The Javee Virtual
Machine Specification
Java SE 7 Edition

Tim Lindholm
Frank Yellin
Gilad Bracha
Alex Buckley

2013-02-28

Specification: JSR-000924 Javae Virtual Machine Specification (" Specification")
Version: 7

Status: Final Release

Release: July 2011

Copyright © 1997, 2013, Oracle America, Inc. and/or its affiliates. All rights reserved.
500 Oracle Parkway, Redwood City, California 94065, U.S.A.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may
be trademarks of their respective owners.

The Specification provided herein is provided to you only under the Limited License Grant
included herein as Appendix A. Please see Appendix A, Limited License Grant.

Table of Contents

Prefaceto the Java SE 7 Edition xi
Preface to the Second Edition xiii
Prefacetothe First Edition xv

Introduction 1

1.1 ABitof History 1

1.2 The JavaVirtua Machine 2
1.3 Summary of Chapters 3
14 Notation 4

The Structure of the Java Virtual Machine 5

21 Theclass FileFormat 5
22 DaaTypes 6
2.3 Primitive Typesand Vaues 6
231 Integra Typesand Values 7
2.3.2 Floating-Point Types, Value Sets, and Values 8
233 ThereturnAddress Typeand Values 10
234 Thebool ean Type 10
24 Reference Typesand Values 11
25 Run-TimeDataAreas 11
251 Thepc Register 12
252 JavaVirtua Machine Stacks 12
253 Heap 13
254 Method Area 13
255 Run-Time Constant Pool 14
256 Native Method Stacks 14
2.6 Frames 15
26.1 Local Variables 16
26.2 Operand Stacks 17
2.6.3 DynamicLinking 18
2.6.4 Norma Method Invocation Completion 18
2.6.5 Abrupt Method Invocation Completion 18
2.7 Representation of Objects 19
2.8 Floating-Point Arithmetic 19
28.1 JavaVirtua Machine Floating-Point Arithmetic and IEEE
754 19
2.8.2 Floating-Point Modes 20

The Javae Virtual Machine Specification

28.3 Value Set Conversion 20

29 Specia Methods 21

210 Exceptions 23

211 Instruction Set Summary 25
2111 Typesand the JavaVirtua Machine 26
211.2 Load and Store Instructions 29
2.11.3 Arithmetic Instructions 30
2.11.4 Type Conversion Instructions 32
2115 Object Creation and Manipulation 34
2116 Operand Stack Management Instructions 34
2.11.7 Control Transfer Instructions 34
2.11.8 Method Invocation and Return Instructions 35
2119 Throwing Exceptions 36
2.11.10 Synchronization 36

212 ClassLibraries 37

2.13 Public Design, Private Implementation 37

3 Compiling for the Java Virtual Machine 39

3.1 Format of Examples 39

3.2 Useof Constants, Local Variables, and Control Constructs 40
3.3 Arithmetic 45

34 Accessing the Run-Time Constant Pool 46
3.5 MoreControl Examples 47

3.6 Receiving Arguments 49

3.7 Invoking Methods 50

3.8 Working with Class Instances 53

3.9 Arrays 55

3.10 Compiling Switches 57

3.11 Operations on the Operand Stack 58

3.12 Throwing and Handling Exceptions 59
3.13 Compilingfinally 63

3.14 Synchronization 66

3.15 Annotations 67

4 Thecl ass FileFormat 69

41 Thed assFil e Structure 70
4.2 Thelnternal Form of Names 75
421 Binary Classand Interface Names 75
4.2.2 Unqualified Names 75
4.3 Descriptors and Signatures 75
43.1 Grammar Notation 76
4.3.2 Field Descriptors 76
4.3.3 Method Descriptors 78
434 Signatures 79
44 The Constant Pool 82
441 TheCONSTANT O ass_i nf o Structure 83

45
4.6
47

4.8
4.9

4.10

The Javae Virtual Machine Specification

4.4.2 The CONSTANT Fi el dr ef _i nf o, CONSTANT_Met hodr ef _i nf o, and
CONSTANT _| nt er f aceMet hodr ef _i nf o Structures 84

443 TheCONSTANT String_info Structure 86

4.4.4 The CONSTANT I nt eger _i nf o and CONSTANT_Fl oat _i nfo
Structures 86

445 The CONSTANT Long_i nf o and CONSTANT Doubl e_i nf o
Structures 88

446 The CONSTANT NameAndType_i nf o Structure 89

447 The CONSTANT Ut f8 i nf o Structure 90

448 The CONSTANT Met hodHandl e_i nf o Structure 92

449 The CONSTANT Met hodType_i nf o Structure 93

4410 The CONSTANT I nvokeDynani c_i nf o Structure 94

Fields 95

Methods 97

Attributes 100

4.7.1 Defining and Naming New Attributes 102

4.7.2 TheConst ant Val ue Attribute 103

473 Thecode Attribute 104

474 ThesStackMapTabl e Attribute 107

475 TheExceptions Attribute 115

47.6 Thelnnerd asses Attribute 116

477 ThekEncl osi ngMet hod Attribute 119

478 Thesynthetic Attribute 120

479 ThesSignature Attribute 120

4.7.10 The SourceFil e Attribute 121

4.7.11 The Sour ceDebugExt ensi on Attribute 122

4.7.12 ThelLi neNurber Tabl e Attribute 123

4713 Thelocal Vari abl eTabl e Attribute 124

4.7.14 Thelocal Vari abl eTypeTabl e Attribute 126

4715 TheDeprecated Attribute 128

4716 TheRuntinmeVisibl eAnnot ati ons attribute 128
47.16.1 Theel enent _val ue structure 130

4.7.17 TheRunti el nvi si bl eAnnot at i ons attribute 133

4718 TheRuntimeVi si bl ePar anet er Annot at i ons attribute 134

4.7.19 TheRunti mel nvi si bl ePar amet er Annot at i ons attribute 136

47.20 TheAnnotationDefaul t attribute 137

4.7.21 TheBoot st rapMet hods attribute 138

Format Checking 140

Constraints on Java Virtual Machine code 140

491 Static Constraints 141

492 Structural Constraints 144

Verification of cl ass Files 148

4.10.1 Verification by Type Checking 149
410.1.1 Accessorsfor Java Virtual Machine Artifacts 152
410.1.2 Veification Type System 155
4.10.1.3 Instruction Representation 159
4.10.1.4 Stack Map Frame Representation 160
4.10.1.5 Type Checking Abstract and Native Methods 166

Vi

The Javae Virtual Machine Specification

6

4.10.1.6 Type Checking Methods with Code 167
4.10.1.7 Type Checking Load and Store Instructions 174
4.10.1.8 Type Checking for pr ot ect ed Members 176
4.10.1.9 Type Checking Instructions 179

4.10.2 Verification by Type Inference 327
4.10.2.1 TheProcess of Verification by Type Inference 327
4.10.2.2 TheBytecode Verifier 328
4.10.2.3 Vauesof Typesl ong and doubl e 330
4.10.2.4 Instance Initialization Methods and Newly Created

Objects 331

4.10.25 Exceptionsandfinally 332

411 Limitations of the JavaVirtual Machine 334

Loading, Linking, and Initializing 337

51
52
53

54

55
5.6
5.7

The Run-Time Constant Pool 337
JavaVirtua Machine Startup 340
Creation and Loading 340
5.3.1 Loading Using the Bootstrap Class Loader 342
5.3.2 Loading Using a User-defined Class Loader 343
5.3.3 Creating Array Classes 344
534 Loading Constraints 344
5.35 DerivingaClassfromacl ass File Representation 346
Linking 347
54.1 Verification 348
54.2 Preparation 348
543 Resolution 349
5431 Classand Interface Resolution 350
5432 Field Resolution 351
5433 Method Resolution 352
54.34 Interface Method Resolution 353
5435 Method Type and Method Handle Resolution 354
54.36 Call Site Specifier Resolution 357
54.4 Access Control 358
54.5 Method overriding 359
Initialization 359
Binding Native Method |mplementations 362
Java Virtua Machine Exit 362

The Java Virtual Machine I nstruction Set 363

6.1
6.2
6.3
6.4

6.5

Assumptions: The Meaning of "Must" 363
Reserved Opcodes 364
Virtual Machine Errors 364
Format of Instruction Descriptions 365
mnemonic 366
Instructions 368
aaload 369
aastore 370

aconst_null 372
aload 373
aload <n> 374
anewarray 375
areturn 376
arraylength 377
astore 378
astore <n> 379
athrow 380
baload 382
bastore 383
bipush 384
caload 385
castore 386
checkcast 387
d2f 389

d2i 390

d2l 391

dadd 392
daload 394
dastore 395
dcmp<op> 396
dconst_<d> 398
ddiv 399

dload 401
dload <n> 402
dmul 403
dneg 405
drem 406
dreturn 408
dstore 409
dstore <n> 410
dsub 411

dup 412
dup x1 413
dup x2 414
dup2 415

dup2 x1 416
dup2 x2 417
f2ad 419

f2i 420

f2l 421

fadd 422
faload 424
fastore 425
femp<op> 426
fconst_<f> 428
fdiv 429

The Javae Virtual Machine Specification

Vii

viii

The Javae Virtual Machine Specification

fload 431

fload <n> 432
fmul 433

fneg 435

frem 436

freturn 438
fstore 439

fstore <n> 440
fsub 441

getfield 442
getstatic 444
goto 446

goto_w 447

i2b 448

i2c 449

i2d 450

i2f 451

i2l 452

i2s 453

iadd 454

iaload 455

iand 456

iastore 457
iconst_<i> 458
idiv 459

if acmp<cond> 460
if icmp<cond> 461
if<cond> 463
ifnonnull 465
ifnull 466

iinc 467

iload 468
iload_<n> 469
imul 470

ineg 471
instanceof 472
invokedynamic 474
invokeinterface 479
invokespecial 482
invokestatic 486
invokevirtual 489
ior 494

irem 495

ireturn 496

ishl 497

ishr 498

istore 499
istore <n> 500

isub 501

iushr 502

ixor 503

jsr 504

jsr_w 505

12d 506

|12f 507

12i 508

ladd 509
laload 510
land 511
lastore 512
lcmp 513
Iconst_ <I> 514
Idc 515

ldc w 517
Idc2 w 519
Idiv 520

lload 521
lload_<n> 522
Imul 523

Ineg 524
lookupswitch 525
lor 527

Irem 528
Ireturn 529
Ishl 530

Ishr 531

Istore 532
Istore <n> 533
Isub 534

lushr 535

Ixor 536
monitorenter 537
monitorexit 539

multianewarray 541

new 543
newarray 545
nop 547
pop 548
pop2 549
putfield 550
putstatic 552
ret 554
return 555
saload 556
sastore 557
sipush 558

The Javae Virtual Machine Specification

The Javae Virtual Machine Specification

swap 559
tableswitch 560
wide 562

7 Opcode Mnemonics by Opcode 565
Index 569

A Limited License Grant 587

Preface to the Java SE 7 Edition

T HE Javee SE 7 Edition of The Java Virtual Machine Specification incorporates
all the changes that have been made to the Java Virtual Machine since the Second
Edition in 1999. In addition, numerous corrections and clarifications have been
made to align with popular implementations of the Java Virtual Machine, and with
conceptscommon to the JavaVirtual M achine and the Java programming language.

Readers may send feedback about errors and ambiguities in The Java Virtual
Machine Specification to j vims- comment s_ww@r acl e. com

The Java SE 5.0 platform in 2004 brought momentous changes to the Java
programming language but had a relatively muted effect on the design of the Java
Virtual Machine. Additionswere madetothecl ass fileformat to support new Java
programming language features such as generics and variable arity methods.

The Java SE 6 platform in 2006 saw no changes to the Java programming
language but an entirely new approach to bytecode verification in the Java Virtual
Machine. EvaRose, in her Master's Thesis, proposed aradical revision of bytecode
verification in the context of the Java Card platform. Thisled to animplementation
for Java ME CLDC, and eventually to the revision of the Java SE verification
process documented in Chapter 4.

Sheng Liang implemented the Java ME CLDC verifier. Antero Taivalsaari led
the overall specification of Java ME CLDC and Gilad Bracha was responsible
for specifying the verifier. Alessandro Coglio's analysis of bytecode verification
was the most extensive, realistic, and thorough study of the topic, and contributed
greatly to the specification. Wei Tao, together with Frank Yellin, Tim Lindholm,
and Gilad Bracha, implemented the Prolog verifier that formed the basis for the
specificationin both JavaME and Java SE. Wei then implemented the specification
"for real" in the HotSpot VM. Later, Mingyao Yang improved the design and
specification, and implemented the final version that shipped in the Reference
Implementation of Java SE 6. The specification also benefited from the efforts
of the JSR 202 Expert Group: Peter Burka, Alessandro Coglio, Sanghoon Jin,
Christian Kemper, Larry Rau, Eva Rose, and Mark Stolz.

The JavaSE 7 platformin 2011 made good on the promise givenin the First Edition
of The Java Virtual Machine Specification in 1997: "In the future, we will consider
bounded extensions to the Java virtual machine to provide better support for other
languages." Gilad Bracha, in his work on hotswapping, anticipated the burden of

Xi

Xii

PREFACE TO THE JAVA SE 7 EDITION

the Java Virtual Maching's static type system on implementers of dynamically-
typed languages. Conseguently, the invokedynamic instruction and its supporting
infrastructure were developed by John Rose and the JSR 292 Expert Group: Ola
Bini, Rémi Forax, Dan Heidinga, Fredrik Ohrstrém, and Jochen Theodorou, with
specia contributions from Charlie Nutter and Christian Thalinger.

More people than we can mention here have, over time, contributed to the design
and implementation of the Java Virtua Machine. The excellent performance we
see in the Java Virtual Machine implementations of today would never have
been possible without the technological foundation laid by David Ungar and his
colleagues at the Self project at Sun Labs. This technology took a convoluted
path, from Self on through the Animorphic Smalltalk VM to eventually become
the HotSpot JVM. Lars Bak and Urs Hdlzle are the two people who were present
through all these stages, and are more responsible than anyone else for the high
performance we take for granted in Java Virtual Machine implementations today.

This specification has been significantly improved thanks to contributions from
Martin Buchholz, Brian Goetz, Paul Hohensee, David Holmes, Karen Kinnear,
Keith McGuigan, Jeff Nisewanger, Mark Reinhold, Naoto Sato, and Bill Pugh,
as well as Uday Dhanikonda, Janet Koenig, Adam Messinger, John Pampuch,
Georges Saab, and Bernard Traversat. Jon Courtney and Roger Riggs helped to
ensure this specification is applicable to Java ME as much as Java SE. Leonid
Arbouzov, Stanislav Avzan, Yuri Gaevsky, Ilya Mukhin, Sergey Reznick, and
Kirill Shirokov have done outstanding work in the Java Compatibility Kit to ensure
this specification is both testable and tested.

Gilad Bracha
Los Altos, California

Alex Buckley
Santa Clara, California

June, 2011

Preface to the Second Edition

THIS Second Edition of The Java Virtual Machine Specification brings the
specification of the JavaVirtual Machineup to datewith the Java2 platformv1.2. It
alsoincludes many corrections and clarifications that update the presentation of the
specification without changing the logical specification itself. We have attempted
to correct typos and errata (hopefully without introducing new ones) and to add
more detail to the specification where it was vague or ambiguous. In particular,
we corrected a number of inconsistencies between the First Editions of The Java
Virtual Machine Specification and The Java Language Specification.

We thank the many readers who combed through the First Edition of this book and
brought problems to our attention. Several individuals and groups deserve special
thanks for pointing out problems or contributing directly to the new material.

Carla Schroer and her teams of compatibility testers in Cupertino, California,
and Novosibirsk, Russia (with specia thanks to Leonid Arbouzov and Alexei
Kaigorodov) painstakingly wrote compatibility tests for each testable assertion in
the First Edition. In the process they uncovered many places where the origina
specification was unclear or incompl ete. Jeroen Vermeulen, Janice Shepherd, Peter
Bertelsen, Roly Perera, Joe Darcy, and Sandra Loosemore have all contributed
comments and feedback that have improved this edition. Marilyn Rash and Hilary
Selby Polk of Addison Wesley Longman helped us to improve the readability and
layout of this edition at the same time as we were incorporating al the technical
changes.

Special thanks go to Gilad Bracha, who has brought a new level of rigor to
the presentation and has been a major contributor to much of the new material,
especially chapters 4 and 5. His dedication to "computational theology” and
his commitment to resolving inconsistencies between The Java Virtual Machine
Foecification and The Java Language Specification have benefited this book
tremendously.

Tim Lindholm
Palo Alto, California

Frank Yélin
Redwood City, California

April, 1999

Xiii

Preface to the First Edition

The Java Virtual Machine Specification has been written to fully document the
design of the Java Virtual Machine. It is essential for compiler writers who wish
to target the Java Virtual Machine and for programmers who want to implement a
compatible Java Virtual Machine.

The Java Virtual Machine is an abstract machine. References to the Java Virtual
Machine throughout this specification refer to this abstract machine rather than
to any specific implementation. This specification serves as documentation for a
concreteimplementation of the JavaVirtual Machineonly asablueprint documents
a house. An implementation of the Java Virtual Machine must embody this
specification, but is constrained by it only where absolutely necessary. We intend
that this specification should sufficiently document the Java Virtual Machine to
make possible compatible clean-room implementations.

The virtual machine that evolved into the Java Virtual Machine was originally
designed by James Gosling in 1992 to support the Oak programming language.
The evolution into its present form occurred through the direct and indirect efforts
of many people and spanned Sun's Green project, FirstPerson, Inc., the LiveOak
project, the Java Products Group, JavaSoft, and the Java Software group at Sun.

Thisbook began asinternal project documentation edited by Kathy Walrath. It was
then converted to HTML by Mary Campione and was made available on our Web
site before being expanded into book form.

The creation of The Java Virtual Machine Specification owes much to the support
of the Java Products Group led by General Manager Ruth Hennigar, to the efforts
of series editor Lisa Friendly, and to editor Mike Hendrickson and his group at
Addison-Wesley. We owe specia thanks to Richard Tuck for his careful review
of the manuscript. Particular thanks to Bill Joy whose comments, reviews, and
guidance have contributed greatly to the completeness and accuracy of this book.

Tim Lindholm
Palo Alto, California

Frank Ydlin
Redwood City, California

June, 1996

XV

CHAPTER 1

| ntroduction

1.1 A Bit of History

The Javaer programming language isageneral -purpose, concurrent, object-oriented
language. Its syntax is similar to C and C++, but it omits many of the features that
make C and C++ complex, confusing, and unsafe. The Java platform was initially
developed to address the problems of building software for networked consumer
devices. It was designed to support multiple host architectures and to allow secure
delivery of software components. To meet these requirements, compiled code had
to survive transport across networks, operate on any client, and assure the client
that it was safe to run.

The popularization of the World Wide Web made these attributes much more
interesting. Web browsers enabled millions of people to surf the Net and access
media-rich content in simple ways. At last there was a medium where what you
saw and heard was essentially the same regardless of the machine you were using
and whether it was connected to afast network or a slow modem.

Web enthusiasts soon discovered that the content supported by the Web's HTML
document format was too limited. HTML extensions, such as forms, only
highlighted those limitations, while making it clear that no browser could include
al the features users wanted. Extensibility was the answer.

The HotJava browser first showcased the interesting properties of the Java
programming language and platform by making it possible to embed programs
inside HTML pages. Programs are transparently downloaded into the browser
aong with the HTML pages in which they appear. Before being accepted by the
browser, programs are carefully checked to make sure they are safe. Like HTML
pages, compiled programs are network- and host-independent. The programs
behave the same way regardless of where they come from or what kind of machine
they are being loaded into and run on.

1.2

The Java Virtual Machine INTRODUCTION

A Web browser incorporating the Java platform is no longer limited to a
predetermined set of capabilities. Visitors to Web pages incorporating dynamic
content can be assured that their machines cannot be damaged by that content.
Programmers can write a program once, and it will run on any machine supplying
aJava run-time environment.

1.2 TheJava Virtual Machine

The Java Virtual Machine is the cornerstone of the Java platform. It is the
component of the technology responsible for its hardware- and operating system-
independence, the small size of its compiled code, and its ability to protect users
from malicious programs.

The JavaVirtual Machineis an abstract computing machine. Likeareal computing
machine, it hasan instruction set and mani pul ates variousmemory areasat runtime.
It is reasonably common to implement a programming language using a virtua
machine; the best-known virtual machine may be the P-Code machine of UCSD
Pascal.

The first prototype implementation of the Java Virtual Machine, done at Sun
Microsystems, Inc., emulated the Java Virtual Machine instruction set in software
hosted by a handheld device that resembled a contemporary Personal Digital
Assistant (PDA). Oracle's current implementations emulate the Java Virtua
Machine on mobile, desktop and server devices, but the Java Virtual Machine
does not assume any particular implementation technology, host hardware, or
host operating system. It is not inherently interpreted, but can just as well be
implemented by compiling its instruction set to that of asilicon CPU. It may also
be implemented in microcode or directly in silicon.

The Java Virtual Machine knows nothing of the Java programming language, only
of a particular binary format, the cl ass file format. A cl ass file contains Java
Virtual Machine instructions (or bytecodes) and a symbol table, as well as other
ancillary information.

For the sake of security, the Java Virtual Machine imposes strong syntactic and
structural constraints on the code in a cl ass file. However, any language with
functionality that can be expressed in terms of avalid cl ass file can be hosted by
the Java Virtual Machine. Attracted by a generally available, machine-independent
platform, implementors of other languages can turn to the Java Virtual Machine as
adelivery vehicle for their languages.

INTRODUCTION Summary of Chapters 13

The JavaVirtual Machine specified hereis compatible with the Java SE 7 platform,
and supports the Java programming language specified in The Java Language
Foecification, Java SE 7 Edition.

1.3 Summary of Chapters

Therest of thisbook is structured as follows:
» Chapter 2 gives an overview of the Java Virtual Machine architecture.

e Chapter 3 introduces compilation of code written in the Java programming
language into the instruction set of the Java Virtual Machine.

» Chapter 4 specifies the cl ass file format, the hardware- and operating system-
independent binary format used to represent compiled classes and interfaces.

» Chapter 5 specifies the start-up of the Java Virtual Machine and the loading,
linking, and initialization of classes and interfaces.

» Chapter 6 specifies the instruction set of the Java Virtual Machine, presenting
the instructions in alphabetical order of opcode mnemonics.

» Chapter 7 gives atable of Java Virtua Machine opcode mnemonicsindexed by
opcode value.

In The Java Virtual Machine Specification, Second Edition, Chapter 2 gave
an overview of the Java programming language that was intended to support
the specification of the Java Virtual Machine but was not itself a part of the
specification. In The Java Virtual Machine Specification, Java SE 7 Edition, the
reader is referred to The Java Language Specification, Java SE 7 Edition for
information about the Java programming language. References of the form: (JLS
8x.y) indicate where thisis necessary.

In The Java Virtual Machine Specification, Second Edition, Chapter 8 detailed the
low-level actions that explained the interaction of Java Virtua Machine threads
with a shared main memory. In The Java Virtual Machine Specification, Java SE
7 Edition, the reader isreferred to Chapter 17 of The Java Language Specification,
Java SE 7 Edition for information about threads and locks. Chapter 17 reflects The
Java Memory Model and Thread Specification produced by the JSR 133 Expert
Group.

14

Notation INTRODUCTION

1.4 Notation

Throughout this specification we refer to classes and interfaces drawn from the
Java SE platform API. Whenever we refer to a class or interface (other than those
declared in an example) using asingle identifier N, the intended reference isto the
class or interface named N in the package j ava. | ang. We use the fully qualified
name for classes or interfaces from packages other than j ava. | ang.

Whenever we refer to a class or interface that is declared in the package j ava or
any of its subpackages, the intended reference isto that class or interface asloaded
by the bootstrap class loader (85.3.1).

Whenever we refer to a subpackage of a package named j ava, the intended
referenceis to that subpackage as determined by the bootstrap class loader.

The use of fontsin this specification is as follows:

* Afixed width fontisused for Java Virtual Machine data types, exceptions,
errors, cl ass file structures, Prolog code, and Java code fragments.

« Italic is used for Java Virtual Machine "assembly language”, its opcodes and
operands, as well asitems in the Java Virtua Machine's run-time data areas. It
is also used to introduce new terms and simply for emphasis.

Non-normative information, designed to clarify the specification, is given in
smaller, indented text.

Thisis non-normative information. It provides intuition, rationale, advice, examples, etc.

CHAPTER2

The Structure of the Java
Virtual Machine

T HIS document specifies an abstract machine. It does not describe any particular
implementation of the Java Virtual Machine.

To implement the Java Virtual Machine correctly, you need only be able to
read the cl ass file format and correctly perform the operations specified therein.
Implementation detailsthat are not part of the Java Virtual Machine's specification
would unnecessarily constrain the creativity of implementors. For example, the
memory layout of run-time data areas, the garbage-collection algorithm used, and
any internal optimization of the Java Virtual Machine instructions (for example,
trangdlating them into machine code) are | eft to the discretion of the implementor.

All references to Unicode in this specification are given with respect to The
Unicode Sandard, Version 6.0.0, available at ht t p: / / www. uni code. or g/ .

2.1 Thecl ass File Format

Compiled code to be executed by the Java Virtual Machine is represented using
a hardware- and operating system-independent binary format, typically (but not
necessarily) stored in afile, known asthecl ass fileformat. Thecl ass file format
precisely defines the representation of a class or interface, including details such
as byte ordering that might be taken for granted in a platform-specific object file
format.

Chapter 4, "Thecl ass File Format", coversthecl ass file format in detail.

22

Data Types THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

2.2 DataTypes

Like the Java programming language, the Java Virtual Machine operates on two
kinds of types: primitivetypes and referencetypes. Thereare, correspondingly, two
kinds of values that can be stored in variables, passed as arguments, returned by
methods, and operated upon: primitive values and reference values.

The Java Virtual Machine expects that nearly al type checking is done prior
to run time, typically by a compiler, and does not have to be done by the Java
Virtual Machine itself. Values of primitive types need not be tagged or otherwise
be inspectable to determine their types at run time, or to be distinguished from
values of reference types. Instead, the instruction set of the Java Virtual Machine
distinguishes its operand types using instructions intended to operate on values of
specific types. For instance, iadd, ladd, fadd, and dadd are all JavaVirtual Machine
instructions that add two numeric values and produce numeric results, but each is
specidized for itsoperand type: i nt , | ong, f | oat , and doubl e, respectively. For a
summary of type support in the Java Virtual Machine instruction set, see 82.11.1.

The Java Virtual Machine contains explicit support for objects. An object is
either adynamically allocated class instance or an array. A reference to an object
is considered to have Java Virtual Machine type reference. Vaues of type
r ef er ence can be thought of as pointers to objects. More than one reference to an
object may exist. Objects are always operated on, passed, and tested via values of
typer ef er ence.

2.3 Primitive Typesand Values

The primitive data types supported by the Java Virtual Machine are the numeric
types, the bool ean type (§2.3.4), and ther et ur nAddr ess type (82.3.3).

The numeric types consist of theintegral types (82.3.1) and the floating-point types
(82.3.2).

Theintegral types are:

* byte, whose values are 8-bit signed two's-complement integers, and whose
default valueis zero

* short, whose values are 16-hit signed two's-complement integers, and whose
default valueis zero

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Primitive Types and Values

* int, whose values are 32-bit signed two's-complement integers, and whose
default value is zero

* | ong, whose values are 64-bit signed two's-complement integers, and whose
default valueis zero

» char, whose values are 16-hit unsigned integers representing Unicode code
pointsin the Basic Multilingual Plane, encoded with UTF-16, and whose default
valueisthe null code point (' \ u0000')

The floating-point types are:

* float, whose values are el ements of the float value set or, where supported, the
float-extended-exponent value set, and whose default value is positive zero

* doubl e, whose values are elements of the double value set or, where supported,
the doubl e-extended-exponent val ue set, and whose default value is positive zero

The values of the bool ean type encode the truth valuest r ue and f al se, and the
default valueisf al se.

The Java Virtual Machine Specification, First Edition did not consider bool ean to be a
Java Virtual Machine type. However, bool ean values do have limited support in the Java
Virtual Machine. The Java Virtual Machine Specification, Second Edition clarified theissue
by treating bool ean asatype.

The values of ther et ur nAddr ess type are pointers to the opcodes of Java Virtua
Machine instructions. Of the primitive types, only ther et ur nAddr ess type is not
directly associated with a Java programming language type.

231 Integral Typesand Values

The values of theintegral types of the Java Virtual Machine are:

* For byt e, from-128 to 127 (-27 to 2’ - 1), inclusive

* For short, from -32768 to 32767 (-215 to 21°- 1), inclusive

« Fori nt, from -2147483648 to 2147483647 (-2** to 2*! - 1), inclusive

« For | ong, from -9223372036854775808 to 9223372036854775807 (-2% to 2%
- 1), inclusive

e For char, from 0 to 65535 inclusive

2.3

2.3

Primitive Types and Values THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

2.3.2 Floating-Point Types, Value Sets, and Values

The floating-point typesaref | oat and doubl e, which are conceptually associated
with the 32-bit single-precision and 64-bit double-precision format |IEEE 754
values and operations as specified in IEEE Sandard for Binary Floating-Point
Arithmetic (ANSI/IEEE Std. 754-1985, New Y ork).

The IEEE 754 standard includes not only positive and negative sign-magnitude
numbers, but also positive and negative zeros, positive and negative infinities, and
a specia Not-a-Number value (hereafter abbreviated as "NaN"). The NaN value
is used to represent the result of certain invalid operations such as dividing zero
by zero.

Every implementation of the Java Virtual Machine is required to support two
standard sets of floating-point values, called the float val ue set and the double value
set. In addition, an implementation of the Java Virtual Machine may, at its option,
support either or both of two extended-exponent floating-point value sets, called
the fl oat-extended-exponent val ue set and the doubl e-extended-exponent val ue set.
These extended-exponent value sets may, under certain circumstances, be used
instead of the standard value setsto represent the values of typef 1 oat or doubl e.

The finite nonzero values of any floating-point value set can all be expressed in
the forms. m- 2€"N*Y where sis +1 or -1, mis a positive integer less than
2N, and e is an integer between Enin = -(251-2) and Epex = 25711, inclusive,
and where N and K are parameters that depend on the value set. Some values can
be represented in this form in more than one way; for example, supposing that a
value v in a value set might be represented in this form using certain values for
s, m, and e, then if it happened that m were even and e were less than 2%, one
could halve mand increase e by 1 to produce a second representation for the same
value v. A representation in this form is called normalized if m 2 2N otherwise
the representation is said to be denormalized. If a value in a value set cannot be
represented in such away that m= 2V, then the valueis said to be adenormalized
value, because it has no normalized representation.

The constraints on the parameters N and K (and on the derived parameters Ein
and Engy) for the two required and two optiona floating-point value sets are
summarized in Table 2.1.

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Primitive Types and Values

Table 2.1. Floating-point value set parameters

Parameter float float-extended- double double-extended-
exponent exponent

N 24 24 53 53

K 8 =211 11 215

Ermax +127 > +1023 +1023 > +16383

Emin -126 <-1022 -1022 <-16382

Where one or both extended-exponent value sets are supported by an
implementation, then for each supported extended-exponent value set there is
a specific implementation-dependent constant K, whose value is constrained by
Table 2.1; thisvalue K in turn dictates the values for Eqin and Epax.

Each of the four value sets includes not only the finite nonzero values that are
ascribed to it above, but also the five values positive zero, negative zero, positive
infinity, negative infinity, and NaN.

Note that the constraints in Table 2.1 are designed so that every element of the
float value set is hecessarily also an element of the float-extended-exponent value
set, the double value set, and the double-extended-exponent value set. Likewise,
each element of the double value set is necessarily also an element of the double-
extended-exponent value set. Each extended-exponent value set has alarger range
of exponent values than the corresponding standard value set, but does not have
more precision.

The elements of the float value set are exactly the values that can be represented
using the single floating-point format defined in the IEEE 754 standard, except
that there is only one NaN value (IEEE 754 specifies 2°*-2 distinct NaN values).
The elements of the double value set are exactly the values that can be represented
using the double floating-point format defined in the IEEE 754 standard, except
that there is only one NaN value (IEEE 754 specifies 2°3-2 distinct NaN values).
Note, however, that the elements of the float-extended-exponent and double-
extended-exponent value sets defined here do not correspond to the values that
can be represented using | EEE 754 single extended and double extended formats,
respectively. This specification does not mandate a specific representation for the
values of the floating-point value sets except where floating-point values must be
represented in the cl ass file format (84.4.4, 84.4.5).

The float, float-extended-exponent, double, and double-extended-exponent value
sets are not types. It is always correct for an implementation of the Java Virtua
Machineto use an element of the float value set to represent avalue of typef | oat ;

2.3

2.3

10

Primitive Types and Values THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

however, it may be permissible in certain contexts for an implementation to use
an element of the float-extended-exponent value set instead. Similarly, itisaways
correct for an implementation to use an element of the double value set to represent
a vaue of type doubl e; however, it may be permissible in certain contexts for
an implementation to use an element of the double-extended-exponent value set
instead.

Except for NaNs, values of the floating-point value sets are ordered. When
arranged from smallest to largest, they are negative infinity, negative finite values,
positive and negative zero, positive finite values, and positive infinity.

Floating-point positive zero and floating-point negative zero compare as equal, but
there are other operations that can distinguish them; for example, dividing 1. 0 by
0. 0 produces positiveinfinity, but dividing 1. 0 by - 0. 0 produces negativeinfinity.

NaNs are unordered, so numerical comparisons and tests for numerical equality
have the value f al se if either or both of their operands are NaN. In particular, a
test for numerical equality of avalue against itself hasthe valuef al se if and only
if the value is NaN. A test for numerical inequality has the value t r ue if either
operand is NaN.

2.3.3 ThereturnAddress Typeand Values

Ther et ur nAddr ess typeis used by the Java Virtual Machine'sjsr, ret, and jsr_w
instructions (§jsr, 8ret, §jsr_w). Thevaluesof ther et ur nAddr ess typeare pointers
to the opcodes of Java Virtual Machine instructions. Unlike the numeric primitive
types, the ret urnAddr ess type does not correspond to any Java programming
language type and cannot be modified by the running program.

2.34 Thebool ean Type

Although the Java Virtual Machine defines a bool ean type, it only provides
very limited support for it. There are no Java Virtual Machine instructions solely
dedicated to operations on bool ean values. Instead, expressions in the Java
programming language that operate on bool ean values are compiled to use values
of the Java Virtual Machinei nt datatype.

The Java Virtual Machine does directly support bool ean arrays. Its newarray
instruction (8newarray) enables creation of bool ean arrays. Arrays of type
bool ean are accessed and modified using the byt e array instructions baload and
bastore (8baload, 8bastore).

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Reference Types and Values

In Oracle's Java Virtual Machine implementation, bool ean arrays in the Java
programming language are encoded as Java Virtual Machine byt e arrays, using 8 bits per
bool ean element.

The JavaVirtual Machine encodesbool ean array componentsusing 1 to represent
t rue and 0 to represent f al se. Where Javaprogramming language bool ean values
are mapped by compilersto values of JavaVirtual Machinetypei nt , the compilers
must use the same encoding.

2.4 Reference Typesand Values

There are three kinds of r ef er ence types: class types, array types, and interface
types. Their values are referencesto dynamically created classinstances, arrays, or
classinstances or arrays that implement interfaces, respectively.

An array type consists of a component type with asingle dimension (whose length
isnot given by thetype). The component type of an array type may itself bean array
type. If, starting from any array type, one considers its component type, and then
(if that isalso an array type) the component type of that type, and so on, eventually
one must reach acomponent typethat isnot an array type; thisis called the element
type of the array type. The element type of an array type is necessarily either a
primitive type, or aclasstype, or an interface type.

A ref erence value may also bethe special null reference, areferenceto no object,
which will be denoted here by nul I . Thenul I reference initially has no run-time
type, but may be cast to any type. The default value of ar ef er ence typeisnul | .

The Java Virtua Machine specification does not mandate a concrete value
encoding nul | .

2.5 Run-Time Data Areas

The Java Virtual Machine defines various run-time data areas that are used during
execution of a program. Some of these data areas are created on Java Virtua
Machine start-up and are destroyed only when the Java Virtual Machine exits.
Other data areas are per thread. Per-thread data areas are created when athread is
created and destroyed when the thread exits.

24

11

25

12

Run-Time Data Areas THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

251 Thepc Register

The Java Virtual Machine can support many threads of execution at once (JLS
817). Each Java Virtual Machine thread hasits own pc (program counter) register.
At any point, each Java Virtual Machine thread is executing the code of a single
method, namely the current method (82.6) for that thread. If that method is not
nati ve, the pc register containsthe address of the Java Virtual Machineinstruction
currently being executed. If the method currently being executed by the thread is
nati ve, the value of the Java Virtual Machine's pc register is undefined. The Java
Virtual Machine's pc register iswide enough to hold ar et ur nAddr ess or anative
pointer on the specific platform.

2.5.2 JavaVirtual Machine Stacks

Each JavaVirtual Machinethread hasaprivate Java Virtual Machine stack, created
at the same time as the thread. A Java Virtual Machine stack stores frames (82.6).
A JavaVirtual Machine stack is analogous to the stack of a conventional language
such as C: it holds local variables and partial results, and plays a part in method
invocation and return. Becausethe JavaVirtual Machine stack isnever manipul ated
directly except to push and pop frames, frames may be heap allocated. The memory
for aJava Virtua Machine stack does not need to be contiguous.

In The Java Virtual Machine Specification, First Edition, the Java Virtua Machine stack
was known as the Java stack.

This specification permits Java Virtual Machine stacks either to be of afixed size
or to dynamically expand and contract as required by the computation. If the Java
Virtual Machine stacks are of afixed size, the size of each Java Virtual Machine
stack may be chosen independently when that stack is created.

A Java Virtua Machine implementation may provide the programmer or the user control
over the initial size of Java Virtual Machine stacks, as well as, in the case of dynamically
expanding or contracting Java Virtua Machine stacks, control over the maximum and
minimum sizes.

The following exceptional conditions are associated with Java Virtua Machine
stacks:

« |If the computation in athread requires alarger Java Virtual Machine stack than
is permitted, the Java Virtual Machine throws a St ackOver f | owEr r or .

* If Java Virtual Machine stacks can be dynamically expanded, and expansion is
attempted but insufficient memory can be made available to effect the expansion,
or if insufficient memory can be made available to create the initia Java

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Run-Time Data Areas

Virtua Machine stack for a new thread, the Java Virtual Machine throws an
Qut OF Menor yError .

253 Heap

TheJavaVirtual Machine has aheap that is shared among all JavaVirtual Machine
threads. The heap is the run-time data area from which memory for all class
instances and arraysis allocated.

The heap is created on virtual machine start-up. Heap storage for objects is
reclaimed by an automatic storage management system (known as a garbage
collector); objects are never explicitly deallocated. The Java Virtua Machine
assumes no particular type of automatic storage management system, and the
storage management technique may be chosen according to the implementor's
system requirements. The heap may be of a fixed size or may be expanded as
required by the computation and may be contracted if a larger heap becomes
unnecessary. The memory for the heap does not need to be contiguous.

A Java Virtua Machine implementation may provide the programmer or the user control
over the initial size of the heap, as well as, if the heap can be dynamically expanded or
contracted, control over the maximum and minimum heap size.

The following exceptional condition is associated with the heap:

* If a computation requires more heap than can be made available by the
automatic storage management system, the Java Virtual Machine throws an
Qut O Menor yError .

254 Method Area

The Java Virtual Machine has a method area that is shared among al Java Virtua
Machine threads. The method area is analogous to the storage area for compiled
code of aconventional language or analogousto the "text" segment in an operating
system process. It stores per-class structures such as the run-time constant pool,
field and method data, and the code for methods and constructors, including
the special methods (82.9) used in class and instance initiaization and interface
initialization.

Themethod areais created on virtual machine start-up. Although the method areais
logically part of the heap, simpleimplementations may choose not to either garbage
collect or compact it. This version of the Java Virtua Machine specification
does not mandate the location of the method area or the policies used to manage
compiled code. The method area may be of a fixed size or may be expanded as

25

13

25

14

Run-Time Data Areas THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

required by the computation and may be contracted if alarger method areabecomes
unnecessary. The memory for the method area does not need to be contiguous.

A Java Virtua Machine implementation may provide the programmer or the user control
over theinitial size of themethod area, aswell as, in the case of avarying-size method area,
control over the maximum and minimum method area size.

The following exceptional condition is associated with the method area:

* If memory in the method area cannot be made available to satisfy an allocation
reguest, the Java Virtual Machine throws an Qut O Menor yEr r or .

255 Run-Time Constant Pool

A run-time constant pool is a per-class or per-interface run-time representation
of the constant _pool table in acl ass file (84.4). It contains severa kinds of
constants, ranging from numeric literalsknown at compile-timeto method and field
references that must be resolved at run-time. The run-time constant pool serves a
function similar to that of asymbol tablefor aconventional programming language,
although it contains awider range of data than atypical symbol table.

Each run-time constant pool is allocated from the Java Virtual Machine's method
area (82.5.4). The run-time constant pool for a class or interface is constructed
when the class or interface is created (85.3) by the Java Virtual Machine.

Thefollowing exceptional condition is associated with the construction of the run-
time constant pool for a class or interface:

» When creating a class or interface, if the construction of the run-time constant
pool requires more memory than can be made available in the method area of the
Java Virtual Machine, the Java Virtua Machine throws an cut Of Menor yEr r or .

See 85 for information about the construction of the run-time constant pool.

2.5.6 Native Method Stacks

An implementation of the Java Virtual Machine may use conventional stacks,
colloquially called "C stacks,” to support nat i ve methods (methods written in a
language other than the Java programming language). Native method stacks may
also be used by the implementation of an interpreter for the Java Virtual Machine's
instruction set in a language such as C. Java Virtual Machine implementations
that cannot load nat i ve methods and that do not themselves rely on conventional
stacks need not supply native method stacks. If supplied, native method stacks are
typically alocated per thread when each thread is created.

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Frames

This specification permits native method stacks either to be of afixed size or to
dynamically expand and contract as required by the computation. If the native
method stacks are of a fixed size, the size of each native method stack may be
chosen independently when that stack is created.

A Java Virtua Machine implementation may provide the programmer or the user control
over theinitial size of the native method stacks, aswell as, in the case of varying-size native
method stacks, control over the maximum and minimum method stack sizes.

The following exceptional conditions are associated with native method stacks:

« If the computation in a thread requires a larger native method stack than is
permitted, the Java Virtual Machine throws a St ackOver f | owEr r or .

* If native method stacks can be dynamically expanded and native method stack
expansion is attempted but insufficient memory can be made available, or if
insufficient memory can be made available to create the initial native method
stack for anew thread, the Java Virtual Machine throws an cut & Meror yErr or .

2.6 Frames

A frame is used to store data and partial results, as well as to perform dynamic
linking, return values for methods, and dispatch exceptions.

A new frameis created each time a method isinvoked. A frameis destroyed when
its method invocation completes, whether that completion is normal or abrupt (it
throwsan uncaught exception). Framesare allocated fromthe JavaVirtual Machine
stack (82.5.2) of the thread creating the frame. Each frame has its own array of
local variables (82.6.1), its own operand stack (§2.6.2), and areference to the run-
time constant pool (82.5.5) of the class of the current method.

A frame may be extended with additional implementation-specific information, such as
debugging information.

The sizes of the local variable array and the operand stack are determined at
compile-time and are supplied along with the code for the method associated with
the frame (84.7.3). Thus the size of the frame data structure depends only on the
implementation of the Java Virtual Machine, and the memory for these structures
can be alocated simultaneously on method invocation.

Only oneframe, theframefor the executing method, isactive at any pointinagiven
thread of control. This frame isreferred to as the current frame, and its method is
known as the current method. The class in which the current method is defined is

2.6

15

2.6

16

Frames THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

the current class. Operations on local variables and the operand stack aretypically
with reference to the current frame.

A frame ceases to be current if its method invokes another method or if its method
completes. When amethod isinvoked, anew frameis created and becomes current
when control transfers to the new method. On method return, the current frame
passes back the result of its method invocation, if any, to the previous frame. The
current frame is then discarded as the previous frame becomes the current one.

Notethat aframe created by athreadislocal to that thread and cannot be referenced
by any other thread.

2.6.1 Local Variables

Each frame (8§2.6) contains an array of variables known asitslocal variables. The
length of the local variable array of a frame is determined at compile-time and
supplied in the binary representation of aclass or interface along with the code for
the method associated with the frame (84.7.3).

A singlelocal variable can hold avalue of type bool ean, byt e, char, short,int,
float, reference, Of returnAddress. A pair of local variables can hold avalue
of typel ong or doubl e.

Local variables are addressed by indexing. The index of the first local variable is
zero. Aninteger isconsidered to be anindex into thelocal variablearray if and only
if that integer is between zero and one less than the size of the local variable array.

A value of type | ong or type doubl e occupies two consecutive local variables.
Such avalue may only be addressed using the lesser index. For example, avalue of
typedoubl e stored in the local variable array at index n actually occupiesthelocal
variables with indices n and n+1; however, the local variable at index n+1 cannot
be loaded from. It can be stored into. However, doing so invalidates the contents
of local variablen.

The Java Virtual Machine does not require n to be even. Inintuitive terms, values
of types| ong and doubl e need not be 64-hit aligned in the local variables array.
Implementors are free to decide the appropriate way to represent such values using
the two local variables reserved for the value.

The Java Virtua Machine uses local variables to pass parameters on method
invocation. On class method invocation, any parameters are passed in consecutive
local variables starting from local variable 0. On instance method invocation,
local variable O is always used to pass a reference to the object on which the
instance method is being invoked (t hi s in the Java programming language). Any

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Frames

parameters are subsequently passed in consecutive local variables starting from
local variable 1.

2.6.2 Operand Stacks

Each frame (82.6) contains a last-in-first-out (LIFO) stack known as its operand
stack. The maximum depth of the operand stack of a frame is determined at
compile-time and is supplied along with the code for the method associated with
the frame (84.7.3).

Where it is clear by context, we will sometimes refer to the operand stack of the
current frame as simply the operand stack.

The operand stack is empty when the frame that contains it is created. The
Java Virtual Machine supplies instructions to load constants or values from local
variables or fields onto the operand stack. Other Java Virtual Machine instructions
take operands from the operand stack, operate on them, and push the result back
onto the operand stack. The operand stack is also used to prepare parametersto be
passed to methods and to receive method results.

For example, theiadd instruction (8iadd) addstwo i nt valuestogether. It requires
that thei nt valuesto be added be the top two values of the operand stack, pushed
there by previousinstructions. Both of thei nt values are popped from the operand
stack. They are added, and their sum is pushed back onto the operand stack.
Subcomputations may be nested on the operand stack, resulting in values that can
be used by the encompassing computation.

Each entry on the operand stack can hold avalue of any JavaVirtual Machinetype,
including avalue of typel ong or type doubl e.

Vaues from the operand stack must be operated upon in ways appropriate to their
types. It isnot possible, for example, to pushtwoi nt valuesand subsequently treat
them as al ong or to push two f | cat values and subsequently add them with an
iadd instruction. A small number of Java Virtual Machine instructions (the dup
instructions (8dup) and swap (8swap)) operate on run-time dataareas asraw values
without regard to their specific types; these instructions are defined in such away
that they cannot be used to modify or break up individual values. Theserestrictions
on operand stack manipulation are enforced through cl ass fileverification (84.10).

At any point in time, an operand stack has an associated depth, where a value of
type | ong or doubl e contributes two units to the depth and a value of any other
type contributes one unit.

2.6

17

2.6

18

Frames THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

2.6.3 Dynamic Linking

Each frame (82.6) contains a reference to the run-time constant pool (82.5.5) for
the type of the current method to support dynamic linking of the method code.
The cl ass file code for a method refers to methods to be invoked and variables
to be accessed via symbolic references. Dynamic linking translates these symbolic
method referencesinto concrete method references, loading classes as necessary to
resolve as-yet-undefined symbols, and trang ates variabl e accessesinto appropriate
offsetsin storage structures associated with the run-time location of these variabl es.

Thislate binding of the methods and variables makes changes in other classes that
amethod uses less likely to break this code.

2.6.4 Normal Method Invocation Completion

A method invocation completes normally if that invocation does not cause an
exception (82.10) to be thrown, either directly from the Java Virtual Machine or as
aresult of executing an explicit t hr ow statement. If the invocation of the current
method completes normally, then avalue may be returned to the invoking method.
This occurs when the invoked method executes one of the return instructions
(82.11.8), the choice of which must be appropriate for the type of the value being
returned (if any).

The current frame (82.6) is used in this case to restore the state of the invoker,
including its local variables and operand stack, with the program counter of the
invoker appropriately incremented to skip past the method invocation instruction.
Execution then continues normally in the invoking method's frame with the
returned value (if any) pushed onto the operand stack of that frame.

2.6.5 Abrupt Method Invocation Completion

A method invocation completes abruptly if execution of a Java Virtua Machine
instruction within the method causes the Java Virtua Machine to throw an
exception (82.10), and that exception is not handled within the method. Execution
of an athrow instruction (8athrow) also causes an exception to be explicitly thrown
and, if the exception is not caught by the current method, resultsin abrupt method
invocation completion. A method invocation that completes abruptly never returns
avaluetoitsinvoker.

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Representation of Objects

2.7 Representation of Objects

The Java Virtual Machine does not mandate any particular internal structure for
objects.

In some of Oracle's implementations of the Java Virtual Machine, a reference to a class
instance is a pointer to a handle that isitself a pair of pointers: one to a table containing
the methods of the object and a pointer to the O ass object that represents the type of the
object, and the other to the memory allocated from the heap for the object data.

2.8 Floating-Point Arithmetic

The Java Virtual Machine incorporates a subset of the floating-point arithmetic
specified in IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std.
754-1985, New Y ork).

2.8.1 JavaVirtual Machine Floating-Point Arithmetic and | EEE 754

The key differences between the floating-point arithmetic supported by the Java
Virtua Machine and the |EEE 754 standard are:

The floating-point operations of the Java Virtual Machine do not throw
exceptions, trap, or otherwise signal the IEEE 754 exceptional conditions of
invalid operation, division by zero, overflow, underflow, or inexact. The Java
Virtual Machine has no signaling NaN value.

The Java Virtual Machine does not support |IEEE 754 signaling floating-point
comparisons.

Therounding operations of the JavaVirtual Machine always use | EEE 754 round
to nearest mode. Inexact results are rounded to the nearest representable value,
with ties going to the value with a zero least-significant bit. This is the IEEE
754 default mode. But Java Virtual Machine instructions that convert values
of floating-point types to values of integral types round toward zero. The Java
Virtual Machine does not give any means to change the floating-point rounding
mode.

The Java Virtual Machine does not support either the IEEE 754 single extended
or double extended format, except insofar as the double and double-extended-
exponent value sets may be said to support the single extended format. The
float-extended-exponent and double-extended-exponent value sets, which may
optionally be supported, do not correspond to the values of the IEEE 754

2.7

19

2.8

20

Floating-Point Arithmetic THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

extended formats: the IEEE 754 extended formats require extended precision as
well as extended exponent range.

