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About This Report 

The Secure Coding Standard Described in This Report 

The CERT Oracle Secure Coding Standard for Java is the result of a collaboration between the 
CERT

www.securecoding.cert.org

 Program at the Carnegie Mellon Software Engineering Institute and Oracle. It is being 
developed as a community effort on the CERT secure coding wiki located at 

. This report contains a subset of those guidelines that deal with con-
currency and may undergo further revision before being published as part of the CERT Oracle 
Secure Coding Standard for Java. The concurrency guidelines are divided into the following cate-
gories: 
• visibility and atomicity (VNA) 

• locks (LCK) 

• thread APIs (THI) 

• thread pools (TPS) 

• thread-safety miscellaneous (TSM) 

We welcome your feedback about these guidelines. To comment on the wiki, simply go to it and 
sign up for a wiki account.  

Guideline Priorities 

Each guideline has a priority assigned using a metric based on Failure Mode, Effects, and Critical-
ity Analysis (FMECA) [IEC 2006]. A value for each of the following is assigned to each guide-
line: 
• severity – If the guideline is ignored, how serious are the consequences? 

1 = low (denial-of-service attack, abnormal termination) 
2 = medium (data integrity violation, unintentional information disclosure) 
3 = high (run arbitrary code, privilege escalation) 

• likelihood – If the guideline is ignored and that results in the introduction of a flaw, how like-
ly is it for that flaw to lead to an exploitable vulnerability? 
1 = unlikely 
2 = probable 
3 = likely 

• remediation cost – How expensive is it to comply with the guideline? 
1 = high (manual detection and correction) 
2 = medium (automatic detection and manual correction) 
3 = low (automatic detection and correction) 

The three values are then multiplied for each guideline. The resulting value, which will be be-
tween 1 and 27, provides a measure that can be used to prioritize the application of the guidelines. 

 
  CERT and Carnegie Mellon are registered in the U.S. Patent and Trademark Office by Carnegie Mellon Univer-

sity. 

http://www.securecoding.cert.org/�
https://www.securecoding.cert.org/confluence/pages/createpage.action?spaceKey=java&title=AA.+C+References&linkCreation=true&fromPageId=34669103�
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Guidelines with a priority in the range of 1-4 are level-3 guidelines; those in the range of 6-9 are 
level-2; and those in the range of 12-27 are level-1. As a result, it is possible to claim level-1, lev-
el-2, or complete compliance (level-3) with a standard by implementing all guidelines in a level, 
as shown in Figure 1. 

 

Figure 1: Guideline Priorities 

This metric is designed primarily for remediation projects. New development efforts are expected 
to conform to the entire standard. 
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Abstract 

An essential element of secure coding in the Java programming language is well-documented and 
enforceable coding standards. Coding standards encourage programmers to follow a uniform set 
of guidelines determined by the requirements of the project and organization, rather than by the 
programmer’s familiarity or preference. Once established, these standards can be used as a metric 
to evaluate source code (using manual or automated processes). 

The CERT Oracle Secure Coding Standard for Java provides guidelines for secure coding in the 
Java programming language. The goal of these guidelines is to eliminate insecure coding practices 
and undefined behaviors that can lead to exploitable vulnerabilities. Applying this standard will 
lead to higher quality systems that are robust and more resistant to attack. 

This report documents the portion of those Java guidelines that are related to concurrency. 
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1 Introduction 

Memory that can be shared between threads is called shared memory or heap memory. The term 
variable as used in this technical report refers to both fields and array elements [Gosling 2005]. 
Variables that are shared between threads are referred to as shared variables. All instance fields, 
static fields, and array elements are shared variables allocated in heap memory. Local variables, 
formal method parameters, and exception-handler parameters are never shared between threads 
and are not affected by the memory model. 

In a modern, shared-memory, multiprocessor architecture, each processor has one or more levels 
of cache that are periodically reconciled with main memory as shown in Figure 2. 

 
Figure 2: Modern, Shared-Memory, Multiprocessor Architecture 

The visibility of writes to shared variables can be problematic because the value of a shared vari-
able may be cached and not written to main memory immediately. Consequently, another thread 
may read a stale value of the variable.  

A further concern is that concurrent executions of code are typically interleaved, and statements 
may be reordered by the compiler or runtime system to optimize performance. This results in ex-
ecution orders that are not immediately obvious when the source code is examined. Failure to ac-
count for possible reorderings is a common source of data races.  

Consider the following example in which a and b are (shared) global variables or instance fields, 
but r1 and r2 are local variables that are not accessible to other threads. 

  

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-JLS05�
https://www.securecoding.cert.org/confluence/display/java/BB.+Definitions#BB.Definitions-memorymodel�
https://www.securecoding.cert.org/confluence/display/java/BB.+Definitions#BB.Definitions-dataraces�
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Initially, let a = 0 and b = 0, as shown in Table 1: 

Table 1: Example Thread Assignment #1 

Thread 1 Thread 2 

a = 10; b = 20; 

r1 = b; r2 = a; 

Because the two assignments in Thread 1 (a = 10; and r1 = b;) are unrelated, the compiler 
or runtime system is free to reorder them. Similarly in Thread 2, the statements may be reordered 
freely. Although it may seem counterintuitive, the Java Memory Model (JMM) allows a read to 
see the value of a write that occurs later in the execution order. 

A possible execution order showing actual assignments is shown in Table 2. 

Table 2: Example #1 of Assignments in Order of Execution 

Execution  

Order (Time) 

Thread# Assignment Assigned Value Notes 

1 t1 a = 10; 10  

2 t2 b = 20; 20  

3 t1 r1 = b; 0 Reads initial value of b, that is 0 

4 t2 r2 = a; 0 Reads initial value of a, that is 0 

In this ordering, r1 and r2 read the original values of variables b and a, respectively, even 
though they are expected to see the updated values, 20 and 10. Another possible execution order 
showing actual assignments is shown in Table 3. 

Table 3: Example #2 of Assignments in Order of Execution 

Execution  

Order (Time) 

Thread# Assignment Assigned Value Notes 

1 t1 r1 = b; 20 Reads later value (in Step 4) of 

write, that is 20 

2 t2 r2 = a; 10 Reads later value (in Step 3) of 

write, that is 10 

3 t1 a = 10; 10  

4 t2 b = 20; 20  

In this ordering, r1 and r2 read the values of a and b written from Steps 3 and 4, even before the 
statements corresponding to these steps have executed. 

Restricting the set of possible reorderings makes it easier to reason about the correctness of the 
code.  

Even if statements execute in the order of their appearance in a thread, caching can prevent the 
latest values from being reflected in the main memory. 

The Java Language Specification defines the JMM that provides certain guarantees to the Java 
programmer. The JMM is specified in terms of actions, which include variable reads and writes; 
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monitor locks and unlocks; and thread starts and joins. The JMM defines a partial ordering called 
happens-before on all actions within the program. To guarantee that a thread executing action B 
can see the results of action A, for example, a happens-before relationship must be defined such 
that A happens-before B.  

According to Section 17.4.5 “Happens-before Order” of the Java Language Specification [Gosl-
ing 2005] 
1. An unlock on a monitor happens-before every subsequent lock on that monitor. 
2. A write to a volatile field happens-before every subsequent read of that field. 
3. A call to start() on a thread happens-before any actions in the started thread. 
4. All actions in a thread happens-before any other thread successfully returns from a join() on 

that thread. 
5. The default initialization of any object happens-before any other actions (other than default-

writes) of a program. 
6. A thread calling interrupt on another thread happens-before the interrupted thread detects 

the interrupt. 
7. The end of a constructor for an object happens-before the start of the finalizer for that ob-

ject. 

If a happens-before relationship does not exist between two operations, the Java Virtual Machine 
(JVM) is free to reorder them. A data race occurs when a variable is written to by at least one 
thread and read by at least another thread, and the reads and writes are not ordered by a happens-
before relationship. A correctly synchronized program is one with no data races. The JMM guar-
antees sequential consistency for correctly synchronized programs. Sequential consistency means 
that the result of any execution is the same as if the reads and writes by all threads on shared data 
were executed in some sequential order and the operations of each individual thread appear in this 
sequence in the order specified by its program [Tanenbaum 2002]—in other words 
1. Take the read and write operations performed by each thread and put them in the order in 

which the thread executes them (thread order). 
2. Interleave the operations in some way allowed by the happens-before relationships to form 

an execution order. 
3. Read operations must return the most recently written data in the total program order for the 

execution to be sequentially consistent. 

If the program is sequentially consistent, all threads see the same total ordering of reads and 
writes of shared variables. 

The actual execution order of instructions and memory accesses can vary as long as  
• the actions of the thread appear to that thread as if program order were followed 

• all values read are allowed for by the memory model 

These constraints allow the programmer to understand the semantics of the programs they write 
and allow compiler writers and virtual machine implementers to perform various optimizations 
[Arnold 2006].  

https://www.securecoding.cert.org/confluence/display/java/BB.+Definitions#BB.Definitions-happensbeforeorder�
https://www.securecoding.cert.org/confluence/display/java/BB.+Definitions#BB.Definitions-datarace�
https://www.securecoding.cert.org/confluence/display/java/BB.+Definitions#BB.Definitions-programorder�
https://www.securecoding.cert.org/confluence/display/java/BB.+Definitions#BB.Definitions-programorder�
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Several concurrency primitives can help a programmer reason about the semantics of multi-
threaded programs. 

1.1.1 The volatile Keyword  

Declaring shared variables volatile ensures visibility and limits reordering of accesses. Volatile 
accesses do not guarantee the atomicity of composite operations such as incrementing a variable. 
Consequently, volatile is not applicable in cases where the atomicity of composite operations 
must be guaranteed. (See guideline “VNA02-J. Ensure that compound operations on shared va-
riables are atomic” on page 16 for more information.) 

Declaring variables volatile establishes a happens-before relationship such that a write to a vola-
tile variable is always seen by threads performing subsequent reads of the same variable. State-
ments that occur before the write to the volatile field also happens-before any reads of the volatile 
field. 

Consider two threads that are executing some statements as shown in Figure 3Figure 1.  

 
Figure 3: Example Threads and Their Executing Statements 

Thread 1 and Thread 2 have a happens-before relationship such that Thread 2 does not start before 
Thread 1 finishes.  

In this example, statement 3 writes to a volatile variable, and statement 4 (in Thread 2) reads the 
same volatile variable. The read sees the most recent write (to the same variable v) from statement 
3.  

Volatile read and write operations cannot be reordered with respect to each other or to non-
volatile variables accesses. When Thread 2 reads the volatile variable, it sees the results of all the 
writes occurring before the write to the volatile variable in Thread 1. Because of the relatively 
strong guarantees of volatile read and write operations, the performance overhead is almost the 
same as that of synchronization.  
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In the previous example, there is no guarantee that statements 1 and 2 will be executed in the or-
der in which they appear in the program. They may be reordered freely by the compiler because 
there is no happens-before relationship between these two statements.  

The possible reorderings between volatile and non-volatile variables are summarized in Table 4. 
Load and store operations are synonymous to read and write operations, respectively [Lea 2008]. 

Table 4: Possible Reorderings Between Volatile and Non-Volatile Variables 

Can Reorder 2nd Operation 

1st Operation Normal Load Normal Store Volatile Load Volatile Store 

Normal load Yes Yes Yes No 

Normal store Yes Yes Yes No 

Volatile load No No No No 

Volatile store Yes Yes No No 

1.1.2 Synchronization 

A correctly synchronized program is one whose sequentially consistent executions do not have 
any data races. The example shown below uses a non-volatile variable x and a volatile variable y 
and is not correctly synchronized. 

Table 5: Example Thread Assignment #2 

Thread 1 Thread 2 

x = 1 r1 = y 

y = 2 r2 = x 

The two sequentially consistent execution orders of this example are shown in Table 6 and Table 
7. 

Table 6: Execution Order #1 

Step (Time) Thread# Statement Comment 

1 t1 x = 1 Write to non-volatile variable 

2 t1 y = 2 Write to volatile variable 

3 t2 r1 = y Read of volatile variable 

4 t2 r2 = x Read of non-volatile variable 

Table 7: Execution Order #2 

Step (Time) Thread# Statement Comment 

1 t2 r1 = y Read of volatile variable 

2 t2 r2 = x Read of non-volatile variable 

3 t1 x = 1 Write to non-volatile variable 

4 t1 y = 2 Write to volatile variable 

In the first case, a happens-before relationship exists between actions such that Steps 1 and 2 al-
ways occur before Steps 3 and 4. However, in the second case, no happens-before relationship 
exists between any of the steps. Consequently, because there is a sequentially consistent execution 
that has no happens-before relationship, this example contains data races. 

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Lea08�
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Correct visibility guarantees that multiple threads accessing shared data can view each others’ 
results, but does not establish the order of when each thread reads or writes the data. Correct syn-
chronization guarantees that threads access data in a proper order. For example, the code shown 
below ensures that there is only one sequentially consistent execution order that performs all the 
actions of Thread 1 before Thread 2.  

class Assign { 
  public synchronized void doSomething() { 
    // Perform Thread 1 actions 
    x = 1; 
    y = 2;  
    // Perform Thread 2 actions 
    r1 = y; 
    r2 = x; 
  } 
} 

When using synchronization, there is no need to declare the variable y volatile. Synchronization 
involves acquiring a lock, performing operations, and then releasing the lock. In the above exam-
ple, the doSomething() method acquires the intrinsic lock of the class object (Assign). This 
example can also be written to use block synchronization: 

class Assign { 
  public void doSomething() { 
    synchronized (this) { 
      // Perform Thread 1 actions 
      x = 1; 
      y = 2;  
      // Perform Thread 2 actions 
      r1 = y; 
      r2 = x; 
    } 
  } 
} 

 
The intrinsic lock used in both examples is the same. 

1.1.3 The java.util.concurrent Classes 

1.1.3.1 Atomic Classes 

Volatile variables are useful for guaranteeing visibility. However, they are insufficient for ensur-
ing atomicity. Synchronization fills this gap but incurs overheads of context switching and fre-
quently causes lock contention. The atomic classes of package  
java.util.concurrent.atomic provide a mechanism for reducing contention in most prac-
tical environments while at the same time ensuring atomicity. According to Goetz and colleagues 
[Goetz 2006] 

With low to moderate contention, atomics offer better scalability; with high contention, locks 
offer better contention avoidance. 

The atomic classes consist of implementations that exploit the design of modern processors by 
exposing commonly needed functionality to the programmer. For example, the  
AtomicInteger.incrementAndGet() method can be used for atomically incrementing a 
variable. The compare-and-swap instruction(s) provided by modern processors offer more fine-
grained control and can be used directly by invoking high-level methods such as  

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Goetz06�
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java.util.concurrent.atomic.Atomic*.compareAndSet() where the asterisk can 
be, for example, an Integer, Long, or Boolean.  

1.1.3.2 The Executor Framework 

The java.util.concurrent package provides the Executor framework that offers a me-
chanism for executing tasks concurrently. A task is a logical unit of work encapsulated by a class 
that implements Runnable or Callable. The Executor framework allows task submission to 
be decoupled from low-level scheduling and thread management details. It provides the thread 
pool mechanism that allows a system to degrade gracefully when presented with more requests 
than the system can handle simultaneously.  

The Executor interface is the core interface of the framework and is extended by the  
ExecutorService interface that provides facilities for thread pool termination and obtaining 
return values of tasks (Futures). The ExecutorService interface is further extended by the 
ScheduledExecutorService interface that provides a way to run tasks periodically or after 
some delay. The Executors class provides several factory and utility methods that are preconfi-
gured with commonly used configurations of Executor, ExecutorService, and other related 
interfaces. For example, the Executors.newFixedThreadPool() method returns a fixed 
size thread pool with an upper limit on the number of concurrently executing tasks and maintains 
an unbounded queue for holding tasks while the thread pool is full. The base (actual) implementa-
tion of the thread pool is provided by the ThreadPoolExecutor class. This class can be instan-
tiated to customize the task execution policy.  

The java.util.concurrent utilities are preferred over traditional synchronization primitives 
such as synchronization and volatile variables because the java.util.concurrent utilities 
abstract the underlying details, provide a cleaner and less error-prone API, are easier to scale, and 
can be enforced using policies.  

1.1.3.3 Explicit Locking 

The java.util.concurrent package provides the ReentrantLock class that has additional 
features not provided by intrinsic locks. For example, the ReentrantLock.tryLock() me-
thod does not block waiting if another thread is already holding the lock. Acquiring and releasing 
a ReentrantLock has the same semantics as acquiring and releasing an intrinsic lock. 
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2 Visibility and Atomicity (VNA) Guidelines 

2.1 VNA00-J. Ensure visibility when accessing shared primitive variables 

Reading a shared primitive variable in one thread may not yield the value of the most recent write 
to the variable from another thread. Consequently, the thread may observe a stale value of the 
shared variable. To ensure the visibility of the most recent update, either the variable must be de-
clared volatile or the reads and writes must be synchronized. 

Declaring a shared variable volatile guarantees visibility in a thread-safe manner only when both 
of the following conditions are met: 
• A write to a variable does not depend on its current value. 

• A write to a variable does not depend on the result of any non-atomic compound operations 
involving reads and writes of other variables. (For more information, see guideline “VNA02-
J. Ensure that compound operations on shared variables are atomic” on page 16.) 

The first condition can be relaxed when you can be sure that only one thread will ever update the 
value of the variable [Goetz 2006]. However, code that relies on a single-thread confinement is 
error-prone and difficult to maintain. This behavior is permissible under this guideline but not 
recommended. 

Synchronizing the code makes it easier to reason about its behavior and is frequently more secure 
than simply using the volatile keyword. However, synchronization has a somewhat higher 
performance overhead and can result in thread contention and deadlocks when used excessively. 

Declaring a variable volatile or correctly synchronizing the code guarantees that 64-bit primitive 
long and double variables are accessed atomically. (For more information on sharing those 
variables among multiple threads, see guideline “VNA05-J. Ensure atomicity when reading and 
writing 64-bit values” on page 33.) 

2.1.1 Noncompliant Code Example (Non-Volatile Flag) 

This noncompliant code example uses a shutdown() method to set a non-volatile done flag 
that is checked in the run() method.  

 

final class ControlledStop implements Runnable { 

  private boolean done = false; 

  

  @Override public void run() { 

    while (!done) { 

      try { 

        // ... 

        Thread.currentThread().sleep(1000); // Do something 

      } catch(InterruptedException ie) {  

        Thread.currentThread().interrupt(); // Reset interrupted status 

      }  

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Goetz06�


VNA00-J 

CMU/SEI-2010-TR-015 | 10 

    }    

  } 

 

  public void shutdown() { 

    done = true; 

  } 

} 

If one thread invokes the shutdown() method to set the flag, a second thread might not observe 
that change. Consequently, the second thread may observe that done is still false and incorrectly 
invoke the sleep() method. A compiler is allowed to optimize the code if it determines that the 
value of done is never modified by the same thread, resulting in an infinite loop. 

2.1.2 Compliant Solution (volatile) 

In this compliant solution, the done flag is declared volatile to ensure that writes are visible to 
other threads. 

 

final class ControlledStop implements Runnable { 

  private volatile boolean done = false; 

  

  @Override public void run() { 

    while (!done) { 

      try { 

        // ... 

        Thread.currentThread().sleep(1000); // Do something 

      } catch(InterruptedException ie) {  

        Thread.currentThread().interrupt(); // Reset interrupted status 

      }  

    }    

  } 

 

  public void shutdown() { 

    done = true; 

  } 

} 

2.1.3 Compliant Solution (java.util.concurrent.atomic.AtomicBoolean) 

In this compliant solution, the done flag is declared AtomicBoolean. Atomic types also guar-
antee that writes are visible to other threads. 

 

final class ControlledStop implements Runnable { 

  private final AtomicBoolean done = new AtomicBoolean(false); 

  

  @Override public void run() { 

    while (!done.get()) { 

      try { 

        // ... 

        Thread.currentThread().sleep(1000); // Do something 
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      } catch(InterruptedException ie) {  

        Thread.currentThread().interrupt(); // Reset interrupted status 

      }  

    }    

  } 

 

  public void shutdown() { 

    done.set(true); 

  } 

} 

2.1.4 Compliant Solution (synchronized) 

This compliant solution uses the intrinsic lock of the Class object to ensure that updates become 
visible to other threads. 

 

final class ControlledStop implements Runnable { 

  private boolean done = false; 

  

  @Override public void run() { 

    while (!isDone()) { 

      try { 

        // ... 

        Thread.currentThread().sleep(1000); // Do something 

      } catch(InterruptedException ie) {  

        Thread.currentThread().interrupt(); // Reset interrupted status 

      }  

    }    

  } 

 

  public synchronized boolean isDone() { 

    return done; 

  } 

 

  public synchronized void shutdown() { 

    done = true; 

  } 

} 

While this is an acceptable compliant solution, intrinsic locks cause threads to block and may in-
troduce contention. On the other hand, volatile-qualified shared variables do not block. Excessive 
synchronization can also make the program prone to deadlock.  

Synchronization is a more secure alternative in situations where the volatile keyword or a  
java.util.concurrent.atomic.Atomic* field is inappropriate, such as if a variable’s 
new value depends on its current value. For more information, see guideline “VNA02-J. Ensure 
that compound operations on shared variables are atomic” on page 16. 
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Compliance with guideline “LCK00-J. Use private final lock objects to synchronize classes that 
may interact with untrusted code” on page 41 can reduce the likelihood of misuse by ensuring that 
untrusted callers cannot access the lock object. 

2.1.5 Exceptions 

VNA00-EX1: Class objects need not be made visible because they are created by the virtual 
machine and their initialization always precedes any subsequent use. 

2.1.6 Risk Assessment 

Failing to ensure the visibility of a shared primitive variable may result in a thread observing a 
stale value of the variable. 

Guideline  Severity  Likelihood  Remediation Cost  Priority  Level  

VNA00-J  medium  probable  medium  P8  L2  

2.1.7 References 

[Arnold 2006]  Section 14.10.3, “The Happens-Before Relationship” 

[Bloch 2008]  Item 66: “Synchronize access to shared mutable data” 

[Gosling 2005]  Chapter 17, Threads and Locks: 

Section 17.4.5, “Happens-Before Order” 

Section 17.4.3, “Programs and Program Order” 

Section 17.4.8, “Executions and Causality Requirements” 

[MITRE 2010]  CWE ID 667, “Insufficient Locking” 

CWE ID 413, “Insufficient Resource Locking”  

CWE ID 567, “Unsynchronized Access to Shared Data” 

 

http://java.sun.com/docs/books/jls/third_edition/html/memory.html�
http://cwe.mitre.org/data/definitions/667.html�
http://cwe.mitre.org/data/definitions/413.html�
http://cwe.mitre.org/data/definitions/567.html�
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2.2 VNA01-J. Ensure visibility of shared references to immutable objects 

A common misconception is that shared references to immutable objects are visible across mul-
tiple threads as soon as they are updated. For example, a developer can mistakenly believe that a 
class containing fields referring to only immutable objects is immutable and, consequently, 
thread-safe. 

Section 14.10.2, “Final Fields and Security” of Java Programming Language, Fourth Edition 
states [Arnold 2006] 

The problem is that, while the shared object is immutable, the reference used to access the 
shared object is itself shared and often mutable. Consequently, a correctly synchronized 
program must synchronize access to that shared reference, but often programs do not do 
this, because programmers do not recognize the need to do it.  

References to both immutable and mutable objects must be made visible to all the threads. Im-
mutable objects can be shared safely among multiple threads. However, mutable objects may not 
be fully constructed when their references are made visible. Guideline “TSM03-J. Do not publish 
partially initialized objects” on page 162 describes object construction and visibility issues specif-
ic to mutable objects.  

2.2.1 Noncompliant Code Example 

This noncompliant code example consists of the immutable Helper class: 

 

// Immutable Helper 

public final class Helper { 

  private final int n; 

 

  public Helper(int n) { 

    this.n = n; 

  } 

  // ... 

} 

and a mutable Foo class:  

 

final class Foo { 

  private Helper helper; 

 

  public Helper getHelper() { 

    return helper; 

  } 

 

  public void setHelper(int num) { 

    helper = new Helper(num); 

  } 

} 

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-JPL06�
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The getHelper() method publishes the mutable helper field. Because the Helper class is 
immutable, it cannot be changed after it is initialized. Furthermore, because Helper is immuta-
ble, it is always constructed properly before its reference is made visible in compliance with 
guideline “TSM03-J. Do not publish partially initialized objects” on page 162. Unfortunately, a 
separate thread could observe a stale reference in the helper field of the Foo class. 

2.2.2 Compliant Solution (Synchronization) 

This compliant solution synchronizes the methods of the Foo class to ensure that no thread sees a 
stale Helper reference.  

 

final class Foo { 

  private Helper helper; 

 

  public synchronized Helper getHelper() { 

    return helper; 

  } 

 

  public synchronized void setHelper(int num) { 

    helper = new Helper(num); 

  } 

} 

The immutable Helper class remains unchanged. 

2.2.3 Compliant Solution (volatile) 

References to immutable member objects can be made visible by declaring them volatile. 

 

final class Foo { 

  private volatile Helper helper; 

 

  public Helper getHelper() { 

    return helper; 

  } 

 

  public void setHelper(int num) { 

    helper = new Helper(num); 

  } 

} 

The immutable Helper class remains unchanged. 

  

https://www.securecoding.cert.org/confluence/display/java/BB.+Definitions#BB.Definitions-immutable�
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2.2.4 Compliant Solution (java.util.concurrent Utilities) 

This compliant solution wraps the immutable Helper object within an AtomicReference 
wrapper that can be updated atomically. 

 

final class Foo { 

  private final AtomicReference<Helper> helperRef = 

    new AtomicReference<Helper>(); 

 

  public Helper getHelper() { 

    return helperRef.get(); 

  } 

 

  public void setHelper(int num) { 

    helperRef.set(new Helper(num)); 

  } 

} 

The immutable Helper class remains unchanged. 

2.2.5 Risk Assessment 

The assumption that classes containing immutable objects are immutable is incorrect and can 
cause serious thread-safety issues. 

Guideline  Severity  Likelihood  Remediation Cost  Priority  Level  

VNA01-J  low  probable  medium  P4  L3 

2.2.6 References 

[Arnold 2006]  Section 14.10.2, “Final Fields and Security” 

[Goetz 2006] Section 3.4.2, “Example: Using Volatile to Publish Immutable Objects” 

[Sun 2009b]   
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2.3 VNA02-J. Ensure that compound operations on shared variables are atomic 

Compound operations are operations that consist of more than one discrete operation. Expressions 
that include postfix or prefix increment (++), postfix or prefix decrement (--), or compound  
assignment operators always result in compound operations. Compound assignment expressions 
use operators such as *=, /=, %=, +=, -=, <<=, >>=, >>>=, ^=, and |= [Gosling 2005]. 
Compound operations on shared variables must be performed atomically to prevent data races and 
race conditions.  

For information about the atomicity of a grouping of calls to independently atomic methods that 
belong to thread-safe classes, see guideline “VNA03-J. Do not assume that a group of calls to in-
dependently atomic methods is atomic” on page 23. 

The Java Language Specification also permits reads and writes of 64-bit values to be non-atomic. 
For more information, see guideline “VNA05-J. Ensure atomicity when reading and writing 64-
bit values” on page 33. 

2.3.1 Noncompliant Code Example (Logical Negation) 

This noncompliant code example declares a shared boolean flag variable and provides a  
toggle() method that negates the current value of flag. 

 

final class Flag { 

  private boolean flag = true; 

  

  public void toggle() {  // Unsafe 

    flag = !flag;  

  } 

 

  public boolean getFlag() { // Unsafe  

    return flag; 

  } 

} 

Execution of this code may result in a data race because the value of flag is read, negated, and 
written back.  

  

https://www.securecoding.cert.org/confluence/display/java/BB.+Definitions#BB.Definitions-datarace�
https://www.securecoding.cert.org/confluence/display/java/BB.+Definitions#BB.Definitions-raceconditions�
https://www.securecoding.cert.org/confluence/display/java/BB.+Definitions#BB.Definitions-datarace�
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Consider, for example, two threads that call toggle(). The expected effect of toggling flag 
twice is that it is restored to its original value. However, the following scenario leaves flag in the 
incorrect state: 

Time flag= Thread Action 

1 true t1 reads the current value of flag, true, into a temporary variable 

2 true t2 reads the current value of flag, (still) true, into a temporary variable 

3 true t1 toggles the temporary variable to false 

4 true t2 toggles the temporary variable to false 

5 false t1 writes the temporary variable’s value to flag 

6 false t2 writes the temporary variable’s value to flag 

As a result, the effect of the call by t2 is not reflected in flag; the program behaves as if  
toggle() was called only once, not twice. 

2.3.2 Noncompliant Code Example (Bitwise Negation) 

Similarly, the toggle() method can use the compound assignment operator ^= to negate the 
current value of flag. 

 

final class Flag { 

  private boolean flag = true; 

  

  public void toggle() {  // Unsafe 

    flag ^= true;  // Same as flag = !flag;  

  } 

 

  public boolean getFlag() { // Unsafe  

    return flag; 

  } 

} 

This code is also not thread-safe. A data race exists because ^= is a non-atomic compound opera-
tion. 

2.3.3 Noncompliant Code Example (volatile) 

Declaring flag volatile does not help either:  

 

final class Flag { 

  private volatile boolean flag = true; 

  

  public void toggle() {  // Unsafe 

    flag ^= true;  

  } 

 

  public boolean getFlag() { // Safe 
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    return flag; 

  } 

} 

This code remains unsuitable for multithreaded use because declaring a variable volatile does not 
guarantee the atomicity of compound operations on it.  

2.3.4 Compliant Solution (Synchronization) 

This compliant solution declares both the toggle() and getFlag() methods as synchronized. 

 

final class Flag { 

  private boolean flag = true; 

  

  public synchronized void toggle() {  

    flag ^= true; // Same as flag = !flag;  

  } 

 

  public synchronized boolean getFlag() {  

    return flag; 

  } 

} 

This guards the reads and writes to the flag field with a lock on the instance, that is, this. This 
compliant solution ensures that changes are visible to all the threads. Now, only two execution 
orders are possible, one of which is shown below. 

Time flag= Thread Action 

1 true t1 reads the current value of flag, true, into a temporary variable 

2 true t1 toggles the temporary variable to false 

3 false t1 writes the temporary variable's value to flag 

4 false t2 reads the current value of flag, false, into a temporary variable 

5 false t2 toggles the temporary variable to true 

6 true t2 writes the temporary variable's value to flag 

The second execution order involves the same operations, but t2 starts and finishes before t1. 

Compliance with guideline “LCK00-J. Use private final lock objects to synchronize classes that 
may interact with untrusted code” on page 41 can reduce the likelihood of misuse by ensuring that 
untrusted callers cannot access the lock object. 

2.3.5 Compliant Solution (Volatile-Read, Synchronized-Write) 

In this compliant solution, the getFlag() method is not synchronized, and flag is declared 
volatile. This solution is compliant because the read of flag in the getFlag() method is an 
atomic operation and the volatile qualification assures visibility. The toggle() method still re-
quires synchronization because it performs a non-atomic operation.  
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final class Flag { 

  private volatile boolean flag = true; 

  

  public synchronized void toggle() {  

    flag ^= true; // Same as flag = !flag;  

  } 

 

  public boolean getFlag() {  

    return flag; 

  } 

} 

This approach may not be used when a getter method performs operations other than just return-
ing the value of a volatile field without having to use any synchronization. Unless read perfor-
mance is critical, this technique may not offer significant advantages over synchronization [Goetz 
2006]. 

Guideline “VNA06-J. Do not assume that declaring an object reference volatile guarantees visibil-
ity of its members” on page 35 also addresses the volatile-read, synchronized-write pattern. 

2.3.6 Compliant Solution (Read-Write Lock) 

This compliant solution uses a read-write lock to ensure atomicity and visibility.  

 

final class Flag { 

  private boolean flag = true; 

  private final ReadWriteLock lock = new ReentrantReadWriteLock(); 

  private final Lock readLock = lock.readLock(); 

  private final Lock writeLock = lock.writeLock(); 

   

  public synchronized void toggle() {  

    writeLock.lock(); 

    try { 

      flag ^= true; // Same as flag = !flag; 

    } finally { 

      writeLock.unlock(); 

    } 

  } 

 

  public boolean getFlag() {  

    readLock.lock(); 

    try { 

      return flag; 

    } finally { 

      readLock.unlock(); 

    } 

  } 

} 
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Read-write locks allow shared state to be accessed by multiple readers or a single writer but never 
both. According to Goetz [Goetz 2006] 

In practice, read-write locks can improve performance for frequently accessed read-mostly 
data structures on multiprocessor systems; under other conditions they perform slightly 
worse than exclusive locks due to their greater complexity.  

Profiling the application can determine the suitability of read-write locks. 

2.3.7 Compliant Solution (AtomicBoolean) 

This compliant solution declares flag an AtomicBoolean type.  

 

import java.util.concurrent.atomic.AtomicBoolean; 

 

final class Flag { 

  private AtomicBoolean flag = new AtomicBoolean(true); 

  

  public void toggle() {  

    boolean temp; 

    do { 

      temp = flag.get(); 

    } while (!flag.compareAndSet(temp, !temp)); 

  } 

 

  public AtomicBoolean getFlag() {  

    return flag; 

  } 

} 

The flag variable is updated using the compareAndSet() method of the AtomicBoolean 
class. All updates are visible to other threads. 

2.3.8 Noncompliant Code Example (Addition of Primitives) 

In this noncompliant code example, multiple threads can invoke the setValues() method to set 
the a and b fields. Because this class does not test for integer overflow, a user of the Adder class 
must ensure that the arguments to the setValues() method can be added without overflow. 
(For more information, see guideline “INT00-J. Perform explicit range checking to ensure integer 
operations do not overflow.1

 

”) 

final class Adder { 

  private int a; 

  private int b; 

 

  public int getSum() { 

    return a + b; 

  } 

 
1  This guideline is described at https://www.securecoding.cert.org/confluence/display/java/.  

https://www.securecoding.cert.org/confluence/x/gABhAQ�
https://www.securecoding.cert.org/confluence/x/gABhAQ�
https://www.securecoding.cert.org/confluence/display/java/
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  public void setValues(int a, int b) { 

    this.a = a; 

    this.b = b; 

  } 

} 

The getSum() method contains a race condition. For example, if a and b currently have the val-
ues 0 and Integer.MAX_VALUE, respectively, and one thread calls getSum() while another 
calls setValues(Integer.MAX_VALUE, 0), the getSum() method might return 0 or  
Integer.MAX_VALUE, or it might overflow and wrap. Overflow will occur when the first thread 
reads a and b after the second thread has set the value of a to Integer.MAX_VALUE, but before 
it has set the value of b to 0. 

