
Java Concurrency in practice

Chapters: 1,2, 3 & 4
Bjørn Christian Sebak (bse069@student.uib.no)

Karianne Berg (karianne@ii.uib.no)

INF329 – Spring 2007

mailto:bse069@student.uib.no
mailto:karianne@ii.uib.no

Chapter 1 - Introduction

Brief history of concurrency

 Before OS, a computer executed a
single program from start to finnish

 But running a single program at a time
is an inefficient use of computer
hardware

 Therefore all modern OS run multiple
programs (in seperate processes)

Brief history of concurrency (2)
 Factors for running multiple processes:

 Resource utilization: While one program
waits for I/O, why not let another program
run and avoid wasting CPU cycles?

 Fairness: Multiple users/programs might
have equal claim of the computers
resources. Avoid having single large
programs „hog“ the machine.

 Convenience: Often desirable to create
smaller programs that perform a single
task (and coordinate them), than to have
one large program that do ALL the tasks

What is a thread?

 A „lightweight process“ - each process
can have many threads

 Threads allow multiple streams of
program flow to coexits in a single
process.

 While a thread share process-wide
resources like memory and files with
other threads, they all have their own
program counter, stack and local
variables

Benefits of threads

1) Exploiting multiple processors

2) Simplicity of modeling

3) Simplified handling of asynchronous
events

4) More responsive user interfaces

Benefits of threads (2)
 Exploiting multiple processors

 The processor industry is currently
focusing on increasing number of cores on
a single CPU rather than increasing clock
speed.

 Well-designed programs with multiple
threads can execute simultaneously on
multiple processors, increasing resource
utilization.

 Threads are beneficial even for single-
processor systems (another thread can run
while the first waits for I/O)

Benefits of threads (3)

 Simplicity of modelling
 Threads can help decompose large,

complex programs into smaller units, while
still offering the illusion of having a single,
sequential program.

 Makes it easier to implement and maintain
the application, and might give a
performance bonus.

Benefits of threads (4)
 Simplified handling of asynchronous

events
 Imagine a server application in a single-

threaded application. If it tries to read from
a socket when no data is available – read
blocks

 This stalls not only the current request, but
all other requests in the system.

 When each request is run in its own
thread, other requests are still processed
while one request waits for I/O

Benefits of using threads (5)

 More responsive user interfaces
 Single-threaded GUI apps tends to „freeze“

when executing time-consuming
operations

 By excecuting the operation in its own
thread, the GUI can still be used while this
operation runs

 Using threads can improve responsiveness
and efficienty of GUI applications in java
frameworks like Swing/AWT

Risk of threads

 Important issues to be aware of:

1)Safety hazards

2)Liveness hazards

3)Performance hazards

Risk of threads (2)

 Safety hazards
 Lack of sufficient synchronization can lead

to strange results due to the unpredictable
ordering of operations in multiple threads.

Its easy to forget that the ++-shorthand is actually 3 seperate
operations (non-atomic)

Risk of threads (3)

 Safety hazards
 Previous example illustrated a so-called
„race condition“.

 To prevent this, access to the shared
resource must be synchronized

 Without this, the compiler, runtime (JVM)
and hardware are free to play tricks with
timing and ordering of actions to
maximize performance

Risk of threads (4)

 Liveness hazards
 Bad implementation of multi-threaded

applications can lead to „deadlocks“,
causing the application to crash or loop
forever.

 Ex: If thread A waits for B to release a
resource, but B never does, then A is
unable to continue (liveness failure).

 More on this in ch. 10

Risk of threads (5)

 Performance hazards
 While using threads give a net

performance boost, it also adds overhead
 Context switches (save current thread

state, switch to another thread, restore
previous state, etc) is expensive

 The more threads, the more CPU time is
spent scheduling threads instead of
actually running them

Threads are everywhere!
 All java programs use threads! Even if

you never explicitly use threads in your
code!