2.8.2 Floating-Point Modes

Every method has a floating-point mode, which is either FP-strict or not FP-
strict. The floating-point mode of a method is determined by the setting of the
ACC_STRI CT flag of the access_f 1 ags item of the met hod_i nf o structure (84.6)
defining the method. A method for which thisflag is set is FP-strict; otherwise, the
method is not FP-strict.

Note that this mapping of the ACC_STRI CT flag implies that methods in classes compiled
by a compiler in JIDK release 1.1 or earlier are effectively not FP-strict.

We will refer to an operand stack as having a given floating-point mode when the
method whose invocation created the frame containing the operand stack has that
floating-point mode. Similarly, we will refer to aJava Virtual Machine instruction
as having a given floating-point mode when the method containing that instruction
has that floating-point mode.

If afloat-extended-exponent value set is supported (82.3.2), values of typef | oat
on an operand stack that is not FP-strict may range over that value set except
where prohibited by value set conversion (82.8.3). If a double-extended-exponent
value set is supported (82.3.2), values of type doubl e on an operand stack that is
not FP-strict may range over that value set except where prohibited by value set
conversion.

In all other contexts, whether on the operand stack or elsewhere, and regardless
of floating-point mode, floating-point values of typef1 oat and doubl e may only
range over the float value set and double value set, respectively. In particular, class
and instance fields, array elements, local variables, and method parameters may
only contain values drawn from the standard value sets.

2.8.3 Value Set Conversion

Animplementation of the JavaVirtual Machine that supports an extended floating-
point value set is permitted or required, under specified circumstances, to map a
value of the associated floating-point type between the extended and the standard
value sets. Such a value set conversion is not a type conversion, but a mapping
between the value sets associated with the same type.

Wherevalue set conversionisindicated, an implementation is permitted to perform
one of the following operations on avalue:

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Special Methods

 If thevalueisof typef! oat and isnot an element of the float value set, it maps
the value to the nearest element of the float value set.

* If the value is of type doubl e and is not an element of the double value s, it
maps the value to the nearest element of the double value set.

Inaddition, wherevalue set conversionisindicated, certain operationsarerequired:

» Suppose execution of a Java Virtua Machine instruction that is not FP-strict
causesavalue of typef 1 oat to be pushed onto an operand stack that is FP-strict,
passed as a parameter, or stored into alocal variable, afield, or an element of an
array. If the value is not an element of the float value set, it maps the value to
the nearest element of the float value set.

» Suppose execution of a Java Virtua Machine instruction that is not FP-strict
causes a value of type doubl e to be pushed onto an operand stack that is FP-
strict, passed as a parameter, or stored into alocal variable, afield, or an element
of an array. If the value is not an element of the double value set, it maps the
value to the nearest element of the double value set.

Such required value set conversions may occur as a result of passing a parameter
of a floating-point type during method invocation, including native method
invocation; returning avalue of afloating-point type from amethod that is not FP-
strict to amethod that is FP-strict; or storing a value of afloating-point typeinto a
local variable, afield, or an array in amethod that is not FP-strict.

Not al values from an extended-exponent value set can be mapped exactly to a
valuein the corresponding standard value set. If avalue being mapped istoo large
to berepresented exactly (itsexponent is greater than that permitted by the standard
value sat), it is converted to a (positive or negative) infinity of the corresponding
type. If avalue being mapped istoo small to be represented exactly (its exponent
issmaller than that permitted by the standard value set), it isrounded to the nearest
of arepresentable denormalized value or zero of the same sign.

Value set conversion preserves infinities and NaNs and cannot change the sign of
the value being converted. Value set conversion has no effect on avalue that is not
of afloating-point type.

2.9 Special Methods

At the level of the Java Virtual Machine, every constructor written in the Java
programming language (JLS 88.8) appears as an instance initialization method
that has the special name <i ni t >. This name is supplied by a compiler. Because

29

21

29

22

Special Methods THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

the name <i ni t > is not a valid identifier, it cannot be used directly in a program
written in the Java programming language. Instance initialization methods may
be invoked only within the Java Virtual Machine by the invokespecial instruction
(8invokespecial), and they may be invoked only on uninitialized class instances.
Aninstanceinitialization method takes on the access permissions (JL S 86.6) of the
constructor from which it was derived.

A class or interface has at most one class or interface initialization method and is
initialized (85.5) by invoking that method. The initialization method of a class or
interface has the special name <cl i ni t >, takes no arguments, and isvoid (84.3.3).

Other methods named <cl i ni t > inacl ass file are of no consequence. They are not class
or interface initialization methods. They cannot be invoked by any Java Virtual Machine
instruction and are never invoked by the Java Virtua Machine itself.

In a class file whose version number is 51.0 or above, the method must
additionally haveitsacc_STATI Cflag (84.6) set in order to be the class or interface
initialization method.

Thisrequirementisnew in Java SE 7. In aclassfile whose version number is50.0 or below,
amethod named <cl i ni t > that is void and takes no arguments is considered the class or
interface initialization method regardless of the setting of its ACC_STATI Cflag.

The name <cl i nit> is supplied by a compiler. Because the name <clinit> is
not a valid identifier, it cannot be used directly in a program written in the Java
programming language. Class and interface initialization methods are invoked
implicitly by the Java Virtual Machine; they are never invoked directly from any
JavaVirtual Machineinstruction, but areinvoked only indirectly as part of the class
initialization process.

A method is signature polymorphic if and only if al of the following conditions
hold :

» |tisdeclared inthej ava. | ang. i nvoke. Met hodHandl e class.
* It hasasingle formal parameter of type j ect[] .

* It hasareturn type of vj ect .

* It hasthe ACC_VARARGS and ACC_NATI VE flags set.

In Java SE 7, the only signature polymorphic methods are the i nvoke and i nvokeExact
methods of the classj ava. | ang. i nvoke. Met hodHandl e.

The Java Virtual Machine gives special trestment to signature polymorphic
methods in the invokevirtual instruction (8invokevirtual), in order to effect

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Exceptions

invocation of a method handle. A method handle is a typed, directly executable
referenceto an underlying method, constructor, field, or similar low-level operation
(85.4.3.5), with optional transformations of arguments or return values. These
transformations are quite general, and include such patterns as conversion,
insertion, deletion, and substitution. See the j ava. | ang. i nvoke package in the
Java SE platform API for more information.

2.10 Exceptions

An exception in the Java Virtual Machineisrepresented by an instance of the class
Thr owabl e Or one of its subclasses. Throwing an exception resultsin animmediate
nonlocal transfer of control from the point where the exception was thrown.

M ost exceptions occur synchronously asaresult of an action by thethread in which
they occur. An asynchronous exception, by contrast, can potentially occur at any
point in the execution of aprogram. The JavaVirtual Machine throws an exception
for one of three reasons:

» An athrow instruction (8athrow) was executed.

» An abnormal execution condition was synchronously detected by the Java
Virtual Machine. These exceptions are not thrown at an arbitrary point in the
program, but only synchronously after execution of an instruction that either:

* Specifies the exception as a possible result, such as:

+ When the instruction embodies an operation that violates the semantics of
the Java programming language, for example indexing outside the bounds
of an array.

= When an error occursin loading or linking part of the program.

+ Causes some limit on aresource to be exceeded, for example when too much
memory is used.

» An asynchronous exception occurred because:
* The st op method of class Thr ead or Thr eadG oup Was invoked, or
* Aninternal error occurred in the Java Virtual Machine implementation.

The st op methods may be invoked by one thread to affect another thread or al
the threadsin aspecified thread group. They are asynchronous because they may
occur at any point in the execution of the other thread or threads. An internal
error is considered asynchronous (86.3).

2.10

23

2.10

24

Exceptions THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

A Java Virtual Machine may permit a small but bounded amount of execution to
occur before an asynchronous exception isthrown. Thisdelay is permitted to alow
optimized code to detect and throw these exceptions at points where it is practical
to handle them while obeying the semantics of the Java programming language.

A simple implementation might poll for asynchronous exceptions at the point of each
control transfer instruction. Since a program has a finite size, this provides a bound
on the total delay in detecting an asynchronous exception. Since no asynchronous
exception will occur between control transfers, the code generator has some flexibility
to reorder computation between control transfers for greater performance. The paper
Polling Efficiently on Stock Hardware by Marc Feeley, Proc. 1993 Conference on
Functional Programming and Computer Architecture, Copenhagen, Denmark, pp. 179—
187, isrecommended as further reading.

Exceptions thrown by the Java Virtual Machine are precise: when the transfer of
control takes place, al effects of the instructions executed before the point from
which the exception isthrown must appear to have taken place. No instructionsthat
occur after the point from which the exception is thrown may appear to have been
evaluated. If optimized code has speculatively executed some of the instructions
which follow the point at which the exception occurs, such code must be prepared
to hide this speculative execution from the user-visible state of the program.

Each method in the Java Virtual Machine may be associated with zero or more
exception handlers. An exception handler specifiesthe range of offsetsinto the Java
Virtual Machine code implementing the method for which the exception handler
is active, describes the type of exception that the exception handler is able to
handle, and specifies the location of the code that is to handle that exception. An
exception matches an exception handler if the offset of the instruction that caused
the exception isin the range of offsets of the exception handler and the exception
type is the same class as or a subclass of the class of exception that the exception
handler handles. When an exception is thrown, the Java Virtual Machine searches
for a matching exception handler in the current method. If a matching exception
handler is found, the system branches to the exception handling code specified by
the matched handler.

If no such exception handler is found in the current method, the current method
invocation completes abruptly (82.6.5). On abrupt completion, the operand stack
and local variables of the current method invocation are discarded, and its frame
is popped, reinstating the frame of the invoking method. The exception is then
rethrown in the context of the invoker's frame and so on, continuing up the method
invocation chain. If no suitable exception handler is found before the top of the
method invocation chain is reached, the execution of the thread in which the
exception was thrown is terminated.

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Instruction Set Summary

The order in which the exception handlers of a method are searched for amatch is
important. Withinacl ass file, the exception handlersfor each method are stored in
atable (84.7.3). At runtime, when an exceptionisthrown, the Java Virtual Machine
searches the exception handlers of the current method in the order that they appear
in the corresponding exception handler table in the cl ass file, starting from the
beginning of that table.

Note that the Java Virtual Machine does not enforce nesting of or any ordering
of the exception table entries of a method. The exception handling semantics of
the Java programming language are implemented only through cooperation with
the compiler (83.12). When cl ass files are generated by some other means, the
defined search procedure ensures that all Java Virtua Machine implementations
will behave consistently.

2.11 Instruction Set Summary

A Java Virtual Machine instruction consists of a one-byte opcode specifying
the operation to be performed, followed by zero or more operands supplying
arguments or data that are used by the operation. Many instructions have no
operands and consist only of an opcode.

Ignoring exceptions, the inner loop of a Java Virtual Machine interpreter is
effectively

do {
atom cally calculate pc and fetch opcode at pc;
if (operands) fetch operands;
execute the action for the opcode;

} while (there is nore to do);

The number and size of the operands are determined by the opcode. If an operand
ismore than one byte in size, then it is stored in big-endian order - high-order byte
first. For example, an unsigned 16-bit index into the local variablesis stored astwo
unsigned bytes, bytel and byte2, such that its valueis (bytel << 8) | byte2.

The bytecode instruction stream is only single-byte aligned. The two exceptions
are the lookupswitch and tableswitch instructions (8lookupswitch, Stableswitch),
which are padded to force internal alignment of some of their operands on 4-byte
boundaries.

Thedecisionto limit the JavaVirtual Machine opcode to abyte and to forgo data alignment
within compiled code reflects aconscious biasin favor of compactness, possibly at the cost
of some performance in naive implementations. A one-byte opcode aso limits the size of

211

25

211

26

Instruction Set Summary THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

the instruction set. Not assuming data alignment means that immediate data larger than a
byte must be constructed from bytes at run time on many machines.

2111 Typesand the Java Virtual Machine

Most of the instructions in the Java Virtual Machine instruction set encode type
information about the operations they perform. For instance, the iload instruction
(Siload) loads the contents of a local variable, which must be an i nt, onto the
operand stack. Thefload instruction (&fload) doesthe samewithaf | oat value. The
two instructions may have identical implementations, but have distinct opcodes.

For the majority of typed instructions, the instruction type is represented explicitly
in the opcode mnemonic by aletter: i for ani nt operation, | for | ong, sfor short,
b for byte, c for char, f for fl oat, d for doubl e, and a for r ef erence. Some
instructions for which the type is unambiguous do not have a type letter in their
mnemonic. For instance, arraylength always operates on an object that isan array.
Some instructions, such as goto, an unconditional control transfer, do not operate
on typed operands.

Given the Java Virtual Machine's one-byte opcode size, encoding types into
opcodes places pressure onthe design of itsinstruction set. If each typed instruction
supported al of the Java Virtual Machine's run-time data types, there would be
more instructions than could be represented in a byte. Instead, the instruction set
of the Java Virtual Machine provides a reduced level of type support for certain
operations. In other words, the instruction set is intentionally not orthogonal.
Separate instructions can be used to convert between unsupported and supported
data types as necessary.

Table 2.2 summarizes the type support in the instruction set of the Java Virtua
Machine. A specific instruction, with type information, is built by replacing the T
in the instruction template in the opcode column by the letter in the type column. If
the type column for someinstruction template and typeisblank, then no instruction
exists supporting that type of operation. For instance, there isaload instruction for
typei nt, iload, but thereis no load instruction for type byt e.

Note that most instructions in Table 2.2 do not have forms for the integral types
byte, char, and short. None have forms for the bool ean type. A compiler
encodes|oads of literal values of typesbyt e andshor t using JavaVirtual Machine
instructions that sign-extend those values to values of typeint at compile-time
or run-time. Loads of literal values of typesbool ean and char are encoded using
instructions that zero-extend the literal to a value of typei nt at compile-time or
run-time. Likewise, loads from arrays of values of typebool ean, byt e, short , and
char areencoded using Java Virtual Machineinstructionsthat sign-extend or zero-

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Instruction Set Summary 211

extend the values to values of typei nt . Thus, most operations on values of actual
types bool ean, byt e, char, and short are correctly performed by instructions
operating on values of computational typei nt .

27

211

28

Instruction Set Summary

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

Table2.2. Typesupport in the Java Virtual Machineinstruction set

opcode byte |short |int long |float |doubl elchar ref erence
Tipush bipush |sipush

Tconst iconst Iconst |fconst |dconst aconst
Tload iload lload |fload dload aload
Tstore istore Istore |fstore |dstore astore
Tinc iinc

Taload baload |saload |iaload laload |(faload |daload |caload |aaload
Tastore bastore |sastore |iastore lastore |fastore |dastore |castore |aastore
Tadd iadd ladd fadd dadd

Tsub isub Isub fsub dsub

Tmul imul Imul frnul dmul

Tdiv idiv Idiv fdiv ddiv

Trem irem Irem frem drem

Tneg ineg Ineg fneg dneg

Tshl ishl Ishl

Tshr ishr Ishr

Tushr iushr lushr

Tand iand land

Tor ior lor

Txor ixor Ixor

i2T i2b i2s i2 i2f i2d

12T 12i 12f 12d

f2T f2i f2l fad

a2t dzi a2l d2f

Temp lcmp

Templ fcmpl dempl

Tempg fcmpg |dempg

if_TcmpOP if_icmpOP if_acmpOP
Treturn ireturn Ireturn |(freturn |dreturn areturn

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

The mapping between JavaVirtual Machine actual typesand Java Virtual Machine
computational typesis summarized by Table 2.3.

Certain Java Virtua Machine instructions such as pop and swap operate on the
operand stack without regard to type; however, such instructions are constrained
to use only on values of certain categories of computational types, also given in

Table 2.3.

Table 2.3. Actual and Computational typesin the Java Virtual Machine

Instruction Set Summary

Actual type Computational type Category
bool ean i nt 1
byt e i nt 1
char i nt 1
short i nt 1
i nt i nt 1
fl oat fl oat 1
reference reference 1
ret ur nAddr ess ret ur nAddr ess 1
| ong | ong 2
doubl e doubl e 2

2.11.2 Load and Storelnstructions

Theload and store instructions transfer values between the local variables (82.6.1)
and the operand stack (8§2.6.2) of aJava Virtual Machine frame (82.6):

* Load a loca variable onto the operand stack: iload, iload <n>, lload,
lload <n>, fload, fload <n>, dload, dload_<n>, aload, aload <n>.

 Store a value from the operand stack into a local variable: istore, istore <n>,
Istore, Istore_<n>, fstore, fstore_<n>, dstore, dstore_<n>, astore, astore <n>.

» Load a constant on to the operand stack: bipush, sipush, Idc, Idc_w, 1dc2_w,
aconst_null, iconst_ml, iconst_<i>, lconst_<I>, fconst_<f>, dconst_<d>.

» Gain accessto morelocal variablesusing awider index, or to alarger immediate

operand: wide.

Instructions that access fields of objects and elements of arrays (§2.11.5) aso

transfer data to and from the operand stack.

211

29

211

30

Instruction Set Summary THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

Instruction mnemonics shown above with trailing letters between angle brackets
(for instance, iload_<n>) denote families of instructions (with membersiload_0,
iload 1, iload 2, and iload_3 in the case of iload <n>). Such families of
instructionsare specializations of an additional genericinstruction (iload) that takes
one operand. For the specialized instructions, the operand isimplicit and does not
need to be stored or fetched. The semantics are otherwise the same (iload_0 means
the same thing as iload with the operand 0). The letter between the angle brackets
specifies the type of the implicit operand for that family of instructions: for <n>,
anonnegative integer; for <i>, anint ; for <I>, al ong; for <f>, afl oat ; and for
<d>, adoubl e. Formsfor typei nt are used in many cases to perform operations
on values of typebyt e, char, and short (8§2.11.1).

This notation for instruction families is used throughout this specification.

2.11.3 ArithmeticInstructions

The arithmetic instructions compute a result that is typically a function of two
values on the operand stack, pushing the result back on the operand stack. There
aretwo main kinds of arithmetic instructions: those operating on integer values and
those operating on floating-point values. Within each of these kinds, the arithmetic
instructions are specialized to Java Virtua Machine numeric types. There is no
direct support for integer arithmetic on values of the byt e, short, and char types
(82.11.1), or for values of the bool ean type; those operations are handled by
instructions operating on type i nt. Integer and floating-point instructions also
differ intheir behavior on overflow and divide-by-zero. The arithmetic instructions
areasfollows:

+ Add: iadd, ladd, fadd, dadd.

* Subtract: isub, Isub, fsub, dsub.

o Multiply: imul, Imul, fmul, dmul.

» Divide: idiv, Idiv, fdiv, ddiv.

¢ Remainder: irem, Irem, frem, drem.

* Negate: ineg, Ineg, fneg, dneg.

e Shift: ishl, ishr, iushr, Ishl, Ishr, lushr.
» BitwiseOR:ior, lor.

» Bitwise AND: iand, land.

» Bitwise exclusive OR: ixor, Ixor.

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Instruction Set Summary

* Local variableincrement: iinc.
» Comparison: dcmpg, dcmpl, fcmpg, fempl, lemp.

The semantics of the Java programming language operators on integer and floating-
point values (JLS 84.2.2, JLS §4.2.4) are directly supported by the semantics of
the Java Virtual Machine instruction set.

The Java Virtual Machine does not indicate overflow during operations on integer
datatypes. The only integer operations that can throw an exception are the integer
divide instructions (idiv and Idiv) and the integer remainder instructions (iremand
Irem), which throw an Ari t hnet i cExcept i on if the divisor is zero.

JavaVirtual Machine operations on floating-point numbers behave as specified in
IEEE 754. In particular, the Java Virtual Machine requires full support of IEEE
754 denormalized floating-point numbers and gradual underflow, which make it
easier to prove desirable properties of particular numerical algorithms.

The Java Virtual Machine requiresthat floating-point arithmetic behave asif every
floating-point operator rounded its floating-point result to the result precision.
Inexact results must be rounded to the representable value nearest to the infinitely
precise result; if the two nearest representable values are equally near, the one
having a least significant bit of zero is chosen. This is the IEEE 754 standard's
default rounding mode, known as round to nearest mode.

The Java Virtual Machine uses the |IEEE 754 round towards zero mode when
converting a floating-point value to an integer. This results in the number being
truncated; any bits of the significand that represent thefractional part of the operand
value are discarded. Round towards zero mode chooses asitsresult the type'svalue
closest to, but no greater in magnitude than, the infinitely precise result.

The Java Virtua Machine's floating-point operators do not throw run-time
exceptions (not to be confused with IEEE 754 floating-point exceptions). An
operation that overflows produces a signed infinity, an operation that underflows
produces a denormalized value or a signed zero, and an operation that has no
mathematically definite result produces NaN. All numeric operations with NaN as
an operand produce NaN as aresult.

Comparisons on values of type Iong (Icmp) perform a signed comparison.
Comparisons on values of floating-point types (dcmpg, dempl, fempg, fempl) are
performed using | EEE 754 nonsignaling comparisons.

211

31

211

32

Instruction Set Summary THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

2.11.4 TypeConversion Instructions

The type conversion instructions allow conversion between Java Virtual Machine
numeric types. These may be used to implement explicit conversionsin user code
or to mitigate the lack of orthogonality in the instruction set of the Java Virtual
Machine.

The Java Virtual Machine directly supports the following widening numeric
CONVersions:

* int tolong, fl oat, Or doubl e
* longtofl oat Or doubl e
e f| oat tOdoubl e

Thewidening numeric conversion instructionsarei2l, i2f, i2d, 12f, 12d, and f2d. The
mnemonics for these opcodes are straightforward given the naming conventions
for typed instructions and the punning use of 2 to mean "to." For instance, the
i2d instruction convertsani nt valueto adoubl e. Widening numeric conversions
do not lose information about the overall magnitude of a numeric value. Indeed,
conversions widening from int to 1 ong and i nt to doubl e do not lose any
information at all; the numeric value is preserved exactly. Conversions widening
from f 1 oat to doubl e that are FP-strict (82.8.2) also preserve the numeric value
exactly; however, such conversions that are not FP-strict may lose information
about the overall magnitude of the converted value.

Conversion of ani nt or al ong valuetof | oat, or of al ong valueto doubl e, may
lose precision, that is, may lose some of the least significant bits of the value; the
resulting floating-point value is a correctly rounded version of the integer value,
using |EEE 754 round to nearest mode.

A widening numeric conversion of ani nt toal ong simply sign-extendsthe two's-
complement representation of thei nt value to fill the wider format. A widening
numeric conversion of achar to an integral type zero-extends the representation
of the char vaueto fill the wider format.

Despite the fact that loss of precision may occur, widening numeric conversions
never cause the Java Virtual Machine to throw a run-time exception (not to be
confused with an |EEE 754 floating-point exception).

Note that widening numeric conversions do not exist from integral types byt e,
char, and short totypeint. Asnotedin §2.11.1, values of type byt e, char, and
short areinternally widened to typei nt , making these conversionsimplicit.

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Instruction Set Summary

The Java Virtual Machine also directly supports the following narrowing numeric
CONversions:

* int tobyte, short, Or char

* longtoint

e float tOoint Orlong

e doubl e toint, | ong, Of f1 oat

The narrowing numeric conversion instructions are i2b, i2¢, i2s, 12i, f2i, f2l, d2i,
d2l, and d2f. A narrowing numeric conversion can result in a value of different
sign, adifferent order of magnitude, or both; it may thereby lose precision.

A narrowing numeric conversion of anint or | ong to an integral type T simply
discards all but the N lowest-order bits, where N is the number of bits used to
represent type T. This may cause the resulting value not to have the same sign as
the input value.

In a narrowing numeric conversion of afloating-point value to an integral type T,
where T iseither i nt or | ong, the floating-point value is converted as follows:

* If thefloating-point valueisNaN, theresult of theconversionisani nt orl ong 0.

» Otherwise, if the floating-point value is not an infinity, the floating-point value
isrounded to aninteger value V using | EEE 754 round towards zero mode. There
are two cases:

+ If Tisl ong and thisinteger value can be represented asal ong, then the result
isthel ong value V.

+ If Tisof typeint and this integer value can be represented as an i nt , then
theresult isthei nt value V.

» Otherwise:

* Either the value must be too small (a negative value of large magnitude or
negative infinity), and the result isthe smallest representabl e value of typei nt
or | ong.

+ Or the value must be too large (apositive value of large magnitude or positive
infinity), and the result is the largest representable value of typei nt or | ong.

A narrowing numeric conversion from doubl e to f1 oat behaves in accordance
with IEEE 754. The result is correctly rounded using |EEE 754 round to nearest
mode. A value too small to be represented as afl oat is converted to a positive
or negative zero of type f1 oat ; a value too large to be represented as afl oat is

211

33

211

Instruction Set Summary THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

converted to a positive or negative infinity. A doubl e NaN is aways converted to
afl oat NaN.

Despitethefact that overflow, underflow, or [oss of precision may occur, narrowing
conversions among humeric types never cause the Java Virtual Machineto throw a
run-time exception (not to be confused with an | EEE 754 floating-point exception).

2115 Object Creation and Manipulation

Although both class instances and arrays are objects, the Java Virtual Machine
creates and manipulates class instances and arrays using distinct sets of
instructions:

» Create anew classinstance: new.
» Create anew array: newarray, anewarray, multianewarray.

» Access fields of classes (static fields, known as class variables) and fields
of class instances (non-st at i ¢ fields, known as instance variables): getfield,
putfield, getstatic, putstatic.

 Load an array component onto the operand stack: baload, caload, saload, iaload,
|aload, faload, daload, aaload.

» Store a value from the operand stack as an array component: bastore, castore,
sastore, iastore, lastore, fastore, dastore, aastore.

» Get the length of array: arraylength.

» Check properties of class instances or arrays: instanceof, checkcast.

2.11.6 Operand Stack Management I nstructions

A number of instructions are provided for the direct manipulation of the operand
stack: pop, pop2, dup, dup2, dup X1, dup2_x1, dup_x2, dup2 x2, swap.

2.11.7 Control Transfer Instructions

The contral transfer instructions conditionally or unconditionally cause the Java
Virtual Machine to continue execution with an instruction other than the one
following the control transfer instruction. They are:

» Conditional branch: ifeq, ifne, iflt, ifle, ifgt, ifge, ifnull, ifnonnull, if_icmpeq,
if_icmpne, if_icmplt, if_icmple, if_icmpgt if_icmpge, if_acmpeq, if_acmpne.

» Compound conditional branch: tableswitch, lookupswitch.

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Instruction Set Summary

» Unconditional branch: goto, goto_w, jsr, jsr_w, ret.

The Java Virtual Machine has distinct sets of instructions that conditionally
branch on comparison with data of i nt and r ef er ence types. It also has distinct
conditional branch instructions that test for the null reference and thus it is not
required to specify aconcrete value for nul | (82.4).

Conditional branches on comparisons between data of types bool ean, byte,
char, and short are performed using i nt comparison instructions (§2.11.1). A
conditional branch on a comparison between data of types| ong, f I oat , Or doubl e
is initiated using an instruction that compares the data and produces an i nt
result of the comparison (82.11.3). A subsequent i nt comparison instruction tests
this result and effects the conditional branch. Because of its emphasis on i nt
comparisons, the Java Virtual Machine provides arich complement of conditional
branch instructions for typei nt .

All'i nt conditional control transfer instructions perform signed comparisons.

2.11.8 Method Invocation and Return Instructions

The following five instructions invoke methods:

* invokevirtual invokes an instance method of an object, dispatching on the
(virtual) type of the object. This is the norma method dispatch in the Java
programming language.

 invokeinterface invokes an interfface method, searching the methods
implemented by the particular run-time object to find the appropriate method.

* invokespecial invokesan instance method requiring special handling, whether an
instanceinitialization method (82.9), apri vat e method, or a superclass method.

* invokestatic invokes aclass (st at i ¢) method in a named class.

* invokedynamic invokes the method which is the target of the call site object
bound to the invokedynamic instruction. The call site object was bound to a
specific lexical occurrence of the invokedynamic instruction by the Java Virtua
Machine as a result of running a bootstrap method before the first execution of
the instruction. Therefore, each occurrence of an invokedynamic instruction has
aunique linkage state, unlike the other instructions which invoke methods.

The method return instructions, which are distinguished by return type, areireturn
(used toreturn values of typebool ean, byt e, char, short, ori nt), lreturn, freturn,
dreturn, and areturn. In addition, the return instruction is used to return from

211

35

211

36

Instruction Set Summary THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

methods declared to be void, instance initialization methods, and class or interface
initialization methods.

2119 Throwing Exceptions

An exception isthrown programmatically using the athrow instruction. Exceptions
can also be thrown by various Java Virtual Machine instructions if they detect an
abnormal condition.

2.11.10 Synchronization

The JavaVirtual Machine supports synchronization of both methods and sequences
of instructions within amethod by a single synchronization construct: the monitor.

Method-level synchronizationisperformedimplicitly, aspart of method invocation
and return (82.11.8). A synchroni zed method is distinguished in the run-time
constant pool's net hod_i nf o structure (84.6) by the ACC_SYNCHRONI ZED flag,
which is checked by the method invocation instructions. When invoking a method
for which ACC_SYNCHRONI ZED i S Set, the executing thread enters amonitor, invokes
the method itself, and exits the monitor whether the method invocation completes
normally or abruptly. During the time the executing thread owns the monitor,
no other thread may enter it. If an exception is thrown during invocation of
the synchroni zed method and the synchr oni zed method does not handle the
exception, the monitor for the method is automatically exited before the exception
isrethrown out of the synchr oni zed method.

Synchronization of sequences of instructions is typically used to encode the
synchr oni zed block of the Javaprogramming language. The JavaVirtual Machine
supplies the monitorenter and monitorexit instructions to support such language
constructs. Proper implementation of synchr oni zed blocks requires cooperation
from a compiler targeting the Java Virtual Machine (83.14).

Structured locking is the situation when, during a method invocation, every exit
on a given monitor matches a preceding entry on that monitor. Since there is
no assurance that all code submitted to the Java Virtual Machine will perform
structured locking, implementations of the Java Virtual Machine are permitted but
not required to enforce both of the following two rules guaranteeing structured
locking. Let T be athread and M be amonitor. Then:

1. The number of monitor entries performed by T on M during a method
invocation must equal the number of monitor exits performed by T on M during
the method invocation whether the method invocation completes normally or
abruptly.

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Class Libraries

2. At no point during a method invocation may the number of monitor exits
performed by T on M since the method invocation exceed the number of
monitor entries performed by T on M since the method invocation.

Note that the monitor entry and exit automatically performed by the Java Virtua
Machine when invoking a synchr oni zed method are considered to occur during
the calling method's invocation.

2.12 ClassLibraries

The Java Virtual Machine must provide sufficient support for the implementation
of the classlibraries of the Java SE platform. Some of the classesin these libraries
cannot be implemented without the cooperation of the Java Virtual Machine.

Classes that might require specia support from the Java Virtual Machine include
those that support:

» Reflection, such asthe classesin the packagej ava. | ang. ref | ect and the class
Cl ass.

» Loading and creation of a class or interface. The most obvious example is the
classd assLoader .

* Linking andinitialization of aclassor interface. The example classes cited above
fall into this category as well.

 Security, such as the classes in the package j ava. security and other classes
such as Securi t yManager .

» Multithreading, such asthe class Thr ead.
» Wesk references, such as the classesin the packagej ava. | ang. ref .

Thelist above is meant to beillustrative rather than comprehensive. An exhaustive
list of these classes or of the functionality they provide is beyond the scope of
this specification. See the specifications of the Java SE platform class libraries for
details.

2.13 Public Design, Private Implementation

Thus far this specification has sketched the public view of the Java Virtua
Machine: thecl ass fileformat and the instruction set. These components are vita

212

37

2.13

38

Public Design, Private Implementation THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

to the hardware-, operating system-, and implementati on-independence of the Java
Virtual Machine. The implementor may prefer to think of them as a means to
securely communicate fragments of programs between hosts each implementing
the Java SE platform, rather than as a blueprint to be followed exactly.

It is important to understand where the line between the public design and the
private implementation lies. A Java Virtual Machine implementation must be
able to read cl ass files and must exactly implement the semantics of the Java
Virtual Machine code therein. One way of doing this is to take this document
as a gpecification and to implement that specification literally. But it is aso
perfectly feasible and desirable for the implementor to modify or optimize the
implementation within the constraints of thisspecification. Solong asthecl ass file
format can be read and the semantics of its code are maintained, the implementor
may implement these semantics in any way. What is "under the hood" is the
implementor's business, as long as the correct externa interface is carefully
maintained.

There are some exceptions: debuggers, profilers, and just-in-time code generators can each
reguire access to elements of the Java Virtual Machine that are normally considered to
be “under the hood.” Where appropriate, Oracle works with other Java Virtual Machine
implementors and with tool vendors to develop common interfaces to the Java Virtual
Machine for use by such tools, and to promote those interfaces across the industry.

The implementor can use this flexibility to tailor Java Virtua Machine
implementations for high performance, low memory use, or portability. What
makes sense in a given implementation depends on the goals of that
implementation. The range of implementation options includes the following:

» Trandating Java Virtual Machine code at |oad-time or during execution into the
instruction set of another virtual machine.

» Trandating Java Virtual Machine code at load-time or during execution into the
native instruction set of the host CPU (sometimes referred to as just-in-time, or
JIT, code generation).

Theexistence of aprecisely defined virtual machine and object file format need not
significantly restrict the creativity of theimplementor. The JavaVirtual Machineis
designed to support many different implementations, providing new andinteresting
solutions while retaining compatibility between implementations.

CHAPTER3

Compiling for the Java
Virtual Machine

T HE JavaVirtual Machine machineisdesigned to support the Java programming
language. Oracle's JDK software contains a compiler from source code written
in the Java programming language to the instruction set of the Java Virtua
Machine, and a run-time system that implements the Java Virtual Machine itself.
Understanding how one compiler utilizes the Java Virtual Machine is useful to the
prospective compiler writer, aswell asto one trying to understand the Java Virtual
Machine itself. The numbered sections in this chapter are not normative.

Notethat theterm "compiler” is sometimes used when referring to atranslator from
the instruction set of a Java Virtual Machine to the instruction set of a specific
CPU. Oneexample of such atrand ator isajust-in-time (JIT) code generator, which
generates platform-specific instructions only after Java Virtual Machine code has
been loaded. This chapter does not address i ssues associated with code generation,
only those associated with compiling source code written in the Java programming
language to Java Virtual Machine instructions.

3.1 Format of Examples

This chapter consists mainly of examples of source code together with annotated
listings of the Java Virtual Machine code that the javac compiler in Oracle’ s IDK
release 1.0.2 generates for the examples. The Java Virtual Machine codeiswritten
in the informal “virtual machine assembly language” output by Oracl€e's j avap
utility, distributed with the JDK release. Y ou can usej avap to generate additional
examples of compiled methods.

39

3.2

40

Use of Constants, Local Variables, and Control Constructs COMPILING FOR THE JAVA
VIRTUAL MACHINE

The format of the examples should be familiar to anyone who has read assembly
code. Each instruction takes the form:

<index> <opcode> [<operandl> [<operand2>...]] [<comment>]

The <index> istheindex of the opcode of the instruction in the array that contains
the bytes of Java Virtual Machine code for thismethod. Alternatively, the <index>
may bethought of asabyte offset from the beginning of the method. The <opcode>
is the mnemonic for the instruction's opcode, and the zero or more <operandN>
are the operands of the instruction. The optional <comment> is given in end-of-
line comment syntax:

8 bi push 100 /1 Push int constant 100

Some of the material in the commentsis emitted by j avap; the rest is supplied by
the authors. The <index> prefacing each instruction may be used as the target of
a control transfer instruction. For instance, agot o 8 instruction transfers control
to theinstruction at index 8. Note that the actual operands of Java Virtual Machine
control transfer instructions are offsets from the addresses of the opcodes of those
instructions; these operands are displayed by j avap (and are shown in this chapter)
as more easily read offsets into their methods.

We preface an operand representing a run-time constant pool index with a hash
sign and follow theinstruction by acomment identifying the run-time constant pool
item referenced, asin:

10 Idc #1 /1 Push float constant 100.0

or:

9 i nvokevirtual #4 /1 Method Exanpl e.addTwo(I1)]I

For the purposes of this chapter, we do not worry about specifying details such as
operand sizes.

3.2 Useof Constants, Local Variables, and Control Constructs

JavaVirtual Machine code exhibits a set of general characteristicsimposed by the
JavaVirtual Machine's design and use of types. In the first example we encounter
many of these, and we consider them in some detail.

The spi n method simply spins around an empty for loop 100 times:

void spin() {

COMPILING FOR THE JAVA VIRTUAL MACHINE Use of Constants, Local Variables, and
Control Constructs

int i;
for (i =0; i < 100; i++) {
; /1 Loop body is enpty
}
}

A compiler might compile spi n to:

0 iconst_0O /1 Push int constant O

1 istore_1 /] Store into |local variable 1 (i=0)

2 goto 8 /1 First time through don't increnent

5 iinc 11 /1 Increnent local variable 1 by 1 (i++)
8 iload_1 /] Push |l ocal variable 1 (i)

9 bi push 100 /1 Push int constant 100

11 if_icmplt 5 /1 Conpare and loop if less than (i < 100)
14 return /1 Return void when done

The Java Virtual Machine is stack-oriented, with most operations taking one or
more operands from the operand stack of the Java Virtual Machine's current frame
or pushing results back onto the operand stack. A new frame is created each time
a method is invoked, and with it is created a new operand stack and set of local
variables for use by that method (82.6). At any one point of the computation, there
are thus likely to be many frames and equally many operand stacks per thread of
control, corresponding to many nested method invocations. Only the operand stack
in the current frameis active.

The instruction set of the Java Virtual Machine distinguishes operand types by
using distinct bytecodes for operations on its various data types. The method
spi n operates only on values of type i nt. The instructions in its compiled code
chosen to operate on typed data (iconst_0, istore 1, iinc, iload_1, if_icmplt) are all
specialized for typei nt .

The two constants in spi n, 0 and 100, are pushed onto the operand stack using
two different instructions. The o is pushed using an iconst_0 instruction, one of the
family of iconst_<i> instructions. The 100 is pushed using a bipush instruction,
which fetches the value it pushes as an immediate operand.

The Java Virtual Machine frequently takes advantage of the likelihood of certain
operands (i nt constants -1, 0, 1, 2, 3, 4 and 5 in the case of the iconst_<i>
instructions) by making those operands implicit in the opcode. Because the
iconst_0 instruction knows it is going to push ani nt 0, iconst_0 does not need to
store an operand to tell it what value to push, nor doesit need to fetch or decode an
operand. Compiling the push of 0 as bipush 0 would have been correct, but would
have made the compiled code for spi n one byte longer. A simple virtual machine
would have also spent additional time fetching and decoding the explicit operand

3.2

41

3.2

42

Use of Constants, Local Variables, and Control Constructs COMPILING FOR THE JAVA
VIRTUAL MACHINE

each time around the loop. Use of implicit operands makes compiled code more
compact and efficient.

Theint i inspinisstored asJavaVirtua Machinelocal variable 1. Because most
JavaVirtua Machineinstructions operate on values popped from the operand stack
rather than directly on local variables, instructions that transfer values between
local variables and the operand stack are common in code compiled for the Java
Virtual Machine. These operations also have special support in the instruction
set. In spi n, values are transferred to and from local variables using the istore 1
and iload_1 instructions, each of which implicitly operates on local variable 1.
Theistore_1 instruction pops ani nt from the operand stack and storesit in local
variable 1. Theiload 1 instruction pushes the value in local variable 1 on to the
operand stack.

The use (and reuse) of local variablesis the responsihility of the compiler writer.
The specialized load and store instructions should encourage the compiler writer
to reuse local variables as much as is feasible. The resulting code is faster, more
compact, and uses less space in the frame.

Certain very frequent operations on local variables are catered to specialy by
the Java Virtua Machine. The iinc instruction increments the contents of a local
variable by a one-byte signed value. The iinc instruction in spi n increments the
first local variable (itsfirst operand) by 1 (its second operand). Theiinc instruction
is very handy when implementing looping constructs.

Thef or loop of spi n isaccomplished mainly by these instructions:

5 iinc 11 /1 Increnent local variable 1 by 1 (i++)
8 iload_1 /] Push | ocal variable 1 (i)

9 bi push 100 /1 Push int constant 100

11 if_icmplt 5 /1 Conpare and loop if less than (i < 100)

The bipush instruction pushes the value 100 onto the operand stack as an i nt,
then the if_icmplt instruction pops that value off the operand stack and compares
it against i. If the comparison succeeds (the variable i is less than 100), control
is transferred to index 5 and the next iteration of the f or loop begins. Otherwise,
control passes to the instruction following theif_icmpilt.

If the spi n example had used a data type other than i nt for the loop counter,
the compiled code would necessarily change to reflect the different data type. For
instance, if instead of ani nt the spi n example uses adoubl e, as shown:

voi d dspin() {
doubl e i;
for (i =0.0; i <100.0; i++) {
; /1 Loop body is enpty

COMPILING FOR THE JAVA VIRTUAL MACHINE Use of Constants, Local Variables, and 32
Control Constructs

}
the compiled codeis:

Met hod voi d dspin()

0 dconst _0 /1 Push doubl e constant 0.0

1 dstore_1 /] Store into |ocal variables 1 and 2

2 goto 9 /1 First tine through don't increnent

5 dl oad_1 /1 Push local variables 1 and 2

6 dconst _1 /'l Push doubl e constant 1.0

7 dadd // Add; there is no dinc instruction

8 dstore_1 /1 Store result in local variables 1 and 2
9 dl oad_1 !/ Push | ocal variables 1 and 2

10 ldc2_w #4 /1 Push doubl e constant 100.0

13 dcnpg /] There is no if_dcnplt instruction

14 iflt 5 /| Compare and loop if less than (i < 100.0)
17 return /1 Return void when done

The instructions that operate on typed data are now specialized for type doubl e.
(Theldc2_w instruction will be discussed later in this chapter.)

Recall that doubl e values occupy two local variables, although they are only
accessed using the lesser index of the two local variables. Thisis also the case for
values of typel ong. Again for example,

doubl e doubl eLocal s(doubl e d1, double d2) {
return dl + d2;

}

becomes
Met hod doubl e doubl eLocal s(doubl e, doubl e)
0 dl oad_1 /1 First argunment in |local variables 1 and 2
1 dl oad_3 /1 Second argunent in local variables 3 and 4
2 dadd
3 dreturn

Note that local variables of the local variable pairs used to store doubl e vauesin
doubl eLocal s must never be manipulated individually.

TheJavaVirtual Machine's opcode size of 1 byteresultsin its compiled code being
very compact. However, 1-byte opcodes also mean that the Java Virtual Machine
instruction set must stay small. Asacompromise, the JavaVirtual Machine doesnot
provide equal support for all datatypes: it isnot completely orthogonal (Table2.2).

For example, the comparison of values of typei nt inthef or statement of example
spi n can be implemented using a single if_icmplt instruction; however, there is
no single instruction in the Java Virtua Machine instruction set that performs a
conditional branch on values of type doubl e. Thus, dspi n must implement its

43

3.2

Use of Constants, Local Variables, and Control Constructs COMPILING FOR THE JAVA
VIRTUAL MACHINE

comparison of values of type doubl e using a dcmpg instruction followed by an iflt
instruction.

The Java Virtual Machine provides the most direct support for data of typeint .
This is partly in anticipation of efficient implementations of the Java Virtua
Machine's operand stacks and local variable arrays. It is also motivated by the
frequency of i nt datain typical programs. Other integral types have less direct
support. There are no byt e, char, or short versions of the store, load, or add
instructions, for instance. Hereis the spi n example written using ashort :

void sspin() {
short i;
for (i =0; i < 100; i++) {
; /1 Loop body is enpty
}

}

It must be compiled for the Java Virtual Machine, as follows, using instructions
operating on another type, most likely i nt, converting between short and i nt

valuesas necessary to ensurethat the results of operationsonshor t datastay within
the appropriate range:

Met hod voi d sspin()

0 iconst_0O

1 istore_ 1

2 goto 10

5 iload_1 /1 The short is treated as though an int
6 iconst 1

7 i add

8 i2s /1 Truncate int to short
9 istore_ 1

10 iload_1

11 bipush 100

13 if_icmplt 5

16 return

The lack of direct support for byt e, char, and short types in the Java Virtua
Machine is not particularly painful, because values of those types are internaly
promotedtoi nt (byte andshort aresign-extendedtoi nt,char iszero-extended).
Operationson byt e, char , and shor t data can thusbe doneusingi nt instructions.
The only additional cost isthat of truncating the values of i nt operationsto valid
ranges.

Thel ong and floating-point types have an intermediate level of support in the Java
Virtual Machine, lacking only the full complement of conditional control transfer
instructions.

COMPILING FOR THE JAVA VIRTUAL MACHINE Arithmetic

3.3 Arithmetic

The Java Virtual Machine generally does arithmetic on its operand stack. (The
exception is the iinc instruction, which directly increments the value of a local
variable)) For instance, the al i gn2gr ai n method aligns an i nt value to a given
power of 2:

int align2grain(int i, int grain) {
return ((i + grain-1) & ~(grain-1));

Operands for arithmetic operations are popped from the operand stack, and
the results of operations are pushed back onto the operand stack. Results of
arithmeti c subcomputations can thus be made available as operands of their nesting
computation. For instance, the calculation of ~(grain-1) is handled by these
instructions:

5 iload_2 /] Push grain

6 iconst_1 /1 Push int constant 1
7 i sub /] Subtract; push result
8 iconst_ml /1 Push int constant -1
9 i xor /1 Do XOR, push result

First gr ai n- 1 iscalculated using the contents of local variable 2 and an immediate
i nt value1. These operandsare popped from the operand stack and their difference
pushed back onto the operand stack. The difference is thus immediately available
for use as one operand of theixor instruction. (Recall that ~x == - 1~x.) Similarly,
the result of the ixor instruction becomes an operand for the subsequent iand
instruction.

The code for the entire method follows:

Met hod int align2grain(int,int)
iload_1
iload 2

i add
iconst_1
i sub
iload_2
iconst_1
i sub
iconst_ml
i xor

10 iand

11 ireturn

OCO~NOUTRA_AWNEO

3.3

45

3.4

46

Accessing the Run-Time Constant Pool COMPILING FOR THE JAVA VIRTUAL MACHINE

3.4 Accessing the Run-Time Constant Pool

Many numeric constants, as well as objects, fields, and methods, are accessed
via the run-time constant pool of the current class. Object access is considered
later (83.8). Data of typesint, | ong, fl oat, and doubl e, as well as references
to instances of class string, are managed using the Idc, Idc w, and 1dc2_ w
instructions.

Theldc and Idc_w instructions are used to access values in the run-time constant
pool (including instances of class st ri ng) of types other than doubl e and | ong.
Theldc_w instruction is used in place of Idc only when there is alarge number of
run-time constant pool items and a larger index is needed to access an item. The
Idc2_w instruction is used to access all values of types doubl e and | ong; thereis
no non-wide variant.

Integral constants of types byte, char, or short, as well as small i nt values,
may be compiled using the bipush, sipush, or iconst_<i> instructions (83.2).
Certain small floating-point constants may be compiled using the fconst_<f> and
dconst_<d> instructions.

Inall of these cases, compilation is straightforward. For instance, the constantsfor:

voi d useManyNureric() {

int i = 100;

int j = 1000000;
long 11 = 1;

long 12 = Oxffffffff;

double d = 2. 2;
...do sone cal cul ations...

}

are set up asfollows:

Met hod void useManyNuneric()

0 bi push 100 // Push small int constant w th bipush

2 istore_1

3 ldc #1 /1 Push large int constant (1000000) with |dc
5 istore_2

6 I const _1 /1 Atiny long value uses small fast lconst_1
7 | store_3

8 I dc2_w #6 /] Push long Oxffffffff (that is, an int -1)

/1 Any |ong constant value can be pushed with |dc2_w
11 Istore 5
13 Idc2_w #8 /1 Push doubl e constant 2.200000

/1 Uncommon doubl e val ues are al so pushed with | dc2_w
16 dstore 7
...do those calcul ations...

COMPILING FOR THE JAVA VIRTUAL MACHINE More Control Examples

3.5 MoreControl Examples

Compilation of f or statements was shown in an earlier section (83.2). Most of the
Java programming language's other control constructs (i f - t hen- el se, do, whi | e,
br eak, and cont i nue) are also compiled in the obvious ways. The compilation of
swi t ch statements is handled in a separate section (83.10), as are the compilation
of exceptions (83.12) and the compilation of fi nal | y clauses (83.13).

As afurther example, awhi | e loop is compiled in an obvious way, although the
specific control transfer instructions made available by the Java Virtual Machine
vary by datatype. Asusual, thereis more support for dataof typei nt , for example:

void whilelnt() {
int i = 0;
while (i < 100) {
i ++;
}

}
is compiled to:

Met hod void whilelnt()
iconst_0O
istore_1
goto 8
iinc 11
iload_1
bi push 100
1 if_icnplt 5
4 return

PP OOUOINEF,O

Note that the test of the while statement (implemented using the if icmplt
instruction) is at the bottom of the Java Virtual Machine code for the loop. (This
was also the casein the spi n examples earlier.) Thetest being at the bottom of the
loop forcesthe use of agoto instruction to get to the test prior to thefirst iteration of
the loop. If that test fails, and the loop body is never entered, this extrainstruction
is wasted. However, whi | e loops are typically used when their body is expected
to be run, often for many iterations. For subsequent iterations, putting the test at
the bottom of the loop saves a Java Virtual Machine instruction each time around
the loop: if the test were at the top of the loop, the loop body would need atrailing
goto instruction to get back to the top.

Control constructs involving other data types are compiled in similar ways, but
must use the instructions available for those data types. This leads to somewhat
|ess efficient code because more Java Virtual Machine instructions are needed, for
example:

35

47

3.5

48

More Control Examples COMPILING FOR THE JAVA VIRTUAL MACHINE

voi d whi |l eDoubl e() {

double i = 0.0;
while (i < 100.1) {
| ++;
}
}
is compiled to:
Met hod voi d whi | eDoubl e()
0 dconst 0
1 dstore_1
2 goto 9
5 dl oad_1
6 dconst _1
7 dadd
8 dstore_1
9 dl oad_1
10 ldc2_w #4 /1 Push doubl e constant 100.1
13 dcnpg /1 To conpare and branch we have to use...
14 iflt 5 /] ...two instructions
17 return

Each floating-point type has two comparison instructions: fcmpl and fcmpg for type
fl oat, and dempl and dempg for type doubl e. The variants differ only in their
treatment of NaN. NaN is unordered (§82.3.2), so all floating-point comparisons
fail if either of their operands is NaN. The compiler chooses the variant of the
comparison instruction for the appropriate type that produces the same result
whether the comparison fails on non-NaN values or encounters a NaN. For
instance:

int | essThan100(double d) {
if (d < 100.0) {

return 1;
} else {
return -1,
}
}
compilesto:
Met hod int | essThan100(doubl e)
0 dl oad_1
1 ldc2_w #4 /1 Push doubl e constant 100.0
4 dcnpg /1 Push 1 if dis NaN or d > 100.0;
/1 push O if d == 100.0
5 ifge 10 /1 Branch on 0 or 1
8 iconst_1
9 ireturn

10 iconst_nl
11 ireturn

COMPILING FOR THE JAVA VIRTUAL MACHINE Receiving Arguments 3.6

If d isnot NaN and islessthan 100. 0, the dcmpg instruction pushesani nt -1 onto
the operand stack, and the ifge instruction does not branch. Whether d is greater
than 100. 0 or is NaN, the dcmpg instruction pushes an i nt 1 onto the operand
stack, and the ifge branches. If d is equal to 100. 0, the decmpg instruction pushes
anint 0 onto the operand stack, and the ifge branches.