Note that declaring the variables volatile does not resolve the issue because these compound oper-
ations involve reads and writes of multiple variables. 

2.3.9 Noncompliant Code Example (Addition of Atomic Integers) 

In this noncompliant code example, a and b are replaced with atomic integers. 

 

final class Adder { 

  private final AtomicInteger a = new AtomicInteger(); 

  private final AtomicInteger b = new AtomicInteger(); 

 

  public int getSum() { 

    return a.get() + b.get();  

  } 

 

  public void setValues(int a, int b) { 

    this.a.set(a); 

    this.b.set(b); 

  } 

} 

The simple replacement of the two int fields with atomic integers in this example does not elim-
inate the race condition because the compound operation a.get() + b.get() is still non-
atomic. 

2.3.10 Compliant Solution (Addition) 

This compliant solution synchronizes the setValues() and getSum() methods to ensure ato-
micity. 

 

final class Adder { 

  private int a; 

  private int b; 

 

  public synchronized int getSum() { 

    return a + b; 
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  } 

 

  public synchronized void setValues(int a, int b) { 

    this.a = a; 

    this.b = b; 

  } 

} 

Any operations within the synchronized methods are now atomic with respect to other synchro-
nized methods that lock on that object’s monitor (intrinsic lock). It is now possible, for example, 
to add overflow checking to the synchronized getSum() method without introducing the possi-
bility of a race condition. 

2.3.11 Risk Assessment 

If operations on shared variables are non-atomic, unexpected results can be produced. For exam-
ple, information can be disclosed inadvertently because one user can receive information about 
other users. 

Guideline  Severity  Likelihood  Remediation Cost  Priority  Level  

VNA02-J  medium  probable  medium  P8  L2 

2.3.12 References 

[Bloch 2008] Item 66: Synchronize access to shared mutable data 

[Goetz 2006] Section 2.3, “Locking” 

[Gosling 2005] Chapter 17, “Threads and Locks” 

Section 17.4.5, “Happens-Before Order” 

Section 17.4.3, “Programs and Program Order” 

Section 17.4.8, “Executions and Causality Requirements” 

[Lea 2000a] Section 2.2.7, The Java Memory Model 

Section 2.1.1.1, Objects and Locks 

[MITRE 2010] CWE ID 667, “Insufficient Locking”  

CWE ID 413, “Insufficient Resource Locking”  

CWE ID 366, “Race Condition within a Thread”  

CWE ID 567, “Unsynchronized Access to Shared Data” 

[Sun 2009b] Class AtomicInteger 

[Sun 2008a] Java Concurrency Tutorial 

 

http://java.sun.com/docs/books/jls/third_edition/html/memory.html�
http://cwe.mitre.org/data/definitions/667.html�
http://cwe.mitre.org/data/definitions/413.html�
http://cwe.mitre.org/data/definitions/366.html�
http://cwe.mitre.org/data/definitions/567.html�
http://java.sun.com/docs/books/tutorial/essential/concurrency/index.html�
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2.4 VNA03-J. Do not assume that a group of calls to independently atomic 
methods is atomic 

A consistent locking policy guarantees that multiple threads cannot simultaneously access or 
modify shared data. If two or more operations need to be performed as a single atomic operation, 
a consistent locking policy must be implemented using either intrinsic synchronization or  
java.util.concurrent utilities. In the absence of such a policy, the code is susceptible to 
race conditions. 

Given an invariant involving multiple objects, a programmer may incorrectly assume that indivi-
dually atomic operations require no additional locking. Similarly, programmers may incorrectly 
assume that using a thread-safe Collection does not require explicit synchronization to pre-
serve an invariant that involves the collection’s elements. A thread-safe class can only guarantee 
atomicity of its individual methods. A grouping of calls to such methods requires additional syn-
chronization. 

Consider, for example, a scenario where the standard thread-safe API does not provide a single 
method to both find a particular person’s record in a Hashtable and update the corresponding 
payroll information. In such cases, the two method invocations must be performed atomically.  

Enumerations and iterators also require explicit synchronization on the collection object (client-
side locking) or a private final lock object.  

Compound operations on shared variables are also non-atomic. For more information, see guide-
line “VNA02-J. Ensure that compound operations on shared variables are atomic” on page 16. 

Guideline “VNA04-J. Ensure that calls to chained methods are atomic” on page 29 describes a 
specialized case of this guideline. 

2.4.1 Noncompliant Code Example (AtomicReference) 

This noncompliant code example wraps BigInteger objects within thread-safe  
AtomicReference objects.  

 

final class Adder { 

  private final AtomicReference<BigInteger> first;  

  private final AtomicReference<BigInteger> second;  

 

  public Adder(BigInteger f, BigInteger s) { 

    first  = new AtomicReference<BigInteger>(f); 

    second = new AtomicReference<BigInteger>(s); 

  } 

 

  public void update(BigInteger f, BigInteger s) { // Unsafe 

    first.set(f); 

    second.set(s); 

  } 

 

  public BigInteger add() { // Unsafe 
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    return first.get().add(second.get());  

  } 

} 

AtomicReference is an object reference that can be updated atomically. However, operations 
that combine more than one atomic reference are non-atomic. In this noncompliant code example, 
one thread may call update() while a second thread may call add(). This might cause the 
add() method to add the new value of first to the old value of second, yielding an erroneous 
result. 

2.4.2 Compliant Solution (Method Synchronization) 

This compliant solution declares the update() and add() methods synchronized to guarantee 
atomicity.  

 

final class Adder { 

  // ... 

 

  public synchronized void update(BigInteger f, BigInteger s){ 

    first.set(f); 

    second.set(s); 

  } 

 

  public synchronized BigInteger add() { 

    return first.get().add(second.get());  

  } 

} 

2.4.3 Noncompliant Code Example (synchronizedList) 

This noncompliant code example uses a java.util.ArrayList<E> collection, which is not 
thread-safe. However, Collections.synchronizedList is used as a synchronization wrap-
per for ArrayList. An array, rather than an iterator, is used to iterate over ArrayList to avoid 
a ConcurrentModificationException.  

 

final class IPHolder { 

  private final List<InetAddress> ips =  

    Collections.synchronizedList(new ArrayList<InetAddress>()); 

    

  public void addAndPrintIPAddresses(InetAddress address) { 

    ips.add(address); 

    InetAddress[] addressCopy = (InetAddress[]) ips.toArray(new InetAddress[0]);       

    // Iterate through array addressCopy ... 

  } 

} 

Individually, the add() and toArray() collection methods are atomic. However, when they are 
called in succession (for example, in the addAndPrintIPAddresses() method), there are no 
guarantees that the combined operation is atomic. A race condition exists in the  
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addAndPrintIPAddresses() method that allows one thread to add to the list and a second 
thread to race in and modify the list before the first thread completes. Consequently, the  
addressCopy array may contain more IP addresses than expected. 

2.4.4 Compliant Solution (Synchronized Block) 

The race condition can be eliminated by synchronizing on the underlying list’s lock. This com-
pliant solution encapsulates all references to the array list within synchronized blocks.  

 

final class IPHolder { 

  private final List<InetAddress> ips =  

    Collections.synchronizedList(new ArrayList<InetAddress>()); 

 

  public void addAndPrintIPAddresses(InetAddress address) { 

    synchronized (ips) { 

      ips.add(address); 

      InetAddress[] addressCopy = (InetAddress[]) ips.toArray(new InetAddress[0]);            

      // Iterate through array addressCopy ... 

    } 

  } 

} 

This technique is also called client-side locking [Goetz 2006] because the class holds a lock on an 
object that might be accessible to other classes. Client-side locking is not always an appropriate 
strategy; see guideline “LCK11-J. Avoid client-side locking when using classes that do not com-
mit to their locking strategy” on page 86 for more information.  

This code does not violate guideline “LCK04-J. Do not synchronize on a collection view if the 
backing collection is accessible” on page 57 because, while it does synchronize on a collection 
view (the synchronizedList), the backing collection is inaccessible and therefore cannot be 
modified by any code. 

2.4.5 Noncompliant Code Example (synchronizedMap) 

This noncompliant code example defines the KeyedCounter class that is not thread-safe. Al-
though the HashMap is wrapped in a synchronizedMap, the overall increment operation is 
non-atomic [Lee 2009].  

 

final class KeyedCounter { 

  private final Map<String, Integer> map = 

    Collections.synchronizedMap(new HashMap<String, Integer>()); 

 

  public void increment(String key) { 

    Integer old = map.get(key); 

    int oldValue = (old == null) ? 0 : old.intValue(); 

    if (oldValue == Integer.MAX_VALUE) {     

      throw new ArithmeticException("Out of range"); 

    } 

    map.put(key, oldValue + 1); 

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Goetz06�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Lee09�
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  } 

 

  public Integer getCount(String key) { 

    return map.get(key); 

  } 

} 

2.4.6 Compliant Solution (Synchronization) 

To ensure atomicity, this compliant solution uses an internal private lock object to synchronize the 
statements of the increment() and getCount() methods.  

 

final class KeyedCounter { 

  private final Map<String, Integer> map = new HashMap<String, Integer>();  

  private final Object lock = new Object(); 

 

  public void increment(String key) { 

    synchronized (lock) { 

      Integer old = map.get(key); 

      int oldValue = (old == null) ? 0 : old.intValue(); 

      if (oldValue == Integer.MAX_VALUE) {     

        throw new ArithmeticException("Out of range"); 

      } 

      map.put(key, oldValue + 1); 

    } 

  } 

 

  public Integer getCount(String key) { 

    synchronized (lock) { 

      return map.get(key); 

    } 

  } 

} 

This compliant solution does not use Collections.synchronizedMap() because locking 
on the unsynchronized map provides sufficient thread-safety for this application. Guideline 
“LCK04-J. Do not synchronize on a collection view if the backing collection is accessible” on 
page 57 provides more information about synchronizing on synchronizedMap objects. 

2.4.7 Compliant Solution (ConcurrentHashMap) 

The previous compliant solution is safe for multithreaded use, but it does not scale well because 
of excessive synchronization, which can lead to contention and deadlock. 

The ConcurrentHashMap class used in this compliant solution provides several utility methods 
for performing atomic operations and is often a good choice for algorithms that must scale [Lee 
2009].  

 

final class KeyedCounter { 

  private final ConcurrentMap<String, AtomicInteger> map = 

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Lee09�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Lee09�
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    new ConcurrentHashMap<String, AtomicInteger>(); 

 

  public void increment(String key) { 

    AtomicInteger value = new AtomicInteger(); 

    AtomicInteger old = map.putIfAbsent(key, value); 

    

    if (old != null) {  

      value = old;  

    } 

 

    if (value.get() == Integer.MAX_VALUE) { 

      throw new ArithmeticException("Out of range"); 

    }  

 

    value.incrementAndGet(); // Increment the value atomically 

  } 

 

  public Integer getCount(String key) { 

    AtomicInteger value = map.get(key); 

    return (value == null) ? null : value.get(); 

  } 

 

  // Other accessors ... 

} 

According to Section 5.2.1., “ConcurrentHashMap” of the work of Goetz and colleagues [Goetz 
2006] 

ConcurrentHashMap, along with the other concurrent collections, further improve on the 
synchronized collection classes by providing iterators that do not throw ConcurrentMo-
dificationException, as a result eliminating the need to lock the collection during ite-
ration. The iterators returned by ConcurrentHashMap are weakly consistent instead of 
fail-fast. A weakly consistent iterator can tolerate concurrent modification, traverses ele-
ments as they existed when the iterator was constructed, and may (but is not guaranteed to) 
reflect modifications to the collection after the construction of the iterator. 

Note that methods such as ConcurrentHashMap.size() and ConcurrentHash-
Map.isEmpty() are allowed to return an approximate result for performance reasons. Code 
should not rely on these return values for deriving exact results.  

  

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Goetz06�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Goetz06�
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2.4.8 Risk Assessment 

Failing to ensure the atomicity of two or more operations that need to be performed as a single 
atomic operation can result in race conditions in multithreaded applications. 

Guideline  Severity  Likelihood  Remediation Cost  Priority  Level  

VNA03- J  low  probable  medium  P4  L3  

2.4.9 References 

[Goetz 2006] Section 4.4.1, “Client-side Locking”  

Section 5.2.1, “ConcurrentHashMap” 

[Lee 2009] “Map & Compound Operation” 

[Oaks 2004] Section 8.2, “Synchronization and Collection Classes” 

[Sun 2009c]  
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2.5 VNA04-J. Ensure that calls to chained methods are atomic 

Method chaining is a convenience mechanism that allows multiple method invocations on the 
same object to occur in a single statement. A method-chaining implementation consists of a series 
of methods that return the this reference. This implementation allows a caller to invoke methods 
in a chain by performing the next method invocation on the return value of the previous method in 
the chain. 

While the methods used in method chaining can be atomic, the chain they comprise is inherently 
non-atomic. Consequently, methods that are involved in method chaining should not be invoked 
concurrently unless the caller provides sufficient locking as illustrated in guideline “VNA03-J. Do 
not assume that a group of calls to independently atomic methods is atomic” on page 23.  

2.5.1 Noncompliant Code Example 

Method chaining is a useful design pattern for building an object and setting its optional fields. A 
class that supports method chaining provides several setter methods that each return the this 
reference. However, if accessed concurrently, a thread may observe shared fields to contain in-
consistent values. This noncompliant code example shows the JavaBeans pattern, which is not 
thread-safe. 

 

final class USCurrency { 

  // Change requested, denomination (optional fields) 

  private int quarters = 0; 

  private int dimes = 0; 

  private int nickels = 0; 

  private int pennies = 0; 

 

  public USCurrency() {} 

 

  // Setter methods  

  public USCurrency setQuarters(int quantity) {  

    quarters = quantity;  

    return this; 

  }  

  public USCurrency setDimes(int quantity) {  

    dimes = quantity;  

    return this; 

  } 

  public USCurrency setNickels(int quantity) {  

    nickels = quantity; 

    return this; 

  } 

  public USCurrency setPennies(int quantity) {  

    pennies = quantity; 

    return this; 

  } 

} 
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// Client code: 

private final USCurrency currency = new USCurrency();  

// ... 

 

new Thread(new Runnable() { 

  @Override public void run() {     

    currency.setQuarters(1).setDimes(1); 

  } 

}).start(); 

 

new Thread(new Runnable() { 

  @Override public void run() {     

    currency.setQuarters(2).setDimes(2); 

  } 

}).start(); 

The JavaBeans pattern uses a no-argument constructor and a series of parallel setter methods to 
build an object. This pattern is not thread-safe and can lead to inconsistent object state if the ob-
ject is modified concurrently. In this noncompliant code example, the client constructs a  
USCurrency object and starts two threads that use method chaining to set the optional values of 
the USCurrency object. This example code might result in the USCurrency instance being left 
in an inconsistent state, for example, with two quarters and one dime, or one quarter and two di-
mes. 

2.5.2 Compliant Solution 

This compliant solution uses a variant of the Builder pattern [Gamma 1995] suggested by Bloch 
[Bloch 2008] to ensure the thread-safety and atomicity of object creation.  

 

final class USCurrency { 

  private final int quarters; 

  private final int dimes; 

  private final int nickels; 

  private final int pennies; 

 

  public USCurrency(Builder builder) { 

    this.quarters = builder.quarters; 

    this.dimes = builder.dimes; 

    this.nickels = builder.nickels; 

    this.pennies = builder.pennies; 

  } 

 

  // Static class member  

  public static class Builder { 

    private int quarters = 0; 

    private int dimes = 0; 

    private int nickels = 0; 

    private int pennies = 0; 

 

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Gamma95�
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    public static Builder newInstance() { 

      return new Builder(); 

    }  

 

    private Builder() {} 

     

    // Setter methods  

    public Builder setQuarters(int quantity) {  

      this.quarters = quantity;  

      return this; 

    }  

    public Builder setDimes(int quantity) {  

      this.dimes = quantity;  

      return this; 

    } 

    public Builder setNickels(int quantity) {  

      this.nickels = quantity; 

      return this; 

    } 

    public Builder setPennies(int quantity) {  

      this.pennies = quantity; 

      return this; 

    } 

 

    public USCurrency build() { 

      return new USCurrency(this); 

    } 

  } 

} 

 

  // Client code:  

private volatile USCurrency currency; 

// ... 

 

new Thread(new Runnable() { 

  @Override public void run() {     

    currency = USCurrency.Builder.newInstance().setQuarters(1).setDimes(1).build(); 

  } 

}).start(); 

 

new Thread(new Runnable() { 

  @Override public void run() {     

    currency = USCurrency.Builder.newInstance().setQuarters(2).setDimes(2).build(); 

  } 

}).start(); 

The Builder.newInstance() factory method is called with any required arguments to obtain 
a Builder instance. The optional parameters are set using the setter methods of the builder. The 
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object construction concludes with the invocation of the build() method. This pattern makes 
the USCurrency class immutable and, consequently, thread-safe. 

Note that the currency field cannot be declared final because it is assigned a new immutable 
object. It is, however, declared volatile in compliance with guideline “VNA01-J. Ensure visibility 
of shared references to immutable objects” on page 13. 

If input needs to be validated, ensure that the values are defensively copied prior to validation (see 
guideline “FIO00-J. Defensively copy mutable inputs and mutable internal components2

SCP03-J. Do not expose sen-
sitive private members of the outer class from within a nested class

” for 
more information). The builder class does not violate guideline “

2” because it maintains a copy 
of the variables defined in the scope of the containing class. The private members within the 
nested class take precedence, and as a result, do not break encapsulation. 

2.5.3 Risk Assessment 

Using method chaining in multithreaded environments without performing external locking can 
lead to nondeterministic behavior. 

Guideline  Severity  Likelihood  Remediation Cost  Priority  Level  

VNA04- J  low  probable  medium  P4  L3  

2.5.4 References 

[Bloch 2008] Item 2: “Consider a builder when faced with many constructor parameters” 

[Sun 2009b]  

 

 
2  This guideline is described at https://www.securecoding.cert.org/confluence/display/java/. 
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2.6 VNA05-J. Ensure atomicity when reading and writing 64-bit values 

The Java Language Specification allows 64-bit long and double values to be treated as two 32-
bit values. For example, a 64-bit write operation may be performed as two separate, 32-bit opera-
tions. 

According to the Java Language Specification, Section 17.7, “Non-atomic Treatment of double 
and long” [Gosling 2005] 

... this behavior is implementation specific; Java virtual machines are free to perform writes 
to long and double values atomically or in two parts. For the purposes of the Java pro-
gramming language memory model, a single write to a non-volatile long or double value 
is treated as two separate writes: one to each 32-bit half. This can result in a situation where 
a thread sees the first 32 bits of a 64 bit value from one write, and the second 32 bits from 
another write. 

This behavior can result in indeterminate values being read in code that is required to be thread-
safe. 

2.6.1 Noncompliant Code Example 

In this noncompliant code example, if one thread repeatedly calls the assignValue() method 
and another thread repeatedly calls the printLong() method, the printLong() method could 
occasionally print a value of i that is neither zero nor the value of the j argument.  

 

class LongContainer { 

  private long i = 0; 

 

  void assignValue(long j) { 

    i = j;  

  } 

 

  void printLong() { 

    System.out.println("i = " + i); 

  } 

} 

A similar problem may occur if i is declared double. 

2.6.2 Compliant Solution (Volatile) 

This compliant solution declares i volatile. Writes and reads of long and double volatile values 
are always atomic.  

 

class LongContainer { 

  private volatile long i = 0; 

  

  void assignValue(long j) {  

    i = j;  

  } 

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-JLS05�
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  void printLong() { 

    System.out.println("i = " + i); 

  } 

} 

It is important to ensure that the argument to the assignValue() method is obtained from a 
volatile variable or as a result of explicitly passing an integer value. Otherwise, a read of the vari-
able argument can, itself, expose a vulnerability. 

Semantics of volatile do not guarantee the atomicity of compound operations that involve 
read-modify-write sequences such as incrementing a value. See guideline “VNA02-J. Ensure that 
compound operations on shared variables are atomic” on page 16 for more information. 

2.6.3 Exceptions 

VNA05-EX1: If all reads and writes of 64-bit long and double values occur within a synchro-
nized region, the atomicity of the read/write is guaranteed. That guarantee requires that no unsyn-
chronized methods in the class expose the value and that the value is inaccessible (directly or indi-
rectly) from other code. (For more information, see guideline “VNA02-J. Ensure that compound 
operations on shared variables are atomic” on page 16.) 

VNA05-EX2: This guideline can be ignored for systems that guarantee that 64-bit, long and 
double values are read and written as atomic operations.  

2.6.4 Risk Assessment 

Failure to ensure the atomicity of operations involving 64-bit values in multithreaded applications 
can result in reading and writing indeterminate values. Many JVMs read and write 64-bit values 
atomically, even though the specification does not require them to. 

Guideline  Severity  Likelihood  Remediation Cost  Priority  Level  

VNA05- J  low  unlikely  medium  P2  L3  

2.6.5 References 

[Goetz 2004c]   

[Goetz 2006] Section 3.1.2, “Non-Atomic 64-Bit Operations” 

[Gosling 2005] Section 17.7, “Non-Atomic Treatment of double and long” 

[MITRE 2010] CWE ID 667, “Insufficient Locking” 
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2.7 VNA06-J. Do not assume that declaring an object reference volatile guarantees 
visibility of its members 

According to the Java Language Specification, Section 8.3.1.4, “volatile Fields” [Gosling 
2005] 

A field may be declared volatile, in which case the Java memory model (§17) ensures 
that all threads see a consistent value for the variable. 

Notably, this applies only to primitive fields and immutable member objects. The visibility guar-
antee does not extend to non-thread-safe mutable objects, even if their references are declared 
volatile. A thread may not observe a recent write from another thread to a member field of such an 
object. Declaring an object volatile to ensure the visibility of its state does not work without the 
use of synchronization, unless the object is immutable. If the object is mutable and not thread-
safe, other threads might see a partially constructed object or an object in a (temporarily) inconsis-
tent state [Goetz 2006c]. 

Technically, the object does not have to be strictly immutable to be used safely. If it can be de-
termined that a member object is thread-safe by design, the field that holds its reference may be 
declared volatile. However, this approach to declaring elements volatile decreases maintainability 
and should be avoided. 

2.7.1 Noncompliant Code Example (Arrays) 

This noncompliant code example shows an array object that is declared volatile. 

 

final class Foo { 

  private volatile int[] arr = new int[20]; 

 

  public int getFirst() { 

    return arr[0]; 

  } 

 

  public void setFirst(int n) { 

    arr[0] = n; 

  } 

 

  // ... 

} 

Values assigned to an array element by one thread, for example, by calling setFirst(), might 
not be visible to another thread calling getFirst() because the volatile keyword only 
makes the array reference visible and does not affect the actual data contained within the array. 

The problem occurs because there is no happens-before relationship between the thread that calls 
setFirst() and the thread that calls getFirst(). A happens-before relationship exists be-
tween a thread that writes to a volatile variable and a thread that subsequently reads it. However, 
this code is neither writing to nor reading from a volatile variable. 

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-JLS05�
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2.7.2 Compliant Solution (AtomicIntegerArray) 

To ensure that the writes to array elements are atomic and the resulting values are visible to other 
threads, this compliant solution uses the AtomicIntegerArray class defined in  
java.util.concurrent.atomic. 
 

final class Foo { 

  private final AtomicIntegerArray atomicArray = new AtomicIntegerArray(20); 

 

  public int getFirst() { 

    return atomicArray.get(0); 

  } 

 

  public void setFirst(int n) { 

    atomicArray.set(0, 10); 

  } 

 

  // ... 

} 

AtomicIntegerArray guarantees a happens-before relationship between a thread that calls  
atomicArray.set() and a thread that subsequently calls atomicArray.get(). 

2.7.3 Compliant Solution (Synchronization) 

To ensure visibility, accessor methods may synchronize access, while performing operations on 
non-volatile elements of an array that is declared volatile. Note that the code is thread-safe, even 
though the array reference is non-volatile. 

 

final class Foo { 

  private int[] arr = new int[20]; 

 

  public synchronized int getFirst() { 

    return arr[0]; 

  } 

 

  public synchronized void setFirst(int n) { 

    arr[0] = n; 

  } 

} 

Synchronization establishes a happens-before relationship between the thread that calls  
setFirst() and the thread that subsequently calls getFirst(), guaranteeing visibility. 

2.7.4 Noncompliant Code Example (Mutable Object) 

This noncompliant code example declares the Properties instance field volatile. The instance 
of the Properties object can be mutated using the put() method, and that makes the  
properties field mutable. 

https://www.securecoding.cert.org/confluence/display/java/BB.+Definitions#BB.Definitions-happensbeforeorder�
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final class Foo { 

  private volatile Properties properties; 

 

  public Foo() { 

    properties = new Properties(); 

    // Load some useful values into properties 

  } 

 

  public String get(String s) { 

    return properties.getProperty(s); 

  } 

 

  public void put(String key, String value) { 

    // Validate the values before inserting 

    if (!value.matches("[\\w]*")) { 

        throw new IllegalArgumentException(); 

    } 

    properties.setProperty(key, value); 

  }  

Interleaved calls to get() and put() may result in internally inconsistent values being retrieved 
from the Properties object because the operations within put() modify its state. Declaring 
the object volatile does not eliminate this data race. 

There is no time-of-check-to-time-of-use (TOCTOU) vulnerability in put(), despite the presence 
of the validation logic because the validation is performed on the immutable value argument and 
not the shared Properties instance. 

2.7.5 Noncompliant Code Example (Volatile-Read, Synchronized-Write) 

This noncompliant code example attempts to use the volatile-read, synchronized-write technique 
described by Goetz [Goetz 2006c]. The properties field is declared volatile to synchronize its 
reads and writes. The put() method is also synchronized to ensure that its statements are ex-
ecuted atomically. 

 

final class Foo { 

  private volatile Properties properties; 

 

  public Foo() { 

    properties = new Properties(); 

    // Load some useful values into properties 

  } 

 

  public String get(String s) { 

    return properties.getProperty(s); 

  } 

 

  public synchronized void put(String key, String value) { 
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    // Validate the values before inserting 

    if (!value.matches("[\\w]*")) { 

        throw new IllegalArgumentException(); 

    } 

    properties.setProperty(key, value); 

  }  

} 

The volatile-read, synchronized-write technique uses synchronization to preserve the atomicity of 
compound operations, such as increment, and provides faster access times for atomic reads. How-
ever, it does not work with mutable objects because the visibility of volatile object references 
does not extend to object members. Consequently, there is no happens-before relationship be-
tween the write and a subsequent read of the property. 

This technique is also discussed in guideline “VNA02-J. Ensure that compound operations on 
shared variables are atomic” on page 16. 

2.7.6 Compliant Solution (Synchronization) 

This compliant solution uses method synchronization to guarantee visibility. 

 

final class Foo { 

  private final Properties properties; 

 

  public Foo() { 

    properties = new Properties(); 

    // Load some useful values into properties 

  } 

 

  public synchronized String get(String s) { 

    return properties.getProperty(s); 

  } 

 

  public synchronized void put(String key, String value) { 

    // Validate the values before inserting 

    if (!value.matches("[\\w]*")) { 

      throw new IllegalArgumentException(); 

    } 

    properties.setProperty(key, value); 

  }  

} 

 

The properties field does not need to be volatile because the methods are synchronized. The 
field is declared final so that its reference is not published when it is in a partially initialized state 
(see guideline “TSM03-J. Do not publish partially initialized objects” on page 162 for more in-
formation). 
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2.7.7 Noncompliant Code Example (Mutable Sub-Object) 

In this noncompliant code example, the volatile format field is used to store a reference to a 
mutable object, java.text.DateFormat. 

 

final class DateHandler { 

  private static volatile DateFormat format = 

    DateFormat.getDateInstance(DateFormat.MEDIUM); 

 

  public static Date parse(String str) throws ParseException { 

    return format.parse(str); 

  } 

} 

Because DateFormat is not thread-safe [Sun 2009c], the parse() method might return a value 
for Date that does not correspond to the str argument.  

2.7.8 Compliant Solution (Instance Per Call/Defensive Copying) 

This compliant solution creates and returns a new DateFormat instance for every invocation of 
the parse() method [Sun 2009c]. 

 

final class DateHandler { 

  public static Date parse(String str) throws ParseException { 

    return DateFormat.getDateInstance(DateFormat.MEDIUM).parse(str); 

  } 

} 

This solution does not violate guideline “OBJ11-J. Defensively copy private mutable class mem-
bers before returning their references”3

2.7.9 Compliant Solution (Synchronization) 

 because the class no longer contains internal mutable 
state. 

This compliant solution synchronizes statements within the parse() method, making  
DateHandler thread-safe [Sun 2009c]. 

 

final class DateHandler { 

  private static DateFormat format= 

    DateFormat.getDateInstance(DateFormat.MEDIUM); 

 

  public static Date parse(String str) throws ParseException { 

    synchronized (format) { 

      return format.parse(str); 

    } 

  } 

} 

 
3  This guideline is described at https://www.securecoding.cert.org/confluence/display/java/. 

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-API06�
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2.7.10 Compliant Solution (ThreadLocal Storage) 

This compliant solution uses a ThreadLocal object to create a separate DateFormat instance 
per thread. 

 

final class DateHandler { 

  private static final ThreadLocal<DateFormat> format =  

    new ThreadLocal<DateFormat>() { 

    @Override protected DateFormat initialValue() { 

      return DateFormat.getDateInstance(DateFormat.MEDIUM); 

    } 

  }; 

  // ... 

} 

2.7.11 Risk Assessment 

Incorrectly assuming that declaring a field volatile guarantees that the visibility of a referenced 
object’s members can cause threads to observe stale values. 

Guideline  Severity  Likelihood  Remediation Cost  Priority  Level  

VNA06-J  medium  probable  medium  P8  L2  

2.7.12 References 

[Goetz 2006c] Pattern #2: “one-time safe publication” 

[Gosling 2005]  

[Miller 2009] Mutable Statics 

[Sun 2009c] Class java.text.DateFormat 
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3 Lock (LCK) Guidelines 

3.1 LCK00-J. Use private final lock objects to synchronize classes that may 
interact with untrusted code 

The synchronized keyword is used to acquire a mutual-exclusion lock so that no other thread 
can acquire the lock while it is being held by the executing thread. There are two ways to syn-
chronize access to shared mutable variables: method synchronization and block synchronization. 

A method declared as synchronized always uses the object’s monitor (intrinsic lock), as does code 
that synchronizes on the this reference using a synchronized block. Poorly synchronized code is 
prone to contention and deadlock. An attacker can manipulate the system to trigger these condi-
tions and cause a denial of service by obtaining and indefinitely holding the intrinsic lock of an 
accessible class.  

This vulnerability can be prevented using a java.lang.Object declared private and final 
within the class. The object must be used explicitly for locking purposes in synchronized blocks 
within the class’s methods. This intrinsic lock is associated with the instance of the private object 
and not the class. Consequently, there is no lock contention between this class’s methods and the 
methods of a hostile class. Bloch refers to this technique as the “private lock object” idiom [Bloch 
2001].  

Static state has the same potential problem. If a static method is declared synchronized, the intrin-
sic lock of the class object is acquired before any statements in its body are executed, and the lock 
is released when the method completes. Any untrusted code that can access an object of the class, 
or a subclass, can use the getClass() method to gain access to the class lock. Static data can be 
protected by locking on a private static final Object. Reducing the accessibility of the class to 
package-private adds further protection against untrusted callers. 

This idiom is also suitable for classes designed for inheritance. If a superclass thread requests a 
lock on the object’s monitor, a subclass thread can interfere with its operation. For example, a 
subclass may use the superclass object’s intrinsic lock for performing unrelated operations, caus-
ing significant lock contention and deadlock. Separating the locking strategy of the superclass 
from that of the subclass ensures that they do not share a common lock. It also permits fine-
grained locking because multiple lock objects can be used for unrelated operations, increasing the 
overall responsiveness of the application. 

An object should use a private final lock object rather than its own intrinsic lock unless the class 
can guarantee that untrusted code cannot 
• subclass the class or its superclass (trusted code is allowed to subclass the class) 

• create an object of the class, its superclass, or subclass 

• access or acquire an object instance of the class, its superclass, or subclass 

If a class uses a private final lock to synchronize shared data, subclasses must also use a private 
final lock. However, if a class uses intrinsic synchronization over the class object without docu-
menting its locking policy, subclasses may not use intrinsic synchronization over their own class 

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Bloch01�
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object, unless they explicitly document their locking policy. If the superclass documents its policy 
by stating that client-side locking is supported, the subclasses have the option of choosing be-
tween intrinsic locking over the class object and a private lock. Regardless of which is chosen, 
subclasses must document their locking policy. See guideline “TSM00-J. Do not override thread-
safe methods with methods that are not thread-safe” on page 145 for related information.  

If all of these restrictions are not met, the object’s intrinsic lock is not trustworthy. If they are met, 
the object gains no significant security from using a private final lock object and may synchronize 
using its own intrinsic lock. However, it is still best to use block synchronization with a private 
final lock object instead of method synchronization when the method contains non-atomic opera-
tions that either do not require any synchronization or can use a more fine-grained locking scheme 
involving multiple private final lock objects. Non-atomic operations can be decoupled from those 
that require synchronization and executed outside the synchronized block. For this reason and 
maintainability reasons, block synchronization using a private final lock object is generally rec-
ommended. 

3.1.1 Noncompliant Code Example (Method Synchronization) 

This noncompliant code example exposes instances of the SomeObject class to untrusted code.  

 

public class SomeObject { 

  public synchronized void changeValue() { // Locks on the object's monitor 

    // ...    

  } 

} 

 

// Untrusted code 

SomeObject someObject = new SomeObject();  

synchronized (someObject) { 

  while (true) { 

    Thread.sleep(Integer.MAX_VALUE); // Indefinitely delay someObject 

  } 

} 

The untrusted code attempts to acquire a lock on the object’s monitor and, upon succeeding, in-
troduces an indefinite delay that prevents the synchronized changeValue() method from 
acquiring the same lock. Note that in the untrusted code, the attacker intentionally violates guide-
line “LCK09-J. Do not perform operations that may block while holding a lock” on page 77. 

3.1.2 Noncompliant Code Example (Public Non-Final Lock Object) 

This noncompliant code example locks on a public non-final object in an attempt to use a lock 
other than SomeObject’s intrinsic lock.  

 

public class SomeObject { 

  public Object lock = new Object(); 

 

  public void changeValue() { 

    synchronized (lock) { 
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      // ... 

    } 

  } 

} 

However, it is possible for untrusted code to change the value of the lock object and disrupt prop-
er synchronization. 

3.1.3 Noncompliant Code Example (Publicly Accessible Non-Final Lock Object) 

This noncompliant code example synchronizes on a private but non-final field. 

