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Foreword

There is an old line that Linux kernel developers like to throw out when they are feel-
ing grumpy: “User space is just a test load for the kernel.”

By muttering this line, the kernel developers aim to wash their hands of all responsi-
bility for any failure to run user-space code as well as possible. As far as they’re
concerned, user-space developers should just go away and fix their own code, as any
problems are definitely not the kernel’s fault.

To prove that it usually is not the kernel that is at fault, one leading Linux kernel
developer has been giving a “Why User Space Sucks” talk to packed conference
rooms for more than three years now, pointing out real examples of horrible user-
space code that everyone relies on every day. Other kernel developers have created
tools that show how badly user-space programs are abusing the hardware and drain-
ing the batteries of unsuspecting laptops.

But while user-space code might be just a “test load” for kernel developers to scoff
at, it turns out that all of these kernel developers also depend on that user-space code
every day. If it weren’t present, all the kernel would be good for would be to print
out alternating ABABAB patterns on the screen.

Right now, Linux is the most flexible and powerful operating system that has ever
been created, running everything from the tiniest cell phones and embedded devices
to more than 70 percent of the world’s top 500 supercomputers. No other operating
system has ever been able to scale so well and meet the challenges of all of these dif-
ferent hardware types and environments.

And along with the kernel, code running in user space on Linux can also operate on
all of those platforms, providing the world with real applications and utilities people
rely on.

In this book, Robert Love has taken on the unenviable task of teaching the reader
about almost every system call on a Linux system. In so doing, he has produced a
tome that will allow you to fully understand how the Linux kernel works from a
user-space perspective, and also how to harness the power of this system.
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The information in this book will show you how to create code that will run on all of
the different Linux distributions and hardware types. It will allow you to understand
how Linux works and how to take advantage of its flexibility.

In the end, this book teaches you how to write code that doesn't suck, which is the
best thing of all.

—Greg Kroah-Hartman
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Preface

This book is about system programming—specifically, system programming on
Linux. System programming is the practice of writing system software, which is code
that lives at a low level, talking directly to the kernel and core system libraries. Put
another way, the topic of the book is Linux system calls and other low-level func-
tions, such as those defined by the C library.

While many books cover system programming for Unix systems, few tackle the sub-
ject with a focus solely on Linux, and fewer still (if any) address the very latest Linux
releases and advanced Linux-only interfaces. Moreover, this book benefits from a
special touch: I have written a lot of code for Linux, both for the kernel and for sys-
tem software built thereon. In fact, I have implemented some of the system calls and
other features covered in this book. Consequently, this book carries a lot of insider
knowledge, covering not just how the system interfaces should work, but how they
actually work, and how you (the programmer) can use them most efficiently. This
book, therefore, combines in a single work a tutorial on Linux system programming,
a reference manual covering the Linux system calls, and an insider’s guide to writing
smarter, faster code. The text is fun and accessible, and regardless of whether you
code at the system level on a daily basis, this book will teach you tricks that will
enable you to write better code.

Audience and Assumptions
The following pages assume that the reader is familiar with C programming and the
Linux programming environment—not necessarily well-versed in the subjects, but at
least acquainted with them. If you have not yet read any books on the C program-
ming language, such as the classic Brian W. Kernighan and Dennis M. Ritchie work
The C Programming Language (Prentice Hall; the book is familiarly known as K&R),
I highly recommend you check one out. If you are not comfortable with a Unix text
editor—Emacs and vim being the most common and highly regarded—start playing
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with one. You’ll also want to be familiar with the basics of using gcc, gdb, make, and
so on. Plenty of other books on tools and practices for Linux programming are out
there; the bibliography at the end of this book lists several useful references.

I’ve made few assumptions about the reader’s knowledge of Unix or Linux system
programming. This book will start from the ground up, beginning with the basics,
and winding its way up to the most advanced interfaces and optimization tricks.
Readers of all levels, I hope, will find this work worthwhile and learn something
new. In the course of writing the book, I certainly did.

Nor do I make assumptions about the persuasion or motivation of the reader.
Engineers wishing to program (better) at a low level are obviously targeted, but
higher-level programmers looking for a stronger standing on the foundations on
which they rest will also find a lot to interest them. Simply curious hackers are also
welcome, for this book should satiate their hunger, too. Whatever readers want and
need, this book should cast a net wide enough—as least as far as Linux system pro-
gramming is concerned—to satisfy them.

Regardless of your motives, above all else, have fun.

Contents of This Book
This book is broken into 10 chapters, an appendix, and a bibliography.

Chapter 1, Introduction and Essential Concepts
This chapter serves as an introduction, providing an overview of Linux, system
programming, the kernel, the C library, and the C compiler. Even advanced
users should visit this chapter—trust me.

Chapter 2, File I/O
This chapter introduces files, the most important abstraction in the Unix envi-
ronment, and file I/O, the basis of the Linux programming mode. This chapter
covers reading from and writing to files, along with other basic file I/O operations.
The chapter culminates with a discussion on how the Linux kernel implements and
manages files.

Chapter 3, Buffered I/O
This chapter discusses an issue with the basic file I/O interfaces—buffer size
management—and introduces buffered I/O in general, and standard I/O in par-
ticular, as solutions.

Chapter 4, Advanced File I/O
This chapter completes the I/O troika with a treatment on advanced I/O inter-
faces, memory mappings, and optimization techniques. The chapter is capped with
a discussion on avoiding seeks, and the role of the Linux kernel’s I/O scheduler.
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Chapter 5, Process Management
This chapter introduces Unix’s second most important abstraction, the process,
and the family of system calls for basic process management, including the ven-
erable fork.

Chapter 6, Advanced Process Management
This chapter continues the treatment with a discussion of advanced process
management, including real-time processes.

Chapter 7, File and Directory Management
This chapter discusses creating, moving, copying, deleting, and otherwise man-
aging files and directories.

Chapter 8, Memory Management
This chapter covers memory management. It begins by introducing Unix con-
cepts of memory, such as the process address space and the page, and continues
with a discussion of the interfaces for obtaining memory from and returning
memory to the kernel. The chapter concludes with a treatment on advanced
memory-related interfaces.

Chapter 9, Signals
This chapter covers signals. It begins with a discussion of signals and their role
on a Unix system. It then covers signal interfaces, starting with the basic, and
concluding with the advanced.

Chapter 10, Time
This chapter discusses time, sleeping, and clock management. It covers the basic
interfaces up through POSIX clocks and high-resolution timers.

Appendix, GCC Extensions to the C Language
The Appendix reviews many of the optimizations provided by gcc and GNU C,
such as attributes for marking a function constant, pure, and inline.

The book concludes with a bibliography of recommended reading, listing both use-
ful supplements to this work, and books that address prerequisite topics not covered
herein.

Versions Covered in This Book
The Linux system interface is definable as the application binary interface and appli-
cation programming interface provided by the triplet of the Linux kernel (the heart
of the operating system), the GNU C library (glibc), and the GNU C Compiler (gcc—
now formally called the GNU Compiler Collection, but we are concerned only with
C). This book covers the system interface defined by Linux kernel version 2.6.22,
glibc version 2.5, and gcc version 4.2. Interfaces in this book should be backward
compatible with older versions (excluding new interfaces), and forward compatible
to newer versions.
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If any evolving operating system is a moving target, Linux is a rabid cheetah.
Progress is measured in days, not years, and frequent releases of the kernel and other
components constantly morph the playing field. No book can hope to capture such a
dynamic beast in a timeless fashion.

Nonetheless, the programming environment defined by system programming is set in
stone. Kernel developers go to great pains not to break system calls, the glibc devel-
opers highly value forward and backward compatibility, and the Linux toolchain
generates compatible code across versions (particularly for the C language). Conse-
quently, while Linux may be constantly on the go, Linux system programming
remains stable, and a book based on a snapshot of the system, especially at this point
in Linux’s development, has immense staying power. What I am trying to say is sim-
ple: don’t worry about system interfaces changing, and buy this book!

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Used for emphasis, new terms, URLs, foreign phrases, Unix commands and util-
ities, filenames, directory names, and pathnames.

Constant width
Indicates header files, variables, attributes, functions, types, parameters, objects,
macros, and other programming constructs.

Constant width italic
Indicates text (for example, a pathname component) to be replaced with a user-
supplied value.

This icon signifies a tip, suggestion, or general note.

Most of the code in this book is in the form of brief, but usable, code snippets. They
look like this:

while (1) {
        int ret;

        ret = fork ( );
        if (ret == -1)
                perror ("fork");
}

Great pains have been taken to provide code snippets that are concise but usable. No
special header files, full of crazy macros and illegible shortcuts, are required. Instead
of building a few gigantic programs, this book is filled with many simple examples.



Preface | xv

As the examples are descriptive and fully usable, yet small and clear, I hope they will
provide a useful tutorial on the first read, and remain a good reference on subse-
quent passes.

Nearly all of the examples in this book are self-contained. This means you can easily
copy them into your text editor, and put them to actual use. Unless otherwise men-
tioned, all of the code snippets should build without any special compiler flags. (In a
few cases, you need to link with a special library.) I recommend the following com-
mand to compile a source file:

$ gcc -Wall -Wextra -O2 -g -o snippet snippet.c

This compiles the source file snippet.c into the executable binary snippet, enabling
many warning checks, significant but sane optimizations, and debugging. The code
in this book should compile using this command without errors or warnings—
although of course, you might have to build a skeleton program around the snippet
first.

When a section introduces a new function, it is in the usual Unix manpage format
with a special emphasized font, which looks like this:

#include <fcntl.h>

int posix_fadvise (int fd, off_t pos, off_t len, int advice);

The required headers, and any needed definitions, are at the top, followed by a full
prototype of the call.

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your
favorite technology book, that means the book is available online
through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you are reproducing a significant portion of the code. For exam-
ple, writing a program that uses several chunks of code from this book does not
require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
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example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate attribution. An attribution usually includes the title, author, pub-
lisher, and ISBN. For example: “Linux System Programming by Robert Love. Copy-
right 2007 O’Reilly Media, Inc., 978-0-596-00958-8.”

If you believe that your use of code examples falls outside of fair use or the permis-
sion given above, feel free to contact us at permissions@oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at this address:

http://www.oreilly.com/catalog/9780596009588/

To comment or ask technical questions about this book, you can send an email to
the following address:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at this address:

http://www.oreilly.com

Acknowledgments
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Chapter 1 CHAPTER 1

Introduction and Essential
Concepts

This book is about system programming, which is the art of writing system software.
System software lives at a low level, interfacing directly with the kernel and core
system libraries. System software includes your shell and your text editor, your com-
piler and your debugger, your core utilities and system daemons. These components
are entirely system software, based on the kernel and the C library. Much other soft-
ware (such as high-level GUI applications) lives mostly in the higher levels, delving
into the low level only on occasion, if at all. Some programmers spend all day every
day writing system software; others spend only part of their time on this task. There
is no programmer, however, who does not benefit from some understanding of
system programming. Whether it is the programmer’s raison d’être, or merely a foun-
dation for higher-level concepts, system programming is at the heart of all software
that we write.

In particular, this book is about system programming on Linux. Linux is a modern
Unix-like system, written from scratch by Linus Torvalds, and a loose-knit commu-
nity of hackers around the globe. Although Linux shares the goals and ideology of
Unix, Linux is not Unix. Instead, Linux follows its own course, diverging where
desired, and converging only where practical. Generally, the core of Linux system
programming is the same as on any other Unix system. Beyond the basics, however,
Linux does well to differentiate itself—in comparison with traditional Unix systems,
Linux is rife with additional system calls, different behavior, and new features.

System Programming
Traditionally speaking, all Unix programming is system-level programming. Histori-
cally, Unix systems did not include many higher-level abstractions. Even programming
in a development environment such as the X Window System exposed in full view the
core Unix system API. Consequently, it can be said that this book is a book on Linux
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programming in general. But note that this book does not cover the Linux
programming environment—there is no tutorial on make in these pages. What is cov-
ered is the system programming API exposed on a modern Linux machine.

System programming is most commonly contrasted with application programming.
System-level and application-level programming differ in some aspects, but not in
others. System programming is distinct in that system programmers must have a
strong awareness of the hardware and operating system on which they are working.
Of course, there are also differences between the libraries used and calls made.
Depending on the “level” of the stack at which an application is written, the two may
not actually be very interchangeable, but, generally speaking, moving from applica-
tion programming to system programming (or vice versa) is not hard. Even when the
application lives very high up the stack, far from the lowest levels of the system,
knowledge of system programming is important. And the same good practices are
employed in all forms of programming.

The last several years have witnessed a trend in application programming away from
system-level programming and toward very high-level development, either through
web software (such as JavaScript or PHP), or through managed code (such as C# or
Java). This development, however, does not foretell the death of system program-
ming. Indeed, someone still has to write the JavaScript interpreter and the C#
runtime, which is itself system programming. Furthermore, the developers writing
PHP or Java can still benefit from knowledge of system programming, as an under-
standing of the core internals allows for better code no matter where in the stack the
code is written.

Despite this trend in application programming, the majority of Unix and Linux code
is still written at the system level. Much of it is C, and subsists primarily on interfaces
provided by the C library and the kernel. This is traditional system programming—
Apache, bash, cp, Emacs, init, gcc, gdb, glibc, ls, mv, vim, and X. These applications
are not going away anytime soon.

The umbrella of system programming often includes kernel development, or at least
device driver writing. But this book, like most texts on system programming, is
unconcerned with kernel development. Instead, it focuses on user-space system-level
programming; that is, everything above the kernel (although knowledge of kernel
internals is a useful adjunct to this text). Likewise, network programming—sockets
and such—is not covered in this book. Device driver writing and network program-
ming are large, expansive topics, best tackled in books dedicated to the subject.

What is the system-level interface, and how do I write system-level applications in
Linux? What exactly do the kernel and the C library provide? How do I write opti-
mal code, and what tricks does Linux provide? What neat system calls are provided
in Linux compared to other Unix variants? How does it all work? Those questions
are at the center of this book.

There are three cornerstones to system programming in Linux: system calls, the C
library, and the C compiler. Each deserves an introduction.
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System Calls
System programming starts with system calls. System calls (often shorted to syscalls)
are function invocations made from user space—your text editor, favorite game, and so
on—into the kernel (the core internals of the system) in order to request some service
or resource from the operating system. System calls range from the familiar, such as
read() and write(), to the exotic, such as get_thread_area() and set_tid_address().

Linux implements far fewer system calls than most other operating system kernels.
For example, a count of the i386 architecture’s system calls comes in at around 300,
compared with the allegedly thousands of system calls on Microsoft Windows. In the
Linux kernel, each machine architecture (such as Alpha, i386, or PowerPC) imple-
ments its own list of available system calls. Consequently, the system calls available
on one architecture may differ from those available on another. Nonetheless, a very
large subset of system calls—more than 90 percent—is implemented by all architec-
tures. It is this shared subset, these common interfaces, that I cover in this book.

Invoking system calls

It is not possible to directly link user-space applications with kernel space. For rea-
sons of security and reliability, user-space applications must not be allowed to
directly execute kernel code or manipulate kernel data. Instead, the kernel must pro-
vide a mechanism by which a user-space application can “signal” the kernel that it
wishes to invoke a system call. The application can then trap into the kernel through
this well-defined mechanism, and execute only code that the kernel allows it to exe-
cute. The exact mechanism varies from architecture to architecture. On i386, for
example, a user-space application executes a software interrupt instruction, int, with
a value of 0x80. This instruction causes a switch into kernel space, the protected
realm of the kernel, where the kernel executes a software interrupt handler—and
what is the handler for interrupt 0x80? None other than the system call handler!

The application tells the kernel which system call to execute and with what parame-
ters via machine registers. System calls are denoted by number, starting at 0. On the
i386 architecture, to request system call 5 (which happens to be open( )), the user-
space application stuffs 5 in register eax before issuing the int instruction.

Parameter passing is handled in a similar manner. On i386, for example, a register is
used for each possible parameter—registers ebx, ecx, edx, esi, and edi contain, in
order, the first five parameters. In the rare event of a system call with more than five
parameters, a single register is used to point to a buffer in user space where all of the
parameters are kept. Of course, most system calls have only a couple of parameters.

Other architectures handle system call invocation differently, although the spirit is
the same. As a system programmer, you usually do not need any knowledge of how
the kernel handles system call invocation. That knowledge is encoded into the stan-
dard calling conventions for the architecture, and handled automatically by the
compiler and the C library.
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The C Library
The C library (libc) is at the heart of Unix applications. Even when you’re programming
in another language, the C library is most likely in play, wrapped by the higher-level
libraries, providing core services, and facilitating system call invocation. On modern
Linux systems, the C library is provided by GNU libc, abbreviated glibc, and pro-
nounced gee-lib-see or, less commonly, glib-see.

The GNU C library provides more than its name suggests. In addition to implement-
ing the standard C library, glibc provides wrappers for system calls, threading
support, and basic application facilities.

The C Compiler
In Linux, the standard C compiler is provided by the GNU Compiler Collection (gcc).
Originally, gcc was GNU’s version of cc, the C Compiler. Thus, gcc stood for GNU C
Compiler. Over time, support was added for more and more languages. Conse-
quently, nowadays gcc is used as the generic name for the family of GNU compilers.
However, gcc is also the binary used to invoke the C compiler. In this book, when I
talk of gcc, I typically mean the program gcc, unless context suggests otherwise.

The compiler used in a Unix system—Linux included—is highly relevant to system
programming, as the compiler helps implement the C standard (see “C Language
Standards”) and the system ABI (see “APIs and ABIs”), both later in this chapter.

APIs and ABIs
Programmers are naturally interested in ensuring their programs run on all of the sys-
tems that they have promised to support, now and in the future. They want to feel
secure that programs they write on their Linux distributions will run on other Linux
distributions, as well as on other supported Linux architectures and newer (or ear-
lier) Linux versions.

At the system level, there are two separate sets of definitions and descriptions that
impact portability. One is the application programming interface (API), and the other
is the application binary interface (ABI). Both define and describe the interfaces
between different pieces of computer software.

APIs
An API defines the interfaces by which one piece of software communicates with
another at the source level. It provides abstraction by providing a standard set of
interfaces—usually functions—that one piece of software (typically, although not
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necessarily, a higher-level piece) can invoke from another piece of software (usually a
lower-level piece). For example, an API might abstract the concept of drawing text
on the screen through a family of functions that provide everything needed to draw
the text. The API merely defines the interface; the piece of software that actually pro-
vides the API is known as the implementation of the API.

It is common to call an API a “contract.” This is not correct, at least in the legal sense
of the term, as an API is not a two-way agreement. The API user (generally, the
higher-level software) has zero input into the API and its implementation. It may use
the API as-is, or not use it at all: take it or leave it! The API acts only to ensure that if
both pieces of software follow the API, they are source compatible; that is, that the
user of the API will successfully compile against the implementation of the API.

A real-world example is the API defined by the C standard and implemented by the
standard C library. This API defines a family of basic and essential functions, such as
string-manipulation routines.

Throughout this book, we will rely on the existence of various APIs, such as the stan-
dard I/O library discussed in Chapter 3. The most important APIs in Linux system
programming are discussed in the section “Standards” later in this chapter.

ABIs
Whereas an API defines a source interface, an ABI defines the low-level binary inter-
face between two or more pieces of software on a particular architecture. It defines
how an application interacts with itself, how an application interacts with the kernel,
and how an application interacts with libraries. An ABI ensures binary compatibility,
guaranteeing that a piece of object code will function on any system with the same
ABI, without requiring recompilation.

ABIs are concerned with issues such as calling conventions, byte ordering, register
use, system call invocation, linking, library behavior, and the binary object format.
The calling convention, for example, defines how functions are invoked, how argu-
ments are passed to functions, which registers are preserved and which are mangled,
and how the caller retrieves the return value.

Although several attempts have been made at defining a single ABI for a given archi-
tecture across multiple operating systems (particularly for i386 on Unix systems), the
efforts have not met with much success. Instead, operating systems—Linux
included—tend to define their own ABIs however they see fit. The ABI is intimately
tied to the architecture; the vast majority of an ABI speaks of machine-specific
concepts, such as particular registers or assembly instructions. Thus, each machine
architecture has its own ABI on Linux. In fact, we tend to call a particular ABI by its
machine name, such as alpha, or x86-64.
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System programmers ought to be aware of the ABI,but usually do not need to
memorize it. The ABI is enforced by the toolchain—the compiler, the linker, and so
on—and does not typically otherwise surface. Knowledge of the ABI, however, can
lead to more optimal programming, and is required if writing assembly code or hack-
ing on the toolchain itself (which is, after all, system programming).

The ABI for a given architecture on Linux is available on the Internet and imple-
mented by that architecture’s toolchain and kernel.

Standards
Unix system programming is an old art. The basics of Unix programming have
existed untouched for decades. Unix systems, however, are dynamic beasts. Behav-
ior changes and features are added. To help bring order to chaos, standards groups
codify system interfaces into official standards. Numerous such standards exist, but
technically speaking, Linux does not officially comply with any of them. Instead,
Linux aims toward compliance with two of the most important and prevalent stan-
dards: POSIX and the Single UNIX Specification (SUS).

POSIX and SUS document, among other things, the C API for a Unix-like operating
system interface. Effectively, they define system programming, or at least a common
subset thereof, for compliant Unix systems.

POSIX and SUS History
In the mid-1980s, the Institute of Electrical and Electronics Engineers (IEEE) spear-
headed an effort to standardize system-level interfaces on Unix systems. Richard
Stallman, founder of the Free Software movement, suggested the standard be named
POSIX (pronounced pahz-icks), which now stands for Portable Operating System
Interface.

The first result of this effort, issued in 1988, was IEEE Std 1003.1-1988 (POSIX 1988,
for short). In 1990, the IEEE revised the POSIX standard with IEEE Std 1003.1-1990
(POSIX 1990). Optional real-time and threading support were documented in, respec-
tively, IEEE Std 1003.1b-1993 (POSIX 1993 or POSIX.1b), and IEEE Std 1003.1c-1995
(POSIX 1995 or POSIX.1c). In 2001, the optional standards were rolled together with
the base POSIX 1990, creating a single standard: IEEE Std 1003.1-2001 (POSIX 2001).
The latest revision, released in April 2004, is IEEE Std 1003.1-2004. All of the core
POSIX standards are abbreviated POSIX.1, with the 2004 revision being the latest.

In the late 1980s and early 1990s, Unix system vendors were engaged in the “Unix
Wars,” with each struggling to define its Unix variant as the Unix operating system.
Several major Unix vendors rallied around The Open Group, an industry consortium
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formed from the merging of the Open Software Foundation (OSF) and X/Open. The
Open Group provides certification, white papers, and compliance testing. In the
early 1990s, with the Unix Wars raging, The Open Group released the Single UNIX
Specification. SUS rapidly grew in popularity, in large part due to its cost (free) ver-
sus the high cost of the POSIX standard. Today, SUS incorporates the latest POSIX
standard.

The first SUS was published in 1994. Systems compliant with SUSv1 are given the
mark UNIX 95. The second SUS was published in 1997, and compliant systems are
marked UNIX 98. The third and latest SUS, SUSv3, was published in 2002. Compli-
ant systems are given the mark UNIX 03. SUSv3 revises and combines IEEE Std
1003.1-2001 and several other standards. Throughout this book, I will mention
when system calls and other interfaces are standardized by POSIX. I mention POSIX
and not SUS because the latter subsumes the former.

C Language Standards
Dennis Ritchie and Brian Kernighan’s famed book, The C Programming Language
(Prentice Hall), acted as the informal C specification for many years following its
1978 publication. This version of C came to be known as K&R C. C was already
rapidly replacing BASIC and other languages as the lingua franca of microcomputer
programming. Therefore, to standardize the by then quite popular language, in 1983,
the American National Standards Institute (ANSI) formed a committee to develop an
official version of C, incorporating features and improvements from various vendors
and the new C++ language. The process was long and laborious, but ANSI C was
completed in 1989. In 1990, the International Organization for Standardization
(ISO) ratified ISO C90, based on ANSI C with a small handful of modifications.

In 1995, the ISO released an updated (although rarely implemented) version of the C
language, ISO C95. This was followed in 1999 with a large update to the language,
ISO C99, that introduced many new features, including inline functions, new data
types, variable-length arrays, C++-style comments, and new library functions.

Linux and the Standards
As stated earlier, Linux aims toward POSIX and SUS compliance. It provides the
interfaces documented in SUSv3 and POSIX.1, including the optional real-time
(POSIX.1b) and optional threading (POSIX.1c) support. More importantly, Linux
tries to provide behavior in line with POSIX and SUS requirements. In general, fail-
ing to agree with the standards is considered a bug. Linux is believed to comply with
POSIX.1 and SUSv3, but as no official POSIX or SUS certification has been per-
formed (particularly on each and every revision of Linux), I cannot say that Linux is
officially POSIX- or SUS-compliant.
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With respect to language standards, Linux fares well. The gcc C compiler supports
ISO C99. In addition, gcc provides many of its own extensions to the C language.
These extensions are collectively called GNU C, and are documented in the
Appendix.

Linux has not had a great history of forward compatibility,* although these days it
fares much better. Interfaces documented by standards, such as the standard C
library, will obviously always remain source compatible. Binary compatibility is
maintained across a given major version of glibc, at the very least. And as C is stan-
dardized, gcc will always compile legal C correctly, although gcc-specific extensions
may be deprecated and eventually removed with new gcc releases. Most importantly,
the Linux kernel guarantees the stability of system calls. Once a system call is imple-
mented in a stable version of the Linux kernel, it is set in stone.

Among the various Linux distributions, the Linux Standard Base (LSB) standardizes
much of the Linux system. The LSB is a joint project of several Linux vendors under
the auspices of the Linux Foundation (formerly the Free Standards Group). The LSB
extends POSIX and SUS, and adds several standards of its own; it attempts to provide
a binary standard, allowing object code to run unmodified on compliant systems.
Most Linux vendors comply with the LSB to some degree.

This Book and the Standards
This book deliberately avoids paying lip service to any of the standards. Far too
frequently, Unix system programming books must stop to elaborate on how an inter-
face behaves in one standard versus another, whether a given system call is
implemented on this system versus that, and similar page-filling bloat. This book,
however, is specifically about system programming on a modern Linux system, as
provided by the latest versions of the Linux kernel (2.6), gcc C compiler (4.2), and C
library (2.5).

As system interfaces are generally set in stone—the Linux kernel developers go to
great pains to never break the system call interfaces, for example—and provide some
level of both source and binary compatibility, this approach allows us to dive into
the details of Linux’s system interface unfettered by concerns of compatibility with
numerous other Unix systems and standards. This focus on Linux also enables this
book to offer in-depth treatment of cutting-edge Linux-specific interfaces that will
remain relevant and valid far into the future. The book draws upon an intimate
knowledge of Linux, and particularly of the implementation and behavior of compo-
nents such as gcc and the kernel, to provide an insider’s view, full of the best
practices and optimization tips of an experienced veteran.

* Experienced Linux users might remember the switch from a.out to ELF, the switch from libc5 to glibc, gcc
changes, and so on. Thankfully, those days are behind us.
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Concepts of Linux Programming
This section presents a concise overview of the services provided by a Linux system.
All Unix systems, Linux included, provide a mutual set of abstractions and inter-
faces. Indeed, this commonality defines Unix. Abstractions such as the file and the
process, interfaces to manage pipes and sockets, and so on, are at the core of what is
Unix.

This overview assumes that you are familiar with the Linux environment: I presume
that you can get around in a shell, use basic commands, and compile a simple C pro-
gram. This is not an overview of Linux, or its programming environment, but rather
of the “stuff” that forms the basis of Linux system programming.

Files and the Filesystem
The file is the most basic and fundamental abstraction in Linux. Linux follows the
everything-is-a-file philosophy (although not as strictly as some other systems, such
as Plan9*). Consequently, much interaction transpires via reading of and writing to
files, even when the object in question is not what you would consider your every-
day file.

In order to be accessed, a file must first be opened. Files can be opened for reading,
writing, or both. An open file is referenced via a unique descriptor, a mapping from
the metadata associated with the open file back to the specific file itself. Inside the
Linux kernel, this descriptor is handled by an integer (of the C type int) called the
file descriptor, abbreviated fd. File descriptors are shared with user space, and are
used directly by user programs to access files. A large part of Linux system program-
ming consists of opening, manipulating, closing, and otherwise using file descriptors.

Regular files

What most of us call “files” are what Linux labels regular files. A regular file con-
tains bytes of data, organized into a linear array called a byte stream. In Linux, no
further organization or formatting is specified for a file. The bytes may have any val-
ues, and they may be organized within the file in any way. At the system level, Linux
does not enforce a structure upon files beyond the byte stream. Some operating sys-
tems, such as VMS, provide highly structured files, supporting concepts such as
records. Linux does not.

Any of the bytes within a file may be read from or written to. These operations start
at a specific byte, which is one’s conceptual “location” within the file. This location
is called the file position or file offset. The file position is an essential piece of the

* Plan9, an operating system born of Bell Labs, is often called the successor to Unix. It features several inno-
vative ideas, and is an adherent of the everything-is-a-file philosophy.
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metadata that the kernel associates with each open file. When a file is first opened, the
file position is zero. Usually, as bytes in the file are read from or written to, byte-by-byte,
the file position increases in kind. The file position may also be set manually to a given
value, even a value beyond the end of the file. Writing a byte to a file position beyond
the end of the file will cause the intervening bytes to be padded with zeros. While it
is possible to write bytes in this manner to a position beyond the end of the file, it is
not possible to write bytes to a position before the beginning of a file. Such a prac-
tice sounds nonsensical, and, indeed, would have little use. The file position starts at
zero; it cannot be negative. Writing a byte to the middle of a file overwrites the byte
previously located at that offset. Thus, it is not possible to expand a file by writing
into the middle of it. Most file writing occurs at the end of the file. The file posi-
tion’s maximum value is bounded only by the size of the C type used to store it,
which is 64-bits in contemporary Linux.

The size of a file is measured in bytes, and is called its length. The length, in other
words, is simply the number of bytes in the linear array that make up the file. A file’s
length can be changed via an operation called truncation. A file can be truncated to a
new size smaller than its original size, which results in bytes being removed from the
end of the file. Confusingly, given the operation’s name, a file can also be “trun-
cated” to a new size larger than its original size. In that case, the new bytes (which
are added to the end of the file) are filled with zeros. A file may be empty (have a
length of zero), and thus contain no valid bytes. The maximum file length, as with
the maximum file position, is bounded only by limits on the sizes of the C types that
the Linux kernel uses to manage files. Specific filesystems, however, may impose
their own restrictions, bringing the maximum length down to a smaller value.

A single file can be opened more than once, by a different or even the same process.
Each open instance of a file is given a unique file descriptor; processes can share their
file descriptors, allowing a single descriptor to be used by more than one process.
The kernel does not impose any restrictions on concurrent file access. Multiple pro-
cesses are free to read from and write to the same file at the same time. The results of
such concurrent accesses rely on the ordering of the individual operations, and are
generally unpredictable. User-space programs typically must coordinate amongst
themselves to ensure that concurrent file accesses are sufficiently synchronized.

Although files are usually accessed via filenames, they actually are not directly associ-
ated with such names. Instead, a file is referenced by an inode (originally information
node), which is assigned a unique numerical value. This value is called the inode
number, often abbreviated as i-number or ino. An inode stores metadata associated
with a file, such as its modification timestamp, owner, type, length, and the location
of the file’s data—but no filename! The inode is both a physical object, located on
disk in Unix-style filesystems, and a conceptual entity, represented by a data struc-
ture in the Linux kernel.
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Directories and links

Accessing a file via its inode number is cumbersome (and also a potential security
hole), so files are always opened from user space by a name, not an inode number.
Directories are used to provide the names with which to access files. A directory acts
as a mapping of human-readable names to inode numbers. A name and inode pair is
called a link. The physical on-disk form of this mapping—a simple table, a hash, or
whatever—is implemented and managed by the kernel code that supports a given
filesystem. Conceptually, a directory is viewed like any normal file, with the differ-
ence that it contains only a mapping of names to inodes. The kernel directly uses this
mapping to perform name-to-inode resolutions.

When a user-space application requests that a given filename be opened, the kernel
opens the directory containing the filename and searches for the given name. From
the filename, the kernel obtains the inode number. From the inode number, the
inode is found. The inode contains metadata associated with the file, including the
on-disk location of the file’s data.

Initially, there is only one directory on the disk, the root directory. This directory is
usually denoted by the path /. But, as we all know, there are typically many directo-
ries on a system. How does the kernel know which directory to look in to find a given
filename?

As mentioned previously, directories are much like regular files. Indeed, they even have
associated inodes. Consequently, the links inside of directories can point to the inodes
of other directories. This means directories can nest inside of other directories, form-
ing a hierarchy of directories. This, in turn, allows for the use of the pathnames with
which all Unix users are familiar—for example, /home/blackbeard/landscaping.txt.

When the kernel is asked to open a pathname like this, it walks each directory entry
(called a dentry inside of the kernel) in the pathname to find the inode of the next
entry. In the preceding example, the kernel starts at /, gets the inode for home, goes
there, gets the inode for blackbeard, runs there, and finally gets the inode for
landscaping.txt. This operation is called directory or pathname resolution. The Linux
kernel also employs a cache, called the dentry cache, to store the results of directory
resolutions, providing for speedier lookups in the future given temporal locality.*

A pathname that starts at the root directory is said to be fully qualified, and is called
an absolute pathname. Some pathnames are not fully qualified; instead, they are pro-
vided relative to some other directory (for example, todo/plunder). These paths are
called relative pathnames. When provided with a relative pathname, the kernel
begins the pathname resolution in the current working directory. From the current
working directory, the kernel looks up the directory todo. From there, the kernel gets
the inode for plunder.

* Temporal locality is the high likelihood of an access to a particular resource being followed by another access
to the same resource. Many resources on a computer exhibit temporal locality.
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Although directories are treated like normal files, the kernel does not allow them to
be opened and manipulated like regular files. Instead, they must be manipulated
using a special set of system calls. These system calls allow for the adding and remov-
ing of links, which are the only two sensible operations anyhow. If user space were
allowed to manipulate directories without the kernel’s mediation, it would be too
easy for a single simple error to wreck the filesystem.

Hard links

Conceptually, nothing covered thus far would prevent multiple names resolving to
the same inode. Indeed, this is allowed. When multiple links map different names to
the same inode, we call them hard links.

Hard links allow for complex filesystem structures with multiple pathnames point-
ing to the same data. The hard links can be in the same directory, or in two or more
different directories. In either case, the kernel simply resolves the pathname to the
correct inode. For example, a specific inode that points to a specific chunk of data
can be hard linked from /home/bluebeard/map.txt and /home/blackbeard/treasure.txt.

Deleting a file involves unlinking it from the directory structure, which is done sim-
ply by removing its name and inode pair from a directory. Because Linux supports
hard links, however, the filesystem cannot destroy the inode and its associated data
on every unlink operation. What if another hard link existed elsewhere in the filesys-
tem? To ensure that a file is not destroyed until all links to it are removed, each inode
contains a link count that keeps track of the number of links within the filesystem
that point to it. When a pathname is unlinked, the link count is decremented by one;
only when it reaches zero are the inode and its associated data actually removed from
the filesystem.

Symbolic links

Hard links cannot span filesystems because an inode number is meaningless outside
of the inode’s own filesystem. To allow links that can span filesystems, and that are a
bit simpler and less transparent, Unix systems also implement symbolic links (often
shortened to symlinks).

Symbolic links look like regular files. A symlink has its own inode and data chunk,
which contains the complete pathname of the linked-to file. This means symbolic
links can point anywhere, including to files and directories that reside on different
filesystems, and even to files and directories that do not exist. A symbolic link that
points to a nonexistent file is called a broken link.

Symbolic links incur more overhead than hard links because resolving a symbolic
link effectively involves resolving two files: the symbolic link, and then the linked-to
file. Hard links do not incur this additional overhead—there is no difference between
accessing a file linked into the filesystem more than once, and one linked only once.
The overhead of symbolic links is minimal, but it is still considered a negative.
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Symbolic links are also less transparent than hard links. Using hard links is entirely
transparent; in fact, it takes effort to find out that a file is linked more than once!
Manipulating symbolic links, on the other hand, requires special system calls. This
lack of transparency is often considered a positive, with symbolic links acting more
as shortcuts than as filesystem-internal links.

Special files

Special files are kernel objects that are represented as files. Over the years, Unix sys-
tems have supported a handful of different special files. Linux supports four: block
device files, character device files, named pipes, and Unix domain sockets. Special
files are a way to let certain abstractions fit into the filesystem, partaking in the every-
thing-is-a-file paradigm. Linux provides a system call to create a special file.

Device access in Unix systems is performed via device files, which act and look like
normal files residing on the filesystem. Device files may be opened, read from, and
written to, allowing user space to access and manipulate devices (both physical and
virtual) on the system. Unix devices are generally broken into two groups: character
devices and block devices. Each type of device has its own special device file.

A character device is accessed as a linear queue of bytes. The device driver places
bytes onto the queue, one by one, and user space reads the bytes in the order that
they were placed on the queue. A keyboard is an example of a character device. If the
user types “peg,” for example, an application would want to read from the keyboard
device the p, the e, and, finally, the g. When there are no more characters left to read,
the device returns end-of-file (EOF). Missing a character, or reading them in any
other order, would make little sense. Character devices are accessed via character
device files.

A block device, in contrast, is accessed as an array of bytes. The device driver maps
the bytes over a seekable device, and user space is free to access any valid bytes in the
array, in any order—it might read byte 12, then byte 7, and then byte 12 again. Block
devices are generally storage devices. Hard disks, floppy drives, CD-ROM drives, and
flash memory are all examples of block devices. They are accessed via block device
files.

Named pipes (often called FIFOs, short for “first in, first out”) are an interprocess
communication (IPC) mechanism that provides a communication channel over a file
descriptor, accessed via a special file. Regular pipes are the method used to “pipe”
the output of one program into the input of another; they are created in memory via
a system call, and do not exist on any filesystem. Named pipes act like regular pipes,
but are accessed via a file, called a FIFO special file. Unrelated processes can access
this file and communicate.

Sockets are the final type of special file. Sockets are an advanced form of IPC that
allow for communication between two different processes, not only on the same
machine, but on two different machines. In fact, sockets form the basis of network
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and Internet programming. They come in multiple varieties, including the Unix
domain socket, which is the form of socket used for communication within the local
machine. Whereas sockets communicating over the Internet might use a hostname
and port pair for identifying the target of communication, Unix domain sockets use a
special file residing on a filesystem, often simply called a socket file.

Filesystems and namespaces

Linux, like all Unix systems, provides a global and unified namespace of files and
directories. Some operating systems separate different disks and drives into sepa-
rate namespaces—for example, a file on a floppy disk might be accessible via the
pathname A:\plank.jpg, while the hard drive is located at C:\. In Unix, that same file
on a floppy might be accessible via the pathname /media/floppy/plank.jpg, or even
via /home/captain/stuff/plank.jpg, right alongside files from other media. That is, on
Unix, the namespace is unified.

A filesystem is a collection of files and directories in a formal and valid hierarchy.
Filesystems may be individually added to and removed from the global namespace of
files and directories. These operations are called mounting and unmounting. Each file-
system is mounted to a specific location in the namespace, known as a mount point.
The root directory of the filesystem is then accessible at this mount point. For exam-
ple, a CD might be mounted at /media/cdrom, making the root of the filesystem on
the CD accessible at that mount point. The first filesystem mounted is located in the
root of the namespace, /, and is called the root filesystem. Linux systems always have
a root filesystem. Mounting other filesystems at other mount points is optional.

Filesystems usually exist physically (i.e., are stored on disk), although Linux also
supports virtual filesystems that exist only in memory, and network filesystems that
exist on machines across the network. Physical filesystems reside on block storage
devices, such as CDs, floppy disks, compact flash cards, or hard drives. Some such
devices are partionable, which means that they can be divided up into multiple file-
systems, all of which can be manipulated individually. Linux supports a wide range
of filesystems—certainly anything that the average user might hope to come across—
including media-specific filesystems (for example, ISO9660), network filesystems
(NFS), native filesystems (ext3), filesystems from other Unix systems (XFS), and even
filesystems from non-Unix systems (FAT).

The smallest addressable unit on a block device is the sector. The sector is a physical
quality of the device. Sectors come in various powers of two, with 512 bytes being
quite common. A block device cannot transfer or access a unit of data smaller than a
sector; all I/O occurs in terms of one or more sectors.
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Likewise, the smallest logically addressable unit on a filesystem is the block. The
block is an abstraction of the filesystem, not of the physical media on which the file-
system resides. A block is usually a power-of-two multiple of the sector size. Blocks
are generally larger than the sector, but they must be smaller than the page size* (the
smallest unit addressable by the memory management unit, a hardware component).
Common block sizes are 512 bytes, 1 kilobyte, and 4 kilobytes.

Historically, Unix systems have only a single shared namespace, viewable by all users
and all processes on the system. Linux takes an innovative approach, and supports
per-process namespaces, allowing each process to optionally have a unique view of
the system’s file and directory hierarchy.† By default, each process inherits the
namespace of its parent, but a process may elect to create its own namespace with its
own set of mount points, and a unique root directory.

Processes
If files are the most fundamental abstraction in a Unix system, processes are the sec-
ond most fundamental. Processes are object code in execution: active, alive, running
programs. But they’re more than just object code—processes consist of data,
resources, state, and a virtualized computer.

Processes begin life as executable object code, which is machine-runnable code in an
executable format that the kernel understands (the format most common in Linux is
ELF). The executable format contains metadata, and multiple sections of code and
data. Sections are linear chunks of the object code that load into linear chunks of
memory. All bytes in a section are treated the same, given the same permissions, and
generally used for similar purposes.

The most important and common sections are the text section, the data section, and
the bss section. The text section contains executable code and read-only data, such as
constant variables, and is typically marked read-only and executable. The data
section contains initialized data, such as C variables with defined values, and is typi-
cally marked readable and writable. The bss section contains uninitialized global
data. Because the C standard dictates default values for C variables that are essen-
tially all zeros, there is no need to store the zeros in the object code on disk. Instead,
the object code can simply list the uninitialized variables in the bss section, and the
kernel can map the zero page (a page of all zeros) over the section when it is loaded
into memory. The bss section was conceived solely as an optimization for this pur-
pose. The name is a historic relic; it stands for block started by symbol, or block storage
segment. Other common sections in ELF executables are the absolute section (which
contains nonrelocatable symbols) and the undefined section (a catchall).

* This is an artificial kernel limitation, in the name of simplicity, that may go away in the future.

† This approach was first pioneered by Bell Labs’ Plan9.
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A process is also associated with various system resources, which are arbitrated and
managed by the kernel. Processes typically request and manipulate resources only
through system calls. Resources include timers, pending signals, open files, network
connections, hardware, and IPC mechanisms. A process’ resources, along with data
and statistics related to the process, are stored inside the kernel in the process’
process descriptor.

A process is a virtualization abstraction. The Linux kernel, supporting both preemp-
tive multitasking and virtual memory, provides a process both a virtualized processor,
and a virtualized view of memory. From the process’ perspective, the view of the sys-
tem is as though it alone were in control. That is, even though a given process may be
scheduled alongside many other processes, it runs as though it has sole control of the
system. The kernel seamlessly and transparently preempts and reschedules pro-
cesses, sharing the system’s processors among all running processes. Processes never
know the difference. Similarly, each process is afforded a single linear address space,
as if it alone were in control of all of the memory in the system. Through virtual
memory and paging, the kernel allows many processes to coexist on the system, each
operating in a different address space. The kernel manages this virtualization through
hardware support provided by modern processors, allowing the operating system to
concurrently manage the state of multiple independent processes.

Threads

Each process consists of one or more threads of execution (usually just called
threads). A thread is the unit of activity within a process, the abstraction responsible
for executing code, and maintaining the process’ running state.

Most processes consist of only a single thread; they are called single-threaded. Pro-
cesses that contain multiple threads are said to be multithreaded. Traditionally, Unix
programs have been single-threaded, owing to Unix’s historic simplicity, fast process
creation times, and robust IPC mechanisms, all of which mitigate the desire for
threads.

A thread consists of a stack (which stores its local variables, just as the process stack
does on nonthreaded systems), processor state, and a current location in the object
code (usually stored in the processor’s instruction pointer). The majority of the
remaining parts of a process are shared among all threads.

Internally, the Linux kernel implements a unique view of threads: they are simply
normal processes that happen to share some resources (most notably, an address
space). In user space, Linux implements threads in accordance with POSIX 1003.1c
(known as pthreads). The name of the current Linux thread implementation, which
is part of glibc, is the Native POSIX Threading Library (NPTL).

Process hierarchy

Each process is identified by a unique positive integer called the process ID (pid). The
pid of the first process is 1, and each subsequent process receives a new, unique pid.
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In Linux, processes form a strict hierarchy, known as the process tree. The process
tree is rooted at the first process, known as the init process, which is typically the
init(8) program. New processes are created via the fork( ) system call. This system
call creates a duplicate of the calling process. The original process is called the par-
ent; the new process is called the child. Every process except the first has a parent. If
a parent process terminates before its child, the kernel will reparent the child to the
init process.

When a process terminates, it is not immediately removed from the system. Instead,
the kernel keeps parts of the process resident in memory, to allow the process’ parent
to inquire about its status upon terminating. This is known as waiting on the termi-
nated process. Once the parent process has waited on its terminated child, the child
is fully destroyed. A process that has terminated, but not yet been waited upon, is
called a zombie. The init process routinely waits on all of its children, ensuring that
reparented processes do not remain zombies forever.

Users and Groups
Authorization in Linux is provided by users and groups. Each user is associated with
a unique positive integer called the user ID (uid). Each process is in turn associated
with exactly one uid, which identifies the user running the process, and is called the
process’ real uid. Inside the Linux kernel, the uid is the only concept of a user. Users
themselves, however, refer to themselves and other users through usernames, not
numerical values. Usernames and their corresponding uids are stored in /etc/passwd,
and library routines map user-supplied usernames to the corresponding uids.

During login, the user provides a username and password to the login(1) program. If
given a valid username and the correct password, the login(1) program spawns the
user’s login shell, which is also specified in /etc/passwd, and makes the shell’s uid
equal to that of the user. Child processes inherit the uids of their parents.

The uid 0 is associated with a special user known as root. The root user has special
privileges, and can do almost anything on the system. For example, only the root
user can change a process’ uid. Consequently, the login(1) program runs as root.

In addition to the real uid, each process also has an effective uid, a saved uid, and a
filesystem uid. While the real uid is always that of the user who started the process,
the effective uid may change under various rules to allow a process to execute with
the rights of different users. The saved uid stores the original effective uid; its value is
used in deciding what effective uid values the user may switch to. The filesystem uid,
which is usually equal to the effective uid, is used for verifying filesystem access.

Each user may belong to one or more groups, including a primary or login group, listed
in /etc/passwd, and possibly a number of supplemental groups, listed in /etc/group. Each
process is therefore also associated with a corresponding group ID (gid), and has a real
gid, an effective gid, a saved gid, and a filesystem gid. Processes are generally associated
with a user’s login group, not any of the supplemental groups.
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Certain security checks allow processes to perform certain operations only if they
meet specific criteria. Historically, Unix has made this decision very black-and-white:
processes with uid 0 had access, while no others did. Recently, Linux has replaced
this security system with a more general capabilities system. Instead of a simple
binary check, capabilities allow the kernel to base access on much more fine-grained
settings.

Permissions
The standard file permission and security mechanism in Linux is the same as that in
historic Unix.

Each file is associated with an owning user, an owning group, and a set of permis-
sion bits. The bits describe the ability of the owning user, the owning group, and
everybody else to read, write, and execute the file; there are three bits for each of the
three classes, making nine bits in total. The owners and the permissions are stored in
the file’s inode.

For regular files, the permissions are rather obvious: they specify the ability to open a
file for reading, open a file for writing, or execute a file. Read and write permissions
are the same for special files as for regular files, although what exactly is read or writ-
ten is up to the special file in question. Execute permissions are ignored on special
files. For directories, read permission allows the contents of the directory to be listed,
write permission allows new links to be added inside the directory, and execute per-
mission allows the directory to be entered and used in a pathname. Table 1-1 lists each
of the nine permission bits, their octal values (a popular way of representing the nine
bits), their text values (as ls might show them), and their corresponding meanings.

In addition to historic Unix permissions, Linux also supports access control lists
(ACLs). ACLs allow for much more detailed and exacting permission and security
controls, at the cost of increased complexity and on-disk storage.

Table 1-1. Permission bits and their values

Bit Octal value Text value Corresponding permission

8 400 r-------- Owner may read

7 200 -w------- Owner may write

6 100 --x------ Owner may execute

5 040 ---r----- Group may read

4 020 ----w---- Group may write

3 010 -----x--- Group may execute

2 004 ------r-- Everyone else may read

1 002 -------w- Everyone else may write

0 001 --------x Everyone else may execute
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Signals
Signals are a mechanism for one-way asynchronous notifications. A signal may be
sent from the kernel to a process, from a process to another process, or from a pro-
cess to itself. Signals typically alert a process to some event, such as a segmentation
fault, or the user pressing Ctrl-C.

The Linux kernel implements about 30 signals (the exact number is architecture-
dependent). Each signal is represented by a numeric constant and a textual name.
For example, SIGHUP, used to signal that a terminal hangup has occurred, has a value
of 1 on the i386 architecture.

With the exception of SIGKILL (which always terminates the process), and SIGSTOP
(which always stops the process), processes may control what happens when they
receive a signal. They can accept the default action, which may be to terminate the
process, terminate and coredump the process, stop the process, or do nothing,
depending on the signal. Alternatively, processes can elect to explicitly ignore or
handle signals. Ignored signals are silently dropped. Handled signals cause the execu-
tion of a user-supplied signal handler function. The program jumps to this function
as soon as the signal is received, and (when the signal handler returns) the control of
the program resumes at the previously interrupted instruction.

Interprocess Communication
Allowing processes to exchange information and notify each other of events is one of
an operating system’s most important jobs. The Linux kernel implements most of
the historic Unix IPC mechanisms—including those defined and standardized by
both System V and POSIX—as well as implementing a mechanism or two of its own.

IPC mechanisms supported by Linux include pipes, named pipes, semaphores, mes-
sage queues, shared memory, and futexes.

Headers
Linux system programming revolves around a handful of headers. Both the kernel
itself and glibc provide the headers used in system-level programming. These headers
include the standard C fare (for example, <string.h>), and the usual Unix offerings
(say, <unistd.h>).

Error Handling
It goes without saying that checking for and handling errors are of paramount impor-
tance. In system programming, an error is signified via a function’s return value, and
described via a special variable, errno. glibc transparently provides errno support for
both library and system calls. The vast majority of interfaces covered in this book
will use this mechanism to communicate errors.
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Functions notify the caller of errors via a special return value, which is usually -1
(the exact value used depends on the function). The error value alerts the caller to
the occurrence of an error, but provides no insight into why the error occurred. The
errno variable is used to find the cause of the error.

This variable is defined in <errno.h> as follows:

extern int errno;

Its value is valid only immediately after an errno-setting function indicates an error
(usually by returning -1), as it is legal for the variable to be modified during the suc-
cessful execution of a function.

The errno variable may be read or written directly; it is a modifiable lvalue. The
value of errno maps to the textual description of a specific error. A preprocessor
#define also maps to the numeric errno value. For example, the preprocessor define
EACCESS equals 1, and represents “permission denied.” See Table 1-2 for a listing of
the standard defines and the matching error descriptions.

Table 1-2. Errors and their descriptions

Preprocessor define Description

E2BIG Argument list too long

EACCESS Permission denied

EAGAIN Try again

EBADF Bad file number

EBUSY Device or resource busy

ECHILD No child processes

EDOM Math argument outside of domain of function

EEXIT File already exists

EFAULT Bad address

EFBIG File too large

EINTR System call was interrupted

EINVAL Invalid argument

EIO I/O error

EISDIR Is a directory

EMFILE Too many open files

EMLINK Too many links

ENFILE File table overflow

ENODEV No such device

ENOENT No such file or directory

ENOEXEC Exec format error

ENOMEM Out of memory

ENOSPC No space left on device
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The C library provides a handful of functions for translating an errno value to the
corresponding textual representation. This is needed only for error reporting, and the
like; checking and handling errors can be done using the preprocessor defines and
errno directly.

The first such function is perror( ):

#include <stdio.h>

void perror (const char *str);

This function prints to stderr (standard error) the string representation of the current
error described by errno, prefixed by the string pointed at by str, followed by a
colon. To be useful, the name of the function that failed should be included in the
string. For example:

if (close (fd) == -1)
        perror ("close");

The C library also provides strerror( ) and strerror_r( ), prototyped as:

#include <string.h>

char * strerror (int errnum);

and:

#include <string.h>

int strerror_r (int errnum, char *buf, size_t len);

The former function returns a pointer to a string describing the error given by errnum.
The string may not be modified by the application, but can be modified by subse-
quent perror( ) and strerror( ) calls. In this manner, it is not thread-safe.

ENOTDIR Not a directory

ENOTTY Inappropriate I/O control operation

ENXIO No such device or address

EPERM Operation not permitted

EPIPE Broken pipe

ERANGE Result too large

EROFS Read-only filesystem

ESPIPE Invalid seek

ESRCH No such process

ETXTBSY Text file busy

EXDEV Improper link

Table 1-2. Errors and their descriptions (continued)

Preprocessor define Description
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The strerror_r( ) function is thread-safe. It fills the buffer of length len pointed at
by buf. A call to strerror_r( ) returns 0 on success, and -1 on failure. Humorously, it
sets errno on error.

For a few functions, the entire range of the return type is a legal return value. In
those cases, errno must be zeroed before invocation, and checked afterward (these
functions promise to only return a nonzero errno on actual error). For example:

errno = 0;
arg = strtoul (buf, NULL, 0);
if (errno)
        perror ("strtoul");

A common mistake in checking errno is to forget that any library or system call can
modify it. For example, this code is buggy:

if (fsync (fd) == -1) {
        fprintf (stderr, "fsync failed!\n");
        if (errno == EIO)
                fprintf (stderr, "I/O error on %d!\n", fd);
}

If you need to preserve the value of errno across function invocations, save it:

if (fsync (fd) == -1) {
        int err = errno;
        fprintf (stderr, "fsync failed: %s\n", strerror (errno));
        if (err == EIO) {
                /* if the error is I/O-related, jump ship */
                fprintf (stderr, "I/O error on %d!\n", fd);
                exit (EXIT_FAILURE);
        }
}

In single-threaded programs, errno is a global variable, as shown earlier in this sec-
tion. In multithreaded programs, however, errno is stored per-thread, and is thus
thread-safe.

Getting Started with System Programming
This chapter looked at the fundamentals of Linux system programming and pro-
vided a programmer’s overview of the Linux system. The next chapter discusses
basic file I/O. This includes, of course, reading from and writing to files; however,
because Linux implements many interfaces as files, file I/O is crucial to a lot more
than just, well, files.

With the preliminaries behind us, growing smaller on the horizon, it’s time to dive
into actual system programming. Let’s go!
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File I/O

This chapter covers the basics of reading to and writing from files. Such operations
form the core of a Unix system. The next chapter covers standard I/O from the stan-
dard C library, and Chapter 4 continues the coverage with a treatment of the more
advanced and specialized file I/O interfaces. Chapter 7 rounds out the discussion by
addressing the topic of file and directory manipulation.

Before a file can be read from or written to, it must be opened. The kernel maintains
a per-process list of open files, called the file table. This table is indexed via nonnega-
tive integers known as file descriptors (often abbreviated fds). Each entry in the list
contains information about an open file, including a pointer to an in-memory copy of
the file’s backing inode and associated metadata, such as the file position and access
modes. Both user space and kernel space use file descriptors as unique per-process
cookies. Opening a file returns a file descriptor, while subsequent operations (read-
ing, writing, and so on) take the file descriptor as their primary argument.

By default, a child process receives a copy of its parent’s file table. The list of open
files and their access modes, current file positions, and so on, are the same, but a
change in one process—say, the child closing a file—does not affect the other pro-
cess’ file table. However, as you’ll see in Chapter 5, it is possible for the child and
parent to share the parent’s file table (as threads do).

File descriptors are represented by the C int type. Not using a special type—an fd_t,
say—is often considered odd, but is, historically, the Unix way. Each Linux process
has a maximum number of files that it may open. File descriptors start at 0, and go
up to one less than this maximum value. By default, the maximum is 1,024, but it
can be configured as high as 1,048,576. Because negative values are not legal file
descriptors, –1 is often used to indicate an error from a function that would other-
wise return a valid file descriptor.

Unless the process explicitly closes them, every process by convention has at least
three file descriptors open: 0, 1, and 2. File descriptor 0 is standard in (stdin), file
descriptor 1 is standard out (stdout), and file descriptor 2 is standard error (stderr).
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Instead of referencing these integers directly, the C library provides the preprocessor
defines STDIN_FILENO, STDOUT_FILENO, and STDERR_FILENO.

Note that file descriptors can reference more than just regular files. They are used for
accessing device files and pipes, directories and futexes, FIFOs, and sockets—follow-
ing the everything-is-a-file philosophy, just about anything you can read or write is
accessible via a file descriptor.

Opening Files
The most basic method of accessing a file is via the read( ) and write( ) system calls.
Before a file can be accessed, however, it must be opened via an open( ) or creat( )
system call. Once done using the file, it should be closed using the system call close().

The open( ) System Call
A file is opened, and a file descriptor is obtained with the open( ) system call:

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int open (const char *name, int flags);
int open (const char *name, int flags, mode_t mode);

The open( ) system call maps the file given by the pathname name to a file descriptor,
which it returns on success. The file position is set to zero, and the file is opened for
access according to the flags given by flags.

Flags for open( )

The flags argument must be one of O_RDONLY, O_WRONLY, or O_RDWR. Respectively,
these arguments request that the file be opened only for reading, only for writing, or
for both reading and writing.

For example, the following code opens /home/kidd/madagascar for reading:

int fd;

fd = open ("/home/kidd/madagascar", O_RDONLY);
if (fd == -1)
        /* error */

A file opened only for writing cannot also be read, and vice versa. The process issu-
ing the open( ) system call must have sufficient permissions to obtain the access
requested.

The flags argument can be bitwise-ORed with one or more of the following values,
modifying the behavior of the open request:
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O_APPEND
The file will be opened in append mode. That is, before each write, the file posi-
tion will be updated to point to the end of the file. This occurs even if another
process has written to the file after the issuing process’ last write, thereby chang-
ing the file position. (See “Append Mode” later in this chapter).

O_ASYNC
A signal (SIGIO by default) will be generated when the specified file becomes
readable or writable. This flag is available only for terminals and sockets, not for
regular files.

O_CREAT
If the file denoted by name does not exist, the kernel will create it. If the file
already exists, this flag has no effect unless O_EXCL is also given.

O_DIRECT
The file will be opened for direct I/O (see “Direct I/O” later in this chapter).

O_DIRECTORY
If name is not a directory, the call to open( ) will fail. This flag is used internally by
the opendir( ) library call.

O_EXCL
When given with O_CREAT, this flag will cause the call to open( ) to fail if the file
given by name already exists. This is used to prevent race conditions on file
creation.

O_LARGEFILE
The given file will be opened using 64-bit offsets, allowing files larger than two
gigabytes to be opened. This is implied on 64-bit architectures.

O_NOCTTY
If the given name refers to a terminal device (say, /dev/tty), it will not become the
process’ controlling terminal, even if the process does not currently have a con-
trolling terminal. This flag is not frequently used.

O_NOFOLLOW
If name is a symbolic link, the call to open( ) will fail. Normally, the link is
resolved, and the target file is opened. If other components in the given path are
links, the call will still succeed. For example, if name is /etc/ship/plank.txt, the call
will fail if plank.txt is a symbolic link. It will succeed, however, if etc or ship is a
symbolic link, so long as plank.txt is not.

O_NONBLOCK
If possible, the file will be opened in nonblocking mode. Neither the open( ) call,
nor any other operation will cause the process to block (sleep) on the I/O. This
behavior may be defined only for FIFOs.
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O_SYNC
The file will be opened for synchronous I/O. No write operation will complete
until the data has been physically written to disk; normal read operations are
already synchronous, so this flag has no effect on reads. POSIX additionally
defines O_DSYNC and O_RSYNC; on Linux, these flags are synonymous with O_SYNC.
(See “The O_SYNC Flag,” later in this chapter.)

O_TRUNC
If the file exists, it is a regular file, and the given flags allow for writing, the file
will be truncated to zero length. Use of O_TRUNC on a FIFO or terminal device is
ignored. Use on other file types is undefined. Specifying O_TRUNC with O_RDONLY is
also undefined, as you need write access to the file in order to truncate it.

For example, the following code opens for writing the file /home/teach/pearl. If the
file already exists, it will be truncated to a length of zero. Because the O_CREAT flag is
not specified, if the file does not exist, the call will fail:

int fd;

fd = open ("/home/teach/pearl", O_WRONLY | O_TRUNC);
if (fd == -1)
        /* error */

Owners of New Files
Determining which user owns a new file is straightforward: the uid of the file’s
owner is the effective uid of the process creating the file.

Determining the owning group is more complicated. The default behavior is to set
the file’s group to the effective gid of the process creating the file. This is the System
V behavior (the behavioral model for much of Linux), and the standard Linux modus
operandi.

To be difficult, however, BSD defined its own behavior: the file’s group is set to the
gid of the parent directory. This behavior is available on Linux via a mount-time
option*—it is also the behavior that will occur on Linux by default if the file’s parent
directory has the set group ID (setgid) bit set. Although most Linux systems will use
the System V behavior (where new files receive the gid of the creating process), the
possibility of the BSD behavior (where new files receive the gid of the parent direc-
tory) implies that code that truly cares needs to manually set the group via the chown( )
system call (see Chapter 7).

 Thankfully, caring about the owning group of a file is uncommon.

* The mount options bsdgroups or sysvgroups.
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Permissions of New Files
Both of the previously given forms of the open( ) system call are valid. The mode argu-
ment is ignored unless a file is created; it is required if O_CREAT is given. If you forget
to provide the mode argument when using O_CREAT, the results are undefined, and
often quite ugly—so don’t forget!

When a file is created, the mode argument provides the permissions of the newly
created file. The mode is not checked on this particular open of the file, so you can
perform contradictory operations, such as opening the file for writing, but assigning
the file read-only permissions.

The mode argument is the familiar Unix permission bitset, such as octal 0644 (owner
can read and write, everyone else can only read). Technically speaking, POSIX
allowed the exact values to be implementation-specific, allowing different Unix sys-
tems to lay out the permission bits however they desired. To compensate for the
nonportability of bit positions in the mode, POSIX introduced the following set of
constants that may be binary-ORed together, and supplied for the mode argument:

S_IRWXU
Owner has read, write, and execute permission.

S_IRUSR
Owner has read permission.

S_IWUSR
Owner has write permission.

S_IXUSR
Owner has execute permission.

S_IRWXG
Group has read, write, and execute permission.

S_IRGRP
Group has read permission.

S_IWGRP
Group has write permission.

S_IXGRP
Group has execute permission.

S_IRWXO
Everyone else has read, write, and execute permission.

S_IROTH
Everyone else has read permission.
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S_IWOTH
Everyone else has write permission.

S_IXOTH
Everyone else has execute permission.

The actual permission bits that hit the disk are determined by binary-ANDing the
mode argument with the complement of the user’s file creation mask (umask). Infor-
mally, the bits in the umask are turned off in the mode argument given to open( ).
Thus, the usual umask of 022 would cause a mode argument of 0666 to become 0644
(0666 & ~022). As a system programmer, you normally do not take into consider-
ation the umask when setting permissions—the umask exists to allow the user to
limit the permissions that his programs set on new files.

As an example, the following code opens the file given by file for writing. If the file
does not exist, assuming a umask of 022, it is created with the permissions 0644
(even though the mode argument specifies 0664). If it does exist, it is truncated to zero
length:

int fd;

fd = open (file, O_WRONLY | O_CREAT | O_TRUNC,
           S_IWUSR | S_IRUSR | S_IWGRP | S_IRGRP | S_IROTH);
if (fd == -1)
        /* error */

The creat( ) Function
The combination of O_WRONLY | O_CREAT | O_TRUNC is so common that a system call
exists to provide just that behavior:

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int creat (const char *name, mode_t mode);

Yes, this function’s name is missing an e. Ken Thompson, the creator
of Unix, once joked that the missing letter was his largest regret in the
design of Unix.

The following typical creat( ) call:

int fd;

fd = creat (file, 0644);
if (fd == -1)
        /* error */
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is identical to:

int fd;

fd = open (file, O_WRONLY | O_CREAT | O_TRUNC, 0644);
if (fd == -1)
        /* error */

On most Linux architectures,* creat( ) is a system call, even though it can be imple-
mented in user space as simply:

int creat (const char *name, int mode)
{
        return open (name, O_WRONLY | O_CREAT | O_TRUNC, mode);
}

This duplication is a historic relic from when open( ) had only two arguments.
Today, the creat( ) system call remains around for compatibility. New architectures
can implement creat( ) as shown in glibc.

Return Values and Error Codes
Both open( ) and creat( ) return a file descriptor on success. On error, both return -1,
and set errno to an appropriate error value (Chapter 1 discussed errno and listed the
potential error values). Handling an error on file open is not complicated, as gener-
ally there will have been few or no steps performed prior to the open that need to be
undone. A typical response would be prompting the user for a different filename or
simply terminating the program.

Reading via read( )
Now that you know how to open a file, let’s look at how to read it. In the following
section, we will examine writing.

The most basic—and common—mechanism used for reading is the read( ) system
call, defined in POSIX.1:

#include <unistd.h>

ssize_t read (int fd, void *buf, size_t len);

Each call reads up to len bytes into buf from the current file offset of the file refer-
enced by fd. On success, the number of bytes written into buf is returned. On error,
the call returns -1, and errno is set. The file position is advanced by the number of
bytes read from fd. If the object represented by fd is not capable of seeking (for
example, a character device file), the read always occurs from the “current” position.

* Recall that system calls are defined on a per-architecture basis. Thus, while i386 has a creat( ) system call,
Alpha does not. You can use creat( ) on any architecture, of course, but it may be a library function instead
of having its own system call.
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Basic usage is simple. This example reads from the file descriptor fd into word. The
number of bytes read is equal to the size of the unsigned long type, which is four
bytes on 32-bit Linux systems, and eight bytes on 64-bit systems. On return, nr con-
tains the number of bytes read, or -1 on error:

unsigned long word;
ssize_t nr;

/* read a couple bytes into 'word' from 'fd' */
nr = read (fd, &word, sizeof (unsigned long));
if (nr == -1)
        /* error */

There are two problems with this naïve implementation: the call might return with-
out reading all len bytes, and it could produce certain errors that this code does not
check for and handle. Code such as this, unfortunately, is very common. Let’s see
how to improve it.

Return Values
It is legal for read( ) to return a positive nonzero value less than len. This can hap-
pen for a number of reasons: less than len bytes may have been available, the system
call may have been interrupted by a signal, the pipe may have broken (if fd is a pipe),
and so on.

The possibility of a return value of 0 is another consideration when using read( ).
The read( ) system call returns 0 to indicate end-of-file (EOF); in this case, of course,
no bytes were read. EOF is not considered an error (and hence is not accompanied
by a -1 return value); it simply indicates that the file position has advanced past the
last valid offset in the file, and thus there is nothing else to read. If, however, a call is
made for len bytes, but no bytes are available for reading, the call will block (sleep)
until the bytes become available (assuming the file descriptor was not opened in non-
blocking mode; see “Nonblocking Reads”). Note that this is different from returning
EOF. That is, there is a difference between “no data available” and “end of data.” In
the EOF case, the end of the file was reached. In the case of blocking, the read is
waiting for more data—say, in the case of reading from a socket or a device file.

Some errors are recoverable. For example, if a call to read( ) is interrupted by a sig-
nal before any bytes are read, it returns -1 (a 0 could be confused with EOF), and
errno is set to EINTR. In that case, you can resubmit the read.

Indeed, a call to read( ) can result in many possibilities:

• The call returns a value equal to len. All len read bytes are stored in buf. The
results are as intended.

• The call returns a value less than len, but greater than zero. The read bytes are
stored in buf. This can occur because a signal interrupted the read midway, an
error occurred in the middle of the read, more than zero, but less than len bytes’
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worth of data was available, or EOF was reached before len bytes were read.
Reissuing the read (with correspondingly updated buf and len values) will read the
remaining bytes into the rest of the buffer, or indicate the cause of the problem.

• The call returns 0. This indicates EOF. There is nothing to read.

• The call blocks because no data is currently available. This won’t happen in non-
blocking mode.

• The call returns -1, and errno is set to EINTR. This indicates that a signal was
received before any bytes were read. The call can be reissued.

• The call returns -1, and errno is set to EAGAIN. This indicates that the read would
block because no data is currently available, and that the request should be reis-
sued later. This happens only in nonblocking mode.

• The call returns -1, and errno is set to a value other than EINTR or EAGAIN. This
indicates a more serious error.

Reading All the Bytes
These possibilities imply that the previous trivial, simplistic use of read( ) is not suit-
able if you want to handle all errors, and actually read all len bytes (at least up to an
EOF). To do that, you need a loop, and a handful of conditional statements:

ssize_t ret;

while (len != 0 && (ret = read (fd, buf, len)) != 0) {
        if (ret == -1) {
                if (errno == EINTR)
                        continue;
                perror ("read");
                break;
        }

        len -= ret;
        buf += ret;
}

This snippet handles all five conditions. The loop reads len bytes from the current
file position of fd into buf. It continues reading until it reads all len bytes, or until
EOF is reached. If more than zero, but less than len bytes are read, len is reduced by
the amount read, buf is increased by the amount read, and the call is reissued. If the
call returns -1, and errno equals EINTR, the call is reissued without updating the
parameters. If the call returns -1, and errno is set to anything else, perror( ) is called
to print a description to standard error and the loop terminates.

Partial reads are not only legal, but also common. Innumerable bugs derive from pro-
grammers not properly checking for and handling short read requests. Do not add to
the list!
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Nonblocking Reads
Sometimes, programmers do not want a call to read( ) to block when there is no data
available. Instead, they prefer that the call return immediately, indicating that no data
is available. This is called nonblocking I/O; it allows applications to perform I/O,
potentially on multiple files, without ever blocking, and thus missing data available in
another file.

Consequently, an additional errno value is worth checking: EAGAIN. As discussed pre-
viously, if the given file descriptor was opened in nonblocking mode (if O_NONBLOCK
was given to open( ); see “Flags for open( )”) and there is no data to read, the read( )
call will return -1, and set errno to EAGAIN instead of blocking. When performing
nonblocking reads, you must check for EAGAIN, or risk confusing a serious error with
the mere lack of data. For example, you might use code like the following:

char buf[BUFSIZ];
ssize_t nr;

start:
nr = read (fd, buf, BUFSIZ);
if (nr == -1) {
        if (errno == EINTR)
                goto start; /* oh shush */
        if (errno == EAGAIN)
                /* resubmit later */
        else
                /* error */
}

Handling EAGAIN in this example with a goto start would actually
make little sense—you might as well not use nonblocking I/O. Using
it ends up saving no time, and instead introduces more overhead by
looping over and over.

Other Error Values
The other error codes refer to programming errors or (for EIO) low-level problems.
Possible errno values after a failure on read( ) include:

EBADF
The given file descriptor is invalid, or not open for reading.

EFAULT
The pointer provided by buf is not inside the calling process’ address space.

EINVAL
The file descriptor is mapped to an object that does not allow reading.

EIO
A low-level I/O error occurred.
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Size Limits on read( )
The size_t and ssize_t types are mandated by POSIX. The size_t type is used for
storing values used to measure size in bytes. The ssize_t type is a signed version of
size_t (the negative values are used to connote errors). On 32-bit systems, the back-
ing C types are usually unsigned int and int, respectively. Because the two types are
often used together, the potentially smaller range of ssize_t places a limit on the
range of size_t.

The maximum value of a size_t is SIZE_MAX; the maximum value of an ssize_t is
SSIZE_MAX. If len is larger than SSIZE_MAX, the results of the call to read( ) are unde-
fined. On most Linux systems, SSIZE_MAX is LONG_MAX, which is 0x7fffffff on a 32-bit
machine. That is relatively large for a single read, but nonetheless something to keep
in mind. If you use the previous read loop as a generic super read, you might want to
do something like this:

if (len > SSIZE_MAX)
        len = SSIZE_MAX;

A call to read( ) with a len of zero results in the call returning immediately with a
return value of 0.

Writing with write( )
The most basic and common system call used for writing is write( ). write( ) is the
counterpart of read( ) and is also defined in POSIX.1:

#include <unistd.h>

ssize_t write (int fd, const void *buf, size_t count);

A call to write( ) writes up to count bytes starting at buf to the current file position of
the file referenced by the file descriptor fd. Files backed by objects that do not sup-
port seeking (for example, character devices) always write starting at the “head.”

On success, the number of bytes written is returned, and the file position is updated
in kind. On error, -1 is returned, and errno is set appropriately. A call to write( ) can
return 0, but this return value does not have any special meaning; it simply implies
that zero bytes were written.

As with read( ), the most basic usage is simple:

const char *buf = "My ship is solid!";
ssize_t nr;

/* write the string in 'buf' to 'fd' */
nr = write (fd, buf, strlen (buf));
if (nr == -1)
        /* error */
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But again, as with read( ), this usage is not quite right. Callers also need to check for
the possible occurrence of a partial write:

unsigned long word = 1720;
size_t count;
ssize_t nr;

count = sizeof (word);
nr = write (fd, &word, count);
if (nr == -1)
        /* error, check errno */
else if (nr != count)
        /* possible error, but 'errno' not set */

Partial Writes
A write( ) system call is less likely to return a partial write than a read( ) system call
is to return a partial read. Also, there is no EOF condition for a write( ) system call.
For regular files, write( ) is guaranteed to perform the entire requested write, unless
an error occurs.

Consequently, for regular files, you do not need to perform writes in a loop. How-
ever, for other file types—say, sockets—a loop may be required to guarantee that
you really write out all of the requested bytes. Another benefit of using a loop is that
a second call to write( ) may return an error revealing what caused the first call to
perform only a partial write (although, again, this situation is not very common).
Here’s an example:

ssize_t ret, nr;

while (len != 0 && (ret = write (fd, buf, len)) != 0) {
        if (ret == -1) {
                if (errno == EINTR)
                        continue;
                perror ("write");
                break;
        }

        len -= ret;
        buf += ret;
}

Append Mode
When fd is opened in append mode (via O_APPEND), writes do not occur at the file
descriptor’s current file position. Instead, they occur at the current end of the file.

For example, assume that two processes are writing to the same file. Without append
mode, if the first process writes to the end of the file, and then the second process
does the same, the first process’ file position will no longer point to the end of the
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file; it will point to the end of the file, minus the data that the second process just
wrote. This means that multiple processes can never append to the same file without
explicit synchronization because they will encounter race conditions.

Append mode avoids this problem. It ensures that the file position is always set to
the end of the file, so all writes always append, even when there are multiple writers.
You can think of it as an atomic update to the file position preceding each write
request. The file position is then updated to point at the end of the newly written
data. This will not matter to the next call to write( ), as it updates the file position
automatically, but it might matter if you next call read( ) for some odd reason.

Append mode makes a lot of sense for certain tasks, such as updating log files, but
little sense for much else.

Nonblocking Writes
When fd is opened in nonblocking mode (via O_NONBLOCK), and the write as issued
would normally block, the write( ) system call returns -1, and errno is set to EAGAIN.
The request should be reissued later. Generally, this does not occur with regular files.

Other Error Codes
Other notable errno values include:

EBADF
The given file descriptor is not valid, or is not open for writing.

EFAULT
The pointer provided by buf points outside of the process’ address space.

EFBIG
The write would have made the file larger than per-process maximum file limits,
or internal implementation limits.

EINVAL
The given file descriptor is mapped to an object that is not suitable for writing.

EIO
A low-level I/O error occurred.

ENOSPC
The filesystem backing the given file descriptor does not have sufficient space.

EPIPE
The given file descriptor is associated with a pipe or socket whose reading end is
closed. The process will also receive a SIGPIPE signal. The default action for the
SIGPIPE signal is to terminate the receiving process. Therefore, processes receive
this errno value only if they explicitly ask to ignore, block, or handle this signal.
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Size Limits on write( )
If count is larger than SSIZE_MAX, the results of the call to write( ) are undefined.

A call to write( ) with a count of zero results in the call returning immediately with a
return value of 0.

Behavior of write( )
When a call to write( ) returns, the kernel has copied the data from the supplied
buffer into a kernel buffer, but there is no guarantee that the data has been written
out to its intended destination. Indeed, write calls return much too fast for that to be
the case. The disparity in performance between processors and hard disks would
make such behavior painfully obvious.

Instead, when a user-space application issues a write( ) system call, the Linux kernel
performs a few checks, and then simply copies the data into a buffer. Later, in the
background, the kernel gathers up all of the “dirty” buffers, sorts them optimally,
and writes them out to disk (a process known as writeback). This allows write calls
to occur lightning fast, returning almost immediately. It also allows the kernel to
defer writes to more idle periods, and batch many writes together.

The delayed writes do not change POSIX semantics. For example, if a read is issued
for a piece of just-written data that lives in a buffer and is not yet on disk, the request
will be satisfied from the buffer, and not cause a read from the “stale” data on disk.
This behavior actually improves performance, as the read is satisfied from an in-
memory cache without having to go to disk. The read and write requests interleave
as intended, and the results are as expected—that is, if the system does not crash
before the data makes it to disk! Even though an application may believe that a write
has occurred successfully, in this event, the data will never make it to disk.

Another issue with delayed writes is the inability to enforce write ordering. Although
an application may take care to order its write requests in such a way that they hit
the disk in a specific order, the kernel will reorder the write requests as it sees fit, pri-
marily for performance. This is normally a problem only if the system crashes, as
eventually all of the buffers are written back and all is well. Even then, the vast
majority of applications are not actually concerned with write ordering.

A final problem with delayed writes has to do with the reporting of certain I/O
errors. Any I/O error that occurs during writeback—say, a physical drive failure—
cannot be reported back to the process that issued the write request. Indeed, buffers
are not associated with processes at all. Multiple processes may have dirtied the data
contained in a single buffer, and processes may exit after writing data to a buffer but
before that data is written back to disk. Besides, how would you communicate to a
process that a write failed ex post facto?
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The kernel does attempt to minimize the risks of deferred writes. To ensure that data
is written out in a timely manner, the kernel institutes a maximum buffer age, and
writes out all dirty buffers before they mature past the given value. Users can config-
ure this value via /proc/sys/vm/dirty_expire_centiseconds. The value is specified in
centiseconds (one hundredths of a second).

It is also possible to force the writeback of a given file’s buffer, or even to make all
writes synchronous. These topics are discussed in the next section, “Synchronized
I/O.”

Later in this chapter, “Kernel Internals” will cover the Linux kernel’s buffer write-
back subsystem in depth.

Synchronized I/O
Although synchronizing I/O is an important topic, the issues associated with delayed
writes should not be feared. Buffering writes provides a huge performance improve-
ment, and consequently, any operating system even halfway deserving the mark
“modern” implements delayed writes via buffers. Nonetheless, there are times when
applications want to control when data hits the disk. For those uses, the Linux
kernel provides a handful of options that allow performance to be traded for syn-
chronized operations.

fsync( ) and fdatasync( )
The simplest method of ensuring that data has reached the disk is via the fsync( )
system call, defined by POSIX.1b:

#include <unistd.h>

int fsync (int fd);

A call to fsync( ) ensures that all dirty data associated with the file mapped by the
file descriptor fd is written back to disk. The file descriptor fd must be open for writ-
ing. The call writes back both data and metadata, such as creation timestamps, and
other attributes contained in the inode. It will not return until the hard drive says
that the data and metadata are on the disk.

In the case of write caches on hard disks, it is not possible for fsync( ) to know
whether the data is physically on the disk. The hard drive can report that the data
was written, but the data may in fact reside in the drive’s write cache. Fortunately,
data in a hard disk’s cache should be committed to the disk in short order.

Linux also provides the system call fdatasync( ):

#include <unistd.h>

int fdatasync (int fd);
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This system call does the same thing as fsync( ), except that it only flushes data. The
call does not guarantee that metadata is synchronized to disk, and is therefore poten-
tially faster. Often this is sufficient.

Both functions are used the same way, which is very simple:

int ret;

ret = fsync (fd);
if (ret == -1)
        /* error */

Neither function guarantees that any updated directory entries containing the file are
synchronized to disk. This implies that if a file’s link has recently been updated, the
file’s data may successfully reach the disk, but not the associated directory entry, ren-
dering the file unreachable. To ensure that any updates to the directory entry are also
committed to disk, fsync( ) must be called on a file descriptor opened against the
directory itself.