 JVM housekeeping tasks (garbage
collection, finalization, etc). Swing/AWT
for monitoring GUI-events. Servlets/RMI
for handling client requests

 Dealing with concurrency is NOT
optional, all developers must be aware
of these issues

Threads are everywhere! (2)

 When using frameworks, you
automatically introduce concurrency in
your application

 Since the framework is going to run
your application code, your code must
be thread-safe

 Ex: A Servlet can be called simultaneously from
multiple threads (def. in spec.). Thus, servlet
MUST be made thread safe. (Detailed servlet
example later)

Chapter 2 – Thread Safety

Thread safety

 If multiple threads access the same
mutable state variable without proper
synchronization, your program is
considered broken.

 Three ways to fix this:
 Don`t share state variables across threads
 Make the state variable immutable
 Apply synchronization on all access to the

state variable

Thread-safe design

 The less code that has access to its
state, the easier it is to make thread-
safe objects (keep data private)

 Applying good object-oriented design
principles (encapsulation, immutability,
etc) helps when making thread-safe
programs

 Its far easier to design a class to be
thread-safe from the start, than to add
thread-safety later on

What is thread safety?

 Definition:
„A class is thread-safe if it behaves
correctly when accessed from multiple
threads, regardless of the scheduling or
interleaving of the execution of those
threads by the runtime environment,
and with no additional synchronization
or other coordination on the part of the
calling code.“

A stateless object

 Ex: Stateless servlet:

 Using only local variables, no shared
data.

 Conclusion: Stateless objects are
always thread-safe!

Adding state

 Ex: A servlet with a „hit-counter“

 Problem: Hit counter is not accurate
due to lack of synchronization.

Lazy initialization issues
 Goal: Don`t init an expensive object untill its

actually needed.

 „Check-then-act“ type of race condition
 Two threads might see instance is null and

two different instances will be created (while
everyone should actually get the same
instance)

Atomic operations

 To avoid race conditions, operations
must be atomic (indivisible)

 The compound action ++count from
prev. example was not atomic (but 3
operations)

 We can fix this by adding
synchronization ourself....or use
already existing thread-safe classes

Built-in thread-safe objects

 The java.util.concurrent-package
contains thread-safe atomic variable
classes

 Ex. replace primitives like long, int,
double with AtomicLong. AtomicInteger
and AtomicDouble.

 Where practical, use existing thread-
safe classes instead of implementing
your own.

Adding more state
 Ex: Caching in our factorizer servlet

 When updating one, you are not updating the
other in the same atomic operation.

Locking

 Java provides a built-in locking mechanism:
the synchronized block

 Two parts: Object to act as the lock, and
block of code guarded by the lock

 Only one thread at a time can execute a
block of code guared by a given lock.

 Syncronized blocks guarded by the same lock
executes atomically with respect to one
another.

Reentrancy
 A thread blocks when waiting for another

thread to release a lock
 Reentrancy: if a thread tries to aquire a lock

it already holds, it succeeds

 Without reentrancy, deadlocks would occur

Guarding state with locks

 When using locks to controll access to
mutable state variables, all access
must be guarded by the same lock.

 Having multiple locks for the same
mutable state variable breaks the
system.

 Easy for code maintainers to forget to
add synchronization when, ex. adding a
new method to a class. Make it clear for
maintainers which lock to use!

Liveness & performance

 Too much synchronization can affect
performance, while too little can affect
safety

 Having time-consuming operations (ex.
I/O) inside a synchronized block should
be avoided

 Always resist the temptation of
sacrificing safety for simplicity and
performance

Ex: Bad performance

 Synchr. the service method makes requests
„queue up“ (handle one request at a time).

Ex: Narrowing scope of sync. block

Chapter 3 – Sharing objects

 3.1: Visibility
 3.2: Publication and escape
 3.3: Thread confinement
 3.4: Immutability
 3.5: Safe publication

Visibility (1)
 What happens here?

Visibility (2)

 Alternatives:

1. Prints out ”The number is 42” and terminates

2. Prints out ”The number is 0” and terminates

3. Runs in an eternal loop
 Answer:

 You never know!
 This is because of caching, and because the

processor takes liberties to reorder operations
from different threads unless we tell it to do
differently

Visibility (3)

 This program is about as simple as it gets
when it comes to synchronisation

 Two threads, two shared variables
 Even now, it is very hard to foresee what will

happen when we run the program
 What if there were a hundred threads and

many shared variables?

 Lesson: Always use proper synchronisation
when data is shared across threads!