 

public class SomeObject { 

  private volatile Object lock = new Object(); 

 

  public void changeValue() { 

    synchronized (lock) { 

      // ... 

    } 

  } 

 

  public void setLock(Object lockValue) { 

    lock = lockValue; 

  } 

} 

Any thread can modify the field’s value to refer to a different object in the presence of an accessor 
such as setLock(). That modification might cause two threads that intend to lock on the same 
object to lock on different objects, thereby enabling them to execute the two critical sections in an 
unsafe manner. For example, if one thread is in its critical section and the lock is changed, a 
second thread will lock on the new object instead of the old one.  

A class that does not provide any accessible methods to change the lock is secure against un-
trusted manipulation. However, it is susceptible to inadvertent modification by the programmer. 
For maintainability reasons, eliminating the accessor method (which is presumably needed for 
other reasons) is not the preferred solution.  

3.1.4 Noncompliant Code Example (Public Final Lock Object) 

This noncompliant code example uses a public final lock object.  

 

public class SomeObject { 

  public final Object lock = new Object(); 

   

  public void changeValue() { 

    synchronized (lock) { 

      // ... 

    } 

  } 

} 
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// Untrusted code 

SomeObject someObject = new SomeObject();  

someObject.lock.wait() 

Untrusted code that has the ability to create an instance of the class or has access to an already 
created instance can invoke the wait() method on the publicly accessible lock, causing the 
lock in the changeValue() method to be released immediately. Furthermore, if the method 
invokes lock.wait() from its body and does not test a condition predicate, it will be vulnerable 
to malicious notifications. (See guideline “THI03-J. Always invoke wait() and await() methods 
inside a loop” on page 101 for more information.) 

3.1.5 Compliant Solution (Private Final Lock Object) 

Thread-safe public classes that may interact with untrusted code must use a private final lock ob-
ject. Existing classes that use intrinsic synchronization must be refactored to use block synchroni-
zation on such an object. In this compliant solution, calling changeValue() obtains a lock on a 
private final Object instance that is inaccessible from callers outside the class’s scope.  

 

public class SomeObject { 

  private final Object lock = new Object(); // private final lock object 

 

  public void changeValue() { 

    synchronized (lock) { // Locks on the private Object 

      // ... 

    } 

  } 

} 

A private final lock object can only be used with block synchronization. Block synchronization is 
preferred over method synchronization, because operations that do not require synchronization 
can be moved outside the synchronized region, reducing lock contention and blocking. Note that 
there is no need to declare lock volatile because of the strong visibility semantics of final fields. 
Instead of using setter methods to change the lock, declare and use multiple, private final lock 
objects to satisfy the granularity requirements. 

3.1.6 Noncompliant Code Example (Static) 

This noncompliant code example exposes the class object of SomeObject to untrusted code.  

 

public class SomeObject { 

  // changeValue locks on the class object's monitor 

  public static synchronized void changeValue() {  

    // ...    

  } 

} 

 

// Untrusted code 

synchronized (SomeObject.class) { 
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  while (true) { 

    Thread.sleep(Integer.MAX_VALUE); // Indefinitely delay someObject 

  } 

} 

The untrusted code attempts to acquire a lock on the class object’s monitor and, upon succeeding, 
introduces an indefinite delay that prevents the synchronized changeValue() method from ac-
quiring the same lock.  

A compliant solution must comply with guideline “LCK05-J. Synchronize access to static fields 
that may be modified by untrusted code” on page 59. However, in the untrusted code, the attacker 
intentionally violates guideline “LCK09-J. Do not perform operations that may block while hold-
ing a lock” on page 77.  

3.1.7 Compliant Solution (Static) 

Thread-safe public classes that may interact with untrusted code and use intrinsic synchronization 
over the class object must be refactored to use a static private final lock object and block synchro-
nization.  

 

public class SomeObject { 

  private static final Object lock = new Object(); // private final lock object 

 

  public static void changeValue() { 

    synchronized (lock) { // Locks on the private Object 

      // ... 

    } 

  } 

} 

In this compliant solution, changeValue() obtains a lock on a static private Object that is 
inaccessible to the caller.  
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3.1.8 Exceptions 

LCK00-EX1: A class may violate this guideline, if all the following conditions are met: 
• It sufficiently documents that callers must not pass objects of this class to untrusted code. 

• The class does not invoke methods on objects of any untrusted classes that violate this guide-
line directly or indirectly. 

• The synchronization policy of the class is documented properly. 

A client may use a class that violates this guideline, if all the following conditions are met: 
• The class does not pass objects of this class to untrusted code. 

• The class does not use any untrusted classes that violate this guideline directly or indirectly. 

LCK00-EX2: If a superclass of the class documents that it supports client-side locking and syn-
chronizes on its class object, the class can support client-side locking in the same way and docu-
ment this policy.  

LCK00-EX3: A package-private class may violate this guideline because its accessibility protects 
against untrusted callers. However, this condition should be documented explicitly so that trusted 
code within the same package does not reuse or change the lock object inadvertently. 

3.1.9 Risk Assessment 

Exposing the class object to untrusted code can result in a denial of service. 

Guideline  Severity  Likelihood  Remediation Cost  Priority  Level  

LCK00-J  low  probable  medium  P4  L3  

3.1.10 References 

[Bloch 2001] Item 52: “Document Thread Safety” 
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3.2 LCK01-J. Do not synchronize on objects that may be reused 

Misuse of synchronization primitives is a common source of concurrency issues. Synchronizing 
on objects that may be reused can result in deadlock and nondeterministic behavior.  

3.2.1 Noncompliant Code Example (Boolean Lock Object) 

This noncompliant code example synchronizes on a Boolean lock object.  

 

private final Boolean initialized = Boolean.FALSE; 

 

public void doSomething() { 

  synchronized (initialized) {  

    // ... 

  } 

} 

The Boolean type is unsuitable for locking purposes because it allows only two values: true and 
false. Boolean literals containing the same value share unique instances of the Boolean class in 
the JVM. In this example, initialized references the instance corresponding to the value 
false. If any other code inadvertently synchronizes on a Boolean literal with the value false, the 
lock instance is reused and the system can become unresponsiveness or deadlocked. 

3.2.2 Noncompliant Code Example (Boxed Primitive) 

This noncompliant code example locks on a boxed Integer object. 

 

int lock = 0; 

private final Integer Lock = lock; // Boxed primitive Lock is shared 

 

public void doSomething() { 

  synchronized (Lock) {  

    // ... 

  } 

} 

Boxed types may use the same instance for a range of integer values and consequently suffer from 
the same problem as Boolean constants. If the value of the primitive can be represented as a 
byte, the wrapper object is reused. Note that the use of the boxed Integer wrapper object is in-
secure; instances of the Integer object constructed using the new operator (new Integ-
er(value)) are unique and not reused. In general, holding a lock on any data type that contains 
a boxed value is insecure.  
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3.2.3 Compliant Solution (Integer) 

This compliant solution recommends locking on a non-boxed Integer. The doSomething() 
method synchronizes using the intrinsic lock of the Integer instance, Lock. 

 

int lock = 0; 

private final Integer Lock = new Integer(lock);  

 

public void doSomething() { 

  synchronized (Lock) {  

    // ... 

  } 

} 

When explicitly constructed, an Integer object has a unique reference and its own intrinsic lock 
that is not shared with other Integer objects or boxed integers having the same value. While 
this is an acceptable solution, it can cause maintenance problems because developers can incor-
rectly assume that boxed integers are appropriate lock objects. A more appropriate solution is to 
synchronize on a private final lock object as described in the compliant solution in Section 3.2.7. 

3.2.4 Noncompliant Code Example (Interned String Object) 

This noncompliant code example locks on an interned String object. 

 

private final String lock = new String("LOCK").intern(); 

 

public void doSomething() { 

  synchronized (lock) { 

    // ... 

  } 

} 

According to the Java API class java.lang.String documentation [Sun 2009c] 
When the intern() method is invoked, if the pool already contains a string equal to this 
String object as determined by the equals(Object) method, then the string from the 
pool is returned. Otherwise, this String object is added to the pool and a reference to this 
String object is returned.  

Consequently, an interned String object behaves like a global variable in the JVM. As demon-
strated in this noncompliant code example, even if every instance of an object maintains its own 
lock field, the field references a common String constant. Locking on String constants has 
the same problem as locking on Boolean constants.  

Additionally, hostile code from any other package can exploit this vulnerability, if the class is 
accessible. (For more information, see guideline “LCK00-J. Use private final lock objects to syn-
chronize classes that may interact with untrusted code” on page 41.) 
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3.2.5 Noncompliant Code Example (String Literal) 

This noncompliant code example locks on a final String literal. 

 

// This bug was found in jetty-6.1.3 BoundedThreadPool 

private final String lock = "LOCK"; 

 

// ... 

  synchronized (lock) {  

    // ... 

  } 

// ... 

A String literal is a constant and interned. Consequently, it suffers from the same pitfalls as the 
preceding noncompliant code example.  

3.2.6 Compliant Solution (String Instance) 

This compliant solution locks on a String instance that is not interned.  

 

private final String lock = new String("LOCK"); 

 

public void doSomething() { 

  synchronized (lock) { 

    // ... 

  } 

} 

A String instance differs from a String literal. The instance has a unique reference and its 
own intrinsic lock that is not shared by other String object instances or literals. A better ap-
proach is to synchronize on a private final lock object as shown in the following compliant solu-
tion. 

3.2.7 Compliant Solution (Private Final Lock Object) 

This compliant solution synchronizes on a private final lock object. This is one of the few cases 
where a java.lang.Object instance is useful. 

 

private final Object lock = new Object(); 

 

public void doSomething() { 

  synchronized (lock) { 

    // ... 

  } 

} 

For more information on using an Object as a lock, see guideline “LCK00-J. Use private final 
lock objects to synchronize classes that may interact with untrusted code” on page 41. 
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3.2.8 Risk Assessment 

A significant number of concurrency vulnerabilities arise from locking on the wrong kind of ob-
ject. It is important to consider the properties of the lock object rather than indiscreetly scaveng-
ing for objects to synchronize on.  

Guideline  Severity  Likelihood  Remediation Cost  Priority  Level  

LCK01- J  medium  probable  medium  P8  L2  

3.2.9 References 

[Findbugs 2008]  

[Miller 2009] Locking 

[Pugh 2008] “Synchronization” 

[Sun 2009c] Class String, Collections 

[Sun 2008a] Wrapper Implementations 
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3.3 LCK02-J. Do not synchronize on the class object returned by getClass() 

Synchronizing on the return value of the Object.getClass() method can lead to unexpected 
behavior. Whenever the implementing class is subclassed, the subclass locks on the subclass’s 
type, which is a completely different Class object. 

Section 4.3.2, “The Class Object” of the Java Language Specification describes how method syn-
chronization works [Gosling 2005]: 

A class method that is declared synchronized synchronizes on the lock associated with 
the Class object of the class. 

This does not mean that a subclass using getClass() can only synchronize on the Class ob-
ject of the base class. In fact, it will lock on its own Class object, which may or may not be what 
the programmer intended. The intent should be clearly documented or annotated. Note that if a 
subclass does not override an accessible noncompliant superclass’s method, it inherits the method, 
which may lead to the false conclusion that the superclass’s intrinsic lock is available in the sub-
class. 

When synchronizing on a class literal, the corresponding lock object should not be accessible to 
untrusted code. If the class is package-private, callers from other packages may not access the 
class object, ensuring its trustworthiness as an intrinsic lock object. For more information, see 
guideline “LCK00-J. Use private final lock objects to synchronize classes that may interact with 
untrusted code” on page 41. 

3.3.1 Noncompliant Code Example (getClass() Lock Object) 

In this noncompliant code example, the parse() method of the Base class parses a date and 
synchronizes on the class object returned by getClass(). The Derived class also inherits the 
parse() method. However, this inherited method synchronizes on Derived’s class object be-
cause of the particular return value of getClass().  

The Derived class also adds a doSomethingAndParse()method that locks on the class ob-
ject of the Base class because the developer misconstrued that the parse() method in Base 
always obtains a lock on the Base class object, and doSomethingAndParse() must follow 
the same locking policy. Consequently, the Derived class has two different locking strategies 
and is not thread-safe. 

 

class Base { 

  static DateFormat format = 

    DateFormat.getDateInstance(DateFormat.MEDIUM); 

    

  public Date parse(String str) throws ParseException { 

    synchronized (getClass()) { 

      return format.parse(str); 

    } 

  } 

} 

 

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-JLS05�
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class Derived extends Base { 

  public Date doSomethingAndParse(String str) throws ParseException {    

    synchronized(Base.class) { 

      // ... 

      return format.parse(str);  

    } 

  } 

} 

3.3.2 Compliant Solution (Class Name Qualification) 

In this compliant solution, the class name providing the lock (Base) is fully qualified.  

 

class Base { 

  static DateFormat format = 

    DateFormat.getDateInstance(DateFormat.MEDIUM); 

    

  public Date parse(String str) throws ParseException { 

    synchronized (Base.class) { 

      return format.parse(str); 

    } 

  } 

} 

 

// ... 

This code example always synchronizes on the Base.class object, even if it is called from a 
Derived object. 

3.3.3 Compliant Solution (Class.forName()) 

This compliant solution uses the Class.forName() method to synchronize on the Base class’s 
Class object. 

 

class Base { 

  static DateFormat format = 

    DateFormat.getDateInstance(DateFormat.MEDIUM); 

    

  public Date parse(String str) throws ParseException { 

    synchronized (Class.forName("Base")) { 

      return format.parse(str); 

    } 

  } 

} 

 

// ... 
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It is important that untrusted inputs are not accepted as arguments while loading classes using 
Class.forName(). See guideline “SEC05-J. Do not expose standard APIs that use the imme-
diate caller’s class loader instance to untrusted code4

3.3.4 Noncompliant Code Example (getClass() Lock Object, Inner Class) 

” for more information. 

This noncompliant code example synchronizes on the class object returned by getClass() in 
the parse() method of the Base class. The Base class also has a nested Helper class whose 
doSomethingAndParse() method incorrectly synchronizes on the value returned by  
getClass().  

 

class Base { 

  static DateFormat format = 

    DateFormat.getDateInstance(DateFormat.MEDIUM); 

    

  public Date parse(String str) throws ParseException { 

    synchronized (getClass()) { 

      return format.parse(str); 

    } 

  } 

 

  public Date doSomething(String str) throws ParseException { 

    return new Helper().doSomethingAndParse(str); 

  } 

   

  private class Helper { 

    public Date doSomethingAndParse(String str) throws ParseException {    

      synchronized(getClass()) { // Synchronizes on getClass() 

        // ... 

        return format.parse(str);  

      } 

    } 

  } 

} 

The call to getClass() in the Helper class returns a Helper class object instead of the Base 
class object. Consequently, a thread that calls Base.parse() locks on a different object than a 
thread that calls Base.doSomething(). It is easy to overlook concurrency errors in inner 
classes because they exist within the body of the containing outer class. A reviewer might incor-
rectly assume that the two classes have the same locking strategy. 

  

 
4  This guideline is described at https://www.securecoding.cert.org/confluence/display/java/. 

https://www.securecoding.cert.org/confluence/x/xYEVAQ�
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3.3.5 Compliant Solution (Class Name Qualification) 

This compliant solution synchronizes using a Base class literal in the parse() and doSome-
thingAndParse() methods. 

 

class Base { 

  // ... 

 

  public Date parse(String str) throws ParseException { 

    synchronized (Base.class) { 

      return format.parse(str); 

    } 

  } 

 

  private class Helper { 

    public Date doSomethingAndParse(String str) throws ParseException {    

      synchronized(Base.class) { // Synchronizes on Base class literal 

        // ... 

        return format.parse(str);  

      } 

    } 

  } 

} 

Consequently, both Base and Helper lock on Base’s intrinsic lock. Similarly, the 
Class.forname() method can be used instead of a class literal. 

3.3.6 Risk Assessment 

Synchronizing on the class object returned by getClass() can result in nondeterministic beha-
vior.  

Guideline  Severity  Likelihood  Remediation Cost  Priority  Level  

LCK02- J  medium  probable  medium  P8  L2  

3.3.7 References 

[Findbugs 2008]  

[Miller 2009] Locking 

[Pugh 2008] “Synchronization” 

[Sun 2009b]  
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3.4 LCK03-J. Do not synchronize on the intrinsic locks of high-level concurrency 
objects 

It is inappropriate to lock on an object of a class that implements one or both of the following in-
terfaces of the java.util.concurrent.locks package: Lock and Condition. Using the 
intrinsic locks of these classes is a questionable practice even though the code may appear to 
function correctly. This problem is commonly discovered when code is refactored from intrinsic 
locking to the java.util.concurrent dynamic-locking utilities. 

3.4.1 Noncompliant Code Example (ReentrantLock Lock Object) 

The doSomething() method in this noncompliant code example synchronizes on the intrinsic 
lock of an instance of ReentrantLock instead of the reentrant mutual exclusion Lock encapsu-
lated by ReentrantLock. 

private final Lock lock = new ReentrantLock(); 

 

public void doSomething() { 

  synchronized(lock) { 

    // ...  

  } 

} 

3.4.2 Compliant Solution (lock() and unlock()) 

Instead of using the intrinsic locks of objects that implement the Lock interface, such as Reen-
trantLock, use the lock() and unlock() methods provided by the Lock interface. 

private final Lock lock = new ReentrantLock(); 

 

public void doSomething() { 

  lock.lock(); 

  try { 

    // ... 

  } finally { 

    lock.unlock(); 

  } 

} 

If there is no requirement for using the advanced functionality of the java.util.concurrent 
package’s dynamic-locking utilities, it is better to use the Executor framework or other concur-
rency primitives such as synchronization and atomic classes. 
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3.4.3 Risk Assessment 

Synchronizing on the intrinsic lock of high-level concurrency utilities can cause nondeterministic 
behavior because the class can end up with two different locking policies. 

Guideline  Severity  Likelihood  Remediation Cost  Priority  Level  

LCK03-J  medium  probable  medium  P8  L2  

3.4.4 References 

[Findbugs 2008]  

[Miller 2009] Locking 

[Pugh 2008] “Synchronization” 

[Sun 2009b]  

[Sun 2008a] Wrapper Implementations 

http://java.sun.com/docs/books/tutorial/collections/implementations/wrapper.html�
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3.5 LCK04-J. Do not synchronize on a collection view if the backing collection is 
accessible 

The java.util.Collections interface’s documentation [Sun 2009b] warns about the conse-
quences of failing to synchronize on an accessible collection object when iterating over its view: 

It is imperative that the user manually synchronize on the returned map when iterating over 
any of its collection views. . . Failure to follow this advice may result in non-deterministic 
behavior. 

A class that uses a collection view instead of the backing collection as the lock object may end up 
with two different locking strategies. In this case, if the backing collection is accessible to mul-
tiple threads, the class is not thread-safe. 

3.5.1 Noncompliant Code Example (Collection View) 

This noncompliant code example creates two views: a synchronized view of an empty HashMap 
encapsulated by the map field and a set view of the map’s keys encapsulated by the set field. 
This example synchronizes on the set view [Sun 2008a]. 

 

// map has package-private accessibility 

final Map<Integer, String> map =  

    Collections.synchronizedMap(new HashMap<Integer, String>()); 

private final Set<Integer> set = map.keySet(); 

 

public void doSomething() { 

  synchronized(set) {  // Incorrectly synchronizes on set 

    for (Integer k : set) { 

      // ... 

    } 

  } 

} 

In this example, HashMap provides the backing collection for Map, which provides the backing 
collection for Set, as shown in Figure 4: 

 

Figure 4: How Backing Collection Works in the Collection View, Noncompliant Code Example 

HashMap is not accessible, but the map view is. Because the set view is synchronized instead of 
the map view, another thread can modify the contents of map and invalidate the k iterator. 
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3.5.2 Compliant Solution (Collection Lock Object) 

This compliant solution synchronizes on the map view instead of the set view. 

 

// map has package-private accessibility 

final Map<Integer, String> map =  

  Collections.synchronizedMap(new HashMap<Integer, String>()); 

private final Set<Integer> set = map.keySet(); 

 

public void doSomething() { 

  synchronized(map) {  // Synchronize on map, not set 

    for (Integer k : set) { 

      // ... 

    } 

  } 

} 

This code is compliant because the map’s underlying structure cannot be changed when an itera-
tion is in progress. 

3.5.3 Risk Assessment 

Synchronizing on a collection view instead of the collection object can cause nondeterministic 
behavior. 

Guideline  Severity  Likelihood  Remediation Cost  Priority  Level  

LCK04-J  low  probable  medium  P8 L2  

3.5.4 References 

[Sun 2009b] Class Collections 

[Sun 2008a] Wrapper Implementations 

http://java.sun.com/docs/books/tutorial/collections/implementations/wrapper.html�
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3.6 LCK05-J. Synchronize access to static fields that may be modified by untrusted 
code 

Methods that can be invoked from untrusted code to modify a static field must synchronize access 
to that field. That is necessary because there is no guarantee that untrusted clients will externally 
synchronize when accessing the field. Because a static field is shared by all clients, untrusted 
clients may violate the contract by failing to provide suitable locking. 

According to Bloch [Bloch 2008] 
If a method modifies a static field, you must synchronize access to this field, even if the me-
thod is typically used only by a single thread. It is not possible for clients to perform external 
synchronization on such a method because there can be no guarantee that unrelated clients 
will do likewise.  

Documented design intent is irrelevant when dealing with untrusted code because an attacker can 
always choose to ignore the documentation. 

3.6.1 Noncompliant Code Example 

This noncompliant code example does not synchronize access to the static counter field.  

 

/** This class is not thread-safe */ 

public final class CountHits { 

  private static int counter; 

   

  public void incrementCounter() { 

    counter++; 

  } 

} 

This class definition does not violate guideline “VNA02-J. Ensure that compound operations on 
shared variables are atomic” on page 16, which only applies to classes that promise thread-safety. 
However, this class has a mutable static counter field that is modified by the publicly accessible 
incrementCounter() method. Consequently, this class cannot be used securely by trusted 
client code, if untrusted code can purposely fail to externally synchronize access to the field. 
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3.6.2 Compliant Solution 

This compliant solution uses a static private final lock to protect the counter field and, conse-
quently, does not depend on any external synchronization. This solution also complies with guide-
line “LCK00-J. Use private final lock objects to synchronize classes that may interact with un-
trusted code” on page 41. 

 

/** This class is thread-safe */ 

public final class CountHits { 

  private static int counter; 

  private static final Object lock = new Object(); 

 

  public void incrementCounter() { 

    synchronized (lock) { 

      counter++; 

    } 

  } 

} 

3.6.3 Risk Assessment 

Failing to internally synchronize access to static fields that may be modified by untrusted code 
will result in incorrectly synchronized code, if the author of the untrusted code chooses to ignore 
the synchronization policy. 

Guideline  Severity  Likelihood  Remediation Cost  Priority  Level  

LCK05- J  low  probable  medium  P4  L3  

3.6.4 References 

[Bloch 2008] Item 67: “Avoid excessive synchronization” 

[Sun 2009b]  
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3.7 LCK06-J. Do not use an instance lock to protect shared static data 

Shared static data should not be protected using instance locks because they are ineffective when 
two or more instances of the class are created. Consequently, shared state is not safe for concur-
rent access unless a static lock object is used. If the class can interact with untrusted code, the lock 
must also be private and final, as per guideline “LCK00-J. Use private final lock objects to syn-
chronize classes that may interact with untrusted code” on page 41. 

3.7.1 Noncompliant Code Example (Non-Static Lock Object for Static Data) 

This noncompliant code example uses a non-static lock object to guard access to a static  
counter field. If two Runnable tasks are started, they will create two instances of the lock ob-
ject and lock on each one separately.  

 

public final class CountBoxes implements Runnable { 

  private static volatile int counter; 

  // ... 

  private final Object lock = new Object();     

 

  @Override public void run() { 

    synchronized(lock) { 

      counter++;  

      // ...  

    }  

  } 

 

  public static void main(String[] args) { 

    for(int i = 0; i < 2; i++) { 

      new Thread(new CountBoxes()).start(); 

    } 

  } 

} 

This example does not prevent either thread from observing an inconsistent value of counter 
because the increment operation on volatile fields is non-atomic in the absence of proper synchro-
nization (see guideline “VNA02-J. Ensure that compound operations on shared variables are 
atomic” on page 16).  
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3.7.2 Noncompliant Code Example (Method Synchronization for Static Data) 

This noncompliant code example uses method synchronization to protect access to the static class 
counter field.  

 

public final class CountBoxes implements Runnable { 

  private static volatile int counter; 

  // ... 

 

  public synchronized void run() { 

    counter++;  

    // ...  

  } 

  // ... 

} 

In this case, the intrinsic lock is associated with each instance of the class and not with the class 
itself. Consequently, threads constructed using different Runnable instances may observe incon-
sistent values of counter. 

3.7.3 Compliant Solution (Static Lock Object) 

This compliant solution declares the lock object static and consequently ensures the atomicity of 
the increment operation. 

 

public class CountBoxes implements Runnable { 

  private static int counter; 

  // ... 

  private static final Object lock = new Object();     

   

  public void run() { 

    synchronized(lock) { 

      counter++;  

      // ... 

  } 

  // ... 

} 

There is no need to declare the counter variable volatile when using synchronization.  

3.7.4 Risk Assessment 

Using an instance lock to protect shared static data can result in nondeterministic behavior. 

Guideline  Severity  Likelihood  Remediation Cost  Priority  Level  

LCK06- J  medium  probable  medium  P8  L2  

3.7.5 References 

[Sun 2009b]  
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3.8 LCK07-J. Avoid deadlock by requesting and releasing locks in the same order 

To avoid data corruption in multithreaded Java programs, shared data must be protected from 
concurrent modifications and accesses. Locking can be performed at the object level using syn-
chronized methods, synchronized blocks, or the java.util.concurrent dynamic, lock ob-
jects. However, excessive use of locking can result in deadlock. 

Java does not prevent deadlock or require its detection [Gosling 2005]. Deadlock can occur when 
two or more threads request and release locks in different orders. Consequently, it can be avoided 
by acquiring and releasing locks in the same order.  

Additionally, synchronization should be limited to cases where it is absolutely necessary. For ex-
ample, the paint(), dispose(), stop(), and destroy() methods should never be syn-
chronized in an applet because they are always called and used from dedicated threads. The 
Thread.stop() and Thread.destroy() methods are deprecated. For more information, see 
guideline “THI05-J. Do not use Thread.stop() to terminate threads” on page 110. 

This guideline also applies to programs that need to work with a limited set of resources. For ex-
ample, liveness issues can arise when two or more threads are waiting for each other to release 
resources such as database connections. These issues can be resolved by letting each waiting 
thread retry the operation at random intervals, until they succeed in acquiring the resource suc-
cessfully. 

3.8.1 Noncompliant Code Example (Different Lock Orders) 

This noncompliant code example can deadlock because of excessive synchronization. The  
balanceAmount field represents the total balance amount available for a particular  
BankAccount object. A user is allowed to initiate an operation that atomically transfers a speci-
fied amount from one account to another.  

 

final class BankAccount { 

  private double balanceAmount;  // Total amount in bank account 

    

  BankAccount(double balance) { 

    this.balanceAmount = balance; 

  } 

 

  // Deposits the amount from this object instance to BankAccount instance argument ba  

  private void depositAmount(BankAccount ba, double amount) { 

    synchronized (this) { 

      synchronized(ba) { 

        if(amount > balanceAmount) { 

          throw new IllegalArgumentException("Transfer cannot be completed"); 

        } 

        ba.balanceAmount += amount; 

        this.balanceAmount -= amount;  

      } 

    }  

  } 
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  public static void initiateTransfer(final BankAccount first, 

    final BankAccount second, final double amount) { 

 

    Thread transfer = new Thread(new Runnable() { 

      public void run() { 

        first.depositAmount(second, amount); 

      } 

    }); 

    transfer.start(); 

  } 

} 

Objects of this class are prone to deadlock. An attacker that has two bank accounts can construct 
two threads that initiate balance transfers from two different BankAccount object instances, a 
and b. For example, consider the following code: 

BankAccount a = new BankAccount(5000); 

BankAccount b = new BankAccount(6000); 

initiateTransfer(a, b, 1000); // starts thread 1 

initiateTransfer(b, a, 1000); // starts thread 2 

Each transfer is performed in its own thread. The first thread atomically transfers the amount from 
a to b by depositing it in account b and then withdrawing the same amount from a. The second 
thread performs the reverse operation; that is, it transfers the amount from b to a. When executing 
depositAmount(), the first thread acquires a lock on object a. The second thread could acquire 
a lock on object b before the first thread can. Subsequently, the first thread would request a lock 
on b, which is already held by the second thread. The second thread would request a lock on a, 
which is already held by the first thread. This constitutes a deadlock condition, because neither 
thread can proceed. 

This noncompliant code example may or may not cause deadlock, depending on the scheduling 
details of the platform. Deadlock will occur when two threads request the same two locks in dif-
ferent orders and each thread obtains a lock that prevents the other thread from completing its 
transfer. Deadlock will not occur when two threads request the same two locks but one thread 
completes its transfer before the other thread begins. Similarly, deadlock will not occur if the two 
threads request the same two locks in the same order (which would happen if they both transfer 
money from one account to a second account) or if two transfers involving distinct accounts occur 
concurrently. 

3.8.2 Compliant Solution (Private Static Final Lock Object) 

Deadlock can be avoided by synchronizing on a private static final lock object before performing 
any account transfers. 

 

final class BankAccount { 

  private double balanceAmount;  // Total amount in bank account   

  private static final Object lock = new Object(); 

 

  BankAccount(double balance) { 
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    this.balanceAmount = balance; 

  } 

 

  // Deposits the amount from this object instance to BankAccount instance argument ba  

  private void depositAmount(BankAccount ba, double amount) { 

    synchronized (lock) { 

      if (amount > balanceAmount) { 

        throw new IllegalArgumentException("Transfer cannot be completed"); 

      } 

      ba.balanceAmount += amount; 

      this.balanceAmount -= amount;  

    }  

  } 

   

  public static void initiateTransfer(final BankAccount first, 

    final BankAccount second, final double amount) { 

 

    Thread transfer = new Thread(new Runnable() { 

      @Override public void run() { 

        first.depositAmount(second, amount); 

      } 

    }); 

    transfer.start(); 

  } 

} 

In this scenario, deadlock cannot occur when two threads with two different BankAccount ob-
jects try to transfer to each others’ accounts simultaneously. One thread will acquire the private 
lock, complete its transfer, and release the lock before the other thread can proceed. 

This solution comes with a performance penalty because a private static lock restricts the 
system to performing only one transfer at a time. Two transfers involving four distinct accounts 
(with distinct target accounts) cannot be performed concurrently. This penalty increases consider-
ably as the number of BankAccount objects increase. Consequently, this solution does not scale 
well. 

3.8.3 Compliant Solution (Ordered Locks) 

This compliant solution ensures that multiple locks are acquired and released in the same order. It 
requires that an ordering over BankAccount objects is available. The ordering is enforced by 
having the BankAccount class implement the java.lang.Comparable interface and over-
ride the compareTo() method. 

 

final class BankAccount implements Comparable<BankAccount> { 

  private double balanceAmount;  // Total amount in bank account   

  private final Object lock; 

 

  private final long id; // Unique for each BankAccount 

  private static long NextID = 0; // Next unused ID 
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  BankAccount(double balance) { 

    this.balanceAmount = balance; 

    this.lock = new Object(); 

    this.id = this.NextID++; 

  } 

 

  @Override public int compareTo(BankAccount ba) { 

     return (this.id > ba.id) ? 1 : (this.id < ba.id) ? -1 : 0; 

  } 

 

  // Deposits the amount from this object instance to BankAccount instance argument ba  

  public void depositAmount(BankAccount ba, double amount) { 

    BankAccount former, latter; 

    if (compareTo(ba) < 0) { 

      former = this; 

      latter = ba; 

    } else { 

      former = ba; 

      latter = this; 

    } 

    synchronized (former) { 

      synchronized (latter) { 

        if (amount > balanceAmount) { 

          throw new IllegalArgumentException("Transfer cannot be completed"); 

        } 

        ba.balanceAmount += amount; 

        this.balanceAmount -= amount;  

      }  

    } 

  } 

  

  public static void initiateTransfer(final BankAccount first, 

    final BankAccount second, final double amount) { 

    

    Thread transfer = new Thread(new Runnable() { 

      @Override public void run() { 

        first.depositAmount(second, amount); 

      } 

    }); 

    transfer.start(); 

  } 

} 

Whenever a transfer occurs, the two BankAccount objects are ordered so that the first ob-
ject’s lock is acquired before the second object’s lock. Consequently, if two threads attempt 
transfers between the same two accounts, they will both try to acquire the first account’s lock be-
fore the second’s. As a result, one thread will acquire both locks, complete the transfer, and re-
lease both locks before the other thread can proceed. 
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Unlike in the previous compliant solution, multiple transfers can happen concurrently, as long as 
they involve distinct target accounts. 

3.8.4 Compliant Solution (ReentrantLock) 

In this compliant solution, each BankAccount has an associated  
java.util.concurrent.locks.ReentrantLock. This design permits the  
depositAmount() method to try to acquire the locks of both accounts and to release the locks 
if it fails and try again later. 

 

final class BankAccount { 

  private double balanceAmount;  // Total amount in bank account 

  private final Lock lock = new ReentrantLock(); 

  private final Random number = new Random(123L); 

   

  BankAccount(double balance) { 

    this.balanceAmount = balance; 

  } 

 

  // Deposits amount from this object instance to BankAccount instance argument ba  

  private void depositAmount(BankAccount ba, double amount)  

                                                  throws InterruptedException { 

    while (true) { 

      if (this.lock.tryLock()) { 

        try { 

          if (ba.lock.tryLock()) { 

            try { 

              if (amount > balanceAmount) { 

                throw new IllegalArgumentException("Transfer cannot be completed"); 

              } 

              ba.balanceAmount += amount; 

              this.balanceAmount -= amount;  

              break; 

            } finally { 

              ba.lock.unlock(); 

            } 

          } 

        } finally { 

          this.lock.unlock(); 

        } 

      } 

      int n = number.nextInt(1000); 

      int TIME = 1000 + n; // 1 second + random delay to prevent livelock 

      Thread.sleep(TIME); 

    } 

  } 

   

  public static void initiateTransfer(final BankAccount first,  

    final BankAccount second, final double amount) { 
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    Thread transfer = new Thread(new Runnable() { 

      public void run() { 

        try { 

          first.depositAmount(second, amount); 

        } catch (InterruptedException e) { 

          Thread.currentThread().interrupt(); // Reset interrupted status 

        } 

      } 

    }); 

    transfer.start(); 

  } 

} 

Deadlock is impossible in this compliant solution because no method grabs a lock and holds it 
indefinitely. If the current object’s lock is acquired but the second lock is unavailable, the first 
lock is released and the thread sleeps for some specified amount of time before attempting to 
reacquire the lock. 