Return values and error codes

On success, both calls return 0. On failure, both calls return -1, and set errno to one
of the following three values:

EBADF
The given file descriptor is not a valid file descriptor open for writing.

EINVAL
The given file descriptor is mapped to an object that does not support
synchronization.

EIO
A low-level I/O error occurred during synchronization. This represents a real I/O
error, and is often the place where such errors are caught.

Currently, a call to fsync( ) may fail because fsync( ) is not implemented by the
backing filesystem, even when fdatasync( ) is implemented. Paranoid applications
may want to try fdatasync( ) if fsync( ) returns EINVAL. For example:

if (fsync (fd) == -1) {
        /*
         * We prefer fsync(), but let's try fdatasync( )
         * if fsync( ) fails, just in case.
         */
        if (errno == EINVAL) {
                if (fdatasync (fd) == -1)
                        perror ("fdatasync");
        } else
                perror ("fsync");
}
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Because POSIX requires fsync( ), but labels fdatasync( ) as optional, the fsync( )
system call should always be implemented for regular files on any of the common
Linux filesystems. Odd file types (perhaps those in which there is no metadata to
synchronize) or strange filesystems may implement only fdatasync( ), however.

sync( )
Less optimal, but wider in scope, the old-school sync( ) system call is provided for
synchronizing all buffers to disk:

#include <unistd.h>

void sync (void);

The function has no parameters, and no return value. It always succeeds, and upon
return, all buffers—both data and metadata—are guaranteed to reside on disk.*

The standards do not require sync( ) to wait until all buffers are flushed to disk
before returning; they require only that the call initiates the process of committing all
buffers to disk. For this reason, it is often recommended to synchronize multiple
times to ensure that all data is safely on disk. Linux, however, does wait until all buff-
ers are committed. Therefore, a single sync( ) is sufficient.

The only real use for sync( ) is in implementing the sync(8) utility. Applications
should use fsync( ) and fdatasync( ) to commit to disk the data of just the requisite
file descriptors. Note that sync( ) may take several minutes to complete on a busy
system.

The O_SYNC Flag
The O_SYNC flag may be passed to open( ), indicating that all I/O on the file should be
synchronized:

int fd;

fd = open (file, O_WRONLY | O_SYNC);
if (fd == -1) {
        perror ("open");
        return -1;
}

Read requests are always synchronized. If they weren’t, the validity of the read data in
the supplied buffer would be unknown. However, as discussed previously, calls to
write() are normally not synchronized. There is no relation between the call returning
and the data being committed to disk. The O_SYNC flag forces the relationship, ensur-
ing that calls to write() perform synchronized I/O.

* Well, the same caveat applies as before: the hard drive may lie and inform the kernel that the buffers reside
on disk when they actually are still in the disk’s cache.
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One way of looking at O_SYNC is that it forces an implicit fsync( ) after each write( )
operation, before the call returns. These are indeed the semantics provided, although
the Linux kernel implements O_SYNC a bit more efficiently.

O_SYNC results in slightly worse user and kernel times (times spent in user and kernel
space, respectively) for write operations. Moreover, depending on the size of the file
being written, O_SYNC can cause an increase in total elapsed time of one or two orders
of magnitude because all I/O wait time (time spent waiting for I/O to complete) is
incurred by the process. The increase in cost is huge, so synchronized I/O should be
used only after exhausting all possible alternatives.

Normally, applications which need guarantees that write operations have hit the disk
use fsync( ) or fdatasync( ). These tend to incur less cost than O_SYNC, as they can be
called less often (i.e., only after certain critical operations have completed).

O_DSYNC and O_RSYNC
POSIX defines two other synchronized-I/O-related open() flags: O_DSYNC and O_RSYNC.
On Linux, these flags are defined to be synonymous with O_SYNC; they provide in the
same behavior.

The O_DSYNC flag specifies that only normal data be synchronized after each write
operation, not metadata. Think of it as causing an implicit fdatasync( ) after each
write request. Because O_SYNC provides stronger guarantees, there is no functionality
loss in not explicitly supporting O_DSYNC; there’s only a potential performance loss
from the stronger requirements provided by O_SYNC.

The O_RSYNC flag specifies the synchronization of read requests as well as write
requests. It must be used with one of O_SYNC or O_DSYNC. As mentioned earlier, reads
are already synchronized—they do not return until they have something to give the
user, after all. The O_RSYNC flag stipulates that any side effects of a read operation be
synchronized, too. This means that metadata updates resulting from a read must be
written to disk before the call returns. In practical terms, this requirement most likely
means only that the file access time must be updated in the on-disk copy of the inode
before the call to read( ) returns. Linux defines O_RSYNC to be the same as O_SYNC,
although this does not make much sense (the two are not as related as O_SYNC and
O_DSYNC). There is currently no way in Linux to obtain the behavior of O_RSYNC; the
closest a developer can come is invoking fdatasync( ) after each read( ) call. This
behavior is rarely needed, though.

Direct I/O
The Linux kernel, like any modern operating system kernel, implements a complex
layer of caching, buffering, and I/O management between devices and applications
(see “Kernel Internals” at the end of this chapter). A high-performance application
may wish to bypass this layer of complexity and perform its own I/O management.
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Rolling your own I/O system is usually not worth the effort, though, and in fact the
tools available at the operating-system level are likely to achieve much better perfor-
mance than those available at the application level. Still, database systems often
prefer to perform their own caching, and want to minimize the presence of the oper-
ating system as much as feasible.

Providing the O_DIRECT flag to open( ) instructs the kernel to minimize the presence of
I/O management. When this flag is provided, I/O will initiate directly from user-
space buffers to the device, bypassing the page cache. All I/O will be synchronous;
operations will not return until completed.

When performing direct I/O, the request length, buffer alignment, and file offsets
must all be integer multiples of the underlying device’s sector size—generally, this is
512 bytes. Before the 2.6 Linux kernel, this requirement was stricter: in 2.4, every-
thing must be aligned on the filesystem’s logical block size (often 4 KB). To remain
compatible, applications should align to the larger (and potentially less convenient)
logical block size.

Closing Files
After a program has finished working with a file descriptor, it can unmap the file
descriptor from the associated file via the close( ) system call:

#include <unistd.h>

int close (int fd);

A call to close( ) unmaps the open file descriptor fd, and disassociates the process
from the file. The given file descriptor is then no longer valid, and the kernel is free to
reuse it as the return value to a subsequent open( ) or creat( ) call. A call to close( )
returns 0 on success. On error, it returns -1, and sets errno appropriately. Usage is
simple:

if (close (fd) == -1)
        perror ("close");

Note that closing a file has no bearing on when the file is flushed to disk. If an applica-
tion wants to ensure that the file is committed to disk before closing it, it needs to make
use of one of the synchronization options discussed earlier in “Synchronized I/O.”

Closing a file does have some side effects, though. When the last open file descriptor
referring to a file is closed, the data structure representing the file inside the kernel is
freed. When this data structure is freed, it unpins the in-memory copy of the inode
associated with the file. If nothing else is pinning the inode, it too may be freed from
memory (it may stick around because the kernel caches inodes for performance rea-
sons, but it need not). If a file has been unlinked from the disk, but was kept open
before it was unlinked, it is not physically removed until it is closed and its inode is
removed from memory. Therefore, calling close( ) may also result in an unlinked file
finally being physically removed from the disk.
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Error Values
It is a common mistake to not check the return value of close( ). This can result in
missing a crucial error condition because errors associated with deferred operations
may not manifest until later, and close( ) can report them.

There are a handful of possible errno values on failure. Other than EBADF (the given
file descriptor was invalid), the most important error value is EIO, indicating a low-
level I/O error probably unrelated to the actual close. Regardless of any reported
error, the file descriptor, if valid, is always closed, and the associated data structures
are freed.

Although POSIX allows it, close( ) will never return EINTR. The Linux kernel devel-
opers know better—such an implementation is not smart.

Seeking with lseek( )
Normally, I/O occurs linearly through a file, and the implicit updates to the file posi-
tion caused by reads and writes are all the seeking that is needed. Some applications,
however, need to jump around in the file. The lseek( ) system call is provided to set
the file position of a file descriptor to a given value. Other than updating the file
position, it performs no other action, and initiates no I/O whatsoever:

#include <sys/types.h>
#include <unistd.h>

off_t lseek (int fd, off_t pos, int origin);

The behavior of lseek( ) depends on the origin argument, which can be one of the
following:

SEEK_CUR
The current file position of fd is set to its current value plus pos, which can be
negative, zero, or positive. A pos of zero returns the current file position value.

SEEK_END
The current file position of fd is set to the current length of the file plus pos,
which can be negative, zero, or positive. A pos of zero sets the offset to the end of
the file.

SEEK_SET
The current file position of fd is set to pos. A pos of zero sets the offset to the
beginning of the file.

The call returns the new file position on success. On error, it returns -1 and errno is
set as appropriate.
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For example, to set the file position of fd to 1825:

off_t ret;

ret = lseek (fd, (off_t) 1825, SEEK_SET);
if (ret == (off_t) -1)
        /* error */

Alternatively, to set the file position of fd to the end of the file:

off_t ret;

ret = lseek (fd, 0, SEEK_END);
if (ret == (off_t) -1)
        /* error */

As lseek( ) returns the updated file position, it can be used to find the current file
position via a SEEK_CUR to zero:

int pos;

pos = lseek (fd, 0, SEEK_CUR);
if (pos == (off_t) -1)
        /* error */
else
        /* 'pos' is the current position of fd */

By far, the most common uses of lseek( ) are seeking to the beginning, seeking to the
end, or determining the current file position of a file descriptor.

Seeking Past the End of a File
It is possible to instruct lseek( ) to advance the file pointer past the end of a file. For
example, this code seeks to 1,688 bytes beyond the end of the file mapped by fd:

int ret;

ret = lseek (fd, (off_t) 1688, SEEK_END);
if (ret == (off_t) -1)
        /* error */

On its own, seeking past the end of a file does nothing—a read request to the newly
created file position will return EOF. If a write request is subsequently made to this
position, however, new space will be created between the old length of the file and
the new length, and it will be padded with zeros.

This zero padding is called a hole. On Unix-style filesystems, holes do not occupy
any physical disk space. This implies that the total size of all files on a filesystem can
add up to more than the physical size of the disk. Files with holes are called sparse
files. Sparse files can save considerable space and enhance performance because
manipulating the holes does not initiate any physical I/O.

A read request to the part of a file in a hole will return the appropriate number of
binary zeros.
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Error Values
On error, lseek( ) returns -1, and errno is set to one of the following four values:

EBADF
The given file descriptor does not refer to an open file descriptor.

EINVAL
The value given for origin is not one of SEEK_SET, SEEK_CUR, or SEEK_END, or the
resulting file position would be negative. The fact that EINVAL represents both of
these errors is unfortunate. The former is almost assuredly a compile-time pro-
gramming error, whereas the latter can represent a more insidious runtime logic
error.

EOVERFLOW
The resulting file offset cannot be represented in an off_t. This can occur only
on 32-bit architectures. Currently, the file position is updated; this error indi-
cates just that it is impossible to return it.

ESPIPE
The given file descriptor is associated with an unseekable object, such as a pipe,
FIFO, or socket.

Limitations
The maximum file positions are limited by the size of the off_t type. Most machine
architectures define this to be the C long type, which on Linux is always the word
size (usually the size of the machine’s general-purpose registers). Internally, how-
ever, the kernel stores the offsets in the C long long type. This poses no problem on
64-bit machines, but it means that 32-bit machines can generate EOVERFLOW errors
when performing relative seeks.

Positional Reads and Writes
In lieu of using lseek( ), Linux provides two variants of the read( ) and write( ) sys-
tem calls that each take as a parameter the file position from which to read or write.
Upon completion, they do not update the file position.

The read form is called pread( ):

#define _XOPEN_SOURCE 500

#include <unistd.h>

ssize_t pread (int fd, void *buf, size_t count, off_t pos);



Truncating Files | 45

This call reads up to count bytes into buf from the file descriptor fd at file position pos.

The write form is called pwrite( ):

#define _XOPEN_SOURCE 500

#include <unistd.h>

ssize_t pwrite (int fd, const void *buf, size_t count, off_t pos);

This call writes up to count bytes from buf to the file descriptor fd at file position pos.

These calls are almost identical in behavior to their non-p brethren, except that they
completely ignore the current file position; instead of using the current position, they
use the value provided by pos. Also, when done, they do not update the file position.
In other words, any intermixed read( ) and write( ) calls could potentially corrupt
the work done by the positional calls.

Both positional calls can be used only on seekable file descriptors. They provide
semantics similar to preceding a read( ) or write( ) call with a call to lseek( ), with
three differences. First, these calls are easier to use, especially when doing a tricky
operation such as moving through a file backward or randomly. Second, they do not
update the file pointer upon completion. Finally, and most importantly, they avoid
any potential races that might occur when using lseek( ). As threads share file
descriptors, it would be possible for a different thread in the same program to update
the file position after the first thread’s call to lseek( ), but before its read or write
operation executed. Such race conditions can be avoided by using the pread( ) and
pwrite( ) system calls.

Error Values
On success, both calls return the number of bytes read or written. A return value of 0
from pread( ) indicates EOF; from pwrite( ), a return value of 0 indicates that the call
did not write anything. On error, both calls return -1 and set errno appropriately.
For pread( ), any valid read( ) or lseek( ) errno value is possible. For pwrite( ), any
valid write( ) or lseek( ) value is possible.

Truncating Files
Linux provides two system calls for truncating the length of a file, both of which are
defined and required (to varying degrees) by various POSIX standards. They are:

#include <unistd.h>
#include <sys/types.h>

int ftruncate (int fd, off_t len);



46 | Chapter 2: File I/O

and:

#include <unistd.h>
#include <sys/types.h>

int truncate (const char *path, off_t len);

Both system calls truncate the given file to the length given by len. The ftruncate( )
system call operates on the file descriptor given by fd, which must be open for writ-
ing. The truncate( ) system call operates on the filename given by path, which must
be writable. Both return 0 on success. On error, they return -1, and set errno as
appropriate.

The most common use of these system calls is to truncate a file to a size smaller than
its current length. Upon successful return, the file’s length is len. The data previ-
ously existing between len and the old length is discarded, and no longer accessible
via a read request.

The functions can also be used to “truncate” a file to a larger size, similar to the seek
plus write combination described earlier in “Seeking Past the End of a File.” The
extended bytes are filled with zeros.

Neither operation updates the current file position.

For example, consider the file pirate.txt of length 74 bytes with the following contents:

Edward Teach was a notorious English pirate.
He was nicknamed Blackbeard.

From the same directory, running the following program:

#include <unistd.h>
#include <stdio.h>

int main( )
{
        int ret;

        ret = truncate ("./pirate.txt", 45);
        if (ret == -1) {
                perror ("truncate");
                return -1;
        }

        return 0;
}

results in a file of length 45 bytes with the contents:

Edward Teach was a notorious English pirate.
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Multiplexed I/O
Applications often need to block on more than one file descriptor, juggling I/O
between keyboard input (stdin), interprocess communication, and a handful of files.
Modern event-driven graphical user interface (GUI) applications may contend with
literally hundreds of pending events via their mainloops.*

Without the aid of threads—essentially servicing each file descriptor separately—a
single process cannot reasonably block on more than one file descriptor at the same
time. Working with multiple file descriptors is fine, so long as they are always ready
to be read from or written to. But as soon as one file descriptor that is not yet ready is
encountered—say, if a read( ) system call is issued, and there is not yet any data—
the process will block, no longer able to service the other file descriptors. It might
block for just a few seconds, making the application inefficient and annoying the user.
However, if no data becomes available on the file descriptor, it could block forever.
Because file descriptors’ I/O is often interrelated—think pipes—it is quite possible for
one file descriptor not to become ready until another is serviced. Particularly with net-
work applications, which may have many sockets open simultaneously, this is poten-
tially quite a problem.

Imagine blocking on a file descriptor related to interprocess communication while
stdin has data pending. The application won’t know that keyboard input is pending
until the blocked IPC file descriptor ultimately returns data—but what if the blocked
operation never returns?

Earlier in this chapter, we looked at nonblocking I/O as a solution to this problem.
With nonblocking I/O, applications can issue I/O requests that return a special error
condition instead of blocking. However, this solution is inefficient, for two reasons.
First, the process needs to continually issue I/O operations in some arbitrary order,
waiting for one of its open file descriptors to be ready for I/O. This is poor program
design. Second, it would be much more efficient if the program could sleep, freeing
the processor for other tasks, to be woken up only when one or more file descriptors
were ready to perform I/O.

Enter multiplexed I/O.

Multiplexed I/O allows an application to concurrently block on multiple file descrip-
tors, and receive notification when any one of them becomes ready to read or write
without blocking. Multiplexed I/O thus becomes the pivot point for the application,
designed similarly to the following:

1. Multiplexed I/O: Tell me when any of these file descriptors are ready for I/O.

2. Sleep until one or more file descriptors are ready.

* Mainloops should be familiar to anyone who has written GUI applications—for example, GNOME applica-
tions utilize a mainloop provided by GLib, their base library. A mainloop allows multiple events to be
watched for and responded to from a single blocking point.
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3. Woken up: What is ready?

4. Handle all file descriptors ready for I/O, without blocking.

5. Go back to step 1, and start over.

Linux provides three multiplexed I/O solutions: the select, poll, and epoll interfaces.
We will cover the first two here, and the last, which is an advanced Linux-specific
solution, in Chapter 4.

select( )
The select( ) system call provides a mechanism for implementing synchronous mul-
tiplexing I/O:

#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>

int select (int n,
            fd_set *readfds,
            fd_set *writefds,
            fd_set *exceptfds,
            struct timeval *timeout);

FD_CLR(int fd, fd_set *set);
FD_ISSET(int fd, fd_set *set);
FD_SET(int fd, fd_set *set);
FD_ZERO(fd_set *set);

A call to select( ) will block until the given file descriptors are ready to perform I/O,
or until an optionally specified timeout has elapsed.

The watched file descriptors are broken into three sets, each waiting for a different
event. File descriptors listed in the readfds set are watched to see if data is available
for reading (that is, if a read operation will complete without blocking). File descrip-
tors listed in the writefds set are watched to see if a write operation will complete
without blocking. Finally, file descriptors in the exceptfds set are watched to see if an
exception has occurred, or if out-of-band data is available (these states apply only to
sockets). A given set may be NULL, in which case select( ) does not watch for that
event.

On successful return, each set is modified such that it contains only the file descrip-
tors that are ready for I/O of the type delineated by that set. For example, assume
two file descriptors, with the values 7 and 9, are placed in the readfds set. When the
call returns, if 7 is still in the set, that file descriptor is ready to read without block-
ing. If 9 is no longer in the set, it is probably not readable without blocking. (I say
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probably here because it is possible that data became available after the call com-
pleted. In that case, a subsequent call to select( ) will return the file descriptor as
ready to read.*)

The first parameter, n, is equal to the value of the highest-valued file descriptor in
any set, plus one. Consequently, a caller to select( ) is responsible for checking
which given file descriptor is the highest-valued, and passing in that value plus one
for the first parameter.

The timeout parameter is a pointer to a timeval structure, which is defined as follows:

#include <sys/time.h>

struct timeval {
        long tv_sec;         /* seconds */
        long tv_usec;        /* microseconds */
};

If this parameter is not NULL, the call to select( ) will return after tv_sec seconds, and
tv_usec microseconds, even if no file descriptors are ready for I/O. On return, the
state of this structure across various Unix systems is undefined, and thus it must be
reinitialized (along with the file descriptor sets) before every invocation. Indeed, cur-
rent versions of Linux modify this parameter automatically, setting the values to the
time remaining. Thus, if the timeout was set for 5 seconds, and 3 seconds elapsed
before a file descriptor became ready, tv.tv_sec would contain 2 upon the call’s
return.

If both values in the timeout are set to zero, the call will return immediately, reporting
any events that were pending at the time of the call, but not waiting for any subse-
quent events.

The sets of file descriptors are not manipulated directly, but are instead managed
through helper macros. This allows Unix systems to implement the sets however
they want. Most systems, however, implement the sets as simple bit arrays. FD_ZERO
removes all file descriptors from the specified set. It should be called before every
invocation of select( ):

fd_set writefds;

FD_ZERO(&writefds);

FD_SET adds a file descriptor to a given set, and FD_CLR removes a file descriptor from
a given set:

FD_SET(fd, &writefds);    /* add 'fd' to the set */
FD_CLR(fd, &writefds);    /* oops, remove 'fd' from the set */

* This is because select( ) and poll( ) are level-triggered and not edge-triggered. epoll( ), which we’ll discuss
in Chapter 4, can operate in either mode. Edge-triggered operation is simpler, but allows I/O events to be
missed if care is not taken.
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Well-designed code should never have to make use of FD_CLR, and it is rarely, if ever,
used.

FD_ISSET tests whether a file descriptor is part of a given set. It returns a nonzero inte-
ger if the file descriptor is in the set, and 0 if it is not. FD_ISSET is used after a call
from select( ) returns to test whether a given file descriptor is ready for action:

if (FD_ISSET(fd, &readfds))
        /* 'fd' is readable without blocking! */

Because the file descriptor sets are statically created, they impose a limit on the maxi-
mum number of file descriptors and the largest-valued file descriptor that may be
placed inside them, both of which are given by FD_SETSIZE. On Linux, this value is
1,024. We will look at the ramifications of this limit later in this chapter.

Return values and error codes

On success, select( ) returns the number of file descriptors ready for I/O, among all
three sets. If a timeout was provided, the return value may be 0. On error, the call
returns -1, and errno is set to one of the following values:

EBADF
An invalid file descriptor was provided in one of the sets.

EINTR
A signal was caught while waiting, and the call can be reissued.

EINVAL
The parameter n is negative, or the given timeout is invalid.

ENOMEM
Insufficient memory was available to complete the request.

select( ) example

Let’s consider an example program, trivial but fully functional, to illustrate the use of
select( ). This example blocks waiting for input on stdin for up to 5 seconds.
Because it watches only a single file descriptor, it is not actually multiplexing I/O,
but the usage of the system call is made clear:

#include <stdio.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>

#define TIMEOUT 5       /* select timeout in seconds */
#define BUF_LEN 1024    /* read buffer in bytes */

int main (void)
{
        struct timeval tv;
        fd_set readfds;
        int ret;
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        /* Wait on stdin for input. */
        FD_ZERO(&readfds);
        FD_SET(STDIN_FILENO, &readfds);

        /* Wait up to five seconds. */
        tv.tv_sec = TIMEOUT;
        tv.tv_usec = 0;

        /* All right, now block! */
        ret = select (STDIN_FILENO + 1,
                      &readfds,
                      NULL,
                      NULL,
                      &tv);
        if (ret == -1) {
                perror ("select");
                return 1;
        } else if (!ret) {
                printf ("%d seconds elapsed.\n", TIMEOUT);
                return 0;
        }

        /*
         * Is our file descriptor ready to read?
         * (It must be, as it was the only fd that
         * we provided and the call returned
         * nonzero, but we will humor ourselves.)
         */
        if (FD_ISSET(STDIN_FILENO, &readfds)) {
                char buf[BUF_LEN+1];
                int len;

                /* guaranteed to not block */
                len = read (STDIN_FILENO, buf, BUF_LEN);
                if (len == -1) {
                        perror ("read");
                        return 1;
                }

                if (len) {
                        buf[len] = '\0';
                        printf ("read: %s\n", buf);
                }

                return 0;
        }

        fprintf (stderr, "This should not happen!\n");
        return 1;
}
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Portable sleeping with select( )

Because select( ) has historically been more readily implemented on various Unix
systems than a mechanism for subsecond-resolution sleeping, it is often employed as
a portable way to sleep by providing a non-NULL timeout but NULL for all three sets:

struct timeval tv;

tv.tv_sec = 0;
tv.tv_usec = 500;

/* sleep for 500 microseconds */
select (0, NULL, NULL, NULL, &tv);

Linux, of course, provides interfaces for high-resolution sleeping. We will cover these
in Chapter 10.

pselect( )

The select( ) system call, first introduced IN 4.2BSD, is popular, but POSIX defined
its own solution, pselect( ), in POSIX 1003.1g-2000 and later in POSIX 1003.1-2001:

#define _XOPEN_SOURCE 600
#include <sys/select.h>

int pselect (int n,
             fd_set *readfds,
             fd_set *writefds,
             fd_set *exceptfds,
             const struct timespec *timeout,
             const sigset_t *sigmask);

FD_CLR(int fd, fd_set *set);
FD_ISSET(int fd, fd_set *set);
FD_SET(int fd, fd_set *set);
FD_ZERO(fd_set *set);

There are three differences between pselect( ) and select( ):

1. pselect( ) uses the timespec structure, not the timeval structure, for its timeout
parameter. The timespec structure uses seconds and nanoseconds, not seconds
and microseconds, providing theoretically superior timeout resolution. In prac-
tice, however, neither call reliably provides even microsecond resolution.

2. A call to pselect( ) does not modify the timeout parameter. Consequently, this
parameter does not need to be reinitialized on subsequent invocations.

3. The select( ) system call does not have the sigmask parameter. With respect to
signals, when this parameter is set to NULL, pselect( ) behaves like select( ).

The timespec structure is defined as follows:

#include <sys/time.h>

struct timespec {
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        long tv_sec;         /* seconds */
        long tv_nsec;        /* nanoseconds */
};

The primary motivator behind the addition of pselect( ) to Unix’s toolbox was the
addition of the sigmask parameter, which attempts to solve a race condition between
waiting on file descriptors and signals (signals are covered in depth in Chapter 9).
Assume that a signal handler sets a global flag (as most do), and the process checks
this flag before a call to select( ). Now, assume that the signal arrives after the
check, but before the call. The application may block indefinitely, and never respond
to the set flag. The pselect( ) call solves this problem by allowing an application to
call pselect( ), providing a set of signals to block. Blocked signals are not handled
until they are unblocked. Once pselect( ) returns, the kernel restores the old signal
mask. Seriously, see Chapter 9.

Until the 2.6.16 kernel, the Linux implementation of pselect( ) was not a system
call, but a simple wrapper around select( ), provided by glibc. This wrapper mini-
mized—but did not totally eliminate—the risk of this race condition occurring. With
the introduction of a true system call, the race is gone.

Despite the (relatively minor) improvements in pselect( ), most applications con-
tinue to use select( ), either out of habit, or in the name of greater portability.

poll( )
The poll( ) system call is System V’s multiplexed I/O solution. It solves several defi-
ciencies in select( ), although select( ) is still often used (again, most likely out of
habit, or in the name of portability):

#include <sys/poll.h>

int poll (struct pollfd *fds, unsigned int nfds, int timeout);

Unlike select( ), with its inefficient three bitmask-based sets of file descriptors,
poll( ) employs a single array of nfds pollfd structures, pointed to by fds. The struc-
ture is defined as follows:

#include <sys/poll.h>

struct pollfd {
        int fd;           /* file descriptor */
        short events;     /* requested events to watch */
        short revents;    /* returned events witnessed */
};

Each pollfd structure specifies a single file descriptor to watch. Multiple structures
may be passed, instructing poll( ) to watch multiple file descriptors. The events field
of each structure is a bitmask of events to watch for on that file descriptor. The user
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sets this field. The revents field is a bitmask of events that were witnessed on the file
descriptor. The kernel sets this field on return. All of the events requested in the
events field may be returned in the revents field. Valid events are as follows:

POLLIN
There is data to read.

POLLRDNORM
There is normal data to read.

POLLRDBAND
There is priority data to read.

POLLPRI
There is urgent data to read.

POLLOUT
Writing will not block.

POLLWRNORM
Writing normal data will not block.

POLLWRBAND
Writing priority data will not block.

POLLMSG
A SIGPOLL message is available.

In addition, the following events may be returned in the revents field:

POLLER
Error on the given file descriptor.

POLLHUP
Hung up event on the given file descriptor.

POLLNVAL
The given file descriptor is invalid.

These events have no meaning in the events field, as they are always returned if
applicable. With poll( ), unlike select( ), you need not explicitly ask for reporting of
exceptions.

POLLIN | POLLPRI is equivalent to select( )’s read event, and POLLOUT | POLLWRBAND is
equivalent to select( )’s write event. POLLIN is equivalent to POLLRDNORM | POLLRDBAND,
and POLLOUT is equivalent to POLLWRNORM.

For example, to watch a file descriptor for both readability and writability, we would
set events to POLLIN | POLLOUT. On return, we would check revents for these flags in
the structure corresponding to the file descriptor in question. If POLLIN were set, the
file descriptor would be readable without blocking. If POLLOUT were set, the file
descriptor would be writable without blocking. The flags are not mutually exclusive:
both may be set, signifying that both reads and writes will return instead of blocking
on that file descriptor.
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The timeout parameter specifies the length of time to wait, in milliseconds, before
returning regardless of any ready I/O. A negative value denotes an infinite timeout. A
value of 0 instructs the call to return immediately, listing any file descriptors with
pending ready I/O, but not waiting for any further events. In this manner, poll( ) is
true to its name, polling once, and immediately returning.

Return values and error codes

On success, poll( ) returns the number of file descriptors whose structures have non-
zero revents fields. It returns 0 if the timeout occurred before any events occurred.
On failure, -1 is returned, and errno is set to one of the following:

EBADF
An invalid file descriptor was given in one or more of the structures.

EFAULT
The pointer to fds pointed outside of the process’ address space.

EINTR
A signal occurred before any requested event. The call may be reissued.

EINVAL
The nfds parameter exceeded the RLIMIT_NOFILE value.

ENOMEM
Insufficient memory was available to complete the request.

poll( ) example

Let’s look at an example program that uses poll( ) to simultaneously check whether
a read from stdin and a write to stdout will block:

#include <stdio.h>
#include <unistd.h>
#include <sys/poll.h>

#define TIMEOUT 5       /* poll timeout, in seconds */

int main (void)
{
        struct pollfd fds[2];
        int ret;

        /* watch stdin for input */
        fds[0].fd = STDIN_FILENO;
        fds[0].events = POLLIN;

        /* watch stdout for ability to write (almost always true) */
        fds[1].fd = STDOUT_FILENO;
        fds[1].events = POLLOUT;

        /* All set, block! */
        ret = poll (fds, 2, TIMEOUT * 1000);
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        if (ret == -1) {
                perror ("poll");
                return 1;
        }

        if (!ret) {
                printf ("%d seconds elapsed.\n", TIMEOUT);
                return 0;
        }

        if (fds[0].revents & POLLIN)
                printf ("stdin is readable\n");

        if (fds[1].revents & POLLOUT)
                printf ("stdout is writable\n");

        return 0;
}

Running this, we get the following, as expected:

$ ./poll
stdout is writable

Running it again, but this time redirecting a file into standard in, we see both events:

$ ./poll < ode_to_my_parrot.txt
stdin is readable
stdout is writable

If we were using poll( ) in a real application, we would not need to reconstruct the
pollfd structures on each invocation. The same structure may be passed in repeat-
edly; the kernel will handle zeroing the revents field as needed.

ppoll( )

Linux provides a ppoll( ) cousin to poll( ), in the same vein as pselect( ). Unlike
pselect( ), however, ppoll( ) is a Linux-specific interface:

#define _GNU_SOURCE
#include <sys/poll.h>

int ppoll (struct pollfd *fds,
           nfds_t nfds,
           const struct timespec *timeout,
           const sigset_t *sigmask);

As with pselect( ), the timeout parameter specifies a timeout value in seconds and
nanoseconds, and the sigmask parameter provides a set of signals for which to wait.
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poll( ) Versus select( )
Although they perform the same basic job, the poll( ) system call is superior to
select( ) for a handful of reasons:

• poll( ) does not require that the user calculate and pass in as a parameter the
value of the highest-numbered file descriptor plus one.

• poll( ) is more efficient for large-valued file descriptors. Imagine watching a sin-
gle file descriptor with the value 900 via select( )—the kernel would have to
check each bit of each passed-in set, up to the 900th bit.

• select( )’s file descriptor sets are statically sized, introducing a tradeoff: they are
small, limiting the maximum file descriptor that select( ) can watch, or they are
inefficient. Operations on large bitmasks are not efficient, especially if it is not
known whether they are sparsely populated.* With poll( ), one can create an
array of exactly the right size. Only watching one item? Just pass in a single
structure.

• With select( ), the file descriptor sets are reconstructed on return, so each sub-
sequent call must reinitialize them. The poll( ) system call separates the input
(events field) from the output (revents field), allowing the array to be reused
without change.

• The timeout parameter to select( ) is undefined on return. Portable code needs
to reinitialize it. This is not an issue with pselect( ), however.

The select( ) system call does have a few things going for it, though:

• select( ) is more portable, as some Unix systems do not support poll( ).

• select( ) provides better timeout resolution: down to the microsecond. Both
ppoll( ) and pselect( ) theoretically provide nanosecond resolution, but in prac-
tice, none of these calls reliably provides even microsecond resolution.

Superior to both poll( ) and select( ) is the epoll interface, a Linux-specific multi-
plexing I/O solution that we’ll look at in Chapter 4.

Kernel Internals
This section looks at how the Linux kernel implements I/O, focusing on three pri-
mary subsystems of the kernel: the virtual filesystem (VFS), the page cache, and page
writeback. Together, these subsystems help make I/O seamless, efficient, and optimal.

* If a bitmask is generally sparsely populated, each word composing the mask can be checked against zero;
only if that operation returns false need each bit be checked. This work is wasted, however, if the bitmask is
densely populated.
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In Chapter 4, we will look at a fourth subsystem, the I/O scheduler.

The Virtual Filesystem
The virtual filesystem, occasionally also called a virtual file switch, is a mechanism of
abstraction that allows the Linux kernel to call filesystem functions and manipulate
filesystem data without knowing—or even caring about—the specific type of filesys-
tem being used.

The VFS accomplishes this abstraction by providing a common file model, which is
the basis for all filesystems in Linux. Via function pointers and various object-oriented
practices,* the common file model provides a framework to which filesystems in the
Linux kernel must adhere. This allows the VFS to generically make requests of the
filesystem. The framework provides hooks to support reading, creating links,
synchronizing, and so on. Each filesystem then registers functions to handle the
operations of which it is capable.

This approach forces a certain amount of commonality between filesystems. For
example, the VFS talks in terms of inodes, superblocks, and directory entries. A file-
system not of Unix origins, possibly devoid of Unix-like concepts such as inodes,
simply has to cope. Indeed, cope they do: Linux supports filesystems such as FAT
and NTFS without issue.

The benefits of the VFS are enormous. A single system call can read from any filesys-
tem on any medium; a single utility can copy from any one filesystem to any other.
All filesystems support the same concepts, the same interfaces, and the same calls.
Everything just works—and works well.

When an application issues a read( ) system call, it takes an interesting journey. The
C library provides definitions of the system call that are converted to the appropriate
trap statements at compile-time. Once a user-space process is trapped into the ker-
nel, passed through the system call handler, and handed to the read( ) system call,
the kernel figures out what object backs the given file descriptor. The kernel then
invokes the read function associated with the backing object. For filesystems, this
function is part of the filesystem code. The function then does its thing—for exam-
ple, physically reading the data from the filesystem—and returns the data to the
user-space read( ) call, which then returns to the system call handler, which copies
the data back to user space, where the read( ) system call returns and the process
continues to execute.

* Yes, in C.
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To system programmers, the ramifications of the VFS are important. Programmers
need not worry about the type of filesystem or media on which a file resides. Generic
system calls—read( ), write( ), and so on—can manipulate files on any supported
filesystem and on any supported media.

The Page Cache
The page cache is an in-memory store of recently accessed data from an on-disk file-
system. Disk access is painfully slow, particularly relative to today’s processor
speeds. Storing requested data in memory allows the kernel to fulfill subsequent
requests for the same data from memory, avoiding repeated disk access.

The page cache exploits the concept of temporal locality, a type of locality of refer-
ence, which says that a resource accessed at one point has a high probability of being
accessed again in the near future. The memory consumed to cache data on its first
access therefore pays off, as it prevents future expensive disk accesses.

The page cache is the first place that the kernel looks for filesystem data. The kernel
invokes the memory subsystem to read data from the disk only when it isn’t found in
the cache. Thus, the first time any item of data is read, it is transferred from the disk
into the page cache, and is returned to the application from the cache. If that data is
then read again, it is simply returned from the cache. All operations transparently
execute through the page cache, ensuring that its data is relevant and always valid.

The Linux page cache is dynamic in size. As I/O operations bring more and more
data into memory, the page cache grows larger and larger, consuming any free mem-
ory. If the page cache eventually does consume all free memory, and an allocation is
committed that requests additional memory, the page cache is pruned, releasing its
least-used pages, to make room for “real” memory usage. This pruning occurs seam-
lessly and automatically. A dynamically sized cache allows Linux to use all of the
memory in the system, and cache as much data as possible.

Often, however, it would make more sense to swap to disk a seldom-used chunk of
data than it would to prune an oft-used piece of the page cache that could well be
reread into memory on the next read request (swapping allows the kernel to store
data on the disk, to allow a larger memory footprint than the machine has RAM).
The Linux kernel implements heuristics to balance the swapping of data versus the
pruning of the page cache (and other in-memory reserves). These heuristics might
decide to swap data out to disk in lieu of pruning the page cache, particularly if the
data being swapped out is not in use.

The swap-versus-cache balance is tuned via /proc/sys/vm/swappiness. This virtual file
has a value from 0 to 100, with a default of 60. A higher value implies a stronger
preference toward keeping the page cache in memory, and swapping more readily. A
lower value implies a stronger preference toward pruning the page cache and not
swapping.
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Another form of locality of reference is sequential locality, which says that data is
often referenced sequentially. To take advantage of this principle, the kernel also
implements page cache readahead. Readahead is the act of reading extra data off the
disk and into the page cache following each read request—in effect, reading a little
bit ahead. When the kernel reads a chunk of data from the disk, it also reads the fol-
lowing chunk or two. Reading large sequential chunks of data at once is efficient, as
the disk usually need not seek. In addition, the kernel can fulfill the readahead
request while the process is manipulating the first chunk of read data. If, as often
happens, the process goes on to submit a new read request for the subsequent
chunk, the kernel can hand over the data from the initial readahead without having
to issue a disk I/O request.

As with the page cache, the kernel manages readahead dynamically. If it notices that
a process is consistently using the data that was read in via readahead, the kernel
grows the readahead window, thereby reading ahead more and more data. The
readahead window may be as small as 16 KB, and as large as 128 KB. Conversely, if
the kernel notices that readahead is not resulting in any useful hits—that is, that the
application is seeking around the file and not reading sequentially—it can disable
readahead entirely.

The presence of a page cache is meant to be transparent. System programmers gener-
ally cannot optimize their code to better take advantage of the fact that a page cache
exists—other than, perhaps, not implementing such a cache in user space them-
selves. Normally, efficient code is all that is needed to best utilize the page cache.
Utilizing readahead, on the other hand, is possible. Sequential file I/O is always pre-
ferred to random access, although it’s not always feasible.

Page Writeback
As discussed earlier in “Behavior of write( ),” the kernel defers writes via buffers.
When a process issues a write request, the data is copied into a buffer, and the buffer
is marked dirty, denoting that the in-memory copy is newer than the on-disk copy.
The write request then simply returns. If another write request is made to the same
chunk of a file, the buffer is updated with the new data. Write requests elsewhere in
the same file generate new buffers.

Eventually the dirty buffers need to be committed to disk, synchronizing the on-disk
files with the data in memory. This is known as writeback. It occurs in two situations:

• When free memory shrinks below a configurable threshold, dirty buffers are
written back to disk so that the now-clean buffers may be removed, freeing
memory.

• When a dirty buffer ages beyond a configurable threshold, the buffer is written
back to disk. This prevents data from remaining dirty indefinitely.
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Writebacks are carried out by a gang of kernel threads named pdflush threads
(presumably for page dirty flush, but who knows). When one of the previous two
conditions is met, the pdflush threads wake up, and begin committing dirty buffers
to disk until neither condition is true.

There may be multiple pdflush threads instantiating writebacks at the same time.
This is done to capitalize on the benefits of parallelism and to implement congestion
avoidance. Congestion avoidance attempts to keep writes from getting backed up
while waiting to be written to any one block device. If dirty buffers from different
block devices exist, the various pdflush threads will work to fully use each block
device. This fixes a deficiency in earlier kernels: the predecessor to pdflush threads
(bdflush, a single thread) could spend all of its time waiting on a single block device,
while other block devices sat idle. On a modern machine, the Linux kernel can now
keep a very large number of disks saturated.

Buffers are represented in the kernel by the buffer_head data structure. This data
structure tracks various metadata associated with the buffer, such as whether the
buffer is clean or dirty. It also contains a pointer to the actual data. This data resides in
the page cache. In this manner, the buffer subsystem and the page cache are unified.

In early versions of the Linux kernel—before 2.4—the buffer subsystem was sepa-
rate from the page cache, and thus there was both a page and a buffer cache. This
implied that data could exist in the buffer cache (as a dirty buffer) and the page cache
(as cached data) at the same time. Naturally, synchronizing these two separate
caches took some effort. The unified page cache introduced in the 2.4 Linux kernel
was a welcomed improvement.

Deferred writes and the buffer subsystem in Linux enable fast writes, at the expense
of the risk of data loss on power failure. To avoid this risk, paranoid and critical
applications can use synchronized I/O (discussed earlier in this chapter).

Conclusion
This chapter discussed the basics of Linux system programming: file I/O. On a sys-
tem such as Linux, which strives to represent as much as possible as a file, it’s very
important to know how to open, read, write, and close files. All of these operations
are classic Unix, and are represented in many standards.

The next chapter tackles buffered I/O, and the standard C library’s standard I/O
interfaces. The standard C library is not just a convenience; buffering I/O in user
space provides crucial performance improvements.
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Buffered I/O

Recall from Chapter 1 that the block, a filesystem abstraction, is the lingua franca of
I/O—all disk operations occur in terms of blocks. Consequently, I/O performance is
optimal when requests are issued on block-aligned boundaries in integer multiples of
the block size.

Performance degradation is exacerbated by the increased number of system calls
required to read, say, a single byte 1,024 times rather than 1,024 bytes all at once.
Even a series of operations performed in a size larger than a block can be suboptimal
if the size is not an integer multiple of the block size. For example, if the block size is
one kilobyte, operations in chunks of 1,130 bytes may still be slower than 1,024 byte
operations.

User-Buffered I/O
Programs that have to issue many small I/O requests to regular files often perform
user-buffered I/O. This refers to buffering done in user space, either manually by the
application, or transparently in a library, not to buffering done by the kernel. As dis-
cussed in Chapter 2, for reasons of performance, the kernel buffers data internally by
delaying writes, coalescing adjacent I/O requests, and reading ahead. Through differ-
ent means, user buffering also aims to improve performance.

Consider an example using the user-space program dd:

dd bs=1 count=2097152 if=/dev/zero of=pirate

Because of the bs=1 argument, this command will copy two megabytes from the
device /dev/zero (a virtual device providing an endless stream of zeros) to the file
pirate in 2,097,152 one byte chunks. That is, it will copy the data via about two mil-
lion read and write operations—one byte at a time.

Now consider the same two megabyte copy, but using 1,024 byte blocks:

dd bs=1024 count=2048 if=/dev/zero of=pirate
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This operation copies the same two megabytes to the same file, yet issues 1,024 times
fewer read and write operations. The performance improvement is huge, as you can
see in Table 3-1. Here, I’ve recorded the time taken (using three different measures)
by four dd commands that differed only in block size. Real time is the total elapsed
wall clock time, user time is the time spent executing the program’s code in user
space, and system time is the time spent executing system calls in kernel space on the
process’ behalf.

Using 1,024 byte chunks results in an enormous performance improvement com-
pared to the single byte chunk. However, the table also demonstrates that using a
larger block size—which implies even fewer system calls—can result in performance
degradation if the operations are not performed in multiples of the disk’s block size.
Despite requiring fewer calls, the 1,130 byte requests end up generating unaligned
requests, and are therefore less efficient than the 1,024 byte requests.

Taking advantage of this performance boon requires prior knowledge of the likely
physical block size. The results in the table show the block size is most likely 1,024,
an integer multiple of 1,024, or a divisor of 1,024. In the case of /dev/zero, the block
size is actually 4,096 bytes.

Block Size
In practice, blocks are usually 512, 1,024, 2,048, or 4,096 bytes in size.

As Table 3-1 demonstrates, a large performance gain is realized simply by perform-
ing operations in chunks that are integer multiples or divisors of the block size. This
is because the kernel and hardware speak in terms of blocks. So, using the block size
or a value that fits neatly inside of a block guarantees block-aligned I/O requests, and
prevents extraneous work inside the kernel.

Figuring out the block size for a given device is easy using the stat( ) system call
(covered in Chapter 7) or the stat(1) command. It turns out, however, that you don’t
usually need to know the actual block size.

The primary goal in picking a size for your I/O operations is to not pick an oddball
size such as 1,130. No block in the history of Unix has been 1,130 bytes, and choos-
ing such a size for your operations will result in unaligned I/O after the first request.
Using any integer multiple or divisor of the block size, however, prevents unaligned
requests. So long as your chosen size keeps everything block-aligned, performance
will be good. Larger multiples will simply result in fewer system calls.

Table 3-1. Effects of block size on performance

Block size Real time User time System time

1 byte 18.707 seconds 1.118 seconds 17.549 seconds

1,024 bytes 0.025 seconds 0.002 seconds 0.023 seconds

1,130 bytes 0.035 seconds 0.002 seconds 0.027 seconds
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Therefore, the easiest choice is to perform I/O using a large buffer size that is a multi-
ple of the typical block sizes. Both 4,096 and 8,192 bytes work great.

The problem, of course, is that programs rarely deal in terms of blocks. Programs
work with fields, lines, and single characters, not abstractions such as blocks. As
described earlier, to remedy this situation, programs employ user-buffered I/O. As
data is written, it is stored in a buffer inside the program’s address space. When the
buffer reaches a specific size—the buffer size—the entire buffer is written out in a
single write operation. Likewise, data is read in using buffer-sized, block-aligned
chunks. As the application issues its odd-sized read requests, the chunks of the
buffer are handed out piece by piece. Ultimately, when the buffer is empty, another
large block-aligned chunk is read in. If this buffer is the right size, huge performance
benefits are realized.

It is possible to implement user buffering by hand in your own programs. Indeed,
many mission-critical applications do just this. The vast majority of programs, how-
ever, make use of the popular standard I/O library (part of the standard C library),
which provides a robust and capable user-buffering solution.

Standard I/O
The standard C library provides the standard I/O library (often simply called stdio),
which in turn provides a platform-independent, user-buffering solution. The stan-
dard I/O library is simple to use, yet powerful.

Unlike programming languages such as FORTRAN, the C language does not include
any built-in support or keywords providing any functionality more advanced than
flow control, arithmetic, and so on—there’s certainly no inherent support for I/O. As
the C programming language progressed, users developed standard sets of routines
to provide core functionality, such as string manipulation, mathematical routines,
time and date functionality, and I/O. Over time, these routines matured, and with the
ratification of the ANSI C standard in 1989 (C89) they were eventually formalized as
the standard C library. Although both C95 and C99 added several new interfaces, the
standard I/O library has remained relatively untouched since its creation in 1989.

The remainder of this chapter discusses user-buffered I/O as it pertains to file I/O,
and is implemented in the standard C library—that is, opening, closing, reading, and
writing files via the standard C library. Whether an application will use standard I/O,
a home-rolled user-buffering solution, or straight system calls is a decision that
developers must make carefully after weighing the application’s needs and behavior.

The C standards always leave some details up to each implementation, and imple-
mentations often add additional features. This chapter, just like the rest of the book,
documents the interfaces and behavior as they are implemented in glibc on a modern
Linux system. Where Linux deviates from the basic standard, this is noted.
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File Pointers
Standard I/O routines do not operate directly on file descriptors. Instead, they use
their own unique identifier, known as the file pointer. Inside the C library, the file
pointer maps to a file descriptor. The file pointer is represented by a pointer to the
FILE typedef, which is defined in <stdio.h>.

In standard I/O parlance, an open file is called a stream. Streams may be opened for
reading (input streams), writing (output streams), or both (input/output streams).

Opening Files
Files are opened for reading or writing via fopen( ):

#include <stdio.h>

FILE * fopen (const char *path, const char *mode);

This function opens the file path according to the given modes, and associates a new
stream with it.

Modes
The mode argument describes how to open the given file. It is one of the following
strings:

r
Open the file for reading. The stream is positioned at the start of the file.

r+
Open the file for both reading and writing. The stream is positioned at the start
of the file.

w
Open the file for writing. If the file exists, it is truncated to zero length. If the file
does not exist, it is created. The stream is positioned at the start of the file.

w+
Open the file for both reading and writing. If the file exists, it is truncated to zero
length. If the file does not exist, it is created. The stream is positioned at the start
of the file.

a
Open the file for writing in append mode. The file is created if it does not exist.
The stream is positioned at the end of the file. All writes will append to the file.

a+
Open the file for both reading and writing in append mode. The file is created if
it does not exist. The stream is positioned at the end of the file. All writes will
append to the file.
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The given mode may also contain the character b, although this value
is always ignored on Linux. Some operating systems treat text and
binary files differently, and the b mode instructs the file to be opened
in binary mode. Linux, as with all POSIX-conforming systems, treats
text and binary files identically.

Upon success, fopen( ) returns a valid FILE pointer. On failure, it returns NULL, and
sets errno appropriately.

For example, the following code opens /etc/manifest for reading, and associates it
with stream:

FILE *stream;

stream = fopen ("/etc/manifest", "r");
if (!stream)
        /* error */

Opening a Stream via File Descriptor
The function fdopen( ) converts an already open file descriptor (fd) to a stream:

#include <stdio.h>

FILE * fdopen (int fd, const char *mode);

The possible modes are the same as for fopen( ), and must be compatible with the
modes originally used to open the file descriptor. The modes w and w+ may be speci-
fied, but they will not cause truncation. The stream is positioned at the file position
associated with the file descriptor.

Once a file descriptor is converted to a stream, I/O should no longer be directly
performed on the file descriptor. It is, however, legal to do so. Note that the file
descriptor is not duplicated, but is merely associated with a new stream. Closing the
stream will close the file descriptor as well.

On success, fdopen( ) returns a valid file pointer; on failure, it returns NULL.

For example, the following code opens /home/kidd/map.txt via the open( ) system
call, and then uses the backing file descriptor to create an associated stream:

FILE *stream;
int fd;

fd = open ("/home/kidd/map.txt", O_RDONLY);
if (fd == &#8722;1)
        /* error */

stream = fdopen (fd, "r");
if (!stream)
        /* error */
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Closing Streams
The fclose( ) function closes a given stream:

#include <stdio.h>

int fclose (FILE *stream);

Any buffered and not-yet-written data is first flushed. On success, fclose( ) returns
0. On failure, it returns EOF and sets errno appropriately.

Closing All Streams
The fcloseall( ) function closes all streams associated with the current process,
including standard in, standard out, and standard error:

#define _GNU_SOURCE

#include <stdio.h>

int fcloseall (void);

Before closing, all streams are flushed. The function always returns 0; it is Linux-
specific.

Reading from a Stream
The standard C library implements multiple functions for reading from an open
stream, ranging from the common to the esoteric. This section will look at three of
the most popular approaches to reading: reading one character at a time, reading an
entire line at a time, and reading binary data. To read from a stream, it must have
been opened as an input stream with the appropriate mode; that is, any valid mode
except w or a.

Reading a Character at a Time
Often, the ideal I/O pattern is simply reading one character at a time. The function
fgetc( ) is used to read a single character from a stream:

#include <stdio.h>

int fgetc (FILE *stream);

This function reads the next character from stream and returns it as an unsigned char
cast to an int. The casting is done to have a sufficient range for notification of end-
of-file or error: EOF is returned in such conditions. The return value of fgetc( ) must
be stored in an int. Storing it in a char is a common but dangerous mistake.
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The following example reads a single character from stream, checks for error, and
then prints the result as a char:

int c;

c = fgetc (stream);
if (c == EOF)
        /* error */
else
        printf ("c=%c\n", (char) c);

The stream pointed at by stream must be open for reading.

Putting the character back

Standard I/O provides a function for pushing a character back onto a stream, allow-
ing you to “peek” at the stream, and return the character if it turns out that you
don’t want it:

#include <stdio.h>

int ungetc (int c, FILE *stream);

Each call pushes back c, cast to an unsigned char, onto stream. On success, c is
returned; on failure, EOF is returned. A subsequent read on stream will return c. If
multiple characters are pushed back, they are returned in the reverse order—that is,
the last pushed character is returned first. POSIX dictates that only one pushback is
guaranteed to succeed without intervening read requests. Some implementations, in
turn, allow only a single pushback; Linux allows an infinite number of pushbacks, so
long as memory is available. One pushback, of course, always succeeds.

If you make an intervening call to a seeking function (see “Seeking a Stream” later in
this chapter) after calling ungetc( ) but before issuing a read request, it will cause all
pushed-back characters to be discarded. This is true among threads in a single pro-
cess, as threads share the buffer.

Reading an Entire Line
The function fgets( ) reads a string from a given stream:

#include <stdio.h>

char * fgets (char *str, int size, FILE *stream);

This function reads up to one less than size bytes from stream, and stores the results
in str. A null character (\0) is stored in the buffer after the bytes read in. Reading
stops after an EOF or a newline character is reached. If a newline is read, the \n is
stored in str.

On success, str is returned; on failure, NULL is returned.
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For example:

char buf[LINE_MAX];

if (!fgets (buf, LINE_MAX, stream))
        /* error */

POSIX defines LINE_MAX in <limits.h>: it is the maximum size of input line that
POSIX line-manipulating interfaces can handle. Linux’s C library has no such limita-
tion—lines may be of any size—but there is no way to communicate that with the
LINE_MAX definition. Portable programs can use LINE_MAX to remain safe; it is set rela-
tively high on Linux. Linux-specific programs need not worry about limits on the
sizes of lines.

Reading arbitrary strings

Often, the line-based reading of fgets( ) is useful. Nearly as often, it’s annoying.
Sometimes, developers want to use a delimiter other than the newline. Other times,
developers do not want a delimiter at all—and rarely do developers want the delim-
iter stored in the buffer! In retrospect, the decision to store the newline in the
returned buffer rarely appears correct.

It is not hard to write an fgets( ) replacement that uses fgetc( ). For example, this
snippet reads the n – 1 bytes from stream into str, and then appends a \0 character:

char *s;
int c;

s = str;
while (--n > 0 && (c = fgetc (stream)) != EOF)
        *s++ = c;
*s = '\0';

The snippet can be expanded to also stop reading at a delimiter, given by d (which
cannot be the null character in this example):

char *s;
int c = 0;

s = str;
while (--n > 0 && (c = fgetc (stream)) != EOF && (*s++ = c) != d)
        ;

if (c == d)
        *--s = '\0';
else
        *s = '\0';

Setting d to \n would provide behavior similar to fgets( ), minus storing the newline
in the buffer.
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Depending on the implementation of fgets( ), this variant is probably slower, as it
issues repeated function calls to fgetc( ). This is not the same problem exhibited by
our original dd example, however! Although this snippet incurs additional function
call overhead, it does not incur the system call overhead and unaligned I/O penalty
burdened on dd with bs=1. The latter are much larger problems.

Reading Binary Data
For some applications, reading individual characters or lines is insufficient. Some-
times, developers want to read and write complex binary data, such as C structures.
For this, the standard I/O library provides fread( ):

#include <stdio.h>

size_t fread (void *buf, size_t size, size_t nr, FILE *stream);

A call to fread( ) will read up to nr elements of data, each of size bytes, from stream
into the buffer pointed at by buf. The file pointer is advanced by the number of bytes
read.

The number of elements read (not the number of bytes read!) is returned. The function
indicates failure or EOF via a return value less than nr. Unfortunately, it is impossible to
know which of the two conditions occurred without using ferror() and feof() (see
the later section “Errors and End-of-File”).

Because of differences in variable sizes, alignment, padding, and byte order, binary
data written with one application may not be readable by a different application, or
even by the same application on a different machine.

The simplest example of fread( ) is reading a single element of linear bytes from a
given stream:

char buf[64];
size_t nr;

nr = fread (buf, sizeof(buf), 1, stream);
if (nr == 0)
        /* error */

We will look at examples that are more complicated when we study the write coun-
terpart to fread( ), fwrite( ).

Writing to a Stream
As with reading, the standard C library defines many functions for writing to an open
stream. This section will look at three of the most popular approaches to writing:
writing a single character, writing a string of characters, and writing binary data.
Such varied writing approaches are ideally suited to buffered I/O. To write to a
stream, it must have been opened as an output stream with the appropriate mode;
that is, any valid mode except r.
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Writing a Single Character
The counterpart of fgetc( ) is fputc( ):

#include <stdio.h>

int fputc (int c, FILE *stream);

The fputc( ) function writes the byte specified by c (cast to an unsigned char) to the
stream pointed at by stream. Upon successful completion, the function returns c.
Otherwise, it returns EOF, and errno is set appropriately.

Use is simple:

if (fputc ('p', stream) == EOF)
        /* error */

This example writes the character p to stream, which must be open for writing.

Issues of Alignment
All machine architectures have data alignment requirements. Programmers tend to
think of memory as simply an array of bytes. Our processors, however, do not read and
write from memory in byte-sized chunks. Instead, processors access memory with a
specific granularity, such as 2, 4, 8, or 16 bytes. Because each process’ address space
starts at address 0, processes must initiate access from an address that is an integer
multiple of the granularity.

Consequently, C variables must be stored at and accessed from aligned addresses. In
general, variables are naturally aligned, which refers to the alignment that corresponds
to the size of the C data type. For example, a 32-bit integer is aligned on a 4 byte bound-
ary. In other words, an int would be stored at a memory address that is evenly divisible
by four.

Accessing misaligned data has various penalties, which depend on the machine archi-
tecture. Some processors can access misaligned data, but with a large performance
penalty. Other processors cannot access misaligned data at all, and attempting to do
so causes a hardware exception. Worse, some processors silently drop the low-order
bits in order to force the address to be aligned, almost certainly resulting in unintended
behavior.

Normally, the compiler naturally aligns all data, and alignment is not a visible issue to
the programmer. Dealing with structures, performing memory management by hand,
saving binary data to disk, and communicating over a network may bring alignment
issues to the forefront. System programmers, therefore, ought to be well versed in these
issues!

Chapter 8 addresses alignment in greater depth.
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Writing a String of Characters
The function fputs( ) is used to write an entire string to a given stream:

#include <stdio.h>

int fputs (const char *str, FILE *stream);

A call to fputs( ) writes all of the null-delimited string pointed at by str to the
stream pointed at by stream. On success, fputs( ) returns a nonnegative number. On
failure, it returns EOF.

The following example opens the file for writing in append mode, writes the given
string to the associated stream, and then closes the stream:

FILE *stream;

stream = fopen ("journal.txt", "a");
if (!stream)
        /* error */

if (fputs ("The ship is made of wood.\n", stream) == EOF)
        /* error */

if (fclose (stream) == EOF)
        /* error */

Writing Binary Data
Individual characters and lines will not cut it when programs need to write complex
data. To directly store binary data such as C variables, standard I/O provides fwrite():

#include <stdio.h>

size_t fwrite (void *buf,
               size_t size,
               size_t nr,
               FILE *stream);

A call to fwrite( ) will write to stream up to nr elements, each size bytes in length,
from the data pointed at by buf. The file pointer will be advanced by the total num-
ber of bytes written.

The number of elements (not the number of bytes!) successfully written will be
returned. A return value less than nr denotes error.

Sample Program Using Buffered I/O
Now let’s look at an example—a complete program, in fact—that integrates many of
the interfaces we have covered thus far in this chapter. This program first defines
struct pirate, and then declares two variables of that type. The program initializes
one of the variables and subsequently writes it out to disk via an output stream to the
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file data. Via a different stream, the program reads the data back in from data directly
to the other instance of struct pirate. Finally, the program writes the contents of the
structure to standard out:

#include <stdio.h>

int main (void)
{
        FILE *in, *out;
        struct pirate {
                char            name[100]; /* real name */
                unsigned long   booty;     /* in pounds sterling */
                unsigned int    beard_len; /* in inches */
        } p, blackbeard = { "Edward Teach", 950, 48 };

        out = fopen ("data", "w");
        if (!out) {
                perror ("fopen");
                return 1;
        }

        if (!fwrite (&blackbeard, sizeof (struct pirate), 1, out)) {
                perror ("fwrite");
                return 1;
        }

        if (fclose (out)) {
                perror ("fclose");
                return 1;
        }

        in = fopen ("data", "r");
        if (!in) {
                perror ("fopen");
                return 1;
        }

        if (!fread (&p, sizeof (struct pirate), 1, in)) {
                perror ("fread");
                return 1;
        }

        if (fclose (in)) {
                perror ("fclose");
                return 1;
        }

        printf ("name=\"%s\" booty=%lu beard_len=%u\n",
                p.name, p.booty, p.beard_len);

        return 0;
}

The output is, of course, the original values:

name="Edward Teach" booty=950 beard_len=48
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Again, it’s important to bear in mind that because of differences in variable sizes,
alignment, and so on, binary data written with one application may not be readable
by other applications. That is, a different application—or even the same application
on a different machine—may not be able to correctly read back the data written with
fwrite( ). In our example, consider the ramifications if the size of unsigned long
changed, or if the amount of padding varied. These things are guaranteed to remain
constant only on a particular machine type with a particular ABI.

Seeking a Stream
Often, it is useful to manipulate the current stream position. Perhaps the application
is reading a complex record-based file, and needs to jump around. Alternatively, per-
haps the stream needs to be reset to file position zero. Whatever the case, standard I/O
provides a family of interfaces equivalent in functionality to the system call lseek()
(discussed in Chapter 2). The fseek() function, the most common of the standard I/O
seeking interfaces, manipulates the file position of stream in accordance with offset
and whence:

#include <stdio.h>

int fseek (FILE *stream, long offset, int whence);

If whence is set to SEEK_SET, the file position is set to offset. If whence is set to SEEK_CUR,
the file position is set to the current position plus offset. If whence is set to SEEK_END,
the file position is set to the end of the file plus offset.

Upon successful completion, fseek() returns 0, clears the EOF indicator, and undoes the
effects (if any) of ungetc(). On error, it returns -1, and errno is set appropriately. The
most common errors are invalid stream (EBADF) and invalid whence argument (EINVAL).

Alternatively, standard I/O provides fsetpos( ):

#include <stdio.h>

int fsetpos (FILE *stream, fpos_t *pos);

This function sets the stream position of stream to pos. It works the same as fseek( )
with a whence argument of SEEK_SET. On success, it returns 0. Otherwise, it returns -1,
and errno is set as appropriate. This function (along with its counterpart fgetpos( ),
which we will cover shortly) is provided solely for other (non-Unix) platforms that
have complex types representing the stream position. On those platforms, this func-
tion is the only way to set the stream position to an arbitrary value, as the C long
type is presumably insufficient. Linux-specific applications need not use this inter-
face, although they may, if they want to be portable to all possible platforms.

Standard I/O also provides rewind( ), as a shortcut:

#include <stdio.h>

void rewind (FILE *stream);
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This invocation:

rewind (stream);

resets the position back to the start of the stream. It is equivalent to:

fseek (stream, 0, SEEK_SET);

except that it also clears the error indicator.

Note that rewind( ) has no return value, and thus cannot directly communicate error
conditions. Callers wishing to ascertain the existence of an error should clear errno
before invocation, and check to see whether the variable is nonzero afterward. For
example:

errno = 0;
rewind (stream);
if (errno)
        /* error */

Obtaining the Current Stream Position
Unlike lseek( ), fseek( ) does not return the updated position. A separate interface is
provided for this purpose. The ftell( ) function returns the current stream position
of stream:

#include <stdio.h>

long ftell (FILE *stream);

On error, it returns -1 and errno is set appropriately.

Alternatively, standard I/O provides fgetpos( ):

#include <stdioh.h>

int fgetpos (FILE *stream, fpos_t *pos);

Upon success, fgetpos( ) returns 0, and places the current stream position of stream in
pos. On failure, it returns -1, and sets errno appropriately. Like fsetpos( ), fgetpos( )
is provided solely for non-Linux platforms with complex file position types.

Flushing a Stream
The standard I/O library provides an interface for writing out the user buffer to the
kernel, ensuring that all data written to a stream is flushed via write( ). The fflush( )
function provides this functionality:

#include <stdio.h>

int fflush (FILE *stream);
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On invocation, any unwritten data in the stream pointed to by stream is flushed to
the kernel. If stream is NULL, all open input streams in the process are flushed. On
success, fflush( ) returns 0. On failure, it returns EOF, and errno is set appropriately.

To understand the effect of fflush( ), you have to understand the difference between
the buffer maintained by the C library, and the kernel’s own buffering. All of the calls
described in this chapter work with a buffer that is maintained by the C library,
which resides in user space, not kernel space. That is where the performance
improvement comes in—you are staying in user space, and therefore running user
code, not issuing system calls. A system call is issued only when the disk or some
other medium has to be accessed.

fflush( ) merely writes the user-buffered data out to the kernel buffer. The effect is
the same as if user buffering was not employed, and write( ) was used directly. It
does not guarantee that the data is physically committed to any medium—for that
need, use something like fsync( ) (see “Synchronized I/O” in Chapter 2). Most
likely, you will want to call fflush( ), followed immediately by fsync( ): that is, first
ensure that the user buffer is written out to the kernel, and then ensure that the ker-
nel’s buffer is written out to disk.

Errors and End-of-File
Some of the standard I/O interfaces, such as fread( ), communicate failures back to
the caller poorly, as they provide no mechanism for differentiating between error and
EOF. With these calls, and on other occasions, it can be useful to check the status of
a given stream to determine whether it has encountered an error, or reached the end
of a file. Standard I/O provides two interfaces to this end. The function ferror( )
tests whether the error indicator is set on stream:

include <stdio.h>

int ferror (FILE *stream);

The error indicator is set by other standard I/O interfaces in response to an error con-
dition. The function returns a nonzero value if the indicator is set, and 0 otherwise.

The function feof( ) tests whether the EOF indicator is set on stream:

include <stdio.h>

int feof (FILE *stream);

The EOF indicator is set by other standard I/O interfaces when the end of a file is
reached. This function returns a nonzero value if the indicator is set, and 0 otherwise.

The clearerr( ) function clears the error and the EOF indicators for stream:

#include <stdio.h>

void clearerr (FILE *stream);
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It has no return value, and cannot fail (there is no way to know whether an invalid
stream was provided). You should make a call to clearerr() only after checking the
error and EOF indicators, as they will be discarded irretrievably afterward. For example:

/* 'f' is a valid stream */

if (ferror (f))
        printf ("Error on f!\n");

if (feof (f))
        printf ("EOF on f!\n");

clearerr (f);

Obtaining the Associated File Descriptor
Sometimes, it is advantageous to obtain the file descriptor backing a given stream.
For example, it might be useful to perform a system call on a stream, via its file
descriptor, when an associated standard I/O function does not exist. To obtain the
file descriptor backing a stream, use fileno( ):

#include <stdio.h>

int fileno (FILE *stream);

Upon success, fileno( ) returns the file descriptor associated with stream. On fail-
ure, it returns -1. This can only happen when the given stream is invalid, in which
case, the function sets errno to EBADF.

Intermixing standard I/O calls with system calls is not normally advised. Program-
mers must exercise caution when using fileno( ) to ensure proper behavior. Particu-
larly, it is probably wise to flush the stream before manipulating the backing file
descriptor. You should almost never intermix actual I/O operations.

Controlling the Buffering
Standard I/O implements three types of user buffering, and provides developers with
an interface for controlling the type and size of the buffer. The different types of user
buffering serve different purposes, and are ideal for different situations. Here are the
options:

Unbuffered
No user buffering is performed. Data is submitted directly to the kernel. As this
is the antithesis of user buffering, this option is not commonly used. Standard
error, by default, is unbuffered.
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Line-buffered
Buffering is performed on a per-line basis. With each newline character, the
buffer is submitted to the kernel. Line buffering makes sense for streams being
output to the screen. Consequently, this is the default buffering used for termi-
nals (standard out is line-buffered by default).

Block-buffered
Buffering is performed on a per-block basis. This is the type of buffering dis-
cussed at the beginning of this chapter, and it is ideal for files. By default, all
streams associated with files are block-buffered. Standard I/O uses the term full
buffering for block buffering.

Most of the time, the default buffering type is correct and optimal. However, stan-
dard I/O does provide an interface for controlling the type of buffering employed:

#include <stdio.h>

int setvbuf (FILE *stream, char *buf, int mode, size_t size);

The setvbuf( ) function sets the buffering type of stream to mode, which must be one
of the following:

_IONBF
Unbuffered

_IOLBF
Line-buffered

_IOFBF
Block-buffered

Except with _IONBF, in which case buf and size are ignored, buf may point to a buffer
of size bytes that standard I/O will use as the buffer for the given stream. If buf is
NULL, a buffer is allocated automatically by glibc.

The setvbuf( ) function must be called after opening the stream, but before any
other operations have been performed on it. It returns 0 on success, and a nonzero
value otherwise.

The supplied buffer, if any, must exist when the stream is closed. A common mis-
take is to declare the buffer as an automatic variable in a scope that ends before the
stream is closed. Particularly, be careful not to provide a buffer local to main( ), and
then fail to explicitly close the streams. For example, the following is a bug:

#include <stdio.h>

int main (void)
{
        char buf[BUFSIZ];

        /* set stdin to block-buffered with a BUFSIZ buffer */
        setvbuf (stdout, buf, _IOFBF, BUFSIZ);
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        printf ("Arrr!\n");

        return 0;
}

The bug can be fixed by explicitly closing the stream before falling out of scope, or
by making buf a global variable.

Generally, developers need not mess with the buffering on a stream. With the excep-
tion of standard error, terminals are line-buffered, and that makes sense. Files are
block-buffered, and that, too, makes sense. The default buffer size for block buffering
is BUFSIZ, defined in <stdio.h>, and it is usually an optimal choice (a large multiple of
a typical block size).

Thread Safety
Threads are multiple strains of execution within a single process. One way to concep-
tualize them is as multiple processes that share an address space. Threads can run at
any time, and can overwrite shared data unless care is taken to synchronize access to
the data or make it thread-local. Operating systems that support threads provide
locking mechanisms (programming constructs that ensure mutual exclusion) to
ensure that threads do not trample on each other’s feet. Standard I/O uses these
mechanisms. Still, they are not always adequate. For example, sometimes you want
to lock a group of calls, enlarging the critical region (the chunk of code that runs
without interference from another thread) from one I/O operation to several. In
other situations, you may want to eliminate locking altogether to improve efficiency.*

In this section, we will discuss how to do both.

The standard I/O functions are inherently thread-safe. Internally, they associate a
lock, a lock count, and an owning thread with each open stream. Any given thread
must acquire the lock and become the owning thread before issuing any I/O
requests. Two or more threads operating on the same stream cannot interleave stan-
dard I/O operations, and thus, within the context of single function calls, standard I/O
operations are atomic.

Of course, in practice, many applications require greater atomicity than at the level
of individual function calls. For example, if multiple threads were issuing write
requests, although the individual writes would not interleave and result in garbled
output, the application might wish to have all of the write requests complete with-
out interruption. To allow for this, standard I/O provides a family of functions for
individually manipulating the lock associated with a stream.

* Normally, eliminating locking will lead to an assortment of problems. But some programs might explicitly
implement their thread usage to delegate all I/O to a single thread. In that case, there is no need for the over-
head of locking.
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Manual File Locking
The function flockfile( ) waits until stream is no longer locked, and then acquires
the lock, bumps the lock count, becomes the owning thread of the stream, and
returns:

#include <stdio.h>

void flockfile (FILE *stream);

The function funlockfile( ) decrements the lock count associated with stream:

#include <stdio.h>

void funlockfile (FILE *stream);

If the lock count reaches zero, the current thread relinquishes ownership of the
stream. Another thread is now able to acquire the lock.

These calls can nest. That is, a single thread can issue multiple flockfile( ) calls, and
the stream will not unlock until the process issues a corresponding number of
funlockfile( ) calls.

The ftrylockfile( ) function is a nonblocking version of flockfile( ):

#include <stdio.h>

int ftrylockfile (FILE *stream);

If stream is currently locked, ftrylockfile( ) does nothing, and immediately returns
a nonzero value. If stream is not currently locked, it acquires the lock, bumps the
lock count, becomes the owning thread of stream, and returns 0.

Let’s consider an example:

flockfile (stream);

fputs ("List of treasure:\n", stream);
fputs ("    (1) 500 gold coins\n", stream);
fputs ("    (2) Wonderfully ornate dishware\n", stream);

funlockfile (stream);

Although the individual fputs( ) operations could never race—for example, we
would never end up with anything interleaving with “List of treasure”—another
standard I/O operation from another thread to this same stream could interleave
between two fputs( ) calls. Ideally, an application is designed such that multiple
threads are not submitting I/O to the same stream. If your application does need to
do so, however, and you need an atomic region greater than a single function,
flockfile( ) and friends can save the day.
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Unlocked Stream Operations
There is a second reason for performing manual locking on streams. With the finer-
grained and more precise control of locking that only the application programmer
can provide, it might be possible to minimize the overhead of locking, and to
improve performance. To this end, Linux provides a family of functions, cousins to
the usual standard I/O interfaces, that do not perform any locking whatsoever. They
are, in effect, the unlocked counterparts to standard I/O:

#define _GNU_SOURCE

#include <stdio.h>

int fgetc_unlocked (FILE *stream);
char *fgets_unlocked (char *str, int size, FILE *stream);
size_t fread_unlocked (void *buf, size_t size, size_t nr,
                       FILE *stream);
int fputc_unlocked (int c, FILE *stream);
int fputs_unlocked (const char *str, FILE *stream);
size_t fwrite_unlocked (void *buf, size_t size, size_t nr,
                        FILE *stream);
int fflush_unlocked (FILE *stream);
int feof_unlocked (FILE *stream);
int ferror_unlocked (FILE *stream);
int fileno_unlocked (FILE *stream);
void clearerr_unlocked (FILE *stream);

These functions all behave identically to their locked cousins, except that they do not
check for or acquire the lock associated with the given stream. If locking is required,
it is the responsibility of the programmer to ensure that the lock is manually acquired
and released.

Although POSIX does define some unlocked variants of the standard I/O functions,
none of the above functions are defined by POSIX. They are all Linux-specific,
although various other Unix systems support a subset.

Critiques of Standard I/O
As widely used as standard I/O is, some experts point to flaws in it. Some of the
functions, such as fgets( ), are occasionally inadequate. Other functions, such as
gets( ), are so horrendous that they have been all but evicted from the standards.

The biggest complaint with standard I/O is the performance impact from the double
copy. When reading data, standard I/O issues a read( ) system call to the kernel,
copying the data from the kernel to the standard I/O buffer. When an application
then issues a read request via standard I/O—say, using fgetc( )—the data is copied
again, this time from the standard I/O buffer to the supplied buffer. Write requests
work in the opposite fashion: the data is copied once from the supplied buffer to the
standard I/O buffer, and then later from the standard I/O buffer to the kernel via
write( ).
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An alternative implementation could avoid the double copy by having each read
request return a pointer into the standard I/O buffer. The data could then be read
directly, inside of the standard I/O buffer, without ever needing an extraneous copy.
In the event that the application did want the data in its own local buffer—perhaps
to write to it—it could always perform the copy manually. This implementation
would provide a “free” interface, allowing applications to signal when they are done
with a given chunk of the read buffer.

Writes would be a bit more complicated, but the double copy could still be avoided.
When issuing a write request, the implementation would record the pointer. Ulti-
mately, when ready to flush the data to the kernel, the implementation could walk its
list of stored pointers, writing out the data. This could be done using scatter-gather I/O,
via writev(), and thus only a single system call. (We will discuss scatter-gather I/O in
the next chapter.)

Highly optimal user-buffering libraries exist, solving the double copy problem with
implementations similar to what we’ve just discussed. Alternatively, some developers
choose to implement their own user-buffering solutions. But despite these alterna-
tives, standard I/O remains popular.

Conclusion
Standard I/O is a user-buffering library provided as part of the standard C library.
Modulo a few flaws, it is a powerful and very popular solution. Many C program-
mers, in fact, know nothing but standard I/O. Certainly, for terminal I/O, where
line-based buffering is ideal, standard I/O is the only game in town. Who has ever
directly used write( ) to print to standard out?

Standard I/O—and user buffering in general, for that matter—makes sense when
any of the following are true:

• You could conceivably issue many system calls, and you want to minimize the
overhead by combining many calls into few.

• Performance is crucial, and you want to ensure that all I/O occurs in block-sized
chunks on block-aligned boundaries.

• Your access patterns are character- or line-based, and you want interfaces to
make such access easy without issuing extraneous system calls.

• You prefer a higher-level interface to the low-level Linux system calls.

The most flexibility, however, exists when you work directly with the Linux system
calls. In the next chapter, we will look at advanced forms of I/O and the associated
system calls.
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Advanced File I/O

In Chapter 2, we looked at the basic I/O system calls in Linux. These calls form not
only the basis of file I/O, but also the foundation of virtually all communication on
Linux. In Chapter 3, we looked at how user-space buffering is often needed on top of
the basic I/O system calls, and we studied a specific user-space buffering solution,
C’s standard I/O library. In this chapter, we’ll look at the more advanced I/O system
calls that Linux provides:

Scatter/gather I/O
Allows a single call to read or write data to and from many buffers at once; use-
ful for bunching together fields of different data structures to form one I/O
transaction.

Epoll
Improves on the poll( ) and select( ) system calls described in Chapter 2; use-
ful when hundreds of file descriptors have to be polled in a single program.

Memory-mapped I/O
Maps a file into memory, allowing file I/O to occur via simple memory manipu-
lation; useful for certain patterns of I/O.

File advice
Allows a process to provide hints to the kernel on its usage scenarios; can result
in improved I/O performance.

Asynchronous I/O
Allows a process to issue I/O requests without waiting for them to complete;
useful for juggling heavy I/O workloads without the use of threads.

The chapter will conclude with a discussion of performance considerations and the
kernel’s I/O subsystems.
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Scatter/Gather I/O
Scatter/gather I/O is a method of input and output where a single system call writes
to a vector of buffers from a single data stream, or, alternatively, reads into a vector
of buffers from a single data stream. This type of I/O is so named because the data is
scattered into or gathered from the given vector of buffers. An alternative name for
this approach to input and output is vectored I/O. In comparison, the standard read
and write system calls that we covered in Chapter 2 provide linear I/O.

Scatter/gather I/O provides several advantages over linear I/O methods:

More natural handling
If your data is naturally segmented—say, the fields of a predefined header file—
vectored I/O allows for intuitive manipulation.

Efficiency
A single vectored I/O operation can replace multiple linear I/O operations.

Performance
In addition to a reduction in the number of issued system calls, a vectored I/O
implementation can provide improved performance over a linear I/O implemen-
tation via internal optimizations.

Atomicity
Unlike with multiple linear I/O operations, a process can execute a single vec-
tored I/O operation with no risk of interleaving of an operation from another
process.

Both a more natural I/O method and atomicity are achievable without a scatter/
gather I/O mechanism. A process can concatenate the disjoint vectors into a single
buffer before writing, and decompose the returned buffer into multiple vectors after
reading—that is, a user-space application can perform the scattering and the gather-
ing manually. Such a solution, however, is neither efficient nor fun to implement.

readv( ) and writev( )
POSIX 1003.1-2001 defines, and Linux implements, a pair of system calls that imple-
ment scatter/gather I/O. The Linux implementation satisfies all of the goals listed in
the previous section.

The readv( ) function reads count segments from the file descriptor fd into the buffers
described by iov:

#include <sys/uio.h>

ssize_t readv (int fd,
               const struct iovec *iov,
               int count);
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The writev( ) function writes at most count segments from the buffers described by
iov into the file descriptor fd:

#include <sys/uio.h>

ssize_t writev (int fd,
                const struct iovec *iov,
                int count);

The readv( ) and writev( ) functions behave the same as read( ) and write( ), respec-
tively, except that multiple buffers are read from or written to.

Each iovec structure describes an independent disjoint buffer, which is called a segment:

#include <sys/uio.h>

struct iovec {
        void *iov_base;    /* pointer to start of buffer */
        size_t iov_len;    /* size of buffer in bytes */
};

A set of segments is called a vector. Each segment in the vector describes the address
and length of a buffer in memory to or from which data should be written or read.
The readv( ) function fills each buffer of iov_len bytes completely before proceeding
to the next buffer. The writev( ) function always writes out all full iov_len bytes
before proceeding to the next buffer. Both functions always operate on the segments
in order, starting with iov[0], then iov[1], and so on, through iov[count–1].

Return values

On success, readv( ) and writev( ) return the number of bytes read or written,
respectively. This number should be the sum of all count iov_len values. On error, the
system calls return -1, and set errno as appropriate. These system calls can experience
any of the errors of the read() and write() system calls, and will, upon receiving such
errors, set the same errno codes. In addition, the standards define two other error
situations.