The dempl instruction achieves the same effect if the comparison is reversed:

int greaterThanl00(double d) {
if (d > 100.0) {
return 1;
} else {
return -1;
}

}

becomes:
Met hod int greater Than100(doubl e)
0 dl oad_1
1 ldc2_w #4 /] Push doubl e constant 100.0
4 dcnpl // Push -1 if dis NaN or d < 100.0;
/1 push O if d == 100.0
5 ifle 10 /] Branch on 0 or -1
8 iconst_1
9 ireturn

10 iconst_ni
11 ireturn

Once again, whether the comparison fails on a non-NaN value or because it is
passed a NaN, the dempl instruction pushes an i nt value onto the operand stack
that causes the ifle to branch. If both of the dcmp instructions did not exist, one of
the example methods would have had to do more work to detect NaN.

3.6 Recelving Arguments

If n arguments are passed to an instance method, they are received, by convention,
inthelocal variablesnumbered 1 through n of the frame created for the new method
invocation. Theargumentsarereceived in the order they were passed. For example:

int addTwo(int i, int j) {
return i + j;
}

compilesto:

Met hod int addTwo(int,int)

49

3.7

50

Invoking Methods COMPILING FOR THE JAVA VIRTUAL MACHINE

0 iload_1 /1 Push value of |ocal variable 1 (i)

1 iload_2 /1 Push value of local variable 2 (j)

2 i add /1 Add; leave int result on operand stack
3 ireturn /1 Return int result

By convention, an instance method is passed ar ef er ence to its instance in local
variable 0. In the Java programming language the instance is accessible via the
t hi s keyword.

Class (st ati ¢) methods do not have an instance, so for them this use of local
variable 0 isunnecessary. A class method starts using local variables at index O. If
theaddTwo method were aclass method, its arguments would be passed in asimilar
way to thefirst version:

static int addTwoStatic(int i, int j) {
return i + j;
}

compilesto:

Met hod int addTwoStatic(int,int)
0 iload_ 0
1 iload_1
2 iadd
3 ireturn
The only difference is that the method arguments appear starting in local variable
O rather than 1.

3.7 Invoking Methods

The normal method invocation for a instance method dispatches on the run-
time type of the object. (They are virtual, in C++ terms.) Such an invocation is
implemented using the invokevirtual instruction, which takes as its argument an
index to arun-time constant pool entry giving theinternal form of the binary name
of the classtype of the object, the name of the method to invoke, and that method's
descriptor (84.3.3). To invoke the addTwo method, defined earlier as an instance
method, we might write:

int addl2and13() {
return addTwo(12, 13);
}

This compilesto:

Met hod int addl2and13()

COMPILING FOR THE JAVA VIRTUAL MACHINE Invoking Methods

0 al oad_0 /1 Push local variable 0 (this)

1 bi push 12 /1 Push int constant 12

3 bi push 13 /1 Push int constant 13

5 i nvokevirtual #4 /1 Method Exanpl e.addtwo(Il1)]I

8 ireturn /1 Return int on top of operand stack

/1 it is the int result of addTwo()

Theinvocationisset up by first pushing ar ef er ence to the current instance, t hi s,
on to the operand stack. The method invocation's arguments, i nt values12 and 13,
are then pushed. When the frame for the addTwo method is created, the arguments
passed to the method become the initial values of the new frame's local variables.
That is, ther ef er ence for t hi s and the two arguments, pushed onto the operand
stack by the invoker, will become the initial values of local variables O, 1, and 2
of the invoked method.

Finally, addTwo is invoked. When it returns, itsi nt return value is pushed onto
the operand stack of the frame of the invoker, the add12and13 method. The return
valueisthus put in place to beimmediately returned to the invoker of add12and13.

The return from add12and13 is handled by the ireturn instruction of add12and13.
The ireturn instruction takes the i nt value returned by addTwo, on the operand
stack of the current frame, and pushes it onto the operand stack of the frame of
the invoker. It then returns control to the invoker, making the invoker's frame
current. The Java Virtual Machine provides distinct return instructions for many of
its numeric and r ef er ence datatypes, aswell as areturn instruction for methods
with no return value. The same set of return instructions is used for all varieties
of method invocations.

The operand of theinvokevirtual instruction (in the example, the run-time constant
pool index #4) is not the offset of the method in the class instance. The compiler
does not know theinternal layout of aclassinstance. Instead, it generates symbolic
references to the methods of an instance, which are stored in the run-time constant
pool. Those run-time constant pool items are resolved at run-time to determine
the actual method location. The same is true for all other Java Virtual Machine
instructions that access class instances.

Invoking addTwoSt at i ¢, aclass (st ati ¢) variant of addTwo, is similar, as shown;

int addl12and13() {
return addTwoStatic(12, 13);
}

although a different Java Virtual Machine method invocation instruction is used:
Met hod i nt addl2and13()

0 bi push 12
2 bi push 13

3.7

51

3.7

52

Invoking Methods COMPILING FOR THE JAVA VIRTUAL MACHINE

4 i nvokestatic #3 /1 Method Exanpl e. addTwoStatic(l1)]
7 ireturn

Compiling an invocation of aclass (st at i ¢) method is very much like compiling
an invocation of an instance method, except thisis not passed by the invoker. The
method argumentswill thus be received beginning with local variable 0 (83.6). The
invokestatic instruction is always used to invoke class methods.

The invokespecial instruction must be used to invoke instance initialization
methods (83.8). It is also used when invoking methods in the superclass (super)
and when invoking pri vat e methods. For instance, given classes Near and Far
declared as:
cl ass Near {
int it;
public int getltNear() {
return getlt();
}

private int getlt() {
return it;
}

}

cl ass Far extends Near {
int getltFar() {
return super.getltNear();
}

}
the method Near . get | t Near (which invokesapri vat e method) becomes:

Met hod int getltNear()

0 al oad_0
1 i nvokespeci al #5 /1 Method Near.getlt()I
4 ireturn

The method Far . get 1 t Far (which invokes a superclass method) becomes:

Met hod int getltFar()

0 al oad_0
1 i nvokespeci al #4 /1 Method Near.getltNear()I
4 ireturn

Note that methods called using the invokespecial instruction always passt hi s to
theinvoked method asitsfirst argument. Asusual, itisreceived inlocal variableO.

Toinvokethetarget of amethod handle, acompiler must form amethod descriptor
that records the actual argument and return types. A compiler may not perform
method invocation conversions on the arguments; instead, it must push them on
the stack according to their own unconverted types. The compiler arranges for

COMPILING FOR THE JAVA VIRTUAL MACHINE Working with Class Instances

areference to the method handle object to be pushed on the stack before the
arguments, asusual. The compiler emitsan invokevirtual instruction that references
adescriptor which describesthe argument and return types. By special arrangement
with method resolution (85.4.3.3), an invokevirtual instruction which invokes
the i nvokeExact or i nvoke methods of j ava. | ang. i nvoke. Met hodHand! e will
always link, provided the method descriptor is syntactically well-formed and the
types named in the descriptor can be resolved.

3.8 Working with Class I nstances

JavaVirtual Machine class instances are created using the Java Virtual Machine's
new instruction. Recall that at the level of the Java Virtual Machine, a constructor
appears as a method with the compiler-supplied name <i ni t>. This specialy
named method is known as the instance initialization method (82.9). Multiple
instance initialization methods, corresponding to multiple constructors, may exist
for agiven class. Oncethe classinstance has been created and itsinstance variables,
including those of the class and all of its superclasses, have been initialized to
their default values, an instance initialization method of the new class instance is
invoked. For example:

Cbj ect create() {
return new Object();
}

compilesto:
Met hod j ava. |l ang. Obj ect create()
0 new #1 /1 Cass java.l ang. Obj ect
3 dup
4 i nvokespeci al #4 /1 Method java.lang. Gbject.<init>()V
7 areturn

Class instances are passed and returned (as ref erence types) very much like
numeric values, although typer ef er ence hasits own complement of instructions,
for example:

int i; // An instance vari abl e
MyQoj exanpl e() {

M/Qoj o = new MyQj ();

return silly(o);

}

MWObj silly(MObj o) {
if (o!=null) {
return o;

} else {

3.8

53

3.8 Working with Class Instances COMPILING FOR THE JAVA VIRTUAL MACHINE

return o;

}
becomes:

Met hod MyObj exanpl e()

new #2 /1 dass MyObj

dup

i nvokespeci al #5 /1 Method MyQoj . <init>()V

astore_1

al oad_0

al oad_1

i nvokevirtual #4 /1 Method Exanple.silly(LMQoj;)LMWOj;
areturn

PP OO~NPAWO

w o

Met hod MyQbj silly(M/Obj)
al oad_1

ifnull 6

al oad_1

areturn

al oad_1

areturn

~NOoO Ol O

The fields of a class instance (instance variables) are accessed using the getfield
and putfield instructions. If i isaninstancevariable of typei nt , themethodsset I t
and get I t, defined as:

void setlt(int value) {
i = val ue;

}

int getlt() {
return i;

}

become:

Met hod void setlt(int)

0 al oad_0

1 iload_1

2 putfield #4 /1 Field Exanple.i |
5 return

Met hod int getlt()

0 al oad_0

1 getfield #4 /] Field Example.i |
4 ireturn

Aswith the operands of method invocation instructions, the operands of the putfield
and getfield instructions (the run-time constant pool index #4) are not the offsets
of the fields in the class instance. The compiler generates symbolic references to

COMPILING FOR THE JAVA VIRTUAL MACHINE

the fields of an instance, which are stored in the run-time constant pool. Those run-
time constant pool items are resolved at run-time to determine the location of the

field within the referenced object.

3.9 Arrays

Java Virtua Machine arrays are also objects. Arrays are created and manipulated
using a distinct set of instructions. The newarray instruction is used to create an

array of anumeric type. The code:

voi d createBuffer() {
int buffer[];
int bufsz = 100;
int value = 12;
buf fer = new int[bufsz];
buf fer[10] = val ue;
value = buffer[11];

}
might be compiled to:

Met hod void createBuffer()

0 bi push 100 /] Push int constant 100 (bufsz)
2 istore_2 /] Store bufsz in |ocal

3 bi push 12 /1 Push int constant 12 (val ue)
5 istore_3 /1 Store value in |ocal

6 iload_2 /1 Push bufsz...

7 newarray int /1 ...and create new int

9 astore_1 /] Store new array in buffer

10 aload_1 /] Push buffer

11 bipush 10 /1 Push int constant 10

13 iload_3 /1l Push val ue

14 iastore /1 Store value at buffer[10]

15 aload_1 /1 Push buffer

16 bipush 11 /] Push int constant 11

18 ial oad /] Push value at buffer[11]...
19 istore_3 /1 ...and store it in value

20 return

The anewarray instruction is used to create a one-dimensional array of object

references, for example:

voi d createThreadArray() {
Thread threads[];
int count = 10;
t hreads = new Thread[count];
t hreads[0] = new Thread();

vari able 2
variable 3

array of that

3.9

55

3.9

56

Arrays COMPILING FOR THE JAVA VIRTUAL MACHINE

becomes:

Met hod void createThreadArray()

0 bi push 10 /1 Push int constant 10
2 istore_2 /1 Initialize count to that
3 iload_2 /1 Push count, used by anewarray
4 anewarray class #1 // Create new array of class Thread
7 astore_1 /1 Store new array in threads
8 al oad_1 /1 Push val ue of threads
9 iconst_0O /1 Push int constant 0
10 new #1 /'l Create instance of class Thread
13 dup /1 Make duplicate reference...
14 invokespecial #5 /1 ...for Thread's constructor

/1 Method java.lang. Thread.<init>()V
17 aastore /1 Store new Thread in array at O
18 return

The anewarray instruction can aso be used to create the first dimension of a
multidimensional array. Alternatively, the multianewarray instruction can be used
to create severa dimensions at once. For example, the three-dimensional array:

int[][1[] create3DArray() {
int grid[][][];
grid = new int[10][5][];
return grid,;

}
is created by:
Method int create3DArray()[][]1[]
0 bi push 10 /] Push int 10 (dinension one)
2 iconst_5 /1 Push int 5 (di mension two)

3 mul tianewarray #1 dim#2 // Cass [[[|, a three-dinensional
/1 int array; only create the
/1 first two di nensions

7 astore_1 /] Store new array. ..
8 al oad_1 /] ...then prepare to return it
9 areturn

The first operand of the multianewarray instruction is the run-time constant pool
index to the array classtypeto be created. The second isthe number of dimensions
of that array typeto actually create. The multianewarray instruction can be used to
create all the dimensions of the type, as the code for cr eat e3DAr r ay shows. Note
that the multidimensional array is just an object and so is loaded and returned by
anaload_1 and areturn instruction, respectively. For information about array class
names, see 84.4.1.

All arrays have associated lengths, which are accessed via the arraylength
instruction.

COMPILING FOR THE JAVA VIRTUAL MACHINE Compiling Switches

3.10 Compiling Switches

Compilation of switch statements uses the tableswitch and lookupswitch
instructions. The tableswitch instruction is used when the cases of the swi t ch can
be efficiently represented as indices into a table of target offsets. The def aul t
target of theswi t ch isusedif the value of the expression of theswi t ch fallsoutside
the range of valid indices. For instance:

int chooseNear(int i) {
switch (i) {

case 0: return

case 1: return

case 2: return ;

default: return -1;

1

l

NEQ

}
}
compilesto:

Met hod int chooseNear (int)
0 iload_1 /1 Push local variable 1 (argument i)
1 tableswitch 0 to 2: // Valid indices are 0 through 2

0. 28 // 1f i is 0, continue at 28

1: 30 // 1f i is 1, continue at 30

2: 32 // 1f i is 2, continue at 32

defaul t: 34 /!l Otherw se, continue at 34
28 iconst_O /1 i was 0; push int constant O...
29 ireturn [/ ...and return it
30 iconst_1 /1 i was 1; push int constant 1...
31 ireturn // ...and return it
32 iconst_2 /1 i was 2; push int constant 2...
33 ireturn /[l ...and return it
34 iconst_ml /1 otherwi se push int constant -1...
35 ireturn /[l ...and return it

The JavaVirtual Machine'stableswitch and lookupswitch instructions operate only
on i nt data. Because operations on byt e, char, or short vaues are internally
promoted to i nt, aswi t ch whose expression evaluates to one of those types is
compiled as though it evaluated to typei nt . If the chooseNear method had been
written using type shor t , the same Java Virtual Machine instructions would have
been generated as when using typei nt . Other numeric types must be narrowed to
typeint for useinaswitch.

Wherethe casesof theswi t ch are sparse, the table representation of the tableswitch
instruction becomesinefficient intermsof space. Thelookupswitch instruction may
beused instead. Thelookupswitchinstruction pairsi nt keys(thevaluesof thecase
labels) with target offsets in atable. When alookupswitch instruction is executed,

3.10

57

311

58

Operations on the Operand Stack COMPILING FOR THE JAVA VIRTUAL MACHINE

the value of the expression of the swi t ch iscompared against the keysin the table.
If one of the keys matches the value of the expression, execution continues at the
associated target offset. If no key matches, execution continues at the def aul t

target. For instance, the compiled code for:

int chooseFar(int i) {

switch (i) {
case -100: return -1
case 0: return O;
case 100: return 1;
defaul t: return -1

}

looks just like the code for chooseNear , except for the lookupswitch instruction:

Met hod i nt chooseFar (int)

0 iload_1
1 | ookupswi tch 3:
-100: 36
0: 38
100: 40
defaul t: 42

36 iconst_ml
37 ireturn
38 iconst_0
39 ireturn
40 iconst_1
41 ireturn
42 iconst_nl
43 ireturn

The Java Virtual Machine specifies that the table of the lookupswitch instruction
must be sorted by key so that implementations may use searches more efficient than
alinear scan. Even so, the lookupswitch instruction must search itskeysfor amatch
rather than ssmply perform a bounds check and index into atable like tableswitch.
Thus, a tableswitch instruction is probably more efficient than a lookupswitch
where space considerations permit a choice.

3.11 Operationson the Operand Stack

The Java Virtual Machine has a large complement of instructions that manipulate
the contents of the operand stack as untyped values. These are useful because of
the Java Virtual Machine's reliance on deft manipulation of its operand stack. For
instance:

COMPILING FOR THE JAVA VIRTUAL MACHINE Throwing and Handling Exceptions

public | ong nextlndex() ({
return index++;

}
private long index = O;
is compiled to:
Met hod | ong next | ndex()
0 al oad_0 /1 Push this
1 dup /1 Make a copy of it

2 getfield #4 /1 One of the copies of this is consuned
/1 pushing long field index,
/| above the original this

5 dup2_x1 /1 The long on top of the operand stack is
/'l inserted into the operand stack bel ow the
/1 original this

6 I const _1 /1 Push long constant 1

7 | add /1 The index value is incremented...

8 putfield #4 /1 ...and the result stored in the field
11 Ireturn /1 The original value of index is on top of

/'l the operand stack, ready to be returned

Note that the Java Virtual Machine never allows its operand stack manipulation
instructions to modify or break up individual values on the operand stack.

3.12 Throwing and Handling Exceptions

Exceptions are thrown from programs using the t hr ow keyword. Its compilation
issmple:
voi d cantBeZero(int i) throws TestExc {

if (i ==0)
t hr ow new Test Exc();

}
}
becomes:
Met hod voi d cant BeZero(i nt)
0 iload_1 /1 Push argunment 1 (i)
1 ifne 12 // 1f i==0, allocate instance and throw
4 new #1 /1 Create instance of TestExc
7 dup /1 One reference goes to its constructor
8 i nvokespeci al #7 /1 Method TestExc.<init>()V
11 athrow /'l Second reference is thrown
12 return /1 Never get here if we threw Test Exc

Compilation of t ry-cat ch constructsis straightforward. For example:

3.12

59

3.12 Throwing and Handling Exceptions COMPILING FOR THE JAVA VIRTUAL MACHINE

voi d catchOne() {
try {
tryltQut();
} catch (TestExc e) {
handl eExc(e);

}
}
iscompiled as:
Met hod voi d cat chOne()
0 al oad_0 /1 Beginning of try bl ock
1 i nvokevi rtual #6 /1 Method Exanple.tryltQut()V
4 return /1 End of try block; normal return
5 astore_1 /l Store thrown value in local var 1
6 al oad_0 /1 Push this
7 al oad_1 /1 Push thrown val ue
8 i nvokevi rtual #5 /1 I nvoke handl er net hod:
/1 Exanpl e. handl eExc(LTest Exc;)V
11 return /1 Return after handling TestExc
Exception table:
From To Tar get Type
0 4 5 Cl ass Test Exc

Looking moreclosely, thet ry block iscompiled just asit would beif thet ry were

not present:
Met hod voi d cat chOne()
0 al oad_0 /1 Beginning of try block
1 i nvokevi rtual #6 /1 Method Exanple.tryltQut()V
4 return /1 End of try block; normal return

If no exceptionisthrown during the execution of thet r y block, it behavesasthough
thetry werenot there: tryl t qut isinvoked and cat chOne returns.

Following the t ry block is the Java Virtual Machine code that implements the
singlecat ch clause:

5 astore_1 /! Store thrown value in local var 1
6 al oad_0 /1 Push this
7 al oad_1 /1 Push thrown val ue
8 i nvokevi rtual #5 /'l 1nvoke handl er method:
/'l Exanpl e. handl eExc(LTest Exc;)V
11 return /1 Return after handling TestExc
Exception table:
From To Tar get Type
0 4 5 Cl ass Test Exc

The invocation of handl eExc, the contents of the cat ch clause, is aso compiled
like anormal method invocation. However, the presence of acat ch clause causes
the compiler to generate an exception table entry (82.10, 84.7.3). The exception

60

COMPILING FOR THE JAVA VIRTUAL MACHINE Throwing and Handling Exceptions 3.12

tablefor thecat chone method has one entry corresponding to the one argument (an
instance of class Test Exc) that the cat ch clause of cat chone can handle. If some
value that is an instance of Test Exc isthrown during execution of the instructions
between indices 0 and 4 in cat chOne, control is transferred to the Java Virtual
Machine code at index 5, which implements the block of the cat ch clause. If the
value that is thrown is not an instance of Test Exc, the cat ch clause of cat chOne
cannot handle it. Instead, the value is rethrown to the invoker of cat chOne.

A try may have multiple cat ch clauses:

voi d catchTwo() {

try {
tryltQut();

} catch (TestExcl e) {
handl eExc(e);

} catch (TestExc2 e) {
handl eExc(e);

}

}

Multiplecat ch clausesof agivent ry statement are compiled by simply appending
the JavaVirtual Machine code for each cat ch clause one after the other and adding
entries to the exception table, as shown:

Met hod void cat chTwo()

0 al oad_0 /1 Begin try bl ock

1 i nvokevi rtual #5 /1 Method Exanple.tryltQut()V

4 return /1 End of try block; normal return

5 astore_1 /1 Begi nning of handl er for TestExcl;
/1 Store thrown value in local var 1

6 al oad_0 /1 Push this

7 al oad_1 /1 Push thrown val ue

8 i nvokevi rtual #7 /'l 1 nvoke handl er method:
/| Exanpl e. handl eExc(LTest Excl;)V

11 return /! Return after handling TestExcl

12 astore_1 /1 Beginning of handler for TestExc2;
/1 Store thrown value in local var 1

13 aload_ 0 /1 Push this

14 aload_1 /1 Push thrown val ue

15 invokevirtual #7 /1 I nvoke handl er net hod:
/| Exanpl e. handl eExc(LTest Exc2;)V

18 return /'l Return after handling TestExc2

Exception table:

From To Tar get Type

0 4 5 Cl ass TestExcl

0 4 12 Cl ass Test Exc2

If during the execution of thet r y clause (betweenindices0 and 4) avalueisthrown
that matches the parameter of one or more of the cat ch clauses (the value is an
instance of one or more of the parameters), the first (innermost) such cat ch clause

61

3.12

62

Throwing and Handling Exceptions COMPILING FOR THE JAVA VIRTUAL MACHINE

isselected. Control istransferred to the Java Virtual Machine code for the block of
that cat ch clause. If the value thrown does not match the parameter of any of the
cat ch clauses of cat chTwo, the Java Virtual Machine rethrows the value without
invoking codein any cat ch clause of cat chTwo.

Nested t ry-cat ch statements are compiled very much like atry statement with
multiple cat ch clauses:

voi d nestedCatch() {

try {

try {
tryltQut();

} catch (TestExcl e) {
handl eExc1(e);

}

} catch (TestExc2 e) {
handl eExc2(e);

}

}

becomes:

Met hod voi d nest edCat ch()

0 al oad_0 /1 Begin try bl ock
1 i nvokevi rtual #8 /1 Method Exanple.tryltQut()V
4 return /1 End of try block; normal return
5 astore_1 /1 Begi nning of handler for TestExcl;
/1 Store thrown value in local var 1
6 al oad_0 /1 Push this
7 al oad_1 /1 Push thrown val ue
8 i nvokevi rtual #7 /'l 1 nvoke handl er method:
/1 Exanpl e. handl eExc1(LTest Excl;)V
11 return /! Return after handling TestExcl
12 astore_1l /1 Beginning of handler for TestExc2;
/1 Store thrown value in local var 1
13 aload_ 0 /1 Push this
14 aload_1 /1 Push thrown val ue
15 invokevirtual #6 /1 I nvoke handl er net hod:
/| Exanpl e. handl eExc2(LTest Exc2;)V
18 return /'l Return after handling TestExc2
Exception table:
From To Tar get Type
0 4 5 Cl ass TestExcl
0 12 12 Cl ass Test Exc2

The nesting of cat ch clauses is represented only in the exception table. The Java
Virtual Machine does not enforce nesting of or any ordering of the exception table
entries (82.10). However, becauset r y-cat ch constructs are structured, a compiler
can alwaysorder the entries of the exception handler table such that, for any thrown
exception and any program counter valuein that method, thefirst exception handler

COMPILING FOR THE JAVA VIRTUAL MACHINE Compiling final I'y

that matches the thrown exception corresponds to the innermost matching cat ch
clause.

For instance, if the invocation of tryltcut (at index 1) threw an instance of
Test Exc1, it would be handled by thecat ch clause that invokeshandl eExc1. This
is s0 even though the exception occurs within the bounds of the outer cat ch clause
(catching Test Exc2) and even though that outer cat ch clause might otherwise have
been able to handle the thrown value.

As a subtle point, note that the range of acat ch clause isinclusive on the "from"
end and exclusive on the "to" end (84.7.3). Thus, the exception table entry for the
cat ch clause catching Test Exc1 does not cover the return instruction at offset 4.
However, the exception table entry for the cat ch clause catching Test Exc2 does
cover the return instruction at offset 11. Return instructions within nested cat ch
clauses areincluded in the range of instructions covered by nesting cat ch clauses.

3.13 Compilingfinally

(This section assumes a compiler generates cl ass files with version number 50.0
or below, so that the jsr instruction may be used. See also §84.10.2.5.)

Compilation of atry-final |y statement is similar to that of t ry-cat ch. Prior to
transferring control outside the t ry statement, whether that transfer is normal or
abrupt, because an exception has been thrown, the fi nal | y clause must first be
executed. For this simple example:

void tryFinally() {

try {
tryltQut();

} finally {
wraplt Up();

}

the compiled codeis:

Met hod void tryFinally()

0 al oad_0 /1 Beginning of try bl ock

1 i nvokevi rtual #6 /1 Method Exanple.tryltQut()V

4 jsr 14 /1 Call finally bl ock

7 return /1 End of try block

8 astore_1 /1 Beginning of handler for any throw
9 jsr 14 /1 Call finally bl ock

12 aload_1 /1l Push thrown val ue

13 athrow /1 ...and rethrow value to the invoker
14 astore_2 /1 Beginning of finally block

3.13

63

3.13

Compiling final I'y COMPILING FOR THE JAVA VIRTUAL MACHINE
15 aload O /1 Push this
16 invokevirtual #5 /1 Method Exanple.wapltUp()V
19 ret 2 /1 Return fromfinally block
Exception table:
From To Tar get Type
0 4 8 any

There are four ways for control to pass outside of the t ry statement: by falling
through the bottom of that block, by returning, by executing abr eak or cont i nue
statement, or by raising an exception. If tryltcut returns without raising an
exception, control is transferred to the fi nal 1y block using ajsr instruction. The
jsr 14 instruction at index 4 makes a " subroutine call" to the code for thefinal I'y
block at index 14 (the final Iy block is compiled as an embedded subroutine).
When the final I y block completes, the ret 2 instruction returns control to the
instruction following the jsr instruction at index 4.

In more detail, the subroutine call works as follows: The jsr instruction pushes
the address of the following instruction (return at index 7) onto the operand stack
before jumping. The astore_2 instruction that is the jump target stores the address
on the operand stack into local variable 2. The code for the final I'y block (in
thiscasetheaload 0 and invokevirtual instructions) isrun. Assuming execution of
that code completes normally, the ret instruction retrieves the address from local
variable 2 and resumes execution at that address. Thereturninstruction isexecuted,
andtryFi nal |y returns normally.

A try statement with afinal 'y clause is compiled to have a special exception
handler, one that can handle any exception thrown within the t ry statement. If
tryltQut throws an exception, the exception tablefor t ryFi nal | y is searched for
an appropriate exception handler. The special handler is found, causing execution
to continue at index 8. The astore 1 instruction at index 8 stores the thrown value
into local variable 1. The following jsr instruction does a subroutine call to the
code for the final Iy block. Assuming that code returns normally, the aload 1
instruction at index 12 pushes the thrown value back onto the operand stack, and
the following athrow instruction rethrows the value.

Compiling at ry statement with both acat ch clauseand afi nal | y clauseis more
complex:

void tryCatchFinal ly() {
try {
tryltQut();
} catch (TestExc e) {
handl eExc(e);

} finally {
wraplt Up();

COMPILING FOR THE JAVA VIRTUAL MACHINE Compiling final I'y

}

becomes:

Met hod voi d tryCatchFinally()
/1

0 al oad_0 Begi nning of try bl ock

1 i nvokevi rtual #4 /1 Method Exanple.tryltQut()V

4 goto 16 /1 Jump to finally block

7 astore_3 /1 Beginning of handler for TestExc;
// Store thrown value in local var 3

8 al oad_0 /1 Push this

9 al oad_3 /1 Push thrown val ue

10 invokevirtual #6 /1 I'nvoke handl er method:
/| Exanpl e. handl eExc(LTest Exc;)V

13 goto 16 /1 This goto is unnecessary, but was
/1 generated by javac in JDK 1.0.2

16 jsr 26 /1 Call finally block

19 return /1 Return after handling TestExc

20 astore_1 /1 Begi nning of handl er for exceptions
/1 other than TestExc, or exceptions
/1 thrown while handling TestExc

21 jsr 26 /1 Call finally block

24 aload_1 /1 Push thrown val ue...

25 athrow /1 ...and rethrow value to the invoker

26 astore_2 /1 Beginning of finally block

27 aload_O /1 Push this

28 invokevirtual #5 /1 Method Exanpl e.wapltUp()V

31 ret 2 /! Return fromfinally block

Exception table:

From To Tar get Type

0 4 7 Cl ass Test Exc

0 16 20 any

If the try statement completes normally, the goto instruction at index 4 jumps
to the subroutine call for the final Iy block at index 16. The fi nal | y block at
index 26 is executed, control returns to the return instruction at index 19, and
t ryCat chFi nal | y returns normally.

If tryltout throws an instance of Test Exc, the first (innermost) applicable
exception handler in the exception table is chosen to handle the exception. The
code for that exception handler, beginning at index 7, passes the thrown value to
handl eExc and on its return makes the same subroutine call to thefi nal I y block
at index 26 as in the normal case. If an exception is not thrown by handl eExc,
t ryCat chFi nal | y returns normally.

Iftrylt aut throwsavaluethat isnot aninstance of Test Exc or if handl eExc itself
throws an exception, the condition is handled by the second entry in the exception
table, which handles any value thrown between indices 0 and 16. That exception
handler transfers control to index 20, where the thrown valueisfirst stored in loca

3.13

65

314

66

Synchronization COMPILING FOR THE JAVA VIRTUAL MACHINE

variable 1. Thecodefor thefi nal | y block at index 26 iscalled asasubroutine. If it
returns, the thrown value isretrieved from local variable 1 and rethrown using the
athrowinstruction. If anew valueisthrown during execution of thef i nal | y clause,
thefinal 'y clause aborts, and t r yCat chFi nal | y returns abruptly, throwing the
new vaue to itsinvoker.

3.14 Synchronization

Synchronization in the Java Virtual Machineisimplemented by monitor entry and
exit, either explicitly (by use of the monitorenter and monitorexit instructions) or
implicitly (by the method invocation and return instructions).

For code written in the Java programming language, perhaps the most common
form of synchronization isthesynchr oni zed method. A synchr oni zed method is
not normally implemented using monitorenter and monitorexit. Rather, it issimply
distinguished in the run-time constant pool by the ACC_SYNCHRONI ZED flag, which
is checked by the method invocation instructions (82.11.10).

The monitorenter and monitorexit instructions enable the compilation of
synchr oni zed statements. For example:

voi d onl yMe(Foo f) {
synchroni zed(f) {
doSonet hi ng();

}
}
is compiled to:
Met hod voi d onl yMe(Foo)
0 al oad_1 /1 Push f
1 dup /1 Duplicate it on the stack
2 astore_2 /! Store duplicate in local variable 2
3 noni t orent er /1 Enter the nonitor associated with f
4 al oad_0 /1 Holding the nonitor, pass this and...
5 i nvokevi rtual #5 /1 ...call Exanple.doSonething()V
8 al oad_2 /1 Push local variable 2 (f)
9 nmoni t orexit // Exit the nonitor associated with f
10 goto 18 /1 Conplete the nethod normally
13 astore_3 /1l I'n case of any throw, end up here
14 al oad_2 /1 Push local variable 2 (f)
15 nonitorexit /! Be sure to exit the nonitor!
16 aload_3 /1 Push thrown val ue. ..
17 athrow /1l ...and rethrow value to the invoker
18 return /! Return in the normal case

Exception table:

COMPILING FOR THE JAVA VIRTUAL MACHINE Annotations

From To Tar get Type
4 10 13 any
13 16 13 any

The compiler ensures that at any method invocation completion, a monitorexit
instruction will have been executed for each monitorenter instruction executed
since the method invocation. This is the case whether the method invocation
completes normally (82.6.4) or abruptly (82.6.5). To enforce proper pairing
of monitorenter and monitorexit instructions on abrupt method invocation
completion, the compiler generates exception handlers (82.10) that will match
any exception and whose associated code executes the necessary monitorexit
instructions.

3.15 Annotations

Therepresentation of annotationsinc! ass filesisdescribedin 84.7.16 and 84.7.17,
which make it clear how to represent annotations on types, fields, and methods in
thecl ass file format. Package annotations require additional rules, given here.

When the compiler encounters an annotated package declaration that must be made
available at run time, it emits a cl ass file that represents an interface whose
nameistheinterna form (84.2.1) of package- name. package- i nf o. The interface
has default access (JLS 86.6.1) and no superinterfaces. The ACC_| NTERFACE and
ACC_ABSTRACT flags (Table 4.1) of the d assFi | e structure (84.1) are s&t. If the
emitted cl ass fileversion number islessthan 50.0, then the ACC_SYNTHETI Cflagis
unset; if the classfile version number is50.0 or above, thenthe ACC_SYNTHETI Cflag
is set. The only members of the interface are those implied by The Java Language
Soecification, Java SE 7 Edition (JLS §9.2).

The package annotations are stored in the Runt i neVi si bl eAnnot at i ons (84.7.16)
and Runti nel nvi si bl eAnnot ations (84.7.17) attributes of the O assFile
structure (84.1) of thisinterface.

3.15

67

CHAPTER |

Thecl ass File Format

T HIS chapter describes the Java Virtual Machinecl ass fileformat. Each cl ass
file contains the definition of a single class or interface. Although a class or
interface need not have an external representation literally contained in afile (for
instance, becausethe classisgenerated by aclassloader), wewill colloquially refer
to any valid representation of aclass or interface as being inthecl ass file format.

A cl ass file consists of a stream of 8-bit bytes. All 16-bit, 32-bit, and 64-bit
guantities are constructed by reading in two, four, and eight consecutive 8-bit
bytes, respectively. Multibyte data items are aways stored in big-endian order,
where the high bytes come first. In the Java SE platform, this format is supported
by interfacesj ava. i 0. Dat al nput and j ava. i o. Dat aQut put and classes such as
j ava.i o. Dat al nput St reamand j ava. i 0. Dat aCut put St r eam

This chapter defines its own set of data types representing cl ass file data: The
types ul, u2, and u4 represent an unsigned one-, two-, or four-byte quantity,
respectively. In the Java SE platform, these types may be read by methods
such as readUnsi gnedByt e, readUnsi gnedShort, and readl nt of the interface
java.io. Dat al nput .

This chapter presents the cl ass file format using pseudostructures written in a
C-like structure notation. To avoid confusion with the fields of classes and class
instances, etc., the contents of the structures describing the cl ass file format are
referred to as items. Successive items are stored in the cl ass file sequentialy,
without padding or alignment.

Tables, consisting of zero or more variable-sized items, are used in several cl ass
file structures. Although we use C-like array syntax to refer to table items, the fact
that tables are streams of varying-sized structures means that it is not possible to
trandate a table index directly to a byte offset into the table.

Wherewerefer to adatastructureasan array, it consists of zero or more contiguous
fixed-sized items and can be indexed like an array.

69

41

70

The d assFi | e Sructure THE cLAss FILE FORMAT

Reference to an ASCII character in this chapter should be interpreted to mean the
Unicode code point corresponding to the ASCII character.

4.1 Thed assFil e Structure

A cl ass file consists of asingle d assFi | e structure:

ClassFile {
u4 magi c;
u2 nm nor _ver si on;
u2 maj or _ver si on;
u2 const ant _pool _count;
cp_info const ant _pool [const ant _pool _count-1];
u2 access_fl ags;
u2 thi s_cl ass;
u2 super _cl ass;
u2 i nterfaces_count;
u2 interfaces[interfaces_count];
u2 fields_count;
field_info fields[fields_count];
u2 nmet hods_count ;
met hod_i nfo net hods[met hods_count] ;
u2 attributes_count;

attribute_info attributes[attributes_count];

}

Theitemsinthed assFi | e structure are as follows:

nmagi ¢
The magi ¢ item supplies the magic number identifying the cl ass file format;
it has the value 0x CAFEBABE.

m nor _versi on, maj or_version

Thevaluesof theni nor _ver si on and maj or _ver si on itemsare the minor and
major version numbersof thiscl ass file. Together, amajor and aminor version
number determinetheversion of thecl ass fileformat. If acl ass filehasmajor
version number M and minor version number m, we denote the version of its
cl ass file format as M.m. Thus, cl ass file format versions may be ordered
lexicographically, for example, 1.5<2.0<2.1.

A Java Virtua Machine implementation can support a cl ass file format of
version v if and only if v lies in some contiguous range Mi.0 < v < Mj.m.
The release level of the Java SE platform to which a Java Virtual Machine
implementation conforms is responsible for determining the range.

THE cLAss FILE FORMAT The d assFi | e Sructure 4.1

Oracle's Java Virtual Machine implementation in JDK release 1.0.2 supports cl ass file
format versions 45.0 through 45.3 inclusive. JDK releases 1.1.* support cl ass file format
versionsin the range 45.0 through 45.65535 inclusive. For k = 2, JDK release 1.k supports
cl ass fileformat versionsin the range 45.0 through 44+k.0 inclusive.

const ant _pool _count
The value of the const ant _pool _count itemisequal to the number of entries
in the const ant _pool table plus one. A const ant _pool index is considered
valid if it is greater than zero and less than const ant _pool _count , with the
exception for constants of typel ong and doubl e noted in §4.4.5.

constant _pool []

The const ant _pool isatable of structures (84.4) representing various string
constants, class and interface names, field names, and other constants that are
referred to within the d assFi | e structure and its substructures. The format of
each const ant _pool table entry isindicated by itsfirst "tag" byte.

Theconst ant _pool tableisindexed from 1to const ant _pool _count -1.

access_fl ags

The value of the access_f 1 ags item isamask of flags used to denote access
permissions to and properties of this class or interface. The interpretation of
each flag, when set, isas shown in Table 4.1.

Table4.1. Class access and property modifiers

Flag Name Value Interpretation

ACC _PUBLI C 0x0001 Declared publ i c; may be accessed from outside its
package.

ACC_FI NAL 0x0010 Declared f i nal ; no subclasses allowed.

ACC_SUPER 0x0020 Treat superclass methods specially when invoked by
the invokespecial instruction.

ACC_| NTERFACE 0x0200 Isaninterface, not aclass.

ACC_ABSTRACT 0x0400 Declared abst r act ; must not be instantiated.

ACC_SYNTHETI C 0x1000 Declared synthetic; not present in the source code.

ACC_ANNOTATI ON 0x2000 Declared as an annotation type.

ACC_ENUM 0x4000 Declared as an enumtype.

A class may be marked with the AcC_SYNTHETI C flag to indicate that it was
generated by a compiler and does not appear in source code.

71

41

72

The d assFi | e Sructure THE cLAss FILE FORMAT

The aAcc_ENuMflag indicates that this class or its superclass is declared as an
enumerated type.

An interface is distinguished by its ACC_I NTERFACE flag being set. If its
ACC_| NTERFACE flag is not set, thiscl ass file defines a class, not an interface.

If the ACC_I NTERFACE flag of thiscl ass fileis set, itsACC_ABSTRACT flag must
also be set (JLS §9.1.1.1). Such acl ass file must not have its ACC FI NAL,
ACC_SUPER or ACC_ENUMflags set.

An annotation type must have itS ACC_ANNOTATION flag set. If the
ACC_ANNOTATI ONflag is set, the ACC_| NTERFACE flag must be set aswell. If the
ACC_| NTERFACE flag of thiscl ass fileis not set, it may have any of the other
flagsin Table 4.1 set, except the ACC_ANNCTATI ONflag. However, suchacl ass
filecannot have bothitsACC_FI NAL and ACC_ABSTRACT flagsset (JLS§8.1.1.2).

The ACC_SUPER flag indicates which of two aternative semantics is to be
expressed by the invokespecial instruction (8invokespecial) if it appearsin this
class. Compilers to the instruction set of the Java Virtual Machine should set
the ACC_SUPER flag.

The ACC_SUPER flag exists for backward compatibility with code compiled by older
compilers for the Java programming language. In Oracle’s JDK prior to release 1.0.2,
the compiler generated O assFi | e access_f | ags in which the flag now representing
ACC_SUPER had no assigned meaning, and Oracle's Java Virtual Machine implementation
ignored the flag if it was set.

All bits of the access_f 1 ags item not assigned in Table 4.1 are reserved for
future use. They should be set to zero in generated cl ass files and should be
ignored by Java Virtua Machine implementations.

this_cl ass

The value of the this class item must be a vaid index into the
const ant _pool table. The constant _pool entry at that index must be a
CONSTANT_d ass_i nf o structure (84.4.1) representing the class or interface
defined by thiscl ass file.

super _cl ass

For a class, the value of the super cl ass item either must be zero or
must be a valid index into the constant _pool table. If the value of the
super _cl ass item isnonzero, the const ant _pool entry at that index must be
a CONSTANT_d ass_i nf o structure (84.4.1) representing the direct superclass
of the class defined by thiscl ass file. Neither the direct superclass nor any of
its superclasses may havethe ACC FI NAL flag set intheaccess_f | ags item of
itsd assFi | e structure.

THE cLAss FILE FORMAT The d assFi | e Sructure

If thevalue of thesuper _cl ass itemiszero, thenthiscl ass filemust represent
the class bj ect , the only class or interface without a direct superclass.

For an interface, the value of the super _cl ass item must always be a valid
index into the const ant _pool table. The const ant _pool entry at that index
must be a CONSTANT_dl ass_i nf o structure representing the class vj ect .

i nterfaces_count

The value of the interfaces_count item gives the number of direct
superinterfaces of this class or interface type.

interfaces[]

Each value in the interfaces array must be a valid index into
the constant_pool table. The constant_pool entry a each vaue
of interfaces[i], where O < i < interfaces_count, must be a
CONSTANT_d ass_i nf o structure (84.4.1) representing an interface that is a
direct superinterface of this class or interface type, in the left-to-right order
given in the source for the type.

fiel ds_count

The value of the fiel ds_count item gives the number of field_info
structuresinthefi el ds table. Thefi el d_i nf o structures (84.5) represent all
fields, both class variables and instance variables, declared by this class or
interface type.

fields[]

Each valueinthefi el ds table must be ati el d_i nf o (84.5) structure giving
a complete description of afield in this class or interface. The fi el ds table
includes only those fields that are declared by this class or interface. It does
not include items representing fields that are inherited from superclasses or
superinterfaces.

nmet hods_count

The value of the net hods_count item gives the number of net hod_i nfo
structuresin the met hods table.

net hods[]

Each valueinthenet hods table must beanet hod_i nf o (84.6) structure giving
a complete description of a method in this class or interface. If neither of the
ACC_NATI VE and ACC_ABSTRACT flags are set in the access_f I ags item of a
met hod_i nf o structure, the Java Virtual Machine instructions implementing
the method are also supplied.

41

73

41

74

The d assFi | e Sructure THE cLAss FILE FORMAT

The net hod_i nfo structures represent all methods declared by this class
or interface type, including instance methods, class methods, instance
initialization methods (82.9), and any class or interface initialization method
(82.9). Thenet hods table does not include items representing methods that are
inherited from superclasses or superinterfaces.

attributes_count

Thevaueof theat t ri but es_count item givesthe number of attributes (84.7)
intheattribut es table of this class.

attributes[]

Each value of the attributes table must be an attribute_info (84.7)
structure.

The attributes defined by this specification as appearing in
the attributes table of a dassFile structure are the
Innerd asses (84.7.6), Encl osi ngMet hod (84.7.7), Synthetic (84.7.8),
Signature (84.7.9), SourceFile (84.7.10), SourceDebugExtension
(84.7.11), Deprecated (84.7.15), Runti neVi si bl eAnnot ati ons (84.7.16),
Runt i mel nvi si bl eAnnot at i ons (84.7.17), and Boot st r apMet hods (84.7.21)
attributes.

If a Java Virtual Machine implementation recognizes cl ass files whose
version number is 49.0 or above, it must recognize and correctly
read Signature (84.7.9), RuntineVisibleAnnotations (84.7.16), and
Runt i mel nvi si bl eAnnot at i ons (84.7.17) attributesfound intheat t ri but es
table of ad assFi | e structure of acl ass file whose version number is 49.0
or above.

If a Java Virtual Machine implementation recognizes cl ass files whose
version number is 51.0 or above, it must recognize and correctly read
Boot st r apMet hods (84.7.21) attributes found in the attri but es table of a
C assFi | e structure of acl ass file whose version number is 51.0 or above.

A Java Virtual Machine implementation is required to silently ignore any or
al attributes in the attri but es table of a d assFi | e structure that it does
not recognize. Attributes not defined in this specification are not allowed to
affect the semantics of thecl ass file, but only to provide additional descriptive
information (84.7.1).

THE cLAsS FILE FORMAT The Internal Form of Names

4.2 Thelnternal Form of Names

4.2.1 Binary Classand Interface Names

Class and interface names that appear in cl ass file structures are aways
represented in a fully quaified form known as binary names (JLS §13.1).
Such names are always represented as CONSTANT_Ut f 8_i nf o structures (84.4.7)
and thus may be drawn, where not further constrained, from the entire
Unicode codespace. Class and interface names are referenced from those
CONSTANT_NanmeAndType_i nf o structures (84.4.6) which have such names as part
of their descriptor (84.3), and from all CONSTANT_d ass_i nf o structures (84.4.1).

For historical reasons, the syntax of binary names that appear in cl ass file
structures differsfrom the syntax of binary names documented in JLS 813.1. Inthis
internal form, the ASCII periods (.) that normally separate the identifiers which
make up the binary name are replaced by ASCII forward slashes (/). Theidentifiers
themselves must be unqualified names (84.2.2).

For example, the normal binary name of class Thread is j ava. | ang. Thread. In the
internal form used in descriptorsin thecl ass file format, areference to the name of class
Thr ead is implemented using a CONSTANT_Ut f 8_i nf o structure representing the string
javall ang/ Thr ead.

4.2.2 Unqualified Names

Names of methods, fields, and local variables are stored as unqualified names. An
unqualified name must not contain any of the ASCII characters. ; [/ (that is,
period or semicolon or left square bracket or forward slash).

Method names are further constrained so that, with the exception of the specia
method names <i ni t> and <clinit> (82.9), they must not contain the ASCII
characters < or > (that is, left angle bracket or right angle bracket).

Note that a field name or interface method name may be <i nit> or <clinit>, but
no method invocation instruction may reference <cl i ni t > and only the invokespecial
instruction (8invokespecial) may reference <i ni t >.

4.3 Descriptorsand Signatures

A descriptor isastring representing the type of afield or method. Descriptors are
representedinthecl ass fileformat using modified UTF-8 strings (84.4.7) and thus
may be drawn, where not further constrained, from the entire Unicode codespace.

4.2

75

4.3

76

Descriptors and Sgnatures THE cLAsS FILE FORMAT

A signatureisastring representing the generic type of afield or method, or generic
type information for a class declaration.

4.3.1 Grammar Notation

Descriptors and signatures are specified using a grammar. This grammar is a set
of productions that describe how sequences of characters can form syntactically
correct descriptors of various types. Terminal symbols of the grammar are shown
inbold fixed-w dth font. Nonterminal symbols are shown in italic type. The
definition of a nonterminal is introduced by the name of the nonterminal being
defined, followed by a colon. One or more alternative right-hand sides for the
nonterminal then follow on succeeding lines. For example, the production:

FieldType:
BaseType
ObjectType
ArrayType

states that a FieldType may represent either a BaseType, an ObjectType or an
ArrayType.

A nonterminal symbol on the right-hand side of a production that is followed by
an asterisk (*) represents zero or more possibly different values produced from
that nonterminal, appended without any intervening space. Similarly, anonterminal
symbol on the right-hand side of a production that is followed by an plus sign (+)
represents one or more possibly different values produced from that nonterminal,
appended without any intervening space. The production:

MethodDescriptor:
(Parameter Descriptor*) ReturnDescriptor

states that a MethodDescriptor represents a left parenthesis, followed by zero or
more Parameter Descriptor values, followed by aright parenthesis, followed by a
ReturnDescriptor.

4.3.2 Field Descriptors

A field descriptor represents the type of a class, instance, or local variable. Itisa
series of characters generated by the grammar:

THE cLAsS FILE FORMAT Descriptors and Sgnatures 4.3

FieldDescriptor:
FieldType

FieldType:
BaseType
ObjectType
ArrayType

BaseType:
B

N =T OO0

ObjectType:
L ClassName;

ArrayType:
[ComponentType

ComponentType:
FieldType

The characters of BaseType, the L and ; of ObjectType, and the [of ArrayType
areall ASCII characters.

The ClassName represents a binary class or interface name encoded in interna
form (84.2.1).

The interpretation of field descriptors astypesis as shown in Table 4.2.

A field descriptor representing an array type is valid only if it represents a type
with 255 or fewer dimensions.

77

4.3

78

Descriptors and Sgnatures THE cLAsS FILE FORMAT

Table4.2. Interpretation of FieldType characters

BaseType Char acter Type Inter pretation
B byte signed byte
C char Unicode character code point in the Basic
Multilingual Plane, encoded with UTF-16
D doubl e double-precision floating-point value
fl oat single-precision floating-point value
I i nt integer
J | ong long integer
L ClassName; ref erence aninstance of class ClassName
S short signed short
z bool ean trueorfal se
[reference onearray dimension

Thefield descriptor of an instance variable of typei nt issimply I .

Thefield descriptor of aninstancevariable of type bj ect isLj ava/ | ang/ Obj ect ; . Note
that the internal form of the binary name for class Obj ect isused.

The field descriptor of an instance variable that is a multidimensiona doubl e array,
doubl e d[][]1[1,is[[[D.

4.3.3 Method Descriptors

A method descriptor represents the parameters that the method takes and the value
that it returns:

MethodDescriptor:
(ParameterDescriptor*) ReturnDescriptor

A parameter descriptor represents a parameter passed to a method:

Parameter Descriptor:
FieldType

A return descriptor represents the type of the value returned from a method. It is
a series of characters generated by the grammar:

THE cLAsS FILE FORMAT Descriptors and Sgnatures

ReturnDescriptor:
FieldType
VoidDescriptor

VoidDescriptor:
Y

The character v indicates that the method returns no value (itsreturn typeisvoi d).

A method descriptor is valid only if it represents method parameters with a total
length of 255 or less, where that length includes the contribution for t hi s in the
case of instance or interface method invocations. The total length is calculated by
summing the contributions of the individual parameters, where aparameter of type
| ong Or doubl e contributes two units to the length and a parameter of any other
type contributes one unit.