Code that uses this lock has behavior similar to that of synchronized code that uses the traditional 
monitor lock. ReentrantLock provides several other capabilities. For example, the  
tryLock() method does not block waiting, if another thread is already holding the lock. The 
java.util.concurrent.locks.ReentrantReadWriteLock class can be used when 
some threads require a lock to write information, while other threads require the lock to concur-
rently read the information. 

3.8.5 Noncompliant Code Example (Different Lock Orders, Recursive) 

The following immutable WebRequest class encapsulates a web request received by a server: 
 

// Immutable WebRequest 

public final class WebRequest { 

  private final long bandwidth; 

  private final long responseTime; 

 

  public WebRequest(long bandwidth, long responseTime) { 

    this.bandwidth = bandwidth; 

    this.responseTime = responseTime; 

  } 

 

  public long getBandwidth() { 

    return bandwidth; 

  } 

 

  public long getResponseTime() { 

    return responseTime; 

  } 

} 
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Each request has a response time associated with it, along with a measurement of the network 
bandwidth required to fulfill the request. 

This noncompliant code example monitors web requests and provides routines for calculating the 
average bandwidth and response time required to service incoming requests. 

 

public final class WebRequestAnalyzer { 

  private final Vector<WebRequest> requests = new Vector<WebRequest>(); 

   

  public boolean addWebRequest(WebRequest request) { 

    return requests.add(new WebRequest(request.getBandwidth(),  

                        request.getResponseTime())); 

  } 

   

  public double getAverageBandwidth() {  

    if (requests.size() == 0) { 

      throw new IllegalStateException("The vector is empty!");    

    }   

    return calculateAverageBandwidth(0, 0); 

  } 

 

  public double getAverageResponseTime() {  

    if (requests.size() == 0) { 

      throw new IllegalStateException("The vector is empty!");    

    } 

    return calculateAverageResponseTime(requests.size() - 1, 0); 

  } 

 

  private double calculateAverageBandwidth(int i, long bandwidth) {  

    if (i == requests.size()) { 

      return bandwidth / requests.size(); 

    } 

    synchronized (requests.elementAt(i)) { 

      bandwidth += requests.get(i).getBandwidth(); 

      // Acquires locks in increasing order 

      return calculateAverageBandwidth(++i, bandwidth);  

    } 

  } 

 

  private double calculateAverageResponseTime(int i, long responseTime) {  

    if (i <= -1) {    

      return responseTime / requests.size(); 

    }      
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    synchronized (requests.elementAt(i)) { 

      responseTime += requests.get(i).getResponseTime(); 

      // Acquires locks in decreasing order 

      return calculateAverageResponseTime(--i, responseTime);  

    } 

  } 

} 

The monitoring application is built around the WebRequestAnalyzer class that maintains a list 
of web requests using the requests vector and includes the addWebRequest() setter method. 
Any thread can request the average bandwidth or average response time of all web requests by 
invoking the getAverageBandwidth() and getAverageResponseTime() methods. 

These methods use fine-grained locking by holding locks on individual elements (web requests) 
of the vector. These locks permit new requests to be added while the computations are still un-
derway. Consequently, the statistics reported by the methods are accurate when they return the 
results. 

Unfortunately, this noncompliant code example is prone to deadlock because the recursive calls 
within the synchronized regions of these methods acquire the intrinsic locks in opposite numerical 
orders. That is, calculateAverageBandwidth() requests locks from index 0 up to  
requests.size() - 1, whereas calculateAverageResponseTime() requests them from 
index requests.size() - 1 down to 0. Because of recursion, no previously acquired locks are 
released by either method. Deadlock occurs when two threads call these methods out of order, 
because one thread calls calculateAverageBandwidth(), while the other calls  
calculateAverageResponseTime() before either method has finished executing. 

For example, if there are 20 requests in the vector and one thread calls  
getAverageBandwidth(), the thread acquires the intrinsic lock of WebRequest 0, the first 
element in the vector. Meanwhile, if a second thread calls getAverageResponseTime(), it 
acquires the intrinsic lock of web request 19, the last element in the vector. Consequently, dead-
lock results because neither thread can acquire all of the locks and proceed with the calculations. 

Note that the addWebRequest() method also has a race condition with  
calculateAverageResponseTime(). While iterating over the vector, new elements can be 
added to the vector, invalidating the results of the previous computation. This race condition can 
be prevented by locking on the last element of the vector (when it contains at least one element) 
before inserting the element. 
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3.8.6 Compliant Solution  

In this compliant solution, the two calculation methods acquire and release locks in the same or-
der, beginning with the first web request in the vector.  

 

public final class WebRequestAnalyzer { 

  private final Vector<WebRequest> requests = new Vector<WebRequest>(); 

   

  public boolean addWebRequest(WebRequest request) { 

    return requests.add(new WebRequest(request.getBandwidth(),  

                        request.getResponseTime()));   

  } 

 

  public double getAverageBandwidth() {  

    if (requests.size() == 0) { 

      throw new IllegalStateException("The vector is empty!");    

    } 

    return calculateAverageBandwidth(0, 0); 

  } 

 

  public double getAverageResponseTime() {  

    if (requests.size() == 0) { 

      throw new IllegalStateException("The vector is empty!");    

    } 

    return calculateAverageResponseTime(0, 0); 

  } 

 

  private double calculateAverageBandwidth(int i, long bandwidth) {  

    if (i == requests.size()) { 

      return bandwidth / requests.size(); 

    } 

    synchronized (requests.elementAt(i)) { // Acquires locks in increasing order 

      bandwidth += requests.get(i).getBandwidth(); 

      return calculateAverageBandwidth(++i, bandwidth);   

    } 

  } 

 

  private double calculateAverageResponseTime(int i, long responseTime) {  

    if (i == requests.size()) {    

      return responseTime / requests.size(); 

    }      

    synchronized (requests.elementAt(i)) { 

      responseTime += requests.get(i).getResponseTime(); 

      // Acquires locks in increasing order 

      return calculateAverageResponseTime(++i, responseTime);  

    } 

  } 

} 
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Consequently, while one thread is calculating the average bandwidth or response time, another 
thread cannot interfere or induce deadlock. That is because the other thread first needs to syn-
chronize on the first web request, which cannot happen before the first calculation completes. 

There is no need to lock on the last element of the vector in addWebRequest() for two reasons: 
(1) because locks are acquired in increasing order in all the methods and (2) because updates to 
the vector are reflected in the results of the computations. 

3.8.7 Risk Assessment 

Acquiring and releasing locks in the wrong order can result in deadlock. 

Guideline  Severity  Likelihood  Remediation Cost  Priority  Level  

LCK07- J  low  likely  high  P3  L3  

3.8.8 References 

[Gosling 2005] Chapter 17, “Threads and Locks” 

[Halloway 2000]  

[MITRE 2010] CWE ID 412, “Unrestricted Lock on Critical Resource” 

http://java.sun.com/docs/books/jls/third_edition/html/memory.html�
http://cwe.mitre.org/data/definitions/412.html�
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3.9 LCK08-J. Ensure actively held locks are released on exceptional conditions 

An exceptional condition can circumvent the release of a lock, leading to deadlock. According to 
the Java API [Sun 2009b] 

A ReentrantLock is owned by the thread last successfully locking, but not yet unlocking 
it. A thread invoking lock will return, successfully acquiring the lock, when the lock is not 
owned by another thread. 

Consequently, an unreleased lock in any thread will stop other threads from acquiring the same 
lock. Intrinsic locks of class objects used for method and block synchronization are automatically 
released on exceptional conditions (such as abnormal thread termination). 

3.9.1 Noncompliant Code Example (Checked Exception) 

This noncompliant code example protects a resource using a ReentrantLock but fails to release 
the lock if an exception occurs while performing operations on the open file. If an exception is 
thrown, control transfers to the catch block, and the call to unlock() is not executed. 

 

public final class Client { 

  public void doSomething(File file) { 

    final Lock lock = new ReentrantLock(); 

    try { 

      lock.lock(); 

      InputStream in = new FileInputStream(file); 

      // Perform operations on the open file 

      lock.unlock(); 

    } catch (FileNotFoundException fnf) { 

      // Handle the exception 

    } 

  } 

} 

Note that the lock is not released, even when the doSomething() method returns.  

This noncompliant code example does not close the input stream and, consequently, also violates 
guideline “FIO06-J. Ensure all resources are properly closed when they are no longer needed.”5

3.9.2 Compliant Solution (finally Block) 

 

This compliant solution encapsulates operations that may throw an exception in a try block im-
mediately after acquiring the lock. The lock is acquired just before the try block, which guaran-
tees that the lock is held when the finally block executes. Invoking Lock.unlock() in the  
finally block ensures that the lock is released, regardless of whether an exception occurred. 

 

public final class Client { 

  public void doSomething(File file) { 

    final Lock lock = new ReentrantLock(); 

 
5  This guideline is described at https://www.securecoding.cert.org/confluence/display/java/. 

https://www.securecoding.cert.org/confluence/x/9gFqAQ�
https://www.securecoding.cert.org/confluence/display/java/
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    InputStream in = null; 

    lock.lock(); 

    try { 

      in = new FileInputStream(file); 

      // Perform operations on the open file 

    } catch(FileNotFoundException fnf) { 

      // Forward to handler 

    } finally { 

      lock.unlock(); 

 

      if(in != null) { 

        try { 

   in.close(); 

 } catch (IOException e) { 

   // Forward to handler 

        } 

      } 

    } 

  } 

} 

3.9.3 Compliant Solution (Execute-Around Idiom) 

The execute-around idiom provides a generic mechanism for performing resource allocation and 
clean-up operations so that the client can focus on specifying only the required functionality. This 
idiom reduces clutter in client code and provides a secure mechanism for resource management. 

In this compliant solution, the client’s doSomething() method provides only the required func-
tionality by implementing the doSomethingWithFile() method of the LockAction inter-
face, without having to manage the acquisition and release of locks or the open and close opera-
tions of files. The ReentrantLockAction class encapsulates all resource management actions. 

 

public interface LockAction { 

  void doSomethingWithFile(InputStream in); 

} 

 

public final class ReentrantLockAction { 

  public static void doSomething(File file, LockAction action)  {       

    Lock lock = new ReentrantLock(); 

    InputStream in = null;    

    lock.lock(); 

    try { 

      in = new FileInputStream(file);            

      action.doSomethingWithFile(in);        

    } catch (FileNotFoundException fnf) { 

      // Forward to handler 

    } finally {       

      lock.unlock(); 
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      if (in != null) { 

        try { 

          in.close(); 

        } catch (IOException e) { 

          // Forward to handler      

        } 

      } 

    } 

  }   

} 

 

public final class Client { 

  public void doSomething(File file) {  

    ReentrantLockAction.doSomething(file, new LockAction() { 

      public void doSomethingWithFile(InputStream in) { 

        // Perform operations on the open file 

      } 

    }); 

  } 

} 

3.9.4 Noncompliant Code Example (Unchecked Exception) 

This noncompliant code example uses a ReentrantLock to protect a java.util.Date in-
stance, which is not thread-safe by design. The doSomethingSafely() method must catch 
Throwable to comply with guideline “EXC06-J. Do not allow exceptions to transmit sensitive 
information.”6

 

 

final class DateHandler { 

  private final Date date = new Date(); 

  final Lock lock = new ReentrantLock(); 

  public void doSomethingSafely(String str) { 

    try { 

      doSomething(str); 

    } catch(Throwable t) { 

      // Forward to handler 

    } 

  } 

  public void doSomething(String str) { 

    lock.lock(); 

    String dateString = date.toString(); 

    if (str.equals(dateString)) { 

      // ... 

    } 

    lock.unlock(); 

  } 

} 

 
6  This guideline is described at https://www.securecoding.cert.org/confluence/display/java/. 

https://www.securecoding.cert.org/confluence/display/java/EXC06-J.+Do+not+allow+exceptions+to+transmit+sensitive+information�
https://www.securecoding.cert.org/confluence/display/java/EXC06-J.+Do+not+allow+exceptions+to+transmit+sensitive+information�
https://www.securecoding.cert.org/confluence/display/java/
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Because the doSomething() method fails to check if str is null, a runtime exception can oc-
cur, preventing the lock from being released. 

3.9.5 Compliant Solution (finally Block) 

This compliant solution encapsulates all operations that can throw an exception in a try block 
and releases the lock in the associated finally block.  

 

final class DateHandler { 

  private final Date date = new Date(); 

  final Lock lock = new ReentrantLock(); 

 

  public void doSomethingSafely(String str) { 

    try { 

      doSomething(str); 

    } catch(Throwable t) { 

      // Forward to handler 

    } 

  } 

 

  public void doSomething(String str) { 

    lock.lock(); 

    try { 

      String dateString = date.toString(); 

      if (str != null && str.equals(dateString)) { 

        // ... 

      } 

    } finally { 

      lock.unlock(); 

    } 

  } 

} 

Consequently, the lock is released even in the event of a runtime exception. The  
doSomething() method also ensures that the string is not null to avoid throwing a  
NullPointerException. 

3.9.6 Risk Assessment 

Failing to release locks on exceptional conditions may lead to thread starvation and deadlock. 

Guideline  Severity  Likelihood  Remediation Cost  Priority  Level  

LCK08- J  low  likely  low  P9  L2  

3.9.7 References 

[Sun 2009b] Class ReentrantLock 
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3.10 LCK09-J. Do not perform operations that may block while holding a lock 

Holding locks while performing time-consuming or blocking operations can severely degrade 
system performance and result in starvation. Furthermore, deadlock can result if interdependent 
threads block indefinitely. Blocking operations include network, file, and console I/O (for exam-
ple, Console.readLine()) and object serialization. Deferring a thread indefinitely also consti-
tutes a blocking operation. 

If the JVM interacts with a file system that operates over an unreliable network, file I/O might 
incur a large performance penalty. In such cases, avoid file I/O over the network when holding a 
lock. File operations (such as logging) that may block waiting for the output stream lock or for 
I/O to complete may be performed in a dedicated thread to speed up task processing. Logging 
requests can be added to a queue, given that the queue’s put() operation incurs little overhead as 
compared to file I/O [Goetz 2006]. 

3.10.1 Noncompliant Code Example (Deferring a Thread) 

This noncompliant code example defines a utility method that accepts a time argument.  

 

public synchronized void doSomething(long time) 

    throws InterruptedException { 

  // ... 

  Thread.sleep(time); 

} 

Because the method is synchronized, if the thread is suspended, other threads are unable to use the  
synchronized methods of the class. The current object’s monitor is not released because the 
Thread.sleep() method does not have any synchronization semantics, as detailed in guideline 
“THI00-J. Do not assume that the sleep(), yield(), or getState() methods provide syn-
chronization semantics” on page 91. 

3.10.2 Compliant Solution (Intrinsic Lock) 

This compliant solution defines the doSomething() method with a timeout parameter instead 
of the time value. Using the Object.wait() rather than the Thread.sleep() method al-
lows setting a timeout period during which a notification may awaken the thread.  

 

public synchronized void doSomething(long timeout) 

    throws InterruptedException { 

  

  while (<condition does not hold>) { 

    wait(timeout); // Immediately leaves current monitor 

  } 

} 

The current object’s monitor is released immediately upon entering the wait state. After the time-
out period has elapsed, the thread resumes execution after reacquiring the current object’s moni-
tor.  
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According to the Java API class Object documentation [Sun 2009b] 
Note that the wait method, as it places the current thread into the wait set for this object, 
unlocks only this object; any other objects on which the current thread may be synchronized 
remain locked while the thread waits. This method should only be called by a thread that is 
the owner of this object's monitor.  

Ensure that a thread that holds locks on other objects releases them appropriately, before entering 
the wait state. Additional guidance on waiting and notification is available in guidelines “THI03-
J. Always invoke wait() and await() methods inside a loop” on page 101 and “THI04-J. Notify all 
waiting threads instead of a single thread” on page 104. 

3.10.3 Noncompliant Code Example (Network I/O) 

This noncompliant code example shows the sendPage()method that sends a Page object from 
a server to a client. The method is synchronized so that the pageBuff array is accessed safely 
when multiple threads request concurrent access.  

 

// Class Page is defined separately. It stores and returns the Page name via getName() 

Page[] pageBuff = new Page[MAX_PAGE_SIZE]; 

 

public synchronized boolean sendPage(Socket socket, String pageName)  

    throws IOException { 

  // Get the output stream to write the Page to 

  ObjectOutputStream out = new ObjectOutputStream(socket.getOutputStream()); 

 

  // Find the Page requested by the client (this operation requires synchronization) 

  Page targetPage = null; 

  for (Page p : pageBuff) { 

    if (p.getName().compareTo(pageName) == 0) { 

      targetPage = p; 

    } 

  } 

 

  // Requested Page does not exist 

  if (targetPage == null) { 

    return false; 

  }  

 

  // Send the Page to the client (does not require any synchronization) 

  out.writeObject(targetPage); 

 

  out.flush(); 

  out.close(); 

  return true; 

} 

Calling writeObject() within the synchronized sendPage() method can result in delays and 
deadlock-like conditions in high-latency networks or when network connections are inherently 
lossy. 
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3.10.4 Compliant Solution 

This compliant solution separates the process into a sequence of steps: 
1. Perform actions on data structures requiring synchronization. 
2. Create copies of the objects to be sent. 
3. Perform network calls in a separate method that does not require any synchronization. 

In this compliant solution, the synchronized getPage()method is called from the unsynchro-
nized sendPage() method to retrieve the requested Page in the pageBuff array. After the 
Page is retrieved, sendPage() calls the unsynchronized deliverPage()method to deliver 
the Page to the client. 

 

public boolean sendPage(Socket socket, String pageName) { // No synchronization 

  Page targetPage = getPage(pageName);  

 

  if (targetPage == null) 

    return false; 

 

  return deliverPage(socket, targetPage); 

} 

 

private synchronized Page getPage(String pageName) { // Requires synchronization 

  Page targetPage = null; 

 

  for (Page p : pageBuff) { 

    if (p.getName().equals(pageName)) { 

      targetPage = p; 

    } 

  } 

  return targetPage; 

} 

 

// Return false if an error occurs, true if successful 

public boolean deliverPage(Socket socket, Page page) { 

  ObjectOutputStream out = null; 

  boolean result = true; 

  try { 

    // Get the output stream to write the Page to 

    out = new ObjectOutputStream(socket.getOutputStream()); 

 

    // Send the Page to the client 

    out.writeObject(page); 

  } catch (IOException io) { 

    result = false; 

  } finally { 

    if (out != null) { 

      try { 

        out.flush(); 
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        out.close(); 

      } catch (IOException e) { 

        result = false; 

      } 

    }   

  } 

  return result; 

} 

3.10.5 Exceptions 

LCK09-EX1: Classes that provide an appropriate termination mechanism to callers are allowed 
to violate this guideline (see guideline “THI06-J. Ensure that threads and tasks performing block-
ing operations can be terminated” on page 114). 

LCK09-EX2: A method that requires multiple locks may hold several locks while waiting for the 
remaining locks to become available. This constitutes a valid exception, although the programmer 
must follow other applicable guidelines to avoid deadlock. See guideline “LCK07-J. Avoid dead-
lock by requesting and releasing locks in the same order” on page 63 for more information. 

3.10.6 Risk Assessment 

Blocking or lengthy operations performed within synchronized regions may result in a deadlocked 
or unresponsive system. 

Guideline  Severity  Likelihood  Remediation Cost  Priority  Level  

LCK09-J  low  probable  high  P2  L3  

3.10.7 References 

[Gosling 2005] Chapter 17, “Threads and Locks” 

[Grosso 2001] Chapter 10, “Serialization” 

[Rotem-Gal-Oz 2008] “Falacies of Distributed Computing Explained” 

[Sun 2009b] Class Object 

http://java.sun.com/docs/books/jls/third_edition/html/memory.html�
http://oreilly.com/catalog/javarmi/chapter/ch10.html�
http://www.rgoarchitects.com/Files/fallacies.pdf�
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3.11 LCK10-J. Do not use incorrect forms of the double-checked locking idiom 

Instead of initializing a member object using a constructor, lazy initialization can be used to defer 
the construction of the member object until an instance is actually required. Lazy initialization 
also helps in breaking harmful circularities in class and instance initialization, and performing 
other optimizations [Bloch 2005a]. 

A class or an instance method is used for lazy initialization, depending on whether the member 
object is static. The method checks whether the instance has already been created and, if not, 
creates it. If the instance already exists, it simply returns it: 

 

// Correct single threaded version using lazy initialization 

final class Foo {  

  private Helper helper = null; 

   

  public Helper getHelper() { 

    if (helper == null) { 

      helper = new Helper(); 

    } 

    return helper; 

  } 

  // ... 

} 

In a multithreaded application, initialization must be synchronized so that multiple threads do not 
create extraneous instances of the member object:  

 

// Correct multithreaded version using synchronization 

final class Foo {  

  private Helper helper = null; 

   

  public synchronized Helper getHelper() { 

    if (helper == null) { 

      helper = new Helper(); 

    } 

    return helper; 

  } 

  // ... 

} 

The double-checked locking idiom improves performance by limiting synchronization to the rare 
case of new instance creation and foregoing it during the common case of retrieving an already 
created instance.  

Incorrect forms of the double-checked idiom include those that allow an uninitialized or partially 
initialized object to be published. 
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3.11.1 Noncompliant Code Example 

The double-checked locking pattern uses block synchronization instead of method synchroniza-
tion and installs an additional null check before attempting synchronization. This noncompliant 
code example uses the incorrect form of the double-checked locking idiom.  

 

// "Double-Checked Locking" idiom 

final class Foo {  

  private Helper helper = null; 

  public Helper getHelper() { 

    if (helper == null) {  

      synchronized (this) { 

        if (helper == null) { 

          helper = new Helper(); 

        } 

      }     

    } 

    return helper; 

  } 

  // Other methods and members... 

} 

According to Pugh [Pugh 2004] 
. . . writes that initialize the Helper object and the write to the helper field can be done or 
perceived out of order. As a result, a thread which invokes getHelper() could see a non-
null reference to a helper object, but see the default values for fields of the helper object, 
rather than the values set in the constructor.  
Even if the compiler does not reorder those writes, on a multiprocessor the processor or the 
memory system may reorder those writes, as perceived by a thread running on another pro-
cessor.  

Also see guideline “TSM03-J. Do not publish partially initialized objects” on page 162. 

3.11.2 Compliant Solution (Volatile) 

This compliant solution declares the  helper field volatile. 

 

// Works with acquire/release semantics for volatile 

// Broken under JDK 1.4 and earlier 

final class Foo { 

  private volatile Helper helper = null; 

   

  public Helper getHelper() {  

    if (helper == null) { 

      synchronized (this) { 

        if (helper == null) { 

          helper = new Helper(); // If the helper is null, create a new instance 

        } 

      } 



LCK10-J 

CMU/SEI-2010-TR-015 | 83 

    } 

    return helper; // If helper is non-null, return its instance 

  } 

} 

If a thread initializes the Helper object, a happens-before relationship is established between this 
thread and another that retrieves and returns the instance [Pugh 2004, Manson 2004]. 

3.11.3 Compliant Solution (Static Initialization) 

This compliant solution initializes the helper field in the declaration of the static variable.7

 

 

final class Foo { 

  private static final Helper helper = new Helper(); 

 

  public static Helper getHelper() { 

    return helper; 

  } 

} 

Variables that are declared static and initialized at declaration, or from a static initializer, are 
guaranteed to be fully constructed before being made visible to other threads.  

3.11.4 Compliant Solution (Initialize-On-Demand, Holder Class Idiom) 

This compliant solution uses the initialize-on-demand, holder class idiom that implicitly incorpo-
rates lazy initialization by declaring a static variable within the static Holder inner class.  

 

final class Foo { 

  // Lazy initialization  

  private static class Holder { 

    static Helper helper = new Helper(); 

  } 

 

  public static Helper getInstance() { 

    return Holder.helper; 

  } 

} 

Initialization of the static helper field is deferred until the getInstance() method is called. 
This idiom is a better choice than the double-checked, locking idiom for lazily initializing static 
fields [Bloch 2008]. However, this idiom cannot be used to lazily initialize instance fields [Bloch 
2001].  

 
7  The Java Memory Model: the building block of concurrency, by Jeremy Manson. Java Developer Connection 

Tech Tips, by Glen McCluskey, April 10, 2001. 
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3.11.5 Compliant Solution (ThreadLocal Storage) 

This compliant solution (originally suggested by Terekhov [Pugh 2004]) uses a ThreadLocal 
object to lazily create a Helper instance. 

 

final class Foo { 

  private final ThreadLocal<Foo> perThreadInstance = new ThreadLocal<Foo>(); 

  private Helper helper = null; 

 

  public Helper getHelper() { 

    if (perThreadInstance.get() == null) { 

      createHelper(); 

    } 

    return helper; 

  } 

 

  private synchronized void createHelper() { 

    if (helper == null) { 

      helper = new Helper(); 

    } 

    // Any non-null value can be used as an argument to set() 

    perThreadInstance.set(this); 

  } 

} 

3.11.6 Compliant Solution (Immutable) 

In this compliant solution, the Helper class is immutable and consequently guaranteed to be ful-
ly constructed before becoming visible. In this case, there are no further requirements to ensure 
that the double-checked locking idiom does not result in the publication of an uninitialized or par-
tially initialized field. 

 

public final class Helper { 

  private final int n; 

 

  public Helper(int n) { 

    this.n = n; 

  } 

 

  // Other fields and methods, all fields are final 

} 

 

final class Foo { 

  private Helper helper = null; 

   

  public Helper getHelper() {  

    if (helper == null) { 

      synchronized (this) { 

        if (helper == null) { 

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Pugh04�
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          helper = new Helper(42); // If the helper is null, create a new instance 

        } 

      } 

    } 

    return helper; // If helper is non-null, return its instance 

  } 

} 

3.11.7 Exceptions 

LCK10-EX1: The noncompliant form of the double-checked locking idiom can be used for 32-bit 
primitive values (for example, int or float) [Pugh 2004]. Note that it does not work for values 
of type long or double because unsynchronized reads/writes of 64-bit primitives are not guar-
anteed to be atomic (see guideline “VNA05-J. Ensure atomicity when reading and writing 64-bit 
values” on page 33). 

3.11.8 Risk Assessment 

Using incorrect forms of the double-checked, locking idiom can lead to synchronization prob-
lems. 

Guideline  Severity  Likelihood  Remediation Cost  Priority  Level  

LCK10- J  low  probable  medium  P4  L3  

3.11.9 References 

[Bloch 2001]  Item 48: “Synchronize access to shared mutable data” 

[Bloch 2008]  Item 71: “Use lazy initialization judiciously” 

[Gosling 2005]  Section 12.4, “Initialization of Classes and Interfaces” 

[MITRE 2010] CWE ID 609 “Double-Checked Locking” 

[Pugh 2004]  

[Sun 2009b]  

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Pugh04�
http://cwe.mitre.org/data/definitions/609.html�
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3.12 LCK11-J. Avoid client-side locking when using classes that do not commit to 
their locking strategy 

According to Goetz and colleagues [Goetz 2006] 
Client-side locking entails guarding client code that uses some object X with the lock X uses 
to guard its own state. In order to use client-side locking, you must know what lock X uses. 

While client-side locking is acceptable if the thread-safe class commits to its locking strategy and 
clearly documents it, Goetz and colleagues caution against its misuse [Goetz 2006]: 

If extending a class to add another atomic operation is fragile because it distributes the lock-
ing code for a class over multiple classes in an object hierarchy, client-side locking is even 
more fragile because it entails putting locking code for class C into classes that are totally 
unrelated to C. Exercise care when using client-side locking on classes that do not commit to 
their locking strategy. 

The documentation of a class that supports client-side locking should explicitly state its applica-
bility. For example, the java.util.concurrent.ConcurrentHashMap<K,V> class should 
not be used for client-side locking because its documentation states [Sun 2009b] 

. . . even though all operations are thread-safe, retrieval operations do not entail locking, 
and there is not any support for locking the entire table in a way that prevents all access. 
This class is fully interoperable with Hashtable in programs that rely on its thread safety 
but not on its synchronization details.  

In general, use client-side locking only when the documentation of the class recommends it. For 
example, the documentation of the synchronizedList()wrapper method of the 
java.util.Collections class states [Sun 2009b] 

In order to guarantee serial access, it is critical that all access to the backing list is accom-
plished through the returned list. It is imperative that the user manually synchronize on the 
returned list when iterating over it. Failure to follow this advice may result in non-
deterministic behavior. 

When the backing list is inaccessible to an untrusted client, note that this advice is consistent with 
guideline “LCK04-J. Do not synchronize on a collection view if the backing collection is accessi-
ble” on page 57. 

3.12.1 Noncompliant Code Example (Intrinsic Lock) 

This noncompliant code example uses the thread-safe Book class that cannot be refactored. Re-
factoring might be impossible, for example, if the source code is not available for review or the 
class is part of a general library that cannot be extended. 

 

final class Book { 

  // May change its locking policy in the future to use private final locks 

  private final String title; 

  private Calendar dateIssued; 

  private Calendar dateDue; 

 

  Book(String title) { 

    this.title = title;  
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  } 

   

  public synchronized void issue(int days) { 

    dateIssued = Calendar.getInstance(); 

    dateDue = Calendar.getInstance(); 

    dateDue.add(dateIssued.DATE, days);   

  } 

 

  public synchronized Calendar getDueDate() { 

    return dateDue; 

  } 

} 

This class does not commit to its locking strategy (that is, it reserves the right to change its lock-
ing strategy without notice). Furthermore, it does not document that callers can use client-side 
locking safely. The BookWrapper client class uses client-side locking in the renew() method 
by synchronizing on a Book instance. 

 

// Client 

public class BookWrapper { 

  private final Book book; 

 

  BookWrapper(Book book) { 

    this.book = book; 

  } 

 

  public void issue(int days) { 

    book.issue(days); 

  } 

 

  public Calendar getDueDate() { 

    return book.getDueDate(); 

  } 

 

  public void renew() { 

    synchronized(book) { 

      if (book.getDueDate().before(Calendar.getInstance())) { 

        throw new IllegalStateException("Book overdue"); 

      } else { 

        book.issue(14); // Issue book for 14 days 

      } 

    } 

  } 

} 

If the Book class changes its synchronization policy in the future, the BookWrapper class’s 
locking strategy might silently break. For instance, the BookWrapper class’s locking strategy 
breaks if Book is modified to use a private final lock object, as recommended by guideline 
“LCK00-J. Use private final lock objects to synchronize classes that may interact with untrusted 
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code” on page 41. The BookWrapper class’s locking strategy breaks because threads that call 
BookWrapper.getDueDate() may perform operations on the thread-safe Book using its new 
locking policy. However, threads that call the renew()method will always synchronize on the 
intrinsic lock of the Book instance. Consequently, the implementation will use two different 
locks. 

3.12.2 Compliant Solution (Private Final Lock Object) 

This compliant solution uses a private final lock object and synchronizes the methods of the 
BookWrapper class using this lock. 

 

public final class BookWrapper { 

  private final Book book; 

  private final Object lock = new Object(); 

 

  BookWrapper(Book book) { 

    this.book = book; 

  } 

 

  public void issue(int days) { 

    synchronized(lock) { 

      book.issue(days); 

    } 

  } 

 

  public Calendar getDueDate() { 

    synchronized(lock) { 

      return book.getDueDate(); 

    } 

  } 

 

  public void renew() { 

    synchronized(lock) { 

      if (book.getDueDate().before(Calendar.getInstance())) { 

        throw new IllegalStateException("Book overdue"); 

      } else { 

        book.issue(14); // Issue book for 14 days 

      } 

    } 

  } 

} 

The BookWrapper class’s locking strategy is now independent of the locking policy of the Book 
instance.  

3.12.3 Noncompliant Code Example (Class Extension and Accessible Member Lock) 

Goetz and colleagues describe the fragility of class extension for adding functionality to thread-
safe classes [Goetz 2006]: 
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Extension is more fragile than adding code directly to a class, because the implementation of 
the synchronization policy is now distributed over multiple, separately maintained source 
files. If the underlying class were to change its synchronization policy by choosing a differ-
ent lock to guard its state variables, the subclass would subtly and silently break, because it 
no longer used the right lock to control concurrent access to the base class’s state. 

In this noncompliant code example, the PrintableIPAddressList class extends the  
thread-safe IPAddressList class. PrintableIPAddressList locks on  
IPAddressList.ips in the addAndPrintIPAddresses()method. This is another example 
of client-side locking because a subclass is using an object owned and locked by its superclass. 

 

// This class may change its locking policy in the future, for example,  

// if new non-atomic methods are added 

class IPAddressList { 

  private final List<InetAddress> ips =  

    Collections.synchronizedList(new ArrayList<InetAddress>()); 

   

  public List<InetAddress> getList() { 

    return ips; // No defensive copies required as package-private visibility 

  } 

 

  public void addIPAddress(InetAddress address) { 

    ips.add(address); 

  } 

} 

 

class PrintableIPAddressList extends IPAddressList { 

  public void addAndPrintIPAddresses(InetAddress address) { 

    synchronized(getList()) { 

      addIPAddress(address); 

      InetAddress[] ia = (InetAddress[]) getList().toArray(new InetAddress[0]); 

      // ... 

    } 

  } 

} 

If the IPAddressList class is modified to use block synchronization on a private final lock 
object (as recommended by guideline “LCK00-J. Use private final lock objects to synchronize 
classes that may interact with untrusted code” on page 41), the PrintableIPAddressList 
subclass will silently break. Moreover, if a wrapper such as  
Collections.synchronizedList() is used, it is difficult for a client to determine the type 
of the class being wrapped in order to extend it [Goetz 2006].  

3.12.4 Compliant Solution (Composition) 

This compliant solution wraps an object of the IPAddressList class and provides synchronized 
accessors that can be used to manipulate the state of the object. 
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Composition offers encapsulation benefits, usually with minimal overhead. Refer to guideline 
“OBJ07-J. Understand how a superclass can affect a subclass for more information on composi-
tion.”8

 

  

// Class IPAddressList remains unchanged 

class PrintableIPAddressList { 

  private final IPAddressList ips; 

  

  public PrintableIPAddressList(IPAddressList list) { 

    this.ips = list; 

  } 

   

  public synchronized void addIPAddress(InetAddress address) { 

    ips.addIPAddress(address); 

  } 

 

  public synchronized void addAndPrintIPAddresses(InetAddress address) {   

    addIPAddress(address);  

    InetAddress[] ia = (InetAddress[]) ips.getList().toArray(new InetAddress[0]);      

    // ... 

