptedException {

 SocketReader reader = new SocketReader("somehost", 25);

 Thread thread = new Thread(reader);

 thread.start();

 Thread.sleep(1000);

 thread.interrupt();

 }

}

This technique interrupts the current thread. However, it only stops the thread because the code
polls the thread’s interrupted status with the Thread.interrupted() method and terminates
the thread when it is interrupted. Using a SocketChannel ensures that the condition in the
while loop is tested as soon as an interruption is received, despite the read being a blocking opera-
tion. Similarly, invoking the interrupt() method of a thread that is blocked because of
java.nio.channels.Selector also causes that thread to awaken.

4.7.5 Noncompliant Code Example (Database Connection)

This noncompliant code example shows a thread-safe DBConnector class that creates one Java
Database Connectivity (JDBC) connection per thread. Each connection belongs to one thread and
is not shared by other threads. This is a common use case because JDBC connections are not
meant to be shared by multiple threads.

public final class DBConnector implements Runnable {

 private final String query;

 DBConnector(String query) {

 this.query = query;

 }

 @Override public void run() {

 Connection connection;

 try {

 // Username and password are hard-coded for brevity

 connection = DriverManager.getConnection(

 "jdbc:driver:name",

 "username",

 "password"

);

 Statement stmt = connection.createStatement();

 ResultSet rs = stmt.executeQuery(query);

THI06-J

CMU/SEI-2010-TR-015 | 118

 // ...

 } catch (SQLException e) {

 // Forward to handler

 }

 // ...

 }

 public static void main(String[] args) throws InterruptedException {

 DBConnector connector = new DBConnector("suitable query");

 Thread thread = new Thread(connector);

 thread.start();

 Thread.sleep(5000);

 thread.interrupt();

 }

}

Database connections, like sockets, are not inherently interruptible. Consequently, this design
does not permit a client to cancel a task by closing the resource if the corresponding thread is
blocked on a long-running query such as a join.

4.7.6 Compliant Solution (Statement.cancel())

This compliant solution uses a ThreadLocal wrapper around the connection so that a thread
calling the initialValue() method obtains a unique connection instance. The advantage of
this approach is that a cancelStatement() method can be provided so that other threads or
clients can interrupt a long-running query when required. The cancelStatement() method
invokes the Statement.cancel()method.

public final class DBConnector implements Runnable {

 private final String query;

 private volatile Statement stmt;

 DBConnector(String query) {

 this.query = query;

 if (getConnection() != null) {

 try {

 stmt = getConnection().createStatement();

 } catch (SQLException e) {

 // Forward to handler

 }

 }

 }

 private static final ThreadLocal<Connection> connectionHolder =

 new ThreadLocal<Connection>() {

 Connection connection = null;

 @Override public Connection initialValue() {

 try {

THI06-J

CMU/SEI-2010-TR-015 | 119

 // ...

 connection = DriverManager.getConnection(

 "jdbc:driver:name",

 "username",

 "password"

);

 } catch (SQLException e) {

 // Forward to handler

 }

 return connection;

 }

 };

 public Connection getConnection() {

 return connectionHolder.get();

 }

 public boolean cancelStatement() { // Allows client to cancel statement

 if (stmt != null) {

 try {

 stmt.cancel();

 return true;

 } catch (SQLException e) {

 // Forward to handler

 }

 }

 return false;

 }

 @Override public void run() {

 try {

 if(stmt == null || (stmt.getConnection() != getConnection())) {

 throw new IllegalStateException();

 }

 ResultSet rs = stmt.executeQuery(query);

 // ...

 } catch (SQLException e) {

 // Forward to handler

 }

 // ...

 }

THI06-J

CMU/SEI-2010-TR-015 | 120

 public static void main(String[] args) throws InterruptedException {

 DBConnector connector = new DBConnector("suitable query");

 Thread thread = new Thread(connector);

 thread.start();

 Thread.sleep(5000);

 connector.cancelStatement();

 }

}

The Statement.cancel() method cancels the query, provided that the database management
system (DBMS) and driver both support cancellation. It is not possible to conform with this
guideline if they do not.

According to the Java API, interface Statement documentation [Sun 2009b]
By default, only one ResultSet object per Statement object can be open at the same
time. Therefore, if the reading of one ResultSet object is interleaved with the reading of
another, each must have been generated by different Statement objects.

This compliant solution ensures that only one ResultSet is associated with the Statement
belonging to an instance, and, consequently, only one thread can access the query results.

4.7.7 Risk Assessment

Failing to provide facilities for thread termination can cause non-responsiveness and denial of
service.

Guideline Severity Likelihood Remediation Cost Priority Level

THI06- J low probable medium P4 L3

4.7.8 References

[Arnold 2006] Section 14.12.1, “Don't stop”

Section 23.3.3, “Shutdown Strategies”

[Darwin 2004] Section 24.3, “Stopping a Thread”

[Goetz 2006] Chapter 7, “Cancellation and shutdown”

[Oaks 2004] Section 2.4, “Two Approaches to Stopping a Thread”

[Sun 2009b] Class Thread, method stop, interface ExecutorService

[Sun 2008c] Concurrency Utilities, More information: “Java Thread Primitive Deprecation”

TPS00-J

CMU/SEI-2010-TR-015 | 121

5 Thread Pools (TPS) Guidelines

5.1 TPS00-J. Use thread pools to enable graceful degradation of service during
traffic bursts

Many programs must address the problem of handling a series of incoming requests. The Thread-
Per-Message design pattern is the simplest concurrency strategy wherein a new thread is created
for each request [Lea 2000a]. This pattern is generally preferred to sequential executions of time-
consuming, I/O-bound, session-based, or isolated tasks.

However, this pattern also has several pitfalls, including overheads of thread-creation and sche-
duling, task processing, resource allocation and deallocation, and frequent context switching [Lea
2000a]. Furthermore, an attacker can cause a denial of service by overwhelming the system with
too many requests all at once. Instead of degrading gracefully, the system becomes unresponsive,
causing a denial of service. From a safety perspective, one component can exhaust all resources
because of some intermittent error, starving all other components.

Thread pools allow a system to service as many requests as it can comfortably sustain, rather than
terminating all services when presented with a deluge of requests. Thread pools overcome these
issues by controlling the maximum number of worker threads that can be initialized and executed
concurrently. Every object that supports thread pools accepts a Runnable or Callable<T> task
and stores it in a temporary queue until resources become available. Because the threads in a
thread pool can be reused and efficiently added or removed from the pool, thread life-cycle man-
agement overhead is minimized.

5.1.1 Noncompliant Code Example

This noncompliant code example demonstrates the Thread-Per-Message design pattern. The
RequestHandler class provides a public static factory method so that callers can obtain its in-
stance. The handleRequest() method is subsequently invoked to handle each request in its
own thread.

class Helper {

 public void handle(Socket socket) {

 //...

 }

}

final class RequestHandler {

 private final Helper helper = new Helper();

 private final ServerSocket server;

 private RequestHandler(int port) throws IOException {

 server = new ServerSocket(port);

 }

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Lea00�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Lea00�

TPS00-J

CMU/SEI-2010-TR-015 | 122

 public static RequestHandler newInstance() throws IOException {

 return new RequestHandler(0); // Selects next available port

 }

 public void handleRequest() {

 new Thread(new Runnable() {

 public void run() {

 try {

 helper.handle(server.accept());

 } catch (IOException e) {

 // Forward to handler

 }

 }

 }).start();

 }

}

The Thread-Per-Message strategy fails to provide graceful degradation of service. As more
threads are created, processing continues normally until some scarce resource is exhausted. For
example, a system may allow only a limited number of open file descriptors, even though several
more threads can be created to service requests. When the scarce resource is memory, the system
may fail abruptly, resulting in a denial of service.

5.1.2 Compliant Solution

This compliant solution uses a fixed-thread pool that places an upper bound on the number of
concurrently executing threads. Tasks submitted to the pool are stored in an internal queue. That
prevents the system from being overwhelmed when trying to respond to all the incoming requests
and allows it to degrade gracefully by serving a fixed number of clients at a particular time [Sun
2008a].

// class Helper remains unchanged

final class RequestHandler {

 private final Helper helper = new Helper();

 private final ServerSocket server;

 private final ExecutorService exec;

 private RequestHandler(int port, int poolSize) throws IOException {

 server = new ServerSocket(port);

 exec = Executors.newFixedThreadPool(poolSize);

 }

 public static RequestHandler newInstance(int poolSize) throws IOException {

 return new RequestHandler(0, poolSize);

 }

 public void handleRequest() {

TPS00-J

CMU/SEI-2010-TR-015 | 123

 Future<?> future = exec.submit(new Runnable() {

 @Override public void run() {

 try {

 helper.handle(server.accept());

 } catch (IOException e) {

 // Forward to handler

 }

 }

 });

 }

 // ... other methods such as shutting down the thread pool and task cancellation ...

}

According to the Java API documentation for the Executor interface [Sun 2009b]
[The Interface Executor is] An object that executes submitted Runnable tasks. This inter-
face provides a way of decoupling task submission from the mechanics of how each task will
be run, including details of thread use, scheduling, etc. An Executor is normally used in-
stead of explicitly creating threads.

The ExecutorService interface used in this compliant solution derives from the
java.util.concurrent.Executor interface. The ExecutorService.submit() me-
thod allows callers to obtain a Future<V> object. This object encapsulates the as-yet-unknown
result of an asynchronous computation and enables callers to perform additional functions such as
task cancellation.

The choice of the unbounded newFixedThreadPool is not always optimal. Refer to the Java
API documentation about choosing between the following to meet specific design requirements
[Sun 2009b]:
• newFixedThreadPool()

• newCachedThreadPool()

• newSingleThreadExecutor()

• newScheduledThreadPool()

TPS00-J

CMU/SEI-2010-TR-015 | 124

5.1.3 Risk Assessment

Using simplistic concurrency primitives to process an unbounded number of requests may result
in severe performance degradation, deadlock, or system resource exhaustion and denial of service.

Guideline Severity Likelihood Remediation Cost Priority Level

TPS00- J low probable high P2 L3

5.1.4 References

[Goetz 2006] Chapter 8, “Applying Thread Pools”

[Lea 2000a] Section 4.1.3, “Thread-Per-Message”

Section 4.1.4, “Worker Threads”

[MITRE 2010] CWE ID 405, “Asymmetric Resource Consumption (Amplification)”

CWE ID 410, “Insufficient Resource Pool”

[Sun 2009b] Interface Executor

[Sun 2008a] Thread Pools

http://cwe.mitre.org/data/definitions/405.html�
http://cwe.mitre.org/data/definitions/410.html�
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/Executor.html�
http://java.sun.com/docs/books/tutorial/essential/concurrency/pools.html�

TPS01-J

CMU/SEI-2010-TR-015 | 125

5.2 TPS01-J. Do not execute interdependent tasks in a bounded thread pool

A bounded thread pool allows the programmer to specify the upper limit on the number of threads
that can execute in a thread pool at a particular time. Tasks that depend on the completion of other
tasks should not be executed in a bounded thread pool.

A form of deadlock called thread-starvation deadlock arises when all the threads executing in the
pool are blocked on tasks that have not yet begun executing and are waiting on an internal queue.
Thread-starvation deadlock occurs when currently executing tasks submit other tasks to a thread
pool and wait for them to complete, but the thread pool does not have the capacity to accommo-
date all the tasks at once.

This problem is deceptive because the program may appear to function correctly when fewer
threads are needed. In some cases, the issue can be mitigated by choosing a larger pool size; how-
ever, there is often no easy way to determine a suitable size.

Similarly, threads in a thread pool may not be recycled if two executing tasks require each other
to complete before they can terminate. A blocking operation within a subtask can also lead to un-
bounded, queue growth [Goetz 2006].

5.2.1 Noncompliant Code Example (Interdependent Subtasks)

This noncompliant code example is vulnerable to thread-starvation deadlock. It consists of the
ValidationService class, which performs various input validation tasks such as checking
whether a user-supplied field exists in a back-end database.

The fieldAggregator() method accepts a variable number of String arguments and creates
a task corresponding to each argument to parallelize processing. The task performs input valida-
tion using the ValidateInput class.

In turn, the ValidateInput class attempts to sanitize the input by creating a subtask for each
request using the SanitizeInput class. All tasks are executed in the same thread pool. The
fieldAggregator() method blocks until all the tasks have finished executing and, when all
results are available, returns the aggregated results as a StringBuilder object to the caller.

public final class ValidationService {

 private final ExecutorService pool;

 public ValidationService(int poolSize) {

 pool = Executors.newFixedThreadPool(poolSize);

 }

 public void shutdown() {

 pool.shutdown();

 }

 public StringBuilder fieldAggregator(String... inputs)

 throws InterruptedException, ExecutionException {

TPS01-J

CMU/SEI-2010-TR-015 | 126

 StringBuilder sb = new StringBuilder();

 Future<String>[] results = new Future[inputs.length]; // Stores the results

 for (int i = 0; i < inputs.length; i++) { // Submits the tasks to thread pool

 results[i] = pool.submit(new ValidateInput<String>(inputs[i], pool));

 }

 for (int i = 0; i < inputs.length; i++) { // Aggregates the results

 sb.append(results[i].get());

 }

 return sb;

 }

}

public final class ValidateInput<V> implements Callable<V> {

 private final V input;

 private final ExecutorService pool;

 ValidateInput(V input, ExecutorService pool) {

 this.input = input;

 this.pool = pool;

 }

 @Override public V call() throws Exception {

 // If validation fails, throw an exception here

 Future<V> future = pool.submit(new SanitizeInput<V>(input)); // Subtask

 return (V)future.get();

 }

}

public final class SanitizeInput<V> implements Callable<V> {

 private final V input;

 SanitizeInput(V input) {

 this.input = input;

 }

 @Override public V call() throws Exception {

 // Sanitize input and return

 return (V)input;

 }

}

Assuming that the pool size is set to six, the ValidationService.fieldAggregator()
method is invoked to validate the six arguments and submit six tasks to the thread pool. Each task
submits corresponding subtasks to sanitize the input. The SanitizeInput subtasks must ex-
ecute before these threads can return their results. However, this is impossible because all six
threads in the thread pool are blocked. Furthermore, the shutdown() method cannot shut down
the thread pool when it contains active tasks.

TPS01-J

CMU/SEI-2010-TR-015 | 127

Thread-starvation deadlock can also occur when a single threaded Executor is used, for exam-
ple, when the caller creates several subtasks and waits for the results.

5.2.2 Compliant Solution (No Interdependent Tasks)

This compliant solution modifies the ValidateInput<V> class so that the SanitizeInput
tasks are executed in the same threads as the ValidateInput tasks and not in separate threads.
Consequently, the ValidateInput and SanitizeInput tasks are independent and need not
wait for each other to complete. The SanitizeInput class has also been modified to not im-
plement the Callable interface.

public final class ValidationService {

 // ...

 public StringBuilder fieldAggregator(String... inputs)

 throws InterruptedException, ExecutionException {

 // ...

 for (int i = 0; i < inputs.length; i++) {

 // Don't pass-in thread pool

 results[i] = pool.submit(new ValidateInput<String>(inputs[i]));

 }

 // ...

 }

}

// Does not use same thread pool

public final class ValidateInput<V> implements Callable<V> {

 private final V input;

 ValidateInput(V input) {

 this.input = input;

 }

 @Override public V call() throws Exception {

 // If validation fails, throw an exception here

 return (V) new SanitizeInput().sanitize(input);

 }

}

public final class SanitizeInput<V> { // No longer a Callable task

 public SanitizeInput() {}

 public V sanitize(V input) {

 // Sanitize input and return

 return input;

 }

}

TPS01-J

CMU/SEI-2010-TR-015 | 128

Thread-starvation issues can be mitigated by choosing a large thread pool size. However, an un-
trusted caller may still overwhelm the system by supplying more inputs (see guideline “TPS00-J.
Use thread pools to enable graceful degradation of service during traffic bursts” on page 121).

Note that operations with further constraints, such as the total number of database connections or
total ResultSet objects open at a particular time, impose an upper bound on the thread pool size
because each thread continues to block until the resource becomes available.

Private static ThreadLocal variables may be used to maintain local state in each thread. When
using thread pools, the lifetime of ThreadLocal variables should be bounded by the corres-
ponding task [Goetz 2006]. Furthermore, these variables should not be used to communicate be-
tween tasks. There are additional constraints on the use of ThreadLocal variables in thread
pools (see guideline “TPS04-J. Ensure ThreadLocal variables are reinitialized when using thread
pools” on page 139).

5.2.3 Noncompliant Code Example (Subtasks)

This noncompliant code example contains a series of subtasks that execute in a shared thread pool
[Gafter 2006]. The BrowserManager class calls perUser(), which starts tasks that invoke
perProfile(). The perProfile() method starts tasks that invoke perTab(), and, in turn,
perTab() starts tasks that invoke doSomething(). BrowserManager then waits for the
tasks to finish. The threads are allowed to invoke doSomething() in any order, provided
count correctly records the number of methods executed.

public final class BrowserManager {

 private final ExecutorService pool = Executors.newFixedThreadPool(10);

 private final int numberOfTimes;

 private static AtomicInteger count = new AtomicInteger(); // count = 0

 public BrowserManager(int n) {

 numberOfTimes = n;

 }

 public void perUser() {

 methodInvoker(numberOfTimes, "perProfile");

 pool.shutdown();

 }

 public void perProfile() {

 methodInvoker(numberOfTimes, "perTab");

 }

 public void perTab() {

 methodInvoker(numberOfTimes, "doSomething");

 }

 public void doSomething() {

 System.out.println(count.getAndIncrement());

 }

https://www.securecoding.cert.org/confluence/display/java/CON29-J.+Use+thread+pools+to+enable+graceful+degradation+of+service+during+traffic+bursts�
https://www.securecoding.cert.org/confluence/display/java/CON29-J.+Use+thread+pools+to+enable+graceful+degradation+of+service+during+traffic+bursts�
https://www.securecoding.cert.org/confluence/display/java/CON29-J.+Use+thread+pools+to+enable+graceful+degradation+of+service+during+traffic+bursts�
https://www.securecoding.cert.org/confluence/display/java/CON29-J.+Use+thread+pools+to+enable+graceful+degradation+of+service+during+traffic+bursts�
https://www.securecoding.cert.org/confluence/display/java/CON33-J.+Ensure+ThreadLocal+variables+are+reinitialized+when+using+thread+pools�
https://www.securecoding.cert.org/confluence/display/java/CON33-J.+Ensure+ThreadLocal+variables+are+reinitialized+when+using+thread+pools�
https://www.securecoding.cert.org/confluence/display/java/CON33-J.+Ensure+ThreadLocal+variables+are+reinitialized+when+using+thread+pools�
https://www.securecoding.cert.org/confluence/display/java/CON33-J.+Ensure+ThreadLocal+variables+are+reinitialized+when+using+thread+pools�

TPS01-J

CMU/SEI-2010-TR-015 | 129

 public void methodInvoker(int n, final String method) {

 final BrowserManager manager = this;

 Callable<Object> callable = new Callable<Object>() {

 @Override public Object call() throws Exception {

 Method meth = manager.getClass().getMethod(method);

 return meth.invoke(manager);

 }

 };

 Collection<Callable<Object>> collection = Collections.nCopies(n, callable);

 try {

 Collection<Future<Object>> futures = pool.invokeAll(collection);

 } catch (InterruptedException e) {

 // Forward to handler

 Thread.currentThread().interrupt(); // Reset interrupted status

 }

 // ...