First, because the return type is an ssize_t, if the sum of all count iov_len values is
greater than SSIZE_MAX, no data will be transferred, -1 will be returned, and errno will
be set to EINVAL.

Second, POSIX dictates that count must be larger than zero, and less than or equal to
IOV_MAX, which is defined in <limits.h>. In Linux, IOV_MAX is currently 1024. If count
is 0, the system calls return 0.* If count is greater than IOV_MAX, no data is transferred,
the calls return -1, and errno is set to EINVAL.

* Note that other Unix systems may set errno to EINVAL if count is 0. This is explicitly allowed by the standards,
which say that EINVAL may be set if that value is 0, or that the system can handle the zero case in some other
(nonerror) way.
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writev( ) example

Let’s consider a simple example that writes out a vector of three segments, each con-
taining a string of a different size. This self-contained program is complete enough to
demonstrate writev( ), yet simple enough to serve as a useful code snippet:

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <string.h>
#include <sys/uio.h>

int main ( )
{
        struct iovec iov[3];
        ssize_t nr;
        int fd, i;

        char *buf[] = {
                "The term buccaneer comes from the word boucan.\n",
                "A boucan is a wooden frame used for cooking meat.\n",
                "Buccaneer is the West Indies name for a pirate.\n" };

        fd = open ("buccaneer.txt", O_WRONLY | O_CREAT | O_TRUNC);
        if (fd == -1) {
                perror ("open");
                return 1;
        }

        /* fill out three iovec structures */
        for (i = 0; i < 3; i++) {
                iov[i].iov_base = buf[i];
                iov[i].iov_len = strlen (buf[i]);
        }

Optimizing the Count
During a vectored I/O operation, the Linux kernel must allocate internal data struc-
tures to represent each segment. Normally, this allocation would occur dynamically,
based on the size of count. As an optimization, however, the Linux kernel creates a
small array of segments on the stack that it uses if count is sufficiently small, negating
the need to dynamically allocate the segments, and thereby providing a small boost in
performance. This threshold is currently eight, so if count is less than or equal to 8, the
vectored I/O operation occurs in a very memory-efficient manner off of the process’
kernel stack.

Most likely, you won’t have a choice about how many segments you need to transfer
at once in a given vectored I/O operation. If you are flexible, however, and are debating
over a small value, choosing a value of eight or less definitely improves efficiency.
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        /* with a single call, write them all out */
        nr = writev (fd, iov, 3);
        if (nr == -1) {
                perror ("writev");
                return 1;
        }
        printf ("wrote %d bytes\n", nr);

        if (close (fd)) {
                perror ("close");
                return 1;
        }

        return 0;
}

Running the program produces the desired result:

$ ./writev
wrote 148 bytes

As does reading the file:

$ cat buccaneer.txt
The term buccaneer comes from the word boucan.
A boucan is a wooden frame used for cooking meat.
Buccaneer is the West Indies name for a pirate.

readv( ) example

Now, let’s consider an example program that uses the readv( ) system call to read
from the previously generated text file using vectored I/O. This self-contained exam-
ple is likewise simple yet complete:

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/uio.h>

int main ( )
{
        char foo[48], bar[51], baz[49];
        struct iovec iov[3];
        ssize_t nr;
        int fd, i;

        fd = open ("buccaneer.txt", O_RDONLY);
        if (fd == -1) {
                perror ("open");
                return 1;
        }

        /* set up our iovec structures */
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        iov[0].iov_base = foo;
        iov[0].iov_len = sizeof (foo);
        iov[1].iov_base = bar;
        iov[1].iov_len = sizeof (bar);
        iov[2].iov_base = baz;
        iov[2].iov_len = sizeof (baz);

        /* read into the structures with a single call */
        nr = readv (fd, iov, 3);
        if (nr == -1) {
                perror ("readv");
                return 1;
        }

        for (i = 0; i < 3; i++)
                printf ("%d: %s", i, (char *) iov[i].iov_base);

        if (close (fd)) {
                perror ("close");
                return 1;
        }

        return 0;
}

Running this program after running the previous program produces the following
results:

$ ./readv
0: The term buccaneer comes from the word boucan.
1: A boucan is a wooden frame used for cooking meat.
2: Buccaneer is the West Indies name for a pirate.

Implementation

A naïve implementation of readv( ) and writev( ) could be done in user space as a
simple loop, something similar to the following:

#include <unistd.h>
#include <sys/uio.h>

ssize_t naive_writev (int fd, const struct iovec *iov, int count)
{
        ssize_t ret = 0;
        int i;

        for (i = 0; i < count; i++) {
                ssize_t nr;

                nr = write (fd, iov[i].iov_base, iov[i].iov_len);
                if (nr == -1) {
                        ret = -1;
                        break;
                }
                ret += nr;
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        }

        return ret;
}

Thankfully, this is not the Linux implementation: Linux implements readv( ) and
writev( ) as system calls, and internally performs scatter/gather I/O. In fact, all I/O
inside the Linux kernel is vectored; read( ) and write( ) are implemented as vectored
I/O with a vector of only one segment.

The Event Poll Interface
Recognizing the limitations of both poll() and select(), the 2.6 Linux kernel* intro-
duced the event poll (epoll) facility. While more complex than the two earlier interfaces,
epoll solves the fundamental performance problem shared by both of them, and adds
several new features.

Both poll( ) and select( ) (discussed in Chapter 2) require the full list of file descrip-
tors to watch on each invocation. The kernel must then walk the list of each file
descriptor to be monitored. When this list grows large—it may contain hundreds or
even thousands of file descriptors—walking the list on each invocation becomes a
scalability bottleneck.

Epoll circumvents this problem by decoupling the monitor registration from the
actual monitoring. One system call initializes an epoll context, another adds moni-
tored file descriptors to or removes them from the context, and a third performs the
actual event wait.

Creating a New Epoll Instance
An epoll context is created via epoll_create( ):

#include <sys/epoll.h>

int epoll_create (int size)

A successful call to epoll_create( ) instantiates a new epoll instance, and returns a
file descriptor associated with the instance. This file descriptor has no relationship to
a real file; it is just a handle to be used with subsequent calls using the epoll facility.
The size parameter is a hint to the kernel about the number of file descriptors that
are going to be monitored; it is not the maximum number. Passing in a good approx-
imation will result in better performance, but the exact number is not required. On
error, the call returns -1, and sets errno to one of the following:

EINVAL
The size parameter is not a positive number.

* Epoll was introduced in the 2.5.44 development kernel, and the interface was finalized as of 2.5.66.
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ENFILE
The system has reached the limit on the total number of open files.

ENOMEM
Insufficient memory was available to complete the operation.

A typical call is:

int epfd;

epfd = epoll_create (100);  /* plan to watch ~100 fds */
if (epfd < 0)
        perror ("epoll_create");

The file descriptor returned from epoll_create( ) should be destroyed via a call to
close( ) after polling is finished.

Controlling Epoll
The epoll_ctl( ) system call can be used to add file descriptors to and remove file
descriptors from a given epoll context:

#include <sys/epoll.h>

int epoll_ctl (int epfd,
               int op,
               int fd,
               struct epoll_event *event);

The header <sys/epoll.h> defines the epoll_event structure as:

struct epoll_event {
        _ _u32 events;  /* events */
        union {
                void *ptr;
                int fd;
                _ _u32 u32;
                _ _u64 u64;
        } data;
};

A successful call to epoll_ctl( ) controls the epoll instance associated with the file
descriptor epfd. The parameter op specifies the operation to be taken against the file
associated with fd. The event parameter further describes the behavior of the operation.

Here are valid values for the op parameter:

EPOLL_CTL_ADD
Add a monitor on the file associated with the file descriptor fd to the epoll
instance associated with epfd, per the events defined in event.
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EPOLL_CTL_DEL
Remove a monitor on the file associated with the file descriptor fd from the epoll
instance associated with epfd.

EPOLL_CTL_MOD
Modify an existing monitor of fd with the updated events specified by event.

The events field in the epoll_event structure lists which events to monitor on the given
file descriptor. Multiple events can be bitwise-ORed together. Here are valid values:

EPOLLERR
An error condition occurred on the file. This event is always monitored, even if
it’s not specified.

EPOLLET
Enables edge-triggered behavior for the monitor of the file (see the upcoming
section “Edge- Versus Level-Triggered Events”). The default behavior is level-
triggered.

EPOLLHUP
A hangup occurred on the file. This event is always monitored, even if it’s not
specified.

EPOLLIN
The file is available to be read from without blocking.

EPOLLONESHOT
After an event is generated and read, the file is automatically no longer monitored.
A new event mask must be specified via EPOLL_CTL_MOD to reenable the watch.

EPOLLOUT
The file is available to be written to without blocking.

EPOLLPRI
There is urgent out-of-band data available to read.

The data field inside the event_poll structure is for the user’s private use. The
contents are returned to the user upon receipt of the requested event. The common
practice is to set event.data.fd to fd, which makes it easy to look up which file
descriptor caused the event.

Upon success, epoll_ctl( ) returns 0. On failure, the call returns -1, and sets errno to
one of the following values:

EBADF
epfd is not a valid epoll instance, or fd is not a valid file descriptor.

EEXIST
op was EPOLL_CTL_ADD, but fd is already associated with epfd.
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EINVAL
epfd is not an epoll instance, epfd is the same as fd, or op is invalid.

ENOENT
op was EPOLL_CTL_MOD, or EPOLL_CTL_DEL, but fd is not associated with epfd.

ENOMEM
There was insufficient memory to process the request.

EPERM
fd does not support epoll.

As an example, to add a new watch on the file associated with fd to the epoll
instance epfd, you would write:

struct epoll_event event;
int ret;

event.data.fd = fd; /* return the fd to us later */
event.events = EPOLLIN | EPOLLOUT;

ret = epoll_ctl (epfd, EPOLL_CTL_ADD, fd, &event);
if (ret)
        perror ("epoll_ctl");

To modify an existing event on the file associated with fd on the epoll instance epfd,
you would write:

struct epoll_event event;
int ret;

event.data.fd = fd; /* return the fd to us later */
event.events = EPOLLIN;

ret = epoll_ctl (epfd, EPOLL_CTL_MOD, fd, &event);
if (ret)
        perror ("epoll_ctl");

Conversely, to remove an existing event on the file associated with fd from the epoll
instance epfd, you would write:

struct epoll_event event;
int ret;

ret = epoll_ctl (epfd, EPOLL_CTL_DEL, fd, &event);
if (ret)
        perror ("epoll_ctl");

Note that the event parameter can be NULL when op is EPOLL_CTL_DEL, as there is no
event mask to provide. Kernel versions before 2.6.9, however, erroneously check for
this parameter to be non-NULL. For portability to these older kernels, you should pass
in a valid non-NULL pointer; it will not be touched. Kernel 2.6.9 fixed this bug.
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Waiting for Events with Epoll
The system call epoll_wait( ) waits for events on the file descriptors associated with
the given epoll instance:

#include <sys/epoll.h>

int epoll_wait (int epfd,
                struct epoll_event *events,
                int maxevents,
                int timeout);

A call to epoll_wait( ) waits up to timeout milliseconds for events on the files associ-
ated with the epoll instance epfd. Upon success, events points to memory containing
epoll_event structures describing each event, up to a maximum of maxevents events.
The return value is the number of events, or -1 on error, in which case errno is set to
one of the following:

EBADF
epfd is not a valid file descriptor.

EFAULT
The process does not have write access to the memory pointed at by events.

EINTR
The system call was interrupted by a signal before it could complete.

EINVAL
epfd is not a valid epoll instance, or maxevents is equal to or less than 0.

If timeout is 0, the call returns immediately, even if no events are available, in which
case the call will return 0. If the timeout is -1, the call will not return until an event is
available.

When the call returns, the events field of the epoll_event structure describes the
events that occurred. The data field contains whatever the user set it to before invo-
cation of epoll_ctl( ).

A full epoll_wait( ) example looks like this:

#define MAX_EVENTS    64

struct epoll_event *events;
int nr_events, i, epfd;

events = malloc (sizeof (struct epoll_event) * MAX_EVENTS);
if (!events) {
        perror ("malloc");
        return 1;
}

nr_events = epoll_wait (epfd, events, MAX_EVENTS, -1);
if (nr_events < 0) {
        perror ("epoll_wait");



94 | Chapter 4: Advanced File I/O

        free (events);
        return 1;
}

for (i = 0; i < nr_events; i++) {
        printf ("event=%ld on fd=%d\n",
                events[i].events,
                events[i].data.fd);

        /*
         * We now can, per events[i].events, operate on
         * events[i].data.fd without blocking.
         */
}

free (events);

We will cover the functions malloc( ) and free( ) in Chapter 8.

Edge- Versus Level-Triggered Events
If the EPOLLET value is set in the events field of the event parameter passed to
epoll_ctl( ), the watch on fd is edge-triggered, as opposed to level-triggered.

Consider the following events between a producer and a consumer communicating
over a Unix pipe:

1. The producer writes 1 KB of data onto a pipe.

2. The consumer performs an epoll_wait( ) on the pipe, waiting for the pipe to
contain data, and thus be readable.

With a level-triggered watch, the call to epoll_wait( ) in step 2 will return immedi-
ately, showing that the pipe is ready to read. With an edge-triggered watch, this call
will not return until after step 1 occurs. That is, even if the pipe is readable at the
invocation of epoll_wait( ), the call will not return until the data is written onto the
pipe.

Level-triggered is the default behavior. It is how poll( ) and select( ) behave, and it is
what most developers expect. Edge-triggered behavior requires a different approach to
programming, commonly utilizing nonblocking I/O, and careful checking for EAGAIN.

The terminology comes from electrical engineering. A level-triggered
interrupt is issued whenever a line is asserted. An edge-triggered inter-
rupt is caused only during the rising or falling edge of the change in
assertion. Level-triggered interrupts are useful when the state of the
event (the asserted line) is of interest. Edge-triggered interrupts are
useful when the event itself (the line being asserted) is of interest.
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Mapping Files into Memory
As an alternative to standard file I/O, the kernel provides an interface that allows an
application to map a file into memory, meaning that there is a one-to-one correspon-
dence between a memory address and a word in the file. The programmer can then
access the file directly through memory, identically to any other chunk of memory-
resident data—it is even possible to allow writes to the memory region to transparently
map back to the file on disk.

POSIX.1 standardizes—and Linux implements—the mmap( ) system call for mapping
objects into memory. This section will discuss mmap( ) as it pertains to mapping files
into memory to perform I/O; in Chapter 8, we will visit other applications of mmap( ).

mmap( )
A call to mmap( ) asks the kernel to map len bytes of the object represented by the file
descriptor fd, starting at offset bytes into the file, into memory. If addr is included, it
indicates a preference to use that starting address in memory. The access permis-
sions are dictated by prot, and additional behavior can be given by flags:

#include <sys/mman.h>

void * mmap (void *addr,
             size_t len,
             int prot,
             int flags,
             int fd,
             off_t offset);

The addr parameter offers a suggestion to the kernel of where best to map the file. It
is only a hint; most users pass 0. The call returns the actual address in memory where
the mapping begins.

The prot parameter describes the desired memory protection of the mapping. It may
be either PROT_NONE, in which case the pages in this mapping may not be accessed
(making little sense!), or a bitwise OR of one or more of the following flags:

PROT_READ
The pages may be read.

PROT_WRITE
The pages may be written.

PROT_EXEC
The pages may be executed.

The desired memory protection must not conflict with the open mode of the file. For
example, if the program opens the file read-only, prot must not specify PROT_WRITE.
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The flags argument describes the type of mapping, and some elements of its behav-
ior. It is a bitwise OR of the following values:

MAP_FIXED
Instructs mmap( ) to treat addr as a requirement, not a hint. If the kernel is unable
to place the mapping at the given address, the call fails. If the address and length
parameters overlap an existing mapping, the overlapped pages are discarded and
replaced by the new mapping. As this option requires intimate knowledge of the
process address space, it is nonportable, and its use is discouraged.

MAP_PRIVATE
States that the mapping is not shared. The file is mapped copy-on-write, and any
changes made in memory by this process are not reflected in the actual file, or in
the mappings of other processes.

MAP_SHARED
Shares the mapping with all other processes that map this same file. Writing into
the mapping is equivalent to writing to the file. Reads from the mapping will
reflect the writes of other processes.

Either MAP_SHARED or MAP_PRIVATE must be specified, but not both. Other, more
advanced flags are discussed in Chapter 8.

When you map a file descriptor, the file’s reference count is incremented. Therefore,
you can close the file descriptor after mapping the file, and your process will still
have access to it. The corresponding decrement of the file’s reference count will
occur when you unmap the file, or when the process terminates.

Protection Flags, Architectures, and Security
While POSIX defines four protection bits (read, write, execute, and stay the heck
away), some architectures support only a subset of these. It is common, for example,
for a processor to not differentiate between the actions of reading and executing. In that
case, the processor may have only a single “read” flag. On those systems, PROT_READ
implies PROT_EXEC. Until recently, the x86 architecture was one such system.

Of course, relying on such behavior is not portable. Portable programs should always
set PROT_EXEC if they intend to execute code in the mapping.

The reverse situation is one reason for the prevalence of buffer overflow attacks: even
if a given mapping does not specify execution permission, the processor may allow exe-
cution anyway.

Recent x86 processors have introduced the NX (no-execute) bit, which allows for read-
able, but not executable, mappings. On these newer systems, PROT_READ no longer
implies PROT_EXEC.
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As an example, the following snippet maps the file backed by fd, beginning with its
first byte, and extending for len bytes, into a read-only mapping:

void *p;

p = mmap (0, len, PROT_READ, MAP_SHARED, fd, 0);
if (p == MAP_FAILED)
        perror ("mmap");

Figure 4-1 shows the effects of paramaters supplied with mmap( ) on the mapping
between a file and a process’ address space.

The page size

The page is the smallest unit of memory that can have distinct permissions and
behavior. Consequently, the page is the building block of memory mappings, which
in turn are the building blocks of the process address space.

The mmap( ) system call operates on pages. Both the addr and offset parameters must
be aligned on a page-sized boundary. That is, they must be integer multiples of the
page size.

Mappings are, therefore, integer multiples of pages. If the len parameter provided by
the caller is not aligned on a page boundary—perhaps because the underlying file’s
size is not a multiple of the page size—the mapping is rounded up to the next full
page. The bytes inside this added memory, between the last valid byte and the end of
the mapping, are zero-filled. Any read from that region will return zeros. Any writes
to that memory will not affect the backing file, even if it is mapped as MAP_SHARED.
Only the original len bytes are ever written back to the file.

Figure 4-1. Mapping a file into a process’ address space
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sysconf( ). The standard POSIX method of obtaining the page size is with sysconf( ),
which can retrieve a variety of system-specific information:

#include <unistd.h>

long sysconf (int name);

A call to sysconf( ) returns the value of the configuration item name, or -1 if name is
invalid. On error, the call sets errno to EINVAL. Because -1 may be a valid value for
some items (e.g., limits, where -1 means no limit), it may be wise to clear errno
before invocation, and check its value after.

POSIX defines _SC_PAGESIZE (and a synonym, _SC_PAGE_SIZE) to be the size of a page,
in bytes. Therefore, getting the page size is simple:

long page_size = sysconf (_SC_PAGESIZE);

getpagesize( ). Linux also provides the getpagesize( ) function:

#include <unistd.h>

int getpagesize (void);

A call to getpagesize( ) will likewise return the size of a page, in bytes. Usage is even
simpler than sysconf( ):

int page_size = getpagesize ( );

Not all Unix systems support this function; it’s been dropped from the 1003.1-2001
revision of the POSIX standard. It is included here for completeness.

PAGE_SIZE. The page size is also stored statically in the macro PAGE_SIZE, which is
defined in <asm/page.h>. Thus, a third possible way to retrieve the page size is:

int page_size = PAGE_SIZE;

Unlike the first two options, however, this approach retrieves the system page size at
compile-time, and not runtime. Some architectures support multiple machine types
with different page sizes, and some machine types even support multiple page sizes
themselves! A single binary should be able to run on all machine types in a given
architecture—that is, you should be able to build it once and run it everywhere.
Hard-coding the page size would nullify that possibility. Consequently, you should
determine the page size at runtime. Because addr and offset are usually 0, this
requirement is not overly difficult to meet.

Moreover, future kernel versions will likely not export this macro to user space. We
cover it in this chapter due to its frequent presence in Unix code, but you should not
use it in your own programs. The sysconf( ) approach is your best bet.
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Return values and error codes

On success, a call to mmap( ) returns the location of the mapping. On failure, the call
returns MAP_FAILED, and sets errno appropriately. A call to mmap( ) never returns 0.

Possible errno values include:

EACCESS
The given file descriptor is not a regular file, or the mode with which it was
opened conflicts with prot or flags.

EAGAIN
The file has been locked via a file lock.

EBADF
The given file descriptor is not valid.

EINVAL
One or more of the parameters addr, len, or off are invalid.

ENFILE
The system-wide limit on open files has been reached.

ENODEV
The filesystem on which the file to map resides does not support memory mapping.

ENOMEM
The process does not have enough memory.

EOVERFLOW
The result of addr+len exceeds the size of the address space.

EPERM
PROT_EXEC was given, but the filesystem is mounted noexec.

Associated signals

Two signals are associated with mapped regions:

SIGBUS
This signal is generated when a process attempts to access a region of a mapping
that is no longer valid—for example, because the file was truncated after it was
mapped.

SIGSEGV
This signal is generated when a process attempts to write to a region that is
mapped read-only.

munmap( )
Linux provides the munmap( ) system call for removing a mapping created with mmap( ):

#include <sys/mman.h>

int munmap (void *addr, size_t len);
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A call to munmap( ) removes any mappings that contain pages located anywhere in the
process address space starting at addr, which must be page-aligned, and continuing
for len bytes. Once the mapping has been removed, the previously associated mem-
ory region is no longer valid, and further access attempts result in a SIGSEGV signal.

Normally, munmap( ) is passed the return value and the len parameter from a previ-
ous invocation of mmap( ).

On success, munmap( ) returns 0; on failure, it returns -1, and errno is set appropri-
ately. The only standard errno value is EINVAL, which specifies that one or more
parameters were invalid.

As an example, the following snippet unmaps any memory regions with pages con-
tained in the interval [addr,addr+len]:

if (munmap (addr, len) == -1)
        perror ("munmap");

Mapping Example
Let’s consider a simple example program that uses mmap( ) to print a file chosen by
the user to standard out:

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/mman.h>

int main (int argc, char *argv[])
{
        struct stat sb;
        off_t len;
        char *p;
        int fd;

        if (argc < 2) {
                fprintf (stderr, "usage: %s <file>\n", argv[0]);
                return 1;
        }

        fd = open (argv[1], O_RDONLY);
        if (fd == -1) {
                perror ("open");
                return 1;
        }

        if (fstat (fd, &sb) == -1) {
                perror ("fstat");
                return 1;
        }
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        if (!S_ISREG (sb.st_mode)) {
                fprintf (stderr, "%s is not a file\n", argv[1]);
                return 1;
        }

        p = mmap (0, sb.st_size, PROT_READ, MAP_SHARED, fd, 0);
        if (p == MAP_FAILED) {
                perror ("mmap");
                return 1;
        }

        if (close (fd) == -1) {
                perror ("close");
                return 1;
        }

        for (len = 0; len < sb.st_size; len++)
                putchar (p[len]);

        if (munmap (p, sb.st_size) == -1) {
                perror ("munmap");
                return 1;
        }

        return 0;
}

The only unfamiliar system call in this example should be fstat( ), which we will
cover in Chapter 7. All you need to know at this point is that fstat( ) returns infor-
mation about a given file. The S_ISREG( ) macro can check some of this information,
so that we can ensure that the given file is a regular file (as opposed to a device file or
a directory) before we map it. The behavior of nonregular files when mapped
depends on the backing device. Some device files are mmap-able; other nonregular
files are not mmap-able, and will set errno to EACCESS.

The rest of the example should be straightforward. The program is passed a file-
name as an argument. It opens the file, ensures it is a regular file, maps it, closes it,
prints the file byte-by-byte to standard out, and then unmaps the file from memory.

Advantages of mmap( )
Manipulating files via mmap( ) has a handful of advantages over the standard read( )
and write( ) system calls. Among them are:

• Reading from and writing to a memory-mapped file avoids the extraneous copy
that occurs when using the read( ) or write( ) system calls, where the data must
be copied to and from a user-space buffer.

• Aside from any potential page faults, reading from and writing to a memory-
mapped file does not incur any system call or context switch overhead. It is as
simple as accessing memory.
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• When multiple processes map the same object into memory, the data is shared
among all the processes. Read-only and shared writable mappings are shared in
their entirety; private writable mappings have their not-yet-COW (copy-on-write)
pages shared.

• Seeking around the mapping involves trivial pointer manipulations. There is no
need for the lseek( ) system call.

For these reasons, mmap( ) is a smart choice for many applications.

Disadvantages of mmap( )
There are a few points to keep in mind when using mmap( ):

• Memory mappings are always an integer number of pages in size. Thus, the dif-
ference between the size of the backing file and an integer number of pages is
“wasted” as slack space. For small files, a significant percentage of the mapping
may be wasted. For example, with 4 KB pages, a 7 byte mapping wastes 4,089
bytes.

• The memory mappings must fit into the process’ address space. With a 32-bit
address space, a very large number of various-sized mappings can result in frag-
mentation of the address space, making it hard to find large free contiguous
regions. This problem, of course, is much less apparent with a 64-bit address
space.

• There is overhead in creating and maintaining the memory mappings and associ-
ated data structures inside the kernel. This overhead is generally obviated by the
elimination of the double copy mentioned in the previous section, particularly
for larger and frequently accessed files.

For these reasons, the benefits of mmap( ) are most greatly realized when the mapped
file is large (and thus any wasted space is a small percentage of the total mapping), or
when the total size of the mapped file is evenly divisible by the page size (and thus
there is no wasted space).

Resizing a Mapping
Linux provides the mremap( ) system call for expanding or shrinking the size of a
given mapping. This function is Linux-specific:

#define _GNU_SOURCE

#include <unistd.h>
#include <sys/mman.h>

void * mremap (void *addr, size_t old_size,
               size_t new_size, unsigned long flags);



Mapping Files into Memory | 103

A call to mremap( ) expands or shrinks mapping in the region [addr,addr+old_size) to
the new size new_size. The kernel can potentially move the mapping at the same
time, depending on the availability of space in the process’ address space and the
value of flags.

The opening [ in [addr,addr+old_size) indicates that the region starts
with (and includes) the low address, whereas the closing ) indicates
that the region stops just before (does not include) the high address.
This convention is known as interval notation.

The flags parameter can be either 0 or MREMAP_MAYMOVE, which specifies that the kernel
is free to move the mapping, if required, in order to perform the requested resizing. A
large resizing is more likely to succeed if the kernel can move the mapping.

Return values and error codes

On success, mremap( ) returns a pointer to the newly resized memory mapping. On
failure, it returns MAP_FAILED, and sets errno to one of the following:

EAGAIN
The memory region is locked, and cannot be resized.

EFAULT
Some pages in the given range are not valid pages in the process’ address space,
or there was a problem remapping the given pages.

EINVAL
An argument was invalid.

ENOMEM
The given range cannot be expanded without moving (and MREMAP_MAYMOVE was
not given), or there is not enough free space in the process’ address space.

Libraries such as glibc often use mremap( ) to implement an efficient realloc( ), which
is an interface for resizing a block of memory originally obtained via malloc( ). For
example:

void * realloc (void *addr, size_t len)
{
        size_t old_size = look_up_mapping_size (addr);
        void *p;

        p = mremap (addr, old_size, len, MREMAP_MAYMOVE);
        if (p == MAP_FAILED)
                return NULL;
        return p;
}

This would only work if all malloc( ) allocations were unique anonymous mappings;
nonetheless, it stands as a useful example of the performance gains to be had. The
example assumes the programmer has written a look_up_mapping_size( ) function.



104 | Chapter 4: Advanced File I/O

The GNU C library does use mmap( ) and family for performing some memory alloca-
tions. We will look that topic in depth in Chapter 8.

Changing the Protection of a Mapping
POSIX defines the mprotect( ) interface to allow programs to change the permissions
of existing regions of memory:

#include <sys/mman.h>

int mprotect (const void *addr,
              size_t len,
              int prot);

A call to mprotect( ) will change the protection mode for the memory pages con-
tained in [addr,addr+len), where addr is page-aligned. The prot parameter accepts
the same values as the prot given to mmap( ): PROT_NONE, PROT_READ, PROT_WRITE, and
PROT_EXEC. These values are not additive; if a region of memory is readable, and prot
is set to only PROT_WRITE, the call will make the region only writable.

On some systems, mprotect( ) may operate only on memory mappings previously
created via mmap( ). On Linux, mprotect( ) can operate on any region of memory.

Return values and error codes

On success, mprotect( ) returns 0. On failure, it returns -1, and sets errno to one of
the following:

EACCESS
The memory cannot be given the permissions requested by prot. This can hap-
pen, for example, if you attempt to set the mapping of a file opened read-only to
writable.

EINVAL
The parameter addr is invalid or not page-aligned.

ENOMEM
Insufficient kernel memory is available to satisfy the request, or one or more
pages in the given memory region are not a valid part of the process’ address
space.

Synchronizing a File with a Mapping
POSIX provides a memory-mapped equivalent of the fsync( ) system call that we dis-
cussed in Chapter 2:

#include <sys/mman.h>

int msync (void *addr, size_t len, int flags);
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A call to msync( ) flushes back to disk any changes made to a file mapped via mmap( ),
synchronizing the mapped file with the mapping. Specifically, the file or subset of a
file associated with the mapping starting at memory address addr and continuing for
len bytes is synchronized to disk. The addr argument must be page-aligned; it is gen-
erally the return value from a previous mmap( ) invocation.

Without invocation of msync( ), there is no guarantee that a dirty mapping will be
written back to disk until the file is unmapped. This is different from the behavior of
write( ), where a buffer is dirtied as part of the writing process, and queued for
writeback to disk. When writing into a memory mapping, the process directly modi-
fies the file’s pages in the kernel’s page cache, without kernel involvement. The
kernel may not synchronize the page cache and the disk anytime soon.

The flags parameter controls the behavior of the synchronizing operation. It is a bit-
wise OR of the following values:

MS_ASYNC
Specifies that synchronization should occur asynchronously. The update is
scheduled, but the msync( ) call returns immediately without waiting for the
writes to take place.

MS_INVALIDATE
Specifies that all other cached copies of the mapping be invalidated. Any future
access to any mappings of this file will reflect the newly synchronized on-disk
contents.

MS_SYNC
Specifies that synchronization should occur synchronously. The msync( ) call will
not return until all pages are written back to disk.

Either MS_ASYNC or MS_SYNC must be specified, but not both.

Usage is simple:

if (msync (addr, len, MS_ASYNC) == -1)
        perror ("msync");

This example asynchronously synchronizes (say that 10 times fast) to disk the file
mapped in the region [addr,addr+len).

Return values and error codes

On success, msync( ) returns 0. On failure, the call returns -1, and sets errno appro-
priately. The following are valid errno values:

EINVAL
The flags parameter has both MS_SYNC and MS_ASYNC set, a bit other than one of
the three valid flags is set, or addr is not page-aligned.
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ENOMEM
The given memory region (or part of it) is not mapped. Note that Linux will
return ENOMEM, as POSIX dictates, when asked to synchronize a region that is only
partly unmapped, but it will still synchronize any valid mappings in the region.

Before version 2.4.19 of the Linux kernel, msync( ) returned EFAULT in place of ENOMEM.

Giving Advice on a Mapping
Linux provides a system call named madvise( ) to let processes give the kernel advice
and hints on how they intend to use a mapping. The kernel can then optimize its
behavior to take advantage of the mapping’s intended use. While the Linux kernel
dynamically tunes its behavior, and generally provides optimal performance without
explicit advice, providing such advice can ensure the desired caching and readahead
behavior for some workloads.

A call to madvise( ) advises the kernel on how to behave with respect to the pages in
the memory map starting at addr, and extending for len bytes:

#include <sys/mman.h>

int madvise (void *addr,
             size_t len,
             int advice);

If len is 0, the kernel will apply the advice to the entire mapping that starts at addr.
The parameter advice delineates the advice, which can be one of:

MADV_NORMAL
The application has no specific advice to give on this range of memory. It should
be treated as normal.

MADV_RANDOM
The application intends to access the pages in the specified range in a random
(nonsequential) order.

MADV_SEQUENTIAL
The application intends to access the pages in the specified range sequentially,
from lower to higher addresses.

MADV_WILLNEED
The application intends to access the pages in the specified range in the near
future.

MADV_DONTNEED
The application does not intend to access the pages in the specified range in the
near future.

The actual behavior modifications that the kernel takes in response to this advice are
implementation-specific: POSIX dictates only the meaning of the advice, not any
potential consequences. The current 2.6 kernel behaves as follows in response to the
advice values:
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MADV_NORMAL
The kernel behaves as usual, performing a moderate amount of readahead.

MADV_RANDOM
The kernel disables readahead, reading only the minimal amount of data on each
physical read operation.

MADV_SEQUENTIAL
The kernel performs aggressive readahead.

MADV_WILLNEED
The kernel initiates readahead, reading the given pages into memory.

MADV_DONTNEED
The kernel frees any resources associated with the given pages, and discards any
dirty and not-yet-synchronized pages. Subsequent accesses to the mapped data
will cause the data to be paged in from the backing file.

Typical usage is:

int ret;

ret = madvise (addr, len, MADV_SEQUENTIAL);
if (ret < 0)
        perror ("madvise");

This call instructs the kernel that the process intends to access the memory region
[addr,addr+len) sequentially.

Readahead
When the Linux kernel reads files off the disk, it performs an optimization known as
readahead. That is, when a request is made for a given chunk of a file, the kernel also
reads the following chunk of the file. If a request is subsequently made for that
chunk—as is the case when reading a file sequentially—the kernel can return the
requested data immediately. Because disks have track buffers (basically, hard disks
perform their own readahead internally), and because files are generally laid out
sequentially on disk, this optimization is low-cost.

Some readahead is usually advantageous, but optimal results depend on the question
of how much readahead to perform. A sequentially accessed file may benefit from a
larger readahead window, while a randomly accessed file may find readahead to be
worthless overhead.

As discussed in “Kernel Internals” in Chapter 2, the kernel dynamically tunes the size
of the readahead window in response to the hit rate inside that window. More hits
imply that a larger window would be advantageous; fewer hits suggest a smaller win-
dow. The madvise( ) system call allows applications to influence the window size right
off the bat.
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Return values and error codes

On success, madvise( ) returns 0. On failure, it returns -1, and errno is set appropri-
ately. The following are valid errors:

EAGAIN
An internal kernel resource (probably memory) was unavailable. The process
can try again.

EBADF
The region exists, but does not map a file.

EINVAL
The parameter len is negative, addr is not page-aligned, the advice parameter is
invalid, or the pages were locked or shared with MADV_DONTNEED.

EIO
An internal I/O error occurred with MADV_WILLNEED.

ENOMEM
The given region is not a valid mapping in this process’ address space, or
MADV_WILLNEED was given, but there is insufficient memory to page in the given
regions.

Advice for Normal File I/O
In the previous subsection, we looked at providing advice on memory mappings. In
this section, we will look at providing advice to the kernel on normal file I/O. Linux
provides two interfaces for such advice-giving: posix_fadvise( ) and readahead( ).

The posix_fadvise( ) System Call
The first advice interface, as its name alludes, is standardized by POSIX 1003.1-2003:

#include <fcntl.h>

int posix_fadvise (int fd,
                   off_t offset,
                   off_t len,
                   int advice);

A call to posix_fadvise( ) provides the kernel with the hint advice on the file descrip-
tor fd in the interval [offset,offset+len). If len is 0, the advice will apply to the
range [offset,length of file]. Common usage is to specify 0 for len and offset,
applying the advice to the entire file.

The available advice options are similar to those for madvise( ). Exactly one of the
following should be provided for advice:
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POSIX_FADV_NORMAL
The application has no specific advice to give on this range of the file. It should
be treated as normal.

POSIX_FADV_RANDOM
The application intends to access the data in the specified range in a random
(nonsequential) order.

POSIX_FADV_SEQUENTIAL
The application intends to access the data in the specified range sequentially,
from lower to higher addresses.

POSIX_FADV_WILLNEED
The application intends to access the data in the specified range in the near
future.

POSIX_FADV_NOREUSE
The application intends to access the data in the specified range in the near
future, but only once.

POSIX_FADV_DONTNEED
The application does not intend to access the pages in the specified range in the
near future.

As with madvise( ), the actual response to the given advice is implementation-
specific—even different versions of the Linux kernel may react dissimilarly. The
following are the current responses:

POSIX_FADV_NORMAL
The kernel behaves as usual, performing a moderate amount of readahead.

POSIX_FADV_RANDOM
The kernel disables readahead, reading only the minimal amount of data on each
physical read operation.

POSIX_FADV_SEQUENTIAL
The kernel performs aggressive readahead, doubling the size of the readahead
window.

POSIX_FADV_WILLNEED
The kernel initiates readahead to begin reading into memory the given pages.

POSIX_FADV_NOREUSE
Currently, the behavior is the same as for POSIX_FADV_WILLNEED; future kernels
may perform an additional optimization to exploit the “use once” behavior. This
hint does not have an madvise( ) complement.

POSIX_FADV_DONTNEED
The kernel evicts any cached data in the given range from the page cache. Note that
this hint, unlike the others, is different in behavior from its madvise() counterpart.
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As an example, the following snippet instructs the kernel that the entire file repre-
sented by the file descriptor fd will be accessed in a random, nonsequential manner:

int ret;

ret = posix_fadvise (fd, 0, 0, POSIX_FADV_RANDOM);
if (ret == -1)
        perror ("posix_fadvise");

Return values and error codes

On success, posix_fadvise( ) returns 0. On failure, -1 is returned, and errno is set to
one of the following values:

EBADF
The given file descriptor is invalid.

EINVAL
The given advice is invalid, the given file descriptor refers to a pipe, or the speci-
fied advice cannot be applied to the given file.

The readahead( ) System Call
The posix_fadvise() system call is new to the 2.6 Linux kernel. Before, the readahead()
system call was available to provide behavior identical to the POSIX_FADV_WILLNEED hint.
Unlike posix_fadvise(), readahead() is a Linux-specific interface:

#include <fcntl.h>

ssize_t readahead (int fd,
                   off64_t offset,
                   size_t count);

A call to readahead() populates the page cache with the region [offset,offset+count)
from the file descriptor fd.

Return values and error codes

On success, readahead( ) returns 0. On failure, it returns -1, and errno is set to one of
the following values:

EBADF
The given file descriptor is invalid.

EINVAL
The given file descriptor does not map to a file that supports readahead.

Advice Is Cheap
A handful of common application workloads can readily benefit from a little well-
intentioned advice to the kernel. Such advice can go a long way toward mitigating



Synchronized, Synchronous, and Asynchronous Operations | 111

the burden of I/O. With hard disks being so slow, and modern processors being so
fast, every little bit helps, and good advice can go a long way.

Before reading a chunk of a file, a process can provide the POSIX_FADV_WILLNEED hint
to instruct the kernel to read the file into the page cache. The I/O will occur asyn-
chronously, in the background. When the application ultimately accesses the file, the
operation can complete without generating blocking I/O.

Conversely, after reading or writing a lot of data—say, while continuously streaming
video to disk—a process can provide the POSIX_FADV_DONTNEED hint to instruct the
kernel to evict the given chunk of the file from the page cache. A large streaming
operation can continually fill the page cache. If the application never intends to
access the data again, this means the page cache will be filled with superfluous data,
at the expense of potentially more useful data. Thus, it makes sense for a streaming
video application to periodically request that streamed data be evicted from the
cache.

A process that intends to read in an entire file can provide the POSIX_FADV_SEQUENTIAL
hint, instructing the kernel to perform aggressive readahead. Conversely, a process
that knows it is going to access a file randomly, seeking to and fro, can provide the
POSIX_FADV_RANDOM hint, instructing the kernel that readahead will be nothing but
worthless overhead.

Synchronized, Synchronous, and Asynchronous
Operations
Unix systems use the terms synchronized, nonsynchronized, synchronous, and asyn-
chronous freely, without much regard to the fact that they are confusing—in English,
the differences between “synchronous” and “synchronized” do not amount to much!

A synchronous write operation does not return until the written data is—at least—
stored in the kernel’s buffer cache. A synchronous read operation does not return
until the read data is stored in the user-space buffer provided by the application. On
the other side of the coin, an asynchronous write operation may return before the
data even leaves user space; an asynchronous read operation may return before the
read data is available. That is, the operations may only be queued for later. Of
course, in this case, some mechanism must exist for determining when the operation
has actually completed, and with what level of success.

A synchronized operation is more restrictive and safer than a merely synchronous
operation. A synchronized write operation flushes the data to disk, ensuring that the
on-disk data is always synchronized vis-à-vis the corresponding kernel buffers. A
synchronized read operation always returns the most up-to-date copy of the data,
presumably from the disk.
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In sum, the terms synchronous and asynchronous refer to whether I/O operations
wait for some event (e.g., storage of the data) before returning. The terms synchro-
nized and nonsynchronized, meanwhile, specify exactly what event must occur (e.g.,
writing the data to disk).

Normally, Unix write operations are synchronous and nonsynchronized; read opera-
tions are synchronous and synchronized.* For write operations, every combination of
these characteristics is possible, as Table 4-1 illustrates.

Read operations are always synchronized, as reading stale data makes little sense.
Such operations can be either synchronous or asynchronous, however, as illustrated
in Table 4-2.

In Chapter 2, we discussed how to make writes synchronized (via the O_SYNC flag),
and how to ensure that all I/O is synchronized as of a given point (via fsync( ) and
friends). Now, let’s look at what it takes to make reads and writes asynchronous.

Asynchronous I/O
Performing asynchronous I/O requires kernel support at the very lowest layers.
POSIX 1003.1-2003 defines the aio interfaces, which Linux fortunately implements.
The aio library provides a family of functions for submitting asynchronous I/O and
receiving notification upon its completion:

* Read operations are technically also nonsynchronized, like write operations, but the kernel ensures that the
page cache contains up-to-date data. That is, the page cache’s data is always identical to or newer than the
data on disk. In this manner, the behavior in practice is always synchronized. There is little argument for
behaving any other way.

Table 4-1. Synchronicity of write operations

Synchronized Nonsynchronized

Synchronous Write operations do not return until the data is flushed to disk.
This is the behavior if O_SYNC is specified during file open.

Write operations do not return until
the data is stored in kernel buffers. This
is the usual behavior.

Asynchronous Write operations return as soon as the request is queued. Once
the write operation ultimately executes, the data is guaranteed
to be on disk.

Write operations return as soon as the
request is queued. Once the write oper-
ation ultimately executes, the data is
guaranteed to at least be stored in
kernel buffers.

Table 4-2. Synchronicity of read operations

Synchronized

Synchronous Read operations do not return until the data, which is up-to-date, is stored in the provided buffer (this is the
usual behavior).

Asynchronous Read operations return as soon as the request is queued, but when the read operation ultimately executes,
the data returned is up-to-date.
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#include <aio.h>

/* asynchronous I/O control block */
struct aiocb {
        int aio_filedes;              /* file descriptor */
        int aio_lio_opcode;           /* operation to perform */
        int aio_reqprio;              /* request priority offset */
        volatile void *aio_buf;       /* pointer to buffer */
        size_t aio_nbytes;            /* length of operation */
        struct sigevent aio_sigevent; /* signal number and value */

        /* internal, private members follow... */
};

int aio_read (struct aiocb *aiocbp);
int aio_write (struct aiocb *aiocbp);
int aio_error (const struct aiocb *aiocbp);
int aio_return (struct aiocb *aiocbp);
int aio_cancel (int fd, struct aiocb *aiocbp);
int aio_fsync (int op, struct aiocb *aiocbp);
int aio_suspend (const struct aiocb * const cblist[],
                 int n,
                 const struct timespec *timeout);

Thread-based asynchronous I/O

Linux only supports aio on files opened with the O_DIRECT flag. To perform asynchro-
nous I/O on regular files opened without O_DIRECT, we have to look inward, toward a
solution of our own. Without kernel support, we can only hope to approximate
asynchronous I/O, giving results similar to the real thing.

First, let’s look at why an application developer would want asynchronous I/O:

• To perform I/O without blocking

• To separate the acts of queuing I/O, submitting I/O to the kernel, and receiving
notification of operation completion

The first point is a matter of performance. If I/O operations never block, the over-
head of I/O reaches zero, and a process need not be I/O-bound. The second point is
a matter of procedure, simply a different method of handling I/O.

The most common way to reach these goals is with threads (scheduling matters are
discussed thoroughly in Chapters 5 and 6). This approach involves the following
programming tasks:

1. Create a pool of “worker threads” to handle all I/O.

2. Implement a set of interfaces for placing I/O operations onto a work queue.

3. Have each of these interfaces return an I/O descriptor uniquely identifying the
associated I/O operation. In each worker thread, grab I/O requests from the
head of the queue and submit them, waiting for their completion.
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4. Upon completion, place the results of the operation (return values, error codes,
any read data) onto a results queue.

5. Implement a set of interfaces for retrieving status information from the results
queue, using the originally returned I/O descriptors to identify each operation.

This provides similar behavior to POSIX’s aio interfaces, albeit with the greater over-
head of thread management.

I/O Schedulers and I/O Performance
In a modern system, the relative performance gap between disks and the rest of the
system is quite large—and widening. The worst component of disk performance is
the process of moving the read/write head from one part of the disk to another, an
operation known as a seek. In a world where many operations are measured in a
handful of processor cycles (which might take all of a third of a nanosecond each), a
single disk seek can average over eight milliseconds—still a small number, to be sure,
but 25 million times longer than a single processor cycle!

Given the disparity in performance between disk drives and the rest of the system, it
would be incredibly crude and inefficient to send I/O requests to the disk in the
order in which they are issued. Therefore, modern operating system kernels imple-
ment I/O schedulers, which work to minimize the number and size of disk seeks by
manipulating the order in which I/O requests are serviced, and the times at which
they are serviced. I/O schedulers work hard to lessen the performance penalties asso-
ciated with disk access.

Disk Addressing
To understand the role of an I/O scheduler, some background information is neces-
sary. Hard disks address their data using the familiar geometry-based addressing of
cylinders, heads, and sectors, or CHS addressing. A hard drive is composed of multi-
ple platters, each consisting of a single disk, spindle, and read/write head. You can
think of each platter as a CD (or record), and the set of platters in a disk as a stack of
CDs. Each platter is divided into circular ring-like tracks, like on a CD. Each track is
then divided up into of an integer number of sectors.

To locate a specific unit of data on a disk, the drive’s logic requires three pieces of
information: the cylinder, head, and sector values. The cylinder value specifies the
track on which the data resides. If you lay the platters on top of one another, a given
track forms a cylinder through each platter. In other words, a cylinder is represented
by a track at the same distance from the center on each disk. The head value identi-
fies the exact read/write head (and thus the exact platter) in question. The search is
now narrowed down to a single track on a single platter. The disk then uses the sec-
tor value to identify an exact sector on the track. The search is now complete: the
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hard disk knows what platter, what track, and what sector to look in for the data. It
can position the read/write head of the correct platter over the correct track, and
read from or write to the requisite sector.

Thankfully, modern hard disks do not force computers to communicate with their
disks in terms of cylinders, heads, and sectors. Instead, contemporary hard drives
map a unique block number (also called physical blocks or device blocks) over each
cylinder/head/sector triplet—effectively, a block maps to a specific sector. Modern
operating systems can then address hard drives using these block numbers—a
process known as logical block addressing (LBA)—and the hard drive internally trans-
lates the block number into the correct CHS address.* Although nothing guarantees
it, the block-to-CHS mapping tends to be sequential: physical block n tends to be
physically adjacent on disk to logical block n + 1. This sequential mapping is impor-
tant, as we shall soon see.

Filesystems, meanwhile, exist only in software. They operate on their own units,
known as logical blocks (sometimes called filesystem blocks, or, confusingly, just
blocks). The logical block size must be an integer multiple of the physical block size.
In other words, a filesystem’s logical blocks map to one or more of a disk’s physical
blocks.

The Life of an I/O Scheduler
I/O schedulers perform two basic operations: merging and sorting. Merging is the
process of taking two or more adjacent I/O requests, and combining them into a sin-
gle request. Consider two requests, one to read from disk block 5, and another to
read from disk blocks 6 through 7. These requests can be merged into a single
request to read from disk blocks 5 through 7. The total amount of I/O might be the
same, but the number of I/O operations is reduced by half.

Sorting, the more important of the two operations, is the process of arranging pend-
ing I/O requests in ascending block order. For example, given I/O operations to
blocks 52, 109, and 7, the I/O scheduler would sort these requests into the ordering
7, 52, and 109. If a request was then issued to block 81, it would be inserted between
the requests to blocks 52 and 109. The I/O scheduler would then dispatch the
requests to the disk in the order that they exist in the queue: 7, then 52, then 81, and
finally 109.

In this manner, the disk head’s movements are minimized. Instead of potentially
haphazard movements—here to there and back, seeking all over the disk—the disk
head moves in a smooth, linear fashion. Because seeks are the most expensive part of
disk I/O, performance is improved.

* Limits on the absolute size of this block number are largely responsible for the various limits on total drive
sizes over the years.
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Helping Out Reads
Each read request must return up-to-date data. Thus, if the requested data is not in
the page cache, the reading process must block until the data can be read from
disk—a potentially lengthy operation. We call this performance impact read latency.

A typical application might initiate several read I/O requests in a short period.
Because each request is individually synchronized, the later requests are dependent on
the earlier ones’ completion. Consider reading every file in a directory. The applica-
tion opens the first file, reads a chunk of it, waits for data, reads another chunk, and
so on, until the entire file is read. Then the application starts again, on the next file.
The requests become serialized: a subsequent request cannot be issued until the cur-
rent request completes.

This is in stark contrast to write requests, which (in their default, nonsynchronized
state) need not initiate any disk I/O until some time in the future. Thus, from the
perspective of a user-space application, write requests stream, unencumbered by the
performance of the disk. This streaming behavior only compounds the problem for
reads: as writes stream, they can hog the kernel and disk’s attention. This phenome-
non is known as the writes-starving-reads problem.

If an I/O scheduler always sorted new requests by the order of insertion, it would be
possible to starve requests to far-off blocks indefinitely. Consider our previous exam-
ple. If new requests were continually issued to blocks in, say, the 50s, the request to
block 109 would never be serviced. Because read latency is critical, this behavior
would greatly hurt system performance. Thus, I/O schedulers employ a mechanism
to prevent starvation.

A simple approach—such as the one taken by the 2.4 Linux kernel’s I/O scheduler,
the Linus Elevator*—is to simply stop insertion-sorting if there is a sufficiently old
request in the queue. This trades overall performance for per-request fairness and, in
the case of reads, improves latency. The problem is that this heuristic is a bit too
simplistic. Recognizing this, the 2.6 Linux kernel witnessed the demise of the Linus
Elevator, and unveiled several new I/O schedulers in its place.

The Deadline I/O Scheduler

The Deadline I/O Scheduler was introduced to solve the problems with the 2.4 I/O
scheduler, and traditional elevator algorithms in general. The Linus Elevator main-
tains a sorted list of pending I/O requests. The I/O request at the head of the queue is
the next one to be serviced. The Deadline I/O Scheduler keeps this queue, but kicks
things up a notch by introducing two additional queues: the read FIFO queue, and the
write FIFO queue. The items in each of these queues are sorted by submission time

* Yes, the man has an I/O scheduler named after him. I/O schedulers are sometimes called elevator algorithms,
because they solve a problem similar to that of keeping an elevator running smoothly.
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(effectively, the first in is the first out). The read FIFO queue, as its name suggests,
contains only read requests. The write FIFO queue, likewise, contains only write
requests. Each request in the FIFO queues is assigned an expiration value. The read
FIFO queue has an expiration time of 500 milliseconds. The write FIFO queue has
an expiration time of five seconds.

When a new I/O request is submitted, it is insertion-sorted into the standard queue,
and placed at the tail of its respective (read or write) FIFO queue. Normally, the hard
drive is sent I/O requests from the head of the standard sorted queue. This maxi-
mizes global throughput by minimizing seeks, as the normal queue is sorted by block
number (as with the Linus Elevator).

When the item at the head of one of the FIFO queues grows older than the expiration
value associated with its queue, however, the I/O scheduler stops dispatching I/O
requests from the standard queue, and begins servicing requests from that queue—the
request at the head of the FIFO queue is serviced, plus a couple of extras for good
measure. The I/O scheduler needs to check and handle only the requests at the head
of the queue, as those are the oldest requests.

In this manner, the Deadline I/O Scheduler can enforce a soft deadline on I/O
requests. Although it makes no promise that an I/O request will be serviced before
its expiration time, the I/O scheduler generally services requests near their expira-
tion times. Thus, the Deadline I/O Scheduler continues to provide good global
throughput without starving any one request for an unacceptably long time. Because
read requests are given shorter expiration times, the writes-starving-reads problem is
minimized.

The Anticipatory I/O Scheduler

The Deadline I/O Scheduler’s behavior is good, but not perfect. Recall our discus-
sion on read dependency. With the Deadline I/O Scheduler, the first read request in a
series of reads is serviced in short order, at or before its expiration time, and the I/O
scheduler then returns to servicing I/O requests from the sorted queue—so far, so
good. But suppose the application then swoops in and hits us with another read
request? Eventually its expiration time will also approach, and the I/O scheduler will
submit it to the disk, which will seek over to promptly handle the request, then seek
back to continue handling requests from the sorted queue. This seeking back and
forth can continue for some time because many applications exhibit this behavior.
While latency is kept to a minimum, global throughput is not very good because the
read requests keep coming in, and the disk has to keep seeking back and forth to
handle them. Performance would be improved if the disk just took a break to wait
for another read, and did not move away to service the sorted queue again. But,
unfortunately, by the time the application is scheduled and submits its next depen-
dent read request, the I/O scheduler has already shifted gears.
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The problem again stems from those darn dependent reads—each new read request
is issued only when the previous one is returned, but by the time the application
receives the read data, is scheduled to run, and submits its next read request, the I/O
scheduler has moved on, and begun servicing other requests. This results in a wasted
pair of seeks for each read: the disk seeks to the read, services it, and then seeks
back. If only there was some way for the I/O scheduler to know—to anticipate—that
another read would soon be submitted to the same part of the disk, instead of seek-
ing back and forth, it could wait in anticipation of the next read. Saving those awful
seeks certainly would be worth a few milliseconds of waiting.

This is exactly how the Anticipatory I/O Scheduler operates. It began life as the
Deadline I/O Scheduler, but was gifted with the addition of an anticipation mecha-
nism. When a read request is submitted, the Anticipatory I/O Scheduler services it
within its deadline, as usual. Unlike the Deadline I/O Scheduler, however, the Antici-
patory I/O Scheduler then sits and waits, doing nothing, for up to six milliseconds.
Chances are good that the application will issue another read to the same part of the
filesystem during those six milliseconds. If so, that request is serviced immediately,
and the Anticipatory I/O Scheduler waits some more. If six milliseconds go by with-
out a read request, the Anticipatory I/O Scheduler decides it has guessed wrong, and
returns to whatever it was doing before (i.e., servicing the standard sorted queue). If
even a moderate number of requests are anticipated correctly, a great deal of time—
two expensive seeks’ worth at each go—is saved. Because most reads are dependent,
the anticipation pays off much of the time.

The CFQ I/O Scheduler

The Complete Fair Queuing (CFQ) I/O Scheduler works to achieve similar goals,
albeit via a different approach.* With CFQ, each process is assigned its own queue,
and each queue is assigned a timeslice. The I/O scheduler visits each queue in a
round-robin fashion, servicing requests from the queue until the queue’s timeslice is
exhausted, or until no more requests remain. In the latter case, the CFQ I/O Sched-
uler will then sit idle for a brief period—by default, 10 ms—waiting for a new
request on the queue. If the anticipation pays off, the I/O scheduler avoids seeking. If
not, the waiting was in vain, and the scheduler moves on to the next process’ queue.

Within each process’ queue, synchronized requests (such as reads) are given priority
over nonsynchronized requests. In this manner, CFQ favors reads and prevents the
writes-starving-reads problem. Because of the per-process queue setup, the CFQ I/O
Scheduler is fair to all processes, while still providing good global performance.

The CFQ I/O Scheduler is well suited to most workloads, and makes an excellent
first choice.

* The following text discusses the CFQ I/O Scheduler as it is currently implemented. Previous incarnations
did not use timeslices or the anticipation heuristic, but operated in a similar fashion.
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The Noop I/O Scheduler

The Noop I/O Scheduler is the most basic of the available schedulers. It performs no
sorting whatsoever, only basic merging. It is used for specialized devices that do not
require (or that perform) their own request sorting.

Selecting and Configuring Your I/O Scheduler
The default I/O scheduler is selectable at boot time via the iosched kernel command-
line parameter. Valid options are as, cfq, deadline, and noop. The I/O scheduler is also
runtime-selectable on a per-device basis via /sys/block/device/queue/scheduler, where
device is the block device in question. Reading this file returns the current I/O sched-
uler; writing one of the valid options to this file sets the I/O scheduler. For example,
to set the device hda to the CFQ I/O Scheduler, one would do the following:

# echo cfq > /sys/block/hda/queue/scheduler

The directory /sys/block/device/queue/iosched contains files that allow the adminis-
trator to retrieve and set tunable values related to the I/O scheduler. The exact
options depend on the current I/O scheduler. Changing any of these settings requires
root privileges.

A good programmer writes programs that are agnostic to the underlying I/O sub-
system. Nonetheless, knowledge of this subsystem can surely help one write optimal
code.

Optimizing I/O Performance
Because disk I/O is so slow relative to the performance of other components in the
system, yet I/O is such an important aspect of modern computing, maximizing I/O
performance is crucial.

Minimizing I/O operations (by coalescing many smaller operations into fewer larger
operations), performing block-size-aligned I/O, or using user buffering (see
Chapter 3), and taking advantage of advanced I/O techniques, such as vectored I/O,
positional I/O (see Chapter 2), and asynchronous I/O, are important steps to always
consider when system programming.

The most demanding mission-critical and I/O-intense applications, however, can
employ additional tricks to maximize performance. Although the Linux kernel, as
discussed previously, utilizes advanced I/O schedulers to minimize dreaded disk
seeks, user-space applications can work toward the same end, in a similar fashion, to
further improve performance.
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Scheduling I/O in user space

I/O-intensive applications that issue a large number of I/O requests and need to
extract every ounce of performance can sort and merge their pending I/O requests,
performing the same duties as the Linux I/O scheduler. *

Why perform the same work twice, if you know the I/O scheduler will sort requests
block-wise, minimizing seeks, and allowing the disk head to move in a smooth, lin-
ear fashion? Consider an application that submits a large number of unsorted I/O
requests. These requests arrive in the I/O scheduler’s queue in a generally random
order. The I/O scheduler does its job, sorting and merging the requests before send-
ing them out to the disk—but the requests start hitting the disk while the application
is still generating I/O and submitting requests. The I/O scheduler is able to sort only a
small set of requests—say, a handful from this application, and whatever other
requests are pending—at a time. Each batch of the application’s requests is neatly
sorted, but the full queue, and any future requests are not part of the equation.

Therefore, if an application is generating many requests—particularly if they are for
data all over the disk—it can benefit from sorting the requests before submitting
them, ensuring they reach the I/O scheduler in the desired order.

A user-space application is not bestowed with access to the same information as the
kernel, however. At the lowest levels inside the I/O scheduler, requests are already
specified in terms of physical disk blocks. Sorting them is trivial. But, in user space,
requests are specified in terms of files and offsets. User-space applications must
probe for information, and make educated guesses about the layout of the filesystem.

Given the goal of determining the most seek-friendly ordering given a list of I/O
requests to specific files, user-space applications have a couple of options. They can
sort based on:

• The full path

• The inode number

• The physical disk block of the file

Each of these options involves a tradeoff. Let’s look at each briefly.

Sorting by path. Sorting by the pathname is the easiest, yet least effective, way of approx-
imating a block-wise sort. Due to the layout algorithms used by most filesystems, the
files in each directory—and thus the directories sharing a parent directory—tend to be
adjacent on disk. The probability that files in the same directory were created around
the same time only amplifies this characteristic.

* One should apply the techniques discussed here only to I/O-intensive, mission-critical applications. Sorting
the I/O requests—assuming there is even anything to sort—of applications that do not issue many such
requests is silly and unneeded.
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Sorting by path, therefore, roughly approximates the physical locations of files on the
disk. It is definitely true that two files in the same directory have a better chance of
being located near each other than two files in radically different parts of the filesys-
tem. The downside of this approach is that it fails to take into account fragmentation:
the more fragmented the filesystem, the less useful is sorting by path. Even ignoring
fragmentation, a path-wise sort only approximates the actual block-wise ordering. On
the upside, a path-wise sort is at least somewhat applicable to all filesystems. No mat-
ter the approach to file layout, temporal locality suggests a path-wise sort will be at
least mildly accurate. It is also an easy sort to perform.

Sorting by inode. Inodes are Unix constructs that contain the metadata associated
with individual files. While a file’s data may consume multiple physical disk blocks,
each file has exactly one inode, which contains information such as the file’s size,
permissions, owner, and so on. We will discuss inodes in depth in Chapter 7. For
now, you need to know two facts: that every file has an inode associated with it, and
that the inodes are assigned unique numbers.

Sorting by inode is better than sorting by path, assuming that this relation:

file i's inode number < file j's inode number

implies, in general, that:

physical blocks of file i < physical blocks of file j

This is certainly true for Unix-style filesystems such as ext2 and ext3. Anything is
possible for filesystems that do not employ actual inodes, but the inode number
(whatever it may map to) is still a good first-order approximation.

Obtaining the inode number is done via the stat( ) system call, also discussed in
Chapter 7. Given the inode associated with the file involved in each I/O request, the
requests can be sorted in ascending order by inode number.

Here is a simple program that prints out the inode number of a given file:

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>

/*
 * get_inode - returns the inode of the file associated
 * with the given file descriptor, or -1 on failure
 */
int get_inode (int fd)
{
        struct stat buf;
        int ret;

        ret = fstat (fd, &buf);
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        if (ret < 0) {
                perror ("fstat");
                return -1;
        }

        return buf.st_ino;
}

int main (int argc, char *argv[])
{
        int fd, inode;

        if (argc < 2) {
                fprintf (stderr, "usage: %s <file>\n", argv[0]);
                return 1;
        }

        fd = open (argv[1], O_RDONLY);
        if (fd < 0) {
                perror ("open");
                return 1;
        }

        inode = get_inode (fd);
        printf ("%d\n", inode);

        return 0;
}

The get_inode( ) function is easily adaptable for use in your programs.

Sorting by inode number has a few upsides: the inode number is easy to obtain, is
easy to sort on, and is a good approximation of the physical file layout. The major
downsides are that fragmentation degrades the approximation, that the approximation
is just a guess, and that the approximation is less accurate for non-Unix filesystems.
Nonetheless, this is the most commonly used method for scheduling I/O requests in
user space.

Sorting by physical block. The best approach to designing your own elevator algorithm,
of course, is to sort by physical disk block. As discussed earlier, each file is broken up
into logical blocks, which are the smallest allocation units of a filesystem. The size of
a logical block is filesystem-dependent; each logical block maps to a single physical
block. We can thus find the number of logical blocks in a file, determine what physi-
cal blocks they map to, and sort based on that.

The kernel provides a method for obtaining the physical disk block from the logical
block number of a file. This is done via the ioctl( ) system call, discussed in
Chapter 7, with the FIBMAP command:

ret = ioctl (fd, FIBMAP, &block);
if (ret < 0)
        perror ("ioctl");
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Here, fd is the file descriptor of the file in question, and block is the logical block
whose physical block we want to determine. On successful return, block is replaced
with the physical block number. The logical blocks passed in are zero-indexed and
file-relative. That is, if a file is made up of eight logical blocks, valid values are 0
through 7.

Finding the logical-to-physical-block mapping is thus a two-step process. First, we
must determine the number of blocks in a given file. This is done via the stat( ) sys-
tem call. Second, for each logical block, we must issue an ioctl( ) request to find the
corresponding physical block.

Here is a sample program to do just that for a file passed in on the command line:

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <linux/fs.h>

/*
 * get_block - for the file associated with the given fd, returns
 * the physical block mapping to logical_block
 */
int get_block (int fd, int logical_block)
{
        int ret;

        ret = ioctl (fd, FIBMAP, &logical_block);
        if (ret < 0) {
                perror ("ioctl");
                return -1;
        }

        return logical_block;
}

/*
 * get_nr_blocks - returns the number of logical blocks
 * consumed by the file associated with fd
 */
int get_nr_blocks (int fd)
{
        struct stat buf;
        int ret;

        ret = fstat (fd, &buf);
        if (ret < 0) {
                perror ("fstat");
                return -1;
        }
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        return buf.st_blocks;
}

/*
 * print_blocks - for each logical block consumed by the file
 * associated with fd, prints to standard out the tuple
 * "(logical block, physical block)"
 */
void print_blocks (int fd)
{
        int nr_blocks, i;

        nr_blocks = get_nr_blocks (fd);
        if (nr_blocks < 0) {
                fprintf (stderr, "get_nr_blocks failed!\n");
                return;
        }

        if (nr_blocks == 0) {
                printf ("no allocated blocks\n");
                return;
        } else if (nr_blocks == 1)
                printf ("1 block\n\n");
        else
                printf ("%d blocks\n\n", nr_blocks);

        for (i = 0; i < nr_blocks; i++) {
                int phys_block;

                phys_block = get_block (fd, i);
                if (phys_block < 0) {
                        fprintf (stderr, "get_block failed!\n");
                        return;
                }
                if (!phys_block)
                        continue;

                printf ("(%u, %u) ", i, phys_block);
        }

        putchar ('\n');
}

int main (int argc, char *argv[])
{
        int fd;

        if (argc < 2) {
                fprintf (stderr, "usage: %s <file>\n", argv[0]);
                return 1;
        }

        fd = open (argv[1], O_RDONLY);
        if (fd < 0) {



Conclusion | 125

                perror ("open");
                return 1;
        }

        print_blocks (fd);

        return 0;
}

Because files tend to be contiguous, and it would be difficult (at best) to sort our I/O
requests on a per-logical-block basis, it makes sense to sort based on the location of
just the first logical block of a given file. Consequently, get_nr_blocks( ) is not
needed, and our applications can sort based on the return value from:

get_block (fd, 0);

The downside of FIBMAP is that it requires the CAP_SYS_RAWIO capability—effectively,
root privileges. Consequently, nonroot applications cannot make use of this
approach. Further, while the FIBMAP command is standardized, its actual implemen-
tation is left up to the filesystems. While common systems such as ext2 and ext3
support it, a more esoteric beast may not. The ioctl( ) call will return EINVAL if
FIBMAP is not supported.

Among the pros of this approach, however, is that it returns the actual physical disk
block at which a file resides, which is exactly what you want to sort on. Even if you
sort all I/O to a single file based on the location of just one block (the kernel’s I/O
scheduler sorts each individual request on a block-wise basis), this approach comes
very close to the optimal ordering. The root requirement, however, is a bit of a non-
starter for many.

Conclusion
Over the course of the last three chapters, we have touched on all aspects of file I/O
in Linux. In Chapter 2, we looked at the basics of Linux file I/O—really, the basis of
Unix programming—with system calls such as read( ), write( ), open( ), and close( ).
In Chapter 3, we discussed user-space buffering and the standard C library’s imple-
mentation thereof. In this chapter, we discussed various facets of advanced I/O, from
the more-powerful-but-more-complex I/O system calls to optimization techniques
and the dreaded performance-sucking disk seek.

In the next two chapters, we will look at process management: creating, destroying,
and managing processes. Onward!
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Process Management

As mentioned in Chapter 1, processes are the most fundamental abstraction in a
Unix system, after files. As object code in execution—active, alive, running pro-
grams—processes are more than just assembly language; they consist of data,
resources, state, and a virtualized computer.

In this chapter, we will look at the fundamentals of the process, from creation to ter-
mination. The basics have remained relatively unchanged since the earliest days of
Unix. It is here, in the subject of process management, that the longevity and for-
ward thinking of Unix’s original design shines brightest. Unix took an interesting
path, one seldom traveled, and separated the act of creating a new process from the
act of loading a new binary image. Although the two tasks are performed in tandem
most of the time, the division has allowed a great deal of freedom for experimenta-
tion and evolution for each of the tasks. This road less traveled has survived to this
day, and while most operating systems offer a single system call to start up a new
program, Unix requires two: a fork and an exec. But before we cover those system
calls, let’s look more closely at the process itself.

The Process ID
Each process is represented by a unique identifier, the process ID (frequently short-
ened to pid). The pid is guaranteed to be unique at any single point in time. That is,
while at time t0 there can be only one process with the pid 770 (if any process at all
exists with such a value), there is no guarantee that at time t1 a different process
won’t exist with pid 770. Essentially, however, most code presumes that the kernel
does not readily reissue process identifiers—an assumption that, as you will see
shortly, is fairly safe.

The idle process—the process that the kernel “runs” when there are no other runna-
ble processes—has the pid 0. The first process that the kernel executes after booting
the system, called the init process, has the pid 1. Normally, the init process on Linux
is the init program. We use the term “init” to refer to both the initial process that the
kernel runs, and the specific program used for that purpose.
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Unless the user explicitly tells the kernel what process to run (through the init kernel
command-line parameter), the kernel has to identify a suitable init process on its
own—a rare example where the kernel dictates policy. The Linux kernel tries four
executables, in the following order:

1. /sbin/init: The preferred and most likely location for the init process.

2. /etc/init: Another likely location for the init process.

3. /bin/init: A possible location for the init process.

4. /bin/sh: The location of the Bourne shell, which the kernel tries to run if it fails to
find an init process.

The first of these processes that exists is executed as the init process. If all four pro-
cesses fail to execute, the Linux kernel halts the system with a panic.

After the handoff from the kernel, the init process handles the remainder of the boot
process. Typically, this includes initializing the system, starting various services, and
launching a login program.

Process ID Allocation
By default, the kernel imposes a maximum process ID value of 32768. This is for
compatibility with older Unix systems, which used smaller 16-bit types for process
IDs. System administrators can set the value higher via /proc/sys/kernel/pid_max,
trading a larger pid space for reduced compatibility.

The kernel allocates process IDs to processes in a strictly linear fashion. If pid 17 is
the highest number currently allocated, pid 18 will be allocated next, even if the
process last assigned pid 17 is no longer running when the new process starts. The
kernel does not reuse process ID values until it wraps around from the top—that is,
earlier values will not be reused until the value in /proc/sys/kernel/pid_max is allo-
cated. Therefore, while Linux makes no guarantee of the uniqueness of process IDs
over a long period, its allocation behavior does provide at least short-term comfort in
the stability and uniqueness of pid values.

The Process Hierarchy
The process that spawns a new process is known as the parent; the new process is
known as the child. Every process is spawned from another process (except, of
course, the init process). Therefore, every child has a parent. This relationship is
recorded in each process’ parent process ID (ppid), which is the pid of the child’s
parent.

Each process is owned by a user and a group. This ownership is used to control
access rights to resources. To the kernel, users and groups are mere integer values.
Through the files /etc/passwd and /etc/group, these integers are mapped to the
human-readable names with which Unix users are familiar, such as the user root or the
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group wheel (generally speaking, the Linux kernel has no interest in human-readable
strings, and prefers to identify objects with integers). Each child process inherits its
parent’s user and group ownership.

Each process is also part of a process group, which simply expresses its relationship
to other processes, and must not be confused with the aforementioned user/group
concept. Children normally belong to the same process groups as their parents. In
addition, when a shell starts up a pipeline (e.g., when a user enters ls | less), all the
commands in the pipeline go into the same process group. The notion of a process
group makes it easy to send signals to or get information on an entire pipeline, as
well as all children of the processes in the pipeline. From the perspective of a user, a
process group is closely related to a job.

pid_t
Programmatically, the process ID is represented by the pid_t type, which is defined
in the header file <sys/types.h>. The exact backing C type is architecture-specific,
and not defined by any C standard. On Linux, however, pid_t is generally a typedef
to the C int type.

Obtaining the Process ID and Parent Process ID
The getpid( ) system call returns the process ID of the invoking process:

#include <sys/types.h>
#include <unistd.h>

pid_t getpid (void);

The getppid( ) system call returns the process ID of the invoking process’ parent:

#include <sys/types.h>
#include <unistd.h>

pid_t getppid (void);

Neither call will return an error. Consequently, usage is trivial:

printf ("My pid=%d\n", getpid ( ));
printf ("Parent's pid=%d\n", getppid ( ));

How do we know that a pid_t is a signed integer? Good question! The answer, sim-
ply, is that we do not know. Even though we can safely assume that pid_t is an int
on Linux, such a guess still defeats the intention of the abstract type, and hurts port-
ability. Unfortunately, as with all typedefs in C, there is no easy way to print pid_t
values—this is part of the abstraction, and technically we need a pid_to_int( ) func-
tion, which we lack. Treating these values as integers, however, at least for the
purposes of printf( ), is common.
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Running a New Process
In Unix, the act of loading into memory and executing a program image is separate
from the act of creating a new process. One system call (actually, one call from a
family of calls) loads a binary program into memory, replacing the previous contents
of the address space, and begins execution of the new program. This is called execut-
ing a new program, and the functionality is provided by the exec family of calls.

A different system call is used to create a new process, which initially is a near dupli-
cate of its parent process. Often, the new process immediately executes a new
program. The act of creating a new process is called forking, and this functionality is
provided by the fork( ) system call. Two acts—first a fork, to create a new process,
and then an exec, to load a new image into that process—are thus required to exe-
cute a new program image in a new process. We will cover the exec calls first, then
fork( ).

The Exec Family of Calls
There is no single exec function; instead, there is a family of exec functions built on a
single system call. Let’s first look at the simplest of these calls, execl( ):

#include <unistd.h>

int execl (const char *path,
           const char *arg,
           ...);

A call to execl( ) replaces the current process image with a new one by loading into
memory the program pointed at by path. The parameter arg is the first argument to
this program. The ellipsis signifies a variable number of arguments—the execl( )
function is variadic, which means that additional arguments may optionally follow,
one by one. The list of arguments must be NULL-terminated.

For example, the following code replaces the currently executing program with /bin/vi:

int ret;

ret = execl ("/bin/vi", "vi", NULL);
if (ret == -1)
        perror ("execl");

Note that we follow the Unix convention and pass “vi” as the program’s first argu-
ment. The shell puts the last component of the path, the “vi,” into the first argument
when it forks/execs processes, so a program can examine its first argument, argv[0],
to discover the name of its binary image. In many cases, several system utilities that
appear as different names to the user are in fact a single program with hard links for
their multiple names. The program uses the first argument to determine its behavior.
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As another example, if you wanted to edit the file /home/kidd/hooks.txt, you could
execute the following code:

int ret;

ret = execl ("/bin/vi", "vi", "/home/kidd/hooks.txt", NULL);
if (ret == -1)
        perror ("execl");

Normally, execl( ) does not return. A successful invocation ends by jumping to the
entry point of the new program, and the just-executed code no longer exists in the
process’ address space. On error, however, execl( ) returns -1, and sets errno to indi-
cate the problem. We will look at the possible errno values later in this section.

A successful exec1( ) call changes not only the address space and process image, but
certain other attributes of the process:

• Any pending signals are lost.

• Any signals that the process is catching (see Chapter 9) are returned to their
default behavior, as the signal handlers no longer exist in the process’ address
space.

• Any memory locks (see Chapter 8) are dropped.

• Most thread attributes are returned to the default values.

• Most process statistics are reset.

• Anything related to the process’ memory, including any mapped files, is
dropped.

• Anything that exists solely in user space, including features of the C library, such
as atexit( ) behavior, is dropped.

Many properties of the process, however, do not change. For example, the pid, par-
ent pid, priority, and owning user and group all remain the same.

Normally, open files are inherited across an exec. This means the newly executed
program has full access to all of the files open in the original process, assuming it
knows the file descriptor values. However, this is often not the desired behavior. The
usual practice is to close files before the exec, although it is also possible to instruct
the kernel to do so automatically via fcntl( ).

The rest of the family

In addition to execl( ), there are five other members of the exec family:

#include <unistd.h>

int execlp (const char *file,
            const char *arg,
            ...);
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int execle (const char *path,
            const char *arg,
            ...,
            char * const envp[]);

int execv (const char *path, char *const argv[]);

int execvp (const char *file, char *const argv[]);

int execve (const char *filename,
            char *const argv[],
            char *const envp[]);

The mnemonics are simple. The l and v delineate whether the arguments are provided
via a list or an array (vector). The p denotes that the user’s full path is searched for the
given file. Commands using the p variants can specify just a filename, so long as it is
located in the user’s path. Finally, the e notes that a new environment is also supplied
for the new process. Curiously, although there is no technical reason for the omission,
the exec family contains no member that both searches the path and takes a new envi-
ronment. This is probably because the p variants were implemented for use by shells,
and shell-executed processes generally inherit their environments from the shell.

The members of the exec family that accept an array work about the same, except
that an array is constructed and passed in instead of a list. The use of an array allows
the arguments to be determined at runtime. Like the variadic list of arguments, the
array must be NULL-terminated.

The following snippet uses execvp( ) to execute vi, as we did previously:

const char *args[] = { "vi", "/home/kidd/hooks.txt", NULL };
int ret;

ret = execvp ("vi", args);
if (ret == -1)
        perror ("execvp");

Assuming /bin is in the user’s path, this works similarly to the last example.

In Linux, only one member of the exec family is a system call. The rest are wrappers
in the C library around the system call. Because variadic system calls would be diffi-
cult to implement, at best, and because the concept of the user’s path exists solely in
user space, the only option for the lone system call is execve( ). The system call pro-
totype is identical to the user call.

Error values

On success, the exec system calls do not return. On failure, the calls return -1, and
set errno to one of the following values:

E2BIG
The total number of bytes in the provided arguments list (arg) or environment
(envp) is too large.
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EACCESS
The process lacks search permission for a component in path; path is not a regu-
lar file; the target file is not marked executable; or the filesystem on which path
or file resides is mounted noexec.

EFAULT
A given pointer is invalid.

EIO
A low-level I/O error occurred (this is bad).

EISDIR
The final component in path, or the interpreter, is a directory.

ELOOP
The system encountered too many symbolic links in resolving path.

EMFILE
The invoking process has reached its limit on open files.

ENFILE
The system-wide limit on open files has been reached.

ENOENT
The target of path or file does not exist, or a needed shared library does not
exist.

ENOEXEC
The target of path or file is an invalid binary, or is intended for a different
machine architecture.

ENOMEM
There is insufficient kernel memory available to execute a new program.

ENOTDIR
A nonfinal component in path is not a directory.

EPERM
The filesystem on which path or file resides is mounted nosuid, the user is not
root, and path or file has the suid or sgid bit set.

ETXTBSY
The target of path or file is open for writing by another process.

The fork( ) System Call
A new process running the same image as the current one can be created via the
fork( ) system call:

#include <sys/types.h>
#include <unistd.h>

pid_t fork (void);
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A successful call to fork( ) creates a new process, identical in almost all aspects to
the invoking process. Both processes continue to run, returning from fork( ) as if
nothing special had happened.

The new process is called the “child” of the original process, which in turn is called
the “parent.” In the child, a successful invocation of fork( ) returns 0. In the parent,
fork( ) returns the pid of the child. The child and the parent process are identical in
nearly every facet, except for a few necessary differences:

• The pid of the child is, of course, newly allocated, and different from that of the
parent.

• The child’s parent pid is set to the pid of its parent process.

• Resource statistics are reset to zero in the child.

• Any pending signals are cleared, and not inherited by the child (see Chapter 9).

• Any acquired file locks are not inherited by the child.

On error, a child process is not created, fork( ) returns -1, and errno is set appropri-
ately. There are two possible errno values, with three possible meanings:

EAGAIN
The kernel failed to allocate certain resources, such as a new pid, or the
RLIMIT_NPROC resource limit (rlimit) has been reached (see Chapter 6).

ENOMEM
Insufficient kernel memory was available to complete the request.