The method descriptor for the method:
Object miint i, double d, Thread t) {..}

is(1DLj ava/ | ang/ Thread;) Lj ava/ | ang/ Obj ect ; . Notethat theinternal forms of the
binary names of Thr ead and Qbj ect are used.

The method descriptor for misthe same whether misa class method or an instance method.
Although an instance method is passed t hi s, areference to the current class instance, in
addition to its intended parameters, that fact is not reflected in the method descriptor. The
referenceto t hi s is passed implicitly by the method invocation instructions of the Java
Virtual Machine that invoke instance methods (§2.6.1). A referenceto t hi s is not passed
to a class method.

4.3.4 Signatures

Signatures are used to encode Java programming language type information that is
not part of the Java Virtual Machine type system, such as generic type and method
declarations and parameterized types. See The Java Language Specification, Java
SE 7 Edition for details about such types.

Thiskind of type information is needed to support reflection and debugging, and by a Java
compiler.

Inthefollowing, theterminal symbol Identifier isused to denotethe name of atype,
field, local variable, parameter, method, or type variable, as generated by a Java
compiler. Such a name must not contain any of the ASCII characters. ; [/ <>

(that is, the characters forbidden in method names (84.2.2) and also colon) but may

4.3

79

4.3

80

Descriptors and Sgnatures THE cLAsS FILE FORMAT

contain characters that must not appear in an identifier in the Java programming
language (JLS §3.8).

A classsignature, defined by the production ClassSgnature, is used to encode type
information about a class declaration. It describes any formal type parameters the
class might have, and listsits (possibly parameterized) direct superclass and direct
superinterfaces, if any.

ClassSgnature:
Formal TypeParameter sy Super classSgnature SuperinterfaceSgnature*

A formal type parameter isdescribed by itsname, followed by itsclassand interface
bounds. If the class bound does not specify atype, it is taken to be j ect .

Formal TypeParameters:
< Formal TypeParameter+ >

Formal TypeParameter
Identifier ClassBound I nterfaceBound*

ClassBound:
. FieldTypeS gnatureopt

InterfaceBound:
: FieldTypeSgnature

SuperclassSgnature:
ClassTypeSgnature

SuperinterfaceSgnature:
ClassTypeSgnature

A field type signature, defined by the production FieldTypeS gnature, encodesthe
(possibly parameterized) type for afield, parameter or local variable.

FieldTypeSgnature:
ClassTypeSgnature
ArrayTypeSgnature
TypeVariableSgnature

A classtype signature gives complete typeinformation for aclass or interface type.
The class type signature must be formulated such that it can be reliably mapped

THE cLAsS FILE FORMAT Descriptors and Sgnatures 4.3

to the binary name of the class it denotes by erasing any type arguments and
converting each . character in the signature to a$ character.

ClassTypeSgnature:
L PackageSpecifier oot SmpleClassTypeSgnature ClassTypeS gnatureSuffix* ;

PackageSpecifier:
Identifier / PackageSpecifier*

SmpleClassTypeSgnature:
|dentifier TypeArgumentsopt

ClassTypeS gnatureQuffix:
. SmpleClassTypeSgnature

TypeVariableSgnature:
T Identifier ;

TypeArguments:
< TypeArgument+ >

TypeArgument:
Wildcardindicator o FieldTypeSgnature

*

Wildcardlndicator:
+

ArrayTypeSgnature:
[TypeSgnature

TypeSgnature:
FieldTypeSgnature
BaseType

A method signature, defined by the production MethodTypeSgnature, encodes
the (possibly parameterized) types of the method's formal arguments and of the
exceptionsit has declared initst hr ows clause, its (possibly parameterized) return
type, and any formal type parametersin the method declaration.

81

4.4 The Constant Pool THE cLAss FILE FORMAT

MethodTypeSignature:
Formal TypeParameter sy (TypeSgnature*) ReturnType ThrowsSgnature*

ReturnType:
TypeSignature
VoidDescriptor

ThrowsSgnature:
A ClassTypeSignature
A TypeVariableSgnature

If the t hr ows clause of a method or constructor does not involve type variables,
the ThowsS gnature may be elided from the MethodTypeSgnature.

A Java compiler must output generic signature information for any class, interface,
constructor or member whose generic signature in the Java programming language
would include references to type variables or parameterized types.

The signature and descriptor (84.3.3) of agiven method or constructor may not correspond
exactly, due to compiler-generated artifacts. In particular, the number of TypeSgnatures
that encode formal arguments in MethodTypeSgnature may be less than the number of
Parameter Descriptorsin MethodDescriptor.

Oracl€e's Java Virtual Machine implementation does not check the well-formedness of the
signatures described in this subsection during loading or linking. Instead, these checks are
deferred until the signatures are used by reflective methods, as specified in the API of
d ass and membersof j ava. | ang. r ef | ect . Future versions of a Java Virtual Machine
implementation may be required to perform some or al of these checks during loading or
linking.

4.4 The Constant Pool

Java Virtual Machine instructions do not rely on the run-time layout of classes,
interfaces, class instances, or arrays. Instead, instructions refer to symbolic
information in the const ant _pool table.

All const ant _pool table entries have the following general format:
cp_info {

ul tag;
ul info[];

82

THE cLAsS FILE FORMAT

Each item in the const ant _pool table must begin with a 1-byte tag indicating
the kind of cp_i nf o entry. The contents of the i nf o array vary with the value of
t ag. The valid tags and their values are listed in Table 4.3. Each tag byte must be
followed by two or more bytes giving information about the specific constant. The
format of the additional information varies with the tag value.

Table 4.3. Constant pool tags

The Constant Pool

Constant Type Value
CONSTANT_Cl ass 7
CONSTANT_Fi el dr ef 9
CONSTANT_Met hodr ef 10
CONSTANT_I nt er f aceMet hodr ef 11
CONSTANT_St ri ng 8
CONSTANT_I nt eger 3
CONSTANT _Fl oat 4
CONSTANT_Long 5
CONSTANT _Doubl e 6
CONSTANT_NaneAndType 12
CONSTANT_Utf 8 1
CONSTANT_Met hodHandl e 15
CONSTANT_Met hodType 16
CONSTANT_I nvokeDynarmi ¢ 18

4.4.1 The CONSTANT d ass_i nfo Structure

The CONSTANT_d ass_i nf o structureis used to represent a class or an interface:

CONSTANT_Cd ass_info {
ul tag;
u2 name_i ndex;

}

The items of the CONSTANT_d ass_i nf o structure are the following:

t ag

Thet ag item has the value CONSTANT_d ass (7).

4.4

83

4.4

The Constant Pool THE cLAss FILE FORMAT

name_i ndex

The vaue of the nane_index item must be a valid index into the
const ant _pool table. The constant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o (84.4.7) structure representing a valid binary class or
interface name encoded in internal form (84.2.1).

Because arrays are objects, the opcodes anewarray and multianewarray
can reference array "classes' via CONSTANT O ass_info structures in the
const ant _pool table. For such array classes, the name of the classisthe descriptor
of the array type.

For example, the class name representing atwo-dimensional int array type

int[1[1]

is

[

The class name representing the type array of class Thr ead

Thread[]

is

[Lj aval/ |l ang/ Thr ead;
An array type descriptor isvalid only if it represents 255 or fewer dimensions.
4.4.2 The CONSTANT_Fi el dr ef _i nf o, CONSTANT_Met hodr ef _i nf o, and

CONSTANT _I nt er f aceMet hodr ef _i nf o Structures

Fields, methods, and interface methods are represented by similar structures:

THE cLAss FILE FORMAT The Constant Pool

CONSTANT_Fi el dref _info {
ul tag;
u2 cl ass_i ndex;
u2 nanme_and_t ype_i ndex;

}
CONSTANT_Met hodref _info {
ul tag;
u2 cl ass_i ndex;
u2 name_and_t ype_i ndex;
}
CONSTANT_I nt erfaceMet hodref _i nfo {
ul tag;
u2 cl ass_i ndex;
u2 name_and_t ype_i ndex;
}

The items of these structures are as follows:

t ag

The tag item of a CONSTANT Fieldref_info structure has the vaue
CONSTANT_Fi el dref (9).

The tag item of a CONSTANT Met hodref info structure has the value
CONSTANT_Met hodr ef (10).

The tag item of a CONSTANT I nt er f aceMet hodr ef _i nf o structure has the
value CONSTANT_| nt er f aceMet hodr ef (11).

cl ass_i ndex

The vaue of the class_index item must be a valid index into the
const ant _pool table. The constant _pool entry at that index must be a
CONSTANT_d ass_i nf o (84.4.1) structure representing aclass or interface type
that has the field or method as a member.

The cl ass_i ndex item of a CONSTANT Met hodr ef _i nf o Structure must be a
classtype, not an interface type.

The cl ass_i ndex item of a CONSTANT | nt er f aceMet hodr ef _i nf o Structure
must be an interface type.

Thecl ass_i ndex item of aCONSTANT_Fi el dr ef _i nf o structure may be either
aclasstype or an interface type.
nanme_and_t ype_i ndex

The value of the narme_and_type_i ndex item must be a valid index into
the const ant _pool table. The const ant _pool entry at that index must be a

4.4

86

The Constant Pool THE cLAss FILE FORMAT

CONSTANT_NaneAndType_i nf o (84.4.6) structure. This const ant _pool entry
indicates the name and descriptor of the field or method.

In a CONSTANT_Fi el dref _i nfo, the indicated descriptor must be a field
descriptor (84.3.2). Otherwise, the indicated descriptor must be a method
descriptor (84.3.3).

If the name of the method of a CONSTANT_Met hodr ef _i nf o structure begins
with a '<' (\u003c"), then the name must be the specia name <init >,
representing an instance initialization method (82.9). The return type of such
amethod must bevoi d.

443 The CONSTANT String_i nfo Structure

The CONSTANT_St ri ng_i nf o structure is used to represent constant objects of the
typestring:

CONSTANT_String_info {
ul tag;
u2 string_index;

}

The items of the CONSTANT_St ri ng_i nf o Structure are as follows:

tag
The tag item of the CONSTANT String_info structure has the value
CONSTANT_St ri ng (8).

string_i ndex

The value of the string_index item must be a valid index into the
const ant _pool table. The constant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o (84.4.7) structure representing the sequence of Unicode
code pointsto which the st ri ng object isto beinitialized.

4.4.4 The CONSTANT I nt eger _i nf o and CONSTANT_Fl oat _i nf o Structures

The CONSTANT_I nt eger _i nf o and CONSTANT_Fl oat _i nf o Structures represent 4-
byte numeric (i nt and f | oat) constants:

THE cLAss FILE FORMAT The Constant Pool

CONSTANT_I nteger_info {

ul tag;
ud bytes;
}
CONSTANT_Fl oat _info {
ul tag;
ud bytes;
}

The items of these structures are as follows:

tag

The tag item of the CONSTANT Integer_info structure has the value
CONSTANT_I nt eger (3).

The tag item of the CONSTANT Float_info structure has the vaue
CONSTANT_Fl oat (4).

byt es

Thebyt es item of the CONSTANT _I nt eger _i nf o structure representsthe value
of thei nt constant. The bytes of the value are stored in big-endian (high byte
first) order.

The byt es item of the CONSTANT_Fl oat _i nf o Structure represents the value
of the fl oat constant in |EEE 754 floating-point single format (82.3.2). The
bytes of the single format representation are stored in big-endian (high byte
first) order.

The value represented by the CONSTANT_FI oat _i nf o structure is determined
asfollows. The bytes of the value are first converted into ani nt constant hits.
Then:

* If bitsisox7f 800000, thefl oat valuewill be positive infinity.
* If bitsisoxf f 800000, thef | oat valuewill be negative infinity.

* If bits is in the range 0x7f 800001 through ox7fffffff or in the range
oxf f 800001 through oxffffffff,thefloat valuewill be NaN.

* Inall other cases, let s, e, and mbe three values that might be computed from
bits:

int s = ((bits > 31) ==0) ?1: -1,
int e = ((bits > 23) & 0xff);
int m= (e ==0) ?

(bits & Ox7fffff) << 1 :
(bits & Ox7fffff) | 0x800000;

4.4

87

4.4

88

The Constant Pool THE cLAss FILE FORMAT

Then thefl oat value equals the result of the mathematical expressions - m
28- 150.

445 The CONSTANT Long_i nf o and CONSTANT Doubl e_i nf o Structures

The CONSTANT _Long_i nf o and CONSTANT_Doubl e_i nf o represent 8-byte numeric
(1 ong and doubl e) constants:

CONSTANT_Long_i nfo {
ul tag;
ud hi gh_bytes;
ud | ow_bytes;

}

CONSTANT_Doubl e_i nfo {
ul tag;
ud hi gh_bytes;
ud | ow_bytes;

}

All 8-byte constants take up two entries in the const ant _pool table of thecl ass
file. If a CONSTANT _Long_i nf o Or CONSTANT Doubl e_i nf o structure is the item
in the const ant _pool table at index n, then the next usable item in the pool is
located at index n+2. Theconst ant _pool index n+1 must bevalid but isconsidered
unusable.

In retrospect, making 8-byte constants take two constant pool entries was a poor choice.
The items of these structures are as follows:

tag
The tag item of the CONSTANT Long_ info structure has the vaue
CONSTANT_Long (5).
The tag item of the CONSTANT Double info Structure has the vaue
CONSTANT_Doubl e (6).

hi gh_bytes, |ow_bytes
The unsigned hi gh_byt es and | ow_byt es items of the CONSTANT_Long_i nf o
structure together represent the value of thel ong constant

((long) high_bytes << 32) + |ow bytes

wherethe bytes of each of hi gh_byt es and | ow_byt es are stored in big-endian
(high bytefirst) order.

THE cLAss FILE FORMAT The Constant Pool

The high_bytes and | ow bytes items of the CONSTANT Double_info
structure together represent the doubl e value in IEEE 754 floating-point
double format (82.3.2). The bytes of each item are stored in big-endian (high
byte first) order.

The value represented by the CONSTANT_Doubl e_i nf o structure is determined
asfollows. Thehi gh_byt es and | ow byt es items are converted into thel ong
constant bits, which isequal to

((long) high_bytes << 32) + |ow_bytes
Then:
* If bitsis0x7f f 0000000000000L, the doubl e value will be positive infinity.

* If bitsisoxf f f 0000000000000L, the doubl e value will be negative infinity.

* |If bitsisintherangeox7f f 0000000000001L through Ox7f ffffffffffffffL
or in the range oxf f f 0000000000001L through oxffffffffffffffffL, the
double value will be NaN.

* Inall other cases, let s, e, and mbe three values that might be computed from
bits:

int s = ((bits >63) ==0) ?21: -1;
int e = (int)((bits >> 52) & Ox7fflL);
long m= (e == 0) ?
(bits & OxfffffffffffffL) << 1 :
(bits & OxfffffffffffffL) | 0x10000000000000L;

Then the floating-point value equals the doubl e value of the mathematical
expressions - m . 281075,

446 The CONSTANT NarmeAndType_i nf o Structure

The CONSTANT_NaneAndType_i nf o structureisused to represent afield or method,
without indicating which class or interface type it belongs to:

CONSTANT_NarmeAndType_i nfo {
ul tag;
u2 nane_i ndex;
u2 descriptor_index;

}

The items of the CONSTANT_NarmeAndType_i nf o structure are as follows:

4.4

89

4.4

90

The Constant Pool THE cLAss FILE FORMAT

t ag

The tag item of the CONSTANT NaneAndType_i nf o structure has the value
CONSTANT_NareAndType (12).

name_i ndex
The vaue of the nane_index item must be a valid index into the
const ant _pool table. The constant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o (84.4.7) structure representing either the special method
name <i ni t > (82.9) or a valid unqualified name (84.2.2) denoting a field or
method.

descri pt or _i ndex

The value of the descriptor_i ndex item must be a valid index into the
const ant _pool table. The constant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o (84.4.7) structure representing a valid field descriptor
(84.3.2) or method descriptor (84.3.3).

447 The CONSTANT Ut f8_ i nfo Structure
The CONSTANT_Ut f 8_i nf o structure is used to represent constant string values:

CONSTANT_Utf8_ info {
ul tag;
u2 | ength;
ul bytes[length];
}

The items of the CONSTANT_Ut f 8_i nf o structure are the following:

t ag
The tag item of the CONSTANT Utf8 info structure has the vaue
CONSTANT_Ut f 8 (1).

I ength
The value of the | engt h item gives the number of bytes in the byt es array
(not the length of the resulting string). The stringsin the CONSTANT_Ut f 8_i nf o
structure are not null-terminated.

byt es[]

The byt es array contains the bytes of the string. No byte may have the value
(byte) 0 or liein the range (byt e) 0xf 0 - (byt e) Oxf f .

String content is encoded in modified UTF-8. Modified UTF-8 strings are encoded
so that code point sequences that contain only non-null ASCII characters can be

THE cLAss FILE FORMAT The Constant Pool

represented using only 1 byte per code point, but al code points in the Unicode
codespace can be represented.

» Code pointsin the range '\ u0001' to "\ u007F" are represented by a single byte:

0 bits 6-0

The 7 bits of data in the byte give the value of the code point represented.

e The null code point (\ u0000") and code points in the range "\ u0080' t0 \ uO7FF'
are represented by a pair of bytesx andy :

X: 1 1 0 bits 10-6

y: 1 0 bits 5-0

The bytes represent the code point with the value:

((x & Ox1f) << 6) + (y & 0x3f)

» Code points in the range '\ u0800' to \ uFFFF' are represented by 3 bytes x, v,
andz:

X: 1 1 1 0 bits 15-12
y: 1 0 bits 11-6
Z: 1 0 bits 5-0

The three bytes represent the code point with the value:

((x & Oxf) << 12) + ((y & Ox3f) << 6) + (z & Ox3f)

e Characters with code points above U+FFFF (so-caled supplementary
characters) are represented by separately encoding the two surrogate code units
of their UTF-16 representation. Each of the surrogate code unitsisrepresented by
three bytes. This means supplementary characters are represented by six bytes,
u,v,w,x,y,andz :

4.4

91

4.4

92

The Constant Pool THE cLAss FILE FORMAT

u: 1 1 1 0 1 1 0 1
v: 1 0 1 0 (bits 20-16)-1

W. 1 0 bits 15-10

X: 1 1 1 0 1 1 0 1
y: 1 0 1 1 bits 9-6

z: 1 0 bits 5-0

The six bytes represent the code point with the value:

0x10000 + ((v & Ox0Of) << 16) + ((w & Ox3f) << 10) +

((y & Ox0f) << 6) + (z & 0x3f)
The bytes of multibyte characters are stored in the cl ass file in big-endian (high
byte first) order.

There are two differences between this format and the "standard" UTF-8 format.
First, the null character (char) 0 isencoded using the 2-byte format rather than the
1-byte format, so that modified UTF-8 strings never have embedded nulls. Second,
only the 1-byte, 2-byte, and 3-byte formats of standard UTF-8 are used. The Java
Virtual Machine does not recognize the four-byte format of standard UTF-8; it uses
its own two-times-three-byte format instead.

For more information regarding the standard UTF-8 format, see Section 3.9 Unicode
Encoding Forms of The Unicode Sandard, Version 6.0.0.

4.4.8 The CONSTANT Met hodHand! e_i nf o Structure
The CONSTANT_Met hodHandl e_i nf o structureisused to represent amethod handle:

CONSTANT_Met hodHandl e_i nfo {
ul tag;
ul reference_kind;
u2 reference_index;

}

The items of the CONSTANT_Met hodHandl e_i nf o structure are the following:

t ag

The t ag item of the CONSTANT_Met hodHandl e_i nf o structure has the value
CONSTANT_Met hodHandl e (15).

THE cLAss FILE FORMAT The Constant Pool

reference_kind

The value of the reference_ki nd item must be in the range 1 to 9. The
value denotes the kind of this method handle, which characterizesits bytecode
behavior (85.4.3.5).

reference_i ndex

The value of the reference_index item must be a valid index into the
const ant _pool table.

If the value of the reference_kind item is 1 (REF_getField), 2
(REF_get Static), 3 (REF_putField), or 4 (REF _putStatic), then the
constant _pool entry at that index must be a CONSTANT Fi el dref _info
(84.4.2) structure representing a field for which a method handle is to be
created.

If the value of the reference_kind item is 5
(REF_i nvokeVi rtual), 6 (REF_i nvokeSt ati ¢), 7 (REF_i nvokeSpeci al), or 8
(REF_new nvokeSpeci al), thentheconst ant _pool entry at that index must be
a CONSTANT_Met hodr ef _i nf o structure (84.4.2) representing a class's method
or constructor (82.9) for which amethod handle is to be created.

If the value of the reference_kind item is 9 (REF_i nvokel nterface),
then the constant_pool entry at that index must be a
CONSTANT_I nt er f aceMet hodr ef _i nfo (84.4.2) structure representing an
interface's method for which amethod handle isto be created.

If the value of the reference_kind item is 5 (REF_invokeVirtual), 6
(REF_i nvokeSt ati c), 7 (REF_i nvokeSpeci al), or 9 (REF_i nvokel nt er f ace),
the name of the method represented by a CONSTANT_Met hodr ef _i nf o structure
must not be <i ni t > or <cl i ni t>.

If thevalueis8 (REF_new nvokeSpeci al), the name of the method represented
by a CONSTANT_Met hodr ef _i nf o structure must be <i ni t >.

449 The CONSTANT_Met hodType_i nf o Structure

The CONSTANT_Met hodType_i nf o structure is used to represent a method type:

CONSTANT_Met hodType_i nfo {
ul tag;
u2 descri ptor_index;

}

The items of the CONSTANT_Met hodType_i nf o structure are as follows:

4.4

93

4.4

94

The Constant Pool THE cLAss FILE FORMAT

t ag

The tag item of the CONSTANT Met hodType_i nfo structure has the value
CONSTANT_Met hodType (16).

descri pt or _i ndex

The value of the descri ptor_i ndex item must be a valid index into the
const ant _pool table. The constant _pool entry at that index must be a
CONSTANT_Utf8_i nfo (84.4.7) structure representing a method descriptor
(84.3.3).

4410 The CONSTANT I nvokeDynani c_i nf o Structure

The CONSTANT_I nvokeDynani c_i nfo structure is used by an invokedynamic
instruction (8invokedynamic) to specify a bootstrap method, the dynamic
invocation name, the argument and return types of the call, and optionaly, a
sequence of additional constants called static arguments to the bootstrap method.

CONSTANT_I nvokeDynani c_i nfo {
ul tag;
u2 bootstrap_nethod_attr_index;
u2 name_and_t ype_i ndex;

}

The items of the CONSTANT _I nvokeDynani ¢_i nf o structure are as follows:

tag

Thet ag item of the CONSTANT | nvokeDynani c_i nf o structure has the value
CONSTANT_I nvokeDynani ¢ (18).

boot strap_net hod_attr _i ndex

The value of the boot st rap_net hod_at t r _i ndex item must be a valid index
into the boot st r ap_net hods array of the bootstrap method table (84.7.21) of
thiscl ass file.

name_and_t ype_i ndex
The value of the name_and_type_i ndex item must be a valid index into
the const ant _pool table. The const ant _pool entry at that index must be a

CONSTANT_NanmeAndType_i nf o (84.4.6) structure representing a method name
and method descriptor (84.3.3).

THE cLAss FILE FORMAT Fields 4.5

4.5 Fields

Each field isdescribed by afi el d_i nf o structure. No two fieldsin onecl ass file
may have the same name and descriptor (84.3.2).

The structure has the following format:

field_info {
u2 access_fl ags;
u2 nane_i ndex;
u2 descri pt or _i ndex;
u2 attributes_count;

attribute_info attributes[attributes_count];

}
Theitemsof thefi el d_i nf o structure are as follows:

access_fl ags

The value of the access_f 1 ags item isamask of flags used to denote access
permission to and properties of thisfield. Theinterpretation of each flag, when
set, isas shown in Table 4.4.

Table 4.4. Field access and property flags

Flag Name Value Interpretation

ACC_PUBLI C 0x0001 Declared publ i c; may be accessed from outside its
package.

ACC_PRI VATE 0x0002 Declared pri vat e; usable only within the defining
class.

ACC_PROTECTED 0x0004 Declared prot ect ed; may be accessed within
subclasses.

ACC_STATIC 0x0008 Declared st ati c.

ACC_FI NAL 0x0010 Declared fi nal ; never directly assigned to after
object construction (JLS §17.5).

ACC_VOLATI LE 0x0040 Declared vol at i | e; cannot be cached.

ACC _TRANSI ENT 0x0080 Declared transi ent; not written or read by a
persistent object manager.

ACC_SYNTHETI C 0x1000 Declared synthetic; not present in the source code.

ACC_ENUM 0x4000 Declared as an element of an enum

A field may be marked with the ACC_SYNTHETI C flag to indicate that it was
generated by a compiler and does not appear in source code.

95

4.5 Fields THE cLAss FILE FORMAT

The Acc_ENuM flag indicates that this field is used to hold an element of an
enumerated type.

Fields of classes may set any of the flags in Table 4.4. However, a specific
field of aclass may have at most one of itSACC_PRI VATE, ACC_PROTECTED, and
ACC_PuBLI Cflags set (JLS §8.3.1) and must not have both its ACC_FI NAL and
ACC_VOLATI LE flags set (JLS §8.3.1.4).

All fields of interfaces must have their ACC PUBLI C, ACC STATIC, and
ACC_FI NAL flags set; they may havetheir ACC_SYNTHETI Cflag set and must not
have any of the other flagsin Table 4.4 set (JL S §9.3).

All bits of the access_f | ags item not assigned in Table 4.4 are reserved for
future use. They should be set to zero in generated cl ass files and should be
ignored by Java Virtual Machine implementations.

name_i ndex

The vaue of the nane_index item must be a vaid index into the
const ant _pool table. The constant _pool entry at that index must be
a CONSTANT_Utf8_info (84.4.7) structure which must represent a valid
unqualified name (84.2.2) denoting afield.

descri pt or _i ndex

The vaue of the descri ptor_i ndex item must be a valid index into the
const ant _pool table. The constant _pool entry at that index must be a
CONSTANT_Utf8_info (84.4.7) structure that must represent a valid field
descriptor (84.3.2).

attributes_count

The value of the at tri but es_count item indicates the number of additional
attributes (84.7) of thisfied.

attributes[]

Each value of the att ri but es table must be an attribute structure (84.7). A
field can have any number of attributes associated with it.

The attributes defined by this specification as appearing
in the attributes table of a field info structure are
Constant Value (84.7.2), Synthetic (84.7.8), Signature (84.7.9),
Deprecated (84.7.15), RuntineVisibleAnnotations (84.7.16) and
Runt i mel nvi si bl eAnnot at i ons (84.7.17).

A Java Virtua Machine implementation must recognize and correctly read
Const ant Val ue (84.7.2) attributes found in the attributes table of a
fiel d_i nfo structure. If a Java Virtual Machine implementation recognizes

96

THE cLASS FILE FORMAT Methods

cl ass files whose version number is 49.0 or above, it must recognize and
correctly read Si gnature (84.7.9), Runti meVi si bl eAnnot ati ons (84.7.16)
and Runti mel nvi si bl eAnnot ations (84.7.17) attributes found in the
attributes table of afiel d_ info structure of acl ass file whose version
number is 49.0 or above.

A JavaVirtual Machineimplementationisrequiredto silently ignore any or all
attributes that it does not recognizeintheattri butes tableof afiel d_info
structure. Attributes not defined in this specification are not allowed to affect
the semantics of the cl ass file, but only to provide additional descriptive
information (84.7.1).

46 Methods

Each method, including each instance initialization method (82.9) and the class or
interface initialization method (82.9), isdescribed by amet hod_i nf o structure. No
two methodsin onecl ass file may have the same name and descriptor (84.3.3).

The structure has the following format:

nmet hod_i nfo {

u2 access_fl ags;

u2 nane_i ndex;

u2 descri pt or _i ndex;
u2 attri butes_count;

attribute_info attributes[attributes_count];

}

The items of the net hod_i nf o Structure are as follows:

access_fl ags
The value of the access_f1 ags item isamask of flags used to denote access

permission to and properties of this method. The interpretation of each flag,
when set, isas shown in Table 4.5.

4.6

97

4.6

98

Methods THE cLASS FILE FORMAT

Table 4.5. Method access and property flags

Flag Name Value Interpretation

ACC _PUBLI C 0x0001 Declared publ i c; may be accessed from outside its
package.

ACC_PRI VATE 0x0002 Declared private; accessible only within the
defining class.

ACC_PROTECTED 0x0004 Declared protected; may be accessed within
subclasses.

ACC_STATIC 0x0008 Declared st ati c.

ACC_FI NAL 0x0010 Declared f i nal ; must not be overridden (85.4.5).

ACC_SYNCHRONI ZED 0x0020 Declared synchr oni zed; invocation is wrapped
by amonitor use.

ACC_BRI DGE 0x0040 A bridge method, generated by the compiler.

ACC_VARARGS 0x0080 Declared with variable number of arguments.

ACC_NATI VE 0x0100 Declared nat i ve; implemented in alanguage other
than Java.

ACC_ABSTRACT 0x0400 Declared abstract; no implementation is
provided.

ACC_STRICT 0x0800 Declared stri ctfp; floating-point mode is FP-
strict.

ACC_SYNTHETI C 0x1000 Declared synthetic; not present in the source code.

The ACC_VARARGS flag indicates that this method takes a variable number of
arguments at the source code level. A method declared to take a variable
number of arguments must be compiled with the ACC_VARARGS flag set to 1.
All other methods must be compiled with the ACC_VARARGS flag set to 0.

The AcC_BRI DGE flag is used to indicate a bridge method generated by a Java
compiler.

A method may be marked with the AcC_SYNTHETI Cflag to indicate that it was
generated by a compiler and does not appear in source code, unless it is one
of the methods named in §4.7.8.

Methods of classes may set any of the flags in Table 4.5. However, a
specific method of a class may have at most one of its ACC_PRI VATE,
ACC_PROTECTED and AcC_PUBLI C flags set (JLS §8.4.3). If a specific method
has its ACC ABSTRACT flag set, it must not have any of its ACC_FI NAL,

THE cLASS FILE FORMAT Methods

ACC_NATI VE, ACC_PRI VATE, ACC_STATI C, ACC_STRI CT Oor ACC_SYNCHRONI ZED
flags set (LS §8.4.3.1, JLS §8.4.3.3, JLS §8.4.3.4).

All interface methods must have their ACC_ABSTRACT and ACC_PUBLI C flags
set; they may have their ACC_VARARGS, ACC_BRI DGE and ACC_SYNTHETI C flags
set and must not have any of the other flagsin Table 4.5 set (LS §9.4).

A specific instance initialization method (82.9) may have at most one of its
ACC_PRI VATE, ACC_PROTECTED, and ACC_PUBLI C flags set, and may also have
itSACC_STRI CT, ACC_VARARGS and ACC_SYNTHETI Cflags set, but must not have
any of the other flagsin Table 4.5 set.

Class and interface initialization methods (82.9) are called implicitly by the
JavaVirtual Machine. Thevalue of their access_f | ags itemisignored except
for the setting of the ACC_STRI CT flag.

All bits of the access_f 1 ags item not assigned in Table 4.5 are reserved for
future use. They should be set to zero in generated cl ass files and should be
ignored by Java Virtua Machine implementations.

name_i ndex

The value of the nane_index item must be a vaid index into the
const ant _pool table. The constant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o (84.4.7) structure representing either one of the specia
method names (82.9) <i ni t > or <cl i ni t >, or avalid unqualified name (84.2.2)
denoting a method.

descri pt or _i ndex

The value of the descri pt or_i ndex item must be a valid index into the
const ant _pool table. The constant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o (84.4.7) structure representing avalid method descriptor
(84.3.3).

A future edition of this specification may require that the last parameter descriptor of the
method descriptor is an array type if the ACC_VARARGS flag is set in the access_f | ags
item.

attributes_count
The value of the at tri but es_count item indicates the number of additional
attributes (84.7) of this method.

attributes[]

Each value of the att ri but es table must be an attribute structure (84.7). A
method can have any number of optional attributes associated with it.

4.7

100

Attributes THE cLAss FILE FORMAT

The attributes defined by this specification as appearing in the attri but es
table of a method_info structure are the Code (84.7.3), Exceptions
(84.7.5), synthetic (84.7.8), Signature (84.7.9), Deprecated (84.7.15),
Runt i meVi si bl eAnnot ati ons (84.7.16), Runti nel nvi si bl eAnnot at i ons
(84.7.17), Runt i meVi si bl ePar anet er Annot at i ons (84.7.18),
Runt i mel nvi si bl ePar anet er Annot at i ons (84.7.19), and
Annot at i onDef aul t (84.7.20) attributes.

A Java Virtua Machine implementation must recognize and correctly
read Code (84.7.3) and Exceptions (84.7.5) attributes found in the
attributes table of a method_i nfo Structure. If a Java Virtual Machine
implementation recognizes class files whose version number is 49.0
or above, it must recognize and correctly read Signature (84.7.9),
Runt i meVi si bl eAnnot ati ons (84.7.16), Runti mel nvi si bl eAnnot at i ons
(84.7.17), Runti meVi si bl ePar amet er Annot at i ons (84.7.18),
Runt i mel nvi si bl ePar anet er Annot at i ons (84.7.19) and
Annot at i onDef aul t (84.7.20) attributes found in the attri but es table of a
met hod_i nf o structure of acl ass file whose version number is49.0 or above.

A Java Virtual Machine implementation is required to silently ignore any or
al attributesin the at t ri but es table of anet hod_i nf o structure that it does
not recognize. Attributes not defined in this specification are not allowed to
affect the semantics of thecl ass file, but only to provide additional descriptive
information (84.7.1).

4.7 Attributes

Attributes are used in the dassFile, field info, method info, and
Code_attri but e structures (84.1, 84.5, 84.6, 84.7.3) of thecl ass file format. All
attributes have the following general format:

attribute_info {
u2 attribute_nane_i ndex;
ud attribute_l ength;
ul info[attribute_length];

}

For al attributes, the attribute_name_i ndex must be a valid unsigned 16-
bit index into the constant pool of the class. The constant_pool entry
at attribute_name_i ndex must be a CONSTANT_Ut f 8_i nfo structure (84.4.7)
representing the name of the attribute. The value of the attri bute_I engt h item
indicates the length of the subsequent information in bytes. The length does

THE cLAss FILE FORMAT Attributes

not include the initial six bytes that contain the attribute_name_i ndex and
attribute_| ength items.

Certain attributes are predefined as part of the cl ass file specification. They are
listed in Table 4.6, accompanied by the version of the Java SE platform and the
version of the cl ass file format in which each first appeared. Within the context
of their use in this specification, that is, in the at t ri but es tables of the cl ass
file structures in which they appear, the names of these predefined attributes are
reserved. Of the predefined attributes:

» The Const ant Val ue, Code and Except i ons attributes must be recognized and
correctly read by acl ass file reader for correct interpretation of the cl ass file
by a Java Virtual Machine implementation.

* The Innerd asses, Enclosi ngMethod and Synthetic aftributes must be
recognized and correctly read by a class file reader in order to properly
implement the Java SE platform classlibraries (§2.12).

e The Runt i mreVi si bl eAnnot at i ons, Runt i nel nvi si bl eAnnot at i ons,
Runt i meVi si bl ePar anet er Annot at i ons,
Runt i mel nvi si bl ePar anmet er Annot at i ons and Annot at i onDef aul t attributes
must be recognized and correctly read by acl ass filereader in order to properly
implement the Java SE platform class libraries (82.12), if the cl ass file's
version number is 49.0 or above and the Java Virtual Machine implementation
recognizescl ass files whose version number is 49.0 or above.

» The si gnat ur e attribute must be recognized and correctly read by acl ass file
reader if the cl ass file's version number is 49.0 or above and the Java Virtua
Machine implementation recognizes cl ass files whose version number is 49.0
or above.

» The st ackMapTabl e attribute must be recognized and correctly read by acl ass
filereader if thecl ass file'sversion number is50.0 or above and the JavaVirtual
Machine implementation recognizes cl ass files whose version number is 50.0
or above.

» The Boot st rapMet hods attribute must be recognized and correctly read by a
cl ass filereader if thecl ass file'sversion number is51.0 or above and the Java
Virtual Machine implementation recognizes cl ass files whose version number
is51.0 or above.

Use of the remaining predefined attributesis optional; acl ass file reader may use
the information they contain, or otherwise must silently ignore those attributes.

4.7

101

4.7 Attributes THE cLASs FILE FORMAT

Table4.6. Predefined cl ass file attributes

Attribute Section Java SE cl ass file
Const ant Val ue 84.7.2 1.0.2 45.3
Code 84.7.3 102 45.3
St ackMapTabl e 84.7.4 6 50.0
Excepti ons 84.75 102 45.3
I nner d asses §4.7.6 11 45.3
Encl osi nghet hod 84.7.7 5.0 49.0
Synt heti c 8§4.7.8 11 453
Si gnat ure 84.7.9 5.0 49.0
Sour ceFil e §4.7.10 1.02 453
Sour ceDebugExt ensi on 84.7.11 5.0 49.0
Li neNunber Tabl e 84.7.12 1.0.2 45.3
Local Vari abl eTabl e 84.7.13 1.0.2 45.3
Local Vari abl eTypeTabl e 84.7.14 5.0 49.0
Deprecat ed 8§4.7.15 11 45.3
Runt i neVi si bl eAnnot ati ons 84.7.16 5.0 49.0
Runti mel nvi si bl eAnnot ati ons 8§4.7.17 5.0 49.0
Runt i meVi si bl ePar anmet er Annot at i ons §4.7.18 5.0 49.0
Runt i mel nvi si bl ePar anet er Annot ati ons §4.7.19 50 49.0
Annot at i onDef aul t 84.7.20 5.0 49.0
Boot st r apMet hods 84.7.21 7 51.0

4.7.1 Defining and Naming New Attributes

Compilers are permitted to define and emit cl ass files containing new attributes
in the attributes tables of class file structures. Java Virtua Machine
implementations are permitted to recognize and use new attributes found in the
attribut es tables of cl ass file structures. However, any attribute not defined as
part of thisJavaVirtual Machine specification must not affect the semanticsof class
or interface types. Java Virtua Machine implementations are required to silently
ignore attributes they do not recognize.

102

THE cLAss FILE FORMAT Attributes

For instance, defining a new attribute to support vendor-specific debugging is
permitted. Because Java Virtual Machine implementations are required to ignore
attributesthey do not recognize, ci ass filesintended for that particular Java Virtual
Machine implementation will be usable by other implementations even if those
implementations cannot make use of the additional debugging information that the
cl ass files contain.

JavaVirtual Machineimplementationsare specifically prohibited from throwing an
exception or otherwiserefusing to usecl ass filessimply because of the presence of
some new attribute. Of course, tools operating on cl ass filesmay not run correctly
if given cl ass filesthat do not contain all the attributes they require.

Two attributes that are intended to be distinct, but that happen to use the same
attribute name and are of the same length, will conflict on implementations that
recognize either attribute. Attributes defined other than in this specification must
have names chosen according to the package naming convention described in The
Java Language Specification, Java SE 7 Edition (JLS 86.1).

Future versions of this specification may define additiona attributes.

4.7.2 TheConst ant Val ue Attribute

The Const ant Val ue attribute is a fixed-length attribute in the at t ri but es table
of afiel d_i nf o structure (84.5). A Const ant Val ue attribute represents the value
of aconstant field. There can be no more than one Const ant Val ue éttributein the
attribut es tableof agiventi el d_i nf o structure. If thefield is static (that is, the
ACC_STATI cflag(Table4.4) intheaccess_f 1 ags itemof thefi el d_i nf o structure
is set) then the constant field represented by thefi el d_i nf o structureis assigned
the value referenced by its Const ant Val ue attribute as part of the initialization
of the class or interface declaring the constant field (85.5). This occurs prior to
the invocation of the class or interface initialization method (82.9) of that class or
interface.

If afield_info structure representing a non-static field has a Const ant Vval ue
attribute, then that attribute must silently be ignored. Every Java Virtua Machine
implementation must recognize Const ant Val ue attributes.

The Const ant Val ue attribute has the following format:

Constant Val ue_attribute {
u2 attribute_name_i ndex;
ud attribute_| ength;
u2 constantval ue_i ndex;

4.7

103

4.7

104

Attributes THE cLAss FILE FORMAT

The items of the Const ant Val ue_at t ri but e structure are as follows:

attribute_name_i ndex

The value of the attribute_name_index item must be a vaid index
into the constant _pool table. The constant _pool entry at that index
must be a CONSTANT_Utf8_i nfo (84.4.7) structure representing the string
"Const ant Val ue".

attribute_|l ength
The value of the attribute | ength item of a Constant Val ue_attri bute
structure must be 2.

const ant val ue_i ndex

The value of the constantval ue_i ndex item must be a valid index into
the const ant _pool table. The const ant _pool entry at that index gives the
constant value represented by this attribute. Theconst ant _pool entry must be
of atype appropriate to the field, as shown by Table 4.7.

Table4.7. Constant value attribute types

Field Type Entry Type

| ong CONSTANT_Long

fl oat CONSTANT_FI oat
doubl e CONSTANT_Doubl e
i nt,short,char,byte,bool ean CONSTANT_I nt eger
String CONSTANT_Stri ng

4.7.3 TheCode Attribute

The code attribute is a variable-length attribute in the attributes table of a
net hod_i nf o (84.6) structure. A Code attribute contains the Java Virtual Machine
instructions and auxiliary information for a single method, instance initialization
method (82.9), or class or interface initialization method (82.9). Every JavaVirtual
Machine implementation must recognize Code attributes. If the method is either
native Or abstract, itS net hod_i nf o structure must not have a Code attribute.
Otherwise, itsmet hod_i nf o structure must have exactly one Code attribute.

The code attribute has the following format:

THE cLASS FILE FORMAT Attributes 4.7

Code_attribute {
u2 attribute_nane_i ndex;
ud attribute_l ength;
u2 max_st ack;
u2 max_| ocal s;
ud code_l engt h;
ul code[code_Il ength];
u2 exception_table_l ength;
{ u2 start_pc;
u2 end_pc;
u2 handl er _pc;
u2 catch_type;
} exception_tabl e[exception_table_|ength];
u2 attributes_count;
attribute_info attributes[attributes_count];

}

Theitems of the Code_at t ri but e structure are as follows:

attri bute_nane_i ndex

The value of the attribute_nanme_i ndex item must be a valid index into
the const ant _pool table. The const ant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o (84.4.7) structure representing the string "Code".

attribute_l ength
Thevaueof theattri bute_l engt h item indicates the length of the attribute,
excluding theinitial six bytes.
max_st ack
The value of the max_st ack item gives the maximum depth of the operand
stack of this method (82.6.2) at any point during execution of the method.
max_| ocal s

The value of the max_I ocal s item gives the number of local variables in
the local variable array allocated upon invocation of this method (82.6.1),
including the local variables used to pass parameters to the method on its
invocation.

The greatest local variable index for a value of type I ong or double is
max_l ocal s - 2. The greatest local variable index for a value of any other
typeismax_l ocal s - 1.

code_l ength

Thevaueof thecode_lI engt h item givesthe number of bytesinthecode array
for thismethod. Thevaue of code_| engt h must be greater than zero; the code
array must not be empty.

105

4.7

106

Attributes THE cLAss FILE FORMAT

code[]

The code array gives the actual bytes of Java Virtual Machine code that
implement the method.

When the code array is read into memory on a byte-addressable machine, if
the first byte of the array is aligned on a 4-byte boundary, the tableswitch and
lookupswitch 32-bit offsets will be 4-byte aligned. (Refer to the descriptions
of those instructions for more information on the consequences of code array
alignment.)

The detailed constraints on the contents of the code array are extensive and are
given in a separate section (84.9).

exception_table_|l ength

The value of the excepti on_t abl e_| engt h item gives the number of entries
intheexcepti on_t abl e table.

exception_tabl e[]

Each entry in the excepti on_t abl e array describes one exception handler in
the code array. The order of the handlers in the exception_t abl e array is
significant (§2.10).

Each except i on_t abl e entry contains the following four items:

start_pc, end_pc

Thevaluesof thetwoitemsst art _pc andend_pc indicatetherangesinthe
code array at which the exception handler isactive. Thevalueof st art _pc
must be a valid index into the code array of the opcode of an instruction.
Thevalue of end_pc either must be avalid index into the code array of the
opcode of aninstruction or must be equal to code_I engt h, thelength of the
code array. Thevalue of st art _pc must be less than the value of end_pc.

Thestart _pc isinclusive and end_pc is exclusive; that is, the exception
handler must be active while the program counter is within the interval
[start_pc, end_pc).

The fact that end_pc is exclusive is a historical mistake in the design of the Java
Virtual Machine: if the Java Virtual Machine codefor amethod is exactly 65535 bytes
long and ends with an instruction that is 1 byte long, then that instruction cannot be
protected by an exception handler. A compiler writer can work around this bug by
limiting the maximum size of the generated JavaVirtual Machine codefor any method,
instanceinitialization method, or static initializer (the size of any code array) to 65534
bytes.

THE cLASS FILE FORMAT Attributes 4.7

handl er _pc

The value of the handl er _pc item indicates the start of the exception
handler. The value of the item must be a valid index into the code array
and must be the index of the opcode of an instruction.

catch_type

If the value of the cat ch_t ype item is nonzero, it must be a valid index
into the const ant _pool table. The const ant _pool entry at that index
must be a CONSTANT_dl ass_i nf o structure (84.4.1) representing aclass of
exceptionsthat thisexception handler isdesignated to catch. The exception
handler will be called only if the thrown exception is an instance of the
given class or one of its subclasses.

If thevalue of thecat ch_t ype itemiszero, thisexception handler iscalled
for all exceptions. Thisisused to implement fi nal I y (83.13).

attributes_count

Thevalueof theattri but es_count itemindicatesthe number of attributes of
the Code attribute.

attributes[]

Each value of the at t ri but es table must be an attribute structure (84.7). A
Code attribute can have any number of optional attributes associated with it.

The only attributes defined by this specification as appearing in the
attributes table of a Code attribute are the Li neNunber Tabl e (84.7.12),
Local Vari abl eTabl e (84.7.13), Local Vari abl eTypeTabl e (84.7.14), and
St ackMapTabl e (84.7.4) attributes.

If a Java Virtual Machine implementation recognizes cl ass files whose
version number is 50.0 or above, it must recognize and correctly read
St ackMapTabl e (84.7.4) attributes found in the at t ri but es table of a Code
attribute of acl ass file whose version number is 50.0 or above.

A Java Virtua Machine implementation is required to silently ignore any
or al attributes in the attri but es table of a Code attribute that it does not
recognize. Attributes not defined in this specification are not allowed to affect
the semantics of the cl ass file, but only to provide additional descriptive
information (84.7.1).

474 ThestackMapTabl e Attribute

The st ackMapTabl e attributeisavariable-length attributeintheat t ri but es table
of acode (84.7.3) attribute. This attributeis used during the process of verification

107

4.7

108

Attributes THE cLAss FILE FORMAT

by type checking (84.10.1). A method's Code attribute may have at most one
St ackMapTabl e attribute.

A StackMapTabl e attribute consists of zero or more stack map frames. Each
stack map frame specifies (either explicitly or implicitly) a bytecode offset, the
verification types (84.10.1.2) for the local variables, and the verification types for
the operand stack.

Thetype checker deal s with and mani pul ates the expected types of amethod'slocal
variables and operand stack. Throughout this section, a location refers to either a
singlelocal variable or to asingle operand stack entry.

We will use the terms stack map frame and type state interchangeably to describe
a mapping from locations in the operand stack and local variables of a method
to verification types. We will usually use the term stack map frame when such a
mapping is provided in the cl ass file, and the term type state when the mapping
is used by the type checker.

Inacl ass filewhose version number is greater than or equal to 50.0, if amethod's
Code attribute does not have a St ackMapTabl e attribute, it has an implicit stack
map attribute. Thisimplicit stack map attribute is equivalent to a St ackMapTabl e
attribute with nunber _of _ent ri es equal to zero.

The st ackMapTabl e attribute has the following format:

St ackMapTabl e_attribute {

u2 attribute_nane_i ndex;
ud attribute_|l ength;
u2 number _of _entri es;

stack_map_frame entries[nunber_of _entries];

}

Theitems of the St ackMapTabl e_at t ri but e structure are as follows:

attribute_name_i ndex
The value of the attribute_name_i ndex item must be a vaid index
into the constant _pool table. The constant _pool entry at that index
must be a CONSTANT_Utf8_i nfo (84.4.7) structure representing the string
"St ackMapTabl e".

attribute_l ength

Thevaueof theattri bute_l engt h item indicates the length of the attribute,
excluding the initial six bytes.

THE cLAss FILE FORMAT Attributes

nunber _of entries

The value of the nunber_of _entries item gives the number of
stack_nap_frame entriesintheentri es table.

entries

Theentri es array givesthe method's st ack_map_f r ane structures.

Each st ack_map_f r ame structure specifies the type state at a particular bytecode
offset. Each frame type specifies (explicitly or implicitly) avalue, of f set _del t a,
that is used to calculate the actua bytecode offset at which a frame applies. The
bytecode offset at which a frame applies is calculated by adding of f set _del ta
+ 1 to the bytecode offset of the previous frame, unless the previous frame is the
initial frame of the method, in which case the bytecode offset isof f set _del t a.

By using an offset deltarather than the actual bytecode offset we ensure, by definition, that
stack map frames are in the correctly sorted order. Furthermore, by consistently using the
formulaof f set _del ta + 1 foral explicit frames, we guarantee the absence of duplicates.

We say that an instruction in the bytecode has a corresponding stack map frame
if the instruction starts at offset i in the code array of a Code attribute, and
the Code attribute has a St ackMapTabl e attribute whose entries array has a
st ack_map_f rame structure that applies at bytecode offset i.

The st ack_map_frane structure consists of a one-byte tag followed by zero or
more bytes, giving more information, depending upon the tag.

A stack map frame may belong to one of several frame types.

union stack_map_franme {
same_frane;
sanme_l ocals_1 stack_itemfrane;
same_l ocal s_1_stack_item franme_extended;
chop_frane;
sanme_frane_ext ended;
append_frane;
full _frame;

}

All frame types, even f ul | _f rane, rely on the previous frame for some of their
semantics. Thisraisesthe question of what isthe very first frame? Theinitia frame
isimplicit, and computed from the method descriptor. (See the Prolog predicate
met hodl ni ti al St ackFrane (84.10.1.6).)

» The frame type sane_f rane is represented by tags in the range [0-63]. If the
frame type is same_f r ane, it means the frame has exactly the same locals as

4.7

109

4.7 Attributes THE cLASs FILE FORMAT

the previous stack map frame and that the number of stack items is zero. The
of f set _del t a value for the frameisthe value of thetag item, f r ane_t ype.

sanme_frane {
ul frane_type = SAME; /* 0-63 */
}

» The frame type sane_| ocal s_1_st ack_i tem frame is represented by tagsin
therange[64, 127]. If theframe_typeissame_| ocal s_1_stack_i tem frane, it
means the frame has exactly the same local s asthe previous stack map frame and
that the number of stack itemsis 1. Theof f set _del t a valuefor the frameisthe
value (frame_type - 64). Thereisaverification_type_info following the
frame_t ype for the one stack item.

sane_l ocals_1 stack_itemframe {
ul frame_type = SAME_LOCALS 1 STACK I TEM /* 64-127 */
verification_type_info stack[1];

}

Tagsin the range [128-246] are reserved for future use.