 }

 public static void main(String[] args) {

 BrowserManager manager = new BrowserManager(5);

 manager.perUser();

 }

}

Unfortunately, this program is susceptible to a thread-starvation deadlock. For example, if each of
the five perUser tasks spawns five perProfile tasks, which each spawn a perTab task, the
thread pool will be exhausted, and perTab() will not be able to allocate any additional threads
to invoke the doSomething() method.

TPS01-J

CMU/SEI-2010-TR-015 | 130

5.2.4 Compliant Solution (CallerRunsPolicy)

This compliant solution selects and schedules tasks for execution, avoiding thread-starvation
deadlock. It sets the CallerRunsPolicy on a ThreadPoolExecutor and uses a
SynchronousQueue [Gafter 2006]. The policy dictates that if the thread pool runs out of avail-
able threads, any subsequent tasks will run in the thread that submitted the tasks.

public final class BrowserManager {

 private final static ThreadPoolExecutor pool =

 new ThreadPoolExecutor(0, 10, 60L, TimeUnit.SECONDS,

 new SynchronousQueue<Runnable>());

 private final int numberOfTimes;

 private static AtomicInteger count = new AtomicInteger(); // count = 0

 static {

 pool.setRejectedExecutionHandler(

 new ThreadPoolExecutor.CallerRunsPolicy());

 }

 // ...

}

According to Goetz and colleagues [Goetz 2006]
A SynchronousQueue is not really a queue at all, but a mechanism for managing han-
doffs between threads. In order to put an element on the SynchronousQueue, another
thread must already be waiting to accept the handoff. It no thread is waiting but the current
pool size is less than the maximum, ThreadPoolExecutor creates a new thread; other-
wise the task is rejected according to the saturation policy.

According to the Java API [Sun 2009b], the CallerRunsPolicy class is
a handler for rejected tasks that runs the rejected task directly in the calling thread of the
execute method, unless the executor has been shut down, in which case the task is dis-
carded

In this compliant solution, tasks that have other tasks waiting to accept the handoff are added to
the SynchronousQueue when the thread pool is full. For example, tasks corresponding to
perTab() are added to the SynchronousQueue because the tasks corresponding to
perProfile() are waiting to receive the handoff. Once the pool is full, additional tasks are re-
jected, according to the saturation policy in effect. Because the CallerRunsPolicy is used to
handle these rejected tasks, all the rejected tasks are executed in the main thread that started the
initial tasks. When all the threads corresponding to perTab() have finished executing, the next
set of tasks corresponding to perProfile() are added to the SynchronousQueue because
the handoff is subsequently used by the perUser() tasks.

The CallerRunsPolicy allows the graceful degradation of service when faced with many re-
quests by distributing the workload from the thread pool to the work queue. Because the submit-
ted tasks do not block for any reason other than waiting for other tasks to complete, the policy
guarantees that the current thread can handle multiple tasks sequentially. The policy would not

TPS01-J

CMU/SEI-2010-TR-015 | 131

prevent thread-starvation deadlock if the tasks were to block for some other reason, such as net-
work I/O. Furthermore, because SynchronousQueue does not store tasks indefinitely for future
execution, there is no unbounded queue growth, and all tasks are handled by the current thread or
a thread in the thread pool.

This compliant solution is subject to the vagaries of the thread scheduler, which may not schedule
the tasks optimally. However, it avoids thread-starvation deadlock.

5.2.5 Risk Assessment

Executing interdependent tasks in a thread pool can lead to denial of service.

Guideline Severity Likelihood Remediation Cost Priority Level

TPS01- J low probable medium P4 L3

5.2.6 References

[Gafter 2006] A Thread Pool Puzzler

[Goetz 2006] Section 8.3.2, “Managing queued tasks”

Section 8.3.3, “Saturation Policies”

Section 5.3.3, “Deques and work stealing”

[Sun 2009b]

http://gafter.blogspot.com/2006/11/thread-pool-puzzler.html�

TPS02-J

CMU/SEI-2010-TR-015 | 132

5.3 TPS02-J. Ensure that tasks submitted to a thread pool are interruptible

Do not submit tasks that do not support interruption using Thread.interrupt() to a thread
pool if it is necessary to shut down the thread pool or cancel individual tasks within it.

According to the Java API interface [Sun 2009b], the
java.util.concurrent.ExecutorService.shutdownNow() method

Attempts to stop all actively executing tasks, halts the processing of waiting tasks, and re-
turns a list of the tasks that were awaiting execution. There are no guarantees beyond best-
effort attempts to stop processing actively executing tasks. For example, typical implementa-
tions will cancel via Thread.interrupt(), so any task that fails to respond to interrupts
may never terminate.

Similarly, when attempting to cancel individual tasks within the thread pool using the
Future.cancel() method, ensure that the tasks support interruption.

5.3.1 Noncompliant Code Example (Shutting Down Thread Pools)

This noncompliant code example submits the SocketReader class as a task to the thread pool
declared in PoolService.

public final class SocketReader implements Runnable { // Thread-safe class

 private final Socket socket;

 private final BufferedReader in;

 private final Object lock = new Object();

 public SocketReader(String host, int port) throws IOException {

 this.socket = new Socket(host, port);

 this.in = new BufferedReader(new InputStreamReader(this.socket.getInputStream()));

 }

 // Only one thread can use the socket at a particular time

 @Override public void run() {

 try {

 synchronized (lock) {

 readData();

 }

 } catch (IOException ie) {

 // Forward to handler

 }

 }

 public void readData() throws IOException {

 String string;

 try {

 while ((string = in.readLine()) != null) {

 // Blocks until end of stream (null)

 }

 } finally {

TPS02-J

CMU/SEI-2010-TR-015 | 133

 shutdown();

 }

 }

 public void shutdown() throws IOException {

 socket.close();

 }

}

public final class PoolService {

 private final ExecutorService pool;

 public PoolService(int poolSize) {

 pool = Executors.newFixedThreadPool(poolSize);

 }

 public void doSomething() throws InterruptedException, IOException {

 pool.submit(new SocketReader("somehost", 8080));

 // ...

 List<Runnable> awaitingTasks = pool.shutdownNow();

 }

 public static void main(String[] args) throws InterruptedException, IOException {

 PoolService service = new PoolService(5);

 service.doSomething();

 }

}

Because the task does not support interruption using the Thread.interrupt() method, there
is no guarantee that the shutdownNow() method will shut down the thread pool. Using the latter
does not fix the problem either because it waits until all the executing tasks have finished.

Similarly, tasks that use some mechanism other than Thread.interrupted() to determine
when to shut down will be unresponsive to shutdown() or shutdownNow(). For instance,
tasks that check a volatile flag to determine whether it is safe to shut down will be unresponsive to
these methods. The guideline “THI05-J. Do not use Thread.stop() to terminate threads” on
page 110 provides more information on using a flag to terminate threads.

5.3.2 Compliant Solution (Submit Interruptible Tasks)

This compliant solution defines an interruptible version of the SocketReader class, which is
instantiated and submitted to the thread pool.

public final class SocketReader implements Runnable {

 private final SocketChannel sc;

 private final Object lock = new Object();

 public SocketReader(String host, int port) throws IOException {

 sc = SocketChannel.open(new InetSocketAddress(host, port));

TPS02-J

CMU/SEI-2010-TR-015 | 134

 }

 @Override public void run() {

 ByteBuffer buf = ByteBuffer.allocate(1024);

 try {

 synchronized (lock) {

 while (!Thread.interrupted()) {

 sc.read(buf);

 // ...

 }

 }

 } catch (IOException ie) {

 // Forward to handler

 }

 }

}

public final class PoolService {

 // ...

}

5.3.3 Exceptions

TPS02-EX1: Short-running tasks that execute without blocking are not required to adhere to this
guideline.

5.3.4 Risk Assessment

Submitting tasks that are not interruptible may preclude the thread pool from shutting down and
cause denial of service.

Guideline Severity Likelihood Remediation Cost Priority Level

TPS02- J low probable medium P4 L3

5.3.5 References

[Goetz 2006] Chapter 7, “Cancellation and shutdown”

[Sun 2009b] Interface ExecutorService

TPS03-J

CMU/SEI-2010-TR-015 | 135

5.4 TPS03-J. Ensure that tasks executing in a thread pool do not fail silently

Long-running tasks should provide a mechanism for notifying the application upon abnormal ter-
mination. Failure to do so does not cause any resource leaks because the threads in the pool are
still recycled, but it makes failure diagnosis extremely difficult.

The best way to handle exceptions at the application level is to use an exception handler. The
handler can perform diagnostic actions, clean up and shut down the JVM, or simply log the details
of the failure.

5.4.1 Noncompliant Code Example (Abnormal Task Termination)

This noncompliant code example consists of the PoolService class that encapsulates a thread
pool and a runnable Task class. The Task.run() method can throw runtime exceptions such as
NullPointerException.

final class PoolService {

 private final ExecutorService pool = Executors.newFixedThreadPool(10);

 public void doSomething() {

 pool.execute(new Task());

 }

}

final class Task implements Runnable {

 @Override public void run() {

 // ...

 throw new NullPointerException();

 // ...

 }

}

The task does not notify the application when it terminates unexpectedly as a result of the runtime
exception. Moreover, it does not use any recovery mechanism. Consequently, if Task throws a
NullPointerException, the exception is ignored.

5.4.2 Compliant Solution (ThreadPoolExecutor Hooks)

Task-specific recovery or clean-up actions can be performed by overriding the
afterExecute() hook of the java.util.concurrent.ThreadPoolExecutor class.
This hook is called when a task concludes successfully by executing all the statements in its
run() method or halts because of an exception. (java.lang.Error might not be captured on
specific implementations. See Bug ID 6450211 for more information [Sun 2008b].) When using
this approach, substitute the executor service with a custom ThreadPoolExecutor that over-
rides the afterExecute() hook as shown below:

final class PoolService {

 // The values have been hard-coded for brevity

 ExecutorService pool = new CustomThreadPoolExecutor(10, 10, 10, TimeUnit.SECONDS,

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6450211�

TPS03-J

CMU/SEI-2010-TR-015 | 136

 new ArrayBlockingQueue<Runnable>(10));

 // ...

}

class CustomThreadPoolExecutor extends ThreadPoolExecutor {

 // ... Constructor ...

 @Override

 public void afterExecute(Runnable r, Throwable t) {

 super.afterExecute(r, t);

 if (t != null) {

 // Exception occurred, forward to handler

 }

 // ... Perform task-specific clean-up actions

 }

 @Override

 public void terminated() {

 super.terminated();

 // ... Perform final clean-up actions

 }

}

The terminated() hook is called after all the tasks have finished executing and the Executor
has terminated cleanly. This hook can be overridden to release resources acquired by the thread
pool, much like a finally block.

5.4.3 Compliant Solution (Uncaught Exception Handler)

This compliant solution sets an uncaught exception handler on behalf of the thread pool. A
ThreadFactory argument is passed to the thread pool during construction. The factory is re-
sponsible for creating new threads and setting the uncaught exception handler on their behalf. The
Task class is unchanged from the noncompliant code example.

final class PoolService {

 private static final ThreadFactory factory = new

 ExceptionThreadFactory(new MyExceptionHandler());

 private static final ExecutorService pool =

 Executors.newFixedThreadPool(10, factory);

 public void doSomething() {

 pool.execute(new Task()); // Task is a runnable class

 }

 public static class ExceptionThreadFactory implements ThreadFactory {

 private static final ThreadFactory defaultFactory =

 Executors.defaultThreadFactory();

 private final Thread.UncaughtExceptionHandler handler;

TPS03-J

CMU/SEI-2010-TR-015 | 137

 public ExceptionThreadFactory(Thread.UncaughtExceptionHandler handler) {

 this.handler = handler;

 }

 @Override public Thread newThread(Runnable run) {

 Thread thread = defaultFactory.newThread(run);

 thread.setUncaughtExceptionHandler(handler);

 return thread;

 }

 }

 public static class MyExceptionHandler extends ExceptionReporter

 implements Thread.UncaughtExceptionHandler {

 // ...

 @Override public void uncaughtException(Thread thread, Throwable t) {

 // Recovery or logging code

 }

 }

}

The ExecutorService.submit() method can be used to submit a task to a thread pool in-
stead of the execute() method to obtain a Future object. Note that the uncaught exception
handler is not called if ExecutorService.submit() is invoked. This is because the thrown
exception is considered to be part of the return status and is consequently wrapped in an
ExecutionException and re-thrown by the Future.get() method [Goetz 2006].

TPS03-J

CMU/SEI-2010-TR-015 | 138

5.4.4 Compliant Solution (Future<V> and submit())

This compliant solution invokes the ExecutorService.submit() method to submit the task
so that a Future object can be obtained. It uses the Future object to let the task re-throw the
exception so that it can be handled locally.

final class PoolService {

 private final ExecutorService pool = Executors.newFixedThreadPool(10);

 public void doSomething() {

 Future<?> future = pool.submit(new Task());

 // ...

 try {

 future.get();

 } catch (InterruptedException e) {

 Thread.currentThread().interrupt(); // Reset interrupted status

 } catch (ExecutionException e) {

 Throwable exception = e.getCause();

 // Forward to exception reporter

 }

 }

}

Furthermore, any exception that prevents doSomething() from obtaining the Future value
can be handled as required.

5.4.5 Exceptions

TPS03-EX1: This guideline may be violated if the code for all runnable and callable tasks has
been audited to ensure that no exceptional conditions are possible. Nonetheless, it is usually a
good practice to install a task-specific or global exception handler to initiate recovery or log the
exceptional condition.

5.4.6 Risk Assessment

Failing to provide a mechanism for reporting that tasks in a thread pool failed as a result of an
exceptional condition can make it harder to find the source of the issue.

Guideline Severity Likelihood Remediation Cost Priority Level

TPS03- J low probable medium P4 L3

5.4.7 References

[Goetz 2006] Chapter 7.3, “ Handling abnormal thread termination”

[Sun 2009b] Interfaces ExecutorService, ThreadFactory and class Thread

TPS04-J

CMU/SEI-2010-TR-015 | 139

5.5 TPS04-J. Ensure ThreadLocal variables are reinitialized when using thread
pools

The java.lang.ThreadLocal<T> class provides thread-local variables. According to the
Java API [Sun 2009b]

These variables differ from their normal counterparts in that each thread that accesses one
(via its get or set method) has its own, independently initialized copy of the variable.
ThreadLocal instances are typically private static fields in classes that wish to asso-
ciate state with a thread (e.g., a user ID or Transaction ID).

The use of ThreadLocal objects requires care in classes whose objects are required to be ex-
ecuted by multiple threads in a thread pool. The technique of thread pooling allows threads to be
reused when thread creation overhead is too expensive or when creating an unbounded number of
threads can diminish the reliability of the system. Every thread that enters the pool expects to see
an object in its initial, default state. However, when ThreadLocal objects are modified from a
thread that is subsequently made available for reuse, the reused thread sees the state of the
ThreadLocal object as set by the previous thread [Arnold 2006].

5.5.1 Noncompliant Code Example

This noncompliant code example consists of an enumeration of days (Day) and two classes
(Diary and DiaryPool). The Diary class uses a ThreadLocal variable to store thread-
specific information, such as each thread’s current day. The initial value of the current day is
Monday; this can be changed later by invoking the setDay() method. The class also contains a
threadSpecificTask() instance method that performs a thread-specific task.

The DiaryPool class consists of the doSomething1() and doSomething2()methods that
each start a thread. The doSomething1() method changes the initial (default) value of the day
to Friday and invokes threadSpecificTask(). On the other hand, doSomething2() relies
on the initial value of the day (Monday) diary and invokes threadSpecificTask(). The
main() method creates one thread using doSomething1() and two more using
doSomething2().

public enum Day {

 MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY;

}

public final class Diary {

 private static final ThreadLocal<Day> days =

 new ThreadLocal<Day>() {

 // Initialize to Monday

 protected Day initialValue() {

 return Day.MONDAY;

 }

 };

 private static Day currentDay() {

 return days.get();

TPS04-J

CMU/SEI-2010-TR-015 | 140

 }

 public static void setDay(Day newDay) {

 days.set(newDay);

 }

 // Performs some thread-specific task

 public void threadSpecificTask() {

 // Do task ...

 }

}

public final class DiaryPool {

 final int NoOfThreads = 2; // Maximum number of threads allowed in pool

 final Executor exec;

 final Diary diary;

 DiaryPool() {

 exec = (Executor) Executors.newFixedThreadPool(NoOfThreads);

 diary = new Diary();

 }

 public void doSomething1() {

 exec.execute(new Runnable() {

 @Override public void run() {

 Diary.setDay(Day.FRIDAY);

 diary.threadSpecificTask();

 }

 });

 }

 public void doSomething2() {

 exec.execute(new Runnable() {

 @Override public void run() {

 diary.threadSpecificTask();

 }

 });

 }

 public static void main(String[] args) {

 DiaryPool dp = new DiaryPool();

 dp.doSomething1(); // Thread 1, requires current day as Friday

 dp.doSomething2(); // Thread 2, requires current day as Monday

 dp.doSomething2(); // Thread 3, requires current day as Monday

 }

}

TPS04-J

CMU/SEI-2010-TR-015 | 141

The DiaryPool class creates a thread pool that reuses a fixed number of threads operating off a
shared, unbounded queue. At any point, at most, NoOfThreads threads are actively processing
tasks. If additional tasks are submitted when all threads are active, they will wait in the queue un-
til a thread is available. The thread-local state of the thread persists when a thread is recycled.

The following table shows a possible execution order:

Time Task Pool Thread Submitted By Method Day

1 t1 1 doSomething1() Friday

2 t2 2 doSomething2() Monday

3 t3 1 doSomething2() Friday

In this execution order, the two tasks (t2 and t3) that started using doSomething2() are ex-
pected to observe the current day as Monday. However, because pool thread 1 is reused, t3 ob-
serves the day to be Friday.

5.5.2 Noncompliant Code Example (Increase Thread Pool Size)

This noncompliant code example increases the size of the thread pool from two to three in an at-
tempt to mitigate the issue.

public final class DiaryPool {

 final int NoOfThreads = 3;

 // ...

}

Although increasing the size of the thread pool resolves the problem for this example, it is not a
scalable solution because changing the thread pool size is insufficient when more tasks can be
submitted to the pool.