Stale data

 Stale data: Data that are somehow ”out
of date” – they have been updated
after you read them, and are therefore
incorrect

 This can be avoided by always
synchronising methods that mutate the
state of the object – ie the value of
fields

Non-atomic 64-bit operations
 Out-of-thin-air safety: A guarantee that

even though a thread reads a variable
without synchronisation, the stale value
was placed there by a thread, it is not
random

 This safety applies to all variables,
except 64-bits variables (double and
long)

 This is because 64 bit variables can be
read in two operations with 32 bits
each

Locking and visibility

 Locking is used to guarantee that
variable visibility is preserved correctly

 The compiler will not reorder
instructions within a block of code that
is synchronised

 Locking guarantees that if two threads,
A and B, tries to access a block of code
guarded by the same lock, and A gets
to go first, all changes A did to
variables is visible to B (no stale data)

Volatile variables
 A field can be marked with the keyword volatile,

which provides a weaker form of synchronisation
upon the variable

 Example: public volatile boolean done
 This implies that the compiler and runtime is told

that any operations on the done variable should not
be reordered or cached

 Volatile variables does not help if the updating of the
variable requires more than one operation

 Should therefor only be used for variables where its
operations are atomic: for instance setting boolean
flags

 Rule: Locking guarantees both visibility and
atomicity, volatile variables guarantees only visibility

Rules of thumb for using volatile
variables

 Use volatile variables only if all of
these statements hold:
 Writing to the variable does not depend on

its current value, OR is is guaranteed that
only a single thread updates the variable

 The variable does not participate in
invariants with other stateful variables

 Locking when accessing the variable is not
required for any other reason

 3.1: Visibility
 3.2: Publication and escape
 3.3: Thread confinement
 3.4: Immutability
 3.5: Safe publication

Publication and escape (1)

 Publishing: To make an object
accessible to code outside of the
current scope

 This can be done in many ways:
 Storing a reference to it where other code

can find it
 Returning it from a non-private method
 Passing it as a parameter to a method in

another class
 This is not always desirable

Publication and escape (2)

 Dangers of publication:
 Publishing internal state variables

compromises encapsulation and makes it
difficult to preserve invariants

 Publishing objects before they are fully
constructed compromises thread safety

 Escape: An object that has been
published unintendedly

Publication and escape (3)

 There are multiple ways to let an object or
state variable escape:

 Storing a state variable in a public field
 Having a public method that returns a state

variable
 Letting state variables contain inner classes

(more on this later)
 Alien method: Methods from other classes, as

well as reachable methods (neither private
nor final) in the class itself

 Passing an object to an alien method has to
be considered publishing that object

Safe construction practices (1)

Safe construction practices (2)

 When the inner class is published, the
wrapping class is also published

 The problem is that the constructor has not
yet finished running

 You are in fact publishing an object that is
not properly constructed (uh-oh!)

 Rule: Never allow the this-reference to
excape from the thread during construction
of the object!

Safe construction practices (3)

 A safe way to do this:

 3.1: Visibility
 3.2: Publication and escape
 3.3: Thread confinement
 3.4: Immutability
 3.5: Safe publication

Thread confinement
 Accessing shared, mutable data requires

synchronisation
 The easiest way to avoid this is simply not to

share data between threads
 This is called thread confinement
 Examples:

 Swing framework
 Connection pooling

 The Java language in itself has no means for
defining that an object is confined to a thread
– this is the responisibity of the programmer
to ensure

Ad-hoc thread confinement
 The simplest form of thread

confinement
 The case when the responsibility for

confinements relies entirely upon the
implementation (no language ”help”
used)

 Very fragile – easy to break by mistake
 The simplicity of making certain

subsystems single-threaded can
sometimes outweigh the fragility
concerns of ad-hoc confinement

 Should be used sparingly

Stack confinement (1)
 Stack confinement: An object can only be

reached through local variables
 Simpler to maintain and less fragile than ad-

hoc confinement
 Primitive type variables are always stack

confined (due to value passing instead of
reference passing)

 We still have to be careful: The language
doesn’t enforce confinement

 Always document assumptions that certain
objects are supposed to be used only within
the current thread

Stack confinement (2)

ThreadLocals (1)

 ThreadLocal is a class used to contain
separate values for each thread

 Think of it as a mutable singleton object local
to each thread

 Provide three significant methods:
initialValue(), get() and set(T value).

