

Linux Networking Kernel

Version 0.1
February, 12, 2003

1 – Introduction

 This report tries to describe the Networking part of the linux networking kernel. We try
to describe the path the the packets follow in the forwarding path. We restrict this work to
the IP code leaving other less used protocols like X.25 for other works. In the lower
layers we also concentrate in the Ethernet protocol.

 In the IP code we describe only the IPv4 code although the IPv6 code does not have
many differences (bigger addressing, no fragmentation, etc).

Networking in the linux kernel

In Figure \ref{fig:tree} we can see where the relevant code is in the linux kernel.

Figure 1 - Networking in the linux tree
Report Structure

 The report follows a bottom-up approach when describing the kernel. A brief
introduction to the most relevant data structures is presented in chapter ... In chapter ...
the sub-ip layer is described. In chapter ... we describe the IP layer. TCP and UDP are
described in chapters ...

 The networking part of the kernel is populated with netfilter hooks where users can hang
their code and analyse or change the packets. These are marked as HOOK in the kernel
maps.

NOTE: We need References, specially RFCs (TCP, PAWS, SACKs, etc) and netfilter.
NOTE: We might need a final chapter on Socket layer and interation with the user space

Acknowledgments

 We would like to thank

2 – Data Structures
The networking part of the kernel uses mainly two data structures. One to keep the state
of a connection called sock and other to keep the status of each packet (incoming and/or
outgoing) called sk_buff.

 Here we proved a brief description of both. We also include a brief description of
tcp_opt, a structure part of the sock structure which is used to maintain the tcp connection
state. The details of tcp are presented in chapter \ref{chapter:tcp}.

sk_buff

 The sk_buff structure is defined in include/linux/skbuff.h When a packet arrives to the
kernel, either from the user space or from the network card one of these structures is
created. Changing packet fields is achieved by changing its fields. In the next chapter
practically every function is invoked with an sk_buff (the variable is usually called skb) as
a parameter

 The first fields are general ones. A pointer to the next and previous skbs in the list
(packets are frequently put in lists or queues). The socket that owns the packet is stored in
sk (note that if the packet is arriving from the network only at a later stage the socket
owner is known).

 The time of arrival is stored in stamp. The dev field stores the device the packet arrived
and when and if the device to be used for transmission is known (for example by
inspection of the routing table) the dev field is updated correspondingly.

struct sk_buff {
 /* These two members must be first. */
 struct sk_buff * next; /* Next buffer in
list */
 struct sk_buff * prev; /* Previous buffer
in list */

 struct sk_buff_head * list; /* List we are on
 */
 struct sock *sk; /* Socket we are owned by
 */
 struct timeval stamp; /* Time we arrived
 */
 struct net_device *dev; /* Device we arrived
on/are leaving by */

 The transport section is a union that points to the corresponding transport layer structure
(TCP, UDP, ICMP, etc).

 /* Transport layer header */
 union
 {
 struct tcphdr *th;
 struct udphdr *uh;
 struct icmphdr *icmph;
 struct igmphdr *igmph;
 struct iphdr *ipiph;
 struct spxhdr *spxh;
 unsigned char *raw;
 } h;

 The Network layer header points to the corresponding data structures (IPv4, IPv6, arp,
raw, etc).

 /* Network layer header */
 union
 {
 struct iphdr *iph;
 struct ipv6hdr *ipv6h;
 struct arphdr *arph;
 struct ipxhdr *ipxh;
 unsigned char *raw;
 } nh;

 The link layer is stored in this final union. Only a special case for ethernet is included.
Other technologies will use the raw fields with appropriate casts.