5.5.3 Compliant Solution (try-finally Clause)

This compliant solution adds the removeDay() method to the Diary class and wraps the state-
ments in the doSomething1() method of the DiaryPool class in a try-finally block. The
finally block restores the initial state of the thread-local days object by removing the current
thread’s value from it.

public final class Diary {

 // ...

 public static void removeDay() {

 days.remove();

 }

}

public final class DiaryPool {

 // ...

 public void doSomething1() {

TPS04-J

CMU/SEI-2010-TR-015 | 142

 exec.execute(new Runnable() {

 @Override public void run() {

 try {

 Diary.setDay(Day.FRIDAY);

 diary.threadSpecificTask();

 } finally {

 Diary.removeDay(); // Diary.setDay(Day.MONDAY) can also be used

 }

 }

 });

 }

 // ...

}

If the thread-local variable is read by the same thread again, it is reinitialized using the
initialValue() method, unless the thread has already set the variable’s value explicitly [Sun
2009b]. This solution transfers the responsibility for maintenance to the client (DiaryPool) but
is a good option when the Diary class cannot be modified.

5.5.4 Compliant Solution (beforeExecute())

This compliant solution uses a custom ThreadPoolExecutor that extends
ThreadPoolExecutor and overrides the beforeExecute() method. That method is in-
voked before the Runnable task is executed in the specified thread. The method reinitializes the
thread-local variable before task r is executed by thread t.

class CustomThreadPoolExecutor extends ThreadPoolExecutor {

 public CustomThreadPoolExecutor(int corePoolSize, int maximumPoolSize,

 long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue) {

 super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue);

 }

 @Override

 public void beforeExecute(Thread t, Runnable r) {

 if (t == null || r == null) {

 throw new NullPointerException();

 }

 Diary.setDay(Day.MONDAY);

 super.beforeExecute(t, r);

 }

}

TPS04-J

CMU/SEI-2010-TR-015 | 143

public final class DiaryPool {

 // ...

 DiaryPool() {

 exec = new CustomThreadPoolExecutor(NoOfThreads, NoOfThreads,

 10, TimeUnit.SECONDS, new ArrayBlockingQueue<Runnable>(10));

 diary = new Diary();

 }

 // ...

}

5.5.5 Exceptions

TPS04-EX1: There is no need to reinitialize a ThreadLocal object that does not change state
after initialization. For example, there may be only one type of database connection represented
by the initial value of the ThreadLocal object.

5.5.6 Risk Assessment

Objects using ThreadLocal data and executed by different threads in a thread pool without rei-
nitialization might be in an unexpected state when reused.

Guideline Severity Likelihood Remediation Cost Priority Level

TPS04- J medium probable high P4 L3

5.5.7 References

[Arnold 2006] Section 14.13, “ThreadLocal Variables”

[Sun 2009b] class java.lang.ThreadLocal<T>

TPS04-J

CMU/SEI-2010-TR-015 | 144

TSM00-J

CMU/SEI-2010-TR-015 | 145

6 Thread-Safety Miscellaneous (TSM) Guidelines

6.1 TSM00-J. Do not override thread-safe methods with methods that are not
thread-safe

Overriding thread-safe methods with methods that are not thread-safe can result in improper syn-
chronization, if the client inadvertently operates on an instance of the subclass. An overridden
synchronized method’s contract can be violated, if a subclass provides an implementation that is
not safe for concurrent use.

Overriding thread-safe methods with methods that are not thread-safe is not, in itself, an error.
However, it is disallowed by this guideline because it may easily result in errors that are difficult
to diagnose.

The locking strategy of classes designed for inheritance should always be documented. This in-
formation can subsequently be used to determine an appropriate locking strategy for subclasses
(see guideline “LCK00-J. Use private final lock objects to synchronize classes that may interact
with untrusted code” on page 41).

6.1.1 Noncompliant Code Example (Synchronized Method)

This noncompliant code example overrides the synchronized doSomething() method in the
Base class with an unsynchronized method in the Derived subclass.

class Base {

 public synchronized void doSomething() {

 // ...

 }

}

class Derived extends Base {

 @Override public void doSomething() {

 // ...

 }

}

The doSomething() method of the Base class can be used safely by multiple threads, but in-
stances of the Derived subclass cannot.

This programming error can be difficult to diagnose because threads that accept instances of
Base can also accept instances of its subclasses. Consequently, clients could be unaware that they
are operating on an instance of the subclass of a thread-safe class that is not thread-safe.

TSM00-J

CMU/SEI-2010-TR-015 | 146

6.1.2 Compliant Solution (Synchronized Method)

This compliant solution synchronizes the doSomething() method of the subclass.

class Base {

 public synchronized void doSomething() {

 // ...

 }

}

class Derived extends Base {

 @Override public synchronized void doSomething() {

 // ...

 }

}

This compliant solution does not violate guideline “LCK00-J. Use private final lock objects to
synchronize classes that may interact with untrusted code” on page 41 because the accessibility of
the class is package-private. That type of accessibility is allowable when untrusted code cannot
infiltrate the package.

6.1.3 Compliant Solution (Private Final Lock Object)

This compliant solution ensures that the Derived class is thread-safe by overriding the synchro-
nized doSomething() method of the Base class with a method that synchronizes on a private
final lock object.

class Base {

 public synchronized void doSomething() {

 // ...

 }

}

class Derived extends Base {

 private final Object lock = new Object();

 @Override public void doSomething() {

 synchronized (lock) {

 // ...

 }

 }

}

This is an acceptable solution, provided the Derived class has a consistent locking policy.

TSM00-J

CMU/SEI-2010-TR-015 | 147

6.1.4 Noncompliant Code Example (Private Lock)

This noncompliant code example defines a doSomething() method in the Base class that uses
a private final lock, in accordance with guideline “LCK00-J. Use private final lock objects to syn-
chronize classes that may interact with untrusted code” on page 41.

class Base {

 private final Object lock = new Object();

 public void doSomething() {

 synchronized (lock) {

 // ...

 }

 }

}

class Derived extends Base {

 @Override public void doSomething() {

 try {

 super.doSomething();

 } finally {

 logger.log(Level.FINE, "Did something");

 }

 }

}

It is possible for multiple threads to cause the entries to be logged in an order that differs from the
order in which the tasks are performed. Consequently, the doSomething() method of the
Derived class cannot be used safely by multiple threads because it is not thread-safe.

6.1.5 Compliant Solution (Private Lock)

This compliant solution synchronizes the doSomething() method of the subclass using a pri-
vate final lock object.

class Base {

 private final Object lock = new Object();

 public void doSomething() {

 synchronized (lock) {

 // ...

 }

 }

}

class Derived extends Base {

 private final Object lock = new Object();

 @Override public void doSomething() {

TSM00-J

CMU/SEI-2010-TR-015 | 148

 synchronized (lock) {

 try {

 super.doSomething();

 } finally {

 logger.log(Level.FINE, "Did something");

 }

 }

 }

}

Note that the Base and Derived objects maintain distinct locks that are inaccessible from each
others’ classes. Consequently, Derived can provide thread-safety guarantees independent of
Base.

6.1.6 Risk Assessment

Overriding thread-safe methods with methods that are not thread-safe can result in unexpected
behavior.

Guideline Severity Likelihood Remediation Cost Priority Level

TSM00- J low probable medium P4 L3

6.1.7 References

[Sun 2009b]

[Sun 2008b] Sun bug database, Bug ID 4294756

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4294756�

TSM01-J

CMU/SEI-2010-TR-015 | 149

6.2 TSM01-J. Do not let the “this” reference escape during object construction

According to the Java Language Specification [Gosling 2005], Section 15.8.3, “this”
When used as a primary expression, the keyword this denotes a value that is a reference to
the object for which the instance method was invoked (§15.12), or to the object being con-
structed. The type of this is the class C within which the keyword this occurs. At run time,
the class of the actual object referred to may be the class C or any subclass of C.

The this reference is said to have escaped when it is made available beyond its current scope.
Common ways by which the this reference can escape include
• returning this from a non-private, overridable method that is invoked from the constructor

of a class whose object is being constructed. (For more information, see guideline “MET04-J.
Ensure that constructors do not call overridable methods.”10

• returning this from a non-private method of a mutable class, which allows the caller to ma-
nipulate the object’s state indirectly. This commonly occurs in method-chaining implementa-
tions; see guideline “

)

VNA04-J. Ensure that calls to chained methods are atomic” on page 29
for more information.

• passing this as an argument to an alien method invoked from the constructor of a class
whose object is being constructed

• using inner classes. An inner class implicitly holds a reference to the instance of its outer
class, unless the inner class is declared static.

• publishing by assigning this to a public static variable from the constructor of a class whose
object is being constructed

• overriding the finalizer of a non-final class and obtaining the this reference of a partially
initialized instance, when the construction of the object ceases. (For more information, see
guideline “OBJ04-J. Do not allow partially initialized objects to be accessed.”10) This can
happen when the constructor throws an exception. Misuse is not limited to untrusted code;
trusted code can also inadvertently add a finalizer and let this escape by violating guideline
“OBJ08-J. Avoid using finalizers.”10

• passing internal object state to an alien method. This enables the method to retrieve the this
reference of the internal member object.

This guideline describes the potential consequences of allowing the this reference to escape dur-
ing object construction, including race conditions and improper initialization. For example, dec-
laring a field final ensures that all threads see it in a fully initialized state only when the this
reference does not escape during the corresponding object’s construction. Guideline “TSM03-J.
Do not publish partially initialized objects” on page 162 describes the guarantees provided by var-
ious mechanisms for safe publication and relies on conformance to this guideline. In general, it is
important to detect cases where the this reference can leak out beyond the scope of the current
context. In particular, public variables and methods should be carefully scrutinized.

10 This guideline is described at https://www.securecoding.cert.org/confluence/display/java/.

https://www.securecoding.cert.org/confluence/x/MYYbAQ�
https://www.securecoding.cert.org/confluence/x/MYYbAQ�
https://www.securecoding.cert.org/confluence/x/x4AlAQ�
https://www.securecoding.cert.org/confluence/x/H4cbAQ�
https://www.securecoding.cert.org/confluence/display/java/

TSM01-J

CMU/SEI-2010-TR-015 | 150

6.2.1 Noncompliant Code Example (Publish Before Initialization)

This noncompliant code example publishes the this reference before initialization has con-
cluded, by storing it in a public static volatile class field.

final class Publisher {

 public static volatile Publisher published;

 int num;

 Publisher(int number) {

 published = this;

 // Initialization

 this.num = number;

 // ...

 }

}

Consequently, other threads may obtain a partially initialized Publisher instance. Also, if the
object initialization (and consequently, its construction) depends on a security check within the
constructor, the security check can be bypassed if an untrusted caller obtains the partially initia-
lized instance. (For more information, see guideline “OBJ04-J. Do not allow partially initialized
objects to be accessed.”11

6.2.2 Noncompliant Code Example (Non-Volatile Public Static Field)

)

This noncompliant code example publishes the this reference in the last statement of the con-
structor but is still vulnerable because the published field is not declared volatile and has pub-
lic accessibility.

final class Publisher {

 public static Publisher published;

 int num;

 Publisher(int number) {

 // Initialization

 this.num = number;

 // ...

 published = this;

 }

}

Because the field is non-volatile and non-final, the statements within the constructor can be reor-
dered by the compiler in such a way that the this reference is published before the initialization
statements have executed.

11 This guideline is described at https://www.securecoding.cert.org/confluence/display/java/.

https://www.securecoding.cert.org/confluence/x/x4AlAQ�
https://www.securecoding.cert.org/confluence/x/x4AlAQ�
https://www.securecoding.cert.org/confluence/display/java/

TSM01-J

CMU/SEI-2010-TR-015 | 151

6.2.3 Compliant Solution (Volatile Field and Publish After Initialization)

This compliant solution declares the published field volatile and reduces its accessibility to
package-private so that callers outside the current package scope cannot obtain the this refer-
ence.

final class Publisher {

 static volatile Publisher published;

 int num;

 Publisher(int number) {

 // Initialization

 this.num = number;

 // ...

 published = this;

 }

}

The constructor publishes the this reference after initialization has concluded. However, the
caller that instantiates Publisher must ensure that it does not see the default value of the num
field before it is initialized (a violation of guideline “TSM03-J. Do not publish partially initialized
objects” on page 162). Consequently, the field that holds the reference to Publisher might need
to be declared volatile in the caller.

Initialization statements may be reordered if the published field is not declared volatile. The
Java compiler, however, does not allow fields to be declared both volatile and final.

The class Publisher must also be final; otherwise, a subclass can call its constructor and pub-
lish the this reference before the subclass’s initialization has concluded.

6.2.4 Compliant Solution (Public Static Factory Method)

This compliant solution eliminates the internal member field and provides a newInstance()
factory method that creates and returns a Publisher instance.

final class Publisher {

 final int num;

 private Publisher(int number) {

 // Initialization

 this.num = number;

 }

 public static Publisher newInstance(int number) {

 Publisher published = new Publisher(number);

 return published;

 }

}

TSM01-J

CMU/SEI-2010-TR-015 | 152

This approach ensures that threads do not see an inconsistent Publisher instance. The num field
is also declared final, making the class immutable and eliminating the possibility of obtaining a
partially initialized object.

6.2.5 Noncompliant Code Example (Handlers)

This noncompliant code example defines the ExceptionReporter interface:

public interface ExceptionReporter {

 public void setExceptionReporter(ExceptionReporter er);

 public void report(Throwable exception);

}

This interface is implemented by the DefaultExceptionReporter class, which reports ex-
ceptions after filtering out any sensitive information. (For more information, see guideline
“EXC01-J. Use a class dedicated to reporting exceptions.”12

The DefaultExceptionReporter constructor prematurely publishes the this reference be-
fore construction of the object has concluded. This occurs in the last statement of the constructor
(er.setExceptionReporter(this)), which sets the exception reporter. Because it is the
last statement of the constructor, this may be misconstrued as benign.

)

// Class DefaultExceptionReporter

public class DefaultExceptionReporter implements ExceptionReporter {

 public DefaultExceptionReporter(ExceptionReporter er) {

 // Carry out initialization

 // Incorrectly publishes the "this" reference

 er.setExceptionReporter(this);

 }

 // Implementation of setExceptionReporter() and report()

}

The MyExceptionReporter class subclasses DefaultExceptionReporter with the intent
of adding a logging mechanism that logs critical messages before an exception is reported.

// Class MyExceptionReporter derives from DefaultExceptionReporter

public class MyExceptionReporter extends DefaultExceptionReporter {

 private final Logger logger;

 public MyExceptionReporter(ExceptionReporter er) {

 super(er); // Calls superclass's constructor

 logger = Logger.getLogger("com.organization.Log"); // Obtain the default logger

 }

 public void report(Throwable t) {

 logger.log(Level.FINEST,"Loggable exception occurred", t);

 }

}

12 This guideline is described at https://www.securecoding.cert.org/confluence/display/java/.

https://www.securecoding.cert.org/confluence/x/DIB3AQ�
https://www.securecoding.cert.org/confluence/display/java/

TSM01-J

CMU/SEI-2010-TR-015 | 153

Its constructor invokes the DefaultExceptionReporter superclass’s constructor (a manda-
tory first step), which publishes the exception reporter before the initialization of the subclass has
concluded. Note that the subclass initialization consists of obtaining an instance of the default
logger. Publishing the exception reporter is equivalent to setting it to receive and handle excep-
tions from that point on.

If an exception occurs before the call to Logger.getLogger() in the
MyExceptionReporter subclass, it is not logged. Instead, a NullPointerException is
generated, which may, itself, be consumed by the reporting mechanism without being logged.

This erroneous behavior results from the race condition between an oncoming exception and the
initialization of MyExceptionReporter. If the exception comes too soon, it finds
MyExceptionReporter in an inconsistent state. This behavior is especially counterintuitive
because logger is declared final and is not expected to contain an uninitialized value.

This problem can also occur when an event listener is published prematurely. Consequently, it
starts receiving event notifications even before the subclass’s initialization has concluded.

6.2.6 Compliant Solution

Instead of publishing the this reference from the DefaultExceptionReporter constructor,
this compliant solution adds the publishExceptionReporter() method to
DefaultExceptionReporter to set the exception reporter. This method can be invoked on a
subclass instance, after the subclass’s initialization has concluded.

public class DefaultExceptionReporter implements ExceptionReporter {

 public DefaultExceptionReporter(ExceptionReporter er) {

 // ...

 }

 // Should be called after subclass's initialization is over

 public void publishExceptionReporter() {

 setExceptionReporter(this); // Registers this exception reporter

 }

 // Implementation of setExceptionReporter() and report()

}

The MyExceptionReporter subclass inherits the publishExceptionReporter() me-
thod, and a caller who instantiates MyExceptionReporter can use its instance to set the ex-
ception reporter, after initialization is over.

// Class MyExceptionReporter derives from DefaultExceptionReporter

public class MyExceptionReporter extends DefaultExceptionReporter {

 private final Logger logger;

 public MyExceptionReporter(ExceptionReporter er) {

 super(er); // Calls superclass's constructor

 logger = Logger.getLogger("com.organization.Log");

TSM01-J

CMU/SEI-2010-TR-015 | 154

 }

 // Implementations of publishExceptionReporter(), setExceptionReporter() and

 // report() are inherited

}

This approach ensures that the reporter cannot be set before the constructor has fully initialized
the subclass and enabled logging.

6.2.7 Noncompliant Code Example (Inner Class)

Inner classes maintain a copy of the this reference of the outer object. Consequently, the this
reference may leak outside the scope [Goetz 2002]. This noncompliant code example uses a dif-
ferent implementation of the DefaultExceptionReporter class. The constructor uses an
anonymous inner class to publish a filter() method.

public class DefaultExceptionReporter implements ExceptionReporter {

 public DefaultExceptionReporter(ExceptionReporter er) {

 er.setExceptionReporter(new DefaultExceptionReporter(er) {

 public void report(Throwable t) {

 filter(t);

 }

 });

 }

 // Default implementations of setExceptionReporter() and report()

}

The this reference of the outer class is published by the inner class so that other threads can see
it. Furthermore, if the class is subclassed, the issue described in the noncompliant code example
for handlers resurfaces.

6.2.8 Compliant Solution

A private constructor alongside a public static factory method can safely publish the
filter() method from within the constructor [Goetz 2006].

public class DefaultExceptionReporter implements ExceptionReporter {

 private final DefaultExceptionReporter defaultER;

 private DefaultExceptionReporter(ExceptionReporter excr) {

 defaultER = new DefaultExceptionReporter(excr) {

 public void report(Throwable t) {

 filter(t);

 }

 };

 }

 public static DefaultExceptionReporter newInstance(ExceptionReporter excr) {

 DefaultExceptionReporter der = new DefaultExceptionReporter(excr);

 excr.setExceptionReporter(der.defaultER);

 return der;

TSM01-J

CMU/SEI-2010-TR-015 | 155

 }

 // Default implementations of setExceptionReporter() and report()

}

Because the constructor is private, untrusted code cannot create instances of the class, prohibiting
the this reference from escaping. Using a public static factory method to create new instances
also protects against publication of partially initialized objects (see guideline “TSM03-J. Do not
publish partially initialized objects” on page 162) and untrusted manipulation of internal object
state.