Use is simple:

pid_t pid;

pid = fork ( );
if (pid > 0)
        printf ("I am the parent of pid=%d!\n", pid);
else if (!pid)
        printf ("I am the baby!\n");
else if (pid == -1)
        perror ("fork");

The most common usage of fork( ) is to create a new process in which a new binary
image is then loaded—think a shell running a new program for the user or a process
spawning a helper program. First the process forks a new process, and then the child
executes a new binary image. This “fork plus exec” combination is frequent and sim-
ple. The following example spawns a new process running the binary /bin/windlass:

pid_t pid;

pid = fork ( );
if (pid == -1)
        perror ("fork");

/* the child ... */
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if (!pid) {
        const char *args[] = { "windlass", NULL };
        int ret;

        ret = execv ("/bin/windlass", args);
        if (ret == -1) {
                perror ("execv");
                exit (EXIT_FAILURE);
        }
}

The parent process continues running with no change, other than that it now has a
new child. The call to execv( ) changes the child to running the /bin/windlass program.

Copy-on-write

In early Unix systems, forking was simple, if not naïve. Upon invocation, the kernel
created copies of all internal data structures, duplicated the process’ page table
entries, and then performed a page-by-page copy of the parent’s address space into
the child’s new address space. But this page-by-page copy was, at least from the
standpoint of the kernel, time-consuming.

Modern Unix systems behave more optimally. Instead of a wholesale copy of the par-
ent’s address space, modern Unix systems such as Linux employ copy-on-write
(COW) pages.

Copy-on-write is a lazy optimization strategy designed to mitigate the overhead of
duplicating resources. The premise is simple: if multiple consumers request read
access to their own copies of a resource, duplicate copies of the resource need not be
made. Instead, each consumer can be handed a pointer to the same resource. So long
as no consumer attempts to modify its “copy” of the resource, the illusion of exclu-
sive access to the resource remains, and the overhead of a copy is avoided. If a
consumer does attempt to modify its copy of the resource, at that point, the resource
is transparently duplicated, and the copy is given to the modifying consumer. The
consumer, never the wiser, can then modify its copy of the resource while the other
consumers continue to share the original, unchanged version. Hence the name: the
copy occurs only on write.

The primary benefit is that if a consumer never modifies its copy of the resource, a
copy is never needed. The general advantage of lazy algorithms—that they defer
expensive actions until the last possible moment—also applies.

In the specific example of virtual memory, copy-on-write is implemented on a per-
page basis. Thus, so long as a process does not modify all of its address space, a copy
of the entire address space is not required. At the completion of a fork, the parent
and child believe that they each have a unique address space, while in fact they are
sharing the parent’s original pages—which in turn may be shared with other parent
or child processes, and so on!
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The kernel implementation is simple. The pages are marked as read-only and as
copy-on-write in the kernel’s page-related data structures. If either process attempts
to modify a page, a page fault occurs. The kernel then handles the page fault by
transparently making a copy of the page; at this point, the page’s copy-on-write
attribute is cleared, and it is no longer shared.

Because modern machine architectures provide hardware-level support for copy-
on-write in their memory management units (MMUs), the charade is simple and
easy to implement.

Copy-on-write has yet a bigger benefit in the case of forking. Because a large percent-
age of forks are followed by an exec, copying the parent’s address space into the
child’s address space is often a complete waste of time: if the child summarily exe-
cutes a new binary image, its previous address space is wiped out. Copy-on-write
optimizes for this case.

vfork( )

Before the arrival of copy-on-write pages, Unix designers were concerned with the
wasteful address-space copy during a fork that is immediately followed by an exec.
BSD developers therefore unveiled the vfork( ) system call in 3.0BSD:

#include <sys/types.h>
#include <unistd.h>

pid_t vfork (void);

A successful invocation of vfork( ) has the same behavior as fork( ), except that the
child process must immediately issue a successful call to one of the exec functions, or
exit by calling _exit( ) (discussed in the next section). The vfork( ) system call
avoids the address space and page table copies by suspending the parent process
until the child terminates or executes a new binary image. In the interim, the parent
and the child share—without copy-on-write semantics—their address space and
page table entries. In fact, the only work done during a vfork( ) is the duplication of
internal kernel data structures. Consequently, the child must not modify any mem-
ory in the address space.

The vfork( ) system call is a relic, and should never have been implemented on
Linux, although it should be noted that even with copy-on-write, vfork( ) is faster
than fork( ) because the page table entries need not be copied.* Nonetheless, the
advent of copy-on-write pages weakens any argument for an alternative to fork( ).
Indeed, until the 2.2.0 Linux kernel, vfork( ) was simply a wrapper around fork( ).
As the requirements for vfork( ) are weaker than the requirements for fork( ), such a
vfork( ) implementation is feasible.

* Although not currently part of the 2.6 Linux kernel, a patch implementing copy-on-write shared page table
entries has been floated on the Linux Kernel Mailing List (lkml). Should it be merged, there would be abso-
lutely no benefit to using vfork( ).
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Strictly speaking, no vfork( ) implementation is bug-free: consider the situation if the
exec call were to fail! The parent would be suspended indefinitely while the child fig-
ured out what to do or until it exited.

Terminating a Process
POSIX and C89 both define a standard function for terminating the current process:

#include <stdlib.h>

void exit (int status);

A call to exit( ) performs some basic shutdown steps, and then instructs the kernel
to terminate the process. This function has no way of returning an error—in fact, it
never returns at all. Therefore, it does not make sense for any instructions to follow
the exit( ) call.

The status parameter is used to denote the process’ exit status. Other programs—as
well as the user at the shell—can check this value. Specifically, status & 0377 is
returned to the parent. We will look at retrieving the return value later in this chapter.

EXIT_SUCCESS and EXIT_FAILURE are defined as portable ways to represent success and
failure. On Linux, 0 typically represents success; a nonzero value, such as 1 or -1,
corresponds to failure.

Consequently, a successful exit is as simple as this one-liner:

exit (EXIT_SUCCESS);

Before terminating the process, the C library performs the following shutdown steps,
in order:

1. Call any functions registered with atexit( ) or on_exit( ), in the reverse order of
their registration. (We will discuss these functions later in this chapter.)

2. Flush all open standard I/O streams (see Chapter 3).

3. Remove any temporary files created with the tmpfile( ) function.

These steps finish all the work the process needs to do in user space, so exit( )
invokes the system call _exit( ) to let the kernel handle the rest of the termination
process:

#include <unistd.h>

void _exit (int status);

When a process exits, the kernel cleans up all of the resources that it created on the
process’ behalf that are no longer in use. This includes, but is not limited to, allo-
cated memory, open files, and System V semaphores. After cleanup, the kernel
destroys the process and notifies the parent of its child’s demise.
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Applications can call _exit( ) directly, but such a move seldom makes sense: most
applications need to do some of the cleanup provided by a full exit, such as flushing
the stdout stream. Note, however, that vfork( ) users should call _exit( ), and not
exit( ), after a fork.

In a brilliant stroke of redundancy, the ISO C99 standard added the
_Exit( ) function, which has identical behavior to _exit( ):

#include <stdlib.h>

void _Exit (int status);

Other Ways to Terminate
The classic way to end a program is not via an explicit system call, but by simply
“falling off the end” of the program. In the case of C, this happens when the main( )
function returns. The “falling off the end” approach, however, still invokes a system
call: the compiler simply inserts an implicit _exit( ) after its own shutdown code. It
is good coding practice to explicitly return an exit status, either via exit( ), or by
returning a value from main( ). The shell uses the exit value for evaluating the suc-
cess or failure of commands. Note that a successful return is exit(0), or a return
from main( ) of 0.

A process can also terminate if it is sent a signal whose default action is to terminate
the process. Such signals include SIGTERM and SIGKILL (see Chapter 9).

A final way to end a program’s execution is by incurring the wrath of the kernel. The
kernel can kill a process for executing an illegal instruction, causing a segmentation
violation, running out of memory, and so on.

atexit( )
POSIX 1003.1-2001 defines, and Linux implements, the atexit( ) library call, used
to register functions to be invoked on process termination:

#include <stdlib.h>

int atexit (void (*function)(void));

A successful invocation of atexit( ) registers the given function to run during nor-
mal process termination; i.e., when a process is terminated via either exit( ) or a
return from main( ). If a process invokes an exec function, the list of registered func-
tions is cleared (as the functions no longer exist in the new process’ address space). If
a process terminates via a signal, the registered functions are not called.

The given function takes no parameters, and returns no value. A prototype has the
form:

void my_function (void);
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Functions are invoked in the reverse order that they are registered. That is, the func-
tions are stored in a stack, and the last in is the first out (LIFO). Registered functions
must not call exit( ), lest they begin an endless recursion. If a function needs to end
the termination process early, it should call _exit( ). Such behavior is not recom-
mended, however, as a possibly important function may then not run.

The POSIX standard requires that atexit( ) support at least ATEXIT_MAX registered
functions, and that this value has to be at least 32. The exact maximum may be
obtained via sysconf( ) and the value of _SC_ATEXIT_MAX:

long atexit_max;

atexit_max = sysconf (_SC_ATEXIT_MAX);
printf ("atexit_max=%ld\n", atexit_max);

On success, atexit( ) returns 0. On error, it returns -1.

Here’s a simple example:

#include <stdio.h>
#include <stdlib.h>

void out (void)
{
        printf ("atexit( ) succeeded!\n");
}

int main (void)
{
        if (atexit (out))
                fprintf(stderr, "atexit( ) failed!\n");

        return 0;
}

on_exit( )
SunOS 4 defined its own equivalent to atexit( ), and Linux’s glibc supports it:

#include <stdlib.h>

int on_exit (void (*function)(int , void *), void *arg);

This function works the same as atexit( ), but the registered function’s prototype is
different:

void my_function (int status, void *arg);

The status argument is the value passed to exit( ) or returned from main( ). The arg
argument is the second parameter passed to on_exit( ). Care must be taken to ensure
that the memory pointed at by arg is valid when the function is ultimately invoked.

The latest version of Solaris no longer supports this function. You should use the
standards-compliant atexit( ) instead.
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SIGCHLD
When a process terminates, the kernel sends the signal SIGCHLD to the parent. By
default, this signal is ignored, and no action is taken by the parent. Processes can
elect to handle this signal, however, via the signal( ) or sigaction( ) system calls.
These calls, and the rest of the wonderful world of signals, are covered in Chapter 9.

The SIGCHLD signal may be generated and dispatched at any time, as a child’s termi-
nation is asynchronous with respect to its parent. But often, the parent wants to
learn more about its child’s termination, or even explicitly wait for the event’s occur-
rence. This is possible with the system calls discussed next.

Waiting for Terminated Child Processes
Receiving notification via a signal is nice, but many parents want to obtain more
information when one of their child processes terminates—for example, the child’s
return value.

If a child process were to entirely disappear when terminated, as one might expect,
no remnants would remain for the parent to investigate. Consequently, the original
designers of Unix decided that when a child dies before its parent, the kernel should
put the child into a special process state. A process in this state is known as a zom-
bie. Only a minimal skeleton of what was once the process—some basic kernel data
structures containing potentially useful data—is retained. A process in this state
waits for its parent to inquire about its status (a procedure known as waiting on the
zombie process). Only after the parent obtains the information preserved about the
terminated child does the process formally exit and cease to exist even as a zombie.

The Linux kernel provides several interfaces for obtaining information about termi-
nated children. The simplest such interface, defined by POSIX, is wait( ):

#include <sys/types.h>
#include <sys/wait.h>

pid_t wait (int *status);

A call to wait( ) returns the pid of a terminated child, or -1 on error. If no child has
terminated, the call blocks until a child terminates. If a child has already terminated,
the call returns immediately. Consequently, a call to wait( ) in response to news of a
child’s demise—say, upon receipt of a SIGCHLD—will always return without blocking.

On error, there are two possible errno values:

ECHILD
The calling process does not have any children.

EINTR
A signal was received while waiting, and the call returned early.
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If not NULL, the status pointer contains additional information about the child.
Because POSIX allows implementations to define the bits in status as they see fit, the
standard provides a family of macros for interpreting the parameter:

#include <sys/wait.h>

int WIFEXITED (status);
int WIFSIGNALED (status);
int WIFSTOPPED (status);
int WIFCONTINUED (status);

int WEXITSTATUS (status);
int WTERMSIG (status);
int WSTOPSIG (status);
int WCOREDUMP (status);

Either of the first two macros may return true (a nonzero value), depending on how
the process terminated. The first, WIFEXITED, returns true if the process terminated
normally—that is, if the process called _exit( ). In this case, the macro WEXITSTATUS
provides the low-order eight bits that were passed to _exit( ).

WIFSIGNALED returns true if a signal caused the process’ termination (see Chapter 9 for
further discussion on signals). In this case, WTERMSIG returns the number of the signal
that caused the termination, and WCOREDUMP returns true if the process dumped core
in response to receipt of the signal. WCOREDUMP is not defined by POSIX, although
many Unix systems, Linux included, support it.

WIFSTOPPED and WIFCONTINUED return true if the process was stopped or continued,
respectively, and is currently being traced via the ptrace( ) system call. These condi-
tions are generally applicable only when implementing a debugger, although when
used with waitpid( ) (see the following subsection), they are used to implement job
control, too. Normally, wait( ) is used only to communicate information about a
process’ termination. If WIFSTOPPED is true, WSTOPSIG provides the number of the sig-
nal that stopped the process. WIFCONTINUED is not defined by POSIX, although future
standards define it for waitpid( ). As of the 2.6.10 Linux kernel, Linux provides this
macro for wait( ), too.

Let’s look at an example program that uses wait( ) to figure out what happened to its
child:

#include <unistd.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/wait.h>

int main (void)
{
        int status;
        pid_t pid;

        if (!fork ( ))
                return 1;
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        pid = wait (&status);
        if (pid == -1)
                perror ("wait");

        printf ("pid=%d\n", pid);

        if (WIFEXITED (status))
                printf ("Normal termination with exit status=%d\n",
                        WEXITSTATUS (status));

        if (WIFSIGNALED (status))
                printf ("Killed by signal=%d%s\n",
                        WTERMSIG (status),
                        WCOREDUMP (status) ? " (dumped core)" : "");

        if (WIFSTOPPED (status))
                printf ("Stopped by signal=%d\n",
                        WSTOPSIG (status));

        if (WIFCONTINUED (status))
                printf ("Continued\n");

       return 0;
}

This program forks a child, which immediately exits. The parent process then exe-
cutes the wait( ) system call to determine the status of its child. The process prints
the child’s pid, and how it died. Because in this case the child terminated by return-
ing from main( ), we know that we will see output similar to the following:

$ ./wait
pid=8529
Normal termination with exit status=1

If, instead of having the child return, we have it call abort( ),* which sends itself the
SIGABRT signal, we will instead see something resembling the following:

$ ./wait
pid=8678
Killed by signal=6

Waiting for a Specific Process
Observing the behavior of child processes is important. Often, however, a process
has multiple children, and does not wish to wait for all of them, but rather for a spe-
cific child process. One solution would be to make multiple invocations of wait( ),
each time noting the return value. This is cumbersome, though—what if you later
wanted to check the status of a different terminated process? The parent would have
to save all of the wait( ) output, in case it needed it later.

* Defined in the header <stdlib.h>.



142 | Chapter 5: Process Management

If you know the pid of the process you want to wait for, you can use the waitpid( )
system call:

#include <sys/types.h>
#include <sys/wait.h>

pid_t waitpid (pid_t pid, int *status, int options);

The waitpid( ) call is a more powerful version of wait( ). Its additional parameters
allow for fine-tuning.

The pid parameter specifies exactly which process or processes to wait for. Its values
fall into four camps:

< -1
Wait for any child process whose process group ID is equal to the absolute value of
this value. For example, passing -500 waits for any process in process group 500.

-1
Wait for any child process. This is the same behavior as wait( ).

0
Wait for any child process that belongs to the same process group as the calling
process.

> 0
Wait for any child process whose pid is exactly the value provided. For exam-
ple, passing 500 waits for the child process with pid 500.

The status parameter works identically to the sole parameter to wait( ), and can be
operated on using the macros discussed previously.

The options parameter is a binary OR of zero or more of the following options:

WNOHANG
Do not block, but return immediately if no matching child process has already
terminated (or stopped or continued).

WUNTRACED
If set, WIFSTOPPED is set, even if the calling process is not tracing the child pro-
cess. This flag allows for the implementation of more general job control, as in a
shell.

WCONTINUED
If set, WIFCONTINUED is set even if the calling process is not tracing the child pro-
cess. As with WUNTRACED, this flag is useful for implementing a shell.

On success, waitpid() returns the pid of the process whose state has changed. If
WNOHANG is specified, and the specified child or children have not yet changed state,
waitpid() returns 0. On error, the call returns -1, and errno is set to one of three values:
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ECHILD
The process or processes specified by the pid argument do not exist, or are not
children of the calling process.

EINTR
The WNOHANG option was not specified, and a signal was received while waiting.

EINVAL
The options argument is invalid.

As an example, assume your program wants to grab the return value of the specific
child with pid 1742 but return immediately if the child has not yet terminated. You
might code up something similar to the following:

int status;
pid_t pid;

pid = waitpid (1742, &status, WNOHANG);
if (pid == -1)
        perror ("waitpid");
else {
        printf ("pid=%d\n", pid);

        if (WIFEXITED (status))
                printf ("Normal termination with exit status=%d\n",
                        WEXITSTATUS (status));

        if (WIFSIGNALED (status))
                printf ("Killed by signal=%d%s\n",
                        WTERMSIG (status),
                        WCOREDUMP (status) ? " (dumped core)" : "");
}

As a final example, note that the following usage of wait( ):

wait (&status);

is identical to the following usage of waitpid( ):

waitpid (-1, &status, 0);

Even More Waiting Versatility
For applications that require even greater versatility in their waiting-for-children
functionality, the XSI extension to POSIX defines, and Linux provides, waitid( ):

#include <sys/wait.h>

int waitid (idtype_t idtype,
            id_t id,
            siginfo_t *infop,
            int options);
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As with wait( ) and waitpid( ), waitid( ) is used to wait for and obtain information
about the status change (termination, stopping, continuing) of a child process. It pro-
vides even more options, but it offers them with the tradeoff of greater complexity.

Like waitpid( ), waitid( ) allows the developer to specify what to wait for. However,
waitid( ) accomplishes this task with not one, but two parameters. The idtype and
id arguments specify which children to wait for, accomplishing the same goal as the
sole pid argument in waitpid( ). idtype may be one of the following values:

P_PID
Wait for a child whose pid matches id.

P_GID
Wait for a child whose process group ID matches id.

P_ALL
Wait for any child; id is ignored.

The id argument is the rarely seen id_t type, which is a type representing a generic
identification number. It is employed in case future implementations add a new
idtype value, and supposedly offers greater insurance that the predefined type will be
able to hold the newly created identifier. The type is guaranteed to be sufficiently
large to hold any pid_t. On Linux, developers may use it as if it were a pid_t—for
example, by directly passing pid_t values, or numeric constants. Pedantic program-
mers, however, are free to typecast.

The options parameter is a binary OR of one or more of the following values:

WEXITED
The call will wait for children (as determined by id and idtype) that have
terminated.

WSTOPPED
The call will wait for children that have stopped execution in response to receipt
of a signal.

WCONTINUED
The call will wait for children that have continued execution in response to
receipt of a signal.

WNOHANG
The call will never block, but will return immediately if no matching child pro-
cess has already terminated (or stopped, or continued).

WNOWAIT
The call will not remove the matching process from the zombie state. The pro-
cess may be waited upon in the future.

Upon successfully waiting for a child, waitid( ) fills in the infop parameter, which
must point to a valid siginfo_t type. The exact layout of the siginfo_t structure is
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implementation-specific,* but a handful of fields are valid after a call to waitid( ).
That is, a successful invocation will ensure that the following fields are filled in:

si_pid
The child’s pid.

si_uid
The child’s uid.

si_code
Set to one of CLD_EXITED, CLD_KILLED, CLD_STOPPED, or CLD_CONTINUED in response
to the child terminating, dying via signal, stopping via signal, or continuing via
signal, respectively.

si_signo
 Set to SIGCHLD.

si_status
If si_code is CLD_EXITED, this field is the exit code of the child process. Other-
wise, this field is the number of the signal delivered to the child that caused the
state change.

On success, waitid( ) returns 0. On error, waitid( ) returns -1, and errno is set to one
of the following values:

ECHLD
The process or processes delineated by id and idtype do not exist.

EINTR
WNOHANG was not set in options, and a signal interrupted execution.

EINVAL
The options argument or the combination of the id and idtype arguments is
invalid.

The waitid( ) function provides additional, useful semantics not found in wait( ) and
waitpid( ). In particular, the information retrievable from the siginfo_t structure
may prove quite valuable. If such information is not needed, however, it may make
more sense to stick to the simpler functions, which are supported on a wider range of
systems, and thus are portable to more non-Linux systems.

BSD Wants to Play: wait3( ) and wait4( )
While waitpid( ) derives from AT&T’s System V Release 4, BSD takes its own route,
and provides two other functions used to wait for a child to change state:

#include <sys/types.h>
#include <sys/time.h>

* Indeed, the siginfo_t structure is very complicated on Linux. For its definition, see /usr/include/bits/siginfo.h.
We will study this structure in more detail in Chapter 9.
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#include <sys/resource.h>
#include <sys/wait.h>

pid_t wait3 (int *status,
             int options,
             struct rusage *rusage);

pid_t wait4 (pid_t pid,
             int *status,
             int options,
             struct rusage *rusage);

The 3 and 4 come from the fact that these two functions are three- and four-parameter
versions, respectively, of wait().

The functions work similarly to waitpid( ), with the exception of the rusage argu-
ment. The following wait3( ) invocation:

pid = wait3 (status, options, NULL);

is equivalent to the following waitpid( ) call:

pid = waitpid (-1, status, options);

And the following wait4( ) invocation:

pid = wait4 (pid, status, options, NULL);

is equivalent to this waitpid( ) call:

pid = waitpid (pid, status, options);

That is, wait3( ) waits for any child to change state, and wait4( ) waits for the spe-
cific child identified by the pid parameter to change state. The options argument
behaves the same as with waitpid( ).

As mentioned earlier, the big difference between these calls and waitpid( ) is the
rusage parameter. If it is non-NULL, the function fills out the pointer at rusage with
information about the child. This structure provides information about the child’s
resource usage:

#include <sys/resource.h>

struct rusage {
        struct timeval ru_utime; /* user time consumed */
        struct timeval ru_stime; /* system time consumed */
        long ru_maxrss;   /* maximum resident set size */
        long ru_ixrss;    /* shared memory size */
        long ru_idrss;    /* unshared data size */
        long ru_isrss;    /* unshared stack size */
        long ru_minflt;   /* page reclaims */
        long ru_majflt;   /* page faults */
        long ru_nswap;    /* swap operations */
        long ru_inblock;  /* block input operations */
        long ru_oublock;  /* block output operations */
        long ru_msgsnd;   /* messages sent */
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        long ru_msgrcv;   /* messages received */
        long ru_nsignals; /* signals received */
        long ru_nvcsw;    /* voluntary context switches */
        long ru_nivcsw;   /* involuntary context switches */
};

I will address resource usage further in the next chapter.

On success, these functions return the pid of the process that changed state. On fail-
ure, they return -1, and set errno to one of the same error values returned by
waitpid( ).

Because wait3( ) and wait4( ) are not POSIX-defined,* it is advisable to use them only
when resource-usage information is critical. Despite the lack of POSIX standardiza-
tion, however, nearly every Unix system supports these two calls.

Launching and Waiting for a New Process
Both ANSI C and POSIX define an interface that couples spawning a new process
and waiting for its termination—think of it as synchronous process creation. If a pro-
cess is spawning a child only to immediately wait for its termination, it makes sense
to use this interface:

#define _XOPEN_SOURCE    /* if we want WEXITSTATUS, etc. */
#include <stdlib.h>

int system (const char *command);

The system( ) function is so named because the synchronous process invocation is
called shelling out to the system. It is common to use system( ) to run a simple utility
or shell script, often with the explicit goal of simply obtaining its return value.

A call to system() invokes the command provided by the command parameter, including
any additional arguments. The command parameter is suffixed to the arguments /bin/sh -c.
In this sense, the parameter is passed wholesale to the shell.

On success, the return value is the return status of the command as provided by
wait( ). Consequently, the exit code of the executed command is obtained via
WEXITSTATUS. If invoking /bin/sh itself failed, the value given by WEXITSTATUS is the
same as that returned by exit(127). Because it is also possible for the invoked com-
mand to return 127, there is no surefire method to check whether the shell itself
returned that error. On error, the call returns -1.

If command is NULL, system( ) returns a nonzero value if the shell /bin/sh is available,
and 0 otherwise.

* wait3( ) was included in the original Single UNIX Specification, but it has since been removed.
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During execution of the command, SIGCHLD is blocked, and SIGINT and SIGQUIT are
ignored. Ignoring SIGINT and SIGQUIT has several implications, particularly if system( )
is invoked inside a loop. If calling system( ) from within a loop, you should ensure
that the program properly checks the exit status of the child. For example:

do {
        int ret;

        ret = system ("pidof rudderd");
        if (WIFSIGNALED (ret) &&
            (WTERMSIG (ret) == SIGINT ||
             WTERMSIG (ret) == SIGQUIT))
                break; /* or otherwise handle */
} while (1);

Implementing system( ) using fork( ), a function from the exec family, and waitpid( )
is a useful exercise. You should attempt this yourself, as it ties together many of the
concepts of this chapter. In the spirit of completeness, however, here is a sample
implementation:

/*
 * my_system - synchronously spawns and waits for the command
 * "/bin/sh -c <cmd>".
 *
 * Returns -1 on error of any sort, or the exit code from the
 * launched process. Does not block or ignore any signals.
 */
int my_system (const char *cmd)
{
        int status;
        pid_t pid;

        pid = fork ( );
        if (pid == -1)
                return -1;
        else if (pid == 0) {
                const char *argv[4];

                argv[0] = "sh";
                argv[1] = "-c";
                argv[2] = cmd;
                argv[3] = NULL;
                execv ("/bin/sh", argv);

                exit (-1);
        }

        if (waitpid (pid, &status, 0) == -1)
                return -1;
        else if (WIFEXITED (status))
                return WEXITSTATUS (status);

        return -1;
}
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Note that this example does not block or disable any signals, unlike the official
system( ). This behavior may be better or worse, depending on your program’s situa-
tion, but leaving at least SIGINT unblocked is often smart because it allows the
invoked command to be interrupted in the way a user normally expects. A better
implementation could add additional pointers as parameters that, when non-NULL,
signify errors currently differentiable from each other. For example, one might add
fork_failed and shell_failed.

Zombies
As discussed earlier, a process that has terminated, but that has not yet been waited
upon by its parent is called a “zombie.” Zombie processes continue to consume
system resources, although only a small percentage—enough to maintain a mere
skeleton of what they once were. These resources remain so that parent processes
that want to check up on the status of their children can obtain information relating
to the life and termination of those processes. Once the parent does so, the kernel
cleans up the process for good and the zombie ceases to exist.

However, anyone who has used Unix for a good while is sure to have seen zombie
processes sitting around. These processes, often called ghosts, have irresponsible par-
ents. If your application forks a child process, it is your application’s responsibility
(unless it is short-lived, as you will see shortly) to wait on the child, even if it will
merely discard the information gleaned. Otherwise, all of your process’ children will
become ghosts and live on, crowding the system’s process listing, and generating dis-
gust at your application’s sloppy implementation.

What happens, however, if the parent process dies before the child, or if it dies
before it has a chance to wait on its zombie children? Whenever a process termi-
nates, the Linux kernel walks a list of its children, and reparents all of them to the
init process (the process with a pid value of 1). This guarantees that no process is
ever without an immediate parent. The init process, in turn, periodically waits on all
of its children, ensuring that none remain zombies for too long—no ghosts! Thus, if
a parent dies before its children or does not wait on its children before exiting, the
child processes are eventually reparented to init and waited upon, allowing them to
fully exit. Although doing so is still considered good practice, this safeguard means
that short-lived processes need not worry excessively about waiting on all of their
children.

Users and Groups
As mentioned earlier in this chapter, and discussed in Chapter 1, processes are asso-
ciated with users and groups. The user and group identifiers are numeric values
represented by the C types uid_t and gid_t, respectively. The mapping between
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numeric values and human-readable names—as in the root user having the uid 0—is
performed in user space using the files /etc/passwd and /etc/group. The kernel deals
only with the numeric values.

In a Linux system, a process’ user and group IDs dictate the operations that the pro-
cess may undertake. Processes must therefore run under the appropriate users and
groups. Many processes run as the root user. However, best practices in software
development encourage the doctrine of least-privileged rights, meaning that a pro-
cess should execute with the minimum level of rights possible. This requirement is
dynamic: if a process requires root privileges to perform an operation early in its life,
but does not require these extensive privileges thereafter, it should drop root privileges
as soon as possible. To this end, many processes—particularly those that need root
privileges to carry out certain operations—often manipulate their user or group IDs.

Before we can look at how this is accomplished, we need to cover the complexities of
user and group IDs.

Real, Effective, and Saved User and Group IDs

The following discussion focuses on user IDs, but the situation is iden-
tical for group IDs.

There are, in fact, not one, but four user IDs associated with a process: the real,
effective, saved, and filesystem user IDs. The real user ID is the uid of the user who
originally ran the process. It is set to the real user ID of the process’ parent, and does
not change during an exec call. Normally, the login process sets the real user ID of
the user’s login shell to that of the user, and all of the user’s processes continue to
carry this user ID. The superuser (root) may change the real user ID to any value, but
no other user can change this value.

The effective user ID is the user ID that the process is currently wielding. Permission
verifications normally check against this value. Initially, this ID is equal to the real
user ID, because when a process forks, the effective user ID of the parent is inherited
by the child. Furthermore, when the process issues an exec call, the effective user is
usually unchanged. But, it is during the exec call that the key difference between real
and effective IDs emerges: by executing a setuid (suid) binary, the process can change
its effective user ID. To be exact, the effective user ID is set to the user ID of the
owner of the program file. For instance, because the /usr/bin/passwd file is a setuid
file, and root is its owner, when a normal user’s shell spawns a process to exec this
file, the process takes on the effective user ID of root regardless of who the executing
user is.

Nonprivileged users may set the effective user ID to the real or the saved user ID, as
you’ll see momentarily. The superuser may set the effective user ID to any value.
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The saved user ID is the process’ original effective user ID. When a process forks, the
child inherits the saved user ID of its parent. Upon an exec call, however, the kernel
sets the saved user ID to the effective user ID, thereby making a record of the effec-
tive user ID at the time of the exec. Nonprivileged users may not change the saved
user ID; the superuser can change it to the same value as the real user ID.

What is the point of all these values? The effective user ID is the value that matters:
it’s the user ID that is checked in the course of validating a process’ credentials. The
real user ID and saved user ID act as surrogates, or potential user ID values that non-
root processes are allowed to switch to and from. The real user ID is the effective
user ID belonging to the user actually running the program, and the saved user ID is
the effective user ID before a suid binary caused a change during exec.

Changing the Real or Saved User or Group ID
The user and group IDs are set via two system calls:

#include <sys/types.h>
#include <unistd.h>

int setuid (uid_t uid);
int setgid (gid_t gid);

A call to setuid( ) sets the effective user ID of the current process. If the current
effective user ID of the process is 0 (root), the real and saved user IDs are also set.
The root user may provide any value for uid, thereby setting all three of the user ID
values to uid. A nonroot user is allowed only to provide the real or saved user ID for
uid. In other words, a nonroot user can only set the effective user ID to one of those
values.

On success, setuid( ) returns 0. On error, the call returns -1, and errno is set to one
of the following values:

EAGAIN
uid is different from the real user ID, and setting the real user ID to uid will put
the user over its NPROC rlimit (which specifies the number of processes that a user
may own).

EPERM
The user is not root, and uid is neither the effective nor the saved user ID.

The preceding discussion also applies to groups—simply replace setuid( ) with
setgid( ), and uid with gid.

Changing the Effective User or Group ID
Linux provides two POSIX-mandated functions for setting the effective user and
group IDs of the currently executing process:

#include <sys/types.h>
#include <unistd.h>
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int seteuid (uid_t euid);
int setegid (gid_t egid);

A call to seteuid( ) sets the effective user ID to euid. Root may provide any value for
euid. Nonroot users may set the effective user ID only to the real or saved user ID.
On success, seteuid( ) returns 0. On failure, it returns -1, and sets errno to EPERM,
which signifies that the current process is not owned by root, and that euid is equal
to neither the real nor the saved user ID.

Note that in the nonroot case, seteuid( ) and setuid( ) behave the same. It is thus
standard practice and a good idea to always use seteuid( ), unless your process tends
to run as root, in which case setuid( ) makes more sense.

The preceding discussion also applies to groups—simply replace seteuid( ) with
setegid( ), and euid with egid.

Changing the User and Group IDs, BSD Style
BSD settled on its own interfaces for setting the user and group IDs. Linux provides
these interfaces for compatibility:

#include <sys/types.h>
#include <unistd.h>

int setreuid (uid_t ruid, uid_t euid);
int setregid (gid_t rgid, gid_t egid);

A call to setreuid( ) sets the real and effective user IDs of a process to ruid and euid,
respectively. Specifying a value of -1 for either parameter leaves the associated user
ID unchanged. Nonroot processes are only allowed to set the effective user ID to the
real or saved user ID, and the real user ID to the effective user ID. If the real user ID
is changed, or if the effective user ID is changed to a value not equal to the previous
real user ID value, the saved user ID is changed to the new effective user ID. At least,
that’s how Linux and most other Unix systems react to such changes; the behavior is
left undefined by POSIX.

On success, setreuid( ) returns 0. On failure, it returns -1, and sets errno to EPERM,
which signifies that the current process is not owned by root, and that euid is equal to
neither the real nor the saved user ID, or that ruid is not equal to the effective user ID.

The preceding discussion also applies to groups—simply replace setreuid( ) with
setregid( ), ruid with rgid, and euid with egid.

Changing the User and Group IDs, HP-UX Style
You may feel the situation is growing insane, but HP-UX, Hewlett-Packard’s Unix
system, has also introduced its own mechanisms for setting a process’ user and
group IDs. Linux follows along and provides these interfaces:
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#define _GNU_SOURCE
#include <unistd.h>

int setresuid (uid_t ruid, uid_t euid, uid_t suid);
int setresgid (gid_t rgid, gid_t egid, gid_t sgid);

A call to setresuid( ) sets the real, effective, and saved user IDs to ruid, euid, and
suid, respectively. Specifying a value of -1 for any of the parameters leaves its value
unchanged.

The root user may set any user ID to any value. Nonroot users may set any user ID to
the current real, effective, or saved user ID. On success, setuid( ) returns 0. On error,
the call returns -1, and errno is set to one of the following values:

EAGAIN
uid does not match the real user ID, and setting the real user ID to uid will put
the user over its NPROC rlimit (which specifies the number of processes that a user
may own).

EPERM
The user is not root and attempted to set new values for the real, effective, or
saved user ID that did not match one of the current real, effective, or saved user
IDs.

The preceding discussion also applies to groups—simply replace setresuid( ) with
setresgid( ), ruid with rgid, euid with egid, and suid with sgid.

Preferred User/Group ID Manipulations
Nonroot processes should use seteuid( ) to change their effective user IDs. Root pro-
cesses should use setuid( ) if they wish to change all three user IDs, and seteuid( ) if
they wish to temporarily change just the effective user ID. These functions are sim-
ple, and behave in accordance with POSIX, properly taking into account saved user
IDs.

Despite providing additional functionality, the BSD and HP-UX style functions do
not allow for any useful changes that setuid( ) and seteuid( ) do not.

Support for Saved User IDs
The existence of the saved user and group IDs is mandated by IEEE Std 1003.1-2001
(POSIX 2001), and Linux has supported these IDs since the early days of the 1.1.38
kernel. Programs written only for Linux may rest assured of the existence of the
saved user IDs. Programs written for older Unix systems should check for the macro
_POSIX_SAVED_IDS before making any references to a saved user or group ID.

In the absence of saved user and group IDs, the preceding discussions are still valid;
just ignore any parts of the rules that mention the saved user or group ID.
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Obtaining the User and Group IDs
These two system calls return the real user and group IDs, respectively:

#include <unistd.h>
#include <sys/types.h>

uid_t getuid (void);
gid_t getgid (void);

They cannot fail. Likewise, these two system calls return the effective user and group
IDs, respectively:

#include <unistd.h>
#include <sys/types.h>

uid_t geteuid (void);
gid_t getegid (void);

These two system calls cannot fail, either.

Sessions and Process Groups
Each process is a member of a process group, which is a collection of one or more pro-
cesses generally associated with each other for the purposes of job control. The primary
attribute of a process group is that signals may be sent to all processes in the group: a
single action can terminate, stop, or continue all processes in the same process group.

Each process group is identified by a process group ID (pgid), and has a process group
leader. The process group ID is equal to the pid of the process group leader. Process
groups exist so long as they have one remaining member. Even if the process group
leader terminates, the process group continues to exist.

When a new user first logs into a machine, the login process creates a new session
that consists of a single process, the user’s login shell. The login shell functions as the
session leader. The pid of the session leader is used as the session ID. A session is a
collection of one or more process groups. Sessions arrange a logged-in user’s activi-
ties, and associate that user with a controlling terminal, which is a specific tty device
that handles the user’s terminal I/O. Consequently, sessions are largely the business
of shells. In fact, nothing else really cares about them.

While process groups provide a mechanism to address signals to all of their mem-
bers, making job control and other shell functions easy, sessions exist to consolidate
logins around controlling terminals. Process groups in a session are divided into a
single foreground process group, and zero or more background process groups. When
a user exits a terminal, a SIGQUIT is sent to all processes in the foreground process
group. When a network disconnect is detected by a terminal, a SIGHUP is sent to all
processes in the foreground process group. When the user enters the interrupt key
(generally Ctrl-C), a SIGINT is sent to all processes in the foreground process group.
Thus, sessions make managing terminals and logins easier for shells.
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As a review, say a user logs into the system and her login shell, bash, has the pid
1700. The user’s bash instance is now the sole member and leader of a new process
group, with the process group ID 1700. This process group is inside a new session
with the session ID 1700, and bash is the sole member and the leader of this session.
New commands that the user runs in the shell run in new process groups within ses-
sion 1700. One of these process groups—the one connected directly to the user and
in control of the terminal—is the foreground process group. All the other process
groups are background process groups.

On a given system, there are many sessions: one for each user login session, and oth-
ers for processes not tied to user login sessions, such as daemons. Daemons tend to
create their own sessions to avoid the issues of association with other sessions that
may exit.

Each of these sessions contains one or more process groups, and each process group
contains at least one process. Process groups that contain more than one process are
generally implementing job control.

A command on the shell such as this one:

$ cat ship-inventory.txt | grep booty | sort

results in one process group containing three processes. This way, the shell can sig-
nal all three processes in one fell swoop. Because the user has typed this command
on the console without a trailing ampersand, we can also say that this process group
is in the foreground. Figure 5-1 illustrates the relationship between sessions, process
groups, processes, and controlling terminals.

Linux provides several interfaces for setting and retrieving the session and process
group associated with a given process. These are primarily of use for shells, but can
also be useful to processes such as daemons that want to get out of the business of
sessions and process groups altogether.

Figure 5-1. Relationship between sessions, process groups, processes, and controlling terminals

Session

Process group

Process

Controlling terminal
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Session System Calls
Shells create new sessions on login. They do so via a special system call, which makes
creating a new session easy:

#include <unistd.h>

pid_t setsid (void);

A call to setsid( ) creates a new session, assuming that the process is not already a
process group leader. The calling process is made the session leader and sole member
of the new session, which has no controlling tty. The call also creates a new process
group inside the session, and makes the calling process the process group leader and
sole member. The new session’s and process group’s IDs are set to the calling pro-
cess’ pid.

In other words, setsid( ) creates a new process group inside of a new session, and
makes the invoking process the leader of both. This is useful for daemons, which do
not want to be members of existing sessions, or to have controlling terminals, and for
shells, which want to create a new session for each user upon login.

On success, setsid( ) returns the session ID of the newly created session. On error,
the call returns -1. The only possible errno code is EPERM, which indicates that the
process is currently a process group leader. The easiest way to ensure that any given
process is not a process group leader is to fork, have the parent terminate, and have
the child perform the setsid( ). For example:

pid_t pid;

pid = fork ( );
if (pid == -1) {
        perror ("fork");
        return -1;
} else if (pid != 0)
        exit (EXIT_SUCCESS);

if (setsid ( ) == -1) {
        perror ("setsid");
        return -1;
}

Obtaining the current session ID, while less useful, is also possible:

#define _XOPEN_SOURCE 500
#include <unistd.h>

pid_t getsid (pid_t pid);

A call to getsid() returns the session ID of the process identified by pid. If the pid argu-
ment is 0, the call returns the session ID of the calling process. On error, the call returns
-1. The only possible errno value is ESRCH, indicating that pid does not correspond to a
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valid process. Note that other Unix systems may also set errno to EPERM, indicating that
pid and the invoking process do not belong to the same session; Linux does not return
this error, and happily returns the session ID of any process.

Usage is rare and primarily for diagnostic purposes:

pid_t sid;

sid = getsid (0);
if (sid == -1)
        perror ("getsid"); /* should not be possible */
else
        printf ("My session id=%d\n", sid);

Process Group System Calls
A call to setpgid( ) sets the process group ID of the process identified by pid to pgid:

#define _XOPEN_SOURCE 500
#include <unistd.h>

int setpgid (pid_t pid, pid_t pgid);

The current process is used if the pid argument is 0. If pgid is 0, the process ID of the
process identified by pid is used as the process group ID.

On success, setpgid( ) returns 0. Success is contingent on several conditions:

• The process identified by pid must be the calling process, or a child of the call-
ing process, that has not issued an exec call, and is in the same session as the
calling process.

• The process identified by pid must not be a session leader.

• If pgid already exists, it must be in the same session as the calling process.

• pgid must be nonnegative.

On error, the call returns -1, and sets errno to one of the following error codes:

EACCESS
The process identified by pid is a child of the calling process that has already
invoked exec.

EINVAL
pgid is less than 0.

EPERM
The process identified by pid is a session leader, or is in a different session from
the calling process. Alternatively, an attempt was made to move a process into a
process group inside a different session.

ESRCH
pid is not the current process, 0, or a child of the current process.
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As with sessions, obtaining a process’ process group ID is possible, although less
useful:

#define _XOPEN_SOURCE 500
#include <unistd.h>

pid_t getpgid (pid_t pid);

A call to getpgid( ) returns the process group ID of the process identified by pid. If
pid is 0, the process group ID of the current process is used. On error, it returns -1,
and sets errno to ESRCH, the only possible value, indicating that pid is an invalid pro-
cess identifier.

As with getsid( ), usage is largely for diagnostic purposes:

pid_t pgid;

pgid = getpgid (0);
if (pgid == -1)
        perror ("getpgid"); /* should not be possible */
else
        printf ("My process group id=%d\n", pgid);

Obsolete Process Group Functions
Linux supports two older interfaces from BSD for manipulating or obtaining the pro-
cess group ID. As they are less useful than the previously discussed system calls, new
programs should use them only when portability is stringently required. setpgrp( )
can be used to set the process group ID:

#include <unistd.h>

int setpgrp (void);

This invocation:

if (setpgrp ( ) == -1)
        perror ("setpgrp");

is identical to the following invocation:

if (setpgid (0,0) == -1)
        perror ("setpgid");

Both attempt to assign the current process to the process group with the same num-
ber as the current process’ pid, returning 0 on success, and -1 on failure. All of the
errno values of setpgid( ) are applicable to setpgrp( ), except ERSCH.

Similarly, a call to getpgrp( ) can be used to retrieve the process group ID:

#include <unistd.h>

pid_t getpgrp (void);
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This invocation:

pid_t pgid = getpgrp ( );

is identical to:

pid_t pgid = getpgid (0);

Both return the process group ID of the calling process. The function getpgid( ) can-
not fail.

Daemons
A daemon is a process that runs in the background, not connecting to any control-
ling terminal. Daemons are normally started at boot time, are run as root or some
other special user (such as apache or postfix), and handle system-level tasks. As a
convention, the name of a daemon often ends in d (as in crond and sshd), but this is
not required, or even universal.

The name derives from Maxwell’s demon, an 1867 thought experiment by the physi-
cist James Maxwell. Daemons are also supernatural beings in Greek mythology,
existing somewhere between humans and the gods and gifted with powers and divine
knowledge. Unlike the demons of Judeo-Christian lore, the Greek daemon need not
be evil. Indeed, the daemons of mythology tended to be aides to the gods, performing
tasks that the denizens of Mount Olympus found themselves unwilling to do—much
as Unix daemons perform tasks that foreground users would rather avoid.

A daemon has two general requirements: it must run as a child of init, and it must
not be connected to a terminal.

In general, a program performs the following steps to become a daemon:

1. Call fork( ). This creates a new process, which will become the daemon.

2. In the parent, call exit( ). This ensures that the original parent (the daemon’s
grandparent) is satisfied that its child terminated, that the daemon’s parent is no
longer running, and that the daemon is not a process group leader. This last
point is a requirement for the successful completion of the next step.

3. Call setsid( ), giving the daemon a new process group and session, both of
which have it as leader. This also ensures that the process has no associated con-
trolling terminal (as the process just created a new session, and will not assign
one).

4. Change the working directory to the root directory via chdir( ). This is done
because the inherited working directory can be anywhere on the filesystem. Dae-
mons tend to run for the duration of the system’s uptime, and you don’t want to
keep some random directory open, and thus prevent an administrator from
unmounting the filesystem containing that directory.
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5. Close all file descriptors. You do not want to inherit open file descriptors, and,
unaware, hold them open.

6. Open file descriptors 0, 1, and 2 (standard in, standard out, and standard error)
and redirect them to /dev/null.

Following these rules, here is a program that daemonizes itself:

#include <sys/types.h>
#include <sys/stat.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <linux/fs.h>

int main (void)
{
        pid_t pid;
        int i;

        /* create new process */
        pid = fork ( );
        if (pid == -1)
                return -1;
        else if (pid != 0)
                exit (EXIT_SUCCESS);

        /* create new session and process group */
        if (setsid ( ) == -1)
                return -1;

        /* set the working directory to the root directory */
        if (chdir ("/") == -1)
                return -1;

        /* close all open files--NR_OPEN is overkill, but works */
        for (i = 0; i < NR_OPEN; i++)
                close (i);

        /* redirect fd's 0,1,2 to /dev/null */
        open ("/dev/null", O_RDWR);     /* stdin */
        dup (0);                        /* stdout */
        dup (0);                        /* stderror */

        /* do its daemon thing... */

        return 0;
}

Most Unix systems provide a daemon( ) function in their C library that automates
these steps, turning the cumbersome into the simple:

#include <unistd.h>

int daemon (int nochdir, int noclose);
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If nochdir is nonzero, the daemon will not change its working directory to the root
directory. If noclose is nonzero, the daemon will not close all open file descriptors.
These options are useful if the parent process already set up these aspects of the dae-
monizing procedure. Normally, though, one passes 0 for both of these parameters.

On success, the call returns 0. On failure, the call returns -1, and errno is set to a
valid error code from fork( ) or setsid( ).

Conclusion
We covered the fundamentals of Unix process management, from process creation to
process termination, in this chapter. In the next chapter, we will cover more
advanced process management interfaces, as well as interfaces for changing the
scheduling behavior of processes.
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Chapter 6CHAPTER 6

Advanced Process
Management

Chapter 5 introduced the abstraction of the process, and discussed the kernel inter-
faces used to create, control, and destroy it. This chapter builds on those ideas,
beginning with a discussion of the Linux process scheduler and its scheduling algo-
rithm, and then presenting advanced process management interfaces. These system
calls manipulate the scheduling behavior and semantics of a process, influencing the
scheduler’s behavior in pursuit of an application or user-dictated goal.

Process Scheduling
The process scheduler is the component of a kernel that selects which process to run
next. In other words, the process scheduler—or simply the scheduler—is the
subsystem of the kernel that divides the finite resource of processor time among a
system’s processes. In deciding which processes can run and when, the scheduler is
responsible for maximizing processor usage while simultaneously providing the
impression that multiple processes are executing concurrently and seamlessly.

In this chapter, we will talk a lot about runnable processes. A runnable process is one
that, first of all, is not blocked. Processes that interact with users, read and write files
heavily, or respond to I/O or network events, tend to spend a lot of time blocked
while they wait for resources to become available, and they are not runnable during
those long periods (long, that is, compared to the time it takes to execute machine
instructions). A runnable process must also have at least part of its timeslice—the
amount of time the scheduler has decided to let it run—remaining. The kernel places
all runnable processes on a run list. Once a process has exhausted its timeslice, it is
removed from this list, and not considered runnable again until all other runnable
processes have also exhausted their timeslices.

Given only one runnable process (or none at all), the job of a process scheduler is
trivial. A scheduler proves its worth, however, when there are more runnable pro-
cesses than processors. In such a situation, some processes must obviously run while
others wait. Deciding which processes to run, when, and for how long is the process
scheduler’s fundamental responsibility.
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An operating system on a single-processor machine is multitasking if it can interleave
the execution of more than one process, giving the illusion of there being more than
one process running at the same time. On multiprocessor machines, a multitasking
operating system allows processes to actually run in parallel, on different processors.
A nonmultitasking operating system, such as DOS, can run only one application at a
time.

Multitasking operating systems come in two variants: cooperative and preemptive.
Linux implements the latter form of multitasking, where the scheduler decides when
one process is to stop running, and a different process is to resume running. We call
the act of suspending a running process in lieu of another preemption. Again, the
length of time a process runs before the scheduler preempts it is known as the pro-
cess’ timeslice (so called because the scheduler allocates each runnable process a
“slice” of the processor’s time).

In cooperative multitasking, conversely, a process does not stop running until it vol-
untarily decides to do so. We call the act of a process voluntarily suspending itself
yielding. Ideally, processes yield often, but the operating system is unable to enforce
this behavior. A rude or broken program can run for a longer than optimal time, or
even bring down the entire system. Due to the shortcomings of this approach, mod-
ern operating systems are almost universally preemptively multitasked; Linux is no
exception.

The O(1) process scheduler, introduced during the 2.5 kernel series, is the heart of
Linux scheduling.* The Linux scheduling algorithm provides preemptive multitask-
ing along with support for multiple processors, processor affinity, nonuniform
memory access (NUMA) configurations, multithreading, real-time processes, and
user-provided priorities.

Big-Oh Notation
O(1)—read “big oh of one”—is an example of big-oh notation, which is used to rep-
resent an algorithm’s complexity and scalability. Formally,

In English, the value of some algorithm, f, is always less than or equal to the value of
g multiplied by some arbitrary constant, so long as the input x is larger than some
initial value x’. That is, g is as big as or bigger than f; g bounds f from above.

* For the curious reader, the process scheduler is self-contained, and defined in kernel/sched.c in the kernel
source tree.

If f x( ) is O g x( )( ),
then

c x' such that f x( ) c g x( ) x x'>∀,⋅≤,∃
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O(1), therefore, implies that the algorithm in question is valued at less than some
constant, c. All this pomp and circumstance boils down to one important promise:
the Linux process scheduler will always perform the same, regardless of the number
of processes on the system. This is important because the act of picking a new pro-
cess to run would seemingly involve at least one, if not multiple, iterations over lists
of processes. With more naïve schedulers (including those used by earlier versions of
Linux), as the number of processes on a system grows, such iterations quickly grow
to become a potential bottleneck. At best, such loops introduce uncertainty—a lack
of determinism—into the scheduling process.

The Linux scheduler, operating in constant time regardless of any factor, has no such
bottleneck.

Timeslices
The timeslice that Linux allots to each process is an important variable in the overall
behavior and performance of a system. If timeslices are too large, processes must
wait a long time in between executions, minimizing the appearance of concurrent
execution. The user may become frustrated at the perceptible delay. Conversely, if
the timeslices are too small, a significant amount of the system’s time is spent switch-
ing from one application to another, and benefits such as temporal locality are lost.

Consequently, determining an ideal timeslice is not easy. Some operating systems
give processes large timeslices, hoping to maximize system throughput and overall
performance. Other operating systems give processes very small timeslices, hoping to
provide a system with excellent interactive performance. As we will see, Linux aims
for the best of both worlds by dynamically allocating process timeslices.

Note that a process need not consume all of its timeslice in one go. A process
assigned a 100 ms timeslice might run for 20 ms, and then block on some resource,
such as keyboard input. The scheduler will temporarily remove this process from the
list of runnable processes. When the blocked resource becomes available—in this
case, when the keyboard buffer becomes nonempty—the scheduler wakes up the
process. The process can then continue running until it exhausts its remaining 80 ms
of timeslice, or until it again blocks on a resource.

I/O- Versus Processor-Bound Processes
Processes that continually consume all of their available timeslices are considered
processor-bound. Such processes are hungry for CPU time, and will consume all that
the scheduler gives them. The simplest trivial example is an infinite loop. Other
examples include scientific computations, mathematical calculations, and image
processing.

On the other hand, processes that spend more time blocked waiting for some
resource than executing are considered I/O-bound. I/O-bound processes are often
issuing and waiting for file I/O, blocking on keyboard input, or waiting for the user
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to move the mouse. Examples of I/O-bound applications include file utilities that do
very little except issue system calls asking the kernel to perform I/O, such as cp or
mv, and many GUI applications, which spend a great deal of time waiting for user
input.

Processor- and I/O-bound applications differ in the type of scheduler behavior that
benefits them most. Processor-bound applications crave the largest timeslices possi-
ble, allowing them to maximize cache hit rates (via temporal locality), and get their
jobs done as quickly as possible. In contrast, I/O-bound processes do not necessarily
need large timeslices, because they typically run for only very short periods before
issuing I/O requests and blocking on some kernel resource. I/O-bound processes,
however, do benefit from constant attention from the scheduler. The quicker such an
application can restart after blocking and dispatch more I/O requests, the better it
can utilize the system’s hardware. Further, if the application was waiting for user
input, the faster it is scheduled, the greater the user’s perception of seamless execu-
tion will be.

Juggling the needs of processor- and I/O-bound processes is not easy. The Linux
scheduler attempts to identify and provide preferential treatment to I/O-bound
applications: heavily I/O-bound applications are given a priority boost, while heavily
processor-bound applications are served a priority penalty.

In reality, most applications are some mix of I/O- and processor-bound. Audio/video
encoding/decoding is a good example of a type of application that defies categoriza-
tion. Many games are also quite mixed. It is not always possible to identify the
proclivity of a given application, and, at any point in time, a given process may
behave in one way or the other.

Preemptive Scheduling
When a process exhausts its timeslice, the kernel suspends it, and begins running a
new process. If there are no runnable processes on the system, the kernel takes the
set of processes with exhausted timeslices, replenishes their timeslices, and begins
running them again. In this fashion, all processes eventually get to run, even if there
are higher-priority processes on the system—the lower-priority processes just have to
wait for the higher-priority processes to exhaust their timeslices or block. This
behavior formulates an important but tacit rule of Unix scheduling: all processes
must progress.

If there are no runnable processes left on the system, the kernel “runs” the idle pro-
cess. The idle process is actually not a process at all; nor does it actually run (to the
relief of batteries everywhere). Instead, the idle process is a special routine that the
kernel executes to simplify the scheduler algorithm, and to make accounting easy.
Idle time is simply the time spent running the idle process.
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If a process is running, and a process with a higher priority becomes runnable (per-
haps because it was blocked waiting for keyboard input, and the user just typed a
word), the currently running process is immediately suspended, and the kernel switches
to the higher-priority process. Thus, there are never runnable-but-not-running pro-
cesses with a higher priority than the currently running process. The running process is
always the highest-priority runnable process on the system.

Threading
Threads are units of execution within a single process. All processes have at least one
thread. Each thread has its own virtualization of the processor: its own set of regis-
ters, instruction pointer, and processor state. While most processes have but one
thread, processes can have large numbers of threads, all performing different tasks,
but sharing the same address space (and thus the same dynamic memory, mapped
files, object code, and so on), list of open files, and other kernel resources.

The Linux kernel has an interesting and unique view of threads. Essentially, the ker-
nel has no such concept. To the Linux kernel, all threads are unique processes. At a
broad level, there is no difference between two unrelated processes and two threads
inside of a single process. The kernel simply views threads as processes that share
resources. That is, the kernel considers a process consisting of two threads as two
distinct processes that share a set of kernel resources (address space, list of open files,
and so on).

Multithreaded programming is the art of programming with threads. The most com-
mon API on Linux for programming with threads is the API standardized by IEEE
Std 1003.1c-1995 (POSIX 1995 or POSIX.1c). Developers often call the library that
implements this API pthreads. Programming with threads is a complicated subject,
and the pthreads API is large and complex. Consequently, pthreads are outside the
scope of this book. Instead, this book focuses on the interfaces on which the
pthreads library is built.

Yielding the Processor
Although Linux is a preemptively multitasked operating system, it also provides a
system call that allows processes to explicitly yield execution and instruct the sched-
uler to select a new process for execution:

#include <sched.h>

int sched_yield (void);

A call to sched_yield( ) results in suspension of the currently running process, after
which the process scheduler selects a new process to run, in the same manner as if
the kernel had itself preempted the currently running process in favor of executing a
new process. Note that if no other runnable process exists, which is often the case,
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the yielding process will immediately resume execution. Because of this uncertainty,
coupled with the general belief that there are generally better choices, use of this sys-
tem call is not common.

On success, the call returns 0; on failure, it returns -1, and sets errno to the appropriate
error code. On Linux—and, more than likely, most other Unix systems—sched_yield()
cannot fail, and thus always returns 0. A thorough programmer may still check the
return value, however:

if (sched_yield ( ))
        perror ("sched_yield");

Legitimate Uses
In practice, there are few (if any) legitimate uses of sched_yield( ) on a proper pre-
emptive multitasking system such as Linux. The kernel is fully capable of making the
optimal and most efficient scheduling decisions—certainly, the kernel is better
equipped than an individual application to decide what to preempt and when. This
is precisely why operating systems ditched cooperative multitasking in favor of pre-
emptive multitasking.

Why, then, do we have a “reschedule me” system call at all? The answer lies in applica-
tions having to wait for external events, which may be caused by the user, a hardware
component, or another process. For instance, if one process needs to wait for another,
“just yield the processor until the other process is done” is a first-pass solution. As an
example, the implementation of a naïve consumer in a consumer/producer pair might
be similar to the following:

/* the consumer... */
do {
        while (producer_not_ready ( ))
                sched_yield ( );
        process_data ( );
} while (!time_to_quit ( ));

Thankfully, Unix programmers do not tend to write code such as this. Unix
programs are normally event-driven and tend to utilize some sort of blockable
mechanism (such as a pipe) between the consumer and the producer, in lieu of
sched_yield( ). In this case, the consumer reads from the pipe, blocking as necessary
until data is available. The producer, in turn, writes to the pipe as fresh data becomes
available. This removes the responsibility for coordination from the user-space pro-
cess, which just busy-loops, to the kernel, which can optimally manage the situation
by putting the processes to sleep, and waking them up only as needed. In general,
Unix programs should aim toward event-driven solutions that rely on blockable file
descriptors.

Until recently, one situation vexingly required sched_yield( ): user-space thread
locking. When a thread attempted to acquire a lock that another thread already held,
the new thread would yield the processor until the lock became available. Without
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kernel support for user-space locks, this approach was the simplest, and most effi-
cient. Thankfully, the modern Linux thread implementation (the New POSIX
Threading Library, or NPTL) ushered in an optimal solution using futexes, which
provide kernel support for user-space locks.

One other use for sched_yield( ) is “playing nicely”: a processor-intensive program
can call sched_yield( ) periodically, attempting to minimize its impact on the sys-
tem. While noble in pursuit, this strategy has two flaws. First, the kernel is able to
make global scheduling decisions much better than an individual process, and, con-
sequently, the responsibility for ensuring smooth system operation should lie on the
process scheduler, not the processes. Toward this end, the scheduler’s interactivity
bonus aims to reward I/O-intensive applications, and punish processor-intensive
ones. Second, mitigating the overhead of a processor-intensive application with
respect to other applications is the responsibility of the user, not of individual appli-
cations. The user can convey her relative preferences for application performance via
the nice shell command, which we will discuss later in this chapter.

Yielding, Past and Present
Before the introduction of the 2.6 Linux kernel, a call to sched_yield( ) had only a
minor effect. If another runnable process was available, the kernel would switch to it
and place the invoking process at the tail of the list of runnable processes. In short
order, the kernel would reschedule the invoking process. In the likely case of no
other runnable process being available, the invoking process would simply continue
executing.

The 2.6 kernel changed this behavior. The current algorithm is as follows:

1. Is this process a real-time process? If so, stick it at the tail of the runnable pro-
cess list, and return (this is the old behavior). If not, continue to the next step.
(For more on real-time processes, see “Real-Time Systems” later in this chapter.)

2. Remove this process from the list of runnable processes altogether, and place it
on the list of expired processes. This implies that all runnable processes must
execute and exhaust their timeslices before the invoking process, along with the
other expired processes, is able to resume execution.

3. Schedule the next runnable process in the list for execution.

The net effect of a call to sched_yield( ), therefore, is the same as if the process had
exhausted its timeslice. This behavior differs from earlier kernels, where the effect of
sched_yield( ) was milder (tantamount to “if another process is ready and waiting,
run it for a bit, but come right back to me”).

One reason for this change was to prevent the so-called “ping-pong” pathological
case. Imagine two processes, A and B, both calling sched_yield( ). Presume these are
the only runnable processes (there might be other processes able to run, but none
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with nonzero timeslices). With the old sched_yield( ) behavior, the result of this sit-
uation is that the kernel schedules both processes in rotation, with each saying in
turn, “No, schedule someone else!” This persists until both processes exhaust their
timeslices. If we were to draw a diagram of the process selections made by the pro-
cess scheduler, it would resemble “A, B, A, B, A, B” and so on—hence the “ping
pong” moniker.

The new behavior prevents this case. As soon as process A asks to yield the proces-
sor, the scheduler removes it from the list of runnable processes. Likewise, as soon as
process B makes the same request, the scheduler removes it from the list of runnable
processes. The scheduler will not consider running process A or process B until there
are no other runnable processes left, preventing the ping-pong effect, and allowing
other processes to receive their fair share of the processor time.

Consequently, when asking to yield the processor, a process should truly intend to
yield it!

Process Priorities

The discussion in this section pertains to normal, nonreal-time pro-
cesses. Real-time processes require different scheduling criteria, and a
separate priority system. We will discuss real-time computing later in
this chapter.

Linux does not schedule processes willy-nilly. Instead, applications are assigned pri-
orities that affect when their processes run, and for how long. Unix has historically
called these priorities nice values, because the idea behind them was to “be nice” to
other processes on the system by lowering a process’ priority, allowing other pro-
cesses to consume more of the system’s processor time.

The nice value dictates when a process runs. Linux schedules runnable processes in
order of highest to lowest priority: a process with a higher priority runs before a pro-
cess with a lower priority. The nice value also dictates the size of a process’ timeslice.

Legal nice values range from –20 to 19 inclusive, with a default value of 0. Some-
what confusingly, the lower a process’ nice value, the higher its priority, and the
larger its timeslice; conversely, the higher the value, the lower the process’ priority,
and the smaller its timeslice. Increasing a process’ nice value is therefore “nice” to
the rest of the system. The numerical inversion is rather confusing. When we say a
process has a “high priority” we mean that it is chosen more quickly to run, and can
run for longer than lower-priority processes, but such a process will have a lower
nice value.



170 | Chapter 6: Advanced Process Management

nice( )
Linux provides several system calls for retrieving and setting a process’ nice value.
The simplest is nice( ):

#include <unistd.h>

int nice (int inc);

A successful call to nice( ) increments a process’ nice value by inc, and returns the
newly updated value. Only a process with the CAP_SYS_NICE capability (effectively,
processes owned by root) may provide a negative value for inc, decreasing its nice
value, and thereby increasing its priority. Consequently, nonroot processes may only
lower their priorities (by increasing their nice values).

On error, nice( ) returns -1. However, because nice( ) returns the new nice value, -1
is also a successful return value. To differentiate between success and failure, you can
zero out errno before invocation, and subsequently check its value. For example:

int ret;

errno = 0;
ret = nice (10);    /* increase our nice by 10 */
if (ret == -1 && errno != 0)
        perror ("nice");
else
        printf ("nice value is now %d\n", ret);

Linux returns only a single error code: EPERM, signifying that the invoking process
attempted to increase its priority (via a negative inc value), but it does not possess
the CAP_SYS_NICE capability. Other systems also return EINVAL when inc would place
the nice value out of the range of valid values, but Linux does not. Instead, Linux
silently rounds invalid inc values up or down to the value at the limit of the allow-
able range, as needed.

Passing 0 for inc is an easy way to obtain the current nice value:

printf ("nice value is currently %d\n", nice (0));

Often, a process wants to set an absolute nice value rather than a relative increment.
This can be done with code like the following:

int ret, val;

/* get current nice value */
val = nice (0);

/* we want a nice value of 10 */
val = 10 – val;
errno = 0;
ret = nice (val);
if (ret == -1 && errno != 0)
        perror ("nice");
else
        printf ("nice value is now %d\n", ret);
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getpriority( ) and setpriority( )
A preferable solution is to use the getpriority( ) and setpriority( ) system calls,
which allow more control, but are more complex in operation:

#include <sys/time.h>
#include <sys/resource.h>

int getpriority (int which, int who);
int setpriority (int which, int who, int prio);

These calls operate on the process, process group, or user, as specified by which and
who. The value of which must be one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER, in
which case who specifies a process ID, process group ID, or user ID, respectively. If
who is 0, the call operates on the current process ID, process group ID, or user ID,
respectively.

A call to getpriority( ) returns the highest priority (lowest numerical nice value) of
any of the specified processes. A call to setpriority( ) sets the priority of all speci-
fied processes to prio. As with nice( ), only a process possessing CAP_SYS_NICE may
raise a process’ priority (lower the numerical nice value). Further, only a process with
this capability can raise or lower the priority of a process not owned by the invoking
user.

Like nice( ), getpriority( ) returns -1 on error. As this is also a successful return
value, programmers should clear errno before invocation if they want to handle error
conditions. Calls to setpriority( ) have no such problem; setpriority( ) always
returns 0 on success, and -1 on error.

The following code returns the current process’ priority:

int ret;

ret = getpriority (PRIO_PROCESS, 0);
printf ("nice value is %d\n", ret);

The following code sets the priority of all processes in the current process group to 10:

int ret;

ret = setpriority (PRIO_PGRP, 0, 10);
if (ret == -1)
        perror ("setpriority");

On error, both functions set errno to one of the following values:

EACCESS
The process attempted to raise the specified process’ priority, but does not pos-
sess CAP_SYS_NICE (setpriority( ) only).

EINVAL
The value specified by which was not one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER.
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EPERM
The effective user ID of the matched process does not match the effective user ID
of the running process, and the running process does not possess CAP_SYS_NICE
(setpriority( ) only).

ESRCH
 No process was found matching the criteria provided by which and who.

I/O Priorities
In addition to a scheduling priority, Linux allows processes to specify an I/O prior-
ity. This value affects the relative priority of the processes’ I/O requests. The kernel’s
I/O scheduler (discussed in Chapter 4) services requests originating from processes
with higher I/O priorities before requests from processes with lower I/O priorities.

By default, I/O schedulers use a process’ nice value to determine the I/O priority.
Ergo, setting the nice value automatically changes the I/O priority. However, the
Linux kernel additionally provides two system calls for explicitly setting and retriev-
ing the I/O priority independently of the nice value:

int ioprio_get (int which, int who)
int ioprio_set (int which, int who, int ioprio)

Unfortunately, the kernel does not yet export these system calls, and glibc does not
provide any user-space access. Without glibc support, usage is cumbersome at best.
Further, when and if glibc support arrives, the interfaces may differ from the system
calls. Until such support is available, there are two portable ways to manipulate a
process’ I/O priority: via the nice value, or a utility such as ionice, part of the util-
linux package.*

Not all I/O schedulers support I/O priorities. Specifically, the Complete Fair Queu-
ing (CFQ) I/O Scheduler supports them; currently, the other standard schedulers do
not. If the current I/O scheduler does not support I/O priorities, they are silently
ignored.

Processor Affinity
Linux supports multiple processors in a single system. Aside from the boot process,
the bulk of the work of supporting multiple processors rests on the process sched-
uler. On a symmetric multiprocessing (SMP) machine, the process scheduler must
decide which processes run on each CPU. Two challenges derive from this responsi-
bility: the scheduler must work toward fully utilizing all of the system’s processors,
because it is inefficient for one CPU to sit idle while a process is waiting to run.

* The util-linux package is located at http://www.kernel.org/pub/linux/utils/util-linux. It is licensed under the
GNU General Public License v2.

http://www.kernel.org/pub/linux/utils/util-linux
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However, once a process has been scheduled on one CPU, the process scheduler
should aim to schedule it on the same CPU in the future. This is beneficial because
migrating a process from one processor to another has costs.

The largest of these costs are related to the cache effects of migration. Due to the
design of modern SMP systems, the caches associated with each processor are
separate and distinct. That is, the data in one processor’s cache is not in another’s.
Therefore, if a process moves to a new CPU, and writes new data into memory, the
data in the old CPU’s cache can become stale. Relying on that cache would now
cause corruption. To prevent this, caches invalidate each other’s data whenever they
cache a new chunk of memory. Consequently, a given piece of data is strictly in only
one processor’s cache at any given moment (assuming the data is cached at all).
When a process moves from one processor to another, there are thus two associated
costs: cached data is no longer accessible to the process that moved, and data in the
original processor’s cache must be invalidated. Because of these costs, process sched-
ulers attempt to keep a process on a specific CPU for as long as possible.

The process scheduler’s two goals, of course, are potentially conflicting. If one
processor has a significantly larger process load than another—or, worse, if one pro-
cessor is busy while another is idle—it makes sense to reschedule some processes on
the less-busy CPU. Deciding when to move processes in response to such imbal-
ances, called load balancing, is of great importance to the performance of SMP
machines.

Processor affinity refers to the likelihood of a process to be scheduled consistently on
the same processor. The term soft affinity refers to the scheduler’s natural propensity
to continue scheduling a process on the same processor. As we’ve discussed, this is a
worthwhile trait. The Linux scheduler attempts to schedule the same processes on
the same processors for as long as possible, migrating a process from one CPU to
another only in situations of extreme load imbalance. This allows the scheduler to
minimize the cache effects of migration, but still ensure that all processors in a sys-
tem are evenly loaded.

Sometimes, however, the user or an application wants to enforce a process-to-processor
bond. This is often because the process is strongly cache-sensitive, and desires to remain
on the same processor. Bonding a process to a particular processor and having the ker-
nel enforce the relationship is called setting a hard affinity.

sched_getaffinity() and sched_setaffinity( )
Processes inherit the CPU affinities of their parents and, by default, processes may
run on any CPU. Linux provides two system calls for retrieving and setting a pro-
cess’ hard affinity:

#define _GNU_SOURCE

#include <sched.h>
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typedef struct cpu_set_t;

size_t CPU_SETSIZE;

void CPU_SET (unsigned long cpu, cpu_set_t *set);
void CPU_CLR (unsigned long cpu, cpu_set_t *set);
int CPU_ISSET (unsigned long cpu, cpu_set_t *set);
void CPU_ZERO (cpu_set_t *set);

int sched_setaffinity (pid_t pid, size_t setsize,
                       const cpu_set_t *set);

int sched_getaffinity (pid_t pid, size_t setsize,
                       cpu_set_t *set);

A call to sched_getaffinity( ) retrieves the CPU affinity of the process pid, and
stores it in the special cpu_set_t type, which is accessed via special macros. If pid is
0, the call retrieves the current process’ affinity. The setsize parameter is the size of
the cpu_set_t type, which may be used by glibc for compatibility with future changes
in the size of this type. On success, sched_getaffinity( ) returns 0; on failure, it
returns -1, and errno is set. Here’s an example:

cpu_set_t set;
int ret, i;

CPU_ZERO (&set);
ret = sched_getaffinity (0, sizeof (cpu_set_t), &set);
if (ret == -1)
        perror ("sched_getaffinity");

for (i = 0; i < CPU_SETSIZE; i++) {
        int cpu;

        cpu = CPU_ISSET (i, &set);
        printf ("cpu=%i is %s\n", i,
                cpu ? "set" : "unset");
}

Before invocation, we use CPU_ZERO to “zero out” all of the bits in the set. We then iter-
ate from 0 to CPU_SETSIZE over the set. Note that CPU_SETSIZE is, confusingly, not the
size of the set—you should never pass it for setsize—but rather the number of proces-
sors that could potentially be represented by a set. Because the current implementation
represents each processor with a single bit, CPU_SETSIZE is much larger than
sizeof(cpu_set_t). We use CPU_ISSET to check whether a given processor in the sys-
tem, i, is bound or unbound to this process. It returns 0 if unbound, and a nonzero
value if bound.

Only processors physically on the system are set. Thus, running this snippet on a sys-
tem with two processors will yield:

cpu=0 is set
cpu=1 is set
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cpu=2 is unset
cpu=3 is unset
...
cpu=1023 is unset

As the output shows, CPU_SETSIZE (which is zero-based) is currently 1,024.

We are concerned only with CPUs #0 and #1 because they are the only physical
processors on this system. Perhaps we want to ensure that our process runs only on
CPU #0, and never on #1. This code does just that:

cpu_set_t set;
int ret, i;

CPU_ZERO (&set);        /* clear all CPUs */
CPU_SET (0, &set);      /* allow CPU #0 */
CPU_CLR (1, &set);      /* forbid CPU #1 */
ret = sched_setaffinity (0, sizeof (cpu_set_t), &set);
if (ret == -1)
        perror ("sched_setaffinity");

for (i = 0; i < CPU_SETSIZE; i++) {
        int cpu;

        cpu = CPU_ISSET (i, &set);
        printf ("cpu=%i is %s\n", i,
                cpu ? "set" : "unset");
}

We start, as always, by zeroing out the set with CPU_ZERO. We then set CPU #0 with
CPU_SET and unset (clear) CPU #1 with CPU_CLR. The CPU_CLR operation is redundant
as we just zeroed out the whole set, but it is provided for completeness.

Running this on the same two-processor system will result in slightly different out-
put than before:

cpu=0 is set
cpu=1 is unset
cpu=2 is unset
...
cpu=1023 is unset

Now, CPU #1 is unset. This process will run only on CPU #0, no matter what!

Four errno values are possible:

EFAULT
The provided pointer was outside of the process’ address space or otherwise
invalid.

EINVAL
In this case, there were no processors physically on the system enabled in set
(sched_setaffinity( ) only), or setsize is smaller than the size of the kernel’s
internal data structure that represents sets of processors.
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EPERM
The process associated with pid is not owned by the current effective user ID of
the calling process, and the process does not possess CAP_SYS_NICE.

ESRCH
No process associated with pid was found.

Real-Time Systems
In computing, the term real-time is often the source of some confusion and misunder-
standing. A system is “real-time” if it is subject to operational deadlines: minimum and
mandatory times between stimuli and responses. A familiar real-time system is the anti-
lock braking system (ABS) found on nearly all modern automobiles. In this system,
when the brake is pressed, a computer regulates the brake pressure, often applying and
releasing maximum brake pressure many times a second. This prevents the wheels from
“locking up,” which can reduce stopping performance, or even send the car into an
uncontrolled skid. In such a system, the operational deadlines are how fast the system
must respond to a “locked” wheel condition and how quickly the system can apply
brake pressure.

Most modern operating systems, Linux included, provide some level of real-time
support.

Hard Versus Soft Real-Time Systems
Real-time systems come in two varieties: hard and soft. A hard real-time system
requires absolute adherence to operational deadlines. Exceeding the deadlines con-
stitutes failure, and is a major bug. A soft real-time system, on the other hand, does
not consider overrunning a deadline to be a critical failure.

Hard real-time applications are easy to identify: some examples are anti-lock brak-
ing systems, military weapons systems, medical devices, and signal processing. Soft
real-time applications are not always so easy to identify. One obvious member of that
group is video-processing applications: users notice a drop in quality if their dead-
lines are missed, but a few lost frames can be tolerated.

Many other applications have timing constraints that, if not met, result in a detri-
ment to the user experience. Multimedia applications, games, and networking
programs come to mind. What about a text editor, however? If the program cannot
respond quickly enough to keypresses, the experience is poor, and the user may grow
angry or frustrated. Is this a soft real-time application? Certainly, when the developers
were writing the application, they realized that they needed to respond to keypresses in
a timely manner. But does this count as an operational deadline? The line defining soft
real-time applications is anything but clear.



Real-Time Systems | 177

Contrary to common belief, a real-time system is not necessarily fast. Indeed, given
comparable hardware, a real-time system is probably slower than a nonreal-time sys-
tem—due to, if nothing else, the increase in overhead required to support real-time
processes. Likewise, the division between hard and soft real-time systems is indepen-
dent of the size of the operational deadlines. A nuclear reactor will overheat if the
SCRAM system does not lower the control rods within several seconds of detecting
excessive neutron flux. This is a hard real-time system with a lengthy (as far as com-
puters are concerned) operational deadline. Conversely, a video player might skip a
frame or stutter the sound if the application cannot refill the playback buffer within
100 ms. This is a soft real-time system with a demanding operational deadline.

Latency, Jitter, and Deadlines
Latency refers to the period from the occurrence of the stimulus until the execution
of the response. If latency is less than or equal to the operational deadline, the sys-
tem is operating correctly. In many hard real-time systems, the operational deadline
and the latency are equal—the system handles stimuli in fixed intervals, at exact
times. In soft real-time systems, the required response is less exact, and latency
exhibits some amount of variance—the aim is simply for the response to occur
within the deadline.

It is often hard to measure latency, because its calculation requires knowing the time
when the stimulus occurred. The ability to timestamp the stimulus, however, often
begs the ability to respond to it. Therefore, many attempts at instrumenting latency
do no such thing; instead, they measure the variation in timing between responses.
The variation in timing between successive events is jitter, not latency.

For example, consider a stimulus that occurs every 10 milliseconds. To measure the
performance of our system, we might timestamp our responses to ensure that they
occur every 10 milliseconds. The deviation from this target is not latency, however—
it is jitter. What we are measuring is the variance in successive responses. Without
knowing when the stimulus occurred, we do not know the actual difference in time
between stimulus and response. Even knowing that the stimulus occurs every 10 ms,
we do not know when the first occurrence was. Perhaps surprisingly, many attempts
at measuring latency make this mistake and report jitter, not latency. To be sure,
jitter is a useful metric, and such instrumentation is probably quite useful. Neverthe-
less, we must call a duck a duck!

Hard real-time systems often exhibit very low jitter because they respond to stimuli
after—not within—an exact amount of time. Such systems aim for a jitter of zero,
and a latency equal to the operational delay. If the latency exceeds the delay, the sys-
tem fails.
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Soft real-time systems are more susceptible to jitter. In these systems, the response
time is ideally within the operational delay—often much sooner, sometimes not. Jit-
ter, therefore, is often an excellent surrogate for latency as a performance metric.

Linux’s Real-Time Support
Linux provides applications with soft real-time support via a family of system calls
defined by IEEE Std 1003.1b-1993 (often shortened to POSIX 1993 or POSIX.1b).

Technically speaking, the POSIX standard does not dictate whether the provided
real-time support is soft or hard. In fact, all the POSIX standard really does is
describe several scheduling policies that respect priorities. What sorts of timing con-
straints the operating system enforces on these policies is up to the OS designers.

Over the years, the Linux kernel has gained better and better real-time support, pro-
viding lower and lower latency, and more consistent jitter, without compromising
system performance. Much of this is because improving latency helps many classes
of application, such as desktop and I/O-bound processes, and not just real-time
applications. The improvements are also attributable to the success of Linux in
embedded and real-time systems.

Unfortunately, many of the embedded and real-time modifications that have been
made to the Linux kernel exist only in custom Linux solutions, outside of the main-
stream official kernel. Some of these modifications provide further reductions in
latency, and even hard real-time behavior. The following sections discuss only the
official kernel interfaces and the behavior of the mainstream kernel. Luckily, most
real-time modifications continue to utilize the POSIX interfaces. Ergo, the subse-
quent discussion is also relevant on modified systems.

Linux Scheduling Policies and Priorities
The behavior of the Linux scheduler with respect to a process depends on the pro-
cess’ scheduling policy, also called the scheduling class. In addition to the normal
default policy, Linux provides two real-time scheduling policies. A preprocessor
macro from the header <sched.h> represents each policy: the macros are SCHED_FIFO,
SCHED_RR, and SCHED_OTHER.

Every process possesses a static priority, unrelated to the nice value. For normal
applications, this priority is always 0. For the real-time processes, it ranges from 1 to
99, inclusive. The Linux scheduler always selects the highest-priority process to run
(i.e., the one with the largest numerical static priority value). If a process is running
with a static priority of 50, and a process with a priority of 51 becomes runnable, the
scheduler will immediately preempt the running process, and switch to the newly
runnable process. Conversely, if a process is running with a priority of 50, and a pro-
cess with a priority of 49 becomes runnable, the scheduler will not run it until the
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priority-50 process blocks, becoming unrunnable. Because normal processes have a
priority of 0, any real-time process that is runnable will always preempt a normal
process and run.