» The frame type sane_l ocal s_1_st ack_i t em frame_ext ended is represented
by the tag 247. The frame type same_| ocal s_1_st ack_i t em fr ame_ext ended
indicates that the frame has exactly the same locals as the previous stack map
frame and that the number of stack itemsis 1. Theof fset _del t a value for the
frame is given explicitly. Thereisaverification_type_i nfo following the
frame_t ype for the one stack item.

sanme_l ocal s_1 stack_item frame_extended {
ul frame_type = SAME_LOCALS 1_STACK_| TEM EXTENDED, /* 247 */
u2 of fset_delta;
verification_type_info stack[1];

}

* Theframetype chop_f r ane isrepresented by tags in the range [248-250]. If the
frame_t ype iS chop_frane, it means that the operand stack is empty and the
current locals are the same as the locals in the previous frame, except that the k
last locals are absent. The value of kisgiven by theformula251 - franme_t ype.

chop_franme {
ul frane_type = CHOP; /* 248-250 */
u2 of fset_delta;

}

» Theframetypesane_f r ame_ext ended isrepresented by thetag value 251. If the
frame type is sane_f r ane_ext ended, it means the frame has exactly the same
locals asthe previous stack map frame and that the number of stack itemsiszero.

110

THE cLASS FILE FORMAT Attributes 4.7

sanme_frane_ext ended {
ul frane_type = SAME_FRAME_EXTENDED; /* 251 */
u2 of fset_delta;

}

» The frame type append_f r ame is represented by tags in the range [252-254]. If
thefranme_t ype iSappend_f rane, it means that the operand stack is empty and
the current locals are the same as the locals in the previous frame, except that k
additional locals are defined. The value of kisgiven by theformulaf r ame_t ype
- 251.

append_frame {
ul frane_type = APPEND;, /* 252-254 */
u2 of fset_delta;
verification_type_info |ocals[frane_type - 251];

}

The Oth entry in| ocal s represents the type of the first additional local variable.
If 1 ocal s{M represents local variable N, then | ocal s[M+1] represents local
variable N+1 if | ocal s[M isone of:

* Top_variable_info

* Integer_variable_info

* Fl oat _variable_info

* Null _variable_info

* UninitializedThis_variable_info

* Object_variable_info

* Uninitialized variable info

Otherwisel ocal s[Mr1] representslocal variable N+2.

It is an error if, for any index i, | ocal s[i] represents alocal variable whose
index is greater than the maximum number of local variables for the method.

e Theframetypeful | _frane isrepresented by the tag value 255.

full _frame {
ul frane_type = FULL_FRAME;, /* 255 */
u2 of fset_delta;
u2 nunber_of | ocal s;
verification_type_info |ocal s[nhunber_of _| ocal s];
u2 nunber _of _stack_itemns;
verification_type_info stack[nunber_of _stack_itens];

111

4.7 Attributes THE cLASs FILE FORMAT

The Oth entry in | ocal s represents the type of local variable O. If | ocal s[M
represents local variable N, then | ocal s[M+1] represents local variable N+1 if
| ocal s M isone of:

* Top_variable_info

* Integer_variable_info

* Float _variable_ info

* Null _variable info

* UninitializedThis_variable_info

* Object_variable_info

* Uninitialized_variable_info

Otherwisel ocal s[Mr1] representslocal variable N+2.

It is an error if, for any index i, | ocal s[i] represents alocal variable whose
index is greater than the maximum number of local variables for the method.

The Oth entry in stack represents the type of the bottom of the stack, and
subsequent entries represent types of stack elements closer to the top of the
operand stack. We shall refer to the bottom element of the stack as stack element
0, and to subsequent elements as stack element 1, 2 etc. If st ack[M represents
stack element N, then st ack[M+1] represents stack element N+1 if stack[M is
one of:

* Top_variable_info

* Integer_variable_info

* Fl oat _variable_info

* Null __variable_info

* UninitializedThis variable_ info

* Object_variable_info

* Uninitialized_variable_info

Otherwise, st ack[M+1] represents stack element N+2.

Itisan error if, for any index i, stack[i] represents a stack entry whose index
is greater than the maximum operand stack size for the method.

The verification_type_info structure consists of a one-byte tag followed
by zero or more bytes, giving more information about the tag. Each

112

THE cLASS FILE FORMAT Attributes 4.7

verification_type_info structure specifies the verification type of one or two
locations.

union verification_type_info {
Top_vari abl e_i nf o;
I nteger _vari abl e_i nfo;
Fl oat _vari abl e_i nf o;
Long_vari abl e_i nf o;
Doubl e_vari abl e_i nf o;
Nul | _vari abl e_i nf o;
UninitializedThis variable_info;
oj ect _vari abl e_info;
Uninitialized_variabl e_info;

}

* The Top_variable_info type indicates that the loca variable has the
verification typet op.

Top_variable_info {
ul tag = ITEM Top; /* 0 */
}

» The Integer_variabl e_i nfo type indicates that the location contains the
verification typei nt .

Integer_variable_info {
ul tag = ITEM Integer; /* 1 */
}

* The Float_variable_info type indicates that the location contains the
verification typef | oat .

Fl oat _variable_info {
ul tag = ITEMFloat; /* 2 */
}

* The Long_variable_info type indicates that the location contains the
verification typel ong.

Long_variable_info {
ul tag = I TEM Long; /* 4 */
}

This structure gives the contents of two locations in the operand stack or in the
local variable array.

If thelocation isalocal variable, then:
* It must not be the local variable with the highest index.

+ The next higher numbered local variable contains the verification typet op.

113

4.7

114

Attributes THE cLAss FILE FORMAT

If the location is an operand stack entry, then:
+ The current location must not be the topmost location of the operand stack.

+ Thenext location closer to thetop of the operand stack containstheverification
typet op.

The Doubl e_vari abl e_i nfo type indicates that the location contains the
verification type doubl e.

Doubl e_vari abl e_info {
ul tag = | TEM Doubl e; /* 3 */
}

This structure gives the contents of two locations in the operand stack or in the
local variable array.

If the location isaloca variable, then:

* It must not be the local variable with the highest index.

+ The next higher numbered local variable contains the verification typet op.
If the location is an operand stack entry, then:

* The current location must not be the topmost location of the operand stack.

* Thenext location closer to thetop of the operand stack containstheverification
typet op.

The Nul | _vari abl e_i nf o type indicates that |ocation contains the verification

typenul I .

Nul | _variable_info {
ul tag = ITEM Null; /* 5 */
}

The UninitializedThis_variable_info type indicates that the location
contains the verification type uni ni ti al i zedThi s.

UninitializedThis_variable_info {
ul tag = ITEM UninitializedThis; /* 6 */
}

Thevj ect _vari abl e_i nf o typeindicatesthat thelocation containsan instance
of the class represented by the CONSTANT_d ass_i nf o (84.4.1) structure found
inthe const ant _pool table at the index given by cpool _i ndex.

THE cLASS FILE FORMAT Attributes 4.7

Chj ect _variable_info {
ul tag = ITEM Qoject; /* 7 */
u2 cpool _i ndex;

}

e The uninitialized_variabl e_i nfo type indicates that the location contains
the verification type uni nitial i zed(of fset). The of f set item indicates the
offset, in the code array of the Code attribute (84.7.3) that contains this
St ackMapTabl e attribute, of the new instruction (8new) that created the object
being stored in the location.

Uninitialized_variable_info {
ul tag = ITEM Uninitialized /* 8 */
u2 of fset;

475 TheExceptions Attribute

TheExcept i ons attributeisavariable-length attributeintheat t ri but es tableof a
met hod_i nf o structure (84.6). The Except i ons attribute indicates which checked
exceptions a method may throw. There may be at most one Except i ons attribute
in each met hod_i nf o structure.

The Except i ons attribute has the following format:

Exceptions_attribute {
u2 attribute_name_i ndex;
ud attribute_| ength;
u2 nunber _of _excepti ons;
u2 exception_index_t abl e[nunber _of _exceptions];

}

Theitems of the Excepti ons_at t ri but e structure are as follows:

attri bute_nane_i ndex
The value of the attri bute_nane_i ndex item must be a valid index into the
const ant _pool table. The constant _pool entry at that index must be the
CONSTANT_Ut f 8_i nf o (84.4.7) structure representing the string "Except i ons".
attribute_l ength
The value of the attribute_l ength item indicates the attribute length,
excluding theinitial six bytes.
nurmber _of _excepti ons

The value of the nunber _of _except i ons item indicates the number of entries
intheexception_i ndex_t abl e.

115

4.7

116

Attributes THE cLAss FILE FORMAT

exception_i ndex_tabl e[]
Each value in the except i on_i ndex_t abl e array must be a valid index into
the const ant _pool table. The const ant _pool entry referenced by each table
item must be a CONSTANT_Cl ass_i nf o structure (84.4.1) representing a class
type that this method is declared to throw.

A method should throw an exception only if at least one of the following three criteriais
met:

¢ Theexception isan instance of Runt i meExcept i on or one of its subclasses.
e Theexception isan instance of Er r or or one of its subclasses.

¢ The exception is an instance of one of the exception classes specified in the
except i on_i ndex_t abl e just described, or one of their subclasses.

These requirements are not enforced in the Java Virtual Machine; they are enforced only
at compile-time.

476 Thelnnerd asses Attribute

Thel nner d asses attribute is avariable-length attribute inthe at t ri but es table
of a d assFil e structure (84.1). If the constant pool of a class or interface C
contains a CONSTANT_dl ass_i nf o entry which represents a class or interface that
isnot amember of a package, then C'sd assFi | e structure must have exactly one
I nner C asses atributeinitsattri but es table.

Thel nner d asses attribute has the following format:

I nnerCl asses_attribute {

u2 attribute_nane_i ndex;

ud attribute_l ength;

u2 nunber of cl asses;

{ u2 inner_class_info_index;
u2 outer_class_info_index;
u2 inner_nane_i ndex;
u2 inner_class_access_fl ags;

} cl asses[nunber _of _cl asses];

}

Theitemsof thel nner d asses_att ri but e structure are as follows:

attri bute_nane_i ndex
The value of the attribute name_index item must be a valid index
into the constant _pool table. The constant_pool entry at that index
must be a CONSTANT_Utf8_info (84.4.7) structure representing the string
"I nner d asses".

THE cLAss FILE FORMAT Attributes

attribute_|l ength

Thevaueof theattri bute_l engt h item indicates the length of the attribute,
excluding the initial six bytes.

nunber _of cl asses

The value of the number _of _cl asses item indicates the number of entriesin
thecl asses array.

cl asses[]

Every CONSTANT O ass_info entry in the constant_pool table which
representsaclassor interface Cthat isnot apackage member must have exactly
one corresponding entry in the cl asses array.

If aclass has members that are classes or interfaces, its const ant _pool table
(and henceits| nner O asses attribute) must refer to each such member, even
if that member is not otherwise mentioned by the class. These rulesimply that
a nested class or interface member will have | nner d asses information for
each enclosing class and for each immediate member.

Each cl asses array entry contains the following four items:

i nner_cl ass_i nfo_i ndex
Thevalueof thei nner _cl ass_i nf o_i ndex item must beavalidindex into
theconst ant _pool table. Theconst ant _pool entry at that index must be
aCONSTANT_d ass_i nf o structure (84.4.1) representing C. The remaining
itemsin thecl asses array entry give information about C.

outer_cl ass_i nfo_index

If cisnot amember of aclass or an interface (that is, if Cis atop-level
classor interface (JLS §7.6) or alocal class (JLS §14.3) or an anonymous
class(JLS 815.9.5)), thevalue of theout er _cl ass_i nf o_i ndex item must
be zero.

Otherwise, the value of the outer class_info_i ndex item must be a
valid index into the const ant _pool table, and the entry at that index must
be a CONSTANT_d ass_i nfo (84.4.1) structure representing the class or
interface of which Cisamember.

i nner _nane_i ndex

If cisanonymous (JLS §815.9.5), the value of thei nner _nane_i ndex item
must be zero.

Otherwise, the value of thei nner _nane_i ndex item must be avalid index
into the const ant _pool table, and the entry at that index must be a
CONSTANT_Ut f 8_i nf o (84.4.7) structure that representsthe origina smple

4.7

117

4.7

118

Attributes

THE cLASs FILE FORMAT

name of C, as given in the source code from which this cl ass file was

compiled.

i nner_cl ass_access_fl ags

Thevalueof thei nner _cl ass_access_f 1 ags itemisamask of flags used
to denote access permissions to and properties of class or interface C as
declared in the source code from which thiscl ass file was compiled. Itis
used by a compiler to recover the origina information when source code
isnot available. The flags are shown in Table 4.8.

Table 4.8. Nested class access and property flags

Flag Name Value Interpretation

ACC_PUBLI C 0x0001 Marked or implicitly publ i ¢ in source.
ACC_PRI VATE 0x0002 Marked pri vat e in source.
ACC_PROTECTED 0x0004 Marked pr ot ect ed in source.
ACC_STATIC 0x0008 Marked or implicitly st at i ¢ in source.
ACC _FI NAL 0x0010 Marked f i nal in source.

ACC_| NTERFACE 0x0200 Wasani nt er f ace in source.
ACC_ABSTRACT 0x0400 Marked or implicitly abst r act in source.
ACC_SYNTHETI C 0x1000 Declared synthetic; not present in the source code.
ACC_ANNOTATI ON 0x2000 Declared as an annotation type.
ACC_ENUM 0x4000 Declared as an enumtype.

All bitsof thei nner _cl ass_access_f | ags itemnot assignedin Table 4.8
arereserved for future use. They should be set to zero in generated cl ass
files and should be ignored by Java Virtual Machine implementations.

If a class file has a version number that is greater than or equa to
51.0, and has an | nner d asses attribute in its attri but es table, then for
al entries in the cl asses array of the I nnerd asses attribute, the value
of the outer class_info_index item must be zero if the value of the

i nner _nane_i ndex itemis zero.

Oracle's Java Virtua Machine implementation does not check the consistency of an
I nner Cl asses attribute against acl ass file representing a class or interface referenced

by the attribute.

THE cLAss FILE FORMAT Attributes

4.7.7 TheEncl osi ngMet hod Attribute

The Encl osi ngMet hod attribute is an optiona fixed-length attribute in the
attributes table of a dassFile structure (84.1). A class must have an
Encl osi ngMet hod attribute if and only if itisalocal class or an anonymous class.
A class may have no more than one Encl osi nghMet hod attribute.

The Encl osi ngMet hod attribute has the following format:

Encl osi ngMet hod_attri bute {
u2 attribute_nane_index;
ud attribute_l ength;
u2 cl ass_i ndex;
u2 net hod_i ndex;

}

Theitems of the Encl osi ngMet hod_at t ri but e structure are as follows:

attribute_name_i ndex

The value of the attribute_name_index item must be a vaid index
into the constant _pool table. The constant _pool entry at that index
must be a CONSTANT_Utf8_i nfo (84.4.7) structure representing the string
"Encl osi ngMet hod".

attribute_l ength
Thevaueof theattribute_| engt h itemisfour.

cl ass_i ndex

The value of the class_index item must be a vaid index into the
const ant _pool table. The constant _pool entry at that index must be a
CONSTANT_d ass_i nf o (84.4.1) structure representing the innermost class that
encloses the declaration of the current class.

nmet hod_i ndex

If the current class is not immediately enclosed by a method or constructor,
then the value of the met hod_i ndex item must be zero.

Otherwise, the value of the net hod_i ndex item must be a valid index into
the const ant _pool table. The const ant _pool entry at that index must be a
CONSTANT_NanmeAndType_i nf o structure (84.4.6) representing the name and
type of amethod in the class referenced by the ¢l ass_i ndex attribute above.

It is the responsibility of a Java compiler to ensure that the method identified via the
met hod_i ndex isindeed the closest lexically enclosing method of the class that contains
this Encl osi ngMet hod attribute.

4.7

119

4.7

120

Attributes THE cLAss FILE FORMAT

4.7.8 Thesynthetic Attribute

The synt heti ¢ attribute is a fixed-length attribute in the attri but es table of
ad assFile, field_info, or method_i nf o structure (84.1, 84.5, 84.6). A class
member that does not appear in the source code must be marked using aSynt het i ¢
attribute, or else it must have its ACC_SYNTHETI C flag set. The only exceptions
to this requirement are compiler-generated methods which are not considered
implementation artifacts, namely the instance initialization method representing a
default constructor of the Javaprogramming language (82.9), theclassinitialization
method (82.9), and the Enum val ues() and Enum val ue () methods.

The Synt het i ¢ attribute was introduced in JDK release 1.1 to support nested classes and
interfaces.

The Synt het i ¢ attribute has the following format:

Synthetic_attribute {
u2 attribute_name_i ndex;
u4 attribute_l ength;

}

Theitemsof the Synt heti c_at t ri but e structure are as follows:

attri bute_nane_i ndex

The value of the attribute_nane_i ndex item must be a valid index into
the const ant _pool table. The const ant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o (84.4.7) structure representing the string "Synt het i ¢".

attribute_|l ength
Thevaueof theattribute_| engt h itemiszero.

4.7.9 Thesignature Attribute

The si gnat ur e attribute is an optional fixed-length attribute in the attri but es
table of ad assFil e, fiel d_i nfo, or net hod_i nf o structure (84.1, 84.5, §4.6).
The si gnature attribute records generic signature information for any class,
interface, constructor or member whose generic signature in the Java programming
language would include references to type variables or parameterized types.

The Si gnat ur e attribute has the following format:

Signature_attribute {
u2 attribute_name_i ndex;
ud4 attribute_| ength;
u2 signature_index;

THE cLASS FILE FORMAT Attributes 4.7

Theitems of the Si gnat ure_at t ri but e structure are as follows:

attribute_name_i ndex

The value of the attribute_nanme_i ndex item must be a valid index into
the const ant _pool table. The const ant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o (84.4.7) structure representing the string "Si gnat ure".

attribute_l ength

Thevaueof theattri bute_| engt hitemof aSi gnature_attri but e Structure
must be 2.

si gnat ur e_i ndex

The value of the signature_index item must be a valid index into the
const ant _pool table. The constant pool entry at that index must be a
CONSTANT_Ut f 8_i nf o (84.4.7) structure representing aclass signature (84.3.4)
if this si gnat ur e attribute is an attribute of a d assFi | e structure; a method
signatureif thissi gnat ur e attributeisan attribute of anet hod_i nf o structure;
or afield type signature otherwise.

4710 TheSourceFil e Attribute

The Sour ceFi | e attribute is an optional fixed-length attribute in the at t ri but es
table of ad assFi | e structure (84.1). There can be no more than one Sour ceFi | e
atributeintheatt ri but es table of agiven d assFi | e structure.

The Sour ceFi | e attribute has the following format:

SourceFile_attribute {
u2 attribute_name_i ndex;
ud attribute_| ength;
u2 sourcefile_index;

}

The items of the Sour ceFi | e_att ri but e structure are as follows:

attribute_nane_i ndex
The value of the attribute_name_i ndex item must be a valid index into
the const ant _pool table. The const ant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o (84.4.7) structure representing the string " Sour ceFi | e".
attribute_l ength

The value of the attribute_| ength item of a SourceFile_attribute
structure must be 2.

121

4.7

122

Attributes THE cLAss FILE FORMAT

sourcefil e_i ndex

The value of the sourcefile_index item must be a valid index into the
const ant _pool table. The constant pool entry at that index must be a
CONSTANT_Ut f 8_i nf o (84.4.7) structure representing a string.

The string referenced by the sourcefil e_i ndex item will be interpreted as
indicating the name of the sourcefilefromwhichthiscl ass filewas compiled.
It will not be interpreted as indicating the name of a directory containing the
file or an absolute path name for the file; such platform-specific additional
information must be supplied by the run-time interpreter or development tool
a the time the file nameis actually used.

4.7.11 The Sour ceDebugExt ensi on Attribute

The Sour ceDebugExt ensi on attribute is an optional attribute in the att ri but es
table of a dassFile structure (84.1). There can be no more than one
Sour ceDebugExt ensi on attribute in the at t ri but es table of agiven d assFil e
structure.

The Sour ceDebugExt ensi on attribute has the following format:

Sour ceDebugExt ensi on_attribute {
u2 attribute_nane_index;
ud attribute_l ength;
ul debug_extension[attribute_l ength];

}

The items of the Sour ceDebugExt ensi on_at t ri but e structure are as follows:

attri bute_nane_i ndex
The value of the attribute name_index item must be a valid index
into the constant _pool table. The constant_pool entry at that index
must be a CONSTANT_Utf8_info (84.4.7) structure representing the string
"Sour ceDebugExt ensi on".

attribute_length
Thevaueof theattri but e_I engt h item indicates the length of the attribute,
excluding theinitial six bytes.

The value of the at t ri but e_| engt h item is thus the number of bytesin the
debug_ext ensi on[] item.

THE cLAss FILE FORMAT Attributes

debug_ext ensi on[]

Thedebug_ext ensi on array holds extended debugging information which has
no semantic effect on the JavaVirtual Machine. Theinformationisrepresented
using amodified UTF-8 string (84.4.7) with no terminating zero byte.

Note that the debug_ext ensi on array may denote a string longer than that which can be
represented with an instance of class St ri ng.

4.7.12 TheLi neNunber Tabl e Attribute

The Li neNunber Tabl e attribute is an optiona variable-length attribute in the
attributes table of a Code (84.7.3) attribute. It may be used by debuggers to
determinewhich part of the JavaVirtual Machinecode array correspondsto agiven
line number in the original sourcefile.

If Li neNunber Tabl e attributes are present in the attribut es table of a given
Code attribute, then they may appear in any order. Furthermore, multiple
Li neNunber Tabl e attributes may together represent a given line of a source fileg;
that is, Li neNunber Tabl e attributes need not be one-to-one with source lines.

The Li neNunber Tabl e attribute has the following format:

Li neNunber Tabl e_attri bute {
u2 attribute_nane_i ndex;
ud attribute_l ength;
u2 |ine_nunber_table_|ength;
{ u2 start_pc;
u2 |ine_nunber;
} line_nunber_table[line_nunber_table_length];

}
Theitems of the Li neNunber Tabl e_at t ri but e structure are as follows:

attri bute_nane_i ndex

The value of the attribute _name_index item must be a vaid index
into the constant _pool table. The constant _pool entry at that index
must be a CONSTANT_Utf8_i nfo (84.4.7) structure representing the string
"Li neNunber Tabl e".

attribute_l ength
Thevaueof theattri bute_l engt h item indicates the length of the attribute,
excluding theinitial six bytes.

I'i ne_nunber _table_length

The value of the | i ne_nunber _tabl e_| engt h item indicates the number of
entriesinthel i ne_nunber _t abl e array.

4.7

123

4.7 Attributes THE cLASs FILE FORMAT

I'i ne_nunber _tabl e[]

Each entry in the I'i ne_nunber _t abl e array indicates that the line number
in the original source file changes at a given point in the code array. Each
I'i ne_number _t abl e entry must contain the following two items:

start_pc

Thevaueof thest art _pc item must indicate theindex into the code array
at which the code for anew line in the original source file begins.

The value of start_pc must be less than the value of the code | ength
item of the Code attribute of which thisLi neNunber Tabl e is an attribute.

I'i ne_nunber

The value of the I'i ne_nunber item must give the corresponding line
number in the original sourcefile.

4.7.13 ThelLocal Vari abl eTabl e Attribute

The Local Vari abl eTabl e attribute is an optional variable-length attribute in the
attributes table of a Code (84.7.3) attribute. It may be used by debuggers to
determine the value of agiven local variable during the execution of a method.

If Local Vari abl eTabl e attributes are present in the at t ri but es table of a given
Code attribute, then they may appear in any order. There may be no more than one
Local Vari abl eTabl e attribute per local variable in the Code attribute.

The Local Vari abl eTabl e attribute has the following format:

Local Vari abl eTabl e_attribute {
u2 attribute_name_i ndex;
ud attribute_| ength;
u2 |l ocal _variabl e_tabl e_Il ength;
{ u2 start_pc;
u2 | ength;
u2 nane_i ndex;
u2 descri ptor_index;
u?2 i ndex;
} local _variable_table[local _variable_table_ |ength];

}

Theitems of the Local Vari abl eTabl e_att ri but e structure are as follows:

attribute_nane_i ndex

The value of the attribute_name_index item must be a valid index
into the constant _pool table. The constant _pool entry at that index

124

THE cLAss FILE FORMAT Attributes

must be a CONSTANT_Utf8_i nfo (84.4.7) structure representing the string
"Local Vari abl eTabl e".

attribute_l ength

Thevaueof theattri bute_l engt h item indicates the length of the attribute,
excluding theinitial six bytes.

| ocal _variabl e_tabl e_|l ength

The value of the | ocal _vari abl e_tabl e_| engt h item indicates the number
of entriesinthel ocal _vari abl e_t abl e array.

| ocal _variabl e_tabl e[]

Eachentryinthel ocal _vari abl e_t abl e array indicatesarange of code array
offsetswithin which alocal variable hasavalue. It aso indicatestheindex into
thelocal variable array of the current frame at which that local variable can be
found. Each entry must contain the following five items:

start_pc, length

Thegiven local variable must have avalue at indicesinto thecode array in
theinterval [start _pc,start_pc + | ength), thatis, betweenstart_pc
inclusiveandstart_pc + | ength exclusive.

The value of start_pc must be avalid index into the code array of this
Code attribute and must be the index of the opcode of an instruction.

Thevalueof start _pc + | engt h must either beavalidindex intothecode
array of this Code attribute and be the index of the opcode of an instruction,
or it must be the first index beyond the end of that code array.

name_i ndex

The value of the nanme_i ndex item must be a valid index into the
const ant _pool table. Theconst ant _pool entry at that index must contain
A CONSTANT_Ut f 8_i nf o (84.4.7) structure representing avalid unqualified
name (84.2.2) denoting alocal variable.

descri pt or _i ndex
The value of the descri pt or _i ndex item must be avalid index into the
const ant _pool table. Theconst ant _pool entry at that index must contain
a CONSTANT_Ut f 8_i nf o structure (84.4.7) representing a field descriptor
(84.3.2) encoding the type of alocal variable in the source program.

i ndex

Thegiven local variable must be at i ndex inthelocal variable array of the
current frame.

4.7

125

4.7 Attributes THE cLASs FILE FORMAT

If the local variable at i ndex is of type doubl e or | ong, it occupies both
i ndex andi ndex + 1.

4714 Thelocal Vari abl eTypeTabl e Attribute

The Local vari abl eTypeTabl e attributeis an optional variable-length attribute in
theat t ri but es table of aCode (84.7.3) attribute. It may be used by debuggersto
determine the value of agiven local variable during the execution of a method.

If Local Vari abl eTypeTabl e attributes are present in the attri but es table of a
given Code attribute, then they may appear in any order. There may be no morethan
one Local Vari abl eTypeTabl e attribute per local variable in the Code attribute.

The Local Vari abl eTypeTabl e attribute differs from the Local Vari abl eTabl e
attributeinthat it provides signatureinformation rather than descriptor information.
This difference is only significant for variables whose type is a generic reference
type. Such variables will appear in both tables, while variables of other types will
appear only in Local Vari abl eTabl e.

The Local Vvari abl eTypeTabl e attribute has the following format:

Local Vari abl eTypeTabl e_attribute {
u2 attribute_nane_i ndex;
ud attribute_l ength;
u2 | ocal _variabl e_type_tabl e_| ength;
{ u2 start_pc;
u2 | ength;
u2 name_i ndex;
u2 signature_index;
u2 i ndex;
} local _variable_type_table[local _variable_type_ table_|length];

}

Theitems of the Local Vari abl eTypeTabl e_att ri but e structure are as follows:

attribute_name_i ndex

The value of the attribute_name_index item must be a vaid index
into the constant_pool table. The constant _pool entry at that index
must be a CONSTANT_Utf8_i nfo (84.4.7) structure representing the string
"Local Vari abl eTypeTabl e".

attribute_|l ength

Thevaueof theattri bute_l engt h item indicates the length of the attribute,
excluding the initial six bytes.

126

THE cLAss FILE FORMAT Attributes

| ocal _variable_type_table_|l ength

The value of the | ocal _variable_type_table_ | ength item indicates the
number of entriesinthel ocal _vari abl e_t ype_t abl e array.

| ocal _variabl e_type_table[]

Eachentryinthel ocal _vari abl e_t ype_t abl e array indicatesarange of code
array offsetswithinwhich alocal variablehasavalue. It also indicatestheindex
into the local variable array of the current frame at which that local variable
can be found. Each entry must contain the following five items:

start_pc, length

The given local variable must have avalue at indicesinto the code array in
theinterval [start_pc, start_pc + |ength), thatis, betweenstart_pc
inclusiveand start_pc + | engt h exclusive.

The value of start_pc must be a valid index into the code array of this
Code attribute and must be the index of the opcode of an instruction.

Thevaueofstart _pc + | engt h must either beavalidindex intothecode
array of thisCode attribute and be the index of the opcode of an instruction,
or it must be the first index beyond the end of that code array.

nanme_i ndex

The value of the narme_i ndex item must be a valid index into the
const ant _pool table. Theconst ant _pool entry at that index must contain
A CONSTANT_Ut f 8_i nf o (84.4.7) structure representing avalid unqualified
name (84.2.2) denoting alocal variable.

si gnat ur e_i ndex

The value of the signature_i ndex item must be a valid index into
the const ant _pool table. The const ant _pool entry at that index must
contain a CONSTANT_Ut f 8_i nf o structure (84.4.7) representing afield type
signature (84.3.4) encoding the type of a local variable in the source
program.

i ndex

Thegiven local variable must be at i ndex inthelocal variable array of the
current frame.

If the local variable at i ndex is of type doubl e or | ong, it occupies both
i ndex andi ndex + 1.

4.7

127

4.7

128

Attributes THE cLAss FILE FORMAT

4.7.15 TheDeprecat ed Attribute

The Depr ecat ed attribute is an optional fixed-length attribute in the at t ri but es
tableof ad assFil e, fi el d_i nfo, Or met hod_i nf o structure (84.1, 84.5, 84.6). A
class, interface, method, or field may be marked using a Depr ecat ed attribute to
indicate that the class, interface, method, or field has been superseded.

A run-time interpreter or tool that reads the cl ass file format, such as a compiler,
can use this marking to advise the user that a superceded class, interface, method,
or field is being referred to. The presence of a Depr ecat ed attribute does not alter
the semantics of a class or interface.

The Depr ecat ed attribute has the following format:

Deprecated_attribute {
u2 attribute_nane_i ndex;
u4 attribute_l ength;

}

Theitems of the Depr ecat ed_at t ri but e structure are as follows:

attri bute_nane_i ndex

The value of the attribute_nane_i ndex item must be a valid index into
the const ant _pool table. The const ant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o (84.4.7) structure representing the string "Depr ecat ed".

attribute_l ength
Thevaueof theattribute_| engt h itemis zero.

4716 TheRuntineVisi bl eAnnot at i ons attribute

The Runt i neVi si bl eAnnot at i ons attribute is a variable-length attribute in the
attributes table of ad assFile, fiel d_info, Or met hod_i nf o structure (84.1,
84.5, 84.6). The Runt i meVi si bl eAnnot at i ons attribute records run-time-visible
Java programming language annotations on the corresponding class, field, or
method.

Each C assFil e, fiel d_i nfo, and met hod_i nf o structure may contain at most
oneRunti meVi si bl eAnnot at i ons attribute, which records al therun-time-visible
Java programming language annotations on the corresponding program element.
The Java Virtual Machine must make these annotations available so they can be
returned by the appropriate reflective APIs.

The Runt i meVi si bl eAnnot at i ons attribute has the following format:

THE cLAss FILE FORMAT Attributes

Runti meVi si bl eAnnot ati ons_attribute {

u2 attribute_nane_i ndex;
ud attribute_| ength;
u2 num annot at i ons;

annot ati on annot ati ons[num annot ati ons];

}

The items of the RuntimeVisibleAnnotations_attribute Structure are as
follows:

attribute_name_i ndex

The value of the attribute_name_index item must be a vaid index
into the constant _pool table. The constant _pool entry at that index
must be a CONSTANT_Utf8_i nfo (84.4.7) structure representing the string
"Runt i meVi si bl eAnnot ati ons".

attribute_l ength

Thevaueof theattri but e_I engt h item indicates the length of the attribute,
excluding the initial six bytes.

Thevaueof theat t ri but e_| engt h item is thus dependent on the number of
run-time-visible annotations represented by the structure, and their values.

num annot ati ons

The value of the num annot at i ons item gives the number of run-time-visible
annotations represented by the structure.

Note that a maximum of 65535 run-time-visible Java programming language annotations
may be directly attached to a program element.

annot ati ons

Each value of the annot ati ons table represents a single run-time-visible
annotation on a program element. The annotation structure has the following
format:

annot ati on {
u2 type_index;
u2 num el ement _val ue_pairs;
{ u2 el ement _nane_i ndex;
el enment _val ue val ue;
} el enent _val ue_pai rs[num el ement _val ue_pai rs];

}

The items of the annot at i on structure are as follows:

4.7

129

4.7

130

Attributes THE cLAss FILE FORMAT

t ype_i ndex
The vadue of the type_index item must be a valid index into
the constant_pool table. The constant _pool entry at that index
must be a CONSTANT_Ut f 8_i nfo (84.4.7) structure representing a field
descriptor representing the annotation type corresponding to the annotation
represented by thisannot at i on structure.

num el enent _val ue_pairs

The value of the num el enent _val ue_pai rs item gives the number of
element-value pairs of the annotation represented by this annot ati on
structure.

Note that a maximum of 65535 element-value pairs may be contained in a single
annotation.

el ement _val ue_pairs

Eachvalueof theel enent _val ue_pai r s tablerepresentsasingle element-
value pair inthe annotation represented by thisannot at i on structure. Each
el enent _val ue_pai r s entry contains the following two items:

el ement _name_i ndex

The value of the el ement _nane_i ndex item must be a valid index
intotheconst ant _pool table. Theconst ant _pool entry at that index
must be a CONSTANT_Ut f 8_i nf o structure (84.4.7) representing avalid
field descriptor (84.3.2) that denotes the name of the annotation type
element represented by thisel ement _val ue_pai rs entry.

val ue

The value of the val ue item represents the value of the element-value
pair represented by thisel ement _val ue_pai rs entry.

4.7.16.1 Theel enent _val ue structure

The el enent _val ue structure is a discriminated union representing the
vaue of an element-value pair. It is used to represent element values
in al attributes that describe annotations (RuntimeVisi bl eAnnot ati ons,
Runt i mel nvi si bl eAnnot ati ons, Runti neVi si bl ePar anet er Annot at i ons, and
Runt i mel nvi si bl ePar anet er Annot at i ons).

Theel enent _val ue structure has the following format:

THE cLAss FILE FORMAT Attributes

el ement _val ue {
ul tag;
uni on {
u2 const_val ue_i ndex;

{ u2 type_nane_i ndex;
u2 const_nane_i ndex;
} enum const _val ue;
u2 class_info_index;
annot ati on annot ati on_val ue;
{ u2 num val ues;
el ement _val ue val ues[num val ues];

} array_val ue;
} val ue;

}
Theitems of the el ement _val ue structure are as follows:

tag
Thet ag item indicates the type of this annotation element-value pair.

ThelettersB, C, D, F, 1, J, S, and z indicate a primitive type. These letters are
interpreted asif they were field descriptors (84.3.2).

The other legal valuesfor t ag are listed with their interpretationsin Table 4.9.

Table 4.9. Interpretation of additional tag values

t ag Value Element Type
s String
e enum constant
c class
@ annotation type
[aray

val ue

Theval ue item represents the value of this annotation element. Thisitemisa
union. Thet ag item, above, determines which item of the union isto be used:

const _val ue_i ndex

Theconst _val ue_i ndex itemisused if thetag itemisone of B, C, D, F,
1,J,S,Z,0rs.

4.7

131

4.7

132

Attributes THE cLAss FILE FORMAT

The value of the const _val ue_i ndex item must be avalid index into the
const ant _pool table. The const ant _pool entry at that index must be of
the correct entry type for the field type designated by the t ag item, as
specified in Table 4.9.

enum const _val ue

Theenum const _val ue itemisused if thet ag itemise.
Theenum const _val ue item consists of the following two items:
t ype_nane_i ndex

The value of the t ype_nane_i ndex item must be a valid index into
the const ant _pool table. The constant _pool entry at that index
must be a CONSTANT_Ut f 8_i nf o structure (84.4.7) representing avalid
field descriptor (84.3.2) that denotes the internal form of the binary
name (84.2.1) of the type of the enum constant represented by this
el enent _val ue structure.

const _name_i ndex

The value of the const _name_i ndex item must be a valid index into
the const ant _pool table. The constant _pool entry at that index
must be a CONSTANT_Ut f 8_i nf o structure (84.4.7) representing the
simple name of the enum constant represented by thisel ement _val ue
structure.
cl ass_i nf o_i ndex

Thecl ass_i nfo_i ndex itemisused if thetag itemisc.

The class_info_index item must be a vaid index into the

const ant _pool table. The const ant _pool entry at that index must be a

CONSTANT_Ut f 8_i nf o (84.4.7) structure representing the return descriptor

(84.3.3) of the type that is reified by the class represented by this
el enent _val ue structure.

For example, v for Voi d. cl ass, Lj ava/ | ang/ Obj ect ; for Qbj ect, €tc.
annot ati on_val ue

Theannot ati on_val ue itemisused if thetag itemis @

Theel ement _val ue structure represents a "nested” annotation.

array_val ue

Thearray_val ue itemisused if thetag itemis]|.

Thearray_val ue item consists of the following two items:

THE cLAss FILE FORMAT Attributes

num val ues

Thevalue of the num val ues item givesthe number of elementsin the
array-typed value represented by thisel enent _val ue structure.

Note that amaximum of 65535 elements are permitted in an array-typed element
value.

val ues

Each value of the val ues table gives the value of an element of the
array-typed value represented by thisel enent _val ue structure.

4.7.17 TheRuntinel nvisi bl eAnnot ati ons attribute

The Runtinelnvisibl eAnnotations altribute is similar to the
Runt i meVi si bl eAnnot at i ons attribute, except that the annotations represented
by a Runti nel nvi si bl eAnnot at i ons attribute must not be made available for
return by reflective APIs, unless the Java Virtual Machine has been instructed to
retain these annotations via some implementation-specific mechanism such as a
command line flag. In the absence of such instructions, the Java Virtual Machine
ignores this attribute.

The Runti nel nvi si bl eAnnot ati ons attribute is a variable-length attribute in
the attributes table of a d assFile, field_info, or method_i nfo structure
(84.1, 84.5, 84.6). TheRunt i nel nvi si bl eAnnot at i ons attributerecordsrun-time-
invisible Java programming language annotations on the corresponding class,
method, or field.

Eachd assFil e,fi el d_i nf o,and et hod_i nf o structure may contain at most one
Runt i mel nvi si bl eAnnot at i ons attribute, which recordsall therun-time-invisible
Java programming language annotations on the corresponding program el ement.

TheRunt i mel nvi si bl eAnnot at i ons attribute has the following format:

Runti mel nvi si bl eAnnot ations_attribute {

u2 attribute_nane_i ndex;
ud attribute_| ength;
u2 num annot at i ons;

annot ati on annot ati ons[num annot ati ons];

}

The items of the Runti nel nvi si bl eAnnot ations_attri bute Structure are as
follows:

4.7

133

4.7

134

Attributes THE cLAss FILE FORMAT

attribute_name_i ndex

The value of the attribute_name_index item must be a vaid index
into the constant _pool table. The constant _pool entry at that index
must be a CONSTANT_Utf8_i nfo (84.4.7) structure representing the string
"Runt i el nvi si bl eAnnot ati ons".

attribute_l ength

Thevaueof theattri bute_l engt h item indicates the length of the attribute,
excluding the initial six bytes.

Thevaueof theat tri but e_| engt h item is thus dependent on the number of
run-time-invisible annotations represented by the structure, and their values.

num annot ati ons

Thevaueof thenum annot at i ons item givesthe number of run-time-invisible
annotations represented by the structure.

Note that amaximum of 65535 run-time-invisible Java programming language annotations
may be directly attached to a program element.

annot ati ons

Each value of the annot ati ons table represents a single run-time-invisible
annotation on a program element.

4.7.18 TheRuntineVisi bl ePar anet er Annot at i ons attribute

The RuntimeVisi bl eParanet er Annot ati ons attribute is a variable-length
attribute in the attributes table of the method_i nfo structure (84.6). The
Runt i neVi si bl ePar arret er Annot at i ons attribute records run-time-visible Java
programming language annotations on the parameters of the corresponding
method.

Each met hod_i nf o structure may contain at most one
Runt i meVi si bl ePar anet er Annot at i ons attribute, which records all the run-
time-visible Java programming language annotations on the parameters of the
corresponding method. The Java Virtual Machine must make these annotations
available so they can be returned by the appropriate reflective APIs.

The Runt i meVi si bl ePar anet er Annot at i ons attribute has the following format:

THE cLAss FILE FORMAT Attributes

Runt i meVi si bl ePar anet er Annot ati ons_attribute {
u2 attribute_nane_i ndex;
ud attribute_l ength;
ul num paraneters;
{ u2 num annot at i ons;
annot ati on annot ati ons[num annot ati ons];
} paraneter_annot ati ons[num par aneters];

The items of the Runti meVi si bl ePar aret er Annot ati ons_attri but e Structure
are asfollows:

attri bute_nane_i ndex

The value of the attribute _name_index item must be a vaid index
into the constant _pool table. The constant _pool entry at that index
must be a CONSTANT_Ut f8_i nfo structure (84.4.7) representing the string
"Runt i meVi si bl ePar anet er Annot at i ons".

attribute_l ength

Thevaueof theattri bute_l engt h item indicates the length of the attribute,
excluding theinitial six bytes.

Thevaueof theat tri but e_| engt h item is thus dependent on the number of
parameters, the number of run-time-visible annotations on each parameter, and
their values.

num paraneters

The value of the num par anet ers item gives the number of parameters of
the method represented by the net hod_i nf o structure on which the annotation
occurs. (This duplicates information that could be extracted from the method
descriptor (84.3.3).)

par anet er _annot at i ons

Each value of the par anet er _annot ati ons table represents all of the run-
time-visible annotations on a single parameter. The sequence of valuesin the
table corresponds to the sequence of parametersin the method descriptor. Each
par amet er _annot at i ons entry contains the following two items:

num annot at i ons

Thevalue of thenum annot at i ons item indicates the number of run-time-
visibleannotations on the parameter corresponding to the sequence number
of thispar anet er _annot ati ons element.

4.7

135

4.7

136

Attributes THE cLAss FILE FORMAT

annot at i ons

Each value of the annot at i ons table represents a single run-time-visible
annotation on the parameter corresponding to the sequence number of this
par amet er _annot at i ons €lement.

4719 TheRuntinel nvi si bl ePar anmet er Annot at i ons attribute

The Runti mel nvi si bl ePar anet er Annot ati ons attribute is similar to the
Runt i meVi si bl ePar amet er Annot at i ons attribute, except that the annotations
represented by aRunt i mel nvi si bl ePar anet er Annot at i ons attribute must not be
made available for return by reflective APIs, unless the Java Virtual Machine has
specifically been instructed to retain these annotations via some implementation-
specific mechanism such as a command line flag. In the absence of such
instructions, the Java Virtual Machine ignores this attribute.

The Runti el nvi si bl ePar anet er Annot ati ons attribute is a variable-length
attribute in the attributes table of a method_info structure (84.6). The
Runt i nel nvi si bl ePar amet er Annot at i ons attribute records run-time-invisible
Java programming language annotations on the parameters of the corresponding
method.

Each met hod_i nf o structure may contain at most one
Runt i mel nvi si bl ePar anet er Annot ati ons attribute, which records all the run-
time-invisible Java programming language annotations on the parameters of the
corresponding method.

The Runti nel nvi si bl ePar amet er Annot ati ons attribute has the following
format:

Runt i nmel nvi si bl ePar aret er Annot ations_attribute {
u2 attribute_name_i ndex;
u4 attribute_l ength;
ul num paraneters;
{ u2 num annot at i ons;
annot ati on annot ati ons[num annot ati ons] ;
} paraneter_annotati ons[num paraneters];

Theitemsof theRunt i nel nvi si bl ePar anet er Annot ati ons_at t ri but e structure
are asfollows:

attribute_nane_i ndex

The value of the attribute_name_index item must be a valid index
into the constant _pool table. The constant _pool entry at that index

THE cLAss FILE FORMAT Attributes

must be a CONSTANT_Ut f8_i nfo structure (84.4.7) representing the string
"Runt i mel nvi si bl ePar anet er Annot ati ons".

attribute_l ength

Thevaueof theattri bute_l engt h item indicates the length of the attribute,
excluding theinitial six bytes.

Thevaue of theat tri but e_I engt h item is thus dependent on the number of
parameters, the number of run-time-invisible annotations on each parameter,
and their values.

num paraneters

The value of the num par anet ers item gives the number of parameters of
the method represented by the net hod_i nf o structure on which the annotation
occurs. (This duplicates information that could be extracted from the method
descriptor (84.3.3).)

par anet er _annot at i ons

Each value of the par anet er _annot at i ons table represents all of the run-
time-invisible annotations on asingle parameter. The sequence of valuesin the
table corresponds to the sequence of parametersin the method descriptor. Each
par amet er _annot at i ons entry contains the following two items:

num annot at i ons

The value of the num annot ati ons item indicates the number of run-
time-invisible annotations on the parameter corresponding to the sequence
number of thispar anet er _annot at i ons element.

annot at i ons

Each value of theannot at i ons tablerepresentsasingle run-time-invisible
annotation on the parameter corresponding to the sequence number of this
par anet er _annot at i ons element.

4.7.20 TheAnnot ati onDef aul t attribute

The Annot at i onDef aul t attributeisavariable-length attributeintheat t ri but es
table of certain net hod_i nf o structures (84.6), namely those representing elements
of annotation types. The Annot at i onDef aul t attribute records the default value
for the element represented by the net hod_i nf o structure.

Each met hod_i nf o structure representing an element of an annotation type may
contain at most one Annot at i onDef aul t attribute. The JavaVirtual Machine must
makethisdefault value available so it can be applied by appropriatereflective APIs.

4.7

137

4.7

138

Attributes THE cLAss FILE FORMAT

The Annot at i onDef aul t attribute has the following format:

Annot ati onDefault_attribute {
u2 attribute_nane_i ndex;
ud attribute_|l ength;
el ement _val ue defaul t _val ue;

}

Theitems of the Annot at i onDef aul t _at t ri but e structure are as follows:

attri bute_nane_i ndex

The value of the attribute _name_index item must be a vaid index
into the constant _pool table. The constant _pool entry at that index
must be a CONSTANT_Ut f8_i nfo structure (84.4.7) representing the string
"Annot at i onDef aul t .

attribute_l ength

Thevaueof theattri bute_l engt h item indicates the length of the attribute,
excluding theinitial six bytes.

The value of the attribute_| ength item is thus dependent on the default
value.

def aul t _val ue

The defaul t _val ue item represents the default value of the annotation
type element whose default value is represented by this Annot at i onDef aul t
attribute.

4.7.21 TheBoot st rapMet hods attribute

The Boot st r apMet hods attribute is a variable-length attribute in the at t ri but es
table of a CassFile structure (84.1). The Boot strapMet hods attribute
records bootstrap method specifiers referenced by invokedynamic instructions
(8invokedynamic).

There must be exactly one Boot st r apMet hods attributeintheat t ri but es table of
agivend assFi | e structureif theconst ant _pool tableof thed assFi | e structure
has at |east one CONSTANT_I nvokeDynani ¢_i nf o entry (84.4.10). There can be no
more than one Boot st rapMet hods attribute in the attri but es table of a given
d assFi | e structure.

The Boot st rapMet hods attribute has the following format:

THE cLAss FILE FORMAT Attributes

Boot st rapMet hods_attri bute {
u2 attribute_nane_i ndex;
ud attribute_l ength;
u2 num boot strap_net hods;
{ u2 bootstrap_nethod_ref;
u2 num boot strap_argunents;
u2 boot strap_argunent s[num boot strap_ar gunent s] ;
} boot strap_net hods[num boot strap_net hods] ;

}

The items of the Boot st rapMet hods_at t ri but e structure are as follows:

attribute_nane_i ndex

The value of the attribute_name_index item must be a vaid index
into the constant _pool table. The constant _pool entry at that index
must be a CONSTANT_Ut f8_i nfo structure (84.4.7) representing the string
"Boot st r apMet hods".

attribute_|l ength
Thevaueof theattri bute_l engt h item indicates the length of the attribute,
excluding the initial six bytes.

Thevaueof theat tri but e_| engt h item is thus dependent on the number of
invokedynamic instructions in this d assFi | e structure.

num boot st rap_net hods

The value of the num boot strap_ret hods item determines the number of
bootstrap method specifiersin the boot st r ap_net hods array.

boot st rap_net hods[]

Each entry in the bootstrap_nethods array contains an index to a
CONSTANT_Met hodHandl e_i nf o structure (84.4.8) which specifies a bootstrap
method, and a sequence (perhaps empty) of indexesto static argumentsfor the
bootstrap method.

Each boot st r ap_net hods entry must contain the following three items:

boot st rap_mnet hod_r ef

The value of the boot st rap_net hod_r ef item must be avalid index into
theconst ant _pool table. Theconst ant _pool entry at that index must be
a CONSTANT_Met hodHandl e_i nf o structure (84.4.8).

The reference_kind item of the CONSTANT_Met hodHandl e_i nf o structure
should have the value 6 (REF_i nvokeStatic) or 8 (REF_new nvokeSpeci al)
(85.4.3.5) or else invocation of the bootstrap method handle during call site specifier
resolution for an invokedynamic instruction will complete abruptly.

4.7

139

4.8

140

Format Checking THE cLAsS FILE FORMAT

num boot st rap_ar gunent s

The value of the num boot strap_ar gument s item gives the number of
itemsin the boot st r ap_ar gunent s array.

boot st rap_ar gunent s

Each entry in the bootstrap_arguments array must be a valid
index into the constant_pool table. The constant_pool entry at
that index must be a CONSTANT _String_i nf o, CONSTANT O ass_i nf o,
CONSTANT_I nt eger _i nfo, CONSTANT_Long_i nfo,
CONSTANT_Fl oat _i nf o, CONSTANT_Doubl e_i nf o,
CONSTANT_Met hodHandl e_i nf o, or CONSTANT_Met hodType_i nfo
structure (84.4.3, 84.4.1, 84.4.4, 84.4.5), §84.4.8, 84.4.9).

4.8 Format Checking

When a prospective cl ass file is loaded (85.3) by the Java Virtua Machine, the
JavaVirtual Machinefirst ensuresthat the file has the basic format of acl ass file
(84.1). Thisprocessisknown as format checking. Thefirst four bytes must contain
the right magic number. All recognized attributes must be of the proper length. The
cl ass file must not be truncated or have extra bytes at the end. The constant pool
must not contain any superficially unrecognizable information.

This check for basic cl ass file integrity is necessary for any interpretation of the
cl ass file contents.

Format checking is distinct from bytecode verification. Both are part of the
verification process. Historically, format checking has been confused with
bytecode verification, because both are aform of integrity check.