6.2.9 Noncompliant Code Example (Thread)

This noncompliant code example starts a thread from within the constructor.

final class ThreadStarter implements Runnable {

 public ThreadStarter() {

 Thread thread = new Thread(this);

 thread.start();

 }

 @Override public void run() {

 // ...

 }

}

The new thread can access the this reference of the current object [Goetz 2002, Goetz 2006].
Notably, the Thread() constructor is alien to the ThreadStarter class.

6.2.10 Compliant Solution (Thread)

This compliant solution creates and starts the thread in a method instead of the constructor.

final class ThreadStarter implements Runnable {

 public ThreadStarter() {

 // ...

 }

 public void startThread() {

 Thread thread = new Thread(this);

 thread.start();

 }

 @Override public void run() {

 // ...

 }

}

TSM01-J

CMU/SEI-2010-TR-015 | 156

6.2.11 Exceptions

TSM01-EX1: It is safe to create a thread in the constructor, provided the thread is not started un-
til object construction has completed. This is because a call to start() on a thread happens-
before any actions in the started thread [Gosling 2005].

In this code example, even though a thread referencing this is created in the constructor, it is not
started until its start() method is called from the startThread() method [Goetz 2002,
Goetz 2006].

final class ThreadStarter implements Runnable {

 Thread thread;

 public ThreadStarter() {

 thread = new Thread(this);

 }

 public void startThread() {

 thread.start();

 }

 @Override public void run() {

 // ...

 }

}

TSM01-EX2: The ObjectPreserver pattern [Grand 2002] described in guideline “TSM02-J.
Do not use background threads during class initialization” on page 157 is also a safe exception to
this guideline.

6.2.12 Risk Assessment

Allowing the this reference to escape may result in improper initialization and runtime excep-
tions.

Guideline Severity Likelihood Remediation Cost Priority Level

TSM01-J medium probable high P4 L3

6.2.13 References

[Goetz 2002]

[Goetz 2006] Section 3.2, “Publication and Escape”

[Gosling 2005] Keyword “this”

[Grand 2002] Chapter 5, “Creational Patterns, Singleton”

TSM02-J

CMU/SEI-2010-TR-015 | 157

6.3 TSM02-J. Do not use background threads during class initialization

Starting and using background threads during class initialization can result in class initialization
cycles and deadlock. For example, the main thread responsible for performing class initialization
can block waiting for the background thread, which, in turn, will wait for the main thread to finish
class initialization. This issue can arise, for example, when a database connection is established in
a background thread during class initialization [Bloch 2005b].

6.3.1 Noncompliant Code Example (Background Thread)

In this noncompliant code example, the static initializer starts a background thread as part of
class initialization. The background thread attempts to initialize a database connection but needs
to wait until all members of the ConnectionFactory class, including dbConnection, have
been initialized.

public final class ConnectionFactory {

 private static Connection dbConnection;

 // Other fields ...

 static {

 Thread dbInitializerThread = new Thread(new Runnable() {

 @Override public void run() {

 // Initialize the database connection

 try {

 dbConnection = DriverManager.getConnection("connection string");

 } catch (SQLException e) {

 dbConnection = null;

 }

 }

 });

 // Other initialization, for example, start other threads

 dbInitializerThread.start();

 try {

 dbInitializerThread.join();

 } catch (InterruptedException ie) {

 throw new AssertionError(ie);

 }

 }

 public static Connection getConnection() {

 if (dbConnection == null) {

 throw new IllegalStateException("Error initializing connection");

 }

 return dbConnection;

 }

 public static void main(String[] args) {

TSM02-J

CMU/SEI-2010-TR-015 | 158

 // ...

 Connection connection = getConnection();

 }

}

Statically initialized fields are guaranteed to be fully constructed before they are made visible to
other threads. (See guideline “TSM03-J. Do not publish partially initialized objects” on page 162
for more information.) Consequently, the background thread must wait for the main (or fore-
ground) thread to finish initialization before it can proceed. However, the ConnectionFactory
class’s main thread invokes the join() method, which waits for the background thread to finish.
This interdependency causes a class initialization cycle that results in a deadlock situation [Bloch
2005b].

Similarly, it is inappropriate to start threads from constructors. (See guideline “TSM01-J. Do not
let the “this” reference escape during object construction” on page 149 for more information.)
Creating timers that perform recurring tasks and starting those timers from within the code re-
sponsible for initialization introduces liveness issues.

6.3.2 Compliant Solution (static Initializer, No Background Threads)

This compliant solution does not spawn any background threads from the static initializer. In-
stead, all fields are initialized in the main thread.

public final class ConnectionFactory {

 private static Connection dbConnection;

 // Other fields ...

 static {

 // Initialize a database connection

 try {

 dbConnection = DriverManager.getConnection("connection string");

 } catch (SQLException e) {

 dbConnection = null;

 }

 // Other initialization (do not start any threads)

 }

 // ...

}

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=32833640�
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=32833640�
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=32833640�
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=32833640�

TSM02-J

CMU/SEI-2010-TR-015 | 159

6.3.3 Compliant Solution (ThreadLocal)

This compliant solution initializes the database connection from a ThreadLocal object so that
every thread can obtain its own instance of the connection.

public final class ConnectionFactory {

 private static final ThreadLocal<Connection> connectionHolder

 = new ThreadLocal<Connection>() {

 @Override public Connection initialValue() {

 try {

 Connection dbConnection = DriverManager.getConnection("connection string");

 return dbConnection;

 } catch (SQLException e) {

 return null;

 }

 }

 };

 // Other fields ...

 static {

 // Other initialization (do not start any threads)

 }

 public static Connection getConnection() {

 Connection connection = connectionHolder.get();

 if (connection == null) {

 throw new IllegalStateException("Error initializing connection");

 }

 return connection;

 }

 public static void main(String[] args) {

 // ...

 Connection connection = getConnection();

 }

}

The static initializer can be used to initialize any other shared class fields. Alternatively, the fields
can be initialized from the initialValue() method.

TSM02-J

CMU/SEI-2010-TR-015 | 160

6.3.4 Exceptions

TSM02-EX1: It is permissible to start a background thread during class initialization provided the
thread does not access any fields. For example, the ObjectPreserver class (based on Patterns
in Java [Grand 2002]) shown below provides a mechanism for storing object references, which
prevents an object from being garbage-collected, even if the object is not de-referenced in the fu-
ture.

public final class ObjectPreserver implements Runnable {

 private static final ObjectPreserver lifeLine = new ObjectPreserver();

 private ObjectPreserver() {

 Thread thread = new Thread(this);

 thread.setDaemon(true);

 thread.start(); // Keep this object alive

 }

 // Neither this class nor HashMap will be garbage-collected.

 // References from HashMap to other objects will also exhibit this property

 private static final ConcurrentHashMap<Integer, Object> protectedMap

 = new ConcurrentHashMap<Integer, Object>();

 public synchronized void run() {

 try {

 wait();

 } catch (InterruptedException e) {

 Thread.currentThread().interrupt(); // Reset interrupted status

 }

 }

 // Objects passed to this method will be preserved until

 // the unpreserveObject() method is called

 public static void preserveObject(Object obj) {

 protectedMap.put(0, obj);

 }

 // Returns the same instance every time

 public static Object getObject() {

 return protectedMap.get(0);

 }

 // Unprotect the objects so that they can be garbage-collected

 public static void unpreserveObject() {

 protectedMap.remove(0);

 }

}

TSM02-J

CMU/SEI-2010-TR-015 | 161

This is a singleton class. (See guideline “MSC16-J. Address the shortcomings of the Singleton
design pattern”13

While the initialization does involve a background thread, that thread does not access any fields or
create any liveness or safety issues. Consequently, this code is a safe and useful exception to this
guideline.

 for more information on how to defensively code singleton classes.) The initiali-
zation involves creating a background thread using the current instance of the class. The thread
waits indefinitely by invoking Object.wait(). Consequently, this object persists for the re-
mainder of the JVM’s lifetime. Because the object is managed by a daemon thread, the thread
does not hinder a normal shutdown of the JVM.

6.3.5 Risk Assessment

Starting and using background threads during class initialization can result in deadlock conditions.

Guideline Severity Likelihood Remediation Cost Priority Level

TSM02- J low probable high P2 L3

6.3.6 References

[Bloch 2005b]

[Grand 2002] Chapter 5, “Creational Patterns, Singleton”

13 This guideline is described at https://www.securecoding.cert.org/confluence/display/java/.

https://www.securecoding.cert.org/confluence/x/SQJqAQ�
https://www.securecoding.cert.org/confluence/x/SQJqAQ�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Bloch05b�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Patterns02�
https://www.securecoding.cert.org/confluence/display/java/

TSM03-J

CMU/SEI-2010-TR-015 | 162

6.4 TSM03-J. Do not publish partially initialized objects

During initialization of a shared object, the object must only be accessible to the thread construct-
ing it. However, the object can be published safely (that is, made visible to other threads) once it
is initialized. The JMM allows multiple threads to observe the object after its initialization has
begun, but before it has concluded. Consequently, it is important to ensure that a partially initia-
lized object is not published.

This guideline prohibits publishing a reference to a partially initialized member object instance
before initialization has concluded. Guideline “TSM01-J. Do not let the “this” reference escape
during object construction” on page 149 prohibits the this reference of the current object from
escaping.

6.4.1 Noncompliant Code Example

This noncompliant code example constructs a Helper object in the initialize() method of
the Foo class. The Helper object’s fields are initialized by its constructor.

class Foo {

 private Helper helper;

 public Helper getHelper() {

 return helper;

 }

 public void initialize() {

 helper = new Helper(42);

 }

}

public class Helper {

 private int n;

 public Helper(int n) {

 this.n = n;

 }

 // ...

}

If a thread accesses helper using the getHelper() method before the initialize() me-
thod has been called, the thread will observe an uninitialized helper field. Later, if one thread
calls initialize() and another calls getHelper(), the second thread might observe one of
the following:
• the helper reference as NULL

• a fully initialized Helper object with the n field set to 42

• a partially initialized Helper object with an uninitialized n that contains the default value 0

TSM03-J

CMU/SEI-2010-TR-015 | 163

In particular, the JMM permits compilers to allocate memory for the new Helper object and as-
sign it to the helper field before initializing it. In other words, the compiler can reorder the write
to the helper instance field with the write that initializes the Helper object (that is,
this.n = n) such that the former occurs first. This exposes a race window during which other
threads may observe a partially initialized Helper object instance.

There is a separate issue: if two threads call initialize(), two Helper objects are created.
This is a performance issue and not a correctness issue because n will be properly initialized and
the unused Helper objects will be garbage-collected.

6.4.2 Compliant Solution (Synchronization)

The publication of partially constructed object references can be prevented by using method syn-
chronization, as shown in this compliant solution.

class Foo {

 private Helper helper;

 public synchronized Helper getHelper() {

 return helper;

 }

 public synchronized void initialize() {

 helper = new Helper(42);

 }

}

Synchronizing both methods guarantees that they will not execute concurrently. If one thread calls
initialize() just before another thread calls getHelper(), the synchronized
initialize() method will always finish first. The synchronized keyword establishes a
happens-before relationship between the two threads. This guarantees that the thread calling
getHelper() sees the fully initialized Helper object or none at all (that is, helper contains a
null reference). This approach guarantees proper publication for both immutable and mutable
members.

TSM03-J

CMU/SEI-2010-TR-015 | 164

6.4.3 Compliant Solution (Final Field)

If the helper field is declared final, it is guaranteed to be fully constructed before its reference is
made visible.

class Foo {

 private final Helper helper;

 public Helper getHelper() {

 return helper;

 }

 public Foo() {

 helper = new Helper(42);

 }

}

However, this solution requires the assignment of a new Helper instance to helper from Foo’s
constructor. According to the Java Language Specification, Section 17.5.2, “Reading Final Fields
During Construction” [Gosling 2005]

A read of a final field of an object within the thread that constructs that object is ordered
with respect to the initialization of that field within the constructor by the usual happens-
before rules. If the read occurs after the field is set in the constructor, it sees the value the
final field is assigned, otherwise it sees the default value.

Consequently, the reference to the Helper instance should not be published before the Foo
class’s constructor has finished its initialization (see guideline “TSM01-J. Do not let the “this”
reference escape during object construction” on page 149).

6.4.4 Compliant Solution (Final Field and Thread-Safe Composition)

Some collection classes provide thread-safe access to contained elements. If the Helper object is
inserted into such a collection, it is guaranteed to be fully initialized before its reference is made
visible. This compliant solution encapsulates the helper field in a Vector<Helper>.

class Foo {

 private final Vector<Helper> helper;

 public Foo() {

 helper = new Vector<Helper>();

 }

 public Helper getHelper() {

 if (helper.isEmpty()) {

 initialize();

 }

 return helper.elementAt(0);

 }

TSM03-J

CMU/SEI-2010-TR-015 | 165

 public synchronized void initialize() {

 if (helper.isEmpty()) {

 helper.add(new Helper(42));

 }

 }

}

The helper field is declared final to guarantee that the vector is created before any accesses take
place. It can be initialized safely by invoking the synchronized initialize() method, which
ensures that only one Helper object is ever added to the vector. If getHelper() is invoked
before initialize(), it calls initialize() to avoid the possibility of a null-pointer de-
reference by the client. The getHelper() method does not require synchronization to simply
return Helper, and—because the synchronized initialize() method also checks to make
sure helper is empty before adding a new Helper object—there is no possibility of exploiting
a race condition to add a second object to the vector.

6.4.5 Compliant Solution (Static Initialization)

In this compliant solution, the helper field is statically initialized, ensuring that the object refe-
renced by the field is fully initialized before its reference is visible.

// Immutable Foo

final class Foo {

 private static final Helper helper = new Helper(42);

 public static Helper getHelper() {

 return helper;

 }

}

Although not a requirement, the helper field should be declared final to document the class’s
immutability.

According to the Java Memory Model and Thread Specification, Section 9.2.3, “Static Final
Fields” [JSR-133 2004]

The rules for class initialization ensure that any thread that reads a static field will be
synchronized with the static initialization of that class, which is the only place where stat-
ic final fields can be set. Thus, no special rules in the JMM are needed for static
final fields.

TSM03-J

CMU/SEI-2010-TR-015 | 166

6.4.6 Compliant Solution (Immutable Object - Final Fields, Volatile Reference)

The JMM guarantees that any final fields of an object are fully initialized before a published ob-
ject becomes visible [Goetz 2006]. By declaring n final, the Helper class is made immutable.
Furthermore, if the helper field is declared volatile in compliance with guideline “VNA01-J.
Ensure visibility of shared references to immutable objects” on page 13, Helper’s reference is
guaranteed to be made visible to any thread that calls getHelper() after Helper has been fully
initialized.

class Foo {

 private volatile Helper helper;

 public Helper getHelper() {

 return helper;

 }

 public void initialize() {

 helper = new Helper(42);

 }

}

// Immutable Helper

public final class Helper {

 private final int n;

 public Helper(int n) {

 this.n = n;

 }

 // ...

}

This compliant solution requires that helper be declared volatile and class Helper be immuta-
ble. If it were not immutable, the code would violate guideline “VNA06-J. Do not assume that
declaring an object reference volatile guarantees visibility of its members” on page 35, and addi-
tional synchronization would be necessary (see the next compliant solution). And if the
helper field were non-volatile, it would violate guideline “VNA01-J. Ensure visibility of shared
references to immutable objects” on page 13.

Similarly, a public static factory method that returns a new instance of Helper can be provided
in the Helper class. This approach allows the Helper instance to be created in a private con-
structor.

6.4.7 Compliant Solution (Mutable Thread-Safe Object, Volatile Reference)

If Helper is mutable but thread-safe, it can be published safely by declaring the helper field in
the Foo class volatile.

class Foo {

 private volatile Helper helper;

TSM03-J

CMU/SEI-2010-TR-015 | 167

 public Helper getHelper() {

 return helper;

 }

 public void initialize() {

 helper = new Helper(42);

 }

}

// Mutable but thread-safe Helper

public class Helper {

 private volatile int n;

 private final Object lock = new Object();

 public Helper(int n) {

 this.n = n;

 }

 public void setN(int value) {

 synchronized (lock) {

 n = value;

 }

 }

}

Because the Helper object can change state after its construction, synchronization is necessary to
ensure the visibility of mutable members after initial publication. Consequently, the setN() me-
thod is synchronized to provide the visibility of the n field in this compliant solution (see guide-
line “VNA06-J. Do not assume that declaring an object reference volatile guarantees visibility of
its members” on page 35).

If the Helper class is not synchronized properly, declaring helper volatile in the Foo class
only guarantees the visibility of the initial publication of Helper and not of subsequent state
changes. Consequently, volatile references alone are inadequate for publishing objects that are not
thread-safe.

If the helper field in the Foo class is not declared volatile, the n field should be declared vola-
tile so that a happens-before relationship is established between the initialization of n and the
write of Helper to the helper field. This is in compliance with guideline “VNA06-J. Do not
assume that declaring an object reference volatile guarantees visibility of its members” on page
35. This is required only when the caller (class Foo) cannot be trusted to declare helper volatile.

Because the Helper class is declared public, it uses a private lock to handle synchronization in
conformance with guideline “LCK00-J. Use private final lock objects to synchronize classes that
may interact with untrusted code” on page 41.

TSM03-J

CMU/SEI-2010-TR-015 | 168

6.4.8 Exceptions

TSM03-EX1: Classes that prevent partially initialized objects from being used may publish par-
tially initialized objects. This may be implemented, for example, by setting a volatile boolean flag
in the last statement of the initializing code and ensuring that this flag is set before allowing class
methods to execute.

The following compliant solution illustrates this technique:

public class Helper {

 private int n;

 private volatile boolean initialized; // Defaults to false

 public Helper(int n) {

 this.n = n;

 this.initialized = true;

 }

 public void doSomething() {

 if (!initialized) {

 throw new SecurityException("Cannot use partially initialized instance");

 }

 // ...

 }

 // ...

}

This technique ensures that even if the reference to the Helper object instance is published be-
fore its initialization is over, the instance is unusable. The instance is unusable because every me-
thod within Helper must check the flag to determine whether the initialization has finished.

6.4.9 Risk Assessment

Failing to synchronize access to shared mutable data can cause different threads to observe differ-
ent states of the object or a partially initialized object.