 /* Link layer header */
 union
 {
 struct ethhdr *ethernet;
 unsigned char *raw;
 } mac;

 struct dst_entry *dst;

 The rest of the packet info is stored in the rest of the structure. Length, data length,
checksum, packet type, etc.

 char cb[48];

 unsigned int len; /* Length of actual data
 */
 unsigned int data_len;
 unsigned int csum; /* Checksum
 */
 unsigned char __unused, /* Dead field, may be reused
 */
 cloned, /* head may be cloned (check refcnt
to be sure). */
 pkt_type, /* Packet class
 */
 ip_summed; /* Driver fed us an IP checksum
 */
 __u32 priority; /* Packet queueing priority
 */
 atomic_t users; /* User count - see
datagram.c,tcp.c */
 unsigned short protocol; /* Packet protocol from
driver. */
 unsigned short security; /* Security level of packet
 */
 unsigned int truesize; /* Buffer size
 */

 unsigned char *head; /* Head of buffer
 */
 unsigned char *data; /* Data head pointer
 */
 unsigned char *tail; /* Tail pointer
 */
 unsigned char *end; /* End pointer
 */

sock

The sock data structure keeps the state of a specific connection. When a socket is created
in user space a sock structure is allocated. Data about the connection (TCP state for
example).

The first fields contain source and destination addresses and ports.

struct sock {
 /* Socket demultiplex comparisons on incoming packets. */
 __u32 daddr; /* Foreign IPv4 addr
 */
 __u32 rcv_saddr; /* Bound local IPv4 addr
 */
 __u16 dport; /* Destination port
 */
 unsigned short num; /* Local port
 */
 int bound_dev_if; /* Bound device index if != 0
 */

 Among many fields the sock structure contains protocol specific information. These
fields contain state information on each layer.

 union {
 struct ipv6_pinfo af_inet6;
 } net_pinfo;

 union {
 struct tcp_opt af_tcp;
 struct raw_opt tp_raw4;
 struct raw6_opt tp_raw;
 struct spx_opt af_spx;
 } tp_pinfo;

};

tcp_opt

 One of the main components of the sock structure is the TCP field (tcp_opt). Both IP and
UDP are stateless protocols with a minimum need to store information about their
connections. TCP, however needs to store a big set of variables. They are stored in the
fields of tcp_opt of which a relevant extract is shown below (comments are self-
explanatory).

struct tcp_opt {
 int tcp_header_len; /* Bytes of tcp header to send
 */

 __u32 rcv_nxt; /* What we want to receive next */
 __u32 snd_nxt; /* Next sequence we send */

 __u32 snd_una; /* First byte we want an ack for */
 __u32 snd_sml; /* Last byte of the most recently transmitted
small packet */
 __u32 rcv_tstamp; /* timestamp of last received ACK (for
keepalives) */
 __u32 lsndtime; /* timestamp of last sent data packet (for
restart window) */

 /* Delayed ACK control data */
 struct {
 __u8 pending; /* ACK is pending */
 __u8 quick; /* Scheduled number of quick acks
 */
 __u8 pingpong; /* The session is interactive */
 __u8 blocked; /* Delayed ACK was blocked by socket
lock*/
 __u32 ato; /* Predicted tick of soft clock
 */
 unsigned long timeout; /* Currently scheduled timeout
 */
 __u32 lrcvtime; /* timestamp of last received data
packet*/
 __u16 last_seg_size; /* Size of last incoming segment
 */

 __u16 rcv_mss; /* MSS used for delayed ACK decisions
 */
 } ack;

 /* Data for direct copy to user */
 struct {
 struct sk_buff_head prequeue;
 struct task_struct *task;
 struct iovec *iov;
 int memory;
 int len;
 } ucopy;

 __u32 snd_wl1; /* Sequence for window update */
 __u32 snd_wnd; /* The window we expect to receive */
 __u32 max_window; /* Maximal window ever seen from peer */
 __u32 pmtu_cookie; /* Last pmtu seen by socket */
 __u16 mss_cache; /* Cached effective mss, not including SACKS */
 __u16 mss_clamp; /* Maximal mss, negotiated at connection setup
*/
 __u16 ext_header_len; /* Network protocol overhead (IP/IPv6
options) */
 __u8 ca_state; /* State of fast-retransmit machine */
 __u8 retransmits; /* Number of unrecovered RTO timeouts.
 */

 __u8 reordering; /* Packet reordering metric. */
 __u8 queue_shrunk; /* Write queue has been shrunk recently.*/
 __u8 defer_accept; /* User waits for some data after accept()
*/