The first in, first out policy

The first in, first out (FIFO) class is a very simple real-time policy without timeslices.
A FIFO-classed process will continue running so long as no higher-priority process
becomes runnable. The FIFO class is represented by the macro SCHED_FIFO.

As the policy lacks timeslices, its rules of operation are rather simple:

• A runnable FIFO-classed process will always run if it is the highest-priority pro-
cess on the system. Particularly, once a FIFO-classed process becomes runnable,
it will immediately preempt a normal process.

• A FIFO-classed process will continue running until it blocks or calls sched_yield(),
or until a higher-priority process becomes runnable.

• When a FIFO-classed process blocks, the scheduler removes it from the list of
runnable processes. When it again becomes runnable, it is inserted at the end of
the list of processes at its priority. Thus, it will not run until any other processes
of higher or equal priority cease execution.

• When a FIFO-classed process calls sched_yield( ), the scheduler moves it to the
end of the list of processes at its priority. Thus, it will not run until any other
equal-priority processes cease execution. If the invoking process is the only pro-
cess at its priority, sched_yield( ) will have no effect.

• When a higher-priority process preempts a FIFO-classed process, the FIFO-
classed process remains at the same location in the list of processes for its given
priority. Thus, once the higher-priority process ceases execution, the preempted
FIFO-classed process will continue executing.

• When a process joins the FIFO class, or when a process’ static priority changes,
it is put at the head of the list of processes for its given priority. Consequently, a
newly prioritized FIFO-classed process can preempt an executing process of the
same priority.

Essentially, we can say that FIFO-classed processes always run for as long as they
want, so long as they are the highest-priority processes on the system. The interest-
ing rules pertain to what happens among FIFO-classed processes with the same
priority.

The round-robin policy

The round-robin (RR) class is identical to the FIFO class, except that it imposes addi-
tional rules in the case of processes with the same priority. The macro SCHED_RR
represents this class.
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The scheduler assigns each RR-classed process a timeslice. When an RR-classed pro-
cess exhausts its timeslice, the scheduler moves it to the end of the list of processes at
its priority. In this manner, RR-classed processes of a given priority are scheduled
round-robin amongst themselves. If there is only one process at a given priority, the
RR class is identical to the FIFO class. In such a case, when its timeslice expires, the
process simply resumes execution.

We can think of an RR-classed process as identical to a FIFO-classed process, except
that it additionally ceases execution when it exhausts its timeslice, at which time it
moves to the end of the list of runnable processes at its priority.

Deciding whether to use SCHED_FIFO or SCHED_RR is entirely a question of intra-priority
behavior. The RR class’ timeslices are relevant only among processes of the same pri-
ority. FIFO-classed processes will continue running unabated; RR-classed processes
will schedule amongst themselves at a given priority. In neither case will a lower-
priority process ever run if a higher-priority process exists.

The normal policy

SCHED_OTHER represents the standard scheduling policy, the default nonreal-time
class. All normal-classed processes have a static priority of 0. Consequently, any run-
nable FIFO- or RR-classed process will preempt a running normal-classed process.

The scheduler uses the nice value, discussed earlier, to prioritize processes within the
normal class. The nice value has no bearing on the static priority, which remains 0.

The batch scheduling policy

SCHED_BATCH is the batch or idle scheduling policy. Its behavior is somewhat the antith-
esis of the real-time policies: processes in this class run only when there are no other
runnable processes on the system, even if the other processes have exhausted their
timeslices. This is different from the behavior of processes with the largest nice val-
ues (i.e., the lowest-priority processes) in that eventually such processes will run, as
the higher-priority processes exhaust their timeslices.

Setting the Linux scheduling policy

Processes can manipulate the Linux scheduling policy via sched_getscheduler( ) and
sched_setscheduler( ):

#include <sched.h>

struct sched_param {
        /* ... */
        int sched_priority;
        /* ... */
};

int sched_getscheduler (pid_t pid);
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int sched_setscheduler (pid_t pid,
                        int policy,
                        const struct sched_param *sp);

A successful call to sched_getscheduler( ) returns the scheduling policy of the pro-
cess represented by pid. If pid is 0, the call returns the invoking process’ scheduling
policy. An integer defined in <sched.h> represents the scheduling policy: the first in,
first out policy is SCHED_FIFO; the round-robin policy is SCHED_RR; and the normal pol-
icy is SCHED_OTHER. On error, the call returns -1 (which is never a valid scheduling
policy), and errno is set as appropriate.

Usage is simple:

int policy;

/* get our scheduling policy */
policy = sched_getscheduler (0);

switch (policy) {
case SCHED_OTHER:
        printf ("Policy is normal\n");
        break;
case SCHED_RR:
        printf ("Policy is round-robin\n");
        break;
case SCHED_FIFO:
        printf ("Policy is first-in, first-out\n");
        break;
case -1:
        perror ("sched_getscheduler");
        break;
default:
        fprintf (stderr, "Unknown policy!\n");
}

A call to sched_setscheduler( ) sets the scheduling policy of the process represented
by pid to policy. Any parameters associated with the policy are set via sp. If pid is 0,
the invoking process’ policy and parameters are set. On success, the call returns 0.
On failure, the call returns -1, and errno is set as appropriate.

The valid fields inside the sched_param structure depend on the scheduling policies
supported by the operating system. The SCHED_RR and SCHED_FIFO policies require one
field, sched_priority, which represents the static priority. SCHED_OTHER does not use
any field, while scheduling policies supported in the future may use new fields.
Portable and legal programs must therefore not make assumptions about the layout
of the structure.

Setting a process’ scheduling policy and parameters is easy:

struct sched_param sp = { .sched_priority = 1 };
int ret;

ret = sched_setscheduler (0, SCHED_RR, &sp);
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if (ret == -1) {
        perror ("sched_setscheduler");
        return 1;
}

This snippet sets the invoking process’ scheduling policy to round-robin with a static
priority of 1. We presume that 1 is a valid priority—technically, it need not be. We
will discuss how to find the valid priority range for a given policy in an upcoming
section.

Setting a scheduling policy other than SCHED_OTHER requires the CAP_SYS_NICE capabil-
ity. Consequently, the root user typically runs real-time processes. Since the 2.6.12
kernel, the RLIMIT_RTPRIO resource limit allows nonroot users to set real-time poli-
cies up to a certain priority ceiling.

Error codes. On error, four errno values are possible:

EFAULT
The pointer sp points to an invalid or inaccessible region of memory.

EINVAL
The scheduling policy denoted by policy is invalid, or a value set in sp does not
make sense for the given policy (sched_setscheduler( ) only).

EPERM
The invoking process does not have the necessary capabilities.

ESRCH
The value pid does not denote a running process.

Setting Scheduling Parameters
The POSIX-defined sched_getparam( ) and sched_setparam( ) interfaces retrieve and
set the parameters associated with a scheduling policy that has already been set:

#include <sched.h>

struct sched_param {
        /* ... */
        int sched_priority;
        /* ... */
};

int sched_getparam (pid_t pid, struct sched_param *sp);

int sched_setparam (pid_t pid, const struct sched_param *sp);

The sched_getscheduler( ) interface returns only the scheduling policy, not any asso-
ciated parameters. A call to sched_getparam( ) returns via sp the scheduling parame-
ters associated with pid:
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struct sched_param sp;
int ret;

ret = sched_getparam (0, &sp);
if (ret == -1) {
        perror ("sched_getparam");
        return 1;
}

printf ("Our priority is %d\n", sp.sched_priority);

If pid is 0, the call returns the parameters of the invoking process. On success, the
call returns 0. On failure, it returns -1, and sets errno as appropriate.

Because sched_setscheduler( ) also sets any associated scheduling parameters,
sched_setparam( ) is useful only to later modify the parameters:

struct sched_param sp;
int ret;

sp.sched_priority = 1;
ret = sched_setparam (0, &sp);
if (ret == -1) {
        perror ("sched_setparam");
        return 1;
}

On success, the scheduling parameters of pid are set according to sp, and the call
returns 0. On failure, the call returns -1, and errno is set as appropriate.

If we ran the two preceding snippets in order, we would see the following output:

Our priority is 1

This example again assumes that 1 is a valid priority. It is, but portable applications
should make sure. We’ll look at how to check the range of valid priorities momentarily.

Error codes

On error, four errno values are possible:

EFAULT
The pointer sp points to an invalid or inaccessible region of memory.

EINVAL
A value set in sp does not make sense for the given policy (sched_getparam( )
only).

EPERM
The invoking process does not have the necessary capabilities.

ESRCH
The value pid does not denote a running process.



184 | Chapter 6: Advanced Process Management

Determining the range of valid priorities

Our previous examples have passed hardcoded priority values into the scheduling
system calls. POSIX makes no guarantees about what scheduling priorities exist on a
given system, except to say that there must be at least 32 priorities between the mini-
mum and maximum values. As mentioned earlier in “Linux Scheduling Policies and
Priorities,” Linux implements a range of 1 to 99 inclusive for the two real-time sched-
uling policies. A clean, portable program normally implements its own range of
priority values, and maps them onto the operating system’s range. For instance, if
you want to run processes at four different real-time priority levels, you dynamically
determine the range of priorities and choose four values.

Linux provides two system calls for retrieving the range of valid priority values. One
returns the minimum value and the other returns the maximum:

#include <sched.h>

int sched_get_priority_min (int policy);

int sched_get_priority_max (int policy);

On success, the call sched_get_priority_min( ) returns the minimum, and the call
sched_get_priority_max( ) returns the maximum valid priority associated with the
scheduling policy denoted by policy. Both calls then return 0. Upon failure, the calls
both return -1. The only possible error is if policy is invalid, in which case errno is
set to EINVAL.

Usage is simple:

int min, max;

min = sched_get_priority_min (SCHED_RR);
if (min == -1) {
        perror ("sched_get_priority_min");
        return 1;
}

max = sched_get_priority_max (SCHED_RR);
if (max == -1) {
        perror ("sched_get_priority_max");
        return 1;
}

printf ("SCHED_RR priority range is %d - %d\n", min, max);

On a standard Linux system, this snippet yields the following:

SCHED_RR priority range is 1 - 99

As discussed previously, numerically larger priority values denote higher priorities.
To set a process to the highest priority for its scheduling policy, you can do the
following:
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/*
 * set_highest_priority – set the associated pid's scheduling
 * priority to the highest value allowed by its current
 * scheduling policy. If pid is zero, sets the current
 * process's priority.
 *
 * Returns zero on success.
 */
int set_highest_priority (pid_t pid)
{
        struct sched_param sp;
        int policy, max, ret;

        policy = sched_getscheduler (pid);
        if (policy == -1)
                return -1;

        max = sched_get_priority_max (policy);
        if (max == -1)
                return -1;

        memset (&sp, 0, sizeof (struct sched_param));
        sp.sched_priority = max;
        ret = sched_setparam (pid, &sp);

        return ret;
}

Programs typically retrieve the system’s minimum or maximum value, and then use
increments of 1 (such as max-1, max-2, etc.) to assign priorities as desired.

sched_rr_get_interval( )
As discussed earlier, SCHED_RR processes behave the same as SCHED_FIFO processes,
except that the scheduler assigns these processes timeslices. When a SCHED_RR pro-
cess exhausts its timeslice, the scheduler moves the process to the end of the run list
for its current priority. In this manner, all SCHED_RR processes of the same priority are
executed in a round-robin rotation. Higher-priority processes (and SCHED_FIFO
processes of the same or higher priority) will always preempt a running SCHED_RR pro-
cess, regardless of whether it has any of its timeslice remaining.

POSIX defines an interface for retrieving the length of a given process’ timeslice:

#include <sched.h>

struct timespec {
        time_t  tv_sec;     /* seconds */
        long    tv_nsec;    /* nanoseconds */
};

int sched_rr_get_interval (pid_t pid, struct timespec *tp);
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A successful call to the awfully named sched_rr_get_interval( ) saves in the
timespec structure pointed at by tp the duration of the timeslice allotted to pid and
returns 0. On failure, the call returns -1, and errno is set as appropriate.

According to POSIX, this function is required to work only with SCHED_RR processes.
On Linux, however, it can retrieve the length of any process’ timeslice. Portable
applications should assume that the function works only with round-robin pro-
cesses; Linux-specific programs may exploit the call as needed. Here’s an example:

struct timespec tp;
int ret;

/* get the current task's timeslice length */
ret = sched_rr_get_interval (0, &tp);
if (ret == -1) {
        perror ("sched_rr_get_interval");
        return 1;
}

/* convert the seconds and nanoseconds to milliseconds */
printf ("Our time quantum is %.2lf milliseconds\n",
        (tp.tv_sec * 1000.0f) + (tp.tv_nsec / 1000000.0f));

If the process is running in the FIFO class, tv_sec and tv_nsec are both 0, denoting
infinity.

Error codes

On error, three errno values are possible:

EFAULT
The memory pointed at by the pointer tp is invalid or inaccessible.

EINVAL
The value pid is invalid (for example, it is negative).

ESRCH
The value pid is valid, but refers to a nonexistent process.

Precautions with Real-Time Processes
Because of the nature of real-time processes, developers should exercise caution
when developing and debugging such programs. If a real-time program goes off the
deep end, the system can become unresponsive. Any CPU-bound loop in a real-time
program—that is, any chunk of code that does not block—will continue running ad
infinitum, so long as no higher-priority real-time processes become runnable.

Consequently, designing real-time programs requires care and attention. Such pro-
grams reign supreme, and can easily bring down the entire system. Here are some
tips and precautions:
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• Keep in mind that any CPU-bound loop will run until completion, without inter-
ruption, if there is no higher-priority real-time process on the system. If the loop
is infinite, the system will become unresponsive.

• Because real-time processes run at the expense of everything else on the system,
special attention must be paid to their design. Take care not to starve the rest of
the system of processor time.

• Be very careful with busy waiting. If a real-time process busy-waits for a resource
held by a lower-priority process, the real-time process will busy-wait forever.

• While developing a real-time process, keep a terminal open, running as a real-time
process with a higher priority than the process in development. In an emergency,
the terminal will remain responsive, and allow you to kill the runaway real-time
process. (As the terminal remains idle, waiting for keyboard input, it will not inter-
fere with the other real-time process.)

• The chrt utility, part of the util-linux package of tools, makes it easy to retrieve
and set the real-time attributes of other processes. This tool makes it easy to
launch arbitrary programs in a real-time scheduling class, such as the aforemen-
tioned terminal, or change the real-time priorities of existing applications.

Determinism
Real-time processes are big on determinism. In real-time computing, an action is
deterministic if, given the same input, it always produces the same result in the same
amount of time. Modern computers are the very definition of something that is not
deterministic: multiple levels of caches (which incur hits or misses without predict-
ability), multiple processors, paging, swapping, and multitasking wreak havoc on
any estimate of how long a given action will take. Sure, we have reached a point
where just about every action (modulo hard drive access) is “incredibly fast,” but
simultaneously, modern systems have also made it hard to pinpoint exactly how long
a given operation will take.

Real-time applications often try to limit unpredictability in general, and worst-case
delays specifically. The following sections discuss two methods that are used to this
end.

Prefaulting data and locking memory

Picture this: the hardware interrupt from the custom incoming ICBM monitor hits,
and the device’s driver quickly copies data from the hardware into the kernel. The
driver notes that a process is asleep, blocked on the hardware’s device node, waiting
for data. The driver tells the kernel to wake up the process. The kernel, noting that
this process is running with a real-time scheduling policy and a high priority, imme-
diately preempts the currently running process and shifts into overdrive, determined
to schedule the real-time process immediately. The scheduler switches to running the
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real-time process, and context-switches into its address space. The process is now
running. The whole ordeal took 0.3 ms, well within the 1 ms worst-case acceptable
latency period.

Now, in user space, the real-time process notes the incoming ICBM, and begins pro-
cessing its trajectory. With the ballistics calculated, the real-time process initiates the
deployment of an anti-ballistic missile system. Only another 0.1 ms have passed—
quick enough to deploy the ABM response and save lives. But—oh no!—the ABM
code has been swapped to disk. A page fault occurs, the processor switches back to
kernel mode, and the kernel initiates hard disk I/O to retrieve the swapped-out data.
The scheduler puts the process to sleep until the page fault is serviced. Several sec-
onds elapse. It is too late.

Clearly, paging and swapping introduce quite undeterministic behavior that can
wreak havoc on a real-time process. To prevent this catastrophe, a real-time applica-
tion will often “lock” or “hardwire” all of the pages in its address space into physical
memory, prefaulting them into memory, and preventing them from being swapped
out. Once the pages are locked into memory, the kernel will never swap them out to
disk. Any accesses of the pages will not cause page faults. Most real-time applica-
tions lock some or all of their pages into physical memory.

Linux provides interfaces for both prefaulting and locking data. Chapter 4 discussed
interfaces for prefaulting data into physical memory. Chapter 8 will discuss inter-
faces for locking data into physical memory.

CPU affinity and real-time processes

A second concern of real-time applications is multitasking. Although the Linux
kernel is preemptive, its scheduler is not always able to immediately reschedule one
process in favor of another. Sometimes, the currently running process is executing
inside of a critical region in the kernel, and the scheduler cannot preempt it until it
exits that region. If the process that is waiting to run is real-time, this delay may be
unacceptable, quickly overrunning the operational deadline.

Ergo, multitasking introduces indeterminism similar in nature to the unpredictabil-
ity associated with paging. The solution with respect to multitasking is the same:
eliminate it. Of course, chances are you cannot simply abolish all other processes. If
that were possible in your environment, you probably would not need Linux to begin
with—a simple custom operating system would suffice. If, however, your system has
multiple processors, you can dedicate one or more of those processors to your real-
time process or processes. In effect, you can shield the real-time processes from
multitasking.
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We discussed system calls for manipulating a process’ CPU affinity earlier in this
chapter. A potential optimization for real-time applications is to reserve one proces-
sor for each real-time process, and let all other processes time-share on the remaining
processor.

The simplest way to achieve this is to modify Linux’s init program, SysVinit,* to do
something similar to the following before it begins the boot process:

cpu_set_t set;
int ret;

CPU_ZERO (&set);        /* clear all CPUs */
ret = sched_getaffinity (0, sizeof (cpu_set_t), &set);
if (ret == -1) {
        perror ("sched_getaffinity");
        return 1;
}

CPU_CLR (1, &set);      /* forbid CPU #1 */
ret = sched_setaffinity (0, sizeof (cpu_set_t), &set);
if (ret == -1) {
        perror ("sched_setaffinity");
        return 1;
}

This snippet grabs init’s current set of allowed processors, which we expect is all of
them. It then removes one processor, CPU #1, from the set and updates the list of
allowed processors.

Because the set of allowed processors is inherited from parent to child, and init is the
super-parent of all processes, all of the system’s processes will run with this set of
allowed processors. Consequently, no processes will ever run on CPU #1.

Next, modify your real-time process to run only on CPU #1:

cpu_set_t set;
int ret;

CPU_ZERO (&set);        /* clear all CPUs */
CPU_CLR (1, &set);      /* forbid CPU #1 */
ret = sched_setaffinity (0, sizeof (cpu_set_t), &set);
if (ret == -1) {
        perror ("sched_setaffinity");
        return 1;
}

The result is that your real-time process runs only on CPU #1 and all other pro-
cesses run on the other processors.

* The SysVinit source is located at ftp://ftp.cistron.nl/pub/people/miquels/sysvinit/. It is licensed under the GNU
General Public License v2.

ftp://ftp.cistron.nl/pub/people/miquels/sysvinit/
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Resource Limits
The Linux kernel imposes several resource limits on processes. These resource limits
place hard ceilings on the amount of kernel resources that a process can consume—
that is, the number of open files, pages of memory, pending signals, and so on. The
limits are strictly enforced; the kernel will not allow an action that places a process’
resource consumption over a hard limit. For example, if opening a file would cause a
process to have more open files than allowed by the applicable resource limit, the
open( ) invocation will fail.*

Linux provides two system calls for manipulating resource limits. POSIX standard-
ized both interfaces, but Linux supports several limits in addition to those dictated
by the standard. Limits can be checked with getrlimit( ) and set with setrlimit( ):

#include <sys/time.h>
#include <sys/resource.h>

struct rlimit {
        rlim_t rlim_cur;  /* soft limit */
        rlim_t rlim_max;  /* hard limit */
};

int getrlimit (int resource, struct rlimit *rlim);
int setrlimit (int resource, const struct rlimit *rlim);

Integer constants, such as RLIMIT_CPU, represent the resources. The rlimit structure
represents the actual limits. The structure defines two ceilings: a soft limit, and a hard
limit. The kernel enforces soft resource limits on processes, but a process may freely
change its soft limit to any value from 0 up to and including the hard limit. A pro-
cess without the CAP_SYS_RESOURCE capability (i.e., any nonroot process) can only
lower its hard limit. An unprivileged process can never raise its hard limit, not even
to a previously higher value; lowering the hard limit is irreversible. A privileged pro-
cess can set the hard limit to any valid value.

What the limits actually represent depends on the resource in question. If resource is
RLIMIT_FSIZE, for example, the limit represents the maximum size of a file that a pro-
cess can create, in bytes. In this case, if rlim_cur is 1,024, a process cannot create or
extend a file to a size greater than one kilobyte.

All of the resource limits have two special values: 0 and infinity. The former disables
use of the resource altogether. For example, if RLIMIT_CORE is 0, the kernel will never
create a core file. Conversely, the latter removes any limit on the resource. The ker-
nel denotes infinity by the special value RLIM_INFINITY, which happens to be -1 (this can
cause some confusion, as -1 is also the return value indicating error). If RLIMIT_CORE is
infinity, the kernel will create core files of any size.

* In which case the call will set errno to EMFILE, indicating that the process hit the resource limit on the maxi-
mum number of open files. Chapter 2 discusses the open( ) system call.
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The function getrlimit( ) places the current hard and soft limits on the resource
denoted by resource in the structure pointed at by rlim. On success, the call returns
0. On failure, the call returns -1, and sets errno as appropriate.

Correspondingly, the function setrlimit( ) sets the hard and soft limits associated
with resource to the values pointed at by rlim. On success, the call returns 0, and the
kernel updates the resource limits as requested. On failure, the call returns -1, and
sets errno as appropriate.

The Limits
Linux currently provides 15 resource limits:

RLIMIT_AS
Limits the maximum size of a process’ address space, in bytes. Attempts to
increase the size of the address space past this limit—via calls such as mmap( )
and brk( )—will fail, and return ENOMEM. If the process’ stack, which automati-
cally grows as needed, expands beyond this limit, the kernel sends the process
the SIGSEGV signal. This limit is usually RLIM_INFINITY.

RLIMIT_CORE
Dictates the maximum size of core files, in bytes. If nonzero, core files larger
than this limit are truncated to the maximum size. If 0, core files are never
created.

RLIMIT_CPU
Dictates the maximum CPU time that a process can consume, in seconds. If a
process runs for longer than this limit, the kernel sends it a SIGXCPU signal, which
processes may catch and handle. Portable programs should terminate on receipt
of this signal, as POSIX leaves undefined what action the kernel may take next.
Some systems may terminate the process if it continues to run. Linux, however,
allows the process to continue executing, and continues sending SIGXCPU signals
at one second intervals. Once the process reaches the hard limit, it is sent a
SIGKILL and terminated.

RLIMIT_DATA
Controls the maximum size of a process’ data segment and heap, in bytes.
Attempts to enlarge the data segment beyond this limit via brk( ) will fail and
return ENOMEM.

RLIMIT_FSIZE
Specifies the maximum file size that a process may create, in bytes. If a process
expands a file beyond this size, the kernel sends the process a SIGXFSZ signal. By
default, this signal terminates the process. A process may, however, elect to
catch and handle this signal, in which case, the offending system call fails, and
returns EFBIG.
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RLIMIT_LOCKS
Controls the maximum number of file locks that a process may hold (see
Chapter 7 for a discussion of file locks). Once this limit is reached, further
attempts to acquire additional file locks should fail, and return ENOLCK. Linux
kernel 2.4.25, however, removed this functionality. In current kernels, this limit
is settable, but has no effect.

RLIMIT_MEMLOCK
Specifies the maximum number of bytes of memory that a process without the
CAP_SYS_IPC capability (effectively, a nonroot process) can lock into memory via
mlock( ), mlockall( ), or shmctl( ). If this limit is exceeded, these calls fail, and
return EPERM. In practice, the effective limit is rounded down to an integer multi-
ple of pages. Processes possessing CAP_SYS_IPC can lock any number of pages
into memory, and this limit has no effect. Before kernel 2.6.9, this limit was the
maximum that a process with CAP_SYS_IPC could lock into memory, and unprivi-
leged processes could not lock any pages whatsoever. This limit is not part of
POSIX; BSD introduced it.

RLIMIT_MSGQUEUE
Specifies the maximum number of bytes that a user may allocate for POSIX mes-
sage queues. If a newly created message queue would exceed this limit, mq_open( )
fails, and returns ENOMEM. This limit is not part of POSIX; it was added in kernel
2.6.8 and is Linux-specific.

RLIMIT_NICE
Specifies the maximum value to which a process can lower its nice value (raise
its priority). As discussed earlier in this chapter, normally processes can only
raise their nice values (lower their priorities). This limit allows the administrator
to impose a maximum level (nice value floor) to which processes may legally
raise their priorities. Because nice values may be negative, the kernel interprets
the value as 20 - rlim_cur. Thus, if this limit is set to 40, a process can lower its
nice value to the minimum value of –20 (the highest priority). Kernel 2.6.12
introduced this limit.

RLIMIT_NOFILE
Specifies one greater than the maximum number of file descriptors that a process
may hold open. Attempts to surpass this limit result in failure and the applicable
system call returning EMFILE. This limit is also specifiable as RLIMIT_OFILE, which
is BSD’s name for it.

RLIMIT_NPROC
Specifies the maximum number of processes that the user may have running on
the system at any given moment. Attempts to surpass this limit result in failure,
and fork( ), returning EAGAIN. This limit is not part of POSIX; BSD introduced it.

RLIMIT_RSS
Specifies the maximum number of pages that a process may have resident in
memory (known as the resident set size, or RSS). Only early 2.4 kernels enforced
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this limit. Current kernels allow the setting of this limit, but it is not enforced.
This limit is not part of POSIX; BSD introduced it.

RLIMIT_RTPRIO
Specifies the maximum real-time priority level a process without the CAP_SYS_NICE
capability (effectively, nonroot processes) may request. Normally, unprivileged
processes may not request any real-time scheduling class. This limit is not part of
POSIX; it was added in kernel 2.6.12, and is Linux-specific.

RLIMIT_SIGPENDING
Specifies the maximum number of signals (standard and real-time) that may be
queued for this user. Attempts to queue additional signals fail, and system calls
such as sigqueue( ) return EAGAIN. Note that it is always possible, regardless of
this limit, to queue one instance of a not-yet-queued signal. Therefore, it is
always possible to deliver to the process a SIGKILL or SIGTERM. This limit is not
part of POSIX; it is Linux-specific.

RLIMIT_STACK
Denotes the maximum size of a process’ stack, in bytes. Surpassing this limit
results in the delivery of a SIGSEGV.

The kernel stores the limits on a per-user basis. In other words, all processes run by
the same user will have the same soft and hard limits for any given resource. The lim-
its themselves, however, may describe per-process (not per-user) caps. For example,
the kernel maintains the value of RLIMIT_NOFILE on a per-user basis; by default, it is
1024. This limit, however, dictates the maximum number of files that each process
can open, not the number the user can have open overall. Note that this does not
mean that the limit can be configured individually for each of the user’s processes—
if one process changes RLIMIT_NOFILE’s soft limit, the change will apply to all
processes owned by that user.

Default limits

The default limits available to your process depend on three variables: the initial soft
limit, the initial hard limit, and your system administrator. The kernel dictates the
initial hard and soft limits; Table 6-1 lists them. The kernel sets these limits on the
init process, and because children inherit the limits of their parents, all subsequent
processes inherit the soft and hard limits of init.

Table 6-1. Default soft and hard resource limits

Resource limit Soft limit Hard limit

RLIMIT_AS RLIM_INFINITY RLIM_INFINITY

RLIMIT_CORE 0 RLIM_INFINITY

RLIMIT_CPU RLIM_INFINITY RLIM_INFINITY

RLIMIT_DATA RLIM_INFINITY RLIM_INFINITY

RLIMIT_FSIZE RLIM_INFINITY RLIM_INFINITY



194 | Chapter 6: Advanced Process Management

Two things can change these default limits:

• Any process is free to increase a soft limit to any value from 0 to the hard limit,
or to decrease a hard limit. Children will inherit these updated limits during a
fork.

• A privileged process is free to set a hard limit to any value. Children will inherit
these updated limits during a fork.

It is unlikely that a root process in a regular process’ lineage will change any hard
limits. Consequently, the first item is a much more likely source of limit changes
than the second. Indeed, the actual limits presented to a process are generally set by
the user’s shell, which the system administrator can set up to provide various limits.
In the Bourne-again shell (bash), for example, the administrator accomplishes this
via the ulimit command. Note that the administrator need not lower values; he can
also raise soft limits to the hard limits, providing users with saner defaults. This is
often done with RLIMIT_STACK, which is set to RLIM_INFINITY on many systems.

Setting and Retrieving Limits
With the explanations of the various resource limits behind us, let’s look at retriev-
ing and setting limits. Retrieving a resource limit is quite simple:

struct rlimit rlim;
int ret;

/* get the limit on core sizes */
ret = getrlimit (RLIMIT_CORE, &rlim);
if (ret == -1) {
        perror ("getrlimit");
        return 1;
}

printf ("RLIMIT_CORE limits: soft=%ld hard=%ld\n",
        rlim.rlim_cur, rlim.rlim_max);

RLIMIT_LOCKS RLIM_INFINITY RLIM_INFINITY

RLIMIT_MEMLOCK 8 pages 8 pages

RLIMIT_MSGQUEUE 800 KB 800 KB

RLIMIT_NICE 0 0

RLIMIT_NOFILE 1024 1024

RLIMIT_NPROC 0 (implies no limit) 0 (implies no limit)

RLIMIT_RSS RLIM_INFINITY RLIM_INFINITY

RLIMIT_RTPRIO 0 0

RLIMIT_SIGPENDING 0 0

RLIMIT_STACK 8 MB RLIM_INFINITY

Table 6-1. Default soft and hard resource limits (continued)

Resource limit Soft limit Hard limit
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Compiling this snippet in a larger program and running it yields the following:

RLIMIT_CORE limits: soft=0 hard=-1

We have a soft limit of 0, and a hard limit of infinity (-1 denotes RLIM_INFINITY).
Therefore, we can set a new soft limit of any size. This example sets the maximum
core size to 32 MB:

struct rlimit rlim;
int ret;

rlim.rlim_cur = 32 * 1024 * 1024; /* 32 MB */
rlim.rlim_max = RLIM_INFINITY;    /* leave it alone */
ret = setrlimit (RLIMIT_CORE, &rlim);
if (ret == -1) {
        perror ("setrlimit");
        return 1;
}

Error codes

On error, three errno codes are possible:

EFAULT
The memory pointed at by rlim is invalid or inaccessible.

EINVAL
The value denoted by resource is invalid, or rlim.rlim_cur is greater than
rlim.rlim_max (setrlimit( ) only).

EPERM
The caller did not possess CAP_SYS_RESOURCE, but tried to raise the hard limit.
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Chapter 7CHAPTER 7

File and Directory
Management

In Chapters 2, 3, and 4, we covered an abundance of approaches to file I/O. In this
chapter, we’ll revisit files, this time focusing not on reading from or writing to them,
but rather on manipulating and managing them and their metadata.

Files and Their Metadata
As discussed in Chapter 1, each file is referenced by an inode, which is addressed by a
filesystem-unique numerical value known as an inode number. An inode is both a
physical object located on the disk of a Unix-style filesystem, and a conceptual entity
represented by a data structure in the Linux kernel. The inode stores the metadata
associated with a file, such as the file’s access permissions, last access timestamp,
owner, group, and size, as well as the location of the file’s data.

You can obtain the inode number for a file using the -i flag to the ls command:

$ ls -i
1689459 Kconfig    1689461 main.c     1680144 process.c  1689464 swsusp.c
1680137 Makefile   1680141 pm.c       1680145 smp.c      1680149 user.c
1680138 console.c  1689462 power.h    1689463 snapshot.c
1689460 disk.c     1680143 poweroff.c 1680147 swap.c

This output shows that, for example, disk.c has an inode number of 1689460. On
this particular filesystem, no other file will have this inode number. On a different
filesystem, however, we can make no such guarantees.

The Stat Family
Unix provides a family of functions for obtaining the metadata of a file:

#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>

int stat (const char *path, struct stat *buf);
int fstat (int fd, struct stat *buf);
int lstat (const char *path, struct stat *buf);
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Each of these functions returns information about a file. stat( ) returns information
about the file denoted by the path, path, while fstat( ) returns information about
the file represented by the file descriptor fd. lstat( ) is identical to stat( ), except
that in the case of a symbolic link, lstat( ) returns information about the link itself
and not the target file.

Each of these functions stores information in a stat structure, which is provided by
the user. The stat structure is defined in <bits/stat.h>, which is included from
<sys/stat.h>:

struct stat {
        dev_t st_dev;         /* ID of device containing file */
        ino_t st_ino;         /* inode number */
        mode_t st_mode;       /* permissions */
        nlink_t st_nlink;     /* number of hard links */
        uid_t st_uid;         /* user ID of owner */
        gid_t st_gid;         /* group ID of owner */
        dev_t st_rdev;        /* device ID (if special file) */
        off_t st_size;        /* total size in bytes */
        blksize_t st_blksize; /* blocksize for filesystem I/O */
        blkcnt_t st_blocks;   /* number of blocks allocated */
        time_t st_atime;      /* last access time */
        time_t st_mtime;      /* last modification time */
        time_t st_ctime;      /* last status change time */
};

In more detail, the fields are as follows:

• The st_dev field describes the device node on which the file resides (we will
cover device nodes later in this chapter). If the file is not backed by a device—for
example, if it resides on an NFS mount—this value is 0.

• The st_ino field provides the file’s inode number.

• The st_mode field provides the file’s mode bytes. Chapters 1 and 2 covered mode
bytes and permissions.

• The st_nlink field provides the number of hard links pointing at the file. Every
file has at least one hard link.

• The st_uid field provides the user ID of the user who owns the file.

• The st_gid field provides the group ID of the group who owns the file.

• If the file is a device node, the st_rdev field describes the device that this file
represents.

• The st_size field provides the size of the file, in bytes.

• The st_blksize field describes the preferred block size for efficient file I/O. This
value (or an integer multiple) is the optimal block size for user-buffered I/O (see
Chapter 3).

• The st_blocks field provides the number of filesystem blocks allocated to the
file. This value will be smaller than the value provided by st_size if the file has
holes (that is, if the file is a sparse file).
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• The st_atime field contains the last file access time. This is the most recent time
at which the file was accessed (for example, by read( ) or execle( )).

• The st_mtime field contains the last file modification time—that is, the last time
the file was written to.

• The st_ctime field contains the last file change time. This is often misunderstood
to be the file creation time, which is not preserved on Linux, or other Unix-style
systems. The field actually describes the last time that the file’s metadata (for
example, its owner or permissions) was changed.

On success, all three calls return 0, and store the file’s metadata in the provided stat
structure. On error, they return -1, and set errno to one of the following:

EACCESS
The invoking process lacks search permission for one of the directory compo-
nents of path (stat( ) and lstat( ) only).

EBADF
fd is invalid (fstat( ) only).

EFAULT
path or buf is an invalid pointer.

ELOOP
path contains too many symbolic links (stat( ) and lstat( ) only).

ENAMETOOLONG
path is too long (stat( ) and lstat( ) only).

ENOENT
A component in path does not exist (stat( ) and lstat( ) only).

ENOMEM
There is insufficient memory available to complete the request.

ENOTDIR
A component in path is not a directory (stat( ) and lstat( ) only).

The following program uses stat( ) to retrieve the size of a file provided on the com-
mand line:

#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <stdio.h>

int main (int argc, char *argv[])
{
        struct stat sb;
        int ret;

        if (argc < 2) {
                fprintf (stderr,
                         "usage: %s <file>\n", argv[0]);
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                return 1;
        }

        ret = stat (argv[1], &sb);
        if (ret) {
                perror ("stat");
                return 1;
        }

        printf ("%s is %ld bytes\n",
                argv[1], sb.st_size);

        return 0;
}

Here is the result of running the program on its own source file:

$ ./stat stat.c
stat.c is 392 bytes

This snippet, in turn, uses fstat( ) to check whether an already opened file is on a
physical (as opposed to a network) device:

/*
 * is_on_physical_device – returns a positive
 * integer if 'fd' resides on a physical device,
 * 0 if the file resides on a nonphysical or
 * virtual device (e.g., on an NFS mount), and
 * -1 on error.
 */
int is_on_physical_device (int fd)
{
        struct stat sb;
        int ret;

        ret = fstat (fd, &sb);
        if (ret) {
                perror ("fstat");
                return -1;
        }

        return gnu_dev_major (sb.st_dev);
}

Permissions
While the stat calls can be used to obtain the permission values for a given file, two
other system calls set those values:

#include <sys/types.h>
#include <sys/stat.h>

int chmod (const char *path, mode_t mode);
int fchmod (int fd, mode_t mode);
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Both chmod( ) and fchmod( ) set a file’s permissions to mode. With chmod( ), path
denotes the relative or absolute pathname of the file to modify. For fchmod( ), the file
is given by the file descriptor fd.

The legal values for mode, represented by the opaque mode_t integer type, are the same as
those returned by the st_mode field in the stat structure. Although the values are simple
integers, their meanings are specific to each Unix implementation. Consequently,
POSIX defines a set of constants that represent the various permissions (see “Permis-
sions of New Files” in Chapter 2 for full details). These constants can be binary-ORed
together to form the legal values for mode. For example, (S_IRUSR | S_IRGRP) sets the
file’s permissions as both owner- and group-readable.

To change a file’s permissions, the effective ID of the process calling chmod( ) or
fchmod( ) must match the owner of the file, or the process must have the CAP_FOWNER
capability.

On success, both calls return 0. On failure, both calls return -1, and set errno to one
of the following error values:

EACCESS
The invoking process lacked search permission for a component in path (chmod( )
only).

EBADF
The file descriptor fd is invalid (fchmod( ) only).

EFAULT
path is an invalid pointer (chmod( ) only).

EIO
An internal I/O error occurred on the filesystem. This is a very bad error to
encounter; it could indicate a corrupt disk or filesystem.

ELOOP
The kernel encountered too many symbolic links while resolving path (chmod( )
only).

ENAMETOOLONG
path is too long (chmod( ) only).

ENOENT
path does not exist (chmod( ) only).

ENOMEM
There is insufficient memory available to complete the request.

ENOTDIR
A component in path is not a directory (chmod( ) only).
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EPERM
The effective ID of the invoking process does not match the owner of the file,
and the process lacks the CAP_FOWNER capability.

EROFS
The file resides on a read-only filesystem.

This code snippet sets the file map.png to owner-readable and -writable:

int ret;

/*
 * Set 'map.png' in the current directory to
 * owner-readable and -writable. This is the
 * same as 'chmod 600 ./map.png'.
 */
ret = chmod ("./map.png", S_IRUSR | S_IWUSR);
if (ret)
        perror ("chmod");

This code snippet does the same thing, assuming that fd represents the open file
map.png:

int ret;

/*
 * Set the file behind 'fd' to owner-readable
 * and -writable.
 */
ret = fchmod (fd, S_IRUSR | S_IWUSR);
if (ret)
        perror ("fchmod");

Both chmod( ) and fchmod( ) are available on all modern Unix systems. POSIX
requires the former, and makes the latter optional.

Ownership
In the stat structure, the st_uid and st_gid fields provide the file’s owner and group,
respectively. Three system calls allow a user to change those two values:

#include <sys/types.h>
#include <unistd.h>

int chown (const char *path, uid_t owner, gid_t group);
int lchown (const char *path, uid_t owner, gid_t group);
int fchown (int fd, uid_t owner, gid_t group);

chown( ) and lchown( ) set the ownership of the file specified by the path path. They
have the same effect, unless the file is a symbolic link: the former follows symbolic
links and changes the ownership of the link target rather than the link itself, while
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lchown( ) does not follow symbolic links and therefore changes the ownership of the
symbolic link file instead. fchown( ) sets the ownership of the file represented by the
file descriptor fd.

On success, all three calls set the file’s owner to owner, set the file’s group to group,
and return 0. If either the owner or the group field is -1, that value is not set. Only a
process with the CAP_CHOWN capability (usually a root process) may change the owner
of a file. The owner of a file can change the file’s group to any group to which the
user is a member; processes with CAP_CHOWN can change the file’s group to any value.

On failure, the calls return -1, and set errno to one of the following values:

EACCESS
The invoking process lacks search permission for a component in path (chown( )
and lchown( ) only).

EBADF
fd is invalid (fchown( ) only).

EFAULT
path is invalid (chown( ) and lchown( ) only).

EIO
There was an internal I/O error (this is bad).

ELOOP
The kernel encountered too many symbolic links in resolving path (chown( ) and
lchown( ) only).

ENAMETOOLONG
path is too long (chown( ) and lchown( ) only).

ENOENT
The file does not exist.

ENOMEM
There is insufficient memory available to complete the request.

ENOTDIR
A component in path is not a directory (chown( ) and lchown( ) only).

EPERM
The invoking process lacked the necessary rights to change the owner or the
group as requested.

EROFS
The filesystem is read-only.

This code snippet changes the group of the file manifest.txt in the current working
directory to officers. For this to succeed, the invoking user either must possess the
CAP_CHOWN capability or must be kidd and in the officers group:

struct group *gr;
int ret;
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/*
 * getgrnam( ) returns information on a group
 * given its name.
 */
gr = getgrnam ("officers");
if (!gr) {
        /* likely an invalid group */
        perror ("getgrnam");
        return 1;
}

/* set manifest.txt's group to 'officers' */
ret = chmod ("manifest.txt", -1, gr->gr_gid);
if (ret)
        perror ("chmod");

Before invocation, the file’s group is crew:

$ ls –l
-rw-r--r--  1 kidd  crew  13274 May 23 09:20 manifest.txt

After invocation, the file is for the sole privilege of the officers:

$ ls –l
-rw-r--r--  1 kidd  officers 13274 May 23 09:20 manifest.txt

The file’s owner, kidd, is not changed because the code snippet passed -1 for uid.

This function sets the file represented by fd to root ownership and group:

/*
 * make_root_owner - changes the owner and group of the file
 * given by 'fd' to root. Returns 0 on success and -1 on
 * failure.
 */
int make_root_owner (int fd)
{
        int ret;

        /* 0 is both the gid and the uid for root */
        ret = fchown (fd, 0, 0);
        if (ret)
                perror ("fchown");

        return ret;
}

The invoking process must have the CAP_CHOWN capability. As is par for the course
with capabilities, this generally means that it must be owned by root.

Extended Attributes
Extended attributes, also called xattrs, provide a mechanism for permanently associ-
ating key/value pairs with files. In this chapter, we have already discussed all sorts of
key/value metadata associated with files: the file’s size, owner, last modification
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timestamp, and so on. Extended attributes allow existing filesystems to support new
features that weren’t anticipated in their original designs, such as mandatory access
controls for security. What makes extended attributes interesting is that user-space
applications may arbitrarily create, read from, and write to the key/value pairs.

Extended attributes are filesystem-agnostic, in the sense that applications use a stan-
dard interface for manipulating them; the interface is not specific to any filesystem.
Applications can thus use extended attributes without concern for what filesystem
the files reside on, or how the filesystem internally stores the keys and values. Still,
the implementation of extended attributes is very filesystem-specific. Different file-
systems store extended attributes in quite different ways, but the kernel hides these
differences, abstracting them away behind the extended attribute interface.

The ext3 filesystem, for example, stores a file’s extended attributes in empty space in
the file’s inode.* This feature makes reading extended attributes very fast. Because
the filesystem block containing the inode is read off the disk and into memory when-
ever an application accesses a file, the extended attributes are “automatically” read
into memory, and can be accessed without any additional overhead.

Other filesystems, such as FAT and minixfs, do not support extended attributes at
all. These filesystems return ENOTSUP when extended attribute operations are invoked
on their files.

Keys and values

A unique key identifies each extended attribute. Keys must be valid UTF-8. They
take the form namespace.attribute. Every key must be fully qualified; that is, it must
begin with a valid namespace, followed by a period. An example of a valid key name is
user.mime_type; this key is in the user namespace with the attribute name mime_type.

A key may be defined or undefined. If a key is defined, its value may be empty or non-
empty. That is, there is a difference between an undefined key, and a defined key
with no assigned value. As we shall see, this means a special interface is required for
removing keys (assigning them an empty value is not sufficient).

The value associated with a key, if nonempty, may be any arbitrary array of bytes.
Because the value is not necessarily a string, it need not be null-terminated, although
null-termination certainly makes sense if you choose to store a C string as a key’s
value. Since the values are not guaranteed to be null-terminated, all operations on
extended attributes require the size of the value. When reading an attribute, the ker-
nel provides the size; when writing an attribute, you must provide the size.

* Until the inode runs out of space, of course. Then ext3 stores extended attributes in additional filesystem
blocks. Older versions of ext3 lacked this in-inode extended attribute feature.
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Linux does not enforce any limits on the number of keys, the length of a key, the size
of a value, or the total space that can be consumed by all of the keys and values asso-
ciated with a file. Filesystems, however, have practical limits. These limits are usually
manifested as constraints on the total size of all of the keys, and values associated
with a given file.

With ext3, for example, all extended attributes for a given file must fit within the
slack space in the file’s inode, and up to one additional filesystem block. (Older ver-
sions of ext3 were limited to the one filesystem block, without the in-inode storage.)
This equates to a practical limit of about 1 KB to 8 KB per file, depending on the size
of the filesystem’s blocks. XFS, in contrast, has no practical limits. Even with ext3,
however, these limits are usually not an issue, as most keys and values are short text
strings. Nonetheless, keep them in mind—think twice before storing the entire revi-
sion control history of a project in a file’s extended attributes!

Extended attribute namespaces

The namespaces associated with extended attributes are more than just organiza-
tional tools. The kernel enforces different access policies depending on the
namespace.

Linux currently defines four extended attribute namespaces, and may define more in
the future. The current four are as follows:

system
The system namespace is used to implement kernel features that utilize extended
attributes, such as access control lists (ACLs). An example of an extended

A Better Way to Store MIME Types
GUI file managers, such as GNOME’s Nautilus, behave differently for files of varying
types: they offer unique icons, different default click behavior, special lists of opera-
tions to perform, and so on. To accomplish this, the file manager has to know the
format of each file. To determine the format, filesystems such as Windows simply look
at the file’s extension. For reasons of both tradition and security, however, Unix sys-
tems tend to inspect the file and interpret its type. This process is called MIME type
sniffing.

Some file managers generate this information on the fly; others generate the informa-
tion once and then cache it. Those that cache the information tend to put it in a custom
database. The file manager must work to keep this database in sync with the files,
which can change without the file manager’s knowledge. A better approach is to jetti-
son the custom database and store such metadata in extended attributes: these are
easier to maintain, faster to access, and readily accessible by any application.
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attribute in this namespace is system.posix_acl_access. Whether users can read
from or write to these attributes depends on the security module in place.
Assume at worst that no user (including root) can even read these attributes.

security
The security namespace is used to implement security modules, such as SELinux.
Whether user-space applications can access these attributes depends, again, on
the security module in place. By default, all processes can read these attributes,
but only processes with the CAP_SYS_ADMIN capability can write to them.

trusted
The trusted namespace stores restricted information in user space. Only pro-
cesses with the CAP_SYS_ADMIN capability can read from or write to these
attributes.

user
The user namespace is the standard namespace for use by regular processes. The
kernel controls access to this namespace via the normal file permission bits. To
read the value from an existing key, a process must have read access to the given
file. To create a new key, or to write a value to an existing key, a process must
have write access to the given file. You can assign extended attributes in the user
namespace only to regular files, not to symbolic links or device files. When
designing a user-space application that uses extended attributes, this is likely the
namespace you want.

Extended attribute operations

POSIX defines four operations that applications may perform on a given file’s
extended attributes:

• Given a file and a key, return the corresponding value.

• Given a file, a key, and a value, assign that value to the key.

• Given a file, return a list of all of the file’s assigned extended attribute keys.

• Given a file and a key, remove that extended attribute from the file.

For each operation, POSIX provides three system calls:

• A version that operates on a given pathname; if the path refers to a symbolic
link, the target of the link is operated upon (the usual behavior).

• A version that operates on a given pathname; if the path refers to a symbolic
link, the link itself is operated upon (the standard l variant of a system call).

• A version that operates on a file descriptor (the standard f variant).

In the following subsections, we will cover all 12 permutations.

Retrieving an extended attribute. The simplest operation is returning the value of an
extended attribute from a file, given the key:
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#include <sys/types.h>
#include <attr/xattr.h>

ssize_t getxattr (const char *path, const char *key,
                  void *value, size_t size);
ssize_t lgetxattr (const char *path, const char *key,
                   void *value, size_t size);
ssize_t fgetxattr (int fd, const char *key,
                   void *value, size_t size);

A successful call to getxattr( ) stores the extended attribute with name key from the
file path in the provided buffer value, which is size bytes in length. It returns the
actual size of the value.

If size is 0, the call returns the size of the value without storing it in value. Thus,
passing 0 allows applications to determine the correct size for the buffer in which to
store the key’s value. Given this size, applications can then allocate or resize the
buffer as needed.

lgetxattr( ) behaves the same as getxattr( ), unless path is a symbolic link, in which
case it returns extended attributes from the link itself rather than the target of the
link. Recall from the previous section that attributes in the user namespace cannot be
applied to symbolic links—thus, this call is rarely used.

fgetxattr( ) operates on the file descriptor fd; otherwise, it behaves the same as
getxattr( ).

On error, all three calls return -1, and set errno to one of the following values:

EACCESS
The invoking process lacks search permission for one of the directory compo-
nents of path (getxattr( ) and lgetxattr( ) only).

EBADF
fd is invalid (fgetxattr( ) only).

EFAULT
path, key, or value is an invalid pointer.

ELOOP
path contains too many symbolic links (getxattr( ) and lgetxattr( ) only).

ENAMETOOLONG
path is too long (getxattr( ) and lgetxattr( ) only).

ENOATTR
The attribute key does not exist, or the process does not have access to the
attribute.

ENOENT
A component in path does not exist (getxattr( ) and lgetxattr( ) only).

ENOMEM
There is insufficient memory available to complete the request.
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ENOTDIR
A component in path is not a directory (getxattr( ) and lgetxattr( ) only).

ENOTSUP
The filesystem on which path or fd resides does not support extended attributes.

ERANGE
size is too small to hold the value of key. As previously discussed, the call may
be reissued with size set to 0; the return value will indicate the required buffer
size, and value may be resized appropriately.

Setting an extended attribute. The following three system calls set a given extended
attribute:

#include <sys/types.h>
#include <attr/xattr.h>

int setxattr (const char *path, const char *key,
              const void *value, size_t size, int flags);
int lsetxattr (const char *path, const char *key,
               const void *value, size_t size, int flags);
int fsetxattr (int fd, const char *key,
               const void *value, size_t size, int flags);

A successful call to setxattr( ) sets the extended attribute key on the file path to
value, which is size bytes in length. The flags field modifies the behavior of the call.
If flags is XATTR_CREATE, the call will fail if the extended attribute already exists. If
flags is XATTR_REPLACE, the call will fail if the extended attribute does not exist. The
default behavior—performed if flags is 0—allows both creations and replacements.
Regardless of the value of flags, keys other than key are unaffected.

lsetxattr( ) behaves the same as setxattr( ), unless path is a symbolic link, in which
case it sets the extended attributes on the link itself, rather than on the target of the
link. Recall that attributes in the user namespace cannot be applied to symbolic
links—thus, this call is also rarely used.

fsetxattr( ) operates on the file descriptor fd; otherwise, it behaves the same as
setxattr( ).

On success, all three system calls return 0; on failure, the calls return -1, and set
errno to one of the following:

EACCESS
The invoking process lacks search permission for one of the directory compo-
nents of path (setxattr( ) and lsetxattr( ) only).

EBADF
fd is invalid (fsetxattr( ) only).

EDQUOT
A quota limit prevents the space consumption required by the requested operation.
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EEXIST
XATTR_CREATE was set in flags, and key already exists on the given file.

EFAULT
path, key, or value is an invalid pointer.

EINVAL
flags is invalid.

ELOOP
path contains too many symbolic links (setxattr( ) and lsetxattr( ) only).

ENAMETOOLONG
path is too long (setxattr( ) and lsetxattr( ) only).

ENOATTR
XATTR_REPLACE was set in flags, and key does not exist on the given file.

ENOENT
A component in path does not exist (setxattr( ) and lsetxattr( ) only).

ENOMEM
There is insufficient memory available to complete the request.

ENOSPC
There is insufficient space on the filesystem to store the extended attribute.

ENOTDIR
A component in path is not a directory (setxattr( ) and lsetxattr( ) only).

ENOTSUP
The filesystem on which path or fd resides does not support extended attributes.

Listing the extended attributes on a file. The following three system calls enumerate the
set of extended attribute keys assigned to a given file:

#include <sys/types.h>
#include <attr/xattr.h>

ssize_t listxattr (const char *path,
                   char *list, size_t size);
ssize_t llistxattr (const char *path,
                    char *list, size_t size);
ssize_t flistxattr (int fd,
                    char *list, size_t size);

A successful call to listxattr( ) returns a list of the extended attribute keys associ-
ated with the file denoted by path. The list is stored in the buffer provided by list,
which is size bytes in length. The system call returns the actual size of the list, in
bytes.

Each extended attribute key returned in list is terminated by a null character, so a
list might look like this:

"user.md5_sum\0user.mime_type\0system.posix_acl_default\0"
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Thus, although each key is a traditional, null-terminated C string, you need the
length of the entire list (which you can retrieve from the call’s return value) to walk
the list of keys. To find out how large a buffer you need to allocate, call one of the list
functions with a size of 0; this causes the function to return the actual length of the
full list of keys. As with getxattr( ), applications may use this functionality to allo-
cate or resize the buffer to pass for value.

llistxattr( ) behaves the same as listxattr( ), unless path is a symbolic link, in
which case the call enumerates the extended attribute keys associated with the link
itself rather than with the target of the link. Recall that attributes in the user
namespace cannot be applied to symbolic links—thus, this call is rarely used.

flistxattr( ) operates on the file descriptor fd; otherwise, it behaves the same as
listxattr( ).

On failure, all three calls return -1, and set errno to one of the following error codes:

EACCESS
The invoking process lacks search permission for one of the directory compo-
nents of path (listxattr( ) and llistxattr( ) only).

EBADF
fd is invalid (flistxattr( ) only).

EFAULT
path or list is an invalid pointer.

ELOOP
path contains too many symbolic links (listxattr( ) and llistxattr( ) only).

ENAMETOOLONG
path is too long (listxattr( ) and llistxattr( ) only).

ENOENT
A component in path does not exist (listxattr( ) and llistxattr( ) only).

ENOMEM
There is insufficient memory available to complete the request.

ENOTDIR
A component in path is not a directory (listxattr( ) and llistxattr( ) only).

ENOTSUPP
The filesystem on which path or fd resides does not support extended attributes.

ERANGE
size is nonzero, and is insufficiently large to hold the complete list of keys. The
application may reissue the call with size set to 0 to discover the actual size of
the list. The program may then resize value and reissue the system call.

Removing an extended attribute. Finally, these three system calls remove a given key
from a given file:
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#include <sys/types.h>
#include <attr/xattr.h>

int removexattr (const char *path, const char *key);
int lremovexattr (const char *path, const char *key);
int fremovexattr (int fd, const char *key);

A successful call to removexattr( ) removes the extended attribute key from the file
path. Recall that there is a difference between an undefined key and a defined key
with an empty (zero-length) value.

lremovexattr( ) behaves the same as removexattr( ), unless path is a symbolic link, in
which case the call removes the extended attribute key associated with the link itself
rather than with the target of the link. Recall that attributes in the user namespace
cannot be applied to symbolic links—thus, this call is also rarely used.

fremovexattr( ) operates on the file descriptor fd; otherwise, it behaves the same as
removexattr( ).

On success, all three system calls return 0. On failure, all three calls return -1, and set
errno to one of the following:

EACCESS
The invoking process lacks search permission for one of the directory compo-
nents of path (removexattr( ) and lremovexattr( ) only).

EBADF
fd is invalid (fremovexattr( ) only).

EFAULT
path or key is an invalid pointer.

ELOOP
path contains too many symbolic links (removexattr( ) and lremovexattr( )
only).

ENAMETOOLONG
path is too long (removexattr( ) and lremovexattr( ) only).

ENOATTR
key does not exist on the given file.

ENOENT
A component in path does not exist (removexattr( ) and lremovexattr( ) only).

ENOMEM
There is insufficient memory available to complete the request.

ENOTDIR
A component in path is not a directory (removexattr( ) and lremovexattr( )
only).

ENOTSUPP
The filesystem on which path or fd resides does not support extended attributes.
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Directories
In Unix, a directory is a simple concept: it contains a list of filenames, each of which
maps to an inode number. Each name is called a directory entry, and each name-
to-inode mapping is called a link. A directory’s contents—what the user sees as the
result of an ls—are a listing of all the filenames in that directory. When the user
opens a file in a given directory, the kernel looks up the filename in that directory’s
list to find the corresponding inode number. The kernel then passes that inode num-
ber to the filesystem, which uses it to find the physical location of the file on the
device.

Directories can also contain other directories. A subdirectory is a directory inside of
another directory. Given this definition, all directories are subdirectories of some
parent directory, with the exception of the directory at the very root of the filesystem
tree, /. Not surprisingly, this directory is called the root directory (not to be confused
with root’s home directory, /root).

A pathname consists of a filename along with one or more of its parent directories.
An absolute pathname is a pathname that begins with the root directory—for exam-
ple, /usr/bin/sextant. A relative pathname is a pathname that does not begin with the
root directory, such as bin/sextant. For such a pathname to be useful, the operating
system must know the directory to which the path is relative. The current working
directory (discussed in the next section) is used as the starting point.

File and directory names can contain any character except /, which delineates direc-
tories in a pathname, and null, which terminates the pathname. That said, it is
standard practice to constrain the characters in pathnames to valid printable charac-
ters under the current locale, or even just ASCII. Since neither the kernel nor the C
library enforces this practice, however, it is up to applications to enforce the use of
only valid printable characters.

Older Unix systems limited filenames to 14 characters. Today, all modern Unix file-
systems allow at least 255 bytes for each filename.* Many filesystems under Linux
allow even longer filenames.†

Every directory contains two special directories, . and .. (called dot and dot-dot). The
dot directory is a reference to the directory itself. The dot-dot directory is a reference to
the directory’s parent directory. For example, /home/kidd/gold/.. is the same directory as
/home/kidd. The root directory’s dot and dot-dot directories point to itself—that is, /, /.,
and /.. are all the same directory. Technically speaking, therefore, one could say that
even the root directory is a subdirectory—in this case, of itself.

* Note that this limit is 255 bytes, not 255 characters. Multibyte characters obviously consume more than 1 of
these 255 bytes.

† Of course, older filesystems that Linux provides for backward compatibility, such as FAT, still carry their
own limitations. In the case of FAT, this limitation is eight characters, followed by a dot, followed by three
characters. Yes, enforcing the dot as a special character inside of the filesystem is silly.
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The Current Working Directory
Every process has a current directory, which it initially inherits from its parent pro-
cess. That directory is known as the process’ current working directory (cwd). The
current working directory is the starting point from which the kernel resolves relative
pathnames. For example, if a process’ current working directory is /home/blackbeard,
and that process tries to open parrot.jpg, the kernel will attempt to open /home/
blackbeard/parrot.jpg. Conversely, if the process tries to open /usr/bin/mast, the
kernel will indeed open /usr/bin/mast—the current working directory has no impact
on absolute pathnames (that is, pathnames that start with a slash).

A process can both obtain and change its current working directory.

Obtaining the current working directory

The preferred method for obtaining the current working directory is the getcwd( )
system call, which POSIX standardized:

#include <unistd.h>

char * getcwd (char *buf, size_t size);

A successful call to getcwd( ) copies the current working directory as an absolute
pathname into the buffer pointed at by buf, which is of length size bytes, and returns
a pointer to buf. On failure, the call returns NULL, and sets errno to one of the follow-
ing values:

EFAULT
buf is an invalid pointer.

EINVAL
size is 0, but buf is not NULL.

ENOENT
The current working directory is no longer valid. This can happen if the current
working directory is removed.

ERANGE
size is too small to hold the current working directory in buf. The application
needs to allocate a larger buffer and try again.

Here’s an example of using getcwd( ):

char cwd[BUF_LEN];

if (!getcwd (cwd, BUF_LEN)) {
        perror ("getcwd");
        exit (EXIT_FAILURE);
}

printf ("cwd = %s\n", cwd);
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POSIX dictates that the behavior of getcwd( ) is undefined if buf is NULL. Linux’s C
library, in this case, will allocate a buffer of length size bytes, and store the current
working directory there. If size is 0, the C library will allocate a buffer sufficiently
large to store the current working directory. It is then the application’s responsibility
to free the buffer, via free( ), when it’s done with it. Because this behavior is Linux-
specific, applications that value portability or a strict adherence to POSIX should not
rely on this functionality. This feature, however, does make usage very simple!
Here’s an example:

char *cwd;

cwd = getcwd (NULL, 0);
if (!cwd) {
        perror ("getcwd");
        exit (EXIT_FAILURE);
}

printf ("cwd = %s\n", cwd);

free (cwd);

Linux’s C library also provides a get_current_dir_name( ) function, which has the
same behavior as getcwd( ) when passed a NULL buf and a size of 0:

#define _GNU_SOURCE
#include <unistd.h>

char * get_current_dir_name (void);

Thus, this snippet behaves the same as the previous one:

char *cwd;

cwd = get_current_dir_name ( );
if (!cwd) {
        perror ("get_current_dir_name");
        exit (EXIT_FAILURE);
}

printf ("cwd = %s\n", cwd);

free (cwd);

Older BSD systems favored the getwd( ) call, which Linux provides for backward
compatibility:

#define _XOPEN_SOURCE_EXTENDED /* or _BSD_SOURCE */
#include <unistd.h>

char * getwd (char *buf);

A call to getwd( ) copies the current working directory into buf, which must be at
least PATH_MAX bytes in length. The call returns buf on success and NULL on failure. For
example:
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char cwd[PATH_MAX];

if (!getwd (cwd)) {
        perror ("getwd");
        exit (EXIT_FAILURE);
}

printf ("cwd = %s\n", cwd);

For reasons of both portability and security, applications should not use getwd( );
getcwd( ) is preferred.

Changing the current working directory

When a user first logs into her system, the login process sets her current working
directory to her home directory, as specified in /etc/passwd. Sometimes, however, a
process wants to change its current working directory. For example, a shell may
want to do this when the user types cd.

Linux provides two system calls for changing the current working directory, one that
accepts the pathname of a directory, and another that accepts a file descriptor repre-
senting an open directory:

#include <unistd.h>

int chdir (const char *path);
int fchdir (int fd);

A call to chdir( ) changes the current working directory to the pathname specified by
path, which can be an absolute or a relative pathname. Similarly, a call to fchdir( )
changes the current working directory to the pathname represented by the file
descriptor fd, which must be opened against a directory. On success, both calls
return 0. On failure, both calls return -1.

On failure, chdir( ) also sets errno to one of the following values:

EACCESS
The invoking process lacks search permission for one of the directory compo-
nents of path.

EFAULT
path is not a valid pointer.

EIO
An internal I/O error occurred.

ELOOP
The kernel encountered too many symbolic links while resolving path.

ENAMETOOLONG
path is too long.

ENOENT
The directory pointed at by path does not exist.
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ENOMEM
There is insufficient memory available to complete the request.

ENOTDIR
One or more of the components in path is not a directory.

fchdir( ) sets errno to one of the following values:

EACCESS
The invoking process lacks search permission for the directory referenced by fd
(i.e., the execute bit is not set). This happens if the top-level directory is read-
able, but not executable; open( ) succeeds, but fchdir( ) will not.

EBADF
fd is not an open file descriptor.

Depending on the filesystem, other error values are valid for either call.

These system calls affect only the currently running process. There is no mechanism
in Unix for changing the current working directory of a different process. Therefore,
the cd command found in shells cannot be a separate process (like most commands)
that simply executes chdir( ) on the first command-line argument and then exits.
Instead, cd must be a special built-in command that causes the shell itself to call
chdir( ), changing its own current working directory.

The most common use of getcwd( ) is to save the current working directory so that
the process can return to it later. For example:

char *swd;
int ret;

/* save the current working directory */
swd = getcwd (NULL, 0);
if (!swd) {
        perror ("getcwd");
        exit (EXIT_FAILURE);
}

/* change to a different directory */
ret = chdir (some_other_dir);
if (ret) {
        perror ("chdir");
        exit (EXIT_FAILURE);
}

/* do some other work in the new directory... */

/* return to the saved directory */
ret = chdir (swd);
if (ret) {
        perror ("chdir");
        exit (EXIT_FAILURE);
}

free (swd);



Directories | 217

It’s better, however, to open( ) the current directory, and then fchdir( ) to it later.
This approach is faster because the kernel does not store the pathname of the cur-
rent working directory in memory; it stores only the inode. Consequently, whenever
the user calls getcwd( ), the kernel must generate the pathname by walking the direc-
tory structure. Conversely, opening the current working directory is cheaper because
the kernel already has its inode available and the human-readable pathname is not
needed to open a file. The following snippet uses this approach:

int swd_fd;

swd_fd = open (".", O_RDONLY);
if (swd_fd == -1) {
        perror ("open");
        exit (EXIT_FAILURE);
}

/* change to a different directory */
ret = chdir (some_other_dir);
if (ret) {
        perror ("chdir");
        exit (EXIT_FAILURE);
}

/* do some other work in the new directory... */

/* return to the saved directory */
ret = fchdir (swd_fd);
if (ret) {
        perror ("fchdir");
        exit (EXIT_FAILURE);
}

/* close the directory's fd */
ret = close (swd_fd);
if (ret) {
        perror ("close");
        exit (EXIT_FAILURE);
}

This is how shells implement the caching of the previous directory (for example,
with cd - in bash).

A process that does not care about its current working directory—such as a dae-
mon—generally sets it to / with the call chdir("/"). An application that interfaces
with a user and his data, such as a word processor, generally sets its current working
directory to the user’s home directory, or to a special documents directory. Because
current working directories are relevant only in the context of relative pathnames,
the current working directory is of most utility to command-line utilities that the
user invokes from the shell.
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Creating Directories
Linux provides a single system call, standardized by POSIX, for creating new directories:

#include <sys/stat.h>
#include <sys/types.h>

int mkdir (const char *path, mode_t mode);

A successful call to mkdir( ) creates the directory path, which may be relative or abso-
lute, with the permission bits mode (as modified by the current umask), and returns 0.

The current umask modifies the mode argument in the usual way, plus any operating-
system-specific mode bits: in Linux, the permission bits of the newly created direc-
tory are (mode & ~umask & 01777). In other words, in effect, the umask for the process
imposes restrictions that the mkdir( ) call cannot override. If the new directory’s par-
ent directory has the set group ID (sgid) bit set, or if the filesystem is mounted with
BSD group semantics, the new directory will inherit the group affiliation from its par-
ent. Otherwise, the effective group ID of the process will apply to the new directory.

On failure, mkdir( ) returns -1, and sets errno to one of the following values:

EACCESS
The parent directory is not writable by the current process, or one or more com-
ponents of path are not searchable.

EEXIST
path already exists (and not necessarily as a directory).

EFAULT
path is an invalid pointer.

ELOOP
The kernel encountered too many symbolic links while resolving path.

ENAMETOOLONG
path is too long.

ENOENT
A component in path does not exist or is a dangling symbolic link.

ENOMEM
There is insufficient kernel memory to complete the request.

ENOSPC
The device containing path is out of space, or the user’s disk quota is over the
limit.

ENOTDIR
One or more of the components in path is not a directory.

EPERM
The filesystem containing path does not support the creation of directories.

EROFS
The filesystem containing path is mounted read-only.
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Removing Directories
As the counterpart to mkdir( ), the POSIX-standardized rmdir( ) removes a directory
from the filesystem hierarchy:

#include <unistd.h>

int rmdir (const char *path);

On success, rmdir( ) removes path from the filesystem, and returns 0. The directory
specified by path must be empty, aside from the dot and dot-dot directories. There is
no system call that implements the equivalent of a recursive delete, as with rm -r.
Such a tool must manually perform a depth-first traversal of the filesystem, removing
all files and directories starting with the leaves, and moving back up the filesystem;
rmdir( ) can be used at each stage to remove a directory once its files have been
removed.

On failure, rmdir( ) returns -1, and sets errno to one of the following values:

EACCESS
Write access to the parent directory of path is not allowed, or one of the compo-
nent directories of path is not searchable.

EBUSY
path is currently in use by the system, and cannot be removed. In Linux, this can
happen only if path is a mount point or a root directory (root directories need
not be mount points, thanks to chroot( )!).

EFAULT
path is not a valid pointer.

EINVAL
path has the dot directory as its final component.

ELOOP
The kernel encountered too many symbolic links while resolving path.

ENAMETOOLONG
path is too long.

ENOENT
A component in path does not exist, or is a dangling symbolic link.

ENOMEM
There is insufficient kernel memory to complete the request.

ENOTDIR
One or more of the components in path is not a directory.

ENOTEMPTY
path contains entries other than the special dot and dot-dot directories.

EPERM
The parent directory of path has the sticky bit (S_ISVTX) set, but the process’
effective user ID is neither the user ID of said parent nor of path itself, and the
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process does not have the CAP_FOWNER capability. Alternatively, the filesystem
containing path does not allow the removal of directories.

EROFS
The filesystem containing path is mounted read-only.

Usage is simple:

int ret;

/* remove the directory /home/barbary/maps */
ret = rmdir ("/home/barbary/maps");
if (ret)
        perror ("rmdir");

Reading a Directory’s Contents
POSIX defines a family of functions for reading the contents of directories—that is,
obtaining a list of the files that reside in a given directory. These functions are useful
if you are implementing ls or a graphical file save dialog, if you need to operate on
every file in a given directory, or if you want to search for files in a directory that
match a given pattern.

To begin reading a directory’s contents you need to create a directory stream, which
is represented by a DIR object:

#include <sys/types.h>
#include <dirent.h>

DIR * opendir (const char *name);

A successful call to opendir( ) creates a directory stream representing the directory
given by name.

A directory stream is little more than a file descriptor representing the open direc-
tory, some metadata, and a buffer to hold the directory’s contents. Consequently, it
is possible to obtain the file descriptor behind a given directory stream:

#define _BSD_SOURCE /* or _SVID_SOURCE */
#include <sys/types.h>
#include <dirent.h>

int dirfd (DIR *dir);

A successful call to dirfd( ) returns the file descriptor backing the directory stream
dir. On error, the call returns -1. As the directory stream functions use this file
descriptor internally, programs should only invoke calls that do not manipulate the
file position. dirfd( ) is a BSD extension, and is not standardized by POSIX; pro-
grammers wishing to proclaim their POSIX compliance should avoid it.
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Reading from a directory stream

Once you have created a directory stream with opendir( ), your program can begin
reading entries from the directory. To do this, use readdir( ), which returns entries
one by one from a given DIR object:

#include <sys/types.h>
#include <dirent.h>

struct dirent * readdir (DIR *dir);

A successful call to readdir( ) returns the next entry in the directory represented by
dir. The dirent structure represents a directory entry. Defined in <dirent.h>, on
Linux, its definition is:

struct dirent {
        ino_t d_ino; /* inode number */
        off_t d_off; /* offset to the next dirent */
        unsigned short d_reclen; /* length of this record */
        unsigned char d_type; /* type of file */
        char d_name[256]; /* filename */
};

POSIX requires only the d_name field, which is the name of a single file within the
directory. The other fields are optional, or Linux-specific. Applications desiring port-
ability to other systems, or conformance to POSIX should access only d_name.

Applications successively invoke readdir( ), obtaining each file in the directory, until
they find the file they are searching for, or until the entire directory is read, at which
time readdir( ) returns NULL.

On failure, readdir( ) also returns NULL. To differentiate between an error and having
read all of the files, applications must set errno to 0 before each readdir( ) invoca-
tion, and then check both the return value and errno. The only errno value set by
readdir( ) is EBADF, signifying that dir is invalid. Thus, many applications do not
bother to check for errors, and assume that NULL means that no more files remain.

Closing the directory stream

To close a directory stream opened with opendir( ), use closedir( ):

#include <sys/types.h>
#include <dirent.h>

int closedir (DIR *dir);

A successful call to closedir( ) closes the directory stream represented by dir, includ-
ing the backing file descriptor, and returns 0. On failure, the function returns -1, and
sets errno to EBADF, the only possible error code, signifying that dir is not an open
directory stream.
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The following snippet implements a function, find_file_in_dir( ), that uses
readdir( ) to search a given directory for a given filename. If the file exists in the
directory, the function returns 0. Otherwise, it returns a nonzero value:

/*
 * find_file_in_dir - searches the directory 'path' for a
 * file named 'file'.
 *
 * Returns 0 if 'file' exists in 'path' and a nonzero
 * value otherwise.
 */
int find_file_in_dir (const char *path, const char *file)
{
        struct dirent *entry;
        int ret = 1;
        DIR *dir;

        dir = opendir (path);

        errno = 0;
        while ((entry = readdir (dir)) != NULL) {
                if (!strcmp(entry->d_name, file)) {
                        ret = 0;
                        break;
                }
        }

        if (errno && !entry)
                perror ("readdir");

        closedir (dir);
        return ret;
}

System calls for reading directory contents

The previously discussed functions for reading the contents of directories are stan-
dardized by POSIX, and provided by the C library. Internally, these functions use
one of two system calls, readdir( ) and getdents( ), which are provided here for
completeness:

#include <unistd.h>
#include <linux/types.h>
#include <linux/dirent.h>
#include <linux/unistd.h>
#include <errno.h>

/*
 * Not defined for user space: need to
 * use the _syscall3( ) macro to access.
 */
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int readdir (unsigned int fd,
             struct dirent *dirp,
             unsigned int count);

int getdents (unsigned int fd,
              struct dirent *dirp,
              unsigned int count);

You do not want to use these system calls! They are obtuse, and not portable.
Instead, user-space applications should use the C library’s opendir( ), readdir( ), and
closedir( ) system calls.

Links
Recall from our discussion of directories that each name-to-inode mapping in a
directory is called a link. Given this simple definition—that a link is essentially just a
name in a list (a directory) that points at an inode—there would appear to be no rea-
son why multiple links to the same inode could not exist. That is, a single inode (and
thus a single file) could be referenced from, say, both /etc/customs and /var/run/ledger.

Indeed, this is the case, with one catch: because links map to inodes, and inode num-
bers are specific to a particular filesystem, /etc/customs and /var/run/ledger must both
reside on the same filesystem. Within a single filesystem, there can be a large num-
ber of links to any given file. The only limit is in the size of the integer data type used
to hold the number of links. Among various links, no one link is the “original” or the
“primary” link. All of the links enjoy the same status, pointing at the same file.

We call these types of links hard links. Files can have no, one, or many links. Most
files have a link count of 1—that is, they are pointed at by a single directory entry—
but some files have two or even more links. Files with a link count of 0 have no
corresponding directory entries on the filesystem. When a file’s link count reaches 0,
the file is marked as free, and its disk blocks are made available for reuse.* Such a file,
however, remains on the filesystem if a process has the file open. Once no process
has the file open, the file is removed.

The Linux kernel implements this behavior by using a link count and a usage count.
The usage count is a tally of the number of instances where the file is open. A file is
not removed from the filesystem until both the link and the usage counts hit 0.

Another type of link, the symbolic link, is not a filesystem mapping, but a higher-level
pointer that is interpreted at runtime. Such links may span filesystems—we’ll look at
them shortly.

* Finding files with a link count of 0, but whose blocks are marked as allocated is a primary job of fsck, the
filesystem checker. Such a condition can occur when a file is deleted, but remains open, and the system
crashes before the file is closed. The kernel is never able to mark the filesystem blocks as free, and thus the
discrepancy arises. Journaling filesystems eliminate this type of error.



224 | Chapter 7: File and Directory Management

Hard Links
The link( ) system call, one of the original Unix system calls, and now standardized
by POSIX, creates a new link for an existing file:

#include <unistd.h>

int link (const char *oldpath, const char *newpath);

A successful call to link( ) creates a new link under the path newpath for the existing
file oldpath, and then returns 0. Upon completion, both oldpath and newpath refer to
the same file—there is, in fact, no way to even tell which was the “original” link.

On failure, the call returns -1, and sets errno to one of the following:

EACCESS
The invoking process lacks search permission for a component in oldpath, or the
invoking process does not have write permission for the directory containing
newpath.

EEXIST
newpath already exists—link( ) will not overwrite an existing directory entry.

EFAULT
oldpath or newpath is an invalid pointer.

EIO
An internal I/O error occurred (this is bad!).

ELOOP
Too many symbolic links were encountered in resolving oldpath or newpath.

EMLINK
The inode pointed at by oldpath already has the maximum number of links
pointing at it.

ENAMETOOLONG
oldpath or newpath is too long.

ENOENT
A component in oldpath or newpath does not exist.

ENOMEM
There is insufficient memory available to complete the request.

ENOSPC
The device containing newpath has no room for the new directory entry.

ENOTDIR
A component in oldpath or newpath is not a directory.

EPERM
The filesystem containing newpath does not allow the creation of new hard links,
or oldpath is a directory.
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EROFS
newpath resides on a read-only filesystem.

EXDEV
newpath and oldpath are not on the same mounted filesystem. (Linux allows a
single filesystem to be mounted in multiple places, but even in this case, hard
links cannot be created across the mount points.)

This example creates a new directory entry, pirate, that maps to the same inode (and
thus the same file) as the existing file privateer, both of which are in /home/kidd:

int ret;

/*
 * create a new directory entry,
 * '/home/kidd/privateer', that points at
 * the same inode as '/home/kidd/pirate'
 */
ret = link ("/home/kidd/privateer", /home/kidd/pirate");
if (ret)
        perror ("link");

Symbolic Links
Symbolic links, also known as symlinks or soft links, are similar to hard links in that
both point at files in the filesystem. The symbolic link differs, however, in that it is
not merely an additional directory entry, but a special type of file altogether. This
special file contains the pathname for a different file, called the symbolic link’s tar-
get. At runtime, on the fly, the kernel substitutes this pathname for the symbolic
link’s pathname (unless using the various l versions of system calls, such as lstat( ),
which operate on the link itself, and not the target). Thus, whereas one hard link is
indistinguishable from another hard link to the same file, it is easy to tell the differ-
ence between a symbolic link and its target file.

A symbolic link may be relative or absolute. It may also contain the special dot direc-
tory discussed earlier, referring to the directory in which it is located, or the dot-dot
directory, referring to the parent of this directory.

Soft links, unlike hard links, can span filesystems. They can point anywhere, in fact!
Symbolic links can point at files that exist (the common practice), or at nonexistent
files. The latter type of link is called a dangling symlink. Sometimes, dangling
symlinks are unwanted—such as when the target of the link was deleted, but not the
symlink—but at other times, they are intentional.

The system call for creating a symbolic link is very similar to its hard link cousin:

#include <unistd.h>

int symlink (const char *oldpath, const char *newpath);
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A successful call to symlink( ) creates the symbolic link newpath pointing at the tar-
get oldpath, and then returns 0.

On error, symlink( ) returns -1, and sets errno to one of the following:

EACCESS
The invoking process lacks search permission for a component in oldpath, or the
invoking process does not have write permission for the directory containing
newpath.

EEXIST
newpath already exists—symink( ) will not overwrite an existing directory entry.

EFAULT
oldpath or newpath is an invalid pointer.

EIO
An internal I/O error occurred (this is bad!).

ELOOP
Too many symbolic links were encountered in resolving oldpath or newpath.

EMLINK
The inode pointed at by oldpath already has the maximum number of links
pointing at it.

ENAMETOOLONG
oldpath or newpath is too long.

ENOENT
A component in oldpath or newpath does not exist.

ENOMEM
There is insufficient memory available to complete the request.

ENOSPC
The device containing newpath has no room for the new directory entry.

ENOTDIR
A component in oldpath or newpath is not a directory.

EPERM
The filesystem containing newpath does not allow the creation of new symbolic
links.

EROFS
newpath resides on a read-only filesystem.