Guideline Severity Likelihood Remediation Cost Priority Level

TSM03-J medium probable medium P8 L2

6.4.10 References

[Arnold 2006] Section 14.10.2, “Final Fields and Security”

[Bloch 2001] Item 48: “Synchronize access to shared mutable data”

[Goetz 2006] Section 3.5.3, “Safe Publication Idioms”

[Goetz 2006c] Pattern #2: “one-time safe publication”

[Pugh 2004]

[Sun 2009b]

TSM04-J

CMU/SEI-2010-TR-015 | 169

6.5 TSM04-J. Document thread-safety and use annotations where applicable

The Java language annotation facility is useful for documenting design intent. Source code anno-
tation is a mechanism for associating metadata with a program element and making it available to
the compiler, analyzers, debuggers, or the JVM for examination. Several annotations are available
for documenting thread-safety or the lack thereof.

6.5.1 Obtaining Concurrency Annotations

Two sets of concurrency annotations are freely available and licensed for use in any code. The
first set consists of four annotations described in Java Concurrency in Practice (JCIP) [Goetz
2006], which can be downloaded at jcip.net (jar, javadoc, source). The JCIP annotations are re-
leased under the Creative Commons Attribution License.

The second, larger set of concurrency annotations is available from and supported by SureLogic.
These annotations are released under The Apache Software License, Version 2.0 and can be
downloaded at surelogic.com (jar, javadoc, source). They can be verified by the SureLogic JSure
tool and are useful for documenting code, even if the tool is unavailable. These annotations in-
clude the JCIP annotations because they are supported by the JSure tool. (JSure also supports the
use of the JCIP JAR file.)

To use the annotations, download and add one or both of the aforementioned JAR files to the
code’s build path. The use of these annotations to document thread-safety is described in the fol-
lowing sections.

6.5.2 Documenting Intended Thread-Safety

JCIP provides three class-level annotations to describe the programmer’s design intent with re-
spect to thread-safety.

The @ThreadSafe annotation is applied to a class to indicate that it is thread-safe. This means
that no sequences of accesses (reads and writes to public fields, calls to public methods) can leave
the object in an inconsistent state, regardless of the interleaving of these accesses by the runtime
or any external synchronization or coordination on the part of the caller.

For example, the Aircraft class shown below specifies that it is thread-safe as part of its lock-
ing policy documentation. This class protects the x and y fields using a reentrant lock.

 @ThreadSafe

 @Region("private AircraftState")

 @RegionLock("StateLock is stateLock protects AircraftState")

 public final class Aircraft {

 private final Lock stateLock = new ReentrantLock();

 // ...

 @InRegion("AircraftState")

 private long x, y;

 // ...

 public void setPosition(long x, long y) {

 stateLock.lock();

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Goetz06�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Goetz06�
http://www.jcip.net/�
http://jcip.net/jcip-annotations.jar�
http://jcip.net/annotations/doc/index.html�
http://jcip.net/jcip-annotations-src.jar�
http://creativecommons.org/licenses/by/2.5�
http://www.surelogic.com/�
http://www.apache.org/licenses/LICENSE-2.0�
http://surelogic.com/promises/index.html�
http://surelogic.com/promises/jars/�
http://surelogic.com/promises/apidocs/index.html�
http://surelogic.com/promises/source-repository.html�
http://www.surelogic.com/�
http://www.surelogic.com/concurrency-tools.html�
http://surelogic.com/promises/apidocs/com/surelogic/ThreadSafe.html�
https://www.securecoding.cert.org/confluence/display/java/BB.+Definitions#BB.Definitions-threadsafe�

TSM04-J

CMU/SEI-2010-TR-015 | 170

 try {

 this.x = x;

 this.y = y;

 } finally {

 stateLock.unlock();

 }

 }

 // ...

 }

The @Region and @RegionLock annotations document the locking policy that the promise of
thread-safety is predicated on.

Even if one or more @RegionLock or @GuardedBy annotations have been used to document
the locking policy of a class, the @ThreadSafe annotation provides an intuitive way for review-
ers to learn that the class is thread-safe.

The @Immutable annotation is applied to immutable classes. Immutable objects are inherently
thread-safe; after they are fully constructed, they may be published via a volatile reference and
shared safely among multiple threads.

The following example shows an immutable Point class:

 @Immutable

 public final class Point {

 private final int f_x;

 private final int f_y;

 public Point(int x, int y) {

 f_x = x;

 f_y = y;

 }

 public int getX() {

 return f_x;

 }

 public int getY() {

 return f_y;

 }

 }

According to Bloch [Bloch 2008]
It is not necessary to document the immutability of enum types. Unless it is obvious from the
return type, static factories must document the thread safety of the returned object, as dem-
onstrated by Collections.synchronizedMap.

The @NotThreadSafe annotation is applied to classes that are not thread-safe. Many classes fail
to document whether they are safe for multithreaded use. Consequently, a programmer has no

http://surelogic.com/promises/apidocs/com/surelogic/Region.html�
http://surelogic.com/promises/apidocs/com/surelogic/RegionLock.html�
http://surelogic.com/promises/apidocs/com/surelogic/RegionLock.html�
http://jcip.net/annotations/doc/net/jcip/annotations/GuardedBy.html�
http://surelogic.com/promises/apidocs/com/surelogic/ThreadSafe.html�
http://surelogic.com/promises/apidocs/com/surelogic/Immutable.html�
https://www.securecoding.cert.org/confluence/display/java/BB.+Definitions#BB.Definitions-immutable�
http://surelogic.com/promises/apidocs/com/surelogic/NotThreadSafe.html�

TSM04-J

CMU/SEI-2010-TR-015 | 171

easy way to determine whether the class is thread-safe. This annotation provides a clear indication
of the class’s lack of thread-safety.

For example, most of the collection implementations provided in java.util are not thread-safe.
The java.util.ArrayList class could document this as follows:

 package java.util.ArrayList;

 @NotThreadSafe

 public class ArrayList<E> extends ... {

 // ...

 }

6.5.3 Documenting Locking Policies

It is important to document all the locks that are being used to protect shared state. According to
Goetz and colleagues [Goetz 2006]

For each mutable state variable that may be accessed by more than one thread, all accesses
to that variable must be performed with the same lock held. In this case, we say that the va-
riable is guarded by that lock.

JCIP provides the @GuardedBy annotation for this purpose, while SureLogic provides the
@RegionLock annotation. The field or method to which the @GuardedBy annotation is applied
can only be accessed when holding a particular lock. This may be an intrinsic lock or a dynamic
lock such as java.util.concurrent.Lock.

For example, the following MovablePoint class implements a movable point that has the capa-
bility of remembering its past locations using the memo array list.

@ThreadSafe

public final class MovablePoint {

 @GuardedBy("this")

 double xPos = 1.0;

 @GuardedBy("this")

 double yPos = 1.0;

 @GuardedBy("itself")

 static final List<MovablePoint> memo = new ArrayList<MovablePoint>();

 public void move(double slope, double distance) {

 synchronized (this) {

 rememberPoint(this);

 xPos += (1 / slope) * distance;

 yPos += slope * distance;

 }

 }

 public static void rememberPoint(MovablePoint value) {

 synchronized (memo) {

http://jcip.net/annotations/doc/net/jcip/annotations/GuardedBy.html�
http://surelogic.com/promises/apidocs/com/surelogic/RegionLock.html�
http://jcip.net/annotations/doc/net/jcip/annotations/GuardedBy.html�

TSM04-J

CMU/SEI-2010-TR-015 | 172

 memo.add(value);

 }

 }

}

The @GuardedBy annotations on the xPos and yPos fields indicate that access to these fields is
protected by holding a lock on this (as is done in the move() method, which modifies these
fields). The @GuardedBy annotation on the memo list indicates that a lock on the ArrayList
object protects its contents (as is done in the rememberPoint() method).

One issue with the @GuardedBy annotation is that it does not clarify that there is a relationship
between the fields of a class. This limitation can be overcome by using the SureLogic
@RegionLock annotation, which declares a new region lock for the class to which this annota-
tion is applied. This declaration creates a new named lock that associates a particular lock object
with a region of the class. The region may be accessed only when the lock is held.

For example, the SimpleLock locking policy indicates that synchronizing on the instance pro-
tects all of its state:

 @RegionLock("SimpleLock is this protects Instance")

 class Simple { ... }

Unlike @GuardedBy, the @RegionLock annotation allows the programmer to give an explicit,
and hopefully meaningful, name to the locking policy.

In addition to naming the locking policy, the @Region annotation allows a name to be given to
the region of the state that is being protected. That name makes it clear that the state and locking
policy belong together, as demonstrated in the following example:

 @Region("private AircraftPosition")

 @RegionLock("StateLock is stateLock protects AircraftPosition")

 public final class Aircraft {

 private final Lock stateLock = new ReentrantLock();

 @InRegion("AircraftPosition")

 private long x, y;

 @InRegion("AircraftPosition")

 private long altitude;

 // ...

 public void setPosition(long x, long y) {

 stateLock.lock();

 try {

 this.x = x;

 this.y = y;

 } finally {

 stateLock.unlock();

 }

 }

http://jcip.net/annotations/doc/net/jcip/annotations/GuardedBy.html�
http://jcip.net/annotations/doc/net/jcip/annotations/GuardedBy.html�
http://jcip.net/annotations/doc/net/jcip/annotations/GuardedBy.html�
http://surelogic.com/promises/apidocs/com/surelogic/RegionLock.html�
http://jcip.net/annotations/doc/net/jcip/annotations/GuardedBy.html�
http://surelogic.com/promises/apidocs/com/surelogic/RegionLock.html�
http://surelogic.com/promises/apidocs/com/surelogic/Region.html�

TSM04-J

CMU/SEI-2010-TR-015 | 173

 // ...

 }

In this example, a locking policy named StateLock is used to indicate that locking on
stateLock protects the named AircraftPosition region, which includes the mutable state
used to represent the position of the aircraft.

6.5.4 Construction of Mutable Objects

Typically, object construction is considered an exception to the locking policy because objects are
thread-confined when they are created. An object is confined to the thread that uses the new oper-
ator to create its instance. After creation, the object can be published to other threads safely. How-
ever, the object is not shared until the thread that created the instance allows it to be shared. Safe
publication approaches discussed in guideline “TSM01-J. Do not let the “this” reference escape
during object construction” on page 149 can be expressed succinctly with the
@Unique("return") annotation.

For example, in the code shown below, the @Unique("return") annotation documents that
the object returned from the constructor is a unique reference.

 @RegionLock("Lock is this protects Instance")

 public final class Example {

 private int x = 1;

 private int y;

 @Unique("return")

 public Example(int y) {

 this.y = y;

 }

 // ...

 }

6.5.5 Documenting Thread-Confinement Policies

Sutherland and Scherlis propose annotations that can document thread-confinement policies.
Their approach allows verification of the annotations against code as it exists [Sutherland 2010].

For example, the following annotations express the design intent that a program has, at most, one
AWT event dispatch thread and several Compute threads, and that the Compute threads are for-
bidden to handle AWT data structures or events:

@ColorDeclare AWT, Compute

@IncompatibleColors AWT, Compute

@MaxColorCount AWT 1

http://surelogic.com/promises/apidocs/com/surelogic/Unique.html�
http://surelogic.com/promises/apidocs/com/surelogic/Unique.html�

TSM04-J

CMU/SEI-2010-TR-015 | 174

6.5.6 Documenting Wait-Notify Protocols

According to Goetz and colleagues [Goetz 2006]
A state-dependent class should either fully expose (and document) its waiting and notifica-
tion protocols to subclasses, or prevent subclasses from participating in them at all. (This is
an extension of “design and document for inheritance, or else prohibit it” [EJ Item 15].) At
the very least, designing a state-dependent class for inheritance requires exposing the condi-
tion queues and locks and documenting the condition predicates and synchronization policy;
it may also require exposing the underlying state variables. (The worst thing a state-
dependent class can do is expose its state to subclasses but not document its protocols for
waiting and notification; this is like a class exposing its state variables but not documenting
its invariants.).

Wait-notify protocols should be documented adequately. Currently, we are not aware of any anno-
tations for this purpose.

6.5.7 Risk Assessment

Annotations of concurrent code document the design intent and can be used to automate the detec-
tion and prevention of race conditions and data races.

Guideline Severity Likelihood Remediation Cost Priority Level

TSM04- J low probable medium P4 L3

6.5.8 References

[Bloch 2008] Item 70: “Document thread safety”

[Goetz 2006]

[Sutherland 2010]

Definitions

CMU/SEI-2010-TR-015 | 175

Appendix Definitions

alien method
“From the perspective of a class C, an alien method is one whose behavior is not fully specified
by C. This includes methods in other classes as well as overrideable methods (neither private nor
final) in C itself” [Goetz 2006].

atomicity
When applied to an operation on primitive data, indicates that other threads that might access the
data might see the data as it exists before the operation occurs or after the operation has com-
pleted, but may never see an intermediate value of the data.

canonicalization
Reducing the input to its equivalent simplest known form.

class variable
A class variable is a static field associated with the containing class.

condition predicate
A condition predicate is an expression constructed from the state variables of a class that must be
true for a thread to continue execution. The thread pauses execution, via Object.wait(),
Thread.sleep(), or some other mechanism, and is resumed later, presumably when the re-
quirement is true and when it is notified [Goetz 2006].

conflicting accesses
Two accesses to (reads of or writes to) the same variable provided that at least one of the accesses
is a write. [Gosling 2005].

data race
“Conflicting accesses of the same variable that are not ordered by a happens-before relationship”
[Gosling 2005].

deadlock
Two or more threads are said to have deadlocked when both block waiting for each others’ locks.
Neither thread can make any progress.

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Goetz06�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-JLS05�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-JLS05�

Definitions

CMU/SEI-2010-TR-015 | 176

happens-before order
“Two actions can be ordered by a happens-before relationship. If one action happens-before
another, then the first is visible to and ordered before the second. [. . .] It should be noted that the
presence of a happens-before relationship between two actions does not necessarily imply that
they have to take place in that order in an implementation. If the reordering produces results con-
sistent with a legal execution, it is not illegal. [. . .] More specifically, if two actions share a hap-
pens-before relationship, they do not necessarily have to appear to have happened in that order to
any code with which they do not share a happens-before relationship. Writes in one thread that are
in a data race with reads in another thread may, for example, appear to occur out of order to those
reads” [Gosling 2005].

heap memory
“Memory that can be shared between threads is called shared memory or heap memory. All in-
stance fields, static fields and array elements are stored in heap memory.[...] Local variables
(§14.4), formal method parameters (§8.4.1) or exception handler parameters are never shared be-
tween threads and are unaffected by the memory model” [Gosling 2005].

immutable
When applied to an object, this means that its state cannot be changed after being initialized.
“An object is immutable if:
• Its state cannot be modified after construction;

• All its fields are final;[12] and
• It is properly constructed (the this reference does not escape during construction).
[12] It is technically possible to have an immutable object without all fields being final.
String is such a class but this relies on delicate reasoning about benign data races that requires a
deep understanding of the Java Memory Model. (For the curious: String lazily computes the
hash code the first time hashCode is called and caches it in a nonfinal field, but this works only
because that field can take on only one nondefault value that is the same every time it is computed
because it is derived deterministically from immutable state” [Goetz 2006]. Immutable objects are
inherently thread-safe; they may be shared between multiple threads or published without syn-
chronization, though it is usually required to declare the fields containing their references vola-
tile to ensure visibility. An immutable object may contain mutable sub-objects, provided the
state of the sub-objects cannot be modified after construction of the immutable object has con-
cluded.

initialization safety
“An object is considered to be completely initialized when its constructor finishes. A thread that
can only see a reference to an object after that object has been completely initialized is guaranteed
to see the correctly initialized values for that object’s final fields” [Gosling 2005].

interruption policy
“An interruption policy determines how a thread interprets an interruption request - what it does
(if anything) when one is detected, what units of work are considered atomic with respect to inter-
ruption, and how quickly it reacts to interruption” [Goetz 2006].

instance variable
An instance variable is a non-static field that is a part of every instance of the class

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-JLS05�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-JLS05�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Goetz06�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-JLS05�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Goetz06�

Definitions

CMU/SEI-2010-TR-015 | 177

liveness
Every operation or method invocation executes to completion without interruptions, even if it
goes against safety.

memory model
“The rules that determine how memory accesses are ordered and when they are guaranteed to be
visible are known as the memory model of the Java programming language” [Arnold 2006]. “A
memory model describes, given a program and an execution trace of that program, whether the
execution trace is a legal execution of the program” [Gosling 2005].

normalization
Lossy conversion of the data to its simplest known (and anticipated) form. “When implementa-
tions keep strings in a normalized form, they can be assured that equivalent strings have a unique
binary representation” [Davis 2009].

normalization (URI)
Normalization is the process of removing unnecessary “.” and “..” segments from the path com-
ponent of a hierarchical URI. Each “.” segment is simply removed. A “..” segment is removed
only if it is preceded by a non-“..” segment. Normalization has no effect upon opaque URIs [Sun
2009b].

obsolete reference
“An obsolete reference is simply a reference that will never be dereferenced again” [Bloch 08].

open call
“An alien method invoked outside of a synchronized region is known as an open call” [Lea 2000a
Section 2.4.1.3, Bloch 2008].

partial order
An order defined for some, but not necessarily all, pairs of items. For instance, the sets {a, b} and
{a, c, d} are subsets of {a, b, c, d}, but neither is a subset of the other. So “subset of” is a partial
order on sets. [Black 2004a]

program order
The order that inter-thread actions are performed by a thread according to the intra-thread seman-
tics of the thread. “Program order [can be described] as the order of bytecodes present in the .class
file, as they would execute based on control flow values” (David Holmes, JMM Mailing List).

publishing objects
“Publishing an object means making it available to code outside of its current scope, such as by
storing a reference to it where other code can find it, returning it from a nonprivate method, or
passing it to a method in another class” [Goetz 2006].

race condition
“General races cause nondeterministic execution and are failures in programs intended to be de-
terministic” [Netzer 1992]. “A race condition occurs when the correctness of a computation de-
pends on the relative timing or interleaving of multiple threads by the runtime” [Goetz 2006].