/* RTT measurement */
 __u8 backoff; /* backoff */
 __u32 srtt; /* smothed round trip time << 3 */
 __u32 mdev; /* medium deviation */
 __u32 mdev_max; /* maximal mdev for the last rtt period */
 __u32 rttvar; /* smoothed mdev_max */
 __u32 rtt_seq; /* sequence number to update rttvar */
 __u32 rto; /* retransmit timeout */

 __u32 packets_out; /* Packets which are "in flight" */
 __u32 left_out; /* Packets which leaved network */
 __u32 retrans_out; /* Retransmitted packets out */

/*
 * Slow start and congestion control (see also Nagle, and Karn &
Partridge)
 */
 __u32 snd_ssthresh; /* Slow start size threshold */
 __u32 snd_cwnd; /* Sending congestion window */
 __u16 snd_cwnd_cnt; /* Linear increase counter */
 __u16 snd_cwnd_clamp; /* Do not allow snd_cwnd to grow above this
*/
 __u32 snd_cwnd_used;
 __u32 snd_cwnd_stamp;

 /* Two commonly used timers in both sender and receiver paths. */
 unsigned long timeout;
 struct timer_list retransmit_timer; /* Resend (no ack) */
 struct timer_list delack_timer; /* Ack delay
 */

 struct sk_buff_head out_of_order_queue; /* Out of order
segments go here */

 struct tcp_func *af_specific; /* Operations which are
AF_INET{4,6} specific */
 struct sk_buff *send_head; /* Front of stuff to transmit
 */
 struct page *sndmsg_page; /* Cached page for sendmsg
 */
 u32 sndmsg_off; /* Cached offset for sendmsg
 */

 __u32 rcv_wnd; /* Current receiver window */
 __u32 rcv_wup; /* rcv_nxt on last window update sent */
 __u32 write_seq; /* Tail(+1) of data held in tcp send buffer */
 __u32 pushed_seq; /* Last pushed seq, required to talk to windows
*/
 __u32 copied_seq; /* Head of yet unread data */
/*
 * Options received (usually on last packet, some only on SYN
packets).
 */
 char tstamp_ok, /* TIMESTAMP seen on SYN packet */
 wscale_ok, /* Wscale seen on SYN packet */
 sack_ok; /* SACK seen on SYN packet */
 char saw_tstamp; /* Saw TIMESTAMP on last packet */
 __u8 snd_wscale; /* Window scaling received from sender
 */
 __u8 rcv_wscale; /* Window scaling to send to receiver
 */
 __u8 nonagle; /* Disable Nagle algorithm? */
 __u8 keepalive_probes; /* num of allowed keep alive probes */

/* PAWS/RTTM data */
 __u32 rcv_tsval; /* Time stamp value */
 __u32 rcv_tsecr; /* Time stamp echo reply */
 __u32 ts_recent; /* Time stamp to echo next */
 long ts_recent_stamp;/* Time we stored ts_recent (for
aging) */

/* SACKs data */
 __u16 user_mss; /* mss requested by user in ioctl */
 __u8 dsack; /* D-SACK is scheduled */
 __u8 eff_sacks; /* Size of SACK array to send with next packet
*/
 struct tcp_sack_block duplicate_sack[1]; /* D-SACK block */
 struct tcp_sack_block selective_acks[4]; /* The SACKS themselves*/

 __u32 window_clamp; /* Maximal window to advertise
 */
 __u32 rcv_ssthresh; /* Current window clamp */
 __u8 probes_out; /* unanswered 0 window probes */
 __u8 num_sacks; /* Number of SACK blocks */
 __u16 advmss; /* Advertised MSS */

 __u8 syn_retries; /* num of allowed syn retries */
 __u8 ecn_flags; /* ECN status bits. */
 __u16 prior_ssthresh; /* ssthresh saved at recovery start */
 __u32 lost_out; /* Lost packets */
 __u32 sacked_out; /* SACK'd packets */
 __u32 fackets_out; /* FACK'd packets */
 __u32 high_seq; /* snd_nxt at onset of congestion */