  } 

} 

In this case, composition allows the PrintableIPAddressList class to use its own intrinsic 
lock independent of the underlying list class’s lock. The underlying collection does not need to be 
thread-safe because the PrintableIPAddressList wrapper prevents direct access to its me-
thods by publishing its own synchronized equivalents. This approach provides consistent locking 
even if the underlying class changes its locking policy in the future [Goetz 2006]. 

3.12.5 Risk Assessment 

Using client-side locking when the thread-safe class does not commit to its locking strategy can 
cause data inconsistencies and deadlock. 

Guideline  Severity  Likelihood  Remediation Cost  Priority  Level  

LCK11- J  low  probable  medium  P4  L3  

3.12.6 References 

[Goetz 2006]  Section 4.4.1, “Client-side Locking” 

Section 4.4.2, “Composition”  

Section 5.2.1, “ConcurrentHashMap” 

[Lee 2009] “Map & Compound Operation” 

[Oaks 2004]  Section 8.2, “Synchronization and Collection Classes” 

[Sun 2009b] Class Vector, Class WeakReference, Class ConcurrentHashMap<K,V> 

 
8  This guideline is described at https://www.securecoding.cert.org/confluence/display/java/. 

https://www.securecoding.cert.org/confluence/display/java/OBJ07-J.+Understand+how+a+superclass+can+affect+a+subclass�
https://www.securecoding.cert.org/confluence/display/java/OBJ07-J.+Understand+how+a+superclass+can+affect+a+subclass�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Goetz06�
https://www.securecoding.cert.org/confluence/display/java/
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4 Thread APIs (THI) Guidelines 

4.1 THI00-J. Do not assume that the sleep(), yield(), or getState() methods provide 
synchronization semantics 

According to Section 17.9, “Sleep and Yield” of the Java Language Specification [Gosling 2005] 
It is important to note that neither Thread.sleep nor Thread.yield have any synchro-
nization semantics. In particular, the compiler does not have to flush writes cached in regis-
ters out to shared memory before a call to Thread.sleep or Thread.yield, nor does 
the compiler have to reload values cached in registers after a call to Thread.sleep or 
Thread.yield. 

Incorrectly assuming that thread suspension and yielding do any of the following can result in 
unexpected behavior: 
• flush the cached registers 

• reload any values 

• provide any happens-before relationships when execution resumes 

4.1.1 Noncompliant Code Example (sleep()) 

This noncompliant code example attempts to use a non-volatile Boolean done as a flag to termi-
nate the execution of a thread. A separate thread sets done to true by calling the shutdown() 
method. 

 

final class ControlledStop implements Runnable { 

  private boolean done = false; 

 

  @Override public void run() { 

    while (!done) { 

      try { 

        Thread.sleep(1000); 

      } catch (InterruptedException e) { 

        Thread.currentThread().interrupt(); // Reset interrupted status 

      } 

    } 

  }   

 

  public void shutdown() { 

    this.done = true; 

  } 

} 

However, the compiler is free to read the field this.done once and reuse the cached value in 
each execution of the loop. Consequently, the while loop might not terminate, even if another 
thread calls the shutdown() method to change the value of this.done [Gosling 2005]. This 

https://www.securecoding.cert.org/confluence/display/java/BB.+Definitions#BB.Definitions-happensbeforeorder�
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error could have resulted from the programmer incorrectly assuming that the call to 
Thread.sleep() would cause cached values to be reloaded. 

4.1.2 Compliant Solution (Volatile Flag) 

This compliant solution declares the flag volatile to ensure that updates to it are made visible 
across multiple threads.  

 

final class ControlledStop implements Runnable { 

  private volatile boolean done = false; 

 

  // ... 

} 

The volatile flag establishes a happens-before relationship between this thread and any other 
thread that sets done. 

4.1.3 Compliant Solution (Thread.interrupt()) 

A better solution for methods that call sleep() is to use thread interruption, which causes the 
sleeping thread to wake up immediately and handle the interruption. 

 

final class ControlledStop implements Runnable { 

  @Override public void run() { 

    while (!Thread.interrupted()) { 

      try { 

        Thread.sleep(1000); 

      } catch (InterruptedException e) { 

        Thread.currentThread().interrupt(); 

      } 

    }  

  }   

 

  public void shutdown() { 

    Thread.currentThread().interrupt(); 

  } 

} 

4.1.4 Noncompliant Code Example (getState()) 

This noncompliant code example starts a thread in the doSomething() method. The thread 
supports interruption by checking the volatile flag and blocks waiting until notified. The stop() 
method notifies the thread if it is blocked on the wait and sets the flag to true so that the thread 
can terminate. 

 

public class Waiter { 

  private Thread thread; 

  private volatile boolean flag; 

  private final Object lock = new Object();  
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  public void doSomething() {     

    thread = new Thread(new Runnable() {      

      @Override public void run() { 

        synchronized(lock) { 

          while (!flag) { 

            try { 

              lock.wait(); 

              // ... 

            } catch (InterruptedException e) { 

              // Forward to handler   

            } 

          } 

        } 

      } 

    }); 

    thread.start();              

  } 

 

  public boolean stop() { 

    if (thread != null) {     

      if (thread.getState() == Thread.State.WAITING) { 

        flag = true; 

        synchronized (lock) { 

          lock.notifyAll(); 

        } 

        return true; 

      }      

    } 

    return false; 

  } 

} 

Unfortunately, the stop() method incorrectly uses the Thread.getState() method to check 
whether the thread is blocked and has not terminated before delivering the notification. Using the 
Thread.getState() method for synchronization control such as checking whether a thread is 
blocked on a wait is inappropriate. This is true because a blocked thread is not always required to 
enter the WAITING or TIMED_WAITING state in cases where the JVM implements blocking us-
ing spin-waiting [Goetz 2006]. Because the thread may never enter the WAITING state, the 
stop() method may not terminate the thread. 
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4.1.5 Compliant Solution 

This compliant solution removes the check for determining whether the thread is in the WAITING 
state. This check is unnecessary because invoking notifyAll() on a thread that is not blocked 
on a wait() invocation has no effect.  

 

public class Waiter { 

  // ... 

 

  public boolean stop() { 

    if (thread != null) { 

      flag = true; 

      synchronized (lock) { 

        lock.notifyAll(); 

      } 

      return true; 

    } 

    return false; 

  } 

} 

4.1.6 Risk Assessment 

Relying on the Thread class’s sleep(), yield(), and getState() methods for synchroniza-
tion control can cause unexpected behavior. 

Guideline  Severity  Likelihood  Remediation Cost  Priority  Level  

THI00- J  low  probable  medium  P4  L3  

4.1.7 References 

[Gosling 2005] Section 17.9, “Sleep and Yield” 
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4.2 THI01-J. Do not invoke ThreadGroup methods 

Each thread in Java is assigned to a thread group upon the thread’s creation. These groups are im-
plemented by the java.lang.ThreadGroup class. If the thread group name is not specified 
explicitly, the main default group is assigned by the JVM [Sun 2008a]. The convenience methods 
of the ThreadGroup class can be used to operate on all threads belonging to a thread group at 
once. For example, the ThreadGroup.interrupt() method interrupts all threads in the 
thread group. Thread groups also help reinforce layered security by confining threads into groups 
so that they do not interfere with threads in other groups [Oaks 2004]. 

Even though thread groups are useful for keeping threads organized, programmers seldom benefit 
from their use because many of the ThreadGroup class methods are deprecated (for example, 
allowThreadSuspension(), resume(), stop(), and suspend()). Furthermore, many 
non-deprecated methods are obsolete in that they offer little desirable functionality. Ironically, a 
few ThreadGroup methods are not even thread-safe [Bloch 2001]. 

The insecure yet non-deprecated methods include 
• ThreadGroup.activeCount() 

According to the Java API, the activeCount() method [Sun 2009b] 
Returns an estimate of the number of active threads in this thread group 

This method is often used as a precursor to thread enumeration. If a thread is not started, it 
continues to reside in the thread group and is considered to be active. Furthermore, the active 
count is affected by the presence of certain system threads [Sun 2009b]. Consequently, the  
activeCount() method may not reflect the actual number of running tasks in the thread group.  

• ThreadGroup.enumerate() 
According to the Java API, ThreadGroup class documentation [Sun 2009b] 

[The enumerate() method] Copies into the specified array every active thread in this 
thread group and its subgroups. An application should use the activeCount method to 
get an estimate of how big the array should be. If the array is too short to hold all the 
threads, the extra threads are silently ignored.  

Using the ThreadGroup APIs to shut down threads also has pitfalls. Because the stop() me-
thod is deprecated, alternative ways are required to stop threads. According to the Java Program-
ming Language [Arnold 2006] 

One way is for the thread initiating the termination to join the other threads and so know 
when those threads have terminated. However, an application may have to maintain its own 
list of the threads it creates because simply inspecting the ThreadGroup may return library 
threads that do not terminate and for which join will not return. 

The Executor framework provides a better API for managing a logical grouping of threads and 
offers secure facilities for handling shutdown and thread exceptions [Bloch 2008].  

4.2.1 Noncompliant Code Example 

This noncompliant code example contains a NetworkHandler class that maintains a  
controller thread. This thread delegates a new request to a worker thread. To demonstrate the 
race condition in this example, the controller thread services three requests by starting three 
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threads in succession from its run() method. All threads are defined to belong to the Chief 
thread group.  

 

final class HandleRequest implements Runnable { 

  public void run() { 

    // Do something 

  } 

} 

 

public final class NetworkHandler implements Runnable { 

  private static ThreadGroup tg = new ThreadGroup("Chief"); 

 

  @Override public void run() { 

    new Thread(tg, new HandleRequest(), "thread1").start(); // Start thread 1 

    new Thread(tg, new HandleRequest(), "thread2").start(); // Start thread 2  

    new Thread(tg, new HandleRequest(), "thread3").start(); // Start thread 3 

  } 

 

  public static void printActiveCount(int point) { 

    System.out.println("Active Threads in Thread Group " + tg.getName() +  

      " at point(" + point + "):" + " " + tg.activeCount()); 

  } 

 

  public static void printEnumeratedThreads(Thread[] ta, int len) { 

    System.out.println("Enumerating all threads..."); 

    for(int i = 0; i < len; i++) { 

      System.out.println("Thread " + i + " = " + ta[i].getName()); 

    }    

  } 

 

  public static void main(String[] args) throws InterruptedException { 

    // Start thread controller  

    Thread thread = new Thread(tg, new NetworkHandler(), "controller");  

    thread.start(); 

 

    Thread[] ta = new Thread[tg.activeCount()]; // Gets the active count (insecure)  

 

    printActiveCount(1);  // P1 

    Thread.sleep(1000);  // Delay to demonstrate TOCTOU condition (race window)    

    printActiveCount(2);  // P2: the thread count changes as new threads are initiated 

    // Incorrectly uses the (now stale) thread count obtained at P1 

    int n = tg.enumerate(ta);   

    printEnumeratedThreads(ta, n); // Silently ignores newly initiated threads 

                                   // (between P1 and P2) 

 

    // This code destroys the thread group if it does not have any alive threads 

    for (Thread thr : ta) { 

      thr.interrupt(); 

      while(thr.isAlive()); 
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    } 

    tg.destroy(); 

  } 

} 

There is a time-of-check-to-time-of-use (TOCTOU) vulnerability in this implementation because 
obtaining the count and enumerating the list do not constitute an atomic operation. If new requests 
occur after the call to activeCount() and before the call to enumerate() in the main() 
method, the total number of threads in the group will increase but the enumerated list ta will con-
tain only the initial number, that is, two thread references (main and controller). Consequent-
ly, the program will fail to account for the newly started threads in the Chief thread group. 

Any subsequent use of the ta array is insecure. For example, calling the destroy() method to 
destroy the thread group and its subgroups will not work as expected. The precondition to calling 
destroy() is that the thread group is empty with no executing threads. The code attempts to 
accomplish this by interrupting every thread in the thread group. However, when the destroy() 
method is called, the thread group is not empty, which causes a  
java.lang.IllegalThreadStateException to be thrown.  

4.2.2 Compliant Solution 

This compliant solution uses a fixed thread pool, rather than a ThreadGroup, to group its three 
tasks. The java.util.concurrent.ExecutorService interface provides methods to man-
age the thread pool. Note that there are no methods for finding the number of actively executing 
threads or for enumerating through them. However, the logical grouping can help control the be-
havior of the group as a whole. For instance, all threads belonging to a particular thread pool can 
be terminated by calling the shutdownPool() method. 

 

public final class NetworkHandler { 

  private final ExecutorService executor; 

 

  NetworkHandler(int poolSize) { 

    this.executor = Executors.newFixedThreadPool(poolSize); 

  } 

       

  public void startThreads() { 

    for(int i = 0; i < 3; i++) { 

      executor.execute(new HandleRequest()); 

    } 

  } 

   

  public void shutdownPool() { 

    executor.shutdown(); 

  } 
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  public static void main(String[] args)  { 

    NetworkHandler nh = new NetworkHandler(3); 

    nh.startThreads(); 

    nh.shutdownPool(); 

  } 

} 

Before Java SE 5.0, the ThreadGroup class had to be extended because there was no other di-
rect way to catch an uncaught exception in a separate thread. If the application had installed an 
UncaughtExceptionHandler, it could only be controlled by subclassing ThreadGroup. In 
recent versions, UncaughtExceptionHandler is maintained on a per-thread basis using an 
interface enclosed by the Thread class, which leaves little to no functionality for the Thread-
Group class [Goetz 2006, Bloch 2008]. 

Refer to guideline “TPS03-J. Ensure that tasks executing in a thread pool do not fail silently” on 
page 135 for more information on using uncaught exception handlers in thread pools. 

4.2.3 Risk Assessment 

Using the ThreadGroup APIs may result in race conditions, memory leaks, and inconsistent 
object state. 

Guideline  Severity  Likelihood  Remediation Cost  Priority  Level  

THI01- J  low  probable  medium  P4  L3  

4.2.4 References 

[Arnold 2006] Section 23.3.3, “Shutdown Strategies” 

[Bloch 2001] “Item 53: Avoid thread groups” 

[Bloch 2008] “Item 73: Avoid thread groups” 

[Goetz 2006] Section 7.3.1, “Uncaught Exception Handlers” 

[Oaks 2004] Section 13.1, “ThreadGroups” 

[Sun 2009b] Methods activeCount and enumerate, Classes ThreadGroup and Thread 

[Sun 2008a]  

[Sun 2008b] Bug ID: 4089701 and 4229558 

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-SDN06�
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4.3 THI02-J. Do not invoke Thread.run() 

It is critical to ensure that threads are started correctly. Thread start-up can be misleading because 
sometimes the code appears to be performing the function correctly, when it is actually executing 
in the wrong thread. 

The Thread.start() method starts executing a thread’s run() method in the respective 
thread. It is a mistake to directly invoke the run() method on a Thread object. When invoked 
directly, the statements in the run() method execute in the current thread instead of the newly 
created thread. Furthermore, if the Thread object is not constructed from a Runnable object but 
rather by instantiating a subclass of Thread that does not override the run() method, a call to 
the subclass’s run() method invokes Thread.run(), which does nothing.  

4.3.1 Noncompliant Code Example 

This noncompliant code example explicitly invokes the run() method in the context of the cur-
rent thread.  

 

public final class Foo implements Runnable { 

  @Override public void run() { 

    // ... 

  } 

   

  public static void main(String[] args) { 

    Foo foo = new Foo(); 

    new Thread(foo).run(); 

  } 

} 

The start() method is not invoked on the new thread because of the incorrect assumption that 
run() starts the new thread. Consequently, the statements in the run() method execute in the 
same thread instead of the new one. 

4.3.2 Compliant Solution 

This compliant solution correctly uses the start() method to start a new thread. Then, that me-
thod internally invokes the run() method in the new thread. 

 

public final class Foo implements Runnable { 

  @Override public void run() { 

    // ... 

  } 

   

  public static void main(String[] args) { 

    Foo foo = new Foo(); 

    new Thread(foo).start(); 

  } 

} 
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4.3.3 Exceptions 

THI02-EX1: The run() method may be invoked when unit testing functionality. Note that this 
method cannot be used to test a class for multithreaded use. 

Given a Thread object that has been constructed with a runnable argument, when invoking the 
Thread.run()method, the Thread object may be cast to Runnable to eliminate analyzer di-
agnostics. 

 

Thread thread = new Thread(new Runnable() { 

  @Override public void run() { 

    // ... 

  } 

}); 

 

((Runnable) thread).run();  // Exception: This does not start a new thread  

Casting a thread to Runnable before calling the run() method documents that the explicit call 
to Thread.run() is intentional. Adding an explanatory comment alongside the invocation is 
highly recommended. 

4.3.4 Risk Assessment 

Failing to start threads correctly can cause unexpected behavior. 

Guideline  Severity  Likelihood  Remediation Cost  Priority  Level  

THI02- J  low  probable  medium  P4  L3  

4.3.5 References 

[Sun 2009b] Interface Runnable and class Thread 
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4.4 THI03-J. Always invoke wait() and await() methods inside a loop 

The Object.wait() method temporarily cedes possession of a lock so that another thread that 
is requesting the lock can proceed. Object.wait() must always be called from a synchronized 
block or method. To resume the waiting thread, the requesting thread must invoke the notify() 
method to notify it. Furthermore, the wait() method should be invoked in a loop that checks if a 
condition predicate holds. Note that a condition predicate is the negation of the condition expres-
sion in the loop. For example, the condition predicate for removing an element from a vector is 
!isEmpty(), whereas the condition expression for the while loop condition is isEmpty(). The 
correct way to invoke the wait() method when the vector is empty is shown below. 

public void consumeElement() throws InterruptedException { 

  synchronized (vector) { 

    while (vector.isEmpty()) { 

      vector.wait();  

    } 

 

    // Consume when condition holds 

  } 

} 

The notification mechanism notifies the waiting thread and lets it check its condition predicate. 
The invocation of the notify() or notifyAll() methods in another thread cannot precisely 
determine which waiting thread is resumed. A condition predicate statement is provided so that 
only the correct thread will resume upon receiving the notification. A condition predicate also 
helps when a thread is required to block until a condition becomes true, such as reading data from 
an input stream before proceeding. 

Safety and liveness are both concerns when using the wait/notify mechanism. Safety requires all 
objects to maintain consistent states in a multithreaded environment [Lea 2000a]. Liveness re-
quires that every operation or method invocation execute to completion without interruption. 

To guarantee liveness, the while loop condition must be tested before the wait() method is 
invoked. This is done in case another thread has already satisfied the condition predicate and sent 
a notification. Invoking the wait() method after the notification has been sent results in indefi-
nite blocking. 

To guarantee safety, the while loop condition must be tested even after the wait() method is 
invoked. While wait() is meant to block indefinitely until a notification is received, it must still 
be encased within a loop to prevent the following vulnerabilities [Bloch 2001]: 
• thread in the middle - A third thread can acquire the lock on the shared object during the in-

terval between a notification being sent and the receiving thread resuming execution. This 
thread can change the state of the object, leaving it inconsistent. This is a time-of-check-to-
time-of-use (TOCTOU) condition. 

• malicious notification - There is no guarantee that a random notification will not be received 
when the condition predicate is false. This means that the invocation of wait() may be nul-
lified by the notification. 
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• misdelivered notification - Sometimes on receipt of a notifyAll() signal, an unrelated 
thread can start executing, and it is possible for its condition predicate to be true. Consequent-
ly, it may resume execution although it was required to remain dormant. 

• spurious wake-ups - Certain JVM implementations are vulnerable to spurious wake-ups that 
result in waiting threads waking up even without a notification [Sun 2009b]. 

For these reasons, the condition predicate must be checked after the wait() method is invoked. 
A while loop is the best choice for checking the condition predicate before and after invoking 
wait(). 

Similarly, the await() method of the Condition interface must also be invoked inside a loop. 
According to the Java API [Sun 2009b], Interface Condition 

When waiting upon a Condition, a “spurious wakeup” is permitted to occur, in general, as a 
concession to the underlying platform semantics. This has little practical impact on most ap-
plication programs as a Condition should always be waited upon in a loop, testing the state 
predicate that is being waited for. An implementation is free to remove the possibility of spu-
rious wakeups but it is recommended that applications programmers always assume that 
they can occur and so always wait in a loop.  

New code should use the java.util.concurrent concurrency utilities instead of the 
wait/notify mechanism. However, legacy code may depend on the wait/notify mechanism. 

4.4.1 Noncompliant Code Example 

This noncompliant code example invokes the wait() method inside a traditional if block and 
fails to check the post-condition after the notification is received. If the notification is accidental 
or malicious, the thread can wake up prematurely. 

 

synchronized (object) { 

  if (<condition does not hold>) { 

    object.wait(); 

  } 

  // Proceed when condition holds 

} 
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4.4.2 Compliant Solution 

This compliant solution calls the wait() method from within a while loop to check the condi-
tion before and after wait() is called. 

 

synchronized (object) { 

  while (<condition does not hold>) { 

    object.wait();  

  } 

  // Proceed when condition holds 

} 

Similarly, invocations of the await() method of the  
java.util.concurrent.locks.Condition interface must be enclosed in a loop. 

4.4.3 Risk Assessment 

To guarantee liveness and safety, the wait() and await() methods must always be invoked 
inside a while loop. 

Guideline  Severity  Likelihood  Remediation Cost  Priority  Level  

THI03- J  low  unlikely  medium  P2  L3  

4.4.4 References 

[Bloch 2001] Item 50: “Never invoke wait outside a loop” 

[Goetz 2006] Section 14.2, “Using Condition Queues” 

[Lea 2000a] Section 3.2.2, “Monitor Mechanics”  

Section 1.3.2, “Liveness” 

[Sun 2009b] Class Object 

 

http://java.sun.com/javase/6/docs/api/java/lang/Object.html�
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4.5 THI04-J. Notify all waiting threads instead of a single thread 

A thread that invokes wait() expects to wake up and resume execution when its condition pre-
dicate becomes true. Waiting threads must test their condition predicates upon receiving notifica-
tions and resume waiting if the predicates are false, to be compliant with guideline “THI03-J. Al-
ways invoke wait() and await() methods inside a loop” on page 101. 

The notify() and notifyAll() methods of the java.lang.Object package are used to 
wake up waiting thread(s). These methods must be invoked from code that holds the same object 
lock as the waiting thread(s). An IllegalMonitorStateException is thrown if the current 
thread does not acquire this object’s intrinsic lock before invoking these methods. The  
notifyAll() method wakes up all threads and allows threads whose condition predicate is true 
to resume execution. Furthermore, if all the threads whose condition predicate evaluates to true 
previously held a specific lock before going into the wait state, only one of them will reacquire 
the lock upon being notified. Presumably, the other threads will resume waiting. The notify() 
method wakes up only one thread and makes no guarantees as to which thread is notified. If the 
thread’s condition predicate doesn’t allow the thread to proceed, the chosen thread may resume 
waiting, defeating the purpose of the notification. 

The notify() method may only be invoked if all of the following conditions are met: 
• The condition predicate is identical for each waiting thread. 

• All threads must perform the same set of operations after waking up. This means that any one 
thread can be selected to wake up and resume for a single invocation of notify(). 

• Only one thread is required to wake upon the notification. 

These conditions are satisfied by threads that are identical and provide a stateless service or  
utility. 

The java.util.concurrent utilities (Condition interface) provide the signal() and 
signalAll() methods to awaken threads that are blocked on an await() call. Condition 
objects are required when using Lock objects. A Lock object allows the use of the wait() and 
notify() methods. However, code that synchronizes using a Lock object does not use its own 
intrinsic lock. Instead, one or more Condition objects are associated with the Lock object. 
These objects interact directly with the locking policy enforced by the Lock object. Consequent-
ly, the Condition.await(), Condition.signal(), and Condition.signalAll() me-
thods are used instead of Object.wait(), Object.notify(), and Object.notifyAll().  

The use of the signal() method is insecure when multiple threads await the same Condition 
object unless all of the following conditions are met: 
• The Condition object is identical for each waiting thread. 

• All threads must perform the same set of operations after waking up. This means that any one 
thread can be selected to wake up and resume for a single invocation of signal(). 

• Only one thread is required to wake upon receiving the signal. 

The signal() method may also be invoked when both of the following conditions are met: 
• Each thread uses a unique Condition object. 
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• Each Condition object is associated with a common Lock object. 

The signal() method, if used securely, has better performance than signalAll().  

4.5.1 Noncompliant Code Example (notify()) 

This noncompliant code example shows a complex multistep process being undertaken by several 
threads. Each thread executes the step identified by the time field. Each thread waits for the 
time field to indicate that it is time to perform the corresponding thread’s step. After performing 
the step, each thread increments time and then notifies the thread that is responsible for perform-
ing the next step. 

 

public final class ProcessStep implements Runnable { 

  private static final Object lock = new Object(); 

  private static int time = 0; 

  private final int step; // Do operations when field time reaches this value 

 

  public ProcessStep(int step) { 

    this.step = step; 

  } 

 

  @Override public void run() { 

    try { 

      synchronized (lock) { 

        while (time != step) {  

          lock.wait();   

        } 

 

        // Perform operations 

 

        time++; 

        lock.notify(); 

      } 

    } catch (InterruptedException ie) { 

      Thread.currentThread().interrupt(); // Reset interrupted status 

    }     

  } 

 

  public static void main(String[] args) { 

    for (int i = 4; i >= 0; i--) { 

      new Thread(new ProcessStep(i)).start(); 

    } 

  } 

} 

This noncompliant code example violates the liveness property. Each thread has a different condi-
tion predicate, as each requires step to have a different value before proceeding. The  
Object.notify() method wakes up only one thread at a time. Unless it happens to wake up 
the thread that is required to perform the next step, the program will deadlock.  
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4.5.2 Compliant Solution (notifyAll()) 

In this compliant solution, each thread completes its step and then calls notifyAll() to notify 
the waiting threads. The thread that is ready can then perform its task, while all the threads whose 
condition predicates are false (loop condition expression is true) promptly resume waiting. 

Only the run() method from the noncompliant code example is modified, as follows: 
 

@Override public void run() { 

  try { 

    synchronized (lock) { 

      while (time != step) {  

        lock.wait();   

      } 

 

      // Perform operations 

 

      time++; 

      lock.notifyAll(); // Use notifyAll() instead of notify() 

    } 

  } catch (InterruptedException ie) { 

    Thread.currentThread().interrupt(); // Reset interrupted status 

  }     

} 

4.5.3 Noncompliant Code Example (Condition interface) 

This noncompliant code example is similar to the noncompliant code example for notify() but 
uses the Condition interface for waiting and notification.  

 

public class ProcessStep implements Runnable { 

  private static final Lock lock = new ReentrantLock(); 

  private static final Condition condition = lock.newCondition(); 

  private static int time = 0; 

  private final int step; // Do operations when field time reaches this value 

 

  public ProcessStep(int step) { 

    this.step = step; 

  } 

 

  @Override public void run() { 

    lock.lock(); 

    try { 

      while (time != step) {  

        condition.await();   

      } 

 

      // Perform operations 
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      time++; 

      condition.signal(); 

    } catch (InterruptedException ie) { 

      Thread.currentThread().interrupt(); // Reset interrupted status 

    } finally { 

      lock.unlock(); 

    } 

  } 

 

  public static void main(String[] args) { 

    for (int i = 4; i >= 0; i--) { 

      new Thread(new ProcessStep(i)).start(); 

    } 

  } 

} 

As with Object.notify(), the signal() method may awaken an arbitrary thread.  

4.5.4 Compliant Solution (signalAll()) 

This compliant solution uses the signalAll() method to notify all waiting threads. Before 
await() returns, the current thread reacquires the lock associated with this condition. When the 
thread returns, it is guaranteed to hold this lock [Sun 2009b]. The thread that is ready can perform 
its task, while all the threads whose condition predicates are false resume waiting.  

Only the run() method from the noncompliant code example is modified, as follows: 

 

  @Override public void run() { 

    lock.lock(); 

    try { 

      while (time != step) {  

        condition.await();   

      } 

 

      // Perform operations 

 

      time++; 

      condition.signalAll(); 

    } catch (InterruptedException ie) { 

      Thread.currentThread().interrupt(); // Reset interrupted status 

    } finally { 

      lock.unlock(); 

    } 

  } 
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4.5.5 Compliant Solution (Unique Condition Per Thread) 

This compliant solution assigns each thread its own condition. All the Condition objects are 
accessible to all the threads.  

 

// Declare class as final because its constructor throws an exception  

public final class ProcessStep implements Runnable {  

  private static final Lock lock = new ReentrantLock(); 

  private static int time = 0; 

  private final int step; // Do operations when field time reaches this value 

  private static final int MAX_STEPS = 5; 

  private static final Condition[] conditions = new Condition[MAX_STEPS]; 

 

  public ProcessStep(int step) { 

    if (step <= MAX_STEPS) { 

      this.step = step; 

      conditions[step] = lock.newCondition(); 

    } else { 

      throw new IllegalArgumentException("Too many threads"); 

    } 

  } 

 

  @Override public void run() { 

    lock.lock(); 

    try { 

      while (time != step) {  

        conditions[step].await();   

      } 

 

      // Perform operations 

 

      time++; 

      if (step + 1 < conditions.length) { 

        conditions[step + 1].signal(); 

      } 

    } catch (InterruptedException ie) { 

      Thread.currentThread().interrupt(); // Reset interrupted status 

    } finally { 

      lock.unlock(); 

    } 

  } 

 

  public static void main(String[] args) { 

    for (int i = MAX_STEPS - 1; i >= 0; i--) { 

      ProcessStep ps = new ProcessStep(i); 

      new Thread(ps).start(); 

    } 

  } 

} 
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Even though the signal() method is used, only the thread whose condition predicate corres-
ponds to the unique Condition variable will awaken.  

This compliant solution is safe only if untrusted code cannot create a thread with an instance of 
this class. 

4.5.6 Risk Assessment 

Notifying a single thread instead of all waiting threads can pose a threat to the liveness property of 
the system. 

Guideline  Severity  Likelihood  Remediation Cost  Priority  Level  

THI04- J  low  unlikely  medium  P2  L3  

4.5.7 References 

[Bloch 2001] Item 50: “Never invoke wait outside a loop” 

[Goetz 2006] Section 14.2.4, “Notification” 

[Gosling 2005] Chapter 17, “Threads and Locks” 

[Sun 2009b] java.util.concurrent.locks.Condition interface 

  

http://java.sun.com/docs/books/jls/third_edition/html/memory.html�
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4.6 THI05-J. Do not use Thread.stop() to terminate threads 

Threads always preserve class invariants when they are allowed to exit normally. Programmers 
often try to terminate threads abruptly when they believe that the task is accomplished, the request 
has been canceled, or the program or the JVM needs to shut down quickly.  

A few thread APIs were introduced to facilitate thread suspension, resumption, and termination 
but were later deprecated because of inherent design weaknesses. For example, the 
Thread.stop() method causes the thread to immediately throw a ThreadDeath exception, 
which usually stops the thread.  

Invoking Thread.stop() results in the release of all the locks a thread has acquired, which 
may corrupt the state of the object. The thread could catch the ThreadDeath exception and use a  
finally block in an attempt to repair the inconsistent object. However, that requires careful in-
spection of all the synchronized methods and blocks because a ThreadDeath exception can be 
thrown at any point during the thread’s execution. Furthermore, code must be protected from 
ThreadDeath exceptions that may result when executing catch or finally blocks [Sun 
1999a]. 

More information about deprecated methods is available in guideline “MET15-J. Do not use de-
precated or obsolete methods.”9 EXC09-J. Prevent inadvertent calls to 
System.exit() or forced shutdown

 Also, refer to guideline “
”8 for information on preventing data corruption when the 

JVM is shut down abruptly. 

4.6.1 Noncompliant Code Example (Deprecated Thread.stop()) 

This noncompliant code example shows a thread that fills a vector with pseudo-random numbers. 
The thread is forcefully stopped after a given amount of time. 

 

public final class Container implements Runnable { 

  private final Vector<Integer> vector = new Vector<Integer>(1000); 

 

  public Vector<Integer> getVector() { 

    return vector; 

  } 

   

  @Override public synchronized void run() { 

    Random number = new Random(123L); 

    int i = vector.capacity(); 

    while (i > 0) { 

      vector.add(number.nextInt(100)); 

      i--; 

    }     

  } 

 

  public static void main(String[] args) throws InterruptedException { 

    Thread thread = new Thread(new Container()); 

 
9  This guideline is described at https://www.securecoding.cert.org/confluence/display/java/. 

https://www.securecoding.cert.org/confluence/x/KgAVAg�
https://www.securecoding.cert.org/confluence/x/KgAVAg�
https://www.securecoding.cert.org/confluence/x/PoYbAQ�
https://www.securecoding.cert.org/confluence/x/PoYbAQ�
https://www.securecoding.cert.org/confluence/display/java/
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    thread.start(); 

    Thread.sleep(5000); 

    thread.stop(); 

  } 

} 

Because the Vector class is thread-safe, operations performed by multiple threads on its shared 
instance are expected to leave it in a consistent state. For instance, the Vector.size() method 
always returns the correct number of elements in the vector even in the face of concurrent changes 
to the vector. This is because the vector instance uses its own intrinsic lock to prevent other 
threads from accessing it while its state is temporarily inconsistent.  

However, the Thread.stop() method causes the thread to stop what it is doing and throw a 
ThreadDeath exception. All acquired locks are subsequently released [Sun 2009b]. If the thread 
is in the process of adding a new integer to the vector when it is stopped, the vector may become 
accessible while it is in an inconsistent state. This can result in Vector.size() returning an 
incorrect element count, for example, because the element count is incremented after adding the 
element. 

4.6.2 Compliant Solution (Volatile Flag) 

This compliant solution uses a volatile flag to terminate the thread. The shutdown()accessor 
method is used to set the flag to true. The thread’s run() method polls the done flag and termi-
nates when it becomes true. 

 

public final class Container implements Runnable { 

  private final Vector<Integer> vector = new Vector<Integer>(1000); 

  private volatile boolean done = false; 

   

  public Vector<Integer> getVector() { 

    return vector; 

  } 

   

  public void shutdown() { 

    done = true; 

  } 

 

  @Override public synchronized void run() { 

    Random number = new Random(123L); 

    int i = vector.capacity(); 

    while (!done && i > 0) { 

      vector.add(number.nextInt(100)); 

      i--; 

    } 

  } 

 

  public static void main(String[] args) throws InterruptedException { 

    Container container = new Container(); 

    Thread thread = new Thread(container); 
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    thread.start(); 

    Thread.sleep(5000); 

    container.shutdown(); 

  } 

} 

4.6.3 Compliant Solution (Interruptible) 

In this compliant solution, the Thread.interrupt() method is called from main() to termi-
nate the thread. Invoking Thread.interrupt() sets an internal interrupt status flag. The 
thread polls that flag using the Thread.interrupted() method, which returns true if the cur-
rent thread has been interrupted and clears the interrupt status.  