49 Constraintson Java Virtual Machine code

The Java Virtua Machine code for a method, instance initialization method, or
classor interfaceinitialization method (82.9) isstored inthe code array of the Code
attribute of a met hod_i nf o structure of acl ass file (84.6, 84.7.3). This section
describes the constraints associated with the contents of the Code attri bute
structure.

THE cLAss FILE FORMAT Constraints on Java Virtual Machine code

49.1 Static Constraints

The static constraints on a cl ass file are those defining the well-formedness of
the file. With the exception of the static constraints on the Java Virtual Machine
code of thecl ass file, these constraints have been given in the previous sections.
The static constraints on the Java Virtual Machine codein acl ass file specify how
JavaVirtual Machine instructions must be laid out in the code array and what the
operands of individual instructions must be.

The static constraints on the instructionsin the code array are asfollows:

» The code array must not be empty, so the code_lI engt h item cannot have the
value 0.

» Thevalue of the code_I engt h item must be less than 65536.
» The opcode of the first instruction in the code array begins at index O.

» Only instances of the instructions documented in 86.5 may appear in the code
array. Instances of instructions using the reserved opcodes (86.2) or any opcodes
not documented in this specification must not appear in the code array.

* If thecl ass file version number is 51.0 or above, then neither the jsr opcode or
the jsr_w opcode may appear in the code array.

* For eachinstruction in the code array except the last, the index of the opcode of
the next instruction equal s the index of the opcode of the current instruction plus
the length of that instruction, including al its operands.

The wide instruction is treated like any other instruction for these purposes; the
opcode specifying the operation that awide instruction isto modify istreated as
one of the operands of that wide instruction. That opcode must never be directly
reachable by the computation.

» The last byte of the last instruction in the code array must be the byte at index
code_l ength - 1.

The gtatic constraints on the operands of instructions in the code array are as
follows:

» The target of each jump and branch instruction (jsr, jsr_w, goto, goto_w,
ifeq, ifne, ifle, iflt, ifge, ifgt, ifnull, ifnonnull, if_icmpeg, if_icmpne, if_icmple,
if_icmplt, if_icmpge, if_icmpgt, if_acmpeq, if_acmpne) must be the opcode of an
instruction within this method.

4.9

141

4.9

142

Constraints on Java Virtual Machine code THE cLAss FILE FORMAT

The target of a jump or branch instruction must never be the opcode used to
specify the operation to be modified by a wide instruction; a jump or branch
target may be the wide instruction itself.

Each target, including the default, of each tableswitch instruction must be the
opcode of an instruction within this method.

Each tableswitch instruction must have a number of entriesin its jump table that
is consistent with the value of its low and high jump table operands, and its low
value must be less than or equal to its high value.

No target of a tableswitch instruction may be the opcode used to specify the
operation to be modified by a wide instruction; a tableswitch target may be a
wide instruction itself.

Each target, including the default, of each lookupswitch instruction must be the
opcode of an instruction within this method.

Each lookupswitch instruction must have a number of match-offset pairs that is
consistent with the value of its npairs operand. The match-offset pairs must be
sorted in increasing numerical order by signed match value.

No target of alookupswitch instruction may be the opcode used to specify the
operation to be modified by awide instruction; a lookupswitch target may be a
wide instruction itself.

The operand of each Idc instruction and each Idc_w instruction must be a valid
index into the const ant _pool table. The constant pool entry referenced by that
index must be of type:

* CONSTANT I nt eger , CONSTANT_Fl oat , OF CONSTANT_Stri ng if thecl ass file
version number is less than 49.0.

* CONSTANT_I nt eger, CONSTANT_Fl oat , CONSTANT_St ri ng, or
CONSTANT_d ass if thecl ass file version number is 49.0 or 50.0.

* CONSTANT_I nt eger , CONSTANT_FI oat , CONSTANT_St ri ng, CONSTANT_d ass,
CONSTANT_Met hodType, OF CONSTANT_Met hodHandl e if thecl ass fileversion
number is51.0.

The operands of each ldc2_w instruction must represent a valid index into the
const ant _pool table. The constant pool entry referenced by that index must be
of type CONSTANT_Long Or CONSTANT_Doubl e.

In addition, the subsequent constant pool index must also be avalid index into
the constant pool, and the constant pool entry at that index must not be used.

THE cLAss FILE FORMAT Constraints on Java Virtual Machine code 49

» The operands of each getfield, putfield, getstatic, and putstatic instruction must
represent a valid index into the const ant _pool table. The constant pool entry
referenced by that index must be of type CONSTANT_Fi el dr ef .

» The indexbyte operands of each invokevirtual, invokespecial, and invokestatic
instruction must represent a valid index into the constant_pool table.
The constant pool entry referenced by that index must be of type
CONSTANT _Met hodr ef .

» Theindexbyte operands of each invokedynamic instruction must represent avalid
index into the const ant _pool table. The constant pool entry referenced by that
index must be of type CONSTANT_I nvokeDynani c.

Thethird and fourth operand bytes of each invokedynamic instruction must have
the value zero.

» Only theinvokespecial instruction is allowed to invoke an instanceinitialization
method (82.9).

No other method whose name begins with the character '<' (\ u003c") may be
called by the method invocation instructions. In particular, the class or interface
initialization method specially named <cl i ni t > is never called explicitly from
Java Virtual Machine instructions, but only implicitly by the Java Virtual
Machine itself.

» The indexbyte operands of each invokeinterface instruction must represent a
validindex into theconst ant _pool table. The constant pool entry referenced by
that index must be of type CONSTANT_I nt er f aceMet hodr ef .

The value of the count operand of each invokeinterface instruction
must reflect the number of local variables necessary to store the
arguments to be passed to the interface method, as implied by the
descriptor of the CONSTANT NarmeAndType_i nfo structure referenced by the
CONSTANT_I nt er f aceMet hodr ef constant pool entry.

The fourth operand byte of each invokeinterface instruction must have the value
zero.

» The operands of each instanceof, checkcast, new, and anewarray instruction and
theindexbyte operands of each multianewarray instruction must represent avalid
index into the const ant _pool table. The constant pool entry referenced by that
index must be of type CONSTANT_d ass.

» No anewarray instruction may be used to create an array of more than 255
dimensions.

143

Constraints on Java Virtual Machine code THE cLAss FILE FORMAT

» No newinstruction may referenceaCONSTANT_Cl ass const ant _pool tableentry
representing an array class. The new instruction cannot be used to create an array.

* A multianewarray instruction must be used only to create an array of atype that
has at least as many dimensions as the value of its dimensions operand. That is,
while amultianewarray instruction isnot required to create all of the dimensions
of the array type referenced by its indexbyte operands, it must not attempt to
create more dimensions than are in the array type.

The dimensions operand of each multianewarray instruction must not be zero.

* The atype operand of each newarray instruction must take one of the values
T_BOOLEAN (4), T_CHAR(5), T_FLQAT (6), T_DOUBLE (7), T_BYTE (8), T_SHORT (9),
T_INT (10), or T_LONG (11).

» Theindex operand of each iload, fload, aload, istore, fstore, astore, iinc, and ret
instruction must be a non-negative integer no greater than max_| ocal s - 1.

» The implicit index of each iload_<n>, fload_<n>, aload <n>, istore <n>,
fstore_ <n>, and astore_<n> instruction must be no greater than the value of
max_| ocals - 1.

» The index operand of each lload, dload, Istore, and dstore instruction must be
no greater than the value of max_| ocal s - 2.

» Theimplicitindex of eachlload_<n>,dload <n>,Istore_<n>,anddstore_<n>
instruction must be no greater than the value of max_I ocal s - 2.

» The indexbyte operands of each wide instruction modifying an iload, fload,
aload, istore, fstore, astore, ret, or iinc instruction must represent anon-negative
integer no greater than max_| ocal s - 1.

The indexbyte operands of each wide instruction modifying an lload, dload,
Istore, or dstoreinstruction must represent anon-negative integer no greater than
max_| ocal s - 2.

49.2 Structural Constraints

The structural constraints on the code array specify constraints on relationships
between Java Virtual Machine instructions. The structural constraints are as
follows:

» Each instruction must only be executed with the appropriate type and number
of arguments in the operand stack and local variable array, regardless of the
execution path that leads to itsinvocation.

THE cLAss FILE FORMAT Constraints on Java Virtual Machine code

An instruction operating on values of typei nt is also permitted to operate on
values of typebool ean, byt e, char, andshort . (Asnotedin 82.3.4 and §2.11.1,
the Java Virtual Machine internally converts values of types bool ean, byt e,
char, and short totypeint.)

If an instruction can be executed along several different execution paths, the
operand stack must have the same depth (82.6.2) prior to the execution of the
instruction, regardless of the path taken.

At no point during execution can the order of the local variable pair holding a
value of type| ong or doubl e be reversed or the pair split up.

At no point can the local variables of such a pair be operated on individually.

No local variable (or local variable pair, in the case of a value of typel ong or
doubl e) can be accessed beforeit is assigned a value.

At no point during execution can the operand stack grow to a depth (82.6.2)
greater than that implied by the max_st ack item.

At no point during execution can more val ues be popped from the operand stack
than it contains.

Each invokespecial instruction must name an instance initialization method
(82.9), amethod in the current class, or amethod in a superclass of the current
class.

If an invokespecial instruction names an instance initialization method from a
class that is not the current class or a superclass, and the target reference on
the operand stack is a class instance created by an earlier new instruction, then
invokespecial must name an instance initialization method from the class of that
classinstance.

When the instance initialization method (82.9) isinvoked, an uninitialized class
instance must be in an appropriate position on the operand stack.

An instance initialization method must never be invoked on an initialized class
instance.

When any instance method isinvoked or when any instance variable is accessed,
the class instance that contains the instance method or instance variable must
already beinitialized.

There must never be an uninitialized class instance on the operand stack or in a
local variable at the target of a backwards branch unless the special type of the
uninitialized class instance at the branch instruction is merged with itself at the
target of the branch (84.10.2.4).

4.9

145

4.9

146

Constraints on Java Virtual Machine code THE cLAss FILE FORMAT

There must never be an uninitialized class instance in a local variable in code
protected by an exception handler (84.10.2.4).

There must never be an uninitialized class instance on the operand stack or in a
local variable when ajsr or jsr_w instruction is executed.

Each instance initialization method (82.9), except for the instance initialization
method derived from the constructor of class j ect, must call either another
instance initialization method of t hi s or an instance initialization method of its
direct superclass super beforeitsinstance members are accessed.

However, instance fields of t hi s that are declared in the current class may be
assigned before calling any instance initialization method.

Theargumentsto each method invocation must be method invocation compatible
(JLS 85.3) with the method descriptor (84.3.3).

The type of every class instance that is the target of a method invocation
instruction must be assignment compatible (JLS 85.2) with the class or interface
type specified in the instruction.

In addition, the type of the target of an invokespecial instruction must be
assignment compatible with the current class, unless an instance initialization
method is being invoked.

Each return instruction must match its method's return type:

+ If the method returns abool ean, byt e, char, short, or i nt, only theireturn
instruction may be used.

+ If the method returns af | oat, | ong, Or doubl e, only an freturn, Ireturn, or
dreturn instruction, respectively, may be used.

+ If the method returns a ref erence type, it must do so using an areturn
instruction, and the type of the returned value must be assignment compatible
(JLS 85.2) with the return descriptor (84.3.3) of the method.

+ All instance initialization methods, class or interface initialization methods,
and methods declared to return voi d must use only the return instruction.

If getfield or putfield is used to access apr ot ect ed field declared in a superclass
that is amember of adifferent run-time package than the current class, then the
type of the class instance being accessed must be the same as or a subclass of
the current class.

If invokevirtual or invokespecial isused to access apr ot ect ed method declared
in asuperclass that is amember of adifferent run-time package than the current

THE cLAss FILE FORMAT Constraints on Java Virtual Machine code 49

class, then the type of the class instance being accessed must be the same as or
asubclass of the current class.

» Thetype of every classinstance accessed by agetfield instruction or modified by
a putfield instruction must be assignment compatible (JLS §5.2) with the class
type specified in the instruction.

» The type of every value stored by a putfield or putstatic instruction must be
compatible with the descriptor of the field (84.3.2) of the classinstance or class
being stored into:

+ If the descriptor type is bool ean, byt e, char, short, or i nt, then the value
must beanint .

* If thedescriptor typeisf | oat , | ong, or doubl e, thenthevaluemust beaf | oat ,
| ong, Or doubl e, respectively.

+ If thedescriptor typeisar ef er ence type, then the value must be of atype that
is assignment compatible (JL S 85.2) with the descriptor type.

» The type of every value stored into an array by an aastore instruction must be
ar ef erence type.

The component type of the array being stored into by the aastore instruction
must also be ar ef er ence type.

» Each athrow instruction must throw only values that are instances of class
Thr owabl e or of subclasses of Thr owabl e.

Each class mentioned in acat ch_t ype item of a method's exception table must
be Thr owabl e or asubclass of Thr owabl e.

» Execution never fals off the bottom of the code array.

» No return address (a value of typer et ur nAddr ess) may be loaded from alocal
variable.

» Theinstruction following each jsr or jsr_w instruction may be returned to only
by asingle ret instruction.

* No jsr or jsr_w instruction that is returned to may be used to recursively call
a subroutine if that subroutine is aready present in the subroutine call chain.
(Subroutines can be nested when using t ry-fi nal | y constructs from within a
finally clause.)

» Each instance of typer et ur nAddr ess can be returned to at most once.

147

4.10

148

Verification of cl ass Files THE cLAsS FILE FORMAT

If aret instruction returns to a point in the subroutine call chain above the ret
instruction corresponding to a given instance of typer et ur nAddr ess, then that
instance can never be used as areturn address.

4.10 Veification of cl ass Files

Even though a compiler for the Java programming language must only produce
cl ass files that satisfy all the static and structural constraints in the previous
sections, the Java Virtual Machine has no guarantee that any fileit is asked to load
was generated by that compiler or is properly formed. Applications such as web
browsersdo not download source code, which they then compile; these applications
download already-compiled cl ass files. The browser needs to determine whether
the cl ass file was produced by a trustworthy compiler or by an adversary
attempting to exploit the Java Virtual Machine.

An additional problem with compile-time checking is version skew. A user may
have successfully compiled a class, say Pur chaseSt ockOpt i ons, to be a subclass of
Tr adi ngd ass. But the definition of Tr adi ngC ass might have changed since the time
the class was compiled in away that is not compatible with pre-existing binaries. Methods
might have been deleted or had their return types or modifiers changed. Fields might have
changed types or changed from instance variables to class variables. The access modifiers
of amethod or variable may have changed from publ i ¢ to pri vat e. For adiscussion of
these issues, see Chapter 13, "Binary Compatibility," in The Java Language Specification,
Java SE 7 Edition.

Because of these potential problems, the Java Virtual Machine needs to verify
for itself that the desired constraints are satisfied by the cl ass files it attempts to
incorporate. A Java Virtual Machine implementation verifies that each cl ass file
satisfies the necessary constraints at linking time (85.4).

Linking-time verification enhances the performance of the interpreter. Expensive
checks that would otherwise have to be performed to verify constraints at run time
for each interpreted instruction can be eliminated. The Java Virtual Machine can
assume that these checks have aready been performed. For example, the Java
Virtual Machine will aready know the following:

* There are no operand stack overflows or underflows.
 All local variable uses and stores are valid.

» The argumentsto all the Java Virtual Machine instructions are of valid types.

THE cLAss FILE FORMAT Verification of cl ass Files

Theverifier also performs verification that can be done without looking at the code
array of the code attribute (84.7.3). The checks performed include the following:

» Ensuring that fi nal classes are not subclassed and that fi nal methods are not
overridden (85.4.5).

» Checking that every class (except j ect) has adirect superclass.

» Ensuring that the constant pool satisfies the documented static constraints; for
example, that each CONSTANT Ol ass_i nf o structurein the constant pool contains
in its name_i ndex item avalid constant pool index for a CONSTANT _Ut f 8_i nf o
structure.

» Checking that all field references and method references in the constant pool
have valid names, valid classes, and a valid type descriptor.

Note that these checks do not ensure that the given field or method actually exists
in the given class, nor do they check that the type descriptors given refer to real
classes. They ensure only that theseitems are well formed. More detailed checking
is performed when the bytecodes themselves are verified, and during resolution.

There are two strategies that Java Virtual Machine implementations may use for
verification:

» Verification by type checking must be used to verify cl ass fileswhose version
number is greater than or equal to 50.0.

* Verification by type inference must be supported by all Java Virtual Machine
implementations, except those conforming to the JavaME CLDC and Java Card
profiles, in order to verify cl ass files whose version number is less than 50.0.

Verification on Java Virtual Machine implementations supporting the Java ME
CLDC and Java Card profilesis governed by their respective specifications.

4.10.1 Verification by Type Checking

A cl ass file whose version number is greater than or equal to 50.0 (84.1) must be
verified using the type checking rules given in this section.

If, and only if, acl ass file'sversion number equals 50.0, then if the type checking
fails, a Java Virtual Machine implementation may choose to attempt to perform
verification by type inference (84.10.2).

This is a pragmatic adjustment, designed to ease the transition to the new verification
discipline. Many tools that manipulate cl ass files may ater the bytecodes of a method
in a manner that requires adjustment of the method's stack map frames. If atool does not
make the necessary adjustments to the stack map frames, type checking may fail even

4.10

149

4.10

150

Verification of cl ass Files THE cLAsS FILE FORMAT

though the bytecode isin principle valid (and would consequently verify under the old type
inference scheme). To allow implementors time to adapt their tools, Java Virtual Machine
implementations may fall back to the older verification discipline, but only for a limited
time.

In cases where type checking fails but type inference is invoked and succeeds, a certain
performance penalty is expected. Such a penalty is unavoidable. It also should serve as a
signal to tool vendors that their output needs to be adjusted, and provides vendors with
additional incentive to make these adjustments.

In summary, failover to verification by type inference supports both the gradual addition of
stack map frames to the Java SE platform (if they are not present in aversion 50.0 cl ass
file, failover is allowed) and the gradual removal of thejsr and jsr_w instructions from the
Java SE platform (if they are present in aversion 50.0 cl ass file, failover is allowed).

If a Java Virtual Machine implementation ever attempts to perform verification
by type inference on version 50.0 class files, it must do so in all cases where
verification by type checking fails.

This means that a Java Virtual Machine implementation cannot choose to resort to type
inferencein once case and not in another. It must either reject ¢l ass filesthat do not verify
via type checking, or else consistently failover to the type inferencing verifier whenever
type checking fails.

Thetype checker enforces type rulesthat are specified by means of Prolog clauses.
English language text is used to describe the type rulesin an informal way, while
the Prolog clauses provide aformal specification.

The type checker requires a list of stack map frames for each method with a
Code attribute (84.7.3). A list of stack map framesis given by the St ackMapTabl e
attribute (84.7.4) of a Code attribute. The intent is that a stack map frame must
appear at the beginning of each basic block in a method. The stack map frame
specifiesthe verification type of each operand stack entry and of each local variable
at the start of each basic block. The type checker reads the stack map frames for
each method with a Code attribute and uses these maps to generate a proof of the
type safety of the instructionsin the Code attribute.

A classistype safeif al its methods are type safe, and it does not subclassaf i nal
class.

THE cLAss FILE FORMAT Verification of cl ass Files

cl assl sTypeSaf e(C ass) : -
cl assC assNanme(d ass, Nane),
cl assDef i ni ngLoader (O ass, L),
super cl assChai n(Nanme, L, Chain),
Chain \=[],
cl assSuper G assNane(C ass, Supercl assNane),
| oadedC ass(Supercl assNane, L, Superclass),
cl assl sNot Fi nal (Supercl ass),
cl assMet hods(d ass, Methods),
checkl i st (net hodl sTypeSaf e(d ass), Methods).

cl assl sTypeSaf e(C ass) : -
cl assC assNanme(C ass, 'javal/l ang/ Ooject'),
cl assDefi ni ngLoader (Q ass, L),
i sBoot st rapLoader (L),
cl assMet hods(Cd ass, Methods),
checkl i st (et hodl sTypeSaf e(C ass), Methods).

The Prolog predicate cl assl sTypeSaf e assumes that d ass is a Prolog term
representing a binary class that has been successfully parsed and loaded. This
specification does not mandate the precise structure of this term, but does require
that certain predicates be defined upon it.

For example, we assume a predicate cl assMet hods(C ass, Met hods) that, given a
term representing aclass as described above asitsfirst argument, bindsits second argument
to alist comprising all the methods of the class, represented in a convenient form described
later.

Iff the predicate cl assl sTypeSaf e is not true, the type checker must throw the
exception Ver i f yEr r or toindicatethat thecl ass fileismalformed. Otherwise, the
cl ass file has type checked successfully and bytecode verification has completed
successfully.

The rest of this section explains the process of type checking in detail:

* First, we give Prolog predicates for core Java Virtual Machine artifacts like
classes and methods (84.10.1.1).

 Second, we specify the type system known to the type checker (84.10.1.2).

 Third, we specify the Prolog representation of instructions and stack map frames
(84.10.1.3, 84.10.1.4).

» Fourth, we specify how a method is type checked, for methods without code
(84.10.1.5) and methods with code (84.10.1.6).

4.10

151

4.10

152

Verification of cl ass Files THE cLAsS FILE FORMAT

* Fifth, we discuss type checking issues common to all load and store instructions
(84.10.1.7), and aso issues of accessto pr ot ect ed members (84.10.1.8).

* Finaly, we specify the rules to type check each instruction (84.10.1.9).

4.10.1.1 Accessors for Java Virtual Machine Artifacts

We stipulate the existence of 22 Prolog predicates ("accessors') that have certain
expected behavior but whose formal definitions are not given in this specification.

cl assC assNanme(d ass, C assNane)
Extracts the name, d assNane, of the classd ass.

cl asslslnterface(C ass)
Trueiff theclass, d ass, isan interface.

cl assl sNot Fi nal (O ass)
Trueiff theclass, d ass, isnot afi nal class.

cl assSuper Cl assNane(d ass, SuperC assNane)
Extracts the name, Super d assNane, of the superclass of classd ass.

classlinterfaces(d ass, Interfaces)

Extractsalist, I nt er f aces, of the direct superinterfaces of the classd ass.
cl assMet hods(d ass, Met hods)

Extracts alist, Met hods, of the methods declared in the class d ass.
classAttributes(C ass, Attributes)

Extractsalist, Att ri but es, of the attributes of the classd ass.

Each attribute is represented as a functor application of the form

attribute(AttributeName, AttributeContents), wWhere Attribut eName
isthe name of the attribute. Theformat of the attribute's contentsisunspecified.

cl assDefi ni ngLoader (d ass, Loader)
Extracts the defining class loader, Loader , of the classd ass.

i sBoot st rapLoader (Loader)
Trueiff the class loader Loader isthe bootstrap class loader.

| oadedd ass(Name, InitiatingLoader, O assDefinition)

True iff there exists a class named Narme whose representation (in accordance
with this specification) when loaded by the classloader | ni ti at i ngLoader is
Cl assDefinition.

THE cLAss FILE FORMAT Verification of cl ass Files

met hodName(Met hod, Nane)
Extracts the name, Narre, of the method Met hod.

net hodAccessFl ags(Met hod, AccessFl ags)
Extracts the access flags, AccessFl ags, of the method Met hod.

nmet hodDescri pt or (Met hod, Descri ptor)
Extracts the descriptor, Descri pt or, of the method Met hod.

met hodAt tri but es(Met hod, Attri butes)
Extractsalist, At t ri but es, of the attributes of the method Met hod.

i sNot Fi nal (Met hod, d ass)
Trueiff Met hod inclassC ass isnot final .

i sProtected(MenberC ass, Menber Name, Menber Descri ptor)
True iff there is a member named MenberName with descriptor
Menber Descri pt or inthe class Menber d ass and it isprot ect ed.

i sNot Prot ect ed(Menber Cl ass, Menber Nane, Menber Descri ptor)
True iff there is a member named MenberName with descriptor
Merber Descri pt or intheclass Menber d ass and it is not pr ot ect ed.

par seFi el dDescri pt or (Descri ptor, Type)
Converts a field descriptor, Descri pt or, into the corresponding verification
type Type (84.10.1.2).

par seMet hodDescri ptor (Descri ptor, ArgTypeList, ReturnType)

Converts a method descriptor, Descri pt or, into alist of verification types,
Ar gTypelLi st , corresponding to the method argument types, and a verification
type, Ret ur nType, corresponding to the return type.
parseCodeAttri bute(d ass, Method, FranmeSize, MaxStack, ParsedCode,
Handl ers, StackMap)
Extracts the instruction stream, Par sedCode, of the method Met hod in d ass,
as well as the maximum operand stack size, Max St ack, the maximal number
of local variables, Fr anesi ze, the exception handlers, Handl er s, and the stack
map St ackMap.

The representation of the instruction stream and stack map attribute must be as
specified in §4.10.1.3 and §4.10.1.4.

samePackageName(C ass1, C ass2)
True iff the package names of C ass1 and d ass2 are the same.

4.10

153

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

di f f er ent PackageNanme(Cl ass1, C ass?2)
True iff the package names of d ass1 and d ass2 are different.

When type checking a method's body, it is convenient to access information about
the method. For this purpose, we define an environment, a six-tuple consisting of:
» aclass

» amethod

the declared return type of the method

the instructionsin amethod
 the maximal size of the operand stack
* alist of exception handlers

We specify accessors to extract information from the environment.

al I I nstructions(Environnent, Instructions) :-
Envi ronnent = environnent (_C ass, _Method, _ReturnType,
Instructions, _, _).

excepti onHandl er s(Envi ronnment, Handlers) : -
Envi ronnent = environnent (_C ass, _Method, _ReturnType,
_Instructions, _, Handlers).

maxQOper andSt ackLengt h(Envi ronnent, MaxSt ack) : -
Envi ronnent = environnent (_C ass, _Method, _ReturnType,
_Instructions, MaxStack, _Handlers).

t hi sd ass(Environment, class(C assNanme, L)) :-
Envi ronnent = environnent (Cd ass, _Method, _ReturnType,
_Instructions, _,),
cl assDef i ni ngLoader (O ass, L),
cl assCl assNanme(d ass, C assNane).

t hi sMet hodRet ur nType(Envi ronnent, ReturnType) : -
Envi ronnent = environnent (_Cl ass, _Method, ReturnType,
_Instructions, _,).

We specify additional predicates to extract higher-level information from the
environment.

154

THE cLAss FILE FORMAT Verification of cl ass Files

of f set St ackFrane(Envi ronment, O fset, StackFrane) :-
al I I nstructions(Environnent, Instructions),
menber (st ackMap(Of f set, StackFrame), Instructions).

current d assLoader (Envi ronment, Loader) : -
t hi sd ass(Environment, class(_, Loader)).

Finally, we specify a general predicate used throughout the type rules:

not Menber (_, []).
not Menber (X, [A| Mre]) :- X \= A notMnber (X, Mre).

The principle guiding the determination as to which accessors are stipul ated and which are
fully specified is that we do not want to over-specify the representation of thecl ass file.
Providing specific accessors to the d ass or Met hod term would force us to completely
specify the format for a Prolog term representing the cl ass file.

4.10.1.2 Verification Type System

The type checker enforces a type system based upon a hierarchy of verification
types, illustrated below.

Most verification types have adirect correspondence with the types represented by
field descriptors (84.3.2) in Table 4.2. The only exceptions are the field descriptors
B, C, S, and z, all of which correspond to the verification typei nt .

4.10

155

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

Verification type hierarchy:

top
/\
/ \
/ \
oneWr d t woWor d
/ | \ / \
/ | \ / \
int float reference | ong doubl e
/ \
/ \
/ \
/ \
uninitialized hj ect
/ \ \
/ \ \
uninitializedThis wuninitialized(offset) R +
| Java reference |
| type hierarchy |
o e e e e +

156

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

Subtyping is reflexive.
i sAssi gnabl e(X, X).

The verification types which are not reference types in the Java programming
language have subtype rules of the form:

i sAssignabl e(v, X) :- isAssignable(the_direct_supertype_of v, X).
Thatis, v isasubtypeof Xif thedirect supertypeof v isasubtype of X. Therulesare:

i sAssi gnabl e(oneWrd, top).
i sAssi gnabl e(twoWrd, top).

i sAssi gnabl e(int, X) :- 1 sAssignabl e(oneWrd, X).

i sAssignabl e(float, X) :- isAssignable(oneWrd, X).

i sAssi gnabl e(1 ong, X) :- 1 sAssignabl e(twoWrd, X).

i sAssi gnabl e(doubl e, X) :- isAssignable(twoWrd, X).

i sAssi gnabl e(ref erence, X) :- 1 sAssignabl e(oneWrd, X).

i sAssignabl e(class(_, _), X) :- isAssignable(reference, X).

i sAssignabl e(arrayO(_), X) :- isAssignable(reference, X).

i sAssi gnabl e(uninitialized, X) :- 1sAssignabl e(reference, X).

i sAssignabl e(uninitializedThis, X) :- isAssignable(uninitialized, X).
i sAssignabl e(uninitialized(_), X) :- isAssignable(uninitialized, X).
i sAssignabl e(null, class(_, _)).

i sAssignabl e(null, arrayOor(_)).

i sAssignabl e(null, X) :- isAssignable(class('javal/lang/ Object', BL), X,

i sBoot st rapLoader (BL) .

These subtype rules are not necessarily the most obviousformulation of subtyping. Thereis
aclear split between subtyping rulesfor reference typesin the Java programming language,
and rulesfor the remaining verification types. The split allows usto state general subtyping
rel ations between Java programming language reference types and other verification types.
Theserelations hold independently of a Javareference type's position in the type hierarchy,
and help to prevent excessive class loading by aJava Virtual Machine implementation. For
example, we do not want to start climbing the Java superclass hierarchy in response to a
query of theformcl ass(foo, L) < twoWrd.

We aso have arule that says subtyping is reflexive, so together these rules cover most
verification types that are not reference types in the Java programming language.

Subtype rules for the reference types in the Java programming language are
specified recursively with i sJavaAssi gnabl e.

157

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

i sAssi gnabl e(cl ass(X, Lx), class(Y, Ly)) :-
i sJavaAssi gnabl e(cl ass(X, Lx), class(Y, Ly)).

i sAssi gnabl e(arrayOdf (X), class(Y, L)) :-
i sJavaAssi gnabl e(arrayOf (X), class(Y, L)).

i sAssi gnabl e(arrayOf (X), arrayd(vY)) :-
i sJavaAssi gnabl e(arraydf (X), arraydf(v)).

For assignments, interfaces are treated like bj ect .

i sJavaAssi gnabl e(class(_, _), class(To, L)) :-
| oadedd ass(To, L, Tod ass),
cl asslsinterface(Tod ass).

i sJavaAssi gnabl e(From To) : -
i sJavaSubcl assOf (From To).

Array types are subtypes of bj ect . Theintent isalso that array types are subtypes
of Cl oneabl e andj ava. i 0. Seri al i zabl e.

i sJavaAssi gnabl e(arrayOr (_), class('javal/lang/ Object', BL)) :-
i sBoot st rapLoader (BL) .

i sJavaAssi gnabl e(arrayor (), X) :-
i sArrayl nterface(X).

i sArraylnterface(class('javal/lang/ d oneable', BL)) :-
i sBoot st rapLoader (BL) .

isArraylnterface(class('javal/iol/ Serializable', BL)) :-
i sBoot st rapLoader (BL) .

Subtyping between arrays of primitive type isthe identity relation.

i sJavaAssi gnabl e(arraydf (X), arraydf(yY)) :-

aton(X),
atom(y),
X =Y.

Subtyping between arrays of reference typeis covariant.

i sJavaAssi gnabl e(arraycf (X), arraydf(yY)) :-
conpound(X), conpound(Y), isJavaAssignable(X, Y).

Subclassing is reflexive.

158

THE cLAss FILE FORMAT Verification of cl ass Files

i sJavaSubcl assOf (cl ass(Subcl assNanme, L), class(SubclassNane, L)).

i sJavaSubcl assOf (cl ass(Subcl assNanme, LSub), class(SuperclassNanme, LSuper))

super cl assChai n(Subcl assNanme, LSub, Chain),
menber (cl ass(Supercl assNane, L), Chain),

| oadedC ass(Supercl assNane, L, Sup),

| oadedC ass(Super cl assNanme, LSuper, Sup).

super cl assChai n(Cl assNanme, L, [class(SuperclassNane, Ls) | Rest]) :-
| oadedC ass(Cl assNane, L, C ass),
cl assSuper G assNanme(C ass, Supercl assNane),
cl assDefi ni ngLoader (Q ass, Ls),
super cl assChai n(Super cl assNanme, Ls, Rest).

supercl assChain('javal/lang/ Oject', L, []) :-
| oadedC ass('javal/l ang/ Object', L, C ass),
cl assDefi ni ngLoader (C ass, BL),
i sBoot st rapLoader (BL) .

4.10.1.3 Instruction Representation

Individual bytecode instructions are represented in Prolog as terms whose functor
is the name of the instruction and whose arguments are its parsed operands.

For example, an aload instruction isrepresented astheterm al oad(N) , which includesthe
index N that is the operand of the instruction.

The instructions as awhole are represented as alist of terms of the form:
instruction(COf fset, Anlnstruction)

For example, i nstruction(21, al oad(1)).

The order of instructionsin this list must bethe same asin thecl ass file.

A few instructions have operands that are constant pool entries representing
fields, methods, and dynamic call sites. In the constant pool, a field is
represented by a CONSTANT_Fi el dr ef _i nf o structure, amethod is represented by
a CONSTANT _I nt er f aceMet hodr ef _i nf o structure (for an interface's method) or a
CONSTANT_Met hodr ef _i nf o structure (for aclasssmethod), and adynamic call site
is represented by a CONSTANT _I nvokeDynami c_i nf o structure (84.4.2, §4.4.10).
Such structures are represented as functor applications of the form:

e fiel d(Fiel dd assNane, Fi el dNane, Fi el dDescriptor) for a field,
where Fiel dC assNane is the name of the class referenced by the

4.10

159

4.10

160

Verification of cl ass Files THE cLAsS FILE FORMAT

cl ass_i ndex item in the CONSTANT Fi el dref _i nf o Structure, and Fi el dNane
and Fi el dDescri pt or correspond to the name and field descriptor referenced
by the nane_and_t ype_i ndex item of the CONSTANT_Fi el dr ef _i nf o structure.

¢ i met hod(Met hodl nt f Nane, Met hodNane, Met hodDescriptor) for
an interface's method, where MethodintfName is the name of
the interface referenced by the «class_index item of the
CONSTANT I nterfaceMet hodref info Structure, and MethodName and
Met hodDescr i pt or correspond to the name and method descriptor referenced by
the nane_and_t ype_i ndex item of the CONSTANT | nt er f aceMet hodref _i nfo
structure;

* net hod(Met hodd assNane, Met hodName, MethodDescriptor) for a classs
method, where Met hodd assNane is the name of the class referenced
by the class_index item of the CONSTANT Methodref_info structure,
and MethodName and Met hodDescriptor correspond to the name and
method descriptor referenced by the nanme_and_type_i ndex item of the
CONSTANT_Met hodr ef _i nf o structure; and

e dmet hod(Cal | Si t eNane, Met hodDescri ptor) for a dynamic cal site,
where Cal | SiteName and Met hodDescri ptor correspond to the name and
method descriptor referenced by the name_and_type_index item of the
CONSTANT_I nvokeDynanmi c_i nf o structure.

For clarity, we assume that field and method descriptors (84.3.2) are mapped into
more readable names: the leading L and trailing ; are dropped from class names,
and the BaseType characters used for primitive types are mapped to the names of
those types.

For example, a getfield instruction whose operand was an index into the constant
pool that refers to a field foo of type F in class Bar would be represented as
getfield(field('Bar', '"foo', "F)).

Constant pool entries that refer to constant values, such as CONSTANT_Stri ng,
CONSTANT _I nt eger, CONSTANT_FI oat, CONSTANT_Long, CONSTANT_Doubl e, and
CONSTANT_d ass, are encoded via the functors whose names are string, int,
float, | ong, doubl e, and cl assConst ant respectively.

For example, an Idc instruction for loading the integer 91 would be encoded as
I de(int(91)).

4.10.1.4 Sack Map Frame Representation

Stack map frames are represented in Prolog as alist of terms of the form:

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

stackMap(O fset, TypeState)

where O f set is an integer indicating the offset of the instruction the frame map
applies to, and TypeSt at e is the expected incoming type state (84.7.4) for that
instruction.

The order of stack map framesin thislist must be the sasme asin thecl ass file.

TypeSt at e hasthe form:
frame(Local s, OperandStack, Flags)

where:

* Local s isalist of verification types, such that the Nth element of the list (with
0-based indexing) represents the type of local variable N.

If any local variableinLocal s hasthetypeuni ni ti al i zedThi s, thenFl ags has
the single element f 1 agThi sUni ni t, otherwiseit isan empty list.

* OperandSt ack isalist of types, such that the first element represents the type
of the top of the operand stack, and the elements below the top follow in the
appropriate order.

Types of size 2 (1 ong and doubl e) are represented by two entries, with the first
entry being t op and the second one being the type itself.

For example, astack withadoubl e, ani nt , and al ong would be represented as| t op,
double, int, top, long].

Reference types other than array types are represented using the functor cl ass.
class(N, L) representsthe classwhose binary nameisNasloaded by the loader
L. Notethat L isaninitiating loader (85.3) of the class represented by cl ass(N,
L) and may, or may not, be the class's defining loader.

Array types are represented by applying the functor arrayof to an argument
denoting the component type of the array.

The verification type unini ti al i zed(of f set) is represented by applying the
functor uni ni ti al i zed to an argument representing the numerical value of the
of fset.

Other verification types are represented in prolog as atoms whose name denotes
the verification type in question.

The class Obj ect would be represented as cl ass(' j ava/l ang/ Obj ect', BL),
where BL is the bootstrap |oader.

161

4.10

162

Verification of cl ass Files THE cLAsS FILE FORMAT

The types int[] and Object[] would be represented by arrayOf (int) and
arrayOf (cl ass(' javal/l ang/ Qbj ect', BL)) respectively.
* Flags is a list which may either be empty or have the single element
flagThisUninit.

Thisflag is used in constructors, to mark type states where initialization of this
has not yet been completed. In such type states, it isillegal to return from the
method.

Subtyping (84.10.1.2) is extended pointwise to type states.

The local variable array of a method has a fixed length by construction (see
net hodl ni ti al StackFranme in 84.10.1.6) while the operand stack grows and
shrinks. Therefore, we require an explicit check on the length of the operand stacks
whose assignability is desired.

franel sAssi gnabl e(frane(Local s1, StackMapl, Flagsl),
frame(Local s2, StackMap2, Flags2)) :-
I engt h(St ackMapl, StackMapLength),
I engt h(St ackMap2, StackMapLength),
mapl i st (i sAssi gnabl e, Local s1, Local s2),
mapl i st (i sAssi gnabl e, StackMapl, StackMap2),
subset (Fl ags1, Flags2).

The length of the operand stack must not exceed the declared maximum stack
length.

oper andSt ackHasLegal Lengt h(Envi ronnent, OperandStack) : -
| engt h(Oper andSt ack, Length),
maxQper andSt ackLengt h(Envi ronment, MaxSt ack),
Lengt h =< MaxSt ack.

Certain array instructions (8aaload, 8arraylength, 8baload, 8bastore) peek at the
types of values on the operand stack in order to check they are array types. The
following clause accesses the I'th element of the operand stack from a type state.

nt h1Oper andSt ackl s(1, frane(_Local s, OperandStack, _Flags), Elenent) :-
nthl(l, OperandStack, Elenent).

Manipulation of the operand stack by load and store instructions (84.10.1.7) is
complicated by the fact that some types occupy two entries on the stack. The
predicates given bel ow take thisinto account, allowing the rest of the specification
to abstract from thisissue.

Pop alist of types off the stack.

THE cLAss FILE FORMAT Verification of cl ass Files

canPop(franme(Local s, OperandStack, Flags), Types,
frame(Local s, PoppedOperandStack, Flags)) :-
popMat chi ngLi st (Oper andSt ack, Types, PoppedOperandSt ack) .

popMat chi ngLi st (Oper andSt ack, [], OperandStack).

popMat chi ngLi st (OperandStack, [P | Rest], NewOperandStack) :-
popMat chi ngType(Oper andSt ack, P, TenpOperandStack, _Actual Type),
popMat chi ngLi st (TenpQOper andSt ack, Rest, NewOper andSt ack) .

Pop anindividual type off the stack. More precisely, if thelogical top of thestack is
some subtype of the specified type, Type, then pop it. If atype occupies two stack
dots, the logical top of stack typeisreally the type just below the top, and the top

of stack isthe unusable typet op.

popMat chi ngType([Actual Type | OperandSt ack],
Type, OperandStack, Actual Type) : -

sizeOf (Type, 1),
i sAssi gnabl e(Act ual Type, Type).

popMat chi ngType([top, Actual Type | OperandStack],
Type, OperandStack, Actual Type) : -

sizeOf (Type, 2),
i sAssi gnabl e(Act ual Type, Type).

sizeO (X, 2) :- isAssignable(X, twoWrd).
sizeO (X, 1) :- isAssignable(X, oneWrd).
sizeO (top, 1).

Push alogical type onto the stack. The exact behavior varies with the size of the
type. If the pushed type is of size 1, we just push it onto the stack. If the pushed
typeis of size 2, we push it, and then push t op.

pushOper andSt ack(Oper andSt ack, 'void', OperandStack).

pushOper andSt ack(Oper andSt ack, Type, [Type | OperandStack]) :-
sizeOf (Type, 1).

pushOper andSt ack(Oper andSt ack, Type, [top, Type | OperandStack]) :-
sizeOf (Type, 2).

Push alist of types onto the stack if thereis space.

4.10

163

4.10

164

Verification of cl ass Files THE cLAsS FILE FORMAT

canSaf el yPush(Envi ronnent, | nput OperandStack, Type, Qutput QperandStack) : -

pushOper andSt ack(| nput Oper andSt ack, Type, CQutput Qper andSt ack),
oper andSt ackHasLegal Lengt h(Envi ronnent, CQut put Oper andSt ack) .

canSaf el yPushLi st (Envi ronment, | nput Oper andSt ack, Types,
Qut put Oper andSt ack) : -
canPushlLi st (| nput Oper andSt ack, Types, Qut put OperandSt ack),
oper andSt ackHasLegal Lengt h(Envi ronnent, CQut put Oper andSt ack) .

canPushlLi st (| nput Oper andSt ack, [], |nputQperandStack).

canPushlLi st (| nput OperandSt ack, [Type | Rest], CQutputQperandStack) : -
pushOper andSt ack(| nput Oper andSt ack, Type, |nterinmOperandStack),
canPushLi st (I nteri mOper andSt ack, Rest, Qutput QperandSt ack).

Manipulation of the operand stack by the dup instructions is specified entirely in
terms of the category of types for values on the stack (§2.11.1).

Category 1 types occupy asingle stack slot. Popping alogical type of category 1,
Type, Off the stack is possible if the top of the stack is Type and Type isnot t op
(otherwise it could denote the upper half of a category 2 type). The result is the
incoming stack, with the top slot popped off.

popCat egoryl1([Type | Rest], Type, Rest) :-
Type \= top,
sizeOf (Type, 1).

Category 2 types occupy two stack slots. Popping a logical type of category 2,
Type, Off the stack is possibleif thetop of the stack istypet op, and the dot directly
below it is Type. Theresult is the incoming stack, with the top 2 slots popped off.

popCat egory2([top, Type | Rest], Type, Rest) :-
sizeOf (Type, 2).

Most of the type rules for individual instructions (84.10.1.9) depend on the notion
of avalid typetransition. A typetransitionisvalid if one can pop alist of expected
types off theincoming type state's operand stack and replace them with an expected
result type, resulting in anew valid type state. In particular, the size of the operand
stack in the new type state must not exceed its maximum declared size.

THE cLAss FILE FORMAT Verification of cl ass Files

val i dTypeTransi ti on(Envi ronnent, ExpectedTypesOnStack, ResultType,
frame(Local s, |nputOperandStack, Flags),
frame(Local s, Next OperandStack, Flags)) :-
popMat chi ngLi st (| nput Oper andSt ack, Expect edTypesOnSt ack,
I nt eri nOper andSt ack) ,
pushOper andSt ack(| nt eri nOper andSt ack, Resul t Type, Next QperandSt ack),
oper andSt ackHasLegal Lengt h(Envi ronnent, Next Oper andSt ack) .

4.10

165

4.10

166

Verification of cl ass Files THE cLAsS FILE FORMAT

4.10.1.5 Type Checking Abstract and Native Methods

Abstract methods and native methods are considered to be type safe if they do not
override afinal method.

nmet hodl sTypeSaf e(d ass, Method) :-
doesNot Overri deFi nal Met hod(d ass, Method),
nmet hodAccessFl ags(Met hod, AccessFl ags),
menber (abstract, AccessFl ags).

nmet hodl sTypeSaf e(d ass, Method) :-
doesNot Overri deFi nal Met hod(d ass, Method),
nmet hodAccessFl ags(Met hod, AccessFl ags),
menber (nati ve, AccessFl ags).

doesNot Overri deFi nal Met hod(cl ass('java/l ang/ Object', L), Method) :-
i sBoot st rapLoader (L) .

doesNot Overri deFi nal Met hod(Cl ass, Method) : -
cl assSuper G assNanme(C ass, Supercl assNane),
cl assDefi ni ngLoader (C ass, L),
| oadedC ass(Supercl assNane, L, Superclass),
cl assMet hods(Super cl ass, Met hodLi st),
final Met hodNot Overri dden(Met hod, Supercl ass, MethodList).

final Met hodNot Overri dden(Met hod, Supercl ass, MethodList) :-
met hodNanme(Met hod, Nane),
nmet hodDescri pt or (Met hod, Descri ptor),
menber (nmet hod(_, Nane, Descriptor), MethodList),
i sNot Fi nal (Met hod, Supercl ass).

final Met hodNot Overri dden(Met hod, Supercl ass, MethodList) :-
met hodNanme(Met hod, Nane),
nmet hodDescri pt or (Met hod, Descri ptor),
not Menber (et hod(_, Nane, Descriptor), MethodList),
doesNot Overri deFi nal Met hod(Super cl ass, Method).

THE cLAss FILE FORMAT Verification of cl ass Files

4.10.1.6 Type Checking Methods with Code

Non-abstract, non-native methods are type correct if they have code and the code
istype correct.

nmet hodl sTypeSaf e(d ass, Method) :-
doesNot Overri deFi nal Met hod(d ass, Method),
nmet hodAccessFl ags(Met hod, AccessFl ags),
nmet hodAttri but es(Met hod, Attributes),
not Menber (nati ve, AccessFl ags),
not Menber (abstract, AccessFl ags),
menber (attribute(' Code', _), Attributes),
nmet hodW t hCodel sTypeSaf e(Cl ass, Met hod).

A method with codeistypesafeif it ispossibleto merge the code and the stack map
framesinto asingle stream such that each stack map frame precedes the instruction
it corresponds to, and the merged stream is type correct. The method's exception
handlers, if any, must also be legal.

met hodW t hCodel sTypeSaf e(Cl ass, Method) : -
parseCodeAttribute(C ass, Method, FraneSize, MaxStack,
Par sedCode, Handl ers, StackMap),
mer geSt ackMapAndCode(St ackMap, ParsedCode, Mer gedCode),

4.10

met hodl ni ti al St ackFrame(d ass, Method, FraneSize, StackFrame, ReturnType),

Envi ronnent = environnent (d ass, Method, ReturnType, MergedCode,
MaxSt ack, Handl ers),

handl er sAreLegal (Envi ronnent),

mer gedCodel sTypeSaf e(Envi ronment, MergedCode, StackFrane).

167

4.10

168

Verification of cl ass Files THE cLAsS FILE FORMAT

Let us consider exception handlersfirst.
An exception handler is represented by afunctor application of the form:

handl er(Start, End, Target, C assNane)

whose arguments are, respectively, the start and end of the range of instructions
covered by the handler, the first instruction of the handler code, and the name of
the exception class that this handler is designed to handle.

An exception handler is legal if its start (St art) is less than its end (End), there
exists an instruction whose offset is equal to St art, there exists an instruction
whose offset equals End, and the handler's exception classis assignable to the class
Thr owabl e. The exception class of a handler is Thr owabl e if the handler's class
entry is 0, otherwise it is the class named in the handler.

handl er sAreLegal (Envi ronnent) : -
excepti onHandl er s(Envi ronment, Handl ers),
checkl i st (handl erl sLegal (Envi ronment), Handl ers).

handl er | sLegal (Envi ronment, Handler) : -
Handl er = handl er(Start, End, Target, _),
Start < End,
al I I nstructions(Environnent, Instructions),
menber (i nstruction(Start, _), Instructions),
of f set St ackFr ame(Envi ronnment, Target, _),
i nstructionsl ncl udeEnd(I nstructions, End),
current C assLoader (Envi ronment, CurrentLoader),
handl er Excepti onC ass(Handl er, ExceptionC ass, CurrentlLoader),
i sBoot st rapLoader (BL),
i sAssi gnabl e(Excepti onC ass, class('javal/lang/ Throwable', BL)).

i nstructionslncl udeEnd(I nstructions, End) :-
menber (i nstruction(End, _), Instructions).

i nstructionslncl udeEnd(I nstructions, End) :-
menber (endOf Code(End), Instructions).

handl er Excepti ond ass(handler(_, _, _, 0),
class('javal/lang/ Throwable', BL), _) :-
i sBoot st rapLoader (BL) .

handl er Excepti onC ass(handler(_, _, _, Nanme),

class(Nane, L), L) :-
Nane \= 0.

THE cLAss FILE FORMAT Verification of cl ass Files

Let us now turn to the stream of instructions and stack map frames.
Merging instructions and stack map framesinto asingle stream involvesfour cases:

» Merging an empty St ackMap and alist of instructions yields the original list of
instructions.

mer geSt ackMapAndCode([], CodelList, CodelList).

» Given alist of stack map frames beginning with the type state for the instruction
at O fset, and alist of instructions beginning at o f set , the merged list is the
head of the stack framelist, followed by the head of theinstruction list, followed
by the merge of the tails of the two lists.

mer geSt ackMapAndCode([st ackMap(Of f set, Map) | Rest Map],
[instruction(Oifset, Parse) | RestCode],
[stackMap(Of fset, Map),
instruction(Offset, Parse) | RestMerge]) :-
mer geSt ackMapAndCode(Rest Map, Rest Code, Rest Merge).

» Otherwise, given a list of stack frames beginning with the type state for the
instruction at o f set M and a list of instructions beginning at o f set P, then, if
OfsetP < O fset M the merged list consists of the head of the instruction list,
followed by the merge of the stack frame list and thetail of the instruction list.

mer geSt ackMapAndCode([st ackMap(Of fsetM Map) | Rest Map],
[instruction(OffsetP, Parse) | RestCode],
[instruction(OffsetP, Parse) | RestMerge]) :-
OfsetP < OfsetM
mer geSt ackMapAndCode([st ackMap(Of fsetM Map) | Rest Map],
Rest Code, Rest Merge).