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-JPL06�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-JLS05�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Unicode08�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Bloch08�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Bloch08�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Black04�
https://mailman.cs.umd.edu/mailman/private/javamemorymodel-discussion/2007-September/000086.html�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Goetz06�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Netzer92�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Goetz06�

Definitions

CMU/SEI-2010-TR-015 | 178

relativization (URI)
”[Relativization] is the inverse of resolution. For example, relativizing the URI
http://java.sun.com/j2se/1.3/docs/guide/index.html against the base URI
http://java.sun.com/j2se/1.3 yields the relative URI docs/guide/index.html”
[Sun 2009b].

safety
Its main goal is to ensure that all objects maintain consistent states in a multithreaded environment
[Lea 2000a].

sanitization
Sanitization is a term used for validating input and transforming it to a representation that con-
forms to the input requirements of a complex subsystem. For example, a database may require all
invalid characters to be escaped or eliminated prior to their storage. Input sanitization refers to the
elimination of unwanted characters from the input by means of removal, replacement, encoding or
escaping the characters.

sequential consistency
“Sequential consistency is a very strong guarantee that is made about visibility and ordering in an
execution of a program. Within a sequentially consistent execution, there is a total order over all
individual actions (such as reads and writes) which is consistent with the order of the program,
and each individual action is atomic and is immediately visible to every thread. [. . .] If a program
is correctly synchronized, then all executions of the program will appear to be sequentially consis-
tent (§17.4.3)” [Gosling 2005]. Sequential consistency implies there will be no compiler optimiza-
tions in the statements of the action. Adopting sequential consistency as the memory model and
disallowing other primitives can be overly restrictive because under this condition, the compiler is
not allowed to make optimizations and reorder code [Gosling 2005].

synchronization
“The Java programming language provides multiple mechanisms for communicating between
threads. The most basic of these methods is synchronization, which is implemented using moni-
tors. Each object in Java is associated with a monitor, which a thread can lock or unlock. Only one
thread at a time may hold a lock on a monitor. Any other threads attempting to lock that monitor
are blocked until they can obtain a lock on that monitor” [Gosling 2005].

starvation
A condition wherein one or more threads prevent other threads from accessing a shared resource
over extended periods of time. For instance, a thread that invokes a synchronized method, which
performs some time-consuming operation, starves other threads.

thread-safe
An object is thread-safe if it can be shared by multiple threads without the possibility of any data
races. “A thread-safe object performs synchronization internally, so multiple threads can freely
access it through its public interface without further synchronization” [Goetz 2006]. Immutable
classes are thread-safe by definition. Mutable classes may also be thread-safe if they are properly
synchronized.

http://java.sun.com/j2se/1.3/docs/guide/index.html�
http://java.sun.com/j2se/1.3�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Lea00�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-JLS05�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-JLS05�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-JLS05�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Goetz06�

Definitions

CMU/SEI-2010-TR-015 | 179

total order
An order defined for all pairs of items of a set. For instance, <= (less than or equal to) is a total
order on integers, that is, for any two integers, one of them is less than or equal to the other [Black
2004b].

trusted code
Code that is loaded by the primordial class loader, irrespective of whether it constitutes the Java
API or not. In this text, this meaning is extended to include code that is obtained from a known
entity and given permissions that untrusted code lacks. By this definition, untrusted and trusted
code can coexist in the namespace of a single class loader (not necessarily the primordial class
loader). In such cases, the security policy must make this distinction clear by assigning appropri-
ate privileges to trusted code, while denying the same from untrusted code.

untrusted code
Code of unknown origin that can potentially cause some harm when executed. Untrusted code
may not always be malicious but this is usually hard to determine automatically. Consequently,
untrusted code should be run in a sandboxed environment.

volatile
“A write to a volatile field (§8.3.1.4) happens-before every subsequent read of that field” [Gosling
2005]. “Operations on the master copies of volatile variables on behalf of a thread are performed
by the main memory in exactly the order that the thread requested” [Sun 1999b]. Accesses to a
volatile variable are sequentially consistent, which also means that the operations are exempt
from compiler optimizations. Declaring a variable volatile ensures that all threads see the
most up-to-date value of the variable, if any thread modifies it. Volatile guarantees atomic reads
and writes of primitive values, however, it does not guarantee the atomicity of composite opera-
tions such as variable incrementation (read-modify-write sequence).

vulnerability
“A set of conditions that allows an attacker to violate an explicit or implicit security policy”
[Seacord 2005].

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Black06�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Black06�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-JLS05�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-JLS05�
https://www.securecoding.cert.org/confluence/display/java/BB.+Definitions#BB.Definitions-sequentialconsistency�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Seacord05�

Definitions

CMU/SEI-2010-TR-015 | 180

Bibliography

CMU/SEI-2010-TR-015 | 181

Bibliography

URLs are valid as of the publication date of this document.

[Abadi 1996]
Abadi, Martin & Needham, Roger. “Prudent Engineering Practice for Cryptographic Protocols.”
IEEE Transactions on Software Engineering 22, 1 (January1996): 6 - 15.

[Apache 2008]
Apache. Class FunctionTable, Field detail, public static FuncLoader m_functions.
http://www.stylusstudio.com/api/xalan-j_2_6_0/org/apache/xpath/compiler/FunctionTable.htm
(2008).

[Apache 2009a]
Apache Software Foundation. Apache Tomcat 6.0 – Changelog.
http://tomcat.apache.org/tomcat-6.0-doc/changelog.html (2009).

[Apache 2009b]
Apache Software Foundation. Apache Tomcat 6.x Vulnerabilities.
http://tomcat.apache.org/security-6.html (2009).

[Arnold 2006]
Arnold, Ken, Gosling, James, & Holmes, David. The Java Programming Language, Fourth Edi-
tion. Addison Wesley Professional, 2006.

[Austin 2000]
Austin, Calvin & Pawlan, Monica. Advanced Programming for the Java 2 Platform. Addison
Wesley Longman, 2000.

[Black 2004a]
Black, Paul E. & Tananbaum, Paul J. Partial Order.
http://www.itl.nist.gov/div897/sqg/dads/HTML/partialorder.html (2004).

[Black 2004b]
Black, Paul E. & Tananbaum, Paul J. Total Order.
http://www.itl.nist.gov/div897/sqg/dads/HTML/totalorder.html (2004).

[Bloch 2001]
Bloch, Joshua. Effective Java, Programming Language Guide. Addison Wesley, 2001.

[Bloch 2005a]
Bloch, Joshua & Gafter, Neal. Java Puzzlers: Traps, Pitfalls, and Corner Cases. Pearson Educa-
tion, Inc., 2005.

http://java.sun.com/developer/onlineTraining/Programming/JDCBook/index.html#contents�
http://www.itl.nist.gov/div897/sqg/dads/HTML/partialorder.html�
http://www.itl.nist.gov/div897/sqg/dads/HTML/totalorder.html�
http://www.stylusstudio.com/api/xalan-j_2_6_0/org/apache/xpath/compiler/FunctionTable.htm
http://tomcat.apache.org/tomcat-6.0-doc/changelog.html
http://tomcat.apache.org/security-6.html

Bibliography

CMU/SEI-2010-TR-015 | 182

[Bloch 2005b]
Bloch, Joshua & Gafter, Neal. “Yet More Programming Puzzlers,” Proceedings of the JavaOne
Conference. San Francisco, CA, June 2005.

[Bloch 2007a]
Bloch, Joshua. “Effective Java Reloaded: This Time It’s (not) for Real,” Proceedings of the Ja-
vaOne Conference. San Francisco, CA, May 2007.

[Bloch 2008]
Bloch, Joshua. Effective Java, 2nd edition. Addison Wesley, 2008.

[Bloch 2009]
Bloch, Joshua & Gafter, Neal. “Return of the Puzzlers: Schlock and Awe,” Proceedings of the
JavaOne Conference. San Francisco, CA, June 2009.

[Boehm 2005]
Boem, Hans J. “Finalization, Threads, and the Java Technology-Based Memory Model,” Pro-
ceedings of the JavaOne Conference. San Francisco, CA, June 2005.

[Bray 2008]
Bray, Tim, Paoli, Jean, Sperberg-McQueen, C.M., Maler, Eve, & Yergeau, Francois (eds).
Extensible Markup Language (XML) 1.0 (Fifth Edition). http://www.w3.org/TR/xml/ (2008).

[Campione 1996]
Campione, Mary & Walrath, Kathy. The Java Tutorial.
http://www.telecom.ntua.gr/HTML.Tutorials/index.html (1996).

[CCITT 1988]
CCITT. CCITT Blue Book, Recommendation X.509 and IS0 9594-8: The Directory-
Authentication Framework. Technical Report, Geneva, 1988.

[Chan 1999]
Chan, Patrick, Lee, Rosanna, & Kramer, Douglas. The Java Class Libraries: Supplement for the
Java 2 Platform, v1.2, second edition, Volume 1. Prentice Hall, 1999.

[Chess 2007]
Chess, Brian & West, Jacob. Secure Programming with Static Analysis. Addison-Wesley Profes-
sional, 2007.

[Christudas 2005]
Christudas, Binudlas. Internals of Java Class Loading.
http://onjava.com/pub/a/onjava/2005/01/26/classloading.html (2005).

[Coomes 2007]
Coomes, Johm, Peter, Kessler, & Printezis, Tony. “Garbage Collection-Friendly Programming,”
Proceedings of the JavaOne Conference. San Francisco, CA, May 2007.

http://www.w3.org/TR/xml/
http://www.telecom.ntua.gr/HTML.Tutorials/index.html
http://onjava.com/pub/a/onjava/2005/01/26/classloading.html

Bibliography

CMU/SEI-2010-TR-015 | 183

[Cunningham 1995]
Cunningham, Ward. “The CHECKS Pattern Language of Information Integrity,” Pattern
Languages of Program Design. Edited by James O. Coplien and Douglas C Schmidt. Addison-
Wesley, 1995.

[Daconta 2000]
Daconta, Michael C. When Runtime.exec() Won’t.
http://www.javaworld.com/javaworld/jw-12-2000/jw-1229-traps.html (2000).

[Daconta 2003]
Daconta, Michael C., Smith, Kevin T., Avondolio, Donald, & Richardson, W. Clay. More Java
Pitfalls. Wiley Publishing Inc., 2003.

[Davis 2008]
Davis, Mark & Suignard, Michel. Unicode Technical Report #36, Unicode Security Considera-
tions. http://www.unicode.org/reports/tr36/ (2008).

[Davis 2009]
Davis, Mark, Whistler, Ken, & Martin Dürst. Unicode Standard Annex #15, Unicode Normaliza-
tion Forms. http://unicode.org/reports/tr15/ (2009).

[Dormann 2008]
Dormann, Will. Signed Java Applet Security: Worse than ActiveX?.
http://www.cert.org/blogs/vuls/2008/06/signed_java_security_worse_tha.html (2008).

[Darwin 2004]
Darwin, Ian F. Java Cookbook. O’Reilly Media, 2004.

[Doshi 2003]
Doshi, Gunjan. Best Practices for Exception Handling.
http://onjava.com/pub/a/onjava/2003/11/19/exceptions.html (2003).

[ESA 2005]
European Space Agency (EAS) Board for Software Standardisation and Control (BSSC). Java
Coding Standards.
ftp://ftp.estec.esa.nl/pub/wm/wme/bssc/Java-Coding-Standards-20050303-releaseA.pdf (2005).

[FindBugs 2008]
FindBugs. FindBugs Bug Descriptions. http://findbugs.sourceforge.net/bugDescriptions.html
(2008).

[Fisher 2003]
Fisher, Maydene, Ellis, Jon, & Bruce, Jonathan. DBC API Tutorial and Reference, 3rd edition.
Prentice Hall, The Java Series, 2003.

[Flanagan 2005]
Flanagan, David. Java in a Nutshell, 5th edition. O'Reilly Media, Inc., 2005.

http://www.javaworld.com/javaworld/jw-12-2000/jw-1229-traps.html
http://www.unicode.org/reports/tr36/
http://unicode.org/reports/tr15/
http://www.cert.org/blogs/vuls/2008/06/signed_java_security_worse_tha.html
http://onjava.com/pub/a/onjava/2003/11/19/exceptions.html
ftp://ftp.estec.esa.nl/pub/wm/wme/bssc/Java-Coding-Standards-20050303-releaseA.pdf
http://findbugs.sourceforge.net/bugDescriptions.html

Bibliography

CMU/SEI-2010-TR-015 | 184

[Fortify 2008]
Fortify Softwaree. Fortify Taxonomy: Software Security Errors.
http://www.fortify.com/vulncat/en/vulncat/index.html (2008).

[Fox 2001]
Fox, Joshua. When is a Singleton not a Singleton? Sun Developer Network (SDN), 2001.

[Gafter 2006]
Gafter, Neal. Thoughts about the Future of Java Programming. http://gafter.blogspot.com/ (2006-
2010).

[Gamma 1995]
Gamma, Erich, Helm, Richard, Johnson, Ralph, & Vlissides, John M. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional Computing Series, 1995.

[Garms 2001]
Garms, Jess & Somerfield, Daniel. Professional Java Security. Wrox Press Ltd., 2001.

[Goetz 2002]
Goetz, Brian. Java theory and practice: Don't let the "this" reference escape during construction.
http://www.ibm.com/developerworks/java/library/j-jtp0618.html (2002).

[Goetz 2004a]
Goetz, Brian. Java theory and practice: Garbage collection and performance.
http://www.ibm.com/developerworks/java/library/j-jtp01274.html (2004).

[Goetz 2004b]
Goetz, Brian. Java theory and practice: The exceptions debate: To check, or not to check?
http://www.ibm.com/developerworks/java/library/j-jtp05254.html (2004).

[Goetz 2004c]
Goetz, Brian. Java Theory and Practice: Going Atomic.
http://www.ibm.com/developerworks/java/library/j-jtp11234/ (2004).

[Goetz 2005a]
Goetz, Brian. Java theory and practice: Be a good (event) listener, Guidelines for writing and
supporting event listeners. http://www.ibm.com/developerworks/java/library/j-
jtp07265/index.html (2005).

[Goetz 2005b]
Goetz, Brian. Java Theory and Practice: Plugging Memory Leaks with Weak References.
http://www.ibm.com/developerworks/java/library/j-jtp11225/ (2005).

[Goetz 2006]
Goetz, Brian, Pierels, Tim, Bloch, Joshua, Bowbeer, Joseph, Holmes, David, & Lea, Doug. Java
Concurrency in Practice. Addison Wesley Professional, 2006.

http://www.ibm.com/developerworks/java/library/j-jtp01274.html�
http://www.fortify.com/vulncat/en/vulncat/index.html
http://gafter.blogspot.com/
http://www.ibm.com/developerworks/java/library/j-jtp0618.html
http://www.ibm.com/developerworks/java/library/j-jtp01274.html
http://www.ibm.com/developerworks/java/library/j-jtp05254.html
http://www.ibm.com/developerworks/java/library/j-jtp11234/
http://www.ibm.com/developerworks/java/library/j-jtp07265/index.html
http://www.ibm.com/developerworks/java/library/j-jtp07265/index.html
http://www.ibm.com/developerworks/java/library/j-jtp11225/

Bibliography

CMU/SEI-2010-TR-015 | 185

[Goetz 2006b]
Goetz, Brian. Java Theory and Practice: Good Housekeeping Practices.
http://www.ibm.com/developerworks/java/library/j-jtp03216.html (2006).

[Goetz 2006c]
Goetz, Brian. Java theory and practice: Managing volatility, Guidelines for using volatile va-
riables. http://www.ibm.com/developerworks/java/library/j-jtp06197.html (2006).

[Goldberg 1991]
Goldberg, David. What Every Computer Scientist Should Know About Floating-Point Arithmetic.
http://docs.sun.com/source/806-3568/ncg_goldberg.html (1991).

[Gong 2003]
Gong, LI, Ellison, Gary, & Dageford, Mary. Inside Java 2 Platform Security: Architecture, API
Design, and Implementation, 2nd edition. Prentice Hall, The Java Series, 2003.

[Gosling 2005]
Gosling, James, Joy, Bill, Steel, Guy, & Bracha, Gilad. Java Language Specification, 3rd edition.
Addison Wesley, 2005.

[Grand 2002]
Grand, Mark. Patterns in Java, Volume 1, Second Edition. Wiley, 2002.

[Greanier 2000]
Greanier, Todd. Discover the Secrets of the Java Serialization API.
http://java.sun.com/developer/technicalArticles/Programming/serialization/ (2000).

[Green 2008]
Green, Roedy. Canadian Mind Products Java & Internet Glossary.
http://mindprod.com/jgloss/jgloss.html (2008).

[Grosso 2001]
Grosso, William. Java RMI. O’Reilly Media, 2001.

[Gupta 2005]
Gupta, Satish Chandra & Palanki, Rajeev. Java Memory Leaks - Catch Me if You Can.
http://www.ibm.com/developerworks/rational/library/05/0816_GuptaPalanki/ (2005).

[Haack 2007]
Haack, Christian, Poll, Erik, Schafer, Jan, & Schubert, Alesky. Immutable Objects for a Java-Like
Language,” 347-362. Proceedings of the 16th European Conference on Programming. Braga,
Portugal. Springer-Verlag, 2007.

[Haggar 2000]
Haggar, Peter. Practical Java Programming Language Guide. Addison-Wesley Professional,
2000.

http://www.ibm.com/developerworks/java/library/j-jtp03216.html
http://www.ibm.com/developerworks/java/library/j-jtp06197.html
http://docs.sun.com/source/806-3568/ncg_goldberg.html
http://java.sun.com/developer/technicalArticles/Programming/serialization/
http://mindprod.com/jgloss/jgloss.html
http://www.ibm.com/developerworks/rational/library/05/0816_GuptaPalanki/

Bibliography

CMU/SEI-2010-TR-015 | 186

[Halloway 2000]
Halloway, Stuart. Java Developer Connection Tech Tips.
http://javaservice.net/~java/bbs/read.cgi?m=devtip&b=jdc&c=r_p_p&n=954297433 (2000).

[Harold 1997]
Harold, Elliotte Rusty. Java Secrets. Wiley, 1997.

[Harold 1999]
Harold, Elliotte Rusty. Java I/O. O’Reilly Media, 1999.

[Harold 2006]
Harold, Elliotte Rusty. Java I/O, 2nd Edition. O’Reilly Media, 2006.

[Hawtin 2008]
Hawtin, Thomas. Secure Coding Antipatterns: Preventing Attacks and Avoiding Vulnerabilities.
http://www.makeitfly.co.uk/Presentations/london-securecoding.pdf (2008).

[Henney 2003]
Henney, Kevlin. Null Object, Something for Nothing.
http://www.two-sdg.demon.co.uk/curbralan/papers/europlop/NullObject.pdf (2003).

[Hitchens 2002]
Hitchens, Ron. Java NIO. O’Reilly Media, 2002.

[Hornig 2007]
Hornig, Charles. Advanced Java Globalization.
http://developers.sun.com/learning/javaoneonline/2007/pdf/TS-2873.pdf (2007).

[Horstmann 2004]
Horstmann, Cay & Cornell, Gary. Core Java 2 Volume I - Fundamentals, Seventh Edition. Pren-
tice Hall PTR, 2004.

[Hovemeyer 2007]
Hovemeyer, David & Pugh, William. “Finding more null pointer bugs, but not too many,” Pro-
ceedings of the 7th ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools
and engineering. San Diego, CA. June 2007.

[Hunt 1998]
Hunt, J. & Long, F. Java’s reliability: an analysis of software defects in Java.
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00722326 (1998).