This snippet is the same as our previous example, but it creates /home/kidd/pirate as
a symbolic link (as opposed to a hard link) to /home/kidd/privateer:

int ret;

/*
 * create a symbolic link,
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 * '/home/kidd/privateer', that
 * points at '/home/kidd/pirate'
 */
ret = symlink ("/home/kidd/privateer", "/home/kidd/pirate");
if (ret)
        perror ("symlink");

Unlinking
The converse to linking is unlinking, the removal of pathnames from the filesystem.
A single system call, unlink( ), handles this task:

#include <unistd.h>

int unlink (const char *pathname);

A successful call to unlink( ) deletes pathname from the filesystem, and returns 0. If
that name was the last reference to the file, the file is deleted from the filesystem. If,
however, a process has the file open, the kernel will not delete the file from the file-
system until that process closes the file. Once no process has the file open, it is
deleted.

If pathname refers to a symbolic link, the link, not the target, is destroyed.

If pathname refers to another type of special file, such as a device, FIFO, or socket, the
special file is removed from the filesystem, but processes that have the file open may
continue to utilize it.

On error, unlink( ) returns -1, and sets errno to one of the following error codes:

EACCESS
The invoking process does not have write permission for the parent directory of
pathname, or the invoking process does not have search permission for a compo-
nent in pathname.

EFAULT
pathname is an invalid pointer.

EIO
An I/O error occurred (this is bad!).

EISDIR
pathname refers to a directory.

ELOOP
Too many symbolic links were encountered in traversing pathname.

ENAMETOOLONG
pathname is too long.

ENOENT
A component in pathname does not exist.
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ENOMEM
There is insufficient memory available to complete the request.

ENOTDIR
A component in pathname is not a directory.

EPERM
The system does not allow the unlinking of files.

EROFS
pathname resides on a read-only filesystem.

unlink( ) does not remove directories. For that, applications should use rmdir( ),
which we discussed earlier (see “Removing Directories”).

To ease the wanton destruction of any type of file, the C language provides the
remove( ) function:

#include <stdio.h>

int remove (const char *path);

A successful call to remove( ) deletes path from the filesystem, and returns 0. If path is
a file, remove( ) invokes unlink( ); if path is a directory, remove( ) calls rmdir( ).

On error, remove( ) returns -1, and sets errno to any of the valid error codes set by
unlink( ) and rmdir( ), as applicable.

Copying and Moving Files
Two of the most basic file manipulation tasks are copying and moving files, com-
monly carried out via the cp and mv commands. At the filesystem level, copying is the
act of duplicating a given file’s contents under a new pathname. This differs from
creating a new hard link to the file in that changes to one file will not affect the
other—that is, there now exist two distinct copies of the file, under (at least) two dif-
ferent directory entries. Moving, conversely, is the act of renaming the directory entry
under which a file is located. This action does not result in the creation of a second
copy.

Copying
Although it is surprising to some, Unix does not include a system or library call to
facilitate the copying of files and directories. Instead, utilities such as cp or
GNOME’s Nautilus file manager perform these tasks manually.

In copying a file src to a file named dst, the steps are as follows:

1. Open src.

2. Open dst, creating it if it does not exist, and truncating it to zero length if it does
exist.
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3. Read a chunk of src into memory.

4. Write the chunk to dst.

5. Continue until all of src has been read and written to dst.

6. Close dst.

7. Close src.

If copying a directory, the individual directory and any subdirectories are created via
mkdir( ); each file therein is then copied individually.

Moving
Unlike for copying, Unix does provide a system call for moving files. The ANSI C
standard introduced the call for files, and POSIX standardized it for both files and
directories:

#include <stdio.h>

int rename (const char *oldpath, const char *newpath);

A successful call to rename( ) renames the pathname oldpath to newpath. The file’s
contents and inode remain the same. Both oldpath and newpath must reside on the
same filesystem*; if they do not, the call will fail. Utilities such as mv must handle this
case by resorting to a copy and unlink.

On success, rename( ) returns 0, and the file once referenced by oldpath is now refer-
enced by newpath. On failure, the call returns -1, does not touch oldpath or newpath,
and sets errno to one of the following values:

EACCESS
The invoking process lacks write permission for the parent of oldpath or newpath,
search permission for a component of oldpath or newpath, or write permission
for oldpath in the case that oldpath is a directory. The last case is an issue
because rename( ) must update .. in oldpath if it is a directory.

EBUSY
oldpath or newpath is a mount point.

EFAULT
oldpath or newpath is an invalid pointer.

EINVAL
newpath is contained within oldpath, and thus, renaming one to the other would
make oldpath a subdirectory of itself.

EISDIR
newpath exists, and is a directory, but oldpath is not a directory.

* Although Linux allows you to mount a device at multiple points in the directory structure, you still cannot
rename from one of these mount points to another, even though they are backed by the same device.
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ELOOP
In resolving oldpath or newpath, too many symbolic links were encountered.

EMLINK
oldpath already has the maximum number of links to itself, or oldpath is a direc-
tory, and newpath already has the maximum number of links to itself.

ENAMETOOLONG
oldpath or newpath is too long.

ENOENT
A component in oldpath or newpath does not exist, or is a dangling symbolic link.

ENOMEM
There is insufficient kernel memory to complete the request.

ENOSPC
There is insufficient space on the device to complete the request.

ENOTDIR
A component (aside from potentially the final component) in oldpath or newpath is
not a directory, or oldpath is a directory, and newpath exists but is not a directory.

ENOTEMPTY
newpath is a directory and is not empty.

EPERM
At least one of the paths specified in the arguments exists, the parent directory
has the sticky bit set, the invoking process’ effective user ID is neither the user
ID of the file, nor that of the parent, and the process is not privileged.

EROFS
The filesystem is marked read-only.

EXDEV
oldpath and newpath are not on the same filesystem.

Table 7-1 reviews the results of moving to and from different types of files.

Table 7-1. Effects of moving to and from different types of files

Destination is a file
Destination is a
directory Destination is a link

Destination does
not exist

Source is a file The destination is
overwritten by the
source.

Failure with
EISDIR.

The file is renamed
and the destination is
overwritten.

The file is renamed.

Source is a directory Failure with
ENOTDIR.

The source is
renamed as the desti-
nation if the destina-
tion is empty; failure
with ENOTEMPTY
otherwise.

The directory is
renamed, and the
destination is over-
written.

The directory is
renamed.
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For all of these cases, regardless of their type, if the source and destination reside on
different filesystems, the call fails and returns EXDEV.

Device Nodes
Device nodes are special files that allow applications to interface with device drivers.
When an application performs the usual Unix I/O—opening, closing, reading, writ-
ing, and so on—on a device node, the kernel does not handle those requests as
normal file I/O. Instead, the kernel passes such requests to a device driver. The
device driver handles the I/O operation, and returns the results to the user. Device
nodes provide device abstraction so that applications do not need to be familiar with
device specifics, or even master special interfaces. Indeed, device nodes are the stan-
dard mechanism for accessing hardware on Unix systems. Network devices are the
rare exception, and over the course of Unix’s history, some have argued that this
exception is a mistake. There is, indeed, an elegant beauty in manipulating all of a
machine’s hardware using read( ), write( ), and mmap( ) calls.

How does the kernel identify the device driver to which it should hand off the
request? Each device node is assigned two numerical values, called a major number,
and a minor number. These major and minor numbers map to a specific device driver
loaded into the kernel. If a device node has a major and minor number that do not
correspond to a device driver in the kernel—which occasionally happens, for a vari-
ety of reasons—an open( ) request on the device node returns -1 with errno set to
ENODEV. We say that such device nodes front nonexistent devices.

Special Device Nodes
Several device nodes are present on all Linux systems. These device nodes are part of
the Linux development environment, and their presence is considered part of the
Linux ABI.

The null device has a major number of 1, and a minor number of 3. It lives at /dev/null.
The device file should be owned by root and be readable and writable by all users. The
kernel silently discards all write requests to the device. All read requests to the file
return end-of-file (EOF).

Source is a link The link is renamed
and the destination is
overwritten.

Failure with
EISDIR.

The link is renamed
and the destination is
overwritten.

The link is renamed.

Source does not
exist

Failure with ENOENT. Failure with ENOENT. Failure with ENOENT. Failure with ENOENT.

Table 7-1. Effects of moving to and from different types of files (continued)

Destination is a file
Destination is a
directory Destination is a link

Destination does
not exist
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The zero device lives at /dev/zero, and has a major of 1 and a minor of 5. Like the null
device, the kernel silently discards writes to the zero device. Reading from the device
returns an infinite stream of null bytes.

The full device, with a major of 1, and a minor of 7, lives at /dev/full. As with the zero
device, read requests return null characters (\0). Write requests, however, always
trigger the ENOSPC error, signifying that the underlying device is full.

These devices have varied purposes. They are useful for testing how an application
handles corner and problem cases—a full filesystem, for example. Because the null
and zero devices ignore writes, they also provide a no-overhead way to throw away
unwanted I/O.

The Random Number Generator
The kernel’s random number generator devices live at /dev/random and /dev/urandom.
They have a major number of 1, and minor numbers of 8 and 9, respectively.

The kernel’s random number generator gathers noise from device drivers and other
sources, and the kernel concatenates together and one-way hashes the gathered
noise. The result is then stored in an entropy pool. The kernel keeps an estimate of
the number of bits of entropy in the pool.

Reads from /dev/random return entropy from this pool. The results are suitable for
seeding random number generators, performing key generation, and other tasks that
require cryptographically strong entropy.

In theory, an adversary who was able to obtain enough data from the entropy pool
and successfully break the one-way hash could gain knowledge about the state of the
rest of the entropy pool. Although such an attack is currently only a theoretical pos-
sibility—no such attacks are publicly known to have occurred—the kernel reacts to
this possibility by decrementing its estimate of the amount of entropy in the pool
with each read request. If the estimate reaches zero, the read will block until the sys-
tem generates more entropy, and the entropy estimate is large enough to satisfy the
read.

/dev/urandom does not have this property; reads from the device will succeed even if
the kernel’s entropy estimate is insufficient to complete the request. Since only the
most secure of applications—such as the generation of keys for secure data exchange
in GNU Privacy Guard—should care about cryptographically strong entropy, most
applications should use /dev/urandom and not /dev/random. Reads to the latter can
potentially block for a very long time if no I/O activity occurs that feeds the kernel’s
entropy pool. This is not uncommon on diskless, headless servers.
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Out-of-Band Communication
The Unix file model is impressive. With only simple read and write operations, Unix
abstracts nearly any conceivable act one could perform on an object. Sometimes,
however, programmers need to communicate with a file outside of its primary data
stream. For example, consider a serial port device. Reading from the device would
read from the hardware on the far end of the serial port; writing to the device would
send data to that hardware. How would a process read one of the serial port’s spe-
cial status pins, such as the data terminal ready (DTR) signal? Alternatively, how
would a process set the parity of the serial port?

The answer is to use the ioctl( ) system call. ioctl( ), which stands for I/O control,
allows for out-of-band communication:

#include <sys/ioctl.h>

int ioctl (int fd, int request, ...);

The system call requires two parameters:

fd
The file descriptor of a file.

request
A special request code value, predefined and agreed upon by the kernel and the
process, that denotes what operation to perform on the file referenced by fd.

It may also receive one or more untyped optional parameters (usually unsigned inte-
gers or pointers) to pass into the kernel.

The following program uses the CDROMEJECT request to eject the media tray from a CD-
ROM device, which the user provides as the first argument on the program’s
command line. This program thus functions similarly to the standard eject command:

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <linux/cdrom.h>
#include <stdio.h>

int main (int argc, char *argv[])
{
        int fd, ret;

        if (argc < 2) {
                fprintf (stderr,
                         "usage: %s <device to eject>\n",
                         argv[0]);
                return 1;
        }
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        /*
         * Opens the CD-ROM device, read-only. O_NONBLOCK
         * tells the kernel that we want to open the device
         * even if there is no media present in the drive.
         */
        fd = open (argv[1], O_RDONLY | O_NONBLOCK);
        if (fd < 0) {
                perror ("open");
                return 1;
        }

        /* Send the eject command to the CD-ROM device. */
        ret = ioctl (fd, CDROMEJECT, 0);
        if (ret) {
                perror ("ioctl");
                return 1;
        }

        ret = close (fd);
        if (ret) {
                perror ("close");
                return 1;
        }

        return 0;
}

The CDROMEJECT request is a feature of Linux’s CD-ROM device driver. When the ker-
nel receives an ioctl( ) request, it finds the filesystem (in the case of real files) or
device driver (in the case of devices nodes) responsible for the file descriptor pro-
vided, and passes on the request for handling. In this case, the CD-ROM device
driver receives the request and physically ejects the drive.

Later in this chapter, we will look at an ioctl( ) example that uses an optional
parameter to return information to the requesting process.

Monitoring File Events
Linux provides an interface, inotify, for monitoring files—for example, to see when
they are moved, read from, written to, or deleted. Imagine that you are writing a
graphical file manager, such as GNOME’s Nautilus. If a file is copied into a direc-
tory while Nautilus is displaying its contents, the file manager’s view of the directory
becomes inconsistent.

One solution is to continually reread the contents of the directory, detecting changes
and updating the display. This imposes a periodic overhead, and is far from a very
clean solution. Worse, there is always a race between when a file is removed from or
added to the directory, and when the file manager rereads the directory.
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With inotify, the kernel can push the event to the application the moment it hap-
pens. As soon as a file is deleted, the kernel can notify Nautilus. Nautilus, in
response, can immediately remove the deleted file from the graphical display of the
directory.

Many other applications are also concerned with file events. Consider a backup util-
ity or a data-indexing tool. inotify allows both of these programs to operate in real
time: the moment a file is created, deleted, or written to, the tools can update the
backup archive or data index.

inotify replaces dnotify, an earlier file-monitoring mechanism with a cumbersome sig-
nals-based interface. Applications should always favor inotify over dnotify. inotify,
introduced with kernel 2.6.13, is flexible and easy to use because the same operations
that programs perform on regular files—notably, select( ) and poll( )—work with
inotify. We cover only inotify in this book.

Initializing inotify
Before a process can use inotify, the process must initialize it. The inotify_init( )
system call initializes inotify and returns a file descriptor representing the initialized
instance:

#include <inotify.h>

int inotify_init (void);

On error, inotify_init( ) returns -1, and sets errno to one of the following codes:

EMFILE
The per-user limit on the maximum number of inotify instances has been
reached.

ENFILE
The system-wide limit on the maximum number of file descriptors has been
reached.

ENOMEM
There is insufficient memory available to complete the request.

Let’s initialize inotify so we can use it in subsequent steps:

int fd;

fd = inotify_init ( );
if (fd == -1) {
        perror ("inotify_init");
        exit (EXIT_FAILURE);
}
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Watches
After a process initializes inotify, it sets up watches. A watch, represented by a watch
descriptor, is a standard Unix path, and an associated watch mask, which tells the
kernel what events the process is interested in—for example, reads, writes, or both.

inotify can watch both files and directories. If watching a directory, inotify reports
events that occur on the directory itself, and on any of the files residing in the direc-
tory (but not on files in subdirectories of the watched directory—the watch is not
recursive).

Adding a new watch

The system call inotify_add_watch( ) adds a watch for the event or events described
by mask on the file or directory path to the inotify instance represented by fd:

#include <inotify.h>

int inotify_add_watch (int fd,
                       const char *path,
                       uint32_t mask);

On success, the call returns a new watch descriptor. On failure, inotify_add_watch( )
returns -1, and sets errno to one of the following:

EACCESS
Read access to the file specified by path is not permitted. The invoking process
must be able to read the file to add a watch to it.

EBADF
The file descriptor fd is not a valid inotify instance.

EFAULT
The pointer path is not valid.

EINVAL
The watch mask, mask, contains no valid events.

ENOMEM
There is insufficient memory available to complete the request.

ENOSPC
The per-user limit on the total number of inotify watches has been reached.

Watch masks

The watch mask is a binary OR of one or more inotify events, which <inotify.h>
defines:

IN_ACCESS
The file was read from.

IN_MODIFY
The file was written to.
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IN_ATTRIB
The file’s metadata (for example, the owner, permissions, or extended
attributes) was changed.

IN_CLOSE_WRITE
The file was closed, and had been open for writing.

IN_CLOSE_NOWRITE
The file was closed, and had not been open for writing.

IN_OPEN
The file was opened.

IN_MOVED_FROM
A file was moved away from the watched directory.

IN_MOVED_TO
A file was moved into the watched directory.

IN_CREATE
A file was created in the watched directory.

IN_DELETE
A file was deleted from the watched directory.

IN_DELETE_SELF
The watched object itself was deleted.

IN_MOVE_SELF
The watched object itself was moved.

The following events are also defined, grouping two or more events into a single value:

IN_ALL_EVENTS
All legal events.

IN_CLOSE
All events related to closing (currently, both IN_CLOSE_WRITE and IN_CLOSE_NOWRITE).

IN_MOVE
All move-related events (currently, both IN_MOVED_FROM and IN_MOVED_TO).

Now, we can look at adding a new watch to an existing inotify instance:

int wd;

wd = inotify_add_watch (fd, "/etc", IN_ACCESS | IN_MODIFY);
if (wd == -1) {
        perror ("inotify_add_watch");
        exit (EXIT_FAILURE);
}

This example adds a watch for all reads or writes on the directory /etc. If any file in
/etc is written to or read from, inotify sends an event to the inotify file descriptor,
fd, providing the watch descriptor wd. Let’s look at how inotify represents these
events.
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inotify Events
The inotify_event structure, defined in <inotify.h>, represents inotify events:

#include <inotify.h>

struct inotify_event {
        int wd;          /* watch descriptor */
        uint32_t mask;   /* mask of events */
        uint32_t cookie; /* unique cookie */
        uint32_t len;    /* size of 'name' field */
        char name[];     /* null-terminated name */
};

wd identifies the watch descriptor, as obtained by inotify_add_watch( ), and mask rep-
resents the events. If wd identifies a directory and one of the watched-for events
occurred on a file within that directory, name provides the filename relative to the
directory. In this case, len is nonzero. Note that len is not the same as the string
length of name; name can have more than one trailing null character that acts as pad-
ding to ensure that a subsequent inotify_event is properly aligned. Consequently,
you must use len, and not strlen( ), to calculate the offset of the next inotify_event
structure in an array.

For example, if wd represents /home/rlove, and has a mask of IN_ACCESS, and the file
/home/rlove/canon is read from, name will equal canon, and len will be at least 6.
Conversely, if we were watching /home/rlove/canon directly with the same mask,
len would be 0, and name would be zero-length—you must not touch it.

cookie is used to link together two related but disjoint events. We will address it in a
subsequent section.

Reading inotify events

Obtaining inotify events is easy: you just read from the file descriptor associated with
the inotify instance. inotify provides a feature known as slurping, which allows you
to read multiple events—as many as fit in the buffer provided to read( )—with a sin-
gle read request. Because of the variable-length name field, this is the most common
way to read inotify events.

Our previous example instantiated an inotify instance, and added a watch to that
instance. Now, let’s read pending events:

char buf[BUF_LEN]_attribute_((aligned(4)));
ssize_t len, i = 0;

/* read BUF_LEN bytes' worth of events */
len = read (fd, buf, BUF_LEN);

/* loop over every read event until none remain */
while (i < len) {
        struct inotify_event *event =
                (struct inotify_event *) &buf[i];
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        printf ("wd=%d mask=%d cookie=%d len=%d dir=%s\n",
                event->wd, event->mask,
                event->cookie, event->len,
                (event->mask & IN_ISDIR) ? "yes" : "no");

        /* if there is a name, print it */
        if (event->len)
                printf ("name=%s\n", event->name);

        /* update the index to the start of the next event */
        i += sizeof (struct inotify_event) + event->len;
}

Because the inotify file descriptor acts like a regular file, programs can monitor it via
select( ), poll( ), and epoll( ). This allows processes to multiplex inotify events
with other file I/O from a single thread.

Advanced inotify events. In addition to the standard events, inotify can generate other
events:

IN_IGNORED
The watch represented by wd has been removed. This can occur because the user
manually removed the watch, or because the watched object no longer exists.
We will discuss this event in a subsequent section.

IN_ISDIR
The affected object is a directory. (If not set, the affected object is a file.)

IN_Q_OVERFLOW
The inotify queue overflowed. The kernel limits the size of the event queue to
prevent unbounded consumption of kernel memory. Once the number of pend-
ing events reaches one less than the maximum, the kernel generates this event,
and appends it to the tail of the queue. No further events are generated until the
queue is read from, reducing its size below the limit.

IN_UNMOUNT
The device backing the watched object was unmounted. Thus, the object is no
longer available; the kernel will remove the watch, and generate the IN_IGNORED
event.

Any watch can generate these events; the user need not set them explicitly.

Programmers must treat mask as a bitmask of pending events. Consequently, do not
check for events using direct tests of equivalence:

/* Do NOT do this! */

if (event->mask == IN_MODIFY)
        printf ("File was written to!\n");
else if (event->mask == IN_Q_OVERFLOW)
        printf ("Oops, queue overflowed!\n);
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Instead, perform bitwise tests:

if (event->mask & IN_ACCESS)
        printf ("The file was read from!\n");
if (event->mask & IN_UNMOUNTED)
        printf ("The file's backing device was unmounted!\n);
if (event->mask & IN_ISDIR)
        printf ("The file is a directory!\n");

Linking together move events

The IN_MOVED_FROM and IN_MOVED_TO events each represent only half of a move: the
former represents the removal from a given location, while the latter represents the
arrival at a new location. Therefore, to be truly useful to a program that is attempt-
ing to intelligently track files as they move around the filesystem (consider an indexer
with the intention that it not reindex moved files), processes need to be able to link
the two move events together.

Enter the cookie field in the inotify_event structure.

The cookie field, if nonzero, contains a unique value that links two events together.
Consider a process that is watching /bin and /sbin. Assume that /bin has a watch
descriptor of 7, and that /sbin has a watch descriptor of 8. If the file /bin/compass is
moved to /sbin/compass, the kernel will generate two inotify events.

The first event will have wd equal to 7, mask equal to IN_MOVED_FROM, and a name of
compass. The second event will have wd equal to 8, mask equal to IN_MOVED_TO, and a
name of compass. In both events, cookie will be the same—say, 12.

If a file is renamed, the kernel still generates two events. wd is the same for both.

Note that if a file is moved from or to a directory that is not watched, the process will
not receive one of the corresponding events. It is up to the program to notice that the
second event with a matching cookie never arrives.

Advanced Watch Options
When creating a new watch, you can add one or more of the following values to mask
to control the behavior of the watch:

IN_DONT_FOLLOW
If this value is set, and if the target of path or any of its components is a symbolic
link, the link is not followed and inotify_add_watch( ) fails.

IN_MASK_ADD
Normally, if you call inotify_add_watch( ) on a file on which you have an exist-
ing watch, the watch mask is updated to reflect the newly provided mask. If this
flag is set in mask, the provided events are added to the existing mask.
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IN_ONESHOT
If this value is set, the kernel automatically removes the watch after generating
the first event against the given object. The watch is, in effect, “one shot.”

IN_ONLYDIR
If this value is set, the watch is added only if the object provided is a directory. If
path represents a file, not a directory, inotify_add_watch( ) fails.

For example, this snippet only adds the watch on /etc/init.d if init.d is a directory, and
if neither /etc nor /etc/init.d is a symbolic link:

int wd;

/*
 * Watch '/etc/init.d' to see if it moves, but only if it is a
 * directory and no part of its path is a symbolic link.
 */
wd = inotify_add_watch (fd,
                        "/etc/init.d",
                        IN_MOVE_SELF |
                        IN_ONLYDIR |
                        IN_DONT_FOLLOW);
if (wd == -1)
        perror ("inotify_add_watch");

Removing an inotify Watch
As shown in this instance, you can remove a watch from an inotify instance with the
system call inotify_rm_watch( ):

#include <inotify.h>

int inotify_rm_watch (int fd, uint32_t wd);

A successful call to inotify_rm_watch( ) removes the watch represented by the watch
descriptor wd from the inotify instance (represented by the file descriptor) fd and
returns 0.

For example:

int ret;

ret = inotify_rm_watch (fd, wd);
if (ret)
        perror ("inotify_rm_watch");

On failure, the system call returns -1, and sets errno to one of the following two
options:

EBADF
fd is not a valid inotify instance.

EINVAL
wd is not a valid watch descriptor on the given inotify instance.
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When removing a watch, the kernel generates the IN_IGNORED event. The kernel sends
this event not only during a manual removal, but when destroying the watch as a
side effect of another operation. For example, when a watched file is deleted, any
watches on the file are removed. In all such cases, the kernel sends IN_IGNORED. This
behavior allows applications to consolidate their handling of watch removal in a sin-
gle place: the event handler for IN_IGNORED. This is useful for advanced consumers of
inotify that manage complex data structures backing each inotify watch, such as
GNOME’s Beagle search infrastructure.

Obtaining the Size of the Event Queue
The size of the pending event queue can be obtained via the FIONREAD ioctl on the
inotify instance’s file descriptor. The first argument to the request receives the size of
the queue in bytes, as an unsigned integer:

unsigned int queue_len;
int ret;

ret = ioctl (fd, FIONREAD, &queue_len);
if (ret < 0)
        perror ("ioctl");
else
        printf ("%u bytes pending in queue\n", queue_len);

Note that the request returns the size of the queue in bytes, and not the number of
events in the queue. A program can estimate the number of events from the number
of bytes, using the known size of the inotify_event structure (obtained via sizeof( )),
and a guess at the average size of the name field. What’s more useful, however, is that
the number of bytes pending gives the process an ideal size to read.

The header <sys/ioctl.h> defines the FIONREAD constant.

Destroying an inotify Instance
Destroying an inotify instance, and any associated watches, is as simple as closing
the instance’s file descriptor:

int ret;

/* 'fd' was obtained via inotify_init( ) */
ret = close (fd);
if (fd == -1)
        perror ("close");

Of course, as with any file descriptor, the kernel automatically closes the file descrip-
tor, and cleans up the resource when the process exits.
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Memory Management

Memory is among the most basic, but also most essential, resources available to a
process. This chapter covers the management of this resource: the allocation, manip-
ulation, and eventual release of memory.

The verb allocate—the common term for obtaining memory—is a bit misleading, as
it conjures up images of rationing a scarce resource for which demand outstrips
supply. To be sure, many users would love more memory. On modern systems, how-
ever, the problem is not really one of sharing too little among too many, but of
properly using and keeping track of the bounty.

In this chapter, you will learn about all of the approaches to allocating memory in
various regions of a program, including each method’s advantages and disadvan-
tages. We’ll also go over some ways to set and manipulate the contents of arbitrary
memory regions, and look at how to lock memory so it remains in RAM and your
program runs no risk of having to wait for the kernel to page in data from swap
space.

The Process Address Space
Linux, like any modern operating system, virtualizes its physical resource of memory.
Processes do not directly address physical memory. Instead, the kernel associates each
process with a unique virtual address space. This address space is linear, with
addresses starting at zero, and increasing to some maximum value.

Pages and Paging
The virtual address space is composed of pages. The system architecture and
machine type determine the size of a page, which is fixed; typical sizes include 4 KB
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(for 32-bit systems), and 8 KB (for 64-bit systems).* Pages are either valid or invalid. A
valid page is associated with a page in physical memory, or some secondary backing
storage, such as a swap partition or a file on disk. An invalid page is not associated
with anything and represents an unused, unallocated piece of the address space.
Accessing such a page causes a segmentation violation. The address space is not nec-
essarily contiguous. While linearly addressed, it contains plenty of unaddressable
gaps.

A program cannot use a page that is present in secondary storage rather than in phys-
ical memory until it is associated with a page in physical memory. When a process
tries to access an address on such a page, the memory management unit (MMU) gen-
erates a page fault. The kernel then intervenes, transparently paging in the desired
page from secondary storage to physical memory. Because significantly more virtual
than physical memory exists (even, on many systems, in a single virtual address
space!), the kernel is constantly also paging out physical memory to secondary stor-
age to make room for more page-ins. The kernel attempts to page out data that is the
least likely to be used in the near future, thereby optimizing performance.

Sharing and copy-on-write

Multiple pages of virtual memory, even in different virtual address spaces owned by
different processes, may map to a single physical page. This allows different virtual
address spaces to share the data in physical memory. The shared data may be read-
only, or readable and writable.

When a process writes to a shared writable page, one of two things can happen. The
simplest is that the kernel allows the write to occur, in which case all processes shar-
ing the page can see the results of the write operation. Usually, allowing multiple
processes to read from or write to a shared page requires some level of coordination
and synchronization.

Alternatively, however, the MMU may intercept the write operation, and raise an
exception; the kernel, in response, will transparently create a new copy of the page
for the writing process, and allow the write to continue against the new page. We call
this approach copy-on-write (COW).† Effectively, processes are allowed read access
to shared data, which saves space. When a process wants to write to a shared page, it
receives a unique copy of that page on the fly, thereby allowing the kernel to act as if
the process had always had its own private copy. As copy-on-write occurs on a page-
by-page basis, with this approach, a huge file may be efficiently shared among many
processes, and the individual processes will receive unique physical pages only for
those pages to which they themselves write.

* Some systems support a range of page sizes. For this reason, the page size is not part of the ABI. Applications
must programmatically obtain the page size at runtime. We covered doing so in Chapter 4 and will review
the topic in this chapter.

† Recall from Chapter 5 that fork( ) uses copy-on-write to duplicate and share the parent’s address space with
the child.
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Memory Regions
The kernel arranges pages into blocks that share certain properties, such as access
permissions. These blocks are called memory regions, segments, or mappings. Certain
types of memory regions can be found in every process:

• The text segment contains a process’ program code, string literals, constant vari-
ables, and other read-only data. In Linux, this segment is marked read-only and
is mapped in directly from the object file (the program executable or a library).

• The stack contains the process’ execution stack, which grows and shrinks
dynamically as the stack depth increases and decreases. The execution stack
contains local variables and function return data.

• The data segment, or heap, contains a process’ dynamic memory. This segment is
writable and can grow or shrink in size. This is the memory returned by malloc( )
(discussed in the next section).

• The bss segment* contains uninitialized global variables. These variables contain
special values (essentially, all zeros), per the C standard.

Linux optimizes these variables in two ways. First, because the bss segment is
dedicated to uninitialized data, the linker (ld) does not actually store the special
values in the object file. This reduces the binary’s size. Second, when this seg-
ment is loaded into memory, the kernel simply maps it on a copy-on-write basis
to a page of zeros, efficiently setting the variables to their default values.

• Most address spaces contain a handful of mapped files, such as the program
executable itself, the C and other linked libraries, and data files. Take a look at
/proc/self/maps, or the output from the pmap program for a great example of
the mapped files in a process.

This chapter covers the interfaces that Linux provides to obtain and return memory,
create and destroy new mappings, and everything in between.

Allocating Dynamic Memory
Memory also comes in the form of automatic and static variables, but the founda-
tion of any memory management system is the allocation, use, and eventual return of
dynamic memory. Dynamic memory is allocated at runtime, not compile time, in
sizes that may be unknown until the moment of allocation. As a developer, you need
dynamic memory when the amount of memory that you will need, or how long you
might need it, varies, and is not known before the program runs. For example, you
might want to store in memory the contents of a file or input read in from the key-
board. Because the size of the file is unknown, and the user may type any number of

* The name is historic; it comes from block started by symbol.
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keystrokes, the size of the buffer will vary, and you may need to make it dynamically
larger as you read more and more data.

There is no C variable that is backed by dynamic memory. For example, C does not
provide a mechanism to obtain a struct pirate_ship that exists in dynamic memory.
Instead, C provides a mechanism for allocating dynamic memory sufficient to hold a
pirate_ship structure. The programmer then interacts with the memory via a
pointer—in this case, a struct pirate_ship *.

The classic C interface for obtaining dynamic memory is malloc( ):

#include <stdlib.h>

void * malloc (size_t size);

A successful call to malloc( ) allocates size bytes of memory, and returns a pointer to
the start of the newly allocated region. The contents of the memory are undefined;
do not expect the memory to be zeroed. Upon failure, malloc( ) returns NULL, and
errno is set to ENOMEM.

Usage of malloc( ) may be rather straightforward, as in this example used to allocate
a fixed number of bytes:

char *p;

/* give me 2 KB! */
p = malloc (2048);
if (!p)
        perror ("malloc");

or this example used to allocate a structure:

struct treasure_map *map;

/*
 * allocate enough memory to hold a treasure_map stucture
 * and point 'map' at it
 */
map = malloc (sizeof (struct treasure_map));
if (!map)
        perror ("malloc");

C automatically promotes pointers to void to any type on assignment. Thus, these
examples do not need to typecast the return value of malloc( ) to the lvalue’s type
used in the assignments. The C++ programming language, however, does not
perform automatic void pointer promotion. Consequently, users of C++ need to
typecast malloc( )’s return as follows:

char *name;

/* allocate 512 bytes */
name = (char *) malloc (512);
if (!name)
        perror ("malloc");
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Some C programmers like to typecast the result of any function that returns a pointer
to void, malloc( ) included. I argue against this practice because it will hide an error
if the return value of the function ever changes to something other than a void
pointer. Moreover, such a typecast also hides a bug if a function is not properly
declared.* While the former is not a risk with malloc( ), the latter certainly is.

Because malloc( ) can return NULL, it is vitally important that developers always check
for and handle error conditions. Many programs define and use a malloc( ) wrapper
that prints an error message and terminates the program if malloc( ) returns NULL. By
convention, developers call this common wrapper xmalloc( ):

/* like malloc( ), but terminates on failure */
void * xmalloc (size_t size)
{
        void *p;

        p = malloc (size);
        if (!p) {
                perror ("xmalloc");
                exit (EXIT_FAILURE);
        }

        return p;
}

Allocating Arrays
Dynamic memory allocation may also be quite complex when the specified size is
itself dynamic. One such example is the dynamic allocation of arrays, where the size
of an array element may be fixed, but the number of elements to allocate is dynamic.
To simplify this scenario, C provides the calloc( ) function:

#include <stdlib.h>

void * calloc (size_t nr, size_t size);

A successful call to calloc( ) returns a pointer to a block of memory suitable for
holding an array of nr elements, each of size bytes. Consequently, the amount of
memory requested in these two calls is identical (either may end up returning more
memory than requested, but never less):

int *x, *y;

x = malloc (50 * sizeof (int));
if (!x) {
        perror ("malloc");
        return -1;

* Undeclared functions default to returning an int. Integer-to-pointer casts are not automatic, and generate a
warning. The typecast will suppress the resulting warning.
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}

y = calloc (50, sizeof (int));
if (!y) {
        perror ("calloc");
        return -1;
}

The behavior, however, is not identical. Unlike malloc( ), which makes no such guar-
antees about the contents of allocated memory, calloc( ) zeros all bytes in the
returned chunk of memory. Thus, each of the 50 elements in the array of integers y
holds the value of 0, while the contents of the elements in x are undefined. Unless the
program is going to immediately set all 50 values, programmers should use calloc( )
to ensure that the array elements are not filled with gibberish. Note that binary zero
might not be the same as floating-point zero!

Users often want to “zero out” dynamic memory, even when not dealing with arrays.
Later in this chapter, we will consider memset( ), which provides an interface for set-
ting every byte in a chunk of memory to a given value. Letting calloc( ) perform the
zeroing, however, is faster because the kernel can provide memory that is already
zeroed.

On failure, like malloc( ), calloc( ) returns NULL, and sets errno to ENOMEM.

Why the standards bodies never defined an “allocate and zero” function separate
from calloc( ) is a mystery. Developers can easily define their own interface, however:

/* works identically to malloc( ), but memory is zeroed */
void * malloc0 (size_t size)
{
        return calloc (1, size);
}

Conveniently, we can combine this malloc0( ) with our previous xmalloc( ):

/* like malloc( ), but zeros memory and terminates on failure */
void * xmalloc0 (size_t size)
{
        void *p;

        p = calloc (1, size);
        if (!p) {
                perror ("xmalloc0");
                exit (EXIT_FAILURE);
        }

        return p;
}
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Resizing Allocations
The C language provides an interface for resizing (making larger or smaller) existing
allocations:

#include <stdlib.h>

void * realloc (void *ptr, size_t size);

A successful call to realloc( ) resizes the region of memory pointed at by ptr to a
new size of size bytes. It returns a pointer to the newly sized memory, which may or
may not be the same as ptr—when enlarging a memory region, if realloc( ) is
unable to enlarge the existing chunk of memory by growing the chunk in situ, the
function may allocate a new region of memory size bytes in length, copy the old
region into the new one, and free the old region. On any operation, the contents of
the memory region are preserved up to the minimum of the old and the new sizes.
Because of the potentiality of a copy operation, a realloc( ) operation to enlarge a
memory region can be a relatively costly act.

If size is 0, the effect is the same as an invocation of free( ) on ptr.

If ptr is NULL, the result of the operation is the same as a fresh malloc(). If ptr is non-
NULL, it must have been returned via a previous call to malloc(), calloc(), or realloc().

On failure, realloc( ) returns NULL, and sets errno to ENOMEM. The state of the mem-
ory pointed at by ptr is unchanged.

Let’s consider an example of shrinking a memory region. First, we’ll use calloc( ) to
allocate enough memory to hold a two-element array of map structures:

struct map *p;

/* allocate memory for two map structures */
p = calloc (2, sizeof (struct map));
if (!p) {
        perror ("calloc");
        return -1;
}

/* use p[0] and p[1]... */

Now, let’s assume we’ve found one of the treasures, and no longer need the second
map, so we decide to resize the memory, and give half of the region back to the system
(this wouldn’t generally be a worthwhile operation, but it might be if the map structure
was very large, and we were going to hold the remaining map for a long time):

struct map *r;

/* we now need memory for only one map */
r = realloc (p, sizeof (struct map));
if (!r) {
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        /* note that 'p' is still valid! */
        perror ("realloc");
        return -1;
}

/* use 'r'... */

free (r);

In this example, p[0] is preserved after the realloc( ) call. Whatever data was there
before is still there. If the call returned failure, note that p is untouched, and thus still
valid. We can continue using it, and will eventually need to free it. Conversely, if the
call succeeded, we ignore p, and in lieu use r (which is likely the same as p, as the
region was almost certainly resized in place). We now have the responsibility to free
r when we’re done.

Freeing Dynamic Memory
Unlike automatic allocations, which are automatically reaped when the stack
unwinds, dynamic allocations are permanent parts of the process’ address space until
they are manually freed. The programmer thus bears the responsibility of returning
dynamically allocated memory to the system. (Both static and dynamic allocations,
of course, disappear when the entire process exits.)

Memory allocated with malloc( ), calloc( ), or realloc( ) must be returned to the
system when no longer in use via free( ):

#include <stdlib.h>

void free (void *ptr);

A call to free( ) frees the memory at ptr. The parameter ptr must have been previ-
ously returned by malloc( ), calloc( ), or realloc( ). That is, you cannot use free( )
to free partial chunks of memory—say, half of a chunk of memory—by passing in a
pointer halfway into an allocated block.

ptr may be NULL, in which case free( ) silently returns. Thus, the oft seen practice of
checking ptr for NULL before calling free( ) is redundant.

Let’s look at an example:

void print_chars (int n, char c)
{
        int i;

        for (i = 0; i < n; i++) {
                char *s;
                int j;

                /*
                 * Allocate and zero an i+2 element array
                 * of chars. Note that 'sizeof (char)'
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                 * is always 1.
                 */
                s = calloc (i + 2, 1);
                if (!s) {
                        perror ("calloc");
                        break;
                }

                for (j = 0; j < i + 1; j++)
                        s[j] = c;

                printf ("%s\n", s);

                /* Okay, all done. Hand back the memory. */
                free (s);
        }
}

This example allocates n arrays of chars containing successively larger numbers of
elements, ranging from two elements (2 bytes) up to n + 1 elements (n + 1 bytes).
Then, for each array, the loop writes the character c into each byte except the last
(leaving the 0 that is already in the last byte), prints the array as a string, and then
frees the dynamically allocated memory.

Invoking print_chars( ) with n equal to 5, and c set to X, we get the following:

X
XX
XXX
XXXX
XXXXX

There are, of course, significantly more efficient ways of implementing this function.
The point, however, is that we can dynamically allocate and free memory even when
the size and the number of said allocations are known only at runtime.

Unix systems such as SunOS and SCO provide a variant of free( )
named cfree( ), which, depending on the system, behaves the same as
free( ), or receives three parameters, mirroring calloc( ). In Linux,
free( ) can handle memory obtained from any of the allocation mech-
anisms we have discussed thus far. cfree( ) should never be used,
except for backward compatibility. The Linux version is the same as
free( ).

Note what the repercussions would be if this example did not invoke free( ). The
program would never return the memory to the system, and, even worse, it would
lose its only reference to the memory—the pointer s—thereby making it impossible
to ever access the memory. We call this type of programming error a memory leak.
Memory leaks and similar dynamic memory mistakes are among the most common,
and, unfortunately, the most detrimental mishaps in C programming. Because the C
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language places full responsibility for managing memory on the programmer, C pro-
grammers must keep a fastidious eye on all memory allocations.

Another common C programming pitfall is use-after-free. This foible occurs when a
block of memory is freed, and then subsequently accessed. Once free( ) is called on
a block of memory, a program must never again access its contents. Programmers
must be particularly careful to watch for dangling pointers, or non-NULL pointers that
nevertheless point at invalid blocks of memory. Two common tools to aid you in this
quest are Electric Fence and valgrind.*

Alignment
The alignment of data refers to the relation between its address and memory chunks
as measured by the hardware. A variable located at a memory address that is a multi-
ple of its size is said to be naturally aligned. For example, a 32-bit variable is naturally
aligned if it is located in memory at an address that is a multiple of 4—that is, if the
address’ lowest two bits are 0. Thus, a type that is 2n bytes in size must have an
address with the n least-significant bits set to 0.

Rules pertaining to alignment derive from hardware. Some machine architectures
have very stringent requirements on the alignment of data. On some systems, a load
of unaligned data results in a processor trap. On other systems, accessing unaligned
data is safe, but results in a degradation of performance. When writing portable
code, alignment issues must be avoided, and all types should be naturally aligned.

Allocating aligned memory

For the most part, the compiler and the C library transparently handle alignment
concerns. POSIX decrees that the memory returned via malloc( ), calloc( ), and
realloc( ) be properly aligned for use with any of the standard C types. On Linux,
these functions always return memory that is aligned along an 8 byte boundary on
32-bit systems and a 16 byte boundary on 64-bit systems.

Occasionally, programmers require dynamic memory aligned along a larger bound-
ary, such as a page. While motivations vary, the most common is a need to properly
align buffers used in direct block I/O or other software-to-hardware communica-
tion. For this purpose, POSIX 1003.1d provides a function named posix_memalign( ):

/* one or the other -- either suffices */
#define _XOPEN_SOURCE 600
#define _GNU_SOURCE

#include <stdlib.h>

int posix_memalign (void **memptr,
                    size_t alignment,
                    size_t size);

* See http://perens.com/FreeSoftware/ElectricFence/ and http://valgrind.org, respectively.

http://perens.com/FreeSoftware/ElectricFence/
http://valgrind.org
http://valgrind.org
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A successful call to posix_memalign() allocates size bytes of dynamic memory, ensur-
ing it is aligned along a memory address that is a multiple of alignment. The parameter
alignment must be a power of 2, and a multiple of the size of a void pointer. The
address of the allocated memory is placed in memptr, and the call returns 0.

On failure, no memory is allocated, memptr is undefined, and the call returns one of
the following error codes:

EINVAL
The parameter alignment is not a power of 2, or is not a multiple of the size of a
void pointer.

ENOMEM
There is insufficient memory available to satisfy the requested allocation.

Note that errno is not set—the function directly returns these errors.

Memory obtained via posix_memalign( ) is freed via free( ). Usage is simple:

char *buf;
int ret;

/* allocate 1 KB along a 256-byte boundary */
ret = posix_memalign (&buf, 256, 1024);
if (ret) {
        fprintf (stderr, "posix_memalign: %s\n",
                 strerror (ret));
        return -1;
}

/* use 'buf'... */

free (buf);

Older interfaces. Before POSIX defined posix_memalign( ), BSD and SunOS provided
the following interfaces, respectively:

#include <malloc.h>

void * valloc (size_t size);
void * memalign (size_t boundary, size_t size);

The function valloc( ) operates identically to malloc( ), except that the allocated
memory is aligned along a page boundary. Recall from Chapter 4 that the system’s
page size is easily obtained via getpagesize( ).

The function memalign( ) is similar, but it aligns the allocation along a boundary of
boundary bytes, which must be a power of 2. In this example, both of these alloca-
tions return a block of memory sufficient to hold a ship structure, aligned along a
page boundary:

struct ship *pirate, *hms;

pirate = valloc (sizeof (struct ship));
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if (!pirate) {
        perror ("valloc");
        return -1;
}

hms = memalign (getpagesize ( ), sizeof (struct ship));
if (!hms) {
        perror ("memalign");
        free (pirate);
        return -1;
}

/* use 'pirate' and 'hms'... */

free (hms);
free (pirate);

On Linux, memory obtained via both of these functions is freeable via free( ). This
may not be the case on other Unix systems, some of which provide no mechanism
for safely freeing memory allocated with these functions. Programs concerned with
portability may have no choice but to not free memory allocated via these interfaces!

Linux programmers should use these two functions only for the purposes of portabil-
ity with older systems; posix_memalign( ) is superior. All three of these interfaces are
needed only if an alignment greater than that provided by malloc( ) is required.

Other alignment concerns

Alignment concerns extend beyond natural alignment of the standard types and
dynamic memory allocations. For example, nonstandard and complex types have
more complex requirements than the standard types. Further, alignment concerns
are doubly important when assigning values between pointers of varying types and
using typecasting.

Nonstandard types. Nonstandard and complex data types possess alignment require-
ments beyond the simple requirement of natural alignment. Four useful rules follow:

• The alignment requirement of a structure is that of its largest constituent type.
For example, if a structure’s largest type is a 32-bit integer that is aligned along a
4 byte boundary, the structure must be aligned along at least a 4 byte boundary
as well.

• Structures also introduce the need for padding, which is used to ensure that each
constituent type is properly aligned to that type’s own requirement. Thus, if a
char (with a probable alignment of one byte) finds itself followed by an int (with
a probable alignment of four bytes), the compiler will insert three bytes of pad-
ding between the two types to ensure that the int lives on a four-byte boundary.
Programmers sometimes order the members of a structure—for example, by
descending size—to minimize the space “wasted” by padding. The GCC option
-Wpadded can aid in this endeavor, as it generates a warning whenever the com-
piler inserts implicit padding.
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• The alignment requirement of a union is that of the largest unionized type.

• The alignment requirement of an array is that of the base type. Thus, arrays
carry no requirement beyond a single instance of their type. This behavior results
in the natural alignment of all members of an array.

Playing with pointers. As the compiler transparently handles most alignment require-
ments, it takes a bit of effort to expose potential issues. It is not unheard of, however,
to encounter alignment concerns when dealing with pointers and casting.

Accessing data via a pointer recast from a lesser-aligned to a larger-aligned block of
data can result in the processor loading data that is not properly aligned for the
larger type. For example, in the following code snippet, the assignment of c to
badnews attempts to read c as an unsigned long:

char greeting[] = "Ahoy Matey";
char *c = greeting[1];
unsigned long badnews = *(unsigned long *) c;

An unsigned long is likely aligned along a four or eight byte boundary; c almost
certainly sits one byte off that same boundary. Consequently, the load of c, when
typecast, causes an alignment violation. Depending on the architecture, this can
cause results ranging from as minor as a performance hit to as major as a program
crash. On machine architectures that can detect but not properly handle alignment
violations, the kernel sends the offending process the SIGBUS signal, which termi-
nates the process. We will discuss signals in Chapter 9.

Examples such as this are more common than one might think. Real-world examples
will not be quite so silly in appearance, but they will likely be less obvious as well.

Managing the Data Segment
Unix systems historically have provided interfaces for directly managing the data seg-
ment. However, most programs have no direct use for these interfaces because
malloc( ) and other allocation schemes are easier to use and more powerful. I’ll cover
these interfaces here to satisfy the curious, and for the rare reader who wants to
implement her own heap-based allocation mechanism:

#include <unistd.h>

int brk (void *end);
void * sbrk (intptr_t increment);

These functions derive their names from old-school Unix systems, where the heap
and the stack lived in the same segment. Dynamic memory allocations in the heap
grew upward from the bottom of the segment; the stack grew downward toward the
heap from the top of the segment. The line of demarcation separating the two was
called the break or the break point. On modern systems where the data segment lives
in its own memory mapping, we continue to label the end address of the mapping
the break point.
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A call to brk( ) sets the break point (the end of the data segment) to the address spec-
ified by end. On success, it returns 0. On failure, it returns -1, and sets errno to
ENOMEM.

A call to sbrk( ) increments the end of the data segment by increment, which may be
a positive or negative delta. sbrk( ) returns the revised break point. Thus, an
increment of 0 prints out the current break point:

printf ("The current break point is %p\n", sbrk (0));

Deliberately, both POSIX and the C standard define neither of these functions.
Nearly all Unix systems, however, support one or both. Portable programs should
stick to the standards-based interfaces.

Anonymous Memory Mappings
Memory allocation in glibc uses the data segment and memory mappings. The clas-
sic method of implementing malloc( ) is to divide the data segment into a series of
power-of-2 partitions, and satisfy allocations by returning the partition that is the
closest fit to the requested size. Freeing memory is as simple marking the partition as
“free.” If adjacent partitions are free, they can be coalesced into a single, larger parti-
tion. If the top of the heap is entirely free, the system can use brk( ) to lower the
break point, shrinking the heap, and returning memory to the kernel.

This algorithm is called a buddy memory allocation scheme. It has the upside of speed
and simplicity, but the downside of introducing two types of fragmentation. Internal
fragmentation occurs when more memory than requested is used to satisfy an alloca-
tion. This results in inefficient use of the available memory. External fragmentation
occurs when sufficient memory is free to satisfy a request, but it is split into two or
more nonadjacent chunks. This can result in inefficient use of memory (because a
larger, less suitable block may be used), or failed memory allocations (if no alterna-
tive block exists).

Moreover, this scheme allows one memory allocation to “pin” another, preventing
glibc from returning freed memory to the kernel. Imagine that two blocks of mem-
ory, block A and block B, are allocated. Block A sits right on the break point, and
block B sits right below A. Even if the program frees B, glibc cannot adjust the break
point until A is likewise freed. In this manner, a long-living allocation can pin all
other allocations in memory.

This is not always a concern because glibc does not routinely return memory to the
system anyway.* Generally, the heap is not shrunk after each free. Instead, glibc
keeps freed memory around for a subsequent allocation. Only when the size of the

* glibc also uses a significantly more advanced memory allocation algorithm than this simple buddy allocation
scheme, called an arena algorithm.
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heap is significantly larger than the amount of allocated memory does glibc shrink
the data segment. A large allocation, however, can prevent this shrinkage.

Consequently, for large allocations, glibc does not use the heap. Instead, glibc cre-
ates an anonymous memory mapping to satisfy the allocation request. Anonymous
memory mappings are similar to the file-based mappings discussed in Chapter 4,
except that they are not backed by any file—hence the “anonymous” moniker.
Instead, an anonymous memory mapping is simply a large, zero-filled block of
memory, ready for your use. Think of it as a brand new heap, solely for a single
allocation. Because these mappings are located outside of the heap, they do not con-
tribute to the data segment’s fragmentation.

Allocating memory via anonymous mappings has several benefits:

• No fragmentation concerns. When the program no longer needs an anonymous
memory mapping, the mapping is unmapped, and the memory is immediately
returned to the system.

• Anonymous memory mappings are resizable, have adjustable permissions, and
can receive advice just like normal mappings (see Chapter 4).

• Each allocation exists in a separate memory mapping. There is no need to man-
age the global heap.

There are also two downsides to using anonymous memory mappings rather than
the heap:

• Each memory mapping is an integer multiple of the system page size in size.
Ergo, allocations that are not integer multiples of pages in size result in wasted
“slack” space. This slack space is more of a concern with small allocations,
where the wasted space is large relative to the allocation size.

• Creating a new memory mapping incurs more overhead than returning memory
from the heap, which may not involve any kernel interaction whatsoever. The
smaller the allocation, the more valid is this observation.

Juggling the pros against the cons, glibc’s malloc( ) uses the data segment to satisfy
small allocations and anonymous memory mappings to satisfy large allocations. The
threshold is configurable (see the section “Advanced Memory Allocation” later in
this chapter), and may change from one glibc release to another. Currently, the
threshold is 128 KB: allocations smaller than or equal to 128 KB derive from the
heap, whereas larger allocations derive from anonymous memory mappings.

Creating Anonymous Memory Mappings
Perhaps because you want to force the use of a memory mapping over the heap for a
specific allocation, or perhaps because you are writing your own memory allocation sys-
tem, you may want to manually create your own anonymous memory mapping—either
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way, Linux makes it easy. Recall from Chapter 4 that the system call mmap() creates and
the system call munmap() destroys a memory mapping:

#include <sys/mman.h>

void * mmap (void *start,
             size_t length,
             int prot,
             int flags,
             int fd,
             off_t offset);

int munmap (void *start, size_t length);

Creating an anonymous memory mapping is actually easier than creating a file-
backed mapping, as there is no file to open and manage. The primary difference
between the two types of mappings is the presence of a special flag, signifying that
the mapping is anonymous.

Let’s look at an example:

void *p;

p = mmap (NULL,                        /* do not care where */
          512 * 1024,                  /* 512 KB */
          PROT_READ | PROT_WRITE,      /* read/write */
          MAP_ANONYMOUS | MAP_PRIVATE, /* anonymous, private */
          -1,                          /* fd (ignored) */
          0);                          /* offset (ignored) */

if (p == MAP_FAILED)
        perror ("mmap");
else
        /* 'p' points at 512 KB of anonymous memory... */

For most anonymous mappings, the parameters to mmap( ) mirror this example, with
the exception, of course, of passing in whatever size (in bytes) the programmer
desires. The other parameters are generally as follows:

• The first parameter, start, is set to NULL, signifying that the anonymous mapping
may begin anywhere in memory that the kernel wishes. Specifying a non-NULL
value here is possible, so long as it is page-aligned, but limits portability. Rarely
does a program care where mappings exist in memory!

• The prot parameter usually sets both the PROT_READ and PROT_WRITE bits, making
the mapping readable and writable. An empty mapping is of no use if you
cannot read from and write to it. On the other hand, executing code from an
anonymous mapping is rarely desired, and allowing this would create a poten-
tial security hole.

• The flags parameter sets the MAP_ANONYMOUS bit, making this mapping anony-
mous, and the MAP_PRIVATE bit, making this mapping private.
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• The fd and offset parameters are ignored when MAP_ANONYMOUS is set. Some older
systems, however, expect a value of -1 for fd, so it is a good idea to pass that if
portability is a concern.

Memory obtained via an anonymous mapping looks the same as memory obtained
via the heap. One benefit to allocating from anonymous mappings is that the pages
are already filled with zeros. This occurs at no cost, because the kernel maps the
application’s anonymous pages to a zero-filled page via copy-on-write. Thus, there is
no need to memset( ) the returned memory. Indeed, this is one benefit to using
calloc( ) as opposed to malloc( ) followed by memset( ): glibc knows that anony-
mous mappings are already zeroed, and that a calloc( ) satisfied from a mapping
does not require explicit zeroing.

The system call munmap( ) frees an anonymous mapping, returning the allocated
memory to the kernel:

int ret;

/* all done with 'p', so give back the 512 KB mapping */
ret = munmap (p, 512 * 1024);
if (ret)
        perror ("munmap");

For a review of mmap( ), munmap( ), and mappings in general, see
Chapter 4.

Mapping /dev/zero
Other Unix systems, such as BSD, do not have a MAP_ANONYMOUS flag. Instead, they
implement a similar solution by mapping a special device file, /dev/zero. This device
file provides identical semantics to anonymous memory. A mapping contains copy-
on-write pages of all zeros; the behavior is thus the same as with anonymous memory.

Linux has always had a /dev/zero device, and provided the ability to map this file and
obtain zero-filled memory. Indeed, before the introduction of MAP_ANONYMOUS, Linux
programmers used this approach. To provide backward compatibility with older ver-
sions of Linux, or portability to other Unix systems, developers can still map /dev/zero
in lieu of creating an anonymous mapping. This is no different from mapping any
other file:

void *p;
int fd;

/* open /dev/zero for reading and writing */
fd = open ("/dev/zero", O_RDWR);
if (fd < 0) {
        perror ("open");
        return -1;
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}

/* map [0,page size) of /dev/zero */
p = mmap (NULL,                   /* do not care where */
          getpagesize ( ),         /* map one page */
          PROT_READ | PROT_WRITE, /* map read/write */
          MAP_PRIVATE,            /* private mapping */
          fd,                     /* map /dev/zero */
          0);                     /* no offset */

if (p == MAP_FAILED) {
        perror ("mmap");
        if (close (fd))
                perror ("close");
        return -1;
}

/* close /dev/zero, no longer needed */
if (close (fd))
        perror ("close");

/* 'p' points at one page of memory, use it... */

Memory mapped in this manner is, of course, unmapped using munmap( ).

This approach involves the additional system call overhead of opening and closing
the device file. Thus, anonymous memory is a faster solution.

Advanced Memory Allocation
Many of the allocation operations discussed in this chapter are limited and con-
trolled by kernel parameters that the programmer can change. To do so, use the
mallopt( ) call:

#include <malloc.h>

int mallopt (int param, int value);

A call to mallopt( ) sets the memory-management-related parameter specified by
param to the value specified by value. On success, the call returns a nonzero value; on
failure, it returns 0. Note that mallopt( ) does not set errno. It also tends to always
return successfully, so avoid any optimism about getting useful information from the
return value.

Linux currently supports six values for param, all defined in <malloc.h>:

M_CHECK_ACTION
The value of the MALLOC_CHECK_ environment variable (discussed in the next
section).
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M_MMAP_MAX
The maximum number of mappings that the system will make to satisfy
dynamic memory requests. When this limit is reached, the data segment will be
used for all allocations, until one of these mappings is freed. A value of 0 dis-
ables all use of anonymous mappings as a basis for dynamic memory allocations.

M_MMAP_THRESHOLD
The size threshold (measured in bytes) over which an allocation request will be
satisfied via an anonymous mapping instead of the data segment. Note that
allocations smaller than this threshold may also be satisfied via anonymous map-
pings at the system’s discretion. A value of 0 enables the use of anonymous
mappings for all allocations, effectively disabling use of the data segment for
dynamic memory allocations.

M_MXFAST
The maximum size (in bytes) of a fast bin. Fast bins are special chunks of mem-
ory in the heap that are never coalesced with adjacent chunks, and never
returned to the system, allowing for very quick allocations at the cost of
increased fragmentation. A value of 0 disables all use of fast bins.

M_TOP_PAD
The amount of padding (in bytes) used when adjusting the size of the data seg-
ment. Whenever glibc uses brk( ) to increase the size of the data segment, it can
ask for more memory than needed, in the hopes of alleviating the need for an
additional brk( ) call in the near future. Likewise, whenever glibc shrinks the size
of the data segment, it can keep extra memory, giving back a little less than it
would otherwise. These extra bytes are the padding. A value of 0 disables all use
of padding.

M_TRIM_THRESHOLD
The minimum amount of free memory (in bytes) allowed at the top of the data
segment. If the amount falls below this threshold, glibc invokes brk( ) to give
back memory to the kernel.

The XPG standard, which loosely defines mallopt( ), specifies three other parame-
ters: M_GRAIN, M_KEEP, and M_NLBLKS. Linux defines these parameters, but setting their
value has no effect. See Table 8-1 for a full listing of all valid parameters, their default
values, and their ranges of accepted values.

Table 8-1. mallopt( ) parameters

Parameter Origin Default value Valid values Special values

M_CHECK_ACTION Linux-specific 0 0 – 2

M_GRAIN XPG standard Unsupported on Linux >= 0

M_KEEP XPG standard Unsupported on Linux >= 0
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Programs must make any invocations of mallopt( ) before their first call to malloc( )
or any other memory allocation interface. Usage is simple:

int ret;

/* use mmap( ) for all allocations over 64 KB */
ret = mallopt (M_MMAP_THRESHOLD, 64 * 1024);
if (!ret)
        fprintf (stderr, "mallopt failed!\n");

Fine-Tuning with malloc_usable_size( ) and malloc_trim( )
Linux provides a couple of functions that offer low-level control of glibc’s memory
allocation system. The first such function allows a program to ask how many usable
bytes a given memory allocation contains:

#include <malloc.h>

size_t malloc_usable_size (void *ptr);

A successful call to malloc_usable_size( ) returns the actual allocation size of the
chunk of memory pointed to by ptr. Because glibc may round up allocations to fit
within an existing chunk or anonymous mapping, the usable space in an allocation
can be larger than requested. Of course, the allocation will never be smaller than
requested. Here’s an example of the function’s use:

size_t len = 21;
size_t size;
char *buf;

buf = malloc (len);
if (!buf) {
        perror ("malloc");
        return -1;
}

size = malloc_usable_size (buf);

/* we can actually use 'size' bytes of 'buf'... */

M_MMAP_MAX Linux-specific 64 * 1024 >= 0 0 disables use of mmap( )

M_MMAP_THRESHOLD Linux-specific 128 * 1024 >= 0 0 disables use of the heap

M_MXFAST XPG standard 64 0 – 80 0 disables fast bins

M_NLBLKS XPG standard Unsupported on Linux >= 0

M_TOP_PAD Linux-specific 0 >= 0 0 disables padding

Table 8-1. mallopt( ) parameters (continued)

Parameter Origin Default value Valid values Special values
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The second of the two functions allows a program to force glibc to return all immedi-
ately freeable memory to the kernel:

#include <malloc.h>

int malloc_trim (size_t padding);

A successful call to malloc_trim( ) shrinks the data segment as much as possible,
minus padding bytes, which are reserved. It then returns 1. On failure, the call returns
0. Normally, glibc performs such shrinking automatically, whenever the freeable
memory reaches M_TRIM_THRESHOLD bytes. It uses a padding of M_TOP_PAD.

You’ll almost never want to use these two functions for anything other than debug-
ging or educational purposes. They are not portable, and expose low-level details of
glibc’s memory allocation system to your program.

Debugging Memory Allocations
Programs can set the environment variable MALLOC_CHECK_ to enable enhanced debug-
ging in the memory subsystem. The additional debugging checks come at the
expense of less efficient memory allocations, but the overhead is often worth it dur-
ing the debugging stage of application development.

Because an environment variable controls the debugging, there is no need to recom-
pile your program. For example, you can simply issue a command like the following:

$ MALLOC_CHECK_=1 ./rudder

If MALLOC_CHECK_ is set to 0, the memory subsystem silently ignores any errors. If it is
set to 1, an informative message is printed to stderr. If it is set to 2, the program is
immediately terminated via abort( ). Because MALLOC_CHECK_ changes the behavior of
the running program, setuid programs ignore this variable.

Obtaining Statistics
Linux provides the mallinfo( ) function for obtaining statistics related to the mem-
ory allocation system:

#include <malloc.h>

struct mallinfo mallinfo (void);

A call to mallinfo( ) returns statistics in a mallinfo structure. The structure is
returned by value, not via a pointer. Its contents are also defined in <malloc.h>:

/* all sizes in bytes */
struct mallinfo {
        int arena;    /* size of data segment used by malloc */
        int ordblks;  /* number of free chunks */
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        int smblks;   /* number of fast bins */
        int hblks;    /* number of anonymous mappings */
        int hblkhd;   /* size of anonymous mappings */
        int usmblks;  /* maximum total allocated size */
        int fsmblks;  /* size of available fast bins */
        int uordblks; /* size of total allocated space */
        int fordblks; /* size of available chunks */
        int keepcost; /* size of trimmable space */
};

Usage is simple:

struct mallinfo m;

m = mallinfo ( );

printf ("free chunks: %d\n", m.ordblks);

Linux also provides the malloc_stats( ) function, which prints memory-related sta-
tistics to stderr:

#include <malloc.h>

void malloc_stats (void);

Invoking malloc_stats( ) in a memory-intensive program yields some big numbers:

Arena 0:
system bytes     =  865939456
in use bytes     =  851988200
Total (incl. mmap):
system bytes     = 3216519168
in use bytes     = 3202567912
max mmap regions =      65536
max mmap bytes   = 2350579712

Stack-Based Allocations
Thus far, all of the mechanisms for dynamic memory allocation that we have studied
have used the heap or memory mappings to obtain dynamic memory. We should
expect this because the heap and memory mappings are decidedly dynamic in
nature. The other common construct in a program’s address space, the stack, is
where a program’s automatic variables live.

There is no reason, however, that a programmer cannot use the stack for dynamic
memory allocations. So long as the allocation does not overflow the stack, such an
approach should be easy, and should perform quite well. To make a dynamic mem-
ory allocation from the stack, use the alloca( ) system call:

#include <alloca.h>

void * alloca (size_t size);
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On success, a call to alloca( ) returns a pointer to size bytes of memory. This mem-
ory lives on the stack, and is automatically freed when the invoking function returns.
Some implementations return NULL on failure, but most alloca( ) implementations
cannot fail, or are unable to report failure. Failure is manifested as a stack overflow.

Usage is identical to malloc( ), but you do not need to (indeed, must not) free the
allocated memory. Here is an example of a function that opens a given file in the sys-
tem’s configuration directory, which is probably /etc, but is portably determined at
compile time. The function has to allocate a new buffer, copy the system configuration
directory into the buffer, and then concatenate this buffer with the provided filename:

int open_sysconf (const char *file, int flags, int mode)
{
        const char *etc; = SYSCONF_DIR; /* "/etc/" */
        char *name;

        name = alloca (strlen (etc) + strlen (file) + 1);
        strcpy (name, etc);
        strcat (name, file);

        return open (name, flags, mode);
}

Upon return, the memory allocated with alloca( ) is automatically freed as the stack
unwinds back to the invoking function. This means you cannot use this memory
once the function that calls alloca( ) returns! However, because you don’t have to
do any cleanup by calling free( ), the resulting code is a bit cleaner. Here is the same
function implemented using malloc( ):

int open_sysconf (const char *file, int flags, int mode)
{
        const char *etc = SYSCONF_DIR; /* "/etc/" */
        char *name;
        int fd;

        name = malloc (strlen (etc) + strlen (file) + 1);
        if (!name) {
                perror ("malloc");
                return -1;
        }

        strcpy (name, etc);
        strcat (name, file);
        fd = open (name, flags, mode);
        free (name);

        return fd;
}



266 | Chapter 8: Memory Management

Note that you should not use alloca( )-allocated memory in the parameters to a
function call, because the allocated memory will then exist in the middle of the stack
space reserved for the function parameters. For example, the following is off-limits:

/* DO NOT DO THIS! */
ret = foo (x, alloca (10));

The alloca( ) interface has a checkered history. On many systems, it behaved poorly,
or gave way to undefined behavior. On systems with a small and fixed-sized stack,
using alloca( ) was an easy way to overflow the stack, and kill your program. On
still other systems, alloca( ) did not even exist. Over time, the buggy and inconsis-
tent implementations earned alloca( ) a bad reputation.

So, if your program must remain portable, you should avoid alloca( ). On Linux,
however, alloca( ) is a wonderfully useful and underutilized tool. It performs excep-
tionally well—on many architectures, an allocation via alloca( ) does as little as
increment the stack pointer—and handily outperforms malloc( ). For small alloca-
tions in Linux-specific code, alloca( ) can yield excellent performance gains.

Duplicating Strings on the Stack
A very common use of alloca( ) is to temporarily duplicate a string. For example:

/* we want to duplicate 'song' */
char *dup;

dup = alloca (strlen (song) + 1);
strcpy (dup, song);

/* manipulate 'dup'... */

return; /* 'dup' is automatically freed */

Because of the frequency of this need, and the speed benefit that alloca( ) offers,
Linux systems provide variants of strdup( ) that duplicate the given string onto the
stack:

#define _GNU_SOURCE
#include <string.h>

char * strdupa (const char *s);
char * strndupa (const char *s, size_t n);

A call to strdupa( ) returns a duplicate of s. A call to strndupa( ) duplicates up to n
characters of s. If s is longer than n, the duplication stops at n, and the function
appends a null byte. These functions offer the same benefits as alloca( ). The dupli-
cated string is automatically freed when the invoking function returns.

POSIX does not define the alloca( ), strdupa( ), or strndupa( ) functions, and their
record on other operating systems is spotty. If portability is a concern, use of these
functions is highly discouraged. On Linux, however, alloca( ) and friends perform
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quite well, and can provide an excellent performance boost, replacing the compli-
cated dance of dynamic memory allocation with a mere adjustment of the stack
frame pointer.

Variable-Length Arrays
C99 introduced variable-length arrays (VLAs), which are arrays whose geometry is
set at runtime, and not at compile time. GNU C has supported variable-length arrays
for some time, but now that C99 has standardized them, there is greater incentive for
their use. VLAs avoid the overhead of dynamic memory allocation in much the same
way as alloca( ).

Their use is exactly what you would expect:

for (i = 0; i < n; ++i) {
        char foo[i + 1];

        /* use 'foo'... */
}

In this snippet, foo is an array of chars of variable size i + 1. On each iteration of the
loop, foo is dynamically created and automatically cleaned up when it falls out of
scope. If we used alloca( ) instead of a VLA, the memory would not be freed until
the function returned. Using a VLA ensures that the memory is freed on every itera-
tion of the loop. Thus, using a VLA consumes at worst n bytes, whereas alloca( )
would consume n*(n+1)/2 bytes.

Using a variable-length array, we can rewrite our open_sysconf( ) function as follows:

int open_sysconf (const char *file, int flags, int mode)
{
        const char *etc; = SYSCONF_DIR; /* "/etc/" */
        char name[strlen (etc) + strlen (file) + 1];

        strcpy (name, etc);
        strcat (name, file);

        return open (name, flags, mode);
}

The main difference between alloca( ) and variable-length arrays is that memory
obtained via the former exists for the duration of the function, whereas memory
obtained via the latter exists until the holding variable falls out of scope, which can
be before the current function returns. This could be welcome or unwelcome. In the
for loop we just looked at, reclaiming the memory on each loop iteration reduces net
memory consumption without any side effect (we did not need the extra memory
hanging around). However, if for some reason we wanted the memory to persist
longer than a single loop iteration, using alloca( ) would make more sense.
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Mixing alloca( ) and variable-length arrays in a single function can
invite peculiar behavior. Play it safe and use one or the other in a given
function.

Choosing a Memory Allocation Mechanism
The myriad memory allocation options discussed in this chapter may leave
programmers wondering exactly what solution is best for a given job. In the majority of
situations, malloc() is your best bet. Sometimes, however, a different approach
provides a better tool. Table 8-2 summarizes guidelines for choosing an allocation
mechanism.

Finally, let us not forget the alternative to all of these options: automatic and static
memory allocations. Allocating automatic variables on the stack, or global variables
on the heap, is often easier, and does not require that the programmer manage point-
ers and worry about freeing the memory.

Table 8-2. Approaches to memory allocation in Linux

Allocation approach Pros Cons

malloc( ) Easy, simple, common. Returned memory not necessarily zeroed.

calloc( ) Makes allocating arrays simple, zeros
returned memory.

Convoluted interface if not allocating
arrays.

realloc( ) Resizes existing allocations. Useful only for resizing existing
allocations.

brk( ) and sbrk( ) Allows intimate control of the heap. Much too low-level for most users.

Anonymous memory mappings Easy to work with, sharable, allow devel-
oper to adjust protection level and provide
advice; optimal for large mappings.

Suboptimal for small allocations;
malloc( ) automatically uses anony-
mous memory mappings when optimal.

posix_memalign( ) Allocates memory aligned to any reason-
able boundary.

Relatively new and thus portability is
questionable; overkill unless alignment
concerns are pressing.

memalign( ) and valloc( ) More common on other Unix systems
than posix_memalign( ).

Not a POSIX standard, offers less alignment
control thanposix_memalign().

alloca( ) Very fast allocation, no need to explicitly
free memory; great for small allocations.

Unable to return error, no good for large
allocations, broken on some Unix systems.

Variable-length arrays Same as alloca( ), but frees memory
when array falls out of scope, not when
function returns.

Useful only for arrays; alloca( ) free-
ing behavior may be preferable in some
situations; less common on other Unix
systems than alloca( ).
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Manipulating Memory
The C language provides a family of functions for manipulating raw bytes of
memory. These functions operate in many ways similarly to string-manipulation
interfaces such as strcmp( ) and strcpy( ), but they rely on a user-provided buffer size
instead of the assumption that strings are null-terminated. Note that none of these
functions can return errors. Preventing errors is up to the programmer—pass in the
wrong memory region, and there is no alternative, except the resulting segmentation
violation!

Setting Bytes
Among the collection of memory-manipulating functions, the most common is eas-
ily memset( ):

#include <string.h>

void * memset (void *s, int c, size_t n);

A call to memset( ) sets the n bytes starting at s to the byte c and returns s. A frequent
use is zeroing a block of memory:

/* zero out [s,s+256) */
memset (s, '\0', 256);

bzero( ) is an older, deprecated interface introduced by BSD for performing the same
task. New code should use memset( ), but Linux provides bzero( ) for backward com-
patibility and portability with other systems:

#include <strings.h>

void bzero (void *s, size_t n);

The following invocation is identical to the preceding memset( ) example:

bzero (s, 256);

Note that bzero()—along with the other b interfaces—requires the header <strings.h>
and not <string.h>.

Do not use memset( ) if you can use calloc( )! Avoid allocating mem-
ory with malloc( ), and then immediately zeroing it with memset( ).
While the result may be the same, dropping the two functions for a
single calloc( ), which returns zeroed memory, is much better. Not
only will you make one less function call, but calloc( ) may be able to
obtain already zeroed memory from the kernel. In that case, you avoid
manually setting each byte to 0, and improve performance.
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Comparing Bytes
Similar to strcmp( ), memcmp( ) compares two chunks of memory for equivalence:

#include <string.h>

int memcmp (const void *s1, const void *s2, size_t n);

An invocation compares the first n bytes of s1 to s2, and returns 0 if the blocks of
memory are equivalent, a value less than zero if s1 is less than s2, and a value greater
than zero if s1 is greater than s2.

BSD again provides a now-deprecated interface that performs largely the same task:

#include <strings.h>

int bcmp (const void *s1, const void *s2, size_t n);

An invocation of bcmp( ) compares the first n bytes of s1 to s2, returning 0 if the
blocks of memory are equivalent, and a nonzero value if they are different.

Because of structure padding (see “Other alignment concerns” earlier in this chapter),
comparing two structures for equivalence via memcmp( ) or bcmp( ) is unreliable. There
can be uninitialized garbage in the padding that differs between two otherwise identi-
cal instances of a structure. Consequently, code such as the following is not safe:

/* are two dinghies identical? (BROKEN) */
int compare_dinghies (struct dinghy *a, struct dinghy *b)
{
        return memcmp (a, b, sizeof (struct dinghy));
}

Instead, programmers who wish to compare structures should compare each ele-
ment of the structures, one by one. This approach allows for some optimization, but
it’s definitely more work than the unsafe memcmp( ) approach. Here’s the equivalent
code:

/* are two dinghies identical? */
int compare_dinghies (struct dinghy *a, struct dinghy *b)
{
        int ret;

        if (a->nr_oars < b->nr_oars)
                return -1;
        if (a->nr_oars > b->nr_oars)
                return 1;

        ret = strcmp (a->boat_name, b->boat_name);
        if (ret)
                return ret;

        /* and so on, for each member... */
}
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Moving Bytes
memmove( ) copies the first n bytes of src to dst, returning dst:

#include <string.h>

void * memmove (void *dst, const void *src, size_t n);

Again, BSD provides a deprecated interface for performing the same task:

#include <strings.h>

void bcopy (const void *src, void *dst, size_t n);

Note that although both functions take the same parameters, the order of the first
two is reversed in bcopy( ).

Both bcopy( ) and memmove( ) can safely handle overlapping memory regions (say, if
part of dst is inside of src). This allows bytes of memory to shift up or down within a
given region, for example. As this situation is rare, and a programmer would know if
it were the case, the C standard defines a variant of memmove( ) that does not support
overlapping memory regions. This variant is potentially faster:

#include <string.h>

void * memcpy (void *dst, const void *src, size_t n);

This function behaves identically to memmove( ), except dst and src may not overlap.
If they do, the results are undefined.

Another safe copying function is memccpy( ):

#include <string.h>

void * memccpy (void *dst, const void *src, int c, size_t n);

The memccpy( ) function behaves the same as memcpy( ), except that it stops copying if
the function finds the byte c within the first n bytes of src. The call returns a pointer
to the next byte in dst after c, or NULL if c was not found.

Finally, you can use mempcpy( ) to step through memory:

#define _GNU_SOURCE
#include <string.h>

void * mempcpy (void *dst, const void *src, size_t n);

The mempcpy( ) function performs the same as memcpy( ), except that it returns a
pointer to the next byte after the last byte copied. This is useful if a set of data is to
be copied to consecutive memory locations—but it’s not so much of an improve-
ment because the return value is merely dst + n. This function is GNU-specific.
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Searching Bytes
The functions memchr( ) and memrchr( ) locate a given byte in a block of memory:

#include <string.h>

void * memchr (const void *s, int c, size_t n);

The memchr( ) function scans the n bytes of memory pointed at by s for the character
c, which is interpreted as an unsigned char:

#define _GNU_SOURCE
#include <string.h>

void * memrchr (const void *s, int c, size_t n);

The call returns a pointer to the first byte to match c, or NULL if c is not found.

The memrchr() function is the same as the memchr() function, except that it searches
backward from the end of the n bytes pointed at by s instead of forward from the
front. Unlike memchr(), memrchr() is a GNU extension, and not part of the C language.

For more complicated search missions, the awfully named function memmem( )
searches a block of memory for an arbitrary array of bytes:

#define _GNU_SOURCE
#include <string.h>

void * memmem (const void *haystack,
               size_t haystacklen,
               const void *needle,
               size_t needlelen);

The memmem( ) function returns a pointer to the first occurrence of the subblock
needle, of length needlelen bytes, within the block of memory haystack, of length
haystacklen bytes. If the function does not find needle in haystack, it returns NULL.
This function is also a GNU extension.

Frobnicating Bytes
The Linux C library provides an interface for trivially convoluting bytes of data:

#define _GNU_SOURCE
#include <string.h>

void * memfrob (void *s, size_t n);

A call to memfrob( ) obscures the first n bytes of memory starting at s by exclusive-
ORing (XORing) each byte with the number 42. The call returns s.
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The effect of a call to memfrob( ) can be reversed by calling memfrob( ) again on the
same region of memory. Thus, the following snippet is a no-op with respect to
secret:

memfrob (memfrob (secret, len), len);

This function is in no way a proper (or even a poor) substitute for encryption; its use
is limited to the trivial obfuscation of strings. It is GNU-specific.

Locking Memory
Linux implements demand paging, which means that pages are swapped in from disk
as needed, and swapped out to disk when no longer needed. This allows the virtual
address spaces of processes on the system to have no direct relationship to the total
amount of physical memory, as the on-disk swap space can provide the illusion of a
nearly infinite supply of physical memory.

This swapping occurs transparently, and applications generally need not be con-
cerned with (or even know about) the Linux kernel’s paging behavior. There are,
however, two situations in which applications may wish to influence the system’s
paging behavior:

Determinism
Applications with timing constraints require deterministic behavior. If some
memory accesses result in page faults—which incur costly disk I/O operations—
applications can overrun their timing needs. By ensuring that the pages it needs
are always in physical memory, and never paged to disk, an application can
guarantee that memory accesses will not result in page faults, providing consis-
tency, determinism, and improved performance.

Security
If private secrets are kept in memory, the secrets can end up being paged out and
stored unencrypted on disk. For example, if a user’s private key is normally
stored encrypted on disk, an unencrypted copy of the key in memory can end up
in the swap file. In a high-security environment, this behavior may be unaccept-
able. Applications for which this might be a problem can ask that the memory
containing the key always remain in physical memory.

Of course, changing the kernel’s behavior can result in a negative impact on overall
system performance. One application’s determinism or security may improve, but
while its pages are locked into memory, another application’s pages will be paged
out instead. The kernel, if we trust its design, always chooses the optimal page to
swap out—that is, the page least likely to be used in the future—so when you change
its behavior, it has to swap out a suboptimal page.
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Locking Part of an Address Space
POSIX 1003.1b-1993 defines two interfaces for “locking” one or more pages into
physical memory, ensuring that they are never paged out to disk. The first locks a
given interval of addresses:

#include <sys/mman.h>

int mlock (const void *addr, size_t len);

A call to mlock( ) locks the virtual memory starting at addr, and extending for len
bytes into physical memory. On success, the call returns 0; on failure, the call returns
-1, and sets errno as appropriate.