 __u32 retrans_stamp; /* Timestamp of the last retransmit,

 * also used in SYN-SENT to remember stamp of
 * the first SYN. */
 __u32 undo_marker; /* tracking retrans started here. */
 int undo_retrans; /* number of undoable retransmissions. */
 __u32 urg_seq; /* Seq of received urgent pointer */
 __u16 urg_data; /* Saved octet of OOB data and control flags */
 __u8 pending; /* Scheduled timer event */
 __u8 urg_mode; /* In urgent mode */
 __u32 snd_up; /* Urgent pointer */

};

3 – Lower Layers

This chapter describes the reception and handling of packets in the lower layers.

NOTE: Needs relevant files
NOTE: Needs some reordering to maybe follow the same structure

Receiver (old API)

Interrupt
handler

drop if
throttle

IP (ip_rcv)

irq

netif_rx:
 enqueue
 schedule_softirq

rx_softirq (net_rx_action)

packet

Figure 2 - Packet Reception with the old API

Receiver (NAPI)

Interrupt
handler

IP (ip_rcv)

irq

netif_rx_schedule:
 enqueue
 schedule_softirq

rx_softirq (net_rx_action):
 dev->poll

device

Figure 3 - Packet reception with the new API
When a packet is received the following steps are followed:

1. Packets are first received by the card. They are put in the rx_ring using DMA for
recent cards. The rx_ring is a ring in the kernel memory where the card DMAs the
incoming packets for the driver. The size of the ring is driver dependent. Older cards use
the PIO scheme: it is the host CPU which transfers the data from the card into the host
memory;

2. The card interrupts the CPU, which then jumps to the driver ISR code. Here arise some
differences between the old subsystem (<= 2.4.19) and NAPI.

 For the former, the interrupt handler calls the netif_rx() kernel procedure
(net/dev/core.c,l. 1215). netif_rx() enqueues the received packet in the interrupted CPU's
backlog queue and schedules a softirq (a kind of kernel thread, see
http://tldp.org/HOWTO/KernelAnalysis-HOWTO-5.html or
http://www.netfilter.org/unreliable-guides/kernel-hacking/lk-hacking-guide.html to know
more about softirq), responsible for further processing of the packet (e.g. TCP/IP
processing). The backlog is 300-packet long (/proc/sys/net/core/netdev_max_backlog).
When it is full, it enters the throttle state and waits for being totally empty to reenter a

http://tldp.org/HOWTO/KernelAnalysis-HOWTO-5.html

normal state and allow again an enqueue (netif_rx(), net/dev/core.c). If the backlog is in
the throttle state, netif_rx drops the packet. Backlog stats are available in
/proc/net/softnet_stats: one line per CPU, the first two columns are packets and drops
counts. The third is the number of times the backlog entered the throttle state.

 NAPI drivers act differently: the interrupt handler calls netif_rx_schedule()
(include/linux/netdevice.h, l. 738). Instead of putting the packets in the backlog, it puts a
reference to the device in a queue attached to the interrupted CPU
(softnet_data>poll_list; include/linux/netdevice.h, l. 496). A softirq is schedules too, just
like in the previous case. To insure backward compatibility, the backlog is considered as
a device in NAPI, which can be enqueued just as an another card, to handle all the
incoming packets. netif_rx() is rewritten to enqueue the backlog into the poll_list of the
CPU after having enqueued the packet in the backlog;

3. When the softirq is scheduled, it executes net_rx_action() (net/core/dev.c, l. 1558).
Since the last step differs between the older network subsystem and NAPI, this one does
too.

 For version <= 2.4.19, net_rx_action pulls all the packets in the backlog and calls for
each of them the ip_rcv() procedure (net/ipv4/ip_input.c, l. 379) or another one
depending on the type of the packet: arp, bootp, etc.

 For NAPI, the CPU polls the devices present in his poll_list to get all the received
packets from their rx_ring or from the backlog. The poll method of the backlog
(process_backlog; net/core/dev.c, l. 1496) or of any device calls, for each received
packet, netif_receive_skb() (net/core/dev.c, l. 1415) which roughly calls ip_rcv().