[IEC 2006]
International Electrotechnical Commission. Analysis techniques for system reliability - Procedure
for failure mode and effects analysis (FMEA), 2nd ed. (IEC 60812). IEC, January 2006.

http://javaservice.net/~java/bbs/read.cgi?m=devtip&b=jdc&c=r_p_p&n=954297433�
http://www.makeitfly.co.uk/Presentations/london-securecoding.pdf
http://www.two-sdg.demon.co.uk/curbralan/papers/europlop/NullObject.pdf
http://developers.sun.com/learning/javaoneonline/2007/pdf/TS-2873.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00722326

Bibliography

CMU/SEI-2010-TR-015 | 187

[JSR-133 2004]
JSR-133. JSR-133: Java Memory Model and Thread Specification.
http://www.cs.umd.edu/~pugh/java/memoryModel/jsr133.pdf (2004).

[Kabanov 2009]
Kabanov, Jevgengi. The Ultimate Java Puzzler.
http://dow.ngra.de/2009/02/16/the-ultimate-java-puzzler/ (2009).

[Kabutz 2001]
Kabuts, Heinz M. The Java Specialists’ Newsletter.
http://www.javaspecialists.eu/archive/archive.jsp (2001).

[Kalinovsky 2004]
Kalinovsky, Ales. Covert Java: Techniques for Decompiling, Patching, and Reverse Engineering.
SAMS Publishing, 2004.

[Knoernschild 2001]
Knoernschild, Kirk. Java Design: Objects, UML, and Process. Addison-Wesley Professional,
2001.

[Lai 2008]
Lai, C. “Java Insecurity: Accounting for Subtleties That Can Compromise Code,”Software, IEEE
25, 1 (Jan-Feb 2008): 13-19.

[Langer 2008]
Langer, Angelica. Java Generics FAQ.
http://www.angelikalanger.com/GenericsFAQ/FAQSections/ProgrammingIdioms.html (2008).

[Lea 2000a]
Lea, Doug. Concurrent Programming in Java, 2nd edition. Addison Wesley, 2000.

[Lea 2000b]
Lea, Doug & Pugh, William. Correct and Efficient Synchronization of Java Technology based
Threads. http://www.cs.umd.edu/~pugh/java/memoryModel/TS-754.pdf (2000).

[Lea 2008]
Lea, Doug. The JSR-133 Cookbook for Compiler Writers.
http://g.oswego.edu/dl/jmm/cookbook.html (2008).

[Lee 2009]
Lee, Sangin, Somani, Mahesh, & Saha, Debashis. Robust and Scalable Concurrent Programming:
Lessons from the Trenches. Oracle, 2009.

[Liang 1997]
Liang, Sheng. The Java Native Interface, Programmer’s Guide and Specification. Addison-
Wesley, 1997.

http://www.cs.umd.edu/~pugh/java/memoryModel/jsr133.pdf
http://dow.ngra.de/2009/02/16/the-ultimate-java-puzzler/
http://www.javaspecialists.eu/archive/archive.jsp
http://www.angelikalanger.com/GenericsFAQ/FAQSections/ProgrammingIdioms.html
http://www.cs.umd.edu/~pugh/java/memoryModel/TS-754.pdf
http://g.oswego.edu/dl/jmm/cookbook.html

Bibliography

CMU/SEI-2010-TR-015 | 188

[Liang 1998]
Liang, Sheng & Bracha, Gilad. “Dynamic Class Loading in the Java Virtual Machine,” Proceed-
ings of the 13th ACM SIGPLAN conference on Object-oriented programming, systems, languag-
es, and applications, Vancouver, BC, 1998, ACM, 1998.

[Lieberman 1986]
Lieberman, Henry. “Using prototypical objects to implement shared behavior in object-oriented
systems,” Proceedings of the 1986 conference on Object-oriented programming systems, lan-
guages and applications, Portland, ME, ACM, 1986.

[Lo 2005]
Lo, Chia-Tien Dan, Srisa-an, Witawas, & Chang, J. Morris. “Security Issues in Garbage Collec-
tion,” STSC Crosstalk (October 2005).

[Long 2005]
Long, Fred. Software Vulnerabilities in Java (CMU/SEI -2004-TN-044). Software Engineering
Institute, Carnegie Mellon University, 2005.
http://www.sei.cmu.edu/library/abstracts/reports/05tn044.cfm.

[Low 1997]
Low, Douglas. Protecting Java Code via Obfuscation.
http://www.cs.arizona.edu/~collberg/Research/Students/DouglasLow/obfuscation.html (1997).

[Macgregor 1998]
Macgregor, Robert, Durbin, Dave, Owlett, John, &Yeomans, Andrew. Java Network Security.
Prentice Hall, 1998.

[Mak 2002]
Mak, Ronald. Java Number Cruncher, The Java Programmer’s Guide to Numerical Computing.
Prentice Hall, 2002.

[Manson 2004]
Manson, Jeremy & Goetz, Brian. JSR 133 (Java Memory Model) FAQ.
http://www.cs.umd.edu/~pugh/java/memoryModel/jsr-133-faq.html (2004).

[Marco 1999]
Pistoia, Marco, Reller, Duane F., Gupta, Deepak, Nagnur, Milind, & Ramani, Ashok K. Java 2
Network Security. IBM Corporation (1999).

[Mcgraw 1998]
Mcgraw, Gary & Felten, Edward. Twelve rules for developing more secure Java code.
http://www.javaworld.com/javaworld/jw-12-1998/jw-12-securityrules.html (1998).

[Mcgraw 1999]
Mcgraw, Gary & Felten, Edward W. Securing Java, Getting Down to Business with Mobile Code.
Wiley, 1999.

http://www.sei.cmu.edu/library/abstracts/reports/05tn044.cfm
http://www.cs.arizona.edu/~collberg/Research/Students/DouglasLow/obfuscation.html
http://www.cs.umd.edu/~pugh/java/memoryModel/jsr-133-faq.html
http://www.javaworld.com/javaworld/jw-12-1998/jw-12-securityrules.html

Bibliography

CMU/SEI-2010-TR-015 | 189

[Microsoft 2009]
Microsoft. Using SQL Escape Sequences.
http://msdn.microsoft.com/en-us/library/ms378045%28SQL.90%29.aspx (2009).

[Miller 2009]
Miller, Alex. Java Platform Concurrency Gotchas.
http://www.slideshare.net/alexmiller/java-concurrency-gotchas (2009).

[MITRE 2010]
MITRE. Common Weakness Enumeration. http://cwe.mitre.org/ (2010).

[Mocha 2007]
Mocha. Mocha, the Java Decompiler. http://www.brouhaha.com/~eric/software/mocha/ (2007).

[Muchow 2001]
Muchow, John W. MIDlet Packaging with J2ME.
http://www.onjava.com/pub/a/onjava/2001/04/26/midlet.html (2001).

[Naftalin 2006]
Naftalin, Maurice & Wadler, Philip. Java Generics and Collections. O’Reilly Media, 2006.

[Netzer 1992]
Netzer, Robert H. & Miller, Barton, P. “What Are Race Conditions? Some Issues and Formaliza-
tion.” ACM Letters on Programming Languages and Systems (LOPLAS) 1,1 (March 1992): 74-88.

[Neward 2004]
Neward, Ted. Effective Enterprise Java. Addison Wesley Professional, 2004.

[Nolan 2004]
Nolan, Godfrey. Decompiling Java. Apress, 2004.

[Oaks 1999]
Oaks, Scott & Wong, Henry. Java Threads (2nd Edition.) O’Reilly Media, 1999.

[Oaks 2001]
Oaks, Scott. Java Security. O’Reilly Media, 2001.

[Oaks 2004]
Oaks, Scott & Wong, Henry. Java Threads (3rd Edition). O’Reilly Media, 2004.

[O’Reilly 2003]
O’Reilly Media. Java Enterprise Best Practices. 2003.

[OWASP 2007]
OWASP. OWASP TOP 10 FOR JAVA EE.
https://www.owasp.org/images/8/89/OWASP_Top_10_2007_for_JEE.pdf (2007).

http://msdn.microsoft.com/en-us/library/ms378045%28SQL.90%29.aspx
http://www.slideshare.net/alexmiller/java-concurrency-gotchas
http://cwe.mitre.org/
http://www.brouhaha.com/~eric/software/mocha/
http://www.onjava.com/pub/a/onjava/2001/04/26/midlet.html
https://www.owasp.org/images/8/89/OWASP_Top_10_2007_for_JEE.pdf

Bibliography

CMU/SEI-2010-TR-015 | 190

[OWASP 2008]
OWASP. OWASP. http://www.owasp.org/index.php/Main_Page (2008).

[Philion 2003]
Philion, Paul. Beware the Dangers of Generic Exceptions.
http://www.javaworld.com/javaworld/jw-10-2003/jw-1003-generics.html (2003).

[Pistoia 2004]
Pistoia, Marco, Nagaratnam, Nataraj, Koved, Larry, & Nadalin, Anthony. Enterprise Java Securi-
ty: Building Secure J2EE Applications. Addison Wesley, 2004.

[Pugh 2004]
Pugh, William. The Java Memory Model (discussions reference).
http://www.cs.umd.edu/~pugh/java/memoryModel/ (2004).

[Pugh 2008]
Pugh, William. Defective Java Code: Turning WTF Code into a Learning Experience.
http://72.5.124.65/learning/javaoneonline/j1sessn.jsp?sessn=TS-6589&yr=2008&track=javase
(2008).

[Reasoning 2003]
Reasoning Inspection Service. Defect Data Tomcat v 1.4.24.
http://www.reasoning.com/pdf/Tomcat_Defect_Report.pdf (2003).

[Rotem-Gal-Oz 2008]
Rotem-Gal-Oz, Arnon. Fallacies of Distributed Computing Explained.
http://www.rgoarchitects.com/Files/fallacies.pdf (2008).

[Roubtsov 2003a]
Roubtsov, Vladimir. Breaking Java Exception-Handling Rules is Easy.
http://www.javaworld.com/javaworld/javaqa/2003-02/02-qa-0228-evilthrow.html (2003).

[Roubtsov 2003b]
Roubtsov, Vladimir. Into the Mist of Serialization Myths.
http://www.javaworld.com/javaworld/javaqa/2003-06/02-qa-0627-mythser.html?page=1 (2003).

[Schneier 2000]
Schneier, Bruce. Secrets and Lies—Digital Security in a Networked World. John Wiley and Sons,
2000.

[Schildt 2007]
Schildt, Herb. Herb Schildt’s Java Programming Cookbook. McGraw-Hill, 2007.

[Schoenefeld 2004]
Schoenefeld. (Nov. 2004). Java Vulnerabilities in Opera 7.54 BUGTRAQ Mailing List [online].
Available email: bugtraq@securityfocus.com.

http://www.owasp.org/index.php/Main_Page
http://www.javaworld.com/javaworld/jw-10-2003/jw-1003-generics.html
http://www.cs.umd.edu/~pugh/java/memoryModel/
http://72.5.124.65/learning/javaoneonline/j1sessn.jsp?sessn=TS-6589&yr=2008&track=javase
http://www.reasoning.com/pdf/Tomcat_Defect_Report.pdf
http://www.rgoarchitects.com/Files/fallacies.pdf
http://www.javaworld.com/javaworld/javaqa/2003-02/02-qa-0228-evilthrow.html
http://www.javaworld.com/javaworld/javaqa/2003-06/02-qa-0627-mythser.html?page=1
mailto:bugtraq@securityfocus.com

Bibliography

CMU/SEI-2010-TR-015 | 191

[Schwarz 2004]
Schwarz, Don. Avoiding Checked Exceptions.
http://www.oreillynet.com/onjava/blog/2004/09/avoiding_checked_exceptions.html (2004).

[Schweisguth 2003]
Schweisguth, Dave. Java Tip 134: When catching exceptions, don't cast your net too wide.
http://www.javaworld.com/javaworld/javatips/jw-javatip134.html?page=2 (2003).

[Seacord 2005]
Seacord, Robert C. Secure Coding in C and C++. Addison-Wesley, 2005.

[Sen 2007]
Sen, Robi. Avoid the dangers of XPath injection.
http://www.ibm.com/developerworks/xml/library/x-xpathinjection.html (2007).

[Sun 1999a]
Sun Microsystems, Inc. Why Are Thread.stop, Thread.suspend, Thread.resume and Run-
time.runFinalizersOnExit Deprecated?
http://java.sun.com/j2se/1.4.2/docs/guide/misc/threadPrimitiveDeprecation.html (1999).

[Sun 1999b]
Sun Microsystems, Inc. The Java Virtual Machine Specification.
http://java.sun.com/docs/books/jvms/ (1999).

[Sun 1999c]
Sun Microsystems, Inc. Code Conventions for the Java Programming Language.
http://java.sun.com/docs/codeconv/ (1999).

[Sun 2000]
Sun Microsystems, Inc. Java 2 SDK, Standard Edition Documentation.
http://java.sun.com/j2se/1.3/docs/guide/ (1995-2000).

[Sun 2002]
Sun Microsystems, Inc. Default Policy Implementation and Policy File Syntax, Document revi-
sion 1.6. http://java.sun.com/javase/6/docs/technotes/guides/security/PolicyFiles.html (2002).

[Sun 2003a]
Sun Microsystems, Inc. Jar File Specification.
http://java.sun.com/j2se/1.5.0/docs/guide/jar/jar.html (2003).

[Sun 2003b]
Sun Microsystems, Inc. Sun ONE Application Server 7 Performance Tuning Guide.
http://docs.sun.com/source/817-2180-10/ (2003).

[Sun 2004]
Sun Microsystems, Inc. Java Platform Debugger Architecture (JPDA).
http://java.sun.com/javase/6/docs/technotes/guides/jpda/index.html (2004).

http://docs.sun.com/source/817-2180-10/�
http://www.oreillynet.com/onjava/blog/2004/09/avoiding_checked_exceptions.html
http://www.javaworld.com/javaworld/javatips/jw-javatip134.html?page=2
http://www.ibm.com/developerworks/xml/library/x-xpathinjection.html
http://java.sun.com/j2se/1.4.2/docs/guide/misc/threadPrimitiveDeprecation.html
http://java.sun.com/docs/books/jvms/
http://java.sun.com/docs/codeconv/
http://java.sun.com/j2se/1.3/docs/guide/
http://java.sun.com/javase/6/docs/technotes/guides/security/PolicyFiles.html
http://java.sun.com/j2se/1.5.0/docs/guide/jar/jar.html
http://java.sun.com/javase/6/docs/technotes/guides/jpda/index.html

Bibliography

CMU/SEI-2010-TR-015 | 192

[Sun 2004b]
Sun Microsystems, Inc. Generics.
http://java.sun.com/j2se/1.5.0/docs/guide/language/generics.html (2004).

[Sun 2006a]
Sun Microsystems, Inc. Java Platform, Standard Edition 6 Documentation.
http://java.sun.com/javase/6/docs/index.html (2006).

[Sun 2006b]
Sun Microsystems, Inc. Java Virtual Machine Tool Interface (JVM TI).
http://java.sun.com/javase/6/docs/technotes/guides/jvmti/index.html (2006).

[Sun 2006c]
Sun Microsystems, Inc. Java 2 Platform Security Architecture.
http://java.sun.com/javase/6/docs/technotes/guides/security/spec/security-spec.doc.html (2006).

[Sun 2006d]
Sun Microsystems, Inc. Java Security Guides.
http://java.sun.com/javase/6/docs/technotes/guides/security/ (2006).

[Sun 2006e]
Sun Microsystems. Supported Encodings.
http://java.sun.com/javase/6/docs/technotes/guides/intl/encoding.doc.html (2006).

[Sun 2006f]
Sun Microsystems, Inc. Monitoring and Management for the Java Platform.
http://java.sun.com/javase/6/docs/technotes/guides/management/index.html (2006).

[Sun 2006g]
Sun Microsystems, Inc. Java Platform, Standard Edition 6.
http://java.sun.com/javase/6/docs/technotes/guides/management/toc.html (2006).

[Sun 2008a]
Sun Microsystems, Inc. The Java Tutorials. http://java.sun.com/docs/books/tutorial/index.html
(2008).

[Sun 2008b]
Sun Microsystems, Inc. SUN Developer Network. http://developers.sun.com/ (1994-2008).

[Sun 2008c]
Sun Microsystems, Inc. JDK 7 Documentation. http://download.java.net/jdk7/docs/ (2008).

[Sun 2008d]
Sun Microsystems, Inc. Java Security Architecture.
http://java.sun.com/j2se/1.5.0/docs/guide/security/spec/security-specTOC.fm.html (2008).

http://java.sun.com/j2se/1.5.0/docs/guide/language/generics.html�
http://java.sun.com/javase/6/docs/index.html
http://java.sun.com/javase/6/docs/technotes/guides/jvmti/index.html
http://java.sun.com/javase/6/docs/technotes/guides/security/spec/security-spec.doc.html
http://java.sun.com/javase/6/docs/technotes/guides/security/
http://java.sun.com/javase/6/docs/technotes/guides/intl/encoding.doc.html
http://java.sun.com/javase/6/docs/technotes/guides/management/index.html
http://java.sun.com/javase/6/docs/technotes/guides/management/toc.html
http://java.sun.com/docs/books/tutorial/index.html
http://developers.sun.com/
http://download.java.net/jdk7/docs/
http://java.sun.com/j2se/1.5.0/docs/guide/security/spec/security-specTOC.fm.html

Bibliography

CMU/SEI-2010-TR-015 | 193

[Sun 2008e]
Sun Microsystems, Inc. Java Plug-in and Applet Architecture.
http://java.sun.com/javase/6/docs/technotes/guides/jweb/applet/applet_execution.html (2008).

[Sun 2009a]
Sun Microsystems, Inc. Secure Coding Guidelines for the Java Programming Language, Version
3.0. http://java.sun.com/security/seccodeguide.html (2009).

[Sun 2009b]
Sun Microsystems. Java Platform, Standard Edition 6 API Specification.
http://java.sun.com/javase/6/docs/api/ Sun Microsystems, Inc. (2009).

[Sun 2010a]
Sun Microsystems, Inc. Java SE 6 HotSpot Virtual Machine Garbage Collection Tuning,
http://java.sun.com/javase/technologies/hotspot/gc/gc_tuning_6.html (2010).

[Sun 2010b]
Sun Microsystems, Inc. java - the Java application launcher.
http://java.sun.com/javase/6/docs/technotes/tools/windows/java.html (2006).

[Steel 2005]
Steel, Christopher, Nagappan, Ramesh, & Lai, Ray. Core Security Patterns: Best Practices and
Strategies for J2EE, Web Services, and Identity Management. Prentice Hall, 2005.

[Steuck 2002]
Steuck, Gregory. XXE (Xml eXternal Entity) attack.
http://www.securityfocus.com/archive/1/297714 (2002).