» Otherwise, the merge of the two lists is undefined. Since the instruction list has
monotonically increasing offsets, the merge of the two listsis not defined unless
every stack map frame offset has a corresponding instruction offset and the stack
map frames are in monotonically increasing order.

4.10

169

4.10

170

Verification of cl ass Files THE cLAsS FILE FORMAT

To determine if the merged stream for a method is type correct, we first infer the
method's initial type state.

The initia type state of a method consists of an empty operand stack and local
variable types derived from the type of t hi s and the arguments, as well as the
appropriate flag, depending on whether thisis an <i ni t > method.

met hodl ni ti al St ackFranme(d ass, Method, FraneSize, franme(Locals, [], Flags),

Ret ur nType) : -

met hodDescri pt or (Met hod, Descriptor),

par seMet hodDescri pt or (Descri ptor, RawArgs, ReturnType),

expandTypelLi st (RawAr gs, Args),

met hodl ni ti al Thi sType(d ass, Method, ThisList),

flags(ThisList, Flags),

append(Thi sLi st, Args, ThisArgs),

expandToLengt h(Thi sArgs, FraneSi ze, top, Locals).

Given alist of types, the following clause produces a list where every type of size
2 has been substituted by two entries. one for itself, and onet op entry. The result
then corresponds to the representation of thelist as 32-bit wordsin the Java Virtua
Machine.

expandTypeList([], []).

expandTypeList([lItem | List], [Item]| Result]) :-
sizeO(Item 1),
expandTypeli st (Li st, Result).

expandTypeList([Item | List], [Item top | Result]) :-
sizeO(Item 2),
expandTypelLi st (Li st, Result).

flags([uninitializedThis], [flagThisUninit]).
flags(X, []) :- X \= [uninitializedThis].

expandToLength(List, Size, _Filler, List) :-
| ength(List, Size).

expandToLength(List, Size, Filler, Result) :-
I ength(List, ListLength),
Li stLength < Size,
Delta is Size - ListLength,
| ength(Extra, Delta),
checklist(=(Filler), Extra),
append(List, Extra, Result).

THE cLAss FILE FORMAT Verification of cl ass Files

For the initial type state of an instance method, we compute the type of t hi s and
put it in alist. The type of t hi s in the <i ni t > method of bj ect is Gbj ect ; in
other <i ni t > methods, thetypeof t hi s isuni ni ti al i zedThi s; otherwise, thetype
of thi s in an instance method iscl ass(N, L) where N is the name of the class
containing the method and L isits defining class loader.

For theinitial type state of a static method, t hi s isirrelevant, so the list is empty.

met hodl ni ti al Thi sType(_d ass, Method, []) :-
met hodAccessFl ags(Met hod, AccessFl ags),
menber (static, AccessFl ags),
met hodNarme(Met hod, Met hodNane),
Met hodNanme \= '<init>".

nmet hodl ni ti al Thi sType(d ass, Method, [This]) :-
nmet hodAccessFl ags(Met hod, AccessFl ags), \
not Menber (static, AccessFlags),\
i nst anceMet hodl ni ti al Thi sType(Cl ass, Method, This).

i nst anceMet hodl ni ti al Thi sType(Cl ass, Method, class('javal/lang/ Object', L))
met hodName(Met hod, '<init>"),
cl assDef i ni ngLoader (O ass, L),
i sBoot st rapLoader (L),
cl assC assNanme(d ass, 'javal/lang/ Qbject').

i nstanceMet hodl ni ti al Thi sType(d ass, Method, uninitializedThis) :-
met hodName(Met hod, '<init>'),
cl assC assNane(d ass, O assNane),
cl assDef i ni ngLoader (O ass, CurrentLoader),
super cl assChai n(d assNane, CurrentLoader, Chain),
Chain \= [].

i nstanceMet hodl ni ti al Thi sType(d ass, Method, class(C assNane, L)) :-
met hodNarme(Met hod, Met hodNane),
Met hodNanme \= '<init>",
cl assDef i ni ngLoader (d ass, L),
cl assC assNane(d ass, O assNane).

4.10

171

4.10

172

Verification of cl ass Files THE cLAsS FILE FORMAT

We now compute whether the merged stream for a method is type correct, using
the method'sinitial type state:

* If we have a stack map frame and an incoming type state, the type state must be
assignable to the one in the stack map. We may then proceed to type check the
rest of the stream with the type state given in the stack map.

mer gedCodel sTypeSaf e(Envi ronment, [stackMap(COffset, MapFrame) | MoreCode],
frame(Local s, OperandStack, Flags)) :-
framel sAssi gnabl e(frane(Local s, OperandStack, Flags), MapFrane),
mer gedCodel sTypeSaf e(Envi ronment, NMoreCode, MapFrane).

» A merged code stream istype saferelativeto an incoming type state T if it begins
with an instruction | that is type safe relative to T, and | satisfies its exception
handlers (see below), and the tail of the stream is type safe given the type state
following that execution of 1 .

Next St ackFr ame indicates what falls through to the following instruction. For
an unconditional branch instruction, it will have the special value af t er Got o.
Except i onSt ackFr ane indicates what is passed to exception handlers.

mer gedCodel sTypeSaf e(Environment, [instruction(Ofset, Parse) | MreCode],
frame(Local s, OperandStack, Flags)) :-
i nstructionl sTypeSaf e(Parse, Environment, O fset,
frame(Local s, OperandStack, Flags),
Next St ackFrane, ExceptionStackFrane),
instructionSatisfiesHandl ers(Environment, Ofset, ExceptionStackFrane),
mer gedCodel sTypeSaf e(Envi ronnment, MoreCode, Next StackFrane).

» After an unconditional branch (indicated by an incoming type state of
after Got o), if we have a stack map giving the type state for the following
instructions, we can proceed and type check them using the type state provided
by the stack map.

ner gedCodel sTypeSaf e(Envi ronnent, [stackMap(Offset, MapFrane) | MoreCode],
afterGoto) :-
ner gedCodel sTypeSaf e(Envi ronnent, MreCode, MapFrane).

* Itisillegal to have code after an unconditional branch without astack map frame
being provided for it.

mer gedCodel sTypeSaf e(_Envi ronnment, [instruction(_, _) | _MreCode],
afterGoto) :-
wite_|In('No stack frame after unconditional branch'),
fail.

* If we have an unconditional branch at the end of the code, stop.

THE cLAss FILE FORMAT Verification of cl ass Files

mer gedCodel sTypeSaf e(_Envi ronnment, [endOf Code(Offset)],
af ter Got 0) .

Branching to atarget istype safeif the target has an associated stack frame, Fr ane,
and the current stack frame, St ackFr ane, is assignable to Fr ane.

targetl sTypeSaf e(Environnment, StackFrane, Target) :-
of f set St ackFranme(Envi ronnment, Target, Frane),
framel sAssi gnabl e(St ackFrane, Frane).

Aninstruction satisfiesits exception handlersif it satisfies every exception handler
that is applicable to the instruction.

instructionSatisfiesHandl ers(Environnent, O fset, ExceptionStackFrane) :-
excepti onHandl er s(Envi ronnment, Handl ers),
subl i st (i sApplicabl eHandl er (Of fset), Handl ers, Applicabl eHandl ers),
checklist(instructionSatisfiesHandl er (Environment, ExceptionStackFrane),
Appl i cabl eHandl ers) .

An exception handler is applicable to an instruction if the offset of the instruction
is greater or equal to the start of the handler's range and less than the end of the
handler's range.

i sAppl i cabl eHandl er (O fset, handler(Start, End, _Target, _C assNane)) :-
O fset >= Start,
O fset < End.

An ingtruction satisfies an exception handler if its incoming type state is
St ackFr ame, and the handler's target (the initial instruction of the handler code)
is type safe assuming an incoming type state T. The type state T is derived from
St ackFr ame by replacing the operand stack with a stack whose sole element isthe
handler's exception class.

instructionSati sfiesHandl er (Envi ronment, StackFrane, Handler) :-
Handl er = handler(_, _, Target, _),
current d assLoader (Envi ronment, CurrentLoader),
handl er Excepti ond ass(Handl er, ExceptionC ass, CurrentlLoader),
/* The stack consists of just the exception. */
St ackFrame = frane(Locals, _, Flags),
ExcSt ackFrame = frane(Locals, [ExceptionC ass], Flags),
oper andSt ackHasLegal Lengt h(Envi ronnent, ExcSt ackFrane),

target| sTypeSaf e(Envi ronment, ExcStackFrame, Target).

4.10

173

4.10

174

Verification of cl ass Files THE cLAsS FILE FORMAT

4.10.1.7 Type Checking Load and Store Instructions

All load instructions are variations on a common pattern, varying the type of the
value that the instruction loads.

Loading a value of type Type from local variable | ndex is type safe, if the
type of that local variable is Act ual Type, Act ual Type is assignable to Type, and
pushing Act ual Type onto the incoming operand stack is a valid type transition
(84.10.1.4) that yields a new type state Next St ackFr ame. After execution of the
load instruction, the type state will be Next St ackFr ane.

| oadl sTypeSaf e(Envi ronnment, |ndex, Type, StackFrane, Next StackFrame) : -
St ackFrame = frane(Local s, _QOperandStack, _Fl ags),
nt hO(1 ndex, Locals, Actual Type),
i sAssi gnabl e(Act ual Type, Type),
val i dTypeTransi ti on(Environnent, [], Actual Type, StackFrane,
Next St ackFr ane) .

All store instructions are variations on a common pattern, varying the type of the
value that the instruction stores.

In general, a store instruction is type safe if the local variable it referencesis of a
type that is a supertype of Type, and the top of the operand stack is of a subtype of
Type, where Type isthe type the instruction is designed to store.

More precisely, the store is type safe if one can pop a type Act ual Type that
"matches" Type (that is, is a subtype of Type) off the operand stack (84.10.1.4),
and then legally assign that type the local variable L ngex.

storel sTypeSaf e(_Envi ronnment, |ndex, Type,
frame(Local s, OperandStack, Flags),
frame(Next Local s, Next OperandStack, Flags)) :-
popMat chi ngType(Oper andSt ack, Type, Next QperandStack, Actual Type),
nmodi f yLocal Vari abl e(1 ndex, Actual Type, Locals, NextLocals).

Given local variables Local s, modifying | ndex to have type Type results in the
local variable list NewLocal s. The modifications are somewhat involved, because
some values (and their corresponding types) occupy two local variables. Hence,
modifying Ly may require modifying Ly.: (because the type will occupy both the
Nand N+1 dots) or Ly 1 (because local N used to be the upper half of the two word
valueltype starting at local N- 1, and so local N- 1 must be invalidated), or both. This
is described further below. We start at Lo and count up.

nmodi f yLocal Vari abl e(1 ndex, Type, Locals, NewLocals) :-
nmodi f yLocal Vari abl e(0, |ndex, Type, Locals, NewLocals).

THE cLAss FILE FORMAT Verification of cl ass Files

GivenLocal sRest , thesuffix of thelocal variablelist starting at index 1 , modifying
local variable | ndex to have type Type results in the local variable list suffix
Next Local sRest .

If I < Index-1, just copy the input to the output and recurse forward. If I =
I ndex- 1, the type of local I may change. This can occur if L, has atype of size 2.
Once we set L, 41 to the new type (and the corresponding value), the type/value of
L, will beinvalidated, asits upper half will be trashed. Then we recurse forward.

nodi fyLocal Vari abl e(l, |ndex, Type,
[Local s1 | Local sRest],
[Local s1 | NextLocal sRest]) :-
I < Index - 1,
I11is | + 1,
nmodi fyLocal Vari abl e(11, Index, Type, Local sRest, NextLocal sRest).

nodi fyLocal Vari abl e(l, |ndex, Type,
[Local s1 | Local sRest],
[Next Local s1 | NextLocal sRest]) :-
I == Index - 1,
nodi fyPrel ndexVari abl e(Local s1, NextLocal s1),
nmodi f yLocal Vari abl e(1 ndex, |ndex, Type, Local sRest, NextLocal sRest).

When we find the variable, and it only occupies one word, we change it to Type
and we're done. When we find the variable, and it occupies two words, we change
itstype to Type and the next word to t op.

nodi fyLocal Vari abl e(1 ndex, |ndex, Type,
[_ | Local sRest], [Type | Local sRest]) :-
sizeOf (Type, 1).

nodi fyLocal Vari abl e(l ndex, |ndex, Type,
[_, _ | LocalsRest], [Type, top | Local sRest]) :-
sizeOf (Type, 2).

We refer to alocal whose index immediately precedes a local whose type will be
modified as a pre-index variable. The future type of a pre-index variable of type
I nput Type iSResul t . If thetype, Type, of the pre-index local isof size 1, it doesn't
change. If the type of the pre-index local, Type, is 2, we need to mark the lower
half of itstwo word value as unusable, by setting itstypetot op.

nmodi f yPrel ndexVari abl e(Type, Type) :- sizeO(Type, 1).
nmodi f yPrel ndexVari abl e(Type, top) :- sizeO (Type, 2).

4.10

175

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

4.10.1.8 Type Checking for pr ot ect ed Members

All instructions that access members must contend with the rules concerning
pr ot ect ed members. This section describesthepr ot ect ed check that corresponds
to LS 86.6.2.1.

The prot ect ed check applies only to pr ot ect ed members of superclasses of the
current class. prot ect ed members in other classes will be caught by the access
checking done at resolution (85.4.4). There are four cases:

« |f the name of aclassis not the name of any superclass, it cannot be a superclass,
and so it can safely be ignored.

passesProt ect edCheck(Envi ronment, Menber G assNanme, Menber Nane,
Menber Descri ptor, StackFrame) : -
t hi sA ass(Environnment, class(CurrentC assNane, CurrentLoader)),
super cl assChai n(Current 0 assNane, CurrentLoader, Chain),
not Menber (cl ass(Menber G assNane, _), Chain).

 If the Menber d assNane is the same as the name of a superclass, the class
being resolved may indeed be a superclass. In this case, if no superclass named
Menber O assNane in a different run-time package has a pr ot ect ed member
named Menber Nanme with descriptor Menber Descri pt or, the prot ect ed check
does not apply.

Thisis because the actual class being resolved will either be one of these superclasses,
in which case we know that it is either in the same run-time package, and the access is
legal; or the member in question is not pr ot ect ed and the check does not apply; or it
will be a subclass, in which case the check would succeed anyway; or it will be some
other classin the same run-time package, in which case the accessislegal and the check
need not take place; or the verifier need not flag thisas aproblem, sinceit will be caught
anyway because resolution will per force fail.

passesProt ect edCheck(Envi ronnment, Menber C assNanme, Menber Nane,
Menber Descri ptor, StackFrame) : -
t hi s ass(Environment, class(CurrentC assNanme, CurrentlLoader)),
super cl assChai n(Current G assNane, CurrentLoader, Chain),
menber (cl ass(Menber Cl assNanme, _), Chain),
cl assesl nQ her PkgW t hPr ot ect edMenber (
cl ass(Current G assNanme, CurrentlLoader),
Menber Narme, Menber Descri ptor, Menberd assNanme, Chain, []).

* If there does exist a prot ect ed superclass member in a different run-time
package, then load Mermber d assNane; if the member in question is not
pr ot ect ed, the check does not apply. (Using a superclass member that is not
pr ot ect ed istrivialy correct.)

176

THE cLAss FILE FORMAT Verification of cl ass Files

passesProt ect edCheck(Envi ronnment, Menber G assNanme, Menber Nane,
Menber Descri pt or,
frame(_Locals, [Target | Rest], _Flags)) :-
t hi s ass(Environment, class(CurrentC assNanme, CurrentlLoader)),
super cl assChai n(Current C assNane, CurrentLoader, Chain),
menber (cl ass(Menber G assNanme, _), Chain),
cl assesl nQ her PkgW t hPr ot ect edMenber (
cl ass(Current d assNanme, CurrentLoader),
Menber Nanme, Menber Descri ptor, Menberd assNane, Chain, List),
List /=11,
| oadedC ass(Menber d assNane, CurrentLoader, Referencedd ass),
i sNot Pr ot ect ed(Ref er encedd ass, Menber Nanme, MenberDescriptor).

» Otherwise, use of amember of an object of type Tar get requiresthat Tar get be
assignable to the type of the current class.

passesProt ect edCheck(Envi ronnment, Menber G assNane, Menber Nane,
Menber Descri pt or,
frame(_Locals, [Target | Rest], _Flags)) :-
t hi sA ass(Environnment, class(CurrentC assNane, CurrentLoader)),
super cl assChai n(Current 0 assNane, CurrentLoader, Chain),
menber (¢l ass(Menber G assNanme, _), Chain),
cl assesl nQ her PkgW t hPr ot ect edMenber (
cl ass(Current d assNanme, CurrentlLoader),
Menber Nane, Menber Descri ptor, MenberC assNane, Chain, List),
List /=11,
| oadedC ass(Menber C assNane, CurrentlLoader, Referencedd ass),
i sProtect ed(Ref erencedC ass, Menber Nane, Menber Descri ptor),
i sAssi gnabl e(Target, class(Currentd assNanme, CurrentlLoader)).

The predicate cl assesl nQt her PkgW t hPr ot ect edMenber (Cl ass, Menber Nane,
Member Descri ptor, MenberCl assNarme, Chain, List) istrueif Li st isthe set
of classes in chai n with name Mermber d assNane that are in a different run-time

package than d ass which have a pr ot ect ed member named Menber Narre with
descriptor Menber Descri ptor .

4.10

177

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

cl assesl nC her PkgW t hProt ect edMenber (_, _, _, _, [1., [1)-
cl assesl nQ her PkgW t hPr ot ect edMenber (Cl ass, Menber Nane,
Menmber Descri ptor, Menber d assNane,
[cl ass(Menber Gl assNane, L) | Tail],
[cl ass(Menmber Cl assName, L) | T]) :-
di f ferent Runti mePackage(Cl ass, class(MenberC assNanme, L)),
| oadedC ass(Menber G assName, L, Super),
i sProtected(Super, Menber Name, MenberDescriptor),
cl assesl nQ her PkgW t hPr ot ect edMenber (
Cl ass, Menber Name, Menber Descriptor, Menberd assNane, Tail, T).

cl assesl nQ her PkgW t hPr ot ect edMenber (Cl ass, Menber Nane,

Menmber Descri ptor, Menber d assNane,
[cl ass(Menber Gl assNane, L) | Tail],
T -

di f ferent Runti mePackage(Cl ass, class(MenberC assNanme, L)),

| oadedCl ass(Menber G assNanme, L, Super),

i sNot Pr ot ect ed(Super, Menber Nane, Menber Descriptor),

cl assesl nQ her PkgW t hPr ot ect edMenber (

Cl ass, Menber Name, Menber Descriptor, Menberd assNane, Tail, T).

cl assesl nQ her PkgW t hPr ot ect edMenber (Cl ass, Menber Nane,
Menmber Descri ptor, Menber d assNane,
[cl ass(Menber Gl assNane, L) | Tail],
T -
saneRunt i nePackage(d ass, cl ass(MenberC assNane, L)),
cl assesl nQ her PkgW t hPr ot ect edMenber (
Cl ass, Menber Name, Menber Descriptor, Menberd assNane, Tail, T).

sanmeRunt i rePackage(C ass1, C ass2) :-
cl assDefi ni ngLoader (C ass1, L),
cl assDefi ni ngLoader (C ass2, L),
sanmePackageNanme(C ass1, C ass2).

di ff erent Runti mrePackage(Cl ass1, C ass2) :-
cl assDefi ni ngLoader (C ass1, L1),
cl assDefi ni ngLoader (C ass2, L2),
L1 \= L2.

di ff erent Runti mrePackage(Cl ass1, C ass2) :-
di f f erent PackageNanme(C ass1, C ass2).

178

THE cLAss FILE FORMAT Verification of cl ass Files

4.10.1.9 Type Checking Instructions

In generd, the type rule for an instruction is given relative to an environment
Envi ronnent that defines the class and method in which the instruction occurs
(84.10.1.1), and the offset o fset within the method at which the instruction
occurs. The rule states that if the incoming type state st ackFr ane fulfills certain
reguirements, then:

» Theinstruction istype safe.

* |t is provable that the type state after the instruction completes normally has
a particular form given by Next St ackFr anme, and that the type state after the
instruction completes abruptly is given by Except i onSt ackFr ane.

Thetype state after aninstruction completes abruptly isthe same astheincoming
type state, except that the operand stack is empty.

excepti onSt ackFr ame(St ackFrane, ExceptionStackFrane) : -
StackFrame = frane(Locals, _OperandStack, Flags),
ExceptionStackFrane = frane(Locals, [], Flags).

Many instructions have type rules that are completely isomorphic to the rules for
other instructions. If aninstruction b1 isisomorphic to another instruction b2, then
the typerulefor b1 isthe same asthe type rule for b2.

instructionlsTypeSafe(lnstruction, Environment, Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -

i nstructi onHasEqui val ent TypeRul e(l nstruction, |sonorphiclnstruction),

instructionl sTypeSaf e(| sonorphiclnstruction, Environment, Ofset,
St ackFrane, Next St ackFrane,
Excepti onSt ackFrane) .

The English language description of each rule is intended to be readable,
intuitive, and concise. As such, the description avoids repeating all the contextual
assumptions given above. In particular:

* The description does not explicitly mention the environment.

* When the description speaks of the operand stack or local variables in the
following, it is referring to the operand stack and local variable components of
atype state: either the incoming type state or the outgoing one.

» Thetype state after the instruction compl etes abruptly isamost always identical
to the incoming type state. The description only discusses the type state after the
instruction completes abruptly when that is not the case.

4.10

179

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

 Thedescription speaks of popping and pushing types onto the operand stack, and
doesnot explicitly discussissuesof stack underflow or overflow. Thedescription
assumes these operations can be completed successfully, but the Prolog clauses
for operand stack manipulation ensure that the necessary checks are made.

» The description discusses only the manipulation of logical types. In practice,
some types take more than one word. The description abstracts from these
representation details, but the Prolog clauses that manipul ate data do not.

Any ambiguities can be resolved by referring to the formal Prolog clauses.

180

THE cLAss FILE FORMAT Verification of cl ass Files

aaload aaload

An aaload instruction is type safe iff one can validly replace types matching i nt
and an array type with component type Conponent Type where Conponent Type iS
asubtype of j ect , with Conponent Type Yyielding the outgoing type state.

instructionl sTypeSaf e(aal oad, Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
nt h1Oper andSt ackl s(2, StackFrane, ArrayType),
arrayConponent Type(ArrayType, Conponent Type),
i sBoot st rapLoader (BL),
val i dTypeTransi ti on(Envi ronnent,
[int, arrayOf(class('javal/lang/ Gbject', BL))],
Conmponent Type, StackFrane, Next StackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

The component type of an array of X is X. We define the component type of nul |
tobenul I .

arrayConponent Type(arraydf (X), X).
arrayConponent Type(null, null).

4.10

181

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

aastore aastore

An aastore instruction istype safe iff one can validly pop types matching oj ect ,
i nt, and an array of aj ect off the incoming operand stack yielding the outgoing
type state.

instructionl sTypeSaf e(aastore, _Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
i sBoot st rapLoader (BL),
canPop(St ackFr ane,
[class('javal/lang/ Object', BL),
int,
arrayOf (class('javal/lang/ Goject', BL))],
Next St ackFr ane) ,
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

182

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

aconst_null aconst_null

An aconst_null instruction is type safe if one can validly push the type nul I onto
the incoming operand stack yielding the outgoing type state.

instructionl sTypeSafe(aconst_null, Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Environnent, [], null, StackFrame, NextStackFrane),

excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

183

4.10

184

Verification of cl ass Files THE cLAsS FILE FORMAT

aload aload

An aload instruction with operand | ndex is type safe and yields an outgoing
type state Next St ackFr ane, if a load instruction with operand | ndex and type
ref er ence istype safe and yields an outgoing type state Next St ackFr ane.

instructionl sTypeSaf e(al oad(| ndex), Environnent, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
| oadl sTypeSaf e(Envi ronnment, |ndex, reference, StackFrame, NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

THE cLASS FILE FORMAT

aload <n>

Verification of cl ass Files

aload_<n>

The instructions aload_<n>, for 0 < n < 3, are type safe iff the equivalent aload

instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(al oad_0,
i nstructi onHasEqui val ent TypeRul e(al oad_1,
i nstructi onHasEqui val ent TypeRul e(al oad_2,
i nstructi onHasEqui val ent TypeRul e(al oad_3,

al oad(0)).
al oad(1)).
al oad(2)).
al oad(3)).

4.10

185

4.10

186

Verification of cl ass Files THE cLAsS FILE FORMAT

anewarray anewarray

An anewarray instruction with operand CP is type safe iff CP refers to a constant
pool entry denoting either aclasstype or an array type, and one can legally replace
atype matching i nt on the incoming operand stack with an array with component
type cp yielding the outgoing type state.

instructionl sTypeSaf e(anewarray(CP), Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
(CP =class(_, _) ; CP=arrayo(.)),
val i dTypeTransi tion(Environnent, [int], arrayCf (CP),
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

THE cLAss FILE FORMAT Verification of cl ass Files

areturn areturn

An areturn instruction is type safe iff the enclosing method has a declared return
type, ReturnType, that is a reference type, and one can validly pop a type
matching Ret ur nType oOff the incoming operand stack.

instructionl sTypeSafe(areturn, Environnent, _Ofset, StackFrane,
af t er Got o, ExceptionStackFrane) : -
t hi sMet hodRet ur nType(Envi ronnment, ReturnType),
i sAssi gnabl e(ReturnType, reference),
canPop(St ackFrane, [ReturnType], _PoppedStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

187

4.10 Verification of cl ass Files THE cLAss FILE FORMAT
arraylength arraylength

An arraylength instruction is type safe iff one can validly replace an array type on
the incoming operand stack with the typei nt yielding the outgoing type state.

instructionl sTypeSafe(arrayl ength, Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
nt h1Oper andSt ackl s(1, StackFrane, ArrayType),
arrayConponent Type(ArrayType, _),
val i dTypeTransi ti on(Environnent, [top], int, StackFrane, Next StackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

188

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

astore astore

An astore instruction with operand | ndex is type safe and yields an outgoing
type state Next St ackFr ane, if a store instruction with operand | ndex and type
ref er ence istype safe and yields an outgoing type state Next St ackFr ane.

instructionl sTypeSaf e(astore(lndex), Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
storel sTypeSaf e(Envi ronnent, Index, reference, StackFrane, NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

189

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

astore_<n> astore_<n>

Theinstructions astore_<n>, for 0 < n < 3, are type safe iff the equivalent astore
instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(astore_0, astore(0)).
i nstructi onHasEqui val ent TypeRul e(astore_1, astore(1l)).
i nstructi onHasEqui val ent TypeRul e(astore_2, astore(2)).
i nstructi onHasEqui val ent TypeRul e(astore_3, astore(3)).

190

THE cLAss FILE FORMAT Verification of cl ass Files

athrow athrow

An athrow instruction is type safe iff the top of the operand stack matches
Thr owabl e.

instructionl sTypeSafe(athrow, _Environnent, _Ofset, StackFrane,
af t er Got o, ExceptionStackFrane) : -
i sBoot st rapLoader (BL),

4.10

canPop(St ackFrane, [class('javal/lang/ Throwable', BL)], _PoppedStackFrane),

excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

191

4.10

192

Verification of cl ass Files THE cLAsS FILE FORMAT

baload baload

A baload instruction istype safeiff one can validly replace types matchingi nt and
asmall array type on the incoming operand stack with i nt yielding the outgoing
type state.

i nstructionl sTypeSaf e(bal oad, Environnent, _Ofset, StackFrane,
Next St ackFrane, Excepti onStackFrane)
nt h1Oper andSt ackl s(2, StackFrane, ArrayType),
isSmal | Array(ArrayType),
val i dTypeTransi ti on(Environnent, [int, top], int,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

An array typeisasmall array typeif it isan array of byt e, an array of bool ean,
or a subtype thereof (nul I).

isSmal | Array(arrayOr (byte)).
i sSmal | Array(arrayO (bool ean)).
isSmal | Array(null).

THE cLAss FILE FORMAT Verification of cl ass Files

bastore bastore

A bastore instruction is type safe iff one can validly pop types matching i nt , i nt
and a small array type off the incoming operand stack yielding the outgoing type
state.

instructionl sTypeSaf e(bastore, _Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
nt h1Oper andSt ackl s(3, StackFrane, ArrayType),
isSmal | Array(ArrayType),
canPop(StackFrane, [int, int, top], NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

193

4.10 Verification of cl ass Files THE cLAss FILE FORMAT
bipush bipush

A bipush instruction is type safe iff the equivalent sipush instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(bi push(Val ue), sipush(Value)).

194

THE cLAss FILE FORMAT Verification of cl ass Files

caload caload

A caload instruction is type safe iff one can validly replace types matching i nt
and array of char on the incoming operand stack with i nt yielding the outgoing
type state.

instructionl sTypeSaf e(cal oad, Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransiti on(Environnent, [int, arrayCf(char)], int,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

195

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

castore castore

A castore instruction is type safe iff one can validly pop types matching i nt , i nt
and array of char off the incoming operand stack yielding the outgoing type state.

instructionl sTypeSafe(castore, _Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
canPop(StackFrane, [int, int, arrayOf(char)], NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

196

THE cLAss FILE FORMAT Verification of cl ass Files

checkcast checkcast

A checkcast instruction with operand cP is type safe iff cp refers to a constant
pool entry denoting either a class or an array, and one can validly replace the type
Obj ect on top of the incoming operand stack with the type denoted by cp yielding
the outgoing type state.

instructionl sTypeSaf e(checkcast (CP), Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
(CP =class(_, _) ; CP=arrayo(.)),
i sBoot st raplLoader (BL),

val i dTypeTransi ti on(Environnent, [class('java/lang/ Cbject', BL)], CP,

St ackFrame, Next St ackFrane),
exceptionSt ackFrame(St ackFrame, ExceptionStackFrane).

4.10

197

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

d2f d2f

A d2f instruction is type safe if one can validly pop doubl e off the incoming
operand stack and replace it with f | oat , yielding the outgoing type state.

instructionl sTypeSafe(d2f, Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Envi ronnent, [double], float,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

198

THE cLAss FILE FORMAT Verification of cl ass Files

d2i d2i

A d2i instruction is type safe if one can validly pop doubl e off the incoming
operand stack and replace it with i nt , yielding the outgoing type state.

instructionl sTypeSafe(d2i, Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Envi ronnent, [double], int,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

199

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

d2| d2|

A d2I instruction is type safe if one can validly pop doubl e off the incoming
operand stack and replace it with | ong, yielding the outgoing type state.

instructionl sTypeSafe(d2l, Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Envi ronnent, [double], |ong,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

200

THE cLAss FILE FORMAT Verification of cl ass Files

dadd dadd

A dadd instruction is type safe iff one can validly replace types matching doubl e
and doubl e on theincoming operand stack with doubl e yielding the outgoing type
state.

instructionl sTypeSaf e(dadd, Environnment, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Envi ronnent, [doubl e, double], double,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

201

4.10

202

Verification of cl ass Files THE cLAsS FILE FORMAT

daload daload

A daloadinstruction istype safeiff one can validly replace types matchingi nt and
array of doubl e on theincoming operand stack with doubl e yielding the outgoing
type state.

i nstructionl sTypeSaf e(dal oad, Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransiti on(Environnent, [int, arrayOf (double)], double,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

THE cLAss FILE FORMAT Verification of cl ass Files

dastore dastore

A dastore instruction is type safe iff one can validly pop types matching doubl e,
i nt and array of doubl e off theincoming operand stack yielding the outgoing type
state.

instructionl sTypeSaf e(dastore, _Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
canPop(St ackFrane, [double, int, arrayO (double)], NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

203

4.10

204

Verification of cl ass Files THE cLAsS FILE FORMAT
dcmp<op> dcmp<op>

A dcmpg instruction istype safeiff one can validly replace types matching doubl e
and doubl e on the incoming operand stack with i nt yielding the outgoing type
state.

i nstructionl sTypeSaf e(dcnpg, Environnent, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Envi ronnent, [doubl e, double], int,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

A dcmpl instruction istype safe iff the equivalent dempg instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(dcnpl, dcnpg).

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

dconst_<d> dconst_<d>

A dconst_0 instruction is type safe if one can validly push the type doubl e onto
the incoming operand stack yielding the outgoing type state.

instructionl sTypeSaf e(dconst _0, Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Environnent, [], double, StackFrane, Next StackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

A dconst_1 instruction is type safe iff the equivalent dconst_0 instruction is type
safe.

i nstructi onHasEqui val ent TypeRul e(dconst _1, dconst_0).

205

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

ddiv ddiv

A ddiv instruction is type safe iff the equivalent dadd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(ddi v, dadd).

206

THE cLAss FILE FORMAT Verification of cl ass Files

dload dload

A dload instruction with operand | ndex is type safe and yields an outgoing type
state Next St ackFr ane, if aload instruction with operand | ndex and type doubl e
istype safe and yields an outgoing type state Next St ackFr arre.

i nstructionl sTypeSaf e(dl oad(| ndex), Environnent, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -

| oadl sTypeSaf e(Envi ronment, | ndex, double, StackFrane, NextStackFrane),

excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

207

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

dload_<n> dload_<n>

The instructions dload_<n>, for 0 < n < 3, are typesafe iff the equivalent dload
instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(dl oad_0, dl oad(0)).
i nstructi onHasEqui val ent TypeRul e(dl oad_1, dload(1)).
i nstructi onHasEqui val ent TypeRul e(dl oad_2, dload(2)).
i nstructi onHasEqui val ent TypeRul e(dl oad_3, dload(3)).

208

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

dmul dmul

A dmul instruction is type safe iff the equivalent dadd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(dmul, dadd).

209

4.10 Verification of cl ass Files THE cLAss FILE FORMAT
dneg dneg

A dneg instruction istype safe iff there isatype matching doubl e on theincoming
operand stack. The dneg instruction does not alter the type state.

instructionl sTypeSaf e(dneg, Environnment, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Envi ronnent, [doubl e], double,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

210

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

drem drem

A dreminstruction is type safe iff the equivalent dadd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(drem dadd).

211

4.10

212

Verification of cl ass Files THE cLAsS FILE FORMAT

dreturn dreturn

A dreturn instruction is type safe if the enclosing method has a declared return
type of doubl e, and one can validly pop atype matching doubl e off theincoming
operand stack.

instructionl sTypeSafe(dreturn, Environnent, _Ofset, StackFrane,
af t er Got o, ExceptionStackFrane) : -
t hi sMet hodRet ur nType(Envi ronnment, doubl e),
canPop(St ackFrane, [double], _PoppedStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

dstore dstore

A dstore instruction with operand I ndex is type safe and yields an outgoing type
state Next St ackFr ane, if a store instruction with operand | ndex and type doubl e
istype safe and yields an outgoing type state Next St ackFr arre.

instructionl sTypeSaf e(dstore(lndex), Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
storel sTypeSaf e(Envi ronnent, |ndex, double, StackFrame, NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

213

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

dstore <n> dstore <n>

Theinstructions dstore_<n>, for 0 < n < 3, are type safe iff the equivalent dstore
instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(dstore_0, dstore(0)).
i nstructi onHasEqui val ent TypeRul e(dstore_1, dstore(1l)).
i nstructi onHasEqui val ent TypeRul e(dstore_2, dstore(2)).
i nstructi onHasEqui val ent TypeRul e(dstore_3, dstore(3)).

214

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

dsub dsub

A dsub instruction istype safe iff the equivalent dadd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(dsub, dadd).

215

4.10

216

Verification of cl ass Files THE cLAsS FILE FORMAT
dup dup

A dup instruction is type safe iff one can validly replace a category 1 type, Type,
with the types Type, Type, yielding the outgoing type state.

i nstructionl sTypeSaf e(dup, Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
St ackFrame = frane(Local s, |nputOperandStack, Flags),
popCat egor y1(| nput Oper andSt ack, Type, _),
canSaf el yPush(Envi ronnent, | nput OperandStack, Type, CQutput QperandStack),
Next St ackFrane = frane(Local s, CQutput OperandStack, Flags),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

THE cLAss FILE FORMAT Verification of cl ass Files

dup_x1 dup_x1

A dup_x1 instruction is type safe iff one can validly replace two category 1 types,
Typel, and Type2, on the incoming operand stack with the types Typel, Type2,
Typel, Yielding the outgoing type state.

instructionl sTypeSaf e(dup_x1, Environnent, _Ofset, StackFrane,

Next St ackFrane, ExceptionStackFrane) : -

St ackFrame = frane(Local s, |nput OperandStack, Flags),

popCat egor y1(| nput Oper andSt ack, Typel, Stackl),

popCat egory1(Stackl, Type2, Rest),

canSaf el yPushLi st (Envi ronment, Rest, [Typel, Type2, Typel],
Qut put Oper andSt ack) ,

Next St ackFrane = frane(Local s, CQutput OperandStack, Fl ags),

excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

217

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

dup_x2 dup_x2

A dup_x2instruction istype safeiff it is atype safe form of the dup_x2 instruction.

instructionl sTypeSaf e(dup_x2, Environment, _Ofset, StackFrane,
Next St ackFr ane, ExceptionStackFrane) : -
St ackFranme = franme(Local s, |nputOperandStack, Flags),
dup_x2SoneFor m sTypeSaf e(Envi ronment, | nput Oper andSt ack, Qut put Oper andSt ack),
Next St ackFranme = frane(Local s, Qutput OperandSt ack, Fl ags),
excepti onSt ackFranme(St ackFrame, Excepti onStackFrane).

A dup_x2 instruction is a type safe form of the dup_x2 instruction iff it is a type
safe form 1 dup_x2 instruction or atype safe form 2 dup_x2 instruction.

dup_x2SoneFor m sTypeSaf e(Envi ronment, | nput Oper andSt ack, Qut put Oper andSt ack) : -
dup_x2For nll sTypeSaf e(Envi ronnent, | nput Oper andSt ack, Qut put Oper andSt ack) .

dup_x2SoneFor m sTypeSaf e(Envi ronment, | nput Oper andSt ack, Qut put Oper andSt ack) : -
dup_x2For n2l sTypeSaf e(Envi ronnent, | nput Oper andSt ack, Qut put Oper andSt ack) .

A dup_x2 instruction is a type safe form 1 dup_x2 instruction iff one can validly
replacethree category 1types, Typel, Type2, Type3 on theincoming operand stack
with the types Typel, Type2, Type3, Typel, yielding the outgoing type state.

dup_x2For mlLl sTypeSaf e(Envi ronnment, | nput OperandSt ack, Qut put OperandStack) : -
popCat egor y1(| nput Oper andSt ack, Typel, Stackl),
popCat egory1(Stackl, Type2, Stack2),
popCat egory1(Stack2, Type3, Rest),
canSaf el yPushLi st (Envi ronment, Rest, [Typel, Type3, Type2, Typel],
Qut put Oper andSt ack) .

A dup_x2 instruction is a type safe form 2 dup_x2 instruction iff one can validly
replace a category 1 type, Typel, and a category 2 type, Type2, on the incoming
operand stack with thetypes Type1, Type2, Type1l, yielding the outgoing type state.

dup_x2For n2l sTypeSaf e(Envi ronnent, | nput Oper andSt ack, Qut put Oper andSt ack) : -
popCat egor y1(| nput Oper andSt ack, Typel, Stackl),
popCat egory2(St ackl, Type2, Rest),
canSaf el yPushLi st (Envi ronment, Rest, [Typel, Type2, Typel],
Qut put Oper andSt ack) .

218

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10
dup2 dup2

A dup2 instruction is type safe iff it is atype safe form of the dup2 instruction.

instructionl sTypeSaf e(dup2, Environment, _Ofset, StackFrane,
Next St ackFr ane, ExceptionStackFrane) : -
St ackFranme = franme(Local s, |nputOperandStack, Flags),
dup2SoneFor m sTypeSaf e(Envi ronment, | nput Oper andSt ack, CQut put Oper andSt ack),
Next St ackFranme = frane(Local s, Qutput OperandSt ack, Fl ags),
excepti onSt ackFranme(St ackFrame, Excepti onStackFrane).

A dup2 instruction is a type safe form of the dup2 instruction iff it is a type safe
form 1 dup2 instruction or atype safe form 2 dup2 instruction.

dup2SoreFor m sTypeSaf e(Envi ronment, | nput Oper andSt ack, Qut put Oper andSt ack) : -
dup2For mLl sTypeSaf e(Envi ronnment , | nput Oper andSt ack, Qut put Oper andSt ack) .

dup2SoreFor m sTypeSaf e(Envi ronment, | nput Oper andSt ack, Qut put Oper andSt ack) : -
dup2For n2l sTypeSaf e(Envi ronnment , | nput Oper andSt ack, Qut put Oper andSt ack) .

A dup2instruction is atype safe form 1 dup2 instruction iff one can validly replace
two category 1 types, Typel and Type2 on the incoming operand stack with the
types Typel, Type2, Typel, Type2, Yielding the outgoing type state.

dup2For mll sTypeSaf e(Envi ronnment, | nput Oper andSt ack, Qut put OperandSt ack): -
popCat egor y1(| nput Oper andSt ack, Typel, TenpStack),
popCat egoryl1l(TenpSt ack, Type2, _),
canSaf el yPushLi st (Envi ronment, | nput OperandStack, [Typel, Type2],
Qut put Oper andSt ack) .

A dup2 instruction is atype safe form 2 dup2 instruction iff one can validly replace
acategory 2 type, Type on the incoming operand stack with the types Type, Type,
yielding the outgoing type state.

dup2For n2l sTypeSaf e(Envi ronnent, | nput Oper andSt ack, CQut put Oper andSt ack): -
popCat egor y2(| nput Oper andSt ack, Type, _),
canSaf el yPush(Envi ronnent, | nput OperandStack, Type, CQutput QperandStack).

219

4.10 Verification of cl ass Files THE cLAss FILE FORMAT
dup2 x1 dup2 x1

A dup2_x1 instruction is type safe iff it is a type safe form of the dup2_x1
instruction.

i nstructionl sTypeSaf e(dup2_x1, Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
St ackFrame = frane(Local s, |nputOperandStack, Flags),
dup2_x1SoneFor m sTypeSaf e(Envi ronnment, | nput Oper andSt ack, CQut put Oper andSt ack),
Next St ackFrane = frane(Local s, CQutput OperandStack, Flags),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

A dup2_x1 instruction is a type safe form of the dup2_x1 instruction iff it isatype
safe form 1 dup2_x1 instruction or atype safe form 2 dup_x2 instruction.

dup2_x1SoneFor m sTypeSaf e(Envi ronment, | nput OperandSt ack, Qut put QperandSt ack) : -
dup2_x1For mil sTypeSaf e(Envi ronment, | nput OperandSt ack, Qut put Oper andSt ack).

dup2_x1SoneFor m sTypeSaf e(Envi ronment, | nput OperandSt ack, Qut put OperandSt ack) : -
dup2_x1For n2l sTypeSaf e(Envi ronment, | nput OperandSt ack, Qut put Oper andSt ack).

A dup2_x1instruction isatype safe form 1 dup2_x1 instruction iff one can validly
replacethree category 1types, Typel, Type2, Type3, ontheincoming operand stack
withthetypesTypel, Type2, Type3, Typel, Type2, yielding the outgoing type state.

dup2_x1For mll sTypeSaf e(Envi ronnment, | nput Oper andSt ack, Qut put OperandStack) : -
popCat egor y1(| nput Oper andSt ack, Typel, Stackl),
popCat egory1(Stackl, Type2, Stack2),
popCat egory1(St ack2, Type3, Rest),
canSaf el yPushLi st (Envi ronment, Rest, [Type2, Typel, Type3, Type2, Typel],
Qut put Oper andSt ack) .

A dup2_x1 instruction is atype safe form 2 dup2_x1 instruction iff one can validly
replace a category 2 type, Typel, and a category 1 type, Type2, on the incoming
operand stack with thetypes Type1, Type2, Type1, yielding the outgoing type state.

dup2_x1For n2l sTypeSaf e(Envi ronnment, | nput OperandSt ack, Qut put OperandStack) : -
popCat egor y2(| nput Oper andSt ack, Typel, Stackl),
popCat egoryl(Stackl, Type2, Rest),
canSaf el yPushLi st (Envi ronment, Rest, [Typel, Type2, Typel],
Qut put Oper andSt ack) .

220

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10
dup2_x2 dup2_x2

A dup2_x2 instruction is type safe iff it is a type safe form of the dup2_x2
instruction.

instructionl sTypeSaf e(dup2_x2, Environnment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) :-
St ackFranme = franme(Local s, |nputOperandStack, Flags),
dup2_x2SoneFor m sTypeSaf e(Envi ronment, | nput Oper andSt ack, Qut put Oper andSt ack),
Next St ackFrane = frane(Local s, Qutput OperandSt ack, Fl ags),
excepti onSt ackFranme(St ackFrame, Excepti onStackFrane).

A dup2_x2 instruction is a type safe form of the dup2_x2 instruction iff one of the
following holds:

* itisatype safe form 1 dup2_x2 instruction.
* itisatype safe form 2 dup2 x2 instruction.
* itisatype safe form 3 dup2 x2 instruction.

* itisatype safe form4 dup2_x2 instruction.

dup2_x2SoneFor m sTypeSaf e(Envi ronment, | nput OperandSt ack, Qut put QperandSt ack) : -
dup2_x2For mil sTypeSaf e(Envi ronment, | nput Oper andSt ack, Qut put OperandSt ack).

dup2_x2SoneFor m sTypeSaf e(Envi ronment, | nput OperandSt ack, Qut put Qper andSt ack) : -
dup2_x2For n2l sTypeSaf e(Envi ronment, | nput Oper andSt ack, Qut put Oper andSt ack).

dup2_x2SoneFor m sTypeSaf e(Envi ronment, | nput OperandSt ack, Qut put Qper andSt ack) : -
dup2_x2For nBl sTypeSaf e(Envi ronnent, | nput Oper andSt ack, Qut put Oper andSt ack) .

dup2_x2SoneFor m sTypeSaf e(Envi ronment, | nput OperandSt ack, Qut put OperandSt ack) : -
dup2_x2For n4l sTypeSaf e(Envi ronnent, | nput Oper andSt ack, Qut put Oper andSt ack) .

A dup2_x2instruction is atype safe form 1 dup2_x2 instruction iff one can validly
replace four category 1 types, Typel, Type2, Type3, Type4, on the incoming
operand stack with the types Typel, Type2, Type3, Type4, Typel, Type2, yielding
the outgoing type state.

221

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

dup2_x2For nil sTypeSaf e(Envi ronment, | nput Oper andSt ack, Qut put Oper andSt ack) : -
popCat egor y1(| nput Oper andSt ack, Typel, Stackl),
popCat egory1(Stackl, Type2, Stack2),
popCat egory1(Stack2, Type3, Stack3),
popCat egory1(St ack3, Type4, Rest),
canSaf el yPushLi st (Envi ronnment, Rest,
[Type2, Typel, Type4, Type3, Type2, Typel],
Qut put Oper andSt ack) .

A dup2_x2instruction is atype safe form 2 dup2_x2 instruction iff one can validly
replace a category 2 type, Typel, and two category 1 types, Type2, Type3, on the
incoming operand stack with the types Type1, Type2, Type3, Typel, yielding the
outgoing type state.

dup2_x2For n2l sTypeSaf e(Envi ronnment, | nput Oper andSt ack, Qut put OperandSt ack) : -
popCat egor y2(| nput Oper andSt ack, Typel, Stackl),
popCat egory1(Stackl, Type2, Stack2),
popCat egory1(St ack2, Type3, Rest),
canSaf el yPushLi st (Envi ronment, Rest,
[Typel, Type3, Type2, Typel],
Qut put Oper andSt ack) .

A dup2_x2 instruction is atype safe form 3 dup2_x2 instruction iff one can validly
replace two category 1 types, Typel, Type2, and a category 2 type, Type3, on
the incoming operand stack with the types Typel, Type2, Type3, Typel, Type2,
yielding the outgoing type state.

dup2_x2For nBl sTypeSaf e(Envi ronnment, | nput OperandSt ack, Qut put OperandStack) : -
popCat egor y1(| nput Oper andSt ack, Typel, Stackl),
popCat egoryl(Stackl, Type2, Stack2),
popCat egory2(St ack2, Type3, Rest),
canSaf el yPushLi st (Envi ronment, Rest,
[Type2, Typel, Type3, Type2, Typel],
Qut put Oper andSt ack) .

A dup2_x2 instruction is atype safe form 4 dup2_x2 instruction iff one can validly
replace two category 2 types, Typel, Type2, on the incoming operand stack with
the types Typel, Type2, Typel, Yielding the outgoing type state.

dup2_x2For m4l sTypeSaf e(Envi ronnment, | nput Oper andSt ack, Qut put Oper andSt ack) : -
popCat egor y2(| nput Oper andSt ack, Typel, Stackl),
popCat egory2(St ackl, Type2, Rest),
canSaf el yPushLi st (Envi ronment, Rest, [Typel, Type2, Typel],
Qut put Oper andSt ack) .

222

THE cLAss FILE FORMAT Verification of cl ass Files

f2d f2d

An f2d instruction is type safe if one can validly pop float off the incoming
operand stack and replace it with doubl e, yielding the outgoing type state.

instructionl sTypeSafe(f2d, Environment, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Environnent, [float], doubl e,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

223

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

f2i f2i

Anf2iinstructionistypesafeif onecanvalidly popf 1 oat off theincoming operand
stack and replaceit withi nt, yielding the outgoing type state.

instructionl sTypeSafe(f2i, Environment, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Environnent, [float], int,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

224

THE cLAss FILE FORMAT Verification of cl ass Files

f2l f2l

Anf2l instructionistypesafeif onecanvalidly popf 1 oat off theincoming operand
stack and replace it with 1 ong, yielding the outgoing type state.

instructionl sTypeSafe(f2l, Environment, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Environnent, [float], |ong,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

225

4.10

226

Verification of cl ass Files THE cLAsS FILE FORMAT

fadd fadd

An fadd instruction is type safe iff one can validly replace types matching f | oat
and f 1 oat on the incoming operand stack with f1 oat yielding the outgoing type
state.

instructionl sTypeSaf e(fadd, Environment, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransiti on(Environnent, [float, float], float,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

THE cLAss FILE FORMAT Verification of cl ass Files

faload faload

An faload instruction is type safe iff one can validly replace types matching i nt
and array of f | oat ontheincoming operand stack withf 1 oat yielding the outgoing
type state.

instructionl sTypeSaf e(fal oad, Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransiti on(Environnent, [int, arrayOf(float)], float,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

227

4.10

228

Verification of cl ass Files THE cLAsS FILE FORMAT

fastore fastore

An fastore instruction is type safe iff one can validly pop types matching f | oat ,
i nt and array of f1 oat off theincoming operand stack yielding the outgoing type
state.

instructionl sTypeSafe(fastore, _Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
canPop(StackFrane, [float, int, arrayOf(float)], NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

THE cLAss FILE FORMAT Verification of cl ass Files
fcmp<op> fcmp<op>

An fcmpg instruction istype safe iff one can validly replace types matching f | oat
andf 1 oat ontheincoming operand stack withi nt yielding the outgoing type state.

i nstructionl sTypeSafe(fcnpg, Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransiti on(Environnent, [float, float], int,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

An fcmpl instruction istype safe iff the equivalent fcmpg instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(fcnpl, fcnpg).