IP

drop if full

enqueue
(dev_queue_xmit)

qdisc_restart:
while (!empty & !stopped)
 hard_start_xmit

Transmitter

start
stop (when ring full
or link failure)

Figure 4 - Transmission of a packet
When a packet is created the following steps are followed:

- All the IP packets are built using the arp_constructor() method. Each packet
contains a dst field, that provides the destination computed by the routing
algorithm. The dst field provides an output method, which is dev_queue_xmit() for
IP packets;

- The kernel provides lots of queueing disciplines between the kernel and the driver.

It is intended to provide QoS support. The default queueing discipline is a FIFO
queue. Default length is 100 packets (ether_setup(): dev->tx_queue_len ;
drivers/net/net_init.c, l. 405). My understanding is that 'ifconfig' can override this
value using the 'txqueuelen' option. You can't get stats for the default qdisc. The
trick is to replace it with the same FIFO queue using the 'tc' command:

• to replace the default qdisc, use : 'tc qdisc add dev eth0 root pfifo limit
100';

• to get stats from this qdisc, use : 'tc -s -d qdisc show dev eth0';
• to recover to default state, use : 'tc qdisc del dev eth0 root'.

1. For each packet to transmit from the IP layer, the dev_queue_xmit() procedure
(net/core/dev.c,l. 991) is called. It queues a packet in the qdisc associated to the output

interface (determined by the routing). Then, if the device is not stopped (link failure,
tx_ring full), all packets present in the qdisc are handled by qdisc_restart()
(net/sched/sch_generic.c, l. 77);

2. The hard_start_xmit() virtual method is then called. This method is implemented in the
driver code. The packet is placed in the tx_ring and the driver tells the card there are
some packets to send;

3. Once the card has sent a packet or a group of packets, it communicates to the CPU that
packets have been sent out. The CPU uses this information (net_tx_action();
net/core/dev.c, l. 1326) to put the packets into a completion_queue and to schedule a
softirq for later deallocating the memory associated with these packets. This
communication between the card and the CPU is card and driver-dependant, so I won't go
into further details with respect to this.

4 – Network Layer

Introduction

 The IP main files are:

• ip_input.c – Processing packets arriving to the host
• ip_output.c – Processing packets leaving the host
• ip_forward.c – Processing packets being routed by the host

Other less relevant files deal with IP packet fragmentation (ip_fragment.c), IP options
(ip_options.c), multicast (ipmr.c) and IP over IP (ipip.c)

 Figure \ref{fig:ip} describes the path that a packet traverses inside the IP linux layer. If
the packet has reached the host from the network, it passes through the functions already
described in chapter \ref{} until it reaches net_rx_action() that passes the packet to
ip_rcv(). After passing the first netfilter hook (see chapter \ref{}) the packet reaches
ip_rcv_finish() which verifies if the packet is for local delivery (it is addressed to this
host) giving it to ip_local_delivery(). ip_local_delivery() will give it to the appropriate
transport layer function (tcp, udp, etc).

Figure 5 - Network layer data path

 If the packet has other host as destination this means that our host is acting as a router (a
frequent scenario in small networks). If the host is configured to execute forwarding (this
can be sees and set through the value of the /proc/sys/net/ipv4/ip_forward variable)
it then has to be processed by a set of complex but very efficient functions.

The route is calculated by calling ip_route_input() which (if a fast hash does not exist)
calls ip_route_input_slow(). ip_route_input_slow() calls the fib (Forward information
base) set of functions in the fib*.c files. The FIB structure is quite complex (see for
example \cite{}).

NOTE: Maybe we need a picture and a better explanation of this.

If the packet is a multicast packet the function that calculates the set of devices to
transmit the packet (in this case the IP destination is unchanged) is ip_route_input_mc().

 After the route is calculated inserts the new IP destination in the IP packet and the
output device in the sk_buff structure. The packet is then passed to the forwarding
functions (ip_forward() and ip_forward_finish() which sends it to the output components
(more about this in a bit).