 

public final class Container implements Runnable { 

  private final Vector<Integer> vector = new Vector<Integer>(1000); 

    

  public Vector<Integer> getVector() { 

    return vector; 

  } 

 

  @Override public synchronized void run() { 

    Random number = new Random(123L); 

    int i = vector.capacity(); 

    while (!Thread.interrupted() && i > 0) { 

      vector.add(number.nextInt(100)); 

      i--; 

    } 

  } 

 

  public static void main(String[] args) throws InterruptedException { 

    Container c = new Container(); 

    Thread thread = new Thread(c); 

    thread.start(); 

    Thread.sleep(5000); 

    thread.interrupt(); 

  } 

} 

A thread may use interruption for performing tasks other than cancellation and shutdown. Conse-
quently, a thread should not be interrupted unless its interruption policy is known in advance. 
Failure to do so can result in failed interruption requests. 
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4.6.4 Compliant Solution (Runtime Permission stopThread) 

Removing the default java.lang.RuntimePermission stopThread permission from the 
security policy file prevents threads from being stopped using the Thread.stop() method. This 
approach is not recommended for trusted, custom-developed code that uses that method because 
the existing design presumably depends on the ability of the system to perform this action. Fur-
thermore, the system may not be designed to properly handle the resulting exception. In these cas-
es, it is preferable to implement an alternate design approach corresponding to another compliant 
solution described in this guideline. 

4.6.5 Risk Assessment 

Forcing a thread to stop can result in inconsistent object state. Critical resources may also leak if 
clean-up operations are not carried out as required. 

Guideline  Severity  Likelihood  Remediation Cost  Priority  Level  

THI05- J  low  probable  medium  P4  L3  

4.6.6 References 

[Arnold 2006] Section 14.12.1, “Don’t stop” 

Section 23.3.3, “Shutdown Strategies” 

[Darwin 2004] Section 24.3, “Stopping a Thread” 

[Goetz 2006] Chapter 7, “Cancellation and shutdown” 

[Oaks 2004] Section 2.4, “Two Approaches to Stopping a Thread” 

[Sun 2009b] Class Thread, method stop, interface ExecutorService 

[Sun 2008c] Concurrency Utilities, More information: Java Thread Primitive Deprecation  

[Sun 99]  
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4.7 THI06-J. Ensure that threads and tasks performing blocking operations can be 
terminated 

Threads and tasks that block on operations involving network or file input/output (I/O) must pro-
vide callers with an explicit termination mechanism to prevent denial-of-service vulnerabilities. 

4.7.1 Noncompliant Code Example (Blocking I/O, Volatile Flag) 

This noncompliant code example uses a volatile done flag to indicate that it is safe to shut down 
the thread, as suggested in guideline “THI05-J. Do not use Thread.stop() to terminate 
threads” on page 110. However, setting the flag does not terminate the thread if it is blocked on 
network I/O as a consequence of invoking the readLine() method.  

 

public final class SocketReader implements Runnable { // Thread-safe class 

  private final Socket socket; 

  private final BufferedReader in; 

  private volatile boolean done = false; 

  private final Object lock = new Object(); 

 

  public SocketReader(String host, int port) throws IOException { 

    this.socket = new Socket(host, port); 

    this.in = new BufferedReader(new InputStreamReader(this.socket.getInputStream())); 

  } 

   

  // Only one thread can use the socket at a particular time 

  @Override public void run() { 

    try { 

      synchronized (lock) { 

        readData();  

      }       

    } catch (IOException ie) { 

      // Forward to handler 

    } 

  } 

 

  public void readData() throws IOException { 

    String string; 

    while (!done && (string = in.readLine()) != null) { 

      // Blocks until end of stream (null) 

    } 

  } 

 

  public void shutdown() { 

    done = true; 

  } 

 

  public static void main(String[] args) throws IOException, InterruptedException { 

    SocketReader reader = new SocketReader("somehost", 25); 

    Thread thread = new Thread(reader); 

https://www.securecoding.cert.org/confluence/display/java/CON13-J.+Do+not+use+Thread.stop%28%29+to+terminate+threads�
https://www.securecoding.cert.org/confluence/display/java/CON13-J.+Do+not+use+Thread.stop%28%29+to+terminate+threads�
https://www.securecoding.cert.org/confluence/display/java/CON13-J.+Do+not+use+Thread.stop%28%29+to+terminate+threads�
https://www.securecoding.cert.org/confluence/display/java/CON13-J.+Do+not+use+Thread.stop%28%29+to+terminate+threads�
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    thread.start(); 

    Thread.sleep(1000); 

    reader.shutdown(); // Shutdown the thread 

  } 

} 

4.7.2 Noncompliant Code Example (Blocking I/O, Interruptible) 

This noncompliant code example is similar to the preceding one but uses thread interruption to 
shut down the thread. Network I/O is not responsive to thread interruption when a  
java.net.Socket is being used. The readData() and main() methods are modified as 
follows: 

 

public final class SocketReader implements Runnable { // Thread-safe class 

  // ... 

   

  public void readData() throws IOException { 

    String string; 

    while (!Thread.interrupted() && (string = in.readLine()) != null) {  

      // Blocks until end of stream (null) 

    } 

  } 

   

  public static void main(String[] args) throws IOException, InterruptedException { 

    SocketReader reader = new SocketReader("somehost", 25); 

    Thread thread = new Thread(reader); 

    thread.start(); 

    Thread.sleep(1000);  

    thread.interrupt(); // Interrupt the thread 

  } 

} 

4.7.3 Compliant Solution (Close Socket Connection) 

This compliant solution resumes the thread by having the shutdown() method close the socket. 
The readLine() method throws a SocketException when the socket is closed, which lets 
the thread proceed. Note that there is no way to keep the connection alive if the thread is to be 
halted cleanly and immediately. 

 

public final class SocketReader implements Runnable { 

  // ... 

   

  public void readData() throws IOException { 

    String string; 

    try { 

      while ((string = in.readLine()) != null) {  

        // Blocks until end of stream (null) 

      } 

    } finally { 
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      shutdown(); 

    } 

  } 

   

  public void shutdown() throws IOException { 

    socket.close(); 

  } 

 

  public static void main(String[] args) throws IOException, InterruptedException { 

    SocketReader reader = new SocketReader("somehost", 25); 

    Thread thread = new Thread(reader); 

    thread.start(); 

    Thread.sleep(1000);  

    reader.shutdown(); 

  } 

} 

After the shutdown() method is called from main(), the finally block in readData() 
executes and calls shutdown() again, closing the socket for a second time. However, this 
second call has no effect if the socket has already been closed. 

When performing asynchronous I/O, a java.nio.channels.Selector may also be brought 
out of the blocked state by invoking either its close() or wakeup() method.  

A boolean flag can be used if additional operations need to be performed after emerging from 
the blocked state. When supplementing the code with such a flag, the shutdown() method 
should also set the flag to false so that the thread can exit cleanly from the while loop.  

4.7.4 Compliant Solution (Interruptible Channel) 

This compliant solution uses an interruptible channel,  
java.nio.channels.SocketChannel, instead of a Socket connection. If the thread per-
forming the network I/O is interrupted using the Thread.interrupt() method while it is 
reading the data, the thread receives a ClosedByInterruptException, and the channel is 
closed immediately. The thread’s interrupted status is also set. 

 

public final class SocketReader implements Runnable { 

  private final SocketChannel sc; 

  private final Object lock = new Object(); 

   

  public SocketReader(String host, int port) throws IOException { 

    sc = SocketChannel.open(new InetSocketAddress(host, port));     

  } 

   

  @Override public void run() { 

    ByteBuffer buf = ByteBuffer.allocate(1024); 

    try { 

      synchronized (lock) { 

        while (!Thread.interrupted()) { 

          sc.read(buf); 
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          // ... 

        } 

      } 

    } catch (IOException ie) { 

      // Forward to handler 

    } 

  } 

 

  public static void main(String[] args) throws IOException, InterruptedException { 

    SocketReader reader = new SocketReader("somehost", 25); 

    Thread thread = new Thread(reader); 

    thread.start(); 

    Thread.sleep(1000); 

    thread.interrupt(); 

  } 

} 

This technique interrupts the current thread. However, it only stops the thread because the code 
polls the thread’s interrupted status with the Thread.interrupted() method and terminates 
the thread when it is interrupted. Using a SocketChannel ensures that the condition in the 
while loop is tested as soon as an interruption is received, despite the read being a blocking opera-
tion. Similarly, invoking the interrupt() method of a thread that is blocked because of  
java.nio.channels.Selector also causes that thread to awaken.  

4.7.5 Noncompliant Code Example (Database Connection) 

This noncompliant code example shows a thread-safe DBConnector class that creates one Java 
Database Connectivity (JDBC) connection per thread. Each connection belongs to one thread and 
is not shared by other threads. This is a common use case because JDBC connections are not 
meant to be shared by multiple threads.  

 

public final class DBConnector implements Runnable { 

  private final String query; 

   

  DBConnector(String query) { 

    this.query = query;  

  } 

  

  @Override public void run() { 

    Connection connection; 

    try { 

      // Username and password are hard-coded for brevity 

      connection = DriverManager.getConnection( 

        "jdbc:driver:name",  

        "username",  

        "password" 

      );   

      Statement stmt = connection.createStatement(); 

      ResultSet rs = stmt.executeQuery(query); 
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      // ... 

    } catch (SQLException e) { 

      // Forward to handler 

    } 

    // ...  

  }   

 

  public static void main(String[] args) throws InterruptedException { 

    DBConnector connector = new DBConnector("suitable query"); 

    Thread thread = new Thread(connector); 

    thread.start(); 

    Thread.sleep(5000); 

    thread.interrupt(); 

  } 

} 

Database connections, like sockets, are not inherently interruptible. Consequently, this design 
does not permit a client to cancel a task by closing the resource if the corresponding thread is 
blocked on a long-running query such as a join.  

4.7.6 Compliant Solution (Statement.cancel()) 

This compliant solution uses a ThreadLocal wrapper around the connection so that a thread 
calling the initialValue() method obtains a unique connection instance. The advantage of 
this approach is that a cancelStatement() method can be provided so that other threads or 
clients can interrupt a long-running query when required. The cancelStatement() method 
invokes the Statement.cancel()method. 

 

public final class DBConnector implements Runnable { 

  private final String query; 

  private volatile Statement stmt; 

   

  DBConnector(String query) { 

    this.query = query; 

    if (getConnection() != null) { 

      try { 

        stmt = getConnection().createStatement(); 

      } catch (SQLException e) { 

        // Forward to handler  

      } 

    } 

  } 

  

  private static final ThreadLocal<Connection> connectionHolder =  

    new ThreadLocal<Connection>() { 

    Connection connection = null; 

 

    @Override public Connection initialValue() { 

      try { 
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        // ... 

        connection = DriverManager.getConnection( 

          "jdbc:driver:name",  

          "username",  

          "password" 

        ); 

      } catch (SQLException e) { 

        // Forward to handler 

      } 

      return connection; 

    } 

  }; 

 

  public Connection getConnection() { 

    return connectionHolder.get(); 

  } 

 

  public boolean cancelStatement() { // Allows client to cancel statement 

    if (stmt != null) { 

      try { 

 stmt.cancel(); 

        return true; 

      } catch (SQLException e) { 

        // Forward to handler   

      } 

    } 

    return false; 

  } 

 

  @Override public void run() { 

    try { 

      if(stmt == null || (stmt.getConnection() != getConnection())) { 

        throw new IllegalStateException();  

      }  

      ResultSet rs = stmt.executeQuery(query); 

      // ... 

    } catch (SQLException e) { 

      // Forward to handler   

    }     

    // ... 

  } 
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  public static void main(String[] args) throws InterruptedException { 

    DBConnector connector = new DBConnector("suitable query"); 

    Thread thread = new Thread(connector); 

    thread.start(); 

    Thread.sleep(5000); 

    connector.cancelStatement(); 

  } 

} 

The Statement.cancel() method cancels the query, provided that the database management 
system (DBMS) and driver both support cancellation. It is not possible to conform with this 
guideline if they do not. 

According to the Java API, interface Statement documentation [Sun 2009b] 
By default, only one ResultSet object per Statement object can be open at the same 
time. Therefore, if the reading of one ResultSet object is interleaved with the reading of 
another, each must have been generated by different Statement objects. 

This compliant solution ensures that only one ResultSet is associated with the Statement 
belonging to an instance, and, consequently, only one thread can access the query results.  

4.7.7 Risk Assessment 

Failing to provide facilities for thread termination can cause non-responsiveness and denial of 
service. 

Guideline  Severity  Likelihood  Remediation Cost  Priority  Level  

THI06- J  low  probable  medium  P4  L3  

4.7.8 References 

[Arnold 2006] Section 14.12.1, “Don't stop” 

Section 23.3.3, “Shutdown Strategies” 

[Darwin 2004] Section 24.3, “Stopping a Thread” 

[Goetz 2006] Chapter 7, “Cancellation and shutdown” 

[Oaks 2004] Section 2.4, “Two Approaches to Stopping a Thread” 

[Sun 2009b] Class Thread, method stop, interface ExecutorService 

[Sun 2008c] Concurrency Utilities, More information: “Java Thread Primitive Deprecation”  
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5 Thread Pools (TPS) Guidelines 

5.1 TPS00-J. Use thread pools to enable graceful degradation of service during 
traffic bursts 

Many programs must address the problem of handling a series of incoming requests. The Thread-
Per-Message design pattern is the simplest concurrency strategy wherein a new thread is created 
for each request [Lea 2000a]. This pattern is generally preferred to sequential executions of time-
consuming, I/O-bound, session-based, or isolated tasks. 

However, this pattern also has several pitfalls, including overheads of thread-creation and sche-
duling, task processing, resource allocation and deallocation, and frequent context switching [Lea 
2000a]. Furthermore, an attacker can cause a denial of service by overwhelming the system with 
too many requests all at once. Instead of degrading gracefully, the system becomes unresponsive, 
causing a denial of service. From a safety perspective, one component can exhaust all resources 
because of some intermittent error, starving all other components. 

Thread pools allow a system to service as many requests as it can comfortably sustain, rather than 
terminating all services when presented with a deluge of requests. Thread pools overcome these 
issues by controlling the maximum number of worker threads that can be initialized and executed 
concurrently. Every object that supports thread pools accepts a Runnable or Callable<T> task 
and stores it in a temporary queue until resources become available. Because the threads in a 
thread pool can be reused and efficiently added or removed from the pool, thread life-cycle man-
agement overhead is minimized.  

5.1.1 Noncompliant Code Example 

This noncompliant code example demonstrates the Thread-Per-Message design pattern. The  
RequestHandler class provides a public static factory method so that callers can obtain its in-
stance. The handleRequest() method is subsequently invoked to handle each request in its 
own thread. 

 

class Helper { 

  public void handle(Socket socket) { 

    //...    

  }  

} 

 

final class RequestHandler { 

  private final Helper helper = new Helper(); 

  private final ServerSocket server; 

 

  private RequestHandler(int port) throws IOException { 

    server = new ServerSocket(port); 

  } 

   

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Lea00�
https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Lea00�
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  public static RequestHandler newInstance() throws IOException { 

    return new RequestHandler(0); // Selects next available port 

  } 

   

  public void handleRequest() { 

    new Thread(new Runnable() { 

      public void run() { 

        try { 

          helper.handle(server.accept()); 

        } catch (IOException e) { 

          // Forward to handler    

        } 

      } 

    }).start(); 

  } 

 

} 

The Thread-Per-Message strategy fails to provide graceful degradation of service. As more 
threads are created, processing continues normally until some scarce resource is exhausted. For 
example, a system may allow only a limited number of open file descriptors, even though several 
more threads can be created to service requests. When the scarce resource is memory, the system 
may fail abruptly, resulting in a denial of service. 

5.1.2 Compliant Solution 

This compliant solution uses a fixed-thread pool that places an upper bound on the number of 
concurrently executing threads. Tasks submitted to the pool are stored in an internal queue. That 
prevents the system from being overwhelmed when trying to respond to all the incoming requests 
and allows it to degrade gracefully by serving a fixed number of clients at a particular time [Sun 
2008a]. 

 

// class Helper remains unchanged 

 

final class RequestHandler { 

  private final Helper helper = new Helper(); 

  private final ServerSocket server; 

  private final ExecutorService exec; 

   

  private RequestHandler(int port, int poolSize) throws IOException { 

    server = new ServerSocket(port); 

    exec = Executors.newFixedThreadPool(poolSize); 

  } 

    

  public static RequestHandler newInstance(int poolSize) throws IOException { 

    return new RequestHandler(0, poolSize);  

  } 

    

  public void handleRequest() {  
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    Future<?> future = exec.submit(new Runnable() { 

      @Override public void run() { 

 try { 

     helper.handle(server.accept()); 

 } catch (IOException e) { 

            // Forward to handler       

        } 

      } 

    }); 

  } 

  // ... other methods such as shutting down the thread pool and task cancellation ... 

} 

According to the Java API documentation for the Executor interface [Sun 2009b] 
[The Interface Executor is] An object that executes submitted Runnable tasks. This inter-
face provides a way of decoupling task submission from the mechanics of how each task will 
be run, including details of thread use, scheduling, etc. An Executor is normally used in-
stead of explicitly creating threads. 

The ExecutorService interface used in this compliant solution derives from the  
java.util.concurrent.Executor interface. The ExecutorService.submit() me-
thod allows callers to obtain a Future<V> object. This object encapsulates the as-yet-unknown 
result of an asynchronous computation and enables callers to perform additional functions such as 
task cancellation.  

The choice of the unbounded newFixedThreadPool is not always optimal. Refer to the Java 
API documentation about choosing between the following to meet specific design requirements 
[Sun 2009b]: 
• newFixedThreadPool() 

• newCachedThreadPool() 

• newSingleThreadExecutor() 

• newScheduledThreadPool() 
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5.1.3 Risk Assessment 

Using simplistic concurrency primitives to process an unbounded number of requests may result 
in severe performance degradation, deadlock, or system resource exhaustion and denial of service. 

Guideline  Severity  Likelihood  Remediation Cost  Priority  Level  

TPS00- J  low  probable  high  P2  L3  

5.1.4 References 

[Goetz 2006]  Chapter 8, “Applying Thread Pools” 

[Lea 2000a]  Section 4.1.3, “Thread-Per-Message”  

Section 4.1.4, “Worker Threads” 

[MITRE 2010] CWE ID 405, “Asymmetric Resource Consumption (Amplification)” 

CWE ID 410, “Insufficient Resource Pool” 

[Sun 2009b]  Interface Executor 

[Sun 2008a]  Thread Pools 

 

http://cwe.mitre.org/data/definitions/405.html�
http://cwe.mitre.org/data/definitions/410.html�
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/Executor.html�
http://java.sun.com/docs/books/tutorial/essential/concurrency/pools.html�
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5.2 TPS01-J. Do not execute interdependent tasks in a bounded thread pool 

A bounded thread pool allows the programmer to specify the upper limit on the number of threads 
that can execute in a thread pool at a particular time. Tasks that depend on the completion of other 
tasks should not be executed in a bounded thread pool. 

A form of deadlock called thread-starvation deadlock arises when all the threads executing in the 
pool are blocked on tasks that have not yet begun executing and are waiting on an internal queue. 
Thread-starvation deadlock occurs when currently executing tasks submit other tasks to a thread 
pool and wait for them to complete, but the thread pool does not have the capacity to accommo-
date all the tasks at once.  

This problem is deceptive because the program may appear to function correctly when fewer 
threads are needed. In some cases, the issue can be mitigated by choosing a larger pool size; how-
ever, there is often no easy way to determine a suitable size.  

Similarly, threads in a thread pool may not be recycled if two executing tasks require each other 
to complete before they can terminate. A blocking operation within a subtask can also lead to un-
bounded, queue growth [Goetz 2006].  

5.2.1 Noncompliant Code Example (Interdependent Subtasks) 

This noncompliant code example is vulnerable to thread-starvation deadlock. It consists of the 
ValidationService class, which performs various input validation tasks such as checking 
whether a user-supplied field exists in a back-end database.  

The fieldAggregator() method accepts a variable number of String arguments and creates 
a task corresponding to each argument to parallelize processing. The task performs input valida-
tion using the ValidateInput class.  

In turn, the ValidateInput class attempts to sanitize the input by creating a subtask for each 
request using the SanitizeInput class. All tasks are executed in the same thread pool. The 
fieldAggregator() method blocks until all the tasks have finished executing and, when all 
results are available, returns the aggregated results as a StringBuilder object to the caller. 

 

public final class ValidationService { 

  private final ExecutorService pool; 

 

  public ValidationService(int poolSize) { 

    pool = Executors.newFixedThreadPool(poolSize); 

  } 

   

  public void shutdown() { 

    pool.shutdown(); 

  } 

      

  public StringBuilder fieldAggregator(String... inputs)  

    throws InterruptedException, ExecutionException { 
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    StringBuilder sb = new StringBuilder(); 

    Future<String>[] results = new Future[inputs.length]; // Stores the results 

   

    for (int i = 0; i < inputs.length; i++) { // Submits the tasks to thread pool 

      results[i] = pool.submit(new ValidateInput<String>(inputs[i], pool));      

    }  

 

    for (int i = 0; i < inputs.length; i++) { // Aggregates the results       

      sb.append(results[i].get());       

    } 

    return sb; 

  } 

} 

 

public final class ValidateInput<V> implements Callable<V> { 

  private final V input; 

  private final ExecutorService pool; 

 

  ValidateInput(V input, ExecutorService pool) { 

    this.input = input; 

    this.pool = pool; 

  } 

 

  @Override public V call() throws Exception { 

    // If validation fails, throw an exception here 

    Future<V> future = pool.submit(new SanitizeInput<V>(input)); // Subtask 

    return (V)future.get(); 

  } 

} 

 

public final class SanitizeInput<V> implements Callable<V> { 

  private final V input; 

  

  SanitizeInput(V input) { 

    this.input = input; 

  } 

 

  @Override public V call() throws Exception { 

    // Sanitize input and return 

    return (V)input;  

  } 

} 

Assuming that the pool size is set to six, the ValidationService.fieldAggregator() 
method is invoked to validate the six arguments and submit six tasks to the thread pool. Each task 
submits corresponding subtasks to sanitize the input. The SanitizeInput subtasks must ex-
ecute before these threads can return their results. However, this is impossible because all six 
threads in the thread pool are blocked. Furthermore, the shutdown() method cannot shut down 
the thread pool when it contains active tasks. 
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Thread-starvation deadlock can also occur when a single threaded Executor is used, for exam-
ple, when the caller creates several subtasks and waits for the results.  

5.2.2 Compliant Solution (No Interdependent Tasks) 

This compliant solution modifies the ValidateInput<V> class so that the SanitizeInput 
tasks are executed in the same threads as the ValidateInput tasks and not in separate threads. 
Consequently, the ValidateInput and SanitizeInput tasks are independent and need not 
wait for each other to complete. The SanitizeInput class has also been modified to not im-
plement the Callable interface. 

 

public final class ValidationService { 

  // ... 

  public StringBuilder fieldAggregator(String... inputs)  

      throws InterruptedException, ExecutionException { 

    // ... 

    for (int i = 0; i < inputs.length; i++) { 

      // Don't pass-in thread pool 

      results[i] = pool.submit(new ValidateInput<String>(inputs[i]));     

    }  

    // ... 

  }  

} 

 

// Does not use same thread pool 

public final class ValidateInput<V> implements Callable<V> {  

  private final V input; 

  

  ValidateInput(V input) { 

    this.input = input; 

  } 

 

  @Override public V call() throws Exception { 

    // If validation fails, throw an exception here 

    return (V) new SanitizeInput().sanitize(input); 

  } 

} 

 

public final class SanitizeInput<V> {  // No longer a Callable task 

  public SanitizeInput() {} 

 

  public V sanitize(V input) { 

    // Sanitize input and return 

    return input;  

  } 

} 
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Thread-starvation issues can be mitigated by choosing a large thread pool size. However, an un-
trusted caller may still overwhelm the system by supplying more inputs (see guideline “TPS00-J. 
Use thread pools to enable graceful degradation of service during traffic bursts” on page 121). 

Note that operations with further constraints, such as the total number of database connections or 
total ResultSet objects open at a particular time, impose an upper bound on the thread pool size 
because each thread continues to block until the resource becomes available.  

Private static ThreadLocal variables may be used to maintain local state in each thread. When 
using thread pools, the lifetime of ThreadLocal variables should be bounded by the corres-
ponding task [Goetz 2006]. Furthermore, these variables should not be used to communicate be-
tween tasks. There are additional constraints on the use of ThreadLocal variables in thread 
pools (see guideline “TPS04-J. Ensure ThreadLocal variables are reinitialized when using thread 
pools” on page 139). 

5.2.3 Noncompliant Code Example (Subtasks) 

This noncompliant code example contains a series of subtasks that execute in a shared thread pool 
[Gafter 2006]. The BrowserManager class calls perUser(), which starts tasks that invoke 
perProfile(). The perProfile() method starts tasks that invoke perTab(), and, in turn, 
perTab() starts tasks that invoke doSomething(). BrowserManager then waits for the 
tasks to finish. The threads are allowed to invoke doSomething() in any order, provided 
count correctly records the number of methods executed. 

 

public final class BrowserManager { 

  private final ExecutorService pool = Executors.newFixedThreadPool(10); 

  private final int numberOfTimes; 

  private static AtomicInteger count = new AtomicInteger(); // count = 0 

 

  public BrowserManager(int n) { 

    numberOfTimes = n; 

  } 

 

  public void perUser() {   

    methodInvoker(numberOfTimes, "perProfile");  

    pool.shutdown(); 

  } 

 

  public void perProfile() { 

    methodInvoker(numberOfTimes, "perTab");    

  } 

 

  public void perTab() {   

    methodInvoker(numberOfTimes, "doSomething"); 

  } 

 

  public void doSomething() { 

    System.out.println(count.getAndIncrement()); 

  } 

https://www.securecoding.cert.org/confluence/display/java/CON29-J.+Use+thread+pools+to+enable+graceful+degradation+of+service+during+traffic+bursts�
https://www.securecoding.cert.org/confluence/display/java/CON29-J.+Use+thread+pools+to+enable+graceful+degradation+of+service+during+traffic+bursts�
https://www.securecoding.cert.org/confluence/display/java/CON29-J.+Use+thread+pools+to+enable+graceful+degradation+of+service+during+traffic+bursts�
https://www.securecoding.cert.org/confluence/display/java/CON29-J.+Use+thread+pools+to+enable+graceful+degradation+of+service+during+traffic+bursts�
https://www.securecoding.cert.org/confluence/display/java/CON33-J.+Ensure+ThreadLocal+variables+are+reinitialized+when+using+thread+pools�
https://www.securecoding.cert.org/confluence/display/java/CON33-J.+Ensure+ThreadLocal+variables+are+reinitialized+when+using+thread+pools�
https://www.securecoding.cert.org/confluence/display/java/CON33-J.+Ensure+ThreadLocal+variables+are+reinitialized+when+using+thread+pools�
https://www.securecoding.cert.org/confluence/display/java/CON33-J.+Ensure+ThreadLocal+variables+are+reinitialized+when+using+thread+pools�
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  public void methodInvoker(int n, final String method) { 

    final BrowserManager manager = this; 

    Callable<Object> callable = new Callable<Object>() { 

      @Override public Object call() throws Exception { 

        Method meth = manager.getClass().getMethod(method); 

        return meth.invoke(manager);       

      } 

    };   

 

    Collection<Callable<Object>> collection = Collections.nCopies(n, callable);  

    try { 

      Collection<Future<Object>> futures = pool.invokeAll(collection); 

    } catch (InterruptedException e) {      

      // Forward to handler   

      Thread.currentThread().interrupt(); // Reset interrupted status 

    } 

    // ...  

  } 

 

  public static void main(String[] args) { 

    BrowserManager manager = new BrowserManager(5); 

    manager.perUser(); 

  } 

} 

Unfortunately, this program is susceptible to a thread-starvation deadlock. For example, if each of 
the five perUser tasks spawns five perProfile tasks, which each spawn a perTab task, the 
thread pool will be exhausted, and perTab() will not be able to allocate any additional threads 
to invoke the doSomething() method.  
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5.2.4 Compliant Solution (CallerRunsPolicy) 

This compliant solution selects and schedules tasks for execution, avoiding thread-starvation 
deadlock. It sets the CallerRunsPolicy on a ThreadPoolExecutor and uses a  
SynchronousQueue [Gafter 2006]. The policy dictates that if the thread pool runs out of avail-
able threads, any subsequent tasks will run in the thread that submitted the tasks.  

 

public final class BrowserManager { 

  private final static ThreadPoolExecutor pool = 

    new ThreadPoolExecutor(0, 10, 60L, TimeUnit.SECONDS, 

                           new SynchronousQueue<Runnable>()); 

  private final int numberOfTimes; 

  private static AtomicInteger count = new AtomicInteger(); // count = 0 

 

  static { 

    pool.setRejectedExecutionHandler( 

    new ThreadPoolExecutor.CallerRunsPolicy()); 

  } 

 

  // ...  

}  

According to Goetz and colleagues [Goetz 2006] 
A SynchronousQueue is not really a queue at all, but a mechanism for managing han-
doffs between threads. In order to put an element on the SynchronousQueue, another 
thread must already be waiting to accept the handoff. It no thread is waiting but the current 
pool size is less than the maximum, ThreadPoolExecutor creates a new thread; other-
wise the task is rejected according to the saturation policy.  

According to the Java API [Sun 2009b], the CallerRunsPolicy class is 
a handler for rejected tasks that runs the rejected task directly in the calling thread of the 
execute method, unless the executor has been shut down, in which case the task is dis-
carded 

In this compliant solution, tasks that have other tasks waiting to accept the handoff are added to 
the SynchronousQueue when the thread pool is full. For example, tasks corresponding to  
perTab() are added to the SynchronousQueue because the tasks corresponding to  
perProfile() are waiting to receive the handoff. Once the pool is full, additional tasks are re-
jected, according to the saturation policy in effect. Because the CallerRunsPolicy is used to 
handle these rejected tasks, all the rejected tasks are executed in the main thread that started the 
initial tasks. When all the threads corresponding to perTab() have finished executing, the next 
set of tasks corresponding to perProfile() are added to the SynchronousQueue because 
the handoff is subsequently used by the perUser() tasks.  

The CallerRunsPolicy allows the graceful degradation of service when faced with many re-
quests by distributing the workload from the thread pool to the work queue. Because the submit-
ted tasks do not block for any reason other than waiting for other tasks to complete, the policy 
guarantees that the current thread can handle multiple tasks sequentially. The policy would not 
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prevent thread-starvation deadlock if the tasks were to block for some other reason, such as net-
work I/O. Furthermore, because SynchronousQueue does not store tasks indefinitely for future 
execution, there is no unbounded queue growth, and all tasks are handled by the current thread or 
a thread in the thread pool. 

This compliant solution is subject to the vagaries of the thread scheduler, which may not schedule 
the tasks optimally. However, it avoids thread-starvation deadlock. 

5.2.5 Risk Assessment 

Executing interdependent tasks in a thread pool can lead to denial of service. 

Guideline  Severity  Likelihood  Remediation Cost  Priority  Level  

TPS01- J  low  probable  medium  P4  L3  

5.2.6 References 

[Gafter 2006]  A Thread Pool Puzzler 

[Goetz 2006]  Section 8.3.2, “Managing queued tasks”  

Section 8.3.3, “Saturation Policies”  

Section 5.3.3, “Deques and work stealing” 

[Sun 2009b]   

http://gafter.blogspot.com/2006/11/thread-pool-puzzler.html�
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5.3 TPS02-J. Ensure that tasks submitted to a thread pool are interruptible 

Do not submit tasks that do not support interruption using Thread.interrupt() to a thread 
pool if it is necessary to shut down the thread pool or cancel individual tasks within it.  

According to the Java API interface [Sun 2009b], the  
java.util.concurrent.ExecutorService.shutdownNow() method 

Attempts to stop all actively executing tasks, halts the processing of waiting tasks, and re-
turns a list of the tasks that were awaiting execution. There are no guarantees beyond best-
effort attempts to stop processing actively executing tasks. For example, typical implementa-
tions will cancel via Thread.interrupt(), so any task that fails to respond to interrupts 
may never terminate.  

Similarly, when attempting to cancel individual tasks within the thread pool using the  
Future.cancel() method, ensure that the tasks support interruption.  

5.3.1 Noncompliant Code Example (Shutting Down Thread Pools) 

This noncompliant code example submits the SocketReader class as a task to the thread pool 
declared in PoolService.  

 

public final class SocketReader implements Runnable { // Thread-safe class 

  private final Socket socket; 

  private final BufferedReader in; 

  private final Object lock = new Object(); 

 

  public SocketReader(String host, int port) throws IOException { 

    this.socket = new Socket(host, port); 

    this.in = new BufferedReader(new InputStreamReader(this.socket.getInputStream())); 

  } 

   

  // Only one thread can use the socket at a particular time 

  @Override public void run() { 

    try { 

      synchronized (lock) { 

        readData();  

      }       

    } catch (IOException ie) { 

      // Forward to handler 

    } 

  } 

 

  public void readData() throws IOException { 

    String string; 

    try { 

      while ((string = in.readLine()) != null) {  

        // Blocks until end of stream (null) 

      } 

    } finally { 
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      shutdown(); 

    } 

  } 

   

  public void shutdown() throws IOException { 

    socket.close(); 

  } 

} 

 

public final class PoolService { 

  private final ExecutorService pool; 

 

  public PoolService(int poolSize) { 

    pool = Executors.newFixedThreadPool(poolSize); 

  } 

    

  public void doSomething() throws InterruptedException, IOException {     

    pool.submit(new SocketReader("somehost", 8080)); 

    // ... 

    List<Runnable> awaitingTasks = pool.shutdownNow();        

  } 

 

  public static void main(String[] args) throws InterruptedException, IOException { 

    PoolService service = new PoolService(5); 

    service.doSomething(); 

  } 

} 

Because the task does not support interruption using the Thread.interrupt() method, there 
is no guarantee that the shutdownNow() method will shut down the thread pool. Using the latter 
does not fix the problem either because it waits until all the executing tasks have finished.  

Similarly, tasks that use some mechanism other than Thread.interrupted() to determine 
when to shut down will be unresponsive to shutdown() or shutdownNow(). For instance, 
tasks that check a volatile flag to determine whether it is safe to shut down will be unresponsive to 
these methods. The guideline “THI05-J. Do not use Thread.stop() to terminate threads” on 
page 110 provides more information on using a flag to terminate threads. 

5.3.2 Compliant Solution (Submit Interruptible Tasks) 

This compliant solution defines an interruptible version of the SocketReader class, which is 
instantiated and submitted to the thread pool.  