4.10

229

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

fconst_<f> fconst <f>

Anfconst_0Oinstructionistype safeif one can validly pushthetypef | oat ontothe
incoming operand stack yielding the outgoing type state.

instructionl sTypeSafe(fconst_0, Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Environnent, [], float, StackFrane, NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

The rules for the other variants of fconst are equivalent.

i nstructi onHasEqui val ent TypeRul e(fconst _1, fconst_0).
i nstructi onHasEqui val ent TypeRul e(fconst _2, fconst_0).

230

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

fdiv fdiv

An fdivinstruction is type safe iff the equivalent fadd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(fdi v, fadd).

231

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

fload fload

An fload instruction with operand | ndex is type safe and yields an outgoing type
state Next St ackFr ame, if aload instruction with operand | ndex and typef | oat is
type safe and yields an outgoing type state Next St ackFr ane.

instructionl sTypeSaf e(fl oad(| ndex), Environnent, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
| oadl sTypeSaf e(Envi ronnment, |ndex, float, StackFrane, NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

232

THE cLASS FILE FORMAT

fload <n>

Verification of cl ass Files

fload <n>

The instructions fload_<n>, for 0 < n < 3, are typesafe iff the equivalent fload

instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(fl oad_0,
i nstructi onHasEqui val ent TypeRul e(fl oad_1,
i nstructi onHasEqui val ent TypeRul e(fl oad_2,
i nstructi onHasEqui val ent TypeRul e(fl oad_3,

f1oad(0)).
fload(1)).
fload(2)).
fload(3)).

4.10

233

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

fmul fmul

An fmul instruction is type safe iff the equivalent fadd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(fmul, fadd).

234

THE cLAss FILE FORMAT Verification of cl ass Files
fneg fneg

An fneg instruction istype safe iff thereisatype matching f | oat on the incoming
operand stack. The fneg instruction does not ater the type state.

instructionl sTypeSaf e(fneg, Environment, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Environnent, [float], float,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

235

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

frem frem

An freminstruction is type safe iff the equivalent fadd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(frem fadd).

236

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

freturn freturn

An freturn instruction is type safe if the enclosing method has a declared return
type of f 1 oat, and one can validly pop a type matching f 1 oat off the incoming
operand stack.

instructionl sTypeSafe(freturn, Environnent, _Ofset, StackFrane,
af t er Got o, ExceptionStackFrane) : -
t hi sMet hodRet ur nType(Envi ronnent, float),
canPop(St ackFrane, [float], _PoppedStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

237

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

fstore fstore

An fstore instruction with operand | ndex is type safe and yields an outgoing type
state Next St ackFr ame, if astoreinstruction with operand | ndex and typef | oat is
type safe and yields an outgoing type state Next St ackFr ane.

instructionl sTypeSafe(fstore(lndex), Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
storel sTypeSaf e(Envi ronnent, Index, float, StackFranme, NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

238

THE cLASS FILE FORMAT

fstore <n>

The instructions fstore_<n>, for 0 < n < 3, are typesafe iff the equivalent fstore

instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(fstore_0,
i nstructi onHasEqui val ent TypeRul e(fstore_1,
i nstructi onHasEqui val ent TypeRul e(fstore_2,
i nstructi onHasEqui val ent TypeRul e(fstore_3,

Verification of cl ass Files

fstore(0)).
fstore(l)).
fstore(2)).
fstore(3)).

fstore <n>

4.10

239

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

fsub fsub

An fsub instruction is type safe iff the equivalent fadd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(fsub, fadd).

240

THE cLAss FILE FORMAT Verification of cl ass Files
getfield getfield

A getfield instruction with operand CpP is type safe iff CP refers to a constant
pool entry denoting a field whose declared type is Fi el dType, declared in a
class Fi el dd ass, and one can validly replace a type matching Fi el dd ass with
type Fi el dType on the incoming operand stack yielding the outgoing type state.
Fi el dd ass must not be an array type. pr ot ect ed fields are subject to additional
checks (84.10.1.8).

instructionlsTypeSafe(getfield(CP), Environment, _Ofset, StackFrane,
Next St ackFr ane, ExceptionStackFrane) :-
CP = field(FieldCO ass, FieldNane, FieldDescriptor),
par seFi el dDescri ptor (Fi el dDescri ptor, FieldType),
passesProt ect edCheck(Envi ronnment, Fi el dC ass, Fi el dNane,
Fi el dDescri ptor, StackFrane),
val i dTypeTransi ti on(Environnent, [class(Fieldd ass)], FieldType,
St ackFrame, Next St ackFrane),
excepti onSt ackFranme(St ackFrame, Excepti onStackFrane).

4.10

241

4.10

242

Verification of cl ass Files THE cLAsS FILE FORMAT

getstatic getstatic

A getstatic instruction with operand cp istype safe iff cP refersto a constant pool
entry denoting afield whose declared typeisFi el dType, and one can validly push
Fi el dType on theincoming operand stack yielding the outgoing type state.

instructionl sTypeSafe(getstatic(CP), Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
CP = field(_Fieldd ass, _Fiel dName, Fiel dDescriptor),
par seFi el dDescri ptor (Fi el dDescriptor, Fiel dType),
val i dTypeTransiti on(Environnent, [], FieldType,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

THE cLAss FILE FORMAT Verification of cl ass Files

goto goto

A goto instruction istype safe iff its target operand isavalid branch target.

instructionl sTypeSaf e(goto(Target), Environment, _Ofset, StackFrane,
afterGoto, ExceptionStackFrane) :-
target| sTypeSaf e(Envi ronnent, StackFrane, Target),
excepti onSt ackFranme(St ackFrame, Excepti onStackFrane).

4.10

243

4.10 Verification of cl ass Files THE cLAss FILE FORMAT
goto_w goto_ w

A goto_w instruction is type safe iff the equivalent goto instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(goto_w(Target), goto(Target)).

244

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

12b 12b

Ani2b instruction istype safe iff the equivalent ineg instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(i 2b, ineg).

245

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

i12C 12C

Ani2cinstruction istype safeiff the equivalent ineg instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(i 2c, ineg).

246

THE cLAss FILE FORMAT Verification of cl ass Files

i2d i2d

Ani2dinstruction istype safeif one can validly popi nt off theincoming operand
stack and replace it with doubl e, yielding the outgoing type state.

instructionl sTypeSafe(i2d, Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Environnent, [int], double,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

247

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

1 2f | 2f

Ani2f instruction istype safeif one can validly popi nt off theincoming operand
stack and replaceit with f 1 oat , yielding the outgoing type state.

instructionl sTypeSafe(i2f, Environment, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Environnent, [int], float,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

248

THE cLAss FILE FORMAT Verification of cl ass Files

12l 12l

Ani2l instruction istype safeif one can validly popi nt off theincoming operand
stack and replace it with 1 ong, yielding the outgoing type state.

instructionl sTypeSafe(i2l, Environment, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Environnent, [int], |ong,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

249

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

12s 12s

Ani2sinstruction is type safe iff the equivalent ineg instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(i 2s, ineg).

250

THE cLAss FILE FORMAT Verification of cl ass Files

ladd ladd

Aniadd instruction is type safe iff one can validly replace types matchingi nt and
i nt on the incoming operand stack withi nt yielding the outgoing type state.

instructionl sTypeSaf e(i add, Environment, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Environnent, [int, int], int,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

251

4.10

252

Verification of cl ass Files THE cLAsS FILE FORMAT

iaload iaload

An iaload instruction is type safe iff one can validly replace types matching i nt
and array of i nt on the incoming operand stack with i nt yielding the outgoing
type state.

instructionl sTypeSaf e(i al oad, Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransiti on(Environnent, [int, arrayOf(int)], int,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

land land

Aniand instruction is type safe iff the equivalent iadd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(i and, i add).

253

4.10

254

Verification of cl ass Files THE cLAsS FILE FORMAT

lastore lastore

Aniastoreinstruction is type safe iff one can validly pop types matchingi nt , i nt
and array of i nt off the incoming operand stack yielding the outgoing type state.

instructionl sTypeSafe(iastore, _Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
canPop(StackFrane, [int, int, arrayOf(int)], NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

THE cLAss FILE FORMAT Verification of cl ass Files 4.10
If _acmp<cond> if _acmp<cond>

An if_acmpeq instruction is type safe iff one can validly pop types matching
ref erence and r ef er ence on the incoming operand stack yielding the outgoing
type state Next St ackFr ame, and the operand of the instruction, Tar get , isavalid
branch target assuming an incoming type state of Next St ackFr ane.

instructionl sTypeSafe(if_acnpeq(Target), Environnment, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
canPop(St ackFrane, [reference, reference], NextStackFrane),
target| sTypeSaf e(Envi ronment, Next StackFrame, Target),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

Therulefor if_ acmpneisidentical.

i nstructi onHasEqui val ent TypeRul e(i f _acnpne(Target), if_acnpeq(Target)).

255

4.10 Verification of cl ass Files THE cLAss FILE FORMAT
If_icmp<cond> If_icmp<cond>

An if_icmpeq instruction is type safe iff one can validly pop types matching
int and i nt on the incoming operand stack yielding the outgoing type state
Next St ackFr ame, and the operand of the instruction, Tar get, is a valid branch
target assuming an incoming type state of Next St ackFr ane.

instructionlsTypeSafe(if_icnpeq(Target), Environnment, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
canPop(StackFrane, [int, int], NextStackFrane),
target| sTypeSaf e(Envi ronment, Next StackFrame, Target),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

Therulesfor al other variants of theif icmp<cond> instruction are identical.

i nstructi onHasEqui val ent TypeRul e(i f _i cnpge(Target), if_icnpeq(Target)).
i nstructi onHasEqui val ent TypeRul e(i f_i cnpgt (Target), if_icnpeq(Target)).
i nstructi onHasEqui val ent TypeRul e(if_icnpl e(Target), if_icnpeq(Target)).
i nstructi onHasEqui val ent TypeRul e(if_icnplt(Target), if_icnpeq(Target)).
i nstructi onHasEqui val ent TypeRul e(i f_i cnpne(Target), if_icnpeq(Target)).

256

THE cLAss FILE FORMAT Verification of cl ass Files

if<cond> iIf<cond>

Anifeqinstruction istype safe iff one can validly pop atype matchingi nt off the
incoming operand stack yielding the outgoing type state Next St ackFr ane, and the
operand of the instruction, Tar get , isavalid branch target assuming an incoming
type state of Next St ackFr ane.

instructionl sTypeSafe(ifeq(Target), Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
canPop(StackFrane, [int], NextStackFrane),
target| sTypeSaf e(Envi ronment, Next StackFrame, Target),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

The rulesfor al other variations of the if<cond> instruction are identical.

i nstructi onHasEqui val ent TypeRul e(i fge(Target), ifeq(Target)).
i nstructi onHasEqui val ent TypeRul e(ifgt(Target), ifeq(Target)).
i nstructi onHasEqui val ent TypeRul e(ifl e(Target), ifeq(Target)).
i nstructi onHasEqui val ent TypeRul e(iflt(Target), ifeq(Target)).
i nstructi onHasEqui val ent TypeRul e(i fne(Target), ifeq(Target)).

4.10

257

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

ifnonnull ifnonnull

An ifnonnull instruction is type safe iff one can validly pop a type matching
reference Off the incoming operand stack yielding the outgoing type state
Next St ackFr ame, and the operand of the instruction, Tar get, is a valid branch
target assuming an incoming type state of Next St ackFr ane.

instructionl sTypeSafe(ifnonnull (Target), Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
canPop(St ackFrane, [reference], NextStackFrane),
target| sTypeSaf e(Envi ronment, Next StackFrame, Target),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

258

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

ifnull ifnull

Anifnull instruction istype safeiff the equivalent ifnonnull instruction istype safe.

i nstructi onHasEqui val ent TypeRul e(ifnull (Target), ifnonnull(Target)).

259

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT
inc Inc

Aniincinstruction with first operand | ndex istype safeiff L, ,gex hastypei nt . The
iinc instruction does not change the type state.

instructionl sTypeSafe(iinc(lndex, _Value), _Environment, _Ofset,
St ackFrame, StackFranme, ExceptionStackFranme) :-
St ackFrame = frane(Local s, _QOperandStack, _Fl ags),
nt hO(I ndex, Locals, int),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

260

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

iload Iload

Aniload instruction with operand | ndex is type safe and yields an outgoing type
state Next St ackFr ame, if aload instruction with operand | ndex and typeint is
type safe and yields an outgoing type state Next St ackFr ane.

instructionl sTypeSafe(il oad(lndex), Environnent, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
| oadl sTypeSaf e(Envi ronment, |ndex, int, StackFrame, NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

261

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

iload <n> iload <n>

The instructions iload_<n>, for 0 < n < 3, are typesafe iff the equivalent iload
instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(il oad_0, iload(0)).
i nstructi onHasEqui val ent TypeRul e(il oad_1, iload(1)).
i nstructi onHasEqui val ent TypeRul e(il oad_2, iload(2)).
i nstructi onHasEqui val ent TypeRul e(il oad_3, iload(3)).

262

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

imul imul

Animul instruction is type safe iff the equivalent iadd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(i mul, iadd).

263

4.10 Verification of cl ass Files THE cLAss FILE FORMAT
ineg ineg

An ineg instruction is type safe iff there is a type matching i nt on the incoming
operand stack. The ineg instruction does not ater the type state.

instructionl sTypeSaf e(i neg, Environment, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransiti on(Environnent, [int], int, StackFrane, NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

264

THE cLAss FILE FORMAT Verification of cl ass Files

instanceof Instanceof

An instanceof instruction with operand cP is type safe iff cP refers to a constant
pool entry denoting either a class or an array, and one can validly replace the type
Obj ect on top of the incoming operand stack with typei nt yielding the outgoing
type state.

instructionl sTypeSaf e(i nstanceof (CP), Environnment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
(CP =class(_, _) ; CP=arrayo(.)),
i sBoot st raplLoader (BL),

val i dTypeTransi ti on(Environnent, [class('javal/lang/ Cbject'), BL], int,

St ackFr ame, Next St ackFr ane) ,
exceptionSt ackFrame(St ackFrame, ExceptionStackFrane).

4.10

265

4.10

266

Verification of cl ass Files THE cLAsS FILE FORMAT

Invokedynamic Invokedynamic

An invokedynamic instruction is type safe iff al of the following conditions hold:

* Itsfirst operand, cp, refersto a constant pool entry denoting an dynamic call site
with name Cal | Si t eName with descriptor Descri pt or .

e Call SiteNane isnot<init>.
e Call SiteNane isnot <clinit>.

* Onecanvalidly replace types matching the argument typesgivenin Descri pt or
on the incoming operand stack with the return type given in Descri ptor,
yielding the outgoing type state.

i nstructionl sTypeSaf e(i nvokedynani c(CP, 0, 0), Environment, _Ofset,
St ackFrame, Next St ackFrane, ExceptionStackFrane)
CP = dmet hod(Cal | SiteNane, Descriptor),
Call SiteName \= '<init>",
Call SiteName \= '<clinit>",
par seMet hodDescri pt or (Descri ptor, OperandArgList, ReturnType),
rever se(Oper andAr gLi st, StackArglList),
val i dTypeTransi ti on(Envi ronnent, StackArgList, ReturnType,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

invoke nterface invokeinterface

An invokeinterface instruction is type safe iff al of the following conditions hold:

* Itsfirst operand, cp, refersto a constant pool entry denoting an interface method
named Met hodNarre with descriptor Descri pt or that isamember of an interface
Met hodl nt f Nane.

e Met hodNane iSNot <i ni t >.
* Met hodNane ishot <cl i nit>.
* Its second operand, Count , isavalid count operand (see below).

* One can vaidly replace types matching the type Met hodl nt f Name and the
argument types given in Descri pt or 0on the incoming operand stack with the
return type given in Descri pt or, yielding the outgoing type state.

instructionl sTypeSaf e(i nvokei nterface(CP, Count, 0), Environment, _Ofset,
St ackFrame, Next St ackFrane, ExceptionStackFranme) : -
CP = i nmet hod(Met hodl nt f Nane, Met hodNane, Descriptor),
Met hodNane \= '<init>",
Met hodNane \= '<clinit>",
par seMet hodDescri pt or (Descri ptor, OperandArgList, ReturnType),
current C assLoader (Envi ronment, L),
reverse([class(Methodl ntfName, L) | OperandArgList], StackArgList),
canPop(St ackFrane, StackArgList, TenpFrane),
val i dTypeTransiti on(Environnent, [], ReturnType, TenpFrame, NextStackFrane),
count | sVal i d(Count, StackFrane, TenpFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

The count operand of an invokeinterfaceinstructionisvalid if it equals the size of
the arguments to the instruction. This is equal to the difference between the size
of 1 nput Fr ame and Qut put Fr ane.

count | sVal i d(Count, I|nputFrane, CQutputFrane) :-
I nput Frame = franme(_Local s1, OperandStackl, _Flagsl),
Qut put Frame = frane(_Local s2, OperandStack2, _Fl ags2),
| engt h(Oper andSt ackl, Lengthl),
| engt h(Oper andSt ack2, Length2),
Count =:= Lengthl - Length2.

267

4.10

268

Verification of cl ass Files THE cLAsS FILE FORMAT

invokespecial invokespecial

An invokespecial instruction istype safe iff all of the following conditions hold:

* Its first operand, cpP, refers to a constant pool entry denoting a method
named Met hodName with descriptor Descri pt or that is a member of a class
Met hodCl assNare.

 Either:

* Met hodNane iSnot <i ni t >.

* Met hodNane isnot <cl i nit>.

+ One can validly replace types matching the current class and the argument
typesgiveninDescri pt or ontheincoming operand stack with the return type
givenin Descri pt or, yielding the outgoing type state.

* One can validly replace types matching the class Met hodCl assNarre and the
argument types given in Descri pt or on the incoming operand stack with the
return type givenin Descri pt or .

instructionl sTypeSaf e(i nvokespeci al (CP), Environnment, _Ofset, StackFrane,

e Or:

Next St ackFrane, ExceptionStackFrane) : -

CP = net hod(Met hodd assNane, Met hodNane, Descriptor),
Met hodNane \= '<init>",
Met hodNane \= '<clinit>",
par seMet hodDescri pt or (Descri ptor, OperandArgList, ReturnType),
t hi sA ass(Environment, Currentd ass),
reverse([Currentd ass | OperandArgList], StackArgList),
val i dTypeTransi ti on(Envi ronnent, StackArgList, ReturnType,

St ackFrame, Next St ackFrane),
current C assLoader (Envi ronment, L),
reverse([cl ass(Met hodd assNanme, L) | OperandArgList], StackArgList?2),
val i dTypeTransi ti on(Envi ronnent, StackArgList2, ReturnType,

St ackFrame, _Result StackFrane),
i sAssi gnabl e(cl ass(Current Cl assNanme, L), class(MethodC assNanme, L)).
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

* MethodNameis<i ni t >.

* Descri ptor specifiesavoi d return type.

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

* One can validly pop types matching the argument types given in Descri pt or
and an uninitialized type, Uni ni ti al i zedAr g, off theincoming operand stack,
yielding Oper andst ack.

* The outgoing type state is derived from the incoming type state by first
replacing the incoming operand stack with oper andst ack and then replacing
al instances of Uni ni ti al i zedAr g with the type of instance being initialized.

instructionl sTypeSaf e(i nvokespeci al (CP), Environnment, _COffset, StackFrane,

Next St ackFrane, ExceptionStackFrane) : -
CP = met hod(Met hodCl assName, '<init>', Descriptor),
par seMet hodDescri pt or (Descri ptor, OperandArglList, void),
rever se(Oper andArgLi st, StackArglList),
canPop(St ackFrane, StackArgList, TenpFrane),
TenpFrame = frane(Locals, Full OperandStack, Flags),
Ful | OperandStack = [UninitializedArg | OperandStack],
current d assLoader (Envi ronment, CurrentLoader),
rewittenUninitializedType(UninitializedArg, Environnent,

cl ass(Met hodC assName, CurrentLoader), This),
rewittenlnitializati onFlags(UninitializedArg, Flags, NextFlags),
substitute(UninitializedArg, This, OperandStack, NextQperandStack),
substitute(UninitializedArg, This, Locals, NextLocals),
Next St ackFrane = frane(Next Local s, Next OperandStack, NextFl ags),
ExceptionSt ackFrame = frane(NextLocals, [], Flags),
passesPr ot ect edCheck(Envi ronnent, Methodd assName, '<init>",
Descri ptor, NextStackFrane).

rewittenUninitializedType(uninitializedThis, Environnent,
_Methodd ass, This) :-
t hi sd ass(Environnent, This).

rewittenUninitializedType(uninitialized(Address), Environnent,
Met hodd ass, Met hodd ass) : -
al |l I nstructi ons(Environment, Instructions),
menber (i nstructi on(Address, new(Met hodCl ass)), |nstructions).

substitute(_Od, _New, [], []).

substitute(Od, New, [Od | FronRest], [New | ToRest]) :-
substitute(d d, New, FronmRest, ToRest).

substitute(dd, New, [Froml | FronRest], [Froml | ToRest]) :-
Froml \= A d,
substitute(d d, New, FronmRest, ToRest).

269

4.10

270

Verification of cl ass Files

To compute what type the uninitialized argument's type needs to be rewritten to,

there are two cases:

If we are initializing an object within its constructor, its type is initialy
uni ni tializedThis. Thistype will be rewritten to the type of the class of the
<i ni t > method.

The second case arises from initialization of an object created by new. The
uninitialized arg typeisrewritten to Met hodd ass, the type of the method holder
of <i ni t >. We check whether therereally is anew instruction at Addr ess.

rewittenlnitializationFlags(uninitializedThis, _Flags, []).
rewittenlnitializationFlags(uninitialized(_), Flags, Flags).

The rule for invokespecial of an <i ni t > method is the sole motivation for passing back
adistinct exception stack frame. The concern is that invokespecial can cause a superclass
<i ni t > method to be invoked, and that invocation could fail, leaving t hi s uninitialized.
This situation cannot be created using source code in the Java programming language, but
can be created by programming in bytecode directly.

The original frame holds an uninitialized object in a loca and has flag
uni nitializedThis. Normal termination of invokespecial initializes the uninitialized
object and turns off the uni ni ti al i zedThi s flag. But if the invocation of an <i ni t >
method throws an exception, the uninitialized object might be left in a partialy
initialized state, and needs to be made permanently unusable. This is represented by
an exception frame containing the broken object (the new value of the local) and the
uni nitializedThis flag (the old flag). There is no way to get from an apparently-
initialized object bearing the uni ni ti al i zedThi s flag to aproperly initialized object, so
the object is permanently unusable. If not for this case, the exception stack frame could be
the same as the input stack frame.

THE cLASS FILE FORMAT

THE cLAss FILE FORMAT Verification of cl ass Files

invokestatic invokestatic

An invokestatic instruction istype safe iff all of the following conditions hold:

* Itsfirst operand, cp, refers to a constant pool entry denoting a method named
Met hodName With descriptor Descri pt or .

e Met hodNane iSnot <i ni t >.
* Met hodNane isnot <cl i ni t>.

* Onecanvalidly replace types matching the argument typesgivenin Descri pt or
on the incoming operand stack with the return type given in Descri ptor,
yielding the outgoing type state.

i nstructionl sTypeSaf e(i nvokestatic(CP), Environment, _Ofset, StackFrane,

Next St ackFrane, ExceptionStackFrane) : -
CP = net hod(_Met hodCl assNanme, Met hodNanme, Descriptor),
Met hodNane \= '<init>',
Met hodName \= ' <clinit>",
par seMet hodDescri pt or (Descri ptor, OperandArgList, ReturnType),
rever se(Oper andAr gLi st, StackArglList),
val i dTypeTransi ti on(Envi ronnent, StackArgList, ReturnType,

St ackFrame, Next St ackFrane),

excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

271

4.10

272

Verification of cl ass Files THE cLAsS FILE FORMAT

invokevirtual invokevirtual

An invokevirtual instruction is type safeiff all of the following conditions hold:

Its first operand, cP, refers to a constant pool entry denoting a method
named Met hodName with descriptor Descri pt or that is a member of a class
Met hodCl assNare.

Met hodNarre IS not <i ni t >.
Met hodNarme iSnot <cl i nit>.

One can validly replace types matching the class Met hodd assNarre and the
argument types given in Descri pt or on the incoming operand stack with the
return type given in Descri pt or, yielding the outgoing type state.

If the method is pr ot ect ed, the usage conforms to the special rules governing
access to pr ot ect ed members (84.10.1.8).

instructionl sTypeSaf e(i nvokevirtual (CP), Environnment, _Ofset, StackFrane,

Next St ackFrane, ExceptionStackFrane) : -
CP = net hod(Met hodd assNane, Met hodNane, Descriptor),
Met hodNane \= '<init>",
Met hodNane \= '<clinit>",
par seMet hodDescri pt or (Descri ptor, OperandArgList, ReturnType),
rever se(Oper andAr gLi st, ArgList),
current C assLoader (Envi ronment, L),
reverse([cl ass(Methodd assName, L) | OperandArgList], StackArgList),
val i dTypeTransi ti on(Envi ronnent, StackArgList, ReturnType,

St ackFrame, Next St ackFrane),
canPop(St ackFrane, ArgList, PoppedFrane),
passesPr ot ect edCheck(Envi ronment, Met hodCl assNanme, Met hodNane,
Descri ptor, PoppedFrane),

excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

or ior

Anior instruction is type safe iff the equivalent iadd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(i or, iadd).

273

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

irem irem

Anireminstruction is type safe iff the equivalent iadd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(i rem i add).

274

THE cLAss FILE FORMAT Verification of cl ass Files

ireturn ireturn

An ireturn instruction is type safe if the enclosing method has a declared return
typeof i nt , and one can validly pop atype matchingi nt off theincoming operand
stack.

instructionl sTypeSafe(ireturn, Environnent, _Ofset, StackFrane,
af t er Got o, ExceptionStackFrane) : -
t hi sMet hodRet ur nType(Envi ronnent, int),
canPop(StackFrane, [int], _PoppedStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

275

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

ishi ishl

Anishl instruction is type safe iff the equivalent iadd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(i shl, iadd).

276

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

ishr ishr

Anishr instruction is type safe iff the equivalent iadd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(i shr, iadd).

277

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

istore istore

Anistoreinstruction with operand | ndex is type safe and yields an outgoing type
state Next St ackFr ane, if a store instruction with operand | ndex and typei nt is
type safe and yields an outgoing type state Next St ackFr ane.

instructionl sTypeSafe(istore(lndex), Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
storel sTypeSaf e(Envi ronnent, Index, int, StackFrane, NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

278

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

Istore_<n> istore <n>

The instructions istore_<n>, for 0 < n < 3, are type safe iff the equivaent istore
instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(i store_0, istore(0)).
i nstructi onHasEqui val ent TypeRul e(istore_1, istore(l)).
i nstructi onHasEqui val ent TypeRul e(istore_2, istore(2)).
i nstructi onHasEqui val ent TypeRul e(istore_3, istore(3)).

279

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

Isub isub

Anisub instruction istype safe iff the equivalent iadd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(i sub, iadd).

280

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

iushr lushr

Aniushr instruction is type safe iff the equivalent iadd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(i ushr, iadd).

281

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

iIxXor IXor

Anixor instruction is type safe iff the equivalent iadd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(i xor, iadd).

282

THE cLAss FILE FORMAT Verification of cl ass Files

I2d l2d

Anl2dinstructionistype safeif onecanvalidly pop1 ong off theincoming operand
stack and replace it with doubl e, yielding the outgoing type state.

instructionl sTypeSafe(l2d, Environment, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Envi ronnent, [l ong], doubl e,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

283

4.10

284

Verification of cl ass Files THE cLAsS FILE FORMAT

|2f | 2f

Anl2finstruction istype safeif one canvalidly pop I ong off theincoming operand
stack and replaceit with f 1 oat , yielding the outgoing type state.

instructionl sTypeSafe(l2f, Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Environnent, [long], float,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

THE cLAss FILE FORMAT Verification of cl ass Files

12i 12i

An|2iinstruction istype safeif one can validly pop | ong off theincoming operand
stack and replaceit withi nt, yielding the outgoing type state.

instructionl sTypeSafe(l2i, Environment, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Environnent, [long], int,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

285

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

ladd ladd

Anladdinstructionistype safeiff one can validly replace types matching | ong and
I ong on the incoming operand stack with | ong yielding the outgoing type state.

instructionl sTypeSafe(l add, Environment, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Envi ronnent, [long, long], |ong,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

286

THE cLAss FILE FORMAT Verification of cl ass Files

laload laload

An laload instruction is type safe iff one can validly replace types matching i nt
and array of | ong on the incoming operand stack with I ong yielding the outgoing
type state.

instructionl sTypeSaf e(l al oad, Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransiti on(Environnent, [int, arrayOf(long)], |ong,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

287

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

land land

Anland instruction is type safe iff the equivalent ladd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(l and, | add).

288

THE cLAss FILE FORMAT Verification of cl ass Files

lastore lastore

Anlastoreinstructionistype safeiff one can validly pop typesmatching ! ong, i nt
and array of | ong off the incoming operand stack yielding the outgoing type state.

instructionl sTypeSafe(lastore, _Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
canPop(StackFrane, [long, int, arrayOf(long)], NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

289

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

lcmp lcmp

A lcmpingtruction istype safe iff one can validly replace types matching | ong and
I ong on the incoming operand stack withi nt yielding the outgoing type state.

instructionl sTypeSafe(lcnp, Environment, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Environnent, [long, long], int,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

290

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

lconst_<I> lconst_<I>

Anlconst_0instruction is type safe if one can validly push the typel ong onto the
incoming operand stack yielding the outgoing type state.

instructionl sTypeSafe(lconst_0, Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Environnent, [], |ong, StackFranme, NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

An Iconst_1 instruction is type safe iff the equivalent Iconst_0 instruction is type
safe.

i nstructi onHasEqui val ent TypeRul e(l const _1, |const_0).

291

4.10

292

Verification of cl ass Files THE cLAsS FILE FORMAT

ldc ldc

Anldcinstruction with operand cp istype safeiff cP refersto a constant pool entry
denoting an entity of type Type, where Type iseitherint, float, String, d ass,
j ava. | ang. i nvoke. Met hodType, Or j ava. | ang. i nvoke. Met hodHandl e, and one
can validly push Type onto the incoming operand stack yielding the outgoing type
state.

instructionl sTypeSafe(ldc(CP), Environnent, _Ofset, StackFraneg,
Next St ackFrane, ExceptionStackFrane) : -

functor(CP, Tag, _),
i sBoot st raplLoader (BL),
menber ([Tag, Type], [

[int, int],

[float, float],

[string, class('javal/lang/String', BL)],

[cl assConst, class('javal/lang/Cass', BL)],

[met hodTypeConst, class('javal/l ang/i nvoke/ Met hodType', BL)],

[met hodHandl eConst, cl ass('javal/l ang/invoke/ Met hodHandl e', BL)],
DY
val i dTypeTransiti on(Environnent, [], Type, StackFranme, NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

Idc w ldc_ w

Anldc_w instruction is type safe iff the equivalent Idc instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(1 dc_wW CP), 1dc(CP))

293

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

ldc2_w |ldc2_ w

Anldc2_w instruction with operand cp istype safe iff cP refersto a constant pool
entry denoting an entity of type Tag, where Tag is either | ong or doubl e, and one
can validly push Tag onto the incoming operand stack yielding the outgoing type
state.

instructionl sTypeSafe(ldc2_wWCP), Environment, _COffset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
functor(CP, Tag, _),
menber (Tag, [l ong, double]),
val i dTypeTransiti on(Environnent, [], Tag, StackFranme, NextStackFrane),
exceptionSt ackFrame(St ackFrame, ExceptionStackFrane).

294

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

Idiv Idiv

Anldivinstruction is type safe iff the equivalent ladd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(1di v, |add).

295

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

[load lload

An lload instruction with operand | ndex is type safe and yields an outgoing type
state Next St ackFr ane, if aload instruction with operand | ndex and typel ong is
type safe and yields an outgoing type state Next St ackFr ane.

instructionl sTypeSafe(lload(lndex), Environnent, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
| oadl sTypeSaf e(Envi ronment, |ndex, |ong, StackFranme, NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

296

THE cLASS FILE FORMAT

lload <n>

Verification of cl ass Files

lload <n>

The instructions lload_<n>, for 0 < n < 3, are type safe iff the equivaent lload

instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(1 1| oad_0,
i nstructi onHasEqui val ent TypeRul e(1 | oad_1,
i nstructi onHasEqui val ent TypeRul e(1 | oad_2,
i nstructi onHasEqui val ent TypeRul e(1 | oad_3,

I'1 0ad(0)).
I'1oad(1)).
I'1oad(2)).
I'10ad(3)).

4.10

297

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

[mul [mul

AnImul instruction is type safe iff the equivalent ladd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(| mul, | add).

298

THE cLAss FILE FORMAT Verification of cl ass Files
Ineg Ineg

An Ineg instruction is type safe iff there is a type matching | ong on the incoming
operand stack. The Ineg instruction does not ater the type state.

instructionl sTypeSafe(l neg, Environment, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Envi ronnent, [long], |ong,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

299

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

lookupswitch lookupswitch

A lookupswitchinstructionistypesafeif itskeysare sorted, onecanvalidly popi nt
off the incoming operand stack yielding a new type state Br anchst ackFr ame, and
all of theinstruction'stargets are valid branch targets assuming Br anchSt ackFr ane
astheir incoming type state.

instructionl sTypeSaf e(l ookupswi tch(Targets, Keys), Environnent,
afterCoto, ExceptionStackFrane) :-

_, StackFrane,

sort (Keys, Keys),

canPop(StackFrane, [int], BranchStackFrane),

checkl i st (targetlsTypeSafe(Environnent, BranchStackFrane), Targets),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

300

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

lor lor

A lor instruction is type safe iff the equivalent ladd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(l or, |add).

301

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

Irem [rem

An Ireminstruction is type safe iff the equivalent ladd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(l rem | add).

302

THE cLAss FILE FORMAT Verification of cl ass Files

Ireturn Ireturn

Anlreturninstructionistype safeif the enclosing method hasadeclared returntype
of I ong, and one can validly pop atype matching | ong off the incoming operand
stack.

instructionl sTypeSafe(lreturn, Environnent, _Ofset, StackFrane,
af t er Got o, ExceptionStackFrane) : -
t hi sMet hodRet ur nType(Envi ronnment, |ong),
canPop(St ackFrane, [long], _PoppedStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

303

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

|shi Ishi

Anlshl instructionistype safeif one can validly replacethetypesi nt and i ong on
the incoming operand stack with the type ong yielding the outgoing type state.

instructionl sTypeSafe(lshl, Environment, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Environnent, [int, long], |ong,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

304

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

[shr Ishr

An Ishr instruction is type safe iff the equivalent Ishl instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(l shr, |shl).

305

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

Istore |store

An Istore instruction with operand | ndex is type safe and yields an outgoing type
state Next St ackFr ane, if a store instruction with operand | ndex and typel ong is
type safe and yields an outgoing type state Next St ackFr ane.

instructionl sTypeSafe(lstore(lndex), Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
storel sTypeSaf e(Envi ronnent, Index, |ong, StackFranme, NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

306

THE cLASS FILE FORMAT

Istore <n>

The instructions Istore_<n>, for 0 < n < 3, are type safe iff the equivaent Istore

instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(l store_0,
i nstructi onHasEqui val ent TypeRul e(l store_1,
i nstructi onHasEqui val ent TypeRul e(l store_2,
i nstructi onHasEqui val ent TypeRul e(l store_3,

Verification of cl ass Files

I store(0)).
I store(1)).
I store(2)).
I store(3)).

|store <n>

4.10

307

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

Isub Isub

Anlsub instruction istype safe iff the equivalent ladd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(| sub, | add).

308

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

[ushr lushr

An lushr instruction is type safe iff the equivalent Ishl instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(l ushr, |shl).

309

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

Ixor Ixor

An Ixor instruction is type safe iff the equivalent ladd instruction is type safe.

i nstructi onHasEqui val ent TypeRul e(| xor, | add).

310

THE cLAss FILE FORMAT Verification of cl ass Files

monitorenter monitorenter

A monitorenter instruction is type safe iff one can validly pop a type matching
r ef er ence Off the incoming operand stack yielding the outgoing type state.

instructionl sTypeSafe(nmonitorenter, _Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
canPop(St ackFrane, [reference], Next StackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

311

4.10 Verification of cl ass Files THE cLAsS FILE FORMAT

monitorexit monitorexit

A monitorexit instruction is type safe iff the equivalent monitorenter instruction
istype safe.

i nstructi onHasEqui val ent TypeRul e(noni torexit, nonitorenter).

312

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

multianewarray multianewarray

A multianewarray instruction with operands cP and Di mistype safeiff Cp refersto
a constant pool entry denoting an array type whose dimension is greater or equal
to Di m Di mis strictly positive, and one can validly replace bi mi nt types on the
incoming operand stack with the type denoted by cp yielding the outgoing type
state.

instructionl sTypeSafe(nultianewarray(CP, Dinm), Environment, _Offset,
St ackFranme, Next St ackFrane, ExceptionStackFrane) : -
CP = arrayOof (),
cl assDi mensi on(CP, D nension),
Di mension >= Dim
Dim> 0,
/* Make a list of DDmints */
findall (int, between(l, Dm _), IntList),
val i dTypeTransi ti on(Environnent, IntList, CP,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

The dimension of an array type whose component typeis also an array typeisone
more than the dimension of its component type.

cl assDi nmensi on(arrayOX (X), Dinension) :-
cl assDi nensi on(X, Dimensionl),
Di mension is Dinmensionl + 1.

cl assDi nmension(_, Dinension) :-
Di mension = 0.

313

4.10

314

Verification of cl ass Files THE cLAsS FILE FORMAT

new new

A new instruction with operand cp at offset Of f set is type safe iff cP refers to
a constant pool entry denoting a class type, the type uninitiali zed(O f set)
does not appear in the incoming operand stack, and one can validly
push uninitialized(Offset) onto the incoming operand stack and replace
uni ni tialized(Ofset) with top in the incoming local variables yielding the
outgoing type state.

instructionl sTypeSaf e(new(CP), Environnment, Ofset, StackFrane,
Next St ackFr ane, ExceptionStackFrane) :-

St ackFranme = franme(Local s, OperandStack, Flags),

CP =class(_,),

New tem = uninitialized(Ofset),

not Menber (Newl t em Oper andSt ack) ,

substitute(New tem top, Locals, Newl,ocals),

val i dTypeTransi ti on(Environnent, [], Newltem
frame(NewLocal s, OperandStack, Flags),
Next St ackFr ane) ,

excepti onSt ackFranme(St ackFrame, Excepti onStackFrane).

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

newarray newarray

A newarray instruction with operand TypeCode is type safe iff TypeCode
corresponds to the primitive type El enent Type, and one can validly replace the
type i nt on the incoming operand stack with the type 'array of El enent Type',
yielding the outgoing type state.

i nstructionl sTypeSaf e(newarray(TypeCode), Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
primtiveArrayl nfo(TypeCode, _TypeChar, El enentType, _VerifierType),
val i dTypeTransi tion(Environnent, [int], arrayCf (El enent Type),
St ackFrame, Next St ackFrane),
exceptionSt ackFrame(St ackFrame, ExceptionStackFrane).

The correspondence between type codes and primitive types is specified by the
following predicate:

primtiveArraylnfo(4, 0'Z, boolean, int).
primtiveArraylnfo(5 0'C, char, int).
primtiveArraylnfo(6, O0'F, float, float).
primtiveArraylnfo(7, 0'D, double, double).
primtiveArraylnfo(8, 0'B, byte, int).
primtiveArraylnfo(9, 0'S, short, int).
primtiveArraylnfo(10, 0'l, int, int).
primtiveArraylnfo(11, 0'J, |ong, I ong) .

315

4.10

316

Verification of cl ass Files THE cLAsS FILE FORMAT

nop nop

A nop instruction is always type safe. The nop instruction does not affect the type
state.

instructionl sTypeSaf e(nop, _Environnment, _Ofset, StackFrane,
St ackFrame, ExceptionStackFranme) :-
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

THE cLAss FILE FORMAT Verification of cl ass Files

pop Pop

A pop instruction is type safe iff one can validly pop a category 1 type off the
incoming operand stack yielding the outgoing type state.

instructionl sTypeSaf e(pop, _Environnment, _Offset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
StackFrame = franme(Locals, [Type | Rest], Flags),
Type \ = top,
sizeOf (Type, 1),
Next St ackFrane = frane(Local s, Rest, Flags),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

317

4.10

318

Verification of cl ass Files THE cLAsS FILE FORMAT
pop2 pop2

A pop2 instruction is type safeiff it is atype safe form of the pop2 instruction.

instructionl sTypeSaf e(pop2, _Environnment, _Ofset, StackFrane,
Next St ackFr ane, ExceptionStackFrane) : -
St ackFranme = franme(Local s, |nputOperandStack, Flags),
pop2SoneFor m sTypeSaf e(| nput Oper andSt ack, Qut put Oper andSt ack)
Next St ackFranme = frane(Local s, Qutput OperandSt ack, Fl ags),
excepti onSt ackFranme(St ackFrame, Excepti onStackFrane).

A pop2 instruction is a type safe form of the pop2 instruction iff it is a type safe
form 1 pop2 instruction or atype safe form 2 pop2 instruction.

pop2SomeFor m sTypeSaf e(| nput Oper andSt ack, CQut put Oper andSt ack) : -
pop2For mLl sTypeSaf e(| nput Oper andSt ack, Qut put Oper andSt ack) .

pop2SomeFor M sTypeSaf e(| nput Oper andSt ack, CQut put Oper andSt ack) : -
pop2For n2l sTypeSaf e(| nput Oper andSt ack, Qut put Oper andSt ack) .

A pop2 instruction is a type safe form 1 pop2 instruction iff one can validly pop
two types of size 1 off the incoming operand stack yiel ding the outgoing type state.

pop2For mil sTypeSaf e([Typel, Type2 | Rest], Rest) :-
sizeO (Typel, 1),
sizeO (Type2, 1).

A pop2 instruction is a type safe form 2 pop2 instruction iff one can validly pop a
type of size 2 off the incoming operand stack yielding the outgoing type state.

pop2For n2l sTypeSaf e([top, Type | Rest], Rest) :- sizeO (Type, 2).

THE cLAss FILE FORMAT Verification of cl ass Files

putfield putfield

A putfield instruction with operand CP is type safe iff CP refers to a constant
pool entry denoting a field whose declared type isFi el dType, declared in aclass
Fi el dd ass, and one can validly pop types matching Fi el dType and Fi el dd ass
off the incoming operand stack yielding the outgoing type state.

instructionl sTypeSafe(putfield(CP), Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
CP = field(Fiel dd ass, FieldNane, FieldDescriptor),
par seFi el dDescri ptor (Fi el dDescriptor, Fiel dType),
canPop(St ackFrane, [Fiel dType], PoppedFrane),
passesPr ot ect edCheck(Envi ronment, Fi el dC ass, Fi el dNane,
Fi el dDescri ptor, PoppedFrane),
current d assLoader (Envi ronment, CurrentLoader),
canPop(St ackFrane, [Fiel dType, class(FieldCd ass, CurrentlLoader)],
Next St ackFr ane) ,
exceptionSt ackFrame(St ackFrame, ExceptionStackFrane).

4.10

319

4.10

320

Verification of cl ass Files THE cLAsS FILE FORMAT

putstatic putstatic

A putstatic instruction with operand cp is type safe iff cP refers to a constant pool
entry denoting afield whose declared typeisFi el dType, and one can validly pop
atype matching Fi el dType off the incoming operand stack yielding the outgoing
type state.

instructionl sTypeSafe(putstatic(CP), _Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
CP = field(_Fieldd ass, _FieldNanme, FieldDescriptor),
par seFi el dDescri ptor (Fi el dDescriptor, Fiel dType),
canPop(St ackFrane, [Fiel dType], Next StackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

THE cLAss FILE FORMAT Verification of cl ass Files

return return

A return instruction is type safe if the enclosing method declares a voi d return
type, and either:

* The enclosing method is not an <i ni t > method, or

* thi s has already been completely initialized at the point where the instruction
occurs.

instructionlsTypeSafe(return, Environnent, _Ofset, StackFraneg,
af t er Got o, ExceptionStackFrane) : -
t hi sMet hodRet ur nType(Envi ronnent, void),
StackFrame = frane(_Locals, _OperandStack, Flags),
not Menber (fl agThi sUninit, Flags),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

321

4.10

322

Verification of cl ass Files THE cLAsS FILE FORMAT

saload saload

An saload instruction is type safe iff one can validly replace types matching i nt
and array of short on the incoming operand stack with i nt yielding the outgoing
type state.

instructionl sTypeSaf e(sal oad, Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransi ti on(Environnent, [int, arrayOf (short)], int,
St ackFrame, Next St ackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

THE cLAss FILE FORMAT Verification of cl ass Files

sastore sastore

An sastoreinstruction istype safe iff one can validly pop types matchingi nt , i nt,
and array of short off theincoming operand stack yielding the outgoing type state.

instructionl sTypeSaf e(sastore, _Environment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
canPop(StackFrane, [int, int, arrayOf(short)], NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

323

4.10 Verification of cl ass Files THE cLAss FILE FORMAT
Sipush Sipush

An sipush instruction is type safe iff one can validly push the typei nt onto the
incoming operand stack yielding the outgoing type state.

i nstructionl sTypeSaf e(si push(_Val ue), Environnment, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
val i dTypeTransiti on(Environnent, [], int, StackFrame, NextStackFrane),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

324

THE cLAss FILE FORMAT Verification of cl ass Files
swap swap

A swap instruction is type safe iff one can validly replace two category 1 types,
Typel and Type2, on the incoming operand stack with the types Type2 and Typel
yielding the outgoing type state.

i nstructionl sTypeSaf e(swap, _Environnent, _Ofset, StackFrane,
Next St ackFrane, ExceptionStackFrane) : -
StackFrame = frane(_Locals, [Typel, Type2 | Rest], _Flags),
sizeOf (Typel, 1),
sizeOf (Type2, 1),
Next St ackFrane = franme(_Local s, [Type2, Typel | Rest], _Flags),
excepti onSt ackFrame(St ackFrane, ExceptionStackFrane).

4.10

325

4.10

326

Verification of cl ass Files THE cLAsS FILE FORMAT

tableswitch tableswitch

A tableswitch instruction istype safeif its keys are sorted, one can validly popi nt
off the incoming operand stack yielding a new type state Br anchst ackFr ame, and
all of theinstruction'stargets are valid branch targets assuming Br anchSt ackFr ane
astheir incoming type state.

instructionl sTypeSafe(tabl eswitch(Targets, Keys), Environment, _Ofset,
St ackFrame, afterGoto, ExceptionStackFrane) :-
sort (Keys, Keys),
canPop(StackFrane, [int], BranchStackFrane),
checkl i st (targetlsTypeSafe(Environnent, BranchStackFrane), Targets),
exceptionSt ackFrame(St ackFrame, ExceptionStackFrane).

THE cLAssS FILE FORMAT Verification of cl ass Files 4.10

wide wide

The wide instructions follow the same rules as the instructions they widen.

i nstructi onHasEqui val ent TypeRul e(w de(W denedl nstruction),
W denedl nstruction).

4.10.2 Verification by Type Inference

A cl ass file that does not contain a st ackMapTabl e attribute (which necessarily
has a version number of 49.0 or below) must be verified using type inference.

4.10.2.1 The Process of Verification by Type Inference

During linking, the verifier checks the code array of the Code attribute for each
method of the cl ass file by performing data-flow analysis on each method. The
verifier ensures that at any given point in the program, no matter what code path
istaken to reach that point, the following istrue:

» Theoperand stack is aways the same size and contains the same types of values.

* No local variable is accessed unless it is known to contain a value of an
appropriate type.

» Methods are invoked with the appropriate arguments.

» Fieldsare assigned only using values of appropriate types.

 All opcodes have appropriate type arguments on the operand stack and in the
local variable array.

» Thereisnever an uninitialized classinstancein alocal variablein code protected
by an exception handler. However, an uninitialized class instance may be on the
operand stack in code protected by an exception handler. When an exception is
thrown, the contents of the operand stack are discarded.

For efficiency reasons, certain tests that could in principle be performed by the
verifier are delayed until the first time the code for the method is actually invoked.
In so doing, the verifier avoidsloading cl ass filesunlessit has to.

For example, if a method invokes another method that returns an instance of class A, and
that instance is assigned only to a field of the same type, the verifier does not bother to
check if the class A actually exists. However, if it is assigned to afield of the type B, the
definitions of both A and B must be loaded in to ensure that A is a subclass of B.

327

4.10

328

Verification of cl ass Files THE cLAsS FILE FORMAT

4.10.2.2 The Bytecode Verifier

The code for each method is verified independently. First, the bytes that make up
the code are broken up into a sequence of instructions, and the index into the code
array of the start of each instruction is placed in an array. The verifier then goes
through the code a second time and parses the instructions. During this pass adata
structure is built to hold information about each Java Virtual Machine instruction
in the method. The operands, if any, of each instruction are checked to make sure
they are valid. For instance:

» Branches must be within the bounds of the code array for the method.

* The targets of all control-flow instructions are each the start of an instruction.
In the case of awide instruction, the wide opcode is considered the start of the
instruction, and the opcode giving the operation modified by that wideinstruction
isnot considered to start aninstruction. Branchesinto the middle of aninstruction
are disallowed.

* No instruction can access or modify alocal variable at an index greater than or
equal to the number of local variables that its method indicates it allocates.

* All references to the constant pool must be to an entry of the appropriate type.
(For example, the instruction getfield must reference afield.)

» The code does not end in the middle of an instruction.
« Execution cannot fall off the end of the code.

 For each exception handler, the starting and ending point of code protected by
the handler must be at the beginning of an instruction or, in the case of the ending
point, immediately past the end of the code. The starting point must be before
the ending point. The exception handler code must start at a valid instruction,
and it must not start at an opcode being modified by the wide instruction.

For each instruction of the method, the verifier records the contents of the operand
stack and the contents of the local variable array prior to the execution of that
instruction. For the operand stack, it needs to know the stack height and the type
of each value on it. For each local variable, it needs to know either the type of the
contents of that local variable or that the local variable contains an unusable or
unknown value (it might be uninitialized). The bytecode verifier does not need to
distinguish between the integral types (e.g., byt e, shor t, char) when determining
the value types on the operand stack.

Next, a data-flow analyzer is initialized. For the first instruction of the method,
the local variables that represent parameters initially contain values of the types
indicated by the method's type descriptor; the operand stack is empty. All other

THE cLAss FILE FORMAT Verification of cl ass Files

local variables contain an illegal value. For the other instructions, which have not
been examined yet, no information is available regarding the operand stack or local
variables.

Finaly, the data-flow analyzer is run. For each instruction, a "changed" bit
indicates whether thisinstruction needsto be looked at. Initially, the "changed” bit
is set only for the first instruction. The data-flow analyzer executes the following
loop:

1

Select a Java Virtual Machine instruction whose "changed” bit is set. If no
instruction remains whose "changed" bit is set, the method has successfully
been verified. Otherwise, turn off the "changed” bit of the selected instruction.

Model the effect of theinstruction on the operand stack and local variablearray
by doing the following:

* If theinstruction uses values from the operand stack, ensure that there are a
sufficient number of values on the stack and that the top values on the