 A packet can also reach the IP layer coming from the upper layers (delivered by TCP or
UDP). The first function to process the packet is ip_queue_xmit() which passes the packet
to the output part through ip_output().

 In the output part the last changes on the packet are made... and the function
dev_queue_transmit() is called which enqueues the packet in the output queue. It also
tries to run the network scheduler mechanism by calling q$\-\>$disc$\-\>$run. This
pointer will point to different functions depending on the scheduler installed (by default a
fifo scheduler is installed but this can be changed with the tc utility).

The scheduling functions (qdisc_restart() and dev_queue_xmit_init()) run independently
from the rest of the IP code.

NOTE: This chapter needs sections on: ARP, ICMP, Multicast (both IGMP and multicast
routing),
NOTE: packet fragmentation and IPv6. None of these is very complicated.

5 – TCP

 This chapter describes what is possibly the most complex part of the networking linux
kernel: The TCP part.

Introduction

The main files that handle the tcp part are:

• tcp_input.c - This is the biggest one. It deals with incoming packets from
the network.

• tcp_output.c - This deals with sending packets to the network
• tcp.c - General TCP code
• tcp_ipv4.c - IPv4 TCP specific code
• tcp_timer.c - Timer management
• tcp.h - TCP definitions

In Figures … and … we can see the TCP data path. On the left side the input processing
and on the right side the output processing.

NOTE: These two figures should be in opposite pages

Figure 6 - TCP (part 1)

Figure 7 - TCP (part2)
TCP Input (mainly tcp_input.c }

 This is the main sector of the TCP implementation. It deals with the reception of a TCP
packet. The sender and receiver code is mixed up since an entity can be both at the same
time.

The packet arrives to the TCP sector from the IP layer though ip_local_deliver() (left side
of Figure~\ref{fig:tcp1}). This, gives the packet to the function pointed by ipproto-

>handler. In this case we are looking at the IPv4 implementation this is tcp_v4_rcv().
This calls tcp_v4_do_rcv().

 Depending on the TCP state the connection is a different function is called. If the
connection is established (state is TCP_ESTABLISHED) it calls tcp_rcv_established().
This is the main case that we will look from now on. If the state is TIME_WAIT it calls
tcp_timewait_process().

 I many other case it calls tcp_rcv_state_process(). This function will call
tcp_rcv_sysent_state_process() if the state is SYS_ENT.

tcp_rcv_state_process() and tcp_timewait_process() have to initialise the TCP structures.
They call tcp_init_buffer_space() and tcp_init_metrics(). tcp_init_metrics() initialises the
congestion window by calling tcp_init_cwnd().

tcp_rcv_established()

tcp_rcv_established() has to ways of operation: fast path and slow path. We first follow
the slow path since it is more clear and leave the fast path for the end (note that in the
code the fast path is dealt with before)

slow path

 The slow path code follows the 7 steps on RFC ... with some other operations:

• The checksum is calculated with tcp_checksum_complete_user() . If is is
not correct the packet is discarded.

• The PAWS (Protection Against Wrapped Sequence Numbers) is done

with tcp_paws_discard().

• STEP 1 - The sequence number of the packet is checked. If it is not in
sequence the receiver sends a DUPACK with tcp_send_dupack().
tcp_send_dupack() may have to implement a SACK (tcp_dsack_set()) but
if finishes by calling tcp_send_ack().

• STEP 2 - Check the RST bit (th->rst) and if it is on calls tcp_reset().

• STEP 3 - Check security and precedence (this is not implemented)

• STEP 4 - Check SYN bit. If it is on calls tcp_reset()...

• Calculate an estimative for the RTT (RTTM) by calling

tcp_replace_ts_recent()

• STEP 5 - Check ACK field. If this is on, the packet brings an ACK and

tcp_ack() is called (more details in section {sec:ta} below)

• STEP 6 - Check URG bit. If it is on call tcp_urg()

• STEP 7 - Process data on the packet. This is done by calling
tcp_data_queue() (more details in Section \ref{sec:tdq} below).