 

public final class SocketReader implements Runnable { 

  private final SocketChannel sc; 

  private final Object lock = new Object(); 

   

  public SocketReader(String host, int port) throws IOException { 

    sc = SocketChannel.open(new InetSocketAddress(host, port));     
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  } 

   

  @Override public void run() { 

    ByteBuffer buf = ByteBuffer.allocate(1024); 

    try { 

      synchronized (lock) { 

        while (!Thread.interrupted()) { 

          sc.read(buf); 

          // ... 

        } 

      } 

    } catch (IOException ie) { 

      // Forward to handler 

    } 

  } 

} 

 

public final class PoolService { 

  // ... 

} 

5.3.3 Exceptions 

TPS02-EX1: Short-running tasks that execute without blocking are not required to adhere to this 
guideline. 

5.3.4 Risk Assessment 

Submitting tasks that are not interruptible may preclude the thread pool from shutting down and 
cause denial of service. 

Guideline  Severity  Likelihood  Remediation Cost  Priority  Level  

TPS02- J  low  probable  medium  P4  L3  

5.3.5 References 

[Goetz 2006]  Chapter 7, “Cancellation and shutdown” 

[Sun 2009b]  Interface ExecutorService 
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5.4 TPS03-J. Ensure that tasks executing in a thread pool do not fail silently 

Long-running tasks should provide a mechanism for notifying the application upon abnormal ter-
mination. Failure to do so does not cause any resource leaks because the threads in the pool are 
still recycled, but it makes failure diagnosis extremely difficult.  

The best way to handle exceptions at the application level is to use an exception handler. The 
handler can perform diagnostic actions, clean up and shut down the JVM, or simply log the details 
of the failure.  

5.4.1 Noncompliant Code Example (Abnormal Task Termination) 

This noncompliant code example consists of the PoolService class that encapsulates a thread 
pool and a runnable Task class. The Task.run() method can throw runtime exceptions such as 
NullPointerException.  

 

final class PoolService { 

  private final ExecutorService pool = Executors.newFixedThreadPool(10); 

     

  public void doSomething() {     

    pool.execute(new Task()); 

  }  

} 

 

final class Task implements Runnable { 

  @Override public void run() { 

    // ... 

    throw new NullPointerException(); 

    // ...  

  } 

} 

The task does not notify the application when it terminates unexpectedly as a result of the runtime 
exception. Moreover, it does not use any recovery mechanism. Consequently, if Task throws a 
NullPointerException, the exception is ignored. 

5.4.2 Compliant Solution (ThreadPoolExecutor Hooks) 

Task-specific recovery or clean-up actions can be performed by overriding the  
afterExecute() hook of the java.util.concurrent.ThreadPoolExecutor class. 
This hook is called when a task concludes successfully by executing all the statements in its 
run() method or halts because of an exception. (java.lang.Error might not be captured on 
specific implementations. See Bug ID 6450211 for more information [Sun 2008b].) When using 
this approach, substitute the executor service with a custom ThreadPoolExecutor that over-
rides the afterExecute() hook as shown below: 

 

final class PoolService { 

  // The values have been hard-coded for brevity 

  ExecutorService pool = new CustomThreadPoolExecutor(10, 10, 10, TimeUnit.SECONDS,  

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6450211�
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                         new ArrayBlockingQueue<Runnable>(10)); 

  // ... 

} 

 

class CustomThreadPoolExecutor extends ThreadPoolExecutor { 

  // ... Constructor ... 

 

  @Override 

  public void afterExecute(Runnable r, Throwable t) { 

    super.afterExecute(r, t); 

    if (t != null) { 

      // Exception occurred, forward to handler 

    } 

    // ... Perform task-specific clean-up actions 

  } 

 

  @Override 

  public void terminated() { 

    super.terminated(); 

    // ... Perform final clean-up actions 

  } 

} 

The terminated() hook is called after all the tasks have finished executing and the Executor 
has terminated cleanly. This hook can be overridden to release resources acquired by the thread 
pool, much like a finally block.  

5.4.3 Compliant Solution (Uncaught Exception Handler) 

This compliant solution sets an uncaught exception handler on behalf of the thread pool. A 
ThreadFactory argument is passed to the thread pool during construction. The factory is re-
sponsible for creating new threads and setting the uncaught exception handler on their behalf. The 
Task class is unchanged from the noncompliant code example. 

 

final class PoolService { 

  private static final ThreadFactory factory = new 

      ExceptionThreadFactory(new MyExceptionHandler()); 

  private static final ExecutorService pool = 

      Executors.newFixedThreadPool(10, factory); 

 

  public void doSomething() { 

    pool.execute(new Task()); // Task is a runnable class              

  } 

  

  public static class ExceptionThreadFactory implements ThreadFactory  { 

    private static final ThreadFactory defaultFactory = 

        Executors.defaultThreadFactory(); 

    private final Thread.UncaughtExceptionHandler handler; 
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    public ExceptionThreadFactory(Thread.UncaughtExceptionHandler handler) { 

      this.handler = handler; 

    } 

 

    @Override public Thread newThread(Runnable run) { 

      Thread thread = defaultFactory.newThread(run); 

      thread.setUncaughtExceptionHandler(handler); 

      return thread; 

    } 

  } 

    

  public static class MyExceptionHandler extends ExceptionReporter  

    implements Thread.UncaughtExceptionHandler { 

    // ...  

 

    @Override public void uncaughtException(Thread thread, Throwable t) { 

      // Recovery or logging code         

    } 

  }    

} 

The ExecutorService.submit() method can be used to submit a task to a thread pool in-
stead of the execute() method to obtain a Future object. Note that the uncaught exception 
handler is not called if ExecutorService.submit() is invoked. This is because the thrown 
exception is considered to be part of the return status and is consequently wrapped in an  
ExecutionException and re-thrown by the Future.get() method [Goetz 2006].  
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5.4.4 Compliant Solution (Future<V> and submit()) 

This compliant solution invokes the ExecutorService.submit() method to submit the task 
so that a Future object can be obtained. It uses the Future object to let the task re-throw the 
exception so that it can be handled locally.  

 

final class PoolService { 

  private final ExecutorService pool = Executors.newFixedThreadPool(10); 

 

  public void doSomething() {      

    Future<?> future = pool.submit(new Task()); 

 

    // ...  

 

    try { 

      future.get(); 

    } catch (InterruptedException e) { 

      Thread.currentThread().interrupt(); // Reset interrupted status       

    } catch (ExecutionException e) { 

      Throwable exception = e.getCause();       

      // Forward to exception reporter 

    } 

  }   

} 

Furthermore, any exception that prevents doSomething() from obtaining the Future value 
can be handled as required. 

5.4.5 Exceptions 

TPS03-EX1: This guideline may be violated if the code for all runnable and callable tasks has 
been audited to ensure that no exceptional conditions are possible. Nonetheless, it is usually a 
good practice to install a task-specific or global exception handler to initiate recovery or log the 
exceptional condition. 

5.4.6 Risk Assessment 

Failing to provide a mechanism for reporting that tasks in a thread pool failed as a result of an 
exceptional condition can make it harder to find the source of the issue. 

Guideline  Severity  Likelihood  Remediation Cost  Priority  Level  

TPS03- J  low  probable  medium  P4  L3  

5.4.7 References 

[Goetz 2006]  Chapter 7.3, “ Handling abnormal thread termination” 

[Sun 2009b]  Interfaces ExecutorService, ThreadFactory and class Thread 
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5.5 TPS04-J. Ensure ThreadLocal variables are reinitialized when using thread 
pools 

The java.lang.ThreadLocal<T> class provides thread-local variables. According to the 
Java API [Sun 2009b] 

These variables differ from their normal counterparts in that each thread that accesses one 
(via its get or set method) has its own, independently initialized copy of the variable. 
ThreadLocal instances are typically private static fields in classes that wish to asso-
ciate state with a thread (e.g., a user ID or Transaction ID).  

The use of ThreadLocal objects requires care in classes whose objects are required to be ex-
ecuted by multiple threads in a thread pool. The technique of thread pooling allows threads to be 
reused when thread creation overhead is too expensive or when creating an unbounded number of 
threads can diminish the reliability of the system. Every thread that enters the pool expects to see 
an object in its initial, default state. However, when ThreadLocal objects are modified from a 
thread that is subsequently made available for reuse, the reused thread sees the state of the 
ThreadLocal object as set by the previous thread [Arnold 2006]. 

5.5.1 Noncompliant Code Example 

This noncompliant code example consists of an enumeration of days (Day) and two classes  
(Diary and DiaryPool). The Diary class uses a ThreadLocal variable to store thread-
specific information, such as each thread’s current day. The initial value of the current day is 
Monday; this can be changed later by invoking the setDay() method. The class also contains a 
threadSpecificTask() instance method that performs a thread-specific task.  

The DiaryPool class consists of the doSomething1() and doSomething2()methods that 
each start a thread. The doSomething1() method changes the initial (default) value of the day 
to Friday and invokes threadSpecificTask(). On the other hand, doSomething2() relies 
on the initial value of the day (Monday) diary and invokes threadSpecificTask(). The 
main() method creates one thread using doSomething1() and two more using  
doSomething2(). 

 

public enum Day { 

  MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY; 

} 

 

public final class Diary { 

  private static final ThreadLocal<Day> days =  

    new ThreadLocal<Day>() { 

      // Initialize to Monday  

      protected Day initialValue() { 

        return Day.MONDAY; 

      } 

    }; 

 

  private static Day currentDay() { 

    return days.get(); 
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  } 

 

  public static void setDay(Day newDay) { 

    days.set(newDay); 

  } 

     

  // Performs some thread-specific task 

  public void threadSpecificTask() { 

    // Do task ... 

  } 

} 

 

public final class DiaryPool { 

  final int NoOfThreads = 2; // Maximum number of threads allowed in pool 

  final Executor exec; 

  final Diary diary; 

 

  DiaryPool() { 

    exec = (Executor) Executors.newFixedThreadPool(NoOfThreads); 

    diary = new Diary(); 

  } 

 

  public void doSomething1() { 

    exec.execute(new Runnable() { 

      @Override public void run() { 

        Diary.setDay(Day.FRIDAY); 

        diary.threadSpecificTask(); 

      } 

    }); 

  }  

 

  public void doSomething2() { 

    exec.execute(new Runnable() { 

      @Override public void run() { 

        diary.threadSpecificTask(); 

      } 

    }); 

  } 

 

  public static void main(String[] args) { 

    DiaryPool dp = new DiaryPool(); 

    dp.doSomething1(); // Thread 1, requires current day as Friday 

    dp.doSomething2(); // Thread 2, requires current day as Monday 

    dp.doSomething2(); // Thread 3, requires current day as Monday 

  }  

} 
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The DiaryPool class creates a thread pool that reuses a fixed number of threads operating off a 
shared, unbounded queue. At any point, at most, NoOfThreads threads are actively processing 
tasks. If additional tasks are submitted when all threads are active, they will wait in the queue un-
til a thread is available. The thread-local state of the thread persists when a thread is recycled. 

The following table shows a possible execution order: 

Time Task Pool Thread Submitted By Method Day 

1 t1 1 doSomething1() Friday 

2 t2 2 doSomething2() Monday 

3 t3 1 doSomething2() Friday 

In this execution order, the two tasks (t2 and t3) that started using doSomething2() are ex-
pected to observe the current day as Monday. However, because pool thread 1 is reused, t3 ob-
serves the day to be Friday.  

5.5.2 Noncompliant Code Example (Increase Thread Pool Size) 

This noncompliant code example increases the size of the thread pool from two to three in an at-
tempt to mitigate the issue. 

 

public final class DiaryPool { 

  final int NoOfThreads = 3; 

  // ... 

} 

Although increasing the size of the thread pool resolves the problem for this example, it is not a 
scalable solution because changing the thread pool size is insufficient when more tasks can be 
submitted to the pool. 

5.5.3 Compliant Solution (try-finally Clause) 

This compliant solution adds the removeDay() method to the Diary class and wraps the state-
ments in the doSomething1() method of the DiaryPool class in a try-finally block. The 
finally block restores the initial state of the thread-local days object by removing the current 
thread’s value from it.  

 

public final class Diary { 

  // ... 

  public static void removeDay() { 

    days.remove(); 

  } 

} 

 

public final class DiaryPool { 

  // ... 

 

  public void doSomething1() { 
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    exec.execute(new Runnable() { 

      @Override public void run() { 

     try {   

          Diary.setDay(Day.FRIDAY); 

          diary.threadSpecificTask(); 

     } finally { 

       Diary.removeDay(); // Diary.setDay(Day.MONDAY) can also be used  

     } 

      } 

    }); 

  } 

  

  // ... 

} 

If the thread-local variable is read by the same thread again, it is reinitialized using the  
initialValue() method, unless the thread has already set the variable’s value explicitly [Sun 
2009b]. This solution transfers the responsibility for maintenance to the client (DiaryPool) but 
is a good option when the Diary class cannot be modified. 

5.5.4 Compliant Solution (beforeExecute()) 

This compliant solution uses a custom ThreadPoolExecutor that extends  
ThreadPoolExecutor and overrides the beforeExecute() method. That method is in-
voked before the Runnable task is executed in the specified thread. The method reinitializes the 
thread-local variable before task r is executed by thread t. 

 

class CustomThreadPoolExecutor extends ThreadPoolExecutor { 

  public CustomThreadPoolExecutor(int corePoolSize, int maximumPoolSize, 

     long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue) { 

        super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue);  

  } 

 

  @Override 

  public void beforeExecute(Thread t, Runnable r) { 

    if (t == null || r == null) { 

      throw new NullPointerException();  

    } 

    Diary.setDay(Day.MONDAY);     

    super.beforeExecute(t, r); 

  } 

} 
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public final class DiaryPool { 

  // ... 

  DiaryPool() { 

    exec = new CustomThreadPoolExecutor(NoOfThreads, NoOfThreads, 

             10, TimeUnit.SECONDS, new ArrayBlockingQueue<Runnable>(10)); 

    diary = new Diary(); 

  } 

  // ... 

} 

5.5.5 Exceptions 

TPS04-EX1: There is no need to reinitialize a ThreadLocal object that does not change state 
after initialization. For example, there may be only one type of database connection represented 
by the initial value of the ThreadLocal object.  

5.5.6 Risk Assessment 

Objects using ThreadLocal data and executed by different threads in a thread pool without rei-
nitialization might be in an unexpected state when reused. 

Guideline  Severity  Likelihood  Remediation Cost  Priority  Level  

TPS04- J  medium  probable  high  P4  L3  

5.5.7 References 

[Arnold 2006]  Section 14.13, “ThreadLocal Variables” 

[Sun 2009b]  class java.lang.ThreadLocal<T> 
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6 Thread-Safety Miscellaneous (TSM) Guidelines 

6.1 TSM00-J. Do not override thread-safe methods with methods that are not 
thread-safe 

Overriding thread-safe methods with methods that are not thread-safe can result in improper syn-
chronization, if the client inadvertently operates on an instance of the subclass. An overridden 
synchronized method’s contract can be violated, if a subclass provides an implementation that is 
not safe for concurrent use.  

Overriding thread-safe methods with methods that are not thread-safe is not, in itself, an error. 
However, it is disallowed by this guideline because it may easily result in errors that are difficult 
to diagnose.  

The locking strategy of classes designed for inheritance should always be documented. This in-
formation can subsequently be used to determine an appropriate locking strategy for subclasses 
(see guideline “LCK00-J. Use private final lock objects to synchronize classes that may interact 
with untrusted code” on page 41).  

6.1.1 Noncompliant Code Example (Synchronized Method) 

This noncompliant code example overrides the synchronized doSomething() method in the 
Base class with an unsynchronized method in the Derived subclass.  

 

class Base { 

  public synchronized void doSomething() { 

    // ...  

  } 

} 

 

class Derived extends Base { 

  @Override public void doSomething() { 

    // ...   

  } 

} 

The doSomething() method of the Base class can be used safely by multiple threads, but in-
stances of the Derived subclass cannot.  

This programming error can be difficult to diagnose because threads that accept instances of 
Base can also accept instances of its subclasses. Consequently, clients could be unaware that they 
are operating on an instance of the subclass of a thread-safe class that is not thread-safe. 
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6.1.2 Compliant Solution (Synchronized Method) 

This compliant solution synchronizes the doSomething() method of the subclass.  

 

class Base { 

  public synchronized void doSomething() { 

    // ...  

  } 

} 

 

class Derived extends Base { 

  @Override public synchronized void doSomething() { 

    // ...   

  } 

} 

This compliant solution does not violate guideline “LCK00-J. Use private final lock objects to 
synchronize classes that may interact with untrusted code” on page 41 because the accessibility of 
the class is package-private. That type of accessibility is allowable when untrusted code cannot 
infiltrate the package. 

6.1.3 Compliant Solution (Private Final Lock Object) 

This compliant solution ensures that the Derived class is thread-safe by overriding the synchro-
nized doSomething() method of the Base class with a method that synchronizes on a private 
final lock object. 

 

class Base { 

 

  public synchronized void doSomething() { 

    // ...  

  } 

} 

 

class Derived extends Base { 

  private final Object lock = new Object(); 

 

  @Override public void doSomething() { 

    synchronized (lock) { 

      // ...  

    }  

  } 

} 

This is an acceptable solution, provided the Derived class has a consistent locking policy.  
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6.1.4 Noncompliant Code Example (Private Lock) 

This noncompliant code example defines a doSomething() method in the Base class that uses 
a private final lock, in accordance with guideline “LCK00-J. Use private final lock objects to syn-
chronize classes that may interact with untrusted code” on page 41. 

 

class Base { 

  private final Object lock = new Object(); 

 

  public void doSomething() { 

    synchronized (lock) { 

      // ...  

    } 

  } 

} 

 

class Derived extends Base { 

  @Override public void doSomething() { 

    try { 

      super.doSomething(); 

    } finally { 

      logger.log(Level.FINE, "Did something");  

    } 

  } 

} 

It is possible for multiple threads to cause the entries to be logged in an order that differs from the 
order in which the tasks are performed. Consequently, the doSomething() method of the  
Derived class cannot be used safely by multiple threads because it is not thread-safe.  

6.1.5 Compliant Solution (Private Lock) 

This compliant solution synchronizes the doSomething() method of the subclass using a pri-
vate final lock object.  

 

class Base { 

  private final Object lock = new Object(); 

 

  public void doSomething() { 

    synchronized (lock) { 

      // ...  

    } 

  } 

} 

 

class Derived extends Base { 

  private final Object lock = new Object(); 

 

  @Override public void doSomething() { 



TSM00-J 

CMU/SEI-2010-TR-015 | 148 

    synchronized (lock) { 

      try { 

        super.doSomething(); 

      } finally { 

        logger.log(Level.FINE, "Did something");  

      } 

    } 

  } 

} 

Note that the Base and Derived objects maintain distinct locks that are inaccessible from each 
others’ classes. Consequently, Derived can provide thread-safety guarantees independent of 
Base. 

6.1.6 Risk Assessment 

Overriding thread-safe methods with methods that are not thread-safe can result in unexpected 
behavior. 

Guideline  Severity  Likelihood  Remediation Cost  Priority  Level  

TSM00- J  low  probable  medium  P4  L3  

6.1.7 References 

[Sun 2009b]  

[Sun 2008b] Sun bug database, Bug ID 4294756 

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4294756�
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6.2 TSM01-J. Do not let the “this” reference escape during object construction 

According to the Java Language Specification [Gosling 2005], Section 15.8.3, “this” 
When used as a primary expression, the keyword this denotes a value that is a reference to 
the object for which the instance method was invoked (§15.12), or to the object being con-
structed. The type of this is the class C within which the keyword this occurs. At run time, 
the class of the actual object referred to may be the class C or any subclass of C. 

The this reference is said to have escaped when it is made available beyond its current scope. 
Common ways by which the this reference can escape include 
• returning this from a non-private, overridable method that is invoked from the constructor 

of a class whose object is being constructed. (For more information, see guideline “MET04-J. 
Ensure that constructors do not call overridable methods.”10

• returning this from a non-private method of a mutable class, which allows the caller to ma-
nipulate the object’s state indirectly. This commonly occurs in method-chaining implementa-
tions; see guideline “

)  

VNA04-J. Ensure that calls to chained methods are atomic” on page 29 
for more information. 

• passing this as an argument to an alien method invoked from the constructor of a class 
whose object is being constructed 

• using inner classes. An inner class implicitly holds a reference to the instance of its outer 
class, unless the inner class is declared static. 

• publishing by assigning this to a public static variable from the constructor of a class whose 
object is being constructed 

• overriding the finalizer of a non-final class and obtaining the this reference of a partially 
initialized instance, when the construction of the object ceases. (For more information, see 
guideline “OBJ04-J. Do not allow partially initialized objects to be accessed.”10) This can 
happen when the constructor throws an exception. Misuse is not limited to untrusted code; 
trusted code can also inadvertently add a finalizer and let this escape by violating guideline 
“OBJ08-J. Avoid using finalizers.”10 

• passing internal object state to an alien method. This enables the method to retrieve the this 
reference of the internal member object. 

This guideline describes the potential consequences of allowing the this reference to escape dur-
ing object construction, including race conditions and improper initialization. For example, dec-
laring a field final ensures that all threads see it in a fully initialized state only when the this 
reference does not escape during the corresponding object’s construction. Guideline “TSM03-J. 
Do not publish partially initialized objects” on page 162 describes the guarantees provided by var-
ious mechanisms for safe publication and relies on conformance to this guideline. In general, it is 
important to detect cases where the this reference can leak out beyond the scope of the current 
context. In particular, public variables and methods should be carefully scrutinized. 

 
10  This guideline is described at https://www.securecoding.cert.org/confluence/display/java/. 

https://www.securecoding.cert.org/confluence/x/MYYbAQ�
https://www.securecoding.cert.org/confluence/x/MYYbAQ�
https://www.securecoding.cert.org/confluence/x/x4AlAQ�
https://www.securecoding.cert.org/confluence/x/H4cbAQ�
https://www.securecoding.cert.org/confluence/display/java/
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6.2.1 Noncompliant Code Example (Publish Before Initialization) 

This noncompliant code example publishes the this reference before initialization has con-
cluded, by storing it in a public static volatile class field.  

 

final class Publisher { 

  public static volatile Publisher published;  

  int num; 

 

  Publisher(int number) { 

    published = this;  

    // Initialization  

    this.num = number; 

    // ... 

  } 

} 

Consequently, other threads may obtain a partially initialized Publisher instance. Also, if the 
object initialization (and consequently, its construction) depends on a security check within the 
constructor, the security check can be bypassed if an untrusted caller obtains the partially initia-
lized instance. (For more information, see guideline “OBJ04-J. Do not allow partially initialized 
objects to be accessed.”11

6.2.2 Noncompliant Code Example (Non-Volatile Public Static Field) 

) 

This noncompliant code example publishes the this reference in the last statement of the con-
structor but is still vulnerable because the published field is not declared volatile and has pub-
lic accessibility. 

 

final class Publisher { 

  public static Publisher published; 

  int num; 

 

  Publisher(int number) { 

    // Initialization  

    this.num = number; 

    // ... 

    published = this; 

  } 

} 

Because the field is non-volatile and non-final, the statements within the constructor can be reor-
dered by the compiler in such a way that the this reference is published before the initialization 
statements have executed. 

 
11  This guideline is described at https://www.securecoding.cert.org/confluence/display/java/. 

https://www.securecoding.cert.org/confluence/x/x4AlAQ�
https://www.securecoding.cert.org/confluence/x/x4AlAQ�
https://www.securecoding.cert.org/confluence/display/java/
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6.2.3 Compliant Solution (Volatile Field and Publish After Initialization) 

This compliant solution declares the published field volatile and reduces its accessibility to 
package-private so that callers outside the current package scope cannot obtain the this refer-
ence.  

 

final class Publisher { 

  static volatile Publisher published; 

  int num; 

 

  Publisher(int number) { 

    // Initialization  

    this.num = number; 

    // ... 

    published = this; 

  } 

} 

The constructor publishes the this reference after initialization has concluded. However, the 
caller that instantiates Publisher must ensure that it does not see the default value of the num 
field before it is initialized (a violation of guideline “TSM03-J. Do not publish partially initialized 
objects” on page 162). Consequently, the field that holds the reference to Publisher might need 
to be declared volatile in the caller. 

Initialization statements may be reordered if the published field is not declared volatile. The 
Java compiler, however, does not allow fields to be declared both volatile and final. 

The class Publisher must also be final; otherwise, a subclass can call its constructor and pub-
lish the this reference before the subclass’s initialization has concluded.  

6.2.4 Compliant Solution (Public Static Factory Method) 

This compliant solution eliminates the internal member field and provides a newInstance() 
factory method that creates and returns a Publisher instance.  

 

final class Publisher { 

  final int num; 

 

  private Publisher(int number) { 

    // Initialization  

    this.num = number; 

  } 

   

  public static Publisher newInstance(int number) { 

    Publisher published = new Publisher(number);   

    return published; 

  } 

} 
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This approach ensures that threads do not see an inconsistent Publisher instance. The num field 
is also declared final, making the class immutable and eliminating the possibility of obtaining a 
partially initialized object. 

6.2.5 Noncompliant Code Example (Handlers) 

This noncompliant code example defines the ExceptionReporter interface: 
 

public interface ExceptionReporter { 

  public void setExceptionReporter(ExceptionReporter er); 

  public void report(Throwable exception); 

} 

This interface is implemented by the DefaultExceptionReporter class, which reports ex-
ceptions after filtering out any sensitive information. (For more information, see guideline 
“EXC01-J. Use a class dedicated to reporting exceptions.”12

The DefaultExceptionReporter constructor prematurely publishes the this reference be-
fore construction of the object has concluded. This occurs in the last statement of the constructor 
(er.setExceptionReporter(this)), which sets the exception reporter. Because it is the 
last statement of the constructor, this may be misconstrued as benign.  

)  

 

// Class DefaultExceptionReporter 

public class DefaultExceptionReporter implements ExceptionReporter { 

  public DefaultExceptionReporter(ExceptionReporter er) { 

    // Carry out initialization  

    // Incorrectly publishes the "this" reference 

    er.setExceptionReporter(this); 

  } 

 

  // Implementation of setExceptionReporter() and report() 

} 

The MyExceptionReporter class subclasses DefaultExceptionReporter with the intent 
of adding a logging mechanism that logs critical messages before an exception is reported.  

 

// Class MyExceptionReporter derives from DefaultExceptionReporter 

public class MyExceptionReporter extends DefaultExceptionReporter { 

  private final Logger logger; 

  public MyExceptionReporter(ExceptionReporter er) { 

    super(er); // Calls superclass's constructor 

    logger = Logger.getLogger("com.organization.Log"); // Obtain the default logger 

  } 

  public void report(Throwable t) { 

    logger.log(Level.FINEST,"Loggable exception occurred", t); 

  } 

} 

 
12  This guideline is described at https://www.securecoding.cert.org/confluence/display/java/. 

https://www.securecoding.cert.org/confluence/x/DIB3AQ�
https://www.securecoding.cert.org/confluence/display/java/
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Its constructor invokes the DefaultExceptionReporter superclass’s constructor (a manda-
tory first step), which publishes the exception reporter before the initialization of the subclass has 
concluded. Note that the subclass initialization consists of obtaining an instance of the default 
logger. Publishing the exception reporter is equivalent to setting it to receive and handle excep-
tions from that point on. 

If an exception occurs before the call to Logger.getLogger() in the  
MyExceptionReporter subclass, it is not logged. Instead, a NullPointerException is 
generated, which may, itself, be consumed by the reporting mechanism without being logged.  

This erroneous behavior results from the race condition between an oncoming exception and the 
initialization of MyExceptionReporter. If the exception comes too soon, it finds  
MyExceptionReporter in an inconsistent state. This behavior is especially counterintuitive 
because logger is declared final and is not expected to contain an uninitialized value.  

This problem can also occur when an event listener is published prematurely. Consequently, it 
starts receiving event notifications even before the subclass’s initialization has concluded. 

6.2.6 Compliant Solution 

Instead of publishing the this reference from the DefaultExceptionReporter constructor, 
this compliant solution adds the publishExceptionReporter() method  to  
DefaultExceptionReporter to set the exception reporter. This method can be invoked on a 
subclass instance, after the subclass’s initialization has concluded. 

 

public class DefaultExceptionReporter implements ExceptionReporter { 

  public DefaultExceptionReporter(ExceptionReporter er) { 

    // ... 

  } 

 

  // Should be called after subclass's initialization is over 

  public void publishExceptionReporter() { 

    setExceptionReporter(this); // Registers this exception reporter  

  } 

 

  // Implementation of setExceptionReporter() and report() 

} 

The MyExceptionReporter subclass inherits the publishExceptionReporter() me-
thod, and a caller who instantiates MyExceptionReporter can use its instance to set the ex-
ception reporter, after initialization is over. 

 

// Class MyExceptionReporter derives from DefaultExceptionReporter 

public class MyExceptionReporter extends DefaultExceptionReporter { 

  private final Logger logger; 

   

  public MyExceptionReporter(ExceptionReporter er) { 

    super(er); // Calls superclass's constructor 

    logger = Logger.getLogger("com.organization.Log"); 
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  } 

  // Implementations of publishExceptionReporter(), setExceptionReporter() and  

  // report() are inherited 

} 

This approach ensures that the reporter cannot be set before the constructor has fully initialized 
the subclass and enabled logging. 

6.2.7 Noncompliant Code Example (Inner Class) 

Inner classes maintain a copy of the this reference of the outer object. Consequently, the this 
reference may leak outside the scope [Goetz 2002]. This noncompliant code example uses a dif-
ferent implementation of the DefaultExceptionReporter class. The constructor uses an 
anonymous inner class to publish a filter() method.  

 

public class DefaultExceptionReporter implements ExceptionReporter { 

  public DefaultExceptionReporter(ExceptionReporter er) { 

    er.setExceptionReporter(new DefaultExceptionReporter(er) { 

      public void report(Throwable t) { 

        filter(t); 

      } 

    }); 

  } 

  // Default implementations of setExceptionReporter() and report() 

} 

The this reference of the outer class is published by the inner class so that other threads can see 
it. Furthermore, if the class is subclassed, the issue described in the noncompliant code example 
for handlers resurfaces. 

6.2.8 Compliant Solution 

A private constructor alongside a public static factory method can safely publish the  
filter() method from within the constructor [Goetz 2006]. 

 

public class DefaultExceptionReporter implements ExceptionReporter { 

  private final DefaultExceptionReporter defaultER; 

 

  private DefaultExceptionReporter(ExceptionReporter excr) { 

    defaultER = new DefaultExceptionReporter(excr) { 

      public void report(Throwable t) { 

        filter(t); 

      }  

    }; 

  } 

  

  public static DefaultExceptionReporter newInstance(ExceptionReporter excr) { 

    DefaultExceptionReporter der = new DefaultExceptionReporter(excr); 

    excr.setExceptionReporter(der.defaultER); 

    return der; 
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  } 

  // Default implementations of setExceptionReporter() and report() 

} 

Because the constructor is private, untrusted code cannot create instances of the class, prohibiting 
the this reference from escaping. Using a public static factory method to create new instances 
also protects against publication of partially initialized objects (see guideline “TSM03-J. Do not 
publish partially initialized objects” on page 162) and untrusted manipulation of internal object 
state. 

6.2.9 Noncompliant Code Example (Thread) 

This noncompliant code example starts a thread from within the constructor.  

 

final class ThreadStarter implements Runnable { 

  public ThreadStarter() { 

    Thread thread = new Thread(this); 

    thread.start(); 

  } 

 

  @Override public void run() { 

    // ... 

  } 

} 

The new thread can access the this reference of the current object [Goetz 2002, Goetz 2006]. 
Notably, the Thread() constructor is alien to the ThreadStarter class.  

6.2.10 Compliant Solution (Thread) 

This compliant solution creates and starts the thread in a method instead of the constructor.  

 

final class ThreadStarter implements Runnable { 

  public ThreadStarter() { 

    // ... 

  } 

 

  public void startThread() {     

    Thread thread = new Thread(this); 

    thread.start(); 

  } 

 

  @Override public void run() { 

    // ... 

  } 

} 
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6.2.11 Exceptions 

TSM01-EX1: It is safe to create a thread in the constructor, provided the thread is not started un-
til object construction has completed. This is because a call to start() on a thread happens-
before any actions in the started thread [Gosling 2005].  

In this code example, even though a thread referencing this is created in the constructor, it is not 
started until its start() method is called from the startThread() method [Goetz 2002, 
Goetz 2006]. 

 

final class ThreadStarter implements Runnable { 

  Thread thread; 

 

  public ThreadStarter() { 

    thread = new Thread(this); 

  } 

 

  public void startThread() {     

    thread.start(); 

  } 

 

  @Override public void run() { 

    // ... 

  } 

} 

TSM01-EX2: The ObjectPreserver pattern [Grand 2002] described in guideline “TSM02-J. 
Do not use background threads during class initialization” on page 157 is also a safe exception to 
this guideline. 

6.2.12 Risk Assessment 

Allowing the this reference to escape may result in improper initialization and runtime excep-
tions.  

Guideline  Severity  Likelihood  Remediation Cost  Priority  Level  

TSM01-J  medium  probable  high  P4  L3  

6.2.13 References 

[Goetz 2002]  

[Goetz 2006] Section 3.2, “Publication and Escape” 

[Gosling 2005] Keyword “this” 

[Grand 2002] Chapter 5, “Creational Patterns, Singleton” 
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6.3 TSM02-J. Do not use background threads during class initialization 

Starting and using background threads during class initialization can result in class initialization 
cycles and deadlock. For example, the main thread responsible for performing class initialization 
can block waiting for the background thread, which, in turn, will wait for the main thread to finish 
class initialization. This issue can arise, for example, when a database connection is established in 
a background thread during class initialization [Bloch 2005b].  

6.3.1 Noncompliant Code Example (Background Thread) 

In this noncompliant code example, the static initializer starts a background thread as part of 
class initialization. The background thread attempts to initialize a database connection but needs 
to wait until all members of the ConnectionFactory class, including dbConnection, have 
been initialized.  

 

public final class ConnectionFactory { 

  private static Connection dbConnection; 

  // Other fields ... 

    

  static { 

    Thread dbInitializerThread = new Thread(new Runnable() { 

      @Override public void run() { 

        // Initialize the database connection 

        try { 

          dbConnection = DriverManager.getConnection("connection string");   

        } catch (SQLException e) { 

          dbConnection = null;  

        } 

      } 

    }); 

 

    // Other initialization, for example, start other threads    

      

    dbInitializerThread.start(); 

    try { 

      dbInitializerThread.join(); 

    } catch (InterruptedException ie) { 

      throw new AssertionError(ie); 

    } 

  } 

    

  public static Connection getConnection() { 

    if (dbConnection == null) { 

      throw new IllegalStateException("Error initializing connection");   

    } 

    return dbConnection; 

  } 

    

  public static void main(String[] args) { 
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    // ... 