A successful call locks all physical pages that contain [addr,addr+len) in memory.
For example, if a call specifies only a single byte, the entire page in which that byte
resides is locked into memory. The POSIX standard dictates that addr should be
aligned to a page boundary. Linux does not enforce this requirement, silently round-
ing addr down to the nearest page if needed. Programs requiring portability to other
systems, however, should ensure that addr sits on a page boundary.

The valid errno codes include:

EINVAL
The parameter len is negative.

ENOMEM
The caller attempted to lock more pages than the RLIMIT_MEMLOCK resource limit
allows (see the later section “Locking Limits”).

EPERM
The RLIMIT_MEMLOCK resource limit was 0, but the process did not possess the
CAP_IPC_LOCK capability (again, see “Locking Limits”).

A child process does not inherit locked memory across a fork( ). Due
to the copy-on-write behavior of address spaces in Linux, however, a
child process’ pages are effectively locked in memory until the child
writes to them.

As an example, assume that a program holds a decrypted string in memory. A pro-
cess can lock the page containing the string with code such as the following:

int ret;

/* lock 'secret' in memory */
ret = mlock (secret, strlen (secret));
if (ret)
        perror ("mlock");
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Locking All of an Address Space
If a process wants to lock its entire address space into physical memory, mlock( ) is a
cumbersome interface. For such a purpose—common to real-time applications—
POSIX defines a system call that locks an entire address space:

#include <sys/mman.h>

int mlockall (int flags);

A call to mlockall( ) locks all of the pages in the current process’ address space into
physical memory. The flags parameter, which is a bitwise OR of the following two
values, controls the behavior:

MCL_CURRENT
If set, this value instructs mlockall( ) to lock all currently mapped pages—the
stack, data segment, mapped files, and so on—into the process’ address space.

MCL_FUTURE
If set, this value instructs mlockall( ) to ensure that all pages mapped into the
address space in the future are also locked into memory.

Most applications specify a bitwise OR of both values.

On success, the call returns 0; on failure, it returns -1, and sets errno to one of the
following error codes:

EINVAL
The parameter flags is negative.

ENOMEM
The caller attempted to lock more pages than the RLIMIT_MEMLOCK resource limit
allows (see the later section “Locking Limits”).

EPERM
The RLIMIT_MEMLOCK resource limit was 0, but the process did not possess the
CAP_IPC_LOCK capability (again, see “Locking Limits”).

Unlocking Memory
To unlock pages from physical memory, again allowing the kernel to swap the pages
out to disk as needed, POSIX standardizes two more interfaces:

#include <sys/mman.h>

int munlock (const void *addr, size_t len);
int munlockall (void);

The system call munlock( ) unlocks the pages starting at addr and extending for len
bytes. It undoes the effects of mlock( ). The system call munlockall( ) undoes the
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effects of mlockall( ). Both calls return 0 on success, and on error return -1, and set
errno to one of the following:

EINVAL
The parameter len is invalid (munlock( ) only).

ENOMEM
Some of the specified pages are invalid.

EPERM
The RLIMIT_MEMLOCK resource limit was 0, but the process did not possess the
CAP_IPC_LOCK capability (see the next section, “Locking Limits”).

Memory locks do not nest. Therefore, a single mlock( ) or munlock( ) will unlock a
locked page, regardless of how many times the page was locked via mlock( ) or
mlockall( ).

Locking Limits
Because locking memory can affect the overall performance of the system—indeed, if
too many pages are locked, memory allocations can fail—Linux places limits on how
many pages a process may lock.

Processes possessing the CAP_IPC_LOCK capability may lock any number of pages into
memory. Processes without this capability may lock only RLIMIT_MEMLOCK bytes. By
default, this resource limit is 32 KB—large enough to lock a secret or two in memory,
but not large enough to adversely affect system performance. (Chapter 6 discusses
resource limits, and how to retrieve and change this value.)

Is a Page in Physical Memory?
For debugging and diagnostic purposes, Linux provides the mincore( ) function,
which can be used to determine whether a given range of memory is in physical
memory, or swapped out to disk:

#include <unistd.h>
#include <sys/mman.h>

int mincore (void *start,
             size_t length,
             unsigned char *vec);

A call to mincore( ) provides a vector delineating which pages of a mapping are in
physical memory at the time of the system call. The call returns the vector via vec,
and describes the pages starting at start (which must be page-aligned) and extend-
ing for length bytes (which need not be page-aligned). Each byte in vec corresponds
to one page in the range provided, starting with the first byte describing the first
page, and moving linearly forward. Consequently, vec must be at least large enough
to contain (length - 1 + page size) / page size bytes. The lowest-order bit in each
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byte is 1 if the page is resident in physical memory, and 0 if it is not. The other bits
are currently undefined and reserved for future use.

On success, the call returns 0. On failure, it returns -1, and sets errno to one of the
following:

EAGAIN
Insufficient kernel resources are available to carry out the request.

EFAULT
The parameter vec points at an invalid address.

EINVAL
The parameter start is not aligned to a page boundary.

ENOMEM
[address,address+1) contains memory that is not part of a file-based mapping.

Currently, this system call works properly only for file-based mappings created with
MAP_SHARED. This greatly limits the call’s use.

Opportunistic Allocation
Linux employs an opportunistic allocation strategy. When a process requests addi-
tional memory from the kernel—say, by enlarging its data segment, or by creating a
new memory mapping—the kernel commits to the memory without actually providing
any physical storage. Only when the process writes to the newly allocated memory
does the kernel satisfy the commitment by converting the commitment for memory to
a physical allocation of memory. The kernel does this on a page-by-page basis, per-
forming demand paging and copy-on-writes as needed.

This behavior has several advantages. First, lazily allocating memory allows the ker-
nel to defer most of the work until the last possible moment—if indeed it ever has to
satisfy the allocations. Second, because the requests are satisfied page-by-page and
on demand, only physical memory in actual use need consume physical storage.
Finally, the amount of committed memory can far exceed the amount of physical
memory and even swap space available. This last feature is called overcommitment.

Overcommitting and OOM
Overcommitting allows systems to run many more, and much larger, applications
than they could if every requested page of memory had to be backed by physical stor-
age at the point of allocation instead of the point of use. Without overcommitment,
mapping a 2 GB file copy-on-write would require the kernel to set aside 2 GB of stor-
age. With overcommitment, mapping a 2 GB file requires storage only for each page
of data to which the process actually writes. Likewise, without overcommitment,
every fork( ) would require enough free storage to duplicate the address space, even
though the vast majority of pages never undergo copy-on-writes.
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What if, however, processes attempt to satisfy more outstanding commitments than
the system has physical memory and swap space? In that case, one or more of the
satisfactions must fail. Because the kernel has already committed to the memory—
the system call requesting the commitment returned success—and a process is
attempting to use that committed memory, the kernel’s only recourse is to kill a pro-
cess, freeing up available memory.

When overcommitment results in insufficient memory to satisfy a committed
request, we say that an out of memory (OOM) condition has occurred. In response to
an OOM condition, the kernel employs the OOM killer to pick a process “worthy”
of termination. For this purpose, the kernel tries to find the least important process
that is consuming the most memory.

OOM conditions are rare—hence the huge utility in allowing overcommitment in
the first place. To be sure, however, these conditions are unwelcome, and the inde-
terministic termination of a process by the OOM killer is often unacceptable.

For systems where this is the case, the kernel allows the disabling of overcommit-
ment via the file /proc/sys/vm/overcommit_memory, and the analogous sysctl
parameter vm.overcommit_memory.

The default value for this parameter, 0, instructs the kernel to perform a heuristic
overcommitment strategy, overcommitting memory within reason, but disallowing
egregious overcommitments. A value of 1 allows all commitments to succeed, throw-
ing caution to the wind. Certain memory-intensive applications, such as those in the
scientific field, tend to request so much more memory than they ever need satisfied
that such an option makes sense.

A value of 2 disables overcommitments altogether, and enables strict accounting. In
this mode, memory commitments are restricted to the size of the swap area, plus a
configurable percentage of physical memory. The configuration percentage is set via
the file /proc/sys/vm/overcommit_ratio, or the analogous sysctl parameter, which is
vm.overcommit_ratio. The default is 50, which restricts memory commits to the size
of the swap area plus half of the physical memory. Because physical memory con-
tains the kernel, page tables, system-reserved pages, locked pages, and so on, only a
portion of it is actually swappable and guaranteed to be able to satisfy commitments.

Be careful with strict accounting! Many system designers, repulsed by the notion of
the OOM killer, think strict accounting is a panacea. However, applications often
perform many unnecessary allocations that reach far into overcommitment territory,
and allowing this behavior was one of the main motivations behind virtual memory.
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Signals

Signals are software interrupts that provide a mechanism for handling asynchronous
events. These events can originate from outside the system—such as when the user
generates the interrupt character (usually via Ctrl-C)—or from activities within the
program or kernel, such as when the process executes code that divides by zero. As a
primitive form of interprocess communication (IPC), one process can also send a sig-
nal to another process.

The key point is not just that the events occur asynchronously—the user, for exam-
ple, can press Ctrl-C at any point in the program’s execution—but also that the
program handles the signals asynchronously. The signal-handling functions are regis-
tered with the kernel, which invokes the functions asynchronously from the rest of
the program when the signals are delivered.

Signals have been part of Unix since the early days. Over time, however, they have
evolved—most noticeably in terms of reliability, as signals could once get lost, and in
terms of functionality, as signals may now carry user-defined payloads. At first, dif-
ferent Unix systems made incompatible changes to signals. Thankfully, POSIX came
to the rescue and standardized signal handling. This standard is what Linux pro-
vides, and is what we’ll discuss here.

In this chapter, we’ll start with an overview of signals, and a discussion of their use
and misuse. We’ll then cover the various Linux interfaces that manage and manipu-
late signals.

Most nontrivial applications interact with signals. Even if you deliberately design
your application to not rely on signals for its communication needs—often a good
idea!—you’ll still be forced to work with signals in certain cases, such as when han-
dling program termination.
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Signal Concepts
Signals have a very precise lifecycle. First, a signal is raised (we sometimes also say it
is sent or generated). The kernel then stores the signal until it is able to deliver it.
Finally, once it is free to do so, the kernel handles the signal as appropriate. The ker-
nel can perform one of three actions, depending on what the process asked it to do:

Ignore the signal
No action is taken. There are two signals that cannot be ignored: SIGKILL and
SIGSTOP. The reason for this is that the system administrator needs to be able to
kill or stop processes, and it would be a circumvention of that right if a process
could elect to ignore a SIGKILL (making it unkillable), or a SIGSTOP (making it
unstoppable).

Catch and handle the signal
The kernel will suspend execution of the process’ current code path, and jump
to a previously registered function. The process will then execute this function.
Once the process returns from this function, it will jump back to wherever it was
when it caught the signal.

SIGINT and SIGTERM are two commonly caught signals. Processes catch SIGINT to
handle the user generating the interrupt character—for example, a terminal
might catch this signal and return to the main prompt. Processes catch SIGTERM
to perform necessarily cleanup, such as disconnecting from the network, or
removing temporary files, before terminating. SIGKILL and SIGSTOP cannot be
caught.

Perform the default action
This action depends on the signal being sent. The default action is often to ter-
minate the process. This is the case with SIGKILL, for instance. However, many
signals are provided for specific purposes that concern programmers in particu-
lar situations, and these signals are ignored by default because many programs
are not interested in them. We will look at the various signals and their default
actions shortly.

Traditionally, when a signal was delivered, the function that handled the signal had
no information about what had happened except for the fact that a particular signal
had occurred. Nowadays, the kernel can provide a lot of context to programmers
who want to receive it, and signals can even pass user-defined data, like later and
more advanced IPC mechanisms.

Signal Identifiers
Every signal has a symbolic name that starts with the prefix SIG. For example, SIGINT
is the signal sent when the user presses Ctrl-C, SIGABRT is the signal sent when the
process calls the abort( ) function, and SIGKILL is the signal sent when a process is
forcefully terminated.
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These signals are all defined in a header file included from <signal.h>. The signals are
simply preprocessor definitions that represent positive integers—that is, every signal
is also associated with an integer identifier. The name-to-integer mapping for the sig-
nals is implementation-dependent, and varies among Unix systems, although the first
dozen or so signals are usually mapped the same way (SIGKILL is infamously signal 9,
for example). A good programmer will always use a signal’s human-readable name,
and never its integer value.

The signal numbers start at 1 (generally SIGHUP), and proceed linearly upward. There
are about 31 signals in total, but most programs deal regularly with only a handful of
them. There is no signal with the value 0, which is a special value known as the null
signal. There’s really nothing important about the null signal—it doesn’t deserve a
special name—but some system calls (such as kill( )) use a value of 0 as a special
case.

You can generate a list of signals supported on your system with the command kill -l.

Signals Supported by Linux
Table 9-1 lists the signals that Linux supports.

Table 9-1. Signals

Signal Description Default action

SIGABRT Sent by abort( ) Terminate with core dump

SIGALRM Sent by alarm( ) Terminate

SIGBUS Hardware or alignment error Terminate with core dump

SIGCHLD Child has terminated Ignored

SIGCONT Process has continued after being stopped Ignored

SIGFPE Arithmetic exception Terminate with core dump

SIGHUP Process’s controlling terminal was closed (most frequently, the user logged
out)

Terminate

SIGILL Process tried to execute an illegal instruction Terminate with core dump

SIGINT User generated the interrupt character (Ctrl-C) Terminate

SIGIO Asynchronous I/O event Terminatea

SIGKILL Uncatchable process termination Terminate

SIGPIPE Process wrote to a pipe but there are no readers Terminate

SIGPROF Profiling timer expired Terminate

SIGPWR Power failure Terminate

SIGQUIT User generated the quit character (Ctrl-\) Terminate with core dump

SIGSEGV Memory access violation Terminate with core dump

SIGSTKFLT Coprocessor stack fault Terminateb

SIGSTOP Suspends execution of the process Stop
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Several other signal values exist, but Linux defines them to be equivalent to other
values: SIGINFO is defined as SIGPWR,* SIGIOT is defined as SIGABRT, and SIGPOLL and
SIGLOST are defined as SIGIO.

Now that we have a table for quick reference, let’s go over each of the signals in
detail:

SIGABRT
The abort( ) function sends this signal to the process that invokes it. The pro-
cess then terminates and generates a core file. In Linux, assertions such as
assert( ) call abort( ) when the conditional fails.

SIGALRM
The alarm( ) and setitimer( ) (with the ITIMER_REAL flag) functions send this
signal to the process that invoked them when an alarm expires. Chapter 10 dis-
cusses these and related functions.

SIGBUS
The kernel raises this signal when the process incurs a hardware fault other than
memory protection, which generates a SIGSEGV. On traditional Unix systems, this
signal represented various irrecoverable errors, such as unaligned memory access.
The Linux kernel, however, fixes most of these errors automatically, without gen-
erating the signal. The kernel does raise this signal when a process improperly

SIGSYS Process tried to execute an invalid system call Terminate with core dump

SIGTERM Catchable process termination Terminate

SIGTRAP Break point encountered Terminate with core dump

SIGTSTP User generated the suspend character (Ctrl-Z) Stop

SIGTTIN Background process read from controlling terminal Stop

SIGTTOU Background process wrote to controlling terminal Stop

SIGURG Urgent I/O pending Ignored

SIGUSR1 Process-defined signal Terminate

SIGUSR2 Process-defined signal Terminate

SIGVTALRM Generated by setitimer() when called with the ITIMER_VIRTUAL flag Terminate

SIGWINCH Size of controlling terminal window changed Ignored

SIGXCPU Processor resource limits were exceeded Terminate with core dump

SIGXFSZ File resource limits were exceeded Terminate with core dump

a The behavior on other Unix systems, such as BSD, is to ignore this signal.
b The Linux kernel no longer generates this signal; it remains only for backward compatibility.

* Only the Alpha architecture defines this signal. On all other machine architectures, this signal does not exist.

Table 9-1. Signals (continued)

Signal Description Default action
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accesses a region of memory created via mmap( ) (see Chapter 8 for a discussion of
memory mappings). Unless this signal is caught, the kernel will terminate the
process, and generate a core dump.

SIGCHLD
Whenever a process terminates or stops, the kernel sends this signal to the pro-
cess’ parent. Because SIGCHLD is ignored by default, processes must explicitly
catch and handle it if they are interested in the lives of their children. A handler
for this signal generally calls wait( ), discussed in Chapter 5, to determine the
child’s pid and exit code.

SIGCONT
The kernel sends this signal to a process when the process is resumed after being
stopped. By default, this signal is ignored, but processes can catch it if they want
to perform an action after being continued. This signal is commonly used by ter-
minals or editors, which wish to refresh the screen.

SIGFPE
Despite its name, this signal represents any arithmetic exception, and not solely
those related to floating-point operations. Exceptions include overflows, under-
flows, and division by zero. The default action is to terminate the process and
generate a core file, but processes may catch and handle this signal if they want.
Note that the behavior of a process and the result of the offending operation are
undefined if the process elects to continue running.

SIGHUP
The kernel sends this signal to the session leader whenever the session’s terminal
disconnects. The kernel also sends this signal to each process in the foreground
process group when the session leader terminates. The default action is to termi-
nate, which makes sense—the signal suggests that the user has logged out.
Daemon processes “overload” this signal with a mechanism to instruct them to
reload their configuration files. Sending SIGHUP to Apache, for example, instructs
it to reread httpd.conf. Using SIGHUP for this purpose is a common convention,
but not mandatory. The practice is safe because daemons do not have control-
ling terminals, and thus should never normally receive this signal.

SIGILL
The kernel sends this signal when a process attempts to execute an illegal
machine instruction. The default action is to terminate the process, and gener-
ate a core dump. Processes may elect to catch and handle SIGILL, but their
behavior is undefined after its occurrence.

SIGINT
This signal is sent to all processes in the foreground process group when the user
enters the interrupt character (usually Ctrl-C). The default behavior is to terminate;
however, processes can elect to catch and handle this signal, and generally do so to
clean up before terminating.
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SIGIO
This signal is sent when a BSD-style asynchronous I/O event is generated. This
style of I/O is rarely used on Linux. (See Chapter 4 for a discussion of advanced
I/O techniques that are common to Linux.)

SIGKILL
This signal is sent from the kill( ) system call; it exists to provide system admin-
istrators with a surefire way of unconditionally killing a process. This signal
cannot be caught or ignored, and its result is always to terminate the process.

SIGPIPE
If a process writes to a pipe, but the reader has terminated, the kernel raises this
signal. The default action is to terminate the process, but this signal may be
caught and handled.

SIGPROF
The setitimer() function, when used with the ITIMER_PROF flag, generates this sig-
nal when a profiling timer expires. The default action is to terminate the process.

SIGPWR
This signal is system-dependent. On Linux, it represents a low-battery condition
(such as in an uninterruptible power supply, or UPS). A UPS monitoring dae-
mon sends this signal to init, which then responds by cleaning up and shutting
down the system—hopefully before the power goes out!

SIGQUIT
The kernel raises this signal for all processes in the foreground process group
when the user provides the terminal quit character (usually Ctrl-\). The default
action is to terminate the processes, and generate a core dump.

SIGSEGV
This signal, whose name derives from segmentation violation, is sent to a process
when it attempts an invalid memory access. This includes accessing unmapped
memory, reading from memory that is not read-enabled, executing code in mem-
ory that is not execute-enabled, or writing to memory that is not write-enabled.
Processes may catch and handle this signal, but the default action is to termi-
nate the process and generate a core dump.

SIGSTOP
This signal is sent only by kill( ). It unconditionally stops a process, and can-
not be caught or ignored.

SIGSYS
The kernel sends this signal to a process when it attempts to invoke an invalid
system call. This can happen if a binary is built on a newer version of the operat-
ing system (with newer versions of system calls), but then runs on an older
version. Properly built binaries that make their system calls through glibc should
never receive this signal. Instead, invalid system calls should return -1, and set
errno to ENOSYS.
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SIGTERM
This signal is sent only by kill( ); it allows a user to gracefully terminate a pro-
cess (the default action). Processes may elect to catch this signal, and clean up
before terminating, but it is considered rude to catch this signal and not termi-
nate promptly.

SIGTRAP
The kernel sends this signal to a process when it crosses a break point. Gener-
ally, debuggers catch this signal, and other processes ignore it.

SIGTSTP
The kernel sends this signal to all processes in the foreground process group
when the user provides the suspend character (usually Ctrl-Z).

SIGTTIN
This signal is sent to a process that is in the background when it attempts to read
from its controlling terminal. The default action is to stop the process.

SIGTTOU
This signal is sent to a process that is in the background when it attempts to
write to its controlling terminal. The default action is to stop the process.

SIGURG
The kernel sends this signal to a process when out-of-band (OOB) data has
arrived on a socket. Out-of-band data is beyond the scope of this book.

SIGUSR1 and SIGUSR2
These signals are available for user-defined purposes; the kernel never raises
them. Processes may use SIGUSR1 and SIGUSR2 for whatever purpose they like. A
common use is to instruct a daemon process to behave differently. The default
action is to terminate the process.

SIGVTALRM
The setitimer( ) function sends this signal when a timer created with the
ITIMER_VIRTUAL flag expires. Chapter 10 discusses timers.

SIGWINCH
The kernel raises this signal for all processes in the foreground process group
when the size of their terminal window changes. By default, processes ignore this
signal, but they may elect to catch and handle it if they are aware of their termi-
nal’s window size. A good example of a program that catches this signal is top—
try resizing its window while it is running and watch how it responds.

SIGXCPU
The kernel raises this signal when a process exceeds its soft processor limit. The
kernel will continue to raise this signal once per second until the process exits, or
exceeds its hard processor limit. Once the hard limit is exceeded, the kernel
sends the process a SIGKILL.
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SIGXFSZ
The kernel raises this signal when a process exceeds its file size limit. The default
action is to terminate the process, but if this signal is caught or ignored, the sys-
tem call that would have resulted in the file size limit being exceeded returns -1,
and sets errno to EFBIG.

Basic Signal Management
The simplest and oldest interface for signal management is the signal( ) function.
Defined by the ISO C89 standard, which standardizes only the lowest common
denominator of signal support, this system call is very basic. Linux offers substan-
tially more control over signals via other interfaces, which we’ll cover later in this
chapter. Because signal( ) is the most basic, and, thanks to its presence in ISO C,
quite common, we’ll cover it first:

#include <signal.h>

typedef void (*sighandler_t)(int);

sighandler_t signal (int signo, sighandler_t handler);

A successful call to signal( ) removes the current action taken on receipt of the sig-
nal signo, and instead handles the signal with the signal handler specified by handler.
signo is one of the signal names discussed in the previous section, such as SIGINT or
SIGUSR1. Recall that a process can catch neither SIGKILL nor SIGSTOP, so setting up a
handler for either of these two signals makes no sense.

The handler function must return void, which makes sense because (unlike with nor-
mal functions) there is no standard place in the program for this function to return.
The function takes one argument, an integer, which is the signal identifier (for exam-
ple, SIGUSR2) of the signal being handled. This allows a single function to handle
multiple signals. A prototype has the form:

void my_handler (int signo);

Linux uses a typedef, sighandler_t, to define this prototype. Other Unix systems
directly use the function pointers; some systems have their own types, which may
not be named sighandler_t. Programs seeking portability should not reference the
type directly.

When it raises a signal to a process that has registered a signal handler, the kernel
suspends execution of the program’s regular instruction stream, and calls the signal
handler. The handler is passed the value of the signal, which is the signo originally
provided to signal( ).

You may also use signal( ) to instruct the kernel to ignore a given signal for the cur-
rent process, or to reset the signal to the default behavior. This is done using special
values for the handler parameter:
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SIG_DFL
Set the behavior of the signal given by signo to its default. For example, in the
case of SIGPIPE, the process will terminate.

SIG_IGN
Ignore the signal given by signo.

The signal() function returns the previous behavior of the signal, which could be a
pointer to a signal handler, SIG_DFL, or SIG_IGN. On error, the function returns SIG_ERR.
It does not set errno.

Waiting for a Signal, Any Signal
Useful for debugging and writing demonstrative code snippets, the POSIX-defined
pause( ) system call puts a process to sleep until it receives a signal that either is han-
dled or terminates the process:

#include <unistd.h>

int pause (void);

pause( ) returns only if a caught signal is received, in which case the signal is han-
dled, and pause( ) returns -1, and sets errno to EINTR. If the kernel raises an ignored
signal, the process does not wake up.

In the Linux kernel, pause( ) is one of the simplest system calls. It performs only two
actions. First, it puts the process in the interruptible sleep state. Next, it calls
schedule( ) to invoke the Linux process scheduler to find another process to run. As
the process is not actually waiting for anything, the kernel will not wake it up unless
it receives a signal. This whole ordeal consumes only two lines of C code.*

Examples
Let’s look at a couple of simple examples. This first one registers a signal handler for
SIGINT that simply prints a message and then terminates the program (as SIGINT
would do anyway):

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <signal.h>

/* handler for SIGINT */
static void sigint_handler (int signo)
{

* Thus, pause( ) is only the second-simplest system call. The joint winners are getpid( ) and gettid( ), which
are each only one line.
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        /*
         * Technically, you shouldn't use printf( ) in a
         * signal handler, but it isn't the end of the
         * world. I'll discuss why in the section
         * "Reentrancy."
         */
        printf ("Caught SIGINT!\n");
        exit (EXIT_SUCCESS);
}

int main (void)
{
        /*
         * Register sigint_handler as our signal handler
         * for SIGINT.
         */
        if (signal (SIGINT, sigint_handler) == SIG_ERR) {
                fprintf (stderr, "Cannot handle SIGINT!\n");
                exit (EXIT_FAILURE);
        }

        for (;;)
                pause ( );

        return 0;
}

In the following example, we register the same handler for SIGTERM and SIGINT. We
also reset the behavior for SIGPROF to the default (which is to terminate the process)
and ignore SIGHUP (which would otherwise terminate the process):

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <signal.h>

/* handler for SIGINT */
static void signal_handler (int signo)
{
        if (signo == SIGINT)
                printf ("Caught SIGINT!\n");
        else if (signo == SIGTERM)
                printf ("Caught SIGTERM!\n");
        else {
                /* this should never happen */
                fprintf (stderr, "Unexpected signal!\n");
                exit (EXIT_FAILURE);
        }
        exit (EXIT_SUCCESS);
}

int main (void)
{



Basic Signal Management | 289

        /*
         * Register signal_handler as our signal handler
         * for SIGINT.
         */
        if (signal (SIGINT, signal_handler) == SIG_ERR) {
                fprintf (stderr, "Cannot handle SIGINT!\n");
                exit (EXIT_FAILURE);
        }

        /*
         * Register signal_handler as our signal handler
         * for SIGTERM.
         */
        if (signal (SIGTERM, signal_handler) == SIG_ERR) {
                fprintf (stderr, "Cannot handle SIGTERM!\n");
                exit (EXIT_FAILURE);
        }

        /* Reset SIGPROF's behavior to the default. */
        if (signal (SIGPROF, SIG_DFL) == SIG_ERR) {
                fprintf (stderr, "Cannot reset SIGPROF!\n");
                exit (EXIT_FAILURE);
        }

        /* Ignore SIGHUP. */
        if (signal (SIGHUP, SIG_IGN) == SIG_ERR) {
                fprintf (stderr, "Cannot ignore SIGHUP!\n");
                exit (EXIT_FAILURE);
        }

        for (;;)
                pause ( );

        return 0;
}

Execution and Inheritance
When a process is first executed, all signals are set to their default actions, unless the
parent process (the one executing the new process) is ignoring them; in this case, the
newly created process will also ignore those signals. Put another way, any signal
caught by the parent is reset to the default action in the new process, and all other
signals remain the same. This makes sense because a freshly executed process does
not share the address space of its parent, and thus any registered signal handlers may
not exist.

This behavior on process execution has one notable use: when the shell executes a
process “in the background” (or when another background process executes another
process), the newly executed process should ignore the interrupt and quit characters.
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Thus, before a shell executes a background process, it should set SIGINT and SIGQUIT
to SIG_IGN. It is therefore common for programs that handle these signals to first
check to make sure they are not ignored. For example:

/* handle SIGINT, but only if it isn't ignored */
if (signal (SIGINT, SIG_IGN) != SIG_IGN) {
        if (signal (SIGINT, sigint_handler) == SIG_ERR)
                fprintf (stderr, "Failed to handle SIGINT!\n");
}

/* handle SIGQUIT, but only if it isn't ignored */
if (signal (SIGQUIT, SIG_IGN) != SIG_IGN) {
        if (signal (SIGQUIT, sigquit_handler) == SIG_ERR)
                fprintf (stderr, "Failed to handle SIGQUIT!\n");
}

The need to set a signal behavior to check the signal behavior highlights a deficiency
in the signal( ) interface. Later, we will study a function that does not have this flaw.

The behavior with fork( ) is, as you might expect, different. When a process calls
fork( ), the child inherits the exact same signal semantics as the parent. This also
makes sense, as the child and parent share an address space, and thus the parent’s
signal handlers exist in the child.

Mapping Signal Numbers to Strings
In our examples thus far, we have hardcoded the names of the signals. But some-
times it is more convenient (or even a requirement) that you be able to convert a
signal number to a string representation of its name. There are several ways to do
this. One is to retrieve the string from a statically defined list:

extern const char * const sys_siglist[];

sys_siglist is an array of strings holding the names of the signals supported by the
system, indexed by signal number.

An alternative is the BSD-defined psignal( ) interface, which is common enough that
Linux supports it, too:

#include <signal.h>

void psignal (int signo, const char *msg);

A call to psignal( ) prints to stderr the string you supply as the msg argument, fol-
lowed by a colon, a space, and the name of the signal given by signo. If signo is
invalid, the printed message will say so.

A better interface is strsignal( ). It is not standardized, but Linux and many non-
Linux systems support it:
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#define _GNU_SOURCE
#include <string.h>

char *strsignal (int signo);

A call to strsignal( ) returns a pointer to a description of the signal given by signo. If
signo is invalid, the returned description typically says so (some Unix systems that
support this function return NULL instead). The returned string is valid only until the
next invocation of strsignal( ), so this function is not thread-safe.

Going with sys_siglist is usually your best bet. Using this approach, we could
rewrite our earlier signal handler as follows:

static void signal_handler (int signo)
{
        printf ("Caught %s\n", sys_siglist[signo]);
}

Sending a Signal
The kill( ) system call, the basis of the common kill utility, sends a signal from one
process to another:

#include <sys/types.h>
#include <signal.h>

int kill (pid_t pid, int signo);

In its normal use (i.e., if pid is greater than 0), kill( ) sends the signal signo to the
process identified by pid.

If pid is 0, signo is sent to every process in the invoking process’ process group.

If pid is -1, signo is sent to every process for which the invoking process has permis-
sion to send a signal, except itself and init. We will discuss the permissions regulating
signal delivery in the next subsection.

If pid is less than -1, signo is sent to the process group -pid.

On success, kill( ) returns 0. The call is considered a success so long as a single sig-
nal was sent. On failure (no signals sent), the call returns -1, and sets errno to one
of the following:

EINVAL
The signal specified by signo is invalid.

EPERM
The invoking process lacks sufficient permissions to send a signal to any of the
requested processes.

ESRCH
The process or process group denoted by pid does not exist, or, in the case of a
process, is a zombie.
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Permissions
In order to send a signal to another process, the sending process needs proper per-
missions. A process with the CAP_KILL capability (usually one owned by root) can
send a signal to any process. Without this capability, the sending process’ effective or
real user ID must be equal to the real or saved user ID of the receiving process. Put
more simply, a user can send a signal only to a process that he or she owns.

Unix systems define an exception for SIGCONT: a process can send this
signal to any other process in the same session. The user ID need not
match.

If signo is 0—the aforementioned null signal—the call does not send a signal, but it
still performs error checking. This is useful to test whether a process has suitable per-
missions to send the provided process or processes a signal.

Examples
Here’s how to send SIGHUP to the process with process ID 1722:

int ret;

ret = kill (1722, SIGHUP);
if (ret)
        perror ("kill");

This snippet is effectively the same as the following invocation of the kill utility:

$ kill -HUP 1722

To check that we have permission to send a signal to 1722 without actually sending
any signal, we could do the following:

int ret;

ret = kill (1722, 0);
if (ret)
        ; /* we lack permission */
else
        ; /* we have permission */

Sending a Signal to Yourself
The raise( ) function is a simple way for a process to send a signal to itself:

#include <signal.h>

int raise (int signo);

This call:

raise (signo);
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is equivalent to the following call:

kill (getpid ( ), signo);

The call returns 0 on success, and a nonzero value on failure. It does not set errno.

Sending a Signal to an Entire Process Group
Another convenience function makes it easy to send a signal to all processes in a given
process group, in the event that negating the process group ID and using kill( ) is
deemed too taxing:

#include <signal.h>

int killpg (int pgrp, int signo);

This call:

killpg (pgrp, signo);

is equivalent to the following call:

kill (-pgrp, signo);

This holds true even if pgrp is 0, in which case killpg( ) sends the signal signo to
every process in the invoking process’ group.

On success, killpg( ) returns 0. On failure, it returns -1, and sets errno to one of the
following values:

EINVAL
The signal specified by signo is invalid.

EPERM
The invoking process lacks sufficient permissions to send a signal to any of the
requested processes.

ESRCH
The process group denoted by pgrp does not exist.

Reentrancy
When the kernel raises a signal, a process can be executing code anywhere. For
example, it might be in the middle of an important operation that, if interrupted,
would leave the process is an inconsistent state—say, with a data structure only half
updated, or a calculation only partially performed. The process might even be han-
dling another signal.

Signal handlers cannot tell what code the process is executing when a signal hits; the
handler can run in the middle of anything. It is thus very important that any signal
handler your process installs be very careful about the actions it performs and the
data it touches. Signal handlers must take care not to make assumptions about what
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the process was doing when it was interrupted. In particular, they must practice cau-
tion when modifying global (that is, shared) data. In general, it is a good idea for a
signal handler never to touch global data; in an upcoming section, however, we will
look at a way to temporarily block the delivery of signals, as a way to allow safe
manipulation of data shared by a signal handler and the rest of a process.

What about system calls and other library functions? What if your process is in the
middle of writing to a file or allocating memory, and a signal handler writes to the
same file or also invokes malloc( )? Or what if a process is in the middle of a call to a
function that uses a static buffer, such as strsignal( ), when a signal is delivered?

Some functions are clearly not reentrant. If a program is in the middle of executing a
nonreentrant function, a signal occurs, and the signal handler then invokes that same
nonreentrant function, chaos can ensue. A reentrant function is a function that is safe
to call from within itself (or concurrently, from another thread in the same process).
In order to qualify as reentrant, a function must not manipulate static data, must
manipulate only stack-allocated data or data provided to it by the caller, and must
not invoke any nonreentrant function.

Guaranteed-Reentrant Functions
When writing a signal handler, you have to assume that the interrupted process
could be in the middle of a nonreentrant function (or anything else, for that matter).
Thus, signal handlers must make use only of functions that are reentrant.

Various standards have decreed lists of functions that are signal-safe—that is, reen-
trant, and thus safe to use from within a signal handler. Most notably, POSIX.1-2003
and the Single UNIX Specification dictate a list of functions that are guaranteed to be
reentrant and signal-safe on all compliant platforms. Table 9-2 lists the functions.

Table 9-2. Functions guaranteed to be safely reentrant for use in signals

abort( ) accept( ) access( )

aio_error( ) aio_return( ) aio_suspend( )

alarm( ) bind( ) cfgetispeed( )

cfgetospeed( ) cfsetispeed( ) cfsetospeed( )

chdir( ) chmod( ) chown( )

clock_gettime( ) close( ) connect( )

creat( ) dup( ) dup2( )

execle( ) execve( ) Exit( )

_exit( ) fchmod( ) fchown( )

fcntl( ) fdatasync( ) fork( )

fpathconf( ) fstat( ) fsync( )

ftruncate( ) getegid( ) geteuid( )

getgid( ) getgroups( ) getpeername( )
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Many more functions are safe, but Linux and other POSIX-compliant systems guar-
antee the reentrancy of only these functions.

Signal Sets
Several of the functions we will look at later in this chapter need to manipulate sets
of signals, such as the set of signals blocked by a process, or the set of signals pend-
ing to a process. The signal set operations manage these signal sets:

#include <signal.h>

int sigemptyset (sigset_t *set);

int sigfillset (sigset_t *set);

getpgrp( ) getpid( ) getppid( )

getsockname( ) getsockopt( ) getuid( )

kill( ) link( ) listen( )

lseek( ) lstat( ) mkdir( )

mkfifo( ) open( ) pathconf( )

pause( ) pipe( ) poll( )

posix_trace_event( ) pselect( ) raise( )

read( ) readlink( ) recv( )

recvfrom( ) recvmsg( ) rename( )

rmdir( ) select( ) sem_post( )

send( ) sendmsg( ) sendto( )

setgid( ) setpgid( ) setsid( )

setsockopt( ) setuid( ) shutdown( )

sigaction( ) sigaddset( ) sigdelset( )

sigemptyset( ) sigfillset( ) sigismember( )

signal( ) sigpause( ) sigpending( )

sigprocmask( ) sigqueue( ) sigset( )

sigsuspend( ) sleep( ) socket( )

socketpair( ) stat( ) symlink( )

sysconf( ) tcdrain( ) tcflow( )

tcflush( ) tcgetattr( ) tcgetpgrp( )

tcsendbreak( ) tcsetattr( ) tcsetpgrp( )

time( ) timer_getoverrun( ) timer_gettime( )

timer_settime( ) times( ) umask( )

uname( ) unlink( ) utime( )

wait( ) waitpid( ) write( )

Table 9-2. Functions guaranteed to be safely reentrant for use in signals (continued)
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int sigaddset (sigset_t *set, int signo);

int sigdelset (sigset_t *set, int signo);

int sigismember (const sigset_t *set, int signo);

sigemptyset( ) initializes the signal set given by set, marking it empty (all signals
excluded from the set). sigfillset( ) initializes the signal set given by set, marking it
full (all signals included in the set). Both functions return 0. You should call one of
these two functions on a signal set before further using the set.

sigaddset( ) adds signo to the signal set given by set, while sigdelset( ) removes
signo from the signal set given by set. Both return 0 on success, or -1 on error, in
which case errno is set to the error code EINVAL, signifying that signo is an invalid sig-
nal identifier.

sigismember( ) returns 1 if signo is in the signal set given by set, 0 if it is not, and -1 on
error. In the latter case, errno is again set to EINVAL, signifying that signo is invalid.

More Signal Set Functions
The preceding functions are all standardized by POSIX, and found on any modern
Unix system. Linux also provides several nonstandard functions:

#define _GNU_SOURCE
#define <signal.h>

int sigisemptyset (sigset_t *set);

int sigorset (sigset_t *dest, sigset_t *left, sigset_t *right);

int sigandset (sigset_t *dest, sigset_t *left, sigset_t *right);

sigisemptyset( ) returns 1 if the signal set given by set is empty, and 0 otherwise.

sigorset( ) places the union (the binary OR) of the signal sets left and right in dest.
sigandset( ) places the intersection (the binary AND) of the signal sets left and
right in dest. Both return 0 on success, and -1 on error, setting errno to EINVAL.

These functions are useful, but programs desiring full POSIX compliance should
avoid them.

Blocking Signals
Earlier, we discussed reentrancy and the issues raised by signal handlers running
asynchronously, at any time. We discussed functions not to call from within a signal
handler because they themselves are not reentrant.

But what if your program needs to share data between a signal handler and elsewhere
in the program? What if there are portions of your program’s execution during which



Blocking Signals | 297

you do not want any interruptions, including from signal handlers? We call such parts
of a program critical regions, and we protect them by temporarily suspending the
delivery of signals. We say that such signals are blocked. Any signals that are raised
while blocked are not handled until they are unblocked. A process may block any
number of signals; the set of signals blocked by a process is called its signal mask.

POSIX defines, and Linux implements, a function for managing a process’ signal
mask:

#include <signal.h>

int sigprocmask (int how,
                 const sigset_t *set,
                 sigset_t *oldset);

The behavior of sigprocmask( ) depends on the value of how, which is one of the fol-
lowing flags:

SIG_SETMASK
The signal mask for the invoking process is changed to set.

SIG_BLOCK
The signals in set are added to the invoking process’ signal mask. In other
words, the signal mask is changed to the union (binary OR) of the current mask
and set.

SIG_UNBLOCK
The signals in set are removed from the invoking process’ signal mask. In other
words, the signal is changed to the intersection (binary AND) of the current
mask, and the negation (binary NOT) of set. It is illegal to unblock a signal that
is not blocked.

If oldset is not NULL, the function places the previous signal set in oldset.

If set is NULL, the function ignores how, and does not change the signal mask, but it
does place the signal mask in oldset. In other words, passing a null value as set is
the way to retrieve the current signal mask.

On success, the call returns 0. On failure, it returns -1, and sets errno to either
EINVAL, signifying that how was invalid, or EFAULT, signifying that set or oldset was an
invalid pointer.

Blocking SIGKILL or SIGSTOP is not allowed. sigprocmask( ) silently ignores any
attempt to add either signal to the signal mask.

Retrieving Pending Signals
When the kernel raises a blocked signal, it is not delivered. We call such signals
pending. When a pending signal is unblocked, the kernel then passes it off to the pro-
cess to handle.
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POSIX defines a function to retrieve the set of pending signals:

#include <signal.h>

int sigpending (sigset_t *set);

A successful call to sigpending( ) places the set of pending signals in set, and returns
0. On failure, the call returns -1, and sets errno to EFAULT, signifying that set is an
invalid pointer.

Waiting for a Set of Signals
A third POSIX-defined function allows a process to temporarily change its signal
mask, and then wait until a signal is raised that either terminates, or is handled by
the process:

#include <signal.h>

int sigsuspend (const sigset_t *set);

If a signal terminates the process, sigsuspend( ) does not return. If a signal is raised
and handled, sigsuspend( ) returns -1 after the signal handler returns, setting errno
to EINTR. If set is an invalid pointer, errno is set to EFAULT.

A common sigsuspend( ) usage scenario is to retrieve signals that might have arrived
and been blocked during a critical region of program execution. The process first
uses sigprocmask( ) to block a set of signals, saving the old mask in oldset. After exit-
ing the critical region, the process then calls sigsuspend( ), providing oldset for set.

Advanced Signal Management
The signal( ) function that we studied at the beginning of this chapter is very basic.
Because it is part of the standard C library, and therefore has to reflect minimal
assumptions about the capabilities of the operating system on which it runs, it can
offer only a lowest common denominator to signal management. As an alternative,
POSIX standardizes the sigaction( ) system call, which provides much greater signal
management capabilities. Among other things, you can use it to block the reception
of specified signals while your handler runs, and to retrieve a wide range of data
about the system and process state at the moment a signal was raised:

#include <signal.h>

int sigaction (int signo,
               const struct sigaction *act,
               struct sigaction *oldact);

A call to sigaction( ) changes the behavior of the signal identified by signo, which
can be any value except those associated with SIGKILL and SIGSTOP. If act is not NULL,
the system call changes the current behavior of the signal as specified by act. If
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oldact is not NULL, the call stores the previous (or current, if act is NULL) behavior of
the given signal there.

The sigaction structure allows for fine-grained control over signals. The header
<sys/signal.h>, included from <signal.h>, defines the structure as follows:

struct sigaction {
        void (*sa_handler)(int);   /* signal handler or action */
        void (*sa_sigaction)(int, siginfo_t *, void *);
        sigset_t sa_mask;          /* signals to block */
        int sa_flags;              /* flags */
        void (*sa_restorer)(void); /* obsolete and non-POSIX */
}

The sa_handler field dictates the action to take upon receiving the signal. As with
signal( ), this field may be SIG_DFL, signifying the default action, SIG_IGN, instructing
the kernel to ignore the signal for the process, or a pointer to a signal-handling func-
tion. The function has the same prototype as a signal handler installed by signal( ):

void my_handler (int signo);

If SA_SIGINFO is set in sa_flags, sa_sigaction, and not sa_handler, dictates the signal-
handling function. This function’s prototype is slightly different:

void my_handler (int signo, siginfo_t *si, void *ucontext);

The function receives the signal number as its first parameter, a siginfo_t structure
as its second parameter, and a ucontext_t structure (cast to a void pointer) as its
third parameter. It has no return value. The siginfo_t structure provides an abun-
dance of information to the signal handler; we will look at it shortly.

Note that on some machine architectures (and possibly other Unix systems), sa_handler
and sa_sigaction are in a union, and you should not assign values to both fields.

The sa_mask field provides a set of signals that the system should block for the dura-
tion of the execution of the signal handler. This allows programmers to enforce
proper protection from reentrancy among multiple signal handlers. The signal cur-
rently being handled is also blocked, unless the SA_NODEFER flag is set in sa_flags.
You cannot block SIGKILL or SIGSTOP; the call will silently ignore either in sa_mask.

The sa_flags field is a bitmask of zero, one, or more flags that change the handling
of the signal given by signo. We already looked at the SA_SIGINFO and SA_NODEFER
flags; other values for sa_flags include the following:

SA_NOCLDSTOP
If signo is SIGCHLD, this flag instructs the system to not provide notification when
a child process stops or resumes.

SA_NOCLDWAIT
If signo is SIGCHLD, this flag enables automatic child reaping: children are not con-
verted to zombies on termination, and the parent need not (and cannot) call wait()
on them. See Chapter 5 for a lively discussion of children, zombies, and wait().
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SA_NOMASK
This flag is an obsolete non-POSIX equivalent to SA_NODEFER (discussed earlier in
this section). Use SA_NODEFER instead of this flag, but be prepared to see this
value turn up in older code.

SA_ONESHOT
This flag is an obsolete non-POSIX equivalent to SA_RESETHAND (discussed later in
this list). Use SA_RESETHAND instead of this flag, but be prepared to see this value
turn up in older code.

SA_ONSTACK
This flag instructs the system to invoke the given signal handler on an alternative
signal stack, as provided by sigaltstack( ). If you do not provide an alternative
stack, the default is used—that is, the system behaves as if you did not provide
this flag. Alternative signal stacks are rare, although they are useful in some
pthreads applications with smaller thread stacks that might be overrun by some
signal handler usage. We do not further discuss sigaltstack( ) in this book.

SA_RESTART
This flag enables BSD-style restarting of system calls that are interrupted by signals.

SA_RESETHAND
This flag enables “one-shot” mode. The behavior of the given signal is reset to
the default once the signal handler returns.

The sa_restorer field is obsolete, and no longer used in Linux. It is not part of
POSIX, anyhow. Pretend that it is not there, and do not touch it.

sigaction( ) returns 0 on success. On failure, the call returns -1, and sets errno to
one of the following error codes:

EFAULT
act or oldact is an invalid pointer.

EINVAL
signo is an invalid signal, SIGKILL, or SIGSTOP.

The siginfo_t Structure
The siginfo_t structure is also defined in <sys/signal.h>, as follows:

typedef struct siginfo_t {
        int si_signo;      /* signal number */
        int si_errno;      /* errno value */
        int si_code;       /* signal code */
        pid_t si_pid;      /* sending process's PID */
        uid_t si_uid;      /* sending process's real UID */
        int si_status;     /* exit value or signal */
        clock_t si_utime;  /* user time consumed */
        clock_t si_stime;  /* system time consumed */
        sigval_t si_value; /* signal payload value */
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        int si_int;        /* POSIX.1b signal */
        void *si_ptr;      /* POSIX.1b signal */
        void *si_addr;     /* memory location that caused fault */
        int si_band;       /* band event */
        int si_fd;         /* file descriptor */
};

This structure is rife with information passed to the signal handler (if you’re using
sa_sigaction in lieu of sa_sighandler). With modern computing, many consider the
Unix signal model an awful method for performing IPC. Perhaps the problem is that
these folks are stuck using signal( ) when they should be using sigaction( ) with
SA_SIGINFO. The sigaction_t structure opens the door for wringing a lot more func-
tionality out of signals.

There’s a lot of interesting data in this structure, including information about the
process that sent the signal, and about the cause of the signal. Here is a detailed
description of each of the fields:

si_signo
The signal number of the signal in question. In your signal handler, the first
argument provides this information as well (and avoids a pointer dereference).

si_errno
If nonzero, the error code associated with this signal. This field is valid for all
signals.

si_code
An explanation of why and from where the process received the signal (for
example, from kill( )). We will go over the possible values in the following sec-
tion. This field is valid for all signals.

si_pid
For SIGCHLD, the PID of the process that terminated.

si_uid
For SIGCHLD, the owning UID of the process that terminated.

si_status
For SIGCHLD, the exit status of the process that terminated.

si_utime
For SIGCHLD, the user time consumed by the process that terminated.

si_stime
For SIGCHLD, the system time consumed by the process that terminated.

si_value
A union of si_int and si_ptr.

si_int
For signals sent via sigqueue( ) (see “Sending a Signal with a Payload” later in
this chapter), the provided payload typed as an integer.
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si_ptr
For signals sent via sigqueue( ) (see “Sending a Signal with a Payload” later in
this chapter), the provided payload typed as a void pointer.

si_addr
For SIGBUS, SIGFPE, SIGILL, SIGSEGV, and SIGTRAP, this void pointer contains the
address of the offending fault. For example, in the case of SIGSEGV, this field con-
tains the address of the memory access violation (and is thus often NULL!).

si_band
For SIGPOLL, out-of-band and priority information for the file descriptor listed in
si_fd.

si_fd
For SIGPOLL, the file descriptor for the file whose operation completed.

si_value, si_int, and si_ptr are particularly complex topics because a process can
use them to pass arbitrary data to another process. Thus, you can use them to send
either a simple integer or a pointer to a data structure (note that a pointer is not
much help if the processes do not share an address space). These fields are discussed
in the upcoming section “Sending a Signal with a Payload.”

POSIX guarantees that only the first three fields are valid for all signals. The other
fields should be accessed only when handling the applicable signal. You should
access the si_fd field, for example, only if the signal is SIGPOLL.

The Wonderful World of si_code
The si_code field indicates the cause of the signal. For user-sent signals, the field
indicates how the signal was sent. For kernel-sent signals, the field indicates why the
signal was sent.

The following si_code values are valid for any signal. They indicate how/why the sig-
nal was sent:

SI_ASYNCIO
The signal was sent due to the completion of asynchronous I/O (see Chapter 5).

SI_KERNEL
The signal was raised by the kernel.

SI_MESGQ
The signal was sent due to a state change of a POSIX message queue (not cov-
ered in this book).

SI_QUEUE
The signal was sent by sigqueue( ) (see the next section).

SI_TIMER
The signal was sent due to the expiration of a POSIX timer (see Chapter 10).
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SI_TKILL
The signal was sent by tkill( ) or tgkill( ). These system calls are used by
threading libraries, and are not covered in this book.

SI_SIGIO
The signal was sent due to the queuing of SIGIO.

SI_USER
The signal was sent by kill( ) or raise( ).

The following si_code values are valid for SIGBUS only. They indicate the type of
hardware error that occurred:

BUS_ADRALN
The process incurred an alignment error (see Chapter 8 for a discussion of
alignment).

BUS_ADRERR
The process accessed an invalid physical address.

BUS_OBJERR
The process caused some other form of hardware error.

For SIGCHLD, the following values identify what the child did to generate the signal
sent to its parent:

CLD_CONTINUED
The child was stopped but has resumed.

CLD_DUMPED
The child terminated abnormally.

CLD_EXITED
The child terminated normally via exit( ).

CLD_KILLED
The child was killed.

CLD_STOPPED
The child stopped.

CLD_TRAPPED
The child hit a trap.

The following values are valid for SIGFPE only. They explain the type of arithmetic
error that occurred:

FPE_FLTDIV
The process performed a floating-point operation that resulted in division by
zero.

FPE_FLTOVF
The process performed a floating-point operation that resulted in an overflow.
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FPE_FLTINV
The process performed an invalid floating-point operation.

FPE_FLTRES
The process performed a floating-point operation that yielded an inexact or
invalid result.

FPE_FLTSUB
The process performed a floating-point operation that resulted in an out-of-range
subscript.

FPE_FLTUND
The process performed a floating-point operation that resulted in an underflow.

FPE_INTDIV
The process performed an integer operation that resulted in division by zero.

FPE_INTOVF
The process performed an integer operation that resulted in an overflow.

The following si_code values are valid for SIGILL only. They explain the nature of the
illegal instruction execution:

ILL_ILLADR
The process attempted to enter an illegal addressing mode.

ILL_ILLOPC
 The process attempted to execute an illegal opcode.

ILL_ILLOPN
The process attempted to execute on an illegal operand.

ILL_PRVOPC
The process attempted to execute a privileged opcode.

ILL_PRVREG
The process attempted to execute on a privileged register.

ILL_ILLTRP
The process attempted to enter an illegal trap.

For all of these values, si_addr points to the address of the offense.

For SIGPOLL, the following values identify the I/O event that generated the signal:

POLL_ERR
An I/O error occurred.

POLL_HUP
The device hung up or the socket disconnected.

POLL_IN
The file has data available to read.

POLL_MSG
A message is available.
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POLL_OUT
The file is capable of being written to.

POLL_PRI
The file has high-priority data available to read.

The following codes are valid for SIGSEGV, describing the two types of invalid mem-
ory accesses:

SEGV_ACCERR
The process accessed a valid region of memory in an invalid way—that is, the
process violated memory-access permissions.

SEGV_MAPERR
The process accessed an invalid region of memory.

For either of these values, si_addr contains the offending address.

For SIGTRAP, these two si_code values identify the type of trap hit:

TRAP_BRKPT
The process hit a break point.

TRAP_TRACE
The process hit a trace trap.

Note that si_code is a value field and not a bit field.

Sending a Signal with a Payload
As we saw in the previous section, signal handlers registered with the SA_SIGINFO flag
are passed a siginfo_t parameter. This structure contains a field named si_value,
which is an optional payload passed from the signal generator to the signal receiver.

The sigqueue( ) function, defined by POSIX, allows a process to send a signal with
this payload:

#include <signal.h>

int sigqueue (pid_t pid,
              int signo,
              const union sigval value);

sigqueue( ) works similarly to kill( ). On success, the signal identified by signo is
queued to the process or process group identified by pid, and the function returns 0.
The signal’s payload is given by value, which is a union of an integer and a void
pointer:

union sigval {
        int sival_int;
        void *sival_ptr;
};
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On failure, the call returns -1, and sets errno to one of the following:

EINVAL
The signal specified by signo is invalid.

EPERM
The invoking process lacks sufficient permissions to send a signal to any of the
requested processes. The permissions required to send a signal are the same as
with kill( ) (see the section “Sending a Signal” earlier in this chapter).

ESRCH
The process or process group denoted by pid does not exist or, in the case of a
process, is a zombie.

As with kill( ), you may pass the null signal (0) for signo to test permissions.

Example
This example sends the process with pid 1722 the SIGUSR2 signal with a payload of
an integer that has the value 404:

sigval value;
int ret;

value.sival_int = 404;

ret = sigqueue (1722, SIGUSR2, value);
if (ret)
        perror ("sigqueue");

If process 1722 handles SIGUSR2 with an SA_SIGINFO handler, it will find signo set to
SIGUSR2, si->si_int set to 404, and si->si_code set to SI_QUEUE.

Conclusion
Signals have a bad reputation among many Unix programmers. They are an old, anti-
quated mechanism for kernel-to-user communication and are, at best, a primitive
form of IPC. In a world of multithreading programs and event loops, signals are
often out of place.

Nevertheless, for better or worse, we need them. Signals are the only way to receive
many notifications (such as the notification of an illegal opcode execution) from the
kernel. Additionally, signals are how Unix (and thus Linux) terminates processes,
and manages the parent/child relationship. Thus, we are stuck with them.

One of the primary reasons for signals’ derogation is that it is hard to write a proper
signal handler that is safe from reentrancy concerns. If you keep your handlers simple,
however, and use only the functions listed in Table 9-2 (if you use any!), they should
be safe.



Conclusion | 307

Another chink in signals’ armor is that many programmers still use signal( ) and
kill( ), rather than sigaction( ) and sigqueue( ), for signal management. As the last
two sections have shown, signals are significantly more powerful and expressive
when SA_SIGINFO-style signal handlers are used. Although I myself am no fan of
signals—I would love to see signals replaced by a file-descriptor-based pollable
mechanism, which is actually something that’s under consideration for future Linux
kernel versions—working around their flaws and using Linux’s advanced signal
interfaces eases much of the pain (if not the whining).
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Time

Time serves various purposes in a modern operating system, and many programs
need to keep track of it. The kernel measures the passage of time in three different
ways:

Wall time (or real time)
This is the actual time and date in the real world—that is, the time as one would
read it on a clock on the wall. Processes use the wall time when interfacing with
the user or timestamping an event.

Process time
This is the time that a process has consumed, either directly in user-space code,
or indirectly via the kernel working on the process’ behalf. Processes care about
this form of time mostly for profiling and statistics—measuring how long a given
operation took, for example. Wall time is misleading for measuring process
behavior because, given the multitasking nature of Linux, the process time can
be much less than the wall time for a given operation. A process can also spend
significant cycles waiting for I/O (particularly keyboard input).

Monotonic time
This time source is strictly linearly increasing. Most operating systems, Linux
included, use the system’s uptime (time since boot). The wall time can change—
for example, because the user may set it, and because the system continually
adjusts the time for skew—and additional imprecision can be introduced through,
say, leap seconds. The system uptime, the other hand, is a deterministic and
unchangeable representation of time. The important aspect of a monotonic time
source is not the current value, but the guarantee that the time source is strictly
linearly increasing, and thus useful for calculating the difference in time between
two samplings.

Monotonic time, therefore, is suited for calculating relative time, whereas wall
time is ideal for measuring absolute time.
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These three measurements of time may be represented in one of two formats:

Relative time
This is a value relative to some benchmark, such as the current instant: for
example, 5 seconds from now, or 10 minutes ago.

Absolute time
This represents time without any such benchmark: say, noon on 25 March 1968.

Both relative and absolute forms of time have uses. A process might need to cancel a
request in 500 milliseconds, refresh the screen 60 times per second, or note that 7
seconds have elapsed since an operation began. All of these call for relative time cal-
culations. Conversely, a calendar application might save the date for the user’s toga
party as 8 February, a filesystem will write out the full date and time when a file is
created (rather than “five seconds ago”), and the user’s clock displays the Gregorian
date, not the number of seconds since the system booted.

Unix systems represent absolute time as the number of elapsed seconds since the
epoch, which is defined as 00:00:00 UTC on the morning of 1 January 1970. UTC
(Universal Time, Coordinated) is roughly GMT (Greenwich Mean Time) or Zulu
time. Curiously, this means that in Unix, even absolute time is, at a low level, rela-
tive. Unix introduces a special data type for storing “seconds since the epoch,” which
we will look at in the next section.

Operating systems track the progression of time via the software clock, a clock main-
tained by the kernel in software. The kernel instantiates a periodic timer, known as
the system timer, that pops at a specific frequency. When a timer interval ends, the
kernel increments the elapsed time by one unit, known as a tick or a jiffy. The
counter of elapsed ticks is known as the jiffies counter. Previously, a 32-bit value, jif-
fies is a 64-bit counter as of the 2.6 Linux kernel.*

On Linux, the frequency of the system timer is called HZ, because a preprocessor
define of the same name represents it. The value of HZ is architecture-specific, and
not part of the Linux ABI—that is, programs cannot depend on or expect any given
value. Historically, the x86 architecture used a value of 100, meaning the system
timer ran 100 times per second (that is, the system timer had a frequency of 100
hertz). This gave each jiffy a value of 0.01 seconds—1/HZ seconds. With the release
of the 2.6 Linux kernel, the kernel developers bumped the value of HZ to 1000, giving
each jiffy a value of 0.001 seconds. However, in version 2.6.13 and later, HZ is 250,
providing each jiffy a value of 0.004 seconds.† There is a tradeoff inherent in the
value of HZ: higher values provide higher resolution, but incur greater timer overhead.

* Future versions of the Linux kernel may go “tickless,” or implement “dynamic ticks,” in which case the ker-
nel will not keep track of an explicit jiffies value. Instead, all time-based kernel operations will execute from
dynamically instantiated timers rather than from the system timer.

† HZ is also now a compile-time kernel option, with the values 100, 250, and 1000 supported on the x86 archi-
tecture. Regardless, user space cannot depend on any particular value for HZ.
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Although processes should not rely on any fixed value of HZ, POSIX defines a mecha-
nism for determining the system timer frequency at runtime:

long hz;

hz = sysconf (_SC_CLK_TCK);
if (hz == -1)
        perror ("sysconf"); /* should never occur */

This interface is useful when a program wants to determine the resolution of the sys-
tem’s timer, but it is not needed for converting system time values to seconds
because most POSIX interfaces export measurements of time that are already con-
verted, or that are scaled to a fixed frequency, independent of HZ. Unlike HZ, this fixed
frequency is part of the system ABI; on x86, the value is 100. POSIX functions that
return time in terms of clock ticks use CLOCKS_PER_SEC to represent the fixed frequency.

Occasionally, events conspire to turn off a computer. Sometimes, computers are even
unplugged; yet, upon boot, they have the correct time. This is because most comput-
ers have a battery-powered hardware clock that stores the time and date while the
computer is off. When the kernel boots, it initializes its concept of the current time
from the hardware clock. Likewise, when the user shuts down the system, the kernel
writes the current time back to the hardware clock. The system’s administrator may
synchronize time at other points via the hwclock command.

Managing the passage of time on a Unix system involves several tasks, only some of
which any given process is concerned with: they include setting and retrieving the
current wall time, calculating elapsed time, sleeping for a given amount of time, per-
forming high-precision measurements of time, and controlling timers. This chapter
covers this full range of time-related chores. We’ll begin by looking at the data struc-
tures with which Linux represents time.

Time’s Data Structures
As Unix systems evolved, implementing their own interfaces for managing time, mul-
tiple data structures came to represent the seemingly simple concept of time. These
data structures range from the simple integer to various multifield structures. We’ll
cover them here before we dive into the actual interfaces.

The Original Representation
The simplest data structure is time_t, defined in the header <time.h>. The intention
was for time_t to be an opaque type. However, on most Unix systems—Linux
included—the type is a simple typedef to the C long type:

typedef long time_t;
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time_t represents the number of elapsed seconds since the epoch. “That won’t last
long before overflowing!” is a typical response. In fact, it will last longer than you
might expect, but it indeed will overflow while plenty of Unix systems are still in use.
With a 32-bit long type, time_t can represent up to 2,147,483,647 seconds past the
epoch. This suggests that we will have the Y2K mess all over again—in 2038! With
luck, however, come 22:14:07 on Monday, 18 January 2038, most systems and soft-
ware will be 64-bit.

And Now, Microsecond Precision
Another issue with time_t is that a lot can happen in a single second. The timeval
structure extends time_t to add microsecond precision. The header <sys/time.h>
defines this structure as follows:

#include <sys/time.h>

struct timeval {
        time_t       tv_sec;     /* seconds */
        suseconds_t  tv_usec;    /* microseconds */
};

tv_sec measures seconds, and tv_usec measures microseconds. The confusing
suseconds_t is normally a typedef to an integer type.

Even Better: Nanosecond Precision
Not content with microsecond resolution, the timespec structure ups the ante to
nanoseconds. The header <time.h> defines this structure as follows:

#include <time.h>

struct timespec {
        time_t  tv_sec;       /* seconds */
        long    tv_nsec;      /* nanoseconds */
};

Given the choice, interfaces prefer nanosecond to microsecond resolution.* Conse-
quently, since the introduction of the timespec structure, most time-related interfaces
have switched to it, and thus have gained greater precision. However, as we will see,
one important function still uses timeval.

In practice, neither structure usually offers the stated precision because the system
timer is not providing nanosecond or even microsecond resolution. Nonetheless, it’s
preferable to have the resolution available in the interface so it can accommodate
whatever resolution the system does offer.

* In addition, the timespec structure dropped the silly suseconds_t business, in favor of a simple and unpre-
tentious long.
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Breaking Down Time
Some of the functions that we will cover convert between Unix time and strings, or
programmatically build a string representing a given date. To facilitate this process,
the C standard provides the tm structure for representing “broken-down” time in a
more human-readable format. This structure is also defined in <time.h>:

#include <time.h>

struct tm {
        int tm_sec;           /* seconds */
        int tm_min;           /* minutes */
        int tm_hour;          /* hours */
        int tm_mday;          /* the day of the month */
        int tm_mon;           /* the month */
        int tm_year;          /* the year */
        int tm_wday;          /* the day of the week */
        int tm_yday;          /* the day in the year */
        int tm_isdst;         /* daylight savings time? */
#ifdef _BSD_SOURCE
        long tm_gmtoff;       /* time zone's offset from GMT */
        const char *tm_zone;  /* time zone abbreviation */
#endif /* _BSD_SOURCE */
};

The tm structure makes it easier to tell whether a time_t value of, say, 314159 is a Sun-
day or a Saturday (it is the former). In terms of space, it is obviously a poor choice for
representing the date and time, but it is handy for converting to and from user-
oriented values.

The fields are as follows:

tm_sec
The number of seconds after the minute. This value normally ranges from 0 to
59, but it can be as high as 61 to indicate up to two leap seconds.

tm_min
The number of minutes after the hour. This value ranges from 0 to 59.

tm_hour
The number of hours after midnight. This value ranges from 0 to 23.

tm_mday
The day of the month. This value ranges from 0 to 31. POSIX does not specify
the value 0; however, Linux uses it to indicate the last day of the preceding
month.

tm_mon
The number of months since January. This value ranges from 0 to 11.

tm_year
The number of years since 1900.
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tm_wday
The number of days since Sunday. This value ranges from 0 to 6.

tm_yday
The number of days since 1 January. This value ranges from 0 to 365.

tm_isdst
A special value indicating whether daylight savings time (DST) is in effect at the
time described by the other fields. If the value is positive, DST is in effect. If it is
0, DST is not in effect. If the value is negative, the state of DST is unknown.

tm_gmtoff
The offset in seconds of the current time zone from Greenwich Mean Time. This
field is present only if _BSD_SOURCE is defined before including <time.h>.

tm_zone
The abbreviation for the current time zone—for example, EST. This field is
present only if _BSD_SOURCE is defined before including <time.h>.

A Type for Process Time
The type clock_t represents clock ticks. It is an integer type, often a long. Depending
on the interface, the ticks that clock_t signify the system’s actual timer frequency (HZ)
or CLOCKS_PER_SEC.

POSIX Clocks
Several of the system calls discussed in this chapter utilize POSIX clocks, a standard
for implementing and representing time sources. The type clockid_t represents a
specific POSIX clock, four of which Linux supports:

CLOCK_MONOTONIC
A monotonically increasing clock that is not settable by any process. It repre-
sents the elapsed time since some unspecified starting point, such as system
boot.

CLOCK_PROCESS_CPUTIME_ID
A high-resolution, per-process clock available from the processor. For example,
on the i386 architecture, this clock uses the timestamp counter (TSC) register.

CLOCK_REALTIME
The system-wide real time (wall time) clock. Setting this clock requires special
privileges.

CLOCK_THREAD_CPUTIME_ID
Similar to the per-process clock, but unique to each thread in a process.

POSIX defines all four of these time sources, but it requires only CLOCK_REALTIME.
Therefore, while Linux reliably provides all four clocks, portable code should rely
only on CLOCK_REALTIME.
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Time Source Resolution
POSIX defines the function clock_getres( ) for obtaining the resolution of a given
time source:

#include <time.h>

int clock_getres (clockid_t clock_id,
                  struct timespec *res);

A successful call to clock_getres( ) stores the resolution of the clock specified by
clock_id in res, if it is not NULL, and returns 0. On failure, the function returns -1,
and sets errno to one of the following two error codes:

EFAULT
res is an invalid pointer.

EINVAL
clock_id is not a valid time source on this system.

The following example outputs the resolution of the four time sources discussed in
the previous section:

clockid_t clocks[] = {
        CLOCK_REALTIME,
        CLOCK_MONOTONIC,
        CLOCK_PROCESS_CPUTIME_ID,
        CLOCK_THREAD_CPUTIME_ID,
        (clockid_t) -1 };
int i;

for (i = 0; clocks[i] != (clockid_t) -1; i++) {
        struct timespec res;
        int ret;

        ret = clock_getres (clocks[i], &res);
        if (ret)
                perror ("clock_getres");
        else
                printf ("clock=%d sec=%ld nsec=%ld\n",
                        clocks[i], res.tv_sec, res.tv_nsec);
}

On a modern x86 system, the output resembles the following:

clock=0 sec=0 nsec=4000250
clock=1 sec=0 nsec=4000250
clock=2 sec=0 nsec=1
clock=3 sec=0 nsec=1

Note that 4,000,250 nanoseconds is 4 milliseconds, which is 0.004 seconds. In turn, 0.
004 seconds is the resolution of the x86 system clock given an HZ value of 250, as we
discussed in the first section of this chapter. Thus, we see that both CLOCK_REALTIME



Getting the Current Time of Day | 315

and CLOCK_MONOTONIC are tied to jiffies, and the resolution provided by the system
timer. Conversely, both CLOCK_PROCESS_CPUTIME_ID and CLOCK_PROCESS_CPUTIME_ID uti-
lize a higher-resolution time source—on this x86 machine, the TSC, which we see
provides nanosecond resolution.

On Linux (and most other Unix systems), all of the functions that use POSIX clocks
require linking the resulting object file with librt. For example, if compiling the previ-
ous snippet into a complete executable, you might use the following command:

$ gcc -Wall -W -O2 –lrt -g -o snippet snippet.c

Getting the Current Time of Day
Applications have several reasons for desiring the current time and date: to display it
to the user, to calculate relative or elapsed time, to timestamp an event, and so on.
The simplest and historically most common way of obtaining the current time is the
time( ) function:

#include <time.h>

time_t time (time_t *t);

A call to time( ) returns the current time represented as the number of seconds
elapsed since the epoch. If the parameter t is not NULL, the function also writes the
current time into the provided pointer.

On error, the function returns -1 (typecast to a time_t), and sets errno appropri-
ately. The only possible error is EFAULT, noting that t is an invalid pointer.

For example:

time_t t;

printf ("current time: %ld\n", (long) time (&t));
printf ("the same value: %ld\n", (long) t);

A Naïve Approach to Time
time_t’s representation of “seconds elapsed since the epoch” is not the actual number
of seconds that have passed since that fateful moment in time. The Unix calculation
assumes leap years are all years divisible by four, and ignores leap seconds altogether.
The point of the time_t representation is not that it is accurate, but that it is consis-
tent—and it is.
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A Better Interface
The function gettimeofday( ) extends time( ) by offering microsecond resolution:

#include <sys/time.h>

int gettimeofday (struct timeval *tv,
                  struct timezone *tz);

A successful call to gettimeofday( ) places the current time in the timeval structure
pointed at by tv, and returns 0. The timezone structure and the tz parameter are
obsolete; neither should be used on Linux. Always pass NULL for tz.

On failure, the call returns -1, and sets errno to EFAULT; this is the only possible error,
signifying that tv or tz is an invalid pointer.

For example:

struct timeval tv;
int ret;

ret = gettimeofday (&tv, NULL);
if (ret)
        perror ("gettimeofday");
else
        printf ("seconds=%ld useconds=%ld\n",
                (long) tv.sec, (long) tv.usec);

The timezone structure is obsolete because the kernel does not manage the time zone,
and glibc refuses to use the timezone structure’s tz_dsttime field. We will look at
manipulating the time zone in a subsequent section.

An Advanced Interface
POSIX provides the clock_gettime( ) interface for obtaining the time of a specific time
source. More useful, however, is that the function allows for nanosecond precision:

#include <time.h>

int clock_gettime (clockid_t clock_id,
                   struct timespec *ts);

On success, the call returns 0, and stores the current time of the time source speci-
fied by clock_id in ts. On failure, the call returns -1, and sets errno to one of the
following:

EFAULT
ts is an invalid pointer.

EINVAL
clock_id is an invalid time source on this system.



Getting the Current Time of Day | 317

The following example obtains the current time of all four of the standard time
sources:

clockid_t clocks[] = {
        CLOCK_REALTIME,
        CLOCK_MONOTONIC,
        CLOCK_PROCESS_CPUTIME_ID,
        CLOCK_THREAD_CPUTIME_ID,
        (clockid_t) -1 };
int i;

for (i = 0; clocks[i] != (clockid_t) -1; i++) {
        struct timespec ts;
        int ret;

        ret = clock_gettime (clocks[i], &ts);
        if (ret)
                perror ("clock_gettime");
        else
                printf ("clock=%d sec=%ld nsec=%ld\n",
                        clocks[i], ts.tv_sec, ts.tv_nsec);
}

Getting the Process Time
The times( ) system call retrieves the process time of the running process and its chil-
dren, in clock ticks:

#include <sys/times.h>

struct tms {
        clock_t tms_utime;   /* user time consumed */
        clock_t tms_stime;   /* system time consumed */
        clock_t tms_cutime;  /* user time consumed by children */
        clock_t tms_cstime;  /* system time consumed by children */
};

clock_t times (struct tms *buf);

On success, the call fills the provided tms structure pointed at by buf with the pro-
cess time consumed by the invoking process and its children. The reported times are
broken into user and system time. User time is the time spent executing code in user
space. System time is the time spent executing code in kernel space—for example,
during a system call, or a page fault. The reported times for each child are included
only after the child terminates, and the parent invokes waitpid( ) (or a related func-
tion) on the process. The call returns the number of clock ticks, monotonically
increasing, since an arbitrary point in the past. This reference point was once system
boot—thus, the times( ) function returned the system uptime, in ticks—but the
reference point is now about 429 million seconds before system boot. The kernel
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developers implemented this change to catch kernel code that could not handle the
system uptime wrapping around and hitting zero. The absolute value of this function’s
return is thus worthless; relative changes between two invocations, however, continue
to have value.

On failure, the call returns -1, and sets errno as appropriate. On Linux, the only pos-
sible error code is EFAULT, signifying that buf is an invalid pointer.

Setting the Current Time of Day
While previous sections have described how to retrieve times, applications occasion-
ally also need to set the current time and date to a provided value. This is almost
always handled by a utility designed solely for this purpose, such as date.

The time-setting counterpart to time( ) is stime( ):

#define _SVID_SOURCE
#include <time.h>

int stime (time_t *t);

A successful call to stime( ) sets the system time to the value pointed at by t and
returns 0. The call requires that the invoking user have the CAP_SYS_TIME capability.
Generally, only the root user has this capability.

On failure, the call returns -1, and sets errno to EFAULT, signifying that t was an invalid
pointer, or EPERM, signifying that the invoking user did not possess the CAP_SYS_TIME
capability.

Usage is very simple:

time_t t = 1;
int ret;

/* set time to one second after the epoch */
ret = stime (&t);
if (ret)
        perror ("stime");

We will look at functions that make it easier to convert human-readable forms of
time to a time_t in a subsequent section.

Setting Time with Precision
The counterpart to gettimeofday( ) is settimeofday( ):

#include <sys/time.h>

int settimeofday (const struct timeval *tv ,
                  const struct timezone *tz);
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A successful call to settimeofday( ) sets the system time as given by tv and returns 0.
As with gettimeofday( ), passing NULL for tz is the best practice. On failure, the call
returns -1, and sets errno to one of the following:

EFAULT
tv or tz points at an invalid region of memory.

EINVAL
A field in one of the provided structures is invalid.

EPERM
The calling process lacks the CAP_SYS_TIME capability.

The following example sets the current time to a Saturday in the middle of Decem-
ber 1979:

struct timeval tv = { .tv_sec  = 31415926,
                      .tv_usec = 27182818 };
int ret;

ret = settimeofday (&tv, NULL);
if (ret)
        perror ("settimeofday");

An Advanced Interface for Setting the Time
Just as clock_gettime( ) improves on gettimeofday( ), clock_settime( ) obsolesces
settimeofday( ):

#include <time.h>

int clock_settime (clockid_t clock_id,
                   const struct timespec *ts);

On success, the call returns 0, and the time source specified by clock_id is set to the
time specified by ts. On failure, the call returns -1, and sets errno to one of the
following:

EFAULT
ts is an invalid pointer.

EINVAL
clock_id is an invalid time source on this system.

EPERM
The process lacks the needed permissions to set the specified time source, or the
specified time source may not be set.

On most systems, the only settable time source is CLOCK_REALTIME. Thus, the only
advantage of this function over settimeofday( ) is that it offers nanosecond precision
(along with not having to deal with the worthless timezone structure).
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Playing with Time
Unix systems and the C language provide a family of functions for converting
between broken-down time (an ASCII string representation of time) and time_t.
asctime( ) converts a tm structure—broken-down time—to an ASCII string:

#include <time.h>

char * asctime (const struct tm *tm);
char * asctime_r (const struct tm *tm, char *buf);

It returns a pointer to a statically allocated string. A subsequent call to any time func-
tion may overwrite this string; asctime( ) is not thread-safe.

Thus, multithreaded programs (and developers who loathe poorly designed inter-
faces) should use asctime_r( ). Instead of returning a pointer to a statically allocated
string, this function uses the string provided via buf, which must be at least 26 char-
acters in length.

Both functions return NULL in the case of error.

mktime( ) also converts a tm structure, but it converts it to a time_t:

#include <time.h>

time_t mktime (struct tm *tm);

mktime( ) also sets the time zone via tzset( ), as specified by tm. On error, it returns -1
(typecast to a time_t).

ctime( ) converts a time_t to its ASCII representation:

#include <time.h>

char * ctime (const time_t *timep);
char * ctime_r (const time_t *timep, char *buf);

On failure, it returns NULL. For example:

time_t t = time (NULL);

printf ("the time a mere line ago: %s", ctime (&t));

Note the lack of newline. Perhaps inconveniently, ctime( ) appends a newline to its
returned string.

Like asctime( ), ctime( ) returns a pointer to a static string. As this is not thread-safe,
threaded programs should instead use ctime_r( ), which operates on the buffer pro-
vided by buf. The buffer must be at least 26 characters in length.

gmtime( ) converts the given time_t to a tm structure, expressed in terms of the UTC
time zone:

#include <time.h>

struct tm * gmtime (const time_t *timep);
struct tm * gmtime_r (const time_t *timep, struct tm *result);
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On failure, it returns NULL.

This function statically allocates the returned structure, and, again, is thus thread-
unsafe. Threaded programs should use gmtime_r( ), which operates on the structure
pointed at by result.

localtime( ) and localtime_r( ) perform functions akin to gmtime( ) and gmtime_r( ),
respectively, but they express the given time_t in terms of the user’s time zone:

#include <time.h>

struct tm * localtime (const time_t *timep);
struct tm * localtime_r (const time_t *timep, struct tm *result);

As with mktime( ), a call to localtime( ) also calls tzset( ), and initializes the time
zone. Whether localtime_r( ) performs this step is unspecified.

difftime( ) returns the number of seconds that have elapsed between two time_t val-
ues, cast to a double:

#include <time.h>

double difftime (time_t time1, time_t time0);

On all POSIX systems, time_t is an arithmetic type, and difftime( ) is equivalent to
the following, ignoring detection of overflow in the subtraction:

(double) (time1 - time0)

On Linux, because time_t is an integer type, there is no need for the cast to double.
To remain portable, however, use difftime( ).

Tuning the System Clock
Large and abrupt jumps in the wall clock time can wreak havoc on applications that
depend on absolute time for their operation. Consider as an example make, which
builds software projects as detailed by a Makefile. Each invocation of the program
does not rebuild entire source trees; if it did, in large software projects, a single
changed file could result in hours of rebuilding. Instead, make looks at the file modi-
fication timestamps of the source file (say, wolf.c) versus the object file (wolf.o). If the
source file—or any of its prerequisites, such as wolf.h—is newer than the object file,
make rebuilds the source file into an updated object file. If the source file is not
newer than the object, however, no action is taken.

With this in mind, consider what might happen if the user realized his clock was off
by a couple of hours, and ran date to update the system clock. If the user then
updated and resaved wolf.c, we could have trouble. If the user has moved the current
time backward, wolf.c will look older than wolf.o—even though it isn’t!—and no
rebuild will occur.
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To prevent such a debacle, Unix provides the adjtime( ) function, which gradually
adjusts the current time in the direction of a given delta. The intention is for back-
ground activities such as Network Time Protcol (NTP) daemons, which constantly
adjust the time in correction of clock skew, to use adjtime( ) to minimize their effects
on the system:

#define _BSD_SOURCE
#include <sys/time.h>

int adjtime (const struct timeval *delta,
             struct timeval *olddelta);

A successful call to adjtime( ) instructs the kernel to slowly begin adjusting the time
as stipulated by delta, and then returns 0. If the time specified by delta is positive,
the kernel speeds up the system clock by delta until the correction is fully applied. If
the time specified by delta is negative, the kernel slows down the system clock until
the correction is applied. The kernel applies all adjustments such that the clock is
always monotonically increasing and never undergoes an abrupt time change. Even
with a negative delta, the adjustment will not move the clock backward; instead, the
clock slows down until the system time converges with the corrected time.