• Checks if there is data to send by calling tcp_data_snd_check(). This

function calls tcp_write_xmit() on the TCP output sector.

• Finally, check if there are ACKs to send with tcp_ack_snd_check(). This
may result in sending an ACK straight away with tcp_send_ack() or
scheduling a delayed ACK with tcp_send_delayed_ack(). The delayed
ACK is stored in tcp->ack.pending .

tcp_data_queue()

tcp_data_queue() is the function responsible with giving the data to the user. If the packet
arrived in order (all previous packets had already arrived) it copies the data to tp-
>ucopy.iov (skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)).

 If the packet did not arrive in order it puts it in the out of order queue with
tcp_ofo_queue().

 If a gap in the queue is filled RFC 2581 (section 4.2) \cite{} says to send an ACK
immediately (tp-$>$ack.pingpong = 0 and tcp_ack_snd_check() will send the ACK
now).

 The arrival of a packet has several consequences. These are dealt by calling
tcp_event_data_recv(). It first schedules an ACK with tcp_schedule_ack(). It then
estimates the MSS (Maximum Segment Size...) with tcp_measure_rcv_mss().
In certain conditions (e.g we are in slow start) the receiver TCP should be in quickack
mode (no delayed ACKS) and this function switches this on with tcp_incr_quickack().
Finally it may have to increase the advertised window with tcp_grow_window().

Finally tcp_data_queue() checks if the FIN bit is on, and if yes tcp_fin() is called.

tcp_ack()

Every time an ACK is received (this is the "sender" part) tcp_ack() is called. Not to
confuse with tcp_send_ack() called by the "receiver" which calls tcp_write_xmit() to
send ACKs.

The first thing it does is to check if the ACK is newer than sent or older than previous
acks then we can probably ignore it goto uninteresting_ack and goto old_ack)

 If everything is normal it updates the sender congestion window with
tcp_ack_update_window() and/or tcp_update_wl().

NOTE: When is everything normal ?

 If the ACK is dubious (e.g there was nothing non-acknowledged on the retransmission
queue, or ???) enter fast retransmit with tcp_fastretrans_alert() (see Section … below).

NOTE: In what exact conditions is fast_retransmit() called ?

 If (???) enter slow start/congestion avoidance with tcp_cong_avoid(). This functions
implements both the exponential increase in slow start and the linear increase in
congestion avoidance.

NOTE: In which conditions is tcp_cong_avoid() is entered ?

tcp_fast_retransmit()

 The tcp_fast_retransmit_alert() is entered from only one point (from tcp_ack()) in
certain conditions. To understand these conditions we have to go through the Linux
NewReno/SACK/FACK/ECN state machine. What follows is practically a copy of a
comment in tcp_input.c. Note that this has nothing to do with the TCP state machine.
The TCP state is almost certainly TCP_ESTABLISHED.

 The Linux State machine can be:

• "Open" - Normal state, no dubious events, fast path.
• "Disorder" -In all the respects it is "Open",but requires a bit more

attention. It is entered when we see some SACKs or dupacks. It is split of
"Open" mainly to move some processing from fast path to slow one.

• "CWR" - CWND was reduced due to some Congestion Notification event.

It can be ECN, ICMP source quench, local device congestion.

• "Recovery" - CWND was reduced, we are fast-retransmitting.
• "Loss" - CWND was reduced due to RTO timeout or SACK reneging.

 The state is kept in tp->ca_state as TCP_CA_Open, TCP_CA_Disorder,
TCP_CA_Cwr, TCP_CA_Recover or TCP_CA_Loss.

tcp_fastretrans_alert() is entered if state is not "Open" when an ACK is received or
"strange" ACKs are received (SACK, DUPACK ECN ECE).

NOTE:In some non-"Open" conditions from is not entered...check this

fast path

The fast path is entered in certain conditions. For example a receiver usually enters the
fast path since the TCP processing in the receiver side is much more simple. However
this is not the only case.

NOTE: When is fast path entered and which steps does it follow.