[Sutherland 2010]
Sutherland, Dean F. & Scherlis, William L. “Composable thread coloring,” Proceedings of the
15th ACM SIGPLAN symposium on Principles and practice of parallel programming. Bangalore,
India, 2010, ACM, 2010.

[Tanenbaum 2002]
Tanenbaum, Andrew S. & Van Steen, Maarten. Distributed Systems: Principles and Paradigms,
2/E. Prentice Hall, 2002.

[Venners 1997]
Venners, Bill. Security and the Class Loader Architecture.
http://www.javaworld.com/javaworld/jw-09-1997/jw-09-hood.html?page=1 (1997).

[Venners 2003]
Venners, Bill. Failure and Exceptions, A Conversation with James Gosling, Part II.
http://www.artima.com/intv/solid.html (2003).

[Wheeler 2003]
Wheeler, David A. Secure Programming for Linux and Unix HOWTO.
http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/index.html (2003).

http://java.sun.com/javase/6/docs/api/�
http://portal.acm.org/citation.cfm?doid=1693453.1693485�
http://java.sun.com/javase/6/docs/technotes/guides/jweb/applet/applet_execution.html
http://java.sun.com/security/seccodeguide.html
http://java.sun.com/javase/6/docs/api/
http://java.sun.com/javase/technologies/hotspot/gc/gc_tuning_6.html
http://java.sun.com/javase/6/docs/technotes/tools/windows/java.html
http://www.securityfocus.com/archive/1/297714
http://www.javaworld.com/javaworld/jw-09-1997/jw-09-hood.html?page=1
http://www.artima.com/intv/solid.html
http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/index.html

Bibliography

CMU/SEI-2010-TR-015 | 194

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

May 2010
3. REPORT TYPE AND DATES

COVERED
Final

4. TITLE AND SUBTITLE
Java Concurrency Guidelines

5. FUNDING NUMBERS
FA8721-05-C-0003

6. AUTHOR(S)
Fred Long , Dhruv Mohindra , Robert Seacord , David Svoboda

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER
CMU/SEI-2010-TR-015

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
ESC-TR-2010-015

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. abstract (maximum 200 words)
An essential element of secure coding in the Java programming language is well-documented and enforceable coding standards. Cod-
ing standards encourage programmers to follow a uniform set of guidelines determined by the requirements of the project and organiza-
tion, rather than by the programmer’s familiarity or preference. Once established, these standards can be used as a metric to evaluate
source code (using manual or automated processes).
The CERT Oracle Secure Coding Standard for Java provides guidelines for secure coding in the Java programming language. The goal
of these guidelines is to eliminate insecure coding practices and undefined behaviors that can lead to exploitable vulnerabilities. Applying
this standard will lead to higher quality systems that are robust and more resistant to attack.
This report documents the portion of those Java guidelines that are related to concurrency.

14. SUBJECT TERMS
Java, concurrency, software security, coding standard, coding guidelines

15. NUMBER OF PAGES
213

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

	Java Concurrency Guidelines
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	About This Report
	The Secure Coding Standard Described in This Report
	Guideline Priorities

	Abstract
	1 Introduction
	1.1.1 The volatile Keyword
	1.1.2 Synchronization
	1.1.3 The java.util.concurrent Classes
	1.1.3.1 Atomic Classes
	1.1.3.2 The Executor Framework
	1.1.3.3 Explicit Locking

	2 Visibility and Atomicity (VNA) Guidelines
	2.1 VNA00-J. Ensure visibility when accessing shared primitive variables
	2.1.1 Noncompliant Code Example (Non-Volatile Flag)
	2.1.2 Compliant Solution (volatile)
	2.1.3 Compliant Solution (java.util.concurrent.atomic.AtomicBoolean)
	2.1.4 Compliant Solution (synchronized)
	2.1.5 Exceptions
	2.1.6 Risk Assessment
	2.1.7 References

	2.2 VNA01-J. Ensure visibility of shared references to immutable objects
	2.2.1 Noncompliant Code Example
	2.2.2 Compliant Solution (Synchronization)
	2.2.3 Compliant Solution (volatile)
	2.2.4 Compliant Solution (java.util.concurrent Utilities)
	2.2.5 Risk Assessment
	2.2.6 References

	2.3 VNA02-J. Ensure that compound operations on shared variables are atomic
	2.3.1 Noncompliant Code Example (Logical Negation)
	2.3.2 Noncompliant Code Example (Bitwise Negation)
	2.3.3 Noncompliant Code Example (volatile)
	2.3.4 Compliant Solution (Synchronization)
	2.3.5 Compliant Solution (Volatile-Read, Synchronized-Write)
	2.3.6 Compliant Solution (Read-Write Lock)
	2.3.7 Compliant Solution (AtomicBoolean)
	2.3.8 Noncompliant Code Example (Addition of Primitives)
	2.3.9 Noncompliant Code Example (Addition of Atomic Integers)
	2.3.10 Compliant Solution (Addition)
	2.3.11 Risk Assessment
	2.3.12 References

	2.4 VNA03-J. Do not assume that a group of calls to independently atomic methods is atomic
	2.4.1 Noncompliant Code Example (AtomicReference)
	2.4.2 Compliant Solution (Method Synchronization)
	2.4.3 Noncompliant Code Example (synchronizedList)
	2.4.4 Compliant Solution (Synchronized Block)
	2.4.5 Noncompliant Code Example (synchronizedMap)
	2.4.6 Compliant Solution (Synchronization)
	2.4.7 Compliant Solution (ConcurrentHashMap)
	2.4.8 Risk Assessment
	2.4.9 References

	2.5 VNA04-J. Ensure that calls to chained methods are atomic
	2.5.1 Noncompliant Code Example
	2.5.2 Compliant Solution
	2.5.3 Risk Assessment
	2.5.4 References

	2.6 VNA05-J. Ensure atomicity when reading and writing 64-bit values
	2.6.1 Noncompliant Code Example
	2.6.2 Compliant Solution (Volatile)
	2.6.3 Exceptions
	2.6.4 Risk Assessment
	2.6.5 References

	2.7 VNA06-J. Do not assume that declaring an object reference volatile guarantees visibility of its members
	2.7.1 Noncompliant Code Example (Arrays)
	2.7.2 Compliant Solution (AtomicIntegerArray)
	2.7.3 Compliant Solution (Synchronization)
	2.7.4 Noncompliant Code Example (Mutable Object)
	2.7.5 Noncompliant Code Example (Volatile-Read, Synchronized-Write)
	2.7.6 Compliant Solution (Synchronization)
	2.7.7 Noncompliant Code Example (Mutable Sub-Object)
	2.7.8 Compliant Solution (Instance Per Call/Defensive Copying)
	2.7.9 Compliant Solution (Synchronization)
	2.7.10 Compliant Solution (ThreadLocal Storage)
	2.7.11 Risk Assessment
	2.7.12 References

	3 Lock (LCK) Guidelines
	3.1 LCK00-J. Use private final lock objects to synchronize classes that may interact with untrusted code
	3.1.1 Noncompliant Code Example (Method Synchronization)
	3.1.2 Noncompliant Code Example (Public Non-Final Lock Object)
	3.1.3 Noncompliant Code Example (Publicly Accessible Non-Final Lock Object)
	3.1.4 Noncompliant Code Example (Public Final Lock Object)
	3.1.5 Compliant Solution (Private Final Lock Object)
	3.1.6 Noncompliant Code Example (Static)
	3.1.7 Compliant Solution (Static)
	3.1.8 Exceptions
	3.1.9 Risk Assessment
	3.1.10 References

	3.2 LCK01-J. Do not synchronize on objects that may be reused
	3.2.1 Noncompliant Code Example (Boolean Lock Object)
	3.2.2 Noncompliant Code Example (Boxed Primitive)
	3.2.3 Compliant Solution (Integer)
	3.2.4 Noncompliant Code Example (Interned String Object)
	3.2.5 Noncompliant Code Example (String Literal)
	3.2.6 Compliant Solution (String Instance)
	3.2.7 Compliant Solution (Private Final Lock Object)
	3.2.8 Risk Assessment
	3.2.9 References

	3.3 LCK02-J. Do not synchronize on the class object returned by getClass()
	3.3.1 Noncompliant Code Example (getClass() Lock Object)
	3.3.2 Compliant Solution (Class Name Qualification)
	3.3.3 Compliant Solution (Class.forName())
	3.3.4 Noncompliant Code Example (getClass() Lock Object, Inner Class)
	3.3.5 Compliant Solution (Class Name Qualification)
	3.3.6 Risk Assessment
	3.3.7 References

	3.4 LCK03-J. Do not synchronize on the intrinsic locks of high-level concurrency objects
	3.4.1 Noncompliant Code Example (ReentrantLock Lock Object)
	3.4.2 Compliant Solution (lock() and unlock())
	3.4.3 Risk Assessment
	3.4.4 References

	3.5 LCK04-J. Do not synchronize on a collection view if the backing collection is accessible
	3.5.1 Noncompliant Code Example (Collection View)
	3.5.2 Compliant Solution (Collection Lock Object)
	3.5.3 Risk Assessment
	3.5.4 References

	3.6 LCK05-J. Synchronize access to static fields that may be modified by untrusted code
	3.6.1 Noncompliant Code Example
	3.6.2 Compliant Solution
	3.6.3 Risk Assessment
	3.6.4 References

	3.7 LCK06-J. Do not use an instance lock to protect shared static data
	3.7.1 Noncompliant Code Example (Non-Static Lock Object for Static Data)
	3.7.2 Noncompliant Code Example (Method Synchronization for Static Data)
	3.7.3 Compliant Solution (Static Lock Object)
	3.7.4 Risk Assessment
	3.7.5 References

	3.8 LCK07-J. Avoid deadlock by requesting and releasing locks in the same order
	3.8.1 Noncompliant Code Example (Different Lock Orders)
	3.8.2 Compliant Solution (Private Static Final Lock Object)
	3.8.3 Compliant Solution (Ordered Locks)
	3.8.4 Compliant Solution (ReentrantLock)
	3.8.5 Noncompliant Code Example (Different Lock Orders, Recursive)
	3.8.6 Compliant Solution
	3.8.7 Risk Assessment
	3.8.8 References

	3.9 LCK08-J. Ensure actively held locks are released on exceptional conditions
	3.9.1 Noncompliant Code Example (Checked Exception)
	3.9.2 Compliant Solution (finally Block)
	3.9.3 Compliant Solution (Execute-Around Idiom)
	3.9.4 Noncompliant Code Example (Unchecked Exception)
	3.9.5 Compliant Solution (finally Block)
	3.9.6 Risk Assessment
	3.9.7 References

	3.10 LCK09-J. Do not perform operations that may block while holding a lock
	3.10.1 Noncompliant Code Example (Deferring a Thread)
	3.10.2 Compliant Solution (Intrinsic Lock)
	3.10.3 Noncompliant Code Example (Network I/O)
	3.10.4 Compliant Solution
	3.10.5 Exceptions
	3.10.6 Risk Assessment
	3.10.7 References

	3.11 LCK10-J. Do not use incorrect forms of the double-checked locking idiom
	3.11.1 Noncompliant Code Example
	3.11.2 Compliant Solution (Volatile)
	3.11.3 Compliant Solution (Static Initialization)
	3.11.4 Compliant Solution (Initialize-On-Demand, Holder Class Idiom)
	3.11.5 Compliant Solution (ThreadLocal Storage)
	3.11.6 Compliant Solution (Immutable)
	3.11.7 Exceptions
	3.11.8 Risk Assessment
	3.11.9 References

	3.12 LCK11-J. Avoid client-side locking when using classes that do not commit to their locking strategy
	3.12.1 Noncompliant Code Example (Intrinsic Lock)
	3.12.2 Compliant Solution (Private Final Lock Object)
	3.12.3 Noncompliant Code Example (Class Extension and Accessible Member Lock)
	3.12.4 Compliant Solution (Composition)
	3.12.5 Risk Assessment
	3.12.6 References

	4 Thread APIs (THI) Guidelines
	4.1 THI00-J. Do not assume that the sleep(), yield(), or getState() methods provide synchronization semantics
	4.1.1 Noncompliant Code Example (sleep())
	4.1.2 Compliant Solution (Volatile Flag)
	4.1.3 Compliant Solution (Thread.interrupt())
	4.1.4 Noncompliant Code Example (getState())
	4.1.5 Compliant Solution
	4.1.6 Risk Assessment
	4.1.7 References

	4.2 THI01-J. Do not invoke ThreadGroup methods
	4.2.1 Noncompliant Code Example
	4.2.2 Compliant Solution
	4.2.3 Risk Assessment
	4.2.4 References

	4.3 THI02-J. Do not invoke Thread.run()
	4.3.1 Noncompliant Code Example
	4.3.2 Compliant Solution
	4.3.3 Exceptions
	4.3.4 Risk Assessment
	4.3.5 References

	4.4 THI03-J. Always invoke wait() and await() methods inside a loop
	4.4.1 Noncompliant Code Example
	4.4.2 Compliant Solution
	4.4.3 Risk Assessment
	4.4.4 References

	4.5 THI04-J. Notify all waiting threads instead of a single thread
	4.5.1 Noncompliant Code Example (notify())
	4.5.2 Compliant Solution (notifyAll())
	4.5.3 Noncompliant Code Example (Condition interface)
	4.5.4 Compliant Solution (signalAll())
	4.5.5 Compliant Solution (Unique Condition Per Thread)
	4.5.6 Risk Assessment
	4.5.7 References

	4.6 THI05-J. Do not use Thread.stop() to terminate threads
	4.6.1 Noncompliant Code Example (Deprecated Thread.stop())
	4.6.2 Compliant Solution (Volatile Flag)
	4.6.3 Compliant Solution (Interruptible)
	4.6.4 Compliant Solution (Runtime Permission stopThread)
	4.6.5 Risk Assessment
	4.6.6 References

	4.7 THI06-J. Ensure that threads and tasks performing blocking operations can be terminated
	4.7.1 Noncompliant Code Example (Blocking I/O, Volatile Flag)
	4.7.2 Noncompliant Code Example (Blocking I/O, Interruptible)
	4.7.3 Compliant Solution (Close Socket Connection)
	4.7.4 Compliant Solution (Interruptible Channel)
	4.7.5 Noncompliant Code Example (Database Connection)
	4.7.6 Compliant Solution (Statement.cancel())
	4.7.7 Risk Assessment
	4.7.8 References

	5 Thread Pools (TPS) Guidelines
	5.1 TPS00-J. Use thread pools to enable graceful degradation of service during traffic bursts
	5.1.1 Noncompliant Code Example
	5.1.2 Compliant Solution
	5.1.3 Risk Assessment
	5.1.4 References

	5.2 TPS01-J. Do not execute interdependent tasks in a bounded thread pool
	5.2.1 Noncompliant Code Example (Interdependent Subtasks)
	5.2.2 Compliant Solution (No Interdependent Tasks)
	5.2.3 Noncompliant Code Example (Subtasks)
	5.2.4 Compliant Solution (CallerRunsPolicy)
	5.2.5 Risk Assessment
	5.2.6 References

	5.3 TPS02-J. Ensure that tasks submitted to a thread pool are interruptible
	5.3.1 Noncompliant Code Example (Shutting Down Thread Pools)
	5.3.2 Compliant Solution (Submit Interruptible Tasks)
	5.3.3 Exceptions
	5.3.4 Risk Assessment
	5.3.5 References

	5.4 TPS03-J. Ensure that tasks executing in a thread pool do not fail silently
	5.4.1 Noncompliant Code Example (Abnormal Task Termination)
	5.4.2 Compliant Solution (ThreadPoolExecutor Hooks)
	5.4.3 Compliant Solution (Uncaught Exception Handler)
	5.4.4 Compliant Solution (Future<V> and submit())
	5.4.5 Exceptions
	5.4.6 Risk Assessment
	5.4.7 References

	5.5 TPS04-J. Ensure ThreadLocal variables are reinitialized when using thread pools
	5.5.1 Noncompliant Code Example
	5.5.2 Noncompliant Code Example (Increase Thread Pool Size)
	5.5.3 Compliant Solution (try-finally Clause)
	5.5.4 Compliant Solution (beforeExecute())
	5.5.5 Exceptions
	5.5.6 Risk Assessment
	5.5.7 References

	6 Thread-Safety Miscellaneous (TSM) Guidelines
	6.1 TSM00-J. Do not override thread-safe methods with methods that are not thread-safe
	6.1.1 Noncompliant Code Example (Synchronized Method)
	6.1.2 Compliant Solution (Synchronized Method)
	6.1.3 Compliant Solution (Private Final Lock Object)
	6.1.4 Noncompliant Code Example (Private Lock)
	6.1.5 Compliant Solution (Private Lock)
	6.1.6 Risk Assessment
	6.1.7 References

	6.2 TSM01-J. Do not let the “this” reference escape during object construction
	6.2.1 Noncompliant Code Example (Publish Before Initialization)
	6.2.2 Noncompliant Code Example (Non-Volatile Public Static Field)
	6.2.3 Compliant Solution (Volatile Field and Publish After Initialization)
	6.2.4 Compliant Solution (Public Static Factory Method)
	6.2.5 Noncompliant Code Example (Handlers)
	6.2.6 Compliant Solution
	6.2.7 Noncompliant Code Example (Inner Class)
	6.2.8 Compliant Solution
	6.2.9 Noncompliant Code Example (Thread)
	6.2.10 Compliant Solution (Thread)
	6.2.11 Exceptions
	6.2.12 Risk Assessment
	6.2.13 References

	6.3 TSM02-J. Do not use background threads during class initialization
	6.3.1 Noncompliant Code Example (Background Thread)
	6.3.2 Compliant Solution (static Initializer, No Background Threads)
	6.3.3 Compliant Solution (ThreadLocal)
	6.3.4 Exceptions
	6.3.5 Risk Assessment
	6.3.6 References

	6.4 TSM03-J. Do not publish partially initialized objects
	6.4.1 Noncompliant Code Example
	6.4.2 Compliant Solution (Synchronization)
	6.4.3 Compliant Solution (Final Field)
	6.4.4 Compliant Solution (Final Field and Thread-Safe Composition)
	6.4.5 Compliant Solution (Static Initialization)
	6.4.6 Compliant Solution (Immutable Object - Final Fields, Volatile Reference)
	6.4.7 Compliant Solution (Mutable Thread-Safe Object, Volatile Reference)
	6.4.8 Exceptions
	6.4.9 Risk Assessment
	6.4.10 References

	6.5 TSM04-J. Document thread-safety and use annotations where applicable
	6.5.1 Obtaining Concurrency Annotations
	6.5.2 Documenting Intended Thread-Safety
	6.5.3 Documenting Locking Policies
	6.5.4 Construction of Mutable Objects
	6.5.5 Documenting Thread-Confinement Policies
	6.5.6 Documenting Wait-Notify Protocols
	6.5.7 Risk Assessment
	6.5.8 References

	Appendix Definitions
	Bibliography