 Use ThreadLocals with care; They should not
be used for global variables or ”hidden”
parameters to a method – this affects
maintainability

ThreadLocals (2)

 (example, see ThreadLocals.java in
attached zip file)

 3.1: Visibility
 3.2: Publication and escape
 3.3: Thread confinement
 3.4: Immutability
 3.5: Safe publication

Immutability (1)

 Another way to escape synchronisation is to
only use immutable objects (ie objects that
does not change their state after creation)

 Immutable objects
 Can not have stale values
 Does not have visibility issues
 Does not have to care about atomicity
 Does not have to worry about escaping

 Rule: Immutable objects are always thread-
safe

Immutability (2)
 Declaring all fields in an object as
final is not enough to make it
immutable, since final fields can hold
references to mutable objects

 An object is defined as mutable if all
these three properties hold:
 Its state cannot be modified after

construction
 All of its fields are final
 It is properly constructed (the this

reference does not escape during
construction)

Final fields

 The final keyword supports the
construction of immutable objects

 If an object cannot be made totally
immutable, it helps that at least most
of the object is immutable by using
final fields

 Rule: Make all fields final unless they
need to be mutable

Using volatility to publish
immutable objects

 (example, see OneValueCache.java
and VolatileCachedFactorizer in
attached zip file)

 3.1: Visibility
 3.2: Publication and escape
 3.3: Thread confinement
 3.4: Immutability
 3.5: Safe publication

Safe publication (1)

 Sometimes it is necessary to publish
objects

 It is important to consider how to do
this in a thread-safe manner

Safe publication (2)

Safe publication (3)

 What could possibly go wrong in this case?
 A different thread than the publishing thread

could retrieve a stale value of the Holder object
(ie a null value even when the publishing thread
has called the initialize()-method

 This is, of course, due to visibility issues
 A different thread than the publishing thread

could get the right reference to the Holder object,
but a stale value for the field in Holder

 This is because even though it may seem like this.n =
n; is the only statement here, every class is a subclass
of Object, and the constructor of Object is run first

Safe publication (4)

 The assertSanity()-method could
actually fail, causing an AssertingError

 The statement if(n != n) ... is actually not
atomic. The variable n is read twice. It is
entirely possible to read a stale value the first
time and the actual value the other time,
causing the assertion to fail

Safe publication (5)

 ”Now, this is utterly confusing! Why
does this happen?!”
 Publishing an object by storing its

reference in a public field is unsafe
 It is not the Holder object itself that is

”dangerous” here, but the way it is
published

Immutable objects and
initialization safety

 The Java Memory Model (JMM) offers a
special guarantee called initialization safety
for sharing immutable objects

 This means that if you use immutable
objects, you can access them even when you
haven’t used synchronization to publish its
refererence

 This means that if we had made the n field in
the Holder class final, the publication
through a public field would have been safe

Safe publication best
practices

 To publish an object safely, both the
reference to the object and the object’s state
must be made visible to other threads at the
same time

 A properly constructed object can be safely
published by:

 Initializing an object reference from a static
initializer

 Storing a reference to it into a volatile field or
AtomicReference

 Storing a reference to it into a final field of a
properly constructed object

 Storing a reference to it into a field that is
properly guarded by a lock

Safe publication in collections
 The last best practice also applies to certain

types of collections:
 Hashtable
 synchronizedList, synchronizedSet,

synchronizedMap
 ConcurrentMap
 Vector
 CopyOnWriteArrayList and CopyOnWriteArraySet
 synchronizedList, synchronizedSet
 BlockingQueue, ConcurrentQueue

 The easiest, safest way to publish objects is
to use a static initializer:

 public static Holder holder = new
Holder(42);

Effectively immutable objects

 Effectively immutable: Objects that
aren’t technically immutable, but
whose state is never changed after
publication

 These objects can be used safely by
any thread without additional
synchronization

Object mutability rules

 Immutable objects can be published
through any mechanism

 Effectively immutable objects must be
safely published

 Mutable objects must be safely
published, and must be either thread-
safe or have their state guarded by a
lock