SACKs

 The Linux TCP implementation completely implements SACKS (selective ACKs)
\cite{}. The connection SACK capabilities are stored in the tp->sack_ok field (FACKs
are enabled if the 2 bit is one and DSACKS (delayed SACKS) are enabled if the 3 bit is
1).

 SACKS occupies an unexpected great part of the TCP implementation. More than a
dozen functions and significant parts of other functions are dedicated to implement
SACKS.

NOTE: SACKs need more work...
NOTE: What are FACKs ?

quickacks

 At certain times, the receiver enter quickack mode. That is, delayed ACKS are disabled.
One example is in slow start when delaying ACKs would delay the slow start
considerably.
tcp_enter_quick_ack_mode() is called by tc_rcv_sysent_state_process() since in the
beginning of the connection this should be the state.

NOTE: When does the receiver enter quickack mode ?

Timeouts

Timeouts are vital for the correct behaviour of the TCP functions. They are used, for
example, to infer a packet loss in the network. Here we trace the events on registering and
triggering of the RETRANSMIT timer. These can be seen in Figures \ref{fig:timout1}
and \ref{fig:timout2}

Figure 8 - Schedulling a timeout

 The setting of the retransmit timer happens when a packet is sent (which will be seen in
more detail in section \ref{}). tcp_push_pending_frames() calls tcp_check_probe_timer()
which may call tcp_reset_xmit_timer(). This will schedule a software interrupt (which are
dealt by non-networking parts of the kernel).

 When the timeout expires a software interrupt is generated which calls timer_bh() which
calls run_timer_list(). This will call timer->function which will, in this case, pointing to
tcp_wite_timer(). This will call tcp_retransmit_timer() which will finally call
tcp_enter_loss(). The state of the Linux machine will be set to CA_Loss and the
fastretransmit_alert() function will schedule the retransmission of the packet.

NOTE: Why is fast retransmit called here ?

ECN

 The ECN (Explicit Congestion Notification) \cite{} code is not difficult to trace.
 Almost all the code is in the tcp_ecn.h in the /include/net directory. It contains the code
to receive and send the several ECN packet types.

 On the packet input processing side we have some references:

• tcp_ack() which checks calls TCP_ECN_rcv_ecn_echo() to possibly
process a ECN packet.

•

•

NOTE: We need some more detail about ECN.

TCP output

 This part of the code (mainly tcp_output.c) deals with packets going out (both data
packets from the "sender" and ACKs from the "receiver"). This is negotiated in the first
SYN packets (as any other TCP option) (see tcp_init_metrics()).

NOTE: The TCP section might gain from a section on connection establishment and
release.

6 – UDP

 This chapter describes briefly the UDP part of the networking kernel. This is a
significant simple piece of code than the TCP part. The absence of reliable delivery and
congestion control allows a very simple design.

Introduction

The UDP code is mainly in one file:

• net/ipv4/udp.c

 The UDP layer can be seen in Figure When a packet arrives from the IP layer through
ip_local_delivery() it is passed to udp_rcv() (this is the equivalent of tcp_v4_rcv() in the
TCP part). udp_rcv() puts the packet in the socket queue with sock_put(). This is the end
of the delivery of the packet. The user will then call inet_recvmsg() (with the recvmsg()
system call) which will, in this case, call udp_recvmsg() which calls skb_rcv_datagram().
This function will get the packets from the queue and fill the data structure that will be
read in user space.

When a packet arrives. from the user the process is simpler. inet_sendmsg() calls
udp_sendmsg() which build the UDP datagram with information taken from the sk
structure (this information was put there when the socket was created and bound to the
address).

After the UDP datagram is built it is passed to ip_build_xmit() which builds the IP packet
with the possible help of ip_build_xmit_slow().

NOTE: Why does UDP and tcp use different function on the IP layer ?

After the IP packet is built it is passed to ip_output() which, as was seen in chapter ...,
finalises the delivery of the packet to the lower layers.

\begin{figure}
\epsfxsize=100mm
\centerline{\epsfbox{udp.eps}}
\caption{UDP}
\label{fig:udp}
\end{figure}

Figure 9 - UDP