If delta is not NULL, the kernel stops processing any previously registered correc-
tions. However, the part of the correction already made, if any, is maintained. If
olddelta is not NULL, any previously registered and yet unapplied correction is writ-
ten into the provided timeval structure. Passing a NULL delta and a valid olddelta
allows retrieval of any ongoing correction.

The corrections applied by adjtime( ) should be small—the ideal use case is NTP, as
mentioned earlier, which applies small corrections (a handful of seconds). Linux
maintains minimum and maximum correction thresholds of a few thousand seconds
in either direction.

On error, adjtime( ) returns -1, and sets errno to one of these values:

EFAULT
delta or olddelta is an invalid pointer.

EINVAL
The adjustment delineated by delta is too large or too small.

EPERM
The invoking user does not possess the CAP_SYS_TIME capability.

RFC 1305 defines a significantly more powerful and correspondingly more complex
clock-adjustment algorithm than the gradual correction approach undertaken by
adjtime( ). Linux implements this algorithm with the adjtimex( ) system call:

#include <sys/timex.h>

int adjtimex (struct timex *adj);
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A call to adjtimex( ) reads kernel time-related parameters into the timex structure
pointed at by adj. Optionally, depending on the modes field of this structure, the sys-
tem call may additionally set certain parameters.

The header <sys/timex.h> defines the timex structure as follows:

struct timex {
        int modes;           /* mode selector */
        long offset;         /* time offset (usec) */
        long freq;           /* frequency offset (scaled ppm) */
        long maxerror;       /* maximum error (usec) */
        long esterror;       /* estimated error (usec) */
        int status;          /* clock status */
        long constant;       /* PLL time constant */
        long precision;      /* clock precision (usec) */
        long tolerance;      /* clock frequency tolerance (ppm) */
        struct timeval time; /* current time */
        long tick;           /* usecs between clock ticks */
};

The modes field is a bitwise OR of zero or more of the following flags:

ADJ_OFFSET
Set the time offset via offset.

ADJ_FREQUENCY
Set the frequency offset via freq.

ADJ_MAXERROR
Set the maximum error via maxerror.

ADJ_ESTERROR
Set the estimated error via esterror.

ADJ_STATUS
Set the clock status via status.

ADJ_TIMECONST
Set the phase-locked loop (PLL) time constant via constant.

ADJ_TICK
Set the tick value via tick.

ADJ_OFFSET_SINGLESHOT
Set the time offset via offset once, with a simple algorithm, like adjtime( ).

If modes is 0, no values are set. Only a user with the CAP_SYS_TIME capability may pro-
vide a nonzero modes value; any user may provide 0 for modes, retrieving all of the
parameters, but setting none of them.

On success, adjtimex( ) returns the current clock state, which is one of the following:

TIME_OK
The clock is synchronized.
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TIME_INS
A leap second will be inserted.

TIME_DEL
A leap second will be deleted.

TIME_OOP
A leap second is in progress.

TIME_WAIT
A leap second just occurred.

TIME_BAD
The clock is not synchronized.

On failure, adjtimex( ) returns -1, and sets errno to one of the following error codes:

EFAULT
adj is an invalid pointer.

EINVAL
One or more of modes, offset, or tick is invalid.

EPERM
modes is nonzero, but the invoking user does not possess the CAP_SYS_TIME
capability.

The adjtimex( ) system call is Linux-specific. Applications concerned with portabil-
ity should prefer adjtime( ).

RFC 1305 defines a complex algorithm, so a complete discussion of adjtimex( ) is
outside the scope of this book. For more information, see the RFC.

Sleeping and Waiting
Various functions allow a process to sleep (suspend execution) for a given amount of
time. The first such function, sleep( ), puts the invoking process to sleep for the
number of seconds specified by seconds:

#include <unistd.h>

unsigned int sleep (unsigned int seconds);

The call returns the number of seconds not slept. Thus, a successful call returns 0,
but the function may return other values between 0 and seconds inclusive (if, say, a
signal interrupts the nap). The function does not set errno. Most users of sleep( ) do
not care about how long the process actually slept, and, consequently, do not check
the return value:

sleep (7);        /* sleep seven seconds */

If sleeping the entire specified time is truly a concern, you can continue calling
sleep( ) with its return value, until it returns 0:



Sleeping and Waiting | 325

unsigned int s = 5;

/* sleep five seconds: no ifs, ands, or buts about it */
while ((s = sleep (s)))
        ;

Sleeping with Microsecond Precision
Sleeping with whole-second granularity is pretty lame. A second is an eternity on a
modern system, so programs often want to sleep with subsecond resolution. Enter
usleep( ):

/* BSD version */
#include <unistd.h>

void usleep (unsigned long usec);

/* SUSv2 version */
#define _XOPEN_SOURCE 500
#include <unistd.h>

int usleep (useconds_t usec);

A successful call to usleep() puts the invoking process to sleep for usec microseconds.
Unfortunately, BSD and the Single UNIX Specification disagree on the prototype of the
function. The BSD variant receives an unsigned long, and has no return value. The SUS
variant, however, defines usleep( ) to accept a useconds_t type, and return an int.
Linux follows SUS if _XOPEN_SOURCE is defined as 500 or higher. If _XOPEN_SOURCE is
undefined, or set to less than 500, Linux follows BSD.

The SUS version returns 0 on success, and -1 on error. Valid errno values are EINTR, if
the nap was interrupted by a signal, or EINVAL, if usecs was too large (on Linux, the
full range of the type is valid, and thus this error will never occur).

According to the specification, the useconds_t type is an unsigned integer capable of
holding values as high as 1,000,000.

Due to the differences between the conflicting prototypes, and the fact that some
Unix systems may support one or the other, but not both, it is wise never to explic-
itly include the useconds_t type in your code. For maximum portability, assume that
the parameter is an unsigned int, and do not rely on usleep( )’s return value:

void usleep (unsigned int usec);

Usage is then:

unsigned int usecs = 200;

usleep (usecs);

This works with either variant of the function, and checking for errors is still possible:

errno = 0;
usleep (1000);
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if (errno)
        perror ("usleep");

Most programs, however, do not check for or care about usleep( ) errors.

Sleeping with Nanosecond Resolution
Linux deprecates the usleep( ) function, replacing it with nanosleep( ), which pro-
vides nanosecond resolution, and a smarter interface:

#define _POSIX_C_SOURCE 199309
#include <time.h>

int nanosleep (const struct timespec *req,
               struct timespec *rem);

A successful call to nanosleep() puts the invoking process to sleep for the time specified
by req, and then returns 0. On error, the call returns -1, and sets errno appropriately. If
a signal interrupts the sleep, the call can return before the specified time has elapsed. In
that case, nanosleep( ) returns -1, and sets errno to EINTR. If rem is not NULL, the func-
tion places the remaining time to sleep (the amount of req not slept) in rem. The
program may then reissue the call, passing rem for req (as shown later in this section).

Here are the other possible errno values:

EFAULT
req or rem is an invalid pointer.

EINVAL
One of the fields in req is invalid.

In the basic case, usage is simple:

struct timespec req = { .tv_sec = 0,
                        .tv_nsec = 200 };

/* sleep for 200 ns */
ret = nanosleep (&req, NULL);
if (ret)
        perror ("nanosleep");

And here is an example using the second parameter to continue the sleep if interrupted:

struct timespec req = { .tv_sec = 0,
                        .tv_nsec = 1369 };
struct timespec rem;
int ret;

/* sleep for 1369 ns */
retry:
ret = nanosleep (&req, &rem);
if (ret) {
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        if (errno == EINTR) {
                /* retry, with the provided time remaining */
                req.tv_sec = rem.tv_sec;
                req.tv_nsec = rem.tv_nsec;
                goto retry;
        }
        perror ("nanosleep");
}

Finally, here’s an alternative approach (perhaps more efficient, but less readable)
toward the same goal:

struct timespec req = { .tv_sec = 1,
                        .tv_nsec = 0 };
struct timespec rem, *a = &req, *b = &rem;

/* sleep for 1s */
while (nanosleep (a, b) && errno == EINTR) {
        struct timespec *tmp = a;
        a = b;
        b = tmp;
}

nanosleep( ) has several advantages over sleep( ) and usleep( ):

• Nanosecond, as opposed to second or microsecond, resolution.

• Standardized by POSIX.1b.

• Not implemented via signals (the pitfalls of which are discussed later).

Despite deprecation, many programs prefer to use usleep() rather than nanosleep()—
thankfully, at least, fewer and fewer applications are now using sleep(). Because
nanosleep( ) is a POSIX standard, and does not use signals, new programs should
prefer it (or the interface discussed in the next section) to sleep( ) and usleep( ).

An Advanced Approach to Sleep
As with all of the classes of time functions we have thus far studied, the POSIX
clocks family provides the most advanced sleep interface:

#include <time.h>

int clock_nanosleep (clockid_t clock_id,
                     int flags,
                     const struct timespec *req,
                     struct timespec *rem);

clock_nanosleep( ) behaves similarly to nanosleep( ). In fact, this call:

ret = nanosleep (&req, &rem);

is the same as this call:

ret = clock_nanosleep (CLOCK_REALTIME, 0, &req, &rem);
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The difference lies in the clock_id and flags parameters. The former specifies the
time source to measure against. Most time sources are valid, although you cannot
specify the CPU clock of the invoking process (e.g., CLOCK_PROCESS_CPUTIME_ID);
doing so would make no sense because the call suspends execution of the process,
and thus the process time stops increasing.

What time source you specify depends on your program’s goals for sleeping. If you
are sleeping until some absolute time value, CLOCK_REALTIME may make the most
sense. If you are sleeping for a relative amount of time, CLOCK_MONOTONIC definitely is
the ideal time source.

The flags parameter is either TIMER_ABSTIME or 0. If it is TIMER_ABSTIME, the value
specified by req is treated as absolute, and not relative. This solves a potential race con-
dition. To explain the value of this parameter, assume that a process, at time T0, wants
to sleep until time T1. At T0, the process calls clock_gettime() to obtain the current time
(T0). It then subtracts T0 from T1, obtaining Y, which it passes to clock_nanosleep().
Some amount of time, however, will have passed between the moment at which the
time was obtained, and the moment at which the process goes to sleep. Worse, what if
the process was scheduled off the processor, incurred a page fault, or something simi-
lar? There is always a potential race condition in between obtaining the current time,
calculating the time differential, and actually sleeping.

The TIMER_ABSTIME flag nullifies the race by allowing a process to directly specify T1.
The kernel suspends the process until the specified time source reaches T1. If the
specified time source’s current time already exceeds T1, the call returns immediately.

Let’s look at both relative and absolute sleeping. The following example sleeps for 1.5
seconds:

struct timespec ts = { .tv_sec = 1, .tv_nsec = 500000000 };
int ret;

ret = clock_nanosleep (CLOCK_MONOTONIC, 0, &ts, NULL);
if (ret)
        perror ("clock_nanosleep");

Conversely, the following example sleeps until an absolute value of time—which is
exactly one second from what the clock_gettime() call returns for the CLOCK_MONOTONIC
time source—is reached:

struct timespec ts;
int ret;

/* we want to sleep until one second from NOW */
ret = clock_gettime (CLOCK_MONOTONIC, &ts);
if (ret) {
        perror ("clock_gettime");
        return;
}
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ts.tv_sec += 1;
printf ("We want to sleep until sec=%ld nsec=%ld\n",
        ts.tv_sec, ts.tv_nsec);
ret = clock_nanosleep (CLOCK_MONOTONIC, TIMER_ABSTIME,
                       &ts, NULL);
if (ret)
        perror ("clock_nanosleep");

Most programs need only a relative sleep because their sleep needs are not very strict.
Some real-time processes, however, have very exact timing requirements, and need
the absolute sleep to avoid the danger of a potentially devastating race condition.

A Portable Way to Sleep
Recall from Chapter 2 our friend select( ):

#include <sys/select.h>

int select (int n,
            fd_set *readfds,
            fd_set *writefds,
            fd_set *exceptfds,
            struct timeval *timeout);

As mentioned in that chapter, select( ) provides a portable way to sleep with sub-
second resolution. For a long time, portable Unix programs were stuck with sleep( )
for their naptime needs: usleep( ) was not widely available, and nanosleep( ) was as
of yet unwritten. Developers discovered that passing select( ) 0 for n, NULL for all
three of the fd_set pointers, and the desired sleep duration for timeout resulted in a
portable and efficient way to put processes to sleep:

struct timeval tv = { .tv_sec = 0,
                      .tv_usec = 757 };

/* sleep for 757 us */
select (0, NULL, NULL, NULL, &tv);

If portability to older Unix systems is a concern, using select( ) may be your best bet.

Overruns
All of the interfaces discussed in this section guarantee that they will sleep at least as
long as requested (or return an error indicating otherwise). They will never return
success without the requested delay elapsing. It is possible, however, for an interval
longer than the requested delay to pass.

This phenomenon may be due to simple scheduling behavior—the requested time
may have elapsed, and the kernel may have woken up the process on time, but the
scheduler may have selected a different task to run.
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There exists a more insidious cause, however: timer overruns. This occurs when the
granularity of the timer is coarser than the requested time interval. For example,
assume the system timer ticks in 10 ms intervals, and a process requests a 1 ms sleep.
The system is able to measure time and respond to time-related events (such as wak-
ing up a process from sleep) only at 10 ms intervals. If, when the process issues the
sleep request, the timer is 1 ms away from a tick, everything will be fine—in 1 ms,
the requested time (1 ms) will elapse, and the kernel will wake up the process. If,
however, the timer hits right as the process requests the sleep, there won’t be another
timer tick for 10 ms. Subsequently, the process will sleep an extra 9 ms! That is,
there will be nine 1 ms overruns. On average, a timer with a period of X has an over-
run rate of X/2.

The use of high-precision time sources, such as those provided by POSIX clocks, and
higher values for HZ, minimize timer overrun.

Alternatives to Sleeping
If possible, you should avoid sleeping. Often, you cannot, and that’s fine—particu-
larly if your code is sleeping for less than a second. Code laced with sleeps, however,
in order to “busy-wait” for events, is usually of poor design. Code that blocks on a
file descriptor, allowing the kernel to handle the sleep and wake up the process, is
better. Instead of the process spinning in a loop until the event hits, the kernel can
block the process from execution, and wake it up only when needed.

Timers
Timers provide a mechanism for notifying a process when a given amount of time
elapses. The amount of time before a timer expires is called the delay, or the expira-
tion. How the kernel notifies the process that the timer has expired depends on the
timer. The Linux kernel offers several types. We will study them all.

Timers are useful for several reasons. Examples include refreshing the screen 60
times per second, or canceling a pending transaction if it is still ongoing after 500
milliseconds.

Simple Alarms
alarm( ) is the simplest timer interface:

#include <unistd.h>

unsigned int alarm (unsigned int seconds);
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A call to this function schedules the delivery of a SIGALRM signal to the invoking pro-
cess after seconds seconds of real time have elapsed. If a previously scheduled signal
was pending, the call cancels the alarm, replaces it with the newly requested alarm,
and returns the number of seconds remaining in the previous alarm. If seconds is 0,
the previous alarm, if any, is canceled, but no new alarm is scheduled.

Successful use of this function thus also requires registering a signal handler for the
SIGALRM signal. (Signals and signal handlers were covered in the previous chapter.)
Here is a code snippet that registers a SIGALRM handler, alarm_handler( ), and sets an
alarm for five seconds:

void alarm_handler (int signum)
{
        printf ("Five seconds passed!\n");
}

void func (void)
{
        signal (SIGALRM, alarm_handler);
        alarm (5);

        pause ( );
}

Interval Timers
Interval timer system calls, which first appeared in 4.2BSD, have since been stan-
dardized in POSIX, and provide more control than alarm( ):

#include <sys/time.h>

int getitimer (int which,
               struct itimerval *value);

int setitimer (int which,
               const struct itimerval *value,
               struct itimerval *ovalue);

Interval timers operate like alarm( ), but optionally can automatically rearm them-
selves, and operate in one of three distinct modes:

ITIMER_REAL
Measures real time. When the specified amount of real time has elapsed, the ker-
nel sends the process a SIGALRM signal.

ITIMER_VIRTUAL
Decrements only while the process’ user-space code is executing. When the
specified amount of process time has elapsed, the kernel sends the process a
SIGVTALRM.
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ITIMER_PROF
Decrements both while the process is executing, and while the kernel is execut-
ing on behalf of the process (for example, completing a system call). When the
specified amount of time has elapsed, the kernel sends the process a SIGPROF sig-
nal. This mode is usually coupled with ITIMER_VIRTUAL, so that the program can
measure user and kernel time spent by the process.

ITIMER_REAL measures the same time as alarm( ); the other two modes are useful for
profiling.

The itimerval structure allows the user to specify the amount of time until the timer
expires, as well as the expiration, if any, with which to rearm the timer upon expiration:

struct itimerval {
        struct timeval it_interval;  /* next value */
        struct timeval it_value;     /* current value */
};

Recall from earlier that the timeval structure provides microsecond resolution:

struct timeval {
        long tv_sec;   /* seconds */
        long tv_usec;  /* microseconds */
};

setitimer( ) arms a timer of type which with the expiration specified by it_value.
Once the time specified by it_value elapses, the kernel rearms the timer with the
time provided by it_interval. Thus, it_value is the time remaining on the current
timer. Once it_value reaches zero, it is set to it_interval. If the timer expires, and
it_interval is 0, the timer is not rearmed. Similarly, if an active timer’s it_value is
set to 0, the timer is stopped, and not rearmed.

If ovalue is not NULL, the previous values for the interval timer of type which is
returned.

getitimer( ) returns the current values for the interval timer of type which.

Both functions return 0 on success, and -1 on error, in which case errno is set to one
of the following:

EFAULT
value or ovalue is an invalid pointer.

EINVAL
which is not a valid interval timer type.

The following code snippet creates a SIGALRM signal handler (again, see Chapter 9),
and then arms an interval timer with an initial expiration of five seconds, followed by
a subsequent interval of one second:

void alarm_handler (int signo)
{
        printf ("Timer hit!\n");
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}

void foo (void) {
        struct itimerval delay;
        int ret;

        signal (SIGALRM, alarm_handler);

        delay.it_value.tv_sec = 5;
        delay.it_value.tv_usec = 0;
        delay.it_interval.tv_sec = 1;
        delay.it_interval.tv_usec = 0;
        ret = setitimer (ITIMER_REAL, &delay, NULL);
        if (ret) {
                perror ("setitimer");
                return;
        }

        pause ( );
}

Some Unix systems implement sleep( ) and usleep( ) via SIGALRM—and, obviously,
alarm( ) and setitimer( ) use SIGALRM. Therefore, programmers must be careful not
to overlap calls to these functions; the results are undefined. For the purpose of brief
waits, programmers should use nanosleep( ), which POSIX dictates will not use sig-
nals. For timers, programmers should use setitimer( ) or alarm( ).

Advanced Timers
The most powerful timer interface, not surprisingly, hails from the POSIX clocks
family.

With POSIX clocks-based timers, the acts of instantiating, initializing, and ultimately
deleting a timer are separated into three different functions: timer_create( ) creates
the timer, timer_settime( ) initializes the timer, and timer_delete( ) destroys it.

The POSIX clocks family of timer interfaces is undoubtedly the most
advanced, but also the newest (ergo the least portable), and most com-
plicated to use. If simplicity or portability is a prime motivator,
setitimer( ) is most likely a better choice.

Creating a timer

To create a timer, use timer_create( ):

#include <signal.h>
#include <time.h>

int timer_create (clockid_t clockid,
                  struct sigevent *evp,
                  timer_t *timerid);
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A successful call to timer_create( ) creates a new timer associated with the POSIX
clock clockid, stores a unique timer identification in timerid, and returns 0. This call
merely sets up the conditions for running the timer; nothing actually happens until
the timer is armed, as shown in the following section.

The following example creates a new timer keyed off the CLOCK_PROCESS_CPUTIME_ID
POSIX clock, and stores the timer’s ID in timer:

timer_t timer;
int ret;

ret = timer_create (CLOCK_PROCESS_CPUTIME_ID,
                    NULL,
                    &timer);
if (ret)
        perror ("timer_create");

On failure, the call returns -1, timerid is undefined, and the call sets errno to one of
the following:

EAGAIN
The system lacks sufficient resources to complete the request.

EINVAL
The POSIX clock specified by clockid is invalid.

ENOTSUP
The POSIX clock specified by clockid is valid, but the system does not support
using the clock for timers. POSIX guarantees that all implementations support
the CLOCK_REALTIME clock for timers. Whether other clocks are supported is up to
the implementation.

The evp parameter, if non-NULL, defines the asynchronous notification that occurs
when the timer expires. The header <signal.h> defines the structure. Its contents are
supposed to be opaque to the programmer, but it has at least the following fields:

#include <signal.h>

struct sigevent {
        union sigval sigev_value;
        int sigev_signo;
        int sigev_notify;
        void (*sigev_notify_function)(union sigval);
        pthread_attr_t *sigev_notify_attributes;
};

union sigval {
        int sival_int;
        void *sival_ptr;
};



Timers | 335

POSIX clocks-based timers allow much greater control over how the kernel notifies
the process when a timer expires, allowing the process to specify exactly which sig-
nal the kernel will emit, or even allowing the kernel to spawn a thread, and execute a
function in response to timer expiration. A process specifies the behavior on timer
expiration via sigev_notify, which must be one of the following three values:

SIGEV_NONE
A “null” notification. On timer expiration, nothing happens.

SIGEV_SIGNAL
On timer expiration, the kernel sends the process the signal specified by
sigev_signo. In the signal handler, si_value is set to sigev_value.

SIGEV_THREAD
On timer expiration, the kernel spawns a new thread (within this process), and has
it execute sigev_notify_function, passing sigev_value as its sole argument. The
thread terminates when it returns from this function. If sigev_notify_attributes is
not NULL, the provided pthread_attr_t structure defines the behavior of the new
thread.

If evp is NULL, as it was in our earlier example, the timer’s expiration notification is set
up as if sigev_notify were SIGEV_SIGNAL, sigev_signo were SIGALRM, and sigev_value
were the timer’s ID. Thus, by default, these timers notify in a manner similar to
POSIX interval timers. Via customization, however, they can do much, much more!

The following example creates a timer keyed off CLOCK_REALTIME. When the timer
expires, the kernel will issue the SIGUSR1 signal, and set si_value to the address stor-
ing the timer’s ID:

struct sigevent evp;
timer_t timer;
int ret;

evp.sigev_value.sival_ptr = &timer;
evp.sigev_notify = SIGEV_SIGNAL;
evp.sigev_signo = SIGUSR1;
ret = timer_create (CLOCK_REALTIME,
                    &evp,
                    &timer);
if (ret)
        perror ("timer_create");

Arming a timer

A timer created by timer_create( ) is unarmed. To associate it with an expiration
and start the clock ticking, use timer_settime( ):

#include <time.h>

int timer_settime (timer_t timerid,
                   int flags,
                   const struct itimerspec *value,
                   struct itimerspec *ovalue);
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A successful call to timer_settime( ) arms the timer specified by timerid with the
expiration value, which is an itimerspec structure:

struct itimerspec {
        struct timespec it_interval;  /* next value */
        struct timespec it_value;     /* current value */
};

As with setitimer( ), it_value specifies the current timer expiration. When the timer
expires, it_value is refreshed with the value from it_interval. If it_interval is 0,
the timer is not an interval timer, and will disarm once it_value expires.

Recall from earlier that the timespec structure provides nanosecond resolution:

struct timespec {
        time_t  tv_sec;       /* seconds */
        long    tv_nsec;      /* nanoseconds */
};

If flags is TIMER_ABSTIME, the time specified by value is interpreted as absolute (as
opposed to the default interpretation, where the value is relative to the current time).
This modified behavior prevents a race condition during the steps of obtaining the
current time, calculating the relative difference between that time, and a desired
future time, and arming the timer. See the discussion in the earlier section, “An
Advanced Approach to Sleep” for details.

If ovalue is non-NULL, the previous timer expiration is saved in the provided
itimerspec. If the timer was previously disarmed, the structure’s members are all set
to 0.

Using the timer value initialized earlier by timer_create( ), the following example
creates a periodic timer that expires every second:

struct itimerspec ts;
int ret;

ts.it_interval.tv_sec = 1;
ts.it_interval.tv_nsec = 0;
ts.it_value.tv_sec = 1;
ts.it_value.tv_nsec = 0;

ret = timer_settime (timer, 0, &ts, NULL);
if (ret)
        perror ("timer_settime");

Obtaining the expiration of a timer

You can get the expiration time of a timer without resetting it, at any time, via
timer_gettime( ):

#include <time.h>

int timer_gettime (timer_t timerid,
                   struct itimerspec *value);
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A successful call to timer_gettime( ) stores the expiration time of the timer specified
by timerid in the structure pointed at by value, and returns 0. On failure, the call
returns -1, and sets errno to one of the following:

EFAULT
value is an invalid pointer.

EINVAL
timerid is an invalid timer.

For example:

struct itimerspec ts;
int ret;

ret = timer_gettime (timer, &ts);
if (ret)
        perror ("timer_gettime");
else {
        printf ("current sec=%ld nsec=%ld\n",
                ts.it_value.tv_sec, ts.it_value.tv_nsec);
        printf ("next sec=%ld nsec=%ld\n",
                ts.it_interval.tv_sec, ts.it_interval.tv_nsec);
}

Obtaining the overrun of a timer

POSIX defines an interface for determining how many, if any, overruns occurred on a
given timer:

#include <time.h>

int timer_getoverrun (timer_t timerid);

On success, timer_getoverrun( ) returns the number of additional timer expirations
that have occurred between the initial expiration of the timer and notification to the
process—for example, via a signal—that the timer expired. For instance, in our ear-
lier example, where a 1 ms timer ran for 10 ms, the call would return 9.

If the number of overruns is equal to or greater than DELAYTIMER_MAX, the call returns
DELAYTIMER_MAX.

On failure, the function returns -1, and sets errno to EINVAL, the lone error condi-
tion, signifying that the timer specified by timerid is invalid.

For example:

int ret;

ret = timer_getoverrun (timer);
if (ret == -1)
        perror ("timer_getoverrun");
else if (ret == 0)
        printf ("no overrun\n");
else
        printf ("%d overrun(s)\n", ret);
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Deleting a timer

Deleting a timer is easy:

#include <time.h>

int timer_delete (timer_t timerid);

A successful call to timer_delete( ) destroys the timer associated with timerid, and
returns 0. On failure, the call returns -1, and errno is set to EINVAL, the lone error
condition, signifying that timerid is not a valid timer.
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Appendix APPENDIX

GCC Extensions to the C Language

The GNU Compiler Collection (GCC) provides many extensions to the C language,
some of which have proven to be of particular value to system programmers. The
majority of the additions to the C language that we’ll cover in this appendix offer
ways for programmers to provide additional information to the compiler about the
behavior and intended use of their code. The compiler, in turn, utilizes this informa-
tion to generate more efficient machine code. Other extensions fill in gaps in the C
programming language, particularly at lower levels.

GCC provides several extensions now available in the latest C standard, ISO C99.
Some of these extensions function similarly to their C99 cousins, but ISO C99 imple-
mented other extensions rather differently. New code should use the ISO C99
variants of these features. We won’t cover such extensions here; we’ll discuss only
GCC-unique additions.

GNU C
The flavor of C supported by GCC is often called GNU C. In the 1990s, GNU C
filled in several gaps in the C language, providing features such as complex vari-
ables, zero-length arrays, inline functions, and named initializers. But after nearly a
decade, C was finally upgraded, and with the standardization of ISO C99, GNU C
extensions became less relevant. Nonetheless, GNU C continues to provide useful
features, and many Linux programmers still use a subset of GNU C—often just an
extension or two—in their C90- or C99-compliant code.

One prominent example of a GCC-specific code base is the Linux kernel, which is
written strictly in GNU C. Recently, however, Intel has invested engineering effort in
allowing the Intel C Compiler (ICC) to understand the GNU C extensions used by
the kernel. Consequently, many of these extensions are now growing less GCC-
specific.
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Inline Functions
The compiler copies the entire code of an “inline” function into the site where the
function is called. Instead of storing the function externally and jumping to it when-
ever it is called, it runs the contents of the function directly. Such behavior saves the
overhead of the function call, and allows for potential optimizations at the call site
because the compiler can optimize the caller and callee together. This latter point is
particularly valid if the parameters to the function are constant at the call site. Natu-
rally, however, copying a function into each and every chunk of code that invokes it
can have a detrimental effect on code size. Therefore, functions should be inlined
only if they are small and simple, or are not called in many different places.

For many years, GCC has supported the inline keyword, instructing the compiler to
inline the given function. C99 formalized this keyword:

static inline int foo (void) { /* ... */ }

Technically, however, the keyword is merely a hint—a suggestion to the compiler to
consider inlining the given function. GCC further provides an extension for instruct-
ing the compiler to always inline the designated function:

static inline _ _attribute_ _ ((always_inline)) int foo (void) { /* ... */ }

The most obvious candidate for an inline function is a preprocessor macro. An inline
function in GCC will perform as well as a macro, and, additionally, receives type
checking. For example, instead of this macro:

#define max(a,b) ({ a > b ? a : b; })

one might use the corresponding inline function:

static inline max (int a, int b)
{
        if (a > b)
                return a;
        return b;
}

Programmers tend to overuse inline functions. Function call overhead on most mod-
ern architectures—the x86 in particular—is very, very low. Only the most worthy of
functions should receive consideration!

Suppressing Inlining
In its most aggressive optimization mode, GCC automatically selects functions that
appear suitable for inlining and inlines them. This is normally a good idea, but some-
times the programmer knows that a function will perform incorrectly if inlined. One
possible example of this is when using _ _builtin_return_address (discussed later in
this appendix). To suppress inlining, use the noinline keyword:

_ _attribute_ _ ((noinline)) int foo (void) { /* ... */ }
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Pure Functions
A “pure” function is one that has no effects, and whose return value reflects only the
function’s parameters or nonvolatile global variables. Any parameter or global vari-
able access must be read-only. Loop optimization and subexpression elimination can
be applied to such functions. Functions are marked as pure via the pure keyword:

__attribute_ _ ((pure)) int foo (int val) { /* ... */ }

A common example is strlen( ). Given identical inputs, this function’s return value
is invariant across multiple invocations, and thus it can be pulled out of a loop, and
called just once. For example, consider the following code:

/* character by character, print each letter in 'p' in uppercase */
for (i = 0; i < strlen (p); i++)
        printf ("%c", toupper (p[i]));

If the compiler did not know that strlen( ) was pure, it might invoke the function
with each iteration of the loop!

Smart programmers—as well as the compiler, if strlen( ) were marked pure—would
write or generate code like this:

size_t len;

len = strlen (p);
for (i = 0; i < len; i++)
        printf ("%c", toupper (p[i]));

Parenthetically, even smarter programmers (such as this book’s readers) would write:

while (*p)
        printf ("%c", toupper (*p++));

It is illegal, and indeed makes no sense, for a pure function to return void, as the
return value is the sole point of such functions.

Constant Functions
A “constant” function is a stricter variant of a pure function. Such functions cannot
access global variables, and cannot take pointers as parameters. Thus, the constant
function’s return value reflects nothing but the passed-by-value parameters. Addi-
tional optimizations, on top of those possible with pure functions, are possible for
such functions. Math functions, such as abs( ), are examples of constant functions
(presuming they don’t save state or otherwise pull tricks in the name of optimiza-
tion). A programmer marks a function constant via the const keyword:

_ _attribute_ _ ((const)) int foo (int val) { /* ... */ }

As with pure functions, it makes no sense for a constant function to return void.
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Functions That Do Not Return
If a function does not return—perhaps because it invariantly calls exit( )—the
programmer can mark the function with the noreturn keyword, enlightening the
compiler to that fact:

_ _attribute_ _ ((noreturn)) void foo (int val) { /* ... */ }

In turn, the compiler can make additional optimizations, with the understanding
that under no circumstances will the invoked function ever return. It does not make
sense for such a function to return anything but void.

Functions That Allocate Memory
If a function returns a pointer that can never alias* existing memory—almost assur-
edly because the function just allocated fresh memory, and is returning a pointer to
it—the programmer can mark the function as such with the malloc keyword, and the
compiler can in turn perform suitable optimizations:

_ _attribute_ _ ((malloc)) void * get_page (void)
{
        int page_size;

        page_size = getpagesize ( );
        if (page_size <= 0)
                return NULL;

        return malloc (page_size);
}

Forcing Callers to Check the Return Value
Not an optimization, but a programming aid, the warn_unused_result attribute
instructs the compiler to generate a warning whenever the return value of a function
is not stored or used in a conditional statement:

_ _attribute_ _ ((warn_unused_result)) int foo (void) { /* ... */ }

This allows the programmer to ensure that all callers check and handle the return
value from a function where the value is of particular importance. Functions with
important but oft-ignored return values, such as read( ), make excellent candidates
for this attribute. Such functions cannot return void.

* A memory alias occurs when two or more pointer variables point at the same memory address. This can hap-
pen in trivial cases where a pointer is assigned the value of another pointer, and also in more complex, less
obvious cases. If a function is returning the address of newly allocated memory, no other pointers to that
same address should exist.
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Marking Functions As Deprecated
The deprecated attribute instructs the compiler to generate a warning at the call site
whenever the function is invoked:

_ _attribute_ _ ((deprecated)) void foo (void) { /* ... */ }

This helps wean programmers off deprecated and obsolete interfaces.

Marking Functions As Used
Occasionally, no code visible to a compiler invokes a particular function. Marking a
function with the used attribute instructs the compiler that the program uses that
function, despite appearances that the function is never referenced:

static _ _attribute_ _ ((used)) void foo (void) { /* ... */ }

The compiler therefore outputs the resulting assembly language, and does not dis-
play a warning about an unused function. This attribute is useful if a static function
is invoked only from handwritten assembly code. Normally, if the compiler is not
aware of any invocation, it will generate a warning, and potentially optimize away
the function.

Marking Functions or Parameters As Unused
The unused attribute tells the compiler that the given function or function parameter
is unused, and instructs it not to issue any corresponding warnings:

int foo (long _ _attribute_ _ ((unused)) value) { /* ... */ }

This is useful if you’re compiling with -W or -Wunused, and you want to catch unused
function parameters, but you occasionally have functions that must match a predeter-
mined signature (as is common in event-driven GUI programming or signal handlers).

Packing a Structure
The packed attribute tells the compiler that a type or variable should be packed into
memory using the minimum amount of space possible, potentially disregarding
alignment requirements. If specified on a struct or union, all variables therein are so
packed. If specified on just one variable, only that specific object is packed.

The following packs all variables within the structure into the minimum amount of
space:

struct _ _attribute_ _ ((packed)) foo { ... };
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As an example, a structure containing a char followed by an int would most likely
find the integer aligned to a memory address not immediately following the char,
but, say, three bytes later. The compiler aligns the variables by inserting bytes of
unused padding between them. A packed structure lacks this padding, potentially
consuming less memory, but failing to meet architectural alignment requirements.

Increasing the Alignment of a Variable
As well as allowing packing of variables, GCC also allows programmers to specify an
alternative minimum alignment for a given variable. GCC will then align the speci-
fied variable to at least this value, as opposed to the minimum required alignment
dictated by the architecture and ABI. For example, this statement declares an integer
named beard_length with a minimum alignment of 32 bytes (as opposed to the typi-
cal alignment of 4 bytes on machines with 32-bit integers):

int beard_length _ _attribute_ _ ((aligned (32))) = 0;

Forcing the alignment of a type is generally useful only when dealing with hardware
that may impose greater alignment requirements than the architecture itself, or when
you are hand-mixing C and assembly code, and you want to use instructions that
require specially aligned values. One example where this alignment functionality is
utilized is for storing oft-used variables on processor cache lines to optimize cache
behavior. The Linux kernel makes use of this technique.

As an alternative to specifying a certain minimum alignment, you can ask that GCC
align a given type to the largest minimum alignment that is ever used for any data
type. For example, this instructs GCC to align parrot_height to the largest align-
ment it ever uses, which is probably the alignment of a double:

short parrot_height _ _attribute_ _ ((aligned)) = 5;

This decision generally involves a space/time tradeoff: variables aligned in this man-
ner consume more space, but copying to or from them (along with other complex
manipulations) may be faster because the compiler can issue machine instructions
that deal with the largest amount of memory.

Various aspects of the architecture or the system’s tool chain may impose maximum
limits on a variable’s alignment. For example, on some Linux architectures, the
linker is unable to recognize alignments beyond a rather small default. In that case,
an alignment provided using this keyword is rounded down to the smallest allowed
alignment. For example, if you request an alignment of 32, but the system’s linker is
unable to align to more than 8 bytes, the variable will be aligned along an 8 byte
boundary.
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Placing Global Variables in a Register
GCC allows programmers to place global variables in a specific machine register,
where the variables will then reside for the duration of the program’s execution.
GCC calls such variables global register variables.

The syntax requires that the programmer specify the machine register. The follow-
ing example uses ebx:

register int *foo asm ("ebx");

The programmer must select a variable that is not function-clobbered: that is, the
selected variable must be usable by local functions, saved and restored on function
call invocation, and not specified for any special purpose by the architecture or oper-
ating system’s ABI. The compiler will generate a warning if the selected register is
inappropriate. If the register is appropriate—ebx, used in this example, is fine for the
x86 architecture—the compiler will in turn stop using the register itself.

Such an optimization can provide huge performance boosts if the variable is fre-
quently used. A good example is with a virtual machine. Placing the variable that
holds, say, the virtual stack frame pointer in a register might lead to substantial
gains. On the other hand, if the architecture is starved of registers to begin with (as
the x86 architecture is), this optimization makes little sense.

Global register variables cannot be used in signal handlers, or by more than one
thread of execution. They also cannot have initial values because there is no mecha-
nism for executable files to supply default contents for registers. Global register
variable declarations should precede any function definitions.

Branch Annotation
GCC allows programmers to annotate the expected value of an expression—for
example, to tell the compiler whether a conditional statement is likely to be true or
false. GCC, in turn, can then perform block reordering, and other optimizations to
improve the performance of conditional branches.

The GCC syntax for branch notation is horrendously ugly. To make branch annota-
tion easier on the eyes, we use preprocessor macros:

#define likely(x)    _ _builtin_expect (!!(x), 1)
#define unlikely(x)  _ _builtin_expect (!!(x), 0)

Programmers can mark an expression as likely or unlikely true by wrapping it in
likely( ) or unlikely( ), respectively.

The following example marks a branch as unlikely true (that is, likely to be false):

int ret;

ret = close (fd);
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if (unlikely (ret))
        perror ("close");

Conversely, the following example marks a branch as likely true:

const char *home;

home = getenv ("HOME");
if (likely (home))
        printf ("Your home directory is %s\n", home);
else
        fprintf (stderr, "Environment variable HOME not set!\n");

As with inline functions, programmers have a tendency to overuse branch annotation.
Once you start anointing expressions, you might be tempted to mark all expressions.
Be careful, though—you should mark branches as likely or unlikely only if you know a
priori and with little doubt that the expressions will be true or false nearly all of the
time (say, with 99 percent certainty). Seldom-occurring errors are good candidates
for unlikely( ). Bear in mind, however, that a false prediction is worse than no pre-
diction at all.

Getting the Type of an Expression
GCC provides the typeof( ) keyword to obtain the type of a given expression.
Semantically, the keyword operates the same as sizeof( ). For example, this expres-
sion returns the type of whatever x points at:

typeof (*x)

We can use this to declare an array, y, of those types:

typeof (*x) y[42];

A popular use for typeof( ) is to write “safe” macros, which can operate on any arith-
metic value, and evaluate its parameters only once:

#define max(a,b) ({          \
        typeof (a) _a = (a); \
        typeof (b) _b = (b); \
       _a > _b ? _a : _b; \
})

Getting the Alignment of a Type
GCC provides the keyword _ _alignof_ _ to obtain the alignment of a given object.
The value is architecture- and ABI-specific. If the current architecture does not have a
required alignment, the keyword returns the ABI’s recommended alignment. Other-
wise, the keyword returns the minimum required alignment.

The syntax is identical to sizeof( ):

_ _alignof_ _(int)
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Depending on the architecture, this probably returns 4, as 32-bit integers are gener-
ally aligned along 4 byte boundaries.

The keyword works on lvalues, too. In that case, the returned alignment is the mini-
mum alignment of the backing type, not the actual alignment of the specific lvalue. If
the minimum alignment was changed via the aligned attribute (described earlier, in
“Increasing the Alignment of a Variable”), that change is reflected by _ _alignof_ _.

For example, consider this structure:

struct ship {
        int year_built;
        char canons;
        int mast_height;
};

along with this code snippet:

struct ship my_ship;

printf ("%d\n", _ _alignof_ _(my_ship.canons));

The _ _alignof_ _ in this snippet will return 1, even though structure padding proba-
bly results in canons consuming four bytes.

The Offset of a Member Within a Structure
GCC provides a built-in keyword for obtaining the offset of a member of a structure
within that structure. The offsetof( ) macro, defined in <stddef.h>, is part of the
ISO C standard. Most definitions are horrid, involving obscene pointer arithmetic
and code unfit for minors. The GCC extension is simpler and potentially faster:

#define offsetof(type, member)  _ _builtin_offsetof (type, member)

A call returns the offset of member within type—that is, the number of bytes, starting
from zero, from the beginning of the structure to that member. For example,
consider the following structure:

struct rowboat {
        char *boat_name;
        unsigned int nr_oars;
        short length;
};

The actual offsets depend on the size of the variables, and the architecture’s align-
ment requirements and padding behavior, but on a 32-bit machine, we might expect
calling offsetof( ) on struct rowboat and boat_name, nr_oars, and length to return 0,
4, and 8, respectively.

On a Linux system, the offsetof( ) macro should be defined using the GCC key-
word, and need not be redefined.
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Obtaining the Return Address of a Function
GCC provides a keyword for obtaining the return address of the current function, or
one of the callers of the current function:

void * _ _builtin_return_address (unsigned int level)

The parameter level specifies the function in the call chain whose address should be
returned. A value of 0 asks for the return address of the current function, a value of 1
asks for the return address of the caller of the current function, a value of 2 asks for
that function’s caller’s return address, and so on.

If the current function is an inline function, the address returned is that of the call-
ing function. If this is unacceptable, use the noinline keyword (described earlier, in
“Suppressing Inlining”) to force the compiler not to inline the function.

There are several uses for the __builtin_return_address keyword. One is for debugging
or informational purposes. Another is to unwind a call chain, in order to implement
introspection, a crash dump utility, a debugger, and so on.

Note that some architectures can return only the address of the invoking function.
On such architectures, a nonzero parameter value can result in a random return
value. Thus, any parameter other than 0 is nonportable, and should be used only for
debugging purposes.

Case Ranges
GCC allows case statement labels to specify a range of values for a single block. The
general syntax is as follows:

case low ... high:

For example:

switch (val) {
case 1 ... 10:
        /* ... */
        break;
case 11 ... 20:
        /* ... */
        break;
default:
        /* ... */
}

This functionality is quite useful for ASCII case ranges, too:

case 'A' ... 'Z':
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Note that there should be a space before and after the ellipsis. Otherwise, the com-
piler can become confused, particularly with integer ranges. Always do the following:

case 4 ... 8:

and never this:

case 4...8:

Void and Function Pointer Arithmetic
In GCC, addition and subtraction operations are allowed on pointers of type void,
and pointers to functions. Normally, ISO C does not allow arithmetic on such point-
ers because the size of a “void” is a silly concept, and is dependent on what the
pointer is actually pointing to. To facilitate such arithmetic, GCC treats the size of
the referential object as one byte. Thus, the following snippet advances a by one:

a++;        /* a is a void pointer */

The option -Wpointer-arith causes GCC to generate a warning when these exten-
sions are used.

More Portable and More Beautiful in One Fell Swoop
Let’s face it, the _ _attribute_ _ syntax is not pretty. Some of the extensions we’ve
looked at in this chapter essentially require preprocessor macros to make their use
palatable, but all of them can benefit from a sprucing up in appearance.

With a little preprocessor magic, this is not hard. Further, in the same action, we can
make the GCC extensions portable, by defining them away in the case of a non-GCC
compiler (whatever that is).

To do so, stick the following code snippet in a header, and include that header in
your source files:

#if __GNUC_ _ >= 3
# undef  inline
# define inline         inline __attribute_ _ ((always_inline))
# define __noinline     __attribute_ _ ((noinline))
# define __pure         __attribute_ _ ((pure))
# define __const        __attribute_ _ ((const))
# define __noreturn     __attribute_ _ ((noreturn))
# define __malloc       __attribute_ _ ((malloc))
# define __must_check   __attribute_ _ ((warn_unused_result))
# define __deprecated   __attribute_ _ ((deprecated))
# define __used         __attribute_ _ ((used))
# define __unused       __attribute_ _ ((unused))
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# define __packed       __attribute_ _ ((packed))
# define __align(x)     __attribute_ _ ((aligned (x)))
# define __align_max    __attribute_ _ ((aligned))
# define likely(x)      _ _builtin_expect (!!(x), 1)
# define unlikely(x)    _ _builtin_expect (!!(x), 0)
#else
# define _ _noinline     /* no noinline */
# define _ _pure         /* no pure */
# define _ _const        /* no const */
# define _ _noreturn     /* no noreturn */
# define _ _malloc       /* no malloc */
# define _ _must_check   /* no warn_unused_result */
# define _ _deprecated   /* no deprecated */
# define _ _used         /* no used */
# define _ _unused       /* no unused */
# define _ _packed       /* no packed */
# define _ _align(x)     /* no aligned */
# define _ _align_max    /* no align_max */
# define likely(x)      (x)
# define unlikely(x)    (x)
#endif

For example, the following marks a function as pure, using our shortcut:

_ _pure int foo (void) { /* ... */

If GCC is in use, the function is marked with the pure attribute. If GCC is not the
compiler, the preprocessor replaces the _ _pure token with a no-op. Note that you
can place multiple attributes on a given definition, and thus you can use more than
one of these defines on a single definition with no problems.

Easier, prettier, and portable!
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handmade the corrections in my copy). Note there is an online version that has
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ard Stevens et al. Addison-Wesley, 2003.
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An excellent discussion of interprocess communication (IPC).

PThreads Programming: A POSIX Standard for Better Multiprocessing. Bradford
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A review of the POSIX threading API, pthreads.
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Managing Projects with GNU Make, 3rd ed. Robert Mecklenburg. O’Reilly Media,
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projects on Linux.

Essential CVS, 2nd ed. Jennifer Versperman. O’Reilly Media, 2006.

An excellent treatment on CVS, the classic tool for revision control and source
code management on Unix systems.
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are threefold. First, the kernel provides the system call interface to user space, and is
thus the core of system programming. Second, the behaviors and idiosyncrasies of a
kernel shed light on its interactions with the applications it runs. Finally, the Linux
kernel is a wonderful chunk of code, and these books are fun.

Linux Kernel Development, 2nd ed. Robert Love. Novell Press, 2005.

This work is ideally suited to system programmers who want to know about the
design and implementation of the Linux kernel (and naturally, I would be remiss
not to mention my own treatise on the subject!). Not an API reference, this book
offers a great discussion of the algorithms used and decisions made by the Linux
kernel.

Linux Device Drivers, 3rd ed. Jonathan Corbet et al. O’Reilly Media, 2005.

This is a great guide to writing device drivers for the Linux kernel, with excellent
API references. Although aimed at device drivers, the discussions will benefit pro-
grammers of any persuasion, including system programmers merely seeking more
insight into the machinations of the Linux kernel. A great complement to my own
Linux kernel book.
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These two works, not specific to Linux, address operating system design in the
abstract. As I’ve stressed in this book, a strong understanding of the system you code
on only improves your output.

Operating Systems, 3rd ed. Harvey Deitel et al. Prentice Hall, 2003.

A tour de force on the theory of operating system design coupled with top-notch
case studies putting that theory to practice. Of all the textbooks on operating
system design, this is my favorite: it’s modern, readable, and complete.

UNIX Systems for Modern Architectures: Symmetric Multiprocessing and Caching for
Kernel Programming. Curt Schimmel. Addison-Wesley, 1994.

Despite being only modestly related to system programming, this book offers
such an excellent approach to the perils of concurrency and modern caching that
I recommend it even to dentists.
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bss segment, 245
buddy memory allocation scheme, 256
buffer size, 64
buffered I/O (input/output), 62

associated file descriptors, obtaining, 77
block size, 63

effects on performance, 63



356 | Index

buffered I/O (continued)
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closing, 67
closing all, 67
flushing, 75
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reading binary data, 70
reading one character at at time, 67

streams, writing to, 70–72
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files, 13
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common file model, 58
Complete Fair Queuing (CFQ) I/O
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const keyword, 341
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cooperative multitasking, 163
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Linux version 2.6, changes in, 168

copy-on-write (COW), 134, 244
CPU_SETSIZE, 174
creat( ) function, 28
critical regions, 79, 297
ctime( ) function and ctime_r( )

functions, 320
current time, getting, 315–318

microsecond resolution, 316
nanosecond resolution, 316

current time, setting, 318, 319
current working directory (cwd), 11,

213–217
changing, 215–217
obtaining, 213–215

D
daemon( ) function, 160
daemons, 159–161
dangling symlinks, 225
data alignment, 71
data segment, 245
data segment management, 255
Deadline I/O Scheduler, 116
defined keys, 204
demand paging, 273
determinism, 187–189
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/dev/zero, 259
device nodes, 231–232

major and minor numbers, 231
random number generators, 232
special nodes, 231

devices, 13
/dev/zero, 259
out-of-band communication, 233

difftime( ) function, 321
direct I/O, 40
directories, 11, 212–223

creating, 218
current working directory

(cwd), 213–217
changing, 215–217
obtaining, 213–215

directory entries, 212
directory entry (dentry), 11
directory stream, 220

closing, 221
reading from, 221

links, 212, 223–228
names, legal characters for, 212
names, length of, 212
reading contents of, 220–223

system calls for, 222
removing, 219
subdirectories, 212

dirfd( ) function, 220
dirty buffers, 60
dirty_expire_centiseconds, 37
disk addressing, 114
dnotify function, 235
dynamic memory allocation, 245–255

alignment, 252–255
alignment of nonstandard and

complex types, 254
allocating aligned memory, 252
pointers, 255

allocating arrays, 247
freeing dynamic memory, 250–252
resizing allocations, 249

E
edge-triggered events, 94
effective gid, 17
effective user ID (uid), 17, 150
eject command program, 233
elevator algorithms, 116
end-of-file (see EOF)
entropy pool, 232

EOF (end-of-file), 30
errors and, 76

epoch, 309
epoll facility, 89
epoll interface, 57
epoll_create( ) function, 89
epoll_ctl( ) function, 90–92
epoll_wait( ) function, 93
errno, 19–22
error descriptors, 20
error handling, 19–22
errors and EOF, 76
event poll interface, 89–94

controlling epoll, 90–92
creating an epoll instance, 89
edge-triggered versus level-triggered

events, 94
waiting for events, 93

exec family of functions, 129–132
error values, 131

execl( ) function, 129–130
execute permissions, 18
exit( ) and _exit( ) functions, 136
extended attributes, 203

keys and values, 204
listing, 209
namespaces, 205
operations, 206
removal, 210
retrieval, 206
security namespace, 206
setting, 208
system namespace, 205
trusted namespace, 206
user namespace, 206

external fragmentation, 256

F
fchdir( ) function, 215
fchmod( ) function, 200
fchown( ) function, 202
fclose( ) function, 67
fcloseall( ) function, 67
fd (see file descriptors)
fdatasync( ) function, 37

return values and error codes, 38
feof( ) function, 76
ferror( ) function, 76
fflush( ) function, 75
fgetc( ) function, 67, 69
fgetpos( ) function, 75
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fgets( ) function, 68
fgetxattr( ) function, 207
FIFO (first in, first out) class, 179
FIFOs, 13
file descriptors, 9, 23

streams, opening via, 66
file I/O (input/output), 23–61

advice, 108–111
advantages, 110
posix_fadvise( ) function, 108

closing files, 41
direct I/O, 40
event poll interface (see event poll

interface)
I/O schedulers (see I/O schedulers)
kernel internals, 57–61

page cache, 59
page writeback, 60
virtual filesystem, 58

linear output, 84
lseek( ), 42–44

error values, 44
limitations, 44
seeking past the end of a file, 43

memory mapped I/O (see memory
mapped I/O)

multiplexed I/O, 47–57
poll( ) function, 53–56
poll( ) versus select( ), 57
ppoll( ) function, 56
pselect( ) function, 52
select( ) function, 48–53

opening files, 24–29
creat( ) function, 28
open( ) function, 24–26
owners of new files, 26
permissions of new files, 27
return values and error codes, 29

positional reads and writes, 44
error values, 45

readahead( ) function, 110
reading files, 29–33

additional error values, 32
nonblocking reads, 32
reading all the bytes, 31
return values, 30
size limits on read( ), 33

scatter/gather I/O (see scatter/gather I/O)
synchronized I/O, 37–40

fsync( ) and fdatasync( ), 37
O_DSYNC and O_RSYNC flags, 40
O_SYNC flag, 39
sync( ) function, 39

truncating files, 45
write( ), 33–37

additional error codes, 35
append mode, 34
behavior of write( ), 36
nonblocking writes, 35
partial writes, 34
size limits on, 36

file pointers, 65
file table, 23
FILE typedef, 65
fileno( ) function, 77
files, 9–15

access, modification, and change
times, 198

closing files, 41
copying, 228
deleting, 12
device nodes, 231–232

major and minor numbers, 231
random number generators, 232
special nodes, 231

directories (see directories)
extended attributes (see extended

attributes)
file events, monitoring, 234–242

inotify interface, 234
watches, 236–242

file I/O (see file I/O)
file ownership, 26
file permissions, 27
file position or file offset, 9
file truncation, 45
filenames and inodes, 10
inodes, 196
length, 10
links, 11, 223–228
metadata, 196

functions for obtaining, 196
MIME types, storage, 205
mode, legal values for, 200
moving, 229

effects of moving to and from different
types of files, 230

names, legal characters for, 212
names, length of, 212
ownership, 201
permissions, 199

mode argument, 27
regular files, 9
special files, 13
usage count, 223
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filesystem gid, 17
filesystem uid, 17
filesystems, 14

blocks, 15
filesystem-agnosticism, 204
links and, 223
mounting and unmounting, 14
supported in Linux, 14

flistxattr( ) function, 210
flockfile( ) function, 80
fopen( ) function, 65
foreground process group, 154
fork( ) function, 17, 132–136, 290
forward slash (⁄), 11
fputc( ) function, 71
fputs( ) function, 72
fremovexattr( ) function, 211
fseek( ) function, 74
fsetpos( ) function, 74
fsetxattr( ) function, 208
fstat( ) function, 197
fsync( ) function, 37, 76

return values and error codes, 38
ftell( ) function, 75
ftruncate( ) function, 46
ftrylockfile( ) function, 80
full device, 232
fully qualified pathnames, 11
functions

constant functions, 341
inline functions, 340

suppressing inlining, 340
marking as deprecated, 343
marking as unused, 343
marking as used, 343
memory allocation functions, 342
nonreturning functions, 342
pure functions, 341

funlockfile( ) function, 80
fwrite( ) function, 72

G
gcc (binary), 4

supported standards, 8
GCC (GNU Compiler Collection), 4

C language extensions, 339–350
branch annotation, 345
case ranges, 348
constant functions, 341
deprecated functions, marking, 343
expression types, getting, 346

forcing functions to check return
values, 342

functions or parameters, marking as
unused, 343

function’s return address,
obtaining, 348

global variables, placing in a
register, 345

GNU C, 339
inline functions, 340
inline functions, suppressing, 340
member offset within a structure, 347
memory allocation functions, 342
nonreturning functions, 342
packing structures, 343
portability, improving, 349
pure functions, 341
type alignment, getting, 346
used functions, marking, 343
variable alignment, increasing, 344
void and pointer arithmetic, 349

get_current_dir_name( ) function, 214
getcwd( ) function, 213, 216
getdents( ) function, 222
getitimer( ) function, 332
getpagesize( ) function, 98
getpgid( ) function, 158
getpgrp( ) function, 158
getpid( ) function, 128
getpriority( ) function, 171
getrlimit( ) functionl, 190
gets( ) function, 81
getsid( ) function, 156
gettimeofday( ) function, 316
getwd( ) function, 214
getxattr( ) function, 207
ghosts, 149
gid (group ID), 17
glibc (GNU libc), 4

memory allocation, 256
global register variables, 345
gmtime( ) and gmtime_r( ) functions, 320
GNU C, 8, 339
GNU Compiler Collection (see gcc)
GNU libc (glibc), 4
group ID (gid), 17
groups, 17

ownership of processes, 127
primary or logon groups, 17

GUI file managers, MIME type sniffing
behaviors, 205
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H
hard affinity, 173
hard links, 12, 223, 224
hard real-time systems, 176
hard resource limit, 190
hardware clocks, 310
headers, 19
heap, 245
hwclock command, 310

I
idle processes, 126
idle scheduling policy, 180
IEEE (Institute of Electrical and Electronics

Engineers), 6
init process, 17, 126
inline functions, 340

suppressing inlining, 340
inline keyword, 340
inode number, obtaining, 196
inodes, 10, 196

link count, 12
inotify events, 238–240

advanced events, 239
linking together move events, 240
reading, 238

inotify interface, 234
initializing, 235

inotify_add_watch( ) function, 236, 238
inotify_event structure, 238
inotify_init( ) function, 235
Institute of Electrical and Electronics

Engineers (IEEE), 6
internal fragmentation, 256
International Organization for

Standardization (ISO), 7
interprocess communications (IPCs), 13, 19
interval timers, 331
invalid page, 244
I/O (input/output)

asynchronous I/O, 112
buffered I/O (see buffered I/O)
file I/O (see file I/O)
I/O priorities, 172
I/O schedulers (see I/O schedulers)
I/O wait time, 40
I/O-bound processes, 164
system calls and, 77

I/O schedulers, 114–125
disk addressing, 114
lifecycle, 115

merging and sorting, 115
performance optimization, 119–125
reads, 116–119

Anticipatory I/O Scheduler, 117
Complete Fair Queuing (CFQ) I/O

Scheduler, 118
Deadline I/O Scheduler, 116
Noop I/O Scheduler, 119

scheduling in user space, 120
sorting by inode, 121
sorting by path, 120
sorting by physical block, 122

selection and configuration, 119
ioctl( ) function, 233
IOV_MAX, 85
IPCs (interprocess communications), 13
ISO (International Organization for

Standardization), 7
itimerval structure, 332

J
jiffies counter, 309
jitter, 177
job control, 154

K
kernel

file mapping interface (see memory
mapped I/O)

I/O (input/output), implementation
of, 57–61

page cache, 59
page writeback, 60
virtual filesystem, 58

I/O schedulers (see I/O schedulers), 114
kernel buffering contrasted with

user-buffered I/O, 62
mapping advice and, 106
readahead, 107
system timer, 309
time measurement, 308
usage of file descriptors, 23
user-space applications, communication

with, 3
kernel time, 40
keys, 204
kill( ) function, 284, 291, 307

signal for, 303
kill command, 281
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L
latency, 177
lchown( ) function, 201
level-triggered events, 94
lgetxattr( ) function, 207
libc (C library), 4
likely( ) wrapper, 345
linear I/O, 84
link( ) function, 224
links, 11, 212, 223–228

broken links, 12
hard links, 12, 224
link count, 12
symbolic links, 12, 225
unlinking, 227

Linus Elevator, 116
Linux, 1

C standards and, 7
forward compatibility, 8
Linux Standard Base (LSB), 8
Unix compared to, 1

Linux Foundation, 8
Linux system interface, xiii
listxattr( ) function, 209
llistxattr( ) function, 210
load balancing, 173
locality of reference, 59
localtime( ) and localtime_r( ) functions, 321
login, 17
login shell, 17, 154
logon group, 17
lremovexattr( ) function, 211
ls command, 196
LSB (Linux Standard Base), 8
lseek( ) function, 42–44

error values, 44
limitations, 44
seeking past the end of a file, 43

lsetxattr( ) function, 208
lstat( ) function, 197

M
machine register, 3
madvise( ) function, 106–108

return values and error codes, 108
make, time dependency of, 321
mallinfo( ) function, 263
malloc( ) function, 246

xmalloc( ) wrapper for, 247
malloc0( ) function, 248

MALLOC_CHECK_ environment
variable, 263

malloc_usable_size( ) and malloc_trim( )
functions, 262

mallopt( ) function, 260
parameters, 261

mapped files, 245
mappings, 245
maximum buffer age, 37
memchr( ) function, 272
memcmp( ) function, 270
memfrob( ) function, 272
memmem( ) function, 272
memmove( ) function, 271
memory addressing and data alignment, 71
memory allocation, 243

advanced memory allocation, 260–263
malloc_usable_size( ) and malloc_

trim( ) functions, 262
mallopt( ) function, 260

choosing a mechanism, 268
debugging, 263

MALLOC_CHECK_, 263
obtaining statistics, 263

dynamic memory, allocating, 245–255
alignment, 252–255
allocating arrays, 247
freeing dynamic memory, 250–252
resizing allocations, 249

opportunistic allocation, 277
overcommitment and OOM, 277

stack-based allocations, 264–268
duplicating strings on the stack, 266
variable-length arrays, 267

unlocking memory, 275
memory management, 243

anonymous memory mappings, 256–260
creating, 257
mapping /dev/zero, 259

data segment, managing, 255
locking memory, 273–277

demand paging, 273
locking all of an address space, 275
locking limits, 276
locking part of an address space, 274

manipulating memory, 269–273
comparing bytes, 270
frobnicating bytes, 272
moving bytes, 271
searching bytes, 272
setting bytes, 269
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memory management (continued)
memory management units, 15
process address space, 243–245

memory regions, 245
pages and paging, 243
sharing and copy-on-write, 244

memory mapped I/O, 95–108
changing the protection of a

mapping, 104
giving advice, 106–108
mmap( ) function, 95–99, 100

advantages, 101
disadvantages, 102
page size, 97–98

munmap( ) function, 99
resizing a mapping, 102
SIGBUS and SIGSEGV signals, 99
synchronizing a file with a mapping, 104

memrchr( ) function, 272
memset( ) function, 269
merging (I/O schedulers), 115
metadata, 196
migration of processes, costs, 173
MIME types, storage, 205
mincore( ) function, 276
mkdir( ) function, 218, 229
mktime( ) function, 320
mlock( ) function, 274
mlockall( ) function, 275
mmap( ) function, 95–99, 258

advantages, 101
disadvantages, 102
example, 100
page size, 97–98
return values and erro codes, 99

mode argument, 27, 65
monotonic time, 308
mount points, 14
mounting, 14
mprotect( ) function, 104
mremap( ) function, 102

return values and error codes, 103
msync( ) function, 105

return values and error codes, 105
multiplexed I/O, 47–57
multitasking, 163
multithreaded programming, 166
munmap( ) function, 99, 258

N
named pipes, 13
namespaces, 14

per-process namespaces, 15
nanosleep( ) function, 326
natural alignment, 71, 252
network filesystems, 14
nice( ) function, 170
nice values, 169
noinline keyword, 340
nonblocking I/O, 32
nonblocking writes, 35
Noop I/O Scheduler, 119
noreturn keyword, 342
null device, 231

O
O(1) process scheduler, 163
O_DSYNC flag, 40
offset, 74
offsetof( ) macro, 347
off_t type, 44
on_exit function, 138
OOM (out of memory) conditions, 278
open( ) function, 24–26

O_DSYNC andO_RSYNC flags, 40
O_SYNC flag, 39

Open Software Foundation (OSF), 7
opendir( ) function, 220
operational deadlines, 176

latency and jitter, 177
opportunistic allocation, 277
origin argument, lseek( ), 42
O_RSYNC flag, 40
OSF (Open Software Foundation), 7
O_SYNC flag, 39
out of memory (OOM) conditions, 278
out-of-band communication, 233
overcommitment, 277

P
packed attribute, 343
pages, 97–98, 243

page cache, 59
page cache readahead, 60
page size, 15
page writeback, 60

PAGE_SIZE macro, 98
parameter passing, 3
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parameters, marking as unused, 343
parent directories, 212
parent process, 17
parent processes, 127

(see also processes)
partial writes, 34
path, 11
pathnames, 11, 212
pause( ) function, 287
pdflush threads, 61
pending signals, 297
permission bits, 18
per-process namespaces, 15
perror( ) function, 21
pgid (process group ID), 154
pid (process ID), 16, 126

allocation, 127
pid_t type, 128
pointers, 255
poll( ) function, 53–56

disadvantages, 89
example, 55
return values and error codes, 55
select( ), versus, 57

Portable Operating System Interface (see
POSIX)

POSIX, 6
history, 6
protection bits and architecture, 96

POSIX clocks, 313–315
clockid_t type, 313
time source resolution, 314

POSIX clocks-based timers, 333–338
arming a timer, 335
creating a timer, 333–335
deleting a timer, 338
obtaining timer expiration, 336
obtaining timer overrun, 337

_POSIX_SAVED_IDS macro, 153
posix_fadvise( ) function, 108

return values and error codes, 110
ppoll( ) function, 56
pread( ) function, 44
preemptive multitasking, 163
preemptive scheduling, 165
primary group, 17
process address space, 243–245

mapped files, 245
memory regions, 245
pages and paging, 243
sharing and copy-on-write, 244

process ID (pid), 16

process time, 308
process tree, 17
processes, 15–17, 126

accesses, 18
background process groups, 154
child and parent processes, 127
child processes, waiting for, 139–149

BSD wait3( ) and wait4( )
functions, 145

status pointer macros, 140
wait( ) function, 139
waitid( ) function, 143
waitpid( ) function, 142

copy-on-write (COW), 134
daemons, 159–161
doctrine of least-privileged rights, 150
exec family of functions, 129–132
file descriptors and, 23
foreground process group, 154
fork( ) function, 132–136
hierarchy, 127
initialization processes, 126
I/O-bound processes, 164
launching and waiting for new

processes, 147
migration costs, 173
multitasking, 163

yielding, 166–169
new processes, running, 129
obsolete process group functions, 158
ownership, 127
prioritization (see scheduler,

prioritization)
process group, 128
process group system calls, 157
process groups, 154–155

process group ID (pgid), 154
process hierarchy, 16
process ID (pid), 126

allocation, 127
process IDs and parent process IDs,

obtaining, 128
processor-bound prccesses, 164
reparenting, 149
resource limits, 190–195

default hard and soft limits, 193
Linux, resource limits provided

by, 191–193
setting and retrieving limits, 194
soft and hard limits, 190

runlist, 162
runnable processes, 162



364 | Index

processes (continued)
scheduler (see schedulers)
sessions, 154–157
terminating, 136–139

atexit( ) function, 137
by signal, 137
classic method, 137
exit( ) and _exit( ) functions, 136
kill by kernel, 137
on_exit( ) function, 138
SIGCHILD, 139

threads, 166
timeslices, 162, 164
users and groups, 149–154

changing IDs, BSD methods, 152
changing IDs, HP-UX methods, 152
obtaining user and group IDs, 154
preferred user/group ID

manipulations, 153
real, effective, and saved user and

group IDs, 150
real, effective user or group IDs,

changing, 151
real or saved user and group IDs,

changing, 151
support for saved user IDs, 153

vfork( ) function, 135
zombies, 17, 149

waiting on zombie processes, 139
(see also child processes; parent

processes)
(see also real-time systems)

processor affinity, 172–176
sched_getaffinity( ) and sched_setaffinity

functions, 173–176
programming

multithreaded programming, 166
programming concepts, 9–22

error handling, 19–22
files, 9–15

filesystems and namespaces, 14
headers, 19
interprocess communication, 19
permissions, 18
processes, 15–17
signals, 19
users and groups, 17

programs
critical regions, 297

protection flags and architecture, 96
PROT_READ and PROT_EXEC flags, 96
pselect( ) function, 52

psignal( ) function,, 290
pthreads API, 166
pure functions, 341
pure keyword, 341
pwrite( ) function, 45

R
raise( ) function, 292

signal for, 303
random number generators, 232
read( ) function, 29–33

additional error values, 32
nonblocking reads, 32
positional reads, 44

error values, 45
reading all the bytes, 31
return values, 30
size limits, 33

read FIFO queue, 116
read latency, 116
read permissions, 18
readahead, 60, 107
readahead( ) function, 110

return values and error codes, 110
readdir( ) function, 221, 222
readv( ) function, 84

implementation, 88
return values, 85

real gid, 17
real time, 308
real uid, 17
real user ID, 150
realloc( ) function, 249
real-time systems, 176–189

determinism, 187–189
CPU affinity and real-time

processes, 188
prefaulting data and locking

memory, 187
latency, jitter, and deadlines, 177
real-time processes, precautions with, 186
sched_rr_get_interval, 185
scheduling parameters, setting, 182–185

range of valid priorities,
determining, 184–185

scheduling policy and priorities, 178–182
batch scheduling policy, 180
FIFO class, 179
normal policy, 180
RR (round-robin) class, 179
setting, 180–182
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soft versus hard real-time systems, 176
support in Linux, 178
(see also processes; schedulers)

records, 9
reentrancy, 293

guaranteed-reentrant functions, 294
regular files, 9
relative pathnames, 11, 212
relative time format, 309
remove( ) function, 228
removexattr( ) function, 211
rename( ) function, 229
reparenting, 17
reparenting of processes, 149
resource limits of processes, 190–195

default hard and soft limits, 193
Linux, resource limits provided

by, 191–193
setting and retrieving limits, 194
soft and hard limits, 190

rewind( ) function, 74
rlimit structure, 190
RLIMIT_CPU, 190
rmdir( ) function, 219
root directory, 11, 212
root filesystem, 14
root (root user), 17
round-robin (RR) class, 179
run list, 162
runnable processes, 162

S
saved group ID (gid), 17
saved user ID (uid), 17, 151
sbrk( ) function, 256
scatter/gather I/O, 84–89

advantages, 84
readv( ) and writev( ) functions, 84

implementation, 88
return values, 85

SCHED_BATCH, 180
sched_getaffinity( ) and sched_setaffinity

functions, 173–176
sched_getparam( ) and sched_setparam( )

functions, 182–185
error codes, 183

sched_getscheduler( ) and sched_
setscheduler( ) functions, 180–182

SCHED_OTHER, 180
SCHED_RR, 179

sched_rr_get_interval, 185
error codes, 186

schedulers, 162–166
load balancing, 173
multitasking, 163
O(1) process scheduler, 163
preemptive scheduling, 165
process prioritization, 169–172

getpriority( ) and setpriority( )
functions, 171

I/O priorities, 172
nice( ) function, 170

processor affinity, 172–176
sched_getaffinity( ) and sched_

setaffinity functions, 173–176
sched_rr_get_interval, 185
scheduling parameters, setting, 182–185

range of valid priorities,
determining, 184–185

scheduling policy, 178–182
batch scheduling policy, 180
FIFO class, 179
normal policy, 180
RR (round-robin) class, 179
setting, 180–182

(see also processes; real-time systems)
sched_yield( ) function, 166

legitimate uses, 167
Linux version 2.6, changes in, 168

sectors, 14
security namespace, 206
segmentation violations, signal for, 284
segments, 245
select( ) function, 48–53

disadvantages, 89
poll( ), versus, 57
use for sleeping, 329

sequential locality, 60
sessions, 154–157

session system calls, 156
setegid( ) function, 152
seteuid( ) function, 152, 153
setitimer( ) function, 282, 284, 332
setpgid( ) function, 157
setpgrp( ) function, 158
setresuid( ) function, 153
setreuid( ) function, 152
setrlimit( ) function, 190
setsid( ) function, 156
setsize parameter, 174
settimeofday( ) function, 318
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setuid( ) function, 151, 153
setxattr( ) function, 208
si_code field, 302

values valid for SIGBUS, 303
sigaction( ) function, 298–300
sigaddset( ) function, 296
sigandset( ) function, 296
SIGBUS signal, 99
SIGCHILD, 139
SIGCONT signal, 292
sigdelset( ) function, 296
sigemptyset( ) function, 296
sigfillset( ) function, 296
SIGHUP, 154
siginfo_t structure, 300–302
SIGINT, 154
sigisemptyset( ) function, 296
sigismember( ) function, 296
signal( ) and sigaction( ) functions, 139
signal( ) function, 286, 307
signals, 19, 279–286

blocking signals, 296–298
retrieving pending signals, 297
waiting for a set of signals, 298

concepts, 280
identifiers, 280

critical regions and, 297
human-readable versus integer

values, 281
Linux, supported by, 281–286
listing with kill -l command, 281
payloads, sending signals with, 305

example, 306
reentrancy, 293

guaranteed-reentrant functions, 294
sending, 291–293

examples, 292
permissions, 292
to a process group, 293
to yourself, 292

SIGINT and SIGTERM, 280
SIGKILL and SIGSTOP, 280
signal management, 286–291, 298–305

examples, 287
execution and inheritance, 289
mapping signal numbers to

strings, 290
si_code field, 302–305
sigaction( ) function, 298–300
siginfo_t structure, 300–302
waiting for signals, 287

signal masks, 297
signal sets, 295
signal-safety, 294

sigorset( ) function, 296
sigpending( ) function, 298
sigprocmask( ) function, 297
sigqueue( ) function, 305
SIGSEGV signal, 99
sigsuspend( ) function, 298
Single Unix Specification (see SUS)
sleep( ) function, 324
sleeping, 324–330
sockets, 13
soft affinity, 173
soft links, 225
soft real-time systems, 176
soft resource limits, 190
software clocks, 309
sorting (I/O schedulers), 115
source compatibility, 5
special files, 13
stack, 245

duplicating strings on, 266
stack-based memory allocations, 264–268

strings, duplicating, 266
variable-length arrays, 267

standard error (stderr), 21
standard I/O, 64

file pointers, 65
limitations, 81

standard I/O library, 64
standards, 6

as dealt with in this book, 8
stat( ) function, 197
stat family, 196–199

stat structure, 197
fields, 197–199

static priority, 178
status pointer, 140
stderr (standard error), 21
stdin, stdout, and stderr file descriptors, 23
stdio, 64
stime( ) function, 318
strdup( ), strdupa( ), and strndupa( )

functions, 266
streams, 65

associated file descriptors, obtaining
for, 77

closing, 67
closing all, 67
file descriptors, opening via, 66
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flushing, 75
reading from, 67–70

putting the character back, 68
reading an entire line, 68
reading arbitrary strings, 69
reading binary data, 70
reading one character at at time, 67

seeking a stream, 74
obtaining current stream position, 75

writing to, 70–72
data alignment, 71
writing a single character, 71
writing a string, 72
writing binary data, 72

(see also buffered I/O)
strerror( ) function, 21
strerror_r( ) function, 21
strsignal( ) function, 290
subdirectories, 212
supplemental groups, 17
SUS (Single Unix Specification), 6

history, 6
standards UNIX 95, UNIX 98, and

UNIX 03, 7
symbolic links (symlinks), 12, 223, 225
symlink( ) function, 226
symmetric multiprocessing, 172
sync( ) function, 39
synchronicity of write operations, 112
synchronization, 39
synchronized operations, 111
synchronous write operations, 111
sysconf( ) function, 98
sys_siglist, 290
system calls (syscalls), 3

I/O calls and, 77
system clock, tuning, 321–324
system namespace, 205
system programming, xi, 1–4

C compiler, 4
C library (libc), 4
functions

parameter passing, 3
programming concepts (see programming

concepts)
standards, 6
system calls, 3

invoking, 3
system software, xi, 1
system timer, 309
system timer frequency, 309

T
temporal locality, 59
text files and binary files, 66
text segment, 245
The C Programming Language, xi
The Open Group, 6
thread-based asynchronous I/O, 113
threads, 79, 166

pthreads API, 166
thread safety, 79–81

manual file locking, 80
unlocked stream operations, 81

thread-safety, 79
tick or jiffy, 309
time, 308–310

C language conversion
functions, 320–321

current time, getting, 315–318
microsecond resolution, 316
nanosecond resolution, 316

current time, setting, 318
clock_settime( ) function, 319

data structures, 310–313
clock_t type, 313
timespec (nanosecond precision), 311
time_t, 310
time_t and leap years, 315
timeval (microsecond precision), 311
tm structure for broken-down time

representation, 312
delta, 322
epoch measurement, 309
kernel, measurement by, 308
measurement formats, 309
POSIX clocks, 313–315

clockid_t type, 313
time source resolution, 314

process time, getting, 317
sleeping, 324–330

alternatives to, 330
microsecond precision, 325
nanosecond precision, 326–329
select( ) function for portability, 329
timer overruns, 329

system clock, tuning, 321–324
timers, 330–338

alarms, 330
interval timers, 331–333
POSIX clocks-based timers, 333–338

time( ) function, 315
timer_create( ) function, 334
timer_delete( ) function, 338



368 | Index

timer_getoverrun( ) function, 337
timer_gettime( ) function, 336
timer_settime( ) function, 335
times( ) function, 317
timeslices, 162, 164
time_t type, 321
toolchain, 6
truncate( ) function, 46
truncation, 10
trusted namespace, 206
typeof( ) keyword, 346

U
uid (user ID), 17
umask, 218
undefined keys, 204
Universal Time, Coordinated (UTC), 309
Unix, 1
Unix text editors, xi
unlikely( ) wrapper, 345
unlink( ) function, 227
unlinking, 12
unmounting, 14
unused attribute, 343
user ID (uid), 17
user namespace, 206
user time, 40, 317
user-buffered I/O, 62–64
user-buffered I/O (input/output)

file descriptors, usage of, 23
usernames, 17
users, 17

ownership of processes, 127
user-space applications, communication with

kernel, 3
usleep( ) function, 325
UTC (Universal Time, Coordinated), 309

V
valid page, 244
variable-length arrays (VLAs), 267
variadic functions, 129
vectored I/O, 84, 86
vectors, 85
vfork( ) function, 135
VFS (see virtual filesystems)
virtual address space, 243
virtual file switch, 58
virtual filesystems (VFS), 14, 58

W
wait( ) function, 139
waitid( ) function, 143
waiting on zombie processes, 139
waitpid( ) function, 142
wall time, 308
warn_unused_result attribute, 342
watches, 236–242

adding watches, 236
advanced options, 240
inotify events, 238–240

advanced events, 239
linking together move events, 240
reading, 238

watch masks, 236
whence, 74
word size, 44
-Wpointer-arith option, 349
write( ) function, 33–37

additional error codes, 35
append mode, 34
behavior of write( ), 36
nonblocking writes, 35
partial writes, 34
positional writes, 44

error values, 45
size limits on, 36

write FIFO queue, 116
write ordering, 36
write permissions, 18
writebacks, 36
writes-starving-reads problem, 116
writev( ) function, 85

example, 86
implementation, 88
return values, 85

X
X⁄Open, 7
xattrs (see extended attributes)
xmalloc( ) wrapper, 247

Y
yielding, 163, 166–169

legitimate uses, 167
Linux version 2.6, changes in, 168

Z
zero device, 232
zombies, 17, 149

waiting on zombie processes, 139
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The image on the cover of Linux System Programming is a man in a flying machine.
Well before the Wright brothers achieved their first controlled heavier-than-air flight
in 1903, people around the world attempted to fly by simple and elaborate machines.
In the second or third century, Zhuge Liang of China reportedly flew in a Kongming
lantern, the first hot air balloon. Around the fifth or sixth centuries, many Chinese
people purportedly attached themselves to large kites to fly through the air.

It is also said that the Chinese created spinning toys that were early versions of heli-
copters, the designs of which may have inspired Leonardo da Vinci in his initial
attempts at a solution to human flight. da Vinci also studied birds and designed para-
chutes, and in 1845, he designed an ornithopter, a wing-flapping machine meant to
carry humans through the air. Though he never built it, the ornithopter’s birdlike
structure influenced the design of flying machines throughout the centuries.

The flying machine depicted on the cover is more elaborate than James Means’
model soaring machine of 1893, which had no propellers. Means later printed an
instruction manual for his soaring machine, which in part states that “the summit of
Mt. Willard, near the Crawford House, N.H., will be found an excellent place” to
experiment with the machines.

But such experimentation was often dangerous. In the late nineteenth century, Otto
Lilienthal built monoplanes, biplanes, and gliders. He was the first to show that
control of human flight was within reach, and he gained the nickname “father of
aerial testing,” as he conducted more than 2,000 glider flights, sometimes traveling
more than a thousand feet. He died in 1896 after breaking his spine during a crash
landing.



Flying machines are also known as mechanical birds and airships, and are occasion-
ally called by more colorful names such as the Artificial Albatross. Enthusiasm for
flying machines remains high, as aeronautical buffs still build early flying machines
today.

The cover image and chapter opening graphics are from the Dover Pictorial Archive.
The cover font is Adobe ITC Garamond. The text font is Linotype Birka; the heading
font is Adobe Myriad Condensed; and the code font is LucasFont’s TheSans Mono
Condensed.
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