Object sharing policies

 To enable others to reason about the
thread safety of your program, define
the policy used, and document it

 The most common policies are:
 Thread-confined
 Shared read-only
 Shared thread-safe
 Guarded

Chapter 4 – Composing
objects

 4.1: Designing a thread-safe class
 4.2: Instance confinement
 4.3: Delegating thread safety
 4.4: Adding functionality to existing

threadsafe classes
 4.5: Documenting synchronisation

policies

Designing a thread-safe class
(1)

 It is theoretically possible to write a thread-
safe program that stores all its state in public
static fields, but it is much harder to verify
that the program is actually thread-safe

 The design process for a thread-safe class
should include these three basic elements:

 Identify the variables that composes the object’s
state

 Identify the invariants that constrain the state
variables

 Establish a policy for managing concurrent access
to the object’s state

Designing a thread-safe class
(2)

 An object’s state is composed of the
values of its primitive typed fields, and
the state of the objects it is composed
of

 Synchronization policy: How an object
coordinates access to its state without
violating its invariants or postconditions
 What combination of immutability, thread

confinement and locking that is used to
maintain thread safety

Gathering synchronization
requirements (1)

 Another way to define a thread-safe class is a
class whose invariants hold also under
concurrent access

 State space: The range of possible states an
object can take on

 Some classes has invariants that restricts the
state space

 Example: The state space of int ranger from
Integer.MIN_VALUE to Integer.MAX_VALUE, but a
counter will restrict the values to be only positive

Gathering synchronization
requirements (2)

 Some operations may also have postconditions that
restricts the state space

 Example: For a counter in the state of 17, the only valid
next state is 18

 If a class has invalid states, access to these state
variables has to be encapsulated

 Also, if an operation can temporarily put an object in
an inconistent state, it must be made atomic

 Rule: You cannot ensure thread safety without
understanding an object's invariants and
postconditions. Constraints on valid values or state
transitions for state variables can create atomicity
and encapsulation requirements

State-dependent operations
(1)

 Some objects can have operations with state-
based preconditions

 Example: It is impossible to remove an object
from an empty queue; the queue most be in a
non-empty state in order for the operation to be
successful

 In single-threaded programs, an operation
must fail if a precondition does not hold

 This is not the case with multithreaded
programs, which have the choice of waiting
until another thread has satified the
preconditions (for instance put a new object
into the queue) This is called blocking.

State-dependent operations
(2)

 Java's built-in mechanisms for blocking
are wait and notify.

 These are often hard to use correctly,
and it is often better to use library
classes to get the desired behavior (for
instance BlockingQueue)

State ownership

 When we look at an object's state, we want
to consider only the data it owns

 A class does usally not own objects passed to
it as method parameters or constructor
arguments, unless it is clearly stated that
ownership is transferred to the class upon
calling

 Collection classes often uses a kind of
"shared ownership", where the collection
class owns the state of the collection
infrastructure, while the client code owns the
objects contained in the collection

 4.1: Designing a thread-safe class
 4.2: Instance confinement
 4.3: Delegating thread safety
 4.4: Adding functionality to existing

threadsafe classes
 4.5: Documenting synchronisation

policies

Instance confinement (1)

 An object does not need to be thread-safe in
order to be used in a multithreaded program

 A way to maintain thread safety with not
thread-safe objects is to use instance
confinement

 Instance confinement: to confine an object
that is not thread-safe within another object,
and make all methods accessing the unsafe
object threadsafe

 This only works if the unsafe object never is
allowed to escape

Instance confinement (2)

 (see PersonSet.java in attached zip
file for example)

Instance confinement (3)

 Rule: Encapsulating data within an
object confines access to the object's
methods, making it easier to ensure
that the data is always accessed using
the right lock

 Instance confinement is one of the
easiest way to build tread-safe classes

 It is used in for instance in
Collections.synchronizedList, that
only returns an instance confined
version of a list object

Java monitor pattern (1)

 Java monitor pattern: encapsulates all
mutable state of an objects and guards
it with its own intrinsic lock (ie by using
the object itself as the lock)

 (see Counter.java for an example)

Java monitor pattern (2)

 A variant of the Java monitor pattern is to use
a private lock:

 See PrivateLock.java for an example
 Note that since the lock is private, no one

else can obtain it and thus participate in the
object's synchronization policy

 It is much easier to verify that a lock is
properly used if it's private to the class than
if it is public to all, as is the case with the
Java monitor pattern

Java monitor pattern (3)

 Example: Vehicle Tracker
 We have multiple vehicles (cars, trucks,

buses etc) that we need to keep track of
 A vehicle is represented by a string identifier

and a position
 We will have multiple threads reading and

updating, so we need to support concurrent
access to the information

 See MonitorVehicleTracker.java and
MutablePoint.java for an example

 4.1: Designing a thread-safe class
 4.2: Instance confinement
 4.3: Delegating thread safety
 4.4: Adding functionality to existing

threadsafe classes
 4.5: Documenting synchronisation

policies

Delegating thread safety (1)

 The Java monitor pattern is useful when we
are building classes from scratch or are
composing classes out of components that
are not thread-safe

 What if we are composing classes out of
already thread-safe objects?

 Sometimes, classes composed from thread-
safe are not thread-safe

 Delegation: To delegate thread-safety
responsibilities to underlying classes

Delegating thread safety (2)

 See DelegatingVehicleTracker.java and
Point.java for an example

When delegation fails

 Delegation does not work when a class has
invariants that contains more state variables

 In this case, delegation is not enough, and
additional precautions must be taken in order
to ensure thread safety

 Rule: if a class is composed of multiple
independent thread-safe state variables and
has no operations that has any invalid state
transitions, then it can safely delegate thread
safety to the underlying state variables

Publishing underlying state
variables (1)

 In some cases, you can delegate thread
safety to a class's underlying state
variable and still be able to publish
them

 Rule: if a state variable is thread-safe,
does not participate in any invariants
that constrain its value and has no
prohibited state transitions for any of
its operations, then it can be safely
published

Publishing underlying state
variables (2)

 See PublishingVehicleTracker.java and
SafePoint.java for an example

 4.1: Designing a thread-safe class
 4.2: Instance confinement
 4.3: Delegating thread safety
 4.4: Adding functionality to existing

threadsafe classes
 4.5: Documenting synchronisation

policies

Adding functionality to
existing thread-safe classes

 The Java library provides lots of useful classes that
provides often-needed functionality

 It is preferrable to use on of these before
implementing a new class

 Sometimes, we have a class that almost fits our
needs, but we have to add some functionality

 The best way to do this would be to modify the
original class, but in most cases, this is not a viable
alternative

 Another way to do this is to extend the original class
and add the functionality you need

 This is a more fragile approach, as responsibility for
the synchronization policy is now distributed over
multiple source files

Client-side locking (1)

 Many classes can, for some reason, not
be subclassed

 We can then extend functionality by
adding a "helper class"

Client-side locking (2)

 See ListHelpers.java for an example

Client-side locking (3)

 Why is BadListHelper unsafe?
 The ArrayList and the ListHelper does

not synchronize on the same lock!
 Declaring a method as synchronized

means that the class itself is used as
the lock

 The ArrayList is using its own intrinsic
lock

 This is a false synchronization
guarantee

Client-side locking (3)

 See ListHelpers.java for an example

Composition

 The best alternative to add new
operations to existing classes is
composition

 This is guaranteed to work as long as
the composer class holds the only
reference to the list object

 See ImprovedList.java for an example

 4.1: Designing a thread-safe class
 4.2: Instance confinement
 4.3: Delegating thread safety
 4.4: Adding functionality to existing

threadsafe classes
 4.5: Documenting synchronisation

policies

Documenting synchronization
policies

 Documentation is one of the most
powerful and underutilized tools to
maintain tread-safety

 Rule: Document a class's thread safety
guarantees for its clients; document its
synchronization policy for its
maintainers

Documenting synchronization
policies (1)

 Every use of the tecniques described earlier
is the result of careful thinking about
synchronization policies. This has to be
documented so that someone does not break
it in the future

 Because thread-safety is so under-
documented even in the Java library classes,
sometimes you have to guess whether a
class is thread-safe or not

 If a class is written for multi-threaded
environments and it seems unreasonable
that it could behave correctly while still being
thread-safe (for instance ServletContext or
HttpSession), you have to assume that these
have been made thread-safe