    Connection connection = getConnection(); 

  } 

} 

Statically initialized fields are guaranteed to be fully constructed before they are made visible to 
other threads. (See guideline “TSM03-J. Do not publish partially initialized objects” on page 162 
for more information.) Consequently, the background thread must wait for the main (or fore-
ground) thread to finish initialization before it can proceed. However, the ConnectionFactory 
class’s main thread invokes the join() method, which waits for the background thread to finish. 
This interdependency causes a class initialization cycle that results in a deadlock situation [Bloch 
2005b].  

Similarly, it is inappropriate to start threads from constructors. (See guideline “TSM01-J. Do not 
let the “this” reference escape during object construction” on page 149 for more information.) 
Creating timers that perform recurring tasks and starting those timers from within the code re-
sponsible for initialization introduces liveness issues. 

6.3.2 Compliant Solution (static Initializer, No Background Threads) 

This compliant solution does not spawn any background threads from the static initializer. In-
stead, all fields are initialized in the main thread. 

 

public final class ConnectionFactory { 

  private static Connection dbConnection; 

  // Other fields ... 

 

  static { 

    // Initialize a database connection 

    try { 

      dbConnection = DriverManager.getConnection("connection string"); 

    } catch (SQLException e) { 

      dbConnection = null;  

    }         

    // Other initialization (do not start any threads) 

  } 

 

  // ... 

} 

  

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=32833640�
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6.3.3 Compliant Solution (ThreadLocal) 

This compliant solution initializes the database connection from a ThreadLocal object so that 
every thread can obtain its own instance of the connection. 

 

public final class ConnectionFactory { 

  private static final ThreadLocal<Connection> connectionHolder 

    = new ThreadLocal<Connection>() { 

      @Override public Connection initialValue() { 

        try { 

          Connection dbConnection = DriverManager.getConnection("connection string"); 

          return dbConnection; 

        } catch (SQLException e) { 

          return null; 

        } 

      } 

    }; 

 

  // Other fields ... 

 

  static { 

    // Other initialization (do not start any threads) 

  } 

     

  public static Connection getConnection() { 

    Connection connection = connectionHolder.get(); 

    if (connection == null) { 

      throw new IllegalStateException("Error initializing connection");   

    } 

    return connection; 

  } 

 

  public static void main(String[] args) { 

    // ... 

    Connection connection = getConnection(); 

  } 

} 

The static initializer can be used to initialize any other shared class fields. Alternatively, the fields 
can be initialized from the initialValue() method.  
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6.3.4 Exceptions 

TSM02-EX1: It is permissible to start a background thread during class initialization provided the 
thread does not access any fields. For example, the ObjectPreserver class (based on Patterns 
in Java [Grand 2002]) shown below provides a mechanism for storing object references, which 
prevents an object from being garbage-collected, even if the object is not de-referenced in the fu-
ture. 

 

public final class ObjectPreserver implements Runnable { 

  private static final ObjectPreserver lifeLine = new ObjectPreserver(); 

 

  private ObjectPreserver() { 

    Thread thread = new Thread(this); 

    thread.setDaemon(true); 

    thread.start(); // Keep this object alive 

  } 

  

  // Neither this class nor HashMap will be garbage-collected. 

  // References from HashMap to other objects will also exhibit this property 

  private static final ConcurrentHashMap<Integer, Object> protectedMap  

    = new ConcurrentHashMap<Integer, Object>(); 

   

  public synchronized void run() { 

    try { 

      wait(); 

    } catch (InterruptedException e) {  

      Thread.currentThread().interrupt(); // Reset interrupted status  

    } 

  } 

 

  // Objects passed to this method will be preserved until 

  // the unpreserveObject() method is called 

  public static void preserveObject(Object obj) {     

    protectedMap.put(0, obj);   

  } 

   

  // Returns the same instance every time 

  public static Object getObject() { 

    return protectedMap.get(0);    

  } 

   

  // Unprotect the objects so that they can be garbage-collected 

  public static void unpreserveObject() { 

    protectedMap.remove(0); 

  } 

} 
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This is a singleton class. (See guideline “MSC16-J. Address the shortcomings of the Singleton 
design pattern”13

While the initialization does involve a background thread, that thread does not access any fields or 
create any liveness or safety issues. Consequently, this code is a safe and useful exception to this 
guideline. 

 for more information on how to defensively code singleton classes.) The initiali-
zation involves creating a background thread using the current instance of the class. The thread 
waits indefinitely by invoking Object.wait(). Consequently, this object persists for the re-
mainder of the JVM’s lifetime. Because the object is managed by a daemon thread, the thread 
does not hinder a normal shutdown of the JVM. 

6.3.5 Risk Assessment 

Starting and using background threads during class initialization can result in deadlock conditions.  

Guideline  Severity  Likelihood  Remediation Cost  Priority  Level  

TSM02- J  low  probable high  P2  L3  

6.3.6 References 

[Bloch 2005b]  

[Grand 2002] Chapter 5, “Creational Patterns, Singleton” 

 
13  This guideline is described at https://www.securecoding.cert.org/confluence/display/java/. 
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6.4 TSM03-J. Do not publish partially initialized objects 

During initialization of a shared object, the object must only be accessible to the thread construct-
ing it. However, the object can be published safely (that is, made visible to other threads) once it 
is initialized. The JMM allows multiple threads to observe the object after its initialization has 
begun, but before it has concluded. Consequently, it is important to ensure that a partially initia-
lized object is not published. 

This guideline prohibits publishing a reference to a partially initialized member object instance 
before initialization has concluded. Guideline “TSM01-J. Do not let the “this” reference escape 
during object construction” on page 149 prohibits the this reference of the current object from 
escaping. 

6.4.1 Noncompliant Code Example 

This noncompliant code example constructs a Helper object in the initialize() method of 
the Foo class. The Helper object’s fields are initialized by its constructor. 

 

class Foo { 

  private Helper helper; 

 

  public Helper getHelper() { 

    return helper; 

  } 

 

  public void initialize() { 

    helper = new Helper(42); 

  } 

} 

 

public class Helper { 

  private int n; 

 

  public Helper(int n) { 

    this.n = n; 

  } 

  // ... 

} 

If a thread accesses helper using the getHelper() method before the initialize() me-
thod has been called, the thread will observe an uninitialized helper field. Later, if one thread 
calls initialize() and another calls getHelper(), the second thread might observe one of 
the following: 
• the helper reference as NULL 

• a fully initialized Helper object with the n field set to 42 

• a partially initialized Helper object with an uninitialized n that contains the default value 0 
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In particular, the JMM permits compilers to allocate memory for the new Helper object and as-
sign it to the helper field before initializing it. In other words, the compiler can reorder the write 
to the helper instance field with the write that initializes the Helper object (that is,  
this.n = n) such that the former occurs first. This exposes a race window during which other 
threads may observe a partially initialized Helper object instance. 

There is a separate issue: if two threads call initialize(), two Helper objects are created. 
This is a performance issue and not a correctness issue because n will be properly initialized and 
the unused Helper objects will be garbage-collected.  

6.4.2 Compliant Solution (Synchronization) 

The publication of partially constructed object references can be prevented by using method syn-
chronization, as shown in this compliant solution. 

 

class Foo { 

  private Helper helper; 

 

  public synchronized Helper getHelper() { 

    return helper; 

  } 

 

  public synchronized void initialize() { 

    helper = new Helper(42); 

  } 

} 

Synchronizing both methods guarantees that they will not execute concurrently. If one thread calls 
initialize() just before another thread calls getHelper(), the synchronized  
initialize() method will always finish first. The synchronized keyword establishes a 
happens-before relationship between the two threads. This guarantees that the thread calling  
getHelper() sees the fully initialized Helper object or none at all (that is, helper contains a 
null reference). This approach guarantees proper publication for both immutable and mutable 
members. 
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6.4.3 Compliant Solution (Final Field) 

If the helper field is declared final, it is guaranteed to be fully constructed before its reference is 
made visible.  

 

class Foo { 

  private final Helper helper; 

 

  public Helper getHelper() { 

    return helper; 

  } 

 

  public Foo() { 

    helper = new Helper(42); 

  } 

} 

However, this solution requires the assignment of a new Helper instance to helper from Foo’s 
constructor. According to the Java Language Specification, Section 17.5.2, “Reading Final Fields 
During Construction” [Gosling 2005] 

A read of a final field of an object within the thread that constructs that object is ordered 
with respect to the initialization of that field within the constructor by the usual happens-
before rules. If the read occurs after the field is set in the constructor, it sees the value the 
final field is assigned, otherwise it sees the default value. 

Consequently, the reference to the Helper instance should not be published before the Foo 
class’s constructor has finished its initialization (see guideline “TSM01-J. Do not let the “this” 
reference escape during object construction” on page 149).  

6.4.4 Compliant Solution (Final Field and Thread-Safe Composition) 

Some collection classes provide thread-safe access to contained elements. If the Helper object is 
inserted into such a collection, it is guaranteed to be fully initialized before its reference is made 
visible. This compliant solution encapsulates the helper field in a Vector<Helper>.  

 

class Foo { 

  private final Vector<Helper> helper; 

 

  public Foo() { 

    helper = new Vector<Helper>();   

  } 

 

  public Helper getHelper() { 

    if (helper.isEmpty()) { 

      initialize(); 

    } 

    return helper.elementAt(0); 

  } 
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  public synchronized void initialize() { 

    if (helper.isEmpty()) { 

      helper.add(new Helper(42)); 

    } 

  } 

} 

The helper field is declared final to guarantee that the vector is created before any accesses take 
place. It can be initialized safely by invoking the synchronized initialize() method, which 
ensures that only one Helper object is ever added to the vector. If getHelper() is invoked 
before initialize(), it calls initialize() to avoid the possibility of a null-pointer de-
reference by the client. The getHelper() method does not require synchronization to simply 
return Helper, and—because the synchronized initialize() method also checks to make 
sure helper is empty before adding a new Helper object—there is no possibility of exploiting 
a race condition to add a second object to the vector.  

6.4.5 Compliant Solution (Static Initialization) 

In this compliant solution, the helper field is statically initialized, ensuring that the object refe-
renced by the field is fully initialized before its reference is visible.  

 

// Immutable Foo 

final class Foo { 

  private static final Helper helper = new Helper(42); 

 

  public static Helper getHelper() { 

    return helper; 

  }  

} 

Although not a requirement, the helper field should be declared final to document the class’s 
immutability. 

According to the Java Memory Model and Thread Specification, Section 9.2.3, “Static Final 
Fields” [JSR-133 2004] 

The rules for class initialization ensure that any thread that reads a static field will be 
synchronized with the static initialization of that class, which is the only place where stat-
ic final fields can be set. Thus, no special rules in the JMM are needed for static 
final fields. 
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6.4.6 Compliant Solution (Immutable Object - Final Fields, Volatile Reference) 

The JMM guarantees that any final fields of an object are fully initialized before a published ob-
ject becomes visible [Goetz 2006]. By declaring n final, the Helper class is made immutable. 
Furthermore, if the helper field is declared volatile in compliance with guideline “VNA01-J. 
Ensure visibility of shared references to immutable objects” on page 13, Helper’s reference is 
guaranteed to be made visible to any thread that calls getHelper() after Helper has been fully 
initialized. 

 

class Foo { 

  private volatile Helper helper; 

 

  public Helper getHelper() { 

    return helper; 

  } 

 

  public void initialize() { 

    helper = new Helper(42); 

  } 

} 

 

// Immutable Helper 

public final class Helper { 

  private final int n; 

 

  public Helper(int n) { 

    this.n = n; 

  } 

  // ... 

} 

This compliant solution requires that helper be declared volatile and class Helper be immuta-
ble. If it were not immutable, the code would violate guideline “VNA06-J. Do not assume that 
declaring an object reference volatile guarantees visibility of its members” on page 35, and addi-
tional synchronization would be necessary (see the next compliant solution). And if the  
helper field were non-volatile, it would violate guideline “VNA01-J. Ensure visibility of shared 
references to immutable objects” on page 13.  

Similarly, a public static factory method that returns a new instance of Helper can be provided 
in the Helper class. This approach allows the Helper instance to be created in a private con-
structor. 

6.4.7 Compliant Solution (Mutable Thread-Safe Object, Volatile Reference) 

If Helper is mutable but thread-safe, it can be published safely by declaring the helper field in 
the Foo class volatile.  

 

class Foo { 

  private volatile Helper helper; 
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  public Helper getHelper() { 

    return helper; 

  } 

 

  public void initialize() { 

    helper = new Helper(42); 

  } 

} 

 

// Mutable but thread-safe Helper 

public class Helper { 

  private volatile int n; 

  private final Object lock = new Object(); 

 

  public Helper(int n) { 

    this.n = n; 

  } 

   

  public void setN(int value) { 

    synchronized (lock) { 

      n = value; 

    } 

  } 

} 

Because the Helper object can change state after its construction, synchronization is necessary to 
ensure the visibility of mutable members after initial publication. Consequently, the setN() me-
thod is synchronized to provide the visibility of the n field in this compliant solution (see guide-
line “VNA06-J. Do not assume that declaring an object reference volatile guarantees visibility of 
its members” on page 35). 

If the Helper class is not synchronized properly, declaring helper volatile in the Foo class 
only guarantees the visibility of the initial publication of Helper and not of subsequent state 
changes. Consequently, volatile references alone are inadequate for publishing objects that are not 
thread-safe.  

If the helper field in the Foo class is not declared volatile, the n field should be declared vola-
tile so that a happens-before relationship is established between the initialization of n and the 
write of Helper to the helper field. This is in compliance with guideline “VNA06-J. Do not 
assume that declaring an object reference volatile guarantees visibility of its members” on page 
35. This is required only when the caller (class Foo) cannot be trusted to declare helper volatile. 

Because the Helper class is declared public, it uses a private lock to handle synchronization in 
conformance with guideline “LCK00-J. Use private final lock objects to synchronize classes that 
may interact with untrusted code” on page 41. 
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6.4.8 Exceptions 

TSM03-EX1: Classes that prevent partially initialized objects from being used may publish par-
tially initialized objects. This may be implemented, for example, by setting a volatile boolean flag 
in the last statement of the initializing code and ensuring that this flag is set before allowing class 
methods to execute.  

The following compliant solution illustrates this technique: 

public class Helper { 

  private int n; 

  private volatile boolean initialized; // Defaults to false 

 

  public Helper(int n) { 

    this.n = n; 

    this.initialized = true; 

  } 

   

  public void doSomething() { 

    if (!initialized) { 

      throw new SecurityException("Cannot use partially initialized instance"); 

    } 

    // ...  

  } 

  // ... 

} 

This technique ensures that even if the reference to the Helper object instance is published be-
fore its initialization is over, the instance is unusable. The instance is unusable because every me-
thod within Helper must check the flag to determine whether the initialization has finished.  

6.4.9 Risk Assessment 

Failing to synchronize access to shared mutable data can cause different threads to observe differ-
ent states of the object or a partially initialized object. 

Guideline  Severity  Likelihood  Remediation Cost  Priority  Level  

TSM03-J  medium  probable  medium  P8  L2 

6.4.10 References 

[Arnold 2006]  Section 14.10.2, “Final Fields and Security” 

[Bloch 2001]  Item 48: “Synchronize access to shared mutable data” 

[Goetz 2006]  Section 3.5.3, “Safe Publication Idioms” 

[Goetz 2006c]  Pattern #2: “one-time safe publication” 

[Pugh 2004]  

[Sun 2009b]  
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6.5 TSM04-J. Document thread-safety and use annotations where applicable 

The Java language annotation facility is useful for documenting design intent. Source code anno-
tation is a mechanism for associating metadata with a program element and making it available to 
the compiler, analyzers, debuggers, or the JVM for examination. Several annotations are available 
for documenting thread-safety or the lack thereof. 

6.5.1 Obtaining Concurrency Annotations 

Two sets of concurrency annotations are freely available and licensed for use in any code. The 
first set consists of four annotations described in Java Concurrency in Practice (JCIP) [Goetz 
2006], which can be downloaded at jcip.net (jar, javadoc, source). The JCIP annotations are re-
leased under the Creative Commons Attribution License. 

The second, larger set of concurrency annotations is available from and supported by SureLogic. 
These annotations are released under The Apache Software License, Version 2.0 and can be 
downloaded at surelogic.com (jar, javadoc, source). They can be verified by the SureLogic JSure 
tool and are useful for documenting code, even if the tool is unavailable. These annotations in-
clude the JCIP annotations because they are supported by the JSure tool. (JSure also supports the 
use of the JCIP JAR file.) 

To use the annotations, download and add one or both of the aforementioned JAR files to the 
code’s build path. The use of these annotations to document thread-safety is described in the fol-
lowing sections. 

6.5.2 Documenting Intended Thread-Safety 

JCIP provides three class-level annotations to describe the programmer’s design intent with re-
spect to thread-safety.  

The @ThreadSafe annotation is applied to a class to indicate that it is thread-safe. This means 
that no sequences of accesses (reads and writes to public fields, calls to public methods) can leave 
the object in an inconsistent state, regardless of the interleaving of these accesses by the runtime 
or any external synchronization or coordination on the part of the caller. 

For example, the Aircraft class shown below specifies that it is thread-safe as part of its lock-
ing policy documentation. This class protects the x and y fields using a reentrant lock.  

 

 @ThreadSafe 

 @Region("private AircraftState") 

 @RegionLock("StateLock is stateLock protects AircraftState") 

 public final class Aircraft { 

   private final Lock stateLock = new ReentrantLock(); 

   // ... 

   @InRegion("AircraftState") 

   private long x, y; 

   // ... 

   public void setPosition(long x, long y) { 

     stateLock.lock(); 

https://www.securecoding.cert.org/confluence/display/java/AA.+Java+References#AA.JavaReferences-Goetz06�
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     try { 

       this.x = x; 

       this.y = y; 

     } finally { 

       stateLock.unlock(); 

     } 

   } 

   // ... 

 } 

The @Region and @RegionLock annotations document the locking policy that the promise of 
thread-safety is predicated on. 

Even if one or more @RegionLock or @GuardedBy annotations have been used to document 
the locking policy of a class, the @ThreadSafe annotation provides an intuitive way for review-
ers to learn that the class is thread-safe. 

The @Immutable annotation is applied to immutable classes. Immutable objects are inherently 
thread-safe; after they are fully constructed, they may be published via a volatile reference and 
shared safely among multiple threads. 

The following example shows an immutable Point class: 

 

 @Immutable 

 public final class Point { 

   private final int f_x; 

   private final int f_y; 

  

   public Point(int x, int y) { 

     f_x = x; 

     f_y = y; 

   } 

  

   public int getX() { 

     return f_x; 

   } 

  

   public int getY() { 

     return f_y; 

   } 

 } 

According to Bloch [Bloch 2008] 
It is not necessary to document the immutability of enum types. Unless it is obvious from the 
return type, static factories must document the thread safety of the returned object, as dem-
onstrated by Collections.synchronizedMap. 

The @NotThreadSafe annotation is applied to classes that are not thread-safe. Many classes fail 
to document whether they are safe for multithreaded use. Consequently, a programmer has no 
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easy way to determine whether the class is thread-safe. This annotation provides a clear indication 
of the class’s lack of thread-safety. 

For example, most of the collection implementations provided in java.util are not thread-safe. 
The java.util.ArrayList class could document this as follows: 

 

 package java.util.ArrayList; 

  

 @NotThreadSafe 

 public class ArrayList<E> extends ... { 

   // ... 

 } 

6.5.3 Documenting Locking Policies 

It is important to document all the locks that are being used to protect shared state. According to 
Goetz and colleagues [Goetz 2006] 

For each mutable state variable that may be accessed by more than one thread, all accesses 
to that variable must be performed with the same lock held. In this case, we say that the va-
riable is guarded by that lock. 

JCIP provides the @GuardedBy annotation for this purpose, while SureLogic provides the 
@RegionLock annotation. The field or method to which the @GuardedBy annotation is applied 
can only be accessed when holding a particular lock. This may be an intrinsic lock or a dynamic 
lock such as java.util.concurrent.Lock. 

For example, the following MovablePoint class implements a movable point that has the capa-
bility of remembering its past locations using the memo array list. 

 

@ThreadSafe 

public final class MovablePoint { 

  

  @GuardedBy("this")  

    double xPos = 1.0; 

  @GuardedBy("this")  

    double yPos = 1.0; 

  @GuardedBy("itself")  

    static final List<MovablePoint> memo = new ArrayList<MovablePoint>(); 

  

  public void move(double slope, double distance) { 

    synchronized (this) { 

      rememberPoint(this); 

      xPos += (1 / slope) * distance; 

      yPos += slope * distance; 

    } 

  } 

 

  public static void rememberPoint(MovablePoint value) { 

    synchronized (memo) { 
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      memo.add(value); 

    } 

  } 

} 

The @GuardedBy annotations on the xPos and yPos fields indicate that access to these fields is 
protected by holding a lock on this (as is done in the move() method, which modifies these 
fields). The @GuardedBy annotation on the memo list indicates that a lock on the ArrayList 
object protects its contents (as is done in the rememberPoint() method). 

One issue with the @GuardedBy annotation is that it does not clarify that there is a relationship 
between the fields of a class. This limitation can be overcome by using the SureLogic 
@RegionLock annotation, which declares a new region lock for the class to which this annota-
tion is applied. This declaration creates a new named lock that associates a particular lock object 
with a region of the class. The region may be accessed only when the lock is held. 

For example, the SimpleLock locking policy indicates that synchronizing on the instance pro-
tects all of its state: 

 

 @RegionLock("SimpleLock is this protects Instance") 

 class Simple { ... } 

Unlike @GuardedBy, the @RegionLock annotation allows the programmer to give an explicit, 
and hopefully meaningful, name to the locking policy. 

In addition to naming the locking policy, the @Region annotation allows a name to be given to 
the region of the state that is being protected. That name makes it clear that the state and locking 
policy belong together, as demonstrated in the following example: 

 

 @Region("private AircraftPosition") 

 @RegionLock("StateLock is stateLock protects AircraftPosition") 

 public final class Aircraft { 

   private final Lock stateLock = new ReentrantLock(); 

 

   @InRegion("AircraftPosition") 

   private long x, y; 

 

   @InRegion("AircraftPosition") 

   private long altitude; 

   // ... 

   public void setPosition(long x, long y) { 

     stateLock.lock(); 

     try { 

       this.x = x; 

       this.y = y; 

     } finally { 

       stateLock.unlock(); 

     } 

   } 
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   // ... 

 } 

In this example, a locking policy named StateLock is used to indicate that locking on  
stateLock protects the named AircraftPosition region, which includes the mutable state 
used to represent the position of the aircraft. 

6.5.4 Construction of Mutable Objects 

Typically, object construction is considered an exception to the locking policy because objects are 
thread-confined when they are created. An object is confined to the thread that uses the new oper-
ator to create its instance. After creation, the object can be published to other threads safely. How-
ever, the object is not shared until the thread that created the instance allows it to be shared. Safe 
publication approaches discussed in guideline “TSM01-J. Do not let the “this” reference escape 
during object construction” on page 149 can be expressed succinctly with the 
@Unique("return") annotation. 

For example, in the code shown below, the @Unique("return") annotation documents that 
the object returned from the constructor is a unique reference.  

 

 @RegionLock("Lock is this protects Instance") 

 public final class Example { 

   private int x = 1; 

   private int y; 

  

   @Unique("return") 

   public Example(int y) { 

     this.y = y; 

   } 

   // ... 

 } 

6.5.5 Documenting Thread-Confinement Policies 

Sutherland and Scherlis propose annotations that can document thread-confinement policies. 
Their approach allows verification of the annotations against code as it exists [Sutherland 2010]. 

For example, the following annotations express the design intent that a program has, at most, one 
AWT event dispatch thread and several Compute threads, and that the Compute threads are for-
bidden to handle AWT data structures or events: 

 

@ColorDeclare AWT, Compute 

@IncompatibleColors AWT, Compute 

@MaxColorCount AWT 1 
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6.5.6 Documenting Wait-Notify Protocols 

According to Goetz and colleagues [Goetz 2006] 
A state-dependent class should either fully expose (and document) its waiting and notifica-
tion protocols to subclasses, or prevent subclasses from participating in them at all. (This is 
an extension of “design and document for inheritance, or else prohibit it” [EJ Item 15].) At 
the very least, designing a state-dependent class for inheritance requires exposing the condi-
tion queues and locks and documenting the condition predicates and synchronization policy; 
it may also require exposing the underlying state variables. (The worst thing a state-
dependent class can do is expose its state to subclasses but not document its protocols for 
waiting and notification; this is like a class exposing its state variables but not documenting 
its invariants.). 

Wait-notify protocols should be documented adequately. Currently, we are not aware of any anno-
tations for this purpose. 

6.5.7 Risk Assessment 

Annotations of concurrent code document the design intent and can be used to automate the detec-
tion and prevention of race conditions and data races. 

Guideline  Severity  Likelihood  Remediation Cost  Priority  Level  

TSM04- J  low  probable  medium  P4  L3 

6.5.8 References 

[Bloch 2008]  Item 70: “Document thread safety” 

[Goetz 2006]   
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Definitions 

CMU/SEI-2010-TR-015 | 175 

 

Appendix Definitions 

alien method 
“From the perspective of a class C, an alien method is one whose behavior is not fully specified 
by C. This includes methods in other classes as well as overrideable methods (neither private nor 
final) in C itself” [Goetz 2006]. 

atomicity 
When applied to an operation on primitive data, indicates that other threads that might access the 
data might see the data as it exists before the operation occurs or after the operation has com-
pleted, but may never see an intermediate value of the data. 

canonicalization 
Reducing the input to its equivalent simplest known form. 

class variable 
A class variable is a static field associated with the containing class. 

condition predicate 
A condition predicate is an expression constructed from the state variables of a class that must be 
true for a thread to continue execution. The thread pauses execution, via Object.wait(), 
Thread.sleep(), or some other mechanism, and is resumed later, presumably when the re-
quirement is true and when it is notified [Goetz 2006].  

conflicting accesses 
Two accesses to (reads of or writes to) the same variable provided that at least one of the accesses 
is a write. [Gosling 2005]. 

data race 
“Conflicting accesses of the same variable that are not ordered by a happens-before relationship” 
[Gosling 2005].  

deadlock 
Two or more threads are said to have deadlocked when both block waiting for each others’ locks. 
Neither thread can make any progress.  
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happens-before order 
“Two actions can be ordered by a happens-before relationship. If one action happens-before 
another, then the first is visible to and ordered before the second. [. . .] It should be noted that the 
presence of a happens-before relationship between two actions does not necessarily imply that 
they have to take place in that order in an implementation. If the reordering produces results con-
sistent with a legal execution, it is not illegal. [. . .] More specifically, if two actions share a hap-
pens-before relationship, they do not necessarily have to appear to have happened in that order to 
any code with which they do not share a happens-before relationship. Writes in one thread that are 
in a data race with reads in another thread may, for example, appear to occur out of order to those 
reads” [Gosling 2005].  

heap memory 
“Memory that can be shared between threads is called shared memory or heap memory. All in-
stance fields, static fields and array elements are stored in heap memory.[...] Local variables 
(§14.4), formal method parameters (§8.4.1) or exception handler parameters are never shared be-
tween threads and are unaffected by the memory model” [Gosling 2005].  

immutable 
When applied to an object, this means that its state cannot be changed after being initialized.  
“An object is immutable if: 
• Its state cannot be modified after construction; 

• All its fields are final;[12] and 
• It is properly constructed (the this reference does not escape during construction). 
[12] It is technically possible to have an immutable object without all fields being final. 
String is such a class but this relies on delicate reasoning about benign data races that requires a 
deep understanding of the Java Memory Model. (For the curious: String lazily computes the 
hash code the first time hashCode is called and caches it in a nonfinal field, but this works only 
because that field can take on only one nondefault value that is the same every time it is computed 
because it is derived deterministically from immutable state” [Goetz 2006]. Immutable objects are 
inherently thread-safe; they may be shared between multiple threads or published without syn-
chronization, though it is usually required to declare the fields containing their references vola-
tile to ensure visibility. An immutable object may contain mutable sub-objects, provided the 
state of the sub-objects cannot be modified after construction of the immutable object has con-
cluded. 

initialization safety 
“An object is considered to be completely initialized when its constructor finishes. A thread that 
can only see a reference to an object after that object has been completely initialized is guaranteed 
to see the correctly initialized values for that object’s final fields” [Gosling 2005]. 

interruption policy 
“An interruption policy determines how a thread interprets an interruption request - what it does 
(if anything) when one is detected, what units of work are considered atomic with respect to inter-
ruption, and how quickly it reacts to interruption” [Goetz 2006]. 

instance variable 
An instance variable is a non-static field that is a part of every instance of the class 
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liveness 
Every operation or method invocation executes to completion without interruptions, even if it 
goes against safety. 

memory model 
“The rules that determine how memory accesses are ordered and when they are guaranteed to be 
visible are known as the memory model of the Java programming language” [Arnold 2006]. “A 
memory model describes, given a program and an execution trace of that program, whether the 
execution trace is a legal execution of the program” [Gosling 2005].  

normalization 
Lossy conversion of the data to its simplest known (and anticipated) form. “When implementa-
tions keep strings in a normalized form, they can be assured that equivalent strings have a unique 
binary representation” [Davis 2009]. 

normalization (URI) 
Normalization is the process of removing unnecessary “.” and “..” segments from the path com-
ponent of a hierarchical URI. Each “.” segment is simply removed. A “..” segment is removed 
only if it is preceded by a non-“..” segment. Normalization has no effect upon opaque URIs [Sun 
2009b]. 

obsolete reference 
“An obsolete reference is simply a reference that will never be dereferenced again” [Bloch 08]. 

open call 
“An alien method invoked outside of a synchronized region is known as an open call” [Lea 2000a 
Section 2.4.1.3, Bloch 2008]. 

partial order 
An order defined for some, but not necessarily all, pairs of items. For instance, the sets {a, b} and 
{a, c, d} are subsets of {a, b, c, d}, but neither is a subset of the other. So “subset of” is a partial 
order on sets. [Black 2004a] 

program order 
The order that inter-thread actions are performed by a thread according to the intra-thread seman-
tics of the thread. “Program order [can be described] as the order of bytecodes present in the .class 
file, as they would execute based on control flow values” (David Holmes, JMM Mailing List). 

publishing objects 
“Publishing an object means making it available to code outside of its current scope, such as by 
storing a reference to it where other code can find it, returning it from a nonprivate method, or 
passing it to a method in another class” [Goetz 2006]. 

race condition 
“General races cause nondeterministic execution and are failures in programs intended to be de-
terministic” [Netzer 1992]. “A race condition occurs when the correctness of a computation de-
pends on the relative timing or interleaving of multiple threads by the runtime” [Goetz 2006]. 
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relativization (URI) 
”[Relativization] is the inverse of resolution. For example, relativizing the URI 
http://java.sun.com/j2se/1.3/docs/guide/index.html against the base URI 
http://java.sun.com/j2se/1.3 yields the relative URI docs/guide/index.html” 
[Sun 2009b]. 

safety 
Its main goal is to ensure that all objects maintain consistent states in a multithreaded environment 
[Lea 2000a]. 

sanitization 
Sanitization is a term used for validating input and transforming it to a representation that con-
forms to the input requirements of a complex subsystem. For example, a database may require all 
invalid characters to be escaped or eliminated prior to their storage. Input sanitization refers to the 
elimination of unwanted characters from the input by means of removal, replacement, encoding or 
escaping the characters. 

sequential consistency 
“Sequential consistency is a very strong guarantee that is made about visibility and ordering in an 
execution of a program. Within a sequentially consistent execution, there is a total order over all 
individual actions (such as reads and writes) which is consistent with the order of the program, 
and each individual action is atomic and is immediately visible to every thread. [. . .] If a program 
is correctly synchronized, then all executions of the program will appear to be sequentially consis-
tent (§17.4.3)” [Gosling 2005]. Sequential consistency implies there will be no compiler optimiza-
tions in the statements of the action. Adopting sequential consistency as the memory model and 
disallowing other primitives can be overly restrictive because under this condition, the compiler is 
not allowed to make optimizations and reorder code [Gosling 2005]. 

synchronization 
“The Java programming language provides multiple mechanisms for communicating between 
threads. The most basic of these methods is synchronization, which is implemented using moni-
tors. Each object in Java is associated with a monitor, which a thread can lock or unlock. Only one 
thread at a time may hold a lock on a monitor. Any other threads attempting to lock that monitor 
are blocked until they can obtain a lock on that monitor” [Gosling 2005]. 

starvation 
A condition wherein one or more threads prevent other threads from accessing a shared resource 
over extended periods of time. For instance, a thread that invokes a synchronized method, which 
performs some time-consuming operation, starves other threads.  

thread-safe 
An object is thread-safe if it can be shared by multiple threads without the possibility of any data 
races. “A thread-safe object performs synchronization internally, so multiple threads can freely 
access it through its public interface without further synchronization” [Goetz 2006]. Immutable 
classes are thread-safe by definition. Mutable classes may also be thread-safe if they are properly 
synchronized.  
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total order 
An order defined for all pairs of items of a set. For instance, <= (less than or equal to) is a total 
order on integers, that is, for any two integers, one of them is less than or equal to the other [Black 
2004b]. 

trusted code 
Code that is loaded by the primordial class loader, irrespective of whether it constitutes the Java 
API or not. In this text, this meaning is extended to include code that is obtained from a known 
entity and given permissions that untrusted code lacks. By this definition, untrusted and trusted 
code can coexist in the namespace of a single class loader (not necessarily the primordial class 
loader). In such cases, the security policy must make this distinction clear by assigning appropri-
ate privileges to trusted code, while denying the same from untrusted code. 

untrusted code 
Code of unknown origin that can potentially cause some harm when executed. Untrusted code 
may not always be malicious but this is usually hard to determine automatically. Consequently, 
untrusted code should be run in a sandboxed environment. 

volatile 
“A write to a volatile field (§8.3.1.4) happens-before every subsequent read of that field” [Gosling 
2005]. “Operations on the master copies of volatile variables on behalf of a thread are performed 
by the main memory in exactly the order that the thread requested” [Sun 1999b]. Accesses to a 
volatile variable are sequentially consistent, which also means that the operations are exempt 
from compiler optimizations. Declaring a variable volatile ensures that all threads see the 
most up-to-date value of the variable, if any thread modifies it. Volatile guarantees atomic reads 
and writes of primitive values, however, it does not guarantee the atomicity of composite opera-
tions such as variable incrementation (read-modify-write sequence).  

vulnerability 
“A set of conditions that allows an attacker to violate an explicit or implicit security policy” 
[Seacord 2005]. 
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